
A HIGH-LEVEL GRAPHICS PROGRAMMING LANGUAGE

SUPPORTING THE INQUIRY OF GRAPHICAL OBJECTS

by

ROBERT VAUGHAN ROSS

.A.Sc., The University of B r i t i s h Columbia, 198

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED.SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Department of E l e c t r i c a l Engineering)

We accept th i s thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

June 1982

© Robert Vaughan Ross, 1982

In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the
requirements for an advanced degree at the University
of B r i t i s h Columbia, I agree that the Library s h a l l make
i t f r e e l y available for reference and study. I further
agree that permission for extensive copying of t h i s thesis
for scholarly purposes may be granted by the head of my
department or by his or her representatives. I t i s
understood that copying or publication of t h i s thesis
for f i n a n c i a l gain s h a l l not be allowed without my written
permission.

Department O f Electrical Engineering

The University of B r i t i s h Columbia
1956 Main Mall
Vancouver, Canada
V6T 1Y3

Date July 22, 1982

DE-6 (3/81)

ABSTRACT

High-level graphical programming languages provide simply

expressed constructs for the d e f i n i t i o n , manipulation, and

external representation of graphical data. Such languages can be

used to create e f f e c t i v e and readable application programs. This

thesis investigates the value of allowing the inquiry of

graphical data in a graphical language. Major design goals of an

implementation of a language with these c a p a b i l i t i e s are

presented. A data base model and implementation are discussed.

The c l a s s i f i c a t i o n of graphical primitives as abstract data

types is presented. Examples are given of several areas in which

a language including graphical inquiry may be applied. It is

concluded that inquiry permits the d e f i n i t i o n and manipulation

of a r b i t r a r y models of graphical objects, so enabling the

implementation of sophisticated graphical algorithms.

i i i

TABLE OF CONTENTS

Page

LIST OF FIGURES v

ACKNOWLEDGEMENTS v i i

Chapter

1. INTRODUCTION 1

2. LANGUAGE DESIGN GOALS 4

2 . 1 Inquiry 4

2.2 Levels Of Usage 5

2.3 Fortran Consistency 8

2.4 Separate Preprocessing And Compilation 10

3. DATA BASE SYSTEM i 12

3.1 Data Base Model 14

3.2 Data Base Implementation 22

4. GRAPHICAL OUTPUT PRIMITIVES 28

4.1 Primitives As Abstract Data Types 28

4.2 Programmer Defined Primitives 30

4.3 Graphical Functions Versus Graphical Primitives ... 35

5. GRAPHICAL DOMAINS 38

5.1 Construction Tools 38

5.2 Systematic Manipulation 40

5.3 Graphical Editing 45

5.4 Data Structures 52

6. NEW LANGUAGE FEATURES 59

i v

0*

6.1 Vector Data Type ' 59
6.2 Map Operator 61

6.3 Stroke P r e c i s i o n Text 65

6.4 S t r u c t u r e d Statements 66

6.5 A r c h i v a t i o n 69

7. CONCLUSIONS 72

BIBLIOGRAPHY 80

APPENDIX A - A Sample Program 82

APPENDIX B - Implementation Notes 86

V

LIST OF FIGURES

Figure 1 Data Base Model 15

Figure 2 VALUE And SUPER Functions 16

Figure 3 Nested Graphical Expressions 18

Figure 4 Copy Assignment 20

Figure 5 Value Assignment 20

Figure 6 Super Assignment 21

Figure 7 Graphical Node Structure 23

Figure 8 Primitive Record Header 24

Figure 9 Primitive Record Storage 26

Figure 10 Integer External Representation 30

Figure 11 Allowable Primitive Template Grammar Productions 33

Figure 12 Square Primitive 32

Figure 13 Parallelogram Primitive 33

Figure 14 Sphere Primitive 36

Figure 15 Graphical Ductwork Construction Tools 40

Figure 16 Arbitrary Pipe Model 41

Figure 17 Second View Of Pipe 41

Figure 18 Helix Constructed With REVOLV 42

Figure 19 Second View Of Helix 42

Figure 20 Deep Replace Algorithm 44

Figure 21 Graphical Substitution 45

Figure 22 Origi n a l Model Image 47

Figure 23 Origi n a l Tree Structure 48

v i

Figure 24 Graphical Editing Addition 48

Figure 25 Viewing Editing Result 49

Figure 26 Editing Level Change 49

Figure 27 Subobject Modification 50

Figure 28 Origi n a l Root Redrawn 50

Figure 29 Structure Alteration 51

Figure 30 Graphical Editing Result 51

Figure 31 Grammar Storage Data Types And Variables 54

Figure 32 Or i g i n a l Grammar Internal Representation 55

Figure 33 Manipulated Grammar Internal Representation 56

Figure 34 Sample Input Grammar 57

Figure 35 Sample Syntax Directed Diagram 58

Figure 36 Vector Operators 60

Figure 37 Vector Data Type Usage 61

Figure 38 Vector Component Access 61

Figure 39 Map Operator Examples 62

Figure 40 Z-Rotation Matrix 63

Figure 41 Map Operator Implementation 64

Figure 42 Text Precision 66

Figure 43 Stroke Precision Text 67

Figure 44 Structured Statements Grammar 68

Figure 45 Structured Statements Examples ' 69

v i i

ACKNOWLEDGEMENTS

I would l i k e to express my s i n c e r e a p p r e c i a t i o n to Dr. Gunther

Schrack f o r h i s i n v a l u a b l e h e l p and guidance. I am g r a t e f u l to

my parents f o r t h e i r support and encouragement. T h i s research

would not have been p o s s i b l e were i t not f o r the f i n a n c i a l

support of the N a t i o n a l Science and En g i n e e r i n g Research

C o u n c i l .

1

Chapter 1

INTRODUCTION

There has always been considerable interest in the

presentation of information in p i c t o r i a l form. As computers are

applied in an increasing number of areas and more information i s

stored in machine-readable form, the demand for the automatic

generation of graphical images also increases. The f i e l d of

computer graphics i s concerned with the generation of such

images.

Most programmers' i n i t i a l experience with computer graphics

involves graphical subroutine systems. The major task of these

systems i s to act as an interface between application programs

and graphical input and output devices. The subroutines

generally do not provide modelling functions, this i s l e f t as a

task of the application program.

Modelling functions are provided by high-level graphics

programming ' languages. These languages consider graphical

information to be values of an abstract data type. They provide

constructs which define and manipulate data of the type

GRAPHICAL. High-level graphics languages possess several

advantages over subroutine systems: high p o r t a b i l i t y of programs

and programmers, ease of learning the language, and improved

re a d a b i l i t y of a program. This thesis discusses some aspects of

the design and implementation of such a language. The name of

2

t h i s language i s LIG6 (Language f o r I n t e r a c t i v e Graphics V e r s i o n

6). I t i s the most recent v e r s i o n of a f a m i l y of languages

[Schr76,Mann80], with new f e a t u r e s and c h a r a c t e r i s t i c s .

During the past y e a r s , many h i g h - l e v e l g r a p h i c s languages

have been d e s c r i b e d or proposed, notably i n papers by Ku l s r u d

[K u l s 6 8] , Newman [Newm7l], Smith [S m i t 7 l] , and, more r e c e n t l y ,

Magnenat-Thalmann et a l . [Magn8l], and Barth et a l . [B a r t 8 l] .

McLean [McLe78] d i s c u s s e s 37 languages i n a survey. The

languages d i f f e r widely i n both syntax and semantics, as w e l l as

in the approaches taken f o r t h e i r implementation.

The m o d e l l i n g c o n s t r u c t s of these languages allow the

e x p l i c i t d e f i n i t i o n and manipulation of models of g r a p h i c a l

o b j e c t s . T h i s permits a p p l i c a t i o n programs to perform p a s s i v e or

i n t e r a c t i v e g r a p h i c s . I t i s d i f f i c u l t f o r programs i n these

languages to manipulate a r b i t r a r y models of g r a p h i c a l o b j e c t s

because of the d i v e r s e nature of these models. T h i s t h e s i s

i n v e s t i g a t e s areas i n which a g r a p h i c s programming language can

be a p p l i e d when a formal model s t r u c t u r e and i n q u i r y i n t o such

s t r u c t u r e s are pr o v i d e d .

LIG6 i s implemented as an extension to a host language,

FORTRAN. A pr e p r o c e s s o r , w r i t t e n i n PASCAL, converts LIG6

programs i n t o standard FORTRAN programs with e x t e n s i o n elements

t r a n s l a t e d i n t o c a l l s to subrout i n e s i n a run-time l i b r a r y .

These subrou t i n e s are coded i n FORTRAN. When a LIG6 program i s

to be executed, the o b j e c t deck produced by co m p i l i n g the

prepr o c e s s o r output i s run i n c o n j u n c t i o n with the run-time

l i b r a r y . Only those d e t a i l s of the language and of i t s

implementation which are p e r t i n e n t to the p o i n t s d i s c u s s e d i n

3

t h i s t h e s i s are o u t l i n e d ; more complete i n f o r m a t i o n i s a v a i l a b l e

i n the LIG6 User's Manual [Ross82].

Chapter 2 presents the major design goals of the language.

The o v e r a l l s t y l e of the language with respect to the host

language and the importance of separate p r e p r o c e s s i n g and

c o m p i l a t i o n of modules i s c o n s i d e r e d . Aspects of i n q u i r y and the

p a r t i t i o n i n g of language c o n s t r u c t s i n t o a h i e r a r c h y are

addressed.

The concept of a data base system i s presented i n Chapter

3. The b e n e f i t s of programmer knowledge of system implementation

are d i s c u s s e d . A model of the data base and a summary of i t s

implementation are given.

Chapter 4 i n t r o d u c e s the idea of regarding g r a p h i c a l output

p r i m i t i v e s as true a b s t r a c t data types. The method by which

programmers can d e f i n e such p r i m i t i v e s and the d i f f e r e n c e s

between p r i m i t i v e s and g r a p h i c a l f u n c t i o n s are o u t l i n e d .

Examples of areas i n which LIG6 can be a p p l i e d are

presented i n Chapter 5. T o o l s f o r the c o n s t r u c t i o n of models of

g r a p h i c a l o b j e c t s are d i s c u s s e d . The systematic manipulation of

g r a p h i c a l o b j e c t s i s d e f i n e d . The concept of i n t e r a c t i v e l y

e d i t i n g g r a p h i c a l o b j e c t s i s presented. Employing g r a p h i c a l data

to represent a b s t r a c t ideas i s i n t r o d u c e d .

A sample of f e a t u r e s p r o v i d e d i n LIG6 i s given i n Chapter

6. An e f f e c t i v e t r a n s f o r m a t i o n operator i s i n t r o d u c e d , the

support f o r the data type VECTOR i s o u t l i n e d , stroke p r e c i s i o n

t e x t i s d e s c r i b e d , and the a b i l i t y to save and r e s t o r e models of

g r a p h i c a l o b j e c t s i s d i s c u s s e d .

4

Chapter 2

LANGUAGE DESIGN GOALS

2 . 1 Inqui ry

Usually, algorithms are implemented where the flow of

control depends on the results of previous operations. To make

control decisions, a program must be able to inquire about

values of variables and expressions and determine what

operations have occurred. For interesting graphical algorithms

to be implemented, the results of graphical operations must be

accessible to control structures. Thus, one of the design goals

of L IG6 was to support information recovery.

Information recovery i s the a b i l i t y to access the results

of actions and thereby determine what operation occurred. It is

supported by providing methods of obtaining such access for a l l

graphical operations. Two forms of access are used in LIG6. If a

natural, consistent s y n t a c t i c a l construct i s possible, i t is

used. Otherwise, system subprograms are provided. A c a l l to such

a subprogram results in the desired information being returned

in the routine's parameters.

In LIG6, l o g i c a l expressions have been extended to include

the comparison of models of graphical objects. In this way, the

5

results of graphical assignment statements can control a

program's execution. S i m i l a r l y , i t can be determined whether a

variable's value i s a primitive and, i f so, which type. The

structure and content of primitive records are accessible, so

enabling control decisions and automated modelling. The results

of transformations and attribute settings in assignment

statements are also accessible. A dualism between action and

inquiry has been established: for every operation there i s a

method to determine the nature and result of i t s action.

2 . 2 Levels of Usage

As is true for most occupations, computer programmers tend

to possess d i f f e r e n t l e v e l s of sophistication related to their

experience and a b i l i t y . A programming language i s most useful i f

i t i s a t t r a c t i v e to programmers of a l l l e v e l s . This general

appeal may be obtained by dividing the language into levels with

each l e v e l a superset of that d i r e c t l y below i t . The lower l e v e l

features are arranged to be independent of those at higher

l e v e l s . This p a r t i t i o n i n g is one of the design goals of LIG6.

Another benefit of l e v e l p a r t i t i o n i s the r e l a t i v e ease with

which the language can be learned. Programmers are able to

quickly obtain results using low l e v e l constructs and then

advance naturally, as t h e i r needs increase.

Programming languages in general, and LIG6 in p a r t i c u l a r ,

can be v i s u a l i z e d as having three lev e l s of usage. Each of these

leve l s i s i d e n t i f i e d by the styles of tasks performed. The f i r s t

l e v e l i s a subset of the second which i s , in turn, a subset of

6

the l a s t .

The f i r s t l e v e l is characterized by e x p l i c i t commands and

l i t t l e i nteractive a c t i v i t y . In a conventional programming

language, programs which generate tables or solve well-defined

mathematical problems such as numerical integration are of t h i s

l e v e l . The corresponding l e v e l in LIG6 is represented by

programs which e x p l i c i t l y model a well-defined graphical object

and display an external representation of that model, i . e . an

image, on a device.

There are four independent constructs which support this

l e v e l in LIG6. The f i r s t construct consists of the various

methods of declaring graphical variables. Modelling i s performed

with the simple assignment statement and with the standard

graphical primitives. Modelling transformations and a t t r i b u t e

settings are performed with the modification constructs. The

l a s t construct i s the display statement which produces images of

the results of graphical modelling. At this l e v e l , the

programmer i s the a r t i s t , e x p l i c i t l y creating the desired image.

The second l e v e l of use is characterized by a high l e v e l of

interactive a c t i v i t y and the e x p l i c i t modification of e a r l i e r

processes and r e s u l t s . A t y p i c a l program in a conventional

language of t h i s type would be one in which results are obtained

in an i t e r a t i v e fashion with new starting values and process

parameters supplied i n t e r a c t i v e l y by the user. At t h i s l e v e l ,

LIG6 programs e x p l i c i t l y modify models and images of graphical

objects.

In LIG6 programs, models of graphical objects constructed

by assignment statements are modified using the deletion

7

s t a t e m e n t . Images produced by the d i s p l a y statement may be

m o d i f i e d u s i n g two t y p e s of e r a s u r e s t a t e m e n t s . I n t e r a c t i v e

a c t i v i t i e s a r e s u p p o r t e d by the i d e n t i f i c a t i o n c o n s t r u c t s . The

programmer i s removed one s t e p from the use of the program a t

t h i s l e v e l ; he c r e a t e s a p p l i c a t i o n programs which a re then run

by u s e r s t o c r e a t e the images they d e s i r e .

The t h i r d and h i g h e s t l e v e l i s c h a r a c t e r i z e d by programs

u s i n g knowledge of t h e i r own da t a bases and which use i n q u i r y of

the r e s u l t s of p r e v i o u s o p e r a t i o n s t o det e r m i n e the f l o w of

c o n t r o l . A t y p i c a l problem i n c o n v e n t i o n a l programming languages

at t h i s l e v e l might be a s e a r c h i n g a l g o r i t h m f o r the r o o t s of

e q u a t i o n s . The c o r r e s p o n d i n g l e v e l i n LIG6 i s t y p i f i e d by

programs which i m p l i c i t l y modify a r b i t r a r y models of g r a p h i c a l

o b j e c t s or c r e a t e new models based on the r e s u l t s of p r e v i o u s

m o d e l l i n g .

T h i s l e v e l i s s u p p o r t e d i n LIG6 by m o d e l l i n g and i n q u i r y

c o n s t r u c t s . A d a t a base d e f i n i t i o n model i s p r o v i d e d . A complete

s e t of m o d e l l i n g o p e r a t o r s i s p r o v i d e d g i v i n g a programmer the

a b i l i t y t o p r e c i s e l y d e f i n e and modify models. Access i s

p r o v i d e d t o a l l p a r t s of a model f o r i n f o r m a t i o n r e t r i e v a l .

Programmers a t t h i s l e v e l a r e o f t e n removed two s t e p s from the

use of the program. They c r e a t e the program t o o l s which

a p p l i c a t i o n programmers then i n c o r p o r a t e i n a p p l i c a t i o n programs

w i t h which u s e r s f i n a l l y c r e a t e images.

Without t h i s f i n a l l e v e l , i t i s d i f f i c u l t t o implement

programs w i t h the a b i l i t y t o make i n t e l l i g e n t d e c i s i o n s .

S o p h i s t i c a t e d g r a p h i c s programs would be f o r c e d t o m a i n t a i n

s e p a r a t e d a t a bases, d e f e a t i n g one of the p r i m a r y purposes of a

8

high-level graphics language. An idea of the importance of this

l e v e l can be obtained by considering the IF statement. Most

computer programs contain such conditional statements implying

that they are at the t h i r d l e v e l . No inquiry constructs are

available in the f i r s t two l e v e l s . A graphical language with the

a b i l i t y to perform inquiry on the results of graphical

operations c l e a r l y has a d i s t i n c t advantage over one which does

not.

2.3 Fortran Consistency

V i r t u a l l y a l l graphics programming languages are extensions

to existing high-level computer languages. A graphics

application program w i l l generally require non-graphics

constructs for support. When these constructs are i d e n t i c a l to

those of a language already known to a programmer, the time and

e f f o r t required to become fluent with the graphics language is

reduced. Any gains made with t h i s approach, however, w i l l be

lessened i f the language extension is not consistent with the

host language.

Each individual construct of a given computer language has

rules governing i d e n t i f i e r names, reserved words, and format

which i t shares with the other constructs. In addition,

operations possible with d i f f e r e n t data types are arranged to

overlap as much as i s fe a s i b l e . If these general rules are

ignored when a language is extended and a d i f f e r e n t style is

used for new constructs, a programmer w i l l be forced to learn

and retain twice as much information regarding s t y l e ; confusion

9

w i l l occur over the choice of style for a p a r t i c u l a r construct.

It i s with t h i s in mind that one of the design goals of the

language was to make a l l extensions as consistent with FORTRAN

as possible.

The most important features of the format of a FORTRAN

program are that blanks are not delimiters, and that there are

no reserved words. A l l syntax i s determined by context, making

FORTRAN one of the more d i f f i c u l t computer languages to parse. A

c l a s s i c example of t h i s i s the two statements

DO 10 I = 5
DO 10 I = 5,9

The f i r s t statement is an assignment statement where the integer

expression 5 i s coerced into a real expression and assigned to

the variable DO10I. The second statement i s a DO statement with

the integer index I ranging in value from 5 to 9 and an object

whose statement has the label 10. A parser cannot di s t i n g u i s h

between the two statements u n t i l i t reaches the comma.

Such input format conventions remain in LIG6. The

extensions do not introduce reserved words, and blanks are s t i l l

ignored. Some upwards compatible freedoms have been added to the

format of both host and extension statements. Statements may now

span lines without the use of a continuation card, although such

cards are s t i l l permitted and recognized. Multiple statements

per l i n e are allowed, provided they are separated by semicolons.

Comments enclosed in braces may appear anywhere. The length of a

l i n e has been extended from 72 to 255 characters and column

positions are not important regarding statement labels and the

beginning of statements. None of these extensions r e s t r i c t

10

previously correct format; ANSI standard FORTRAN programs are

acceptable LIG6 programs.

In FORTRAN, there i s a variety of rules and operations

which apply to data types generally. I d e n t i f i e r s are r e s t r i c t e d

to a length of six characters. Variables and function

i d e n t i f i e r s may be typed e x p l i c i t l y , or else i m p l i c i t l y with the

aid of the IMPLICIT statement. There are no less than three

statements which can determine the dimensions of an array

variable: e x p l i c i t type declaration statements, the DIMENSION

statement, and the COMMON statement. Expressions may be passed

as arguments to subprograms. A l l of these rules also apply to

the extension data types.

The extension type GRAPHICAL i s e s s e n t i a l l y a pointer type.

Some of the declarations possible for non-pointer types,

therefore, are not permissible with t h i s type. Graphical

variables may not be i n i t i a l i z e d , as in a DATA statement. They

may not be equivalenced or placed in a common block position

which i s also referenced by a non-graphical variable. F i n a l l y ,

statement functions are not allowed for this type.

2.4 Separate Preprocessing and Compilation

In computer science, there is always the question of the

effe c t a programming style has on the a b i l i t y to e a s i l y generate

correct, maintainable solutions to problems. A style known as

modularization [Dijk76] has i t s origins in c l a s s i c a l problem

solving: s p l i t t i n g a problem so that when a l l of the subparts

are solved, the overall . solution has been obtained. Modular

11

programs are written in FORTRAN with the aid of subprograms.

Being able to create and i n d i v i d u a l l y test modules of a

program has at least two benefits. The f i r s t i s that i t is much

easier to isol a t e errors in a small, uncomplicated module than

i t i s in a complete program. The second i s that once a module is

complete and correct, i t can be used in any program which

requires a similar problem to be solved. In this fashion,

problems need only be solved once.

To promote modular programming and the creation of

l i b r a r i e s of useful graphical routines, the FORTRAN module or

subprogram i s f u l l y supported as a design goal of LIG6. Function

subprograms of type GRAPHICAL are included, and graphical

variables and function i d e n t i f i e r s may be parameters of a

subprogram. Consistent with FORTRAN, variables which are not

parameters are l o c a l to a subprogram and are automatically

i n i t i a l i z e d upon entry to the routine. The creation and use of

l i b r a r i e s of e f f e c t i v e graphical routines w i l l allow the system

to evolve into a powerful design and v i s u a l i z a t i o n t o o l .

12

Chapter 3

DATA BASE SYSTEM

A high-level programming language has several advantages

over an assembly-level language. These advantages include

p o r t a b i l i t y of programs and programmers, ease of learning the

language, improved readability of programs, and the removal of

d e t a i l irrelevent to an app l i c a t i o n . Similar advantages are

evident when comparing a high-level graphics language with

subprogram packages such as CORE [GSPC79] or IG [Mair8l].

The lower l e v e l constructs of LIG6 preserve the concept of

data abstraction with regard to graphical data. A conventional

programming language allows the natural d e f i n i t i o n and

manipulation of numbers and l o g i c a l values without requiring the

programmer to know about the internal representation or

al l o c a t i o n of these data types. S i m i l a r l y , lower l e v e l LIG6

constructs permit the treatment of graphical data in an abstract

fashion via the simple d e f i n i t i o n and presentation of models of

graphical objects. Use of the advanced l e v e l constructs,

especially those involving inquiry, require some knowledge of

the implementation of the language and of i t s data base.

To some extent, the use of lower l e v e l constructs of both

conventional programming languages and LIG6 also requires that

some knowledge of implementation be acquired. In FORTRAN, for

example, a programmer must be aware of the quantity of memory

1 3

allocated for various data types when using COMMON blocks and of

the storage mechanism for multi-dimensioned arrays. In LIG6, the

data type GRAPHICAL must be recognized as being a pointer type

so that recursive d e f i n i t i o n s are not made. The a b i l i t y to

produce sophisticated programs increases with the amount of

knowledge of implementation.

Knowledge of how character data is packed in various

FORTRAN data types enables the user to make str i n g comparisons

using integer arithmetic. Exploitation of the variant part of

structured records of PASCAL allows coercion between data types.

One of the reasons assembly languages are used i s the freedom a

programmer has for implementations. Being the designer of an

implementation which can be t a i l o r e d to f i t the application, the

programmer i s the one best q u a l i f i e d to use i t .

To enable the use of the advanced le v e l LIG6 constructs by

a programmer, certain information about the implementation must

be provided for him. This information includes a model of the

data base and the effects of graphical modelling on the data

base. Advanced le v e l constructs are explained in terms of their

data base effects as well as their graphical e f f e c t s . These

constructs are complete in the sense that a l l possible data base

values may be created with their use. Their a v a i l a b i l i t y ensures

that a programmer may precisely model and manipulate graphical

objects within the bounds of the c a p a b i l i t y of the data base

implementation. It is to the advantage of programmers using the

advanced l e v e l constructs to view LIG6 as a data base management

system with graphical s i d e - e f f e c t s .

There i s no degrading of the system from i t s high-level

1 4

graphics programming language status when t h i s view i s taken.

Lower l e v e l constructs do not require knowledge of the data base

model and advanced le v e l users are not required to manage the

data base. New elements are allocated automatically, system

interfaces are taken care of, the graphical interpretation of

the data base i s b u i l t in, and discarded elements are garbage-

c o l l e c t e d by the system. By providing the implementation

information to programmers, the most e f f e c t i v e use of the system

becomes possible.

3.1 Data Base Model

Graphical data i s inherently h i e r a r c h i c a l in nature. This

is r e f l e c t e d in the implementation of the data base. For the

purpose of using the advanced l e v e l constructs of LIG6, the

graphical data base can be vi s u a l i z e d as a binary tree. This is

a dynamically alterable n-level h i e r a r c h i c a l data base [FOLE82].

Leaves of the tree are graphical output pri m i t i v e s . Modelling

transformations and attribute d e f i n i t i o n s are stored in the

nodes of the tree. This model of the data base system i s

i l l u s t r a t e d by the following synonym assignment statements where

means assignment and "+" means superposition. Their

r e s u l t i n g tree structure is displayed in Figure 1.

A : - LINE FROM (X1,Y1 ,Z1) TO (X2,Y2,Z2) TO (X3,Y3,Z3)
B : - POLY FROM (P1,Q1 ,R1) TO (P2,Q2,R2) TO (P3,Q3,R3)
C : - 'HI THERE' < MOD 0 >
D : - A < MOD 1 > + B < MOD 2 >
E : - D < MOD 3 > + C < MOD 4 > + LINE FROM (T1,U1,V1)

TO (T2,U2,V2)

In the representation of the binary tree in Figure 1, the

pointer to the right of each node is c a l l e d the value pointer.

15

LINE
X1,Y1,Z1
X2,Y2,Z2
X3,Y3,Z3

B

<2> < >
POLY

P1,Q1,R1
P2,Q2,R2
P3,Q3,R3

<2> < >
POLY

P1,Q1,R1
P2,Q2,R2
P3,Q3,R3

POLY
P1,Q1,R1
P2,Q2,R2
P3,Q3,R3

<4> <0> <0>
STRING

HI THERE

< >
LINE

T1,U1,V1
T2,U2,V2

< >
LINE

T1,U1,V1
T2,U2,V2

Fig u r e 1 Data Base Model

The value of a node i s the o b j e c t model which i t s value p o i n t e r

r e f e r s t o , m o d i f i e d by the t r a n s f o r m a t i o n s s t o r e d i n the node. A

value p o i n t e r can p o i n t to another node or to a l e a f of the

t r e e . Leaves are g r a p h i c a l output p r i m i t i v e s . The downward

p o i n t e r from each node i s c a l l e d the super p o i n t e r . Whenever a

g r a p h i c a l o b j e c t i s superimposed on another, the modelling

e f f e c t s are the f o l l o w i n g : c r e a t e a node, d i r e c t the value

p o i n t e r of the new node to the superimposing o b j e c t , s t o r e any

16

m o d i f i c a t i o n s s p e c i f y i n g the in s t a n c e of that o b j e c t i n the new

node, and d i r e c t the super p o i n t e r of the o r i g i n a l node to the

new node.

For access to subo b j e c t s , two g r a p h i c a l system f u n c t i o n s

are p r o v i d e d - VALUE and SUPER. They each take one argument of

type g r a p h i c a l (which i s a p o i n t e r type) and r e t u r n the

a p p r o p r i a t e p o i n t e r of that argument's node. As f o r a l l

f u n c t i o n s i n FORTRAN, these system f u n c t i o n s must have t h e i r

type d e c l a r e d , e i t h e r i m p l i c i t l y or e x p l i c i t l y , before use. An

example of t h e i r use i s

GRAPHICAL A,B,C,D,E,F,VALUE,SUPER
A :- B + C
D :- E + A

F :- VALUE(SUPER(VALUE(SUPER(D))))

The l a s t statement i s e q u i v a l e n t to

F :- C

The co r r e s p o n d i n g t r e e r e p r e s e n t a t i o n i s presented i n F i g u r e 2 .

D E

A B

C

Fi g u r e 2 VALUE and SUPER Functions

17

Use of the VALUE and SUPER functions requires that the

programmer knows the tree structure of a p a r t i c u l a r model. The

structure, however, i s known because i t i s determined by the

assignment statements he has used to specify the object. In

l i g h t of t h i s , nested graphical expressions take on a new

mean ing.

For simple use of the language, nested graphical

expressions merely provide an easy method for applying a

transformation to more than one graphical object. An experienced

LIG6 programmer can use nested expressions, however, to

precisely specify the structure of his model as well as i t s

external representation. The two groups of statements

A 1 : - B + C + D + E
DISPLAY A1

A2 :- (B + (C + D) + ((E)))
DISPLAY A2

w i l l cause the same image to appear on the screen but the

structure of the models w i l l be d i f f e r e n t . The structure of a

model can convey information to a program as e f f e c t i v e l y as the

contents of the structure's nodes. The two structures of the

above assignment statements are shown in Figure 3 .

To enable a programmer to exert maximum control over his

models, four types of graphical assignment statements have been

provided. They are the synonym assignment, copy assignment,

value assignment, and the super assignment statements.

Synonym assignment has already been introduced. This i s the

only graphical assignment statement needed by a programmer using

simple l e v e l language constructs. Such a programmer does not

need to know the effect of this assignment on tree structures or

18

A1 B A2 B

F i g u r e 3 Nested G r a p h i c a l E x p r e s s i o n s

even that the data base implementation can be modelled as a t r e e

s t r u c t u r e . The assignment operator f o r t h i s type i s the symbol

I t r e d e f i n e s the value and super p o i n t e r s and the contents

of the node and a u t o m a t i c a l l y c r e a t e s new nodes f o r

s u p e r p o s i t i o n at the top l e v e l .

The synonym assignment statement a l l o w s the most general

form of e x p r e s s i o n to the r i g h t of i t s operator of a l l of the

assignments. The production f o r t h i s e x p r e s s i o n can be c a l l e d

<graphexpress>. The Backus-Naur form d e f i n i t i o n f o r t h i s

p r o d u c t i o n i s

<graphexpress> ::= <graphterm>
| <graphexpress> + <graphterm>

<graphterm> ::= <graphfactor>
| <graphfactor> < m o d i f i c a t i o n l i s t >

<graphfactor> ::= <graphprimitive>
<graphprimary>
(<graphexpress>)

<graphprimary> ::= <graphvariable>
| <graphfunction>

19

The copy assignment statement also redefines a l l aspects of

a node. Its operator i s ":=". The effect of such an assignment

is simply to copy the pointers and transformations stored in the

node sp e c i f i e d on the right hand side into the node specified on

the l e f t hand side. Subsequent display of either node would

y i e l d i d e n t i c a l v i s u a l r e s u l t s . The expression on the right must

be a <graphprimary>, that i s , a graphical variable or function

with no modifications or superpositions. Consider the following

statements.

i) B :- C + (D + E)
i i) A :- B

i i i) A := B
iv) A := VALUE(SUPER(A))

If each statement were executed in order, the corresponding

structures in Figure 4 would be generated.

The value assignment statement affects the value pointer of

a node and the transformations stored in i t . The super pointer

is not affected. The value assignment operator i s ":>". Its

effe c t i s to change the i n i t i a l value d e f i n i t i o n of a node, but

not any objects which have been superimposed upon i t . The

expression on the right must be a <graphterm>, that i s , the same

as a <graphexpress> except that no superposition is allowed. The

following statements generate the tree structures of Figure 5.

i) A :- B + C
i i) A :> (D + E)<COLOUR 120>

The super assignment statement redefines the super pointer

of a node. The value pointer and the transformations stored in

the node are not affected. Its operator i s ":<". Its effect is

to replace a l l objects that have been superimposed on an

i n i t i a l l y defined object by a new object. The expression on the

D

B

(i i)

i) (i v)

F i g u r e 4 Copy Assignment

B

E

— >

(i)

F i g u r e 5

(i v)

Value Assignment

21

r i g h t must be a <graphfactor>, that i s , the same as a

<graphterm> but no m o d i f i c a t i o n s are allowed. The f o l l o w i n g

statements y i e l d the s t r u c t u r e s d e p i c t e d i n F i g u r e 6.

i) A :- B + C
i i) D :- E + B

i i i) A :< SUPER(D)
i v) D :< (B<COLOUR 120> + (C))

B

B

(i)

B

B

(i i)

E

•
B

>

(i i i) (i v)

F i g u r e 6 Super Assignment

The p r e c e d i n g four assignment statements form a complete

set of o p e r a t o r s . They enable programmers to c r e a t e any b i n a r y

t r e e s t r u c t u r e they d e s i r e . A d d i t i o n a l l y , c o n s t r u c t s are

p r o v i d e d which enable o p e r a t i o n s on the leaves of the t r e e , the

output p r i m i t i v e s .

22

3.2 Data Base Implementation

The previous section discussed the model of the data base

of LIG6. The use of the word model i s important; i t emphasizes

that information about the fine d e t a i l s of the data base

implementation are not needed by users of advanced l e v e l

constructs. To reinforce t h i s point, a summary of the

implementation w i l l now be given.

The nodes depicted in Figure 1 could be stored using a

variety of methods: as arrays in common blocks, as li n e s or

groups of li n e s in disk f i l e s , or as records in dynamically

acquired v i r t u a l memory. The f i r s t approach fixes the size of

the data base. Small programs would pay the price of high memory

charges for the unused portions required for larger programs.

The second method has high overhead in disk charges and

execution time. The last method uses only as much memory as. a

program requires but does not have the overhead that secondary

storage involves. It i s the approach chosen for the

implementation of the LIG6 data base.

Each node requires 24 four byte words of contiguous memory.

The f i e l d s of each node are of three d i f f e r e n t types: fullword

REAL, fullword INTEGER, and halfword INTEGER. Because the nodes

are stored in v i r t u a l memory, access to them involves pointers

and a. system subroutine c a l l . Access to the f i e l d s of di f f e r e n t

types i s accomplished by passing the pointer three times with a

di f f e r e n t type declaration for each. The following statements

i l l u s t r a t e t h i s .

23

EXTERNAL ACCESS
CALL CALLER(ACCESS,POINTR,POINTR,POINTR)

SUBROUTINE ACCESS(REALA,INTA,INT2A)
REAL REALA(24)
INTEGER INTA(24),INT2A*2(48)

The f i e l d s of a node store the modelling transformations and

attribute settings and the instance d e f i n i t i o n s s p e c i f i e d by

graphical assignment statements. The structure of a node i s

given in Figure 7.

Position Name Type Use
fword Fullword

Type

1-12 TRMAT REAL transformation matrix
13 COLOUR REAL in t e r i o r hue attribute
1 4 LITNES REAL in t e r i o r lightness a t t r .
1 5 SATUTN REAL in t e r i o r saturation a t t r .
1 6 PATERN INTEGER in t e r i o r pattern attribute
1 7 BCOLOR REAL border hue attribute
18 BLITNS REAL border lightness attribute
19 BSATUN REAL border saturation a t t r .
20 BPATRN INTEGER border pattern attribute
21 STYLE INTEGER lin e style attribute

43 WIDTH I NT* 2 l i n e width at t r i b u t e
44 FONT I NT* 2 textstring font number
45 VALUE I NT* 2 value pointer
46 SUPER I NT* 2 superposition pointer
47 INSTAN I NT* 2 instance pointer
48 GARBGE I NT* 2 garbage c o l l e c t o r storage

Figure 7 Graphical Node Structure

Every graphical variable i s an integer halfword pointer to

a node. These pointers are not the actual v i r t u a l memory

addresses of the nodes (which would require a fullword for

pointer storage), but indices into an array of nodes. This array

is organized as blocks of 42 nodes. Each block i s approximately

one page (4096 bytes) of vir t u a l , memory. As more nodes are

24

required, the array is dynamically expanded one block at a time.

Each block i s referenced by an element in an array of pointers.

Due to pointer precision, the maximum number of blocks is 780.

This represents three megabytes of storage. As the maximum size

of the array of pointers to blocks i s thus 780, the array is

dynamically kept in v i r t u a l memory as well.

The storage for primitive records i s organized in a

dif f e r e n t fashion. Each record is a contiguous section of a

large one-dimensioned array. When a graphical pointer i s

negative, i t represents the negative index of the start of the

primitive record in the array. This array is also dynamic; i t i s

organized as blocks of 1024 words which are acquired when

necessary. A record consists of a header, the primitive

information, and a t r a i l e r . The header consists of one word; i t

contains what type of primitive follows, garbage c o l l e c t i o n

storage, and the length of the record. The word organization i s

depicted in Figure 8.

cd gb nnnn

cd - Primitive style indicator
01 = POLYLINE
02 = POLYGON
03 = TEXTSTRING
04 = USER DEFINED PRIMITIVE

gb - Garbage c o l l e c t o r storage

nnnn - Length of record

Figure 8 Primitive Record Header

The primitive information depends on the type of primitive.

For polylines and polygons, i t consists of groups of x,y, and z

25

coordinates. For textstrings, i t consists of bytes of character

data. For user-defined primitives, i t consists of an external

representation procedure pointer and a l i s t of parameters. The

t r a i l e r i s either a continuation or an end command. If i t i s an

end command, that is the end of the p r i m i t i v e . If i t i s a

continuation command, i t contains a pointer to the part of the

array where the primitive i s continued. This allows for records

larger than 1024 words and for concatenation assignment. The

following LIG6 program would create the primitive storage

presented in Figure 9 which was produced by the system debug

dump, LIGDPH.

GRAPHICAL A,B,C
A :- POLY FROM (1,2,3) TO (4,5,6) DELTA (3,3,3)
B :- 'Line at'
C :- A + LINE FROM (-1,2) TO (3,-4)
B :+ ADDSTRING IVALUE(9+7,5)
CALL LIGDPH
STOP
END

Free l i s t s are kept for both nodes and primitive record

areas. Whenever statements are executed which require the

acqu i s i t i o n of storage, the storage is acquired from the

appropriate free l i s t . If the free l i s t is empty, the garbage

c o l l e c t o r i s invoked. If the amount of storage recovered by the

c o l l e c t o r i s less than a set amount (42 nodes or 256 words of

primitive storage), another page of v i r t u a l memory i s acquired

and i n i t i a l i z e d .

The garbage c o l l e c t o r operates as follows. Whenever a

subprogram i s entered, a l l l o c a l graphical variables used are

allocated nodes and a l i s t of those nodes is kept in a protect

l i s t in v i r t u a l memory. The execution of a RETURN statement

26

Heap space dump -
Address Contents

1 02000003
2 41100000
3 41200000
4 41300000
5 41400000
6 41500000
7 41600000
8 41700000
9 41800000
10 41900000

• 11 00000000
12 03000008
13 D3899585
14 4081A340
15 05000018
16 01000002
17 C1100000
18 41200000
19 00000000
20 41300000
21 C1400000
22 00000000
23 00000000
24 03000004
25 4040F1F6
26 00000000
27 07E50101

257 07FF0201
513 07FF0301
769 07FF0000

Page 1
Explanation
Polygon
x-component
y-component
z-component
x-component
y-component
z-component
x-component
y-component
z-component
End
String
Text - Line
Text - at
Continuation
Line
x-component
y-component
z-component
x-component
y-component
z-component
End
String
Text - 16
End
Free space
Free space
Free space
Free space

3 vertices
0 . 1000000E+01
0 .2000000E+01
0 .3000000E+01
0 .4000000E+01
0 . 5000000E+01
0 .6000000E+01
0 .7000000E+01
0 .8000000E+01
0 .9000000E+01

8 characters

located at 24
2 vertices

-0.1000000E+01
0.2000000E+01
0.0
0.3000000E+01

-0.4000000E+01
0.0

4 characters

229 words, continued at 257
255 words, continued at 513
255 words, continued at 769
255 words, continued at 0

Figure 9 Primitive Record Storage

causes those nodes to be removed from the protect l i s t . The

garbage c o l l e c t o r starts from the protect l i s t and recursively

marks the nodes which are defined by the l i s t . When t h i s mark

phase is completed, a l l of the node and primitive storage is

swept through with unmarked areas being added to the appropriate

free l i s t .

The d e t a i l s of the implementation of the data base and the

operations which manage i t are hidden from a LIG6 programmer.

The model of the data base provides enough information to

e f f e c t i v e l y model and manipulate graphical objects using the

advanced l e v e l constructs.

28

Chapter 4

GRAPHICAL OUTPUT PRIMITIVES

Four graphical output primitives are supplied by LIG6:

BLANK, POLYLINE, POLYGON, and TEXT. Th e o r e t i c a l l y , any image

which can be displayed on an output device of f i n i t e precision

can be created using these primitives, thus they form a complete

set of atomic graphical objects. As a convenience, however, LIG6

also permits programmer-defined primitives. This can simplify

modelling of well-defined graphical objects.

4.1 Primitives as Abstract Data Types

In e a r l i e r versions of LIG [Schr76], primitives were viewed

as constants of the data type GRAPHICAL. Six two-dimensional

primitives were defined: BLANK, LINE, TRIANGLE, SQUARE, CIRCLE,

and SCIRCLE (semi-circle). Only the f i r s t two were required; the

rest could be constructed from the primitive LINE. The LINE

primitive was defined as a l i n e segment from the point (0.0,0.5)

to the point (1.0,0.5). A l l other l i n e segments were created by

applying transformations to t h i s constant. Polylines were

created by superimposing transformed l i n e segments.

The view taken by the current version, LIG6, i s that

primitives are data types in their own rig h t . For any data type

supported by a language, rules exist which define how constants

29

of that type are expressed, also, operators which form

legitimate expressions of that type are specified, and

procedures are supplied which produce external representations

of values of that type.

Consider the data type COMPLEX. Its standard implementation

is a record consisting of a real and an imaginary f i e l d each of

type REAL. A FORTRAN complex constant consists of an opening

parenthesis followed by a real constant representing the real

f i e l d , a comma, a real constant representing the imaginary

f i e l d , and a closing parenthesis. When operations are performed

on t h i s type, the contents of the individual f i e l d s are used to

determine the re s u l t . S p e c i f i c a l l y for output, the real part and

the imaginary part are printed side by side.

The primitive POLYLINE of the language LIG6, for example,

has a l l of the features of an abstract data type. It is

implemented by a record with a variable number of f i e l d s of type

VECTOR. Each f i e l d represents a vertex in a l i n e and, on output,

is accessed to generate the graphical commands given to the

output device. While there are no direc t variables or operators

for t h i s type, the type GRAPHICAL (which supports variables and

operators) can be considered to contain a f i e l d which can

reference p o l y l i n e s .

The external representation procedures of conventional data

types generally produce symbols on printers or terminals which

have the same representation as constants of that type. A

recursive PASCAL procedure for generating external

representations of unsigned integers i s presented in Figure 10;

i t has the above c h a r a c t e r i s t i c . This practice results from the

30

existence of a standard representation which can be used both in

the s p e c i f i c a t i o n of a program and in the results generated by

executing that program. There i s no rule that both

representations must be the same; integers are often expressed

in other bases or even as Roman numerals. This is the case with

the type POLYLINE; such constants are expressed in programs with

alphanumeric characters using d e f i n i t e syntactic rules while

external representations are lines generated on graphical

devices. The l a t t e r representation would probably be used for

constants i f i t were av a i l a b l e .

PROCEDURE ext_rep_integer(n : INTEGER) ;

BEGIN
IF n < 10 THEN write (CHR(n + ORD C O ')))
ELSE

BEGIN
ext_rep_integer(n DIV 10);
write(CHR(n MOD 10 + ORD('O')))

END
END;

Figure 10 Integer External Representation

The records of the data types POLYLINE, POLYGON, and TEXT

can have a variable number of f i e l d s ; such data types are known

as dynamic. Dynamic data types are not common as most

programming languages do not support them. Both SNOBOL and

BASIC, however, have dynamic s t r i n g data types.

4.2 Programmer Defined Primitives

The d e f i n i t i o n of a primitive is equivalent to the creation

of an abstract data type. The treatment of primitives by LIG6

31

requires that a data type d e f i n i t i o n includes constant

s p e c i f i c a t i o n rules, internal representation information, and

external representation procedures. The construct with which a

programmer creates a LIG6 primitive i s a primitive d e f i n i t i o n

unit.

A primitive d e f i n i t i o n unit has a prescribed structure.

F i r s t a symbolic name i s s p e c i f i e d for the primitive. A

d e f i n i t i o n rule must follow in the form of a template which

constants of that type w i l l match. The template consists of type

declarations and a grammar production using a notation similar

to Wirth's [Wirt77]. The remainder of the subprogram consists of

statements which define a procedure for producing an external

representation of values of that primitive. The internal

representation is derived automatically from the constant

d e f i n i t i o n rule.

There are a variety of methods used to define grammars;

Backus-Naur forms and syntax directed diagrams are two examples.

Wirth's notation provides a general description mechanism which

allows i t e r a t i o n , alternation, option, and recursion constructs

to be expressed. The grammar production in a LIG6 primitive

d e f i n i t i o n unit template uses a subset of t h i s notation since

only alternation and option constructs are permitted. The

allowable grammar productions can themselves be represented by a

grammar; thi s i s presented in Figure 11 using Wirth's notation.

In a LIG6 primitive template, an alternation construct i s a

l i s t of templates separated by v e r t i c a l bars and enclosed by

parentheses. An option construct i s a template enclosed by

brackets optionally followed by the e x p l i c i t setting construct

32

production = p r i m i t i v e _ i d e n t i f i e r "::=" subtemplatelist ";"

subtemplatelist = subtemplate { subtemplate }

terminal = (l i t e r a l _ s t r i n g | f i e l d _ i d e n t i f i e r)

l i t e r a l _ s t r i n g = '"" { (character | " " ") } '""

alternation = " (" subtemplatelist { "|" subtemplatelist } ") "

option = " [" subtemplatelist "] " [e x p l i c i t _ s e t t i n g]

e x p l i c i t _ s e t t i n g = "<" setting { "," setting } ">"

setting = f i e l d _ i d e n t i f i e r "=" expression

nonterminal = p r i m i t i v e _ i d e n t i f i e r " (" { character } ") "

Figure 11 Allowable Primitive Template Grammar Productions

which defines the default. The nonterminal construct allows the

insertion .of the template of a previously defined primitive. The

characters in the l i s t following the i d e n t i f i e r are appended to

a l l of the f i e l d i d e n t i f i e r s of the previously defined primitive

when i t i s inserted. This allows multiple use of the primitive

in a template. A template which demonstrates alternation and

option constructs and constants which match i t are presented in

Figure 12. A template which demonstrates the use of nonterminals

and constants which match i t are shown in Figure 13.

The body of the primitive d e f i n i t i o n unit defines the

external representation procedure for that data type. It

consists of statements which, based upon the values of the

f i e l d s of the data type, produce images on output devices. The

body may contain any type of statement except those which deal

with graphical modelling or display. These statements are

excluded because they deal with information at a higher l e v e l .

subtemplate = (terminal
option
nonterminal

alternation
e x p l i c i t _ s e t t i n g

33

PRIMITIVE SQUARE
LOGICAL FILL
REAL SIDE
VECTOR CENTRE
SQUARE ::= 'SQUARE' ['FILLED' <FILL=.TRUE.>]<FILL=.FALSE.>

[('AT' CENTRE [',SIDE' SIDE]<SIDE=1.0> |
'SIDE' SIDE [',AT' CENTRE]<CENTRE=(0,0,0)>)]

<CENTRE=(0,0,0),SIDE=1,0> ;

SQUARE
SQUARE FILLED
SQUARE AT (5.1,5,0)
SQUARE FILLED SIDE 3.0
SQUARE AT (3,2.7,6), SIDE 0.5
SQUARE FILLED SIDE 3*PI, AT (V1#V2)

Figure 12 Square Primitive

PRIMITIVE ONEARG
INTEGER OPT
VECTOR V
ONEARG ::= (<OPT=1>

<OPT=4> 'SW
<OPT=7> 'S'

' = ' V ;

NW <OPT=2> 'NE'
<OPT=5> 'N'
<OPT=8> 'W

<OPT=3> 'SE*
<OPT=6> 'E'
<OPT=9> 'C

PRIMITIVE PARALL
INTEGER OPT1, OPT2, OPT3
VECTOR V1, V2, V3
PARALL ::= 'PARALLELOGRAM'

ONEARG(1) ',' ONEARG(2) ',' ONEARG(3) ;

PARALLELOGRAM N=(2,3,4),C=(5,2,2),SE=(X,Y,Z)
PARALLELOGRAM NW=(1,1,1),NE=(5,2,2),SW=(X,Y,Z)

Figure 13 Parallelogram Primitive

Two statements are provided which cause output to occur, the

DRAW and DRAW WITH statements.

The form of the draw statement is the keyword DRAW followed

by a previously defined primitive, either one of the four basic

primitives or one which was programmer-defined. A complete

primitive d e f i n i t i o n unit for a square primitive follows.

34

PRIMITIVE SQUARE
REAL SIDE
SQUARE ::= 'SQUARE' SIDE ;
DRAW LINE FROM (0 , 0) TO (0,SIDE)

TO (SIDE,SIDE) TO (SIDE ,0)
TO (0 , 0)

RETURN
END

Whenever a model whose s p e c i f i c a t i o n includes a SQUARE

primitive i s displayed, the external representation procedure i s

invoked. A l l of the modelling transformations and attribute

settings of the model affect the procedure. In addition to

primitives, appropriate concatenation expressions may follow the

DRAW keyword. An example of thi s usage is

PRIMITIVE CIRCLE
CIRCLE ::= 'CIRCLE' ;
REAL PI/3. 1 41 593/
DRAW LINE FROM (1,0)
DO 20 I = 1,100

THETA = I*Pl/50
DRAW ADDLINE (COS(THETA),SIN(THETA))

20 CONTINUE
RETURN
END

Concatenation expressions may only be executed i f the last

DRAW statement executed was a concatentation or primitive of the

same type.

Attributes of the draw statement may be changed with the

DRAW WITH statement. Its form i s the keyword DRAW WITH followed

by a l i s t of attribute settings enclosed in angle brackets. Any

attribute which has not been spec i f i e d in the modelling may be

set by such a statement.

Programmer-defined primitives permit e f f i c i e n t and concise

modelling of regular or parameterized graphical objects. An

example of a primitive which models spheres constructed with

35

arbitrary resolution and illuminated by an arb i t r a r y l i g h t

source i s presented in Figure 14.

4.3 Graphical Functions Versus Graphical Primitives

S t r i c t l y speaking, the c a p a b i l i t y of programmer d e f i n i t i o n

of graphical output primitives i s not necessary. Any graphical

effect which such a primitive can produce can also be produced

by a function of type GRAPHICAL. The differences between

primitives and graphical functions are subtle. Graphical

functions are executed as soon as they are invoked, returning a

model of a graphical object. Such models require memory space

for storage and have structures and values which can be

subsequently manipulated.

An invocation of a primitive, on the other hand, does not

result in execution of code. The parameters of the primitive are

stored and i t i s not u n t i l the value of that primitive i s to be

displayed that the external representation procedure is invoked.

This results in savings in both memory and execution time.

The decision whether to use a primitive or a graphical

function, therefore, should be made using the following

guidelines. If the resulting object i s always treated as a unit

or i f it. contains curves or subobjects which can be eas i l y

parameterized, then a primitive implementation should be

considered. If an object has a d e f i n i t e structure and hierarchy

and subparts of i t w i l l be accessed and possibly modified, a

graphical function implementation should be considered.

36

PRIMITIVE SPHERE
INTEGER RES,PATERN
VECTOR LIGHT,LSORCE,P1,P2,P3,P4,TX,TY,TZ,NORM
SPHERE ::= 'SPHERE' RES ',* LIGHT ;
PI = ATAN(1.)*4
ARC = PI/RES
LSORCE = LIGHT/|LIGHT|
TX = (1,0,0)
TY = (0,COS(ARC),SIN(ARC))
TZ = (0,-SIN(ARC),COS(ARC))
DO 10 I = 1,RES

PI = (1,0,0)
P3 = PI
DO 10 J = 1,RES

P2 = (COS(J*ARC),SIN(J*ARC)*COS(l*ARC),
SIN(J*ARC)*SIN(I*ARC))

P4 = ((P2.TX),(P2.TY),(P2.TZ))
NORM = PI + P2 + P3 + P4
COSANG = (NORM.LSORCE)/|NORM|
PATERN = 0
IF(COSANG.GT.O) PATERN = 24.*COSANG + 1.5
DRAW WITH <PATTERN PATERN>
DRAW POLY FROM (P1) TO (P2) TO (P4) TO (P3)
PI = P2
P3 = P4

10 CONTINUE
RETURN
END

Figure 14a Sphere Primitive D e f i n i t i o n

Figure 14b Sphere Primitive Output

37

Programmer-defined graphical output primitives have been

used in other languages but with d i f f e r e n t terminology and

emphasis. E a r l i e r versions of LIG had a construct c a l l e d a

graphical function [Schr78]. Its effect was to store the

arguments and a pointer to the function in the data base. It was

only when a model which contained a reference to the function

was displayed that the function was executed. This d i f f e r s

markedly from the standard concept of a function which i s

supported by LIG6. LIG6 graphical functions are executed

immediately upon their invocation and return a model of a

graphical object. The early version functions were in fact an

implementation of programmer-defined primitives although they

lacked the generality of the current implementation. They had a

maximum of six parameters, were invoked by a fixed structure,

and could only draw l i n e s , not a l l previously defined

pri m i t i v e s . The actual syntax d e f i n i t i o n provided by LIG6 was

not permitted.

The language MIRA allows the d e f i n i t i o n of graphical types

tThal79,Magn81]. The language implementation of these types,

however, i s more in l i n e with graphical functions. The type

declaration includes modelling operations, not display commands.

The type i s invoked via a procedural construct, not by

assignment statements containing constants of the type. The

modelling process occurs immediately upon invocation requiring

storage and execution time; i t i s not delayed u n t i l an instance

is actually displayed. In addition, the pattern matching

f a c i l i t y of LIG6 i s not available.

38

Chapter 5

GRAPHICAL DOMAINS

There are many domains in which graphical programming

languages may be applied, but use of a pa r t i c u l a r graphical

programming language w i l l be limited i f the domains in which i t

can be applied are r e s t r i c t e d . High-level graphical languages

provide simply-expressed constructs for the d e f i n i t i o n and

external representation of graphical data. These constructs

allow such languages to be applied to domains at the drafting

systems l e v e l . More sophisticated applications, however, require

the analysis of ar b i t r a r y graphical data. The L I G 6 constructs

which provide inquiry and manipulation of graphical data permit

the language to be applied in a variety of interesting domains;

four of these w i l l be discussed using a L I G 6 example for each.

5.1 Construction Tools

Due to the large quantity of data involved in most graphics

applications, the e x p l i c i t d e f i n i t i o n of graphical objects is

often tedious and time consuming. Graphical application programs

must capture as much regularity of the input data as possible to

allow economy of gesture in the modelling process. This can be

achieved with the aid of construction tools in the form of

procedures which create models of complex graphical objects with

39

minimal input. An example of two construction tools which would

be useful in a ductwork application is given in Figure 15. Both

could find application in other contexts where regular surface

generation i s required.

The procedure EXTRUD takes as input an a r b i t r a r y cross-

section and a d i r e c t i o n and length specified as a vector. The

cross-section i s extruded as s p e c i f i e d by the vector, generating

a column. The procedure REVOLV takes as input an a r b i t r a r y

cross-section, an axis sp e c i f i e d by two points, an angle, and a

step parameter. The cross-section i s revolved around the axis by

the angle specified in the given number of steps, generating a

3-D figure. Three system procedures are invoked. PRILEN returns

the number of vertices of a polyline or polygon primitive,

LINPNT returns the sp e c i f i e d vertex of a l i n e primitive, and

APLYMD applies the transformations stored in a graphical node to

a point, returning the transformed value.

Other construction tools which would complement the above

two would be procedures to join two d i s s i m i l a r cross-sections or

to compute s o l i d intersections. A complete ductwork application

program might include a systematic manipulation procedure which

would analyze any models generated and produce patterns for

sheet metal construction of the piping. Figures 16 through 19

show two views each of two graphical objects constructed using

the EXTRUD and REVOLV procedures.

40

GRAPHICAL FUNCTION EXTRUD(XSECT,DIREC)
GRAPHICAL XSECT
VECTOR DIREC,OLD,NEW
INTEGER ORDER,PRILEN
EXTRUD :- BLANK
ORDER = PRILEN(XSECT)
CALL LINPNT(XSECT,1,OLD)
DO 10 I=2,ORDER

CALL LINPNT(XSECT,I,NEW)
EXTRUD :- EXTRUD + POLY FROM (OLD) TO (OLD+DIREC)

TO (NEW+DIREC) TO (NEW)
OLD = NEW

10 CONTINUE
RETURN

END

10

20

GRAPHICAL FUNCTION REVOLV(XSECT,AXIS1,AXIS2,DEGRES,STEPS)
GRAPHICAL XSECT,MODSTR,ONEARC,MDSTR1
VECTOR AXIS1 ,AXIS 2,OLD,NEW,OLD1 ,NEW1
REAL DEGRES
INTEGER STEPS,ORDER,PRILEN
MODSTR :- BLANK < MAP (AXIS1),(AXIS2)

TO (0,0,0),(0,0,1) ,
ROTZ DEGRES/STEPS 'DEG' ,
MAP (0,0,0),(0,0,1)
TO (AXIS1),(AXIS2) >

ONEARC :- BLANK
ORDER = PRILEN(XSECT)
CALL LINPNT(XSECT,1,OLD)
CALL APLYMD(MODSTR,OLD,OLD1)
DO 10 I = 2,ORDER

CALL LINPNT(XSECT,I,NEW)
CALL APLYMD(MODSTR,NEW,NEW1)
ONEARC :- ONEARC + POLY FROM

TO
OLD = NEW
OLD1 = NEW1

CONTINUE
REVOLV :- BLANK
MDSTR1 :- BLANK
DO 20 I = 1,STEPS

REVOLV :- REVOLV + ONEARC < MODIFICATION(MDSTR1)
MDSTR1 :- MDSTR1 < MODIFICATION(MODSTR) >

CONTINUE
RETURN

END

(OLD) TO (NEW)
(NEW1) TO (OLD1)

Figure 15 Graphical Ductwork Construction Tools

5.2 Systematic Manipulation

Systematic manipulation of graphical objects i s performed

by procedures which process a graphical model of arbit r a r y

41

Figure 17 Second View of Pipe

Figure 18 Helix Constructed With REVOLV

Figure 19 Second View of Helix

43

structure and content. Such procedures permit application

programs to perform modelling at various levels of d e t a i l . An

example of systematic manipulation i s the substitution of one

subobject for another in an arb i t r a r y graphical object. To

demonstrate LIG6's a b i l i t y to implement systematic manipulation

procedures, a deep replace algorithm i s presented in Figure 20.

The problem is divided into two parts. A general double

recursion subroutine RECURS performs recursive manipulation of

models of graphical objects. The parameter TREE i s the model

which i s to be manipulated. The parameter FIRST sp e c i f i e s a

graphical function which controls the f i r s t recursion. The

parameter WORK speci f i e s a subroutine which performs the desired

manipulation whenever FIRST returns a stopping condition. The

parameter SECOND specifies a graphical function which controls

the second recursion.

The second part comprises four routines which set up RECURS

to perform deep replacement. The graphical functions DEEP1 and

DEEP2 correspond to FIRST and SECOND, respectively. The

subroutine SWAP corresponds to WORK. The subroutine DREPLC

invokes RECURS specifying the above parameter assignments. The

result of a c a l l to DREPLC i s shown in Figure 21. In a graphical

object representing a s h i f t r e g i s t e r , the graphical symbols for

RS f l i p flops were replaced by their logic gate representations.

Due to the h i e r a r c h i c a l nature of graphical data, recursive

manipulation of models i s desirable. Because LIG6 i s an

extension to FORTRAN, however, recursive routines are not

permitted. This can be overcome ea s i l y with routines such as

RECURS. Other examples of uses of RECURS are copying trees,

44

SUBROUTINE RECURS(TREE,WORK,FIRST,SECOND)
GRAPHICAL TREE,FIRST,SECOND,STACK(25),VALUE,SUPER
INTEGER POINT
POINT = 1
STACK(1) :- TREE

10 POINT = POINT + 1
STACK(POINT) :- FlRST(STACK(POINT-1))
IF (.NOT. PRIMITIVE(VALUE(STACK(POINT))) .AND.

POINT .NE. 25) GOTO 10
POINT = POINT - 1
CALL WORK(STACK,POINT)

20 STACK(POINT) :- SECOND(STACK(POINT))
IF (.NOT. PRIMITIVE(VALUE(STACK(POINT)))) GOTO 10
POINT = POINT - 1
IF (POINT .NE. 0) GOTO 20
RETURN
END

GRAPHICAL FUNCTION DEEP 1 (NODE)
GRAPHICAL NODE,REPLAC,WITH,VALUE,SUPER
COMMON /$REPL$/ REPLAC,WITH
DEEP1 = VALUE(VALUE(NODE))
IF (VALUE(NODE) .NE. VALUE(REPLAC)) RETURN
DEEP 1 = BLANK
RETURN
END

GRAPHICAL FUNCTION DEEP2(NODE)
GRAPHICAL NODE,REPLAC,WITH,VALUE,SUPER
COMMON /$REPL$/ REPLAC,WITH
DEEP2 = SUPER(VALUE(NODE))
IF (VALUE(NODE) .NE. VALUE(REPLAC)) RETURN
DEEP2 = BLANK
RETURN
END

SUBROUTINE SWAP(STACK,POINT)
GRAPHICAL STACK(25),REPLAC,WITH,VALUE,SUPER
INTEGER POINT
COMMON /$REPL$/ REPLAC,WITH
IF (POINT .EQ. 1) RETURN
IF (VALUE(STACK(POINT)) .NE. VALUE(REPLAC)) RETURN
VALUE(STACK(POINT-1)) :> VALUE(WITH)
RETURN
END

SUBROUTINE DREPLC(TREE,OUT,IN)
GRAPHICAL TREE,OUT,IN,REPLAC,WITH,DEEP1,DEEP2
COMMON /$REPL$/ REPLAC,WITH
EXTERNAL SWAP,DEEP1,DEEP2
REPLAC :- OUT
WITH :- IN
CALL RECURS(TREE,SWAP,DEEP1,DEEP2)
RETURN
END

Figure 20 Deep Replace Algorithm

45

SHIFT REGISTER

F i g u r e 21 G r a p h i c a l S u b s t i t u t i o n

f l a t t e n i n g t r e e s , and r e v e r s i n g the order of s u p e r p o s i t i o n at

any l e v e l .

5.3 G r a p h i c a l E d i t i n g

L i n e f i l e e d i t o r s are used to manipulate programs, data,

and t e x t . The s t r u c t u r e and content of the data i n a f i l e i s

m o d i f i e d by e d i t o r commands which d e l e t e , a l t e r , or i n s e r t

i n f o r m a t i o n . An analogous form of m a n i p u l a t i o n can be performed

on g r a p h i c a l data.

An i n t e r a c t i v e g r a p h i c a l e d i t o r has been implemented using

the a b i l i t y of LIG6 to analyze and modify models of g r a p h i c a l

o b j e c t s . The program generates a v i s u a l r e p r e s e n t a t i o n of the

s t r u c t u r e and content of the model being generated. The

r e p r e s e n t a t i o n i s analogous to a l i s t i n g of a f i l e . With the a i d

46

of the representation, the model can be manipulated using editor

commands.

The v i s u a l representation produced i s a drawing of the tree

structure of the model. The branches of the tree correspond to

the pointers of the model. Within each node of the tree an image

of i t s graphical value is displayed. Using the locator input of

the terminal, the model i s manipulated by moving pointers,

specifying modelling transformations at nodes, inserting or

deleting nodes, and other editing functions. As the model is

manipulated, corresponding changes in the v i s u a l representation

occur. The audit t r a i l of a sample editing session i s given in

Figures 22 through 30.

Figure 22 i s the image of the o r i g i n a l model and Figure 23

is i t s tree structure representation. The result of adding to

part of the structure i s shown in Figure 24. At any time, any

portion of the model can be displayed in f u l l s i z e . The

graphical value of the previous addition i s displayed in Figure

25.

The tree representation i s shown only to a limited depth

and breadth. Any portion of the model can be displayed, however,

by moving a leaf of the representation to the root position.

This i s demonstrated in Figure 26, enabling part,of the model to

be manipulated, the structure of which was previously not

v i s i b l e . Figure 27 shows the structure of the subobject after i t

has been modified. After editing at t h i s l e v e l is complete, the

structure including the o r i g i n a l root is redrawn, resulting in

Figure 28.

47

Al t e r i n g the structure of the model i s demonstrated by

Figure 29. Two top le v e l superimposed objects are grouped

together so that modelling transformations can be applied in

p a r a l l e l . The f i n a l result of the manipulation by editing i s

shown in Figure 30.

The editing process is independent of the graphical object

being manipulated. E l e c t r i c a l diagrams, a r c h i t e c t u r a l drawings,

or artwork can be edited by the same program in the same manner

that programs in various languages or data f i l e s can be

manipulated by a l i n e f i l e editor.

Figure 22 Original Model Image

48

Figure 23 Original Tree Structure

49

Figure 26 Editing Level Change

Figure 27 Subobject Modification

Figure 28 Original Root Redrawn

Figure 29 Structure Alt e r a t i o n

Figure 30 Graphical Editing Result

52

5.4 Data Structures

PASCAL allows programmers to e x p l i c i t l y define their own

data types and structures. This promotes good programming

practice because an understanding is required of the data

involved in a problem. FORTRAN does not permit data type

d e f i n i t i o n s . LIG6 permits e x p l i c i t d e f i n i t i o n of data types

belonging to the class graphical output primitive, but ar b i t r a r y

data types cannot be e x p l i c i t l y defined. The tree structure of

the graphical data base, however, allows i m p l i c i t d e f i n i t i o n of

data types and structures in a similar fashion as the language

LISP.

Data types and structures can be i m p l i c i t l y defined in LISP

by interpreting the structure of a l i s t as i t s data type.

Different data types can be spec i f i e d by the length of a l i s t of

that type, which elements of the l i s t are atoms or l i s t s , or

what data type a l i s t element i s interpreted to be. The tree

structures of LIG6 can be used in the same way as the l i s t

structures of LISP to define data types i m p l i c i t l y . An example

which uses the graphical data base of LIG6 to represent the

abstract data of a grammar w i l l now be presented.

The goal of the program i s to take a grammar specified in

Backus-Naur form and produce an equivalent grammar s p e c i f i c a t i o n

in the form of syntax directed diagrams. This is achieved by

storing the grammar, manipulating i t s representation, and

generating an external representation in the form of a diagram.

Grammar driven compiler writing systems [McKe70,Leca74]

often do not allow i t e r a t i o n , alternation, or option constructs

53

in the grammar s p e c i f i c a t i o n . Such constructs must be

implemented by the top le v e l alternation construct and by

recursive d e f i n i t i o n , allowing the grammar to consist of only

two types of symbols: terminals and non-terminals. The same

r e s t r i c t i o n i s enforced by the program. The input grammar,

however, i s analyzed and manipulated so that the resulting

diagrams have i t e r a t i o n , low-level alternation, and option

structures.

Three data types are required to allow storage of the

grammar: terminals, non-terminals, and str u c t u r a l elements. The

graphical data base structures which are interpreted as

representing these types are shown in Figure 31. In addition,

the two variables TRMLST and NTRLST are used to maintain a

record of a l l of the terminals and non-terminals of the grammar,

respectively. The structures of their values are also given in

Figure 31.

As the grammar i s read in, an internal representation using

TRMLST, NTRLST, and the three data types i s constructed. If the

input grammar i s the simple d e f i n i t i o n

<subprogramlist> ::= <subprogram>

| <subprogramlist> <subprogram> ,

then the internal representation given in Figure 32 would be

constructed. This structure does not represent the simplest

equivalent grammar because the d e f i n i t i o n i s using recursion to

implement i t e r a t i o n . The i n i t i a l internal representation of any

grammar w i l l have to be manipulated to produce a structure which

u t i l i z e s i t e r a t i o n , alternation, and option constructs. The

internal representation after manipulation of the above grammar

54

Type STRUCTURAL ELEMENT
Is d e f i n e d by

— t e r m i n a l s , n o n ­
t e r m i n a l s , or
elements

P o i n t e d
at
by
these
elements

Followed
by
these
elements

Type NON-TERMINAL

TEXT

Poi n t e d
at
by
these
elements

Is d e f i n e d
by
these
elements

Type TERMINAL

TEXT

TRMLST NTRLST

Po i n t e d
at
by
these
elements

t
e
r
m
i
n
a
1
s

n
o
n

t
e
r
m
i
n
a
1
s

F i g u r e 31 Grammar Storage Data Types and V a r i a b l e s

i s given i n F i g u r e 33.

Once the d e s i r e d grammar r e p r e s e n t a t i o n has been c r e a t e d ,

i t i s f u r t h e r manipulated so that i t becomes a model of the

g r a p h i c a l o b j e c t , the syntax d i r e c t e d diagram. The l i t e r a l s

55

NTRLST |
*• * <subprogramlist>

<subprogram> ••-3

•+-4

->2

F i g u r e 32 O r i g i n a l Grammar I n t e r n a l R e p r e s e n t a t i o n

r e p r e s e n t i n g the grammar symbols are p o s i t i o n e d and connected

with l i n e s and arrows as s p e c i f i e d by the d e f i n i t i o n p o i n t e r s . A

56

NTRLST

<subprogramlist>

J <subprogram> -*-2

F i g u r e 33 Manipulated Grammar I n t e r n a l R e p r e s e n t a t i o n

more complete grammar and i t s r e s u l t i n g diagram i s shown i n

F i g u r e s 34 and 35, r e s p e c t i v e l y .

The g r a p h i c a l data base of LIG6 lends i t s e l f to problems

where dynamic data s t r u c t u r e s are i n v o l v e d . Another p o s s i b l e use

would be the implementation of a minimal LISP i n t e r p r e t e r i n

LIG6 which c o u l d produce v i s u a l r e p r e s e n t a t i o n s of any s-

ex p r e s s i o n s i n the standard cons c e l l format of LISP.

<program> ::= <subprogramlist>
<subprogramlist> <main>
<subprogramlist> <main> <subprogramlist>
<main>
<main> <subprogramlist>

<subprogramlist> ::= <subprogram>
| <subprogramlist> <subprogram>

<subprogram> ::= <subroutine>
<function>
<primitivedef>
<blockdata>

<subroutine> ::= <subhead> <block>
| <subhead> <parameterlist> <block>

<function> ::= <funchead> <parameterlist> <block>

<subhead> ::= SUBROUTINE <identifier>

<funchead> ::= FUNCTION <identifier>
| <type> FUNCTION <identifier>

<type> ::= INTEGER
REAL
COMPLEX
LOGICAL
GRAPHICAL
VECTOR

Figure 34 Sample Input Grammar

58

program s u b p r o g r a n l l s t naln s u b p r o g r a n l l s t

subprogranllst » i subprogram TJ
s u b p r o g r a n

—1 F u n c t i o n

s u b r o u t i n e

M prisiltivedef M

'—4 b i o c k d a t a

s u b r o u t i n e —(S U B R O U T I N E)—• i d e n t i f i e r — I — p a r a i i e t e r l l s t —L("block —

function

type —r-< INTEGER")

type M—(FUNCTIONj-*| I d e n t i f i e r pH parameterllst H b l o c k f ^

-{ RERL)
- (COHPLEX) —
- (LOGICBL) —
(GRAPHICAL)-*|
(VECTOR)

F i g u r e 3 5 Sample S y n t a x D i r e c t e d D i a g r a m

59

Chapter 6

NEW LANGUAGE FEATURES

Apart from the s h i f t of emphasis from a system where the

data base is completely hidden from users to a data base model

system and the addition of programmer-defined primitives, there

have been a number of other new features included in the

language LIG6. These features have varying degrees of

o r i g i n a l i t y ; some were not available in e a r l i e r LIG versions but

were available elsewhere to some extent, while others have not

been published or implemented previously. The new features

include graphical operators, interpretation decisions, and

language constructs.

6.1 Vector Data Type

To provide economy of expression when dealing with three

dimensional data, the data type VECTOR was included in LIG6.

Simple variables, single and multi-dimensioned array variables,

function subprograms, and statement functions of type VECTOR are

permitted. Vector variables may be typed e x p l i c i t l y , or else

i m p l i c i t l y with the aid of the IMPLICIT statement. Vector

expressions may be passed as arguments to subprograms. Vector

variables may be equivalenced and placed in COMMON blocks. They

may not be i n i t i a l i z e d in a type declaration or in a DATA

60

statement nor may they be output or input as a unit with WRITE

or READ statements. Vector constants are of the form (X,Y,Z)

where X, Y, and Z represent arithmetic expressions and where the

parentheses are mandatory. The Z expression i s optional; i f

missing, i t defaults to 0.0.

Vector variables may be assigned values which are vector

expressions. The operators which are defined for the type VECTOR

are summarized in Figure 36.

OPERATOR EXAMPLE OPERATION RESULT TYPE

+ V1 + V2 vector addition VECTOR
V1 - V2 vector subtraction VECTOR

VI # V2 vector cross product VECTOR
V1 . V2 vector dot product REAL

| | |V| vector magnitude REAL
* A * V m u l t i p l i c a t i o n by scalar VECTOR
/ V / A d i v i s i o n by scalar VECTOR
.EQ. V1 .EQ. V2 vector comparison LOGICAL

'.NE. V1 .NE. V2 vector comparison LOGICAL

Figure 36 Vector Operators

The program fragment presented in Figure 37 i l l u s t r a t e s the

use of the VECTOR data type. While the inclusion of operators

and nested expressions allow concise implementation of vector

arithmetic algorithms, the major use of this data type w i l l be

in graphical primitives.

Access to the individual components of vectors i s provided

by the three LIG6 system functions, COORDX, COORDY, and COORDZ.

The individual components may be assigned using the above

i d e n t i f i e r s using an assignment statement construct. Component

access i s demonstrated in the program fragment of Figure 38.

The VECTOR data type was not supported in e a r l i e r FORTRAN

61

VECTOR FUNCTION CROSS(X,Y,N)
IMPLICIT VECTOR(V,X-Z)
VECTOR A,B(5),T(2,3),Y(N),FUNC
GRAPHICAL D
DIMENSION A(3)
COMMON V1 rV2(3,4)
EQUIVALENCE (B (3) , A (D)
VFUNC(XV,YV,ZV) = XV.YV#ZV
A(1) = (FUNC(3,Q) + X)/(5.+Q)
CALL TEST(3*A(2)#V2)
IF(X#Y(1).EQ.Y(2)#Z/4) CROSS = (COS(R),SIN(R))
D :- LINE FROM (1.5,3.2) TO (V2(2,I)#(Y(1)+Y(3)))

Figure 37 Vector Data Type Usage

VECTOR V,V1
RVAL = COORDX(V) + 3*COORDZ(V)
COORDY(V) = 3.2 + COORDX(V1#(P,Q,R) + V)

Figure 38 Vector Component Access

versions of LIG. It is possible to declare a PASCAL vector type

in the LIG/P implementation, but operators and natural inclusion

in graphical primitives are not possible. The language MIRA

supports the data type vector, but the only operators permitted

are addition and dot product [Magn8l],

6.2 Map Operator

In addition to the standard graphical transformations

scale, rotate, and translate-, LIG6 provides a map operator. This

transformation operator can be used to perform any combination

of scaling, rotation, t r a n s l a t i o n , and shearing. Its syntax i s

the keyword MAP followed by a l i s t of 1, 2, 3, or 4 points, the

keyword TO, and another l i s t of points. The two l i s t s of points

must each have the same length. Each point may be a vector

62

constant or a vector expression which i s enclosed in

parentheses.

The implementation of the map operator i s as

straightforward as i t s invocation: the operator creates a linear

transformation which maps the points in the f i r s t l i s t into

those in the second. The points in the l i s t s need not have any

relation to coordinates of the model to which the transformation

is applied, although this i s one form of the operator's use.

Careful choice of the points in the l i s t s w i l l create any

of the standard graphical transformations. The map operator also

provides a concise method for expressing shearing

transformations. Combining the map operator with the standard

transformations f a c i l i t a t e s the construction of interesting

transformations. Examples of the map operator which demonstrate

these points are given in Figure 39.

i) <MAP (0 , 0) , (1 , 0) TO (0,0),(COS(THETA),SIN(THETA))>
i i) <MAP (V1),(V2) TO (V1),(V1 + S*(V2-V1))>

i i i) <MAP (1 , 0) , (0 , 0) , (0 , 1) TO (1,0) , (0 ,0),(-COS(T),SIN(T))>
iv) < MAP (V1),(V2) TO (0 , 0) ,(|V1-V2| , 0) ,

ROTX THETA ,
MAP (0 , 0) ,(|V1-V2| , 0) TO (V1),(V2) >

Figure 39 Map Operator Examples

In Figure 39, example (i) produces a transformation

equivalent to a rotation about the z-axis by an amount THETA.

Example (i i) performs scaling with respect to the point V1 in

the d i r e c t i o n V2-V1 by a quantity S. Example (i i i) w i l l cause

shearing by an angle T about the z-axis. Example (iv)

i l l u s t r a t e s compounding transformation operators. Its effect, i s

63

to rotate objects by an amount THETA about the axis sp e c i f i e d by

the l i n e passing through the points V1 and V2.

A l l LIG6 transformations use matrices to produce the

desired e f f e c t . The coordinate t r i p l e s of an object which i s to

be transformed are converted into homogeneous coordinates

[Roge76] and then multiplied by a matrix; the resulting

coordinates represent the transformed object. Compounded

transformations are created by multiplying matrices. A matrix

which rotates objects about the z-axis i s presented in Figure

40.

cos (a) -sin (a) 0 0 X p
sin (o) cos (a) 0 0 y - Q

0 0 1 0 z R
0 0 0 1 1 1

Figure 40 Z-Rotation Matrix

The linear transformation which implements the map operator

i s the solution of a matrix equation. The matrix A of Figure 41

i s the transformation which implements the map operator of the

same figure.

The matrix A is found by solving an equation of the type

B (1)

One solution i s

- i - l
X (2)

however, this involves finding the inverse of a matrix and then

<MAP (a,b,c),(d,e,f),(g,h,i),(j,k,l) TO
(m,n,o),(p,q,r),(s,t,u),(v,w,x) >

64

m P s V

n q t w

o r u X

L JL 1 ' ' ' J I ' 1 1 1 J
Figure 41 Map Operator Implementation

multiplying. Another solution i s to take the transpose of both

sides of equation 1 yie l d i n g equation 3. The transpose of A can

then be solved for by using a LU decomposition which has been

shown to involve fewer operations [Fors67],

p -, T T I- -] T
X A = B (3)

There i s a unique linear transformation which maps a given

set of four points in three-dimensional space to another set.

When the other variants of the map operator are used, however,

there i s not a unique solution. A l l solutions achieve the

mapping objective, but they d i f f e r in their effect on points

which are not in the plane s p e c i f i e d by the three member

variant, points not on the l i n e s p e c i f i e d by the two member

variant, or points other than the one spec i f i e d by the one

member variant. The solution chosen for these variants is the

one that minimizes the d i s t o r t i o n of graphical objects.

For the one member variant map operator, the choice i s

simple: the equivalent translation transformation i s used. The

two and three member variant map operators are implemented by

choosing additional appropriate points and solving as for the

65

four member variant.

The three points in a l i s t of a three member variant define

an o r i g i n and two vectors. The fourth point chosen i s the cross

product of the two vectors. This generates a t h i r d vector

perpendicular to the plane defined by the points in the l i s t .

Its length is determined by the lengths of the two o r i g i n a l

vectors. When the same process of fourth point s p e c i f i c a t i o n i s

applied to both l i s t s , any scaling or shearing in the plane i s

applied naturally to points off the plane.

The two points in a l i s t of a two member variant define an

or i g i n and a vector. A t h i r d point is a r b i t r a r i l y chosen which

generates a vector which i s of the same magnitude as and i s

perpendicular to the o r i g i n a l vector. The same procedure as for

the three member variant i s then followed.

6.3 Stroke Precision Text

There are three lev e l s of text appearance precision:

s t r i n g , character, and stroke precision text [GSPC79]. In str i n g

precision text, only the position of the f i r s t character of a

stri n g may be specified; the size and orientation of the str i n g

i s hardware dependent. In character precision text, the position

of every character of the st r i n g i s affected by transformations

but the size and orientation of the individual characters are

s t i l l hardware dependent. Stroke precision text treats strings

as i f each character were constructed from short l i n e s ; a l l

transformations apply to such str i n g s . The differences between

the precisions are summarized in Figure 42.

66

DIAGONAL D <V
1 X

O
N
A

L

s t r i n g c h a r a c t e r s t r o k e

F i g u r e 42 Text P r e c i s i o n

The use of s t r i n g or c h a r a c t e r p r e c i s i o n t e x t i n images of

models of three-d i m e n s i o n a l g r a p h i c a l o b j e c t s y i e l d s poor

r e s u l t s . The p r e c i s e p o s i t i o n i n g and o r i e n t a t i o n of t e x t s t r i n g s

r e q u i r e s s t r o k e p r e c i s i o n c a p a b i l i t y ; LIG6 has t h i s c a p a b i l i t y .

A l l images of s t r i n g s are generated using software because most

hardware generators are capable of only s t r i n g p r e c i s i o n t e x t .

F i g u r e 43 g i v e s an example of some of the p o s s i b i l i t i e s of

str o k e p r e c i s i o n t e x t .

6.4 S t r u c t u r e d Statements

As software c o s t s i n c r e a s e r e l a t i v e to hardware c o s t s , more

e f f o r t i s made to ensure that programs are c o r r e c t , readable,

and m a i n t a i n a b l e . Programs with these q u a l i t i e s are most e a s i l y

produced when a r i g o r o u s c o n s i s t e n t programming s t y l e i s used. A

s t y l e which has developed a c o n s i d e r a b l e f o l l o w i n g i n recent

years i s c a l l e d S t r u c t u r e d Programming [Dahl72].

The c o n s t r u c t s of a language have an e f f e c t on the s t y l e i n

which programmers c r e a t e programs i n that language. FORTRAN i s

one of the o r i g i n a l h i g h - l e v e l programming languages; i t l a c k s

the s t r u c t u r e d c o n t r o l c o n s t r u c t s a v a i l a b l e i n more modern

languages such as PASCAL [Jens76]. S t r u c t u r e d programming i n

67

Dodecahedron

A
8 V

,o<3.

0

F i g u r e 43 Stroke P r e c i s i o n Text

FORTRAN has been accomplished by i n t e r p r e t i n g groups of

statements as c o n t r o l s t r u c t u r e s and r e s t r i c t i n g the usage of

statement l a b e l s and the GOTO statement. In an e f f o r t to promote

a s t r u c t u r e d , modular programming s t y l e , more modern

implementations of FORTRAN such as FORTRAN'77 [Meis77] or

WATFIV/S [F r i e 8 2] have i n c l u d e d s t r u c t u r e d c o n t r o l c o n s t r u c t s .

LIG6 extends the c o n t r o l c o n s t r u c t s of FORTRAN with the

a d d i t i o n of four s t r u c t u r e d c o n s t r u c t s . These c o n s t r u c t s are an

68

IF-THEN-ELSE structure, a REPEAT structure, a WHILE structure,

and a CASE structure. The syntactic rules of these constructs

are formally defined by the grammar presented in Figure 4 4 . Use

of these constructs is demonstrated in the program fragments in

Figure 4 5 .

<statementblock> ::= BEGIN <statementlist> END
<statementlist> ::= <statement> <statseparator>

| <statementlist> <statement> <statseparator>

<statseparator> ::= <eol>
I ;

<structuredif> ::= <truepart>
| <truepart> <falsepart>

<truepart> ::= IF (<logicalexpr>) THEN <statementblock>
<falsepart> ::= ELSE <statementblock>

<repeat> ::= REPEAT <statementlist> UNTIL (<logicalexpr>)

<while> ::= WHILE (<logicalexpr>) DO <statementblock>

<case> ::= CASE <expression> : <type> OF <caseexpr>

<caseexpr> ::= <truelist>
<truelist> <falselist>
<falselist>

<truelist> ::= <success>
| <truelist> <success>

<falselist> ::= '<>' : <statementblock>

<success> ::= <exprlist> : <statementblock>

<exprlist> ::= <expression>
| <exprlist> <expression>

Figure 44 Structured Statements Grammar

A l l structured constructs may be nested to any depth. The

requirement of statement l i s t s being bracketed by BEGIN and END

ensures that a l l syntactic structures are completely

69

IF(X.LT.Y) THEN BEGIN T=X; X=Y; Y=T; END
IF(3**J.GT.2**K) THEN

BEGIN
J=0; K=1

END
ELSE

BEGIN
K=0; J=1

END
REPEAT

READ(5,10)1
CALL DUM(I*3)

UNTIL(I.GT.32)
WHILE(J.LT.10) DO

BEGIN

END
CASE R*T/(5.+Q) : INTEGER OF

2,3 : BEGIN

END
<> : BEGIN

CASE 5*Q : REAL OF
R/Q : BEGIN

END
END { REAL CASE }

END
END { INTEGER CASE }

Figure 45 Structured Statements Examples

unambiguous.

6.5 Archivation

Graphical application programs are often executed

i n t e r a c t i v e l y in order to construct models of graphical objects.

This process i s usually time-consuming and i t i s d i f f i c u l t for a

user to repeat model s p e c i f i c a t i o n s exactly. To create menus or

to continue modelling begun in previous executions of a program,

i t is, necessary that a r b i t r a r y models can be stored and

retrieved. This i s implemented in LIG6 by archivation.

Archivation i s the saving on and restoring from secondary

70

storage models of graphical objects. It can be used to pass

models between di f f e r e n t programs or to save generated models

for a subsequent run of the same program. There are three

statements which are involved with archivation: the STORE

statement, the POSITION statement, and the LOAD statement.

There are two forms of the store statement. Some examples

of this type of statement are

STORE ON UNIT 7,BIRD
STORE ON UNIT N+2,FOWL
STORE ON UNIT 3, VALUE(LAST(A))
STORE ON UNIT 3,. IDENTIFICATION 7.5, A
STORE ON UNIT 3, IDENTIFICATION 3*R, A

The integer valued expression following the keyword UNIT i s

the l o g i c a l I/O unit on which the model is stored. It must be

assigned to a disk f i l e on the run command or with a FORTRAN I/O

subprogram. The real valued expression following the keyword

IDENTIFICATION i s a number which i s placed in the header of the

stored model in the f i l e so that i t can be i d e n t i f i e d l a t e r . The

default value for the i d e n t i f i c a t i o n i s 0.0. The last item in

the l i s t i s a graphical variable or function invocation whose

value i s a node. The effect of the statement i s to store at the

end of the f i l e a header and codes which represent the model

which i s the value of the last item.

The archivation f i l e i s in the form of a sequential tape.

Each additional object is placed at the end of the tape. When

they are la t e r loaded, the loading w i l l occur in the same order

as the order in which they were stored. A certain degree of

random access can be obtained, however, with the position

statement.

The position statement i s used to position an archivation

71

f i l e at the desired model storage. Examples of possible forms of

this statement follow.

POSITION UNIT 2
POSITION UNIT N+3,5.5
POSITION UNIT 3,4.*Q
POSITION UNIT 3,7.2,2
POSITION UNIT 3,,2

The f i r s t arithmetic expression in the l i s t following the

keyword i s the unit expression; i t must be integer valued and

has the same meaning as in the store statement. The second

expression i s the i d e n t i f i c a t i o n expression; i t must be real

valued. The t h i r d expression i s the version expression; i t must

be integer valued. The default value for the i d e n t i f i c a t i o n

expression i s 0.0. The default value for the version expression

is 0.

The ef f e c t of the statement i s tp position the archivation

f i l e attached to the unit at the spec i f i e d version of the

i d e n t i f i c a t i o n value. The fourth statement in the examples above

w i l l position the f i l e at the model storage of the second

instance of a model being stored with i d e n t i f i c a t i o n 7.2. If the

version number i s 0, the last model stored with the spec i f i e d

i d e n t i f i c a t i o n i s the point at which the f i l e i s positioned. The

default i d e n t i f i c a t i o n value of 0.0 w i l l match a l l

i d e n t i f i c a t i o n values, thus the l a s t statement w i l l position the

f i l e to the second model stored, while the f i r s t statement w i l l

position the f i l e to the last model stored.

The load statement i s used to restore a model. The model

stored in the archivation f i l e at i t s present position i s loaded

into the graphical variable s p e c i f i e d . An example i s

LOAD FROM UNIT N+2, BIRD

72

Chapter 7

CONCLUSIONS

E a r l i e r versions of LIG preprocessors did not analyze the

host language statements of a program. LIG6, the research topic

of t h i s thesis, analyzes both the FORTRAN and language extension

statements. The primary reason for thi s i s that the language

constructs of LIG6 cannot be ea s i l y s p l i t up into those which

are s t r i c t l y FORTRAN and those which are s t r i c t l y extensions.

There i s considerable overlap between the constructs, as i s

evident by the number of FORTRAN statements which may contain

extension elements.

Several benefits are rea l i z a b l e when-all statements are

analyzed. There i s no need to demarcate extension statements by

the use of a special character in a designated column or by

other means. It is possible to mix host and extension statements

on a single l i n e . Any syntactic errors in the host language

statements which would not normally be detected u n t i l the

preprocessor output i s compiled are trapped. The preprocessor i s

moved one step closer to being a compiler; object code

generation i s only possible when complete parsing i s performed.

Another difference between LIG6 and previous LIG versions

i s the implementation of the preprocessor. The LIG6 preprocessor

does not make use of a Compiler Writing System (CWS); i t i s

written completely in PASCAL. There are several factors

73

supporting t h i s choice. Currently available compiler writing

systems [McKe70,Leca74] do not support the free form input

conventions of FORTRAN; delimiters and reserved words are

required. With a CWS, i t i s not possible to carry out language

extensions which are defined by programmers. Such extensions

require a dynamically a l t e r a b l e parser; CWS generated parsers

are determined solely by the o r i g i n a l grammar s p e c i f i c a t i o n s .

LIG6 programmer-defined primitives include the d e f i n i t i o n of

syntactic constructs which aff e c t the parser. The LIG6

preprocessor i t s e l f can thus be thought of as a load and go CWS.

Because a CWS must be able to handle general grammars, i t cannot

generate preprocessors which exploit characterstics of a

s p e c i f i c grammar. A preprocessor created without the use of

grammar driven aids i s not limited in this way; i t can u t i l i z e

ad hoc techniques which provide more e f f i c i e n t execution.

Current research in computer graphics appears to be

concentrated in two d i s t i n c t areas. A great deal of e f f o r t has

been expended regarding standards for graphical subroutine

systems [GSPC79,Fole76]. Such systems are used to create

portable graphics application programs but they do not provide

modelling features. The other area of intense interest i s the

creation of r e a l i s t i c images. This area contains hidden l i n e and

surface removal, shadowing, shading, and texturing algorithms.

The research in this area is concerned with the process of

analyzing scenes, not with the models on which the analysis i s

based.

High-level graphical programming languages are an extension

to graphical subroutine systems. They provide a data base and

74

the c a p a b i l i t y to naturally model graphical objects. It i s only

with the addition of inquiry, however, that such a language can

form a bridge between the two areas of current research. A high-

l e v e l language can f a c i l i t a t e the modelling of graphical

objects, but constructs must be available which allow the

analysis of those models i f complex graphical algorithms are to

be implemented.

The data base approach of LIG6 permits the analysis of

a r b i t r a r y models of graphical objects. Use of LIG6 to perform

experiments with graphical algorithms allows the scenes required

to be modelled naturally. Any algorithms so devised and

implemented are then available for use in a l l LIG6 application

programs.

A language can be considered to have been expanded when a

f a c i l i t y i s provided which was previously unavailable. An

example of such a f a c i l i t y for FORTRAN is the system function

MAX which returns the maximum value of i t s variable number of

parameters. These f a c i l i t i e s are usually implemented by a

systems programmer because the language constructs do not permit

their d i r e c t implementation. This i s exemplified by MAX: FORTRAN

has no method of . specifying a variable number of formal

parameters. It is possible for non-systems programmers to expand

a language, however, i f the language's constructs form a kernel

which i s complete in i t s a b i l i t y to manipulate the language's

data structures.

The language constructs of LIG6 provide such a kernel. A l l

possible data base values can be created using the various

assignment statements and a l l modelling results can be accessed

75

and modified. The surface generation construction tools and the

editing u t i l i t y described in Chapter 5 form language extensions

which use only LIG6 modules.

The a b i l i t y of non-systems programmers to expand LIG6

implies that the system w i l l be able to evolve much faster.

L i b r a r i e s of routines which are useful in general applications

can be augmented by any person fluent in the language. Heavily

used f a c i l i t i e s can s t i l l be coded by a systems programmer to

improve e f f i c i e n c y ; such a task w i l l be s i m p l i f i e d by the

exist i n g algorithm implementation in the high-level constructs.

The a b i l i t i e s of LIG6 compare favorably with those of other

high-level graphics languages. The modelling and display

functions of LIG6 have benefitted from the experience gained

from the use of previous versions of the LIG family. They

provide a natural and human-oriented method of displaying

p i c t o r i a l information. The advanced l e v e l constructs of LIG6

permit the analysis of p i c t o r i a l information; t h i s a b i l i t y i s

not available with any other graphics language using graphical

constructs.

An evaluation of LIG6 can be derived from the experiences

of a summer student. In the summer of 1982, a second-year

e l e c t r i c a l engineering undergraduate was hired to create a

graphics interface to a c i r c u i t analysis program. This student's

previous programming experience consisted of a f i r s t - y e a r

computer science course dealing with FORTRAN and ASSEMBLER and

job-related experience using a microcomputer and BASIC. He had

no previous graphics experience. After a short period in which

the student became familiar with graphical terms and concepts,

76

he was e a s i l y able to produce graphical output using LIG6.

The task for which the student was hired, however, e n t a i l s

more than the generation of images. It involves the creation of

a maintainable, expandable program using the graphical data base

to generate both an image of an a r b i t r a r y c i r c u i t and a

s p e c i f i c a t i o n of that c i r c u i t which can be understood by the

analysis program. Although encouraging results were obtained,

th i s work proceeded more slowly.

Two conclusions can be drawn from t h i s experience: only

minimal programming experience i s needed to use LIG6 to produce

graphical output, but more programming s k i l l s are required to

use the advanced l e v e l constructs of LIG6 to implement

sophisticated algorithms. Experience with the design and

manipulation of dynamic data structures, pointers, and linked

l i s t s i s especially useful. Such experience is common in

programmers familiar with the languages PASCAL and LISP.

As i s the case with most projects, further work would be

b e n e f i c i a l . The implementation of LIG6 has proceeded to the

point where i t i s a useful graphical system. The preprocessor

and run-time l i b r a r y are complete and have been tested. Further

work to improve the system involves increasing the number and

c a p a b i l i t i e s of the device d r i v e r s . The language LIG6 assumes

that a l l devices have the same, high quality c a p a b i l i t i e s . This

is far from the case. It i s the task of the device drivers to

approximate or simulate those features expected by LIG6 but

which are lacking in the device addressed. At the present time,

the drivers support only a subset of the features expected by

the system.

77

The only colour terminal presently connected to the system

is a Tektronix 4027. This terminal is capable of displaying.
0

eight of a possible sixty-four colours at any one time. The

eight colours currently chosen are white, blue, magenta, red,

yellow, green, cyan, and black. An approach y i e l d i n g more

r e a l i s t i c results would be for the driver- to choose the eight

colours which best matched the intended image.

There are two d i s t i n c t problems involved in using a varying

palette of colours. The f i r s t is to devise a metric so that a

numerical value can be associated with the difference between

two colours. This requires research into the way the eye

perceives colour. A possible metric is to use the red, blue,

green (RBG) colour model and assume the colour axes are

orthogonal and of equal length. Once the palette, of colours has

been determined, the metric is used to choose which colour of

the palette best approximates the colour an application program

wishes to display.

The second problem i s the choice of palette members after a

screen refresh. At that time, a l l of the colours which w i l l

appear on the screen are known. The optimum palette choice is

the one where the sum of the errors is minimized. The error

involved i s the distance between the colour desired and the

closest colour of the palette as defined by the metric. As there

are sixty-four choose eight (roughly 4.4*109) possible palettes,

an exhaustive search i s not p r a c t i c a l . A possible h e u r i s t i c i s

to consider each palette colour as a data concentrator, each

desired colour as a terminal, the metric value between colours

78

as the terminal-concentrator link cost and to use the Add or

Drop algorithms from communications theory [Schw77] to determine

concentrator location / palette colour.

There are many monochromatic devices. Two such devices

interfaced to LIG6 are Tektronix 4010 series terminals and a

p l o t t e r . The current implementation displays a l l colours in the

foreground colour of these devices. A possible improvement would

be the approximation of colour on these devices by the use of

hatching. Several options could be implemented. The hatching

could be performed in image space with the result that a l l

images of surfaces with the same colour would have the same

orientation and spacing of hatch l i n e s . Secondly, the

orientation of the surfaces of the model could be used to

determine the orientation of the hatching of the image. The

hatching could also be performed in object space resulting in

both the orientation and spacing of the hatch l i n e s being

affected. The last two implementations would provide the viewer

with additional information regarding depth and the modelling

process.

The portrayal of three-dimensional information i s usually

more meaningful i f hidden l i n e s and surfaces are removed. As

LIG6 is concerned with the modelling and display of three-

dimensional objects, the addition of a hidden l i n e and surface

removal c a p a b i l i t y would be an important improvement. It would

be possible to place these algorithms in the driver part of the

system because such algorithms are usually dependent on the

output device. For example, a p r i o r i t y buffer algorithm [Fole82]

can be used with raster terminals but not with dir e c t view

79

storage tubes or p l o t t e r s .

Most terminal locators provide only two-dimensional

information. Interacting with an image of a three-dimensional

object i s d i f f i c u l t because there is no method to indicate

depth. It i s possible to implement a three-dimensional locator

for a vector refresh terminal using three valuator inputs. Three

cross-hairs would be drawn p a r a l l e l to the axes of the modelling

coordinate system through a point determined by the valuator

inputs. Experiments could be c a r r i e d out to determine i f f i n i t e

length cross-hairs or cross-hairs which include measuring t i c k

marks are required to a s s i s t a user's depth perception.

80

BIBLIOGRAPHY

[Bart8l] Barth, W., J. Dirnberger, and W. Purgathofer, The high-
le v e l graphics programming language PASCAL/GRAPH,
Proc. Eurographics 81, Amsterdam, North-Holland, 1981, 151-
1 64.

[Dahl72] Dahl O-J., D i j k s t r a , E. W. , Hoare, C., Structured
Programming, Academic Press, New York, '1972.

[Dijk76] D i j k s t r a , E. W., A D i s c i p l i n e of Programming, Prentice-
H a l l , Inc., Englewood C l i f f s , New Jersey, 1976.

[Fole76] Foley, J. D., Picture Naming and Modification: an
Overview, Computer Graphics 10, Spring 1976, pp. 49-53.

[Fole82] Foley, J. D., Van Dam, A., Fundamentals of Interactive
Computer Graphics, Addison-Wesley, Reading, Massachusetts,
1 982.

[Fors67] Forsythe, G. E., Moler, C. B., Computer Solutions of
Linear Algebraic Systems, Prentice-Hall, Inc., Englewood
C l i f f s , New Jersey, 1967.

[Frie82] Friedman, F. L., Koffman, E. B., Problem Solving and
Structured Programming in WATFIV, Addison-Wesley, Reading,
Massachusetts, 1982.

[GSPC79] Heilman, R., Herzog, B. (Eds.), Status Report of the
Graphics Standards Planning Committee, Computer Graphics
13, No. 3, August 1979.

[Jens76] Jensen, K., Wirth, N., PASCAL: User Manual and Report,
Springer-Verlag, New York, 1976.

[Kuls68] Kulsrud, H.E., A general purpose graphic language,
Comm. ACM, 11 (1968), 247-254.

[Leca74] Lecarme, 0., and G.V. Bochmann, A (truly) usable
portable compiler writing system, Information Processing
74, Amsterdam, North-Holland, 2(1974), 218-221.

[Magn8l] Magnenat-Thalmann, N., and D. Thalmann, A graphical
Pascal extension based on graphical types, Software —
Practice and Experience, 11 (1981), 53-62.

81

[Mair8l] Mair, S. G. (Ed.), UBC IG: The Integrated Graphics
System, Computing Centre, The University of B r i t i s h
Columbia, 1982.

[Mann80] Mannhardt, Ch., and G.F. Schrack, Modelling and display
concepts in a high-level graphics programming language,
C.E. Vandoni, Ed., Eurographics 80, Amsterdam, North-
Holland 1980, 225-236.

[McKe70] McKeeman, W.M., J. J . Horning, and D.B. Wortman, A
Compiler Generator, Englewood C l i f f s , Prentice-Hall, 1970.

[McLe78] McLean, M.J., A survey of interactive graphics
software, Austral. Comput. J., 10 (1978), 11-22.

[Meis77] Meissner, L. P., FORTRAN 77, SIGPLAN Not. (USA), v o l .
12, no. 1 (Jan. 1977), pp. 93-94.

[Newm7l] Newman, W.M., Display procedures, Comm. ACM, 14 (1971),
651-660.

[Roge76] Rogers, D. F., Adams, J. A., Mathematical Elements for
Computer Graphics, McGraw-Hill, New York, 1976.

[Ross82] Ross, R., LIG6; Language for Interactive Graphics,
User's Manual, Department of E l e c t r i c a l Engineering, The
University of B r i t i s h Columbia, 1982, 55 pp.

[Schr76] Schrack, G.F., Design, implementation and experiences
with a high-level graphics language for interactive
computer-aided design purposes, Computer Graphics, 10
(Spring 1976) and SIGPLAN Notices, 11(June 1976), 10-17
(joint issue).

[Schr78] Schrack, G.F., LIG User's Manual, Departments of
E l e c t r i c a l Engineering and Computer Science, The University
of B r i t i s h Columbia, 1978, 50 pp.

[Schw77] Schwartz, M., Computer-Communicat ion Network Design and
Analysi s, Prentice-Hall, Inc., Englewood C l i f f s , New
Jersey, 1977.

[Smit7l] Smith, D.N., GPL/l — A PL/I extension for computer
graphics, AFIPS Conf. Proc. 38 (1971: SJCC), 511-528.

[Thal79] Thalmann, D., Magnenat-Thalmann, N., Design and
Implementation of Abstract Graphical Data Types, Proc.
COMPSAC'79, Chicago, IEEE Press, 1979, pp. 519-524.

[Wirt77] Wirth, N., What can we do about the unnecessary
d i v e r s i t y of notation for syntactic d e f i n i t i o n s ? ,
Comm. ACM, 20 (1977), 822-823.

82

APPENDIX A

A Sample Program

The LIG6 program shown on the f o l l o w i n g pages demonstrates

the a b i l i t y of the language t o implement i n t e r e s t i n g g r a p h i c a l

a l g o r i t h m s . The g r a p h i c a l f u n c t i o n HIDDEN i s an example of a

p r i o r i t y b u f f e r h idden s u r f a c e removal a l g o r i t h m i m p l e m e n t a t i o n .

I t r e t u r n s a model which i s e q u i v a l e n t t o i t s argument but whose

s t r u c t u r e has been m o d i f i e d so t h a t when i t i s d i s p l a y e d on a

r a s t e r r e f r e s h t e r m i n a l , the hidden l i n e s and s u r f a c e s w i l l not

appear.

83

GRAPHICAL FUNCTION HIDDEN(TREE)
GRAPHICAL TREE,ROOT,STACK(25),TRAVRS,VALUE,SUPER
INTEGER POINT
VECTOR VUPNT,AIMPNT,VIEWUP
REAL VUANGL
COMMON /HID$/ VUPNT
CALL CAMPRM(VUPNT,AlMPNT,VIEWUP,VUANGL)
ROOT :- BLANK <COLOUR -1E35>
POINT = 1
STACK(1) :- TREE
REPEAT

IF(VALUE(STACK(POINT)).EQ.BLANK) THEN
BEGIN POINT = POINT - 1; END

ELSE
BEGIN

IF(PRIMITIVE(VALUE(STACK(POINT)))) THEN
BEGIN

CALL INSERT(ROOT,STACK(POINT))
POINT = POINT - 1

END
ELSE

BEGIN
IF(POINT.EQ.25) THEN
BEGIN

STACK(POINT) :- SUPER(VALUE(STACK(POINT)))
<MODIFI CATION(STACK(POINT))>

END
ELSE

BEGIN
STACK(POINT+1) :- VALUE(VALUE(STACK(POINT)))

<MODIFICATION(VALUE(STACK(POINT))),
MODIFICATION(STACK(POINT))>

STACK(POINT) :- SUPER(VALUE(STACK(POINT)))
<MODIFICATION(STACK(POINT))>

POINT = POINT + 1
END

END
END

UNTIL (POINT.EQ.O)
HIDDEN = TRAVRS(ROOT)
RETURN
END

SUBROUTINE INSERT(ROOT,NODE)
GRAPHICAL ROOT,NODE,POINTR,FATHER,COPY,VALUE,SUPER
REAL AVERGE,DEPTH
POINTR :- ROOT
FATHER :- BLANK
DEPTH = AVERGE(NODE)
WHILE(DEPTH .LT. COLOUR(VALUE(POINTR))) DO

BEGIN
FATHER :- VALUE(POINTR)
POINTR :- SUPER(VALUE(POINTR))

END
IF(VALUE(FATHER) .EQ. BLANK) THEN

84

BEGIN
ROOT :< COPY(ROOT)
ROOT :> COPY(NODE)<COLOUR DEPTH>

END
ELSE

BEGIN
VALUE(FATHER) :< (COPY(NODE) <COLOUR DEPTH>)
SUPER(VALUE(FATHER)) :< VALUE(POINTR)

END
RETURN
END

GRAPHICAL FUNCTION COPY(NODE)
GRAPHICAL NODE
COPY := NODE
RETURN
END

REAL FUNCTION AVERGE(NODE)
GRAPHICAL NODE,VALUE
INTEGER ORDER,PRILEN
VECTOR VUPNT,POINT,POINT1
COMMON /HID$/ VUPNT
AVERGE = 0 . 0
IF(VALUE(NODE).EQ.BLANK) RETURN
IF(POLYLINE(VALUE(NODE))) THEN
BEGIN
ORDER = PRILEN(NODE)
DO 10 I = 1,ORDER

CALL LINPNT(NODE,I,POINT)
CALL APLYMD(NODE,POINT,POINT1)
AVERGE = AVERGE + |VUPNT-POINT1|

10 CONTINUE
AVERGE = AVERGE/ORDER

END
ELSE

BEGIN
IF(POLYGON(VALUE(NODE))) THEN
BEGIN
ORDER = PRILEN(NODE)
DO 20 I = 1,ORDER

CALL POLPNT(NODE,I,POINT)
CALL APLYMD(NODE,POINT,POINT1)
AVERGE = AVERGE + |VUPNT-POINT1|

20 CONTINUE
AVERGE = AVERGE/ORDER

END
ELSE

BEGIN
POINT = (0 ,0)
CALL APLYMD(NODE,POINT,POINT1)
AVERGE = |VUPNT-POINT 1 |

END
END

RETURN

85

END

GRAPHICAL FUNCTION TRAVRS(ROOT)
GRAPHICAL ROOT,POINTR,VALUE,SUPER
TRAVRS = VALUE(ROOT)
IF(TRAVRS .EQ. BLANK) RETURN
POINTR :- ROOT
WHILE(VALUE(VALUE(POINTR)) .NE. BLANK) DO

BEGIN
VALUE(VALUE(POINTR)) :< VALUE(SUPER(VALUE(POINTR)))
POINTR :- SUPER(VALUE(POINTR))

END
RETURN
END

86

APPENDIX B

Implementation Notes

The language LIG6 i s implemented on the U n i v e r s i t y of

B r i t i s h Columbia Computing Centre's Amdahl 470 V/8 computer

under the Michigan Terminal System (MTS) o p e r a t i n g system. The

f o l l o w i n g MTS commands w i l l generate the pr e p r o c e s s o r and run­

time l i b r a r y and execute a LIG6 program c o n t a i n e d i n the f i l e

PROG.S.

$RUN *PASCAL SCARDS=LIG6.P SPUNCH=LIG6.0
$RUN *FTN SCARDS=LIG6.LIB.F SPUNCH=LIG6.LIB.O
$RUN LIG6.0 SCARDS=PROG.S SPRINT=PROG.L SPUNCH=PROG.F
$RUN *FTN SCARDS=PR0G.F SPUNCH=PROG.0
$RUN PR0G.0+LIG6.LIB.0

The f o l l o w i n g "T" diagrams, u s i n g the n o t a t i o n of McKeeman

et a l . [McKe70], represent the same proc e s s .

LIG6 PREPROCESSOR LIG6 PREPROCESSOR

LIG6 --> FORTRAN LIG6 --> FORTRAN

PASCAL COMPILER

PASCAL PASCAL — > ML ML

ML

87

LIG6
LIBRARY

LIG6
LIBRARY

FORTRAN COMPILER

FORTRAN FORTRAN --> ML ML

ML

Program Program Program

LIG6 PREPROCESSOR FORTRAN COMPILER

LIG6 LIG6 — > FORTRAN FORTRAN FORTRAN - - > ML ML

ML ML

S e v e r a l s t a t i s t i c s r e g a r d i n g the implementation of LIG6

have been o b t a i n e d . The prep r o c e s s o r was w r i t t e n i n PASCAL; i t

c o n s i s t s of 328 procedures t o t a l l i n g 18,100 l i n e s of source

code. T h i s r e p r e s e n t s a l i s t i n g of over 300 pages and occupies a

d i s k f i l e c o n t a i n i n g 168 pages (each d i s k page c o n t a i n s 4096

b y t e s) . The o b j e c t code r e s u l t i n g from the c o m p i l a t i o n of the

pre p r o c e s s o r source r e q u i r e s a d i s k f i l e of 84 pages. I t takes

0.413 seconds of CPU time t o l o a d . A 650 l i n e LIG6 t e s t program

c o n t a i n i n g examples of a l l s y n t a c t i c c o n s t r u c t s took 3.449

seconds of CPU time and c o s t $1.08 f o r the preprocessor to

analyze the program, c r e a t e an e q u i v a l e n t 1660 l i n e FORTRAN

88

program, and produce a l i s t i n g . In comparison, the cost of

l i s t i n g the same program was $0.50.

The translation of a LIG6 program into an equivalent

FORTRAN program involves the replacement of extension constructs

with c a l l s to subroutines in a run-time l i b r a r y . The concise

graphical information in a LIG6 statement generally requires

more than one subroutine c a l l to be equivalently expressed. The

actual expansion that occurs depends upon the program being

preprocessed. In the test program mentioned above, the section

dealing with purely graphical extensions was 134 lines long. The

equivalent FORTRAN code, was 530 l i n e s , an expansion factor of

3.96. A LIG6 program which was used to automatically generate

the data structure diagrams of thi s thesis i s 197 lines long;

i t s equivalent FORTRAN code i s 364 li n e s y i e l d i n g an expansion

factor of 1.85. The hidden surface removal algorithm of Appendix

A i s 145 l i n e s long; i t s equivalent FORTRAN code i s 428 lines

y i e l d i n g an expansion factor of 2.95.

The run-time l i b r a r y was written in FORTRAN; i t consists of

339 procedures t o t a l l i n g 10,232 l i n e s of source code. This

represents a l i s t i n g of 166 pages and occupies a disk f i l e of 95

pages. The resulting object code requires a 70 page disk f i l e

and takes 0.402 seconds of CPU time to load.

