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ABSTRACT

The transverse motions of circular saws have undesirable
effects on many aspects of circular sawing. Due to current high man-
ufacturing costs, substantial savings may be realized if these transverse
motions can be reduced.

In this thesis a circular saw is modelled as a rotating im-
-perfect disk acted upon by a transverse, non-oscillatory point load
stationary in space. Such a model is known to accurately predict certain
relevant aspects of the behaviour of a circular saw in its operating en-
vironment.

Initially the free response of a non-rotating perfect disk is
considered. This model is then refined by considering the effects of
rotational stresses and small imperfections within the disk. The res-
ponse of such a disk to an oscillatory load is determined, from which
the response to a non-oscillatory load may be determined as a special
case of particular interest.

Experimental results are given which quantitatively confirm the

theory presented.
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NOTATION

clamp radius

disk radius

flexural rigidity; energy dissipated by damping'
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damping dissipation coefficient

disk half-thickness

generalized force

amplitude of Tload

natural frequency

natural frequency

radial displacement function

radial coordinate

radial 1ocation of load

temporal response function; kinetic energy
time coordinate

strain energy

displacement in space-fixed coordinates
proportionality constant for membrane frequéncy
displacement in disk-fixed coordinates
angular phase angles

strain energy coefficient

temporal phase angles

angular space-fixed coordinate



non-dimensional frequency parameter

angular displacement function

angular disk-fixed coordinate

angular Tocation of load in the disk coordinate system
kinetic energy coefficient

radial membrane stress

tangential membrane (hoop) stress

mass density

Poisson's ratio

disk rotatjona] speed
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variable coefficient in radial function
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I. Introduction

The use of circular saws in the manufacture of Tumber is very
common, and in an attempt to reduce the costs associated with this
process much research has been conducted. Many of the problems result-
ing from the use of a circular saw may be attributed to motions of the
saw in the direction normal to its plane. These motions, which are
referred to as transverse vibrations, have an undesirable effect on
cutting accuracy, kerf losses, the quality of the cut surfaces, saw
life and ambient noise levels. One of the primary goals of researchers
in this area is to reduce the kerf losses by making the saw. thinner.
This must be done without suffering the adverse effecfs caused by an
increase in the transverse vibrations resulting from a reduction in
the lateral stiffness of the saw. -

In attempting to predict the behaviour of a circular saw in
its working environment, many difficulties are encountered. Since the
saw and its environment are continually changing, no complete solution
exists which considers all aspects of the problem simultaneously.
However, it is possible to model this system in a way such that useful
qualitative and quantitative results may be determined from fundamental
principles.

Most simply, a circular saw may be modelled as a non-rotating,
unclamped complete disk. The natural frequencies and shapes of the free
vibrations of such a disk were determined by Kirchoff in 1850!. Later in
that century Rayleigh made a significant contribution to this problem, in
particular in reconciling theoretical predictions with experimental

results2. He introduced the idea that small imperfections within the



disk could significantly affect its behaviour. Near the end of the 19th
century Zenneck formalized the ideas of Rayleigh regarding the influence
of imperfections on the free vibrations of a disk3.

The inclusion of stresses due to the rotation of the disk
was the next major step in the development of the model. This was done
by Lamb and Southwell in 1921%. It was in this work that Southwell's
Theorem was first intsoduced. This theorem states that under certain
conditions an approximate method is'available which establishes a lower
bound on the fundamental frequency of vibration of a body. This work,
however, did not consider the influence of a central clamp covering a
portion of the disk. Later that year Southwell published a paper in
which the effects of a clamp were considered, and where his theorem was
demonstrated with numerical examplesS’

It wasn't until 1957 that the experimentally observed forced
response of a rotating disk was satisfactorily explained. This inform-
ation was made available in a paper by Tobias and Arnold, where it was
shown that achieving agreement between theoretical and experimental
results requires considering the effects of minor imperfections within
the disk®.

The directions of research since this time have generally
fallen into one or more of the following catagories; the control of
membrane stresses/»8,9,10,11,12 a7tering saw geometries!3>1% and external
control methods.15:16 Although numerical results can be obtained when
the problem can be mathematically modelled, obtaining a suitable model
which includes all aspects of the problem presents a major difficulty.
For this reason an approach combining both theory and experimentation is

very useful.



Because experimentation should be an important part of an
investigation in this field, this thesis deals with rotating disks on
both a theoretical and an experimental basis. It is the purpose of this
thesis to present a theory of the forced response of rotating disks and
to present experimental results which verify this theory. While a detail-
ed theoretical development of the forced response of idealized disks is
given, emphasis is placed on the theory required to account for the
departure of the characteristics of real disks from those of idealized

disks.



IT The Theory of Rotating Disks

Two types of disks are analyzed in this thesis. The first are
what are referred to as "perfect disks". These disks are homogeneous ,
isotropic, completely circular and are of constant thickness throughout.
The second type, called "imperfect disks", possess material properties
and geometries which depart s1ightly from those of perfect disks. A1l
real disks are to some extent imperfect, and the influences of these
imperféctions on the disks' behaviour must be taken into account when
experimental results are interperted.

Because the disk is rotating in space while observations are
made from points stationary in space, two coordinate systems will be
defined. The‘coordinate system fixed in the disk will be denoted as the
(r,0) system, whereas that fixed in space will be denoted as the (r, v)
system. The radial coordinate r is the same in each case. These two
coordinate systems and the physical dimensions of a perfect disk are
shown in figure 1.

The disk rotational speed is @ in the positive y direction, and
the origins of both angular coordinates are taken to be coincident at
t = 0. Therefore a point located at an angle 6 in the disk is located in
space at an angle y given by:

Yy = Qt-6
Similarily, the reverse transformation is:
8 = Qt~-y
The transverse displacement as a function of ¢ is denoted by w, and as

a function of y by u.



Figure 1

Perfect Disk Dimensions and Coordinate Systems

Initially the method of solution of the free vibrations of a
perfect, centrally clamped non-rotating disk is outlined. The results
obtained from this analysis form the basis for predicting the disk be-

haviour when the problem is compounded with imperfections, rotational

stresses and a transverse load.



IT.1 Free Response of a Perfect Non-rotating Disk

The equilibrium plate bending equation for a homogenous,

isotropic plate is:?!
(11.1) vl = q/D

Here q is the transverse load per unit area and D is the flexural

rigidity given by:
D = E(2h)3/12(1-v2)

The biharmonic operator is to be expressed in polar coordinates.
For the case of a freely vibrating non-rotating disk, the
only load is that due to the inertial forces and internal and external

damping. If damping is neglected, equation (II.1) may be written as:

(11.2) vhw =g 2

=

9

There are four boundary conditions which the solution of
equation (II.1) must satisfy. They are:

(a) no deflection at the clamp

(b) no slope at the clamp

(c) no internal radial bending moment at the free edge

(d) twisting moment/shear stress condition at the free edge

(Kirchoff boundary condition)



A separation of variables form of a solution may be assumed in this case:
(1I1.3) w = R(r)T(t)e(e)

When equation (II.3) is substituted into equation (II.2), a suitable

expression for © is found to be:

(I1.4) o(8) = Bycos ne + Bysin ne

The necessity that w(r,t,8) = w(r, t,6 + 27) requires that n is an

integer. The expression for T is also immediately found to be of the
form:
(11.5) T4t) = C, cos pyt + C, sin p,t

The expressions for the natural frequencies p, are unknown at this stage

except that they are dependent on the integer n.

The solution as given by equation (II.3) may then be written as:

(II-G) Wn = R(Yt‘) [B]_ COosS né + BQ_ sin ne][Cl cos pnt + Cz sin pnt]

The subscript n now appears on w, indicating that there is a solution for
each value of n selected.

In order to deterhine the radial function R.(r)and the frequencies

Pns consider one term of equation (II.6), which may be written as:

(I11.7) Wn==AnLR;(E) sin né cos ppt



After substituting equation (II.7) into the equation of motion, the
function- R(r) may be determined by solving two differential equations;

Bessel's equation and the Modified Bessel's equation®.. Equation (II.7)

is then: .

»

(11.8) wWp =[a;dp + a,¥p + aszly + ayKnl sin né cos ppt

Here Jns Yns Ip, and Kp are Bessel and Modified Bessel functions of the
first and second kinds, whose arguments are dependent on D and pp.
Substitution of equation (II.8) into the boundary conditions yields a
characteristic equation, from which the natural frequencies and radial
functions may be determined. For a particular value of n there are

an infinite number of frequencies and radial functions. Each of these
radial’ functions may be identified by the number of values of r at which
there is no transverse motion. These circles, excluding the central one
due to the clamp, are cdlled nodal circles, and the number of them
occurring is denoted by s, where s = 0, 1, 2... . It may also be seen
from equation (II1.8) that there exists n diameters of zero transverse
motion, known as nodal diameters. The s nodal circles, n nodal diameters

response of equation (II.8) may be written as:

(11.9) Yn,s = An,s =Rp,s(r) sin ne cos pn,st

For reasons which will become apparent when the forced response
of a rotating disk is discussed, it is only the zero nodal circles modes
which are of concern. The response of the disk in those modes where
s # o is therefore neglected and the subscript s may be ommitted.

Equation (I1.9) is then:



Wy = Ap Rp (r) sin nécos ppt

This expression, however, was developed by considering only one term of
equation (II.6). When all four terms are considered the n nodal diameter

response is:

W, =Ry (r) [B;C; cos ne cos ppt + ByC, cos ne sin ppt

+ B,C; sin ne cos ppt + ByCyssin ne sin ppt]

It is possible to write this expression in two forms using the trigono-

metric identity:

a sin x + b cos x = ¢ cos (x - %)

L]
(9}
N

where: a2 + b2

and k4

1
t—'-
QO
=3
(=2

~
[o1]

By applying this identity to the angular trigonometric terms we obtain:

(I1.10) ¥, = Rn(r) [Ap1 cos (n8-6,) sin ppt + Apz cos (né -63) cos pptl

The second form is obtained by applying the identity to the temporal

trigonometric terms:

(IT.11) w, = Ry(r) [Ap1 sin ne cos (ppt-e} )+ Apscos ne cos (ppt-&p)]



Equations (II.10) and (II.11) are the two forms of the n nodal
free response of a perfect disk. Although they are equivalent, it is the
form given by equation (II.11) which will be used for the remainder of
this thesis for reasons Which will become apparent when the response of
an imperfect disk isiconsidered.

There are four oonstants in equation (II.11) which must be
determined from the initial conditions 6f the free response. It will
now be shown that although this expression is referred to as the n nodal
diameter response, it does not in general consist of what is commonly
known as nodal diameters.

If we set wy = 0 in equation (II.11), the following expression

for 6 results:

An, cos (pnt -¢;)
Ani €85 (ppt -e1)

tan née =

From this expression itican be seen that,in general, the angular locations
where: - the displacement is zero is a function of time. If, however,

€1 = €5 this becomes:

tan né = - Anp/ App = constant

which is the familar case of a free response with nodal diameters fixed in

the disk. Referring to equation (II.11) it can be seen that this motion

results when the disk is initially deformed in the shape wn_jnjtia1 = Rn(r) x

[Amt sin ne + Ap, cos nf] and released at t = €,/ pp-

10
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As a second example, if the temporal phase angles are such that

€p = g1+ 31/2  and if Ay, = A, » the Tocation of .the. nodal lines is
given by:
tan ne = tanv(pnt - él)
0 = Dnt' E_],_
n n

These nodal lines are travelling around the disk at a constant speed of
6 = pn%n . The initial conditions of this motion may be obtained by
substitutinge, = €; + 37 /2 into equation (II.11). Due to the difficulty
in creating these initial conditions, this motion is not commonly observed
experimentally. | |

Both of the above cases, the vibration fixed in the disk and
the travelling wave, are special cases of the more general result. From
equation (II.11) it can be seen that in general the n nodal diameter free
response consists of two oscillating n nodal diameter shapes, with the
nodes of one located half-way between those of the other. Although the

frequencies are equal, the time phases are not.

I1.2 Free Response of an Imperfect Non-rotating Disk

As previously discussed, an imperfect disk is here defined to
be a disk whose geometry and physical properties differ slightly from
those of the idealized perfect disk. While the effects of the imperfect-
ions._could be determined quantitative]y if the imperfections can be

mathematically modelled, this is not Tikely to be the case. The following



theoretical developments do not require such a knowledge of the nature
of the imperfections, yet they provide very useful gqualitative
information.

The energy method is used here to investigate the effects of
imperfections on the free vibrations of a non-rotating disk.3 The
assumed expression for the total free response is given by equation

(I1.12) where ¢(t) and ¥(t) are to be determined.
(1I1.12)  w =vﬁ[®n(t) Rn(r) cos ne + ¥u(t) Rp(r) sin nel

Two types of energy will be considered here; the kinetic
energy of the transverse motion and the strain energy of deformation.

The energy dissipated by damping is considered in a later section.

(i) Kinetic Energy: The kinetic energy of the transverse

vibrations of the disk is given by:

T =% f o(#)? rdrdedz
vol

From equation (I1.12):

) 2= LT b & +
(w) IE RRL [¢n¢m COS nd cos mé

Yn¥pm sin ne sin me + 2é,¥y, cos ne sin mo]

Due to the orthogonality of the trigonometric terms in (w)2,
the only remaining terms after the kinetic energy integration
would be those containing cos ne cos mé and sinno sin mée for

n=m.

12
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In this case, the kinetic energy is of the form:

(11.13) T = Fhup8f + %up 93
where:
(11.14) un = 2emh§[Ry(r)I2 r dr

This, however, assumes that the disk is perfect.

Although the imperfections are considered to be general in
nature, as an illustrative example consider the case where the
imperfection consists of a density variation in the angular

direction. If the density can be represented as:

(I1.15) o(8) = 3z Ci cos ke + D sin ke
k=0

the results of the kinetic energy integration will be somewhat
different than in the perfect disk case. The integrand of the

kinetic energy integral for this density imperfection is:

p(w)2r = L RoRy[éném cos ne cos me (Ck cos ke +
n

>
k m
Dk sin ko) # ¥p¥pm sin nesin me (G cos ke +

D sin ke ) + 2 dp¥y cos ne sinme x -

(Cy cos ke + Dk sin ke )Ir

Of the six terms-within.this summation, it cannot be said that

any one will vanish for all values of k, m, and n when the
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integration is performed over the range of 6. If, howevef,
the density imperfections are small, all values of Cyx and Dy
in equation (II.15) are also small with the exception of Cg,.

The general form of the kinetic energy expression is then:
(I1.16)

T=%Z%amo®m +2Chm 2n¥m * bnm ¥n¥m

where apm and bpy are small for n # m, and cpp is small for all
n and m. In addition, the values of apy and byy, for n = m,

are slightly different from what they would be for a perfect disk.

(ii) Strain Energy: For a non-rotating disk, the strain energy
is that due to bending. In pélar-cylindrical coordinates this

is:®

Ez2 (
- M { G F

vol

9 1
(11.17) - 20-v) 5= (?W"Ffﬁf)

+ s [ 2 i

If the disk is. considered to be perfect, the resulting

expression for the strain energy is:

=™

(11.18) U L Bpon? + % Bp¥p?



where:
_ Eh¥ d2R (LR 12 g) ¢
3Tv2) ﬁdr[ v (g - TR)Q;T
2 2R d
st 0w ] (R) -ER 14200 R
(11.19)

+
53;{_.

,[n“ + 2n2(1-v)] Ré} rdr

Here R denotes Rn(r). As can be seen from equation (II.17),each
term of the strain:energy 1ntegrand“Containépeiiper COS-M& COS N,
sin n6 sin mo or cos ne sin me. Again, due to the orthogonality
of the trigonometric terms, no cross-terms appear in the strain
energy expression for a perfect disk. However, if the disk is
imperfect, the general form of the strain energy is:

U = % anm ®ném + 2 Cnm @n¥m *+ bpm ¥n¥y

D
mn

Here the relative magnitudes of apm, Cpm and bpyy are similar

to those of apy, Cpm and bpp.

Lagrange's equations for the free undamped vibrations of this

system are:®

d (3T v _
HE'(SE}) o, =0

Ha
——
@l
i s
+
o
~e|c
1
S

15
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The results of substituting equations (II.16) and (II.20) into Lagrange's

equations are:

(11.21) % a -6 ta e tc . Yo +c._ v =0

(11.22) tb ¥ +b v +c 6m +c¢. o =0
m

Here there are two systems of linear differential equations, each system
consisting of an infinite number of equations, one equation for each value
of n.

By the theory of systems of linear differential equations with

constant coefficients?3, solutions are sought of the form @j = Xj oAt

and Wj = Yj e>‘t . However, A must be pure imaginary since the system is

conservative.?2 The assumed form of the solutions te equations (II.21) and

(I1.22) are therefore taken as:

05 = Xj cos (wt - v)
(11.23)
Wg = Yj cos (wt - v)

These assumed solutions may be substituted into each of the equations of
(I1.21) and (II.22). The result, for example, of substituting into the
n=2 equation of (II.21) is:

(85, - w?ay,) X; + (355 - wayy) Xptt ---

+ (€1 - wPegp) VI (Cpp - wlepp) Yo + == =0



A11 such resulting equations may be written in matrix form

(11.24)

(a1-wfarl)
(c};-w?cy,)
(33,-v?ay;)
(cy1-w?cyy)

\

(¢1-0%cyy)
(511'“2b11)
(Cyq-0?cyy)
(byy-u?by;)

(512’“2312)
I
(€1,-w?e),)
= 2
(a,,-0%a,,)

€cyp-w?cyy)
]
]
1

(cyp-u?cy,)
(by,-u?by,)
(€yp-02Cy,)
(522—w2b22)

- - -0 0O o ©o
— —_~

17

or:
(11.25) [M] (A} = {0}

A non-trivial solution to equation (II.25) exists if and only if
det[ﬁ] =0 . In the case where the imperfections are small, the non-

diagonal elements of the matrix [M]aare small in relation to the diagonal
elements. The solutions to the equation det EM] = 0 are then approximately

determined by solving:
(31 -ww?ay)(byy - w?byy)(app - w2ay,)(byy - w?byp) === =0

The values of w which are the solutions to this equation will be denoted

by p and q:

pi = aji/ain s P5 = ag/az;
(TI1.26) 5. ¢ 9 -

.q1 = b1i/b11 q2 = baa/b22
where P; = q; ] since a;,; = bii and al; = bii .
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Each eigenvalue of equations (1I1.26) , P; or q; » may be substit-
uted 1nto equation (I1.24) from which the relative magnitudes of the comp-
onents of the matrix'{ﬂ} may then be determined. For example, the assumed
solutions, equations (II.23), obtained by putting w = p, jn equation

(I1.24) may be written as:

ol

1 = Pyycos(prt soef)) ¢ - ;Yi = By cos(p;t - &)

&, = P21COS(p1t -—51) WZ
; .
)
1
]

Byicos(pyt - €;)

Here P11=P21 ceos 311=Bz1 ... and €, denote Xl,X2 cees Yl,Y2 ... and v as

determined for w = P, - For w= P, and = 9; s Qjaaﬁd Wj may be written as:

(11.26) 05 = Pjicos(pit - ei) ; jScos(qit - ;i)
(I11.27) vj = Bﬁicos(pit - ei) : Djicos(qit - Ci)

The most general forms of the solutions for °j and Wj are the

sums of the solutions given by equations (I11.26) and (I1I.27):

()]
1]

? ﬁBjicos(pit - e%) + jScos(qit - gi)}

(11.28) ¢ .
Yy, = % {Bjicos(pi - e;) jScos(qit - ci)}

With a change of the dummy indices i and j , equations (II.28) may be sub-



19

stituted into the initial expression for the free vibration, equation (II.12),

yielding:

n cos(pnt - en) + an cos(qnt - cn)] +

W= %{Rm(r) cos mé ;z][Pm

Rm(r) sin me ﬁ[?mn cos(pnt -e )+ Dmn cds(qnt - cn)] }

n

It is possible to rearrange this expression to identify the shape of the

response at a frequency p, (or qn). If we denote by W (w__) the response

n2
at the frequency p_ (qn), the result is:

W cos(p.t - ¢ ) z[? R cosme +B R sin me]
ni nt n" mlmnm mn m

(11.29)

=
"

na cos(qnt - ;n) %[anRm cos me + DR sin me]

Clearly the effects of the imperfections are to not only alter the natural
frequencies, but to also alter the shapes of the modes. If the coefficients

a . are known, it is possible to determine the relative magnitudes

s b ..
mn° “mn

of Pmn’ B and an, D and hence evaluate the natural frequencies and

mn mn

mode shapes ("The Theory of Sound", § 90)2. It can also be shown that the
contribution of the cos me shape to that of the n nodal diameter mode is

: -1 -

proportional to ( _ ) w, where here o and Py, are the natural freq
p%m_ p*n

uencies of a perfect disk. If it is assumed that thds contribution is

negligable, that is, that the imperfection does not alter the actual shapes

of the modes of vibration, equations (II.29) are:
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(11.30) W Rn cos (pnt -cn) [Pnn cos no + Bnn sin ne]

=
1}

2 Rn cos (qnt -;n) [an cos ne + D sin nel

The two independent expressions for the n nodal diameter free
vibrations of the disk are those given by equations (II.29), or
approximately by equations (II.30). Equations (II.30) may be written

as:

=

(11.31) =R, ¢, cos (ne - an)

nj

=
1]

" Rn wn sin (ne - en)

2

= 2 _
where ¢ = /P +B. cos (pt- )
. 2 2
bp =V + Dy cos (ap _gp)
= -1
and an tan Bnn / Pnn
= _tan-l
Bn tan * Qny / Dy

If it is assumed that the imperfections do not alter the shape of the
response, the coordinates ¢n and wn are the disk normal coordinates,

since a free vibration is possible whi¢h is characterized by the vanishing
of all L and ¥ except one. %3 When the kinetic and strain energies of

the imperfect disk are expressed in terms of these normal coordinates,
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the coefficients of the cross-terms must be zero. By comparing the

expressions for Qn’ ¥, én and &n the relationships between the two

n
sets of coordinates is seen to be:

©
1]

c _ .
¢n 0s e wn sin Bn

=]
1]

' ina + ¥ c
¢n si n wn 0s Bn

Upon substitution of these equations into the kinetic and strain energy

equations, (I1.16) and (II.20), there results the following:

2T

JAﬁ‘ég + Bn¢¢% *C o, Y

n

(11.32) _ _ —
2” - An;$ﬁ, + Bn gt Cn ®n ¥

The coefficients An’ Bn etc. are functions of the ang]es<xn and B, as

well as the coefficients a b__ etc. Setting the coefficients of the

nn’> “nn
cross-terms, that is Cn and Cn’ to zero results in the following

expressions for @ and Bn:

1]
o

(bc - cB)‘tanzan + (ba - ab) tan on + (ca - ac)

(I1.33) _ _ _ _ _ _
(ca - acC) tan®8, - (ba - ab) tan g, + (bc - cb)

n
o
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The sub-scripts "nn" have been ommitted. In addition to the above two

expressions for a and Bn’ their ratio is obtained as:

tan o Caa ~-.ac

((11.34)

tan 8 cb - be

Lagrange's equation may be used with the expressions for T and U,

equations (II1.32), to determine the natural frequencies. This results

in:
, = a+b tan?.ap +2C tana
Ps ©
(11.35) a + b tan?:a, + 2c tana
L= or
q% - b+ a tan Bn .- 2c¢ .tan Bn
2 - 9
b + a tan Bn 2c tan Bn

Equations (II.33), (II.34) and (2.35) require, for their use, an exact
knowledge of the imperfections. This is not likely to be known except
in the simplest of cases.

However, several significant results are available from these
equations. From equations (II.35), it is seen that Py (qn) is a function
of an (Bn), and also a, b etc. which are constants dependent solely on
the disk physica]vcharacteristics. If stationary values of P, Orq, are
sought, the resulting expressions for ap and Bn are those given by

equations (II.33). That is, the nodal lines, determined by «_and B

n
are located such that the frequencies Ph and q, are stationary in value.



However, for a perfect disk, where ann = bnn’ a = bnn and

i = S " 0, equations (II.35) show that Py = 9 regardless of the

values of o, 06 B .
A second result regarding @ and B, is available from equations
(11.33) and (I1.34). Clearly, for a perfect disk, both of these express-
jons for o and 8, are indeterminant, and hence the location of the nodes
cannot be determined solely from the disk physical characteristics. In
the case where the disk is imperfect but the nature of the imperfections
is such that their influence on the kinetic energy is much greater than

on the strain energy, equations (II.33) may be written approximately as:

]
o

-c tanzan + (b - a) tan o *C

1]
o

- 2 - +
c tan®g + (a - b) tan By *C
When their influence on the strain energy predominates:

-E’tanzOln + (b - a) tan a * c =0

-C tan2sn + (a - b) tan B, + c = 0

In either case it can be seen that the extent to which the ang1e5caﬁ
and Bn differ is greater for greater imperfections within the disk.

The free vibrations of a disk with small imperfections may
be taken as: .

w

[Anl Rn cos (ne -a ) cos (p t - é‘)
(11.36)
A

o Ry sin (no -8 ) cos (qtt -¢ )]

23
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where the differences between‘;%,sn and pn,‘qh in general depend on the
nature and extent of the imperfections, and where11n and Bn are such
that Py and q, are stationary in value.

The two terms of equation (II1.36), that is:

W, = Anl R~ cos (ne "”n) cos (pJ: - en)

W, = An2 R, sin (ne - sn) cos (p#: -z,)
are referred to as the two configurations of the n - nodal diameter
vibration. Each is independent of the other, that is, each is a mode
of vibration, and the amp]itudes, Anland An2 » and the time phases, €
and L, are dependent entirely on the initial conditions.

It should be pointed out that there are very special cases where
imperfections may be present and either the phase angles an and B, are
equal, or the frequencies Py and q, are equal. As an example of the
first case, consider a mass imperfection symmetric about some angular
location on the disk. Any free vibration must also be symmetric about
that point. This requires that a node of one configuration and an
anti-node of the other pass through the point. Since the shapes of the
configurations are assumed to be unaltered, it must be that o = Bn‘
As an example of the second case, if the imperfections are symmetric
about m equally spaced locations on the disk, the requirement that Py

and q, be stationary in va]ue results in Pn = % when 2n isnot an integer

multiple of m. This second case is known as the Zenneck rulel3
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Although either the difference between o« and B> OF between
Py and q, could be considered measures of the imperfection of a disk,
it is the latter-that is the accepted practice.

While it is possible to experimentally determine the coefficients
A bn etc., this would be extremely difficult to do. Since the desired
information is the natural frequencies Pn and a, and the location of the
nodes, these can be determined directly and with much greater ease by
experimental methods which are described later.

It is, however, desirable to obtain numerical results so that
theoretical predictions can be compared with experimental results. It
is found that theoretical results based on a perfect disk assumption
and adjusted according to information obtained experimentally from the
free response of an imperfect disk predicts a forced response that is
consistent with experimental evidence.

The following section gives an approximate method wHereby num-
erical results for the free vibrations of a perfect non-rotating disk

may be obtained.

IT1.3 An Approximate Method of Determining the Free Vibrations

of & Non-rotating Disk

The natural frequencies of a non-rotating disk may be determined
by several different approaches. One, previously mentioned, requires
solving the equation of motion for the radial functions Rn(r). The
result of requiring the radial functionsto conform to the boundary con-
ditions yields the natural frequencies and the relative magnitudes of

the coefficients of the Bessel and Modified Bessel functions.
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Another possible approach is that known as the Rayleigh-Ritz
method. This is the approach which will be taken here. In order to
use the Rayleigh-Ritz method, the shape of the vibration must be re-
presented as a kinematically ° admissible orthogonal sequence with un-
known coefficients. Using this shape an expression for the natural
frequencies may be obtained. This expression is a function of the
unknown coefficients, and minimizing the frequency with respect to
these coefficients yields an upper bound on the fundamental frequency
of the free vibration.

It is not necessary to assume an angular shape, howevér, since
it is known to consist of nodal diameters which must be symmetrically
distributed around the disk. It is the radial functions Rn(r) which
are unknown. A kinematically .admissible representation of the radial

functions is:°

r-a \2 L r-ayk
R(r) = —— o (—
OIS R A

Here the T, are the .unknown coefficiénts.
The value of this function and its slope are both zero at the
clamp as required. If only the first two terms are taken, the approx-

imation to the radial function ds:

= o y2 t, y3 . -
Ry (x) = 7 x* +711 x % = (;‘t’_é)
-a
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The range of x is then 0 <x<]. Since Rn(x) may be multiplied by a

constant without affecting the result in any’way, we can write:
(11.37) Ry (x) =x% + 13

Because the angular function is known exactly, if the frequency is de-
termined by use of the radial function given by equation (II.37) then
minimized with respect to‘f, the resulting minimum is an upper bound on
the natural frequency of that n nodal diameters, zero nodal circles mode.
The expressions for the kinetic and strain energies as previously

givenby equations(II.13) and (II.18) are:

= 52 + v2
2T M, @Qn Hp ‘{’n

2U = 2 2
fguv Bn % T Bq ¥

where the values of My and B, are determined from the integrals of
equations (II.14) and (II1.19).
If damping is neglected and a harmonic time function is assumed,

equating the maximum kinetic and strain energies results in an express-
jon of the form:

D .2 .
p. = [E ZJV Syt Syt * S
n iél T"L + K2T + K3

The coefficients $1, Sz, and S3 result from the strain energy calcul-

o o

©
le 4

ation whereas Ki, K2 and K3 result from the kinetic energy calculation.
A11 coefficients are functions of the disk dimensions a and b, Poisson's
ratio, and the integer n. The value of t which minimizes P is avail-

able in closed form in this case. It is possible to express the minimum



value of P, as:

'Eh?

Py '[m

Y
]
|

The exact values of A have been determined by other meansl!? and are

shown in figure 2 (solid lines) aTong with the values calculated by
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Figure 2

0.4

Non-dimensional Frequency Parameter versus Clamping Ratio

28



the Rayleigh-Ritz method (dashed Tines).
The Rayleigh-Ritz values of A are generally more accurate for
Tow values of the clamping ratio a/b, with the exception of the n = 0
mode whose error is essentially independent of the clamping ratio. For
values of the clamping ratio greater than approximately 0.2, the use of
only two terms for the approximating function is obviously insufficient.
The values of the coefficient i which minimizes the frequencies
p, are given in figure 3. Using these values of T it is possible to
approximate the shape of the free vibrations of a perfect disk. However,
this approximation neglects two effects which must be included in order
to arrive at a useful result. The first is the previously discussed
effect of imperfections which are treated experimentally in a Tater Qhap;

ter . The second effect is that of the rotational stresses, which will

now be discussed.

1.0

T
[«> ]
(5]
\

— |
~ //

[

Radial Coefficient
D

S5S3 D3

= \
) _05 \Qf
0.1 0.2 0.3 0.4
a/b
Figure 3

Radial Funtion Coefficient versus Clamping Ratio
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I1.4 The Effects of Rotation

The effects of rotation considered here are those attributable
to the tensile membrane stresses which exist when the disk is rotating.
Initially the influence of these stresses on the free vibrations of a
perfect disk are investigated, then an approximate method is described
by which this influence on the free vibrations bf an imperfect disk may
be included.

Rotating: Membrane

In order to introduce the effects of rotational stresses, it is
convenient to consider a rotating disk with no flexural rigidity; that
is, a membrane. This approach will also be dsefu] in a later section,
where an empirical relationship for the effects of rotation will be

presented.

The equilibrium equation for a non-vibrating, rotating circular
membrane is obtained from the free-body diagram shown in figure 4.

Due to symmetry there are no shear stresses, and the hoop stresses og
are constant around the disk. The body force B is of magnitude Q2rdm
where dm is the mass of the element. The boundary conditions on the
stress distribution are:

1. zero radial stress at the clamp.

2. zero radial stress at the free edge.

The first boundary condition is for what is referred to as a partial
clamp. This type of clamp (or collar) is the type commonly found in
practice. It allows a radial displacement of all points on the disk,

and serves only to prevent a transverse displacement at the collar.



Figure 4
Membrane Stresses in a Rotating Membrane

With these boundary conditions the membrane stresses at any point

may be determined. They are:18

) e
r? B2k, /|
= 2 1 2
e‘(i)b"_‘i “ o) - (K} w2
r? b2k, /] k, k,

where k;, ko and k3 are functions of the disk and collar radii and

Q
]

Q
I
AN

Poisson's ratio.



It is now assumed that the membrane is deformed arbitrarily in the
transverse direction, but that the stresses do not change, as shown

in figure 5.

Figure 5

Deformed Element of a Rotating Membrane

As can be seen, on each element there is a net restoring force in the
transverse direction, due in the radial case to both the variation in
the radial stress and to the curvature in the radial direction, and in
the angular case due to the curvature only. This net restoring force

may be equated to the rate of change of momentum of the element, result-

ing in the equation of motion:

1 8 (po 2w} 1 8 (0 ow)_ . o3bw _g4
r =ar \ rar) " ¥ e \% %0/ P %7

.32



33

The boundary conditions bn the transverse displacement are}

1. zero transverse displacement at the collar.

2. finite transverse displacement at the free edge.
The method of solving this differential equation is very lengthy, but
numerical results are available.l® The resulting expression for the
transverse vibrations are of the same form as given in equation (I1.9),
but the radial functions are not the same. A significant result is that
for a given disk the natural frequencies are directly proportional to

the disk rotational speed. That is:
% o s 2 =
(11.38) Pn V, 92

where Vn is a function of n and the disk physical properties and dim-
ensions.

Rotating Disk

It is possible to formulate the differential equation for a rot-
ating disk considering both rotational and bending stresses using
information previously presented. Equation (II.1), the plate bending
equation, is the equilibrium equation for a non-rotating disk subjected
to a transverse load, which was taken to be the inertial forces in the
free vibrations case. However, the stresses due to rotation were seen
to cause a net transverse load when the membrane was deformed. There-
fore it is possible to use the plate bending equation for a rotating disk,
where the transverse load is due to both the inertial forces and the

rotational stresses. The resulting equation of motion is:
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1 3 [ro 3w 1 3 fog W :
L = - = AL + =, =2{Y8 X)) | a2
D viw r ar( rar) Y2 36\ 38 p'gf"}

This equation was solved numerically by Eversman and Dodson and the
results published in 1969.1° The shape of the vibration is again found
to consist of nodal circles and diameters, but the radial functions are
different from those in either the non-rotating disk or rotating membrane
cases.

As would be expected, the effects of the rotational stresses are
dependent upon the clamping ratio a/b, the disk thickness and the rotat-
jonal speed. It is found, however, that the influence of these stresses
on the disk natural frequencies is not very large for disks and clamping
ratios of the dimensions corresponding to those typical of circular saws.
As an example, using results from the papef by Eversman and Dodson, an
18" diameter disk, 0.150" thick with an 8" diameter collar has a natural
frequency of 198 Hz.for n = 1 when the disk is stationary, as compared to
237 Hz. at a rotational speed of 5300 r.p.m. This is an increase of only
19.5% which is in fact an upper 1imit since typical rotational speeds of
circular saws are somewhat Tower than 5300 r.p.m.

Under these conditions, reasonably accurate results may be obtained

by an approximate method based on Southwell's Theorem.

Southwell's Theorem®

Southwell's Theorem is general in nature, not pertaining specif-

ically to rotating disks. It is derived directly from Raydeigh's Theorem,
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which states that the natural frequency of the fundamental mode of
vibration, as calculated from an assumed shape of deflection, is an
upper bound for the exact value. In order to develop Southwell's Theorem
as it applies to rotating disks, three deflection shapes must be defined:
St ... resulting from membrane and bending stresses
SB ... resulting from bending stresses only (no rotation)
SM ... resulting from membrane stresses on]y (no flexural rigidity)
Assuming simple harmonic motion, the maximum strain and kinetic energies of

the transverse vibration may be written as:

Strain Energy U (S)
Kinetic Energy = p2 T (S)
If damping.is neglected, the frequency is given by:

U (S
2 =
P T

For small deflections, the work done by the bending stresses is independ-

ent of that done by the membrane stresses. Therefore:

U (st) = Up (ST) + Uy (ST)

Where Ug and Uy Aare the bending and membrane potential energies. The
frequency is then:

=,..:‘,‘;UB-(ST) +.Uy (S7)

-pf
T (S7)




Here EB and 5M are what the natural frequencies would be if the disk was
assumed to vibrate in the shape ST under the action of either the bending

or the membrane stresses.

‘That is:
= 5 _ UB'(ST)
PBT T T (5
e T
M T

However, if only bending stresses or only membrane stresses were present,

the shape would be Sg or SM respectively. Therefore the exact values of

Pp -ﬁndiﬂﬁiarelgiven by:

pgs= B o)
T (Sp)
pM2= UM (SM)
T (SM)

By Rayleigh's Theorem, for the fundamental mode:

582 > sz
5M2 N pMz
Therefore the -expression for the frequency Pr becomes:

(11.39) 25 pg2 + py?

Pr

36
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Equation (II1.39) is Southwell's Theorem. It can ben seen that if the
potential energy of a freely vibrating body is due to the action of two
(or more) systems of stresses which act independently, then a lower bound
on the natural frequency of the fundamental mode may be determined by con-
sidering the effect of each system separately.

Equation (II.39) may serve as the basis for an empiricaT relation-

ship if the equality is taken to hold:

However, equation (II.38) indicated that the relationship between pé and

2 was:
Therefore:

2 = 2 2
(11.40) pr2 = pg2+ Ve

In the previous example of the 0.150" disk, the increase in the
n = 1 mode natural frequency in going from O to 5300 r.p.m. was 19.5%.
If the exact value of V is used,!8 the increase is found to be 17%
(232 Hz.) by equétion (II.40). The actual difference in the 5300 r.p.m.
natural frequency by the two methods is only 2%.

Evidently, for disks of the physical dimensions similar to those
typical of circular saws, equation (II.40) provides a satisfactory
approximation for the natural frequencies as a function of rotational

speed.



While the coefficient Vn is available from the literature, there
are several factors in practice which can significantly alter its value
from that calculated theoretically. However, it may be approximated

quite easily experimentally. Since for a real disk there will Tikely be

two natural frequencies associated with the n nodal diameter free vibrat-

jon, there would be two relationships of the form of equation (II.40):

N
n
=

N
+

Bv»; anﬁ%

o 2
+ Vnzﬂ

0
-]

n
L0
(s )i N

Experimentally determining the coefficientsf'\ln necessitates
observing the disk natural frequencies at various rotational speeds.
However, observations will generally be made from points stationary in
space, whereas the equations describing the transverse motion have been
given with respect to a coordinate system fixed in the disk. The
following section therefore describes the results of the transformation

to a coordinate system fixed in space.

II.5 Disk Displacement with Respect to Rotating and Non-rotating

Coordinates

The significance of the difference between the observed disk
displacement as expressed in terms of the rotating or non-rotating co-
ordinate systems may be illustrated by considering the free vibration

~given by:

Wy = Ap Ry (r) cos (ne -e,) cos (ppt-t,)

38



This vibration is given with respect to the (r,8) coordinate system '
fixed in the disk. For simplicity, let 6= 0, tg = 0 for the mode under

consideration. Then:

(11.41) W, = A, Rn(r) cos ne cos p,t

Using a trigonometric identity, equation (I1.41) can be written as:
(11.42) W, = }ﬁAﬂ Rn(r) [cos (pnt - ng ) + cos (pnt + ne )]

Consider the first term of equation (II.42), which will be denoted as

wn(l). That is:
wn(l) = }éAn Rn(r) cos (pnt -ne )

This term, at any particular instant, is identical in form to the original
mode shape given by equation (II.41). The same is true of the second term
of equation (II.42). These two terms each contain "nodes", the locations

of which, in general, are given by:

9(1) = DE + (2k + ].)'%"r
n 2n
9(2) = -ED_E_ + (2k + 1)1|’
-n 2n
k =0,1,2 ..

In addition, these "nodes" are moving in the disk at speeds of:

39
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(11.43) (2) =Py

De

We conclude therefore that the response of equation (II.41) may be con-
sidered equivalently as consisting of two shapes, each identical to the
shape of the mode itself, but of half the amplitude, and which are travel-
1ing in opposite directions around the disk.

The above results are stated with respect to the (r,e) corodinate
system. If the disk is rotating, the response with respect to the non-
rotating coordinate system (r,y) may be obtéined with the use of the

previously given transformation:

6= ot - vy

To avoid confusion, the response as observed from the stationary coordinate
system will be dendted Up- Substitution of the transformation into equat-

jon (I11.42) yields:

Uy =% Ay Ry (r) Leos(pt + ny- nat) + -cos(p t - ny + nat)]

The response will be observed at some point in space, sayy= 0, in which

case it can be written as:

(11.44) ug = %A R (r) [ cos( P, nQ)t + aéQS([pn+ ng) tl

40
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The frequencies seen by a space stationary observer, denoted by fn’ are

therefore:

(11.45) f = Py - NQ

Equations (I1.45) are very useful since they yield a simple method of
determining the particular mode shape associated with a resonance peak.
The method is to excite the disk randomly and record the observed natural
frequencies at several rotational speeds. The observed frequencies fn

as a function of the rotational speed @ would appear as shown.on figure 6
(neglecting imberfections). It can be seen that at low rotational speeds

the slopes of the lines are approximately #n.

Observed Resonance Frequencies fn

Rotational Speed &

Figure 6

Observed Resonance Frequencies versus Rotational Speed



This resu]f may be interperted physically by considering the two
components of a mode as given by equation (II.42). When the disk is not
rotating these two components, which are travelling in opposite direct-
jons attthessame speed in the disk, are also travelling at equal but
opposite speeds in space. Howevery,when the disk is rotating, the com-
ponent travelling in the direction of rotation, the "forward-travelling
component", is moving faster in space than when the disk is stationary.
Just the opposite is true of the "backward-travelling component".

A significant phenomenon may be noticed in figure 6. At some
rotational speed one observed frequency of each mode, except for n = 0,

becomes zero. From equation (I1.45-a) for fn = 0, we have:

p, = no

If this value of Pn is substituted into the expression for the speed of

the backward-travelling component, equation (II.43-a), the result is:

6(1) = @

Since the positive 6 direction is that opposite to the rotation, it can
be seen that the backward-travelling component is stationary in space.
Similarily, the forward-travelling component is travelling at twice the
diskdspeed. As the rotational speed is increased even further, the back-
ward-travelling component actually begins to move forwards in space.

The above description does not consider the effects of either
jmperfections or rotational stresses. The existence of imperfections will

double the number of observed frequencies, while the rotational stresses
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will increase their values in accordance with the relationship given by
equation (II.40). The observed frequencies of the n nodal diameter

vibration considering these two effects is then:

The Tower branches of these observed frequencies become zero when:

Y
Q2 = Pgn

2 .
n an

Apparently when V> n2 there is no possibility of the observed frequency
becoming zero. Physically this occurs when as the rotational speed increases,
the speed in the disk of the backward travelling component is increasing at
a faster rate. This phénomenon does in fact occur in practice as will be
shown experimentally in a later chapter.

If an observed frequency does become zero, the rotational speed at
which this occurs is very significant when the forced response of rotating

disks is considered. This is investigated in the following section.



The transverse loading of a circular saw arises from the
interaction with the work piece. Since this transverse Toad is dependent
on many factors, primarily the wood itself, its spectral density function
is unknown. What is known, however, is that there is generally a signifi-
cant load at a very Tow frequency, usually taken to be zero. The theory
of a rotating disk responding to a static, space stationary point load is
referred to as the "critical speed theory". This theory has been verified
with circular saws in their working environment?2*

The load used in the following development is taken to be P coswt,
since a static load may then be taken as a specific case of a more general
result.

The energy method is used here to determine the forced response
of imperfect disks. When the effects of imperfections are neglected the
response of a perfect disk is obtained. Whiie it is possible to determine
the forced response of a rotating disk and consider the non-rotating response
as a special case, this is not the approach taken here. The non-rotating
and rotating cases are treated separately, since one aspect of the problem,

the damping, is signmificantly different.

For an imperfect disk, the free vibration in the n nodal

diameter modes is taken to be:

11.46
( )Wy,

||

¢, R, cos (ne - an)

"W

n2 ¥ Rn sin (ne - Bn)
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\ Where ¢ and v oare the normal coordinates previously denoted by on and
L
The kinetic and strain energies of the non-rotating disk,

from equations (II.32) are

= 52 y2
2Tn An 87\ * Bn ’\Pn
(11.47)
= ) ““‘2 o) w2
2u, Ay o5 + B, Y

The damping of this system is known to be very small. Experi-
mental results, given in a later chapter, verify that the damping may be
neglected when considering the forced response except when the disk is
oscillated at very close to one of its natural frequencies. In order to
provide a theoretical basis for this experimental result, damping will
be assumed to be viscous, in which case the energy dissipated may be ex-

pressed as:

= 32 ;2
(11.48) 2Dn Gnl o + an =

In using Lagrange's equation it is necessary to determine the
~generalized force associated with the load P coswiit. The generalized
force is thevquantity selected such that the product of this quantity and
a virtual change in the generalized éoordinate is equivalent to the virtual
work done. Since each configuration from eqﬁation (I1.46) behaves independ-
ently there will be two generalized forces associated with the n nodal dia-

meter response.



The Toad P cos wt is located at (rp, ep). The displacement

of the Toad due to a motion in the first configuration is:

Wy (rp, o) = & R (r)) cos (no, - a)

The work done gm%l during a virtual change in °, is given by:

W =

n P cos wt Rnﬁb)COS(nG -an)6®n

PP

and similarily for SW%Z.

Fhe generalized forces are therefore:

(11.49) M; p Rn (rbz cos (nep - aﬁ) cos ot

Mo - Bﬂ) cos wt

PR, (rp) sin (nep

Lagrange's equations are:

d (aT )+ 8D , 28U _
a fet! _ — = M
dt a@n §$h T
(I11.50)
ax-(a’)' oD " U
Tl |t = Yo =M
gF awﬁ . awnx ag{n’_'

which is the standard form for a viscously damped forced system. Solving

for L and v and substituting into equations (II1.46) results in:
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(11.51) PRy () Ry(r) cos (n8- ) cos (n6-ap) cos (wt-n,)

ni

A

Anjépﬁ ~u?)? +'<Eﬂl>27“2
n

" _ PRn("‘p)Rn(r‘)S-m(nep-Bn)s‘m (ne'Bn) cos (wt-cn)
n2
. =
B _J(q2 -w2)2 +'< n)w2
n n B—
n
where pZ = Rn/An;_q:ﬁ = B /8,

o 1]
3
(=
po
]

tan~1(G. .7 .A))
n; n

(p2 - w?)

Y
"

-1 i
n tan (Gn /uBn)

(g - w?)

These equations are the most general form of the n nodal

diameter response of a non-rotating imperfect disk to a point load of

magnitude P cos wt. In general there is a response in both configurations.

If, however, the load is located at ep = %—(an +

will be no response in configuration one or two, respectively. These are

[ASITE |

<
J- or ep = B,/n, there

the locations of the free vibrations nodes of these configurations. Re-
calling that the nodes of oné configuration are located approximately at
the anti-nodes of the other (an= Bn), the maximum amplitude of the res-

ponse of one configuration is obtained when the amplitude of the other is

a minimum,
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It is also apparent from equation (II.51) that if the
excitation frequency is pn(qn), the response will be almost entirely in
configuration one (two), unless the load is applied at or near a node of
that configuration.

Both of the above observations are useful experimentally when
the validity of equations (II.51) is examined, and when the extent to
which a disk is imperfect is to be determined.

One check of equations (II1.51) that does not require a physical
experiment is to observe the result when the disk is considered to be per-
fect. The vibration must be symmetric about the load irregardless of its
Tocation, with an anti-node located at the point of application of the

load. If the disk is perfectdan = Bn’ A =8B

n n® Pp = 9, and Gn1= G _. The

n2
n nodal diameter response may then be written as:

PR, (rp) Rn(r) cos (wt-nn) [ cos (ne_ -a_) cos (no -an)

p n
2 _,.2)2 2 2
An‘J(Pn w?)?2 + (Eﬂ) ©

An

+ sin (nep - an) sin (ne -an)]

l l.

PRy (ry) Ry(r) cos (ut -n,) cos n(e, -6 )

As can be seen, the response is as expected. It is also interesting to
note that the response of a perfect disk is essentially the same as that

of an imperfect disk when the load is applied at the node of one of the
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configurations. There would, howéver, be a small difference due to
changes in the values of An, Pn and Gn caused by the presence of imper-
fections, and also because &n is only approximately equal to B, for an
imperfect disk.

Rotating Disk

To facilitate the description of the forced response of a
rotating disk, several terms must be defined:
1. fixed vibration: This is the usual form of the free vibration of
a disk, given, for example, by:

w_o= R in no
An n s cos at

_ n
where a is the frequency. The nodes, located at & = 0, %3 %gn..
¢!
are rotating with the disk. This vibration may be written as:
(11.52) w, = % An Rn [sin (ne - at) + sin (ne + at)]

where the forward and backward travelling components are apparent.

In non-rotating coordinates, this appears as:

(I11.53) u, = L An Rn [sin (net - ny - at) + sin (n@ t - ny + at)]

2. travelling waves: These waves, backward and forward travelling,
are identical in form to the backward and forward travelling com-
ponents described above. However, the two components of the fixed
vibration are of equal amplitude, whereas a single wave may exist

by itself. A backward travelling wave is given by:

(I1.54) W An Rn sin (ne - at)

[~
[i]

An Rn sin { not - ny - at)
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and a forward travelling wave by:

(I1.55) W An Rn §in (ne + at)

[
1

An R, sin (not - ny + at)

3. steady deflection: If the rotational speed 9 and the frequency
a are such that n2 = a, the backward travelling component or back-
ward travelling wave becomes stationary in space. For example,

substituting a = n2 1into equation (I11.54) for u, yields:

(11.56) u, = -An Rn sin ny
This is not a function of time. If the steady deflection is a
result of a backward travelling component becoming stationary in
space, the forward travelling component will be travelling at
twice the disk speed, yielding an observed frequency of fn =2nQ.

The method of determining the forced response of a rotating
disk is very similar to that for a non-rotating disk. The kinetic energy
of the transverse vibrations is the same in both cases. The potential
energy Un is of the same form, except the coefficients An and Bn are now
functions of @ due to the membrane stresses.

The damping is a particularily difficult problem since the
vibration will suffer significant windage at high rotational speeds. Al-
though viscous damping has been assumed in the past, ©°15 it is unjust-
ified since, for example, the windage suffered by a backward travelling
wave is significantly less than that of a forward travelling wave.. As

well as being a function of the transverse velocity, the damping will

also be a function of the rotational speed and the instantaneous amplitude
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of the transverse displacement. Except at near resonance, the effect
of damping is quantitative only; the natire of the response is the same
as in the undamped case. In the absence of a reasonable theoretical
means of including the effects of damping it will be neglected in the
theory that follows.

The generalized forces may be determined in the same way as

for a non-rotating disk except that the Tocationo_of the load varies. It

Y
is assumed that o = Bn and this angle is taken to be zero in the disk
coordinate system. Since both origins are coincident at t = 0 and the
load is taken to be Tocated at vy = 0, its disk coordinates are (rp, ot).

The generalized forces are then:

n

M P Rn (rp) cos not cos wt

1
.M2

P Rn (rp) sin not cos wt

which may be written as:

M, =% PR

n (rp) [cos (w+ n@)t# cos (w - no)t]

Mz =% P R (rp) [sin (o + no)t =sin (w - nQ)t]

Applying Lagrange's equations, the response is found to be:

(11.57) S cos (v + nQ)t

[p2 - (wt n2)2 ]

Wo, = %P IR (r))/An] Rn(r)cd?{he‘[

+ cos (w-"np)t ]

Ip2 - (w- n0)2]
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=35 PLR (r)/B 1R (r) sinne | Sin(o* na)t
o, n(rp)/ n n(r) sin n { [ﬁﬁ»"(m + ne . )2]

[q2 - (w- na)2]

- 'sin (a - na)t }

The natural frequencies Pn and 9 here are functions of the rotational

speed 2, since they are obtained from the ratios:

2 - A
p2 An / K
2 =
I B, / En

The coefficients An and Bn are not functions of the rotational speed, so
it can be seen from equationé (11.57) that if the natural frequencies are
known either from experimentation,_or approximately from equation (II.40),
that the only unknown effect of rotation is on the radial functions Rn(r).
When @ = 0, equations (II1.57) reduce to the previously developed
expression for the response of a non-rotating disk subjected to a load
P cos &t Tocated at an anti-node of configuration 1. The resonance con-
dition is P, =@
However, when the disk is rotating there are four possible

resonance conditions, given by:

These resonance frequencies coincide with what have previously

been referred to as the observed natural frequencies of the disk. Although



the response as predicted by equations (II1.57) becomes infinite at any

of these resonance frequencies because damping has been neglected, it

can be seen that

the response near resonance,when w =:p, * n@sor

w=q % n2, is the shape and approximate frequency of the free response

of the disk.
Since
static load, the

Under the action

circular saw instability is known to be caused by a
response to such a load will now be discussed in detail.

of a constant load P, the response, as given by equation

(I1.57) is:

(11.58) W

Ny P Fn1 €coS nd cos nat

PF sinne sin nat

w"z Ny

R,(r,) R (1)

A [pZ - (ne)2]

where F

and F =R"(rﬂ).Rn(r) —
"2 B [q2 - (n)2 ]

Resonance occurs when Py = nQ or q, = ne. If a non-rotating disk is
subjected to a static load, and the rotational speed is then increased,
the first speed at which resonance occurs is known as the critical speed.
In general, it can be seen that this type of resonance occurs at the
same rotational speed at which the backward travelling component of a
free vibration would be stationary in space; that is, when fn = 0.

If the disk is perfect, Py = Q and An = Bn' Ifi this case

53



54

the response is:

= + w
"o T T g

P Fh [cos ne cos not + sin nesin nqt]

PF, [cos (ne - nat)]

This is the expression for a backward travelling wave (see equation II.54).
Substituting 6 = Qty--y, the response in space-stationary coordinates is:

(I11.59) = P F, cos ny

Un
This backward travelling wave, being fixed in space, is what has been
defined as a steady deflection. It is travelling in the disk but its
speed at any rotational speed is such that it appears fiixed in space.
Resonance occurs when the speed of this wave in thé disk becomes equal
to the wave speed of the backward travelling component of the free vib-
ration in this mode. This is the usual condition for resonance; the
system is forced to respond at the rate at which it does freely.

When the effects of imperfections are included, the response
to a static load is somewhat more complicated. In this case, the total

n nodal diameter response from equation (I1.58) is:

(11.60) w =P (F -F_ ) cos ne cos ngt +P F_ cos (ne - not)
n ny ny “nz

The first term here is a fixed vibration of frequency ng and the second

term is a backward travelling wave stationary in space. The frequency



of the fixed vibration is such that its backward travelling.component

is also stationary in space, thus contributing to the steady deflection.

Equation (I1.60) may therefore be written as:

wo =3P (Fnl - Fnz) cos (ne + nat)

+ 5P (Fnl + fnz) cos (ne - nqt)

Toca space-stationary observer this appears as:

(I1.61) u = L P(Fnl - Fnz) cos (2net - ny)

+ % P(Fn1 + Fnz) cos ny

The observed frequency of the forward travelling component is 2ngq, as
previously discussed.

If Pn is considered to be the lower of the two natural fre-
quencies of the n nodal diameter configurations, when nQ is less than
Py which is the range of rotational speeds of interest here, equation

(II.61) may be written as:

B, \a2 - (na)?/| ™

AL fpE-(ne)? |
3PP |1+ — | ——— || F cos ny
B, \a2 - (n)?/ | ™
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As can be seen, the amplitude of the forward travelling component
relative to that of the steady deflection increases as the critical
speed is approached. Although the amplitude of the forward travelling
component never exceeds that of the steady vibration, this theory, which
neglects damping, predicts that they are of very nearly the same ampli-
tude close to the critical speed. Recalling that a vibration fixed in
the disk is composed of forward and backward travelling components of
equal amplitude, at close to the critical speed the response can be seen
to consist almost entirely of a fiixed vibration. This contrasts with the
response of a perfect disk, where only a steady deflection is present.

It must be remembered, however, that a fixed vibration is
moving in space at the disk rotational speed, whereas the steady deflect-
ion is stationary in space. It is expected therefore that, due to windage
the amplitude of the fixed vibration relative to that of the steady deflect-
ion will be significantly less than that predicted by the above théory.
This is confirmed in a later chapter which offers experimental verification

of the theory which has been presented here.

I1.7 Comments on the Theory and its Applications

The responses of non-rotating and rotating imperfect disks to
a transverse point load, given by equations (II.51) and (I11.57), were
determined 1in order to predict the behaviour of a circular saw in its op-
erating environment. Although such a model neglects many factors, the
theoretical results obtained have been verified in sawing operations as
being fairly accurate in predicting certain aspects of a saw's behaviour,

most significantly the critical speed.2* One of the major advantages of
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of this model is that those factors which are important in determining
the saw's behaviour are easily identified. Several of the areas of
current research on saw vibrations are based on concepts which were dis-
cussed in the rotating disk theory.

‘Current Research

One of the most common methods of reducing the transverse
motions of circular saws is known as tensioning, having been used in some
form fior approximately.100 years. Tensioning is the process of altering
the saw membrane stresses to increase the critical speed of the saw.

The membrane stresses for an initially stress free saw are
due to rotation only. The maximum rotational speed of the saw must be
less than that speed at which a static Toad causes resonance. When rotat-
fonally induced membrane stresses only are present, this may be approxi-

mated by:

2 = EED___

cr n2- Vp
This speed is dependent on the coefficient Vn which is a measure of the
influence of the rotational stresses. It can be seen that if this influ-
ence could be increased, the result would be a higher critical speed.

One method of tensioning involves plastically deforming the
saw in compression in a narfow annulus, indicated by the dashed Tine in
figure 7.

When the saw is not rotating, the radial stresses will be com-
pressive throughout, while the hoop stresses will be compressive on the

inner portion of the saw, and tensile on the outer portion as shown. These



initial stresses are such that when the saw is rotating at its rated
speed all membrane stresses are tensile, although not of the same value
as when the saw is not tensioned. Since the magnitude of the radial
stress is reduced by this process, those modes whose membrane potential
energies of deformation are due primarily to the radial stress will have
reduced natural frequencies. These modes are those consisting of a Tow
number of nodal diameters. However, due to the increase in the tensile
hoop stress in the outer portion of the saw, those modes consisting of

a larger number of nodal diameters will have an increase in their natural
frequencies. With the correct amount of tension it is possible to in-
crease the natural frequency of that mode which determines the critical

speed of the saw.

Figure 7

Membrane Stresses in a Non-rotating Tensioned Disk
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The same result may be obtained by another method which is
less common. If the saw is heated at the collar a thermal gradient will
exist where the rim is at a lower temperature than the inner portion.
This gradient may be selected such that the membrane stresses are similar
to those described above, also resulting in an increase in the critical
speed.

The effects of tensioning may be determined numerically for
an jdealized saw. 10°11 In practice, however, there are unknown factors
which influence the optimum amount of induced tension, such as the heat
generated by cuttihg. It is necessary that any method by which the des-
ired amount of tension is determined be flexible to allow for the chang-
ing conditions of the operating environment.

A second major direction of research, altering saw geometries,
has recently become of interest theoretically due to the availability of
such techniques as the finite element method. One of the most common
departures of saw geometries from those of perfect disks is the presence
of holes and radial slots. Slots are particularly common for two reasons.

Firstly, they inhibit the motion of waves travelling around the saw, and
secondly, the compressive hoop stresses at the rim resulting from the heat

~generated during cutting are reduced because the saw can expand into the
slots. |

Although holes and slots cannot be considered small imperfect-
ions, they have the séme effect as small imperfections on the amplitude of
the steady deflection. It is possible, with the proper selection-of holes
and slots, to reduce the amplitude of this deflection. An approach cur-

rently being persued is the selection of the number, size and locations of



holes and slots to optimize this amp1itude reduction.13;1”

As is the case with tensioning, the effects of holes and
slots on the behaviour of an idealized saw can be determined numerically.
Although this predicted response can be verified under controlled experi-
mental conditions, verification in the field, which is the ultimate test,
has in the past proven difficult to achieve.

‘Saw Behaviour in its Opérating Environment

It is difficult to evaluate the performance of a circular saw
in its operating environment by monitoring its transverse displacement.
A more direct and simpler method is to observe the quality of the wood
cut by the saw. This is in fact the method initially used to verify the
critical speed theory.2"

It may be desirable, however, to monitor the saw's displace-
ment. This displacement may, for example, be used as an input for an
automatic control scheme.l5:16 The difffcu1ties encountered can be seen
by considering the response predicted by the imperfect disk theory. As
previously stated, the load is known to consist predominantly of a large
static component, which results in a space-stationary backward travelling
wave and a vibration fixed in the saw. In addition to this response, due
to the very low damping of the system there is the possibility of an
observable response at the natural frequencies due to random excitation.
Considering these two types of responses, the observed frequencies as a
function of rotational speed would appear as shown in figure 8. Here the
responses in the n # 1 and n = 2 modes only are shown for clarity. In-
cluding the zero frequency responses, at any rotational speed the total

response consists of responses at eleven different frequences. Since there
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will be responses in other modes as well, it can be seen that evaluating
the behaviour of a saw at a particular rotational speed would be very

difficult.
Figure 8

-

Observed Frequencies of Response

Ny

A

\\\

Rotational Speed &

Saw Response versus Rotational Speed

*:Under 1aboratory conditions however, the situation is someWhat
different. In this case the load can be carefully controlled and measured,
and the rotational speed set at any desired level. It is then possible to
investigate the validity of a theory under conditions more closely resemb-
1ing those on which the theory was based. The next chapter describes exper-
iments which were conducted to verify the theory which was developed in

this chapter.
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I11 Experimental Verification: of the Theory of Rotating Disks

Experiments were devised to verify the theory presented in the
previous chapter. The outcomes of this theory were the forced responses
of non-rotating and rotating disks, given by equations (11.51) and (II1.57).
Before these results could be verified, it was necessary to conduct several
preliminary experiments: For each result presented both the experimental

and the theoretical means used to obtain the result are described in detail.

The disks used to obtain the experimental results were prepared

from steel blanks from which circular saws are manufactured. Their dimen-

sions were:
thickness diameter
disk A 0.050" 18.4"
disk B 0.085" 18.2"
disk C 0.085" 18.2"
disk D 0.050" 18.3"

Although tests were conducted with all disks, only the results for disks
C and D are given here since the other disks simply supported the results
obtained with these two. A1l disks possessed no large imperfections and
were complete except for a central hole approximately one inch in diameter.
The collars used were three inches in diameter.

The collar assembly was press-fittéd onto the rotor shaft of a
oné-half horsepower Reliance D.C. motor. The rotational speed was infinitely

variable over a range of 0 to 2500 r.p;m;; with the speed being monitored by



Distance (inches)

a Dynamics Research Corp. incremental shaft encoder and displayed
digitally.

The transverse motion of the disks was measured with space-
stationary Bentley eddy current proximity sensors, and their accompany-
ing power supply and drivers: Two sensors were calibrated, although
most testsused.on1y one. The calibration curve of this sensor is shown

in figure 9. This curve was obtained with the use of a dial gauge.

b~

{ 41 |

T 4 6 8 10
Output Voltage (volts)

Figure 9
Proximity Sensor Calibration Curve
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The proximity sensors were positioned approximately 0.]10"
from the surface of the'disk; giving a Tinear response range of nearly
+ 0.050?; It was possible to position the sensors at any desired loc-
ation in space.

A Spectral Dynamics Spectrascope II spectral analyzer was used
to measure the response spectrum; and to ensure an accurate load frequency
when the disk was excited sinusoidally. This is a single channel analyzer.
It was used in close conjunctdion with a Telequipment model DM64 dual chan-
nel oscilloscope. The two channels of the oscilloscope allowed a direct
observation of the phase differences between either the load and the res-
ponse, or between the responses at two different points.

Disk excitation was provided by an electromagnet fixed in space
at a distance of approximately one-quarter inch from the surface of the
disk, at a radius of seven inches. Power to the electromagnet was supplied
by a power amplifier, a D.C. power supply or both. The input to the power
amplifier was an A.C. or random signal provided by a Bruel and Kjaer Type
1024 Sine-Random Generator.

The electromagnet was secured to a shaft which was inserted in
a ball bushing allowing rotational and axial freedom. However, axial mot-
jon was prevented by securing the end of the electromagnet shaft to a
Bruel and Kjaer Piezoelectric Force Transducer Type 8200, which was then
connected to a heavy support. The output from this transducer was directed
through a charge amplifier from which the magnitude of the force was con-
tinously available as a vo]tage; Calibration was obtained with the use of

weights which were accurately weighed:
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The free responses of the disks were not investigated experiment-
ally because the presence of damping, even though very Smal], created
difficulties in obtaining accurate measurements. A1l results given here
are for the forced responses of the disks.

It was desirable to apply three types of loads to the disks; a
static load, a sinusoidal load and a random load. The static load was
achieved simply by applying a D.C. voltage to the electromagnet. A sinu-
soidal load, however, cannot be obtained with the use of only one electro-
magnet. When a load such as B coswt was desired, this input was added to
a D.C. voltage of magnitude P, yielding a resultant load of P(1+ cosuwt).
Since the applied loads were of a magnitude such that the response was
within the linear range, it was possible, in some cases, to obtain the
response to a sinusoidal load by neglecting the D.C. component of the
proximity sensor output. Applying a random load presents the same problem
as does a siinusoidal load, but since afraﬁdom load was used only for ident-

ifying resonance frequencies,this signal was not off-set by a D.C. voltage.

III1.2 Forced Response of a Non-rotating Disk

The response of a nonsrotating disk in its n nodal diameter modes

to a load P coswt is given by equation (II.51). The total response is:

(I11.1) w=ZIw, K +w
n

In this section it will be shown that the observed amplitudes and shapes
of the response of a disk agree very closely with those determined theoret-

ically.



The first step in obtaining this verification was tq.accurate]y
determine the disk natural frequencies since the amplitude of the response
is extremely sensitive to the differences between the excitation frequency
and the natural frequencies. In order to determine the natural frequencies,
the disk was excited randomly while it was not rotating and the resonance
peaks displayed on the sbectra] analyzer were recorded. By rotating the disk
slowly so that the influence of the rotational stresses was minimal, the
values of n were determined by noting the rate of change of the observed
frequencies with respect to the rotational speed, as previously discussed.

The results are shown below for disk C.

Nodal Diameters Disk Natural Frequencies (Hz)
Experimental Theoretical
0 54.0 48.8
1 34.8, 35.2 40.1
2 61.4 62.2
3 125.0 124.7

The n = 1 configurations of this disk were the only two that displayed
an observable difference in their natural frequencies. The knowledge
of these two frequencies may be used to determine the location of the
nodes of these configurations.

' The ‘Location of the Nodes

If the disk is excited at a frequency o =_pl;:and the sensor is
located at the point of application of the ]oad,'the responses in the

n = 1 configurations are:
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W, - P [Rl(r )]2 cosz(eg - a ) cos (wt - n))

Gl11 pl

{111.2)
P [R,(r,)]% sin2(e_ - 8)) cos (at - )
R (Gt

=
1

12

B

The response in these two configurations will be chh Targer than in any
others, and the total response of the disk to this load may be approximated
as W = W, + Wi, oo In addition, it can be seen that, except when the load
is applied at or near the node of configuration one, the response in this
configuration will be much larger than in the other.

The natural frequencies,.plfandiql,'of disk C were seen to be 34.8
and 35.2 Hz. The frequency of excitation was set initially at 34.8 Hz., and
the load and proximity sensor were located at some arbitrary angle,wwith
the amplitude of the response being noted. This wés done at 150 intervals
around the disk. The excitation frequency was then changed to 35.2 Hz. and
the procedure was repeated. The results are shown in figure 10.

The origin of the coordinate system has been se]ecfed such that
the anti-node of configuration two is located at 6 = 0. As expected, the
node of configuration one is located approximately halfway between that of
configuration two. In addition, the shapes of the two “curves are very
nearly cosz(e-an) and sinz(e—en). The deviation from these shapes is due

to several factors; the load covered a finite area rather than being a

point load, there were responses in modes other than the one being resonated,



and any change in the shape of the response .due to imperfections was

neglected theoretically.

| 1 [l 1
300 0 60
Location of Load and Sensor

| }
180 240 120
Figure 10

Amplitude of the Response versus Location of the Load

In addition to the location of the nodes, in order to calculate
the theoretical response of the disk it is necessary to know the dissipation
coefficients Gnland an. These could be determined approximately from
equations (III.2) and the information presented in figure 10, but several
practical prob]ems arise. Most significantly, there is a dependence on the
radial functions and these functions have yet to be verified. There is also
a dependence on the magnitude of the load P, and its value at resonance must
be so small to prevent a non-linear response that it cannot be accurately

measured. Both of these problems are avoided by the method described below.
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"~ ‘Damping Coefficient

If it is assumed that ‘dl =Bj, and if both the load and the
sensor are located at a node of configuration two, the one nodal diameter

response may be written as:

P [Rl(rp)]?.cos(mt—nl)

A1P1 / _(m 1122, ..v,"zﬂgw__ 5
Raj | t P

Here ¢ is the damping factor; the ratio of the actual damping
coefficient of the disk to its critical damping coefficient.?2

The response will be predominantly in configuration one if the
excitation frequency is close to py, and the load is applied at an anti-
node of this configuration. It is possible to non-dimensionalize this
response and the excitation frequency. If the amplitude of the response
is Wy when w = w_, the amplitude as a function of the excitation frequency

can be written as:

(111.3)

The experimental results are shown in figure 11 (dashed lines). For com-

parison purposes the theoretical results for é; 0.00, 0.01 and 0.02 are

also plotted (solid Tines).
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Figure 11
Relative Amplitude versus Excitation Frequency

It can be seen that the damping coefficient is less than 1% of
critical. The response at frequencies above the resonance frequency is
larger than expected due to responses in modes other than the one consid-
ered theoretically.

This experiment was also performed in. the n = 2 mode. Here it was
assumed that the disk was perfect since the natural frequencies p, and q,
were indistinguishable. The damping coefficient was again found to be Tess
than 1% of critical.

There are two effects of damping with which we are concerned. The
first is its influence on the modal admittance. It can be shown that the

difference in the admittance when calculated for £= 0.00 as compared to
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£= 0.01.is less than 4% unless the excitation frequency is within 5%
of the natural frequency.

The second effect of damping is the fsmoothing outf of the phase
change as the excitation frequency is varied from lower to higher than the

natural frequency. The phase angle between the load and the response is:

Unless the excitation frequehcy is within 5% of the natural frequency, the
difference in phase fbr the two cases ¢ = 0.00 and €= 0.01 is less than
1°.

Since neither an amplitude error of 4% nor a phase angle error of
11° are significant, the system damping may be neglected theoretically when
the excitation frequency is not within 5% of a natural frequency of the disk.

When damping is neglected, it is possible to formulate approximate
expressions for the radial and angular profiles of the disk using the rad-

ial functions obtained by the Rayleigh-Ritz method.

Radial and Angular Deflection Profiles

When a disk is excited by a load P cos wt, the total response is
the sum of the responses of each mode. This requires that the location of
the nodes of each configuration be known. It has been shown, however,
that dn = Bnapproximate1y, and if the excitation frequency w is such that
any difference between Py and 4 is negligible the theoretical imperfect

disk response is equivalent to that of a perfect disk. This was the ap -
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proach taken when the radial and angular profiles were determined for
disk C. The excitation frequencies were 0 H; and 90 Hé,'which are suit-
able for neglecting both the differences in the natural frequencies of
the configurations and the effects of damping.

In order to obtain a radial profile both the load and the sensor
were located at 6= 0. The sensor was positioned at various values of r
where the amplitude of the response was noted.

The maximum amplitude of the deflection as a function of the

radius is, from equation (II.51):

RP'(Y'R)R()(Y') +..R1 (Y'p)R]_(Y‘)
Ro (p§ -w?) Ay (pf -w?)

wir) =

For w = 0 Hz, the predominant response was theoretically found

to be in the n = 1 mode, whereas at w = 90 Hz the n = 2 mode predominated.
In both cases the contribution of the n = 4 mode was insignificant.
These profiles are shown in figures 12 and 13, where the solid

lines are the theoretical profiles and the dashed lines are those measured.

0.97 1b.

.010"

.005"

P

w
- - ¥ . .
‘ Radius (inches)

Figure 12
Radial Profile at 0 Hz. (Disk C)
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Figure 13

Radial Profile at 90 Hz. (Disk C)

It can be seen that although the load for the w = 90 Hz case
is approximately one half that of the w = 0 Hz case, the response 1is re-
duced by roughly 80%. This is due to the much greater strain energy per
unit deflection for the higher modes.

The angular profile was measured for a static load (0 Hz). The
sensor was located at r = 8.5" and measurements were taken at 306 intervals
around the disk. The theoretical angular profile is obtained from equation
(I1.51) which, neglecting damping is:

- PRg - Rp (8.5
W(o) = Ro (rp) Ro - (8.5) .

Ao (B - w?) Ar (p} - %)
0 !

- PRy (rp) R;(8.5) .cos 6

To illustrate the relative magnitudes of the responses in the various
modes, the theoretical responses for wy , w; , w, and w; are shown in

figure 14. The predominance of the n = 1 mode can be observed.
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Figure 14

Theoretical Angular Profiles at 0 Hz.



The total theoretical profile w is plotted in figure 15 (solid lines)

along with that measured (dashed 1ine):

.010" +

ha

Figure 15
Angular Profile at 0 Hz. (Disk C)
Although the experimental results for one disk only have been
presented here, these experiments were performed on the other disks as
well, yielding results which also agreed very closely with the theoret-

ical predictions.

The n nodal diameter forced response of a rotating disk is given
by equation (II.57). Because the response to a static 1oad'is oprarticular
interest, it is this type of load for which the experimental results are pre-
~sented. With thds load the theoretical response is given by equation (I1.58).

As in the case of the non-rotating disk, it is essential to have accurate
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values of the disk natural frequencies, which are now a function of the

rotational speed.

"Observed'Frequenc1e§ as éfFunction'Of'Rotationa1'Speed

There are two methods which may be used to determine the disk
natural frequencies as a function of the rotational speed. The first
method is by random excitation, as was done for the non-rotating disk.
This tiis the method that was used to obtain the results presented here.

The second method is somewhat more time consuming but is necessary under
certain conditions. If, for example, the disk either contained slots,

was not completely flat or was not running totally in a plane perpendicular
to the shaft a significant response would be observed at integer multiples
of the disk rotational speed. This would make the resonance peaks caused
by random excitation difficult to identify. However, if at a particular
rotational speed a sinusoidal load was applied and the frequency swept

over fhe range of interest, from equation (II.57) it can be seen that a
large response will occur when the excitation frequency corresponds to an
observed natural frequency at that rotatienal speed.

By random excitation the graph of figure 16 was obtained for
disk C. The difference between the natural frequencies of the two n = 1
configurations is clearly observable at all rotational speeds.

An approximate relationship for the natural frequencies was
previously given as:

2 = p2 2
Pn Pag TV 8

For this disk, the values of V,, V,, and V3 are 1.34, 2.91 and 5.90 res-

pectively.1® At 2500 r.p.m. this approximation yields frequencies which



are significént]y higher than those measured, being in érror by 6.1%,

7.6% and 6.5% for the one, two and three nodal diameter modes. The size
of these errors is attributable to the fact that for this disk and collar
at 2500 r.p.m. the potential energy'bf the membrane stresses is not small
in relation to that of the bending stresses, which is a requirement for an

accurate approximation.

100

(Hz.)

Observed Resonance Frequencies

1 1
500 1000 1500 2000 2500

Rotational Speed @ (rpm)

Figure 16

Observed Resonance Frequencies versus Rotational Speed
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It was stated in Section II.4 that if Vn>.n2, there would be
no possibility of an observed frequency of that méde becoming zero. In
this case, V;> 1 and it can be seen from figure 16 that the lower branch
of the observéd frequencies of this mode will not intersect the horizon-
tal axis. For this disk the critical speed is determined by the n = 2
mode, since it is this mode whose Tower observed frequency first becomes

zero.

In the space-stationayy coordinate system the n nodal diameter
response to a static load Tocated at y= 0 is given by equation (II.61).
For a perfect disk the total deflection at the load is:

u(n) = ﬁ P [Rn (rp)]z

A, [pZ - (n)?]

It is not immediately clear from this expression whether the rate of
change of the amp1itude'with respect to the rotational speed is positive
or negative at any particular speed. This is because the natural fre-
quencies and to a lesser extent, the radial functions are dependent on
the rotational speed.

This response was measured for disk C for rotational speeds
varying from 0 to 2500 r.p.m. A theofetica] response was calculated by
assuming the radial functions were independent of the rotational speed,
and by using the natural frequencies given in fiigure 16. The experimental
results (dashed 1ine) and theoretical results (solid line) are shown in

figure 17.
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Figure 17

Displacement versus Rotational Speed (Disk C)

It can be seen that up to approximately 1500 r.p.m. the maximum
deflection remains fairly constant. Although not shown on figure 17, this
results from the fact that the deflections in the n = 0 and n = 1 modes
are decreasing while those in the n = 2 and n = 3 modes are increasing.

The angular profile may also be determined from equation (II.61).
For a perfect disk with the load located at y= 0 and the sensor located at

r = 8.5", it is given by:

u(e,y) = ﬁ"P'Rn‘(rp)-ﬁn (8;22 cos ny
A, [pﬁ - (ng)2]

This profile was measured for disk C at 2400 r.p.m. and the results are

shown in figure 18.



Figure 18

Angular Profile at 2400 RPM (Disk C)

The predominance of the n = 2 mode is observable. This profile
may be compared with figure 15, which is for the same disk and load, except
at zero rotation speed. In the non-rotating case, the fti]ting mode", that
is, the n = 1 mode, predominates.

The theoretical calculations done assumed that this disk was per-
fect. While this is not strictly true, at rotational speeds of less than
2500 r.p.m. the small differences between the natural frequencies of the
configurations is inconsequential. One of the effects of imperfections is
the existence of a 2n2 observed frequency. No such response could be det-

ected for this disk at these rotational speeds.

80



These same experiments were conducted with disk D which is much
thinner than disk C. The steady deflection as a function of the rotational
speed is shown in figure 19, where the dashed line is the experimental

result and the solid Tine is that determined theoretically.
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Figure 19
Displacement versus Rotational Speed (Disk D)

It can be seen that up to approximate]y'1200 r.p.m. the total
deflection decreases with increasing rotational speed. Since this disk
is quite thin (0.050f), the increase in the n = 0 and n = 1 natural fre-
quencies due to an increase in the wotational stresses reducés the admit-
tances of these modes to a greater extent than those of the n = 2 and n=3
modes are increasing, resulting in a net decrease in the amplitude of the
steady deflection. Above 1200 r.p.m. the response in the n = 2 mode begins

to predominate, and near the critical speed of 2020 rpp.m., the angular
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brofi]e is very similar to that shown in figure 18, since the critical
speed of this disk is also'due to'resonance of the n = 2 miode.

The angular profile was measured at 1955 r.p.m. and the deflect-
jon under the load was found to be'0.014f. However, at this speed a
significant vibration at approximately 130 H, was observed, with an amp-
1itude of 0.0035?. The frequency of this vibration is four times the disk
rotational speed.

That this vibration is due to the forward travelling component of
a fixed vibration is readily verified by the use of two proximity sensors,
located at A7) and g in the space-fixed coordinate system. From equation
(11.61) the forward travelling component as measured by each proximity

sepsor is given by:

Unp Y P(Fnl - Fnz) cos (2n@t - nyA)

L - -
Unp 2P(Fnl an) cos (2nft nYB)

These two signals may be observed simu]taneous]y on a dual-beam
oscilloscope, appearing as shown in figure 20.

Here the sensor B is assumed to be in the positive y direction
with respect to sensor A. Since the time tg4 is. g§EYB - YAJ’ the phase
difference between u » and u p expressed as a fraction of the wavelength

.. n
is o [y = al-
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Figure 20

Forward Travelling Component Observed With Two Sensors

/—At 1955 r.p.m. the two natural frequencies p, and q, are 65.9
Hz and 66.9 Hz. The two nodal diameter response at this rotational speed

may therefore be written as:

A2
up = 4P |1 - 0.42 (E” Fo1 cos (40t - 2v)

A
+ 4P [1 + 0.42 (ﬁ” Foy cOS 2y

In order to evaluate this expression a knowledge of the nature of the im-
perfections is necessary so that the ratio AZ/BZ éan be determined. 1In
~general, the imperfections will effect both the kinetic energy (An # Bn)
and the potential energy (An # Bn). However, by assuming first one type
of imperfection and then the other, the amplitudes of neither the forward
travelling component nor the steady deflection are significantly altered.

For small imperfections, it may be assumed in this expression that A, = B,.
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It can be seen that due to the imperfections, the amplitude of
the steady deflection is substantially decreased. At 1955 r.p.m. this
decrease is roughly 25% that of the perfect disk steady deflection in
the n = 2 mode. This aspect of the effect of the imperfections cannot
be directly verified since the steady deflection due to a single mode
cannot be accurately isolated from the total.

The amplitude of the forward travelling component, though, was
measured (0.0035") and this compares quite well with the theoretical value
of 0.005f. It must be remembered that a vibration fixed in the disk is
moving relative to the air, in this case in excess of 150 feet per second
at the rim, and its amplitude is expected to be significantly less than
that calculated neglecting windage.

Considering the assumptions made in order to obtain numerical
values for the forced response of rotating disks the experimental results

"presented here are in fairly close agreement with the theoretical pred-
ictions. Although the quantitative agreement.is hot as good as in.thé
non-rotating case, equation (II.57) has beén shown to reasonably accurate]y

represent the response of an imperfect rotating disk to a ‘static load.



IV Closing Remarks

A theory has been presented here for the free and forced responses
of nondrotating and rotating centrally clamped imperfect disks. Initially
the free response of a non-rotating centrally clamped perfect disk was
considered. In order to achieve a theoretical response which more closely
agrees with experimental observations, the influence of small imperfections
within the disk were then considered. The primary effects of these imper-
fections on the free response were shown to be that nodal Tines exist at
definite 1ocatiohs in the disk, and the natural frequencies of the two con-
figurations of a nodal shape are different, the extent to which depends on
the nature and magnitude of the imperfections.

To obtain a reasonable model of a circular saw it was necessary to
consider the effects of rotational stresses‘on the disk's behaviour. It
was shown that these effects can be determined by an approximation based
on Southwell's Theorem. For disks of the physical dimensions and at rot-
ational speeds typical of circular saws, this approximation yields accept-
able results.

In determining the forced response of a disk, the load was taken as a
transverse point load stationary in space. The forced responses of non-
rotating and rotating imperfect disks were determined separately, and the
perfect disk responses in both cases were achieved by simplifying a more
~general result. The primary use of the theoretical non-rotating disk res-
ponse was- for-interpreting-experimental results to determine the extent

to which the disks were imperfect.
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The rotating disk response to a transverse load was investigated in
detail. For a perfect disk.at any rotational speed, resonance of a mode
consisting of nodal diameters was shown to be possible at two excitation
frequencies. For an imperfect disk the response was similar except there
were four resonance frequencies due to the frequency difference of the two
configurations of each shape.

Of particular interest was the'responsé to a static load since this
is the basis of the circular saw critical speed theory. At rotational
speeds well away from the resonance speed, the responses of perfect and
imperfect disks were shown to be similar. However, as the resonance
speed was approached these responses became very different. The perfect
disk modal response to a static load was shown to consist entirely of a
backward traveJ]ing wave stationary in space, whereas the imperfect disk
response consisted of this wave plus a vibration fixed in the disk. The
frequency of this fixed vibration was such that its backward travelling
component was also stationary in space thus contributing to the steady
deflection. The magnitude of the fixed vibration relative to that of the
backward travelling wave increased as the resonance épeed was approached.
Near the resonance speed, this theory, which neglected damping, indicated
that the response consisted almost entirely of a fixed wibpation, contrast-
ing significantly with the perfect disk resonance response.

The major aspects of the theory presented were verified experimentai]y.
The agreement between theoretica1 and experimental results was good con-

sidering the theoretical approximations and experimental accuracy.
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