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ABSTRACT 

The concerns of the present study were to determine 1) the conditions 
3 

necessary to measure displaceable [ H] L-aspartate binding to membrane 

f r a c t i o n s of the r a t brain, 2) whether the binding demonstrated the 

c h a r c t e r i s t i c s of the s i t e which i s active i n vivo, and 3) whether the 

a c i d i c amino acid neurotransmitters aspartate and glutamate bind to 
i d e n t i c a l or d i f f e r e n t s i t e s by comparing the pharmacological s p e c i f i c i t i e s 

3 3 of the [ H] L-aspartate binding with that of [ H] L-glutamate. 
3 

The conditions of the [ H] L-aspartate binding assay were determined 

i n synaptosomal and t o t a l p a r t i c u l a t e f r a c t i o n s of whole rat brain. The 

reaction mixture which included the membrane f r a c t i o n suspended i n Tr i s - H C l 

buffer (pH 7.4) i n the presence or absence of the compound under t e s t , was 

incubated at 37°C f o r 30 minutes. The reaction was stopped by 

cen t r i f u g a t i o n and the r a d i o a c t i v i t y i n the p e l l e t counted by l i q u i d 
s c i n t i l l a t i o n spectrometry. 

3 

The [ H] L-aspartate binding was characterized i n t o t a l p a r t i c u l a t e 

f r a c t i o n s of rat cerebellum. The apparent d i s s o c i a t i o n constant (K^,) and 

maximum binding (Bmax), as determined by Scatchard a n a l y s i s , are 1.64 + 

0.34 pM and 7711 + fmol/mg protein r e s p e c t i v e l y . The displaceable 

binding i s r e v e r s i b l e , saturable, independent of the presence of Na +, has 

an a f f i n i t y In the range where the neurotransmitter i s a c t i v e i n vivo, and 

demonstrates a pharmacological s p e c i f i c i t y which includes 

s t e r e o s p e c i f i c i t y . The compounds tested to demonstrate the pharmacological 

s p e c i f i c i t y were L-aspartate (IC^n = 1*81 VM), D-aspartate ( I C 5 0 = 

46.6 uM), L-glutamate ( I C 5 Q = 1.24 uM), N-methyl-DL-aspartate 

( i n a c t i v e ) , kainate ( i n a c t i v e ) , D-alpha-aminoadipate ( i n a c t i v e ) , and 
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L-alpha-aminoadipate (IC^Q = 7 . 1 2 yM). The pharmacological s p e c i f i c i t y 
3 3 of [ H] L-aspartate binding was d i f f e r e n t from that of [ H] 

L-glutamate. When the binding data only are considered, therefore, 

separate receptors f o r aspartate and glutamate are i n d i c a t e d . 
3 

The pharmacological s p e c i f i c i t y of the [ H] L-aspartate binding, 

that i s the a f f i n i t y of the binding s i t e f o r N-methyl-DL-aspartate, D- and 

L-alpha-aminoadipate, however, does not c o r r e l a t e with the potency of these 

compounds derived from iontophoretic studies. L-alpha-aminoadipate i s very 
e f f e c t i v e while N-methyl-DL-aspartate and D-alpha-aminoadipate do not 

3 
d i s p l a c e the [ H] L-aspartate binding. In iontophoretic studies, 
N-methyl-D-aspartate and D-alpha-aminoadipate are very potent as compared 

to aspartate while L-alpha-aminoadipate Is i n a c t i v e . The 
3 

[ H] L-aspartate binding then may not represent the s i t e which Is 

active i n vivo. The c h a r a c t e r i s t i c s of the aspartate s i t e i n vivo, 

however, may not be t r u e l y represented i n iontophoretic studies because of, 

f o r example, uptake of the compounds. The aspartate binding s i t e , 

therefore, must be i d e n t i f i e d as that which i s activated i n v i v o . The 

question of separate receptors f o r aspartate and glutamate then must s t i l l 

be resolved. 



i v 

ACKNOWLEDGEMENTS 

I am g r a t e f u l to Dr. Hugh McLennan and Dr. John Steeves under whose 

guidance and support these studies were performed. I would also l i k e to 

thank Dr. Andrew Larder f o r his guidance and enjoyable companionship, 

Mrs. Yvonne Heap f o r her help with a l l the glassware, and Ms. Judy Smith 

f o r the f a n t a s t i c job she did i n typing t h i s t h e s i s . Thanks also to my 

husband, Michael, f o r h i s love and the help which provided me with extra 

time to work on t h i s t h e s i s . 



V 

TABLE OF CONTENTS 

CHAPTER PAGE 

I INTRODUCTION 1 
II METHODS AND MATERIALS 

1. Preparation of Crude Synaptosomal Membranes from 
Whole Brain 15 

2. Preparation of the To t a l P a r t i c u l a t e F r a c t i o n 15 
3. [ 3H] L-Aspartate Binding Assay 18 
A. [ 3H] L-Glutamate Binding Assay 21 
5. I n h i b i t i o n Curves 21 
6. Bio-Rad Protein Assay 23 
7. Materials 25 

III RESULTS 
1. Development of the [ 3H] L-Aspartate Binding Assay 

a. I n i t i a l experiments 26 
b. E f f e c t of cations on the i n i t i a l [ 3H] 

L-aspartate binding 26 
c. Time course of the asso c i a t i o n of [ 3H] 

L-aspartate binding 29 
d. Determination of nondisplaceable [ 3H] 

L-aspartate binding 29 
e. Comparison of [ 3H] L-aspartate binding to 

synaptosomes and t o t a l p a r t i c u l a t e f r a c t i o n s 
of whole brain 33 

f. E f f e c t of pH and C a 2 + on [ 3H] L-aspartate 
binding 3A 

g. E f f e c t of washing the surface of the membrane 
p e l l e t on displaceable [ 3H] L-aspartate 
binding 36 

2. Characterization of [ 3H] L-Aspartate Binding i n the 
Cerebellum 

a. [ 3H] L-aspartate binding i n the cerebellum 39 
i . E f f e c t of preincubation on [ 3H] 

L-aspartate binding to c e r e b e l l a r 
membranes AO 

i i . Measurement of [%] L-aspartate 
binding using a f i l t r a t i o n assay AO 

b. Time course of the as s o c i a t i o n of [ 3H] 
L-aspartate binding to c e r e b e l l a r membranes A2 

c. Increase of [ 3H] L-aspartate binding with 
protein concentration A3 

d. I n h i b i t i o n of [ 3H] L-aspartate binding to 
ce r e b e l l a r membranes by L-aspartate A3 

e. Scatchard analysis of [ 3H] L-aspartate 
binding to c e r e b e l l a r membranes A6 

3. Pharmacological S p e c i f i c i t y of [%] L-Aspartate and 
[ 3H] L-Glutamate Binding to Cerebellar Membranes 53 

IV DISCUSSION 65 
APPENDIX I 83 
BIBLIOGRAPHY 8A 



v i 

TABLES 

TABLE 
I Displaceable [ 3H] L-Aspartate Binding to Crude Synaptosomal 

Membranes 

I I E f f e c t of Cations on [ 3H] L-Aspartate Binding 

III Time Course of Nondisplaceable [ 3H] L-Aspartate Binding 

IV E f f e c t of pH and C a 2 + on [ 3H] L-Aspartate Binding to 
Synaptosomal Fractions of Whole Brain 

V E f f e c t of Washing the Surface of the Membrane P e l l e t on 
Displaceable [ 3H] L-Aspartate Binding 

VI E f f e c t of Preincubation on Displaceable [ 3H] L-Aspartate 
Binding to Cerebellar Membranes 

VII Nondisplaceable Binding of [ 3H] L-Aspartate to Cerebellar 
Membranes 

VIII Summary of Scatchard Analysis Results Shown i n Figures 12 
and 13 

IX The I C 5 0 Values of Various Compounds Displacing 
[%] L-Aspartate and [ 3H] L-Glutamate Binding to 
Cerebellar Membranes 

X H i l l C o e f f i c i e n t s f o r Various Compounds Displacing 
[ 3H] L-Aspartate and [ 3H] L-Glutamate Binding to 
Cerebellar Membranes 

XI Comparison of the Pharmacological S p e c i f i c i t y of 
[ 3H] L-Aspartate Binding Obtained by the Author with 
that Obtained by Sharif and Roberts 



v i i 

FIGURES 

FIGURE P A G E 

1 The Three Proposed Points of Attachment of Excitatory Amino 
Acids 7 

Flow Diagram f o r the Preparation of Crude Synaptosomal 
Membranes 16 

3 Flow Diagram f o r the Preparation of To t a l P a r t i c u l a t e 17 
Fractions 

4 Decrease i n Background Chemiluminescence 20 

5 Bio-Rad Protein Standard Curve 24 

6 Time Course of [ 3H] L-Aspartate Binding 31 

7 [ 3H] L-Aspartate Binding to Crude Synaptosomes and to 
Total P a r t i c u l a t e Fractions of Whole Brain 32 

8 I n h i b i t i o n of [ 3H] L-Aspartate Binding to To t a l 
P a r t i c u l a t e Fractions of Whole Brain by Unlabelled 
L-Aspartate 37 

9 Time Course of Association of [ 3H] L-Aspartate Binding 
to Total P a r t i c u l a t e Fractions of Cerebellum 44 

10 Increase of [ 3H] L-Aspartate Binding with Protein 
Concentration 47 

11 I n h i b i t i o n of [ 3H] L-Aspartate Binding to To t a l P a r t i c u l a t e 
Fractions of the Cerebellum by Unlabelled [ 3H] L-Aspartate 48 

12 Saturation Analysis of [ 3H] L-Aspartate Binding to To t a l 
P a r t i c u l a t e Fractions of Cerebellum 50 

13 Scatchard Analysis of [ 3H] L-Aspartate Binding to To t a l 
P a r t i c u l a t e Fractions of Cerebellum 51 

14 I n h i b i t i o n of [ 3H] L-Aspartate Binding to Cerebellar 
Membranes by Various Inhibitors 54-56 

15 I n h i b i t i o n of [ 3H] L-Glutamate Binding to Cerebellar 
Membranes by Various I n h i b i t o r s 57-59 

16 H i l l Plot f o r the I n h i b i t i o n of [ 3H] L-Aspartate 
Binding to Cerebellar Membranes by L-Aspartate 63 

17 Possible Drug-Receptor Curves 75 



I. INTRODUCTION 

The n a t u r a l l y occurring amino acid L-aspartate f i r s t became of 

neuropharmacological i n t e r e s t i n 1960. C u r t i s and coworkers (Curtis et 

a l . , 1960; Curti s and Koizumi, 1961; C u r t i s and Watkins, 1960; P h i l l i s and 

Krnjev i c , 1961; Cu r t i s and Davies, 1962) found that i t excited almost a l l 

neurones i n the mammalian c e n t r a l nervous system. I t was not known i f t h i s 

e x c i t a t i o n was nonspecific or i f aspartate was a neurotransmitter. 

Several c r i t e r i a are used to e s t a b l i s h that a substance i s a 

neurotransmitter (werman, 1966). The c r i t e r i a are: 

1. Presence of the substance In neurones, e s p e c i a l l y i n nerve terminals, 

the s i t e from which neurotransmitters are released. 

2. Release of the substance from neurones i n a calcium-dependent 

magnesium-antagonized manner. Release of a l l substances thought to be 

neurotransmitters has such i o n i c requirements. 

3. S i m i l a r i t y of a c t i o n of the exogenously applied substance with that of 

the n a t u r a l l y occurring transmitter with respect to a) change i n 

neuronal f i r i n g rate and i o n i c fluxes associated with changes i n 

membrane conductance, b) e x c i t a t i o n or i n h i b i t i o n of neurones and c) 

the e f f e c t s of various pharmacological agents. 

4. Presence of an i n a c t i v a t i n g process such as degradation and/or uptake 

so that the e f f e c t on neurones w i l l terminate r a p i d l y . 

5. Presence of a mechanism f o r transmitter synthesis. 

6. Demonstration of binding to neuronal or other target membranes since 

neurotransmitters must bind to receptors located on the membranes to 

i n i t i a t e t h e i r a c t i o n . 
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None of these c r i t e r i a alone i s s u f f i c i e n t to define a substance as a 

neurotransmitter. F u l l f i l l m e n t of a l l of these c r i t e r i a , however, provides 

strong evidence that a substance may be a neurotransmitter. A b r i e f 

summary follows f o r the evidence that aspartate i s a neurotransmitter. 

Extensive reviews have been published by Johnson (1978), DeFeudis (1979), 

N i s t r i and Constanti (1979), P u l l (1981), and Watkins and Evans (1981). 

Presence Aspartate i s present as a metabolite i n a l l c e l l s . 

Demonstration of the presence of aspartate i n a neurotransmitter r o l e i s 

therefore very d i f f i c u l t . Lesion studies i n which c e r t a i n neurones have 

been depleted, however, provide some evidence to s a t i s f y t h i s c r i t e r i o n . 

Comparison of the aspartate l e v e l s i n i n t a c t tissues with those i n tissue 

depleted of neurones i n which there i s evidence f o r a neurotransmitter r o l e 

for aspartate can be made. If aspartate Is a neurotransmitter i n the 

neurones i n question, then aspartate l e v e l s w i l l be lower i n lesioned 

t i s s u e s . This evidence i s much stronger of course i f the only amino acid 

l e v e l which decreases i s that of aspartate. Only aspartate and glutamate 

l e v e l s are decreased i n the o l f a c t o r y cortex a f t e r o l f a c t o r y bulb section 

(Harvey et a l . , 1975). Lesion studies have also demonstrated the presence 

of aspartate i n the o l i v o c e r e b e l l a r path and dentate nucleus (Perry et a l . , 

1977) and i n the do r s a l and v e n t r a l grey matter of the s p i n a l cord 

(Davidoff et a l . , 1967). 

Release Neurotransmitter release from neurones can be induced by 

a p p l i c a t i o n of a s o l u t i o n with a high potassium concentration (usually 50 

mM) which induces d e p o l a r i z a t i o n or by e l e c t r i c a l stimulation. Release has 

been shown with these methods from regions of the c e n t r a l nervous system i n 
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vivo, and i n v i t r o from tis s u e s l i c e s or synaptosomal preparations. 

Aspartate release has been shown, f o r example, by potassium stimulation 

from the dendate gyrus (Nadler et a l . , 1977), and by e l e c t r i c a l stimulation 

from the s p i n a l cord (Roberts and M i t c h e l l , 1972). Release of aspartate 

has also been shown from the l a t e r a l o l f a c t o r y t r a c t ( C o l l i n s , 1979 a, b), 

cerebral cortex (Davies and Johnston, 1976), and cerebellum. 

The aspartate release In the studies above i s dependent on the 

presence of calcium because of the following i n t e r a c t i o n s . The a c t i o n 

p o t e n t i a l causes the i n f l u x of calcium i n t o the nerve terminal where the 

calcium i n t e r a c t s with an actomyosin-like p r o t e i n on the membranes of 

synaptic v e s i c l e s . These v e s i c l e s then fuse with the plasma membrane and 

release neurotransmitter by exocytosis. The release i s antagonized by 

magnesium which competes with calcium f o r passage into the neurone and f o r 

binding s i t e s once i n s i d e . The magnesium therefore replaces the calcium 

and prevents the fusion of the synaptic v e s i c l e s with the plasma membrane. 

In a c t i v a t i o n Aspartate i s i n a c t i v a t e d by uptake into neurones and 

g l i a (Curtis et a l . , 1970). A low and a high a f f i n i t y uptake system, with 
-3 -5 average d i s s o c i a t i o n constants of about 2 x 10 M and 2 x 10 M 

r e s p e c t i v e l y have been demonstrated f o r aspartate (Cox et a l . , 1977; 

Johnson, 1978). D i s s o c i a t i o n constants are a measure of the a f f i n i t y , that 

i s the strength of the i n t e r a c t i o n between the receptor and the p a r t i c u l a r 

compound under examination. Glutamate, an a c i d i c amino acid which d i f f e r s 

from aspartate by only one carbon atom i n chain length, and which has also 

been well established as a neurotransmitter, uses the same transport system 

as aspartate (Balcar and Johnston, 1972; Storm-Mathisen, 1978). 
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The high a f f i n i t y uptake s i t e s are most l i k e l y those related to 

neurotransmitter i n a c t i v a t i o n because the aspartate and glutamate 

concentrations i n rat cerebral s p i n a l f l u i d are 1.98 and 3.6 x 10 ^ M 

r e s p e c t i v e l y (Clarke and C o l l i n s , 1976). At these concentrations the low 

a f f i n i t y s i t e i s minimally occupied and therefore does not contribute 

s i g n i f i c a n t l y to uptake of neurotransmitter. The density of high a f f i n i t y 

uptake s i t e s a lso c o r r e l a t e s with the density of glutamate binding s i t e s 

and the regional d i s t r i b u t i o n of i n t r a c e l l u l a r glutamate concentration 

(Johnson, 1978). The low a f f i n i t y s i t e i s probably related to general 

metabolic uptake (Levi and R a i t e r i , 1973). 

The uptake systems are sodium-dependent. Uptake i n the absence of 

sodium Is n e g l i g i b l e (Davies and Johnston, 1976). Sodium i s transported 

with aspartate i n t o neurones and g l i a ( S t a l l c u p et a l . , 1979). 

Synthesis Aspartate Is synthesized i n the t r i c a r b o x y l i c a c i d c y c l e 

(Benjamin and Quastel, 197A). The two enzymes which are important i n 

aspartate synthesis are pyruvate carboxylase which converts pyruvate i n t o 

oxaloacetate and aspartate aminotransferase which converts oxaloacetate to 

aspartate (Perry et a l . , 1981). These enzymes cannot be used as markers 

fo r neurones i n which aspartate Is the neurotransmitter because the enzymes 

are the same as those present i n a l l c e l l s f o r the anabolism of aspartate. 

Identity of Action Identity of the action of the substance with the 

n a t u r a l l y occurring transmitter i s one of the more important c r i t e r i a which 

must be f u l l f i l l e d . I t has been s a t i s f i e d f o r aspartate In many areas of 

the c e n t r a l nervous system. A p p l i c a t i o n of aspartate by e j e c t i o n from 

glass microplpettes (iontophoresis) f o r example increases the f i r i n g rate 
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of Renshaw c e l l s i n the s p i n a l cord (Duggan, 1974; Biscoe et a l . , 1976). 

The e x c i t a t i o n i s consistent with that induced by stimulation of the dorsal 

roots (Curtis et a l . , 1960). 

I n t r a c e l l u l a r recordings of aspartate a c t i o n are also consistent with 

those expected f o r an excitatory neurotransmitter. Aspartate increases 

membrane conductance by opening sodium channels ( C u r t i s and Johnston, 1974). 

I n i t i a l l y a l l excitatory amino acids were assumed to act on the same 

receptor ( C u r t i s and Watkins, 1960; C u r t i s et a l . , 1972). The c a t i o n i c 

amino group and the two anionic carboxyl groups of a l l excitatory amino 

acids are thought to Interact i n a three-point attachment to the receptor 

(Figure 1) (Curtis and Watkins, 1960). It was suggested that more than one 

of these type of receptors might e x i s t when a d i f f e r e n t i a l s e n s i t i v i t y of 

neurones to aspartate and glutamate was found (Duggan, 1974). In the 

cuneate nucleus, f o r example, glutamate potently depolarises sensory 

terminals while aspartate has no e f f e c t (Davidson and Southwick, 1971). 

Comparison of the iontophonetic e f f e c t s of aspartate and glutamate 

themselves on neurones, however, i s not very informative because of the 

p o s s i b l e c r o s s - r e a c t i v i t y of the two compounds with d i f f e r e n t receptors 

(Watkins and Evans, 1981). Many compounds have therefore been developed to 

t r y to d i f f e r e n t i a t e between the actions of the two amino acids i n order to 

discern whether they i n t e r a c t with the same or separate receptors. The 

structures of glutamate and aspartate are so s i m i l a r that f i n d i n g agonists 

and antagonists which are s p e c i f i c to e i t h e r proposed receptor has proven 

very d i f f i c u l t . 

Three receptors f o r the e x c i t a t o r y amino acids have now been 

characterized by t h e i r p r e f e r e n t i a l i n t e r a c t i o n with N-methyl-D-aspartate, 

quisqualate or kainate ( f o r reviews see: Watkins and Evans, 1981; Watkins 
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e t . a l . , 1981; Watklns, 1981). N-methyl-D-aspartate, a synthetic d e r i v a t i v e 

of aspartate (Watkins, 1962) reacts very potently and s p e c i f i c a l l y with the 

N-methyl-D-aspartate active s i t e . Aspartate i s capable of i n t e r a c t i n g with 

the N-methyl-D-aspartate a c t i v e s i t e . Quisqualate, i s o l a t e d from seeds of 

a green creeping vine Quisqualis i n d i c a (Takemoto, 1978), Is the most 

s p e c i f i c glutamate p r e f e r r i n g agonist to date. Kainate i s an analogue of 

glutamate i n which the conformations of glutamate e x i s t i n the more 

extended form (Johnston et al.', 1974). 

The amino-w-carboxylate spacing appears to determine the preference of 

the d i f f e r e n t compounds f o r the receptor (Figure 1) (McLennan, 1981; 

McLennan et a l . , 1982). The N-methyl-D-aspartate-preferring receptor seems 

to accept molecules i n which the spacing i s more extended than those 

molecules accepted by the glutamate-preferring receptor. 

Some of the evidence that there are three separate excitatory amino 

acid receptors i s as follows. I n t r a c e l l u l a r studies with kainate 

demonstrate that i t has a great potency, slow onset of actio n , produces a 

very large increase i n membrane conductance, and an i r r e v e r s i b l e 

d e p o l a r i z a t i o n . These responses are so d i f f e r e n t from those produced by 

glutamate and aspartate that i t seems u n l i k e l y that kainate Interacts with 

e i t h e r glutamate or aspartate receptors (Engberg et a l . , 1978). Separate 

receptors are also indicated by the fa c t that the dose-response curves f o r 

kainate and glutamate are not p a r a l l e l ( N i s t r i and Constant!, 1979). 

The strongest evidence that N-methyl-D-aspartate and quisqualate and 

therefore, as has been proposed, aspartate and glutamate, act at d i f f e r e n t 

receptors i s that 2-amino-5-phosphonovalerate, the most potent and s p e c i f i c 

N-methyl-D-aspartate antagonist described to date, s u b s t a n t i a l l y depresses 

N-methyl-D-aspartate-induced e x c i t a t i o n s while having l i t t l e or no e f f e c t 
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on quisqualate-induced e x c i t a t i o n s (Davies et a l . , 1980). Aspartate and 

glutamate then are mixed agonists i n that both are blocked to some extent 

by N-methyl-D-aspartate and quisqualate antagonists (Watkins, 1981). 

Magnesium i s also reported to d i f f e r e n t i a t e between the actions of 

quisqualate and N-methyl-D-aspartate (Davies et a l . , 1978). The 

quisqualate responses are not affected by magnesium while 

N-methyl-D-aspartate responses are i n h i b i t e d by about eighty percent with 

the same magnesium concentration. Magnesium, however, depresses 

N-methyl-D-aspartate responses but not aspartate responses possibly because 

of the proposed i n t e r a c t i o n of aspartate with glutamate p r e f e r r i n g 

receptors. 

The hypothesis that separate receptors e x i s t f o r glutamate and 

aspartate has therefore been l a r g e l y based on the d i f f e r e n t i a l potency of 

glutamate and aspartate on neurones and the related agonists and 

antagonists. Iontophoresis, however, i s not necessarily a good technique 

to use f o r the comparison of potency of various compounds. Differences i n 

potency may be due to reasons other than the s p e c i f i c i t y of d i f f e r e n t 

compounds f o r separate receptors such as: 

1. the r e l a t i v e numbers of d i f f e r e n t receptor types. I f glutamate and 

aspartate have the same e f f i c a c y and there are more glutamate than 

aspartate receptors i n a given area, glutamate might be more e f f e c t i v e 

than aspartate. 

2. d i f f e r e n t e f f i c a c i e s of the compounds at d i f f e r e n t or the same 

receptors. E f f i c a c y i s a measure of the a b i l i t y of a compound to 

produce a s p e c i f i e d response. Quisqualate f o r example holds i o n i c 

channels open longer than glutamate (Anderson et a l . , 1976; Cull-Candy 

et a l . , 1980) but t h i s i s not strong evidence that quisqualate i s 
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s p e c i f i c f o r glutamate receptors. 

3. d i f f e r e n t e f f e c t i v e concentrations of the compounds as a r e s u l t of, for 

example, d i f f e r e n t rates of i n a c t i v a t i o n of the compounds. Balcar and 

Johnston (1972) and Cox and coworkers (1977) have pointed out that most 

amino acid excitants are more potent than glutamate and aspartate 

because of d i f f e r e n t i a l uptake and not because of d i f f e r e n t 

e f f i c a c i e s . Another cause of d i f f e r e n t concentrations of compounds i s 

that the concentration of compound administered can vary up to t h i r t y 

percent when the same compound i s iontophoresed from d i f f e r e n t b a r r e l s 

of the same m u l t i b a r r e l l e d electrode ( C u r t i s and Watkins, 1963). Large 

errors might be encountered when compounds with d i f f e r e n t structures 

and charges are iontophoresed. The concentration of compound 

administered by iontophoresis i s therefore not accurately known. 

4. d i f f e r e n t s i t e s of a c t i o n of the compounds. One compound, f o r example, 

may ac t i v a t e s i t e s on the d e n d r i t i c tree so that the response may not 

be recorded i n the c e l l body whereas another compound may a c t i v a t e 

s i t e s on the c e l l body where responses are r e a d i l y recorded (BIscoe et 

a l . , 1976; Davies et a l . , 1978; Usherwood, 1978; Watkins and Evans, 

1981; Watkins, 1981). D i f f e r e n t i a t i o n and c h a r a c t e r i z a t i o n of 

receptors using iontophoretic techniques i s therefore extremely 

d i f f i c u l t . 

In 1970, however, the a p p l i c a t i o n of i n v i t r o binding techniques to 

neurotransmitter receptors began (Snyder, 1978). This technique consists 

of adding a radioactive neurotransmitter or a r e l a t e d compound to membrane 

preparations of the region of the c e n t r a l nervous system under 

i n v e s t i g a t i o n . The t o t a l r a d i o a c t i v i t y bound to such membranes consists of 

" s p e c i f i c " and "nonspecific" binding components. S p e c i f i c and nonspecific 
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binding are determined by adding a large excess of the unlabelled compound 

which i s under t e s t to the reaction mixture. The nonspecific material 

bound i s not displaced by the large excess of added compound and w i l l 

hereafter more properly be c a l l e d "nondisplaceable binding". 

Nondisplaceable binding consists of Ionic and nonionic i n t e r a c t i o n s of the 

compound under t e s t with the membrane fragments. The binding which i s 

displaced by the unlabelled compound i s the " s p e c i f i c " binding or 

"displaceable binding". I t consists proposedly of the binding to the 

neurotransmitter receptor as well as to other s i t e s to which the 

radioactive compound can be displaced. The neurotransmitter binding s i t e 

presumably has a higher a f f i n i t y f o r the neurotransmitter s i t e than any 

other s i t e s from which l a b e l can be displaced. Low concentrations of 

radioactive neurotransmitter are therefore employed so that 

neurotransmitter binding s i t e s are p r e f e r e n t i a l l y bound. Concentrations of 

l a b e l are also kept low to decrease the amount of nondisplaceable binding. 

Neither the s i t e activated by iontophoresis nor that i n the binding 

assay are n e c e s s a r i l y the act u a l neurotransmitter receptor. To d i s t i n g u i s h 

between these s i t e s , those activated by iontophoresis s h a l l be c a l l e d "the 

active s i t e " , those bound i n the binding assay "the binding s i t e " and those 

acti v a t e d by the neurotransmitter "the receptor". 

The binding assay i s a better system than iontophoresis to determine 

the a f f i n i t y of various compounds f o r the aspartate receptor f o r four major 

reasons: 

1. The concentration of compound applied to the binding s i t e s i s known. A 

population of binding s i t e s with, f o r example, a high a f f i n i t y can 

therefore be characterized, i f desired. 

2. The concentration and length of time of administration of compound does 
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not change due to i n a c t l v a t l o n by uptake or d i f f u s i o n because: a) the 

binding assays are performed i n the absence of sodium under which 

conditions n e g l i g i b l e uptake occurs (Enna and Snyder, 1975) and b) 

there are no problems with d i f f e r e n t d i f f u s i o n rates i n the binding 

assay because the compound i s applied d i r e c t l y and uniformly to 

membrane binding s i t e s suspended i n a homogeneous mixture. The excess 

compound i s then removed by f i l t r a t i o n or c e n t r i f u g a t i o n a f t e r a 

predetermined time. 

3. The a f f i n i t y of the compound f o r the receptor w i l l be measured whether 

the binding s i t e occurs on the dendrites or on the c e l l body of 

neurones. 

4. Differences i n e f f i c a c y do not i n t e r f e r e with the binding assay because 

the binding site-compound i n t e r a c t i o n i s measured and not the response 

e l i c i t e d a f t e r that i n t e r a c t i o n . 
3 

To demonstrate that the [ H] L-aspartate i s binding to the s i t e 

which i s active i n vivo and not just binding n o n s p e c i f i c a l l y , the following 

c h a r a c t e r i s t i c s must be present (Burt, 1978). The displaceable binding 

must demonstrate: 

1. Saturation; that Is the presence of a f i n i t e number of binding s i t e s . 

2. R e v e r s i b i l i t y because the action of aspartate on neurones i n vivo 

terminates and the receptors are made a v a i l a b l e f o r subsequent 

a c t i v a t i o n . 

3. S t e r e o s p e c i f i c i t y - one isomer binding with much l e s s a f f i n i t y than the 

other isomer - because many b i o l o g i c a l responses demonstrate 

s t e r e o s p e c i f i c i t y . 

4. lack of a requirement f o r the presence of sodium i n order to 

d i s t i n g u i s h the neurotransmitter binding s i t e s from uptake s i t e s 
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5. Appropriate regional and s u b c e l l u l a r d i s t r i b u t i o n . Binding to 

homogenates of brain t i s s u e , f o r example, should be highest i n the 

synaptic membrane f r a c t i o n s and n e g l i g i b l e i n p u r i f i e d mitochondrial 

f r a c t i o n s . 

6. C o r r e l a t i o n with the actions seen i n vivo; such as a binding a f f i n i t y 

i n the concentration range where the substance i s active p h y s i o l o g i a l l y 

and displacement of binding by compounds which demonstrate an 

i n t e r a c t i o n with the neurotransmitter i n vivo. Displacement of the 

neurotransmitter by a wide range of concentrations of compound also 

determines the a f f i n i t y of the compound f o r the neurotransmitter 

binding s i t e . The a f f i n i t i e s with which a binding s i t e i n t e r a c t s with 

several compounds give the pharmacological s p e c i f i c i t y . No other 

binding s i t e w i l l have the same pattern of a f f i n i t i e s . I f the 

pharmacological s p e c i f i c i t i e s f o r two ligands are d i f f e r e n t , then 

separate binding s i t e s are indicated, while i f the s p e c i f i c i t i e s are 

the same, then only one binding s i t e i s indicated. 

The data from binding studies have demonstrated the existence of 

separate binding s i t e s f o r kainate and glutamate. The binding studies were 
3 

performed with [ H] kainate (Simon et a l . , 1976; London and Coyle, 1979) 
3 

and with [ H] L-glutamate (Roberts, 1974; Foster and Roberts, 1978; 

Baudry and Lynch, 1979; B i z i e r e et a l . , 1980; Sharif and Roberts, 1980a, 

b). The pharmacological s p e c i f i c t y of the binding s i t e s f o r the two 

compounds i n the rat forebrain are d i f f e r e n t (London and Coyle, 1979; 

B i z i e r e et a l . , 1980). D-glutamate, f o r example, binds to kainate binding 

s i t e s with one hundred times le s s a f f i n i t y than i t does to glutamate 

binding s i t e s . Ibotenate and dihydrokainate, however, bind with much 

greater a f f i n i t y to kainate s i t e s than to glutamate s i t e s . D i f f e r e n t 
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receptors f o r glutamate and kalnate are therefore indicated. 

The concern of the present study was therefore: 1) to determine the 
3 

conditions necessary to measure displaceable [ H] L-aspartate binding to 

membranes prepared from rat brain; 2) to determine whether the binding 

demonstrated the c h a r a c t e r i s t i c s of binding to the neurotransmitter 

receptor which i s a c t i v e i n vivo; and 3) a comparison of the 
3 

pharmacological s p e c i f i c i t y of the [ H] L-aspartate binding with that of 
3 

[ H] L-glutamate i n order to determine whether the two ligands interacted 

with separate or i d e n t i c a l s i t e s . 

During the course of the present work Sharif and Roberts (1981) and 
3 

Foster and coworkers (1981) reported that [ H] L-aspartate bound 

displaceably to synaptosomal f r a c t i o n s of the cerebellum and to various 

s u b c e l l u l a r f r a c t i o n s of the forebrain of the rat r e s p e c t i v e l y . The 

f r a c t i o n s tested by Foster and coworkers were whole p a r t i c u l a t e , crude 

mitochondrial (^2^' microsomal, myelin, l i g h t - d e n s i t y synaptic plasma 

membrane, synaptic plasma membrane and synaptic junction. 

A neurotransmitter i s expected to bind to the synaptic junction 

membrane i n order to exert i t s a c t i o n and not to i n t r a c e l l u l a r components 

or to areas of neurones coated with myelin. In accord with these 

expectations, Foster and coworkers found that only low l e v e l s of 

displaceable aspartate binding occurred i n p u r i f i e d f r a c t i o n s of myelin and 
3 

of mitochondria. The displaceable [ H] L-aspartate binding also 

increased from whole p a r t i c u l a t e to P2 to synaptic plasma membrane 

fr a c t i o n s and nine times more binding was seen i n synaptic junction than i n 

whole p a r t i c u l a t e f r a c t i o n s . The l a t t e r observation Is expected f o r 

neurotransmitters because i n synaptic junction f r a c t i o n s more binding s i t e s 

occur per milligram of p r o t e i n than i n whole p a r t i c u l a t e f r a c t i o n s . The 
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whole p a r t i c u l a t e f r a c t i o n s contain a great deal more protein not related 

to the binding s i t e . 

84.5 +9.3 percent of the aspartate binding seen i n synaptic plasma 

membrane f r a c t i o n s was recovered i n synaptic junction f r a c t i o n s . This 

i n d i c a t e s that aspartate receptors are concentrated at junctional and not 

extrajunctional s i t e s . 

The other r e s u l t s obtained by Sharif and Roberts (1981) and by Foster 
+ 2+ 2+ and coworkers (1981) such as the e f f e c t of K , Ca and Mg on 

3 

[ H] L-aspartate binding are compared with those of the present study i n 

the discussion. 
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I I . METHODS AND MATERIALS 

1. Preparation of Crude Synaptosomal Membranes from Whole Brain 

Crude synaptosomal membranes were prepared using a modification of the 

method of Enna and Snyder (1975). A flow diagram appears i n Figure 2. 

Male Wistar rats (150 - 350 gm) were k i l l e d by decapitation. The whole 

brain was removed and homogenized i n 20 volumes (w/v) of i c e - c o l d 0.32 M 

sucrose with a motor-driven t e f l o n - g l a s s homogenizer (Tri-R homogenizer at 

1500 rpm). The membranes were kept i n Ice-cold solutions before use In the 

binding assay to prevent possible degradation of the binding s i t e s . The 

homogenate was centrifuged at 1000 x g for 10 minutes (Sorval RC-5 

c e n t r i f u g e ) . The r e s u l t i n g p e l l e t was discarded and the supernatant 

centrifuged at 20000 x g for 20 minutes. The supernatant was discarded and 

the p e l l e t resuspended i n 20 volumes of cold d i s t i l l e d water by sonication 

f o r 60 seconds (Sonic Dismembrator s e t t i n g 50 on a scale of 100). This 

suspension was then centrifuged at 8000 x g f o r 20 minutes, the p e l l e t 

discarded and the supernatant and buffy coat which i s the upper, l i g h t e r 

l ayer of the p e l l e t , centrifuged at 48000 x g f o r 20 minutes. The 

r e s u l t i n g p e l l e t was resuspended In 50 mM Tris-HCl buffer (pH 7.5) by 

sonication f o r 30 seconds and centrifuged at 48000 x g for 20 minutes. 

This step was repeated and, unless otherwise stated, the f i n a l p e l l e t was 

resuspended i n 60 volumes of Tris-HCl buffer. 

2. Preparation of the T o t a l P a r t i c u l a t e F r a c t i o n 

T o t a l p a r t i c u l a t e f r a c t i o n s were prepared using a modification of the 

methods of Vincent and McGeer (1980) and London and Coyle (1979). Figure 3 

shows a flow diagram. Male Wistar r a t s (150 - 350 gm) were k i l l e d by 
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Figure 2 Flow Diagram f o r the Preparation of Crude Synaptosomal Membranes 
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Figure 3 Flow Diagram f o r the Preparation of Total P a r t i c u l a t e Fractions 
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decapitation. The brain region under i n v e s t i g a t i o n was dissected and 

homogenized i n 20 volumes of i c e - c o l d 50 mM T r i s - H C l buffer (pH 7.5). This 

homogenate was centrifuged at 48000 x g f o r 20 minutes. The p e l l e t was 

resuspended i n buffer by sonication f o r 60 seconds and the suspension 

centrifuged at 48000 x g f o r 20 minutes. The r e s u l t i n g supernatant was 

discarded and the p e l l e t resuspended i n buffer by sonication f o r 30 

seconds. This suspension was centrifuged at 48000 x g f o r 20 minutes. 

Unless otherwise stated, the f i n a l p e l l e t was resuspended by sonication f o r 

30 seconds i n 70 volumes of Tris-HCl buffer. 

3 
3. _L H] L-Aspartate Binding Assay 

3 
Development of the [ H] L-aspartate binding assay i s described i n 

Section 1 of r e s u l t s . The f i n a l conditions of the binding assay were as 

follows. The assay mixture was contained i n a t o t a l volume of 1 ml and was 

composed of 0.5 ml membrane preparation containing approximately 0.35 mg 

p r o t e i n , 0.4 ml 50 mM Tris-HCl buffer (pH 7.5) or s o l u t i o n of the i n h i b i t o r 
3 

under t e s t , and 0.1 ml [ H] L-aspartate (98 to 158 nM f i n a l 
3 

concentration). [ H] L-aspartate and i n h i b i t o r s were prepared i n 

Tris-HCl and the pH adjusted to 7.5 
3 

A l l components except the [ H] L-aspartate were added to 

polypropylene tubes (1.5 ml) stored on i c e . Binding to homogenates was 

determined i n quadruplicate while that to blank tubes (containing no 
3 

tissue) was determined i n t r i p l i c a t e . [ H] L-aspartate was then added, 

the s o l u t i o n mixed and incubated i n a 37° C water bath (Haake E 1) f o r 45 

minutes at which time the system had reached equilibrium (see Figure 6). 

Centrifugation f o r 4 minutes terminated the reaction (Beckman microfuge, 

Model B). The supernatant was discarded and the p e l l e t rinsed twice with 
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0.1 ml of i c e - c o l d d i s t i l l e d water. Excess water was blotted o f f the 

p e l l e t and the tubes dri e d with Kimwipes. 1 ml of protosol was added to 

each tube and l e f t at room temperature u n t i l the ti s s u e was dissolved. The 

s o l u t i o n was then transferred to a s c i n t i l l a t i o n v i a l and 10 ml of 

omnifluor (4 gm o m n i f l u o r / l i t r e toluene) added. V i a l s were l e f t at room 

temperature f o r three hours to allow chemiluminescence produced by mixing 

protosol and omnifluor to decrease (see Figure 4). The r a d i o a c t i v i t y 

present was then determined by l i q u i d s c i n t i l l a t i o n spectrometry (Beckman 

l i q u i d s c i n t i l l a t i o n counter). Counts were corrected f o r e f f i c i e n c y and 

expressed as d i s i n t e g r a t i o n s per minute (dpm). 
3 

[ H] L-aspartate binding to tubes was determined by replacing the 

membrane preparation i n the binding assay with the same volume of Tri s - H C l 

while background counts were determined by mixing 1 ml of protosol with 10 

ml of omnifluor and counting the so l u t i o n a f t e r three hours by l i q u i d 
s c i n t i l l a t i o n spectrometry. Data were corrected f o r background a c t i v i t y 

3 
and [ H] L-aspartate binding to tubes. 

The t o t a l counts added were determined by d i s s o l v i n g 50 y l of the 
3 
[ H] L-aspartate s o l u t i o n used i n each experiment i n protosol, adding 

omnifluor and counting on the l i q u i d s c i n t i l l a t i o n counter. A f i n a l 
3 

concentration of approximately 120 nM [ H] L-aspartate was used because 

with t h i s concentration displaceable binding was observed and less than 10 

percent of the t o t a l r a d i o a c t i v i t y added was bound by homogenates. A v a l i d 
3 

estimate of the free concentration of [ H] L-aspartate could therefore be 

made from the t o t a l counts added. 

Nondisplaceable binding was defined as the binding to membranes i n the 
-2 

presence of 10 M L-asparate. Displaceable binding was determined by 

subtracting nondisplaceable binding to membranes from the t o t a l binding 
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Figure 4. Decrease of Background Chemiluminescence 
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observed i n the absence of i n h i b i t o r . 

3 
4. H] L-glutamate Binding Assay 

3 
The [ H] L-glutamate binding assay was performed exactly as the 

3 3 
[ H] L-aspartate binding assay except [ H] L-glutamate (18 to 30 nM 

3 
f i n a l concentration) replaced [ H] L-aspartate and nondisplaceable 

-2 
binding was defined as that i n the presence of 10 M L-glutamate. 45 

3 

minutes incubation was s u f f i c i e n t l y long f o r the [ H] L-glutamate assay 

as the reaction had reached equilibrium within 30 minutes (Dr. Andrew 

Larder, personal communication). 

5. I n h i b i t i o n Curves 
3 3 I n h i b i t i o n of [ H] L-aspartate (or [ H] L-glutamate) binding by 

various compounds was determined as follows. Increasing concentrations (0 
-2 

to 10 M) of the i n h i b i t o r under te s t were incubated with the membrane 

preparation. The binding to membranes at each concentration was determined 

and expressed as a percentage of the t o t a l binding i n the absence of 

i n h i b i t o r . This percentage was then plotted against the log of the 

i n h i b i t o r concentration. 

The concentration of i n h i b i t o r at which 50 percent of the displaceable 

binding was i n h i b i t e d , the IC^n, c o u l d be determined from i n h i b i t i o n 

curves of each I n h i b i t o r . Comparison of IC^Q values, that i s the 

a f f i n i t y of each I n h i b i t o r f o r the binding s i t e , could then be made. 

The l e v e l at which the binding of ligand could not be further 

decreased by the i n h i b i t o r was taken as the nondisplaceable binding. 

Drawing the l i n e by hand through the points on the i n h i b i t i o n curves 

was somewhat a r b i t r a r y . IC,^ values were more reproducibly calculated by 
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conversion of the i n h i b i t i o n curve to a l i n e a r graph by H i l l 

Transformation. Data obtained from i n h i b i t i o n curves were used to generate 

the H i l l plot.from the equation 

100-y 
l 0 8^NDB = n l o g 1 " 1 0 8 K ° 

where y i s the percent of t o t a l binding at each concentration of i n h i b i t o r 

I, NDB i s the percent of t o t a l binding which i s nondisplaceable, n i s the 

H i l l c o e f f i c i e n t , and the apparent d i s s o c i a t i o n constant. An example 

of a H i l l p l o t i s shown In Figure 16. The x-lntercept of the l i n e i s the 

IC^Q. The slope of the l i n e i s the H i l l c o e f f i c i e n t which i s an 

i n d i c a t o r of the nature of the i n t e r a c t i o n between the binding s i t e and 

i n h i b i t o r and i s the main reason f o r generating the H i l l p l o t . When the 

ligand i n t e r a c t s with a sing l e population of binding s i t e s , the IC^Q 

curve from 10 +©90 percent of the displaceable binding w i l l f a l l between 2 

log u n i t s on the x-axis. A H i l l p l o t with a slope of 1 w i l l be generated. 

When the ligand i n t e r a c t s with, f o r example, two populations of binding 

s i t e s , then the IC^Q curve from 10 +©90 percent of the displaceable 

binding w i l l f a l l between more than 2 log units up to a maximum of 4 log 

un i t s . The slope of the H i l l p l o t generated i n t h i s instance w i l l be l e s s 

than one. I f the slope i s 1, therefore, ligand i n t e r a c t i o n with a s i n g l e 

population of non-interacting s i t e s i s indicated. When the slope i s l e s s 

than 1, e i t h e r more than one population of s i t e s are involved, each with a 

d i f f e r e n t a f f i n i t y f o r the ligand, or a sing l e population of s i t e s i s 

showing negative c o o p e r a t i v i t y where binding of one molecule I n h i b i t s the 

binding of others. I f the slope i s more than 1, p o s i t i v e cooperativity i n 

which binding of the i n h i b i t o r to a s i t e enhances subsequent binding i s 

indic a t e d . The degree to which the H i l l c o e f f i c i e n t i s p o s i t i v e or 
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negative i s not relevant, only that the c o e f f i c i e n t i s p o s i t i v e , negative, 

or 1. 

To determine whether each i n h i b i t o r was i n t e r a c t i n g with the same 

population of s i t e s as those affected by L-aspartate, tubes containing 
-2 -2 L-aspartate alone (10 M) or L-aspartate (10 M) plus the i n h i b i t o r 

-2 

under te s t (10 M) were assayed with each i n h i b i t i o n curve. If the 

combination of L-aspartate plus i n h i b i t o r reduced binding more than 

L-aspartate alone, then some of the i n h i b i t i o n was of the so-called 
nondisplaceable membrane binding s i t e s . This displacement must then be 

from a d i f f e r e n t population of s i t e s than that f o r compounds i n h i b i t i n g 
-2 

only the displaceable membrane binding defined by 10 M L-aspartate 

alone. Comparisons of i n h i b i t o r a f f i n i t y could not accurately be made i n 

those circumstances. None of the compounds tested i n the present 
3 

experiments, however, displaced more [ H] L-aspartate than did unlabelled 

L-aspartate. Binding to the same population of receptors was therefore 

indicated so that comparison of a l l the compounds tested could be made. 

6. Bio-Rad Pr o t e i n Assay 

Samples of homogenate from each experiment were stored frozen u n t i l 

assayed f o r the p r o t e i n concentration by the Bio-Rad microassay (Bio-Rad 

Laboratories, 1979). 

The t o t a l volume of the assay mixture was 1 ml and consisted of 0.8 ml 

of d i l u t e d homogenate or standard protein s o l u t i o n , and 0.2 ml of 

concentrated Bio-Rad dye reagent. Blank tubes used to zero the 

spectrophotometer contained 0.8 ml of d i s t i l l e d water and 0.2 ml of 

concentrated dye reagent. 
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Figure 5. Bio-Rad Protein Standard Curve 

Points are means + standard e r r o r of the mean (SEM) from 10 experiments. 
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Di l u t i o n s of a 100 ug/ml standard s o l u t i o n (Bovine plasma gamma 

globulin) were made with d i s t i l l e d water to generate a standard curve 

ranging from 3 to 21 vg/ml protein. Homogenates from experiments were 

d i l u t e d with d i s t i l l e d water so that the pro t e i n concentration f e l l on the 

standard curve. When d i l u t i o n s of a l l samples and standards had been made 

i n duplicate, concentrated dye reagent was added and the so l u t i o n 

immediately mixed. A f t e r 5 minutes incubation at room temperature, the 

absorbance of the samples at 595 nm was measured (SP6-500 uv 

spectrophotometer). Figure 5 shows the standard curve obtained from the 

average of 10 experiments. Protein concentrations of the samples were 

determined from the standard curve and expressed i n fmol/mg protein. 

7. Materials 
3 

L-[2, 3- H] a s p a r t i c acid (5.0 to 20 Ci/mmol) was purchased from 
3 

Amersham, New England Nuclear, or ICN. L-[G- H] glutamic acid was 

obtained from Amersham, and protosol and omnifluor from New England 

Nuclear. The following chemicals were also used: L-aspartic acid (K and K 

Laboratories); D-aspartic acid (Calbiochem); D-a-aminoadipic a c i d , 

N-methyl-DL-aspartic a c i d , k a i n i c a c i d , and Trisma base (Sigma Chemical 

Co.); and Standard I-Bovine plasma gamma g l o b u l i n and Bio-Rad dye reagent 

concentrate (Bio-Rad Laboratories). A l l other reagents were from Fisher 

S c i e n t i f i c Co. 
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I I I . RESULTS 

3 
1. Development of the [ H] L-Aspartate Binding Assay 

l a . I n i t i a l experiments 
3 

The I n i t i a l [ H] L-aspartate binding assays were performed on 

synaptosomal preparations of whole b r a i n . The procedure was as described 

i n the methods except that the incubation time was 30 minutes and the 
-2 

d i s p l a c i n g compound L-aspartate (10 M) was dissolved i n Tris-HCl (pH 

7.5) with no further pH adjustment. The average displaceable binding 

observed (Table I) was 3229 dpm per 0.106 mg p r o t e i n , 0.106 mg being the 

average amount of p r o t e i n per tube. (See Appendix I f o r a discussion of 

the low dpm obtained). 

3 

l b . E f f e c t of cations on the i n i t i a l [ H] L-aspartate binding 

The low displaceable binding observed i n the i n i t i a l experiments was 

not considered adequate f o r a r e l i a b l e assay. In an attempt to increase 

the displaceable binding, a buffer composed of 50 mM Tris-HCl (pH 7.5), 

5 mM KC1, 2 mM C a C l 2 , and 1 mM MgCl 2 was tested i n the assay. The 

displaceable binding was increased 3.6 times i n the buffer containing these 

s a l t s (Table I I ) . 
To i d e n t i f y which ions were responsible f o r the increased displaceable 

binding, the e f f e c t of each ion alone was compared to that In the absence 

of ions or i n the presence of a l l three ions. The r e s u l t s i n Table I I 

2+ 
l n d i c a t e that Ca appeared mainly responsible f o r the increased 

2+ 
displaceable binding. The increased binding i n the presence of Ca , 

3 
however, occurred only under the i n i t i a l buffering conditions of the [ H] 
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Table I Displaceable [ H] L-Aspartate Binding to Crude Synaptosomal 

Membranes 

Crude synaptosomal membranes suspended i n 50 mM Tris-HCl (pH 7.5) were 
incubated with [ 3H] L-aspartate (120 nM f i n a l concentration) i n the 
presence or absence of 10" 2 M L-aspartate, and the displaceable binding 
determined. Each value i s the mean + SEM of a sin g l e experiment performed 
i n quadruplicate. 

Experiment Displaceable [ JH] L-Aspartate 
Binding (dpm/average mg protein 

concentration i n the tube) 

1 3296 + 397 / 0.0715 mg pr o t e i n 

2 4002 + 506 / 0.092 mg pro t e i n 

3 2389 + 266 / 0.15 mg protein 

Mean 3229 + 467 / 0.106 mg protein 



28 

3 
Table II E f f e c t of Cations of [ H] L-Aspartate Binding 

o 
Displaceable [ JH] L-aspartate binding was determined i n the presence of 
50 mM Tris-HCl buffer (pH 7.5) or the same buffer containing 5 mM KC1, 2 mM 
CaCl2» and/or 1 mM MgCl2 as s p e c i f i e d below. Values are the mean + SEM 
from 3 experiments performed i n quadruplicate. S = s i g n i f i c a n t l y d i f f e r e n t 
from binding i n the absence of s a l t s , p<0.05; NS = not s i g n i f i c a n t l y 
d i f f e r e n t . 

Experiment #: 

Displaceable Binding (fmol/mg protein) 

1 2 3 

S a l t s i n Buffer 

None 

KC1 + MgCl 2 + C a C l 2 

KC1 

MgCl 2 

CaCl„ 

689 + 69 

1256 + 152 S 

232 + 23 NS 

673 + 42 NS 

1380 + 110 S 

342 + 116 

1398 + 117 S 

268 + 65 NS 

309 + 64 NS 

588 + 44 NS 

476 + 58 

2308 + 186 S 

389 + 24 NS 

553 + 74 NS 

1718 + 146 S 
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L-aspartate assay (see Results section I f f o r data and d i s c u s s i o n ) . The 
+ 2+ 

displaceable binding observed with K or Mg alone was not 

s i g n i f i c a n t l y d i f f e r e n t from that observed with T r i s buffer (Students 

t - t e s t ) . Experiments i n sections l c to If of Results were therefore 

performed with T r i s - H C l plus 2mM C a C l 2 b u f f e r (pH 7.5). Experiments 

a f t e r section I f , however, were performed using Tris-HCl f o r the reasons 

o u t l i n e d i n that s e c t i o n . 

3 

l c Time course of the a s s o c i a t i o n of [ H] L-aspartate binding 

Analysis of the data from binding assays assumes that the reaction i s 

at equilibrium when incubation i s terminated. To determine whether the 

displaceable aspartate binding to synaptosomes of whole brain was at 

equilibrium a f t e r the 30 minute Incubation i n i t i a l l y chosen, binding was 

measured a f t e r 0, 5, 10, 15, 20, 30, and 45 minutes incubation. The 

average binding to tubes (56 dpm) determined from previous experiments was 

n e g l i g i b l e and therefore not determined i n subsequent experiments (except 

i n section If of Results). 

The nondisplaceable binding was maximal i n 5 minutes and d i d not 

change with longer incubation times (Table I I I ) . Figure 6 shows that 

displaceable binding was at equilibrium by 30 minutes Incubation. Lower 
3 

concentrations of [ H] L-aspartate, however, require a longer incubation 
3 

time. To ensure that equilibrium was reached f o r a l l [ H] L-aspartate 

concentrations used, a 45 minute incubation time was chosen. 

3 
Id Determination of nondisplaceable [ H] L-aspartate binding 

3 
The nondisplaceable binding of [ H] L-aspartate to synaptosomes of 

3 whole brain was determined from an i n h i b i t i o n curve with [ H] L-aspartate 



Table I II Time Course of Nondisplaceable [ ] L-Aspartate Binding 

Nondisplaceable [ JH] L-aspartate binding (142 nM) to crude synaptosomes 
of whole brain was determined i n the presence of 10"^ M L-aspartate at 
various incubation times. Values are the mean + SEM of one experiment 
performed i n quadruplicate. NS = not s i g n i f i c a n t l y d i f f e r e n t from the 
nondisplaceable binding at 5 minutes; s = s i g n i f i c a n t l y d i f f e r e n t 
p<0.05. 

Incubation Time Nondisplaceable 

(minutes) Binding (dpm) 

5 8216 + 202 

10 8173 + 359 NS 

15 10096 + 686 S 

20 8558 + 139 NS 

30 8514 + 276 NS 

45 8511 + 212 NS 
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Figure 6. Time Course of [-*H] L-Aspartate Binding 

Binding to synaptosomal f r a c t i o n s of whole brain incubated f o r various 
times was determined, o, •, and A represent the r e s u l t s from 3 d i f f e r e n t 
experiments each performed i n quadruplicate. The SEM of each point ranged 
from 4% to 63% with the majority below 10%. 

5000r 



32 

Figure 7. [ 3H] L-Aspartate Binding to Crude Synaptosomes and to Total 
P a r t i c u l a t e Fractions of Whole Brain 

Membrane preparations were suspended i n Tris-HCl plus 2 mM CaCl2 (pH 
7.5). Points are the mean + SEM of 4 experiments. Crude synaptosomal 
preparations (•), [ 3H] L-aspartate = 146 nM f i n a l concentration. Total 
p a r t i c u l a t e f r a c t i o n s (o), [ 3H] L-aspartate = 148 nM f i n a l concentration. 
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as the i n h i b i t o r . Figure 7 (closed c i r c l e s ) shows that increasing 
3 concentrations of L-aspartate decreased [ H] L-aspartate binding up to 

- 4 
3 x 1 0 M L-aspartate a f t e r which the binding was not further 

displaced. Nondisplaceable binding comprised 58 percent of the t o t a l 
-2 

binding while the displaceable binding at 1 0 M L-aspartate was 4 3 7 0 

fmol per mg p r o t e i n . The IC^Q obtained from H i l l p l o t a n a l y s i s of Figure 

7 was 1 1 . 0 uM. The H i l l c o e f f i c i e n t was 0 . 7 9 . 

3 

l e . Comparison of [ H] L-aspartate binding to synaptosomes and t o t a l 

p a r t i c u l a t e f r a c t i o n s of whole brain 

Only 2 5 percent of the i n i t i a l t i s s u e wet weight was recovered a f t e r 

preparation of crude synaptosomal membranes compared to the 9 0 percent 

recovery obtained with the t o t a l p a r t i c u l a t e f r a c t i o n . I t was therefore 

desirable to use t o t a l p a r t i c u l a t e f r a c t i o n s because of the better 

recovery. Before t o t a l p a r t i c u l a t e f r a c t i o n s could be used, however, i t 
3 

had to be shown that the [ H] L-aspartate binding s i t e s were the same i n 

both synaptosomes and t o t a l p a r t i c u l a t e f r a c t i o n s . The i n h i b i t i o n curve i n 

t o t a l p a r t i c u l a t e f r a c t i o n s of whole b r a i n (Figure 7 , open c i r c l e s ) showed 

s i m i l a r nondisplaceable binding ( 6 0 percent), IC^ Q ( 5 . 2 0 uM), and H i l l 

c o e f f i c i e n t ( 0 . 6 0 ) as that observed using crude synaptosomal membranes. 

IC^Q values d i f f e r i n g by l e s s than a f a c t o r of 1 0 were considered to be 

s i m i l a r . Differences may have been due to differences i n the membrane 

f r a c t i o n used. 

The displaceable binding was increased 2 . 5 times from 1 7 3 0 to 4 3 7 0 

fmol/mg protein i n crude synaptosomal preparations as compared to t o t a l 

p a r t i c u l a t e f r a c t i o n s i n d i c a t i n g that the binding s i t e s may be associated 

with synaptic junctions. 
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2+ 3 
I f . E f f e c t of pH and Ca on [ H] L-aspartate binding 

In the experiments described so f a r , L-aspartate was dissolved i n 
-2 

Tris-HCl buffer already adjusted to pH 7.5. The pH of a 10 M 

L-aspartate s o l u t i o n prepared i n t h i s way, however, was found to be 3.5. 

When the aspartate was added to the binding assay reaction mixture, a f i n a l 

pH of 4.25 was observed. 

Receptors i n a binding assay where the pH i s acid may not dis p l a y the 
2+ 

c h a r a c t e r i s t i c s seen i n vivo where the pH i s approximtely neutral. Ca 
i n the previous experiments may then have acted by s t a b i l i z i n g receptors i n 

2+ 

an acid environment. The increased binding i n the presence of Ca may 

then not be a c h a r a c t e r i s t i c seen i n vivo. 

To determine whether displaceable binding would be Increased at a more 
2+ 2+ neutral pH (pH 7.5) i n the absence of Ca and whether Ca increased 

the displaceable binding further at pH 7.5 the following experiment was 

performed. Four experimental conditions of nondisplaceable binding to 
-2 

synaptosomal membranes were compared. 10 M L-aspartate with the pH of 

the f i n a l r e a c t i o n mixture e i t h e r 4.2 or 7.5 was dissolved i n e i t h e r 

Tris-HCl or Tris-HCl plus 2 mM C a C l 2 . The r e s u l t s are shown i n Table 

IV. Synaptosomal preparations were used again i n the experiments of t h i s 
section, so that comparisons could be made with previous data. 

Homogenates incubated with L-aspartate i n T r i s buffer at a f i n a l pH of 
2+ 

4.2 served as controls. Increasing the pH or adding Ca increased the 
2+ 

displaceable binding but increasing the pH i n the presence of Ca had no 
2+ 

ad d i t i o n a l e f f e c t on displaceable binding. Ca may therefore have acted 

to s t a b i l i z e receptors under conditions which were too a c i d . 
It was preferable to use solutions buffered with Tris-HCl ( f i n a l pH 

2+ 2+ 7.5) i n the absence of Ca because of the p o s s i b i l i t y that Ca might 
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Table IV E f f e c t of pH and Cal+ on [ JH] L-Aspartate Binding to  
Synaptosomal Fractions of Whole Brain 

Values are the means + SEM of 3 experiments except * which are the r e s u l t s 
from 2 experiments each performed i n quadruplicate. [%] L-aspartate = 
152 nM f i n a l concentration; NDB = nondisplaceable binding; DB = 
displaceable binding. S = s i g n i f i c a n t l y d i f f e r e n t from binding at pH 4.2 
(p<0.05); NS = not s i g n i f i c a n t l y d i f f e r e n t . 

Buffer Displaceable Binding 

(fmol/mg protein) 

Tris-HCl f i n a l pH 4.2 585 + 65, NDB>DB* 

pH 7.5 1155 + 207 S 

Tris-HCl + 2 mM C a C l 2 

f i n a l pH 4.2 1237 + 366 

pH 7.5 1237 + 187 NS 



36 

substitute f o r Na and thus a c t i v a t e Na -dependent aspartate uptake 

s i t e s . The i n h i b i t i o n curve generated with L-aspartate solutions adjusted 

to pH 7 . 5 using t o t a l p a r t i c u l a t e f r a c t i o n s of whole brain i s shown i n 

Figure 8. The curve with 62 percent nondisplaceable binding, an I C 5 0 of 

2.12 pM and H i l l c o e f f i c i e n t of 0.38 was s i m i l a r to the curve generated 
2+ 

i n the presence of Ca at a f i n a l r eaction mixture pH of 4.2 (Figure 7 

open c i r c l e s ) . A l l subsequent experiments used t o t a l p a r t i c u l a t e f r a c t i o n s 

of the br a i n region under i n v e s t i g a t i o n with a l l solutions buffered with 
2+ 

T r i s - H C l , with no Ca present, and the f i n a l pH adjusted to 7 . 5 . 

l g E f f e c t of washing the surface of the membrane p e l l e t on displaceable 
3 

_[__ H] L-aspartate binding 

To determine the e f f e c t of washing the surface of the p e l l e t on the 
3 
[ H] L-aspartate binding, the p e l l e t was washed 0, 2, or 4 times with 

100 u l of i c e - c o l d d i s t i l l e d water and binding i n the presence and 
-2 

absence of 10 M L-aspartate determined (Table V). 

With no washes, the displaceable binding was very high, as was the 

standard er ror of the mean. A f t e r 2 washes, displaceable binding was much 

lower and the SEM was reduced to 7 percent of the displaceable binding. 

The r e s u l t s obtained a f t e r 4 washes were not s i g n i f i c a n t l y d i f f e r e n t from 

those with 2 washes. Two washes were therefore performed f o r a l l other 

experiments. 

3 

In summary then, the conditions f o r the measurement of [ H] 

L-aspartate binding u t i l i z e d the t o t a l p a r t i c u l a t e f r a c t i o n s of the brain 

region under i n v e s t i g a t i o n with a l l solutions made up i n Tris-HCl and the 

f i n a l r e a c t i o n mixture pH adjusted to 7 . 5 . Two washes of the p e l l e t 
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Figure 8. I n h i b i t i o n of [ JH] L-Aspartate Binding to the Total P a r t i c u l a t e  
F r a c t i o n of Whole Brain 

Membranes were suspended i n Tris-HCl buffer (pH 7.5). [ 3H] L-aspartate = 
152 nM. Values are the means + SEM from 3 experiments each performed i n 
quadruplicate. 
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Table V E f f e c t of Washing the Surface of the Membrane P e l l e t on  
Displaceable [%] L-Aspartate Binding 

The p e l l e t was washed various times with 100 y l of i c e - c o l d d i s t i l l e d 
H 20 and the displaceable binding of [%] L-aspartate (145 nM f i n a l 
concentration) to t o t a l p a r t i c u l a t e f r a c t i o n s of whole brain determined. 
Values are the mean + SEM from a sing l e experiment performed i n 
quadruplicate. NS = not s i g n i f i c a n t l y d i f f e r e n t from 2 washes, p>0.05. 

Washes Displaceable 

Binding (dpm) 

0 8593 + 3153 

2 5524 + 387 

4 4661 + 541 NS 
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obtained a f t e r incubation of the reaction mixture were rou t i n e l y performed. 

3 
2. Characterization of [ H] L-Aspartate Binding i n the Cerebellum 

3 

The cerebellum was chosen f o r the c h a r a c t e r i z a t i o n of [ H] 

L-aspartate binding f o r three major reasons: 

1. There i s strong evidence that both aspartate and glutamate are 

neurotransmitters i n the cerebellum (Storm-Mathisen, 1978; Stone, 1979; 

Perry et a l . , 1981). Aspartate Is most l i k e l y the neurotransmitter In 

the climbing f i b e r s (Nadi et a l . , 1977) while glutamate i s most l i k e l y 

that i n the p a r a l l e l f i b e r s of granule c e l l s . 

2. Dissection of the cerebellum i s rapid and very reproducible. 

Differences between experimental r e s u l t s caused by v a r i a t i o n s i n the 

brain region dissected are therefore n e g l i g i b l e . 

3. The cerebellum i s a large region. Large numbers of rats are therefore 

not required to do each experiment. 

3 
2a. J_ H] L-aspartate binding i n the cerebellum 

3 

The displaceable binding of [ H] L-aspartate to t o t a l p a r t i c u l a t e 

f r a c t i o n s of cerebellum (730 + 31 fmol/mg protein, n=9) was s i g n i f i c a n t l y 

greater than i n whole brain preparations (592 + 33 fmol/mg protein, n=5, 

p<0.05). The average displaceable binding to c e r e b e l l a r membranes was 

4468 dpm/0.225 mg protei n , 0.225 mg of p r o t e i n being the average amount of 

pro t e i n i n each tube. 
3 

In an attempt to increase the displaceable [ H] L-aspartate binding 
to c e r e b e l l a r membranes, two procedures were tested: 1. preincubation of 

3 
the membrane preparation because preincubation increased [ H] L-glutamate 



binding (Sharif and Roberts, 1980b) and 2. a f i l t r a t i o n assay. 

3 

2a i . E f f e c t of preincubation on [ H] L-aspartate binding to c e r e b e l l a r  

membranes 

Preincubation was performed during the preparation of the t o t a l 

p a r t i c u l a t e f r a c t i o n as follows. The cerebellum was homogenized i n 

i c e - c o l d T r i s - H C l (pH 7.5) and centrifuged at 48000 x g f o r 20 minutes. 

The p e l l e t , resuspended by sonication f o r 60 seconds, was incubated i n a 

37° C water bath f o r 30 minutes. The suspension was then centrifuged at 

48000 x g f o r 20 minutes and the membrane preparation continued as i n 

methods (section 2). 

Preincubation decreased the displaceable binding by approximately 28 

percent (Table VI) so t h i s step was not included i n subsequent 

experiments. Denaturation of the binding s i t e during preincubation may 

have been the cause of the decreased binding. 

3 

2a i i . Measurement of [ H] L-aspartate binding using a f i l t r a t i o n assay 

The f r a c t i o n of t o t a l binding that i s displaceable can sometimes be 

increased by decreasing the nondisplaceable binding with the use of 

f i l t r a t i o n Instead of c e n t r i f u g a t i o n as a means of separating bound from 

unbound l a b e l . The membrane preparation i s spread over the f i l t e r Instead 
of being compacted i n t o a p e l l e t . Less l a b e l i s then n o n s p e c i f i c a l l y 

trapped i n the f i l t r a t i o n method. The technique i s also very f a s t so l e s s 

d i s s o c i a t i o n of the ligand from the binding s i t e may occur than when 

ce n t r i f u g a t i o n i s used as the method of separation (Bennett, 1978). 
3 

A f i l t r a t i o n assay of [ H] L-aspartate binding to t o t a l p a r t i c u l a t e 

f r a c t i o n s of the cerebellum was performed (kindly by Dr. Andrew Larder) as 



Table VI E f f e c t of Preincubation on Displaceable [%] L-Aspartate 
Binding to Cerebellar Membranes 

Values are the mean + SEM from 2 experiments each performed i n 
quadruplicate. Preincubation s i g n i f i c a n t l y decreased binding i n both 
experiments (Students t - t e s t , p<0.05). 

Experiment 

Displaceable Binding 

(fmol/mg protein) 

1 2 

No preincubation 

Preincubation 

712 + 46 

520 + 75 

681 + 80 

486 + 55 
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follows. The rea c t i o n mixture and Incubation temperature and time were 

i d e n t i c a l to those i n the c e n t r i f u g a t i o n assay (Methods section 3). At the 

end of incubation, samples were f i l t e r e d under reduced pressure (12 

chambered M i l l i p o r e F i l t r a t i o n Manifold) and the g l a s s - f i b r e f i l t e r s (GF/C 

f i l t e r s ) washed one to three times with 5 ml each time of i c e - c o l d buffer. 

The trapped r a d i o a c t i v i t y was measured by soaking the f i l t e r i n protosol (1 

ml) f o r 2 hours, adding omnifluor (10 ml) and counting by l i q u i d 

s c i n t i l l a t i o n spectrometry. Binding to the f i l t e r s i n the presence and 
-2 

absence of L-aspartate (10 M) was also assayed by su b s t i t u t i n g the 

membrane preparation with the same volume of buffer. For comparison, a 

ce n t r i f u g a t i o n assay was performed simultaneously with the same membrane 

preparation used i n the f i l t r a t i o n assay. 

A f t e r subtracting f i l t e r binding, the displaceable binding i n the 

f i l t r a t i o n assay performed with one wash was no d i f f e r e n t from that i n the 

ce n t r i f u g a t i o n assay. The standard e r r o r of the mean of the f i l t r a t i o n 

assay, however, was high. Two or three washes of the f i l t e r reduced the 

displaceable binding s i g n i f i c a n t l y below that seen i n the c e n t r i f u g a t i o n 

assay (Students t - t e s t , p<0.05). Centrifugation therefore continued to 

be the procedure used to separate bound from unbound lig a n d . 

3 
2b. Time course of the asso c i a t i o n of [ H] L-aspartate binding to 

c e r e b e l l a r membranes 

To determine whether displaceable binding to t o t a l p a r t i c u l a t e 

f r a c t i o n s of cerebellum was at equilibrium a f t e r the 45 minute incubation 
3 

time, t o t a l and nondisplaceable [ H] L-aspartate binding was measured 

a f t e r 0, 5, 10, 15, 20, 30, 45 or 60 minutes incubation. 
Displaceable binding increased as incubation time increased from 0 to 
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20 minutes a f t e r which no further increase occurred (Figure 9). Binding 

was therefore at equilibrium at the 45 minute Incubation time chosen f o r 
3 

[ H] L-aspartate binding studies. The nondisplaceable binding was 

instantaneous and did not change s i g n i f i c a n t l y with time (Table VII). 

The time course of binding to the t o t a l p a r t i c u l a t e f r a c t i o n of 
cerebellum was s i m i l a r to that i n synaptosomal f r a c t i o n s of whole brain 

2+ 

performed i n the presence of Ca (see Figure 6). These data i n f e r that 

the binding i n cerebellum would be the same i n t o t a l p a r t i c u l a t e f r a c t i o n s 

and synaptosomal preparations. 

3 
2c. Increase of [ H] L-aspartate binding with p r o t e i n concentration 

The p r o t e i n concentration of homogenates varied somewhat between 

experiments because membranes were resuspended i n buffer according to the 

wet weight of the p e l l e t . D i f f e r e n t amounts of water were trapped i n 

p e l l e t s a f t e r the l a s t c e n t r i f u g a t i o n step. To compare r e s u l t s expressed 

as the binding per milligram of p r o t e i n from d i f f e r e n t experiments, the 

binding to homogenates must Increase l i n e a r l y with the protein 
* 

concentration. T o t a l binding, nondisplaceable binding (that observed i n 
-2 

the presence of 10 M L-aspartate) and displaceable binding to the 

c e r e b e l l a r t o t a l p a r t i c u l a t e f r a c t i o n were therefore determined at various 

p r o t e i n concentrations. Figure 10 demonstrates that the displaceable 

binding increased l i n e a r l y over the range of protein concentrations 

encountered r o u t i n e l y i n experiments (about 0.25 to 0.45 mg protein/ml). 

3 

2d. I n h i b i t i o n of [ H] L-aspartate binding to c e r e b e l l a r membranes by  

L-aspartate 
3 

An i n h i b i t i o n curve of [ H] L-aspartate displaced by L-aspartate was 
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Figure 9 . Time Course of Association of [ J H 1 L-Aspartate Binding to T o t a l  
P a r t i c u l a t e Fractions of Cerebellum 

Values are the mean + SEM of a single experiment performed i n 
quadruplicate. [ 3H] L-aspartate = 140 nM f i n a l concentration. 

120O-
DISPLACEABLE 

10 20 30 40 50 60 

INCUBATION TIME (minutes) 



Table VII Nondisplaceable Binding of [ 3H] L-Aspartate to Cerebellar 
Membranes 

Values are the mean + SEM of quadruplicates from a sin g l e experiment. A l l 
values, except that at 5 minutes, were not s i g n i f i c a n t l y d i f f e r e n t from 
that at 0 minutes, p>0.05. 

Incubation Time Nondisplaceable 

(minutes) Binding (dpm) n 

0 6840 + 383 4 

5 8587 + 455 4 

10 7178 + 266 4 

15 6806 + 142 4 

20 6236 + 351 4 

30 7318 + 323 3 

45 8528 + 512 3 

60 7675 + 184 3 
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performed on the t o t a l p a r t i c u l a t e f r a c t i o n of cerebellum (Figure 11). 
—8 — 5 

Increasing concentrations of L-aspartate from 10 to 3 x 10 M 
3 

i n c r e a s i n g l y i n h i b i t e d [ H] L-aspartate binding to the membrane 

preparation while higher concentrations produced no fur t h e r i n h i b i t i o n . 
-2 

The nondisplaceable binding defined as that occurring at 10 M 

L-aspartate was 64 percent of the t o t a l binding. The IC^Q calculated 

from the H i l l plot was 1.81 vM while the H i l l c o e f f i c i e n t was 0.60. 
3 

These data i n d i c a t e that [ H] L-aspartate binding i n the cerebellum and 

i n whole brain are s i m i l a r . 

The apparent d i s s o c i a t i o n constant (K^) f o r an 

i n h i b i t o r can be calculated from the equation 
K I -

1 + i r -
*D (1) 

where Kp i s the d i s s o c i a t i o n constant of the ligand-receptor complex and 

L i s the ligand concentration. When the I n h i b i t o r i s the same compound as 

the ligand, K̂ . = K^. Equation (1) becomes 

:50 
and rearranging 

I C _ = + L 

*D " I C 5 0 - L 

s u b s t i t u t i n g the IC,JQ and L values obtained from the i n h i b i t i o n curve of 
3 

[ H] L-aspartate displaced by L-aspartate, the Kp can be c a l c u l a t e d . 

The KJJ value f o r L-aspartate was approximately equal to the I C ^ value 

of 1.81 uM. 

3 

2e. Saturation a n a l y s i s of [ H] L-aspartate binding to c e r e b e l l a r 

membranes 3 
To determine whether [ H] L-aspartate binding was saturable, 
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Figure 10. Increase of [ JH] L-Aspartate Binding with Protein 
Concentration 

T o t a l (•), nondisplaceable (o), and displaceable binding ( A ) to the 
c e r e b e l l a r t o t a l p a r t i c u l a t e f r a c i o n were determined at various p r o t e i n 
concentrations. Values are the mean + SEM from one experiment performed i n 
quadruplicate. [ 3H] L-aspartate = 120 nM f i n a l concentration. 
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Figure 11. I n h i b i t i o n of [ JH] L-Aspartate Binding to the To t a l 
P a r t i c u l a t e F r a c t i o n of Cerebellum by Unlabelled L-Aspartate 

Membrane preparations were suspended i n Tri s - H C l buffer (pH 7.5) [ 3H] 
L-aspartate = 143 nM. Values are the means + SEM from 4 experiments each 
performed i n quadruplicate. 
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c e r e b e l l a r membranes were Incubated with Increasing concentrations of 
3 -2 [ H] L-aspartate i n the presence and absence of 10 M L-aspartate. 

3 

The displaceable binding observed was plotted as a function of the [ H] 

L-aspartate concentration (Figure 12). 

The displaceable binding i n two experiments was saturable while the 

concentration range i n a t h i r d experiment was not s u f f i c i e n t l y wide to show 

saturation of displaceable binding. 
The displaceable binding divided by the free concentration of 

3 
[ H] L-aspartate was plo t t e d as a function of the free concentration of 
3 

[ H] L-aspartate to form a Scatchard p l o t . The Scatchard equation i s 

£ _ Bmax - B 
F K D

 i Z ) 

where B i s the amount of ligand bound, F i s the concentration of ligand, 

Bmax i s the maximum number of binding s i t e s , and i s the apparent 

d i s s o c i a t i o n constant. can be derived by rearranging equation 2 
Bmax - B 

K D = B 
F 

which i s the negative inverse of the slope of the Scatchard p l o t . Bmax i s 

the x-intercept of the Scatchard p l o t . The major advantage of using 

Scatchard a n a l y s i s i s that i n a saturation curve the plateau and therefore 

Bmax are d i f f i c u l t to determine. 

Scatchard a n a l y s i s of the data from these three experiments (Figure 13 

and Table VIII) gave a mean d i s s o c i a t i o n constant (K^) of 1.64 yM f o r 
3 

the displaceable [ H] L-aspartate binding and a mean maximum number of 

binding s i t e s (Bmax) of 7711 fmol/mg protein. The apparent d i s s o c i a t i o n 

constant determined from Scatchard analysis and from the L-aspartate 

i n h i b i t i o n curve are therefore i d e n t i c a l . 
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Figure 12. Saturation Analysis of [ H] L-Aspartate Binding to T o t a l  

P a r t i c u l a t e Fractions of Cerebellum 

Values are the means of quadruplicates. The SEM of each point was between 

5 and 36 percent with the majority le s s than 15 percent. The l i n e Is the 

average of r e s u l t s from 3 separate experiments (•, o, A ) . 
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Figure 13. Scatchard Analysis of f-̂ H] L-Aspartate Binding to Total  
P a r t i c u l a t e Fractions of Cerebellum 

Points are the means of quadruplicates from three separate experiments 
while the l i n e through the points i s drawn using the average Kj) and Bmax 
obtained from the three experiments. 
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Table VIII Summary of Scatchard Analysis Results Shown i n Figures 12 and 
13 

Experiment # Kn(uM) Bmax (fmol/mg protein) 

1 0.971 7358 

2 1.87 7245 

3 2.07 8531 

Mean 1.64 + 0.34 7711 + 411 
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3. Pharmacological S p e c i f i c i t y of [ JH] L-Aspartate and [JH1 

L-Glutamate Binding to Cerebellar Membranes 

3 3 It i s possible that [ H] L-aspartate and [ H] L-glutamate bind to 

the same population of binding s i t e s . To t e s t t h i s hypothesis and to 
3 

characterize the [ H] L-aspartate binding, the a b i l i t y of a range of 

concentrations of each of L- and D-aspartate, L-glutamate, 
N-methyl-DL-aspartate, kainate, D- and L-alpha-aminoadipate to i n h i b i t 

3 
[ H] L-aspartate binding to c e r e b e l l a r membranes was compared with t h e i r 

3 
a b i l i t y to i n h i b i t [ H] L-glutamate binding. I n h i b i t i o n f o r these 

3 3 compounds d i s p l a c i n g [ H] L-aspartate or [ H] L-glutamate are shown i n 

Figures IA and 1 5 respectively. Where possible, IC50 values and H i l l 

c o e f f i c i e n t s were determined using the H i l l Transformation (Table IX and X). 
3 

When [ H] L-aspartate was the ligand, L-aspartate and L-glutamate 

were equally active with IC^ Q values of 1 .81 and 1 .2A pM r e s p e c t i v e l y 
3 

and were the most potent i n h i b i t o r s of [ H] L-aspartate binding. 

L-alpha-aminoadipate was s l i g h t l y l e s s potent (IC^ Q = 7 . 1 2 pM) while 

D-aspartate with an IC^Q of A 6 . 6 pM was 1 0 times l e s s potent. Kainate 
3 

and N-methyl-DL-aspartate were very weak i n h i b i t o r s with detectable [ H] 

L-aspartate displacement only at concentrations greater than 1 0 and 

3 0 0 PM r e s p e c t i v e l y . D-alpha-aminoadipate did not i n h i b i t binding even 

at a concentration of 1 0 0 0 0 PM. At no concentration did kainate or 
3 

N-methyl-DL-aspartate i n h i b i t 50 percent of the displaceable [ H] 
L-aspartate binding. values therefore could not be determined f o r 
kainate, N-methyl-DL-aspartate, or D-alpha-aminoadipate. 

3 

When the ligand was [ H] L-glutamate, L-glutamate, 

D-alpha-aminoadipate, and L-aspartate with I C s n values of 2 . 2 5 , 2 . 5 1 , and 
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Figure 14. I n h i b i t i o n of [^H] L-Aspartate Binding to Cerebellar Membranes  
by Various I n h i b i t o r s 

Values are the average of quadruplicates from 2, 3, or 4 experiments as 
indicated i n Table X. The SEM was between 0 and 11 percent with the 
majority below 5 percent. The f i n a l concentration of [%] L-aspartate 
va r i e d between 102 and 153 nM. The squares represent the % of t o t a l 
binding i n the presence of 10~ 2 M L-aspartate while the c i r c l e s with 
l i n e s through them represent the % of t o t a l binding i n the presence of 
L-aspartate (10~ 2 M) plus i n h i b i t o r (10~ 2 M) f o r a) L-glutamate (•, 
•) and kainate (Q, o), b) D-aspartate (•, •) and N-methyl-DL-aspartate 
(Q, o), and c) D-alpha-aminoadipate (•, «)and L-alpha-aminoadipate 
(Q, o). 
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Figure 15. I n h i b i t i o n of [ 3H] L-Glutamate Binding to Cerebellar Membranes  
by Various I n h i b i t o r s 

Values are the average of quadruplicates from 2, 3, or 4 experiments as 
indicated i n Table X. The SEM was between 1 and 12 percent with the 
majority below 5 percent. The f i n a l concentration of [%] L-glutamate 
varied between 18 and 30%. The squares represent the % of t o t a l binding i n 
the presence of 10" 2 M L-glutamate while the c i r c l e s with l i n e s through 
them represent the % of t o t a l binding i n the presence of L-glutamate 
(10~ 2 M) plus i n h i b i t o r (10~ 2 M) f o r a) D-aspartate (•, •) and 
L-aspartate o ), b) kainate (•, •) and L-alpha-aminoadipate (•, o), 
and c) D-alpha-aminoadipate (•, •) and N-methyl-DL-aspartate (•, o ) . 
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Table IX The IC^n Values of Various Compounds Displacing 
[ 3H] L-Aspartate and [ 3H] L-Glutamate Binding to Cerebellar 
Membranes 

IC 5Q values were ca l c u l a t e d by l i n e a r regression analysis of the H i l l 
p l o t and were averages from 2, 3, or 4 experiments as shown i n Table X. 

I n h i b i t o r 

I C 5 0 (PM) 

[ H] L-Aspartate [ H] L-Glutamate 

L-aspartate 1.81 3.84 

D-aspartate 46.6 36.8 

L-glutamate 1.24 2.25 

NMDLA >1000 >1000 

Kainate >1000 >1000 

D-alpha-aminoadipate >10,000 2.51 

L-alpha-aminoadipate 7.12 5.28 
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Table X H i l l C o e f f i c i e n t s f o r Various Compounds Displacing 
[ 3H] L-Aspartate and [ 3H] L-Glutamate Binding to Cerebellar 
Membranes 

Values are averages from 2, 3, or 4 experiments (x). Dashes represent 
compounds f o r which there was i n s u f f i c i e n t i n h i b i t i o n of ligand f o r I C 5 0 

value determinations. 

H i l l C o e f f i c i e n t s 

I n h i b i t o r 3 
[ H] L-Aspartate X 

3 
[ H] L-Glutamate n 

L-aspartate 0.60 4 0.60 3 

D-aspartate 0.70 2 0.53 3 

L-glutamate 0.29 3 0.69 3 

NMDLA - 2 - 3 

Kainate - 2 - 2 

D-alpha-aminoadipate - 3 0.59 3 

L-alpha-aminoadipate 0.23 3 0.44 3 



3 

3 . 8 4 PM resp e c t i v e l y were the most potent i n h i b i t o r s of [ H] 
L-glutamate binding while D-aspartate with an IC^Q value of 3 6 . 8 PM was 

an order of magnitude l e s s potent. Kainate and N-methyl-DL-aspartate were 
3 

very weak i n h i b i t o r s d i s p l a c i n g [ H] L-glutamate binding only at 

concentrations greater than 1 0 0 and 1 0 0 0 pM res p e c t i v e l y . 

The H i l l p l o t f o r the L-aspartate i n h i b i t i o n curve i s shown i n Figure 
3 

1 6 . A l l the H i l l c o e f f i c i e n t s f o r the i n h i b i t i o n of [ H] L-aspartate and 
3 

[ H] L-glutamate binding to c e r e b e l l a r membranes were l e s s than one 

(Table X). Negative cooperativity or occupancy of more than one population 

of s i t e s each with a d i f f e r e n t a f f i n i t y f o r the ligand was therefore 

indicated. 

In order to compare data where d i f f e r e n t ligand concentrations are 

used, I C^Q values are generally converted to d i s s o c i a t i o n constants f o r 

each i n h i b i t o r by equation ( 1 ) 

IC. 

5 0 

( i ) 

IC^Q values i n the present experiments, however, could not be converted 

to true Kj. values as the conversion assumes that one population of 

non-interacting s i t e s i s bound. The ligand concentration used i n the 

i n h i b i t i o n experiments, however, was low ( 1 2 0 nM) compared to the TL^ 

obtained from Scatchard a n a l y s i s . The IC^ Q values f o r the various 

compounds therefore approximate the values. 

L- and D-aspartate, L-glutamate and L-alpha-aminoadipate then 
3 3 i n h i b i t e d both [ H] L-aspartate and [ H] L-glutamate binding with 

s i m i l a r potencies. N-methyl-DL-aspartate and kainate did not In h i b i t 
3 3 e i t h e r [ H] L-aspartate or [ H] L-glutamate binding. 
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Figure 16. H i l l Plot f o r the I n h i b i t i o n of [ JH] L-aspartate Binding to  
Cerebellar Membranes by L-Aspartate 

Values are obtained from the average of 4 experiments. NDB = 
Nondisplaceable Binding; y = the percent of t o t a l binding at each 
concentration of L-aspartate. 



D-alpha-aminoadipate, however, i n h i b i t e d [ JH] L-glutamate binding much 
3 

more e f f e c t i v e l y than [ H] L-aspartate. 

The r e s u l t s from the l i m i t e d number of compounds used to i d e n t i f y the 
3 3 pharmacological s p e c i f i c i t y of [ H] L-aspartate and f H] L-glutamate 

binding indicate the i n t e r a c t i o n of each ligand with d i f f e r e n t s i t e s . 

Testing more compounds would help to strengthen t h i s conclusion. 



IV. DISCUSSION 

The displaceable [""H] L-aspartate binding to t o t a l p a r t i c u l a t e 

f r a c t i o n s of the cerebellum i n the present experiments demonstrates many of 

the c h a r a c t e r i s t i c s of a p h y s i o l o g i c a l receptor. The binding i s 

r e v e r s i b l e , saturable, independent of the presence of Na +, has an 

a f f i n i t y i n the range where according to iontophoretic studies (Hbsli et 

a l . , 1973) the neurotransmitter i s a c t i v e i n vivo, demonstrates a 

pharmacological s p e c i f i c i t y which includes s t e r e o s p e c i f i c i t y , and, as 

discussed e a r l i e r , has a s u b c e l l u l a r d i s t r i b u t i o n appropriate f o r that of a 

neurotransmitter binding s i t e . These c h a r a c t e r i s t i c s and the e f f e c t s of 
3 

ions on the displaceable [ H] L-aspartate binding are discussed i n more 

d e t a i l below. 
3 

The displaceable [ H] L-aspartate binding was r e v e r s i b l e In that 
3 

large q u a n t i t i e s of cold aspartate displaced the bound [ H] L-aspartate. 
Sh a r i f and Roberts (1981) and Foster and coworkers (1981) also found that 
3 
[ H] L-aspartate binding to synaptosomal f r a c t i o n s of the cerebellum and 

to membrane f r a c t i o n s of the forebrain was saturable, r e v e r s i b l e , and 

independent of Na +. 

The apparent d i s s o c i a t i o n constants f o r aspartate binding are i n the 

range of the minimum concentration of aspartate (10 ^ or 10 ^ M) needed 
3 

to stimulate neurones (Hb'sli et a l . , 1973). Binding of [ H] L-aspartate 

to synaptic receptors which are a c t i v e i n vivo i s therefore Indicated. 
3 

The apparent d i s s o c i a t i o n constant (Kp) f o r [ H] L-aspartate 

obtained by Scatchard analysis i n the present experiments 

(1.64 + 0.34 uM) Is i n agreement with the 0.874 uM obtained i n crude 

synaptosomal preparations of cerebellum by Sharif and Roberts (1981). The 
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K D of 0.556 + 0.062 uM obtained by Foster and coworkers (1981) i n 

p u r i f i e d synaptosomal preparations of the f o r e b r a i n may have been lower 

than that obtained i n the cerebellum because of the T r i t o n X-100 treatment 

of the membranes of the forebrain and consequent possible p a r t i a l 

degradation of the aspartate binding s i t e . - The differ e n c e may also be due 
3 

to regional v a r i a t i o n i n the a f f i n i t y of [ H] L-aspartate f o r Its binding 

s i t e . 
There i s good c o r r e l a t i o n between the apparent d i s s o c i a t i o n constant 
3 

f o r [ H] L-aspartate binding i n the cerebellum obtained by the author 

from Scatchard analysis and that calculated from the IC^ Q value obtained 

from the i n h i b i t i o n curve. The two apparent d i s s o c i a t i o n constants 

obtained by Sharif and Roberts, however, do not agree. The apparent 

d i s s o c i a t i o n constant calculated from the IC^Q value (5.0 uM) was 

4.68 JiM while that obtained from Scatchard analysis was 0.874 uM. The 

d i s s o c i a t i o n constant calculated from the IC^Q value obtained by Sharif 

and Roberts may have displayed a lower a f f i n i t y than that obtained from 

Scatchard analysis because large concentrations of L-aspartate (up to 
-2 

10 M) were used i n experiments from which the IC^Q values were 

determined. The Scatchard a n a l y s i s , however, encompassed a lower range of 

ligand concentrations (from the absence of ligand up to 1000 nM) so that 
s i t e s with higher a f f i n i t i e s (lower values) were measured. These data 

3 

i n d i c a t e that at l e a s t two [ H] L-aspartate binding s i t e s e x i s t , one of 

lower a f f i n i t y than the other. 

The maximum binding can a l s o be ca l c u l a t e d from the data by Scatchard 

a n a l y s i s . The maximum binding to t o t a l p a r t i c u l a t e f r a c t i o n s of cerebellum 

was found i n these experiments to be about s i x times 
(7.71 pmol/mg) less than that found by Sharif and Roberts i n synaptosomal 
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fr a c t i o n s (44 pmol/mg). More binding i s expected i n synaptosomal 

preparations because neurotransmitter receptors are concentrated i n t h i s 

f r a c t i o n . 
3 

The pharmacological s p e c i f i c i t y of [ H] L-aspartate binding was 

shown by the IC^Q values obtained f o r the displacement of the binding by 
3 

several compounds. L-aspartate i n h i b i t e d f H] L-aspartate binding 10 
3 

times more e f f e c t i v e l y than D-aspartate d i d . The [ H] L-aspartate 

binding was therefore s t e r e o s p e c i f i c , a c h a r a c t e r i s t i c expected f o r 

nat u r a l l y occurring reactions. Sharif and Roberts (1981) also found 
3 

s t e r e o s p e c i f i c i t y of [ H] L-aspartate binding. L-aspartate i n t h e i r 
experiments was 100 times more e f f e c t i v e than D-aspartate. The IC^ Q 

values of L-aspartate, L-glutamate, N-methyl-DL-aspartate, and kainate f o r 
3 

[ H] L-aspartate binding found i n t h i s study were s i m i l a r to those found 

by Sharif and Roberts (Table X I ) . The I C 5 0 f o r the racemic mixture 

DL-alpha-aminoadipate obtained by Sharif and Roberts, however, was 100 

times l e s s e f f e c t i v e than that obtained by the author f o r e i t h e r isomer 

alone. 

The discrepancy between the IC^Q values of D-aspartate, and 

alpha-aminoadipate obtained i n the present study and those found by Sharif 

and Roberts may be because, i n the experiments of Sharif and Roberts, the 
i n h i b i t i o n curves are not well defined. Only four d i f f e r e n t concentrations 

-5 -3 

of from 10 M to 10 M of the various compounds were tested (Roberts 

et a l . , 1980). As can be seen from Figures 14 and 15 of the present 

experiments, a great deal of i n h i b i t i o n has already occurred at 10 ^ M of 
-3 

the various compounds under t e s t and 10 M of some compounds, such as 
3 

D-aspartate, did not f u l l y i n h i b i t the [ H] L-aspartate binding. The 

i n h i b i t i o n curves derived from such abbreviated 
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Table XI Comparison of the Pharmacological S p e c i f i c i t y of 
[ 3H] L-Aspartate Binding Obtained by the Author~with that  
Obtained by Sharif and Roberts 

The I C 5 0 values ( i n uM) of the author were taken from Table X but with 
the use of " i n a c t i v e " defined by Sharif and Roberts (1981) as an I C 5 0 

value greater than 10~ 3 M. *Sharif and Roberts used N-methyl-D-aspartate 
while the author used N-methyl-DL-aspartate. 

I n h i b i t o r Sharif and Roberts Author 

L-aspartate 

D-aspartate 

L-glutamate 

N-methylaspartate* 

Kainate 

DL-alpha-aminoadipate 

D-alpha-aminoadipate 

L-alpha-aminoadipate 

5.0 

457.0 

2.0 

i n a c t i v e 

i n a c t i v e 

360.0 

1.81 

46.6 

1.24 

in a c t i v e 

i n a c t i v e 

i n a c t i v e 

7.12 
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data are most l i k e l y s h i f t e d to the r i g h t , producing higher IC^ Q values 

i n some instances i n the work of Sharif and Roberts (1981) than those 

obtained i n the present studies. 

The d i f f e r e n c e s i n production of i n h i b i t i o n curves may be the reason 

f o r the discrepancy between the H i l l c o e f f i c i e n t s and, consequently, the 

number of binding s i t e s observed i n the present experiments as compared to 

those of Sharif and Roberts. In the present experiments more than one 

L-aspartate binding s i t e i s indicated by the H i l l c o e f f i c i e n t of l e s s than 

one. The H i l l c o e f f i c i e n t of unity obtained by Sharif and Roberts suggest 

a homogeneous population of receptors. 
3 

The H i l l c o e f f i c i e n t s f o r the displacement of [ H] L-aspartate by 

compounds other than L-aspartate were not determined by Sharif and 

Roberts. Binding of each of D-aspartate, L-glutamate, and 

L-alpha-aminoadipate to more than one s i t e , however, i s indicated i n that 

the H i l l c o e f f i c i e n t s obtained i n the present studies are l e s s than one. 

The d i f f e r e n t number of binding s i t e s observed by the two 

inv e s t i g a t i o n s may also have been because t o t a l p a r t i c u l a t e f r a c t i o n s were 

used i n the present study while synaptosomal f r a c t i o n s were used by Sharif 

and Roberts. The t o t a l p a r t i c u l a t e f r a c t i o n s may have contained e x t r a -

j u n c t i o n a l receptors as w e l l as those found i n synaptosomal f r a c t i o n s . The 

dif f e r e n c e s i n the IC50 values f o r L-aspartate and alpha-aminoadipate may 

a l s o have been due to measurement of a lower a f f i n i t y binding s i t e i n the 

experiments of Sharif and Roberts as discussed e a r l i e r . 
+ 2+ 2+ 3 The e f f e c t s of K , Mg , and Ca on the [ H] L-aspartate 

binding i n synaptosomal f r a c t i o n s of whole rat b r a i n obtained i n the 

present study do not agree with those found by Sharif and Roberts (1981) or 

by Foster and coworkers (1981). Sharif and Roberts found that binding to 
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crude synaptosomal membranes of rat cerebellum was enhanced by K + 

concentrations of about 2 to 5 mM while concentrations higher than 5 mM 

i n h i b i t e d the binding. The present study found no e f f e c t of 1 mM K + i n a 

f i n a l r e a c t i o n mixture of pH 4.5. Sharif and Roberts also found that lower 
2+ 

concentrations of Ca from about 2 to 20 mM enhanced binding while 

higher concentrations were i n h i b i t i n g . These r e s u l t s f o r the e f f e c t s of 
2+ 

Ca agree with experiments described i n t h i s report i n which the f i n a l 
2+ 

pH was 4.5. At pH 7.5, however, i t was found that Ca had no e f f e c t on 
2+ 

the displaceable aspartate binding. In regard to Mg , Foster and 
3 

coworkers (1981) found that a concentration of 2.4 mM increased [ H] 

L-aspartate binding to whole p a r t i c u l a t e f r a c t i o n s of forebrain 2.5 times. 
2+ 

In the present study however, Mg had no e f f e c t on displaceable 

aspartate binding. These discrepancies could be explained by differences 

i n the ion concentration, pH, the membrane f r a c t i o n , or the brain region 

investigated. Differences between membrane subfTactions have been shown by 
3 

Foster and coworkers (1981). The enhancement of [ H] L-aspartate binding 
2+ 

i n the presence of Ca (2.5 mM) decreased from whole p a r t i c u l a t e 

f r a c t i o n s of cerebral cortex to p u r i f i e d synaptosomal preparations. 

C o r r e l a t i o n of the i o n i c e f f e c t s on binding with those seen on 

de p o l a r i z a t i o n i n vivo are d i f f i c u l t because, i n vivo, the ions a f f e c t 

s i t e s other than the synaptic receptor. Decreased e x t r a c e l l u l a r K +, f o r 

example, enhances d e p o l a r i z a t i o n induced by aspartate, a response which i s 

consistent with the decreased aspartate uptake seen at lower K + 

concentrations (Evans et a l . , 1977) or the hyperpolarization of neuronal 

membranes i n low K + concentrations. 

Assuming from the previous evidence that the s i t e s a c t i v e i n binding 

aspartate i n v i t r o are those activated i n vivo, the binding assay provides 



71 

evidence f o r separate aspartate and glutamate receptors. Four pieces of 

evidence which are discussed i n more d e t a i l below include the d i f f e r e n t 

pharmacological s p e c i f i c i t i e s , maximum amount of binding, e f f e c t s of ions 

on the binding, and a l s o the H i l l c o e f f i c i e n t s of les s than one. 

F i r s t , d i f f e r e n t i a t i o n between L-aspartate and L-glutamate binding i s 

based p r i m a r i l y on dif f e r e n c e s i n pharmacological s p e c i f i c i t i e s . The 

apparent d i s s o c i a t i o n constants f o r the various i n h i b i t o r s tested against 
3 
[ H] L-aspartate binding i n these experiments agreed with those observed 

i n c e r e b e l l a r synaptosomal f r a c t i o n s by Sharif and Roberts (1981) and i n 

synaptosomal preparations of the hippocampus by Baudry and Lynch (1979). 
3 

Diff e r e n t pharmacological s p e c i f i c i t i e s were obtained f o r [ H] 
3 

L-aspartate and [ H] L-glutamate. The two pharmacological s p e c i f i c i t i e s 
were found i n the present experiments to d i f f e r i n a f f i n i t y f o r 

3 
D-alpha-aminoadipate. Sharif and Roberts (1981) found that [ H] 

3 

L-aspartate and [ H] L-glutamate binding a l s o d i f f e r e d i n the a f f i n i t i e s 

f o r quisqualate, DL-2-amino-4-phosphonobutyrate, DL-homocysteate, 

L-glutamate d i e t h y l e s t e r , l-hydroxy-3-aminopyrrolidone-2(HA-966), 

D-aspartate and somewhat f o r (+)-ibotenate. 

Second, Sharif and Roberts also found that the maximum binding of 

glutamate to synaptosomal f r a c t i o n s of the cerebellum was three times 

higher than that of aspartate to the same membrane preparation. These data 

ind i c a t e that aspartate and glutamate bind to separate receptors. 

T h i r d , Foster and coworkers (1981) found that c e r t a i n ions a f f e c t e d 

aspartate binding d i f f e r e n t l y to glutamate binding. Na + increased 
2+ 2+ 

aspartate binding more than glutamate binding, while Ca and Mg 

increased glutamate more than aspartate binding. The d i f f e r e n t i a l e f f e c t s 

of ions on aspartate and glutamate binding lend more evidence to the 
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argument f o r separate receptors. 

Fourth, the H i l l c o e f f i c i e n t s of l e s s than one obtained i n the present 
3 3 study f o r both [ H] L-aspartate and [ H] L-glutamate binding in d i c a t e 

3 

the i n t e r a c t i o n of each amino acid with more than one s i t e . [ H] 

L-aspartate may i n t e r a c t with an aspartate' and a glutamate s i t e . 

How do the data from binding studies c o r r e l a t e with those from 

iontophoresis? The r e l a t i v e a f f i n i t i e s of L-aspartate, D-aspartate, 
3 

L-glutamate, and kainate f o r the [ H] L-aspartate binding s i t e are i n 

accord with the r e l a t i v e potencies of these compounds as seen i n 

iontophoretic studies. D-aspartate and L-glutamate excite neurones more, 

l e s s , or as well as L-aspartate depending on the region of the brain tested 
(Curtis and Watkins, 1960, 1963; H a l l et a l . , 1979). Kainate had l i t t l e 

3 

e f f e c t on the [ H] L-aspartate binding, which i s consistent with the 

iontophoretic evidence that kainate acts at a separate receptor (Engberg et 

a l . , 1978; N i s t r i and Constant!, 1979). 

There are major disagreements, however, between the iontophoretic and 

binding data f o r N-methyl-D-aspartate and D- and L-alpha-aminoadipate. 

Iontophoretic data strongly indicate that aspartate can i n t e r a c t with 

N-methyl-D-aspartate receptors, although N-methyl-D-aspartate i s much more 

potent and s p e c i f i c (Evans and Watkins, 1978; Davies and Watkins, 1979) and 

that D-alpha-aminoadipate has a strong and p r e f e r e n t i a l antagonistic action 

against N-methyl-D-aspartate (Biscoe et a l . , 1978; McLennan and H a l l , 

1978). The D isomer of alpha-aminoadipate i t s e l f i s not e x c i t a t o r y while 

the L-isomer Is weakly exc i t a t o r y . The L-isomer i s not an antagonist of 

aspartate or glutamate e x c i t a t i o n (Biscoe et a l . , 1977; Lodge et a l . , 

1978). The binding data i n d i c a t e opposite e f f e c t s . N-methyl-D-aspartate 

and D-alpha-aminoadipate were i n e f f e c t i v e while L-alpha-aminoadipate 
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3 Inhibited the [ H] L-aspartate binding a great deal. Both D- and 
3 3 L-alpha-aminoadipate i n h i b i t e d [ H] L-glutamate binding more than [ H] 

L-aspartate binding. 

There are several possible reasons f o r the discrepancy between the 

iontophoretic and binding data. The i n t e r a c t i o n of aspartate with 

N-methyl-D-aspartate a c t i v e s i t e s determined by iontophoresis may be 

inc o r r e c t ; a l t e r n a t i v e l y , the binding experiments may not measure the 

i n t e r a c t i o n with synaptic receptors i n the state and conditions i n which 

they occur i n vivo. 

N-methyl-D-aspartate may appear to be more potent than L-aspartate 

because of d i f f e r e n t i a l uptake of the two compounds. The uptake of 

L-aspartate (K^ = 1.6 PM) i s much greater than that of 

N-methyl-D-aspartate (K^ = 28 uM) i n crude synaptosomes of rat 

hippocampus (Baudry and Lynch, 1979). Af t e r iontophoresis of the same 

concentrations of L-aspartate and N-methyl-D-aspartate, 

N-methyl-D-aspartate would therefore be more abundant and would d i f f u s e 

over a greater area than L-aspartate. N-methyl-D-aspartate would therefore 

a c t i v a t e more receptors and appear to be more potent than aspartate. 

N-methyl-D-aspartate, however, may not bind to the receptor as well as 

L-aspartate, as shown by the r e s u l t s of Garthwaite and Balazs (1981) i n 

adult rat c e r e b e l l a r s l i c e s . N-methyl-D-aspartate was l e s s e f f e c t i v e than 

L-aspartate i n increasing cGMP l e v e l s i n c e l l suspensions of rat 

cerebellum. Only three or four data points, however, were used to 

determine the dose-response curves from which these conclusions were 

drawn. Expansion and confirmation of the data i s therefore required. 

N-methyl-D-aspartate, on the other hand, may not i n t e r a c t with the 

aspartate receptor but a c t i v a t e a d i f f e r e n t receptor. The cGMP production 
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induced by L-aspartate and L-glutamate was r e s i s t a n t to 

D-alpha-aminoadipate while N-methyl-D-aspartate-induced stimulation of cGMP 

was i n h i b i t e d (Garthwaite and Balazs, 1981). I n t r a c e l l u l a r responses are 

a l s o d i f f e r e n t f o r N-methyl-D-aspartate and L-aspartate. L-aspartate 

produced a small increase i n membrane conductance while 

N-methyl-D-aspartate produced a very large decrease (Engberg et a l . , 

1978). These data are substantiated by the r e s u l t s of the present 
3 

experiments i n which N-methyl-D-aspartate had l i t t l e e f f e c t on [ H] 

L-aspartate binding. Neither the iontophoretic nor the binding studies, 

however, provide d e f i n i t i v e evidence f o r d i f f e r e n t receptors. The probable 

a c t i v a t i o n of both glutamate and N-methyl-D-aspartate s i t e s by aspartate, 

for example, may account f o r the d i f f e r e n t i n t r a c e l l u l a r responses of 

aspartate and N-methyl-D-aspartate. 

Another problem with the potencies determined by iontophoresis i s that 

i n the majority of instances only one e f f e c t i v e dose of, f o r example, 

aspartate and N-methyl-D-aspartate are compared. The e f f e c t i v e dose i s 

determined as follows. A range of e j e c t i o n currents f o r aspartate are 

tested and a current chosen which produces about 50 percent of the maximum 

response (ED^Q). The potency of N-methyl-D-aspartate as compared to 

aspartate i s then estimated from the i n t e n s i t y of the iontophoretic current 

required to e l i c i t an equal response. Only a s i n g l e dose of 

N-methyl-D-aspartate i s then compared with the ED,.Q of aspartate. 

In order properly to determine the potencies of various compounds, the 

ED,JQ values must be compared. The reason f o r the necessity of ED^Q 

values i s as fol l o w s . Examples of possible dose-response curves f o r two 

compounds are shown i n Figure s17. At an e j e c t i o n current, 2 (Figure 17a) 

f o r example, two compounds, A and B, may e l i c i t the same response. At a 
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Figure 17. Possible Dose-Response Curves 

A and B are two compounds i o n t o p h o r e t i c a l l y ejected at currents 1 and 2. 
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lower e j e c t i o n current, 1, compound A may s t i l l e xhibit the maximum 

response while compound B e x h i b i t s only 70 percent of the maximum 

response. The dose-response curves may also be as shown i n Figure 17b 

where, at e j e c t i o n current 2, compound A i s l e s s potent than compound B but 

at a much lower e j e c t i o n current, 1, compound B i s l e s s potent than A. 

Comparison of the potency of various compounds can therefore only be made 

a f t e r several e j e c t i o n currents of the compounds have been tested, ED^Q 

curves drawn, and the E D c , n values determined. It i s not possible, 

however, to obtain ED^Q values i n a large number of instances because i n 

determining the maximum response the neurone i s inact i v a t e d (Curtis and 

Watkins, 1960). Relative potencies of various compounds must therefore be 

viewed with caution. 

Several problems therefore e x i s t i n the i n t e r p r e t a t i o n of the 

iontophoretic data. Some of the problems with the binding studies are as 

follows. In v i t r o studies create an a r t i f i c i a l environment f o r neuronal 

membranes i n which the aspartate receptors may be a l t e r e d , destroyed, or 

unable to react properly because of i o n i c or other d e f i c i e n c i e s . The 
3 3 

[ H] L-aspartate and the [ H] L-glutamate may therefore not have bound 

to the s i t e s which are activated i n vivo or to s i t e s i n the same state as 

those i n vivo . 

The aspartate synaptic receptors may, on the other hand, have been 

i n t a c t and operable i n the binding assay but because of the low 
3 

concentration of [ H] L-aspartate employed, only the high a f f i n i t y s i t e s 
were characterized. Aspartate may i n t e r a c t with lower a f f i n i t y to the 

3 

N-methyl-D-aspartate binding s i t e so displacement of [ H] L-aspartate by 

N-methyl-DL-aspartate would not be observed i n the present experiments. In 

iontophoretic studies low a f f i n i t y s i t e s may have been measured. 
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The disagreement between the data from iontophoretic and binding 

studies may be because of the measurement of aspartate uptake s i t e s i n the 

binding studies. Roberts and Kuriyama (1968); Zukin et a l . , (1974); and 

Enna and Snyder (1975) showed that i n the presence of Na + the 

neurotransmitter gamma-aminobutyric a c i d (GABA) bound to uptake s i t e s while 

i n the absence of Na + neurotransmitter s i t e s were ac t i v a t e d . Binding to 

putative synaptic neurotransmitter receptors i s therefore r o u t i n e l y done i n 

the absence of Na +. The binding of aspartate to neurotransmitter s i t e s 

i n the absence of Na +, however, has not been substantiated. 
+ 3 

Na -dependent [ H] L-aspartate binding has not been measured, so no 

c o r r e l a t i o n has been established between Na +-dependent binding and uptake 

and those d i f f e r e n t i a t e d from Na +-independent binding. Two arguments, 

however, indi c a t e that i t i s u n l i k e l y that the aspartate binding i n these 

experiments was to uptake s i t e s . 
3 

F i r s t , the apparent d i s s o c i a t i o n constants f o r [ H] L-aspartate 

uptake and Na +-independent binding were d i f f e r e n t . The Kp f o r the high 

a f f i n i t y [^C]L-aspartate uptake i n r a t c o r t i c a l s l i c e s was 1.6 x 10 M 
(Davies and Johnston, 1976) while that of Na +-independent aspartate 

—6 3 

binding i n the present study was 10 M. [ H] L-aspartate binding to 

the uptake s i t e i n the absence of Na + would be l e s s than optimal and the 

a f f i n i t y therefore l e s s than 10 M. Binding to uptake s i t e s would also 

have been n e g l i g i b l e i n the present experiments because of the low 
3 

concentration of [ H] L-aspartate employed (120 nM) compared to the 

uptake Kp. 
3 

Second, the pharmacological s p e c i f i c i t y of [ H] L-aspartate and 
3 
[ H] L-glutamate uptake s i t e s were found by Balcar and Johnston (1972) to 

3 
be the same. The pharmacological s p e c i f i c i t y of [ H] L-aspartate binding 
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i n the present experiments, however, was d i f f e r e n t from that of glutamate 
3 as w e l l as of aspartate uptake s i t e s . In uptake studies [ H] L-aspartate 

was i n h i b i t e d somewhat more by D-aspartate than by L-aspartate (Balcar and 

Johnston, 1972). In the present binding studies L-aspartate i n h i b i t s the 

binding much more than D-aspartate does. 

There are therefore many possible reasons f o r the discrepancy between 

the binding and iontophoretic data. C o r r e l a t i o n i s very d i f f i c u l t because 

the former measures a response which i s s e n s i t i v e to e f f i c a c y and 

i n a c t i v a t i o n , f o r example, while the l a t t e r measures only the a f f i n i t y of 

various compounds f o r a binding s i t e which i s unrelated to the c e l l u l a r 
3 

responses, that i s to e f f i c a c y . The [ H] L-aspartate binding does not 

demonstrate the c h a r a c t e r i s t i c s of the aspartate actions seen i n vivo such 

as the strong potency of N-methyl-D-aspartate and therefore may not 

represent the s i t e which i s activated i n v i v o . The i n vivo studies, 

however, may not t r u e l y represent the c h a r a c t e r i s t i c s of the aspartate s i t e 

because of, f o r example, uptake of the compounds iontophoresed. No f i n a l 

conclusion as to whether separate receptors e x i s t f o r aspartate and 

glutamate can therefore be made at t h i s time. More data are required from 

both techniques before a more accurate c o r r e l a t i o n can be made. 

From iontophoresis, the data required are i n t r a c e l l u l a r recordings, 

dose-response curves, and more s p e c i f i c agonists and antagonists. The 

binding studies require c o r r e l a t i o n with a c e l l u l a r response which i s close 

i n time to the receptor compound i n t e r a c t i o n . Aspartate bound 

n o n s p e c i f i c a l l y to s i t e s other than the neurotransmitter s i t e would 

i n t e r f e r e much l e s s with these type of data. The data required from 

iontophoresis are discussed f i r s t . 
The s p e c i f i c i t y of most agonists and antagonists, as mentioned 
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e a r l i e r , i s based on e x t r a c e l l u l a r measurements of changes i n f i r i n g rate. 

Confirmation of the s p e c i f i c i t i e s are required from the more subtle 

measurements of i n t r a c e l l u l a r recordings such as rev e r s a l p o t e n t i a l s which 

give information as to which Ionic channels are opened. Differences i n 

i n t r a c e l l u l a r measurements may d i f f e r e n t i a t e between compounds which were 

previously not distinguished by the measurement of changes In the f i r i n g 

rate of neurones. 

More s p e c i f i c agonists and antagonists f o r aspartate and glutamate are 

required to d i f f e r e n t i a t e between the actions of the two compounds. 

Conductance changes produced by aspartate i t s e l f , for example, may be 

masked i f more glutamate than aspartate receptors are present because of 

the i n t e r a c t i o n of both amino acids with the two possible receptors. Four 

types of experiments which would help to r e l a t e the binding studies to an 

appropriate p h y s i o l o g i c a l receptor are outlined below. 

F i r s t , c h a r a c t e r i z a t i o n of the N-methyl-D-aspartate binding s i t e may 

substantiate whether aspartate binds to N-methyl-D-aspartate s i t e s . 

Unfortunately, Olverman and Watkins (unpublished observations, Watkins and 

Evans, 1981) and the author could not reproduce the work of Snodgrass 
3 

(1979) i n which aspartate displaced [ H] N-methyl-D-aspartate binding to 

membrane f r a c t i o n s of r a t br a i n . Further experiments are therefore 

necessary f o r better i d e n t i f i c a t i o n of the receptors f o r 

N-methyl-D-aspartate as w e l l as f o r D-alpha-aminoadipate with aspartate 

receptors because, as Evans and Watkins (1981) state, "no compelling 

evidence i s yet a v a i l a b l e to confirm or refute the p o s s i b i l i t y that 

N-methyl-D-aspartate receptors are aspartate transmitter receptors." 

A second type of study which could be performed using the binding 

assay I t s e l f i s one i n which lesions have been made to deplete various 
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neuronal c e l l types. The cerebellum i s an excellent region i n which to 

study the e f f e c t s of l e s i o n s because animals are a v a i l a b l e i n which c e r t a i n 

c e r e b e l l a r c e l l types or f i b e r s are absent. Climbing f i b e r s , f o r example, 

can be depleted with the use of 3-acetylpyridine (Desclin and Escubi, 1974). 

Third, neurones i n ti s s u e culture may be a good environment i n which 

to study binding because the receptors would not be subject to possible 

digestion by enzymes released during membrane preparation. This system, 

however, may be complicated by the i n a c t i v a t i o n of the compounds under test 

by uptake. These studies therefore await development of a compound which 

blocks uptake without blocking the synaptic receptors. 

The fourth type of experiment i s the d i r e c t measurement of a c e l l u l a r 

response i n v i t r o such as cGMP l e v e l s and Na + fluxes. Garthwaite and 

Balazs (1981) measured cGMP l e v e l s In s l i c e s of rat cerebellum i n response 

to the a p p l i c a t i o n of L-glutamate, L-aspartate, N-methyl-D-aspartate and 

kainate. They found that the i n v i t r o stimulation of cGMP l e v e l s mimics 

that seen In vivo. Increases i n cGMP were, f o r example, seen a f t e r i n vivo 

stimulation of p a r a l l e l or climbing f i b e r s In the cerebellum (Rubin and 

F e r r e n d e l l i , 1977; Biggio and Gu l d o t t l , 1976; Evans et a l . , 1979). 

D i f f e r e n t e f f i c a c i e s of various compounds i n a l t e r i n g the cGMP l e v e l s may 

d i f f e r e n t i a t e between compounds previously not distinguished. Many 

compounds and regions of the c e n t r a l nervous system have yet to be tested 

i n the cGMP system. It w i l l be i n t e r e s t i n g to c o r r e l a t e the r e s u l t s with 

potencies obtained from iontophoretic studies. 

The measurement of ion fluxes such as Na induced by various 

compounds i s a technique which looks promising f o r future work. Glutamate, 

f o r example, changed the Na + fluxes i n s t r i a t a l s l i c e s ( L u i n i et a l . , 

1980). Iontophoretic studies suggest that the glutamate receptor, as well 
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as aspartate, are l i n k e d with Na + channels ( C u r t i s and Johnston, 1974). 

Expansion of these studies with the t e s t i n g of more compounds and the 

production of dose-response curves would be very i n t e r e s t i n g since the 

reactions of i o n i c channels are more immediately associated with the 

receptor-compound i n t e r a c t i o n and therefore more accurately r e f l e c t the 

i n t e r a c t i o n . 

Of a l l the experiments mentioned above, those which hold the most 

promise of c o r r e l a t i o n between data from i n v i t r o and i n vivo experiments 

are the measurement of dose-response curves f o r Na + fluxes both i n v i t r o 

i n b r a i n s l i c e s and i n v i v o . 
3 

The binding assay, assuming that [ H] L-aspartate binds to the 

receptor which i s a c t i v e i n vivo and that agonists and antagonists s p e c i f i c 

to the s i t e are found, could provide a great deal of information. The 

d i s t r i b u t i o n , r e g u lation, development, a l t e r a t i o n during disease or aging, 

and the screening of various drugs f o r e f f e c t s on the aspartate receptor 

could be studied. D i s t r i b u t i o n and l e s i o n studies may help to determine 

the pathways i n which aspartate may be a neurotransmitter. The 

l o c a l i z a t i o n of aspartate receptors at pre- or post-synaptic, j u n c t i o n a l or 

extrajunctional s i t e s could be determined by autoradiography or 

histochemistry. The point during formation of the synapse at which 

receptors become evident and any changes which may occur during development 

could a l s o be studied with binding assays, p a r t i c u l a r l y Scatchard analysis 

of the binding at each stage of development. The possible a l t e r a t i o n of 

receptors during prolonged administration of c e r t a i n drugs could also be 

determined from binding studies. These data may be correlated with changes 

i n p h y s i o l o g i c a l responses such as Na + fluxes or cGMP l e v e l s . Before any 

of these studies can proceed, however, i d e n t i f i c a t i o n of the aspartate 



binding s i t e with the receptor which i s active i n vivo i s required. 
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APPENDIX I 

The d i s i n t e g r a t i o n s per minute obtained f o r [ JH] L-aspartate binding 

were low because of the low s p e c i f i c a c t i v i t y of the l a b e l used. The free 
3 

concentration of [ H] L-aspartate could not be estimated when 

concentrations i n which greater than 10 percent of the t o t a l r a d i o a c t i v i t y 

bound to membrane preparations were used. Higher concentrations of l a b e l 

also dramatically increase the nondisplaceable binding so that accurate 

measurements of the displaceable binding, which i s determined by 

subtracting the nondisplaceable from the t o t a l binding, would be very 

d i f f i c u l t . Higher concentrations of t h i s l a b e l could therefore not be used 

to increase the di s i n t e g r a t i o n s per minute obtained. 
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