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ABSTRACT

There are very many processes in the natural and social sciences which
can be represented as a set of flows of objects or people between categories
of some kind. The Markov chain model has been used in the study of many of
them. The basic form of the Markov chain model is, however, rarely
adequate to describe social, occupational and geographical mobility
processes. We shall therefore discuss a number of generalizations designed
to introduce greater realism.

In Chapter I we formulate and investigate a general model which
results from relaxing the assumptions of sojourn-time's memorylessness and
independence of origin and destination states, and of population
homogeneity. The model (a mixture of semi-Markov processes) is then used
in two ways. First, it provides a framework in which various special
cases (which correspond to models which were used by social scientists)
can be analytically compared. We pay particular attention to comparisons
of rate of mobility in related versions of various models and to
compatability of popular parametric forms with observed mobility patterns.
Second, any result obtained for the general model can be specialized for
the various cases and subcases.

In Chapter II we formulate a system-model allowing interaction among
individuals (comﬁonents), which has been motivated by Conlisk. We define
processes on this model and analyze their properties. A major effort is
then devoted to establishing that when the population size becomes large,
this rather complex stochastic model can be approximated by a single
deterministic recursion due to Conlisk (1976). Nevertheless, we draw
attention to certain aspects (particularly steady-state behavior) in

which the approximation may fail,
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In Chapter III we address ourselves to the issue of measurement of
(what we refer to as) social inheritance in intergenerational mobility
processes. We distinguish between various aspects and concepts of
social inheritance and outline the implications that certain "social values"
may have on constructing a measure (or index). In the mathematical
discussion which follows certain mechanisms for generating "families" of

measures are indicated, and the properties of some particular combinations

are investigated.
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INTRODUCTION

Since the early fifties, researchers in various~disciplines have
attempted to devise models to describe the dynamics of social systems. The
first models described changes in voting behavior (Anderson 1954), social
mobility (Prais 1955) and occupational mobility (Blumen et al. 1955).
These models were stochastic in nature, and used Markov chains as their
main tool. Markov chains were used later to model other types of social
systems,(*) such as geographical mobility [for a recent survey of models used
in various mobility processes see Stewman (1976)], diffusion of innovations,
educational systems, and flow of people among different states of health
[see Bartholomew (1973) for a general survey]. They were also used to
model buying behavior (brand switching; e.g. Massy et al. 1970), internal
labour markets (e.g. Vroom and MacCrimmon 1968) and health delivery systems
(e.g. Meredith 1973).(**) |

In the area of intergenerational social mobility, in addition to the

interest in devising descriptive models, there was an accompanying interest

in measuring mobility of certain societies. The first attempt to. devise an

index (measure) of mobility was made by Prais (1955a), and was followed,
among others, by Matras (1960), Yasudo (1964), Goodman (1969), Bartholomew

(1973, pp. 23-7), Boudon (1973), Pullum (1975) and Sommers and Conlisk (1979).

Recently Shorrocks:(1978) apptésached this issue moré. systematically, setting

(*) Similar work was done in the biosciences for nonhuman populations
(e.g. Thompson and Vertinsky 1975).

(**) The term "social systems' to be used here should be broadly interpreted
to include all the above systems.



some desired properties of such indices as axioms and making inferences
from them. The above mentioned measures were suggested for a Markov
chain model, and are actually functions defined on probability transi-
tion matrices ("mobility tables').

More recently, however, researchers found it necessary to generalize
and extend the basic model. In order to understand what motivated this
trend, one should realize that, in general, a new model of a certain
phenomenon usually emerges as a result of one of three causes.

The first, and most natural to those who view models as devices
for fitting data, is poor fit (or inadequate predictions)adf the exist-
ing model. In the area of intragenerational mobility, researchers
observed an empirical regularity in the form of "clustering on the main
diagonal', which standard Markov chain models were not able to account
for. This prompted éome researchers to relax the assumption of "popula-.
tion homogeneity" (implicit in early models), resulting in the '"Mover-
Stayer Model" and its subsequent extensions (Blumen_et:al:: 1955,
McFarland 1970, Spilerman 1972a, 1972b).(*)

Another rationale for exteﬁdiné existing models occurs when some
behavioral patterns, which were unknown before, are discovered. Typical
examples, in the area of geographical migration processes, include the
realization that duration—in one's current location reduces the chances. of
leaving it ("Axiom of Cumulative Inertia"; McGinnis 1968, -Huff and Clark
1978), the demonstration that the destination one moves to-is not inde- -

pendent of the duration-in oﬁe’S'current'location7(Ginsberg 1978a) and

(*) Similar extensions were proposed also in buying-behavior literature
(Jones 1973, Givon and Horsky 1978).



observation of decline.of mobility rate with age (Mayer 1972). An
attempt to accomodate such effects gave rise to the '"Cornell Mobility
Model" (McGinnis 1968, Henry et al. 1971) and, more generally, to a semi-
Markov model (Ginsberg 1971).(*) A somewhat related avenue of research
involves hypothesizing some logical patterns and using a model to test
them. An example is the work by Wise (1975) on the effects of academic
achievement on graduates' careers. )
In order to understand the third class of rationales for extend-

ing models, it is important to realize that "

...no0t all mathematical
models are intended to fit empirical data; not infrequently mathematical
models are developed to work out implications of postulates...'
(McFarland 1974, p. 883). 1In fact, this latter rationale for modelling
becomes central when we move from the field of Sociology (where ‘the
above citation appeared) to the policy sciences, where one frequently
wants to assess future impacfs of policies which might be implemented.
With particular attention to the rationale for modelling dis-—
cussed in the above paragraph, and in order to come up with a compre-
hensive model which captures more features of real systems, Conlisk
(1976) argued in favor of dropping the assumption of individuals "moving"
independently of each other, which was implicit in all above mentioned
models. Conlisk formulated a model which allows for interactions among
individuals, and Smallwood and Conlisk (l§78) made an interesting use
of some of its versions to model adaptive behavior of poorly informed

consumers.

(*) This has been made possible by the development of the theory of
semi-Markov processes in the early sixties and by using certain
notions from reliability theory which were developed about the same
time.



While Markov and semi-Markov models could make direct use of avail-
able stochastic process theory, once population heterogeneity or inter-
action between individuals is introduced, the resulting models have no
immediate counterparts in classical theory, so séme specific analysis
is required. A particular problem is that "Traditional Markov chain
theory»pertains to a single object moving from state to state; but in
applications to social mobility and other social systems, one considers
an entire population, each person moving probabilistically from state
to state'" (McFarland 1970, p. 463). As loﬁg.as the processes which
individuals in the population follow were assumed to be (stochastically)
the same and independent of each other, the law of large numbers justifjes
approximafing the proportion of the population (assumed large) in a
given state by an individual's;probability of being in that state. ' Without
these assumptions, however, one should be very careful when formulatiﬁg
models and attempting to infer population-level (macroscopic)'quaﬁtities
from individual-level (microscopic) ones and vice versa.

This work addresses shortcomings of existing literature on three
levels:

l.. By a careful. formulation-and analysis of models. Since
relaking the assﬁmption that the individuals behave
independently of each other seems to be the most reward-
ing in terms of the spectrum of systems it may enable us
to model, and since it seems to be the most difficult
step towards a comprehensive system-model, we devote a
major effort to such a model.

2. By providing a logical hierarchy for various models (with



particular attention to those with heterogeneous
populations) within the theory of stochastic processes.

3. By testing analytically whether some models indeed have the
desired properties, and whether they always alter predic-
tions in a manner which is consistent with the way they
were motivated.

4. "By differentiating among. various aspectsﬁof‘sociélwmobility,

. 'singling out, for purposes of measurement, a pure social-
inheritance aspect, and approaching it systematically on
both substantive and mathematical levels.

In Chapter I we formulate and investigate a general model which
results from relaxing theé assumptions of Sojourn—time's memorylessness
and independence of origin and destination states, and propulatibn;
homogeneity. The model (a mixture of semi-Markov processes) is then
used in two ways. First, it provides a framework in which various
special cases (which correspond to models which were used by social
scientists) can be analytically compéred. We pay>particular attention
to comparisons of rate of mobility in related versions of various models
and to compatability of popular paramétric forms with observed mobility
patterns. Second, any result obtained for the general model can be
specialized for the various cases and subcases.

In Chapter II we formulate a system-model allowing interaction
among individuals (components), which has been motivated by Conlisk. We
define processes on this‘model and analyze their properties. A major
effort is then devoted to establishing that when the population size

becomes large, this rather complex stochastic model can be approximated



by a single deterministic recursion due to Conlisk (1976). Nevertheless,
we draw attention to certain aspects (particularly steady-state behavior)
in which the approximation may fail.

In Chapter III we return to the issue of measurement of (what we
refer to as) social inheritance in intergenerational mobility processes.
We distinguish between various aspects and concepts of social inheri-
tance and outline the implications that certain "social values' may have
on constructing a measure (or index). In the mathematical discussiona
whiéh follows, certain mechanisms fér generating "families" of measures
are indicated, and the properties of some particular combinations are
investigated.

Although the models in Chapters I and II were motivated on sub;
stantive grouﬂds, some of the observations and results there may be
viewed as context—-free and, hopefully, perhaps of an independent proba-
bilistic interest. Chapter III, on the other hand, is geared, essenti- .
ally, tointergenerational sqcial mobility issues only.

Despite the common sources and rationales of the various models
and problems addressed by this work (which were outlined in this intro-
duction), the téchnical aspects of the various chapters (and sections)
vary significantly. This is one of the reasons why the three chapters
are self-contained and with little cross-references. The main mathemat-
ical "tools" used in this work are:

- Chapter I: Markov and semi-Markov processes (Sections 1.1 -

1.3; Ross 1970, Cinlar 1975); stochastic dominance (sub-
section 1.4.1; Brumelle and Vickson 1975); spectral represen-

tations (subsection 1.4.2;Cinlar 1975, Appendix); reliability



theory (particularly in section 1.5; Barlow and Proschan
1975).

- Chépter I1: Products of finite non-negative square matrices
(subsection 2.1.4; Hajnal 1958); mathematical probability
(throughout: Breiman 1968); weak convergence of probability
measures (section 2.2 and, particularly 2.3; Billingsley 1968).

-~ Chapter III: Linear Tfansformations (subsection 3.2.1; Halmos
1958); Orders (subsection 3.2.2; Krantz et al. 1971); metriés
and norms (subsection 3.2.3; Royden 1963); ergodic coefficient,
rate of convergence of Markov chains (subsection 3.2.4;
Isaacson and Madsen 1976); information theory (éubsection
3.2.4; Khinchin 1957); rate of convergence notions (subsection

2.3.5; Ortega and Rheinboldt 1970).

Due to this rather "local" use of various concepts, we have chosen to
define concepts and quote results only when we need them. Nevertheless,

we attempted to make the work virtually self-contained.



CHAPTER I

ANALYTiCAL COMPARISON OF MOBILITY MODELS
IN A HETEROGENEOUS SEMI-MARKOV CONTEXT
When Markov chain models failed to describe certain aspects of
human mobility, and when empirical evidence showed that their assumptions
were notlcompatible with human behavior in certain types of spcial systems,
. researchers suggested two . major directioﬁs of extending them. One was
the Mover-Stayer Model and its subsequent exténsions (Blumen, Kogan and
McCarthy ;955, McFarland 1970, Spilerman 1972b), which introduced popu-
lation heterogeéneity. The other direction was semi-Markov models
(McGinnis 1968, Ginsbefg 1971), which allowed the distribution of time
between moves to depend on the origin and destination states. A semi-
Markov model has also been used to model movement of personnel through a
hierarchical orgahization (Grinold and Marshall 1977, Section 4.4).
Since researchers were typically interested in explaining parti-
cular phenomena and modeling specific systems, they usually formulated

(*)

rather specialized models (e.g. "cumulative inertia" of duration

length - a particular form of a semi-Markov process). Even when they
related models to each other, the basis of comparison was their relative

success in fitting a given set of data. Very little was done towards

°

arranging the various models in some logical order, establishing rela-

(%%)

tions among them, and comparing their predictions analytically.

*) Some exceptions are the works of Ginsberg (1971), Singer and
Spilerman (1974, 1976) and Schinnar and Stewman (1978).

(**) One . exception, in the area of personnel prediction models, was a
theoretical comparison of a cross-sectional (Markov) model and a
longitudinal (cohort) model by Marshall (1973) [see also Grinold -
and Marshall (1977, Section 4.5)].



In this chapter, following Singer and Spilerman (1974), we formulate
a general model (a mixture of semi-~Markov processes) which includes all

of the models mentioned above as special cases. We use this model in

two ways. First, it provides a framework in which the various special
cases can be compared. Second, any result obtained for the géneral

model will hold for the vérious special cases (possibly assuming some
special forms). This is done in Sections 1 through 3.

As was pointed out in thelliterature, (e.g. Singer and Spilerman 1974)
there are two equivalen£ ways of interpreting mixtures of stochastic.pro-
cesses. The.population may Ee'considered~to consist of subpopulations
which follow distinct processeé.(*) Alternatively, each individual may
be considered to "draw" the process that he will follow from some proba-
bility distribution over processes (or parameters). The wording of our
formulations will folléw the latter interpretation.

One property to which we pay particular attention is the rate of
mobility (Section 4). Many of the above extensions of the simple Markov
model were motivated by the empirically observed fact that the simple
model overestimated some measures of mobility. We show that particular
extensions of continuous-time Markov chains in the direction of "cumula-
tive inertia" duration times (McGinnis 1968) and in the direction of
Mover-Stayer models (Spilerman 1972b) result in stochastically longer
durations and in stochastically fewer transitioﬁs in any time interval

(subsection 4.1).

Another comparison concerns the "extended mover-stayer model with

(*) See also Lazarsfeld and Henry (1968).
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~rate heterogeneity'" (Spilerman 1972b). ‘Bartholomew (1973, pp. 48-49)
wondered whether an éttempt to model such a system as a diécrete—time
Markov chain always underestimates the proportion of individuals who
remain in their initial state. A counterexample shows that this is not
always true, but we give some sufficient conditions for its validity
. (subsection 4.2).

We also check whether some specific parametric forms of the models;
whicﬁ were suggested in the-literature, have properties which March and
March (1977, p. 380) consider desirable for models of career patterns

(Section 5).

1.1 A General Model and Some of Its Properties

Suppose that K is a finite set of categories, e.g. K regions K =
{1,2, ..., K}. Let X(t) be the category of a given individual at time t.

The stochastic process {X(t):tzp} is defined as follows.

(i) The given individual chooses a parameter Z from a set

*
of parameters A( ), according to a probability measure .

i.e., for any event A C A, u(A) = Pr[z € A]. If A= RE

we shall denote the corresponding distribution function
by G.
(ii) Given Z = z we assume that {Xz(t):tzO} is a semi-Markov

(%%)

process. In order to characterize the semi-Markov

(*) A can be interpreted as the population. Individuals can be identi-
fied with z € A.

(*¥*%) Note that the unconditional process {X(t):tzp} will ' in general not be
semi-Markov.
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process (Cinlar 1975) one needs to specify the two quaﬁtities

zB(t) and zQ(t) defined next.

a) zB(t) is the distribution of inifial'conditions at time O.
More precisely, it is a matrix-valued function such that
zBij(t) is the joint (conditional of Z = z) distribution:

of initial category i, the category j to which the first

transition is made and the time until this transition.

Let'vz(i)be the (marginal) probability of X(0) = i (given

Z = z) associated with this joint distribution; i.e.,

K
vz(i) =[Pr X(O)=i|Z=z]= z B..(®). For every i, let

. z71ij
j=1
Pi be the conditional probability measure of Z given

X(0) = i; i.e., T (A) = Pr[ZeA|X(0)=i]. It is obtained

from vz(i) and p via Bayes' Formula.

b) zQij(t) is the conditional probability, given that Z = z

and that transition into category i has been made at time s,
that the next transition will be into state j and will
occur before time s + t. Since this probability does not

depend on s, the process {Xz(t):tzp} is time-homogeneous.

For every semi-Markov process {Xz(t):tzp} define:
P.. = Q..(®) = probability that the state which will
z 1ij zZ'ij
be occupied.aftér;i is §.°
ZFij(t)_ = zQij(t)/zPij = probability that, given that
the process occupies state i at time s
and later moves to state j, this transi-

tion will take place before time s + t.

(1f ZPij = 0 then zFij(t) is arbitrary.)

’
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o K
u, = f td( z Q..(t)) = mean time between transitions in
zhi . z 1]
0 j=1
state 1.
zN(t) = number of tramsitions in (0,t].
ZPij(t) = Pr[x (t) = j|X_(0) = il.

In general, any function defined on the stochastic processes
{Xz(t):tip}, will be indexed by z. The same function defined on
{X(t):t>0} will be denoted by the same symbol, but without the index. For

example,
P_.(t) = Pr[X(t) = j|X(0) = i] = [ Pr[X(t).= jlx) =1, z = z] T, (dz).
-1] A 1

We will, in this case, use the matrix notation P(t) = E(ZP(ﬁ)) for the
above integrals.

The behavior of the process {X(t):t>0} can be deduced from the
behavior of the processes {Xz(t):tip}' Of particular interest are
results about the limiting behavior of the process {X(t):t>0}; e.g. about

lim P(t), which is equal to lim E(ZP(t)). Since each P,,(t) is bounded
toyoo . o300 z ij

(between zero and one), it follows from Lebesgue's Dominated Convergence

Theorem that lim EZP(t) = E lim ZP(t). However, since the processes
t->o tro

{Xz(t):tzp} are semi-Markov, Theorem 5.16 in Ross (1970, p. 104) show
that if zP is irreducible and aperiodic with steady state probabilities

m., then
z i

, _ z 3 z j :
lim zij(t) = for every k . (1.1)



- 13 -

Hence

Z'IT . ZU

lim ij(t) = E lim Zij(t) = E < J J for every k.

L0 o0 )
Logmy g (1.2)
i=1

Consider a special case in which for every Z = z, zui = Zu for every i.

Then the above equation reduces to lim Pk'(t) = Ezﬁ_ = E lim (ZPm)k'
toce J J M0 J

for every k. (The limiting behavior of the special case Zu =1 for
every z and u was analyzed by Morrison. et al. 1971.) 1If, in addition,

LT for every z, then

lim ij(t) = ﬂj . (1.3)

t>oo
Some of the specialized models discussed in the next subsection have these

properties.

1.2 Special Cases

In this section we identify some important special cases of the
general model which has been used to model mobility. We assume through-
out this section that a transition has just occured at time 0, so that

zBij(t) = vz(t) . zQij(t)'

The models areydivided into two main classes. Those in class A
correspond to homogeneous populations and ‘those in class B correspond

to heterogeneous populatidns.

A. In the models numbered 1 through 4 below, we shall assume that
zQ and that v, do not depend on z, so that zQ = Q and v, =V

for each z € A. The process'{X(t):tzp} then reduces to a semi-
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%
Markov process( ) (Ginsberg 1971, 1978a,.1978b, Grinold and
Marshall 1977, Section 4.4).

0

_ t < .
1) Fij(t) _“{l.t > for every 1i,j.

1
1
This is the case where X(t) is a discrete-time Markov chain -

the "classical"” model (see, for example, Blumen et al. 1955).

At
* , £t >0 for every i,j. -

2) Fij(t) =1-e
This is the case of a continuous-time Markov chain (see, for
example, Coleman 1964, Tuma, Hannan and Groenveld 1979). A

special subcase is (2s): Ai = X for every i. {N(t):t>0}

then becomes a Poisson process.

3) The Fij's are '"decreasing failure rate" (DFR) distributions;
i.e. fij(x + t)/Fij(t) is increasing in t > 0 for each x > 0.
This is equivalent to the "Axiom of Cumulative Inertia'.

a) Fij(t) is arithmetic, i.e. Fij(t+) # Fij(t_) only if
t is an integer.
This is the 'Cornell Mobility Model" (McGinnis 1968,
Henry et al. 1971).

b) Fij(t) = F(t) for every i and j (which reduces N(t) to
a renewal process), and F(t) is a mixture of exponential
distributions; i.e. F(t) = E(1 - e_Yt), t > 0, where the

random variable Y has distribution function L.

(*#) Bartholomew (1973, p. 54) argues that "The long-run behavior of such
a system [Class A] will depend only on the transition matrix [of
the embedded Markov chain]...". As can be seen from equation (1.1),
this is only true if ui = u for every i.
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For a proof that a mixture of exponential distributions
is a DFR distributuion see Barlow and Proschan (1975, p. 103,
Theorem 4.7(a)). This point was also mentioned by Ginsberg

(1971, pp. 253-4).

4) Fij(t) = Fi(t) for every i,j, where the Fi's are arithmetic
and Fi(m) <1 (i.e. the Fi's are defective distributions).
This case corresponds to Mayer's "Absorbing State Model"

(Stewman 1976, pp. 218-9).

B. In the following cases zQ(t) and vz(i) do depend on z, correspond-

ing to models with heterogeneous populations.
0 t<1 .
P - re) <]
5) a) . ij(t) F(t) (1 €51 for every z, i, j

The processes {Xz(t):tzp} are discrete-time Markov chains.
The process {X(t):t>0} corresponds to an Extended Mover-
Stayer Model that postulates population heterogeneity
with respect to transition probabilities (McFarland

1970, Morrison et al. 1971, Spilerman 1972a, Bartholomew
1973, pp. 34-7, Singer and Spilerman 1974, pp. 375-5,

(*)

Example 2). A "promotion'" model due to Wise (1975)

is, essentially, a special subcase with ZPii = pz and
P =1 - i.
2'3, i+l P, for every i

b) A continuous-time version of 5a: 'ZFij(t) = F(t) = 1l-e s

t > 0 for every z, i, j. For this model we get:

(*) For a related model see Lazarsfeld and Henry (1968, Section 9.3).
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® =Xt — .T Xt(;Pﬁly
ZP(t) = Z € ﬁ?t) ZP = e 2 ‘ ,
r=0 -
and thus _
At(ZP-I)
P(t) = Ee (L.4)

,P = P for every z, A= R, and zFij(t) =1 - e_Zt, t >0 for

every i, j.

This case corresponds to an Extended Mover-Stayer Model that postu-—
lates population heterogeneity with respect to transition rate.

Such models were considered by Spilerman (1972b), Bartholomew (1973,
pp. 46-54), and Singer and Spilerman (1974, pp. 375-9, Example 3),
altﬁough they also assumed that vz(i) = v(i) for every z.

For this model we have

-zt
o (z

v r t (P-1I
ZP(t) =rZO e, r!<t> Pr = ez ( ) s
and thus
p(t) = ge2t D (1.5)

Note that this model satisfies the assumptions under which (1.3)
was obtaihed, so its limiting behavior coincides with that of its
embedded Markov chain. This was.also proved specifically for Model
6 by Spilerman (1972b, Appendix A). [For a related result see
Bartholomew (1973, p. 52)].

After addressing mover-stayer models like Model 6, Bartholomew
(1973, p. 54) concludes by saying'... the general semi-Markov model
[i.e. Class A] ... includes them all as special cases". This
classification was repeated By Singer and Spilerman (1974, p. 377)

and Stewman (1976, Table 3), and it seems that they identified
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Model 6 with Model 3b (with corresponding parameters). These
models are, however, distinct. In Model 6, Z is choseﬁ at time O
and its realization is adhered to throughout, while unde; Model 3b,
Y is rechosen after each tramsition. Under Model 6 "... the length
of stay between two successive moves ... are dependent because
people with high propensitieé to move are likely to have two short
invervals and people with low propensities to move are likely to
have long ones" (Ginsberg 1971, p. 254).(*) The time intervals
between transitions are independent of each other in Model 3b, as

well as in any semi-Markov process for which Fij = F for every

*k
i, j-( )
K ' —zit
7) A =R, P =P for each zeA, and F, . (t) =1 - e for each
+’ z z ij

t

| v

0 and i, jeK where z = (zl, zz,...,zK). This is a generaliza-
tion of Model 6 (Singer and Spilerman 1974, pp. 380-5, Example 4)
in which K parameters (él,zz,...,zK) are chosen at time 0; z; is
the transition rate in category i.

For each zeA, let z be the diagonal matrix

N
1

(*) To put it in other words, the realization of the first duration time
Ty provides some information about Z, which in turn influence the
posterior distribution of T,. More on this in subsection 1.5.2

(**) Though not for the general Class A as claimed by Ginsberg (1971,
1978a, 1978b).
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etE(P-I)

Then zP(_t) = , and {Xz(t):t > 0} is a Markov process with

generator zA = z(P-I). Thus

L2 (P=1)

P(t) = E (1.6)

1.3 A Comparison of Population Heterogeneity Induced through Transition
Rates and through Probability Transition Functions

In this section we show that Models 6 and 7, which introduce popula-
tion heterogeneity through the transition rate are, subject to a bound
on the transition rate; a special case of Model 5b, which has constant
transition rate X, but heterogeneous probability transition matrices.

Consider Model 7, and suppose there exists a number X such that‘

% *)

Z. < X with probability 1 for every i.

i For each z, define

P=1+2. A,
A

where ZA is the geﬁerator defined in Model 7. Then by Theorem 8.4.31
in Cinlar (1975), a version of Model 5b with probability transition
matrices {zﬁzz € A} and rate A will have exactly the same transition
function zP(t) as does the version of Model 7.with which we started.

So we conclude that extensions of the basic Models 1 and 2 in the

(*)

If the distribution G of Z does not satisfy this condition, we can
pick some (large ) A and truncate G to obtain

G(z)/G(A,...,x) if 0 < z,

i < A for every i,

Gy (2) =
1 otherwise.

Since the distributions of times between transitions will still be
mixtures of exponentials, they will retain the DFR property. Hence
the condition is not too restrictive.
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direction of population heterogeneity through the transition rate are,
essentially, special cases of the extension that postulates population
heterogeneity through transition probabilities. Population heterogeneity
is expressed through one parameter in Model 6 and K parameters in Model 7,

which are the "rate-difference" cases, while it is expressed through K2

parameters in Model 5, which postulates "transition probability

v (%)

differences".

1.4 Rate of Mobility in the Various Models

The rate aspect of (intragenerational) mobility which was not
accountéd for properly by Markov chain models was the tendency to remain
in the same category. In fact, the other models were introduced specifi-
cally in order to decrease the '"rate of mobility" predicted by Markov
chains. 1In order to be able to assess their success in achieving this
goal, we have to focus on quantities which are related to the '"rate of
mobility" in the system. Three quantities come to mind:

a) durations (inter-transition times);

b) number of trénsitions in a given time inverval; and

c) diagonal elements of P(t) matrices.

(*) Yet another kind of population heterogeneity (through the order of
the Markov chain) was postulated in the brand-choice literature
(Jones 1973, Givon and Horsky 1978). Consumers are classified into
three categories: those of the first type choose a brand indepen-
dently of their previous choice (a "zero order" Markov chain): the
choice of the consumers of the second type is affected only by
their most recent choice (a "first order" Markov chain), while the
choices of the rest are affected by all their previous choices
‘(linear learning - an "infinite order" Markov chain).



- 20 -

Since the first quantity is most meaningful. in models which evolve
in continuous-time, we use it to compare Model 2s to Models 3b and 6.
Models 3b and 6 may be viewed as two alternative methods of introducing
an additional stochastic component to Model 2s. A comparison between‘
these models in terms of the second quantity can then be deduced using
some monotonicity properties.

Historically, however, the direct motivation for introducing the more
complex models was that Model 1 underestimated the third quantity. It
is thus of interest to check whether ignoring population heterogeneity
(i.e. using Model 1 when the system is actually Class B type) results in

systematic underprediction of diagonal elements.

1.4.1 Inter-Transition Times and Number of Transitions Per Unit Time

In this section we compare Models 2$, 3b, and 6. Assume that the
three models have the same probability transition matrix P. Recall
that in Model 2s there is a constant transition faté‘x; in Model 3b the
transition rate Y is chosen anew at each transition from a distribution
L; and in Model 6 the transition rate Z is chosen initially from a dis-
tribution G. Assume for the purposes of comparing the three models that
G =L (we will use G to denote the common distribution, even in the

context of Model 3b), and that EZ = A (= EY). Let T(3b), T(6) and

2 . ' L .
T( s) be random inter-transitions times for these models. Then

(3b)

Pr(t > t) = Pr(T(6) > t) = Ee , t > 0, (1.7)

while

-\t —-tEZ
e

S , t > 0. (1.8)
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, -xt | L . .
Since e is a convex function in x, we have by Jensen's inequality that

-7t —tEZ(*)
Ee > e L. (1.9)

Consequently

(3b)

pr(rC® > 6y = pr@® s gy > P @@ 5 4y, £ 5 0. (1.10)

When two random variables X and Y have the same distribution we write

X‘==t Y and when Pr(X > x) > Pr(Y > x) for every x we write X %{TY (see,

for example, Brumelle and Vickson 1975). Using this notation, (1.10) can

be rewritten as-T(Bb) e T(6) %{ T(ZS) .

Consider now the number of transitions in the time interval (0,t}
%k
predicted by these three models.( ) Let st(t) be the number of transi-
tions in (0,t] for Model 2s. Since {st(t):t > 0} is a Poisson process,

. . E by . : > 0

its renewal function mzs(t) Est(t) equals At {ZN6(t) t > 0} is

also a Poisson process, so zm6(t) = zt; unconditioning we get

m6(t) = At. Hence Models 2s and 6 (with'corresponding parameters) pre-

(*¥) F of Model 3b is DFR with mean

et - 5@ ) - Ec%) B EC%)-'

Hence, in combination with the upper-bound on the survival distri-
bution provided by Barlow and Proschan (1975, p. 116, Theorem 6.10),

we get
~-t/E(1/2) for t
-tEZ (3b) ™"
e < Pr(T > t) i-{:E(l/Z)/et for t

1A

E(1/2)
E(1/Z) .

\

(*%) If Pii # 0 for some i, some of the transitions will not involve a

real category change. But since P is the same for all three models,
the proportion of transition of this type will be the same in all
of them, so we can use the total number of transitions as means of
comparison. - : '

For any semi-Markov prdcess, there exists some semi-Markov process

with Pii = 0 for every i which has the same distribution of. sample
‘paths. Moreover, a Markov process.retains its Markovian property
under such transformation.
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dict the same expected number of transitions.

Let us now compare st(t) with N, (t). By definition

3b

(2s)

n
sup {n: ) .Ti

N, (t)
2s i=1

A

t}

and

(3b)

n
(t) = sup {n: ) Ti t}.

i=1

[ A

Nay,

The N(t)'s are thus decreasing functions of the corresponding Ti's.
Since by (1.lO)Ti(3b) %% Ti(Zs), it follows from the independence of
the Ti's that
N () 5N, (), t>0 1.11)
3b - 2s ? = " . :

Hence

m3b(t) §_m6(t) = mzs(t), t > 0.

So we conclude that, compared to Model 2s, Model 3b reduces the rate
of mobility as measured by both durations and expected number of transi-
tions per unit time, while Model 6 does so with respect to durations

only.

1.4.2 Diagonal Elements and Eigenvalues

It has been alfeady shown by a counterexample (Bartholomew 1973,
p. 37) that Model 1 does not necessarily underpredict the diagonal

elements of the P(t)'s of a process that actually evolves according to

(%)

Model 5a. For a process that evolves according to (the more speci-

(*) Bartholomew provides a sufficient condition (reversibility of the
processes {Xz(t):tip}, for each z) under which underprediction will
occur.
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alized) Model 6, previous examples (Spilerman 1972b, Bartho;omew 1973,
pp{ 48-9) did exhibit underprediction of diagonal elements by Model 1,
but no general proof is available.

We shall prove that if the eigenvalues of P are real, the sum of the
diagonal elements generated by Model 6 will indeed be larger than the
one generated by Model i. In other words, under this hypothesis, the
expected total number of individuals who at any future time are in the
state they started from is larger in Model 6 than would have been pre-
dicted by a Markov chain model. We shall restrict ourselves to the case

in which vz(i) = v(i) for every z.

Theorem 1.1

In Model 6, if all the eigenvalues of P are real, then
k
trace P(k) > trace P(1) k=1,2,3, ... (1.12)

Proof:

First, note that _
zZ(p I)]k‘ and that:

trace P(]_)k = trace [EeZ(P—I)]k )

trace P(k) = trace Ele

If the eigenvalues;of P are real, so are those of P-I. Denote the

A,. The eigenvalues of eZk(P_I) are then

12 e Mg

§ . %
(Cinlar 1975, Appendix) eZkAl, cees eZkAK, and it can be shown( ) that

eigenvalues of P-I by A

(*) Suppose that for every'x;jxk is. an eigenvalue of the generator
XA, i.e. there exists a vector V such that (XA)V = V(xA)° Then taking

expectations of both sides (with respect to the distribution of X) we
get (EXA)V = VE(XA). Hence E(XA) is an eigenvalue of E(XA).
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-1)
Zk(P-1) __ IR

those of Ee e E

ey

equals the sum .

EeZkAK.

Since a matrix's trace

of its eigenvalues, we have

K .
trace P(k) = ) E(GZAJ)k
j=1
and
kX gk
trace P(1)" = ) (Ee™"I) .
j=1
zA, Kk .
Let g(z) = (e~ J) Then for k > 1, g is a convex function of z. Hence
by Jensen's inequality
Eg(Z) > gE(Z);
i.e.
ZA, ZA,
E(e" 3)5 > (e H® 3=1, ..., K. (1.13)

Summing over j completes the proof.

of (P-I), and since the sum
to the trace, is always real,

categories case is also real.

Hency for two-categories systems the assertion of the Theorem

Remarks:

1) Since 0 is always an eigenvalue
of the eigenvalues, being equal
the other eigenvalue in the two-
always holds.

2)

Theorem.

ition matrix is larger than the

Inequalities (1.13) are stronger than the assertion of the

They imply that each eigenvalue of a k-step trans-

corresponding one of P(l)k.
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We now provide an example for which the relation (1.12) does not hold.
This example, of course, has complex eigenvalues and shows the necessity
of some restriction on P such as the assumption of real eigenvalues in

the Theoremn.

Example i
Let — 7]
5 .0 5
P = .3 7 .0
0 iy .6J
ahd let

1 with probability .9
zZ = {-9 with probability .1.} .

We now wish to calculate the traces of the matriées P(k) of Model 6
and of the corresponding Model 1. Since we shall do so by summing
eigenvalues, it should be noted that complex eigenvalues appear in con-
jugate pairs. Let A = a + bi be an eigenvalue of (P-I), and let A be

its conjugate. Now,

e)\kz + e)\kz _ ekz(a+b1) + ekz(a—bl)

eakz(cosbkz+isinbkz)

+.eakz[cos(—bkz) + isin(bkz)]

Zeakzcosbkz.

Also,

AZk

@ N K 4+ (mrHE

2Re (Ee 2y K

2Re{E[eaz(cost+isian)]}k

In our example the eigenvalue of (P-I) are 0, -.6 + .3317i and

-.6 - .3317i. Hence
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.6kZ

trace P(k) = 1 + 2E(e cos.3317kZ)

and
k -.6Z . . k
trace P(1)" = 1 + 2Re{E[e (cos.3317Z+isin.33172)]1} .

Using double-precision, we obtained the following values:

k trace P (k) trace P.(l)k
1 . 1.933120 1.933120
2 1.427165 1.383567
3 1.161984 1.130630
4 1.039448 1.028467
5 0.992150 0.994745
6 0.979972 0.988163
7 0.981579 -0.990234
8 0.986916 ' 0.993771
9 0.991969 0.996566
10 0.995607 0.998313

We see that there_are some cases (e.g. k=6) where trace P(k) < trace
P(l)k. This, of course, implies that at least one diagonal element of
P(6) is smaller than the corresponding one in P(1)6. So some restric-

*
tions on P have to be imposed if (1.12) is to hold.( )

1.5 Compatibility of Parametric Families of Distributions with Observed
Properties of Career Patterns

In this section we mention several observations made by March and
March (1977) about career patterns. We then check whether some specific
parametric forms of the models, which were suggested in the literature,

are compatible with these properties.

(*) It is also evident that it is not sufficient (as conjectured by
Blumen et al. 1955) that the diagonal elements of P will be large.
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1.5.1 Decreasing Rate of Inertia Accumulation

Recent mobility studies indicated that, in addition to the "cumula-
tive—inertia"‘phonomenon, the distributions of time between transitions
exhibit some additional properties. Tuma (1976) and March and March
(1977) argue that "...although selection, retention, adaptation and
depletion processes characteristically result in changes in average
durability, the rate of change declines over the duration of the match"
(March and March 1977, p. 380). Translated to our vocabulary, this means
that although inertia is being accumulated, the rate of accumulation is
decreasing. Assuming (for simplicity) that F is twice differentiable,

we can express it as:

6%— [E%%%§l] >0 for every x v (DFR)
52 F(t+x)

7—5-[—%?E§—] <0 for every x, (1.14)
at

where F = 1 - F.

Denote by T a random time between successive transitions, and let
U = ET. Then it is known'(Barlow and Proschan 1975) that DFR implies a
property called "New Worse than Used in Expectation", which can be
stated as

E(T - t|T >¢t) >u.

A popular DFR distribution in the mobility literature (Silcock
1954, Spilerman 1972b) is a mixture of exponential distributions with
gamma mixing distribution. However, Morrison -.(1978) proved that for
such distribution

E(T - t|T > t) = at +b a > 0.
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Consequently,
LET-¢t|T>t)=a>0
ot
82
——E-E(T - t!T >t) =0 for every t.
at

Hence this distribution does not satisfy (1.14).
The Weibul distribution

-(e)?

F(t) =1- e t>0 A>0

with 0 < o < 1, and the Gompertz distribution

Bt
F(t) = 1 - e-A(e -1)/8

with B <0, have been also suggested for modelling mobility (Ginsberg
1978a). These distributions are DFR, but in both cases as t > = the
"hazard rate" approaches zero (Ginsberg 1971, p. 253, Barlow and Proschan
1975, p. 73). So (1.14) will not be satisfied here either.

A DFR distributiéon which does sétisfy (1.14) is a gamma, which has

density

A(At)a_l e—Xt

(o)

f(t) = t >0, » >0,

if 0 < a < 1 (Ginsberg 1971, p. 253, Barlow and Proschan 1975, pp. 73-5).

1.5.2 Heterogeneity of Subpopulations Selected by Their Durations

Referring to career patterns March and March (1977, p. 380) claim
that selection and retention rules commonly used by employers "... reduce
the variance [and thus] reduce over the duration of the matches the

heterogeneity of populations". In our notation, this statement becomes
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Var (Z|T > t) is decreasing in t(*>, where T denotes a sojourn time.

Not every joint distribution of Z and T will have this property, how-
ever. Suppose that a large majority of the population have short sojourn
times with low variability, making the overall variance of Z small.

Now, if a realization of sojourn time turns out to be long, the individual
is likely to belong to the less mobile minerity, which may have a high
variability among its members.

In the particular case of Model 6

Pr(T > t) = Ee_Zt;

so we obtain that

2
2 -7t -Zt
Var(z|T > t) = EzLé%Ef' - EZE:E—
Ee - Ee t
Hence
2 Var(z|T > t) = —2— [3Be 2T Eze 4t Ez2e 4T
5t TN
(Ee ™)
(e 262 gz3e7%t - p(mze?H).
(*)

A related property is
Var (Z|Tl = t) < Var Z for every t > 0,

where T1 is the sojourn time in the initial category. These kinds of
questions, comparing properties of posterior distributions to those
of prior ones, are common in Bayesian analysis, and the answers
depend on the joint distribution of Z and T.

Upon replacing variance by entropy as a measure of dispersion, on
the other hand, similar properties become valid 'for any two random -
variables (cf. Khinchin 1957, pp. 2-9).
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Fof the desired property to hold, the distribution G of Z has to be such

that

Zt.3

-Zt -7t 2 -7t -7t 2 3 -Zt y> < 0.

3Ee EZe EZe - (Ee “7)° Ez7%e - 2(EZe”

Consider, for example, the distribution
;- ~('x with probability B8

M  with probability 1-8 ,
where X has an exponential distribution with rate 1 and M is a constant.
Here we get

+ -
me—Zt ) (1-8) Mm(t+l)m 1 o Mt
(t+1)4

EZ + 8

form > 1,

and hence

yar (z|T5¢) = e M (1-p) (e+1) D3 (e+1) 3-3m? (e41) B (e+1) 1] [(1-p) (e+1) -]

ot (t+l)6(Ee—Zt)3

Thus 2 var(z|T>t) < 0
at
if and only if
t+1
8 > Mt °
t+l + e

So for a given M, the sign of the derivative may depend on t.
However, the commonly used mixture of exponentials with gamma mixing
distribution has the desired property. Let the density of Z be
-1 - > >
gz(z) = 0 1 o z/T (a) z>0, a 0
Then

Ez% 2% = T (atm) /T (o) (e+1)%1D,
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SO
[()T(o#2) - [T@tD]? _ o
[F(e)1% (e+1)° (t+1)2

Var(z|T > t) =

b

which is clearly decreasing in t.
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CHAPTER II

A STOCHASTIC MODEL ALLOWING INTERACTION AMONG INDIVIDUALS

Many systems, arising in a variety of contexts, consist of a number
of individuals moving among various categories or states. Typically,
the individuals in such systems do not move independently of each other,
but instead interact in some way. Several authors have pointed out the
need for explicitly modeling such interactions. Social mobility (Matras
1967) and promotion chances in an organization (White 1970) are affected
by the existence of opportunities, which are created (among other |
reasons) by other people's movements. Popularity affects political
affiliation (Holley and Liggett 1975),(*) consumers' brand switching
(Smallwood 1975, Smallwood and Conlisk 1979), and modal choice (Krishnan
and Beckman 1979). .The effect of crowding on internal migratién was
modeled by Cordey-Hayes and Gleave (1974). Models of epidemics :and
diffusion of rumours (e.g. Bartholomew 1973, Ch. 9, 10) incorporate
effects of human contacts.

Conlisk (1976) introduced a generaliéation of Markov chains in which
an individual's next category depends on his current category and on the
distribution of the population among the categories. Models of this
type, which combine "push" flows with "pull" flows (Bartholomew 1973,

p. 26) were also suggested by Matras (1967) and Smallwood (1975) and are

used by Smallwood and Conlisk (1979). This type of model appears to be

appropriate for systems such as those mentioned in the first paragraph.

(*) This model originated from statistical mechanics (see also Spitzer
1970).
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Conlisk's model assumes that.the probability Qij of moving from
category i to category j is a function of how the other individuals are
distributed among the categories. Thus instead of having one probability
transition matrix, this model has a probability.transition matrix Q(y)
for each vector y (called a profile), whose components arevfractions of
the population in each category. However, Conlisk does not analyze the

above model, which we call the finite population model. 1In fact, he

does not define it unambigously. We thus start section 1 of this
chapter by carefully defining a finite population model. In structufing
our model, we have attempted to be consistent with the motivation and
examples which are so nicely developed in Conlisk (1976) and Smallwood
and Conlisk (1979). We then investigate some of the model's properties
and computational aspects.

Conlisk argues that for a large population the profiles at time t aﬁd

time t+1 (denoted by row vectors Ve and y respectively) should be

t+1°

related by

Yo =y Q) . 2.1y ™
t+1 t t

In this model, which we call the infinite population model, the process

Vo2 Yis Yoree- is deterministic once y0 is specified (in the finite popu-
lation model the profiles will be truly stochastic). Conlisk (1976,

p. 158) states that "[yt] is stochastic [in the finite population model]

and the equation [(2.1)] must be viewed as approximate; but, for a large

population the approximation error is negligible'". The infinite popula-

(*) Matras. (1967) also suggests . this relation. If the functional Q
happens to be one-to~one, (2.1) becomes a special case of a demo-
graphic model due to Cohen (1976).
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tion model (2.1) is also used in Smallwood and Conlisk (1978) with a
similar comment about the approximation. However, neither paper sub-
stantiates the claim thét the approximation error is negligible. Now,
since the infinite population model has obvious computational advahtages
over the corresponding finite population one, the later sections of this
chapter are devoted to examining the validity of (2.1) as an approximation
of the finite poﬁulation model.

In Section 2, we investigate the degree to which fhe infinite popula-
tion model approximates profiles in the finite population model. Loosely
speaking, a real valued function (with some continuity assumptions)
defined on the finite population profile process converges to the same
function defined on the infinite population process. Over a finite hori-
zon, the continuity assumptions on the functions are not very restrictive.
However, over an infinite horizon they are bothersome. In particular,
one must be very careful about making inferences abouf the equilibrium
or steady state behavior of the finite population model from the corres-
ponding behavior of the infinite population model. For example, the
lack of a globally stable fixed point for the map y>yQ(y) in the infinite
population model does not imply that the finite population profile pro-
cess lacks asymptotic stétionarity (for definitions, see subsection 2.2.2).

Put differently, in general

lim 1lim Pr(YSEB) # 1lim lim Pr(YgeB),

N—>oo >0 t>0 N-ow

where YE is the profile at time t in a model with population size N, and
B is some set. However, we do show that if the map y=»yQ(y) is globally

stable then the infinite population model does approximate the finite
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population model even over infinite time horizon.

Section 2.3 develops the mathematical theory needed for the discussion
in Section 2.2. The basic result is that if the probability transition
functions of a sequence of Markov processes converge weakly and uniformly
to some probability transition function p, then the sequence of Markov
processes converges weakly to a Markov proceés with probability transi-
tion function p. Although the theory developed in Section 2.3 is used
in Secztien 2.2, it is placed later so as not to interupt the discussion

of the model.

2.1 The Finite Population Model and its Properties

°

2.1.1 Formulation

Let K = {1,2,...,K} be a set of categories (e.g. social or occupa-

-

tional classes, geographical regions, brands, etc.). Let S =
K ,
{y=(Yl,Y2---,YK): Zyi = 1 and yj >0 (j=1,2,...,K)}. An element of
i=1
veS is called a population profile and yj is the fraction of the popula-

tion in category j. Let N be the population size. For a particular

population size, only certain profiles can occur and these are included

in SN’ which is the subset of S consisting of profiles y such that each
(*)

component of Ny is integer.

We will now define a stochastic process {Xt: t=0,1,2,...} for each

(*) The number of profiles in SN is given by f(in+K —'lL 7
N -
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of the N individuals, which are named i=1,2,...,N. The random variable
Xi is the category of individual i at time period t. The profile at

time t is defined to be the random vector Yﬁ whose k~th component is

N (*)
N =1 .
Yo (=g Z X =k] (2.2)

for each category k.

The first assumption is that the future of the individuals depends
only on their current categories and not on how tﬁey arrive at their
categories. More formally, we assume that the stochastic process

{(Xi,Xi,...,Xf):t=0,l,2,...} is a vector valued Markov chain; that is

2 & 2 N _
Pr[Xt+l k> Xt+l KoserenX g kNI(X X ,eeenX ), 0=0,1,2,...,t]
(2.3)
_ 2 _ N _ 1.2 N
P]"[Xt+1 kpr Xenr™o X kNlXt’X Xt] _
K.(**)‘

for each t=0,1,2,... and categories kie

The second assumption is that each individual's decision as to his
next category depends only on his current state and the current profile,
and is taken independently of the other individuals' decisions. This
assumption means that the model does not explicitly allow for leadership
of influential individuals, since any individual's decision does not
depend on the particular category of any other particular individual,

but only on the distribution of the other individuals among the various

(*) I, is the indicator function of the event A; i.e. IA =1 if A
occurs, and IA = 0 if A does not occur.

(**%) ' For a general discussion of vector-valued Markov processes see
Moyal (1962).
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%
categories.( ) More formally, define ij(y) to be the probability that

an individual moves from category j to category k if the current profile

is y. That is, for each i=l,2,...;N and yeSN,

ij(y):= Pr[Xt+ = k|Xi=j, Y =yl for t=0,1,2,... (2.4)

1

Then the assumption can be formulated as

1 2 N 1 2_, N
P = = . . = =7 =4 e =
r[xt+.1 kps X g=koesss X =l [Xi=g,, Xisjo, e e X =0, ]
N
=1 Q, Kk (y) for t=0,1,2,...and for any categories ji and’ki,
i=1 454 . ,

ok
where y = Yt is defined in terms of Xt by (2.1).( )

So far the formulation of the model. A continuous time version of
the special case K=2 was studied by Holland and Leinhardt (1977) in the

context of social networks.

2.1.2 Example (Smallwood and Conlisk 1979)

Consider a product whose quality can be tested only by using it,
and not by simple inspection or prior information. The product lasts
one period (e.g. automobile insurance policy), and each of the N consumers
buys one unit of the product each period. There are K equally-priced

brands, the quality of which is defined solely in terms of their '"break-

(*) However, the presence of leaders can be accommodated in this model by
creating an extra set of categories for each leader.

(**) The special case, in which Q is a constant function of y (i.e. no
interaction among individual), corresponds to the "classical' model
in which the individuals follow independent and identically distri-
buted Markov chains.
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down'" probabilities b 3...,bK, Let us assume that for the product of
interest breakdown merely means moderately unsatisfactory product perfor-
mance. If the product does not breakdown, the consumer repurchases

the same brand. If it does breakdown, he chooses his next period brand
randomly among all brands, with probabilities proportional to the current
marketvsharesb[Yi(i)]G i=l,...,K, where o is a non-negative parameter
which may be interpreted as the degree of confidence in market popularity
implicit in consumer behavior. Hence we have a special case of the finite

population model in which Q has the following form

5% 4.0
1-b, + bi( i zlyk‘ j=1i

i L%k ‘ _

Qij(y) =

2.1.3. ProEerties

2

N
t,...,Xt):

I. The distribution of the stochastic process {(Xi, X

t=0,1,2,...} is defined recursively by (2.3) and (2.5) once the distribu-

2
0"
geneous, vector valued Markov chain are the population size N, the matrix

valued function Q(+), and the distribution of (Xé, xg,...,xg). The pro-

tion of (Xé, X .,Xg) is specified. The parameters of this time homo-

file process {Yi:t=0,l,2,m.;} is defined by (2.2) and is also a time
homogeneous vector valued Markov chain.

It follows from (2.5) that if Q is continuous in y (an-assumption
which we shall make throughout) a small change in Q will not cause a

large change in the population-level transition probabilities. More
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specifically, (2.5) implies that if

swp | Q. -a e | <o

i,jekK
yeS
then
1 N _ 1, N_,
. sup ,| PriX ., —kl,...,Xt+l—kN'Xt—Jl,...,Xt—JN]
Jl,...,JNEK
K,,...,k eK "1 'N "1, '™N_.
1 kN ‘Pr[xt+l—kl""’Xt+l_kNlXt —Jl,...,Xt —JN]
< &V,

Since, in particular, steady-state probabilities vary continuously with

. *
transition probabilities,( ) the above implies that the model's equili-

brium will be "stable" under small perturbations of Q.

Due to the model's symmetry in individuals, the following statements

are equivalent for given N and Q(+):

a. {(Xt, Xi,...,XE):t=0,l,2,...} is irreducible and aperiodic.
© ol .. . . s
b. {Yt :t=0,1,2,...} is irreducible and aperiodic.

c. There exists t such that Pr(Xt=k|XS=j,Yg=y) >0

for every yeS_ and categories j and k.

N
These three statements will be used interchangeably in the next sub-

section, where sufficient conditions for the above will be given.

(*) The steady-state probabilities are a solution of a system of linear
equations, which is known to be continuous in the coefficients.
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II. One would like to be able to interpret YE(k) as the probability

that an individual is in category k; i.e.,
N ool N
Y (k) = PrX, k]Yt). (2.6)

This is clearly valid if individual i is chosen at random (with the
'individualé equally likely to be chosen) at time t. Equivalently, one
can number the individuals at time 0 at random (with each of the N! permu-
tations equally 1ikely) after they have been assigned to their initial
categories. Then (2.6) holds for each i = 1,2,...,N.

Relation (2.6) has the following intuitive interpretation. 1In decid-
ing, say, on our political affiliation at time t, our choice will be
stochastically the same (given the population profile YE) if we choose
party k with probability Yg(k) or.if we seiect a person at random and
switch to the party which he currently supports.

Taking the expectation of each side of (2.6) gives
N i
EYt(k) = Pr(Xt=k). (2.7)

We shall make use of this equality later on.

III. Although Q(+) has been defined on all of S, some of its values
will have no impact on the behavior of the finite population model

(*)

regardless of population size. In particular, if for some keK we let
>Ak={yeS:y(k)=O} then for any yeAk the values of Qk-(Y) will have no

effect on the model's behavior. Hence any condition imposed on such

values is not at all restrictive. This fact should be kept in mind when

(*) They will have no impact on the infinite population model either.
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considering the conditions imposed on Q(+¢) in the next subsection.

2.1.4 Conditions for Irreducibility and Aperiodicity

Without some restrictions, the properties of the above mentioned pro-

cesses can be significantly dependent on the population size N. We shall

2

2, XD 0,1,2,.00)

thus look for conditions under which the process {(Xi, X
is irreducible and aperiodic for every N.

We shall write A > 0 (where A and 0 are matrices of the sameorder,
the latter of which consists of zeroes.only) if aij is (strictly) posi-

tive for every i and j.

The basic result is the following:

Theorem 2.1

If there exists an integer n such that for any ymes m= 0,1,...,n

n 1
I Q(y_ ):>0, then {(X_, X
m t
m=0

2

t,...,XI:):t=0,1,2,...} is irreducible and

aperiodic for any population size N.

Proof:
The condition
n
I Q(Ym) > 0 for any y ¢S m=0,1,...,n

m=0

is equivalent to

. n Q. . (y ) >0 for any y ¢S m = 0,1,...,n for
i=1 1i-=1m=0 ‘m, mtl O m
1 n :
any i K,

0’4k
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which implies that for any ymeS m=0,1,...,n and any iO’itflaK there
exist 11,...,1n_lsK such that
n
IrQ, . (y ) > 0. (2.8)
m=0 1m,1m+l n :
X 1 2 N . . .
Now, since {(Xt, Xt,...,Xt): t=0,1,2,...} is a Markov chain, for any
. . 7, N . 1 . N
categories 1 seeendy and R !
1_ ., 1 N_ ., N1 _ .1 N_.N
Pr(X " =i 45X o0 =i |x0 igseeesXy = ig0)
n . .
' 1,1 N, N
= g:- ..I:I ....... g X iIl:gr(Xm‘"l —l:ﬂl'-‘“l Py ’Xm+l _11'['H'l
1ip,...,iy<K 1<i,...,i <K e XM=y,
n n "m m"-.’ m m .

By the model's assumptions the product in the last expression equals

n N L . 1 N
I I Qig~’iz L lyXT,...,X )], which in turn equals
m=0 2=1 m “mtl m m

n
I Q.2 % [y(Xl,...,XN)]. But by (2.8), for each £ we can choose
i i” i m- - m

1 w=0 "m, mtl

==

2

n -
iz,. .,i2 such that 1T Q.,%,.% .[y(Xl,...,XN)] >0 .
1 n m m
m=0 m mtl
L2 24N
For such {ll""’ln}l=l
N n
' 1 N
T I Q.4 [y(xm,...,xm)] > 0
£2=1 m=0 "m “mtl
o1 L1 N . N[, .1 JN_.N
Hence .PrFXn+l_ln+l""’ SR S XO—1O,.._.,X0 ;O
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i trictly postive for any categori (L i d 1 ! ; N
is s ctly p or any gories i,,...,1y and 1 ,,,...51 0.

. 1 2 N 1 . -
The Markov chain {(Xt, Xt,...,Xt):t=0,l,2,,..} is thus irreducible and
aperiodic for every N. _ -
Remark: In the non-interactive case [Q(y) = Q for.every yeS] the Theorem

reduces to stating that if the individual-level Markov chain
{Xi}t=0,l,2,...} is irreducible and aperiodic then so is the
population level chain {(Xi,...,Xﬁ):t=0,l,2,1..}, which is

what one would expect intuitively.

What we would like now is to find some verifiable conditions on
Q(+) under which the Theorem's hypothesis will be satisfied.
Define the pattern of Q to be a matrix P such that

Pij = ;22 Qij(y). Thus Pij > 0 if and only if Qij(y) > 0 for every yeS.

We say that P is regular if P" > 0 for some n.. The theory of products
of finite non-negative square matrices (Hajnal 1958) implies that if Q

has a regular pattern then there exists n such that

n
I Q(y )>0 for any y S, m=0,1,...,n.
=0 D ' m

Thus if Q has a regular pattern then the process
{(Xi,Xi,...,XE):t=0,l,2,...} is irredugible and aperiodic for any popula-

tion size N.

The following special case of the Theorem is particularly useful.

Corollary 2.1

If Q(y) > 0 for every yeS then for any N and t ’Pr(Yt+T=§|Y§=y) >0

for every y,§ ESN.
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2.1.5 Some Computational Aspects

The finite population model can be simulated in a straightforward
manner: at each period t the random variables Xt, i=1,...,N will be
randomly generated according to the probability mass function Qj,(y)

where j=Xt_:L and y=Y N

1 -1 When the population size becomes very large,

however, the above procedure becomes rather costly. Instead, we can
make use of the following observation.
. N_ . N .
Given Yt—y the random variable NYt+l can be written as a sum of K

independent multinomialy distributed random variables Mi, k=1,2,...,K

N

with parameters (Ny(k); Q ,(y),...,Q _(y)). Hence the variables NY
kl kK t+1

can be generated by generating the multinomials Mﬁ, k=1,2,...,K.

Now, there are two ways of generating a multinomial. First, by
combining all the categories (and parémeters)'but one we can generate one
of its components by generating a binoﬁial variable. Then, updating
the population size and the parameters, single out another category from
the remaining ones and continue in that fashion (Bishop, Feinberg and
Holland 1975, Segtion 13.4). Second, there are routines which generate
multinomials directly.

The computational saving is due to the well known fact that, even
for moderately large populations, binomials can be adequately approxi-
mated by normal distribﬁtions. Moreover, multinomial distributions
can be directly approximated by the multivariate normal distribution
(Bishop et al. 1975, pp. 469-70).

Hence the following computational scheme seems reasonable. If

Ny (k) is small, generate MN by assigning each individual separately (via

k

Qk_(y)). If it is large, generate Mﬁ by a multivariate-normal approxi-
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mation. Thus the computational effort required for the simulation is
proportional to the number of categories and, essentially, does not

depend on the population size.

2.2 Approximation of the Profile Process

Recall from the introduction that Conlisk (1976) introduced the

deterministic recursion Ver1 = th(yt) relating the profile vectors at

1
times t and t+l, and suggested it as a model for the evolution of popu-
lation profiles for large populétions.(*)(**) AHe also assumed that each
component of Q(y), say Qij(y), is a continuous fdnction of y. We, too,
make this assumption for both the finite and infinite population models.
This section investigates the degree to which Conlisk's infinite
population model approximates the finite population mode1: Theorem 2.2
implies that the approximation is "'good" over one period, and
Theorem 2.3 implies that the approximation is "'good" over any finite
horizon. Theorem 2.4 implies that approximation of steady state behavior
is "good" if the infinite population model has a globally stable fixed
point.

Denote the one step probability transition function of the finite-

population profile process by

N _ N N_
p (v,B): = Pr[Yt+l eBIYt y] for yeSNand BeB(S),

(*#) It should be noted that in the "classical" non-interactive model
(constant Q) this type of recursion is frequently used to approximate
the stochastic profile process.

(*%) A continous time version of the recursion was considered in Conlisk
(1978b).
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where B(8) is the Borel o-field of S.. Its t-step probability transition

function is similarlyldenoted by

pf(y,B): = Pr[Y§+S eB|Y§=y], and its initial probability measure by

UN(B): = Pr[YgeB] for BeB(S).

The recursion (1.1) determines the infinite population process

0 is specified. Let YO have probability measure

y defined on B(S): i.e. u(B) = Pr[YoeB], BeB(S). Note that conditioned

{Yt:t=0,l,2,...} once Y

on YO =y, the profile process is deterministic with Yt+l = YtQ(Yt)’
It is convenient to introduce someuadditional notation for the
infinite population model. Let F(y): = F(l)(y):=yQ(y) and let

F(t+l)(y): = F(F(t)(y)) for yeS. Let p(y,B): = and

I
[F(y)eB]

pt(y,B): = I[F(t)(y)eB] for yeS, BeB(S). Note that p is the (determin-

istic) probability transition function of the Markov chain YO’Yl’Y2’°" .

Since Conlisk's model allows profiles to take any value in S, the compari-
son between our model and Conlisk's is facilitated by extehding pN to

a probability transition function on ali of 8. Definé the extension

_ﬁN by ﬁN(y,B): = pN(y,B) where § is the point in SN nearest to y. Any
fixed rule can be used to break ties; e.g. if several points in SN are
equally close to y, then choose the lexicographically smallest. This
extension is only for technical convenience. Note that it does not

alter the definition of the finite population model and ﬁN(y,B) = pN(y,B)

4" will be suppressed

for all ysSN. For typographical convenience, the
and pN(y,B) will always refer to the extended probability transition

function.
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The notion of convergence used in the paper is summarized here.
Suppose  is any metric space (e.g. any of the spaces St, t=1,2,...,%°)
and ZN and Z are random elements taking values in |/ with respective
probability measures uN and py. If Ef(ZN)+Ef(Z) as N+~ for each real

. N . . . .
bounded continuous f on |/, then we say that ‘Z converges in distribution:

to Z(ZN—BZ) or that uN converges weakly to u(uN—Eu) (Billingsley 1968).

Recall that pN and p are, respectively, probability transition functions
for the Markov chains {Yﬁ, t=0,1,2,...} and {Yt:t=0,l,2,...} representing
the finite and infinite population profile processes. We say that

pN—Xp uniformly on S if

ff(y,x>pN<y,dx> — ff(y,x>p<y,dx>

, . . . 2
uniformly in y for each real function f continuous on S”.

2,2.1 Approximation over Finite Time Horizon

Theorem 2.2 pN—Xp uniformly on S.

Proof: During some transition, say the t~th, let'Zij be the number of

individuals moving from category i to category j. Given that

N N ,
Yt =y = (yl,yz,...,yK) ESN, we have that Z__j,...,ZKj are independent for

each j, and that zij has a binomial distribution characterized by

EZij = NyiQij (y), and

Var 2, = Ny, Q5 () (1-Q;, () S Ny, /4.

N 1 B
Since Yt+l(J) =3 izlzij, it follows that
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N N
ELY . WYL = 5] = y0. ;)
and (2.9)
N . N . *
Var[Yt+l(J)IYt = y] <1/48 for j=1,2,...,K, )

where Q.j(y) is the j—th-column of Q(y).

For yeS, define |y| = sgp!yil . The function y+|yl is a norm on S
and any function continuous with respect to Euclidean norm (e.g. F(y)=yQ(y))
will be continuous with respect to this norm. Since F is continuous
and S is compact, F is uniformly continuous. Thus'ﬁhere éxists a
function §(€) such that IF(y) - F(§)| < €/2 whenever Iy—§|<1665). Note
that for any yeS, the distance [y—§| between y and its nearest neighbor ¥

in SN cannot exceed 1/N. Given € > 0, choose N, large enough so that

0
l/N0 < §(€). Then for each N 2’N0 and yeS with nearest neighbor §sSN,

we have;[y~§1€3(6)5yand it. follows that

N
Pr[lYt+l - F(y)|> € !Yt = y]
N N .
= Prl|Y_ . - FW|> € [Y =7]
\‘Pr[|YN -F@® |+ [FG) - F)| >ea|YN = 3]
t+1 YL
N N ' N .
<erlly_, - F®[>€/2 [Y = 9l

(*) The argument so far is similar to Smallwood and Conlisk (1979,
Footnote 11).
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_ K K
By (2.9), Chebychev's inequality, and the inequality Pr( VU Ai) < Z Pr(Ai),

i=1 © i=1

N ~ N oaq 22
Pr[|Yt+1 F(y) |>€/2| Y. = IS K/EN. (2.10)

Consequently, for each yeS

N o, , v
Pr[[Yt+lv— F(y)l > €|Yt = y] - 0 uniformly in y as N,

Let feC(S) and yeS be arbitrary, but fixed throughout the remainder
of the proof. Since f is continuous and S is compact, f is uniformly

continuous; hence, given €>0 there exists §(€) such that

xeA(€): = [xeS: ] f(x) - f(YQ(y))]< €] whenever |x - yQ(y)|< §(€). So

(2.10) can be rewritten as

N N K
Pri¥i , ¢ 4O IYt =y s 3w -

In order to show that J
S

[as | 4

N A(E) A@E)C

f(x)pN(y,dx)+f(yQ(y)) = Jf(x)p(y,dx), we write
S

First note that

l J f(X)pN(y,’dx) - J £(x)p(y,dx) ‘ \ J f(X)pN(}i,‘dx) - £(yQ(y))
AE) A€) A(E)

<€ N (€),y) <€ .
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Next,

£(x)p" (¥,4x) - f £(x)p (y3dx) } ’ f £)P (,dx)
A€)C AE)C AE©)¢

K

6(6)2N

< (supf) + P (A©)C,y) * supf,
where supf: = sup(f(y):yeS) is finite since f is continuous and S compact.
Consequently, pN(y,-)zp(y,-) and the convergence is uniform in y.

|

Since Q(+) is continuous, Jf(y,v)p(y,dv) = f(y,yQ(y))eC(S) whenever

feC(SZ). This observation, together with the fact that pN‘Lp unifermly
on S allow us to apply Theorems 2.5 and 2.6 from section 2.3. To illus-
trate the usefulness of these theorems in the present context, some

simple consequences are given in the next theorem.

Theorem 2.3
(i) 1f Yg ? y and if f is a bounded, measurable, real function on
s” which is continuous (with respect to the product topology) at

N N N

3 F@),F P (9,000, then BE (Y, YY), F), F P (), as W

(ii) pi H%pt uniformly on S for each t.

(iii) 1If Yg—g y (i.e. y is the random variable which only takes the

value yeS), then for each €>0 and each t,

Pr | Max : lYﬁ—F(n) )] <€ | +1 as Now .
n=0,1,2,...,t
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Remark: If Y

g>2‘y, then it follows from (2.7) and the above Theorem

that for large N, the individual-level Pr(Xt = k) approximately
. (t) (*)
equals the k-th coordinate of F ).
Proof
(1) This is just a restatement of Theorem 2.6 in the present context.
(ii) Theorem 2.5 implies that for feC(S )

N N

(t)
LIEACAPY SPPR F

LI Yyl > 26 F@)LF P o), PP ).

uniformly in y. Let T be the map (yo,yl,yz,...)—>yt on S°. Then for

each ge C(S), g(nt(-))eC(Sw), and so

E[B(Y§)|Y§ =y] T>'g(F(t)(y)) uniformly in y.

But this is equivalent to pz ¥ P uniformly on S.

(iii). Theorem 2.5 and Yg ll y imply that

SR RN O TN AN TR Lo Co 0

Since the latter quantity is a constant, convergence in distribution is

equivalent to convergence in probébility (Billingsley 1968, pages 24, 25,

and Theorem 5.1 Corollary 2), which proves (iii).

(*) In an early paper (Gerchak 1978), this property was proved by first
showing that the variables Xt and Xi are asymptotically (when
N-»~) independent. A result similar to part (iii) of Theorem 2.3 then

followed.
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Note that part (i) of Theorem 2.3 does not include steady state

~results, because of the continuity requirement. E.g. if we define

1 t
fB(yO,yl,yz,...):=11m parcy .Z I[y.eB] as the fraction of time the tra-
o i=0 i

jectory of profile vectors (yo,yl,yz,...) is in the set B, then fB is not

(o]
continuous on S .

2.2.2 Approximation of Steady State

Before we investigate the relation between the steady state behavior
of the finite and infinite population models some relevant concepts
from the theory of Markoy chains (e.g. Bréiman 1968) are summarized and
the special meaning they obtain in the (deterministic) infinite popula-
tion model is indicated.

Steady state behavior of Markov chains is characterized by the
equivalence classes of communicating states and their corresponding
stationary measures. A measure m of a Markov chain with probability
transition function q is stationary if w(B) = Jq(v,B)ﬂ(dv) for each
Borel set B. For the Markov chain {YO,Yl,Yz,,..}3 m is thus stationary
if n(B) = fI[F(y)eB]ﬁ(dYJ for each BeB(S). The Markov chains

N N

{YO,Yl,...} are finite state Markov chains. For each yeS, n(y,*)
defined by
S .
- R N_
m(y,B) = E[lim pr AE I[YNEB]|YO v]
t->o0 n=0 n

is a stationary probability measure. There is a unique stationary
measure if and only if the chain is irreducible. 1If it is also aperiodic,

then 1 defined by m(B) = limP;[YfeB] exists for any distribution of Yg
Lo



- 53 -

and is the unique stationary measure, and the chain is said to be

asymptotically stationary. The Markov chain {YO,Y .} has the

1°Yp0--

deterministic probability transition function p(y,B) = I[F(y)eB] and,

F(t)(

given Y, =y, Y_ = y). Again, 7m(y,*) defined by n(y,B) =

0 t
t

. 1 . .
ii: povec ) HZO I[F(n)(y)eB] exists for each yeS and BeB(S) and is a

stationary probability measure. Define Gy to be the measure on B(S)

such that

€ (B) = {l if yeB
Y 0 otherwise.

Then y is a fixed point of F if.’and only if Ey is a stationéry measure
for {YO,Yl,Yz,...}. A fixed point of F exists by Brouwer's fixed point
theorem, since S is convex and compact and F is continuous. The function

F is said to be globally stable if there exists a y*eS such that

*
lim F(t)(y) = y for each yeS. It is straight forward to check that F
t>o
has a globally stable fixed point if and only if there exists an unique

stationary measure y of {YO,Yl,YZ,...} and in this case u=€y*.

Theorem 2.4 Suppose YN has probability measure uN and Y, probability

0 0

measure .

N N N

(i) 1If uN is a s;ationary measure for {YO’Yl’YZ""} and ungp,

the p is a stationary measure for {YO,F(YO),F(Z)(YO),...}.

(ii) 1If p is the unique stationary measure of {YO,F(XO),F(Z)(YO),...}

(or equivalently, u=€§* where y* is a globally stable fixed point of F),
N YN

0° l,...}, then

N
and if for each N, u© is a stationary measure of {Y

N .
u jLu =E§*. In this case,
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*
Pr[Max IYE -y |<€]1 — 1 as N+w, and
n=0,1,2,...t

N _N x k%
Ef(YO,Yl,...) — (¥ ,¥ ,¥ 5...) as Now

. . o o]
for each bounded, measurable, real function f on § continuous at

% %
(7 Y Y 5e0)
*
Remark: If F is globally stable with fixed point y , it follows from
(2.7) and the above Theorem that the individual-level Pr(Xi=k)
*
is approximately equal to the k-~th coordinate of y for large

N and large t.

Proof

(i) By hypothesis, uN(B) = JpN(y,B)uN(dy). Also by hypothesis,

uN+u, and by Theorem 3.1, pNij uniformly on 8. Hence by Lemma 2.2

: N
[interpret q"(y,+) = () and q(y,+) = u(-)], u satisfies n(B) =
Jp(y,B)u(dy) and is thus stationary.

. . . o NL .
(ii) Since S is compact, {p } is relatively compact and hence any
. N . .
subsequence of Y contains a further subsequence which converges weakly

1
(Billingsley 1968, Prokorov's Theorem). Suppose the subsequence

converges weakly to II.. Then since each uN' is a stationary measure, it
follows from (i) that I is a stationary measure for {YO,F(YO),F(Z)(YO),...}.
By hypothesis, p is the unique stationary measure; hence I = py. Thus

each subsequence of {uN} contains a further subsequence with converges

to u. By Billingsley (1968, Theorem 2.3), this implies that uNjgu.

* *
The last statement holds by Theorem 2.3, since p = Gy* and y = F(y ).
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In light of the previous Theorem, it is tempting to conjecture
that for a sufficiently large population, if the initial profile is y,
then the profile after a long enough period of time t (i.e. "at steady
state') should be near F(t)(y) with high probability. More precisely,

this conjecture is that 1lim Pr{|Y§ - F(t)(y)|<€§‘Yg = y] should be close
oo

to 1 for N sufficiently large. Of course, Theorem 2.4 shows that the
conjecture is true if F is globally stable.

The following example shows that the above conjecture is not true
in general. ~In the example, the finite population models are asymptoti-

cally stationary for each N, so that lim Pr[YEeB|Yg =y] = pN(B).exists

t>o

fot each BeB(S) and does not depend on y. However, lim F(t)(y) does
£

depénd on y since F has three fixed points in the example. Consequently,

the conjecture cannot be true in general.

For the example, suppose that there are two categories (K=2), and

" that Q is defined by

1/4 + (7/8)y, 0<yl<5/7

Qll(y)

7/8 5/7 <y, <1,

1

- 255 Y1 _ _ .
and Q,,(y) = 256 7 where le(y) =1 - Qll(y), QZl(y) =1 - sz(y),

and y = (yl, l—yl). The function F(y) = yQ(y) has three fixed points

Sk k% *kk - ‘ * *k
¥,y , and y , where v = 0.015751, vy, = 0.661332, and
Kk * KKk *k .
vy, = 0.752568. The fixed points y and y are stable; y is ‘unstable.
Since Q(y) > 0 for each y, it follows that Pr[Y§+i-= §|Y§,= y] > 0 for

each y, §ESN and for each N. Hence the processes‘{YE; t=0,1,2,...}
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are asymptotically stationary for each N, although F has several fixed
points.

Neither is uniqueness of fixed point sufficient. Conlisk (1976,
Appendix I, Case 3) provides a two-categories example for which the
behavior of the infinite population model is characterized by a unique
but unstable fixed point and a stable limit cycle'(see graph on p. 178
there). However for that example, again, Q(y) > 0 for each y, so the
finite population processes are asymptotically stationary. Hence the con-

jecture fails even here.

2.3 Weak Convergence of Sequences of Markov Chains

In this section we show that if the probability transition functions

PN(°,Y) jihp(°,y) uniformly in y and if the initial distributions

uN—K U, then the Markov chains corresponding to pN and uN converge weakly

to the Markov chain corresponding to p and u. The Markov chains considered
in this section are general and are not restricted to the profile pro-
cesses defined in the previous sections.

The key result is Lemma 2.2, which demonstrates that uniform weak
- convergence is preserved when probability transition functions are com-
posed. ‘Theorem 2.5 then applies this result to show that the Markov
chains, considered over a finite number of periods, converge weakly.
A standard result from weak convergence then allows us to conclude that
the entire processes converge weakly.

Let 6 be the real line and @k the space of k-dimensional real

vectors. For any metric space V, let B(V) be the Borel sets of V; i.e.
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B(V) is the smallest o-field containing all of the open sets in V. Let
C(V) be the set of real-valued, continuous, bounded functions on V. If
U is also a metric space, define the map (u,V)->p(u,V) for uel and VeB(V)

to be a probability transition function from U to V if for each uel, p(u,-)

is a probability measure on B(V), and if for each VeB(V), p(+,V) is a

measurable function on (.

If v and vy (N=0,1,2,...) are probability measures defined on B(l),

then vN—K v -if and only if

Jf(x)vN(dx) —»J‘f(x)\)(dx) for each feC(V).~ (Billingsley 1968).

If p and py are probability transition functions from U to V then

Py ¥, p uniformly on U if and only if
Jf(u,v)pN(u,dv) —»ff(u,v)p(u,dv) uniformly on U as N»» for each

feC(UxV).
The next lemma is used in the proof of Theorem 2.5 and follows

immediately from the definition of continuity.

Lemma 2.1 'If ff(u,v)p(u,dv)eC(U) whenever feC(UxlV) then

1%
Jf(s,u,v)p(u,dv)gC(SxU) whenever feC(SxUxl).
v
Lemma 2.2 Suppose that S, U, and V are separable metric spaces, that

q and qN(N=O,l,2,...) are probability transition functions from S to U ,
and that p and pN(N=O,l,2,...) are probability transition functions from

Uto V.

* We sometimes omit the domain of integration when it is the whole space.
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If qNE+q uniformly on S, pNE+p uniformly on U, and

ff(u,v)p(u,dv)eC(U) whenever feC(UxV), then vN+v uniformly on S, where v
and vy (N=0,1,2,...) are probability transition functions from S to UxV

and are defined by

vy (8,UxV): = pr(u,V)qN(s;du)
U

and

v(s,UxV): = Jp(u,V)q(s,du) .
U
Note that VN and v are actually probability transition functions
from S to UxV. Since U and V are separable, any measure defined on
{UxV:UeB(U),> . VeB(V)} has an unique extension to B(UxV) (Billingsley
1968, page 225). By Theorem III.2.1 (Neveu 1965) v(*,W) and vN(-,W)

are measurable for each WellxV.

Proof

We need to show that

ff(s,w)vN(s,dw) —ﬂff(s,w)v(s,dw)-uniformly in seS

Uxy Uxt¥

for each feC(SxUxV). By Fubini's Theorem and the definitions of 2% and

v given in our Theorem, this may be rewritten as

[ J'f(s,u,V)pN(u,dV)qN(s,du)—+ J J f(s,u,v)p(u,dv)q(s,du)
v

u: uv

uniformly in seS for each f C(SxUxV).
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Applying the triangle inequality,

‘ J J f(s,u,v) pN(u,dV)qN'(s,du) - J f f(s,u,v)p(u,dv)q(s,du)

< J ff(s,u,V)pN(u,dV)qN(s,du) - JJf(s,u,V)p(u,dV)qN(s,du)
u v uv

+ J J f(s,u,v)p(u,dv)qN(s,du) - j J f(s,u,v)p(u,dv)q(s,du)y .
u v uv

Suppose we are given € > 0. Since, by hypothesis for seS we have

f f(s,u,v)pN(u,dv)—+ f f(s,u,v)p(u,dv) uniformly on U,
v v .

it follows that the first term on the right hand side of the above in-

equality is less than €/2 for N suffiéiently large. Also by hypothesis,

if(s,u,v)p(u,dV) is continuous and bounded on SxU and qN—gq uniformly on S;

e ~ .

hénce:thé secondfterm is;ieséjthanZE/Z'for'N;sufficientlyilarge. " Thus

the “desired iimit""ha-s”'bee‘n:(;_starl.)lishe;d.”" m
Assume that S.is a Polish space, i.é., a complete, separable, metric

space (e.g. Sf;ﬁg). Let {YO,Yl,Yz,...} bé a time homogeneous Markov

chain with state space S, with probability transition function p from

S to S, and with the initial conditions given by the probability measure

u(B) = Pr[YoeB], BeB(S).

Given that YO = y, denote the joint distribution of Yl’YZ"°'Y

= _ . t i
by vt(y,B). PrKYl,Yz,Y3.,,,Yt)eB|YO y] for-yeS, BeB(S™). Using

t

Theorem V.1.1 from Neveu (1965), Ve is a probability transition function
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t . o : .
from S to S°. The functions v, are also characterized by the recursive
relation

(y,leB) = J vt(x,B)p(y,dX) (2.11)

B

Vel

for BlSS and BESt.

Unconditioning on Y., define the joint distribution function

0’

o +
§, (B)1= Prl(¥,¥ 5. . Y )eB] for BeB(sttly.

The measures v, are characterized by the relation

Gt(leB) = Jvt(y,B)u(dy) for Blgsland BgSt. (2.12)
By
Now, in addition, consider a family of Markov chains {Yg T Yg,...}

for N = 1,2,..., each defined on the same state space S. For each pro-
. N N N ~N . A

cess, define p , 1, Vs and v, as above. (Since the probability space

actually changes as we change N, we should also use P§. However, the

particular probability space will be clear from the context and this

superscript will be omitted.) Of course, (2.11) and. (2.12) apply with

the superscripted measures.

Theorem 2.5 If pN+¥p uniformly on S and if Jf(u,v)p(u,dv)eC(S) when-
ever feC(Sz) and ueS, then for each t, vi E-?-\)ﬁuniformly on S as N»», If,

. L. N w . AN wa .
in addition, u —, then for each' t vt—+vt as N»»; or equivalently

N N N
(CAYS o a9 ..,Y )-—~+(Y ,Y oY)

1° Y90
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Proof
We will prove by induction that

(i) Jf(u,v) vt(u,dv)e C(S) whenver feC(St+l), and

(ii) vtN+ivt uniformly on S as Now,

Since Vi = P the above statements are true by hypothesis when t = 1.

Suppose statements (i) and (ii) hold for some t.

Then J f(y,x)vt+l(y,dx) =. J AJ ‘f(}’,X,%)Vt(x,dﬁ) P(stx)

St+l . xeS szt

follows from (2.11). The inner integral belongs to C(SZ) by Lemma 2.1
and induction hypothesis (i). Consequently, the outer integral belongs

to C(S). Now apply Lemma 2.2 to show that vN » characterized by

t+1
N N N . :
vt+l(y,leB) = vt(x,B) p (y,dx), converges weakly and uniformly
1
on S to vt+l characterized by (2.11). This completes the proof of (i)

and (ii).

The second conclusion of the Theorem follows by applying Lemma 2.2
to the characterization of 3§ and Gt given by (2.12). The hypotheses
of Lemma 2.2 are satisfied by (i), (ii), and the assumption that uN~yu

uniformly on S. -

Theorem 2.6 Assume that the hypotheses of Theorem 2.5 hold, including

uN—Xu. Then (Yg,YT,YN 2) l&(Y Y

oo 0, Y1 Y0 -

(o]
measurable, real valued function f defined on S with discontinuity set

.). And for any bounded,

Df such that G(Df) = 0,

N N , ’
Ef(Yg,Yl,Y por ) = EE(H Y Yy, 0 ) (2.13)
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Proof The Theorem follows from Theorem 2.5 and the discussion at the
beginning of Section 5 and page 19 in Billingsley. (Although Billingsley
assumes S E.ﬁ , only completeness is used in his argument.) If feC(Sw),

.then (2.13) follows from the definition of '”2".

Theorem 5.2 in Billingsley shows that the continuity of f can be

relaxed to the stated conditions.

2.4 Concluding Remarks

Although a major part of this chapter was concerned with the approx-
imation of the finite population model by the infinite population one,
the possibility of using the finite population model directly should
not be ignored. As we pointed out, it can be simulated without diffi-
cult;. Also, fairly general and easily checked conditions for asymptotic
stationarity were given, whereas comparable results for global stability
(of the infinite population model) have been obtained (Conlisk 1976,
1978a, Smallwood and Conlisk 1979) only for special cases.

Nevertheless, for certain parametric families of the infinite popu-
lation model it is sometimes feasible (Smallﬁood and Conlisk 1979) to
discover the dependence of the model's equilibrium on some underlying
parameters. This is certainly an advantage of the infinite population

model which, coupled with its computational simplicity, justifies the

effort we have put into proving its validity.
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CHAPTER III
THE MEASUREMENT OF SOCTAL INHERITANCE

A major aim of social scientists, who engaged in modelling inter-
generational mobility processes, was often either to study the inter-
national differences in the rates of mobility, or to analyze mobility
trends over time. One aspect,‘of particular interest to sociologists,
was the dependence of a person's social (occupational; income) class on
that of his father. This gave rise to what is frequently referred to as
"measurement of mobility" and led to the formal problem of building an
acceptable index of mobility., For historical account and survey see
Boudon (1973).

The term '"rate of mobility" is, however, quite ambiguous and may be
given entirely different interpretations even within the context of a

single phenomenon like, say, occupational mobility. A common interpreta-

tion is that of the net redistribution of the working force by functional . .

categories ~ industries and occupations (sometimes referred to as
.”structural mobility"). This aspect of occupational mobility is of par-
ticular interest in the context of development economics, since economic
growth is known to be accompanied by such net redistribution (see Smelser
and Lipset 1966, especially the contribution by Duncan),

Social scientists with primary interest in issues of equity, on
the other hand, focus more on patterns of gross mobility. They are
interested in asséssing the deviation of a given society from some social
ideal, such as the one in which son's class does not depend on that of
previous generations in his family line. Shorrocks (1978) refers to

this aspect as the '"predictability" of society - the extent to which
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future positions are dictated by the current place in the distribution.(*)
(Sometimes referred to also as "circulation" mobility)f

Since the predictability (deviation from social ideal) aspect of
social mobility seems most interesting and challenging as far' as measure—
ment is concerned, we shall focus our attention on it. We make it explicit
by referring to the problem specifically as measurement of '"'social inheri-

(%%) | (Rk%)

tance', rather than "measurement of mobility". Since high degree

of social inheritance corresponds to what was previously labelled as low

(%) Still another aspect of mobility, of particular importance in
migration and other types of intragenerational mobility, is the
"physical" rate at which individuals change locations (e.g. number
of residence changes per unit time; see Long (1970) and Section
1.4). Although "...as more movement is observed it would be normal
to expect the class occupied in the future to become less dependent
on the present position. In general, therefore, they [the rate of
movement and the non-predictability of society] should be in
harmony" (Shorrocks 1978, p. 1016), these two aspects of mobility
are not perfectly correlated, and should hot be confused. [See
also Sommers and Conlisk (1979, pp. 254-255)].

(*%) Pullum (1975) used the term "occupational inheritance'. Another
possible term is "measurement of equality of social opportunity",

(***) This will also be consistent with an argument made by Duncan (1966)
according to which available mobility tables provide only "inheri-
tance'", and not "mobility", data.
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(%), (*%)

degree of mobility, our ordering will reverse the more common one,

An underlying assumﬁtion in the following discussion is that the
processes of interesp are time-homogeneous, which seems to have some
empirical support as far as intergenerational mobility is concerned
(Bartholomeﬁ 1973). However, even if the brocess is not really time-
homogeneous, it might be interesting to ask what are the long term
implications of the current trend. The degree of social inheritance
in two societies can be compared on the basis of data pertaining to
similar dates, perhaps combining '"generation-specific' indices to an
(*%%)
overall omne.

In Section 1 we discuss, in non-mathematical terms, the proper-
ties one would like such measures to have (they are related to the ones
mentioned by Shorrocks 1978). Various concepts through which social
inheritance is manifested are then discussed.

The second section then formulates a (Markovian) model as a map-
ping over the unit simplex, It then states desirable properties and
inheritance concepts mathematically and discusses their implications.
Various concept-dependent ways to measure 'mon-constancy" of the operator
are suggested, and it is shown that many known measures, as well as new
ones, can be obtained in this way. Some special cases are analyzed in
detail. A method of introducing ''period consistency" (Shorrocks 1978)

is then discussed.

(*) Though it will be consistent with Goodman's (1969) notion of
"status persistence' and with Sommers and Conlisk's (1979)
"Immobility".

(*%) For an interesting discussion of measures of (static) income
inequality see Kolm (1976).

(***) See also Shorrocks (1978, p. 1021).
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3.1 Preliminary Discussion

As we shall soon see, even zeroing in on this single aspect of mobil-
ity does not provide sufficient guidance for constructing measures. But
already at this stage we can lay down some general requirements from such
a measure. For the moment, they will be stated in non-mathematical form;
in Section 2, we shall restate them mathematically. An underlying
assumption. is, however, that social mobility over generations is Markovian,
The "states'" may, however, be taken to be either social classes or distri-
butions over classes ('profiles') so the set-up is general énough to include

Markovian models of previous chapters.

3.1.1 Basic Requirements

If inequities due to differences in origin entirely disappear within
few generations, the degree of social inheritance is as low as it can
be.(*) All other.types of societies exhibit some degree of inheritance.
The slower the "rate" at which inequities due to origin disappear, the
higher should the society rank on a social inheritance scale. At the
extreme, we find societies where any person's class is always identical
to that of his father - a perfect caste system. Those should be assigned
the highest value of the measure.

Since one may wish to compare social inheritance in societies for

which the length of time interval for which data are available might be

different (say, one generation vs. two), measures should be required to

*) Within this class, we may rank societies according to the number of
generations it takes.



- 67 -

be "Period Consistent" (Shorrocks 1978). This is to say that a society
whose degree of social inheritance is ranked higher than another's on
the basis of one generational inheritance data, should be so ranked on

the basis of data corresponding to any number of generations.

3.1.2 Concepts of Social Inheritance

The aspect of social mobility (dinheritance) which we wish to measure
has many facets which are not necessarily perfectly correlated with each
other. We shall now discuss some facets of social inheritance and their
implications for purposes of measurement.

As we said, a measure of social inheritance should indicate the
rate at which inequities, due to differences in origin classes, disappear
over generations. Now, what if for a certain society, regardless of how
many generations pass, some "basic" inequities due to origin still pre-
vail (while others, perhaps, disappear)? Loosely speaking, in such
cases one could lump social classes together and end up with a perfect
caste system over the lumped classes. Hence we feel that there is a
justificatioﬁ to assign all such processes (and not only those which
correspond to perfect caste systems over the original clésses) the
highest value of the measure.

The above point gives rise, however, to a general fundamental issue,
which has (surprisingly) achieved little attention in the mobility measure-
ment literature. Given any concept of social inheritance, a measure can
focus on 'a - facet.which exhibits "highest" social inheritance, or it

can "average' all the ~“facets (circumstances). For example, social critics
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frequently point out that the rate of reduction in some specific inequities
in a given society (say, a gap in access to high education between certain
groups) is too slow, and disregard (possible) fast reductions in equities
simultaneously taking place in another part (or aspect) of society.
Specifically, the above distinction is particularly relevant in the
treatment of: |
a. '"Destination" classes (or profiles).

The chances of joining certain social'classes may depend

on origin class more than chances to join other classes

do. The measure will then be an "average" weighted over

all destination classes, and the weightswill "

express"
the user's social priorities. At one extreme, all weight

will be assigned to the most origin-dependent destination,

and on the other all destinations will be weighted equally.

b. "Origin" classes (or profiles).
Using "differences" between distributions over destina-
tion classes for each pair of origin classes as a basic
tool, the measure will be a weighted average over all
these pairs. At one extreme, all weight will be assigned
to the pair of origins which generates the largest
difference. At the other extreme, all pairs will be

weighted equally.

Even if inequities due to difference in origin virtually
disappear after a sufficient number of generations, this
may take longer for the offsprings of some origin-

classes (or, more generally, for some initial distribu-
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tiséns) than for others, Again, one can focus on.
either the ''slowest" origin-effect to disappear, or

compute an average over all origins.

One maﬁifestation of the rate at which inequities due to difference
in origin-class disappear are the differences between the distribution over
classes of individuals whose fathers belonged to different:classes (i.e.
the amount of ''social scrambling'" that takes place from one generation to
the next). The relation of such two successive generations' distributions
to each other after many generations had passed may serve as a basis for a

measure of social inheritance.

We shall now turn to a mathematical discussion.

3.2 Mathematical Discussion

3.2.1 Definitions

Let K = {1,2,...,K} be a set of categories (social classes or dis-
tributions over classes). Let Pi% be a conditional probability mass
function over K, so that Pij is, séy, the probability that a son of
class-i-father belongs to class j. Let P be the set of probability mass
;functions over K, i.e. if peP then p=(§l,...,ﬁKj such that bi = proba-
bility that a given individual belongs to class i (or that the profile
is of type 1i).

P can be modelled by a K-1 dimensional simplex S, which is a convex

combination of K linearly independent points {V .VK}S; RK. The points

1’7
’{Vl,...,VK} are arbitrary points in RK except for the restriction that
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they be linearly independent. The vertices V. ,...,V

1 .correspond to the

K
probability mass functions (or profiles) (1,0,...,0) ,..., (0,...,0,1)

respectively. The probability distribution p=(pl,...pK) corresponds to

K
the point .Z ini .
i=1

The conditional probability mass functions (Pi*:i=l,2,...,K3 can

be characterized as a map T from S to itself, with the property that

K- K K (%)

T( Z in,) = Z piT(Vi) for each Z p.V. eS. There is a unique
i=1 '+ =1 i=1 * 1
+1

D) %y = 1™ (),

. %
extension of T from S to a linear map on R°. Let T

where T(l)(X) = T(X). 1If {V ..,VK} happens to be used as the basis of

1
K . . . . .
R, then the matrix representation of T is P whose i-th row is the vector

*%
Pi*’ and Tp = pP.( ) If a different basis {b

seees
) 1

then there exists an invertible matrix A such that if x=z ini then

bK} in RK'is chosen,

-1 - .
X = Z(pA *)ibi, and the matrix representation of T is APA 1 (see, for
example, Halmos 1958).
T will be considered a 'constant'" map if there exists p% such that

Tp = p% for every peS. It is possible that although T itself is not con-

(n)

stant, there exists n such that TV ‘p = P for every peS (Brosh and
Gerchak 1978). T is an "identity" map (denoted by I) if TVi = Vi for
(k) -

every ieK.

(*) We shall " sometimes abreviate T(X) by TX..

(**) This representation is the common one in the literature since it
describes the Markovian nature of the process.

. : K ' K
( ) For any peS 3 al,...,aK.such that p .z aiVi. Now, I p I(.z aiVi)
_ i=1 i=1
K- K-
X aiIVi = Z uiVi = p. Hence the above is enough to characterize an
i=1 i=1 S

identity map over all S.



- 71 -

3.2.2 Mathematical Statement of Desirable Properties

Let us fix {Vi:i=l,...,K}, use it as a basis, and consider the
aspect of social inheritance. What we actually want is to impose a simple
order on maps of the kind defined above. A siﬁple order is a relation
which is connected, transitive and antisymmetric (for details, see Krantz,
Luce, Suppes and Tversky 1971). Now, the number of K-state rational-
valued probability transitions matrices is countable and this set is
dense in the set of all K-state probability transition matrices. Hen;e
Theorem 2 in Krantz et al. (1971, p. 40) implies that for any simple
order over those transition matrices there exists an isomorphism into
the real line. Hence we shall restrict ourselves to real-valued functions
(measures). Moreover, since in the previous section we have identified
processes for which we wish the measure to attain its maximum and mini-
mum, we can restrict ourselves to any closed interval, and in particular
to the common choice [0,1].

Denote functions which map the T's to [0,1] by M. Some of the
general properties required above can now be stated as follows.

a. M(T) = 0 if and only if there exists an integer n

such that T(n)

is a constant map. The "if" part implies
Shorrocks' "Perfect Mobility" condition ["if T is constant
M(T) = 0"]; his "strong" version, however, assigns the

extreme value only if n=1.

b) M(T) =1 if and only if 1lim T(n)p is not constant in p. This
n-—>oo

implies Shorrocks' "Immobility" condition (M(I)=1) since
the identity map has this property. His '"strong' version,
however, assigns the extreme value to the measure only if

T is an identity map.
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Thus the remaining task is to rank non-constant irreducible-
aperiodic Markov chains by the degree of social inheritance they exhibit.
The "Period Consistency' condition can be stated as follows:

if M(T) > M(T') then M(Tn) z_M(T,n) for every n.(*)

Shorrocks; who assumed that in&ividuals follow independent and
identically distributed Markov chains (i.e. the categories in his model
were the usual sociél classes) introduced the following partial order
over the probability transition matrices, which he called "Monotonicity":

| )

P P' if for every j#i Pij f-Pij and for some j#i Pij < Pij'

However, since constant maps were previously assigned the lowest value of

the measure, then in order to achieve consistency between the two some

further restriction of the partial order is neceséary. Indeed, Shorrocks

restricted it to P's which have a '"quasi-maximal diagonal": there exists

positive numbers ul,...,uK.such that “iPii z—HkPik for every i and k.
The above partial order will be too strong if one wishes to focus

on the extremes of society. 1In particular, if what we wish to express

in the measure is the '"largest" inequity in society, "improvements" in

other parts (facets) of society should not affect the measure. This

may be achieved by wéakening the notion of Monotonicity to "Weak Mono-

tonicity": ZP:§ZP' if for every j#i Pij f-Pij'
Although it will be nice if the total orders we shall come up with

will be consistent with the above partial order (and some will indeed

{*) Suppose that M(T) > M(T')’?ﬁM(Tn) z_M(T'n) for every T,T' and n > 1,
and assume that for some T,T' and n* M(TR*) > M(T'D%), Suppose now
that for these T.and T' M(T) < M(T'). Then, by the first assumption,-
M(T%) < M(T'D) for every n, and in particular for n*. Contradiction.
Hence "Period Consistency", the way it was defined, implies the
seemingly stronger property "if M(TK) > M(T'K) for some integer k then
M(T!) > M(T'?) for every integer n".
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‘be), it is ﬁotvthat cruedial given our approach as it has been with
Shorrocks'. We shall essentially arrive at measures in a constructive
manner, using various facets of social inheritance as bases, while
Shorrocks had only "Monotonicity" to helb him evaluate the suitability
of arbitrary functions as measures.

As pointed out by Sommers and Conlisk (1979, p. 254) "...immobility
might be thought of as the slowness with which the state probabilities of

a Markov chain 'escape' the effects of initial conditions on route to their

equilibrium values. The slower this convergence, the more strongly the
parent's state influences the life chanées of the child, grandchild, and
so-.on. That is, the 'mathematical problem of me;suring the slowness of a
Markov chain's convergence to equilibrium is closely akin to the immobility
measurement problem'. It will be nice, then, if our measures will be re-

lated to this rate of convergence.

3.2.3 Measufing the Non-Constancy of the Operator

Measuring second-generation inequities due to differences in origin

naturally involves measuring the non-constancy of the operator T. If we

. ’lc .
"allow" the process to start from any distribution,( ) it amounts to evalu-
ating differences among all‘{T(p):ﬂpES}; If we restrict our interest to

vertéx—origins only, we evaluate differencesamong‘only‘{T(Vi): i=1,...,K}.

If lim T(n)(p) = p; for every peS, we may choose to measure the distances
n—-w

. L x
between {T(p): peS b:Vi: i=1,...,K]} and P+

(*) Say, varying a random mechanism for choosing an individual.
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We now wish to operationalize the notion of differences/distances
between distri.butionsf .Let b and q be any probability mass functions
over K, and let d(ﬁ;q) be a "distance-function". Such a real-valued
function is referred to as metric (Royden 1962) if for every p,q and r

on K:

i. d(p,q) > 0
ii. d(p,q) = 0 if and only if p=q;
iii. d(p,q) = d(q,p); and
iv. d(p,q) £ d(p,r) + d(r,q) .
If condition (ii) is relaxed to read d(p,p)=0, thengnCtion:d.is ca1led'a:pseu—
dometric.
A most common way to construct metricé (pseudometrics) is by defining
a norm over differences of distributions. A norm is a non-negative real-

valued function .l such that

1. Ixl = 0 if any only if x = o;

2. lxtyl < Ixl + lyl; and

3. loxl = ]a!HXH
If condition (1) is relaxed to read H0l = 0 the function is called a pseu-
donorm.

A natural step in the direction of constructing measures of non-
constancy is thus to select a function g and a norm l.l, and consider
expressions like lg(Tp)-g(Tq)l.

The most obvious function to consider is just the identity function,
i.e. to focus on ITp - Tqll. The differences T(p) - T(q) are K-dimensional,

so a natural family of norms to consider with such g is
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K 1y
L =() !Xi|a) "% | TFor a=1 we obtain the summation ("averaging')
S P |
K
norm Z }xi! (to be denoted by | "1). For a = © we get the supremum
i=1
norm sup fxi[ (to be denoted by I lw),
i

Another natural direction to proceed is to try and come up with a
function g which by itself maps from the boundary of the K-dimensional
unit simplex to the real line (all La—type norms then reduce to the
absolute-value norm). A well-known §uch:functidn'which1turnedtoutitorbe use-
ful in many contexts, is the entropy of the distribution (e.g. Khinchin

1957). For any probability mass function p it is defined as

(*)

H = Z pilog llp .  The pseudometric lH(Tp)-H(Tq)[ is then an "alter-

P i i

(**)

native' to the pseudometric ! T(p) - T(q)" as a "basis'" for a measure
of non-~constancy.
Let us now try to combine these pseudometrics with the notions of
social inheritance discussed-innsubsection.STliZﬂand in the beginning of
this sub'SectionT A measure of non-constancy will be a choice of combination of:
a. mnature of origins (vertices vs. distributions);
b. distance generated by pairs of origins vs. distance to
steady state;

c. pseudometric over destinations (see above);

d. norm over origins,

-8

(*) - Hp,z Hq'does not imply that p=q (consider, for example, any two

permutations).

(**) T(p) = T(q) does not imply that p=q.
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We shall now specify and discuss some of the more interesting com-

binations.

3.2.4 Some Special Cases

A.

For every pair of origin vertices, calculate their images under

T and their difference using the L,-norm. Take the measure to

1
be the supremum of the above over all such pairs. We obtain

the function sup"TVi—TV

Iy -
ik k'L

Sup"TVi - TVk"l equals (twice) the "delta coefficient" of T, which
i,k

equals one minus. the "ergodic coefficient" of T - a useful tool
in the analysis of Markov chains (e.g. Isaacson and Madsen 1976).
The ergodic coefficient has been actually suggested, in an
entirely different context, as a measure of the "scrambliﬁg

power of a matrix ... the degree to which it approaches a matrix
with identical rows which scrambles all traces of the past"
(Hajnal 1958, p. 236). Siﬁce this notion seems close to that

of constancy, we shall now "operationalize" the delta coefficient
as a measure of social inheritance, and investigate its proper-

.,VK} as a basis - the

ties. This will be-done'usingf{Vl,..

common representation, In this setting the delta-coefficient

becomes (Isaacson and Madsen 1976)
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K
§(P) =1 -min )} P__AP _,
i,k j=1 i kj
where Pij A ij = inf (Pij’ ij)

A delta-coefficient-based ordinal which we shall discuss as a
measure is the following:

M(P) < M(P') if and only if §(P") < &(P'"), where

n = inf{m: 6(Pm) # G(P'm)}; if n = © then M(P)= M(P').(*)

We shall now state (and, for some non-standard assertions,

prove) some of the properties of the above measure.

a. O 5_6(P);i=l for every probability transition matrix P
Shérrocks (1978) referred to this property as
"Normalization'].

b. Im such that 8§(P™) < 1 if and only if 3k such that BX > 0
(i.e. all elements of Pk are strictly positive for some k).
Thus G(Pn) = 1 for every n if and only if P is reducible.

Viewed in another way, §(P) < 1 if and only if,
for any two origin classes, there exists at least one
destination class whose occupants mighf have come from
either one of them (i.e. if and only if some social
"scrambling" takes place) - an attractive feature of this
measure. Note that the above statement 'looked" at the

processes backwards in time, which is rather natural in

(*) 1t is known that if inf{m:8(P™ ) <1} < ®» then inf{m:8(" ) <1}

< [(K -2 /2 + 1], where [ ] denote the "integer part of'. Hence,
in order to determine this infimum, only a relatively small number
of powers of P has to be checked.
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the context of '"future's independence of past",

c. 8™ = 0 if and only if all rowé of P" are equal, i.e.
if and only if the Markov qhain converges in a finite
number of peribds.

d. Let us now restrict the partial order of "weak mono-

tonicity" 5;'to a class P such that PeP only if for every

% % %
i Pii z-Pji for every j.( ) Given any PeP and i?, j ek
define P€ as follows:
*
Pij for i £ i
* Lk *
P.*, for i =1 J £ 1 -3 £ ]
€ 13
P, =
ij ' * %
P,*,*—S for i = i j = i
i i
P s 7'¢+ f . -* . -*
13 € or 1 =1 3 =] s

where € > 0 is any number such that Pi*i* -e> Pki* for

%
every k # i and that P,* % + ¢ < P,* * (so that P€€P).
’ i3 — 33 -

K
Now, 1 - 8(P%) =min J P, " AP °
. R iy kj
i,k j=1
» K K e
= {min z P.. AP .} A {min z P.*, AP}
i44% 0 13 kj LTi] kj
Ai* j=1 k j=1
But )
K €
S R P % A + % Kk_ X4+ * k4l A L
mln._z P ; A Pys min{ ) P, 5 ij (B * *-e) P, *+(P, 5 £) ijx}
k J—l E
j#i
i#*

(*) This condition is somewhat more restrictive than Shorrocks' "quasi-
maximal diagonal" (for which it is sufficient). We chose to use it
here since it is more convenient to work with, as well as having an
intuitive appeal. Also, as pointed out by Shorrocks, it is "easy to
confirm by inspection and holds for a large number of transition
matrices [reported in the empirical literaturel'.
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=min { ). P % AP +(P % *+e)AP  *}
X j#j* i3 ki ij kj
f
> min P.% AP |,
Tk gz TIOK

Hence 1 - 6(P€)_z 1 - 6(p) ,

i.e. 8(P%) < 8(P)

So we proved that if for every i Pij z_Pi'j for every

j # i, then 6(P) < §(P'). This is the "weak" version of
"Monotonicity', which is natural since the delta coefficient
focuses on the pair of origins which generates the largest

difference in next-generation distributions.

* X
Suppose that lim Bn = P (where P has equal rows), and

n->-o°
* %
let Al = sup ) laijl for any matrix A. Then [P"-P = | I-P =P -PY
i

*
=l (1-P )PnH. Hence by Lemmas V.2.3 and V.2.4 in Isaacson

and Madsen (1976) HPn—P*H:E HI—P*HG(PH) S_HI—P*" seE)™ .

Ve see then%phattthetgéometricgrate'Ofgcbﬁvergénceaof.Pn’thPf'Caﬂ
be expressed -in:terms:of the délta coefficient of:P, as well as in

terms of .the ‘second largesteigenvalue of P (to be discussed next).

Let T be the operator .which maps distributions over profiles

into distributions over profiles. Define the profile-level
delta coefficient & (T) = maxHTp—Tp'Hl. If the individual-
prof. p.p'

level processes are independent and identically distributed
N

then Tp =_£ Z TVn, where Vn is the '"location vector" of the

n-th individual. As before, on individual level

S, (T) = n‘iaquVi - TV

, and denote the pair of origin
ind. ik

k1
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% %
classes for which this maximum is attained by (i ,k ).

Since we can choose p to he a profile corresponding to

* ~ . :
Vn = i n=1,...,N [In this case Tp==TVi*] and p' to be the

* .
one corresponding to V; =k n=l,...,N, it follows that

N ‘ . . .
GPOP(T) __Gind(T). Now, by the triangle inequality

N N
! < - 1
) T VDI <) ITV -TV' I . Hence
n=1 n=1 .
- N .
8 op(T) = max I L TV v )
PP’ * n=1
. N .
< max LTV - TV |
— N n n
T(Vl,...,VN) n=1

(v',...,v&)

Taking the maxima sequentially (individual by individual:

A
first over (Vl,Vl) etc.), we get

1 ' "1
el § - = = % - X =
max . TV TV | N NI TV, TVk I S§. (T).

‘ .
(Vl,...,VN) n

' ]
w ,...,VN)

Hence GPOP(T) = éind(T).

Conclusion: In the i.i.d. case the delta coefficient assigns
equal values to the profile-level operator‘as to the indi-

vidual-level one.

Consider distributions over origins and the L distance of their

images under T -to the steady=state distribution. Consider then .the norm

oo
-

%
T) (Royden 1963, p. 160), namely sup | T(P)-p pyo .

of the map (T( ) - P
P p-palle
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This function is nothing but_’A , Where AZ is the second-largest

5|
(in norm) eigenvalue of T. If b2 is the eigenvector of T corres-

ponding to Xé; then the supremum defined above .is attained for

*

- - : *
P = Pr + a b2, where o = max {a:p + aob, € S}, i.e. P represents

2

the "worst' direction (in terms of rate of convergence to steady
state).

1

2! has been suggested as a measure of (what we refer to as)
social inheritance by Theil (1972, Ch. 5) and Shorrocks (1978), who
also discussed some of its properties. A strong case in favor of

(*)

this measure was made recently by Sommers and Conlisk (1979).

. Among other things, they show its intimate relation to parent-child
status correlation measure, and to the process' rate of regression
to the mean. If, instead of considering the worst direction, we

would average by summing over all eigenvector directions b

*%
we would get the sum of the eigenvalues,( )

(***)

.,b

1’ K

which (in the usual
setting) is nothing but the trace of P. ‘It has been discussed

as (basis for) a measure of (what we refer to as) social inheritance

by Shorrocks.

(*) Sommers and Conlisk also suggested to use the second largest eigenvalue
of the matrix P = *(P+H‘ P H), where H diag (7).

(**) If, instead of summing, we would have multiplied the eigenvalues by
each other, we would have obtained the determinant of the transition
matrix. It was discussed as a measure by Bartholomew (1973) and
Shorrocks (1978). This function is, however, heavily influenced by
the aspect of society with least inheritance, and as such is not
very interesténg. Perhaps a more rewarding function of this nature

will be 1 -1 (1-X )
i=2
(***) When K=2 it can be easily shown thatla(P) ll-trace Pl— IX

Thus in this special case the above mentioned measures c01n—
cide.
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-C. Consider now the pseudometric obtained by taking the difference
in entropies of two distributions. ~In particular, consider

IH - H.*] weighted by the steady-state probabilities
T(V,) Py

*

T,
i

P i=1,...,K., Explicitly, we are referring to the measure

EES
=) P. p,. log P,. +
i=1 * j=1 H j

* log p¥|
. 8] Ll
PJ g PJ

If ~15R

1

The above function can be shown to be the logarithm of the

g %
expression I p, ij Pi . This last expression, is, in turn,
ot
SJ ij

nothing but the likelihood-ratio for testing ”Ho: for every j
Pij =.p; for every i" (Hoel 1954, Anderson and Goodman 1957).(h)
Since this HO corresponds to a constant map, any statistic
used for testing it can be a basis for a measure of non-
constancy.

The expression —Z Z m. P.. log Pi' is usually referred to

ij 1] 3

(e.g. Khinchin 1957) as the entropy of a Markov chain with

probability transition matrix P and steady-state probabilities T.

K
—Z T, log ﬂj is then the entropy of the corresponding constant
j=1

map. In order to prove '"strong perfect mobility", we have to
show that this pseudometric indeed attains its minimum (zero)
when and only when P is the constant map. We shall now prove

that this is indeed the case.

(*) For general relations between information measures (e.g. entropy)
and likelihood ratios, see Kullback (1959).
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Lemma 3.1
' K K
The function H = —Z Z m, P,. log P,, attains its maximum
i=1 j=1 + B H

over P, subject to the constraints

Pij >0 for every i and j;

K

Z P..-1 =20 for every i; and
j=1 ¥ |

K
Z m.P .-m, = 0 for every j,

=1t 4
at Pij = Wj for every i and j. This maximum is unique if ﬂj > 0 for
every j.
%

Proof:( )

K K
The function H = —z z m, P.. log P,. is concave and if 7, > 0

i=1 j=1 *+ M ) +

for every i (which is what we assume) it is strictly concave -

2
3 - . . . . . . .
( i = Tri < 0) . Since we maximize it subject to linear constraints
2 — A ,
oP, . P..
1] 1]

the Kuhn-Tucker conditions (Zangwill 1969) are necessary and sufficient
for maximum. Let the sets of corresponding multipliers be‘{aij},

{Bi} and {Yj}. The Kuhn-Tucker conditions for this case are

m + = + + i j

i(log Pij 1) aij Bi Yj T for every i and j, and

o,. P,. = 0 for every i and j. For the particular choice, P,, = T,

i3 1] 1] J
. s 4+ = +

for every i and j, they reduce to ﬂi log ﬂj ﬂi Bi ﬂi Yj for

every i and j. Since this system has a solution (Bi =T, for every i,

(*) This proof may be viewed as a natural generalization- of the one
commonly used (e.g. Theil 1972) in the case of (static) distribu-
tions. I am indebted to E. Choo and J. Kallberg for the idea.
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'Yj = Jlog ﬂj for every j), our choice corresponds to a (unique) maximum.

N n

The idea of using entropy as a ''measure of distance" in the social
mobility context is not new; it has been used by Theil (1972, Ch. 5).

. . q. .
However, the notion of distance that he used, Z 9 log _ 1 , is not

1 pi

a pseudo-metric, since it does not satisfy the triangle inequality.

Our notion of the "entropy excess" of a Markov map over its correspond-
ing constant map thus seems more natural. Nevertheless, Theil made a
particular use of his notion of distance to obtain a measure of mobility

which we wish to generalize in the last subsection.

3.2.5 From Non-Constancy to Social Inheritance - Introducing Period-
Consistency

As we already mentioned in the previous section, a natural way of
constructing measures of social inheritance is obtained by observing
the rate at which the measures of non-constancy go to zero, i.e. the
rate of convergence to zero of the sequence {f(Tn)}.

Now, there are two common families of indicators of assymbtotic
rate of éonvergence (see Ortega and Rheinboldt 1970). For any measure

of non-constancy f(T), those will be the ''quotient convergence factors"

N
. f(T
Qm(f,T)= lim sup : (T)

EELCD N me [1,%),
1o e ECHT

and the "root-convergence factors"
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1 . -
Tim sup [f(Tn)] /n (¥) difm=1

n > <«

R (£,T) =
m

. 1,0
lim sup [f(Tn)] /m

n >

ifm>1.

What is encouraging is that both families of measures are period-consis-
tent for every non-constancy measure f:
Lemma 3.2

Both Qm(f,T) and Rm(f,T) are period consistent for every non-
constancy measure f.
Proof:

We can assume without loss of generality, that m = 1. Now,

consider maps T and T' such that Ql(f,T) E_Ql(f,T') and Rl(f,T) 3_R1(f,T').

k.n kn
Q (5,7 = 1im sup ELEL L =y qup 20D
: n>ow f£[(T) ] n > f(T )
BSRY 1C i WNA 1 it W ¢ it
im sup T kn—-2. .- kn-k
n > f(T ) f(T ) £(T )
) k-1 . f(Tkn—l)
- M lim sup et
i=0 n +  f£(T )
k-1  kn-1
> I 1im sup ESI_EE:I%I_ = Ql(f,T'k)-
i=0 n > © £(T' )
Also,
1
Rl(f,Tk) = 1lim sup {f[(Tk)n]} /n
n > «°
1
= 1lim sup {[f(Tkn)] /kn}k

n > «

(*) This particular convergence factor was used by Sommers and Conlisk
(1979) to construct a status—correlation measure.
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1 k
= {lim sup E(Tkn)] /kn}

n >

1 k
2_{lim sup [f(T'kn)] /kn}

= R (5,15 .
n >

One conclusion from this Lemma is that any function M(T) which
can be written in the form Qm(f,T) or Rm(f,t) for some f (although this
may not be the natural way of defining or calculating it) is period-
consistent. In particular, Theil (1972, Ch. 5) showed that the second

x
largest eigenvalue can be obtained as Ql(f,T).(;) Hence |XA,| is period

|
consistent (Shorrocks 1978).

Let M be a measure of social inheritance and let T and T' be
maps such that M(T) > M(T') > O, M(T'k) > 0 and M(Tk) = 0 for some
k (i.e. Tk is a constant map while T'k is not). Such measure M is not
period consistent, and both delta-coefficient and entropy suffer from
this deficiency.(**) The entropy-based measure, however, exhibits a

property, related to period-consistency, which is not without some appeal,

and will be described below.

(*) Theil defined It to be X T log %ETESA’ approximated it by the
i el :

(¥, (-1 )"

m,
i

1
quadratic approximation-a Z , and showed that
i

lim It/I 22 . Shorrocks also obtained |X

= l by a limiting pro-
£vco t-1 2

2
cedure of this nature, using the concept of "assymptotic half life".
(**) This particular problem, related to finite-convergent Markov chains,

can be eliminated by some appropriate domain restriction, but it is
doubtful whether complete period consistency will be achieved.
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Let Pi be the (joint) probability that a process which
1727 :
starts in class i first goes to k., then to k,6 etc., defined over r

1’ 2
(r)

generations. Denote the entropy of this distribution by Hi , and let

K (r) (1)

= ﬂiHi , where H = H is the entropy of the Markov chain as
i=1 :

H(r)

defined previously. Then it can be shown (Khinchin 1957) that

g(T+e) | @) | (s

H for every r and s.
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3f3 Conclusion

In this. chapter we investigated the problem of measuring social
inheritance. Although due to the multiplicity of issues involved no
clear-cut brocedures emerge, we believe that the systematic scheme of
generating measures ﬁresentéd can assist social. scientists in this task.

Generally, once the social inheritance aspect of social mobility
has been singled out as the object to be measured, it is of ceﬁtral impor-
tance to make one's "social briorities” within this object'exblicit.
Operationalizing these conceﬁts is then a major step towards constructing
a measure of non-constancy, though a certain amount of flexibility still
remains in the actual choice, which will be made by trading—off mathe-
matical ﬁroberties and conveniencef

Measures of social inheritance can then be constructed by observing
the rate at which the measures of non-constancy, for increasingly long
periods, converge to zero. This will also ensure period-consistency,

even if the non-constancy measure did not have it by itself,
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