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ABSTRACT 

High-level graphical programming languages provide simply 

expressed constructs for the d e f i n i t i o n , manipulation, and 

external representation of graphical data. Such languages can be 

used to create e f f e c t i v e and readable application programs. This 

thesis investigates the value of allowing the inquiry of 

graphical data in a graphical language. Major design goals of an 

implementation of a language with these c a p a b i l i t i e s are 

presented. A data base model and implementation are discussed. 

The c l a s s i f i c a t i o n of graphical primitives as abstract data 

types is presented. Examples are given of several areas in which 

a language including graphical inquiry may be applied. It is 

concluded that inquiry permits the d e f i n i t i o n and manipulation 

of a r b i t r a r y models of graphical objects, so enabling the 

implementation of sophisticated graphical algorithms. 



i i i 

TABLE OF CONTENTS 

Page 

LIST OF FIGURES v 

ACKNOWLEDGEMENTS v i i 

Chapter 

1. INTRODUCTION 1 

2. LANGUAGE DESIGN GOALS 4 

2 . 1 Inquiry 4 

2.2 Levels Of Usage 5 

2.3 Fortran Consistency 8 

2.4 Separate Preprocessing And Compilation 10 

3. DATA BASE SYSTEM i 12 

3.1 Data Base Model 14 

3.2 Data Base Implementation 22 

4. GRAPHICAL OUTPUT PRIMITIVES 28 

4.1 Primitives As Abstract Data Types 28 

4.2 Programmer Defined Primitives 30 

4.3 Graphical Functions Versus Graphical Primitives ... 35 

5. GRAPHICAL DOMAINS 38 

5.1 Construction Tools 38 

5.2 Systematic Manipulation 40 

5.3 Graphical Editing 45 

5.4 Data Structures 52 

6. NEW LANGUAGE FEATURES 59 



i v 

0* 

6.1 Vector Data Type ' 59 
6.2 Map Operator 61 

6.3 Stroke P r e c i s i o n Text 65 

6.4 S t r u c t u r e d Statements 66 

6.5 A r c h i v a t i o n 69 

7. CONCLUSIONS 72 

BIBLIOGRAPHY 80 

APPENDIX A - A Sample Program 82 

APPENDIX B - Implementation Notes 86 



V 

LIST OF FIGURES 

Figure 1 Data Base Model 15 

Figure 2 VALUE And SUPER Functions 16 

Figure 3 Nested Graphical Expressions 18 

Figure 4 Copy Assignment 20 

Figure 5 Value Assignment 20 

Figure 6 Super Assignment 21 

Figure 7 Graphical Node Structure 23 

Figure 8 Primitive Record Header 24 

Figure 9 Primitive Record Storage 26 

Figure 10 Integer External Representation 30 

Figure 11 Allowable Primitive Template Grammar Productions 33 

Figure 12 Square Primitive 32 

Figure 13 Parallelogram Primitive 33 

Figure 14 Sphere Primitive 36 

Figure 15 Graphical Ductwork Construction Tools 40 

Figure 16 Arbitrary Pipe Model 41 

Figure 17 Second View Of Pipe 41 

Figure 18 Helix Constructed With REVOLV 42 

Figure 19 Second View Of Helix 42 

Figure 20 Deep Replace Algorithm 44 

Figure 21 Graphical Substitution 45 

Figure 22 Origi n a l Model Image 47 

Figure 23 Origi n a l Tree Structure 48 



v i 

Figure 24 Graphical Editing Addition 48 

Figure 25 Viewing Editing Result 49 

Figure 26 Editing Level Change 49 

Figure 27 Subobject Modification 50 

Figure 28 Origi n a l Root Redrawn 50 

Figure 29 Structure Alteration 51 

Figure 30 Graphical Editing Result 51 

Figure 31 Grammar Storage Data Types And Variables 54 

Figure 32 Or i g i n a l Grammar Internal Representation 55 

Figure 33 Manipulated Grammar Internal Representation .... 56 

Figure 34 Sample Input Grammar 57 

Figure 35 Sample Syntax Directed Diagram 58 

Figure 36 Vector Operators 60 

Figure 37 Vector Data Type Usage 61 

Figure 38 Vector Component Access 61 

Figure 39 Map Operator Examples 62 

Figure 40 Z-Rotation Matrix 63 

Figure 41 Map Operator Implementation 64 

Figure 42 Text Precision 66 

Figure 43 Stroke Precision Text 67 

Figure 44 Structured Statements Grammar 68 

Figure 45 Structured Statements Examples ' 69 



v i i 

ACKNOWLEDGEMENTS 

I would l i k e to express my s i n c e r e a p p r e c i a t i o n to Dr. Gunther 

Schrack f o r h i s i n v a l u a b l e h e l p and guidance. I am g r a t e f u l to 

my parents f o r t h e i r support and encouragement. T h i s research 

would not have been p o s s i b l e were i t not f o r the f i n a n c i a l 

support of the N a t i o n a l Science and En g i n e e r i n g Research 

C o u n c i l . 



1 

Chapter 1 

INTRODUCTION 

There has always been considerable interest in the 

presentation of information in p i c t o r i a l form. As computers are 

applied in an increasing number of areas and more information i s 

stored in machine-readable form, the demand for the automatic 

generation of graphical images also increases. The f i e l d of 

computer graphics i s concerned with the generation of such 

images. 

Most programmers' i n i t i a l experience with computer graphics 

involves graphical subroutine systems. The major task of these 

systems i s to act as an interface between application programs 

and graphical input and output devices. The subroutines 

generally do not provide modelling functions, this i s l e f t as a 

task of the application program. 

Modelling functions are provided by high-level graphics 

programming ' languages. These languages consider graphical 

information to be values of an abstract data type. They provide 

constructs which define and manipulate data of the type 

GRAPHICAL. High-level graphics languages possess several 

advantages over subroutine systems: high p o r t a b i l i t y of programs 

and programmers, ease of learning the language, and improved 

re a d a b i l i t y of a program. This thesis discusses some aspects of 

the design and implementation of such a language. The name of 
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t h i s language i s LIG6 (Language f o r I n t e r a c t i v e Graphics V e r s i o n 

6). I t i s the most recent v e r s i o n of a f a m i l y of languages 

[Schr76,Mann80], with new f e a t u r e s and c h a r a c t e r i s t i c s . 

During the past y e a r s , many h i g h - l e v e l g r a p h i c s languages 

have been d e s c r i b e d or proposed, notably i n papers by Ku l s r u d 

[ K u l s 6 8 ] , Newman [Newm7l], Smith [ S m i t 7 l ] , and, more r e c e n t l y , 

Magnenat-Thalmann et a l . [Magn8l], and Barth et a l . [ B a r t 8 l ] . 

McLean [McLe78] d i s c u s s e s 37 languages i n a survey. The 

languages d i f f e r widely i n both syntax and semantics, as w e l l as 

in the approaches taken f o r t h e i r implementation. 

The m o d e l l i n g c o n s t r u c t s of these languages allow the 

e x p l i c i t d e f i n i t i o n and manipulation of models of g r a p h i c a l 

o b j e c t s . T h i s permits a p p l i c a t i o n programs to perform p a s s i v e or 

i n t e r a c t i v e g r a p h i c s . I t i s d i f f i c u l t f o r programs i n these 

languages to manipulate a r b i t r a r y models of g r a p h i c a l o b j e c t s 

because of the d i v e r s e nature of these models. T h i s t h e s i s 

i n v e s t i g a t e s areas i n which a g r a p h i c s programming language can 

be a p p l i e d when a formal model s t r u c t u r e and i n q u i r y i n t o such 

s t r u c t u r e s are pr o v i d e d . 

LIG6 i s implemented as an extension to a host language, 

FORTRAN. A pr e p r o c e s s o r , w r i t t e n i n PASCAL, converts LIG6 

programs i n t o standard FORTRAN programs with e x t e n s i o n elements 

t r a n s l a t e d i n t o c a l l s to subrout i n e s i n a run-time l i b r a r y . 

These subrou t i n e s are coded i n FORTRAN. When a LIG6 program i s 

to be executed, the o b j e c t deck produced by co m p i l i n g the 

prepr o c e s s o r output i s run i n c o n j u n c t i o n with the run-time 

l i b r a r y . Only those d e t a i l s of the language and of i t s 

implementation which are p e r t i n e n t to the p o i n t s d i s c u s s e d i n 
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t h i s t h e s i s are o u t l i n e d ; more complete i n f o r m a t i o n i s a v a i l a b l e 

i n the LIG6 User's Manual [Ross82]. 

Chapter 2 presents the major design goals of the language. 

The o v e r a l l s t y l e of the language with respect to the host 

language and the importance of separate p r e p r o c e s s i n g and 

c o m p i l a t i o n of modules i s c o n s i d e r e d . Aspects of i n q u i r y and the 

p a r t i t i o n i n g of language c o n s t r u c t s i n t o a h i e r a r c h y are 

addressed. 

The concept of a data base system i s presented i n Chapter 

3. The b e n e f i t s of programmer knowledge of system implementation 

are d i s c u s s e d . A model of the data base and a summary of i t s 

implementation are given. 

Chapter 4 i n t r o d u c e s the idea of regarding g r a p h i c a l output 

p r i m i t i v e s as true a b s t r a c t data types. The method by which 

programmers can d e f i n e such p r i m i t i v e s and the d i f f e r e n c e s 

between p r i m i t i v e s and g r a p h i c a l f u n c t i o n s are o u t l i n e d . 

Examples of areas i n which LIG6 can be a p p l i e d are 

presented i n Chapter 5. T o o l s f o r the c o n s t r u c t i o n of models of 

g r a p h i c a l o b j e c t s are d i s c u s s e d . The systematic manipulation of 

g r a p h i c a l o b j e c t s i s d e f i n e d . The concept of i n t e r a c t i v e l y 

e d i t i n g g r a p h i c a l o b j e c t s i s presented. Employing g r a p h i c a l data 

to represent a b s t r a c t ideas i s i n t r o d u c e d . 

A sample of f e a t u r e s p r o v i d e d i n LIG6 i s given i n Chapter 

6. An e f f e c t i v e t r a n s f o r m a t i o n operator i s i n t r o d u c e d , the 

support f o r the data type VECTOR i s o u t l i n e d , stroke p r e c i s i o n 

t e x t i s d e s c r i b e d , and the a b i l i t y to save and r e s t o r e models of 

g r a p h i c a l o b j e c t s i s d i s c u s s e d . 
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Chapter 2 

LANGUAGE DESIGN GOALS 

2 . 1 Inqui ry 

Usually, algorithms are implemented where the flow of 

control depends on the results of previous operations. To make 

control decisions, a program must be able to inquire about 

values of variables and expressions and determine what 

operations have occurred. For interesting graphical algorithms 

to be implemented, the results of graphical operations must be 

accessible to control structures. Thus, one of the design goals 

of L IG6 was to support information recovery. 

Information recovery i s the a b i l i t y to access the results 

of actions and thereby determine what operation occurred. It is 

supported by providing methods of obtaining such access for a l l 

graphical operations. Two forms of access are used in LIG6. If a 

natural, consistent s y n t a c t i c a l construct i s possible, i t is 

used. Otherwise, system subprograms are provided. A c a l l to such 

a subprogram results in the desired information being returned 

in the routine's parameters. 

In LIG6, l o g i c a l expressions have been extended to include 

the comparison of models of graphical objects. In this way, the 
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results of graphical assignment statements can control a 

program's execution. S i m i l a r l y , i t can be determined whether a 

variable's value i s a primitive and, i f so, which type. The 

structure and content of primitive records are accessible, so 

enabling control decisions and automated modelling. The results 

of transformations and attribute settings in assignment 

statements are also accessible. A dualism between action and 

inquiry has been established: for every operation there i s a 

method to determine the nature and result of i t s action. 

2 . 2 Levels of Usage 

As is true for most occupations, computer programmers tend 

to possess d i f f e r e n t l e v e l s of sophistication related to their 

experience and a b i l i t y . A programming language i s most useful i f 

i t i s a t t r a c t i v e to programmers of a l l l e v e l s . This general 

appeal may be obtained by dividing the language into levels with 

each l e v e l a superset of that d i r e c t l y below i t . The lower l e v e l 

features are arranged to be independent of those at higher 

l e v e l s . This p a r t i t i o n i n g is one of the design goals of LIG6. 

Another benefit of l e v e l p a r t i t i o n i s the r e l a t i v e ease with 

which the language can be learned. Programmers are able to 

quickly obtain results using low l e v e l constructs and then 

advance naturally, as t h e i r needs increase. 

Programming languages in general, and LIG6 in p a r t i c u l a r , 

can be v i s u a l i z e d as having three lev e l s of usage. Each of these 

leve l s i s i d e n t i f i e d by the styles of tasks performed. The f i r s t 

l e v e l i s a subset of the second which i s , in turn, a subset of 
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the l a s t . 

The f i r s t l e v e l is characterized by e x p l i c i t commands and 

l i t t l e i nteractive a c t i v i t y . In a conventional programming 

language, programs which generate tables or solve well-defined 

mathematical problems such as numerical integration are of t h i s 

l e v e l . The corresponding l e v e l in LIG6 is represented by 

programs which e x p l i c i t l y model a well-defined graphical object 

and display an external representation of that model, i . e . an 

image, on a device. 

There are four independent constructs which support this 

l e v e l in LIG6. The f i r s t construct consists of the various 

methods of declaring graphical variables. Modelling i s performed 

with the simple assignment statement and with the standard 

graphical primitives. Modelling transformations and a t t r i b u t e 

settings are performed with the modification constructs. The 

l a s t construct i s the display statement which produces images of 

the results of graphical modelling. At this l e v e l , the 

programmer i s the a r t i s t , e x p l i c i t l y creating the desired image. 

The second l e v e l of use is characterized by a high l e v e l of 

interactive a c t i v i t y and the e x p l i c i t modification of e a r l i e r 

processes and r e s u l t s . A t y p i c a l program in a conventional 

language of t h i s type would be one in which results are obtained 

in an i t e r a t i v e fashion with new starting values and process 

parameters supplied i n t e r a c t i v e l y by the user. At t h i s l e v e l , 

LIG6 programs e x p l i c i t l y modify models and images of graphical 

objects. 

In LIG6 programs, models of graphical objects constructed 

by assignment statements are modified using the deletion 
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s t a t e m e n t . Images produced by the d i s p l a y statement may be 

m o d i f i e d u s i n g two t y p e s of e r a s u r e s t a t e m e n t s . I n t e r a c t i v e 

a c t i v i t i e s a r e s u p p o r t e d by the i d e n t i f i c a t i o n c o n s t r u c t s . The 

programmer i s removed one s t e p from the use of the program a t 

t h i s l e v e l ; he c r e a t e s a p p l i c a t i o n programs which a re then run 

by u s e r s t o c r e a t e the images they d e s i r e . 

The t h i r d and h i g h e s t l e v e l i s c h a r a c t e r i z e d by programs 

u s i n g knowledge of t h e i r own da t a bases and which use i n q u i r y of 

the r e s u l t s of p r e v i o u s o p e r a t i o n s t o det e r m i n e the f l o w of 

c o n t r o l . A t y p i c a l problem i n c o n v e n t i o n a l programming languages 

at t h i s l e v e l might be a s e a r c h i n g a l g o r i t h m f o r the r o o t s of 

e q u a t i o n s . The c o r r e s p o n d i n g l e v e l i n LIG6 i s t y p i f i e d by 

programs which i m p l i c i t l y modify a r b i t r a r y models of g r a p h i c a l 

o b j e c t s or c r e a t e new models based on the r e s u l t s of p r e v i o u s 

m o d e l l i n g . 

T h i s l e v e l i s s u p p o r t e d i n LIG6 by m o d e l l i n g and i n q u i r y 

c o n s t r u c t s . A d a t a base d e f i n i t i o n model i s p r o v i d e d . A complete 

s e t of m o d e l l i n g o p e r a t o r s i s p r o v i d e d g i v i n g a programmer the 

a b i l i t y t o p r e c i s e l y d e f i n e and modify models. Access i s 

p r o v i d e d t o a l l p a r t s of a model f o r i n f o r m a t i o n r e t r i e v a l . 

Programmers a t t h i s l e v e l a r e o f t e n removed two s t e p s from the 

use of the program. They c r e a t e the program t o o l s which 

a p p l i c a t i o n programmers then i n c o r p o r a t e i n a p p l i c a t i o n programs 

w i t h which u s e r s f i n a l l y c r e a t e images. 

Without t h i s f i n a l l e v e l , i t i s d i f f i c u l t t o implement 

programs w i t h the a b i l i t y t o make i n t e l l i g e n t d e c i s i o n s . 

S o p h i s t i c a t e d g r a p h i c s programs would be f o r c e d t o m a i n t a i n 

s e p a r a t e d a t a bases, d e f e a t i n g one of the p r i m a r y purposes of a 
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high-level graphics language. An idea of the importance of this 

l e v e l can be obtained by considering the IF statement. Most 

computer programs contain such conditional statements implying 

that they are at the t h i r d l e v e l . No inquiry constructs are 

available in the f i r s t two l e v e l s . A graphical language with the 

a b i l i t y to perform inquiry on the results of graphical 

operations c l e a r l y has a d i s t i n c t advantage over one which does 

not. 

2.3 Fortran Consistency 

V i r t u a l l y a l l graphics programming languages are extensions 

to existing high-level computer languages. A graphics 

application program w i l l generally require non-graphics 

constructs for support. When these constructs are i d e n t i c a l to 

those of a language already known to a programmer, the time and 

e f f o r t required to become fluent with the graphics language is 

reduced. Any gains made with t h i s approach, however, w i l l be 

lessened i f the language extension is not consistent with the 

host language. 

Each individual construct of a given computer language has 

rules governing i d e n t i f i e r names, reserved words, and format 

which i t shares with the other constructs. In addition, 

operations possible with d i f f e r e n t data types are arranged to 

overlap as much as i s fe a s i b l e . If these general rules are 

ignored when a language is extended and a d i f f e r e n t style is 

used for new constructs, a programmer w i l l be forced to learn 

and retain twice as much information regarding s t y l e ; confusion 
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w i l l occur over the choice of style for a p a r t i c u l a r construct. 

It i s with t h i s in mind that one of the design goals of the 

language was to make a l l extensions as consistent with FORTRAN 

as possible. 

The most important features of the format of a FORTRAN 

program are that blanks are not delimiters, and that there are 

no reserved words. A l l syntax i s determined by context, making 

FORTRAN one of the more d i f f i c u l t computer languages to parse. A 

c l a s s i c example of t h i s i s the two statements 

DO 10 I = 5 
DO 10 I = 5,9 

The f i r s t statement is an assignment statement where the integer 

expression 5 i s coerced into a real expression and assigned to 

the variable DO10I. The second statement i s a DO statement with 

the integer index I ranging in value from 5 to 9 and an object 

whose statement has the label 10. A parser cannot di s t i n g u i s h 

between the two statements u n t i l i t reaches the comma. 

Such input format conventions remain in LIG6. The 

extensions do not introduce reserved words, and blanks are s t i l l 

ignored. Some upwards compatible freedoms have been added to the 

format of both host and extension statements. Statements may now 

span lines without the use of a continuation card, although such 

cards are s t i l l permitted and recognized. Multiple statements 

per l i n e are allowed, provided they are separated by semicolons. 

Comments enclosed in braces may appear anywhere. The length of a 

l i n e has been extended from 72 to 255 characters and column 

positions are not important regarding statement labels and the 

beginning of statements. None of these extensions r e s t r i c t 
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previously correct format; ANSI standard FORTRAN programs are 

acceptable LIG6 programs. 

In FORTRAN, there i s a variety of rules and operations 

which apply to data types generally. I d e n t i f i e r s are r e s t r i c t e d 

to a length of six characters. Variables and function 

i d e n t i f i e r s may be typed e x p l i c i t l y , or else i m p l i c i t l y with the 

aid of the IMPLICIT statement. There are no less than three 

statements which can determine the dimensions of an array 

variable: e x p l i c i t type declaration statements, the DIMENSION 

statement, and the COMMON statement. Expressions may be passed 

as arguments to subprograms. A l l of these rules also apply to 

the extension data types. 

The extension type GRAPHICAL i s e s s e n t i a l l y a pointer type. 

Some of the declarations possible for non-pointer types, 

therefore, are not permissible with t h i s type. Graphical 

variables may not be i n i t i a l i z e d , as in a DATA statement. They 

may not be equivalenced or placed in a common block position 

which i s also referenced by a non-graphical variable. F i n a l l y , 

statement functions are not allowed for this type. 

2.4 Separate Preprocessing and Compilation 

In computer science, there is always the question of the 

effe c t a programming style has on the a b i l i t y to e a s i l y generate 

correct, maintainable solutions to problems. A style known as 

modularization [Dijk76] has i t s origins in c l a s s i c a l problem 

solving: s p l i t t i n g a problem so that when a l l of the subparts 

are solved, the overall . solution has been obtained. Modular 
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programs are written in FORTRAN with the aid of subprograms. 

Being able to create and i n d i v i d u a l l y test modules of a 

program has at least two benefits. The f i r s t i s that i t is much 

easier to isol a t e errors in a small, uncomplicated module than 

i t i s in a complete program. The second i s that once a module is 

complete and correct, i t can be used in any program which 

requires a similar problem to be solved. In this fashion, 

problems need only be solved once. 

To promote modular programming and the creation of 

l i b r a r i e s of useful graphical routines, the FORTRAN module or 

subprogram i s f u l l y supported as a design goal of LIG6. Function 

subprograms of type GRAPHICAL are included, and graphical 

variables and function i d e n t i f i e r s may be parameters of a 

subprogram. Consistent with FORTRAN, variables which are not 

parameters are l o c a l to a subprogram and are automatically 

i n i t i a l i z e d upon entry to the routine. The creation and use of 

l i b r a r i e s of e f f e c t i v e graphical routines w i l l allow the system 

to evolve into a powerful design and v i s u a l i z a t i o n t o o l . 
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Chapter 3 

DATA BASE SYSTEM 

A high-level programming language has several advantages 

over an assembly-level language. These advantages include 

p o r t a b i l i t y of programs and programmers, ease of learning the 

language, improved readability of programs, and the removal of 

d e t a i l irrelevent to an app l i c a t i o n . Similar advantages are 

evident when comparing a high-level graphics language with 

subprogram packages such as CORE [GSPC79] or IG [Mair8l]. 

The lower l e v e l constructs of LIG6 preserve the concept of 

data abstraction with regard to graphical data. A conventional 

programming language allows the natural d e f i n i t i o n and 

manipulation of numbers and l o g i c a l values without requiring the 

programmer to know about the internal representation or 

al l o c a t i o n of these data types. S i m i l a r l y , lower l e v e l LIG6 

constructs permit the treatment of graphical data in an abstract 

fashion via the simple d e f i n i t i o n and presentation of models of 

graphical objects. Use of the advanced l e v e l constructs, 

especially those involving inquiry, require some knowledge of 

the implementation of the language and of i t s data base. 

To some extent, the use of lower l e v e l constructs of both 

conventional programming languages and LIG6 also requires that 

some knowledge of implementation be acquired. In FORTRAN, for 

example, a programmer must be aware of the quantity of memory 
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allocated for various data types when using COMMON blocks and of 

the storage mechanism for multi-dimensioned arrays. In LIG6, the 

data type GRAPHICAL must be recognized as being a pointer type 

so that recursive d e f i n i t i o n s are not made. The a b i l i t y to 

produce sophisticated programs increases with the amount of 

knowledge of implementation. 

Knowledge of how character data is packed in various 

FORTRAN data types enables the user to make str i n g comparisons 

using integer arithmetic. Exploitation of the variant part of 

structured records of PASCAL allows coercion between data types. 

One of the reasons assembly languages are used i s the freedom a 

programmer has for implementations. Being the designer of an 

implementation which can be t a i l o r e d to f i t the application, the 

programmer i s the one best q u a l i f i e d to use i t . 

To enable the use of the advanced le v e l LIG6 constructs by 

a programmer, certain information about the implementation must 

be provided for him. This information includes a model of the 

data base and the effects of graphical modelling on the data 

base. Advanced le v e l constructs are explained in terms of their 

data base effects as well as their graphical e f f e c t s . These 

constructs are complete in the sense that a l l possible data base 

values may be created with their use. Their a v a i l a b i l i t y ensures 

that a programmer may precisely model and manipulate graphical 

objects within the bounds of the c a p a b i l i t y of the data base 

implementation. It is to the advantage of programmers using the 

advanced l e v e l constructs to view LIG6 as a data base management 

system with graphical s i d e - e f f e c t s . 

There i s no degrading of the system from i t s high-level 
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graphics programming language status when t h i s view i s taken. 

Lower l e v e l constructs do not require knowledge of the data base 

model and advanced le v e l users are not required to manage the 

data base. New elements are allocated automatically, system 

interfaces are taken care of, the graphical interpretation of 

the data base i s b u i l t in, and discarded elements are garbage-

c o l l e c t e d by the system. By providing the implementation 

information to programmers, the most e f f e c t i v e use of the system 

becomes possible. 

3.1 Data Base Model 

Graphical data i s inherently h i e r a r c h i c a l in nature. This 

is r e f l e c t e d in the implementation of the data base. For the 

purpose of using the advanced l e v e l constructs of LIG6, the 

graphical data base can be vi s u a l i z e d as a binary tree. This is 

a dynamically alterable n-level h i e r a r c h i c a l data base [FOLE82]. 

Leaves of the tree are graphical output pri m i t i v e s . Modelling 

transformations and attribute d e f i n i t i o n s are stored in the 

nodes of the tree. This model of the data base system i s 

i l l u s t r a t e d by the following synonym assignment statements where 

means assignment and "+" means superposition. Their 

r e s u l t i n g tree structure is displayed in Figure 1. 

A : - LINE FROM (X1,Y1 ,Z1) TO (X2,Y2,Z2) TO (X3,Y3,Z3) 
B : - POLY FROM (P1,Q1 ,R1) TO (P2,Q2,R2) TO (P3,Q3,R3) 
C : - 'HI THERE' < MOD 0 > 
D : - A < MOD 1 > + B < MOD 2 > 
E : - D < MOD 3 > + C < MOD 4 > + LINE FROM (T1,U1,V1) 

TO (T2,U2,V2) 

In the representation of the binary tree in Figure 1, the 

pointer to the right of each node is c a l l e d the value pointer. 
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LINE 
X1,Y1,Z1 
X2,Y2,Z2 
X3,Y3,Z3 

B 

<2> < > 
POLY 

P1,Q1,R1 
P2,Q2,R2 
P3,Q3,R3 

<2> < > 
POLY 

P1,Q1,R1 
P2,Q2,R2 
P3,Q3,R3 

POLY 
P1,Q1,R1 
P2,Q2,R2 
P3,Q3,R3 

<4> <0> <0> 
STRING 

HI THERE 

< > 
LINE 

T1,U1,V1 
T2,U2,V2 

< > 
LINE 

T1,U1,V1 
T2,U2,V2 

Fig u r e 1 Data Base Model 

The value of a node i s the o b j e c t model which i t s value p o i n t e r 

r e f e r s t o , m o d i f i e d by the t r a n s f o r m a t i o n s s t o r e d i n the node. A 

value p o i n t e r can p o i n t to another node or to a l e a f of the 

t r e e . Leaves are g r a p h i c a l output p r i m i t i v e s . The downward 

p o i n t e r from each node i s c a l l e d the super p o i n t e r . Whenever a 

g r a p h i c a l o b j e c t i s superimposed on another, the modelling 

e f f e c t s are the f o l l o w i n g : c r e a t e a node, d i r e c t the value 

p o i n t e r of the new node to the superimposing o b j e c t , s t o r e any 
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m o d i f i c a t i o n s s p e c i f y i n g the in s t a n c e of that o b j e c t i n the new 

node, and d i r e c t the super p o i n t e r of the o r i g i n a l node to the 

new node. 

For access to subo b j e c t s , two g r a p h i c a l system f u n c t i o n s 

are p r o v i d e d - VALUE and SUPER. They each take one argument of 

type g r a p h i c a l (which i s a p o i n t e r type) and r e t u r n the 

a p p r o p r i a t e p o i n t e r of that argument's node. As f o r a l l 

f u n c t i o n s i n FORTRAN, these system f u n c t i o n s must have t h e i r 

type d e c l a r e d , e i t h e r i m p l i c i t l y or e x p l i c i t l y , before use. An 

example of t h e i r use i s 

GRAPHICAL A,B,C,D,E,F,VALUE,SUPER 
A :- B + C 
D :- E + A 

F :- VALUE(SUPER(VALUE(SUPER(D)))) 

The l a s t statement i s e q u i v a l e n t to 

F :- C 

The co r r e s p o n d i n g t r e e r e p r e s e n t a t i o n i s presented i n F i g u r e 2 . 

D E 

A B 

C 

Fi g u r e 2 VALUE and SUPER Functions 
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Use of the VALUE and SUPER functions requires that the 

programmer knows the tree structure of a p a r t i c u l a r model. The 

structure, however, i s known because i t i s determined by the 

assignment statements he has used to specify the object. In 

l i g h t of t h i s , nested graphical expressions take on a new 

mean ing. 

For simple use of the language, nested graphical 

expressions merely provide an easy method for applying a 

transformation to more than one graphical object. An experienced 

LIG6 programmer can use nested expressions, however, to 

precisely specify the structure of his model as well as i t s 

external representation. The two groups of statements 

A 1 : - B + C + D + E 
DISPLAY A1 

A2 :- (B + (C + D) + ((E))) 
DISPLAY A2 

w i l l cause the same image to appear on the screen but the 

structure of the models w i l l be d i f f e r e n t . The structure of a 

model can convey information to a program as e f f e c t i v e l y as the 

contents of the structure's nodes. The two structures of the 

above assignment statements are shown in Figure 3 . 

To enable a programmer to exert maximum control over his 

models, four types of graphical assignment statements have been 

provided. They are the synonym assignment, copy assignment, 

value assignment, and the super assignment statements. 

Synonym assignment has already been introduced. This i s the 

only graphical assignment statement needed by a programmer using 

simple l e v e l language constructs. Such a programmer does not 

need to know the effect of this assignment on tree structures or 
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A1 B A2 B 

F i g u r e 3 Nested G r a p h i c a l E x p r e s s i o n s 

even that the data base implementation can be modelled as a t r e e 

s t r u c t u r e . The assignment operator f o r t h i s type i s the symbol 

I t r e d e f i n e s the value and super p o i n t e r s and the contents 

of the node and a u t o m a t i c a l l y c r e a t e s new nodes f o r 

s u p e r p o s i t i o n at the top l e v e l . 

The synonym assignment statement a l l o w s the most general 

form of e x p r e s s i o n to the r i g h t of i t s operator of a l l of the 

assignments. The production f o r t h i s e x p r e s s i o n can be c a l l e d 

<graphexpress>. The Backus-Naur form d e f i n i t i o n f o r t h i s 

p r o d u c t i o n i s 

<graphexpress> ::= <graphterm> 
| <graphexpress> + <graphterm> 

<graphterm> ::= <graphfactor> 
| <graphfactor> < m o d i f i c a t i o n l i s t > 

<graphfactor> ::= <graphprimitive> 
<graphprimary> 
( <graphexpress> ) 

<graphprimary> ::= <graphvariable> 
| <graphfunction> 
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The copy assignment statement also redefines a l l aspects of 

a node. Its operator i s ":=". The effect of such an assignment 

is simply to copy the pointers and transformations stored in the 

node sp e c i f i e d on the right hand side into the node specified on 

the l e f t hand side. Subsequent display of either node would 

y i e l d i d e n t i c a l v i s u a l r e s u l t s . The expression on the right must 

be a <graphprimary>, that i s , a graphical variable or function 

with no modifications or superpositions. Consider the following 

statements. 

i) B :- C + (D + E) 
i i ) A :- B 

i i i ) A := B 
iv) A := VALUE(SUPER(A)) 

If each statement were executed in order, the corresponding 

structures in Figure 4 would be generated. 

The value assignment statement affects the value pointer of 

a node and the transformations stored in i t . The super pointer 

is not affected. The value assignment operator i s ":>". Its 

effe c t i s to change the i n i t i a l value d e f i n i t i o n of a node, but 

not any objects which have been superimposed upon i t . The 

expression on the right must be a <graphterm>, that i s , the same 

as a <graphexpress> except that no superposition is allowed. The 

following statements generate the tree structures of Figure 5. 

i) A :- B + C 
i i ) A :> (D + E)<COLOUR 120> 

The super assignment statement redefines the super pointer 

of a node. The value pointer and the transformations stored in 

the node are not affected. Its operator i s ":<". Its effect is 

to replace a l l objects that have been superimposed on an 

i n i t i a l l y defined object by a new object. The expression on the 
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B 

( i i ) 

i ) ( i v ) 

F i g u r e 4 Copy Assignment 

B 

E 

— > 

( i ) 

F i g u r e 5 

( i v ) 

Value Assignment 
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r i g h t must be a <graphfactor>, that i s , the same as a 

<graphterm> but no m o d i f i c a t i o n s are allowed. The f o l l o w i n g 

statements y i e l d the s t r u c t u r e s d e p i c t e d i n F i g u r e 6. 

i ) A :- B + C 
i i ) D :- E + B 

i i i ) A :< SUPER(D) 
i v ) D :< (B<COLOUR 120> + (C)) 

B 

B 

( i ) 

B 

B 

( i i ) 

E 

• 
B 

> 

( i i i ) ( i v ) 

F i g u r e 6 Super Assignment 

The p r e c e d i n g four assignment statements form a complete 

set of o p e r a t o r s . They enable programmers to c r e a t e any b i n a r y 

t r e e s t r u c t u r e they d e s i r e . A d d i t i o n a l l y , c o n s t r u c t s are 

p r o v i d e d which enable o p e r a t i o n s on the leaves of the t r e e , the 

output p r i m i t i v e s . 
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3.2 Data Base Implementation 

The previous section discussed the model of the data base 

of LIG6. The use of the word model i s important; i t emphasizes 

that information about the fine d e t a i l s of the data base 

implementation are not needed by users of advanced l e v e l 

constructs. To reinforce t h i s point, a summary of the 

implementation w i l l now be given. 

The nodes depicted in Figure 1 could be stored using a 

variety of methods: as arrays in common blocks, as li n e s or 

groups of li n e s in disk f i l e s , or as records in dynamically 

acquired v i r t u a l memory. The f i r s t approach fixes the size of 

the data base. Small programs would pay the price of high memory 

charges for the unused portions required for larger programs. 

The second method has high overhead in disk charges and 

execution time. The last method uses only as much memory as. a 

program requires but does not have the overhead that secondary 

storage involves. It i s the approach chosen for the 

implementation of the LIG6 data base. 

Each node requires 24 four byte words of contiguous memory. 

The f i e l d s of each node are of three d i f f e r e n t types: fullword 

REAL, fullword INTEGER, and halfword INTEGER. Because the nodes 

are stored in v i r t u a l memory, access to them involves pointers 

and a. system subroutine c a l l . Access to the f i e l d s of di f f e r e n t 

types i s accomplished by passing the pointer three times with a 

di f f e r e n t type declaration for each. The following statements 

i l l u s t r a t e t h i s . 
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EXTERNAL ACCESS 
CALL CALLER(ACCESS,POINTR,POINTR,POINTR) 

SUBROUTINE ACCESS(REALA,INTA,INT2A) 
REAL REALA(24) 
INTEGER INTA(24),INT2A*2(48) 

The f i e l d s of a node store the modelling transformations and 

attribute settings and the instance d e f i n i t i o n s s p e c i f i e d by 

graphical assignment statements. The structure of a node i s 

given in Figure 7. 

Position Name Type Use 
fword Fullword 

Type 

1-12 TRMAT REAL transformation matrix 
13 COLOUR REAL in t e r i o r hue attribute 
1 4 LITNES REAL in t e r i o r lightness a t t r . 
1 5 SATUTN REAL in t e r i o r saturation a t t r . 
1 6 PATERN INTEGER in t e r i o r pattern attribute 
1 7 BCOLOR REAL border hue attribute 
18 BLITNS REAL border lightness attribute 
19 BSATUN REAL border saturation a t t r . 
20 BPATRN INTEGER border pattern attribute 
21 STYLE INTEGER lin e style attribute 

43 WIDTH I NT* 2 l i n e width at t r i b u t e 
44 FONT I NT* 2 textstring font number 
45 VALUE I NT* 2 value pointer 
46 SUPER I NT* 2 superposition pointer 
47 INSTAN I NT* 2 instance pointer 
48 GARBGE I NT* 2 garbage c o l l e c t o r storage 

Figure 7 Graphical Node Structure 

Every graphical variable i s an integer halfword pointer to 

a node. These pointers are not the actual v i r t u a l memory 

addresses of the nodes (which would require a fullword for 

pointer storage), but indices into an array of nodes. This array 

is organized as blocks of 42 nodes. Each block i s approximately 

one page (4096 bytes) of vir t u a l , memory. As more nodes are 
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required, the array is dynamically expanded one block at a time. 

Each block i s referenced by an element in an array of pointers. 

Due to pointer precision, the maximum number of blocks is 780. 

This represents three megabytes of storage. As the maximum size 

of the array of pointers to blocks i s thus 780, the array is 

dynamically kept in v i r t u a l memory as well. 

The storage for primitive records i s organized in a 

dif f e r e n t fashion. Each record is a contiguous section of a 

large one-dimensioned array. When a graphical pointer i s 

negative, i t represents the negative index of the start of the 

primitive record in the array. This array is also dynamic; i t i s 

organized as blocks of 1024 words which are acquired when 

necessary. A record consists of a header, the primitive 

information, and a t r a i l e r . The header consists of one word; i t 

contains what type of primitive follows, garbage c o l l e c t i o n 

storage, and the length of the record. The word organization i s 

depicted in Figure 8. 

cd gb nnnn 

cd - Primitive style indicator 
01 = POLYLINE 
02 = POLYGON 
03 = TEXTSTRING 
04 = USER DEFINED PRIMITIVE 

gb - Garbage c o l l e c t o r storage 

nnnn - Length of record 

Figure 8 Primitive Record Header 

The primitive information depends on the type of primitive. 

For polylines and polygons, i t consists of groups of x,y, and z 
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coordinates. For textstrings, i t consists of bytes of character 

data. For user-defined primitives, i t consists of an external 

representation procedure pointer and a l i s t of parameters. The 

t r a i l e r i s either a continuation or an end command. If i t i s an 

end command, that is the end of the p r i m i t i v e . If i t i s a 

continuation command, i t contains a pointer to the part of the 

array where the primitive i s continued. This allows for records 

larger than 1024 words and for concatenation assignment. The 

following LIG6 program would create the primitive storage 

presented in Figure 9 which was produced by the system debug 

dump, LIGDPH. 

GRAPHICAL A,B,C 
A :- POLY FROM (1,2,3) TO (4,5,6) DELTA (3,3,3) 
B :- 'Line at' 
C :- A + LINE FROM (-1,2) TO (3,-4) 
B :+ ADDSTRING IVALUE(9+7,5) 
CALL LIGDPH 
STOP 
END 

Free l i s t s are kept for both nodes and primitive record 

areas. Whenever statements are executed which require the 

acqu i s i t i o n of storage, the storage is acquired from the 

appropriate free l i s t . If the free l i s t is empty, the garbage 

c o l l e c t o r i s invoked. If the amount of storage recovered by the 

c o l l e c t o r i s less than a set amount (42 nodes or 256 words of 

primitive storage), another page of v i r t u a l memory i s acquired 

and i n i t i a l i z e d . 

The garbage c o l l e c t o r operates as follows. Whenever a 

subprogram i s entered, a l l l o c a l graphical variables used are 

allocated nodes and a l i s t of those nodes is kept in a protect 

l i s t in v i r t u a l memory. The execution of a RETURN statement 



26 

Heap space dump -
Address Contents 

1 02000003 
2 41100000 
3 41200000 
4 41300000 
5 41400000 
6 41500000 
7 41600000 
8 41700000 
9 41800000 
10 41900000 

• 11 00000000 
12 03000008 
13 D3899585 
14 4081A340 
15 05000018 
16 01000002 
17 C1100000 
18 41200000 
19 00000000 
20 41300000 
21 C1400000 
22 00000000 
23 00000000 
24 03000004 
25 4040F1F6 
26 00000000 
27 07E50101 

257 07FF0201 
513 07FF0301 
769 07FF0000 

Page 1 
Explanation 
Polygon 
x-component 
y-component 
z-component 
x-component 
y-component 
z-component 
x-component 
y-component 
z-component 
End 
String 
Text - Line 
Text - at 
Continuation 
Line 
x-component 
y-component 
z-component 
x-component 
y-component 
z-component 
End 
String 
Text - 16 
End 
Free space 
Free space 
Free space 
Free space 

3 vertices 
0 . 1000000E+01 
0 .2000000E+01 
0 .3000000E+01 
0 .4000000E+01 
0 . 5000000E+01 
0 .6000000E+01 
0 .7000000E+01 
0 .8000000E+01 
0 .9000000E+01 

8 characters 

located at 24 
2 vertices 

-0.1000000E+01 
0.2000000E+01 
0.0 
0.3000000E+01 

-0.4000000E+01 
0.0 

4 characters 

229 words, continued at 257 
255 words, continued at 513 
255 words, continued at 769 
255 words, continued at 0 

Figure 9 Primitive Record Storage 

causes those nodes to be removed from the protect l i s t . The 

garbage c o l l e c t o r starts from the protect l i s t and recursively 

marks the nodes which are defined by the l i s t . When t h i s mark 

phase is completed, a l l of the node and primitive storage is 

swept through with unmarked areas being added to the appropriate 

free l i s t . 

The d e t a i l s of the implementation of the data base and the 

operations which manage i t are hidden from a LIG6 programmer. 

The model of the data base provides enough information to 

e f f e c t i v e l y model and manipulate graphical objects using the 



advanced l e v e l constructs. 
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Chapter 4 

GRAPHICAL OUTPUT PRIMITIVES 

Four graphical output primitives are supplied by LIG6: 

BLANK, POLYLINE, POLYGON, and TEXT. Th e o r e t i c a l l y , any image 

which can be displayed on an output device of f i n i t e precision 

can be created using these primitives, thus they form a complete 

set of atomic graphical objects. As a convenience, however, LIG6 

also permits programmer-defined primitives. This can simplify 

modelling of well-defined graphical objects. 

4.1 Primitives as Abstract Data Types 

In e a r l i e r versions of LIG [Schr76], primitives were viewed 

as constants of the data type GRAPHICAL. Six two-dimensional 

primitives were defined: BLANK, LINE, TRIANGLE, SQUARE, CIRCLE, 

and SCIRCLE (semi-circle). Only the f i r s t two were required; the 

rest could be constructed from the primitive LINE. The LINE 

primitive was defined as a l i n e segment from the point (0.0,0.5) 

to the point (1.0,0.5). A l l other l i n e segments were created by 

applying transformations to t h i s constant. Polylines were 

created by superimposing transformed l i n e segments. 

The view taken by the current version, LIG6, i s that 

primitives are data types in their own rig h t . For any data type 

supported by a language, rules exist which define how constants 
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of that type are expressed, also, operators which form 

legitimate expressions of that type are specified, and 

procedures are supplied which produce external representations 

of values of that type. 

Consider the data type COMPLEX. Its standard implementation 

is a record consisting of a real and an imaginary f i e l d each of 

type REAL. A FORTRAN complex constant consists of an opening 

parenthesis followed by a real constant representing the real 

f i e l d , a comma, a real constant representing the imaginary 

f i e l d , and a closing parenthesis. When operations are performed 

on t h i s type, the contents of the individual f i e l d s are used to 

determine the re s u l t . S p e c i f i c a l l y for output, the real part and 

the imaginary part are printed side by side. 

The primitive POLYLINE of the language LIG6, for example, 

has a l l of the features of an abstract data type. It is 

implemented by a record with a variable number of f i e l d s of type 

VECTOR. Each f i e l d represents a vertex in a l i n e and, on output, 

is accessed to generate the graphical commands given to the 

output device. While there are no direc t variables or operators 

for t h i s type, the type GRAPHICAL (which supports variables and 

operators) can be considered to contain a f i e l d which can 

reference p o l y l i n e s . 

The external representation procedures of conventional data 

types generally produce symbols on printers or terminals which 

have the same representation as constants of that type. A 

recursive PASCAL procedure for generating external 

representations of unsigned integers i s presented in Figure 10; 

i t has the above c h a r a c t e r i s t i c . This practice results from the 
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existence of a standard representation which can be used both in 

the s p e c i f i c a t i o n of a program and in the results generated by 

executing that program. There i s no rule that both 

representations must be the same; integers are often expressed 

in other bases or even as Roman numerals. This is the case with 

the type POLYLINE; such constants are expressed in programs with 

alphanumeric characters using d e f i n i t e syntactic rules while 

external representations are lines generated on graphical 

devices. The l a t t e r representation would probably be used for 

constants i f i t were av a i l a b l e . 

PROCEDURE ext_rep_integer( n : INTEGER ) ; 

BEGIN 
IF n < 10 THEN write ( CHR( n + ORD C O ' ) ) ) 
ELSE 

BEGIN 
ext_rep_integer( n DIV 10 ); 
write( CHR( n MOD 10 + ORD('O') ) ) 

END 
END; 

Figure 10 Integer External Representation 

The records of the data types POLYLINE, POLYGON, and TEXT 

can have a variable number of f i e l d s ; such data types are known 

as dynamic. Dynamic data types are not common as most 

programming languages do not support them. Both SNOBOL and 

BASIC, however, have dynamic s t r i n g data types. 

4.2 Programmer Defined Primitives 

The d e f i n i t i o n of a primitive is equivalent to the creation 

of an abstract data type. The treatment of primitives by LIG6 



31 

requires that a data type d e f i n i t i o n includes constant 

s p e c i f i c a t i o n rules, internal representation information, and 

external representation procedures. The construct with which a 

programmer creates a LIG6 primitive i s a primitive d e f i n i t i o n 

unit. 

A primitive d e f i n i t i o n unit has a prescribed structure. 

F i r s t a symbolic name i s s p e c i f i e d for the primitive. A 

d e f i n i t i o n rule must follow in the form of a template which 

constants of that type w i l l match. The template consists of type 

declarations and a grammar production using a notation similar 

to Wirth's [Wirt77]. The remainder of the subprogram consists of 

statements which define a procedure for producing an external 

representation of values of that primitive. The internal 

representation is derived automatically from the constant 

d e f i n i t i o n rule. 

There are a variety of methods used to define grammars; 

Backus-Naur forms and syntax directed diagrams are two examples. 

Wirth's notation provides a general description mechanism which 

allows i t e r a t i o n , alternation, option, and recursion constructs 

to be expressed. The grammar production in a LIG6 primitive 

d e f i n i t i o n unit template uses a subset of t h i s notation since 

only alternation and option constructs are permitted. The 

allowable grammar productions can themselves be represented by a 

grammar; thi s i s presented in Figure 11 using Wirth's notation. 

In a LIG6 primitive template, an alternation construct i s a 

l i s t of templates separated by v e r t i c a l bars and enclosed by 

parentheses. An option construct i s a template enclosed by 

brackets optionally followed by the e x p l i c i t setting construct 
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production = p r i m i t i v e _ i d e n t i f i e r "::=" subtemplatelist ";" 

subtemplatelist = subtemplate { subtemplate } 

terminal = ( l i t e r a l _ s t r i n g | f i e l d _ i d e n t i f i e r ) 

l i t e r a l _ s t r i n g = '"" { ( character | " " " ) } '"" 

alternation = " ( " subtemplatelist { "|" subtemplatelist } " ) " 

option = " [ " subtemplatelist " ] " [ e x p l i c i t _ s e t t i n g ] 

e x p l i c i t _ s e t t i n g = "<" setting { "," setting } ">" 

setting = f i e l d _ i d e n t i f i e r "=" expression 

nonterminal = p r i m i t i v e _ i d e n t i f i e r " ( " { character } " ) " 

Figure 11 Allowable Primitive Template Grammar Productions 

which defines the default. The nonterminal construct allows the 

insertion .of the template of a previously defined primitive. The 

characters in the l i s t following the i d e n t i f i e r are appended to 

a l l of the f i e l d i d e n t i f i e r s of the previously defined primitive 

when i t i s inserted. This allows multiple use of the primitive 

in a template. A template which demonstrates alternation and 

option constructs and constants which match i t are presented in 

Figure 12. A template which demonstrates the use of nonterminals 

and constants which match i t are shown in Figure 13. 

The body of the primitive d e f i n i t i o n unit defines the 

external representation procedure for that data type. It 

consists of statements which, based upon the values of the 

f i e l d s of the data type, produce images on output devices. The 

body may contain any type of statement except those which deal 

with graphical modelling or display. These statements are 

excluded because they deal with information at a higher l e v e l . 

subtemplate = ( terminal 
option 
nonterminal 

alternation 
e x p l i c i t _ s e t t i n g 
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PRIMITIVE SQUARE 
LOGICAL FILL 
REAL SIDE 
VECTOR CENTRE 
SQUARE ::= 'SQUARE' [ 'FILLED' <FILL=.TRUE.> ]<FILL=.FALSE.> 

[ ( 'AT' CENTRE [ ',SIDE' SIDE ]<SIDE=1.0> | 
'SIDE' SIDE [ ',AT' CENTRE ]<CENTRE=(0,0,0)> ) ] 

<CENTRE=(0,0,0),SIDE=1,0> ; 

SQUARE 
SQUARE FILLED 
SQUARE AT (5.1,5,0) 
SQUARE FILLED SIDE 3.0 
SQUARE AT (3,2.7,6), SIDE 0.5 
SQUARE FILLED SIDE 3*PI, AT (V1#V2) 

Figure 12 Square Primitive 

PRIMITIVE ONEARG 
INTEGER OPT 
VECTOR V 
ONEARG ::= ( <OPT=1> 

<OPT=4> 'SW 
<OPT=7> 'S' 

' = ' V ; 

NW <OPT=2> 'NE' 
<OPT=5> 'N' 
<OPT=8> 'W 

<OPT=3> 'SE* 
<OPT=6> 'E' 
<OPT=9> 'C 

PRIMITIVE PARALL 
INTEGER OPT1, OPT2, OPT3 
VECTOR V1, V2, V3 
PARALL ::= 'PARALLELOGRAM' 

ONEARG(1) ',' ONEARG(2) ',' ONEARG(3) ; 

PARALLELOGRAM N=(2,3,4),C=(5,2,2),SE=(X,Y,Z) 
PARALLELOGRAM NW=(1,1,1),NE=(5,2,2),SW=(X,Y,Z) 

Figure 13 Parallelogram Primitive 

Two statements are provided which cause output to occur, the 

DRAW and DRAW WITH statements. 

The form of the draw statement is the keyword DRAW followed 

by a previously defined primitive, either one of the four basic 

primitives or one which was programmer-defined. A complete 

primitive d e f i n i t i o n unit for a square primitive follows. 
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PRIMITIVE SQUARE 
REAL SIDE 
SQUARE ::= 'SQUARE' SIDE ; 
DRAW LINE FROM ( 0 , 0 ) TO (0,SIDE) 

TO (SIDE,SIDE) TO (SIDE ,0) 
TO ( 0 , 0 ) 

RETURN 
END 

Whenever a model whose s p e c i f i c a t i o n includes a SQUARE 

primitive i s displayed, the external representation procedure i s 

invoked. A l l of the modelling transformations and attribute 

settings of the model affect the procedure. In addition to 

primitives, appropriate concatenation expressions may follow the 

DRAW keyword. An example of thi s usage is 

PRIMITIVE CIRCLE 
CIRCLE ::= 'CIRCLE' ; 
REAL PI/3. 1 41 593/ 
DRAW LINE FROM (1,0) 
DO 20 I = 1,100 

THETA = I*Pl/50 
DRAW ADDLINE (COS(THETA),SIN(THETA)) 

20 CONTINUE 
RETURN 
END 

Concatenation expressions may only be executed i f the last 

DRAW statement executed was a concatentation or primitive of the 

same type. 

Attributes of the draw statement may be changed with the 

DRAW WITH statement. Its form i s the keyword DRAW WITH followed 

by a l i s t of attribute settings enclosed in angle brackets. Any 

attribute which has not been spec i f i e d in the modelling may be 

set by such a statement. 

Programmer-defined primitives permit e f f i c i e n t and concise 

modelling of regular or parameterized graphical objects. An 

example of a primitive which models spheres constructed with 
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arbitrary resolution and illuminated by an arb i t r a r y l i g h t 

source i s presented in Figure 14. 

4.3 Graphical Functions Versus Graphical Primitives 

S t r i c t l y speaking, the c a p a b i l i t y of programmer d e f i n i t i o n 

of graphical output primitives i s not necessary. Any graphical 

effect which such a primitive can produce can also be produced 

by a function of type GRAPHICAL. The differences between 

primitives and graphical functions are subtle. Graphical 

functions are executed as soon as they are invoked, returning a 

model of a graphical object. Such models require memory space 

for storage and have structures and values which can be 

subsequently manipulated. 

An invocation of a primitive, on the other hand, does not 

result in execution of code. The parameters of the primitive are 

stored and i t i s not u n t i l the value of that primitive i s to be 

displayed that the external representation procedure is invoked. 

This results in savings in both memory and execution time. 

The decision whether to use a primitive or a graphical 

function, therefore, should be made using the following 

guidelines. If the resulting object i s always treated as a unit 

or i f it. contains curves or subobjects which can be eas i l y 

parameterized, then a primitive implementation should be 

considered. If an object has a d e f i n i t e structure and hierarchy 

and subparts of i t w i l l be accessed and possibly modified, a 

graphical function implementation should be considered. 
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PRIMITIVE SPHERE 
INTEGER RES,PATERN 
VECTOR LIGHT,LSORCE,P1,P2,P3,P4,TX,TY,TZ,NORM 
SPHERE ::= 'SPHERE' RES ',* LIGHT ; 
PI = ATAN(1.)*4 
ARC = PI/RES 
LSORCE = LIGHT/|LIGHT| 
TX = (1,0,0) 
TY = (0,COS(ARC),SIN(ARC)) 
TZ = (0,-SIN(ARC),COS(ARC)) 
DO 10 I = 1,RES 

PI = (1,0,0) 
P3 = PI 
DO 10 J = 1,RES 

P2 = (COS(J*ARC),SIN(J*ARC)*COS(l*ARC), 
SIN(J*ARC)*SIN(I*ARC)) 

P4 = ((P2.TX),(P2.TY),(P2.TZ)) 
NORM = PI + P2 + P3 + P4 
COSANG = (NORM.LSORCE)/|NORM| 
PATERN = 0 
IF(COSANG.GT.O) PATERN = 24.*COSANG + 1.5 
DRAW WITH <PATTERN PATERN> 
DRAW POLY FROM (P1) TO (P2) TO (P4) TO (P3) 
PI = P2 
P3 = P4 

10 CONTINUE 
RETURN 
END 

Figure 14a Sphere Primitive D e f i n i t i o n 

Figure 14b Sphere Primitive Output 
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Programmer-defined graphical output primitives have been 

used in other languages but with d i f f e r e n t terminology and 

emphasis. E a r l i e r versions of LIG had a construct c a l l e d a 

graphical function [Schr78]. Its effect was to store the 

arguments and a pointer to the function in the data base. It was 

only when a model which contained a reference to the function 

was displayed that the function was executed. This d i f f e r s 

markedly from the standard concept of a function which i s 

supported by LIG6. LIG6 graphical functions are executed 

immediately upon their invocation and return a model of a 

graphical object. The early version functions were in fact an 

implementation of programmer-defined primitives although they 

lacked the generality of the current implementation. They had a 

maximum of six parameters, were invoked by a fixed structure, 

and could only draw l i n e s , not a l l previously defined 

pri m i t i v e s . The actual syntax d e f i n i t i o n provided by LIG6 was 

not permitted. 

The language MIRA allows the d e f i n i t i o n of graphical types 

tThal79,Magn81]. The language implementation of these types, 

however, i s more in l i n e with graphical functions. The type 

declaration includes modelling operations, not display commands. 

The type i s invoked via a procedural construct, not by 

assignment statements containing constants of the type. The 

modelling process occurs immediately upon invocation requiring 

storage and execution time; i t i s not delayed u n t i l an instance 

is actually displayed. In addition, the pattern matching 

f a c i l i t y of LIG6 i s not available. 
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Chapter 5 

GRAPHICAL DOMAINS 

There are many domains in which graphical programming 

languages may be applied, but use of a pa r t i c u l a r graphical 

programming language w i l l be limited i f the domains in which i t 

can be applied are r e s t r i c t e d . High-level graphical languages 

provide simply-expressed constructs for the d e f i n i t i o n and 

external representation of graphical data. These constructs 

allow such languages to be applied to domains at the drafting 

systems l e v e l . More sophisticated applications, however, require 

the analysis of ar b i t r a r y graphical data. The L I G 6 constructs 

which provide inquiry and manipulation of graphical data permit 

the language to be applied in a variety of interesting domains; 

four of these w i l l be discussed using a L I G 6 example for each. 

5.1 Construction Tools 

Due to the large quantity of data involved in most graphics 

applications, the e x p l i c i t d e f i n i t i o n of graphical objects is 

often tedious and time consuming. Graphical application programs 

must capture as much regularity of the input data as possible to 

allow economy of gesture in the modelling process. This can be 

achieved with the aid of construction tools in the form of 

procedures which create models of complex graphical objects with 
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minimal input. An example of two construction tools which would 

be useful in a ductwork application is given in Figure 15. Both 

could find application in other contexts where regular surface 

generation i s required. 

The procedure EXTRUD takes as input an a r b i t r a r y cross-

section and a d i r e c t i o n and length specified as a vector. The 

cross-section i s extruded as s p e c i f i e d by the vector, generating 

a column. The procedure REVOLV takes as input an a r b i t r a r y 

cross-section, an axis sp e c i f i e d by two points, an angle, and a 

step parameter. The cross-section i s revolved around the axis by 

the angle specified in the given number of steps, generating a 

3-D figure. Three system procedures are invoked. PRILEN returns 

the number of vertices of a polyline or polygon primitive, 

LINPNT returns the sp e c i f i e d vertex of a l i n e primitive, and 

APLYMD applies the transformations stored in a graphical node to 

a point, returning the transformed value. 

Other construction tools which would complement the above 

two would be procedures to join two d i s s i m i l a r cross-sections or 

to compute s o l i d intersections. A complete ductwork application 

program might include a systematic manipulation procedure which 

would analyze any models generated and produce patterns for 

sheet metal construction of the piping. Figures 16 through 19 

show two views each of two graphical objects constructed using 

the EXTRUD and REVOLV procedures. 
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GRAPHICAL FUNCTION EXTRUD(XSECT,DIREC) 
GRAPHICAL XSECT 
VECTOR DIREC,OLD,NEW 
INTEGER ORDER,PRILEN 
EXTRUD :- BLANK 
ORDER = PRILEN(XSECT) 
CALL LINPNT(XSECT,1,OLD) 
DO 10 I=2,ORDER 

CALL LINPNT(XSECT,I,NEW) 
EXTRUD :- EXTRUD + POLY FROM (OLD) TO (OLD+DIREC) 

TO (NEW+DIREC) TO (NEW) 
OLD = NEW 

10 CONTINUE 
RETURN 

END 

10 

20 

GRAPHICAL FUNCTION REVOLV(XSECT,AXIS1,AXIS2,DEGRES,STEPS) 
GRAPHICAL XSECT,MODSTR,ONEARC,MDSTR1 
VECTOR AXIS1 ,AXIS 2,OLD,NEW,OLD1 ,NEW1 
REAL DEGRES 
INTEGER STEPS,ORDER,PRILEN 
MODSTR :- BLANK < MAP (AXIS1),(AXIS2) 

TO (0,0,0),(0,0,1) , 
ROTZ DEGRES/STEPS 'DEG' , 
MAP (0,0,0),(0,0,1) 
TO (AXIS1),(AXIS2) > 

ONEARC :- BLANK 
ORDER = PRILEN(XSECT) 
CALL LINPNT(XSECT,1,OLD) 
CALL APLYMD(MODSTR,OLD,OLD1) 
DO 10 I = 2,ORDER 

CALL LINPNT(XSECT,I,NEW) 
CALL APLYMD(MODSTR,NEW,NEW1) 
ONEARC :- ONEARC + POLY FROM 

TO 
OLD = NEW 
OLD1 = NEW1 

CONTINUE 
REVOLV :- BLANK 
MDSTR1 :- BLANK 
DO 20 I = 1,STEPS 

REVOLV :- REVOLV + ONEARC < MODIFICATION(MDSTR1) 
MDSTR1 :- MDSTR1 < MODIFICATION(MODSTR) > 

CONTINUE 
RETURN 

END 

(OLD) TO (NEW) 
(NEW1) TO (OLD1) 

Figure 15 Graphical Ductwork Construction Tools 

5.2 Systematic Manipulation 

Systematic manipulation of graphical objects i s performed 

by procedures which process a graphical model of arbit r a r y 
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Figure 17 Second View of Pipe 



Figure 18 Helix Constructed With REVOLV 

Figure 19 Second View of Helix 
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structure and content. Such procedures permit application 

programs to perform modelling at various levels of d e t a i l . An 

example of systematic manipulation i s the substitution of one 

subobject for another in an arb i t r a r y graphical object. To 

demonstrate LIG6's a b i l i t y to implement systematic manipulation 

procedures, a deep replace algorithm i s presented in Figure 20. 

The problem is divided into two parts. A general double 

recursion subroutine RECURS performs recursive manipulation of 

models of graphical objects. The parameter TREE i s the model 

which i s to be manipulated. The parameter FIRST sp e c i f i e s a 

graphical function which controls the f i r s t recursion. The 

parameter WORK speci f i e s a subroutine which performs the desired 

manipulation whenever FIRST returns a stopping condition. The 

parameter SECOND specifies a graphical function which controls 

the second recursion. 

The second part comprises four routines which set up RECURS 

to perform deep replacement. The graphical functions DEEP1 and 

DEEP2 correspond to FIRST and SECOND, respectively. The 

subroutine SWAP corresponds to WORK. The subroutine DREPLC 

invokes RECURS specifying the above parameter assignments. The 

result of a c a l l to DREPLC i s shown in Figure 21. In a graphical 

object representing a s h i f t r e g i s t e r , the graphical symbols for 

RS f l i p flops were replaced by their logic gate representations. 

Due to the h i e r a r c h i c a l nature of graphical data, recursive 

manipulation of models i s desirable. Because LIG6 i s an 

extension to FORTRAN, however, recursive routines are not 

permitted. This can be overcome ea s i l y with routines such as 

RECURS. Other examples of uses of RECURS are copying trees, 
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SUBROUTINE RECURS(TREE,WORK,FIRST,SECOND) 
GRAPHICAL TREE,FIRST,SECOND,STACK(25),VALUE,SUPER 
INTEGER POINT 
POINT = 1 
STACK(1) :- TREE 

10 POINT = POINT + 1 
STACK(POINT) :- FlRST(STACK(POINT-1)) 
IF ( .NOT. PRIMITIVE(VALUE(STACK(POINT))) .AND. 

POINT .NE. 25 ) GOTO 10 
POINT = POINT - 1 
CALL WORK(STACK,POINT) 

20 STACK(POINT) :- SECOND(STACK(POINT)) 
IF ( .NOT. PRIMITIVE(VALUE(STACK(POINT))) ) GOTO 10 
POINT = POINT - 1 
IF ( POINT .NE. 0 ) GOTO 20 
RETURN 
END 

GRAPHICAL FUNCTION DEEP 1 (NODE) 
GRAPHICAL NODE,REPLAC,WITH,VALUE,SUPER 
COMMON /$REPL$/ REPLAC,WITH 
DEEP1 = VALUE(VALUE(NODE)) 
IF ( VALUE(NODE) .NE. VALUE(REPLAC) ) RETURN 
DEEP 1 = BLANK 
RETURN 
END 

GRAPHICAL FUNCTION DEEP2(NODE) 
GRAPHICAL NODE,REPLAC,WITH,VALUE,SUPER 
COMMON /$REPL$/ REPLAC,WITH 
DEEP2 = SUPER(VALUE(NODE)) 
IF ( VALUE(NODE) .NE. VALUE(REPLAC) ) RETURN 
DEEP2 = BLANK 
RETURN 
END 

SUBROUTINE SWAP(STACK,POINT) 
GRAPHICAL STACK(25),REPLAC,WITH,VALUE,SUPER 
INTEGER POINT 
COMMON /$REPL$/ REPLAC,WITH 
IF ( POINT .EQ. 1 ) RETURN 
IF ( VALUE(STACK(POINT)) .NE. VALUE(REPLAC) ) RETURN 
VALUE(STACK(POINT-1)) :> VALUE(WITH) 
RETURN 
END 

SUBROUTINE DREPLC(TREE,OUT,IN) 
GRAPHICAL TREE,OUT,IN,REPLAC,WITH,DEEP1,DEEP2 
COMMON /$REPL$/ REPLAC,WITH 
EXTERNAL SWAP,DEEP1,DEEP2 
REPLAC :- OUT 
WITH :- IN 
CALL RECURS(TREE,SWAP,DEEP1,DEEP2) 
RETURN 
END 

Figure 20 Deep Replace Algorithm 
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SHIFT REGISTER 

F i g u r e 21 G r a p h i c a l S u b s t i t u t i o n 

f l a t t e n i n g t r e e s , and r e v e r s i n g the order of s u p e r p o s i t i o n at 

any l e v e l . 

5.3 G r a p h i c a l E d i t i n g 

L i n e f i l e e d i t o r s are used to manipulate programs, data, 

and t e x t . The s t r u c t u r e and content of the data i n a f i l e i s 

m o d i f i e d by e d i t o r commands which d e l e t e , a l t e r , or i n s e r t 

i n f o r m a t i o n . An analogous form of m a n i p u l a t i o n can be performed 

on g r a p h i c a l data. 

An i n t e r a c t i v e g r a p h i c a l e d i t o r has been implemented using 

the a b i l i t y of LIG6 to analyze and modify models of g r a p h i c a l 

o b j e c t s . The program generates a v i s u a l r e p r e s e n t a t i o n of the 

s t r u c t u r e and content of the model being generated. The 

r e p r e s e n t a t i o n i s analogous to a l i s t i n g of a f i l e . With the a i d 
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of the representation, the model can be manipulated using editor 

commands. 

The v i s u a l representation produced i s a drawing of the tree 

structure of the model. The branches of the tree correspond to 

the pointers of the model. Within each node of the tree an image 

of i t s graphical value is displayed. Using the locator input of 

the terminal, the model i s manipulated by moving pointers, 

specifying modelling transformations at nodes, inserting or 

deleting nodes, and other editing functions. As the model is 

manipulated, corresponding changes in the v i s u a l representation 

occur. The audit t r a i l of a sample editing session i s given in 

Figures 22 through 30. 

Figure 22 i s the image of the o r i g i n a l model and Figure 23 

is i t s tree structure representation. The result of adding to 

part of the structure i s shown in Figure 24. At any time, any 

portion of the model can be displayed in f u l l s i z e . The 

graphical value of the previous addition i s displayed in Figure 

25. 

The tree representation i s shown only to a limited depth 

and breadth. Any portion of the model can be displayed, however, 

by moving a leaf of the representation to the root position. 

This i s demonstrated in Figure 26, enabling part,of the model to 

be manipulated, the structure of which was previously not 

v i s i b l e . Figure 27 shows the structure of the subobject after i t 

has been modified. After editing at t h i s l e v e l is complete, the 

structure including the o r i g i n a l root is redrawn, resulting in 

Figure 28. 
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Al t e r i n g the structure of the model i s demonstrated by 

Figure 29. Two top le v e l superimposed objects are grouped 

together so that modelling transformations can be applied in 

p a r a l l e l . The f i n a l result of the manipulation by editing i s 

shown in Figure 30. 

The editing process is independent of the graphical object 

being manipulated. E l e c t r i c a l diagrams, a r c h i t e c t u r a l drawings, 

or artwork can be edited by the same program in the same manner 

that programs in various languages or data f i l e s can be 

manipulated by a l i n e f i l e editor. 

Figure 22 Original Model Image 
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Figure 23 Original Tree Structure 
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Figure 26 Editing Level Change 



Figure 27 Subobject Modification 

Figure 28 Original Root Redrawn 



Figure 29 Structure Alt e r a t i o n 

Figure 30 Graphical Editing Result 
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5.4 Data Structures 

PASCAL allows programmers to e x p l i c i t l y define their own 

data types and structures. This promotes good programming 

practice because an understanding is required of the data 

involved in a problem. FORTRAN does not permit data type 

d e f i n i t i o n s . LIG6 permits e x p l i c i t d e f i n i t i o n of data types 

belonging to the class graphical output primitive, but ar b i t r a r y 

data types cannot be e x p l i c i t l y defined. The tree structure of 

the graphical data base, however, allows i m p l i c i t d e f i n i t i o n of 

data types and structures in a similar fashion as the language 

LISP. 

Data types and structures can be i m p l i c i t l y defined in LISP 

by interpreting the structure of a l i s t as i t s data type. 

Different data types can be spec i f i e d by the length of a l i s t of 

that type, which elements of the l i s t are atoms or l i s t s , or 

what data type a l i s t element i s interpreted to be. The tree 

structures of LIG6 can be used in the same way as the l i s t 

structures of LISP to define data types i m p l i c i t l y . An example 

which uses the graphical data base of LIG6 to represent the 

abstract data of a grammar w i l l now be presented. 

The goal of the program i s to take a grammar specified in 

Backus-Naur form and produce an equivalent grammar s p e c i f i c a t i o n 

in the form of syntax directed diagrams. This is achieved by 

storing the grammar, manipulating i t s representation, and 

generating an external representation in the form of a diagram. 

Grammar driven compiler writing systems [McKe70,Leca74] 

often do not allow i t e r a t i o n , alternation, or option constructs 
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in the grammar s p e c i f i c a t i o n . Such constructs must be 

implemented by the top le v e l alternation construct and by 

recursive d e f i n i t i o n , allowing the grammar to consist of only 

two types of symbols: terminals and non-terminals. The same 

r e s t r i c t i o n i s enforced by the program. The input grammar, 

however, i s analyzed and manipulated so that the resulting 

diagrams have i t e r a t i o n , low-level alternation, and option 

structures. 

Three data types are required to allow storage of the 

grammar: terminals, non-terminals, and str u c t u r a l elements. The 

graphical data base structures which are interpreted as 

representing these types are shown in Figure 31. In addition, 

the two variables TRMLST and NTRLST are used to maintain a 

record of a l l of the terminals and non-terminals of the grammar, 

respectively. The structures of their values are also given in 

Figure 31. 

As the grammar i s read in, an internal representation using 

TRMLST, NTRLST, and the three data types i s constructed. If the 

input grammar i s the simple d e f i n i t i o n 

<subprogramlist> ::= <subprogram> 

| <subprogramlist> <subprogram> , 

then the internal representation given in Figure 32 would be 

constructed. This structure does not represent the simplest 

equivalent grammar because the d e f i n i t i o n i s using recursion to 

implement i t e r a t i o n . The i n i t i a l internal representation of any 

grammar w i l l have to be manipulated to produce a structure which 

u t i l i z e s i t e r a t i o n , alternation, and option constructs. The 

internal representation after manipulation of the above grammar 
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Type STRUCTURAL ELEMENT 
Is d e f i n e d by 

— t e r m i n a l s , n o n ­
t e r m i n a l s , or 
elements 

P o i n t e d 
at 
by 
these 
elements 

Followed 
by 
these 
elements 

Type NON-TERMINAL 

TEXT 

Poi n t e d 
at 
by 
these 
elements 

Is d e f i n e d 
by 
these 
elements 

Type TERMINAL 

TEXT 

TRMLST NTRLST 

Po i n t e d 
at 
by 
these 
elements 

t 
e 
r 
m 
i 
n 
a 
1 
s 

n 
o 
n 

t 
e 
r 
m 
i 
n 
a 
1 
s 

F i g u r e 31 Grammar Storage Data Types and V a r i a b l e s 

i s given i n F i g u r e 33. 

Once the d e s i r e d grammar r e p r e s e n t a t i o n has been c r e a t e d , 

i t i s f u r t h e r manipulated so that i t becomes a model of the 

g r a p h i c a l o b j e c t , the syntax d i r e c t e d diagram. The l i t e r a l s 
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NTRLST | 
*• * <subprogramlist> 

<subprogram> ••-3 

•+-4 

->2 

F i g u r e 32 O r i g i n a l Grammar I n t e r n a l R e p r e s e n t a t i o n 

r e p r e s e n t i n g the grammar symbols are p o s i t i o n e d and connected 

with l i n e s and arrows as s p e c i f i e d by the d e f i n i t i o n p o i n t e r s . A 
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NTRLST 

<subprogramlist> 

J <subprogram> -*-2 

F i g u r e 33 Manipulated Grammar I n t e r n a l R e p r e s e n t a t i o n 

more complete grammar and i t s r e s u l t i n g diagram i s shown i n 

F i g u r e s 34 and 35, r e s p e c t i v e l y . 

The g r a p h i c a l data base of LIG6 lends i t s e l f to problems 

where dynamic data s t r u c t u r e s are i n v o l v e d . Another p o s s i b l e use 

would be the implementation of a minimal LISP i n t e r p r e t e r i n 

LIG6 which c o u l d produce v i s u a l r e p r e s e n t a t i o n s of any s-

ex p r e s s i o n s i n the standard cons c e l l format of LISP. 



<program> ::= <subprogramlist> 
<subprogramlist> <main> 
<subprogramlist> <main> <subprogramlist> 
<main> 
<main> <subprogramlist> 

<subprogramlist> ::= <subprogram> 
| <subprogramlist> <subprogram> 

<subprogram> ::= <subroutine> 
<function> 
<primitivedef> 
<blockdata> 

<subroutine> ::= <subhead> <block> 
| <subhead> <parameterlist> <block> 

<function> ::= <funchead> <parameterlist> <block> 

<subhead> ::= SUBROUTINE <identifier> 

<funchead> ::= FUNCTION <identifier> 
| <type> FUNCTION <identifier> 

<type> ::= INTEGER 
REAL 
COMPLEX 
LOGICAL 
GRAPHICAL 
VECTOR 

Figure 34 Sample Input Grammar 
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program s u b p r o g r a n l l s t naln s u b p r o g r a n l l s t 

subprogranllst » i subprogram TJ 
s u b p r o g r a n 

—1 F u n c t i o n 

s u b r o u t i n e 

M prisiltivedef M 

'—4 b i o c k d a t a 

s u b r o u t i n e —( S U B R O U T I N E )—• i d e n t i f i e r — I — p a r a i i e t e r l l s t —L("block — 

function 

type —r-< INTEGER") 

type M—( FUNCTIONj-*| I d e n t i f i e r pH parameterllst H b l o c k f ^ 

-{ RERL )  
- ( COHPLEX ) — 
- ( LOGICBL ) — 
( GRAPHICAL )-*| 
( VECTOR )  

F i g u r e 3 5 Sample S y n t a x D i r e c t e d D i a g r a m 
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Chapter 6 

NEW LANGUAGE FEATURES 

Apart from the s h i f t of emphasis from a system where the 

data base is completely hidden from users to a data base model 

system and the addition of programmer-defined primitives, there 

have been a number of other new features included in the 

language LIG6. These features have varying degrees of 

o r i g i n a l i t y ; some were not available in e a r l i e r LIG versions but 

were available elsewhere to some extent, while others have not 

been published or implemented previously. The new features 

include graphical operators, interpretation decisions, and 

language constructs. 

6.1 Vector Data Type 

To provide economy of expression when dealing with three 

dimensional data, the data type VECTOR was included in LIG6. 

Simple variables, single and multi-dimensioned array variables, 

function subprograms, and statement functions of type VECTOR are 

permitted. Vector variables may be typed e x p l i c i t l y , or else 

i m p l i c i t l y with the aid of the IMPLICIT statement. Vector 

expressions may be passed as arguments to subprograms. Vector 

variables may be equivalenced and placed in COMMON blocks. They 

may not be i n i t i a l i z e d in a type declaration or in a DATA 
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statement nor may they be output or input as a unit with WRITE 

or READ statements. Vector constants are of the form (X,Y,Z) 

where X, Y, and Z represent arithmetic expressions and where the 

parentheses are mandatory. The Z expression i s optional; i f 

missing, i t defaults to 0.0. 

Vector variables may be assigned values which are vector 

expressions. The operators which are defined for the type VECTOR 

are summarized in Figure 36. 

OPERATOR EXAMPLE OPERATION RESULT TYPE 

+ V1 + V2 vector addition VECTOR 
V1 - V2 vector subtraction VECTOR 

# VI # V2 vector cross product VECTOR 
V1 . V2 vector dot product REAL 

| | |V| vector magnitude REAL 
* A * V m u l t i p l i c a t i o n by scalar VECTOR 
/ V / A d i v i s i o n by scalar VECTOR 
.EQ. V1 .EQ. V2 vector comparison LOGICAL 

'.NE. V1 .NE. V2 vector comparison LOGICAL 

Figure 36 Vector Operators 

The program fragment presented in Figure 37 i l l u s t r a t e s the 

use of the VECTOR data type. While the inclusion of operators 

and nested expressions allow concise implementation of vector 

arithmetic algorithms, the major use of this data type w i l l be 

in graphical primitives. 

Access to the individual components of vectors i s provided 

by the three LIG6 system functions, COORDX, COORDY, and COORDZ. 

The individual components may be assigned using the above 

i d e n t i f i e r s using an assignment statement construct. Component 

access i s demonstrated in the program fragment of Figure 38. 

The VECTOR data type was not supported in e a r l i e r FORTRAN 
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VECTOR FUNCTION CROSS(X,Y,N) 
IMPLICIT VECTOR(V,X-Z) 
VECTOR A,B(5),T(2,3),Y(N),FUNC 
GRAPHICAL D 
DIMENSION A(3) 
COMMON V1 rV2(3,4) 
EQUIVALENCE ( B ( 3 ) , A ( D ) 
VFUNC(XV,YV,ZV) = XV.YV#ZV 
A(1) = (FUNC(3,Q) + X)/(5.+Q) 
CALL TEST(3*A(2)#V2) 
IF(X#Y(1).EQ.Y(2)#Z/4) CROSS = (COS(R),SIN(R)) 
D :- LINE FROM (1.5,3.2) TO (V2(2,I)#(Y(1)+Y(3))) 

Figure 37 Vector Data Type Usage 

VECTOR V,V1 
RVAL = COORDX(V) + 3*COORDZ(V) 
COORDY(V) = 3.2 + COORDX(V1#(P,Q,R) + V) 

Figure 38 Vector Component Access 

versions of LIG. It is possible to declare a PASCAL vector type 

in the LIG/P implementation, but operators and natural inclusion 

in graphical primitives are not possible. The language MIRA 

supports the data type vector, but the only operators permitted 

are addition and dot product [Magn8l], 

6.2 Map Operator 

In addition to the standard graphical transformations 

scale, rotate, and translate-, LIG6 provides a map operator. This 

transformation operator can be used to perform any combination 

of scaling, rotation, t r a n s l a t i o n , and shearing. Its syntax i s 

the keyword MAP followed by a l i s t of 1, 2, 3, or 4 points, the 

keyword TO, and another l i s t of points. The two l i s t s of points 

must each have the same length. Each point may be a vector 
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constant or a vector expression which i s enclosed in 

parentheses. 

The implementation of the map operator i s as 

straightforward as i t s invocation: the operator creates a linear 

transformation which maps the points in the f i r s t l i s t into 

those in the second. The points in the l i s t s need not have any 

relation to coordinates of the model to which the transformation 

is applied, although this i s one form of the operator's use. 

Careful choice of the points in the l i s t s w i l l create any 

of the standard graphical transformations. The map operator also 

provides a concise method for expressing shearing 

transformations. Combining the map operator with the standard 

transformations f a c i l i t a t e s the construction of interesting 

transformations. Examples of the map operator which demonstrate 

these points are given in Figure 39. 

i) <MAP ( 0 , 0 ) , ( 1 , 0 ) TO (0,0),(COS(THETA),SIN(THETA))> 
i i ) <MAP (V1),(V2) TO (V1),(V1 + S*(V2-V1))> 

i i i ) <MAP (1 , 0 ) , ( 0 , 0 ) , ( 0 , 1 ) TO (1,0) , (0 ,0),(-COS(T),SIN(T))> 
iv) < MAP (V1),(V2) TO ( 0 , 0 ) ,(|V1-V2| , 0 ) , 

ROTX THETA , 
MAP ( 0 , 0 ) ,(|V1-V2| , 0 ) TO (V1),(V2) > 

Figure 39 Map Operator Examples 

In Figure 39, example (i) produces a transformation 

equivalent to a rotation about the z-axis by an amount THETA. 

Example ( i i ) performs scaling with respect to the point V1 in 

the d i r e c t i o n V2-V1 by a quantity S. Example ( i i i ) w i l l cause 

shearing by an angle T about the z-axis. Example (iv) 

i l l u s t r a t e s compounding transformation operators. Its effect, i s 
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to rotate objects by an amount THETA about the axis sp e c i f i e d by 

the l i n e passing through the points V1 and V2. 

A l l LIG6 transformations use matrices to produce the 

desired e f f e c t . The coordinate t r i p l e s of an object which i s to 

be transformed are converted into homogeneous coordinates 

[Roge76] and then multiplied by a matrix; the resulting 

coordinates represent the transformed object. Compounded 

transformations are created by multiplying matrices. A matrix 

which rotates objects about the z-axis i s presented in Figure 

40. 

cos ( a ) -sin ( a ) 0 0 X p 
sin ( o ) cos ( a ) 0 0 y - Q 

0 0 1 0 z R 
0 0 0 1 1 1 

Figure 40 Z-Rotation Matrix 

The linear transformation which implements the map operator 

i s the solution of a matrix equation. The matrix A of Figure 41 

i s the transformation which implements the map operator of the 

same figure. 

The matrix A is found by solving an equation of the type 

B (1 ) 

One solution i s 

- i - l 
X (2) 

however, this involves finding the inverse of a matrix and then 



<MAP (a,b,c),(d,e,f),(g,h,i),(j,k,l) TO 
(m,n,o),(p,q,r),(s,t,u),(v,w,x) > 
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m P s V 

n q t w 

o r u X 

L JL 1 ' ' ' J I ' 1 1 1 J 
Figure 41 Map Operator Implementation 

multiplying. Another solution i s to take the transpose of both 

sides of equation 1 yie l d i n g equation 3. The transpose of A can 

then be solved for by using a LU decomposition which has been 

shown to involve fewer operations [Fors67], 

p -, T T I- -] T 
X A = B (3) 

There i s a unique linear transformation which maps a given 

set of four points in three-dimensional space to another set. 

When the other variants of the map operator are used, however, 

there i s not a unique solution. A l l solutions achieve the 

mapping objective, but they d i f f e r in their effect on points 

which are not in the plane s p e c i f i e d by the three member 

variant, points not on the l i n e s p e c i f i e d by the two member 

variant, or points other than the one spec i f i e d by the one 

member variant. The solution chosen for these variants is the 

one that minimizes the d i s t o r t i o n of graphical objects. 

For the one member variant map operator, the choice i s 

simple: the equivalent translation transformation i s used. The 

two and three member variant map operators are implemented by 

choosing additional appropriate points and solving as for the 



65 

four member variant. 

The three points in a l i s t of a three member variant define 

an o r i g i n and two vectors. The fourth point chosen i s the cross 

product of the two vectors. This generates a t h i r d vector 

perpendicular to the plane defined by the points in the l i s t . 

Its length is determined by the lengths of the two o r i g i n a l 

vectors. When the same process of fourth point s p e c i f i c a t i o n i s 

applied to both l i s t s , any scaling or shearing in the plane i s 

applied naturally to points off the plane. 

The two points in a l i s t of a two member variant define an 

or i g i n and a vector. A t h i r d point is a r b i t r a r i l y chosen which 

generates a vector which i s of the same magnitude as and i s 

perpendicular to the o r i g i n a l vector. The same procedure as for 

the three member variant i s then followed. 

6.3 Stroke Precision Text 

There are three lev e l s of text appearance precision: 

s t r i n g , character, and stroke precision text [GSPC79]. In str i n g 

precision text, only the position of the f i r s t character of a 

stri n g may be specified; the size and orientation of the str i n g 

i s hardware dependent. In character precision text, the position 

of every character of the st r i n g i s affected by transformations 

but the size and orientation of the individual characters are 

s t i l l hardware dependent. Stroke precision text treats strings 

as i f each character were constructed from short l i n e s ; a l l 

transformations apply to such str i n g s . The differences between 

the precisions are summarized in Figure 42. 
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s t r i n g c h a r a c t e r s t r o k e 

F i g u r e 42 Text P r e c i s i o n 

The use of s t r i n g or c h a r a c t e r p r e c i s i o n t e x t i n images of 

models of three-d i m e n s i o n a l g r a p h i c a l o b j e c t s y i e l d s poor 

r e s u l t s . The p r e c i s e p o s i t i o n i n g and o r i e n t a t i o n of t e x t s t r i n g s 

r e q u i r e s s t r o k e p r e c i s i o n c a p a b i l i t y ; LIG6 has t h i s c a p a b i l i t y . 

A l l images of s t r i n g s are generated using software because most 

hardware generators are capable of only s t r i n g p r e c i s i o n t e x t . 

F i g u r e 43 g i v e s an example of some of the p o s s i b i l i t i e s of 

str o k e p r e c i s i o n t e x t . 

6.4 S t r u c t u r e d Statements 

As software c o s t s i n c r e a s e r e l a t i v e to hardware c o s t s , more 

e f f o r t i s made to ensure that programs are c o r r e c t , readable, 

and m a i n t a i n a b l e . Programs with these q u a l i t i e s are most e a s i l y 

produced when a r i g o r o u s c o n s i s t e n t programming s t y l e i s used. A 

s t y l e which has developed a c o n s i d e r a b l e f o l l o w i n g i n recent 

years i s c a l l e d S t r u c t u r e d Programming [Dahl72]. 

The c o n s t r u c t s of a language have an e f f e c t on the s t y l e i n 

which programmers c r e a t e programs i n that language. FORTRAN i s 

one of the o r i g i n a l h i g h - l e v e l programming languages; i t l a c k s 

the s t r u c t u r e d c o n t r o l c o n s t r u c t s a v a i l a b l e i n more modern 

languages such as PASCAL [Jens76]. S t r u c t u r e d programming i n 



67 

Dodecahedron 

A 
8 V 

,o<3. 

0 

F i g u r e 43 Stroke P r e c i s i o n Text 

FORTRAN has been accomplished by i n t e r p r e t i n g groups of 

statements as c o n t r o l s t r u c t u r e s and r e s t r i c t i n g the usage of 

statement l a b e l s and the GOTO statement. In an e f f o r t to promote 

a s t r u c t u r e d , modular programming s t y l e , more modern 

implementations of FORTRAN such as FORTRAN'77 [Meis77] or 

WATFIV/S [ F r i e 8 2 ] have i n c l u d e d s t r u c t u r e d c o n t r o l c o n s t r u c t s . 

LIG6 extends the c o n t r o l c o n s t r u c t s of FORTRAN with the 

a d d i t i o n of four s t r u c t u r e d c o n s t r u c t s . These c o n s t r u c t s are an 
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IF-THEN-ELSE structure, a REPEAT structure, a WHILE structure, 

and a CASE structure. The syntactic rules of these constructs 

are formally defined by the grammar presented in Figure 4 4 . Use 

of these constructs is demonstrated in the program fragments in 

Figure 4 5 . 

<statementblock> ::= BEGIN <statementlist> END 
<statementlist> ::= <statement> <statseparator> 

| <statementlist> <statement> <statseparator> 

<statseparator> ::= <eol> 
I ; 

<structuredif> ::= <truepart> 
| <truepart> <falsepart> 

<truepart> ::= IF ( <logicalexpr> ) THEN <statementblock> 
<falsepart> ::= ELSE <statementblock> 

<repeat> ::= REPEAT <statementlist> UNTIL ( <logicalexpr> ) 

<while> ::= WHILE ( <logicalexpr> ) DO <statementblock> 

<case> ::= CASE <expression> : <type> OF <caseexpr> 

<caseexpr> ::= <truelist> 
<truelist> <falselist> 
<falselist> 

<truelist> ::= <success> 
| <truelist> <success> 

<falselist> ::= '<>' : <statementblock> 

<success> ::= <exprlist> : <statementblock> 

<exprlist> ::= <expression> 
| <exprlist> <expression> 

Figure 44 Structured Statements Grammar 

A l l structured constructs may be nested to any depth. The 

requirement of statement l i s t s being bracketed by BEGIN and END 

ensures that a l l syntactic structures are completely 
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IF(X.LT.Y) THEN BEGIN T=X; X=Y; Y=T; END 
IF(3**J.GT.2**K) THEN 

BEGIN 
J=0; K=1 

END 
ELSE 

BEGIN 
K=0; J=1 

END 
REPEAT 

READ(5,10)1 
CALL DUM(I*3) 

UNTIL(I.GT.32) 
WHILE(J.LT.10) DO 

BEGIN 

END 
CASE R*T/(5.+Q) : INTEGER OF 

2,3 : BEGIN 

END 
<> : BEGIN 

CASE 5*Q : REAL OF 
R/Q : BEGIN 

END 
END { REAL CASE } 

END 
END { INTEGER CASE } 

Figure 45 Structured Statements Examples 

unambiguous. 

6.5 Archivation 

Graphical application programs are often executed 

i n t e r a c t i v e l y in order to construct models of graphical objects. 

This process i s usually time-consuming and i t i s d i f f i c u l t for a 

user to repeat model s p e c i f i c a t i o n s exactly. To create menus or 

to continue modelling begun in previous executions of a program, 

i t is, necessary that a r b i t r a r y models can be stored and 

retrieved. This i s implemented in LIG6 by archivation. 

Archivation i s the saving on and restoring from secondary 
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storage models of graphical objects. It can be used to pass 

models between di f f e r e n t programs or to save generated models 

for a subsequent run of the same program. There are three 

statements which are involved with archivation: the STORE 

statement, the POSITION statement, and the LOAD statement. 

There are two forms of the store statement. Some examples 

of this type of statement are 

STORE ON UNIT 7,BIRD 
STORE ON UNIT N+2,FOWL 
STORE ON UNIT 3, VALUE(LAST(A)) 
STORE ON UNIT 3,. IDENTIFICATION 7.5, A 
STORE ON UNIT 3, IDENTIFICATION 3*R, A 

The integer valued expression following the keyword UNIT i s 

the l o g i c a l I/O unit on which the model is stored. It must be 

assigned to a disk f i l e on the run command or with a FORTRAN I/O 

subprogram. The real valued expression following the keyword 

IDENTIFICATION i s a number which i s placed in the header of the 

stored model in the f i l e so that i t can be i d e n t i f i e d l a t e r . The 

default value for the i d e n t i f i c a t i o n i s 0.0. The last item in 

the l i s t i s a graphical variable or function invocation whose 

value i s a node. The effect of the statement i s to store at the 

end of the f i l e a header and codes which represent the model 

which i s the value of the last item. 

The archivation f i l e i s in the form of a sequential tape. 

Each additional object is placed at the end of the tape. When 

they are la t e r loaded, the loading w i l l occur in the same order 

as the order in which they were stored. A certain degree of 

random access can be obtained, however, with the position 

statement. 

The position statement i s used to position an archivation 
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f i l e at the desired model storage. Examples of possible forms of 

this statement follow. 

POSITION UNIT 2 
POSITION UNIT N+3,5.5 
POSITION UNIT 3,4.*Q 
POSITION UNIT 3,7.2,2 
POSITION UNIT 3,,2 

The f i r s t arithmetic expression in the l i s t following the 

keyword i s the unit expression; i t must be integer valued and 

has the same meaning as in the store statement. The second 

expression i s the i d e n t i f i c a t i o n expression; i t must be real 

valued. The t h i r d expression i s the version expression; i t must 

be integer valued. The default value for the i d e n t i f i c a t i o n 

expression i s 0.0. The default value for the version expression 

is 0. 

The ef f e c t of the statement i s tp position the archivation 

f i l e attached to the unit at the spec i f i e d version of the 

i d e n t i f i c a t i o n value. The fourth statement in the examples above 

w i l l position the f i l e at the model storage of the second 

instance of a model being stored with i d e n t i f i c a t i o n 7.2. If the 

version number i s 0, the last model stored with the spec i f i e d 

i d e n t i f i c a t i o n i s the point at which the f i l e i s positioned. The 

default i d e n t i f i c a t i o n value of 0.0 w i l l match a l l 

i d e n t i f i c a t i o n values, thus the l a s t statement w i l l position the 

f i l e to the second model stored, while the f i r s t statement w i l l 

position the f i l e to the last model stored. 

The load statement i s used to restore a model. The model 

stored in the archivation f i l e at i t s present position i s loaded 

into the graphical variable s p e c i f i e d . An example i s 

LOAD FROM UNIT N+2, BIRD 
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Chapter 7 

CONCLUSIONS 

E a r l i e r versions of LIG preprocessors did not analyze the 

host language statements of a program. LIG6, the research topic 

of t h i s thesis, analyzes both the FORTRAN and language extension 

statements. The primary reason for thi s i s that the language 

constructs of LIG6 cannot be ea s i l y s p l i t up into those which 

are s t r i c t l y FORTRAN and those which are s t r i c t l y extensions. 

There i s considerable overlap between the constructs, as i s 

evident by the number of FORTRAN statements which may contain 

extension elements. 

Several benefits are rea l i z a b l e when-all statements are 

analyzed. There i s no need to demarcate extension statements by 

the use of a special character in a designated column or by 

other means. It is possible to mix host and extension statements 

on a single l i n e . Any syntactic errors in the host language 

statements which would not normally be detected u n t i l the 

preprocessor output i s compiled are trapped. The preprocessor i s 

moved one step closer to being a compiler; object code 

generation i s only possible when complete parsing i s performed. 

Another difference between LIG6 and previous LIG versions 

i s the implementation of the preprocessor. The LIG6 preprocessor 

does not make use of a Compiler Writing System (CWS); i t i s 

written completely in PASCAL. There are several factors 
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supporting t h i s choice. Currently available compiler writing 

systems [McKe70,Leca74] do not support the free form input 

conventions of FORTRAN; delimiters and reserved words are 

required. With a CWS, i t i s not possible to carry out language 

extensions which are defined by programmers. Such extensions 

require a dynamically a l t e r a b l e parser; CWS generated parsers 

are determined solely by the o r i g i n a l grammar s p e c i f i c a t i o n s . 

LIG6 programmer-defined primitives include the d e f i n i t i o n of 

syntactic constructs which aff e c t the parser. The LIG6 

preprocessor i t s e l f can thus be thought of as a load and go CWS. 

Because a CWS must be able to handle general grammars, i t cannot 

generate preprocessors which exploit characterstics of a 

s p e c i f i c grammar. A preprocessor created without the use of 

grammar driven aids i s not limited in this way; i t can u t i l i z e 

ad hoc techniques which provide more e f f i c i e n t execution. 

Current research in computer graphics appears to be 

concentrated in two d i s t i n c t areas. A great deal of e f f o r t has 

been expended regarding standards for graphical subroutine 

systems [GSPC79,Fole76]. Such systems are used to create 

portable graphics application programs but they do not provide 

modelling features. The other area of intense interest i s the 

creation of r e a l i s t i c images. This area contains hidden l i n e and 

surface removal, shadowing, shading, and texturing algorithms. 

The research in this area is concerned with the process of 

analyzing scenes, not with the models on which the analysis i s 

based. 

High-level graphical programming languages are an extension 

to graphical subroutine systems. They provide a data base and 
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the c a p a b i l i t y to naturally model graphical objects. It i s only 

with the addition of inquiry, however, that such a language can 

form a bridge between the two areas of current research. A high-

l e v e l language can f a c i l i t a t e the modelling of graphical 

objects, but constructs must be available which allow the 

analysis of those models i f complex graphical algorithms are to 

be implemented. 

The data base approach of LIG6 permits the analysis of 

a r b i t r a r y models of graphical objects. Use of LIG6 to perform 

experiments with graphical algorithms allows the scenes required 

to be modelled naturally. Any algorithms so devised and 

implemented are then available for use in a l l LIG6 application 

programs. 

A language can be considered to have been expanded when a 

f a c i l i t y i s provided which was previously unavailable. An 

example of such a f a c i l i t y for FORTRAN is the system function 

MAX which returns the maximum value of i t s variable number of 

parameters. These f a c i l i t i e s are usually implemented by a 

systems programmer because the language constructs do not permit 

their d i r e c t implementation. This i s exemplified by MAX: FORTRAN 

has no method of . specifying a variable number of formal 

parameters. It is possible for non-systems programmers to expand 

a language, however, i f the language's constructs form a kernel 

which i s complete in i t s a b i l i t y to manipulate the language's 

data structures. 

The language constructs of LIG6 provide such a kernel. A l l 

possible data base values can be created using the various 

assignment statements and a l l modelling results can be accessed 
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and modified. The surface generation construction tools and the 

editing u t i l i t y described in Chapter 5 form language extensions 

which use only LIG6 modules. 

The a b i l i t y of non-systems programmers to expand LIG6 

implies that the system w i l l be able to evolve much faster. 

L i b r a r i e s of routines which are useful in general applications 

can be augmented by any person fluent in the language. Heavily 

used f a c i l i t i e s can s t i l l be coded by a systems programmer to 

improve e f f i c i e n c y ; such a task w i l l be s i m p l i f i e d by the 

exist i n g algorithm implementation in the high-level constructs. 

The a b i l i t i e s of LIG6 compare favorably with those of other 

high-level graphics languages. The modelling and display 

functions of LIG6 have benefitted from the experience gained 

from the use of previous versions of the LIG family. They 

provide a natural and human-oriented method of displaying 

p i c t o r i a l information. The advanced l e v e l constructs of LIG6 

permit the analysis of p i c t o r i a l information; t h i s a b i l i t y i s 

not available with any other graphics language using graphical 

constructs. 

An evaluation of LIG6 can be derived from the experiences 

of a summer student. In the summer of 1982, a second-year 

e l e c t r i c a l engineering undergraduate was hired to create a 

graphics interface to a c i r c u i t analysis program. This student's 

previous programming experience consisted of a f i r s t - y e a r 

computer science course dealing with FORTRAN and ASSEMBLER and 

job-related experience using a microcomputer and BASIC. He had 

no previous graphics experience. After a short period in which 

the student became familiar with graphical terms and concepts, 
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he was e a s i l y able to produce graphical output using LIG6. 

The task for which the student was hired, however, e n t a i l s 

more than the generation of images. It involves the creation of 

a maintainable, expandable program using the graphical data base 

to generate both an image of an a r b i t r a r y c i r c u i t and a 

s p e c i f i c a t i o n of that c i r c u i t which can be understood by the 

analysis program. Although encouraging results were obtained, 

th i s work proceeded more slowly. 

Two conclusions can be drawn from t h i s experience: only 

minimal programming experience i s needed to use LIG6 to produce 

graphical output, but more programming s k i l l s are required to 

use the advanced l e v e l constructs of LIG6 to implement 

sophisticated algorithms. Experience with the design and 

manipulation of dynamic data structures, pointers, and linked 

l i s t s i s especially useful. Such experience is common in 

programmers familiar with the languages PASCAL and LISP. 

As i s the case with most projects, further work would be 

b e n e f i c i a l . The implementation of LIG6 has proceeded to the 

point where i t i s a useful graphical system. The preprocessor 

and run-time l i b r a r y are complete and have been tested. Further 

work to improve the system involves increasing the number and 

c a p a b i l i t i e s of the device d r i v e r s . The language LIG6 assumes 

that a l l devices have the same, high quality c a p a b i l i t i e s . This 

is far from the case. It i s the task of the device drivers to 

approximate or simulate those features expected by LIG6 but 

which are lacking in the device addressed. At the present time, 

the drivers support only a subset of the features expected by 

the system. 
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The only colour terminal presently connected to the system 

is a Tektronix 4027. This terminal is capable of displaying. 
0 

eight of a possible sixty-four colours at any one time. The 

eight colours currently chosen are white, blue, magenta, red, 

yellow, green, cyan, and black. An approach y i e l d i n g more 

r e a l i s t i c results would be for the driver- to choose the eight 

colours which best matched the intended image. 

There are two d i s t i n c t problems involved in using a varying 

palette of colours. The f i r s t is to devise a metric so that a 

numerical value can be associated with the difference between 

two colours. This requires research into the way the eye 

perceives colour. A possible metric is to use the red, blue, 

green (RBG) colour model and assume the colour axes are 

orthogonal and of equal length. Once the palette, of colours has 

been determined, the metric is used to choose which colour of 

the palette best approximates the colour an application program 

wishes to display. 

The second problem i s the choice of palette members after a 

screen refresh. At that time, a l l of the colours which w i l l 

appear on the screen are known. The optimum palette choice is 

the one where the sum of the errors is minimized. The error 

involved i s the distance between the colour desired and the 

closest colour of the palette as defined by the metric. As there 

are sixty-four choose eight (roughly 4.4*109) possible palettes, 

an exhaustive search i s not p r a c t i c a l . A possible h e u r i s t i c i s 

to consider each palette colour as a data concentrator, each 

desired colour as a terminal, the metric value between colours 
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as the terminal-concentrator link cost and to use the Add or 

Drop algorithms from communications theory [Schw77] to determine 

concentrator location / palette colour. 

There are many monochromatic devices. Two such devices 

interfaced to LIG6 are Tektronix 4010 series terminals and a 

p l o t t e r . The current implementation displays a l l colours in the 

foreground colour of these devices. A possible improvement would 

be the approximation of colour on these devices by the use of 

hatching. Several options could be implemented. The hatching 

could be performed in image space with the result that a l l 

images of surfaces with the same colour would have the same 

orientation and spacing of hatch l i n e s . Secondly, the 

orientation of the surfaces of the model could be used to 

determine the orientation of the hatching of the image. The 

hatching could also be performed in object space resulting in 

both the orientation and spacing of the hatch l i n e s being 

affected. The last two implementations would provide the viewer 

with additional information regarding depth and the modelling 

process. 

The portrayal of three-dimensional information i s usually 

more meaningful i f hidden l i n e s and surfaces are removed. As 

LIG6 is concerned with the modelling and display of three-

dimensional objects, the addition of a hidden l i n e and surface 

removal c a p a b i l i t y would be an important improvement. It would 

be possible to place these algorithms in the driver part of the 

system because such algorithms are usually dependent on the 

output device. For example, a p r i o r i t y buffer algorithm [Fole82] 

can be used with raster terminals but not with dir e c t view 
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storage tubes or p l o t t e r s . 

Most terminal locators provide only two-dimensional 

information. Interacting with an image of a three-dimensional 

object i s d i f f i c u l t because there is no method to indicate 

depth. It i s possible to implement a three-dimensional locator 

for a vector refresh terminal using three valuator inputs. Three 

cross-hairs would be drawn p a r a l l e l to the axes of the modelling 

coordinate system through a point determined by the valuator 

inputs. Experiments could be c a r r i e d out to determine i f f i n i t e 

length cross-hairs or cross-hairs which include measuring t i c k 

marks are required to a s s i s t a user's depth perception. 
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APPENDIX A 

A Sample Program 

The LIG6 program shown on the f o l l o w i n g pages demonstrates 

the a b i l i t y of the language t o implement i n t e r e s t i n g g r a p h i c a l 

a l g o r i t h m s . The g r a p h i c a l f u n c t i o n HIDDEN i s an example of a 

p r i o r i t y b u f f e r h idden s u r f a c e removal a l g o r i t h m i m p l e m e n t a t i o n . 

I t r e t u r n s a model which i s e q u i v a l e n t t o i t s argument but whose 

s t r u c t u r e has been m o d i f i e d so t h a t when i t i s d i s p l a y e d on a 

r a s t e r r e f r e s h t e r m i n a l , the hidden l i n e s and s u r f a c e s w i l l not 

appear. 
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GRAPHICAL FUNCTION HIDDEN(TREE) 
GRAPHICAL TREE,ROOT,STACK(25),TRAVRS,VALUE,SUPER 
INTEGER POINT 
VECTOR VUPNT,AIMPNT,VIEWUP 
REAL VUANGL 
COMMON /HID$/ VUPNT 
CALL CAMPRM(VUPNT,AlMPNT,VIEWUP,VUANGL) 
ROOT :- BLANK <COLOUR -1E35> 
POINT = 1 
STACK(1) :- TREE 
REPEAT 

IF(VALUE(STACK(POINT)).EQ.BLANK) THEN 
BEGIN POINT = POINT - 1; END 

ELSE 
BEGIN 

IF(PRIMITIVE(VALUE(STACK(POINT)))) THEN 
BEGIN 

CALL INSERT(ROOT,STACK(POINT)) 
POINT = POINT - 1 

END 
ELSE 

BEGIN 
IF(POINT.EQ.25) THEN 
BEGIN 

STACK(POINT) :- SUPER(VALUE(STACK(POINT))) 
<MODIFI CATION(STACK(POINT))> 

END 
ELSE 

BEGIN 
STACK(POINT+1) :- VALUE(VALUE(STACK(POINT))) 

<MODIFICATION(VALUE(STACK(POINT))), 
MODIFICATION(STACK(POINT))> 

STACK(POINT) :- SUPER(VALUE(STACK(POINT))) 
<MODIFICATION(STACK(POINT))> 

POINT = POINT + 1 
END 

END 
END 

UNTIL (POINT.EQ.O) 
HIDDEN = TRAVRS(ROOT) 
RETURN 
END 

SUBROUTINE INSERT(ROOT,NODE) 
GRAPHICAL ROOT,NODE,POINTR,FATHER,COPY,VALUE,SUPER 
REAL AVERGE,DEPTH 
POINTR :- ROOT 
FATHER :- BLANK 
DEPTH = AVERGE(NODE) 
WHILE(DEPTH .LT. COLOUR(VALUE(POINTR))) DO 

BEGIN 
FATHER :- VALUE(POINTR) 
POINTR :- SUPER(VALUE(POINTR)) 

END 
IF(VALUE(FATHER) .EQ. BLANK) THEN 
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BEGIN 
ROOT :< COPY(ROOT) 
ROOT :> COPY(NODE)<COLOUR DEPTH> 

END 
ELSE 

BEGIN 
VALUE(FATHER) :< (COPY(NODE) <COLOUR DEPTH>) 
SUPER(VALUE(FATHER)) :< VALUE(POINTR) 

END 
RETURN 
END 

GRAPHICAL FUNCTION COPY(NODE) 
GRAPHICAL NODE 
COPY := NODE 
RETURN 
END 

REAL FUNCTION AVERGE(NODE) 
GRAPHICAL NODE,VALUE 
INTEGER ORDER,PRILEN 
VECTOR VUPNT,POINT,POINT1 
COMMON /HID$/ VUPNT 
AVERGE = 0 . 0 
IF(VALUE(NODE).EQ.BLANK) RETURN 
IF(POLYLINE(VALUE(NODE))) THEN 
BEGIN 
ORDER = PRILEN(NODE) 
DO 10 I = 1,ORDER 

CALL LINPNT(NODE,I,POINT) 
CALL APLYMD(NODE,POINT,POINT1) 
AVERGE = AVERGE + |VUPNT-POINT1| 

10 CONTINUE 
AVERGE = AVERGE/ORDER 

END 
ELSE 

BEGIN 
IF(POLYGON(VALUE(NODE))) THEN 
BEGIN 
ORDER = PRILEN(NODE) 
DO 20 I = 1,ORDER 

CALL POLPNT(NODE,I,POINT) 
CALL APLYMD(NODE,POINT,POINT1) 
AVERGE = AVERGE + |VUPNT-POINT1| 

20 CONTINUE 
AVERGE = AVERGE/ORDER 

END 
ELSE 

BEGIN 
POINT = ( 0 ,0 ) 
CALL APLYMD(NODE,POINT,POINT1) 
AVERGE = |VUPNT-POINT 1 | 

END 
END 

RETURN 
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END 

GRAPHICAL FUNCTION TRAVRS(ROOT) 
GRAPHICAL ROOT,POINTR,VALUE,SUPER 
TRAVRS = VALUE(ROOT) 
IF(TRAVRS .EQ. BLANK) RETURN 
POINTR :- ROOT 
WHILE(VALUE(VALUE(POINTR)) .NE. BLANK) DO 

BEGIN 
VALUE(VALUE(POINTR)) :< VALUE(SUPER(VALUE(POINTR))) 
POINTR :- SUPER(VALUE(POINTR)) 

END 
RETURN 
END 
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APPENDIX B 

Implementation Notes 

The language LIG6 i s implemented on the U n i v e r s i t y of 

B r i t i s h Columbia Computing Centre's Amdahl 470 V/8 computer 

under the Michigan Terminal System (MTS) o p e r a t i n g system. The 

f o l l o w i n g MTS commands w i l l generate the pr e p r o c e s s o r and run­

time l i b r a r y and execute a LIG6 program c o n t a i n e d i n the f i l e 

PROG.S. 

$RUN *PASCAL SCARDS=LIG6.P SPUNCH=LIG6.0 
$RUN *FTN SCARDS=LIG6.LIB.F SPUNCH=LIG6.LIB.O 
$RUN LIG6.0 SCARDS=PROG.S SPRINT=PROG.L SPUNCH=PROG.F 
$RUN *FTN SCARDS=PR0G.F SPUNCH=PROG.0 
$RUN PR0G.0+LIG6.LIB.0 

The f o l l o w i n g "T" diagrams, u s i n g the n o t a t i o n of McKeeman 

et a l . [McKe70], represent the same proc e s s . 

LIG6 PREPROCESSOR LIG6 PREPROCESSOR 

LIG6 --> FORTRAN LIG6 --> FORTRAN 

PASCAL COMPILER 

PASCAL PASCAL — > ML ML 

ML 
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LIG6 
LIBRARY 

LIG6 
LIBRARY 

FORTRAN COMPILER 

FORTRAN FORTRAN --> ML ML 

ML 

Program Program Program 

LIG6 PREPROCESSOR FORTRAN COMPILER 

LIG6 LIG6 — > FORTRAN FORTRAN FORTRAN - - > ML ML 

ML ML 

S e v e r a l s t a t i s t i c s r e g a r d i n g the implementation of LIG6 

have been o b t a i n e d . The prep r o c e s s o r was w r i t t e n i n PASCAL; i t 

c o n s i s t s of 328 procedures t o t a l l i n g 18,100 l i n e s of source 

code. T h i s r e p r e s e n t s a l i s t i n g of over 300 pages and occupies a 

d i s k f i l e c o n t a i n i n g 168 pages (each d i s k page c o n t a i n s 4096 

b y t e s ) . The o b j e c t code r e s u l t i n g from the c o m p i l a t i o n of the 

pre p r o c e s s o r source r e q u i r e s a d i s k f i l e of 84 pages. I t takes 

0.413 seconds of CPU time t o l o a d . A 650 l i n e LIG6 t e s t program 

c o n t a i n i n g examples of a l l s y n t a c t i c c o n s t r u c t s took 3.449 

seconds of CPU time and c o s t $1.08 f o r the preprocessor to 

analyze the program, c r e a t e an e q u i v a l e n t 1660 l i n e FORTRAN 
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program, and produce a l i s t i n g . In comparison, the cost of 

l i s t i n g the same program was $0.50. 

The translation of a LIG6 program into an equivalent 

FORTRAN program involves the replacement of extension constructs 

with c a l l s to subroutines in a run-time l i b r a r y . The concise 

graphical information in a LIG6 statement generally requires 

more than one subroutine c a l l to be equivalently expressed. The 

actual expansion that occurs depends upon the program being 

preprocessed. In the test program mentioned above, the section 

dealing with purely graphical extensions was 134 lines long. The 

equivalent FORTRAN code, was 530 l i n e s , an expansion factor of 

3.96. A LIG6 program which was used to automatically generate 

the data structure diagrams of thi s thesis i s 197 lines long; 

i t s equivalent FORTRAN code i s 364 li n e s y i e l d i n g an expansion 

factor of 1.85. The hidden surface removal algorithm of Appendix 

A i s 145 l i n e s long; i t s equivalent FORTRAN code i s 428 lines 

y i e l d i n g an expansion factor of 2.95. 

The run-time l i b r a r y was written in FORTRAN; i t consists of 

339 procedures t o t a l l i n g 10,232 l i n e s of source code. This 

represents a l i s t i n g of 166 pages and occupies a disk f i l e of 95 

pages. The resulting object code requires a 70 page disk f i l e 

and takes 0.402 seconds of CPU time to load. 


