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ABSTRACT

A general formulation is presented for the librational
dynamics of satellites having an arbitrary number, type, and
orientation of flexible appendages, each capable of deploying in-
dependently. In particular, the case of beam-type appendages de-
pléying from a satellite in an arbitrary orbit is considered. The
governing nonlinear, nonautonomous, coupled system equations are
not amenable to any closed form solution, hence are integrated
numerically using a digital computer. Effect of imbortant system
parameters is assessed through illustrative configurations repre-
senting a large class.of gravity gradient and spinning spacecraft.
Rather than accumulation of a large amount of data, the emphasis
is on evolution of a generalized and organized methodology for
coping with such complex dynamical systems.

The analysis examines the degree of interaction between
flexibility, deployment, and attitude motion through systematic
variation of system parameters. A study of appendage vibr;tion
characteristics suggest that an orbiting beam cannot be treated
simply as a rotating beam because of the presence of the gravita-
tional field. Rate of rotation pléys a dominant role in stiffening
the' beam as evidenced by the noticeable straightening of the eigen-
functions for even relatively low spin rates (2 rpm). Results also
show that the deployment-related Coriolis force can play a major
" role in causing large in-plane deformations. This implies that,
in some cases, deployment should be carried out in stages so as to

limit the time available to build up large amplitude oscillations.
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Investigation of librational response shows that the coupled
character of the motion can significantly affect system dynamics,
hence caution should be exercised in utilizing results based on
simplified planar analyses. Depending on orbital parameters and
physical properties of booms, there are critical values of appendage
length and deployment rate for which the satellite can tumble over.
On the other hand, in general, appendage offset and shifting center
of mass were found to have insignificant effect on response for the
cases considered. This may permit considerable simplification of
the complex hybrid equations with associated saving in computational
time and effort. Also, the small amplitude oscillations evident
both with the gravity gradient and spin-stabilized configurations
tends to substantiate the adoption of a linear vibration analysis.
The simulation of such diverse classes of satellites with relative

ease demonstrates the versatility of the formulation.
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1. INTRODUCTION

1.1 Preliminary Remarks

The study of satellite motion assumed practical importance
with the launching of the Soviet Union's Sputnik I in October of
1957. A key component in this study is the angular rotation exper-
ienced with respect to an orbiting center of mass. Of course, it is
the prediction and control of a spacecraft's orientation which
ultimately determines its usefulness.

As a result of the relatively simple geometry of the early
satellites, preliminary investigations of attitude behaviour were
carried out using a rigid, 'single-body representation. In many
instancgs this turned out to be a sufficiently accurate model.
However, some of the satellites were neither entirely rigid nor
could they be represented as a single body; for example, Explorer
I had four flexible antennae radiating out from the main body. As
the number and complexity of tasks grew, so too did the compleXity
of a spacecraft's configuration.

A general definition of a contemporary satellite would be:
"any collection of orbiting, arbitrarily-shaped, interconnected
bodies." Embedded in this concepf are a number of characteristics
rendering the process of mathematical modelling quite difficult.
Overall, satellite configurations can assume quite irregular forms
since they are not constrained by the aerodynamics to the same

degree as an aircraft or a missile. Each spacecraft mission and



hence each configuration tends to be unique making it difficult

to evolve a general analysis. The extent of flexibility may vary
thus making the system a hybrid construction of the classical
fully-rigid and fully-elastic parts. Considerable relative motion
between components can occur as a result of articulation, deploy-
ment or vibration. Consequently, time-dependent inertias as well
as a shifting center of mass are introduced, thus compounding the
problem considerably.

Flexibility is a design choice dictated in part by a dichot-
omy of extremes in the force environment: very high accelerations
during delivery to orbit followed by very low accelerations during
most, if not all, of the operational life. Often structures
having large dimensions are required to carry out experiments,
provide stabilization, and generate power. However, configuration
size and weight can be severely constrained as a result of launch
vehicle limitations or structural strength of the satellite com-
ponents. As a solution spacecraft are initially packaged as com-
pact rigid bodies. Once in orbit various elements deploy to
establish the desired configuration. Deployment, in many instances,
.accompanies the attitude acquisition phase during which large angle
manoeuvres take place. An additional complication is contributed
by the presence of such environmental forces as solar radiation
pressure, the earth's magnetic field, free molecular forces, etc.,
capable.of exciting elastic degrees of freedom.

The fact that flexibility is an important factor not to be
overlooked was demonstrated quite convincingly by two incidents.

Explorer I (1958) was initially spinning about the axis of minimum



moment of inertia. Four antennae located normal to the spin axis
allowed for energy dissipation via dynamic coupling between pre-
cessional and vibrational degrees of freedom. The end result was
a tumbling about the axis of maximum moment of inertia in a state
of minimum kinetic energy - a result not previously recognized by
classical rigid body stability theory. Canada's first satellite,
Allouette I (1962), a spin;stabilized system with four booms up
to about 23 m in length lying in the spin plane, experienced a
premature decay in spin rate. Subsequent analysis suggested that
'a solar-thermal induced asymmetry in boom shape resulted in a net
opposing moment from the radiation pressure. Thus, what was
initially considered to beanomalous behaviour was attributed, by
post-flight analysis, directly to flexibility effects. 1In this
context it is relevant to mention the Orbiting Geophysical Obser-
vatory (OGO III), one of the more elaborate collections of rigid
and elastic bodies. Launched in 1966, it demonstrated that inter-
action between control torques and elastic deformations could
result in attitude instability.

With an increasing use of flexible appendages, the problem
grows more critical as stationkeeping and pointing requirements
become stringent. For example, the joint Canada/U.S.A. Communi-
cations Technology Satellite (CTS/Hermes) launched in 1976 carries
two solar panels measuring 1.1 m by 7.3 m each to generate 1.2 kW.
The 'Galileo', scheduled for launch in 1982, has articulated members
with both spinning and nonspinning sections making up the main
body. Attached to the spinning part are flexible booms up to 11

m long. 1In addition, wide variations are expected to occur



in the inertia properties over £he life of the mission due to a
relatively large ratio of propellant-to-spacecraft mass. Elastic
members used in the construction of any future Solar Power
Satellites (SPS) would have dimensions measurable in kilometers.
With the advent of the Space Shuttle, tether-supported satellite
systems extending to 100 km are anticipated.

As has been implied, predicting satellite attitude motion
is by no means a simple proposition, even if the system is rigid.
The time-bound character of most projects restricts attention to
a giveﬂ configuration with dynamic simulation confined to phases
considered most important. It is therefore understandable why
the majority of published papers discuss only steady state motion
in the small. Transient behaviour associated with the critical
phase of attitude acquisition and/or deployment related manoeuvres
has been largely ignored. It should be mentioned that deployment
effects, although of a transient nature, may be felt over a long
period of time as a result of relatively small extension rates
which can be associated with long appendages.* In addition,
'deployment affects the force field acting on the flexible members,
thus influencing elastic response, structural integrity, and the
libration itself.

As can be expected, the dynamics is strongly configuration
dependent. Few investigations have been reported which apply to
more than one type of spacecraft. As a rule the mére general the

formulation in terms of configuration the less developed is the

* For example, extension of a 200 m boom typically requires
2000 s.

onfs



analysis. Ultimately a specific case is chosen with its attendant
simplifications.

An attempt is made in this thesis to demonstrate the use of
a systematic methodology for dealing with complex orbiting
dynamical systems. This is achieved by formulating and solving
the equations of motion applicable to a large class of spacecraft

configurations.

1.2 Literature Review

1.2.1 Background

Over the years the accumulated literature pertaining to the
various aspects of satellite system response, stability, and con-
trol has indeed become enormous. Hence to review this literéture
in depth would present one with a formidable task not to mention
the space required. Furthermore, several excellent review papers
have been written covering specific areas of the subject [Noll et
al. (1969),) Shrivastava et al. (1969),°2 Likins (1970, 1974, 1976,

3,4,5,6 7

1977), Likins and Bouvier (1971),

0

Modi (1974),% williams

Stuhlinger (1979),11 Roberson

(1976),2 Garg et al. (1978),"
(1979)12]. Therefore, the objective here is to trace the general
evolution of the subject, problems faced in modelling and analysis,
achievements and shortcomings, and more importantly, to indicate
the role of the present contribution within the overall scheme of

progress to date. Only the more important contributions directly

relevant to the thesis subject in hand are recorded here.



General spacecraft motion consists of: (i) translation of
the center of mass (orbital), (ii) rotation with respect to the
center of mass (librational), and (iii) relative motions between the
constituent parts (e.g. vibration, deployment, fuel movement, etc.).

To first order, the effect of libration and elastic deformation on

3 4

orbital motion is negligible [Moran (1961),l Yu (1964),l Misra and

Modi (1977)15]. Consequently, an a priori solution exists for the

trajectory as represented by the classical Kepler relations.

2

According to Roberson (1979),l the first published paper de-

voted to attitude motion of an artificial earth satellite is by

16

Klemperer and Baker (1956). It discussed the planar motion of a

rigid dumbbell configuration moving in a circular orbit. Following
this, the model of a single rigid body travelling along a circular
path was adopted for much of the early work [e.g. De Bra and Delp

(1961)17]. Primarily, configurations were taken to be either sym-

18-21 22

metric (1963, 1964, 1962, 1966), axisymmetric (1966), or a-

23,24 The libration itself was assumed to be

coupled, linear (1961, 1965),'17’23 planar, nonlinear (1969);25 etc.

symmetric (1965, 1963).

The various environmental influences considered (solar, magnetic,
aerodynamic, gravitational, etc.) are discussed in reports such as

6 7 and Roberson (1964).%% 1In

those of Evans (1964),2 Singer (1964),2
general, the effect of the earth's oblateness on attitude dynamics
was found to be negligible. The literature suggests that even for
the simplest of spacecraft, as represented by a single rigid body,
the number of parameters involved in the problem is sufficiently large
that analysts deal with a specific set of satellite parameters only.

29 in which an

A welcome exception was the work of Beletskii (1965)
axisymmetric body in an eccentric orbit is subjected to a variety

of external torques.



‘The importance of configuration as a variable in the analysis
increases with the use of multibody systéms. One of the simpler
concepts involves a relative motion within a main rigid body creat-
ing an 'effective' internal stiffness and/or damping. A planar
case was examined by Brereton (1967)30 and Tschann (1970).31
Considered too were dampers with: (a) one degree of freedom para-
llel to the spin axis, i.e. a nutation damper [Kane and Levinson
(1976)32]; (b) two degrees of freedom normal to the spin axis, i.e.
a precession damper [Cloutier (1976)33]. Cochran et al. (1980)34
compared the performance of nutation versus precession. dampers for
both axisymmetric and asymmetric saﬁellites. Dampers have been
applied to the dual spin concept as well by Vigneron (1971).35
For control purposes two singlé—degree—of—freedom gyros were oper-
ated in a 'roll-vee' mode by Morrison (;969);25 on the other hand,
a single two-degree-of-freedom gyro was studied by Kane and Athel
(1972) .3

Frequently encountered in the literature are spacecraft made
up of connected rigid masses. Both planar [Paul (1963)°'] and
coupled [Pringle (1968)38] librational behaviour has been studied
for an orbiting dumbbell. Crist and Eisley (1969)39 have presented
linear as well as some nonlinear analysis for two spinning systems:
(1) ‘a flexible dumbbell; (ii) a small mass spring-connected to a
large mass. Connell (1969)40 sought to optimize pointing accuracy
and attitude stability using a hinged two-body system. Also, con-
siderable attention has been directed towards the analysis of
cable-connected two-body systems. For example, Chobotov (1963)41

42

and Bainum and Evans (1976) have examined potential excitation of

such a system by the gravity gradient. Tai and Loh (1965)43 and



Stabekis and Bainum (1970)44 dealt with planar response while
Bainum and Evans (1975)45 evaluated the use of a multiple cable
design. The model of Modi and Sharma (1977)47 allowed for both
string-type as well as beam-type connection. Finally, Austin and
Zetkov (1974)48 have discussed simulations for a class of flexible
two-body satellites.

A more general configuration is the articulated type, i.e.
to the main body(ies) are appended secondary smaller bodies. Etkin
(1962)49 and Maeda (1963)50 presented the linearized uncoupled
equations together with some preliminary response data for a gravity-
stabilized configuration in which a number of rods are symmetric-
ally pinned to a central body with both stiffness and damping
present at the joints. Hughes (1966)51.added tip masses to the
rods of this configuration and optimized both transient and steady
state pointing performance with respect to system parameters. At
synchronous altitude maximum pointing errors of the order of two
degrees and damping times less than one orbit are achieved. Lips
(1967)52 derived the linearized planar equations for a similar
system but augmented the gravity gradient effect by attaching the
tip masses to the rods by means of long 'massless' strings. Later,
the effectiveness of a number of different rod-string-tip-mass com-

binations in providing gravity gradient stabilization was invest-

igated by Garg (1969).53 Another series of complex configurations

is typified by the gravity-stabilized Radio Astronomy Explorer (RAE)
satellite studied by Dow et al. (1966).54 In this case four long

(228 m), flexible, deployable booms lie in the orbital plane and a

set of rigid damper booms are skewed with respect to the orbital plane.

The spin-stabilized Alouette I and II had four (11 m to 36 m) booms



attached to a central rigid body. Described by Charyk (1977)56
is a series of communications satellites which have as appendages:
antennae booms, antennae dishes, and/or solar panels. Janssens
(1976)57 discusses the dynamics of a spinning rigid body to which
are attached appendages which act as spherical pendulums. Finally,
it should be mentioned that the SPS of Glaser (1976) o8 could bring
into question the role of the appendage as a secondary body.

In addition to rigid or hybrid rigid/elastic forms which a
satellite might assume, there is also the prospect of a fully

9 60

elastic system. Ashley (1967),5 Modi and Brereton (1968),

Bainum et al. (1978, 1980)°162

have studied the dynamics of a
beam-type satellite. Also Breakwell and Andeen (1977)63 dealt with
a chain of beads to be used for communications, while Chobotov
(1977)64 proposed a chain of solar arrays aligned along the local
vertical as a method of collecting solar energy.

The introduction of flexibility into the design has proven
to be a major source of complication. With respect to libration
it acts as a dissipative feedback mechanism interacting with the
control system and environmental forces. Provided structural in-
tegrity is maintained, large amplitude (or even unstable) Vibra—
tions are of concern only to the degree that they affect the libra-
tional behaviour.* Consequently, flexibility need be included in
the analysis only if it is expected to interfere with the attitude

motion. However, it is important to emphasize that a priori know-

lege of flexibility effects is, in general, not available.

* yUnless the flexible member must also satisfy some other design
criteria, e.g., support a magnetometer.
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Neglect of flexibility has produced a host of surprising
dynamical behaviour, some of which was identified earlier. Among
the first to review flexibility effects based on post-flight anal-
ysis were Noll et al. (1969).l Interaction problems are shown to
manifest themselves as transient phenomena, limit cycle oscilla-
tions, or instabilities. Such unforeseen occurences are attributed
to deficiencies in the structural dynamics analysis and/or know-
ledge of the flight environment. Similar findiggs are expressed
by a NASA document (1969)65 and by Likins and Bouvier (1971).7
The survey was updated by Likins (1976, 1977)5’6 who reported some
successes as well as failures in treating flexible systems. Modi
(1974)8 offers a comprehensive state of the art assessment of
efforts made in dealing with both the librational response and the
appendage dynamics itself. Particularly helpful is the attempt to
unify the problem by simultaneously bringing together different

aspects of control system, structural, and librational dynamics.

1.2.2 Equations of motion

In general, time and effort involved in the derivation of gov-
erning equations of motion can be enormous hencé, one seriously’in—
quires about the most efficient procedure available. The fundamen-
tal choices range from D'Alembert'é Principle and the Newton-Euler

vector approach to the use of the Gibb's function66 and the

67

Hamilton-Lagrange variational model. The issue will be reviewed

only briefly here since it has been debated extensively in the

68,69 yooker (1970),'°0 stichin

Anand and Whisnant (1971),73 Ho (1974,

4,76

literature by Russell (1969, 1976),

et al. (1970, 1975), 272

74,75

1977), Likins (1974, 1975), Wwilliams (1976),° McDonough
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(1976),77 Jerkovsky (1978),78 and others. The most common objec-
tion raiséd regarding the Newton-Euler application is the need to
include constraint forces even when they are not specifically
sought. This difficulty is eliminated with the Lagrangian pro-
cedure but here the kinetic energy expression can become unwieldy
to derive and even more so to differentiate, as indicated by
Russell (1976)69 and Lips (1978).79 Overall, no one approach
appears £o be superior in all respects. Likins (1975),76 for
example, points out that any apparent advantage in structure of
the Lagrange quasicoordinate equations over the Euler equations
disappears when the issue is carefully examined. If any trend is
discernable at all it is toward acceptance of a result similar to

80,81 and Jerkovsky (1978)78 in

that of Kane et al. (1965, 1968)
which the variational application of D'Alembert's principle yields
equations similar in forms to those of Newton and Euler. That is,

for n rigid bodies having k degrees of freedom the governing equa-

tions of motion can be represented by [Likins (1977)6]:

n . 33- . ow .
'Zl [(Ej-mjgj) 54 ‘:‘1 + (M’j-ﬁj) ° .J] = O; i,-..,k (l.l)
J= 39, Iqgy
where,
_ . .th
Ej = force acting on j body,
Mj = moment acting about center of mass of jth body,
Ej = angular momentum for the jth body,
mj = mass of jth body,
Bj = inertial position vector,
q; = ith generalized coordinate,
Ej = angular velocity vector for the jth body.

Constraints and redundant equations vanish as a result of the summed
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dot multiplications. A recent paper by Kane and Levinson (1980)82
suggests that such an approach involves the least effort. Levinson
(1977)83 has developed a computer program for constructing equations
of motion for rigid systems via symbolic manipulation, based on
equation (1.1).

The diversity with which the problem is approached is empha-
sized by the following collection of papers. Meirovitch et al.84—89
have consistently adopted the variational approach to investigate
stability of spacecraft having elastic appendages. A unique set
of adiabatic invariants is provided by Mitchell and Lingerfelt
(1970)90 when studying the effects of 'slow' changes in material
volume and elasticity. Keat (1970)91 was among the first to out-
line a systematic method for deriving nonlinear equations, combin=
ing an Euler approach for attitude equations with a Lagrange
approach for appendage dynamics. Alternatively, in applying the
Lagrange equations, Samin and Willems (1975)92 used guasicoordinates
when dealing with the attitude dynamics while generalized coordin-
.ates describe the vibrations. Russell (1976)69 preferred the use
of first order momentum equations. A D'Alembert derivation is im-
plemented by.Bodley and Park k1972)93 who employed projections of
momentum as the dynamic variables, a choice first advanced by

1

Vance and Stichin (1970).7 Exact or 'global' equations of motion

for an elastic body are offered by McDonough (1976)77 as a check
against approximate analyses. A number of studies have been carried

out which consider the motion of a flexible system to be simply a

perturbed form of the rigid body solution [Grote et al.'(197l),94

95

Huang and Das (1973), Morton et al. (1973),96 Kraige and Junkins

(1976)97]. Pringle (1972)98 has implemented a perturbation formal-
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ism via canonical transformations.

of course, one cannot over-emphasize the importance of choice
of reference coordinates in any formulation procedqre, as it can
have a profound effect in either simplifying or complicating the
resultant governing equations. Williams (1976)9 has recommended a
satellite attitude reference frame fixed to the centerbody.
Naturally, this may not be useful for spacecraft which are not all-
flexible, . as pointed out by Veubeke (1976)99 and Canavin and

100

Likins (1977). Also, an array of variables such as the Euler

angles, direction cosines, Euler parameters, quaternions, Cayley-
Klein and Euler-Rodriguez parameters can be used to identify

vehicle attitude. Recently, many authors such as Davenport

1 2 3

(1973), 190 onkami (1976),1%2 and Nazaroff (1979)1°3 have reexamined

the general problem of transformation between reference frames in

a three dimensional space. Wilkes (1979)104

derives an expression
in which the elements of the transformation are expressed explicit-
ly as functions of any three rotation angles and the corresponding
rotation axes. What has become common for spacecraft navigation
applications is the use of the Hamilton gquaternions because of

their relative compactness - four elements versus nine for direction
cosines [Garg (1978),-° Mayo (1979)195) . Ickes (1970)1%% inte-
grated the concept of quaternions ‘into a digital attitude control

system. Also helpful is the work of Klumpp (1976),107

8 9

Spurrier

(1978) , 198 sheppard (1978),1%% ana Grubin (1979)1? in enabling
one to efficiently extract a quaternion from a direction cosine

matrix.
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1.2.3 Appendage dynamics

A critical step in completing the development of the goverh-
ing equations for a satellite is the dynamical modelling of any
flexible elements present. Much of the background to the problem
is presented by Modi (1974).8 Because of its importance, some of
the main features and conclusions are discussed here along with a
review of the more recent literature. Pioneering contributions to

11

the field may be attributed to Vigneron (1968), %' Likins (1970),°

12 84-89 Basically, elastic

Hughes and Garg (1973),l and Meirovitch.
members are treated either as a series of interconnected rigid
bodies whose dynamics is governed by a set of ordinary differential
equations, or as a continuum generating a system of partial differ-
ential equations. The continuum set can be 'discretized' in a
mathematical sense by means of an assumed-mode solution, thus pro-
viding a set of 'distributed' or 'modal'’ coordinates* governed by
ordinary differential equations. Likins (1970)3 encouraged the
adoption of a hybrid system cOmbining the attitude variables describ-
ing libration with the distributed coordinates defining flexible
behaviour. Depending on the accuracy required, one can truncate

the modal series representation appropriately, thus signficantly
reducing the number of degrees of freedom while at the same time
avoiding troublesome high frequendy interactions in the simulation.

Truncation is rationalized by Hughes and Garg (1973).112 More

quantitative criteria are prescribed by Russell (1976),69

et al. (1976).113 No truncation is needed if one works in the

and Likins

% Coordinates representing the shape or motion of a continuum
at particular instant.
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frequency domain as suggested by Kulla (1972),114 Larsen and Likins

(1976),115 and Poelart (1977);116 however, this is not possible for
a nonlinear system.

Determination of spacecraft vibration characteristics can con-
sume a large proportion of the analysis effort. Ideally the assumed-
modes chosen in solving for distributed coordinates would be the
exact eigenfunctions. The approach taken by Likins (1970)3 is to
derive modal characteristics based on the assumption of a constant
average angular motion. On the othér hand, Hughes and Gérg (1973)112
carried out an ambitious and detailed study for flexible solar arfay
characteristics, both 'constrained' (no libration) and 'unconstrain-
ed' (libration fully integrated into the vibration eguations).

7

Nguyen and Hughes 11976)11 and Gupta (1976)118 applied the finite

element method to the same end. Structural dynamics associated with

9

the CTS is also studied by Vigneron (1975)ll who examined 'free'

vibration characteristics at one-g (ground level) and zero-g (in-
orbit) states, and by Sincarsin (1977)120 who includes the gravity
gradient effect. Hughes and Sharpe (1975)121 generalized the model
somewhat by including a source of internal angular momentum when
deriving appendage characteristics. Meirovitch (1974, 1975,

1976)122,123,124

has presented a general eigenvalue approach for
arriving at overall spacecraft modes. In effect, this represents
an extension of the normal coordinate method to any hybrid repre-
sentation which can be modelled as a linear gyroscopic system.
The second order system is replaced by a set of first order equa-
tions expressed in terms of the state variables. As pointed out

125

by Nelson and Glasgow (1979), one could work with second order

eigenrelations. Still another alternative is to construct vehicle
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modes by synthesis of the modes of the constituent elements as sug-

126 7

gested by Rubin (1975)Y 2% and Hintz (1975).12

One of the more common spacecraft appendages is the boom used
in communications and in providing gravitational stability. Be-
cause of its long slender nature it can, in general, be modelled

as a beam. For this reason the problem of rotating beams is of

particular interest and has been studied extensi.vely.lzs—135 In

particular, Kaza and Kvaternik (1977)136 have surveyed several

methods for linear as well as second degree nonlinear representa-
v

tions of the problem. Independent of this result, Lips and Modi

137,138

(1977, 1978) worked out second degree equations for the more

general case of a deploying rotating beam. Nguyen (1978)139 de-
rived and attempted to solve (nbt always successfully) the fully
nonlinear equations. It is useful to recognize that it is not
always necessary to deal with nonlinear equations. If, for example,
the nonlinearity is a result of large steady state deformations

(as might be the case with high spin rates), the nontrivial equilib-
rium shape can be established together with linear equations de-

scribing oscillations with respect to it [Flatley (1966),140

Meirovitch et al. (1976),141 Kisselbach (1976),142 Hablani et al.

(1978) 1437,
A number of authors have focused attention on investigating

the dynamics of 'large' flexible spacecraft.l44"146 Canavin and

Meirovitch (1979)147 have pointed out that with an increase in
significance of flexibility, its effects can no longer always be
considered as simply a perturbation on the rigid body response.

Veubeke (1976),99 has presented a method for dealing with the non-

linear dynamics of completely flexible spacecraft.
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As a final point, one should bear in mind that flexible
elements in space are susceptible to environmental excitation.
Modi (1974)8 has reviewed most of the significant investigations
reported in the literature. 1In addition, thermal effects on appen-

dage dynamics have been studied by Lorenz (1975),144 Tsuchiya

(1977),148 Farrell (1977),149 and Frisch (1980).150 Also more

recently, Kumar (1976),151

making use of quasi-steady assumptions
about elastic response, has assessed thermal and radiation pressure
effects on librational stability. Joshi and Kumar (1980)152 make

direct use of solar radiation pressure to offset the effect of

orbital eccentricity on attitude performance.

1.2.4 Stability and control of flexible spacecraft

Perhaps a good indicator as to just how important flexibility
effects have become is the large body of literature devoted to
stability analysis alone for non-rigid satellites. Classical re-
sults based on rigid body inertias proved inadequate. Many studies
deal specifically with systems having long, flexible, beam-type

appendages; for example: Vigneron et al. (1976, 1970),153_155

Hughes et al. (l97l),l
Typically it is found that: (i) the 'major-axis' theorem is a
necessary but not a sufficient condition for stability of a flex-
ible system;156 (ii) necessary conditions for stability can also be
derived using such approaches as that of Lyapunov; (iii) assuming
the spacecraft to be rigid could lead directly to erroneous
results; for example, the effect of elasticity is to destabilize
'crossed-dipole' configurations which are stable when considered

to be rigid bodies.154 How far booms can be extended without
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causing attitude instability was discussed by Meirovitch (1974)160

le6l

for spinning systems. Barbera and Likins (1973) and Meirovitch

et a1.84—89 have developed stability criteria for a large class of
continuum systems usingvthe Lyapunov method. Very geﬁeral criteria
are developed also by Likins (1972)162 and are applicable to any
linear dynamical system including that repfesented by spacecraft.
The Lyapunov technique was put in a state variable format by Smith
and Gill (1974).163 Nonzero prodﬁcts of inertia associated with
flexibility were found to assist in stabilizing the dual-spin con-

figuration studied by Tseng and Phillips (1976).°%

During the
stability study of a gyrostat having flexible appendages, Calico
(1976)165 found it sufficient'to represent each elastic displace-
ment by a single discrete coordinate. Boland et al. (1974)166
dealt quite generally with stability of a system of interconnected
deformable bodies. Although brief, such an outline should convince
the reader of the need to include flexibility when carrying out any
stability studies.

Even when flexibility does not upset the intrinsic stability
of a configuration it can, nonetheless, interefere with the ability
to control attitude to the desired degree. Several alternatives
exist if one has to deal with unwanted vibrations. The contfol
system can be modified. Also, the elastic behaviour itself may be
controlled. Specific examples of interaction between a spacecraft's
control system and its structural degrees of freedom have been

67 8

documented by Likins et al. (1970),%7 millar (1970),1%% malicn

9 170

(1975),16 Loesch et al. (1976),

71

and others. More recently,
Yocum and Slafer (1978),1 during their study of 'severe' inter-

actions , observed the possibility of a 'beating' phenomenon in a
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2

multi-boom satellite system. Hughes (1976)l7 has discussed the

use of a passive damper to reduce such interactions. With respect

to control, Hughes has also considered the implications of flex-

ibility for the pitch attitude control of the CTS173 and for flex-

174

ible spacecraft in general. Basically a continuum mechanics

representation is adopted followed by a truncated modal series
approximation which results in additional degrees of freedom form-

ing a feedback loop relative to the attitude response. Zach

(1970)175 attempted optimal control of a distributed gravity-

stabilized system. Also, a design approach based on pole alloca-

176

tion has been advanced by Tseng and Mahn (1978). Millar et al.

(1979)177 and Hughes et al. (1979)178 have suggested various types
of control system logic one might apply. Methods for providing

control torque include the use of a flexible boom actuator [Gatlin

et al. (1969)179], a double-gimbaled momentum wheel [Hillard
(1976)180], and the use of environmental forces [Pande et al. (1974,
.1976)’181,182,183 ctc.].

As a means of reducing flexibility effects, Hughes (1975)184

185

and Gething et al. (1975) suggest increased damping of structural

modes. More direct is the vibration isolation adopted by Cretcher

and Mingori (1971)8©

7

and the vibration suppression of Balas

188

(1979).18 Smith and Gill (1977) introduced the concept of

state parameter control in which elasticdegrees of freedom are in-
cluded in the state vector to be controlled. Somewhat more sophis-

ticated versions of this procedure are described as appendage modal

control by Beysens (1976),189 Jonckhere (1976),190 Sellappan et al.

191-193

(1978), %) and Meirovitch et al. (1978, 1979). Martin and

Bryson (1980);94 discuss a possible low order controller which
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provides near optimél attitude regulation but is not as sensitive
to modelling error in the appendage dynamics as is the full-order
controller.

Indications as to trendsiin the control of present and future
spacecraft are provided by the discrete-time approach of Folgate

195 196

(1976) and Kuo (1976) along with the appearance of digital

onboard computers [Kuo et al. (1974),197 Kawato et al. (1976),198

199 200

Van Landingham et al. (1978) 1. De Bra (1979) suggests that

the added sophistication of modelling error compensation via the
control system itself [Skelton and Likins (1978)20l] may become a

prerequisite for coping with future challenges.

1.2.5 Transient response and deployment dynamics

By now we have gained some appreciation as to the complexities
associated with configuration geometry and vehicle elasticity.
Analysis becomes even more involved during extension or retraction
of flexible appendages. The deployment introduces a variable mass
distribution (and hence variable moments of inertia) together with
relative velocities and accelerations. Perhaps because of its in-
herent complexity the problem has received relatively little atten-
tion. In general, available investigations tend to be more limited
in scope than those dealing with nondeploying flexible structures.

Lang and Honeycutt (1967)202 approximated spinning flexible
deploying rods to point masses chated at the radius of gyration.
Cloutier (1968)203 has considered spinning systems with tip masses
extended by means of weightless rigid rods. On the other hand,

204

Bowers and Williams (1970) employed rigid booms and synchronized

their deployment intervals with pitch attitude so as to ensure
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capture by the gravity gradient. The assumption of rigid booms
permitted Hughes (1972)205 to obtain an approximate closed form
solution for attitude behaviour of a spin-stabilized satellite,
during appendage deployment. A series of deployment-related situ-
ations ranging from spacecraft detumbling to a study of stability
during asymmetric deployment were examined by Bainum et al.206—211
for some specific configurations. The elements deployed in these
studies were either rigid rods having a uniformly distributed mass
or point masses - no flexibility was taken into account. Dow et al.
(1966),54 however, did consider flexible boom deployment as it
applied to the RAE. As described by the authors the model develop-
ed is guite extensive in that it includes such factors as structural
damping, a rigid damper-boom model, solar radiation pressures,
gravitational effécts, and 3-axis attitude motion with both analog
and digital simulations. Although interesting results were present-
ed in the form of pitch/yaw displacement, maximum libration angles
attained under different deployment and pitch initial conditions,
and energy variation in orbit; no governing equations are given.
Cherchas (1971)212 investigated maximum nutation, precession,
bending moments, and deflections occuring for a specific spinning
configuration with booms extending normal to the nominal spin axis.
However, when evaluating vibration characteristics deployment rate

effects were ignored and a constant spin rate was assumed. A

similar approach is adopted for the case of solar array deployment

21
3].

perpendicular to the major spin axis [Cherchas and Gossain (1974)
In both the previous presentations, the so-called 'quasi-modal'
approach is used in which eigenfunctions associated with the in-

stantaneous appendage configuration are used when forming the
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series representation for the elastic deformations. The difficult
issue of differentiating the quasi-modes is not addressed.
A somewhat different class of deploying systems is represent-

ed by the cable configuration of Ebner (1970)214 and Stuvier et al.

5

(1973).21 In this case, attitude motion is determined without

analyzing cable oscillations. Such effects are fully accounted

216,217 Kane and Levinson

for, however, by Modi et al. (1978, 1979).
(1977)218 have presented an initial analysis of the dynamics related
to a payload undergoing free-flight deployment from an orbiting
spacecraft at the end of a massless cable. Simulatiohé indicate the
possibility of retrieving a payload from 100 m in less than 78 min-
utes for a spacecraft moving in a 90 minute orbit.

Significant progress has been made toward generating analyses
applicable to deploying systems but still retaining some degree of
generality. In the form of a progress report on the CTS, Hughes
(1976)219 deals with the effect of deployment when formulating equa-
tions for a nonrotating rigid body with an arbitrary number of deploy-
able appendages capable of small deformations. A set of general equa-
tions are developed for the case in which deployment occurs at a con-
Stant rate along the rectilinear directions of the appendage. Also,

212,213 can be

the view is expressed that the use of a modal analysis
expected to yield good results if rates of deployment are gradual
enough, i.e. i< 912. Lips and Modi (1978)l38 presented a more
general formulation allowing for three dimensional nonlinear attitude
motion, gravitational effects,-an arbitrary number/type/orientation
of appendages, shifting center of mass and independent deployment

rates and accelerations of arbitrary magnitude and direction for each

appendage. In addition, second degree nonlinear egquations were de-
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rived which govern the vibration of deploying beam-type appendages
of arbitrary croSs—sectién. Preliminary results suggested the ex-
istence of critical combinations of flexibility, deployment, and
spin which can give rise to large amplitude, and even unstable,
vibrations and hence librations. A linear form of the Newton-
Euler equations governing translation and rotation are formulated
(but not applied) by Jankovic (1980),220 for a single deformable
body having a time variable (deploying) configuration.

An important aspect, and a major area of study in its own
right, is the effect of deployment on appendage vibration character-

istics. Leech (1970),221 Tabarrok et al. (1974),222 and Jankovic

(1976) 223

have studied the behaviour of a uniform beam extending
along the axial direction. For example, an analytic solution exists
for deployment at a constant rate since the equations can then be

222 A solution for the case of arbi-

expressed as a Bessel equation.
trary deployment history was obtained using a series of admissible
functions. As opposed to this case, the second degree vibration

138 account for the effect of de-

equations of Lips and Modi (1978),
ployment acceleration, spin rate and spin acceleration. 'Free'
vibration characteristics obtained with a linearized form of these
equations have been used to assess the influence of spin, deployment
rate, deployment acceleration, and Coriolis effects arising from

coupling of deployment and spin velocities [Lips and Modi (1978)224].

Jankovic (1980)220

worked out vibration equations for the CTS solar
panels modelled as a nonspinning boom, rigid pressure plate, and
membrane. No gravity gradient or deployment acceleration effects

were considered. Governing equations were solved using both the

quasi-modal approach and Galerkin polynomials. Good agreement was
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obtained between measured and simulated acceleration at the array
tip for the CTS. However, the tremendous effort involved in gener-
ating response via the quasi-modal approach suggests the progress
can be made only by means of some other approximate procedures,

such as through the use of admissible functions.

1.3 Purpose and Scope of the Investigation

The literature review illustrates the large number of factors
with which the analyst is faced when modelling the dynamical be-
haviour of a modern day spacecraft. Equations of motion can be
formulated by ﬁeans of the Eulerian, D'Alembert, or Lagrangian
principle using generalized coordinates or quasicoordinates. Elastic

members are treated as a series of interconnected rigid bodies as

in the finite element procedure, or as a continuﬁm. Méthematically,
the governing equations range from a finite set of partial differ-
ential equations to an infinite set of ordinary differential equa-
tions. In general, investigators have dealt extensively with the
linear steady state response for a well-defined configuration. Very
little attention has been directed toward the transient phase which
is of considerable interest and importance because of the possibility
of large angle motions during deployment of appendages. There are
only scattered attempts which consider flexibility and deployment

for a general configuration.

This thesis presents a general nonlinear formulation for
librational dynamics (Chapter 2) of a spacecraft in an eccentric
orbit with an arbitrary number, type, and orientation of deploying
flexible appendages. Both shifts in the center of mass location

and geometric offset of the point of attachment of the appendage
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from the center of mass are provided for.

The beam-type appendage which is chosen here is typical of
what one actually finds in use. Note that even solar panels of the
CTS were supported by a dominant central boom. Second degree non-
linear vibration equations for such flexible appendages, derived
in Chapter 3, are based on a variational approach. Taken into
account.are such features as variable sectional properties and axial
'foreshortening'. Of course, the general equations account for
coupling with the three attitude degrees of freedom. The conjugate
character of the system with the librational motion affecting the
vibratory displacement and vice-versa, renders the problem quite
challenging.

Evaluation of exact appendage modal characteristics can be
expensive and time consuming. Improvements in librational predic-
tions may not always justify the effort. The situation is further
obscured during deployment since the system is then nonautonomous.
Hence it is helpful to examine the vibration characteristics for
models more accurate than the simple Euler-Bernoulli beam and yet
not as involved as the nonlinear case. For this reason a linearized
analysis of the vibratory motion is carried out over a range of
spin and deployment parameters, assuming only pitch attitude motion,
i.e. librational motion, in the orbital plane (Chapter 4)..

However, from design considerations, the main aspect of
interest would be the transient librational response over a range
of system parameters and initial conditions. Thus, having formula-
ted general librational equations, one seeks their solution.

Results of direct numerical integration on a digital computer are

given in Chapter 5 for the case of planar motions and in Chapter 6
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for the case of 3-axis attitude response. The system is sO program-
med as to isolate the effect of flexibility, spin, shifting center
of mass, etc., and to assess their significance in a given situétion.
To summarize, the objective here is to evolve a formulation
of a general character applicable to a large class of spacecraft.
Rather than the accumulation of a large amount of data, the intent
has been to establish a systematic methodology for coping with
complex dynamical systems.

Figure 1.1 provides an overview of the research effort.



DYNAMICS OF A LARGE CLASS OF SATELLITES
WITH DEPLOYING FLEXIBLE APPENDAGES

|

[BEAM-TYPE APPENDAGE DYNAMICS* |

[ | ' NONLINEAR LIBRATION DYNAMICS:
. - Triaxial Satellite with Arbitrary Number
Lsecf?d Deg;ee . Linear Equations and Orientation of Flexible Appendages
on.inear Equations Deploying Independently#**

'Free' Vibration

Characteristics

Gravity Gradient, Spin-Stabilized Configur-
ations, Solved by simultaneous integration
on digital computer

* Accounts for:

i) axial 'foreshortening',

ii) 3-axis attitude motion, I l

iii) general deployment, ) lPlanar MotigEJ {3-Axis Motioﬁ]

iv) gravitational effects, . |

v) variable cross section,

vi) transverse and axial oscillations,
vii) offset from center of mass. I |
| Rigid | [Flexible |

** Accounts for: [ l
i) orbital eccentricity, ] ]
ii) gravity gradient, [Nondeployingj [Deployigg [ﬁondeploying] [5Eployingj

iii) shifting center of mass,
iv) geometric offset of appendages.

Figure 1-1 Outline of the research program

LC
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2. GENERAL ATTITUDE EQUATIONS OF MOTION

Recognizing that orbital perturbations due to either space-
craft libration or appendage vibrationare in general negligible,15
one can describe the motion of the center of mass according to the

following Keplerian relations:

he = R. é = constant; (2.1a)
c

R
c

hﬁz/u(l+e06). (2.1b)

Of course, it has been tacitly assumed that deployment will not
alter this findiné. Thus, in almost all missions of practical
importance, librationai dynamics .can be studied independently of
the orbital motion. This chapter derives, using the Lagrangian
procedure, governing nonlinear librational equations valid for a

large class of flexible satellite systems.

2.1 Configuration and Reference Coordinate Systems

Consider a spacecraft with its instantaneous center of mass
Oc negotiating an arbitrary trajectory with respect to the center
of force at OI[Figure‘Z—l(a)}- Position vector Bc and true anomaly
§ define the location of Oc with respect to the inertial reference

7 . represent an orthogonal orbit-

X, ¥, Z centered at OI' XO’ YO’ o

ing reference frame with its origin fixed at Oc where xO and YO are
the local outward vertical and horizontal respectively, and ZO is

aligned with the orbit normal.



Figure 2-1
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Orbit

Perigee

Inertial Reference

Geometry of satellite motion: (a) inertial,
rotating, and body-fixed coordinate systems;

(b) modified Eulerian rotations Y,A,% defining
arbitrary orientation of the central rigid body
during librations.
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The librational response is defined by the modified Eulerian
rotations ¥, A, ® of the body-fixed axes x, y, 2 with respect to
the orbiting reference X,, Y., Z, [Figure 2-1(b)] . Note that this
sequence is synonomous with the Bryant and Kardan angles referred

to by Wittenburg.ZZb Axes X z,. are parallel to the x, y, 2

o’ Yo' %0
coordinates at all times, but have a different origin, OO’ rep-
resenting center of mass location in the absence of any flexibility
effects (Figure 2-2).

The literature survey suggests that the class of configur-

ations represented by an arbitrarily-shaped central rigid body to

which are attached an arbitrary number of deploying appendages

has a wide range of application. The appendages can be rigid or
flexible and are -to be cantileﬁered to the main body forming a
simplified topological tree* [Meirovitch (1972)85]. Note both the
orientation and the shape of the appendages vary.

The presence of a rigid main body allows one to describe
the rotational dynamics relative to a set of axes x, y, 2z fixed
to this main body. Such a reference is still a 'floating' system
by virtue of the orbital and the attitude motions of the central
body. As with the orbiting axes, the origin in this case is taken
to be coincident with the instantaneous center of mass. Con-
sequently, in such a case the lihear momentum is zero at all times
resulting in the simplification of kinetic energy, gravitational

) . 100
potential, and angular momentum expressions.

* j.e., no closed loops and no secondary branches occur in the
topology of the structure.



th Y
i o/
Trajectory APPENDAGE

Inertial Reference

RIGID CENTRAL BODY

Figure 2-2 A general spacecraft configuration showing shifting
center of mass, appendage offset, deployment, and
deformations.
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The practical significance of the above choice for a refer-
ence frame becomes apparent when one recognizes that attitude
sensors too are fixed to the main body. This fact provides some
guidance also when one is selecting coordinates to be used in
monitoring spacecraft attitude. Ideally, the same coordinates
should be capable of representing both the gravity gradient and
spin-stabilized configurations. Such considerations lead one to
choose the Euler angles as defined in Figure 2-1(b).

Elastic deflections ;s Vir Wy of the ith appendage are

measured with respect to their undeformed configuration as

specified by the Xiv Y0 Z4 system of coordinate axes which, in

r b

turn, are obtained through the modified Euler rotations wi, ki i

relative to the x z, coordinates. These rotations are used

o’ Yo' %o
to construct the transformation matrix [xi], allowing conversion

(1)

between local appendage coordinates e, and central coordinates

i
e.(o):
i
e s uig vy ek (2.2a)
(1) _ (0),
ey = Ixgl g5 i (2.2b)
(c¢icwi + s¢iskiswi) s¢icki (—cq)iswi + s¢iski¢wif
[Xi] = (—s’cbicwi + c¢isxiswi) ccbicki (s¢iswi + c¢isxicwi) ;
] ckiswi —ski cAicwi |

(2.2c)
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.where:
s() = wsine ( );
c() = cosine ().

The origin of the local appendage coordinate system, Oi' has a net
offset T from the instantaneous mass center as a result of flexi-
bility and deployment, as given by T and due to geometric offset
g;- Each appendage is shown deploying independently with velocity
'Ui along the X, axis (Figure 2—2)5 Note that the center of mass

shift is measured from O, to O and allows for asymmetric deploy-

ment. That is

r =—l-zf' @ + a2+ 0, +e) dm,, (2.3a)
—=c m_ . =i =i —i =i i
s i Ym,
i
where:
d. vector. locating dmi for the undeformed appendage and is
measured with respect to O,, g? + g?;

_? vector gi prior to deployment;

_E net change in gl as a result of deployment;

But,
z f (@ + o.)dm, = 0, (2.3b)
X =i —i i
1 mi

hence, in general, |

1 b '
I, = o ;./~ (dy + e;)dm;. (2.3c)
s i“m

2.2 Lagrangian Formulation

2.2.1 Background
Principle methods of formulating equations of motion were

outlinedin Chapter 1. Use of the Lagrangian équations were pre-
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ferred here since the objective is to study overall vehicle motions,
not forces of interaction. The degrees of freedom associated with
such a holonomic.system can be represented by the guaternions in
conjunction with quasicoordiﬁates or momentum variables to arrive

at relatively simpler sets of relations. Hhowever, the quantities
which physically describe the motion become more deeply buried in

an escalating number of equations. They méy-permit more rapid
numerical analysis, however, at the cost of lost physical under-

standing of the true nature of the motion.

2.2.2 System kinetic and potential energies

Figure 2-2 identifies the undeformed (Ei = gi+gi) and de-
formed (£d,i= Ei—£c+gi) spacecraft configuration. Such a system
undergoing general libration together with appendage vibration and
deployment at velocity Yi has a kinetic energy which can be expres-

sed, relative to the inertial reference, in the matrix form:

dR. . dR. .
_ 1 -d,i, T , —d,1
1
dr dr
-1 =T . ==
=3 5! e
s 2o T " o g (e

1

+ {w}T§ / [ra i] {VO i} dm,
i m. (4 4
i

1 T. i
iJm, ‘
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where:
Rayi = Bo*Zg,i TR Y E Yey
= R _+ 1y, +e. - r ;
=i -1 =C
YO i = relative velocity of mass element dmi,due to vibration
14
and deployment only, as measured with respect to the X4
%%, i
. .4 L] -
yir 2y axesi gp—— + Yy 0 V) (zy + ey )7
(i),_ . . . . .th
[Ii l= instantaneous moment of inertia matrix for the i appen-
dage, expressed in 'local' coordinates;
Wy Acod + é(chAs@ - s¥Ycd) + YcAsd
{w} = wy) = -Rsé + 6 (c¥sAcd® + s¥sd) + ¥Ycocd
wy & + bcyenr - s (2.5)

It is easy to recognize distinct contributions from:

(1) orbital motion associated with a translating mass center;

(ii) rotational motion due to overall attitude librations;

(iii) relative motion due to appendage oscillation and deployment.
Total potential energy (V) consists of a gravitational (Vg)

and an elastic (Ve) contribution. Neglecting terms of third and

higher order in the variable (ri/Rc), one can write [Etkin (1962),49

226 y 85

England (1969) Meirovitch (1972), etc.]:
vV=Vv_ +V
g e
um : .
- _ _ S _ (.M T (1)

c 2Rc i
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PR R S I SR L 0 70 ol £ S Rt B P/O8 AR SIS
2 3
R 1
c
2 2 2
du_ . d7u _ . 2 u w
c,1i c,1i c,1i c,iy.
A AR - al N e e AR yi (2.6)
X. 92
i
where:
u = gravitational constant, GM;
m = total combined mass of the_satellite;
{xa} = vector of direction cosines between Bé and X, Y, 2Z;
c¥cd® + sYsAsd
= -c¥Ysd + s¥YsAcd . (2.7)
sYch

2.2.3 The Lagrange equations and an alternative momentum
formulation

The Lagrangian for the hybrid configuration of Figure 2-2
can be separated into two parts: one associated with the undeform-
ed configuration (Z) and one with the deformed appendages (I fD T

i i
dD.):156
i

L=T7T-V =& (g, (.II t) + I / T (qlélelelgxl"'lt) dDi-
. i
D.
* (2.8)
Application of Hamilton's principle to such a holonomic system

(Appendix V) yields the following form of the Lagrange equations

for the attitude degrees of freedom dy = ¥, A, O:

d
a5 |

oL
qu

oL _
) - —a; = Qk' (2.9a)
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or,
B2,y 23 Ly - @y - 2 gapi = g (2.9b)
at 3¢ 3 i - 3 k
I A D, A Iy
where,
Qk = generalized force associated with dy -

Note, the equations are amenable to a control system study since
prescribed control forces can be introduced directly as general-
ized forces in conjunction with a suitable control strategy.

Applying equation (2.9) to the multibody configuration under
consideration here, can be extremely involved. In fact, at this
point it is not particularly advantageous to evaluate the Lagrangian
in detail. Rather, one éan take advantage of the following rela-

tions for the kinetic energy:

o7 _ aT %%
Qe dw gy
o7 _ oT %2
a. ag). a.
dx y
ow ow
4 @y -4 =)+ 4 @, —;
dt 5 89 dt 3 dt BQ 5
dy ' Ay dx

2

where [Samin and Willems (1975),°2 Likins (1975) 0):

él'::g, (;@mdg ﬁwmﬂ#éij (2.10)
4

ow

Substituting the above relations into equation (2.9a) provides an

alternative form for the governing equations in a momentum format
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which can be expressed in matrix notation as 79
dw .~ .dH du 3V
{(——tolxzh + ( {—1 - { }) {H} + - = % (2.11)
qu qu dx k

where:

{H} = angular momentum vector associated with motion relative

to the system mass center, [I] {wl}+Z fn1 [r ] {V l} dmi;
i i 0.
[I] = overall system moments of inertia with respect to x, 'y, z,

axes, presented in such a way as to isolate flexibility
effects (Appendix II);

and, note for example,

av
Qg k = §ag = generalized force associated with the gravitational
! k T
X4
field, 3(Yy (=21 [F1 ixg):
R, 9k

The formulation presents several advantages, particularly when
one is faced with complex rotating systems. It results in consider-
able saving in the amount of algebra involved. As a rule, the more
complex the system the greater the saving. This is because rather
than differentiating the kinetic energy twice, one carries out a
single differentiation of the simpler momentum function togethér with
with some relatively straightforward differentiations of the angu-
lar velocity vector w. In addition to reducing the algebraic effort
such a method can be applied systematically; as a result it should
prove less error prone. System kinematics, configuration, and
flexibility effects are not intertwined to the degree that they are
with the Lagrange generalized coordinate equations. Consequently,
digital simulations can be set up to more easily accommodate changes

in either configuration or choice of coordinates.
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2.3 Governing Nonlinear Three-Axis Equations

In such a matrix form the equations (2.11) appear rather
" compact. However, in actual application they can be expanded
resulting in governing second order equations for roll (¥), yaw

(A), and pitch (spin, ?) as follows:

Y, Roll degree of freedom

+c2o1 -5201,) + s2AT.. + s2A(S0T..+cdI__)1¥

2 2
[c"A(s7 0T 13 23

11 22 33

2 2. 2.
+ c A(s @Ill+c oI

L] 2 L ] . L .
-sZ@Ilz) + sTAT + s2A(s0I +c®123)]w

22 33 13

2 .o 2 2
+2s As@Il3)6W + [s2A(I33 s"dI c o1

-s201 11

- sWsAcA(ZSZQI

11 12 22

. o e 2
+ sZ@Ilz) + .2c2A (sd1 +c®123)]AW + {c A[52<I>(Ill I

13 22)

) e 3 2, 2. 2
-s®123)®w + (3u/RC) {[(s"As"¢-c ®)Ill

+ (l-cZ@)Ilz] + sZA(C@Il3

2

+ (52A02®—52®)122 + c AI33 - (1+s2A)52¢112 - §2A(S®Il3+c®123)]chW
+ c2WsA[s®c®(Ill_122) - c2®I12] - c2¥cA (c®113-s®123)}

+ cA(s®P1+c®P2) - sAl"3 + {[cA(s@c@(Ill-Izz) - c2®112]

+ ‘sA(c®I13-s¢i23}K + {sA[s@c@(izz—Ill) + c2®112]

+ cA(c¢113—s¢123)}A2 + {ch(stco (i -I,,) - cZ@iiz-h3]

L ] L] - 2 2
+. sA[-s@(Iz3+hl) + c®(113—h2)]}A + {c¥ (c2As”0+c“d) Ill

+  [c¥(s20+c20c?d) - s¥sAs20] I., - c¥c2AI.. + [c¥s20(l-c2A)

22 33
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2s¥sAc20]T. . + 2cA[(2c¥shsd - S¥cd)I,, + (2c¥shce

12

ch®)123]}8A + cA[cZ@(Ill—I22) + 52®112—133]¢A - [cA(s(I>I__L3
.. B .2 .

c¢123) - sAI33]® + cA(s®123—c®Il3)® - {cA[s@(Il3+h2)

c®(123-hl)] + sAI33}® + {cA[c¥sAs2d - ch2®)(Ill—122)

s¥I.,] - 2cA(s¥s29 + c‘PsAc2<I>)I12 + 2(s¥YsAsd - chzAcé) I

33 13
20¥c2 NS0T, 10 + [c¥sAch (s20T.. + c20T..~-I..) + s¥chsécd (I
23 11 22 33 22
Ill) + ch(s¥c20 - c‘i’sAsZCD)I12 - (cY¥Yc2Asd + sWsAc@)I13
.y 2, 2 2
(s¥sAsd - ch2A0®)123]8 + {s¥c¥[(s“Ac® - s @)122
(20520 + c20)I.. + c?AI,.] + c2¥shsécd (I, -I..)
11 33 11 22
[sA(CZTCZQ - 82W)+'STCW82®]112A— c2‘¥cAc<I>I13 - ch(s2¥sAc?d
c2¥s®)I..16% + {c¥shch (s20f,. + c%ei.. - i..)
23 11 22 33

sYcAsdcd (122-1

13

ll) - cA{(c¥sAs2d - s?c2®)112-cv[s®(c2AI

h,) + c¢(c2AI,3-h,)] - s¥sh[ce (I;,-h)) - s®(I,,-h )]

2 2 1

SWcAh3}9 = Qyi (2.12a)
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A, Yaw degree of freedom
(c20T.. + s20T.. + s20T..)h + (c20I,. + s20I.. + s20I..)1
11 22 12 11 22 12
b [820(I.. - I..) + 2c20T..104% + (3u/R>) {s¥shch(sZer1
22 11 12 C 11
2
+ c @Izz - I33 - sZ@Ilz) - chZA(s@Il3 + c®123)
+ s¥Yc¥ch [s<I>c<I>(Ill - 122) - c2®112] + s¥c¥sA (c<I>I13 - s®123)}
. 2
+ (c<I>Fl - s@F2) - (cd>I13 - s®123)® + (s<I>I13 + c®123)¢
- [c<I>(Il3 + h2) - s<I>(I23 - hl)]® + [(c¥sAc2d + s‘PsZ(D)(Il1 - 122)
+ c‘PsAI33 - 2(s¥c29 - c‘l’sAsZ@)Il2 + 2c‘¥cA(s<I>I13 + c®123)]6®
+ {cA[c2<I>(Ill - 122) + 133 + 252@112] - 2sA(s<1>Il3 + c®123)}W®
+ {cA[s@c@(Ill - I22) - c2®112] + sA(c<I>I13 - s®I23)}W
+ [sAcA(52®I + CZQI - I - s520I..) - c2A(sdI + coI )]‘1‘2
11 22 33 12 13 23
+ {cA[s@c@(Ill - 122) - c2cI>I12 + h3] + sA[s@(—I23 + hl)
+ co(l.. + ho)V + {c¥[c2A(I,, - 3201, - c8I..)
13 27 33 11 22
- (%01, + s201..)] - [c¥s20(l + s?A) - 2s¥sAc2e]I
11 22 12
+ sWsASZ@(Izz - Ill) - ZcWSZA(s®Il3 + c®123) + Zs‘PcA(cd)I13
. 2
- s®I23)}e® + {c?sA[s@c@(Ill - 122) - c2<1>I12 - s¥(c @Ill
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- cYch (coI

2 .
+ s @Izz + sZ@Ilz) 13 " s¢123)}6 + {chWcA[s@c@(Ill
- T..) - c20I..] - c2¥shch(s20T., + c20I.. + I.. - s201..)
22 12 11 22 33 12
+ CZW 2A (s®I + cdI.,) + sYc¥YsA(cdI - s¢T )}é2
c 13 23 13 23

. . . 2 » 2 .
+ {c‘PsA[s@c@(Ill - 122) - c2®112 + h3] —‘SW(C @Ill + s @Izz

+ s20T.. - c¥ehlce (I, ; + n (2.12b)

12 ) = se(I,5 - hy)}e =0

2 A

Pitch (spin) degree of freedom

. . . 3 2 2 2
I33® + 133® + (3u/Rc){c2<I>[s\Pc‘PsA(Ill - 122) + (¢°Y - s"V¥s A)I12
+ -s@ﬂﬂtegﬁ - 52W52A)(I - X..) + 2s2¥sAI..] - sYcAcd (s¥YsAI
‘ 22 11 12 13
- cWI23) + chAs@(cWIl3 + sWsAI23)} + F3 - [SAI33 + cA(s<I>Il3
. 2
+ c®123)]W_+ {c A[s<1>c<I>(I22 Ill) + c2®112] sAcA(c<I>I13

- s0L, W% - {chlse(i 5 - hy) + co(l,y; + hy) o+ sat 1

+ {ch[(c¥shs20 - s¥c20) (I,, - I;q) - s¥Iz;l + (c¥s2Ac29

+ 2s¥chs20)I, + 20¥c?A (0T 5 - S8T,4)}8¥ + {chlc20(T,, = I ;)
- 1,5 - 2820I,,] + 2sA(s0I ;5 + co1, ) ¥ - (co1,, - s¢123)K

.2 L] L ] L ]
[s@c@(I22 - Ill) + c2®112]A + [s<I>(I23 - hl) - c@(I13 h2)]A
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+ {c‘YsA[cZ(D(I22 - Ill) - 133 - 2(cYsAs2% - s‘PcZ@)I12
- 2c‘{’cA(s<I>I13 + c®123)} + {cW[cAI33 - sA(sd)I13 + c®123)]
+ sY{(cdI - s0I )}é + {—(SZW - CZWSZA)[SQCQ(I - TI..)

13 23 22 11

2
+ c2®I12] - s‘l‘c‘PsA(cZ@(I22 - Ill) - 252@112 + chA[c™V¥s (c®113
.2 .

- s®123) + chW(s¢I13 + c®I23)]}9 + {-(c¥shsd - s‘l’c@)(Il3 - hy)
- (c¥YsAcd + sWs@)(I23 + hl) + chAI33}8 = Qg i (2.12c)

Aside from instantaneous moments of inertia and the wvalue of

Xor the influence of flexibility and deployment extends to the

terms:
hl
{h} = h, = ? ~/ﬂ [rd,i] {VO,i} dm, ; (2.13a)
m,
h3 i
= a local angular momentum resulting from the relative
velocities associated with vibration and deployment; .
Fl N
{r} = I'2 = Z / [rd,i] {Ao,i} dmi; (2.13b)
1 Ym,
F3 1

a locally applied inertia torque resulting from the
relative accelerations associated with vibration and
deployment.

The expressions are worked out in detail in Appendix III.
With the equations in this form, one appreciates the complex
nonlinear, nonautonomous, and coupled character of the system.

Even the simplest of the equations (2.12c) contains more than
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seventy terms! The problem is further aggravated by the fact that
deformations Ujr Vi Wy appearing in the above expressions are
themselves functions of librational motion. Obviously, even for
relatively simple situations, one can hope to search for a general
solution only through numerical methods. Even that is a formidable
task!
Finally, the range of application can be indicated by summar-

izing essential features of the formulation:

* arbitrary satellite geometry;

* arbitrary number/type/orientation of flexible appendages;

* independently deploying appendages;

+ appendage offset with respect to the center of mass;

- system center of mass moves along an arbitrary trajectory:

+ three degrees of freedom are associated with both attitude
behaviour and appendage deformation;

* nonlinear attitude motion;

 both spin-stabilized and gravity-stabilized orientations
are described by the modified Eulerian rotations chosen;

 generalized force terms are retained.



45

3. NONLINEAR APPENDAGE DYNAMICS

3.1 Background

In the derivation so far, the physical characteristics of
the appendages have been left unspecified; for example, one could
be dealing with a string, beam, membrane, shell, etc. As found
in Chapter 2, the attitude'equations require a description of the
eléstic displacement field [gi (Ei, t)] only and are not directly
dependent on the type of appendages involved. Ultimately, however,
to obtain a solution of the librational dynamics one must specify
the type of appendage and solve the associated equations governing
flexibility. This can involve even greater effort than the atti-
tude equations themselves.

In the following development the spacecraft is assumed to
have beam-type appendages. They are representative of antennae,
stabilizing booms, and the supporting bars associated with experi-
mental packages and solar arrays. Furthermore, one would expect
long truss-like structures to display an overall beam-type be-
haviour. Taking the beam to be of the Euler-Bernoulli type makes
it essentially one dimensional. Hence, its characteristics are
specified by only one spatial variable (xi). Such a 'slender'
system is assumed to experience simple flexure only, i.e., effects
of rotary inertia and shear deformation are considered negligible.
Furthermore, torsion is not dealt with here. England (1969)226
states that the fundamental frequency of boom in torsion is

separated from the bending frequency and, as such, these oscilla-
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ations may be considered uncoupled. The signficance of twist is
further reduced for contemporary space booms which tend to be zip-
pered thus ensuring a high torsional stiffness [Nguyen (1978)139].

An important aspect of the beam-type appendages is their
relatively low flexural rigidity which makes them quite susceptible
to large amplitude oscillations when exposed to environmental dis-
turbances and control manoeuvres. Ideally, one would like to analyze

the appendage nonlinear dynamics with the utmost accuracy; however,

in general, this would be quite a challenging task even with the

help of a computer [Nguyen (1978),139 Almroth et al. (1978),227
Helliwell (1978),228 Jankovic (1980)220]. Also it can be expen-
sive and often may not be quite necessary. In most situations

one can obtain results of adequate accuracy by including only the
more important nonlinear contributions. With this in mind, general
vibration equations are derived which retain termslonly up to 2nd
degree. This is consistent with the use of an degree vibration-
related terms as found in the inertia, momentum, and torgque calcu-
lations for the attitude equations.

3.2 Kinetic and Potential Energy of a Deploying Beam Undergoing

General Librations .

In derivation of equations of motion for a continua the
methods of analytical dynamics have an intuitive appeal in that
they apply to any 'system' - rigid, flexible, or a hybrid collec-
tion of such bodies. For example, the application of Hamilton's
Principle to the beam-type appendage under consideration here, can
yield a complete set of boundary conditions in addition to the

governing equations.
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3.2.1 Beam configuration and coordinates

Consider the ith appendage to be a beam deploying with

local velocity Ui along the X, direction, where the X axis coin-
cides with the undeformed neutral axis of the appendage (Figurge
2-2). Note the appendage attachment position is offset from the
overa;l system center of mass. The linear density Pyr stiffness

Ei’ and cross sectional inertia ij,i are allowed to vary along the
length of the boom. Also, the appendage is permitted to have any
arbitrary initial orientation in space and is free to undergo trans-

134

verse as well as axial deformations. Fang (1975) points out the

— .

need for considering égial and transverse degrees of freedom simul-
taneously when dealing with large amplitude problems. Neglecting
appendage thickness in the Yir 25 directions, the general displace-
ment of elemental mass dmi located at X, with respect to the in-

stantaneous mass center of the overall spacecraft is:

Lg,i = ¥y vopp 7 ¥ P uy(xgt) mougg (k5801

+

[og 5 = Yo + vy (xh®)) 4y

+

[03,1 - zc + wi(xi,t)] hi . ~ (3.1)

i) due to transverse displacements
14

where axial foreshortening (-ufs

has been included explicitly.

3.2.2 Treatment of axial foreshortening

Assessment of the foreshortening effect has presented several

133

problems in the past [Vigneron (1975), Kaza and Kvaternik

(1977)136]. The approach adopted in this thesis unifies some of
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the earlier procedures.

Consider a beam of undeformed length % as measured along the

x axis (Figure 3-1). In the presence of transverse displacement v,

w the effective length at any instant becomes QA'

That QA < %

can be established by noting that any deformed beam element of

length ds has a projected length dx and:

e o 2 2,1/2
ds = (1 + Ve Wy )

dx

(3.2)

N
"

Figure 3-1 Beam axial foreshortening caused by transverse
deformations v, w.

As indicated, a number of different methods have been devised to

deal with this difference. For the problem of rotating beam vib-

ration Hurty et al. (1964)229

and Meirovitch (1967)230 consider the

effect as a working axial displacement (ds - dx) acting on the

centrifugal loading. It is introduced through the limits of inte-
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gration by Hughes and Fung (1971)156 as:

L LA
/ £(s) ds = / £(x) [1 + %(vx2 + WXZ)] dx + H.0.T.; (3.3)
0

0

.where:
f(s) = any arbitrary function of location (s) along the neutral .

axis at any instant;
QA = instantaneous beam length as measured along the x axis,

2 - A

1 % 2 2 Y oW

o~ = . v = - W= =4,
A > f (Vx + WX ) dX, X o’ X 3%’
0

H.0.T.= higher order terms.

33

Vigneron (1975),l on the other hand, includes it directly as a

contribution to the assumed axial displacement field equal to:

N |
f (v,2 + waz) doi. (3.4)
0

N+~

u ~
fs

The. differing approaches suggested by equations (3.3) and

(3.4) can be shown to yield identical results. Defining

n=X+ufS’ (3'5)
it follows that
at x = 0; e, = 0, n = 0;
and at x = & - A; ufs = A, n= %.
Therefore:

_ _ w2442
dn = dx + du._ = [1 + 5 (vx + w ")) dx.
d

Substituting in (3.3) gives the following relation valid to 2"

degree in v, w,



50

L =A 1 5 5 £
f f(s)ds = f f(x)[1 + f(vx + oW yldx = f f(n—ufs)dn-
0 0 0

(3.6)

Clearly the foreshortening can be dealt with by considering it to

be an additional displacement -u
133

, thus justifying the assumption

fs
Kaza and Kvaternik (1977)136 point out that this

of Vigneron.
effect can be dealt with implicitly by working with nonlinear strain-
displacement relations but a linear displacement field. This latter
approach requires that one retain terms through fourth degree in the
energy expressions in order to obtain the an degree equations. For
the purpose of this . thesis the use of a modified displacement is
preferred as terms only up to 3rd degree are necessary.136 How-
ever, in order to apply this method to a beam of variable cross-
section, the theorem of Appendix (IV) is required as well.
It is worth noting that to obtain even the linear vibration

equations for a rotating beam, one must take into account geometric

nonlinearities136 thus again emphasizing the significance of fore-

shortening terms. The implicit approach of using nonlinear
strain-displacement relations was demonstrated by Likins (1973)130

and Samin and Willems (1975).92

3.2.3 Kinetic energy density

Kinetic energy terms associated with appendage oscillations
are already implicit in equation (2.4). Here they are expanded for
a beam-type appendage. As the formulation is with respect to the
overall system center of mass the vibrations are unaffected by the

orbital motion.
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Consequently, kinetic energy associated with the flexible

behaviour of the ith appendage can be expressed as
T, = {w)}? [ra(.]{V .} dm
i m d,i 0,1 i
i

T .
.éj {Vo,i} {Vo’i} dmi. (3.7)

i

+
N+

Substituting for the angular velocity, deployment velocity, posi-
tion vector, etc. in terms of local coordinates, expanding, and
omitting the subscript i which denotes the ith appendage; the kinetic

energy to 3rd degree can be written as

2
= 1 { 2
T = 3 j(o (ﬂl,t + u, + Uu)

0

+ (m + v, + Uv )2 + (T + w, + Uw )2
2,t t X 3,t t X
+ U[2('rrl"t + ut) + U(1 + 2ux)]
- 2[7rl,t + u, + U(1+ux)] (ufs,t + qus,x)
2 2 2

+ [('rr.2 + v)"™ + (ﬂ3 + w) 7] wq
+ [ (m +x+u)2+(1r +W)2—2(1T +x+u)u]uu2

1 3 1 fs 2
+ [(m, + x + u)” + (m +v)2—2(7r +x+u)u]w2

1 2 1 fs 3

- 2[(ﬂl + x + u —ufs)(w2+v) Wy, + (ﬂ3+w) w2w3

+ (wl + x +u —-ufs)(ﬂ3+w) wlw3]
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+ 2[Trl’t + (ut + qu) - (ufs,t + qus,x) + U]['rr3
+ w)w2 f.(ﬂz +‘v)w3]
+ 2(ﬂ2,t + v, + va)[(ﬂl + x + u - ufs)w3 - (ﬂ3 + w)wl]
+> 2(113’t + oW, o+ wa)[(ﬂ2 + v)wl - (ﬂl + x +u - ufs)wzl}dx
= v/ﬂ T (x, €, Egr Egyr Egr Eypr t) dm, (3.8)
m
where
£ = generalized coordinate of the continuum, u, v, or w in

this case.

3.2.4 Potential energy density

The appendage being studied is under the influence of two
conservative force fields: one the result of a variation in
strength of the gravitational force distributed over the body, the
other a consequence of the elastic restoring moments present during

bending.

3.2.4.1 Strain energy
A general expression for the elastic strain energy for a homo-
geneous isotropic continuum with no dissipative elements but ex-

- periencing large strains is:

-1 T .
Ve B 2./‘7]0* e, dxdydz; (3.9)

transpose of generalized stress tensor;

Q
*
I

strain tensor.

™
]
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Strain can be taken small while still allowing for large relative
deflection and rotation within the system. For the case of small
strains, Hooke's Law can be introduced into equation (3.9) giving

130

[Likins et al. (1973) ]:

-1 T .
Ve —-EJC[/;S EES dxdydz; (3.10)

where:
E = Young's modulus for the material.

Green's strain tensor is developed for a slender one-dimensional

Euler-Bernoulli beam by Kaza and Kvaternik (1977)136

, giving
strain as a function of displacement. Only the axial strain is
relevant here. Foreshortening is introduced explicitly as in the

evaluation of kinetic energy so that, using the beam coordinates of

Figure 2-2:

= (u- L= 2.,
€s,ll = (u ufs)x + 2 [(a ufs) Vet wx]'
=u_ - yv - zZw + 1 (u, - yv - zw )2- (3.11)
X XX XX 2 X XX xx’ ' '
and
€s,22 = €5,33 ~ €s5,12 = 5,13 fs,23 - O-
Squaring (3.11),
2 _ .2 2 2 2
€s,11 T Yx Y Ve ¥ EW e 20y (v 2w,

3 2
+ 2yzvxxwxx + u 3ux (yvxx + zwxx)
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2 2 2 2
+ 3ux (y vXx + z wXX + 2yzvxxwxx)
3.3 3.3 2 2 L2 2
- YTV T W T YTV M 3Y 2V Wik
4+ H.O.T. (3.12)

Substituting this result into (3.10), integrating, and taking

advantage of the one-dimensional character of the system

ffydydz = ffzdydz = Ifyzdydz = 0,

gives the potential due to flexure to the 3rd degree

. 1 . 2 3 (T..w> + J v2_)lax

0
(3.13)
where:
E = E(x);
A(x) = beam cross sectional area, .ﬂfdydz;
J22 = .[fzzdydz;
> cross sectional area moments of

J33 = ffy dydz; inertia.

3.2.4.2 Gravitational potential
To the an degree in (ri/Rc), the gravitational potential of

any body with finite dimensions is given by equation (2.6) as:

u T T (1)
- {3007 T ) g i)
C



55

- er (x0T M) [xi])}. (3.14)

In order to derive governing appendage equations of motion
this expression is expanded using local appendage coordinates.
Axial foreshortening is introduced explicitly in the displacement
field as discussed in the previous sections. Also, use is made of
the integral theorem from Appendix (IV). The potential related to
motion of the center of mass is uncoupled from flexibility and
thus is ignored. Extending the energy density concept to moments

of inertia, one can write, for a given appendage:

Ijk =/ Ijdel. (3.15)
D.
i
Using this definition one is provided with a concise description

of the vibration-related gravitational potential,

~

- Y T T p- -
Vg = = 5) (C13177 * Gl + C33133 * C15175
C

+c + Cy3lyg)y

13113 (3.16)

where, for clarity the subscript i is onitted for the ith append-
age, and j, k are dummy indices referring to the local Xir Yir 24

1 1

axes of any given appendage as 1, 2, 3, respectively. Also

Clp = coefficient identifying appendége orientation relative
J to the local vertical R_.

For convenience let:

— 2- -
al - (3Xa,l l)l

— 2_ -
) - (3Xa,2 L)
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05

Then:

33

12

13

23
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(3Xa,3 -1);
Xa,l Xa,27
Xa,1 %a,3i
Xa,2 Xa,3" (3.17)
alx.lz + azx.zz + u3x.32 + 6(a4x.lx.2 + acXiyX43 t
J J J A 11733
+ (3.18a)

j=1, 2, 3;

-2 (a + o

1X11%X21 * 9pX12%22 * %3X13X23)

-6 [a

4 (X11X02 + XpaXo1) * %5{Xg3Xa3 tXg3Xa1

@ (X19Xo3 + Xp3Xpp) i

—2(ayXy7X37 F %pX3pX3p t ¥3X13X33

=6la, (Xy1X35 + XypX37) * @5{X33X33 + X33%X31)
% (X19X33 + Xy3X3p) 54

~2(0Xp3X37 * @pXppX32 * %3X23X33)

=6la,(X51X30 * Xo2X31) + @5(X53X33 + X53X3;) .
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+ 0 (X55X33 + Xp3X3p) - (3.18b)

Substituting the inertia densities from Appendix II, equation (II.6),
into (3.16) yields the following expression for gravitational
potential applicable to a beam~-type appendage having an arbitrary

orientation in space:

Ug = (;iﬁg) {(c22 +ey5) (x4 u)2
C
+ [2(022+C33)ﬂ1 + clz(n2+v) + cl3(ﬂ3+w)] (§+u)
*[C),my *+ (C1¥C,3) (2TyHv) 4 Cpgmgly
+ [Cl3ﬂl + 023(ﬂ2+v) + (cll+c22)(2n3+w)]w}

%
_ Y _ v +
{(2R 3) ,/; p[2(022+c33)(nl+a u) + clz(n2+v)
C
v 2+w 2

X X _

+ Cl3(ﬂ3+w)] da} (———Er——ﬁ. (3:19)
By inspection one appreciates the considerable simplifications
possible if general orientation and offset terms are not present.

Of course, the complexity is further reduced if the equation is

carried just to the 2nd degree.

3.3 Nonlinear Equations Governing Transverse and Axial Vibrations

To start with, applying Hamilton's Principle (Appendix V)
leads to an equivalent set of Lagrange equations appropriate for

this system. Making use of the energy expressions developed for
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such a beam-type appendage, together with the theorem of Appendix
IV, one can establish the Lagrangian density of the beam. That is,

in this case:

~

L = the difference between the kinetic and potential energy
per unit length;

~ ~

= T -V =1 (x, €, €., €.+ E

% <X t). (3.20)

€

xt’ “t’

Substituting (3.20) into the Lagrange equations discussed above

yields the an degree equations for vibration:

axial oscillation (€ = u)
ofluy e = Upg b * 2000 T gy y) F U m U )
+ U2(u - u ) + U+
XX fs,xx l,tt
- [w2 + wz - 2{(c + c,,) (L/2R 3)].(ﬂ + x +u - u._)
2 3 22 33 c 1 fs
+ [-w + w W, + C (u/2R 3)](Tr + v)
3,t 12 12 c 2
3 .
+ [wz’t-+wlw3 + cl3(u/2Rc )](1T3 + w) - 2 3(ﬂ2,t + .

+ Uv) + 20 + w,_ + wa)}

2 (T3 ¢ t

) + U+ 1
' X

+ 1,t

+ U(u. - u
X,

pxU [ut - ufs,t fs

‘ ' - w3(W2 + v) + w2(ﬂ3 + w)]

1 ' 2 2
-3 {(EA)X(2 + 3ux)uX + 3[(EJ33)XVxx + (EJ22)xwxx]}



E[A(1 + 3ux)uXX + 3(J

2 2
+ wy" = 2(cll

[wl

33 " xx xXxX

+ J22wxxwxxx

)]

v.. Vv

transverse oscillation (g = v)
o{v, . + 2Uv_, + Uv_ + v+
tt xt X XX 2,tt
3
+ -
[w3,t + Wi, + c12(u/2Rc )]('nl + x + u ug
2 2 _ 3
[u)l + wg 2(cll + c33)(u/_2RC )](1T2 + V)
3
+ wl,t + W W + c23(u/2Rc )](n3 + w)
+ 20, [ﬂl,t tu ot Uyt Ula, - ufs,x) + U]
- zwl (ﬂ3,t +ow o+ wa)}
+ pXU [vt + va + ﬂz't + w3(ﬂl + x + u - ufs)
- (FAvx)x + (EJ33VXX)XX (1 + 3uX)
+ 312 (EJ33Vxx)xuxx + EJ33Vxxuxxx]/= FZ;
transverse oscillation (e = w)
olw,, + 2Uw_, + Uw_ + w4 T
tt xt bie XX 3,tt
3
i+ [-w2’t + wywg + cl3(u/2Rc )](1Tl + x + u - ug
+ [w + waw, + c,,(u/2R 3)](Tr + V)
1,t 273 23 c 2

+ey,) (/2R D) T (my + W)

)

S

F

- wl(n3

)
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l;
(3.21a)

+ w)]

(3.21Db)



Here

;

)

- 2w2[ﬁ1,t +ou, - Urg ¢ + U(ux
+ Zwl(ﬂzlt + v, o+ va)}

+ pxU[7T3,t + W + wa - wzfﬂl
- (FAWx)x + (EJ22wxx)xx (L +3
* 3[Z(EJ22Wxx)xuxx + EJ22wxxux

an effective axial load resulti
gravitational force field

2
+ [w2 + wy™ = 2(c22>+ c33)(u/

+  [w, W, W

3
3,£ = W@y T S (/2RI

+ w,w

3
[wy ¢ + wywy + €3 (/2RI

+ 2w3(ﬂ + v

2,t £ + Uva) - sz(ﬂ

- pOLU[TTl’t + u, + Uua + U - Wy

= total time rate of change as

20, w20

ates, 3T 9%

60

- u

fs,x) + Ul

+ X +u - ufs) + wl(ﬂ2-+ v)]
uX)

xx] = F,; (3.21c)

ng from the inertial and

3
2RC )](ﬂl + o + u)
ﬂ2 + v)
ﬂ3 + w)

3t + wt + Uwa)}

(M, + V) + w2(ﬂ3 + w)]}du.

2

(3.214)

measured in local coordin-
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All components are derived with respect to the local X0 Yyr 24
axes as indicated by subscripts 1, 2, 3, respectively.

As in the case of general librational motion, the equations
governing translationaloscillations of the elastic appendages are
also seen to be nonlinear, nonautonomous, and coupled. Together,
the librational and vibrational degrees of freedom form a conjugate
system hence, they must be solved simultaneously. As can be
expected, the overall system istoo complex to be amenable to any
closed-form solution. ( |

The essential features included when modelling the oscil-
lations of a beam-type appendage are summarized below:

+ arbitrary trajectory;
+ gravitational effects;
+ 3-axis librations;

+ shifting center of mass;

- geometric offset of appendage point of attachment from the
mass center;

« transverse as well as axial oscillations;
* nonlinear (2nd degree) effects;

. variable mass density, flexural rigidity, and area of the
beam cross-section;

+ arbitrary deployment velocity and deployment acceleration;

+ arbitrary appendage orientation.
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4. SIMPLIFIED APPENDAGE DYNAMICS

4.1 Linearized Equations for Transverse Vibrations of a Deploy-
ing, Orbiting Beam-Type.Appendage
The second degree vibration equations of Chapter 3 are ex-
tremely involved making even a numerical solution elusive in the

227,228 Through linearization and considering the

general case.
appendage to be uniform the problem becomes somewhat more tract-
able. This, together with the realistic assumption of axial rigid-

ity as well as continuity considerations, result in the deployment

velocity being uniform along the length of the appendage [Tabarrok

222 ’ ° [
et al. (1974)22%], i.e. U(x,t) = U(t) = R(t) ana TLLEEL = fe) =
i(t). Application of such considerations to equation (3.21) leads

to the governing first degree equations for the ith appendage in

the v and w degrees of freedom

[} L ] 2
p{vtt + 25vat IR T A Ty bt

+ Y1 (x + ﬂl) - Y2 (v + ﬂz) + y3 (w + ﬂ3)

+ 2w3 (nl,t + 2) - Zwl (ﬂ3,t +ow, wa)}

- (FAVx)x + EJ33vxxxx = Fz; (4.1a)
p{w + 28w + Lw + izw +

tt xt X XX 3,tt

+ y4 (x + nl) + y5 (v + nz) - YG (w + ﬂ3)
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- 2w2 (ﬂl,t + §,) + 2wl (“2,t + A + J'va)}
- '(FAwX?X + BIw = Fa. (4.1b)
Here:
Yo = u/2RC3;
Yy = 03 ey, + Cpovg
Y, = owy ey’ - 20 ey
Y3 =m0y wyuy + Coavg
Yg = Thy twjegy t Cyaves
Y5 = ©p F wyuy + Chavgs
Yo = 0 ® +wy? - 2(egy *F eyl Yy
Y, o= wp? tag® - 20e,, +oegy) v
Vg = by - Wy, = CpyVg)
Yo = g *wjug * Cy3vps
Yoo = TTi,ee T R YgTp ot YgTy YTy ¥ 2wgTy = 2uply s
Yi1 T Yo 7 Ly
P, o= olrpl2 - x) + By, 07 - %91, (4.1c)
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The number of parameters can be reduced by use of a nondimen-

sional form of the equations. Defining:

X = x/%; £ = bt;
v o= v/L; w o= w/;
§ = he/Rcz; 5 = -28%es6/(1 + ech); (4.2)

and substituting into (4.1) yields:

Vog + 2(2" = e)vy + 20TV,
Sn _ 5y _. ~
+ (2 2e12 Yz)v
+ (A" - 2e.,8' + 2§'2 + Y X+ Y4V
1 7 10
re2 _ T § - 22y15A
+ [2 Ylo(l X) 5 Y, (1 x7)Ives
*2,4.~
+ (EJ33/p6 L )vxxxx

_ ~ _ A' _ N _ /\' A o
2w, Wy (22'w Y3)w 24 wqWe

1 1
~ _ [
+ Y Xty = Fz/pe L; (4.3a)
LY + 28" - el)w(9 + 2£'w§e
- _ ~ _ ~
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o T > A!",\
+ 2wlve + (2w1£ + YS)V + Zwll vX
A « 2 ]
oYXt oug = (Fy/p070) (4.3b)
where Yj’ wj (3 = 0, ... , (11)) expressed using '6' as a measure

of time are based on equations 2.5, 4.1c, 4.2; and:

() = d()/dat;

()= 4a()/4ae;

( )§ = o ( )/ox;

(A) = ( )/%, except note R o= L' /L, o= L"/%;
ey = esf8/(1 + ecH);

- A Ty S Tl A o7 - 2 o
uz(e) Tyt 2(2 el)'n2 2e ' m, + 2w3(1rl + 2 myot L")
- 2w3(w3 + 2 ﬂ3) + Y171 + (A" - Y2)1r2 + AELEY
- A n /\' _ ~ - A'/\ _ ~ 1 /\.A A‘

u3(9) Ty o+ 2(8% el)'n3 2el£ s 2(»2(11l + % ™y + ')
~ ' /\'/\ A A _ ~
+ 2w1(ﬂ2 + % nz) + AL + Y5To YeT3e (4.3c)

4,2 Solution of the Linearized Vibration Equations

The assumed-mode approach is adopted to solve equations (4.3)
as explained by Meirovitch (1967). 0 A careful truncation of the
number of modes used can effect a considerable reduction in the
order of the system without sacrificing essential dynamical char-
acteristics. Elastié displacements are represented here by a
linear combination of known functions of the spatial variable X

multiplied by time-dependent generalized coordinates as follows:
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v(x,8) = ﬁfn(§)anxe);
w(x,0) = iHn(§);n(e) | (4.4)

Care must be exercised when evaluating such derivatives as

Q
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since for a deploying system
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DK >
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=>
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in general.
Spatlal dependence of the coefficients 1n the equations can

be replaced by constant coefficients dependent only on the selected

En' Hn. The procedure involves multiplying throughout by the mth

assumed mode shape and integrating the equation for the VW

degrees of freedom over the domain X 0-1. The resulting equations

can be expressed in the following matrix form;

[en} + 2([By (1A' = By glep) (&'} + [X,1{e} - 20, (B) 1{c")
+ (vy0By 1 - 20,8 (B, 1) {2) = {£,) (4.5a)
{T"} + 2([Byy 12" - [By yle){z'} + [Ry1{c} + 20, (B y1{E")
+ (vgIBy 1 + 208" By 1) {€) = (£} (4.5b)
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where:
—_— A" Al2 AI
[K2] = L [B31,E] + 2 [Bzg,E] + 2e12 [B32,E] + Yll[BlO,E}
EJ
1 33
*3Yg By, el 7 vplBy Bl 4 () [By gl
P07
= om ’\|2 .
Ryl = R"[Byy 4l + 2'7([Byg yl + 2e,0"[Byy yl + vy, [Byq 4
EJ
1 22 .
p6~ L
- _ 22, _ .
— _ 22, _ .
{£5} = Y41Cy yt + (F3/p8%2 ugd{cy yli (4.5c)

with Yj and u2, u3 given in equations (4.1lc) and (4.3c), respective-

ly. Modal coefficients [Bj], {Cj} are as defined in Appendix VI.
The analysis is simplified by taking the beam cross-section

= J

to be symmetric, i.e., Since the appendage is

J22,i T I33,i-
uniform as well, it is reasonable to assume similar shape functions
in both the Yy and z, directions. 1Ideally one would use the exact
eigenfunctions for each boom in a manner similar to that employed
in the component-mode synthesis technique.126'127 However, as
indicated in the introduction, the evaluation of such character—
istics can be quite difficult ‘and expensive for complex systems
even if the eigenvalue problem can be clearly defined. The problem
is further complicated by the fact that during deployment, system
characteristics vary with time. Meirovitch et al. (1979)193 have
concluded that for any linear gyroscopic system it is sufficient

to use a set of admissible functions provided they are complete.

For a function to be considered admissible it must satisfy the

geometric boundary conditions and be differentiable to order p for
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a system of order 2p. In the particular case itudied here a con-

venient set of modes are provided by the eigenfunctions of a

231,232

simple uniform cantilevered beam gn(§), which satisfy the

following equation and boundary conditions.

4 = -
In, xxxx Bn 9p = 07
4 2.4
Bn = QQn/Q/ /EJ;
gn(O) =9, ;(0) = 9, §§(l) =9, ﬁﬁﬁ(l) = 0. (4.6)
4 r 7

The solution of (4.6) and some of its properties are:
gn(x) = coshBﬁx - coanx - Qn(51nh8nx - s1n6nx);

Qn = (costh + coan)/(sinhBn + sian);

1 + coshBn COSBn = 0;
l N
./; gmgndx = [Bl] =0, m # n;
=1, m= n. (4.7)
Note,
En(X) =H (x) = gn(X);
so that,

1
w

[le,

= 1. 4.8)
} o= {C]} (
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The net result of this approach is to eliminate the spatial
dependence transforming each partial differential equation into a
time-dependent set of coupled ordinary differential equations for
" the discrete generalized coordinates.

Also, the following relations are useful when evaluating {rc},

{n}, {r}, (1I1:

Ve = i (9,6, ~ ngn,§£n);

V%t - ﬁ[gn,ﬁgn - JL(gn ; + xgn;§§)gn];

v = 1{g E_ - 2;£g £+ [(252 - E)Qg - §2£2g ~nlE Ys
tt n nn n,%°n n,x n,xx n '

Vi = v+ vy = i Llg &, + 29, - xgn'ﬁ)an];

Ver T Vit g = i (9,,%5n ~ ngnlggan);

Vit = (vtt + 22vt + 2v);
= I{g E + 2£(g - §g A)& + [z(g - §g ~) o+ §2£2g A~z };
n n’n n n,x °n n n,x n,xx °n
vxtt = Vﬁtt + Zlvgt + Qvg;
= 1{g_ ~E_ - 2§£g cabE o+ (B2 (R%g. ann 4+ 2%g_ An)
n RexX°n n,xx°n n,Xxx n,xx
- ngn,§§]gn}' _ N (4.9)
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4.3 'Free' Vibration Characteristics of Spinning, Deploying,
Orbiting, Beam-Type Appendages

4.3.1 Governing equations

As discussed, both in section 4.2 and by Hughes and Garg
(1973),112 the use of 'exact'.appendage modal characteristics may
not be necessary when assessing potential interaction effects such
as resonance, between the structural dynamics and the orbital, atti-
tude, or control dynamics [Hughes and Sharpe (1975)121].

The high degree of coupling makes even a parametric numerical
study difficult for equations (4.5). In order to obtain some appre-
ciation as to the fundamental character of the vibrations, the simpler
system of Figure 4-1 is examined. Here planar (pitch only) attitude
motion is allowed. Neglecting offset and considering the vibrations
to be free (F2 = F3 = 0), equations (4.5) can be expressed, for boom

0

orientations ¢i = 0, T as:

") + 21 [Byg) - e B 1{E'Y + (IK] -wl[B,1){E} = {£};

(4.10a)
{c"} + 22" [B,y) - e [B;1){z'} + [KI{c} = {0}; (4.10Db)
where: ‘
(K] = A"[B..1 + 2'2[B,.] - 2e,2'[B,,] + S[(1 + 0")°
31 29 1* 18320 T3
1, 3 a2 .
+ (3 +3c2010B,] + (@ ° - DB
2 W2, 1.3 i
v’ = L+ e+ (5 - 5 c20);
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flexible ;
deploying ",'
appendage /
dm f
dS ‘, v (X,f) H l,"W(X uf)
orbit : ¢i =0
o, k : ,,’\
- Il' @
Xo
' ocal
vertical
R,
6
O, + v ® perigee
I (focus)
Figure 4-1 Model of deploying, orbiting, librating, beam-

type appendage experiencing flexural oscillation
both in [v(x,t)] and out [w(x,t)] of the orbital

plane.
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I\2 _ ° 2.
62 = @ /5%
- " ' 3 - 1y D
{£} = =[o" - 2e1(l + ¢') + 5 SZ@]{C4} 2(1 + 2')48 {?l}. (4.10c)

Equations (4.10a, 4.10b), being coupled and non-autonomous
are, in éeneral, not amenable to any simple closed form solution.
It is interesting to note that the equations are essentially
similar in form. Effective spin (ws) resulting from orbital motion,
pitch, and the gravity gradient serves to reduce stiffness for the
in-plane coordinate § relative to out-of-plane motion ¢. Also,
the in-plane degree of freedom experiences an additional loading
resulting from the Coriolis force associated with deployment and
rotation, forces due to spin acceleration, and those of the gravi-
tational field. Deployment alters stiffness while introducing an
effective negative damping into the system. Type of trajectory i§
1
A truncated set of the equations (4.10a, 4.10b) is treated

specified through e

as a discrete eigenvalue problem at any given instant in time. The
right hand side is taken to be zero when'solving for the 'free'
eigenvalues and eigenfunctions. The analysis is carried out over

a large range of parameter values. Of course, the characteristics
found in this way are valid only over that period of time for which
the coefficients can be considered'constant [Lips and Modi (1978)224].
This technique also forms the basis for the 'quasi-modal' approach

212
of Cherchas (1971). A similar concept was presented by Worden

(1980)233

during a study of ship motions. The approach adopted
here makes use of the eigenvalue analysis. only to assess fundamental
vibration characteristics and their parametric variation. Response

is then based on a direct numerical integration.
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4.3.2 Results and discussion

From the time of orbital injection until steady state attitude
‘equilibrium is achieved, a satellite can ekperience’high rates of
spin resulting in a very significant influenceon flexible appendage
characteristics. Figure 4-2 demonstrates this effect, for in-plane
vibration, in an efficient and compact manner by plotting frequency
parameter Bi = p9i24/EJ over a large range of spin parameter values

Ag = pw224/EJ. Note that with newer generation spacecraft increas-
ingly employing longer members, spin parameter values will also tend
to be larger than in the bast. Equations 4.10 are truncated so as
to include only the first three modes. The relationship between the

eigenvalue and the spin parameter is essentially linear, i.e.,

B = knk . (4.11)

" There is no need to plot the out-of-plane result since, comparing

equations for the case of 'free' vibration and spin only:

=8B + AL i _ (4.12)

as indicated in Table 4.1. The results allow one to assess the
effect of variations in the natural vibration fréquency (Qn), phys-
ical characteristics of the beam (p, EJ, %), and spin rate. Note
the dramatic changes which could occur in characteristic vibration
frequencies and spin—up/spin—down.

For booms aligned along the local radius vector,'gc, varia-
tions of the in-plane frequency parameter are not linear for small
values éf the spin parameter (0 <_As.< 6), as indicated in Figure

4-3. Also, when the spin parameter results solely from
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Figure 4-2 Frequency parameter for in-plane vibrations covering a
wide range of spin parameter values - no deployment.
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Figure 4-3 Frequency parameter during orbital motion only or spinning
only, at small values of spin parameter - no deployment.
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orbital motion, boom frequencies are significantly higher than
those for the case of pure spin in the region As > 1., The reason
for this is the additional stiffening provided by the gravitational
field (Equatioh 4.10). A similar phenomenon exists for out-of-plane
oscillations. Note, resonance is indicated when spin rate equals
the natural frequency for the caseé of in-plane vibrations. This
finding was also discussed by Nguyen (1978).139 The inherently un-
stable nature of a beam pointing along a tangent to the orbit is
also displaYed in Figure 4-3.

Isolated in Figure 4-4 is the influence of deployment rate
and deployment acceleration. Regardless'of whether the beam is
extending or retracting, a decrease occurs in the vibration frequency
with an increase in the magnitude of %. For a given deployment
velocity the tendency toward non-oscillatory behaviour increases
for longer booms. The trend is similar for booms accelerating out
from the spacecraft. However, the system becomes stiffer during
deceleration. Note that although deployment is itself capable of
a significant influence, in practical application, its effect can
be nullified by orbital effects alone.

Much of the information contained in Figure 4-5 is impiicit in
earlier results, nevertheless, it will serve to emphasize some of
the major‘factors affecting frequency as the beam extends. For
the nonspinning case, Qi o 1/24 hence large variations occur up to
about 200 meters (Figure 4-5). However, spin stiffens the system ;
considerably such that these large variations in frequency last
only up to 100 meters at 2.0 rpm. buring deployment, but in the
absence of spin and/or orbital effects beam behaviour becomes non-

oscillatory. The greater the rate of deployment the shorter the
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Figure 4-4 1Isolation of deployment rate and deployment acceleration
effects on frequency parameter.
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Figure 4-5 Influence of changes in length, deployment rate, or
spin rate on (in-plane) frequency.
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length at which this occurs.

The natural frequency of vibration, associated with the imagin-
ary part of the system eigenvalue, is of prime importance. However,
Table 4.1 demonstrates that the real part can also prove to be of
interest during deployment. In this case it is nontrivial and, in
fact, can be greater than zero implying instability or, by analogy,
a negative damping thus helping to explain some of the previous
results (Figure 4-5). Increasing the deployment velocity can de-
crease frequency (or eliminate it altogether) while increasing the
magnitude of the real part. On the other hand, spin improves stabil-
iﬁy as implied, for example, by a beam deploying at 2 rpm.' In this
case all real parts of the eigenvalue become negative. Additional
results contained in the table allow one to judge combined effects
of deployment velocity, deployment acceleration, and spin.

Figure 4-6 clearly demonstratesthat the stiffening effect of
spin rate on eigenvalues also extends to the eigenfunctions. Even
at 2 rpm the effect is substantial with a limiting shape being
reached by 10 rpm.

The stiffening behaviour of the eigenfunctions in Figure 4-7
is clearly due to an increase in length only and is not affected by
deployment rate. However, eigenfunctions have been altered by
higher deployment rates (e.g., L =1.0 m/s). Another effect of
deployment is to produce complex sets of eigenfunctions. When
evaluating the results contained in Figures 4-6 and 4-7 one.should
bear in mind that for a simple nondeploying, nonrotating beam, the

shape of the eigenfunctions remains invariant with length.
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Figure 4-6 Spin rate and its influence on system eigenfunctions
in the absence of deployment.
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(same as pure flexure case)

-1 F
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P/EJ =-00335s-m
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= 0 "
_92 L 1 1 ] |
0 0.2 04 0.6 0.8 1.0
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X

Figure 4-7 Mode changes associated with length of a spinning
deploying beam.
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Boom response to an initial tip displacement equal to 5% of
the length is displayed in Figure 4-8 by a plot of the generalized
coordinate associated with the first admissible function (i.e.,

n = 1). The contribution of the second assumed mode was found to
be <<5% in all situations. This is in part expected because of the
nature of the initial condition, but it does support the conclusion
stated by Jankovic (1976),233 that modal coupling is negligible
between the first two modes for deployment velocities of this order.
Stiffening caused by spin is reflected by an increase in the
oscillation frequency. No amplitude change occurs for such a con-
servative system. The deploying beam operates at a small amplitude
because of the smaller initial length and hence smaller initial con-
dition. It is deployment rate itself which shifts the freguency of
the response. Despite the smaller initial condition the deploying,
orbiting beam still experiences an increase in amplitude. This is
a consegence of the Coriolis force contained in the {f} matrix
(Equation 4.10c). In fact, this amplitude increase is a prelude to
the case of the deploying beam rotating at 0.2 rpm and experiencing
nonlinear displacement. An order of magnitude check reveals that
the ¥ -related term is capable of severely loading the boom. Although
not shown heré, this effect could be either augmented or reduced by
spin accelerations. Misra and Modi (1979)217 also describe the
possible build. up of deflections due to Coriolis effect on an
orbiting flexible tether system. Out-of-plane vibrations occur at
a higher freguency, but do not experience the Coriolis effect which
caused the excessive in-plane displacements.

Finally, it should be emphasized that the presence of this

additional load during deployment makes the duration time associated
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with the deployment process an important parameter. In a practical
situation, should vibrations become excessive, the deployment
process could be terminated until amplitudes return to acceptable

levels.

4.4 Concluding Remarks

In summary, presented is a method of solution for a deploying,
orbiting, librating, beam-type spacecraft appendage capable of
transverse oscillation both in and out of the plane of rotation.

The object is to provide some appreciation as to the influence de-

ployment and rotation parameters have either separately, or when

combined. The more salient observations are:

(1) An orbiting beam cannot be treated simply as a rotating
beam because of the presence of the gravitational field
which can contribute to higher frequencies, depending on

the relative magnitude of the spin parameter.

(ii) The 'free' vibration characteristics of out-of-plane motion
during spin are identical with in-plane motion except that

it occurs at a higher frequency (Equation 4.10).

(iii) Resonance can occur between in-plane appendage vibrations

and the spin degree of freedom.

(iv) In the absence of rotation, deployment rate introduces in-
stability regardless of the direction of extension. On
the other hand, acceleration effects are dependent on

direction (extension or retraction).
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(v) The change in length itself, as opposed to deployment rate
or deployment acceleration, remains one of the strongest

factors influencing frequency variations (spin or no-spin).

(vi) Spin accelerations do not affect system eigenvalues or
eigenfunction but, rather, contribute an additional trans-

verse loading to the beam.

(vii) Rate of rotation plays a dominant role in stiffening the
system as evidenced by the straightening of the eigen-

functions (Table 4.1, Figures 4-5 to 4-8).

(viii)Deployment related Corioiis forces can play a major role in
causing large in-plane deformations. This implies in some
casesthatdeployment should be carried out in stages so as
to limit the time available to build up a large amplitude
response. Once the deployment has been turned off the

oscillations can be damped out.

Note, results given here apply to both spinning and gravity-
gradient spadecraft during and after attitude acquisition. The
frequency parameter data should be particularly useful in dealing
with problems of interaction between the structural, control system,

and vehicle dynamics.
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5. PLANAR LIBRATIONS OF A TYPICAL GRAVITY
GRADIENT CONFIGURATION

Having obtained rather general equations for both libration-
al and vibrational motions the next logical step would be to apply
them to a class of representative systems. However, the problem
in its utmost generality is so complex that the physical character
'of the system is likely to get lost in the immense amount of
algebra involved. As a first step in assessing the significance
of system parameters and in order to establish some of the basic
characteristics of the motion a simple yet realistic configuration
consisting of a rigid central body having two long flexible booms
free to librate and deform in the orbital plane was considered.
Although this results in some simplification of the governing
equations, they still remain nonlinear, nonautonomous, and coupled
and hence gquite challenging. The mainAobjective is to get some
appreciation as to the interaction between flexibility and libra-
tional motion during the steady state as well as transient phases

as represented by deploying appendages.

5.1 Simplified Spacecraft Configuration and System Equations

Figure 5-1 illustrates the specific spacecraft studied here
which is a simplified form of the general configuration presented
in Figure 2-2. Cantilevered to a central rigia body are two
diametrically opposed uniform flexible beam-type appendages, which

can be deployed independently. 1In the nominal equilibrium con-
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dition the undeformed appendages are aligned along the local
vertical (Bc) with boom number 1 pointing in the outward direction
(¢1 = 0) relative to the center of force OI' If attitude motion

is restricted such that roll and yaw remain unexcited then pitch
motion (%) takes place in the orbital plane only, the condition
referred to as 'planar' motion. Furthermore, the boom vibrations
are alsQ assumed to be confined to the orbital plane. This type

of configuration is typical of the many gravity-stabilized concepts.
Although this represents a degree of approximation it provides a
starting point in the analysis of such a complex system.

Governing equations are arrived at by applying the general
results of Chapter 2 and 4 to the specific configuration represent-—
ed in Figure 5-1. Note the use of a hybrid system of coordinates
with nonlinear attitude equations (so importént during the transient
attitude acquisition stage) together with linear appendaée equa-
tions. The simplified expressions here omit the effect of offset
(r) of the appendage attachment point.

Considering ¥ = A = u = w = 0, evaluating appendage coordinate
transformation matrices [X1] and [XZ]' expanding out [I], [I1, {h},
{r'} as in Appendices II and III and substituting into equation

(2.12c) yield the following equation for pitch attitude motion:

. . . . - 3 u _
133 (6 + @) + I33 (6 + o) + 5 (E—E)[(IZZ 111)52® + 2I12c2®]
’ c
fzi{v ( + 2} .2
+ i Pi 0 X V1,tt 1V1,xt i Vl,XX + zlvl,x)



Orbit

$ Perigee

Figure 5-1 Configuration of a representative gravity gradient satellite, with two
in-plane flexible deploying uniform booms, undergoing planar deformation.
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where:
_ 1 3 i 2
T3 = 1Tzt 2iey 340 fo (vi® = 2xjugg, ) dx;1ds
(I..-T..) = (T..--T,.) + % {p.[%2.> fzi 242 dx.1}
227 T11) = GTapmpTan) * P lesBT - vy XjUpg, ) AX;10
1
iz = 1tz * [pi.é (x; = ugg 3) vidx,l.
Also with wy; = w, = 0, equations (4.1la) for linear in-plane
vibrations become:
0. [v F ok [+ +v. L1 +T10G+HEr (2 G
i i,tt i i,xt R 3 2
c
3 . e 2 U 1l 3
- = C — —_ _—
2_.2<I>)]vi + [(6 + ©)7 + (R 3)(2 + 5 02<I>)]xivi,x
c
b6 o+ By + 32 s201x, + {2+ (2, - x)
2 R 3 i i il i
c
Sl a2 (ke 2 _ .2
5 [(6 + &)° + (R 3)(2 + 2c2c1>)(sai x4 )1} Vi xx
c
+ EiJ33,iVi,xxxx = 0. (5.1b)
5.2 Equations Based on 'Discrete' Deformation Coordinates and

'Orbital' Time

The solution of equations (5.1) is obtained using the assumed-
mode procedure for representing elastic deformations, as established
in Chapter 4. 1In terms of orbital time and using the nondimensional
form of the vibration equations (4.3a), the equation governing pitch

can be expressed as:
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" ] - ' é.
I33® + (133 2e1133)(1 + o') + 2(1 + ech)
[(I22 - 111)82® + 2Ilzc2®] + T3 - 2e1h3 = p; (5.2)
where:
_ 31 1 iy
I33 - 1I33 + ; {pizi [3 + 1l (an,l 2an,ll)gmgn]}’
i mn
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Both appendages are governed by equation (4.10a). Consequent-

ly pitch excitation can generate asymmetric oscillations only. This
is not the case, however, for differing boom initial conditions.
Also differences in boom physical properties or deployment will
alter the response.

System equations governing the planar dynamics (4.10a and
5.2) were solved simultaneously with the help of an AMDAHL 470/V6-
II digital computer. The numerical integration routine was based
on the implicit Adam's method with built-in error control.
Vigneron111 has pointed out several difficulties encountered in
the numerical treatment of this class of problems. Flanagan
(1969)234 also refers to deficiencies related to digital compu-
tation. Fortunately, with advances in computer technology and

better integration routinés available today, no such difficulties

were encountered.

5.3 Results and Discussion

Calculations were carried out for the two-boom gravity grad-
ient configuration at an orbital altitude of 6000 km. The physical
charaéteristics of the appendages coincide with those of the RAE
antennas (p=0.023024 kg/m, EJ33 = 7.85 Nm2). Principal inertias
and mass for the central rigid body are 18 Nm2 and 150 kg respect-
ively. Through a systematic variation of the large number of
variables inherent to the system one can generate extensive amounts
of information.' However, forrconciseness, only typical results
suggesting trends are recorded here.

Recognizing that the flexibility effects are likely to in-

crease with length of the appendages, Figure 5-2 studies pitch and

vibrational response of a satellite with two gravity gradient booms
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Figure 5-2 Effect of the flexible boom length on system response

for the planar case.
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extending to 50, 200 and 250 m. The satellite is in a circular
orbit with the booms extending at a rate of 0.2 m/s. It is subject-
ed to an impulsive disturbance of $(0) = §. In addition to the very
large amplitude experienced by the pitch response the figure shows
three points of interest:
(i) There is a quick reversal in the direction of pitch motion

due to increase in the moment of inertia about the pitch

axis (conservation of momentum) brought about by deployment.

(ii) Amplitude of pitch oscillations tends to increase with an in-
crease in the final deployment length, L. This appears to be
a direct consequence of the vibratory motion which sets in at

larger lengths.

(iii) Flexible appendages undergo small amplitude antisymmetric

motion.

Figure 5-3 compares the response of rigid and flexible satel-
lites during appendage deployment from 180 to 200 m. Corresponding
performance with the appendage length fixed at 200 m is also in-
cluded. It is of interest to recognize that for the nondeploying
condition, flexible appendages remain virtually unexcited resulting
in a pitch response that is identical to the rigid case. However,
the effect of deployment of rigid appendages is to reduce the
maximum amplitude from 35° to 30°. The influence of flexibility is
to further accentuate this trend with the amplitude reduced to
around 20°. Note also the high frequency modulation of the libra-
tional response due to vibratory motion of the flexible appendages.

This is a direct result of the flexibility interaction, that is,
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the booms serve as a feedback mechanism for the attitude motion;

Effect of the deployment rate on the system dynamics is in-
dicated in Figure 5-4 where the appendages are deployed from the
initial length of 200 m to a fully deployed value of 250 m. In-
creasing the deployment rate from 0.1 m/s to 0.2 m/s does not seem
to affect the pitch response substantially except for a distinct
shift in pﬁase, however, the vibrational response becomes quite
sensitive to the deployment rate and at a critical value of around
0.22 m/s the vibrational motion becomes unbounded leading to in-
stability‘of the pitch vibrations.

Boom response to an initial tip displacement equal to 5% of
the length is displayed in Figure 5-5 by a plot of the generalized
coordinate associated with the first admissible function of boom
number 1 and the corresponding pitch libration. Symmetric initial
displacements of the booms produce no pitching while antisymmetric
initial conditions (tip displacement = 5% of boom length) result in
a pitch = 9°, Disturbing only one boom initially yields librations
less than 5°. A considerable difference exists in the frequency of
vibrational response for the symmetric case as opposed to the other
two. The high frequency behaviour is eliminated along with the
pitch response for the symmetric case. This is because the high
frequency modulation is a direct result of coupling with the pitch
motion, which is not excited during the symmetric case.

During the formulation of the governing equations it was
recognized that inclusion of the shifting center of mass and/or
geometric offset of the appendages considerably adds to the complex-
ity of the problem. Hence it was considered desirable to assess

their effects on the general response. This is examined in Figure
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Figure 5-4 Effect of the deployment rate on pitch and vibrational
response of a gravity gradient satellite.
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5-6 which shows the effect to be minimal for the case considered.
This is quite important as considerable simplification of the
equations and subsequent saving in the computational effort can be

achieved without sacrificing accuracy.

5.4 Concluding Remarks

The planar dynamics reveals some important features associated
with the motion of gravity gradient systems having flexible deploy-

ing appendages:

(1) Digital computation now permits solution of attitude dynamics

problems previously intractable with such an approach.
(ii) Pitch motion excites antisymmetric boom deformations only.

(iii) The results indicate that even large amplitude librational
motion fails to excite substantial appendage deformations.
On the other hand, appendage deformations, caused by initial
conditions or othefwise, can have substantial effects on
vresponse as evidenced by the considerable moéulation of pitch
amplitude together with a significant increase in frequency
of appendage oscillation when compared with the uncoupled

case.

(iv) Deployment can result in a significant increase in vibration
amplitude. In fact, depending on the orbital parameters and
physical properties of the booms, there exists critical com-
binations of boom length and deployment rate for which the

satellite can tumble over.



10

Figure 5-6

100

R.= 12,378 km , e= 0 , L =200 m-
EJyz = 785 Nm? ., Q= 0023024 kg/m-

ANTISYMMETRIC
BOOM INITIAL CONDITIONS

c.m. fixed

c.m. shifting

SIS o % o 1 Sh|ft|ng + Offset
o4 = 2
012 = 1

m
m

i g
i ik
g L i { :|
_ IR N 1 ) :-: ‘ “
3 : fla k2 1\

'R 2H .
E N i 4 v :
b ": e :'§ 82 ' % H I, F 'lé
. :.. . '- . :' ‘

Typical planar

0 o1 0.2 0.3 0.4

ORBITS

response as affected by the shifting
center of mass and appendage offset.



10l

(v) Deployment increases the degree of coupling between the

attitude and vibrational degrees of freedom.

(vi) In certain cases the effect of shifts in center of mass and

offset can be negligible.
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6. GENERAL THREE-AXIS ATTITUDE MOTION

The planar dynamical study though useful should be considered
approximate and provides merely preliminary information concerning
the system behaviour. To an extent, it gives a mechanism for check-
ihg the enormous amount of algebra and also involves a simplified
version of the general computer program. With this as background,
the present chapter applies the analysis to the case of general

three-axis attitude motion.

6.1 Spacecraft Configuration and System Equations

The two-boom gravity gradient configuration of Chapter 5 is
but one particular case of that class of spacecraft depicted in
Figure 6-1. The equilibrium attitude is taken to be such that the
x-y plane coincides with the orbital plane. Also, any pitch or
spin motion occurs in the x-y plane hence it is referred to as the
'spin’ piane and contains booms numbered 1 through 4 having the
arbitrary orientation ¢p as indicated (Figure 6-1). Booms 5 and 6
lie in the x-z plane. Although a maximum of six appendages are
illustrated, the governing equations considered in this section
apply to a configuration having an arbitrary number of booms in
each of these planes. Coordinate transformation matrices required

to relate local appendage coordinates to the central axes include:

C S 0
2 %
= - 0 (for a planar boom);
[xp] séy, céy

0 0 1
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flexible
appendages

central
rigid
body

¢p=xp=o ' ¢p arbitrary
‘Po=)‘o=0 , ‘po arbitrary

Figure 6-1 Configuration representing a large class of space-
craft chosen for detailed study. Note the arrangement
shows appendages in the x-y plane coinciding with the
pitch plane (p) and in the x-z plane perpendicular to
the pitch plane (o). '
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cwo 0 —swo
[xod = 0 1 0 (for a boom in the x-z
plane).
sV, 0 eV,

(6.1)

Possible gravity gradient configurations represented by
Figure 6-1 include that of two diametrically opposed appendages in
the spin plane (Figure 5-1), an RAE-type arrangement involving four
booms symmetrically placed in the spin plane, or perhaps a set of
six mutually perpendicular booms. Similarly, one could identify
configﬁrations applicable to spin-stabilized spacecraft such as the
Alouette series having two sets of antennae of different lengths
lying in the spin plane. On the other hand, a CTS-type configur-
ation could be modelled using just two booms (numbers 5 and 6)
perpendicular to the spin plane. 0f course, rigid unsymmetrical
satellites with no appendages can also be included within this
class.

Obviously the representation of Figure 6-1 has a wide range
of applicability. However, it is but one particular case of the
more general configuration originally presented in Figure 2-2,
thus emphasizing the versatility offered by that formulation.

Appropriate eguations governing librational and vibrational
behaviour can be arrived at by applying the more general results
of Chapters 2 through 4 to the configuration under study here. The
main assumption made is that an arbitrary number of flexible, de-
ploying, uniform booms lie in the x-y and the x-z planes. AS in
Chapters 4 and 5, appendage motion is governed by a set of partial
differential equations and advantage is taken}of the assumed-mode

procedure in arriving at a final solution. Again, axial oscil-
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lations are neglected. With a description available for the appen-
dage motion one can proceed as in Chapter 5 to evaluate those terms
in the libration equations dependent on flexibility and deployment.
Consequently, the system equations of motion consist of eguation
(2.12) for the attitude dynamics and the set of equations (4.5)
for each boom. .

A study of these equations reveals how an already complex
system becomes more complicated.when one takes into account such

factors as shifting center of mass, appendage offset, axial fore-

shortening and deployment.

6.1.1 Computational considerations

As before the solution was sought by direct numerical inte-
gration on a digital computer. It is perhaps of interest to out-
line the basic programming approach adopted for dealing with such
an involved system.

The motion is governed by 3 librational and N-3 vibrational
second order ordinary differential equatioﬁs which are transformed
to 2N first order equations by constructing a staté vector of the
N zeroth order (displacement) and the N first order (velocity) terms.
In this form, all degrees of freedom are solved for simultaneously
as a first order initial value problem. Used is an integration
routine provided by the UBC Computing Services which is based on an.
implicit Adam's method. For the procedure to succeed one must use
the latest data available when updating derivatives. Consequently,
the second order derivative associated with each degree of freedom
must be expressed as a function of the lower order derivatives only

[Conte (1965)235]. This presents one with a considerable challenge
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for the complex highly coupled system at hénd. The amount of
algebra involved is minimized by taking advantage of the numerical
techniqué outlined in Appendix VII.

Organization of the computer program centered on a series of
subroutines. A main program directed the integration process
calling the system-supplied routines as desired and provided the
needed input/output services. The integration package required a
routine (SYSTM) to define the system dynamics in terms of explicit
expressions for the first order derivative of the state vector. The
governing equations are employed directiy in SYSTM in two distinct
stages to deal with the librational and vibrational contributions.
In addition, a separate subroutine was written for each of the
quantities {rc}, {h}, {r}, [1I]1, [I'] required by SYSTM. In each
case first degree, second degree, and foreshortening effects due
to flexibility were grouped in separate blocks. Overall the modu-
lar approach adopted was intended to permit easy extension of the
prbgram to include additional appendage equations and to allow for
isolation of the effects indicated above.

The 3-axis program was set up to accommodate an arbitrary
number of assumed modes and six booms, four in the x-y plane and
two in the x-z plane. Assuming a two mode representation results
in a system of fifty-four first order equations. Modal integration
coefficients were determined independently by numerical quadrature.
Where possible, these integrals were evaluated analytically as well.
Accompanied by a liberal use of comment cards the program exceeded
three thousand five hundred lines. However, no storage limitations
were encountered; although execution times could not be ignored as

CPU values of 50-100 were not uncommon. Particularly time consum-
s e T

e
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ing are integrations involving small.appendage lengths. A similar
finding was pointed out by Misra and Modi (1979).236 To cope with
the relatively small step size demanded by the high frequency oscil-
lations a two-stage integration procedure is established thus allow-
ing for a complete change in such parameters once during the course

of the integration. The program was coded in FORTRAN using double

precision variables throughout.

6.2 Results and Discussion

The endeavour>he£e has aimed at developing a model which tests
the transient and steady state effects of flexibility and deployment
in a relatively general manner, the ultimate objective being to
assess their interaction with the attitude dynamics. Practical
difficulties arise if one wishes to simulate the behaviour of an
actual spacecraft. Firstly, only limited response data is available
in the open literature and what:there is rarely applies to nonlinear
deploying situations. Even for the existing data one tends to find
but an incomplete identification of those parameters needed for
carrying out a meaningful comparative simulation. Secondly, addi-
tional refinements to the model developed here may have to be made
in order to include characteristics unique only to the system under
consideration. In many cases the effort required to take into account
new features may not be great since dynamic simulation of the flexi-
bility effects has already been carried out.

For example, introduction of momentum biasing -as used on the

CTS would simply mean the adding of a constant term to the h3 compo-

nent of the local momentum vector. Similarly, it is relatively
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straightforward to introduce damping into the study. However, this
injects a degree of uncertainty into the simulation since no single
theory has emerged which adequately describes the damping character-
istics; a point emphasized by thé recent findings of Garg et al.
(1979).237 This is one reason it has not been dealt with in the
current investigation. Also it was considered unnecessary to further
complicate an already complicated task when one could be reasonably
certain as to the effect of the phenomenon - energy dissipation

along with attenuation of the amplitude of vibration.

Although comparisons of simqlations with actual flight con-
ditions is the ideal, there exist, nohetheless, alternative measures
one can take to establish confidence in fhe working of the program.

A check on the algebra exists, to some extent at least, during
application of the assumed-mode solution to such terms as {h}, {T},
etc. Aside from the usual symmetry one expects of the expressions
for the general three dimensional case, one also.finds the grouping
of coefficients falling into a familiar pattern so that any deviation
leads one to again review the derivation. Actual response can be
checked by pursuing such trivial cases as response to zero initial
conditions. The program can be run in the vibration or pitch modes
only so that amplitudes and periods can be precisely checked. Planar
nonlinear response of a rigid configurationin an eccentric orbit was

30

compared with that by Brereton (1978). Comparison of simultaneous

response of both librational and vibrational motions is possible using
a planar program derived independently of the general program. Also,
peak pitch displacement and pitch reversal predicted for the RAE by

204

Dow et al. (1966)54 and Bowers et al. (1970) are similar to the

response generated here.
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6.2.1 Two boom gravity gradient configuration

Having gained some familiarity with the planar response of
a two-boom gravity gradient system, a logical step was to examine
its fully coupled attitude behaviour. Representative results pre-
"sented here assume the same orbit, configuration, and boom character-
istics as described in section 5.3.

Figure 6-2 compares the response of rigid and flexible
satellites during appendage deployment from 0-100 m. Corresponding
response with the appendage length fixed at 100 m is also included.
In all the cases, the system is subjected to the iniﬁial impulsive
pitch (planar) excitation of b(0) = 8 with roll and yvaw degrees of
freedom left undisturbed. As can be expected, large amplitude
pitch ﬁotion results, however, it is of interest to recognize that
there are virtually no coupling effects as roll and yaw motions are
essentially absent, so is the vibratory response of the flexible
appendages. Note that for the nondeploying condition, near absence
of the flexible appendage vibration results in pitch response that
is identical to the rigid case. However, during deployment, slight
vibration of the flexible members in the early stage does bring
about.a noticeable difference in the resulting pitch response. This
is analogous to the behaviour observed earlier during the planar
motion (Figures 5-2, 5-3).

Just how strong coupling effects can be is demonstrated by
applying an impulsive initial condition of @(0) = § to the roll
degree of freedom only, Figure (6-3). Large amplitudes result in
both yaw and pitch as well as for vibrations. 1In fact, the overall

motion becomes unstable within half an orbit. This is in marked
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contrast to the stable response-associated with the planar initial
condition of the same magnitude. Note also the significant effect
of deployment on the nature of the coupled response (Figure 6-4).
Large displacements are also experienced in this case within less
than 0.5 orbit. Flexibility, however, has minimal effect except
near the point of instability where it alters pitch response quite
dramatically.

Having considered two very different types of attitude distur-
bances, the next logical step was to assess system sensitivity to a
given disturbance. To this end the system was subjected to a set
of three impulsive roll velocities of»increasing magnitude (Figure
6-5). Note the strong coupling effects continue to persist even in
the presence of a small disturbance. The iarger the roll rate, the
earlier the instability sets in. The results also suggest that
large displacements in librational and vibrational degrees of free-
dom are closely related.

Boom response to an initial tip displacement equal to 5% of
the length is displayed in Figure 6-6 by a plot of the generalized
coordinate associated with the first admiséible function and the
corresponding pitch libration. Symmetric initial displacements of
the booms produce no pitching while antisymmetric initial conditions
result in a peak pitch = 8°. Disturbing only one boom initially
yields librations less than 5°. Note a considerable difference in
frequency between the vibrational response for the symmetric case as
opposed to the other two situations. such high frequeney behaviour .
is eliminated during symmetric oscillation since pitch itself is not

excited. ' . N
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Figure 6-7 describes three-dimensional librational response
when tip of the appendage is displaced (in the orbital plane) by an
amount egual to one per cent of its length. As expected, the case
of symmetric appendage disturbance closely resembles the planar
response data given earlier in Figure 6-6(c). There is, however,
approximately one degree of yaw appareht after half an orbit. This
is in contrast to the antisymmetric case where both roll and yaw
remain unexcited [Figure 6-7(b)]. Pitch responds in a manner analo-
gous to that in the planar case except that now the peak amplitude is
only around 1.5°. However, a strikingly dramatic effect of coupling
is revealed when the system is subjected to a disturbance in the form
of tip displacement of one of the booms [Figure 6-7(a)]l. 1Initially,
up to around a quarter of an orbit, only a small amplitude pitch
librational motion is unexcited. However, subsequently both yaw and
roll appear, grow in magnitude monotonically and in turn cause large
amplitude vibration driving the system unstable within half an orbit!
This is in marked contrast to the apparently stable behaviour in the
planar case, even with more severe initial conditions, as given in
Figure 6-6(a). This emphasizes significance of cqupling effects in
a study of the class of.spacecraft with flexible éppendages.

Although not shown here, results were also obtained to assess
effects of several other parameters on dynamics of the two boom
gravity gradient.configuration free to undergo three-axis librations.
The use of higher modes to represent appendage vibration showed only
minor difference in amplitude without affecting general character of
the response. Similarly, the effect of shifting center of mass,

off-set of the appendage attachment, and the appendage foreshortening
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during transverse oscillations was found to be negligible on libra-
tional response (amplitude change less than 5%). More noticeable was
the shift in the phase which was also present during deployment of
the appendage. Also, as found in Chapter 5, deployment can affect
the system response substantially and under certain critical combin-

ation of parameters can drive it unstable.

6.2.2 Four-boom spin-stabilized configuration

In addition to the gravity-stabilized concept, another equil-
ibrium orientation involves a satellite spinning at a rate much
greater than the orbital rate, with the axis of spin nqrmal to the
orbital plane. Using coordinates as defined in Figure 2-2, the x,

y body-fixed axes lie in the spin plane (orbital plane). This
section studies dynamics of a system having four mutually orthogonal,
flexible, deploying, uniform beam-type appendages numbered 1 through
4 lying in the spin plane (Figure 6-1). Orbital characteristics
tdgether with boom properties o, EJ33 are the same as in the gravity-
stabilized case. The length‘of each pair of diametrically opposed
booms is similar to that of the Allouette 1II satellite.

Presented in Figure 6-8 is the three-axis attitude response
of the system (initially spinning at 0.1 rad s-l) during deployment
of appendages at 0.10 ms_l. Although all booms have the same
starting length and deploy at the same rate, booms numbered 2 and 4
stop deploying at 10 m whereas 1 and 3 extend to 35 m. Results for
rigid appendages are also included for comparison. Despin of the
pitch degree of freedom is according to the conservation of angular
moﬁentum. The configuration is highly stable with the pitch rate

attaining a constant value following deployment, and there is no
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out-of-plane librations. ©Note the effect of flexibility is essen-
tially negligible. This is consistent with the low level of vibra-
tions. In fact, the appendage vibration is virtually absent until
the first set of booms ftop deploying. Even after 0.05 orbit (685
s) oscillations at the tip stay much less than 1% of the boom length.

Displacing boom 1 [¢l = 0,21(0) = 5m] by 0.25 m at the tip in
the spin plane at the start of deployment still fails to excite any
roll/yaw motion (Figure 6-9). However, considerable interaction

‘
between the pitch and the flexible appendages leads to high frequency
modulation of the pitch rate, a result similar to that observed in
the gravity gradient case.

Figure 6-10 presents response of the system to an impulsive
roll/yaw disturbance equal to 10% of the nominal initial spin rate.
Large amplitude displacements result leading to tumbling motion in
less than eleven minutes. Furthermore, not only the pitch rate but
also the yaw rate decreases significantly. On the other hand, the
roll rate appears to grow. Note that the strong roll coupling

effects experienced in the gravity gradient case are not dominant

here. Also the appendage oscillations are minimal.

6.2.3 CTS-type configuration

A completely different class of satellites is represented by
the CTS-type configuration briefly referred to in Chapter 1. It is
characterized by two flexible appendageé (numbered 5 and 6, Figure
6-1) and a momentum wheel perpendicular to.the orbital plane. The
general formulation of Chapter 2 is readily adapted to this configur-
ation as well by simply adding the momentum wheel effect to the {h}

vector.
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Some representative response data is given by Figures 6-11,
6-12. The effect of including a stored momentum and of flexibility,
in the absence of deployment, is emphasized in Figure 6-11. As
expected, the additional momentum has a stabilizing effect [compare
Figures 6-11(a), (b)]. On the other hand, flexibility tends to make
the system unstable [Figure 6-11l(c)l.

Deployment effects are illustrated by Figure 6-12. Note a
marked difference in the pitch behaviour due to interaction with
the boom vibrations. Furthermore, the instability appears to set

in somewhat earlier compared to the rigid case.

6.2.4 Asymmetric deployment of appendages

Also of interest is the case of asymmetry introduced by'the
appendages. This could occur in the event of failure of a boom to
deploy fully or if the fully-deployed configuration of the overall
spacecraft is itself asymmetric (e.g. Pioneer IV). An equivaient
effect would be present during modular construction of very large
space structures such as the SPS. Also, asymmetric deployment has
been proposed as a useful means of attitude control.l79’208

Figures 6-13 and 6-14 compare response of rigid and flexible
asymmetric configurations to planar excitation for the two-boom
gravity gradient satellite studied in sections 5.3 and 6.2.1.

Figure 6-14 involves appendage deployment from 0-100 m for the
boom aligned along the outward-pointing vertical, and from 0-50 m
for the second boom located 180 degrees with respect to the first.

Corresponding performance with the appendage length fixed at 100 m

and 50 m respectively, is also included, (Figure 6-13). It is
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demonstrated that flexibility can result in a pitch response of up
to 10 degrees larger for a nondeploying asymmetric configuration as
opposed to the symmetric case (Figure 6-13). Also, a weak coupling
of the roll/yaw motions becomes apparent after 0.5 orbits. Com-
parisons based on flexible deploying booms are even more dramatic.
The asymmetric condition (Figure 6-14) produces significant vibra-
tions which eventually become unstable as a result of the large

amplitude roll/yaw behaviour induced by coupling effects.

6.3 Concluding Remarks

Examination of the governing system equations together with
some typical three dimensional simulations presented in this chapter

leads to the following conclusions:

(i) The ease with which such diverse classes of satellite con-
figurations have been simulated demonstrates the versatility

of the general formulation.

(ii) Coupled character of the motion significantly affects the
system dynamics, hence caution should be exercised in utiliz-

ing results based on the planar analysis.

(iii) Significant simplification in the equations can occur with
appendages having a sbecific orientation or, if one can ignore
such factors as appendage offset, foreshortening, shifts in
the center of mass location, flexibility, deployment, or
higher modes used in the assumed vibration solution. Elimin-
ation of even one of these parameters such as 7 effects con-
siderable savings in algebra with associated reduction in com-

putational time and effort.



(iv)

(v)

(vi)

(vii)
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Pitch and associated in-plane vibrations do not excite roll/
yaw degrees of freedom. On the other hand, a roll disturbance

can excite the yaw/pitch motion.

Stable librations do not excite significant appendage motion
whereas initial boom displacements can result in very notice-

able changes in attitude.

Interaction between flexibility and libration leads to an
increase in the frequency of appendage oscillation together

with a high frequency modulation of the attitude response.

The small amplitude oscillations evident both with the gravity
gradient and spin-stabilized response justify a linear

vibration analysis.

(viii)There are combinations of flexibility, deployment, and initial

(ix)

conditions for which a satellite can tumble over.

Flexibility considerations can be particularly significant in
the study of asymmetric deployment as it can greatly increase
the magnitude of attitude response and the degree of coupling

to the point of causing tumbling.
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7. CLOSING COMMENTS

Overall, the thesis presents a unified procedure, based on the
methods of analytical dynamics, for deriving and solving system
equations governing general spacecraft librational motion, which
includes the effects of flexibility and deployment. ‘Application of
the method is illustrated through a generalized configuration
representative of an important class of problems. This is particul-
arly helpful to a design engineer as there is no need to continually
rederive a complete set of equations for each new spacecraft.

Rather than the accumulation of a large amount of data, the emphasis
is on evolution of a generalized and organized methodology for cop-
ing with such complex nonlinear, nonautonomous, and coupled dynamical
systems. Effectiveness of the approach is illustrated through an
extensive response evaluation of gravity gradient, spin-stabilized
and CTS-type configurations. Important features of the formulation
procedure and conclusions based on the response results are pre-

sented in the following sections.

7.1 On Formulating System Equations of Motion

Although several studies have been carried out on the formu-
lation alone for flexible satellite attitude dynamics, none has
attacked the problem to this degree of generality. It should be
emphasized that the momentum formulation of Chapter 2 need not be
restricted to the study of satellite dynamics alone, but is a general
result of particular value in analyzing any complex rotating system.

Note also that the attitude equations ultimately involve only the
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generalized coordinates associated with the appendage degrees of
freedom. Consequently, for any satellite configuration, governing
librational equations remain the same. However, the vibration
equations change to reflect the character of the appendage. Develop-
ing appendage equations in terms of 'local' coordinates means that
they can be analyzed directly, the point emphasized also by

135 and Gupta (1978).118 Overall, the formulation

Laurenson (1976)
related to appendage vibrations presented in this thesis represents
a significant extension to the Euler-Bernoulli beam theory.

In the analysis of such involved systems the key element which
makes a solution feasible is adoption of a continuum representation
in conjunction with an assumed-mode solution. Note, in general,
any approximate shape functions satisfying geometric boundary con-

ditions can be used, including ones found by means of a finite

element method.

7.2 Characteristics Associated with a Deploying, Orbiting, Spinning
Beam-Type Appendage
The dominant influences on system eigenvalues for most practical
applications are the spin parameter and appendage length. Changes
in spin rate itself however do not affect the natural vibration
characteristics but act as an additional external boom loading.
Also of importance is the fact that resonance can occur between the
spin degree of freedom and in-plane oscillations.
Deployment rate and chénges in deployment rate alter effective
stiffness of the boom. In addition, deployment rate introduces a

term into the equations which can be viewed as a negative damping.
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Specifically, deployment-related Coriolis forces can result in large
amplitude deformations in the spin plane and hence must be consid-
ered when arriving at any deployment strategy.

Out-of-plane eigenfrequencies become shifted by an amount
proportional to the spin parameter. This result is modified for
an orbiting beam since, in general, the characteristics of‘an orbit-
ing beam can vary significantly from those for a beam rotating in

the absence of the gravity gradient influence.

7.3 Overall System Response

Results suggest that large amplitude attitude behaviour can
occur simultaneously with small amplitude oscillations thus justi-
fying a linear vibration analysis in such cases.

The planar study carried out in Chapter 5 demonstrates that
large amplitude pitch motion does not necessarily excite the appen-
dage vibrations; the reverse, however, is not true. In fact, once
the appendages are excited, significant coupling between vibrational
and librational motion results in a high freguency modulation of the
pitch response together with a shift in the expected frequency of
the appendage vibration. In general, planar motions do not cause
out-of-plane rotations whereas, for example, a roll disturbance
results in a three-axis attitude résponse. Hence care must be taken
when interpreting data based on a planar analysis only since the
coupling effects can become quite significant, to the point of domin-
ating the response.

Three-axis analysis suggests that, in general, parameters such

as shifting center of mass, appendage offset, and the use of a larger
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number of modes (all of which substantially complicate the formu-
lation) have little effect on the magnitude of the response. Hence
" one can neglect them, at least during the preliminary design stage,
with considerable saving in computational time and effdrt. Also,
it was found that libration during asymmetric deployment of appen-
dages can become unstable when flexibility is taken into account,
even though no such instability may exist for the rigid configura-
tion.

Depending on orbital parameters and physical properties of
booms, results show that there exist critical values of appendage
‘length and deployment rate for which a satellite can tumble over.
Application of the analysis to three distinctly different classes
of satellites (gravity gradient, spin-stabilized, CTS-type)
demonstrates the veréatility of the general formulation. It is of
interest to note that the size, speed, and accuracy of the modern
day digital computer permits dynamical simulations which would not

have been possible a decade earlier.

7.4 Recommendations for Future Work

(1) A comprehensive numerical investigation could bé carried out
varying initial conditions and major spacecraft characteris-
tics in a systematic manner. Using such a matrix of con-
ditions one could generate a parameter map identifying
essential response features for a family of configurations,
e.g., gravity gradient, spinning, CTS and RAE classes of

satellites, etc.
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(iidi)

(iv)

(v)

(vi)
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The forced response of the system can be readily examined by
introducing the appropriate generalized forces. Of primary

concern would be the effect Qf environmental forces such as

those resulting from solar radiation pressure, aerodynamic

and, perhaps, control forces.

Governing eguations can be formulated for additional types of

appendages.

A significant extension to the modelling of appendages would
be to relax constraints at the root so as to allow for canti-
levered and/or hinged connections with/without stiffness and
discrete damping. Structural damping could also be allowed
for. In addition, the analysis could be extended to include
appendages undergoing a controlled variation in orientation

with time - a feature of potential military importance.

An interesting study would be to create a computer-generated

visualization of the spacecraft response. For instance, one

might wish to look at a simulated dynamical history starting
with the initial undeployed high-spin state at orbital in-
jection, through the attitude acquisition phase involving
deployment of appendages, to the steady state equilibrium
condition. Also, it could proveé rewarding to visualize the
effect of attitude control manoeuvres made using extension

and retraction of the appendages.

Having such a general formulation at hand, the next logical
step to fully exploit its potential would be to devise an

appropriate control strategy and seek the optimal design.
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APPENDIX I

GENERAL EQUATIONS OF LIBRATION ON TRUE ANOMALY

The equations of Chapter 2 can be expressed in a somewhat
more elegant manner if one takes advantage of the Kepler relations
to describe the orbital variables while also taking the orbital

anomaly as a measure of time as in Chapter 4.

SV'Degree of Freedom (Roll)
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A- Degree of Freedom (Yaw)
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APPENDIX II

SYSTEM MOMENTS OF INERTIA

II1.1 Arbitrary Appendage

Moments of inertia are calculated with respect to the in-
stantaneous center of mass of the satellite (Oc) but are expressed
in terms of local appendage coordinates. Pertinent system geometry

is given in Figure II-1.

Local
Appendage
Coordinates

Central
Coordinates of

Undeformed
System

X
o .
/ ~cC
Central Coordinates of

2 Deformed System

Figure II-1 General displacement of a mass element in the presence
of flexibility (gi), geometric offset (gi) and a shift-

ing center of mass (r ).
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Neglecting subscript i, the location of any mass element dm of the

ith appendage can be expressed:

fy = 4 ré6 * €L Jdr T + €

— —

A %Y

Lty mor X ru
= Sz = Mt 41V j (IT.1)
,93 7%3 +'3r‘f w
where:
ﬂj = jth component of net offset vector along the local axes-

Based on this description of the displacement field with respect to
the instantaneous center of mass, one can evaluate appendage con-

tributions to the inertia tensor of the overall system:

St e i) dn

S
0

\

m(gzz+g3z) +/[yz+}2¢2(225'

7 JS(—)dm = [ (—)dm
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r2)rJdm

L, = ,/’3’/ fyz dm ;
= /(xgaﬁxzz*;z/ + 2%,82) dm +m
Icya ‘/[(é{/f&z)xc 4 (x+2/)gfc]:/m
~flgu + X¥)dm + [[(grd2) b+ (x
+ &)V *+ «vjdm
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Is = Jbitsdn
= [(xp+ x25 * 32 * &23)dm + m
Xe3e - S (3 +33) X+ (x+3)3 ]dm
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+ o)W * uwidm ;
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Y3 ~Sl(yr32)3 * (3733) 4] dm
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~S(3v + 4 &) dm + SL(3+83) 0 +(y

+ 2)w * vw Jdm . (11.2)

Tt is seen that the resulting expressions are made up of terms

 associated with the undeformed configuration, flexibility, and net

offset.

II.2 Beam-Type Appendage

Considering the beam to be slender, y = z = 0. For a uniform
cross section dm = pdx thus allowing some of the integrals of equa-
tion (II.2) to be evaluated explicitly. The net contribution (ex-
cluding £c) of a given appendage of this type to the overall inertia

tensor is, using local coordinates:

\

7 m(3f+33) [ vt st s 208, 2 33w)]dx 5

T medfesd)r pAt (4L +8) + p L0 (u

]

- Uye)? # w? o 2018 (u-tys) + 203w ]d% ;

miatr 8 » pi L 8) +p [

- “/5)z + 2 2(x+3)U-tys) * 262 V] dx

&

~T,, = - Mz -E’Jo,fzéz ’f{j/.gz (U-Ugg)
#(xrZ)r * (U-dg)v ] dx

-1 = —mZ,Z»,a fzf.ﬂzgg'f_[j[gg(“‘d;5)
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f("*@/)“"f(ﬂ’d/;) af']a/x 5

‘ y,
-I,, = - M 32 63 —Jo_/ (337 + 2w * vuw)dx .
(I1.3)
When differentiating such expressions, note that L = 2(t) but

o= constant.
Separating out the effects associated with geometric offset

only:

/773/ gz

2
Ly = m(és + %) 2L, = ;
212 = m(3i+33) ;5 D5 = méds
Ty = mi3f+2Y) 5 I, = m&i;

(II.4a)

and the 'undeformed' beam:

o

3Ly
3L = pLILFE)

pL(GL+2) ; 3I,3 = O .

(I1.4Db)

LI\
N~
~

0

7L 8
L pl* 2,

w
N
LINY

i\

In the derivation of vibration eguations the inertia density

~

(Ijk) is required as an explicit function of elastic deflections

using the local coordinates. Equations (II.2) can be used in the
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derivation. Those terms which are not explicit functions of u,

v, w are not included in the following.

Generally

I:,'/( = '[n IJ,& a’m . (I1.5)

For the beam-type appendage adopted here, which includes

axial foreshortening and p = p(X):

N
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eflz = f’[(ﬂ:a-fuf)(x+u) + Mmw] - [“/1’.,‘,(,:,:7

FwId= JF (% )] .

(1I1.6)

The theorem of Appendix IV has been applied when dealing with Ugg-

For example:

p |
Z 22 c e 4 ojf, [ -2(7{,,«x+a)4/ﬂ,...]‘/x,,,,v

It

o .,;/1[... .glzf(mfxfa)d“][f
(%‘z*afxz)]/a/z,‘... ;

since,

¥ 4
// F4 2
X~ = =4
7 Iy (7 + W) d=x .
1I.3 Inertias of Spacecraft Having Arbitrary Appendages

Adding up the results of equation (II.2), overall satellite
moments of inertia can be arrived at which separate out the effects
of flexibility. The expression can be simplified by eliminating
the appearance of I components in local coordinates. This is
possible since, aside from deployment effects, variations in center
of mass location are not independent but ultimately are functions
of local appendage deflections. Total satellite mass moment of

inertia, which includes the effects of flexibility, geometric off-
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set of appendage root, center of mass shift, and deployment, can

be put in the following useful form with respect to the central

reference system x, y, 2z:

[T]= f,I] * [,T] » 1] * [eI] * [em 1]
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Note that axial foreshortening terms can be accommodated by replacing

u; by (ui - u ) in this expression. Also the [xi] matrices are

/

fs, 1

constant with respect to time in this analysis.

II.4 1Inertias of Spacecraft With Beam-Type Appendages

II.4.1 Continuous coordinates

The effect on spacecraft moments of inertia of appendage flex-
ibility is worked out in detail here for an arbitrary number of
beam-type appendages. General relations converting components from
local coordinates (equations II.2 and II.3) to central coordinates
"are presented. Then, based on the coordinate transformations defined
in Chapter 6, the terms tek are expanded out for the case of appen-

dages.restriéted to the x-y and x-z planes as identified by subscripts

" p (planar) and o (out-of-plane) respectively.

Considering the ith appendage to have an arbitrary, but fixed

orientation:
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Substituting the [Xp], [Xg,] matrices of the configuration studied
in Chapter 6 into equation (II.8), gives the following flexibility

contributions:
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IT.4.2 Assumed-mode format

The solution for elastic displacement assumed in Chapter 4
is substituted into equations (II.9). Combining modal coefficients,
simplifying, and rearranging yields the following working form for

the inertia flexibility effects:
ely = ég C ZZ( Bmny f,’v//” (c*¢ b £+ 1 )
+ Bmnys p Ay CEnf’ + % On bn)
- éfp [ 8% Bmn,u 1/3 + (sagp &z,p + 25%¢gp
| 3,045 Bmnyio ] ( Er &+ 5 E) - 7 fo
[ 5%% Bmny L3 - 520 250 + 25%% 34,0)
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Lo sz ] p, j/f ;,: * 2Cm,s (/; Lr 24,0
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33,0 = 525 240) — Cmyy Mo 5295 p 42

n /)
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II.5 Time Rate of Change of Inertias for Spacecraft with Beam-
Type Appendages
Not all elements comprising the spacecraft inertia tensor
vary with time. [lI] and [21], for example, are fixed. [3I],
however, can vary during deployment by differentiating the local
elements as given by equation (II.6), transforming to central
coordinates, and summing over all appendages.

In terms of local coordinates these derivatives are:
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N~

o

3Ly = o ; 3j/z = .Pljgz ;
3j,2 = f,lj (f+23;) . 31",3 = fli e
3j33 = Jojj(l'fZZ»/) . 3j23 = ° .

(IT.11)

Contributions associated with the changing position of the center

cf mass ( ) can be found directly from equation (II.7):

cmlix

-2ms (4 4 * 3 3%)

cmjll =

cm ;z = - 2mg (X% + 3, %) ;

emlyy = —2ms (%A 4 E)

cmvliz = Ms (‘*?2&. * X ¢.) Y

Cnajf;S = ms ( Xe 5; ’ jéi}é) 5

cmjzs = ms (4, 3'2 # g'c %) - (II1.12)

The most involved expressions are associated with flexibility. They
can be determined most efficiently by differentiating the assumed-
mode form of tek as given by eguation (II.10). That is, the total

effect from all appendages is:
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APPENDIX TII

EVALUATION OF {rc},’{h}, AND {I'} FOR BEAM-TYPE APPENDAGES

The general nonlinear attitude equations of Chapter 2 remain
quite lengthy despite the compact form in which flexibility and de-
ployment effects are represented. Evaluation of these effects in
fact requires a major effort when dealing with the three dimensional
case containing offset and arbitrary appendage orientation. Upon
applying the definition, for {h} and {I'} and in particular, to the

configuration of Figure 2-2 one quickly loses any naiveté!

IITI.1 shifting Center of Mass Location {rc} and Associated Time
Derivatives

The expressions developed here are based on the definition of
. given in Chapter 2 which allows for a change in center of mass
location due to elastic motions or deployment. An arbitrary number
of appendages lie in the x-y, x-z planes. Deformations are solved

for as in Chapter 4.

x, = (1//775){ ﬂéfp [ 7 et /jp“’/z - sp;l\’f;nf(_(fm,i
g7)] + Z p [t (L)
7 35%15;(6»,1 7/»:).7/ ;

4 = 1/ 5 p LEsp ) e oppdy £ (G
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(II1.1)
X = (1/mg) Z polet LG, ~spp Z Cmydp
(Lpbw + 24 ¢0)] + Z plets 48,

+ S Y n21 Crm,o Lo (Lo 7;‘ *Z’e" ?”'o)]};

%; = (///ﬂs){gl;pf séh j;f; ) g C’m’,j’,
(pbr + 24y f)] + Zl25 £ Crids
(L Em + 24 £2)]]

% = /m) g gl Z Cndp (p in t 2o )]

r = fo[-S%J‘,bj, + et Lo éfmu

o

{.faf;," t Zz; 7/7;)]} . (IT1.2)
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B o= O CZ g f e B A 4 ) - 5
£ Cry L4} B redohobn 42 (hd
VIOV T SRR TAP A VEFT
-4 Cm, 1 L L Gl tadiky 5 * 2( Aok
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g = GfmIC Z p, sty 147 L) P
£ Cmi L4 fn r 4 h b+ 2Lk
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II1I.2 Local Angular Momentum {h}

A component matrix definition is given in Chapter 2 for
angular momentum applied about the system instantaneous center
of mass solely as a result of motion relative to the body-fixed
axes X, ¥, z. In this case the relative motion referred to is
caused by appendage vibration or deployment and does not include

librational effects; hence the term 'local'.
III.2.1 Appendages with arbitrary orientation, continuous coordinates

Considered, is a beam-type appendage having an arbitrary
orientation, undergoing transverse oscillations only, and also
included is the effect of axial foreshortening. Components of
momenta are evaluated along the central coordinate axes. However,

r 2:1

appendage-related variables are based on coordinates X.r ¥ i

i
for convenience the subscript i dropped. The contribution of
the ith appendage to {h} is demonstrated for the component along

the x axis. The resultant h,, h, terms are analogous.

>
1

[ 4 o N 1
/aj (72773—77.3'772) +f>o/[/133”/
- X2 75) * (Xz3 X2 - Xaa Xz) X + (J3lkn

- X2z X33) w] L+ [ (X33 T2 - X352 73)

+ (X33 X2 = X3z2 XI.?)x + ( X33 Xzz '}/322//3)
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v]w, + U] (X7 - Xa7) + (222
Xis = XesXa)V * (W2 X3 = Ass X.)w
+ [ (Has e - Xz T3) + (X2 Yas =X Kur)x
t (Xsz Yoz = Xss Kan) w ] Yy + [ (X372
- X3z M) + (X Xss - X3 X32) X # (X
Xss ~Xp ) vJug ) # (X2 75

C AT x A (X Ty~ K Te)
+ (Xaz T3 = Xsz72) & = { (X 7

- X T, )[4 (BEr )]+ (X772

- X, M) Y Vee * W e + U (Y

Yax * wxwzx)] ) (L-x)D dx .

(I11.4)

III.2.2 Assumed-mode format for appendages in the x-y, X-2
planes.

The more general results of the previous section are applied
to the case of booms lying in the x-y or x-z planes only, using
the coordinate transformations given in Chapter 6. Appendage
deformations are replaced by the assumed series solutions of Chapter

4. Substituting-into the expressions developed in the previous

section and simplifying:
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III.3 Local Torque {T}

This section is analogous to section III.2. In this
case, however, torques acting about the system center of mass as
a result of flexibility and deployment are worked out in detail

as opposed to momenta.
III.3.1 Appendages with arbitrary orientation, continuous coordinates

As in part III.2.1, the contribution of the ith appendage
to {I'} is demonstrated for the component along the x axis for the
case of arbitrary boom orientation. Resultant F2, F3 terms are

analogous.
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171.3.2 Assumed mode format for appendages in the x-y, x-z
planes : '

Proceeding as in section III.2.2, the ceneral relative
motion torcque expressions can be applied to the case of appen-

dages lying in the x-y and x-z planes.
/", = Pfaé < Jopjp [ T2,p 7%3',;’ -73,p ‘7'7;,;’ + S
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3/

(Cm, /dj;’ * Omys3 .f,o)) ;m, # (Cmy ( 73:',?
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+ ot d ) dp = (Tpp # 0o dp) (Cmio s

¥ Cradp/lp ) 34T * pode [Cmyr (5% T30
—cth 7o) - Cmg Lo ) ls G0 + (2Cmu0
(S% T30 - ct,0) - Cryuds ) Mo o

+ (3% 7o = 4 7,0 ) (Cryso Lo by + Coys
A%/ do ) = Cmyiz do ds = Cmyis s # Comy
(ch Fop =54 Fopod o ) 50 T}

+ ZZ gk [ Bom,i0 ey Top dp Gl 7
t P s+ ELEL + B ET) - cg Tup A

((Brmn + 2 Bumye (64 67 + 37 0"

+ Bom,n CELEr + 32 32)) + (-4 B
Ly (Fpp =Tap + cfp dp) # o Tp ( Bron, s
dy + Bomzs L/ dp) VELE + 5 0)
- By spp 45 (B B 1 ELRE ) - 25t dp
Ly ( B £5 40 = Bomyeo &L 57 ) 7 54
(o Ly 5 # Bz L) & W T
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¢ pde [ Brmyo (¥ T30 # 3% Tyo ) Lo
(ELES + 3500 + 6560 + a0 82 )
~(ct Mo + s¢sm,0) Ly (Bmmas (ém £
+ 5245 = Bz (€mbn t Gntn))

- (Z/ an,/o (7;;'0 "”';;0 + st Lo +C%'é‘:)'l"

)

+ (<t Too + 3% M,0)Bmnae Lo/ Ly + Bons

L)) (Embn + Entn)I ] D

3= g% < pdp L7r Top = Tayp e = 4 (5Fp
7;;:,0 - ¢ i,l’)jp + (5% Thp - <dp ”'zm)j;]
thde [ 7, oo = Mo Tyo *+ € (L 91,04
- ok )]+ 2 { phy [Cms Ctp Tp
¥ S ) + Cmyg J/).,[,o;’p? * 2—1/"
(Cmyo Cedo ﬁ,f * S Typ) + Cmu jp)f;xp
t (= Cmy dp (e Fpp # 58 Fap # Lp)# O

. *2
Lo Lp + Cm, 14 S + (cdp T, p t ST Tpp)



200

(Cryiod + Cmys Lo /Ay ))Em T + o A,
[ (Cmyy o # i Cma L) LB+ 2 (Gn
Moo + Gy <t do) Ly €m + (= Cmy Fipo
Lo # (Cmw o * Cmz ety o)Ly # (Cmyis
W0 * Comyus <tols ) (Lo /o) &~ 55
(Coyo a0 do 5+ 2Cyso Tayoks 52 # Com
M,y Ao+ Coyrs oo Lo/ lo = Cmyi Fioody)) 2]
+ZZ { po dp L~ Brmn,so <% Typ = tp e D dp
(ELEL+ Bl 3 + EXEL #3080 )- Gt
W p = cdp Tup ) dy (Bom,as (61 6L #ELE0)
= Bomyy (EX &S + 58 ED)) +(E Brnyro

( Top = Frp t 3Gy dp ~codo ) hp = (5 77,p
- cdp Fz,p ( Bmn, iz J/ *+ Bmn,2¢ /}2/«(/’ ))
(6l + &L 6)T + pdo [ Brmo ¥

Moo Lo (6m £ + T3 B0+5260 + 2080



t et ooy (Brmas (ém &1+ G 82)
= Bomn (X €2 + b )Y # (1 Brne
(20 — 7o - c¥ody) Lo *+ €% T2
( Brnze £/ Lo * Bonyyg o )) (62 EX
FEETE) + Bun, SHLECES B - 62 00)
+ 250 4y ly ( Emn g &: 28— Bmn, 20 bm Z2)

- 5% (5/"/'/ 21 Lo jo' * Emnmar j:’z) "é"’o "a].})'

(ITT.7)
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APPENDIX 1V

A USEFUL INTEGRAL THEOREM

THEOREM:

/1 g ) [‘,/x/(*‘) dx] dx = /lf(x)[/':v(d)‘/«]a’x.
° o x

(IV.1)
Proof:
For the purposes of this derivation consider u, v as
arbitrary functions. . Integrating by parts
b Y] b
/ « dvr = azr/ —/ A du . (1V. 2)
a a a
Consider:

x
& (x) = J F(x)da — Ju = i dx = /(x)dx 5
s

v (XD = -/jﬁ(s')a'd — vV = g(x) dx
x

Then:

x L
Jsor [ iide = - [ Fodx b/

X230

,4-’/‘[(/’{9(4)4’“) £ dx
o - 4
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= -.o/"’[;f(-()c/d:z/’[y(./)dd +/‘:/{«)Jq"

54 A L
J Jx .
Jacod + [TA0L g dn]

Discussion

When foreshortening is
axial displacement it remains
kinetic energy for example.
transforming these terms into

equations of motion for beams

(IV. 3)

Q.E.D.

introduced explicitly as an additional
as an integral function in the system
This theorem provides a method for

an effective axial load in the final

with varying sectional properties.
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APPENDIX V

APPLICATION OF HAMILTON'S PRINCIPLE TO
A DEPLOYING CONTINUUM

The general form of Hamilton's Principle can be written

(Meirovitch, 1970):%7

O : (v.1)

Jt/t’ L+ W) At
7

where:
,(; = Lagrangian, which includes the potential energy of con-
servative forces;
ZV’ = generalized work function which can include nonconservative

force contributions.

Note, for a given appendage spanning a region D,

&
]

T-v = JT-Po = S L
0
(V.2)

For the case of a deploying beam-type appendage in the
presence of a gravitational field, the Lagrange density function

" assumes the form of equation (3.20) when taken to 3rd degree:

AL = L (/;1; €, & ,€xx , Exe, €., t). (V. 3)
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Carrying out the variation on this functional as implied by

equation (V.1l):

(2
Jf/ L W)

2L FY4
/ / y 22 s+ 2% 4e
Pex T e O
< ~
# 2% S€xe » oL Se, + 571”)(/0]0’14
o
where: (v.4)
SwW = 36.56;
§0O = 0 for a continuum since 0 = D ct;,,¢) only
(Thus agreeing with the conclusion of Tabarrok et al.
1974) . 222

The system is taken to be deploying along the local x

direction only, with velocity (/(Xx,¥¢ ). so that:

QS;) = total time derivative relative to the local appendage
ot coordinates;
= 2+ U gf:).' (V.5)
2T )X ,

With this in mind the many terms of equation (V.4) can be evaluated

by freely making use of integration by parts.
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/ // ‘9‘6 S& dx ) ot

= S B )

- SR E) sk jie
(V.6a)

(93

S st 2L ge, oJx )t

t/ g 3 ‘(xx

t ~
- t‘// : / [ 9‘?7"::: Fe - ax (Qfxx)fe'/

, I ;; ;i)j Je ox ) dt

(V.6b)‘

1// o 9£ de ) ] dx f ot
=1/f‘/’/"/;; Cose) 1 02 (22 5))df,

AV ¢ BV +/ﬂ*‘fe)4x
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- / L L7
LY - 24 27 [ox
¢ v 2Ese ) - S (s 20)]f 4t

(V.6c)

But:

t,/ ’,/o/’/ﬁi /gz-ffé}_/c/x/ Jt

I

S ST (Tt f de

¥4 ~  #) \
= f 2L JSe Jdx = 0.
28 ae )

Therefore:

¢ =~
S S sa)dx ) it

¢ ~ A
= q,//' 2 //' - Z/ AEEE S€ //

7€ 4

4 2 £y | v
"«'/['5?(5_6;)* ”"aééj“ dx { It

(V.7a)
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Similarly, it can be shown that:

/ //[/‘%()Je’x{]a/x/a/f

Z, ~ Y4
= 2L Y _
DAL Ly
- v < € g
P€x¢ ¢
* / [ Px¢ Qéxt)— Ix ﬂ aiLt)Jfga’/‘h‘.
(V.7b)

Substituting equations (V.6) and (V.7) into (V.4), it is

seen that a stationary value of the Hamilton functional demands

that:

, f‘{ [ 5'29 ae, (;;:e)/ ox ([/ ae“

[ 4
., £ 2L _9_/2_,_5” X JZ)
Y ae ox | 2¢g, px*l déxx

‘i; ; (v.8a)
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and,
o -z (22) 02 GE)u i)
2€x 9:t I€xx ¢?€£ P€xt I€x¢
= o
‘9627 éf' E?aér c{* _
— & P C)'
2’6&:? FExt X
at .lx=0, Z. (V.8Db)

(V.8a) represent the governing equations of motion defined in terms
of the Lagrange density;
(V.8b) represent a complete set of boundary conditions, geometric

and dynamic.
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APPENDIX VI

MODAL INTEGRAL COLFFICIENTS

Defined here are a series of integrals associated with a

chosen shape function on(x). These integrals appear as coO-

-

efficients in the solution of the governing equations of libra-

tion and vibration. In general, g, can be any assumed

' ' 220
function, such as a Galerkin polynomial [Jankovic (1980) 1.

Modal Integral Coefficients Cn

!

\

Cn,s // jn)‘;i‘

o

S H D
w - LMY N
n ] i\ ]

Q\ o\ n\ Q\
T SO T

I S
) Q_ QU

] 2: Ry
a_
N
(95N A"SN \as LY N

)
‘g
'S

I
u\
N
PAIN
N
©

DY

A
LAY

o
3
]
N
Ry
®
Ry
R,
Q_
L3



s
)
I

|l

Cn, 10

Cn, /l

\

Ch, 1z

0

\

Cn, 13

Cn, p =

Modal Integral Coefficients Bm

Croe * Cos = Cnye
Cn,4- # cﬁ,S
C’/z,g - 2(;;,7 4 Cn,g

-'Z?C%,;' 4 Cth

n,J

an,p

\ed

-t

AN

LYY

Cn,é -(;’/ =

.

~y

AN Y

ALY

A Y
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(VI.1)
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Ala

L5

"N

AN

-%x) 4,2 dE

N

1
o 4

/ Ay A2
[ dmzz <) gy 22 9

BMH, /3

-

x

_ 4y Az
:7/71;1"'.7?1'! (r-x ) j”)

Bmn s = J
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an,/s = an,z — Bnr,2 5
5”7}1,/4 = Bnm 6 ~ an, é ,
5/»/7,/7 = Boms = Bomg - 15’,,,,,/1 ;
an,,g = Bnm,s - :Bnmg =~ Bor, 2 ;
Bmn, 9 = Bmn,1 + Bpamz = Bwmye
Bmnze = Bmn,s * Bmnz — Bmn, e 3
Bm,,,z, = Bmn,s  + Bmn, e 5
an,zz = - (gmﬂ,4- ~ Brmg * Z ( 5mn,7 ,
- Bnm,7) '(an,y - Brm,q) 3

an/ 23 = R(8mn3 " Bnm, n = Emn,, 7
3/7717, 24 = z(B/ﬂ”;;? * 3/7/",/1)7‘ gmn,/z 5

Nes

an,zg = 2 Bnm,/z + Enm, 3 * Bmn, 14
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Emn,ze = B{”";F - Zan,g * 2 Bﬂm,z

N

B,m,}5 -2 8mn g -2 Enm, 12

8”7”/27

-2 Bmn, i3~ Bmn, 14

A Y

ANEY

an,zs = an,z - an,é

5/77/7,29 = 2(Bmn, z = Bmne¢ = Bmnys0 )

* Bmn,n 5
an, 30 = ﬁmn,l - 3nm, 6 >
B,,,,,’ 3 = an, 20 -~ an, 10 o

3mn, 32 = an. 30 Brmny o '

(VI.2)
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APPENDIX VII

A METHOD FOR ISOLATING SECOND DERIVATIVES OF
COMPLEX COUPLED SECOND ORDER SYSTEMS

A common .approach adopted when integrating a system of second
order equations numerically is to transform them to a system of
first order equations. An essential element in the‘strategy in-
volves expressing the second order derivative of each independent
variable in terms of lower order derivatives only. Such a require-
ment is easily met for uncoupled systems. For more complex fully
coupled systems, as represented by the librational and vibrational
motions dealt with in this thesis, one is faced with a considerable
amount of algebraic manipulation. The effort needed is alleviated
somewhat by taking advantage of numerical teqhniques where

appropriate.

VII.l Analysis

All second order derivatives appearing in the librational

equations are to be expressed explicitly in terms of attitude
degrees of freedom. To begin with the general result of Chapter 2

can be written:

-7 = X + o + & ; (VII.1)
X



216

where:
9% . . .
='¢ = terms in the governing equation for 2 lower than second
0 order; ¥ 4

1,
= ¢ A contribution to the equations -?k due to the combined

effect of the relative motion torques;

9
‘\/2“'= contribution of the second order terms of the 2,[ degree
4 of freedom to the jk equation; but not including the
o("’ effect.
r

oo y y y Py y e
&
A P ¥} A+ g F .

]
!
R

As indicated in Figure VII-1, the relative motion torque
L4
effect is ultimately a function of the QX . The various coefficients

necessary to describe this relationship quantitatively are develop-

ed as follows:

j* f,(v ;< "‘: | Zq f/‘ e
= = &’ & H
«/1 q//., [/3: (fm R 7,‘ )] /_,,0 * /_"2! z‘ :

(VII.2)
where:

dt"* contains all terms having derivatives less than second order;
’

- & fe - contributions of second order terms of the !) degree of
/’jl freedom to the «ﬂg’effect.

For the attitude equations considered here:
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Iy :’ 9 ’ PZs
=X Ty X,
T~ e “0¢ 74

COMBINED TORQUE EFFECT

(7

RELATIVE MOTION TORQUE

[(E757°)

APPENDAGE
.GENERALIZED COORDINATES

Py ‘, . " o0 " ,‘,
5 (“)‘/ ), 7 (d,;')

ANGULAR ACCELERATION,
LOCAL COMPONENTS

& (g, )

¢
6

e}}j,

Figure VII-1 Functional dependence of terms used in the
description of system eqguations.
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¥y
g = A (sF [, +eF L) - SA Ly

«¥ = N (sES, * cFn) - A Syu
g .

Xz= ANGP[lo v B fs) - A s
A

a‘z = Cj? A/Z 4 - .fi; /z'gf;

°‘/3./1-= £ /7,.4. - 52 /;,AJ

“,;; = ¢c#/,5 - sZ /15

w,if’ [3, %

“ﬁi" [3,4

a(/;i‘-- /; 5 - (VII.3)

4
Thus the o £ coefficients are in turn functions of the /1

/312 ~’)zk,

coefficients where it can be shown:

s ’ ’

o= LLES ), 5 dT) T

J

W

(VII.4)

M
)
.
N
X0

where:

/7‘7 contains all terms having derivatives less than second order;

J
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é: = contributions of second order terms of the 2 degree
}2&’ of freedom to the /7 effect. 24
J

Consider the case of appendages in the x-y plane only:

P

= Zlpd FELon % e (Y 5

/;?k F

P

0 &)tk B (Y 2

Y p
* ém 7&,,, ) - < " Crmys J/jk’m

# (72’(’,,,’, + St dp Cms ) 72/0,’” ]'/
' /4
Y

2
/;,jk = %I!J‘;’l’ gné[fﬂoﬂzp Emn,/o {)j;’m fn

: P
4 'Zf:,m ?np) - S jl"lyﬂm,/ ("}k’m ?np
P P P P
7 ;m ’ng,,,) - 59& ‘7"3 [’/?7,/ ‘yfkﬂ"
P
- (ZPC’”I’ * c#j/’ [”"14‘)71#7”1]/;

= £ [ph 2 Z [ 64 5=ty ) Born, so

o
(ny:”" & 7 79:,”7 Z;f) r((Cetp 7
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tospp 1) Gy * A @,4) ,mJ)
(VII.5)

Derivatives for the generalized coordinates of the appendage vibra-

tions can be put in the form:

Ffo s g

{’7‘ zj ) {’7‘7"} ’ /72;} j:; ; (VII.6)

where:

H

¢ ’ : . .
¢ contain all terms having derivatives less than second
0 order ;

s0d o0 v
of freedom to the §, £ derivatives for the 1th

¢ ,
{)’ (,{&7‘} contributions of second order terms of the qp degree
e ) U
appendage.

{A-/Zﬂ;} - (63‘;.7,¢ 7/;z“ * e;yfkﬁ};’) [Blz?]{g‘}
L, 18I - &y (o]

. /‘
¢ 776 - )
( €3’2k 1 é’l’ fk /CI ’
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(Mg )= = Cenpy 7l v iy 7i) 180317

- flff*-[g’]/f‘] * é’;;f,t /Cf]

< s ‘ Al
# (6212‘ rfo- €1, ri){e )

(VII.7)

P2

Equation (VII.7) makes use of the coefficients é;'j appear-
. ¥

ing in expressions for components of angular accelerations taken

along local appendage axes. That is:

.

a‘) 4 * c p4 or
S < + €. . -
y Jro e Fe 1.6
where:
s ¢ . . . .
@ - contains terms having derivatives less than second
Js0 order;
‘l
€ . = contributions of second.,order terms of the . 4
J)Zk degree of freedom to 4&9 , determined by numerical
methods.

Substituting back from equation (VII.8) through to (VII.1l)

yields:

i
R
+

oo 1* . g‘ oo
ZQ 0 5% Zf ; (VII.9)
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where:

é; j&g includes all contributions of the ‘y degree of
,Z£ freedom to the j? equation.
/. 4

This system of three equations in three unknowns (¥, A, -4 ) can

be solved using routine methods of elimination and substitution

from the theory of eqguations:

Y = () (4 Xy ? A %t pXE )

A = ), &+ (155 )%, + S5 %F]
oo S e .o
F o= [1(rSs)](%g S5 F + S M)
(VII.1l0)
with:

8, = L)L (s*#F T, * c?F Tpe — 528 L)
+ s .]:;3 t s2 A (s8L3 * e® Ips)
6, = el [sFc# (T, -Is) ~c22 1,0 * s/ (c# 1

- s# .723,)7



n

]

W

N

n

\

|

223

Y. T3 - A sF8 Lz + cf T23):

/) (e F L, + s EL, * 21 £ 1)
S& I3 - c® L)z

A [sFcF (I, ~Toz) - 2 T ] - s oy
/. ) T3s.

-sh T;3 = el (sF I3 + c® Io3):

SE T3 - ¢/ ,3: -

- 8, [cAsF /),y ~ cE/y) - sALy )

- 9/[6./1(.1’}//14 *cféjﬁ,)—f/l/;:/t t 8, )

- @[cl(sf//jf*cf/zjg)‘fl[é;* &7

"94(6?/2?"5.;4’73/ 7‘64)7

-84(C§//7‘4’3f/zj_4 )7
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6, (c? /)5~ s5% s * 65 )

8, (/37,?7 “"99)7

97(/}/‘4 #* 69);

Sa 5; + (/-5,,2,4) (/-S:)?
St s, + 8 (/-85 )
F A -3 A
PSS o+ S5 (1-5L)
&
5:5‘;& + SFcrss )

sYst+ s¥e,-si)

I 4 ¥
(/"S’;)/(// * 5,/1.//3 - 5_?/3' (VII.11)
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VII.2 - Application

The accuracy, and hence the ultimate success, of a numerical
integration depends on use of the most 'current' information
available when computing derivatives. For that class of problems
analyzed in the preceding section where the state vector is a
hybrid construction of two main groups of coordinates -‘librational
and flexible - the calculations are organized as shown in Figure

VIiIi-2.
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SET &

I
N
N
3
\
Q

COMPUTE {é} , {;}

COMPUTE /:" ( 5} ?)

9 COMPLETE
COMPUTE &, EVALUATION

(€], (%

COMPUTE COEFFICIENTS

€ite 3 //,;f ;{’7;;/ ; 4’1,&,;

VS 7 S

9/ ’ b/
74 o er -
comeure ¥, A, F;:  Equation (VII.1l)
Figure VII-2 Computational prqcédure for updating system

derivatives.



