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ABSTRACT 

Fluctuations i n the free i n t r a c e l l u l a r amino acid pools following an 

ammonia perturbation to ammonium l i m i t e d Skeletonema costatum and Gymnodiniwn 

simplex provides evidence which suggests that the enzyme glutamine synthetase 

(EC.6.3.1.2) acts as the primary ammonium a s s i m i l a t i n g enzyme i n marine phyto-

plankton under nitrogen l i m i t a t i o n . 

L i m i t i n g nutrient patchiness (ammonium) i s examined as a f a c t o r 

a f f e c t i n g both phytoplankton physiology and competition. I t i s shown that 

temporal patchiness i n the supply of the l i m i t i n g nutrient sets up period­

i c i t i e s i n c e l l u l a r carbon f i x a t i o n and in vivo c h l o r o p h y l l a fluorescence. 

Populations grown i n a patchy l i m i t i n g nutrient environment appear better 

adapted to take up nutrient pulses than do populations grown under conditions 

of homogeneous d i s t r i b u t i o n s of the l i m i t i n g n u t r i e n t s . I t i s also shown 

that the patchiness of the l i m i t i n g nutrient e f f e c t s the outcome of species 

competition with the winners being those species best able to optimize uptake 

under that p a r t i c u l a r patchy regime. 

A t h e o r e t i c a l framework i s developed to explore the e f f e c t s of l i m i t i n g 

nutrient patchiness on phytoplankton growth. This work shows that the degree 

of patchiness i n the environment can a f f e c t i n d i v i d u a l growth rates and thus 

a l t e r community structure even though there i s no change i n the average 
i 

ambient nutrient concentration. In addition the apparent K g for growth, 

for patch adapted populations, may be lowered s i g n i f i c a n t l y by making the 

d i s t r i b u t i o n of the nutrient patchy with respect to time. 

A q u a l i t a t i v e model i s proposed r e l a t i n g nutrient supply, l i g h t and 

temperature and t h e i r e f f e c t s on phytoplankton community structure. 
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INTRODUCTION 

1) Marine phytoplankton and food chain ecology 

Marine phytoplankton are the f i r s t step i n many marine food chains. These 

microalgae require l i g h t , carbon dioxide, inorganic ions (NO^, NO^, NH*, PO^, 

SiO^) and sometimes trace amounts of organic compounds to be able to grow and 

produce the primary p a r t i c u l a t e material i n the sea. They are heavily grazed 

by herbivorous zooplankton which i n turn are prey to other organisms with 

higher trophic status. The morphology and s i z e of the phytoplankton determines 

to a large extent which organisms can consume them, and consequently they play 

an improtant r o l e i n mediating the r e s u l t i n g food chain. This idea was 

s u c c i n c t l y described by Ryther (1969) i n a c l a s s i c paper discussing three 

marine food chains: the oceanic, coastal and upwelling, and t h e i r p o t e n t i a l for 

f i s h production. The oceanic community i s characterized by low p r o d u c t i v i t y 
-2 -1 

(^50 gC-m -yr ) and a standing stock of primary producers composed mainly of 

small f l a g e l l a t e s . The coastal food chain, termed the continental shelf food 

chain by Parsons and Takahashi (1973), has an average p r o d u c t i v i t y of 'vlOO gC 
-2 -1 

•m -yr with an assemblage of primary producers co n s i s t i n g of large diatoms, 

d i n o f l a g e l l a t e s and nanoplankton. Upwelling ecosystems are characterized by 

Ryther's upwelling community. The primary p r o d u c t i v i t y of these regions 
-2 -1 

averages^300 gC'm -yr to which the macrophytoplankton are the greatest 

contributors. 

The differences i n these three food chains, mediated i n a large part by 

the primary producers present, r e s u l t i n large differences i n the t o t a l f i s h 

production (harvestable resource) that can be supported by the system. 

Greve and Parsons (1977) proposed that the very nature of the phytoplankton 

i n a system may a f f e c t not only the production of higher trophic l e v e l s , as was 

argued by Ryther (1969), but also the species composition. Greve and Parsons 

suggested that there are two p r i n c i p a l pathways for transfer of energy i n a 
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marine food web. The f i r s t pathway proceeds from nanophytoplankton to 

ctenophores or medusae, while the second s t a r t s with large diatoms and term­

inates with f i s h . 

The composition or community structure of the primary producers i n the 

world's ocean thus appears to be of paramount importance i n determining the 

pathways and ultimate y i e l d of marine food chains. The large economic import­

ance a t t r i b u t e d to marine f i s h e r i e s makes i t important to understand the 

factors c o n t r o l l i n g the a b i l i t y of d i f f e r e n t phytoplankton groups to a t t a i n 

dominance i n the seas. 

The co n t r o l of dominance i n a phytoplankton community depends upon the 

net growth rates of the populations i n the community. The net growth rate i s 

the diffe r e n c e between the instantaneous rate of increase of the population 

and the loss terms due to grazing, sinking and advection. The population 

with the highest net growth w i l l eventually a t t a i n dominance i n the system. 

The instantaneous growth rate (y) of a population i s thus of great e c o l o g i c a l 

importance. 

The instantaneous growth rate i s affected by many factors including 

temperature, l i g h t and nutrient s . It i s generally accepted that temperature 

defines or l i m i t s the maximum 'poten t i a l ' growth rate of a population (Eppley, 

1972) . Other factors such as nutrients and l i g h t w i l l determine the growth 

rate attained i f either of these i s l i m i t i n g . 

The major objective of the work reported i n t h i s thesis was to examine 

various aspects of nutrient l i m i t e d growth of marine phytoplankton, with 

p a r t i c u l a r reference to inorganic nitrogen. In the f i n a l chapter there i s an 

attempt made to integrate the nutrient e f f e c t s with other factors such as 

temperature and l i g h t i n a simple conceptual scheme. 
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2) Nitrogen i n the jiiarine ecosystem 

Nitrogen i n the sea i s found i n inorganic, organic and p a r t i c u l a t e pools. 

The dissolved inorganic nitrogen pool (DIN) i s composed mainly of molecular 

nitrogen, n i t r a t e , n i t r i t e and ammonium, whereas the dissolved organic n i t r o ­

gen pool (DON) p r i m a r i l y consists of urea, amino acids, creatine, peptides and 

nucleotides. Upon incorporation into phytoplankton or b a c t e r i a l biomass the 

nitrogen enters the p a r t i c u l a t e pool (PON). The fluxes between these pools are 

c o n t r o l l e d by b i o l o g i c a l , chemical and p h y s i c a l f a c t o r s . The amount of nitrogen 

i n a pool at any time i s a function of the a s s i m i l a t i o n , regeneration and trans­

formation processes occurring i n the system. 

2.1) Nitrogen c y c l i n g i n the sea: 

A schematic representation of nitrogen c y c l i n g i n the sea i s given i n 

Figure 1. 

a) Physical processes: Molecular nitrogen i s i n constant exchange between 

the sea surface and the atmosphere i n accordance with Henry's Law (Vaccaro, 

1965). For the most part the surface of the oceans seems:to be saturated with 

molecular nitrogen (Fox, 1909; Rakestraw & Emmel, 1938; Benson & Parker, 1961). 

Molecular nitrogen i s of l i t t l e importance i n the b i o l o g i c a l c y c l i n g of 

nutrients except where i t i s used i n the processes of nitrogen f i x a t i o n by 

blue-green algae (Dugdale et a l . , 1964; Carpenter & McCarthy, 1975). 

Fixed nitrogen, i n the form of ammonium (NH^), n i t r a t e (NO^) and n i t r i t e 

(NO^) can also enter the sea from the atmosphere most often i n association with 

r a i n . The amount of t h i s f i x e d nitrogen varies considerably. Walsh et a l . 

(1978) measured concentrations (yg-at-£ - 1) of 0.03 N0~, 5.57 NH* and 14.18 N0~ 

i n the r a i n water from the New York Bight. This nitrogen f l u x would account 

for about 1% of the annual phytoplankton nitrogen budget i n the Bight. The 

concentration of nitrogenous nutrients i n rainwater may vary with the proximity 

to land and the extent of input into the a i r by the respective land mass. 
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Figure 1. The nitrogen cycle in the sea. 
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River input of f i x e d nitrogen can be s i g n i f i c a n t i n coastal and 

estuarine systems. Walsh et a l . (1978) using the data of Bowman (1977) and 

R i l e y (1959) estimated that the nitrogen f l u x i n the New York Bight, as a 

r e s u l t of r i v e r input, to be about 3 yg-at N-l "'"•yr \ or approximately 8% of 

yearly p r o d u c t i v i t y demand. Such allocthanous input would be i n s i g n i f i c a n t i n 

a system such as an o l i g o t r o p h i c oceanic gyre. 

A major proportion of nitrogenous inputs into the euphotic zone i s a 

r e s u l t of storm action. During these periods of disturbance, large quantities 

of deep n u t r i e n t - r i c h water are mixed up into the surface waters (Walsh et a l . , 

1978). Upwelling of n u t r i e n t - r i c h , deep water i s a very important process i n 

many areas of the world. Such upwelling occurs at divergences which are most 

often found i n a s s o c i a t i o n with the eastern boundary currents (Dugdale, 1976; 

Wooster & Reid, 1963). The upwelling process o f f the coast of Peru i s of such 

magnitude that t h i s area represents one of the most productive areas i n the 

world oceans. Other factors such as turbulence across the n u t r i c l i n e also 

contribute to the p h y s i c a l l y c o n t r o l l e d fluxes. 

Losses of nitrogen from the system are p r i m a r i l y a r e s u l t of the sinking 

of p a r t i c u l a t e material including phytoplankton (Smayda, 1970), f e c a l material 

and d e t r i t u s . Other losses occur through organismal migration and advection. 

b) B i o l o g i c a l processes: Molecular nitrogen can enter the nitrogen cycle 

v i a the process of b i o l o g i c a l f i x a t i o n . The most commonly studied nitrogen 

f i x i n g organisms i n the seas are the blue-green algae and s p e c i f i c a l l y , 

members of the genus Osoi-llatori-a (Trichodesnrium) and some very small coccoid 

species (Watson, pers. comm.). I n i t i a l l y i t was suggested that ^ f i x a t i o n 

could be an important component of the nitrogen f l u x i n oceanic systems (Dugdale 

et a l . , 1964; Gpering et a l . , 1966). Other workers studying the Sargasso Sea 

and the c e n t r a l North P a c i f i c showed that N f i x a t i o n makes an i n s i g n i f i c a n t 

c ontribution to the nitrogen budget (Carpenter & McCarthy, 1975; Mague et a l . , 
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1974). However, Carpenter and Pr i c e (1977) have shown that i n the eastern 

Caribbean Sea, f i x a t i o n by Osci-llatoria sp. may be a very s i g n i f i c a n t 

component of nitrogenous fluxes. This apparently contradictory evidence 

probably r e s u l t s from the s p a c i a l and temporal patchiness of the f i x i n g 

organisms. 

The uptake of dissolved inorganic and organic nitrogen i s co n t r o l l e d by 

numerous fa c t o r s ; the concentration of the nutrient i n s o l u t i o n (Dugdale, 1969), 

the irradiance (Maclsaac & Dugdale, 1972), temperature (Goldman, 1977; Harrison, 

1974) and the other nitrogenous nutrients present (Wheeler et a l . , 1974). The 

uptake process w i l l be described i n d e t a i l i n the next section. 

The nitrogenous compounds which are taken up are incorporated into 

primary p a r t i c u l a t e materials and then become susceptible to grazing pressure... 

The p a r t i c u l a t e nitrogen may be eit h e r assimilated and remain i n the p a r t i c u l a t e 

pool or eventually be excreted as ammonium, DON, or f e c a l material. Zooplankton 

excretion i s a very s i g n i f i c a n t component of nitrogen f l u x i n marine ecosystems. 

Ifalsh et a l . , (1978) showed that zooplankton excretion accounted for ^35% of 

the annual nitrogen .flux through the euphotic zone i n the New York Bight. 

Recent work by Goldman et a l . (1979) suggested that even though ambient nutrient 

concentrations i n ol i g o t r o p h i c areas of the sea may be undetectable, i t i s 

possible that phytoplankton growth rates are not nutrient l i m i t e d . This may 

be due to a dynamic balance between nutrient regeneration and a s s i m i l a t i o n 

r e s u l t i n g i n fluxes through the dissolved nutrient pool that are high enough to 

support high growth rates. Ammonium r e s u l t i n g from regeneration can be con­

verted to NO^ and NO^ v i a b a c t e r i a l n i t r i f i c a t i o n (Vaccaro, 1965). 

The uptake and a s s i m i l a t i o n of dissolved inorganic nitrogen by phyto­

plankton, with s p e c i f i c reference to ammonium are the major subjects of th i s 

t h e s i s . This i s an important component of the phytoplankton nitrogen budget, 

where a major portion of the nitrogen f l u x into a system may be due to ammonium 



regeneration (Dugdale & Goering, 1967; Dugdale, 1976; Harrison, 1978). 

3) K i n e t i c s of Nitrogen uptake 

The uptake rate of -.fixed' nitrogen (NH*, NO^, NO^, amino acids or urea) 

appears to be r e l a t e d to the concentration of the substrate i n s o l u t i o n by 

the Michaelis-Menten (1913) hyperbola which i s described by the following 

equation: 

v = v — 
max K + [S] s 

where V = nutrient uptake rate (hr ^) 

V = maximal nutrient uptake rate (hr 1 ) max 

S = concentration of the nutrient (ug-at'X, "*") 

K = concentration of the nutrient at which V = 1/2 V (ug«at«£ s max 

Numerous studies have shown the a p p l i c a b i l i t y of t h i s expression to 

nitrogen uptake by marine phytoplankton (Eppley et a l . , 1969; Eppley & Renger, 

1974; Caperon & Meyer, 1972a & b). Nutrient uptake i s thought to be enzyme 

con t r o l l e d and therefore i t i s not s u r p r i s i n g that there i s a strong tempera­

ture e f f e c t on the process. Eppley (1972) reported a Q^Q of 1.88 for phyto­

plankton growth. In a nutrient saturated system or under conditions when 

uptake equals growth, t h i s value would also apply to nutrient uptake. 

Phytoplankton derive almost a l l t h e i r energy from l i g h t . It i s not 

su r p r i s i n g that uptake of many nutrients shows a strong dependence on l i g h t . 

Maclsaac and Dugdale (1972) showed the dependence of NO^ uptake on l i g h t . They 

described a r e l a t i o n s h i p between uptake and irradiance through a h a l f - s a t u r a ­

t i o n constant for l i g h t thus: 

V = V - [ T 1 -
max 

where V = nutrient uptake rate (hr "*") 

V = maximal uptake rate of the l i m i t i n g nutrient (hr 1 ) max b 
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[I] = Irradiance (% surface radiation) 

K_ = Irradiance at which V = 1/2 V 
L t max 

Inorganic forms of nitrogen, e s p e c i a l l y NH*, are generally preferred to 

organic forms (Rees & Syrett, 1979; Wheeler et a l . , 1974; Wheeler, 1977). 

When ammonium i s added to a nitrate-grown phytoplankton population, n i t r a t e 

uptake i s suppressed (Eppley et a l . , 1969; Conway, 1977). The p o t e n t i a l 

uptake :rate of organic nitrogen increases r a p i d l y upon depletion of inorganic 

nitrogen and the strongly s e l e c t i v e uptake c h a r a c t e r i s t i c s disappear (wheeler 

et a l . , 1974). 

Numerous studies have been conducted over the l a s t decade on the k i n e t i c s 

of n u t r i t i o n a l ion uptake i n marine phytoplankton. The a b i l i t y of an organism 

to take up a l i m i t i n g nutrient r a p i d l y i s of great s u r v i v a l value. The h a l f -

saturation constant f or nutrient uptake i s a measure of the a f f i n i t y of the 

organism for the l i m i t i n g nutrient. In environments where the ambient nutrient 

concentration i s low, a low h a l f - s a t u r a t i o n constant (high a f f i n i t y ) enables 

the organism to continue taking up nutrients at high rates and i s therefore 

considered a competitive advantage (Dugdale, 1976). Maclsaac and Dugdale 

(1969, 1972), Eppley et a l . (1973) and Carpenter and G u i l l a r d (1971) have shown 

that K g values were higher i n coastal (eutrophic) than i n oceanic (oligotrophic) 

phytoplankton assemblages. 

The a b i l i t y of an organism to take up a nutrient i s dependent upon both 

V and K and thus the determination of these values i s important to the max s 

understanding of the organism's f u n c t i o n a l r e l a t i o n s h i p to i t s environment. 

It i s now apparent that these uptake k i n e t i c parameters are more complicated 

than o r i g i n a l l y thought. These so-called "constants" are i n fact variables 

dependent on the n u t r i e n t - l i m i t e d growth rate of the population (Eppley & 

Renger, 1974; Conway & Harrison, 1977; McCarthy & Goldman, 1979). In addition 
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to t h i s complication many d i f f e r e n t methods of measuring nutrient uptake 

k i n e t i c s have been employed with no clear understanding as to how the r e s u l t s 

of various methods compare. Several methods of determining uptake k i n e t i c s 

on the same steady state population are presented i n Appendix I I . The r e s u l t s 

r e f l e c t a greater degree of complexity i n the determination and meaning of the 

uptake k i n e t i c parameters V and K than has hit h e r t o been expected. 
max s 

4) Pathways of Nitrogen a s s i m i l a t i o n 

The f i r s t step i n the growth process occurs when a l i m i t i n g nutrient i s 

taken up and assimilated. The pathways by which a s s i m i l a t i o n occurs, t h e i r 

a b i l i t y to scavenge low l e v e l s of the l i m i t i n g nutrient, and the metabolic 

cost of operating the pathway are a l l important factors i n determining phyto­

plankton a b i l i t y to compete f or a l i m i t i n g resource. 

Both n i t r a t e and n i t r i t e are reduced i n t r a c e l l u l a r l y to ammonium by the 

enzymes, n i t r a t e reductase and n i t r i t e reductase (Morris, 1974) before further 

a s s i m i l a t i o n can occur. Thus discussions of ammonium a s s i m i l a t i o n also 

include important steps i n the a s s i m i l a t i o n of n i t r a t e and n i t r i t e . Even some 

organic forms of nitrogen are converted both e x t r a c e l l u l a r l y (Belmont and 

M i l l e r , 1965; Saubert, 1957) and i n t r a c e l l u l a r l y (Stewart, 1977; Keys et a l . , 

1978) to ammonium. It i s cl e a r that the pathway by which ammonium i s assimi­

lated into organic plant constituents i s a major feature of nitrogenous bio­

chemistry i n plants. A discussion of the regulation of n i t r a t e and n i t r i t e 

reduction i s not included i n t h i s thesis and the reader i s referred to Brown 

and Johnson (1977) f o r a comprehensive review of t h i s subject. 

The study of ammonium a s s i m i l a t i o n i n phytoplankton lags behind s i m i l a r 

studies i n higher plants ( M i f l i n & Lea, 1976) and ba c t e r i a (Stadman & Ginsburg, 

1974). In these two groups of organisms i t i s thought that the enzyme respon­

s i b l e f o r primary ammonium a s s i m i l a t i o n , under conditions of nitrogen l i m i t a ­

t i o n , i s glutamine synthetase (GS; E.C. 6.3.1.2) which catalyzes the conversion 
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of the amino acid glutamate to glutamine i n the presence of NH^, ATP and Mg 

Glutamine can then p a r t i c i p a t e ' i n the synthesis of many c e l l u l a r nitrogen­

ous compounds (Prusiner & Stadtman, 1973). The most common fate i s the 

production of two molecules of glutamate from one molecule of glutamine and 

a-ketoglutarate i n the presence of NAD(P)H. The enzyme catalyzing t h i s 

r eaction i s glutamine :2 oxoglutarate aminotransferase (GOGAT; E.C. 2.6.1.53) 

also known as glutamate synthase. The coupling of GS and GOGAT r e s u l t s i n a 

cycle using one molecule of NH*, a-ketoglutarate, ATP and NAD(P)H+H+ and y i e l d ­

ing one molecule of glutamate, ADP, P i and NAD(P) +. The glutamate which i s 

produced i n these reactions can be used to supply an amino group to a wide 

range of compounds. The most common reaction i s that of transamination i n 

which the glutamate amino group i s transferred to a a-keto acid ( M i f l i n & 

Lea, 1977). 

The discovery of GOGAT has been very recent ( M i f l i n & Lea, 1976). Early 

work on ammonium a s s i m i l a t i o n focused on the enzyme, glutamate dehydrogenase 

(GDH) which catalyzes the reductive amination of a-ketoglutarate to produce 

glutamate. Early evidence for t h i s pathway came from work on Candida utitus 

(Sims & Folkes, 1964; Folkes & Sims, 1974) which i s one of the few organisms 

that t r u l y lacks a GOGAT system ( M i f l i n & Lea,. 1976), and from reports that 

GDH can catalyze the in vitro a s s i m i l a t i o n of ammonium into amino acids 

( M i f l i n & Lea, 1976). 

It may be k i n e t i c a l l y advantageous for an organism to possess glutamine 

synthetase when ammonium l e v e l s are low. The h a l f - s a t u r a t i o n constant (K ) of 
s 

GS for ammonium i s i n the micromole range, whereas the K g for GDH i s i n the 

mi l l i m o l e range (Falkowski & Rivkin, 1976; M i f l i n & Lea, 1976; Ahmed et a l . , 

1977). Conversely, i t requires more energy to synthesize a molecule of glut a ­

mate v i a the GS/GOGAT pathway than v i a the GDH pathway ( i . e . , GS requires 1 

ATP and GOGAT requires 1 NAD(P)H = 3 ATP). The GS/GOGAT system may be viewed 



11 

as a high energy/high a f f i n i t y system and GDH as a low energy/low a f f i n i t y 

system. Recent research with higher plants suggests that GDH i s used f o r 

a s s i m i l a t i o n when ammonium i s i n excess whereas the GS/GOGAT system operates 

when ammonium i s low (Stewart & Rhodes, 1977a). The two systems appear to be 

r e c i p r o c a l l y regulated through i n t r a c e l l u l a r glutamine concentration. When 

the glutamine concentration i s low (low ambient nitrogen), the GS/GOGAT 

system i s stimulated and GDH i s repressed. When glutamine i s high (high ambi­

ent nitrogen) GDH i s derepressed and GS/GOGAT repressed. 

There have been few reports on the pathways of ammonia a s s i m i l a t i o n i n 

marine phytoplankton. In an early phytoplankton study '(Eppley & Rogers, 1970), 

and i n the early plant and b a c t e r i a l studies, glutamate dehydrogenase was the 

only system that was assayed. Further work on GDH i n marine phytoplankton was 

reported by Ahmed et a l . (1977). 

Falkowski and Rivkin (1976) drew attention to the fac t that GDH, with i t s 

low NH* a f f i n i t y , would be a poor ammonium scavenger under conditions of low 

ambient nitrogen concentrations and suggested that the large i n t r a c e l l u l a r 

ammonium pools (Eppley & Rogers, 1970) had been over-estimated due to nucleo­

tide deamination during the extraction procedure. They also demonstrated that 

the GS/GOGAT system was operating i n marine phytoplankton. Its high a f f i n i t y 

f o r ammonium coupled with high in vitro a c t i v i t y indicated that t h i s pathway 

could be an important assimilatory pathway under nitrogen l i m i t a t i o n . Other 

recent enzymological studies have supported the contention that the GS/GOGAT 

system i s important i n the a s s i m i l a t i o n of ammonium (Edge & Ricketts, 1978). 

The evidence for use of the GS/GOGAT system under conditions of nitrogen 

l i m i t a t i o n i n marine phytoplankton i s r e s t r i c t e d to in vitvo enzyme k i n e t i c 

observations. Results i n Chapter I describe the pathway of ammonia a s s i m i l a t i o n 

i n two species of marine phytoplankton (Gymnodiniwn simplex (Dinophyceae) and 

Skeletonema costatwn (Bacillariophyceae)) determined using in vivo methods. 
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The f l u c t u a t i o n s i n the free i n t r a c e l l u l a r amino acid pools of the nitrogen-

l i m i t e d , chemostat-grown phytoplankton were monitored following an ammonium 

perturbation. The r e s u l t s are then used to elucidate the apparent pathway of 

primary ammonium a s s i m i l a t i o n (Turpin & Harrison, 1978). 

5) Nutrient-based competition 

Nutrient uptake i s only the f i r s t step i n the growth process. The 

nutrients which are taken up must be used e f f i c i e n t l y i f a population i s to 

grow. Monod (1942) proposed a simple model r e l a t i n g the growth rate of micro­

organisms to the concentration of the l i m i t i n g nutrient according to the 

formula: 

[S] 
y ymax K + [S] s 

y = growth rate (hr 1 ) 

y = maximum growth (hr "*") max 

[S] = substrate concentration (yg-at•£ 1 ) ' 

K g = the substrate concentration promoting 1/2 maximal growth 

(yg-at - i T 1 ) 

This model has been most useful i n studying the processes of nutrient-based com­

p e t i t i o n . A major weakness i s that i t assumes that the s p e c i f i c growth rate 

(time i s equal to the s p e c i f i c uptake rate of the l i m i t i n g nutrient. This 

assumption appears only to be true under conditions of steady state growth. 

Another problem i s that the model assumes a constant c e l l y i e l d per mole of 

l i m i t i n g nutrient. Recent studies on n u t r i e n t - l i m i t e d growth k i n e t i c s of 

marine phytoplankton have shown that t h i s assumption i s i n v a l i d because the 

amount of l i m i t i n g nutrient per c e l l v a r i e s over the growth range of the popu­

l a t i o n (Caperon & Meyer, 1972a & b; Eppley & Renger, 1974; Paasche, 1973; Droop, 

1970; Fuhs, 1969; Goldman & McCarthy, 1978). Many workers (Droop, 1968; 

Goldman & McCarthy, 1978) have shown that the amount of l i m i t i n g nutrient per 

c e l l (Q) v a r i e s i n response to the nutrient l i m i t e d growth rate according to 
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the r e l a t i o n s h i p proposed by Droop (1968) where: 

* = * ( 1 " 

y = growth rate (hr ~S 

y = growth rate when Q -> «> (hr "S 

Q = c e l l quota (y g - a t - c e l l "S 

= minimum quota needed f or growth to proceed ( y g - a f c e l l ^) 

a) Competition i n a homogeneous environment: Harder et a l . (1977) 

reviewed the processes involved during competition between microorganisms 

grown i n continuous c u l t u r e . Two general cases of s i n g l e nutrient-based 

competition are defined by the Monod model. In the f i r s t case, one of two 

species competing f o r a l i m i t i n g resource has both the higher y and the 
max 

lower f o r growth (as represented by species A below). 

Case 1 for Monod Competition 

/ ior D 
(hr"1) 

Id max A 

Id max Q 

Species A - low K , hiqh y 
s max 

Species B - high K , low y 
s max [S] ( j jg-at-r 1) 

Regardless of the ambient substrate concentration, species A i s always able 

to outgrow species B. S i m i l a r i l y , i n a continuous culture, at any d i l u t i o n 

rate (D) (see Appendix I ) , species A w i l l maintain an ambient nutrient con­

centration lower than that required f o r species B to maintain a growth rate 

equal or greater than the d i l u t i o n rate and hence B w i l l wash out. 
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In the second case, the growth vs. substrate curves of the two com­

p e t i t o r s cross so that, at lower substrate concentrations or d i l u t i o n rates, 

species A w i l l win, but at higher concentrations or d i l u t i o n rates species 

B w i l l win. This condition i s attained when species A has a low U and a 
max 

low~ K f o r growth, whereas species B has a high y and a high K , Such a s max s 
s i t u a t i o n i s described below-: 

Case 2 f o r Monod Competition 

jU or D 
(hr-M 

[S] ' [S] (jjg-at-l-M 

Species A - low K , low y 
s max 

Species B - high K , high y 
s max 

In t h i s scheme, D' i s the d i l u t i o n rate at which species A and B maintain the 

same ambient substrate concentration while S' i s the substrate concentration 

where the growth rates of species A and B are equal. In t h i s system three 

r e s u l t s are t h e o r e t i c a l l y possible when the two species are competing f o r the 

same l i m i t i n g resource: 

(1) P A = WB when [S] = IS]' 

(2) UA < % when [S] > [S] • 

(3) \ > 
WB when [S] < [S]' 

And s i m i l a r i l y , i n a chemostat when: 
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(1) R A = y when D = D '.• 

(2) y. A y_ when D < D' 

(3) y„ = y„ when D > D' A B 

Simple models of t h i s type have been used to explain r e s u l t s obtained i n 

phytoplankton competition studies (Michelson et a l . , 1979; Titman, 1976; 

Tilman, 1977) and at the same time to provide a simple model f or i n t e r p r e t i n g 

nutrient-based competition i n the sea. 

The theory of competition f o r a sing l e l i m i t i n g nutrient was expanded by 

Taylor and Williams (1975) t o include many p o t e n t i a l l y l i m i t i n g resources. 

Subsequent experimental work by Tilman (1977; Titman, 1976) confirmed t h i s 

multiple resource-based competition theory. He established that when two r e ­

sources are p o t e n t i a l l y l i m i t i n g , the growth rate of the organism i s described 

by the concentration of the most l i m i t i n g n utrient, assuming the v a l i d i t y of 

the Monod expression. There thus e x i s t s a sharp switch from l i m i t a t i o n by one 

nutri e n t , to l i m i t a t i o n by another (Rhee, 1978). The r e l a t i v e supply rate of 

the two p o t e n t i a l l y l i m i t i n g nutrients at t h i s switch-over point can be deter­

mined. At the point where l i m i t a t i o n switches from one nutri e n t to another, 

growth should be l i m i t e d equally by both nutrients as described below (Titman, 

1976) : 

2 
or, 

[S,t] 
K s + [ S l ] = 

or, K. 1 
K, '2 
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The r a t i o of nutrients needed t o obtain a growth rate which i s equally l i m i t e d 

by each nutrient i s therefore given by the r a t i o of the h a l f - s a t u r a t i o n con­

stants f o r growth f o r the two nutrients i n question. I f the r a t i o of substrat­

es i n the system i s greater than the r a t i o of h a l f - s a t u r a t i o n constants, the 

population i s l i m i t e d by the nutri e n t . I f the r a t i o of substrates i s less 

than the r a t i o of ha I f - s a t u r a t i o n constants, the population i s l i m i t e d by S^. 

As a r e s u l t , along a continuum of the r a t i o of two p o t e n t i a l l y l i m i t i n g n u t rients, 

there e x i s t s a region within which a population w i l l be S^-limited and another 

i n which i t i s S^-limited. Consequently when two species are cultured together 

there i s a range of substrate supply r a t i o over which species A would be l i m i t ­

ed by and species B by (providing K^/K^ ^ o r *" n e t w o s P e c i e s a r e n o t 

i d e n t i c a l ) . In t h i s region the populations are l i m i t e d by d i f f e r e n t resources 

and hence competitive exclusion does not take place. Outside t h i s region, 

when both species are l i m i t e d by the same resource, competition can be explained 

on the basis of Monod competition. 

Tilman--- (1977) used two species, Asterionella formosa and Cyclotella 

meneghiniana. Under phosphate l i m i t a t i o n , A. formosa out-competed C. 

meneghiniana at a l l substrate concentrations. Conversely, C. meneghiniana 

out competed A. formosa under a l l cases of s i l i c a t e l i m i t a t i o n . The respect­

ive u vs. [S] curves are reproduced below: 

A. formosa 

C. meneghiniana 

C. meneghiniana 

A. formosa 



17 

The r a t i o s of K
s i / K

p 0
 f o r ^- formosa and C. meneghiniana are 97 and 5.6, 

1 4 

re s p e c t i v e l y . Therefore, at Si/PO^ r a t i o s greater than 97, both species were 

PO^-limited and A. formosa won. At r a t i o s less than 5.6, both species were 

S i - l i m i t e d and C. meneghiniana won. In the zone between 97 and 5.6, coexist­

ence occurred. The outcome of competition i s described diagrammatically below. 

-2 t o A. formosa C.meneghiniana 
rr coexistence 
c 
g dominates ' ' dominates 

Q 

| 
i i i 1000 100 10 i 

1 
Nutrient Ratio [Si ]/[ P0 A ] 

In Tilman's work, the d i l u t i o n r a t e of the continuous cultures e s s e n t i a l l y had 

no e f f e c t on the r e s u l t of competition. This can be interpreted as an example 

of "Case 1" Monod competition, i n other words the u vs, [S] curves f o r the 

two species do not cross. The examples of "Case 2" Monod competition discuss­

ed e a r l i e r suggest that f u r t h e r i n s i g h t s i n t o nutrient based competition may 

be obtained by observing systems i n which both the d i l u t i o n r ate, or substrate 

concentration, and the r a t i o of p o t e n t i a l l i m i t i n g resources are important. 

This problem i s approached conceptually i n Chapter VI of t h i s t h e s i s . 
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b) Competition i n a f l u c t u a t i n g environment: It was assumed i n the 

preceding discussion of nutrient-based competition that there were both tempor­

a l and s p a c i a l homogeneity i n the environment. There have been few attempts 

to understand the importance of f l u c t u a t i o n s i n n u t r i e n t supply that must e x i t 

i n nature. 

The f i r s t report of microalgal responses to f l u c t u a t i n g nutrient regimes 

was by Caperon (1969). The long-term growth response of Isochvysis galbana 

was followed i n response to numerous d i l u t i o n rate changes. Caperon (1969) 

showed that the r e s u l t s could be i n t e r p r e t e d i n a model that included a time 

lag response between the nutrient concentration and growth. The incorporat­

ion of a time lag provided explanations of a number of the t r a n s i e n t responses 

observed by Caperon (1969). 

Grenney et a l . (1973) showed that a more complex growth model, which i n ­

cluded external nutrient concentration and three i n t r a c e l l u l a r nitrogen pools, 

also accommodated Caperon's (1969) data. Grenney et a l . (1973) used t h e i r 

model to explain the e f f e c t of f l u c t u a t i n g nutrient supply- rates ( d i l u t i o n 

rates) on the outcome of phytoplankton competition. They showed that with 

c e r t a i n low frequency (weeks) d i l u t i o n rate changes, co-existence between 

competing species could occur. Over the period of o s c i l l a t i o n , however, the 

population d e n s i t i e s of a l l species f l u c t u a t e d markedly. This study i n d i c a t e d 

the p o t e n t i a l importance of low frequency resource supply f l u c t u a t i o n s upon 

phytoplankton community structure. Three further questions a r i s e . 1) 

What i f the supply rate remains constant but the temporal or s p a c i a l d i s t r i ­

bution of the resource v a r i e s ? 2) How does t h i s a f f e c t the outcome of 

competition? 3) Is there an optimal degree of patchiness of the l i m i t i n g 

nutrient for a given species? 
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Chapters I I , I I I , IV and V are concerned with these questions from 

experimental and modelling viewpoints, In Chapters II - IV, r e s u l t s are 

presented from experiments with phytoplankton grown i n chemostats either as 

u n i a l g a l or mixed species cultures, The average nutrient f l u x through each 

system was kept constant "but the temporal patchiness of the l i m i t i n g resource 

varied with respect to time, The e f f e c t s of competition and the physiology of 

the population are monitored to determine the importance of l i m i t i n g nutrient 

patchiness on the physiology, growth and competitive advantage of the various 

populations, 

Chapter VII reports an approach to the problem of competition for 

l i m i t i n g nutrients when the d i s t r i b u t i o n was patchy with respect to time. 

Growth curves for hypothetical species were generated that were dependent on 

the average substrate concentration i n the system and the degree of patchiness 

of that substrate, 

6) Purpose 

This thesis contains r e s u l t s of several experimental approaches to 

phytoplankton p h y s i o l o g i c a l ecology, This makes i t , i n some respects, very 

general i n nature, An attempt has been made to synthesize the work into a 

cohesive study on the biochemical, p h y s i o l o g i c a l and e c o l o g i c a l l e v e l s of 

phytoplankton responses to resource f l u c t u a t i o n s , 

The study of marine phytoplankton at steady state has l e f t many 

unanswered questions about t h e i r f u n c t i o n a l r e l a t i o n s h i p to the environment. 

Since these organisms l i v e i n an environment which i s f l u c t u a t i n g , i t i s 

important to study the e f f e c t s of these f l u c t u a t i o n s on t h e i r physiology and 

growth. 
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Chapter I 

EVIDENCE FOR THE GLUTAMINE SYNTHETASE 

PATHWAY OF AMMONIUM ASSIMILATION 

1) Summary 

An ammonium li m i t e d chemostat culture of Gymnodinium simplex (Lohm.) 

Kofoid et Swezy was perturbed with ammonium and fl u c t u a t i o n s i n the free 

i n t r a c e l l u l a r amino acid pools were followed 80 min. The steady-state 

value of glutamate was 2.07 x 10 ^ m o i - c e l l 1 and of glutamine was 0.31 x 

10 ^ m o i - c e l l \ Five minutes a f t e r the perturbation, a su b s t a n t i a l r i s e 

i n glutamine was observed with corresponding decrease i n glutamate. A 

si m i l a r experiment was performed with an ammonium l i m i t e d culture of 

Skeletonema oostatvon (Grev.) Cleve. Two and one-half minutes a f t e r the 

perturbation, free i n t r a c e l l u l a r glutamate had decreased by 0.22 x 10 ^ 

moi - c e l l and glutamine had increased by 0.15 x 10 m o i - c e l l \ These 

observations are considered a r e s u l t of glutamine synthetase acting as the 

primary ammonium as s i m i l a t i n g enzyme. 
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2) Introduction 

The mechanisms of ammonium a s s i m i l a t i o n i n marine phytoplankton and 

higher plants have received increasing attention over the past few years. 

I n i t i a l l y i t was thought that glutamate dehydrogenase (GDH; EC. 1.4.1.3) was 

pr i m a r i l y responsible for ammonium a s s i m i l a t i o n (Basham & Kirk, 1964; Folkes 

& Sim, 1974; Sims & Folkes, 1964). Recent evidence indicates that the 

glutamine synthetase (GS; EC 6.3.1.2)/glutamate synthase (GOGAT; EC 2.6.1.53) 

system may be of primary importance i n ammonium incorporation, e s p e c i a l l y 

under ammonium l i m i t a t i o n (Arima & Kumazawa, 1977, Falkowski & Rivkin, 1976; 

Tempest et a l . , 1973). The pathways of nitrogen a s s i m i l a t i o n i n plants have 

been reviewed by M i f l i n and Lea (1976). Work by Sims and Folkes (1964) and 

Basham and Kirk (1964) coupled with the in vitro a b i l i t y of GDH to synthesize 

glutamate from a-ketoglutarate and ammonium were the main reasons f o r consider­

ing GDH as the primary ammonium as s i m i l a t i n g enzyme. Further work on the 

k i n e t i c s of GDH i n marine phytoplankton revealed that i t had a low 

a f f i n i t y f o r ammonium. Eppley and Rogers (1970) showed that i n the marine 

diatom DityVum brightwellii (West) Grunow, GDH had a K for ammonium of 10 mM, 
m 

whereas the i n t r a c e l l u l a r ammonium pool concentration was between 5 and 10 mM. 

Falkowski and Rivkin (1976) found that the K of GDH for ammonium i n the 
m 

marine diatom Skeletonema oostatum (Grev.) Cleve was 28 mM, i n d i c a t i n g an 

unreasonably low a f f i n i t y for ammonium i f t h i s enzyme was i n fac t responsible 

for primary ammonium a s s i m i l a t i o n . They also suggested that the l e v e l s of 

i n t r a c e l l u l a r ammonium pools could e a s i l y be overestimated due to contamination 

and nucleotide deamination. Such an overestimation could have resulted' i n the 

erroneous conclusion that i n t r a c e l l u l a r ammonium l e v e l s were within the K 
m 

range of GDH. In other marine phytoplankton species, Ahmed et a l . (1977) 

found theammoniumK for GDH was between 4.5-10 mM. 
m 
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Tempest et a l . (1973) reported - that ammonium'limited bacteria- showed 

an i n i t i a l -increase ,in glutamine d i r e c t l y , following an ammonia perturbation 

-\They concluded" that the GS pathway of ammonium a s s i m i l a t i o n was operating 

but they did not show an i n i t i a l drop i n glutamate'and a 

corresponding r i s e i n glutamine. Such a covariance would be expected, over 

very short time i n t e r v a l s , i f the GS pathway was responsible f o r ammonium 

as s i m i l a t i o n (equation 1)'. " ' ' " 

+ GS glutamate + NH. + ATP— > glutamine + ADP + P i (1) 4 divalent 
cation 

Other workers have shown that GS has a lower aiw.oniumK than GDH, thereby 
m 

suggesting that GS i s k i n e t i c a l l y more favorable for ammonium a s s i m i l a t i o n 

(Falkowski & Rivkin, 1976; Stewart & Rhodes, 1977). 

In vitro enzyme k i n e t i c r e s u l t s which provide evidence that the GS/GOGAT 

pathway operates but do not prove that this i s the-enzyme system functioning in vivo. 

Information regarding the products of ammonium a s s i m i l a t i o n i s needed. 

This chapter reports '"the r e s u l t s of studies on the response of ammonium l i m i t e d 

chemostat cultures of Gymnodinivm simplex and Skeletonema aostatvon "to an ammonium 

perturbation. The fl u c t u a t i o n s i n the free amino acid pools are used to elucidate 

the pathway of primary ammonium a s s i m i l a t i o n i n these organisms under ammonium 
l i m i t a t i o n . 

3) Materials and Methods 

Gymnodinium simplex (NEPCC-119; Northeast P a c i f i c Culture C o l l e c t i o n , 

Department of Oceanography, The Un i v e r s i t y of B r i t i s h Columbia) and Skeleton­

ema costatum (NEPCC-18b) were i s o l a t e d from P a c i f i c Ocean water samples 

taken on May 16, 1973 at 48°38'N, 126°00'W and June 20, 1977 from P a t r i c i a 

Bay, B.C., re s p e c t i v e l y . The two species were grown i n ammonium-limited 

chemostats i n a r t i f i c i a l seawater at 18°C as described by Davis et a l . 

(1973). G. "simplex was maintained i n a 6 - l i t e r , b o i l i n g f l a s k at a 

file://-/They
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d i l u t i o n rate of 0.25 d ^. S. costatum was maintained i n a 2 - l i t e r b o i l i n g 

f l a s k at a d i l u t i o n rate of 1.0 d \ The cultures were continuously s t i r r e d at 

60 rpm with a magnetic s t i r r e r . Continuous i l l u m i n a t i o n was supplied by four 

fluorescent bulbs, three high-output V i t a l i t e (Durotest) bulbs and one day­

l i g h t Powertube VHO Sylvania. This l i g h t was f i l t e r e d through a sheet of 

blue P l e x i g l a s (No. 2069, Rohm and Haas, P h i l a d e l p h i a ) , 0.3 cm thick to simu­

l a t e the spectrum of 5 m underwater l i g h t f o r c o a s t a l areas. T o t a l irradiance 
-2 -1 -1 was 150 uEin«m «s . The inflow nutrient concentrations were 10 ug-at-A 

ammonium, 3.2 ug-at - i l ^ phosphate, 4.2 yg-at«£ ^ s i l i c a t e . In the S. costatum 

cultures, s i l i c a t e was added at 35 ug-at-£ Vitamins and trace metals were 

added as i n f medium ( G u i l l a r d & Ryther, 1962) but at a reduced concentration 

of f/20. 

Nutrient analysis was c a r r i e d out using a Technicon Autoanalyzer, and 

methods previously described by Davis et a l . (1973). 

C e l l numbers were determined by using an inverted microscope. The c e l l s 

were k i l l e d with a drop of Lugol's iodine s o l u t i o n before counting. Culture 

fluorescence was measured by a Turner (Palo A l t o , C a l i f . ) Model 111 fluorometer. 

Fluorescence, and c e l l and nutrient concentrations were monitored d a i l y and 

steady-state was obtained when there was no trend i n these parameters over a 

5-day period. 

The ammonium perturbation consisted of shutting o f f the pump and then 

quickly i n j e c t i n g 3 ml of 10 mM ammonium chlo r i d e into the steady-state ammon­

ium l i m i t e d chemostat culture which resulted i n a sudden increase i n ammonium 

concentration from 0.2 to ca. 5 yM. The disappearance of ammonium from the 

medium ( i . e . , the uptake) was followed during the experiment. Samples for 

amino acid analysis were c o l l e c t e d at 5, 10, 40 and 80 min a f t e r the perturba­

t i o n . Values at time zero were the steady-state values immediately p r i o r to 

the perturbation. 

For amino acid extraction and ana l y s i s , one l i t e r of culture (500 ml i n 
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the case of S. oostatwn) was f i l t e r e d onto a 47 mm glass f i b e r f i l t e r (Reeve 

Angel) at 190 mm Hg negative pressure. A f t e r f i l t r a t i o n , the c e l l s and f i l t e r 

were washed with 10 ml 30% sodium formate s o l u t i o n to remove any seawater 

contaminants. At the predetermined sample time the f i l t e r was plunged into 

b o i l i n g 90% ethanol contained i n 15 ml screw top centrifuge tubes. The time 

required to f i l t e r , wash and k i l l the c e l l s was 1.5 min. The f i l t e r was 

broken up by vigorous shaking and vortex mixing (Vortex-Genie, Fischer, 

Bohemia, N.Y.). The f i l t e r paper-ethanol suspension was then centrifuged and 

the supernatant place i n 100 ml rotary evaporator f l a s k s . The extraction of 

the f i l t e r and c e l l s i n b o i l i n g 90% ethanol was repeated three times and the 

combined extracts were evaporated to dryness. A s p e c i a l r e f l u x tube (Buchi 

NS24/40) f o r amino acid analysis was used to avoid sample contamination which 

could occur from carryover of previous samples prepared on the same machine. 

The tube was rinsed with 90% ethanol before each analysis to minimize 

contamination. 

Amino acid analysis was c a r r i e d out using a Beckman 120C Amino Acid 

Analyzer. A c i d i c and neutral amino acids were separated using Li"*" form r e s i n 

which provided r e s o l u t i o n of asparagine and glutamine. The basic amino acids 

were separated using a 16 x 0.9 cm bed of Na + form r e s i n . Operating procedures 

were those outlined i n the Beckman Procedures Manual, A-TB-044, May 1967. 

When a standard s o l u t i o n containing 19 amino acids was extracted using 

the same procedures, the extraction e f f i c i e n c y ranged from 95-99%; glutamate 

and glutamine were >99%, whereas asparagine was ca. 95%. 

4) Results 

Gymnodiniwn simplex: 

6 — 1 

The steady-state c e l l density was 25 x. 10 c e l l - 1 and the concentration 

of ammonium and phosphate was 0.2 and 1.5 yg-at•£ \ r e s p e c t i v e l y . The 

quantities of the free i n t r a c e l l u l a r amino acids following the ammonium 

perturbation are shown i n Table I. 



TABLE I . Quantities- of i n t r a c e l l u l a r free amino acids i n ammonium l i m i t e d 

SJymnodi.ni.ym; simp lex at time zero and a f t e r ammonium perturbation: confidence 

l i m i t s of analysis are ±3%. 

Amino acids Time (min) 

d o " 1 5 d o " 1 5 

m o i ' c e l l 1) 0 5 10 40 80 

alanine 0.7.5 0.72 1.21 ' 1.6 5 0.85 

arginine ++a +++a ++ +a 

asparagirie ++ + +++ +4+ 4-

aspartate ++ 44- 44- +4+ 44-

cysteine b - - -

glycine 0.39 0.45 1.18 0.65 0.55 

glutamine 0.31 0.78 0.95 1.20 0.81 

glutamate 2.07 1.31 1.72 1.97 1.87 

h i s t i d i n e +++ 444- 0.26 44+ 44-

i s o l e u c i n e + 44- 0.16 4- -

leucine + 4+ 0.26 4- 4-

l y s i n e 0.31 0.17 0.51 0.50 0.27 

methionine + + + -

phenylalanine + + 44+ 4- 4-

p r o l i n e - - - -

serine 0.74 0.50 1.51 0.56 0.52 

threonine ++ 44- 4++ 44- 44-

tryptophan - - - -
tyrosine + 44- +++ 4- 4-

v a l i n e 44 _ — 4-

^ +, 44-, 4-44 = increasing l e v e l of d e t e c t a b i l i t y . 
- = not detectable. 

http://SJymnodi.ni.ym


Glutamate was the most predominant free amino acid under steady-state 

conditions of ammonium l i m i t a t i o n with l e v e l s of 2.07 x 10 "'""'moi* c e l l "*". The other 

"major amino acids, at steady state, i n order of decreasing abundance were 

alanine, serine, glycine, glutamine and l y s i n e . Five minutes a f t e r the 
-15 -1 

perturbation the l e v e l s of glutamate had dropped by 0.76 x 10 m o i - c e l l , 

whereas glutamate had increased by 0.47 x 10 "* " \ i o l - c e l l ^. The decreasing 

glutamate concentration recovered a f t e r 10 min coupled with a further increase 

i n glutamine (Table I, F i g . 2). The l e v e l s of both glutamate and glutamine 

increased up to 40 min and then decreased s l i g h t l y . 

The other major amino acids remained at more or less constant l e v e l s f o r 

the f i r s t 5 min following the perturbation. There was a marked increase by 

10 min and then a continual decrease with time (Table I, F i g . 3). Ammonium 

concentration i n the culture medium remained above 4 uM throughout the perturb­

ation experiment. 

Skeletonema costatum: 

The l e v e l s of two free amino acids, glutamate and glutamine, i n S. 

costatum before and 2.5 min following the ammoniumperturbation are given i n 

Table I I . During t h i s time period glutamate dropped by 0.22 x 10 "'""'moi-cell ̂ . 
-15 -1 and glutamine rose by 0.15 x 10 m o i - c e l l 
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TABLE I I . Quantities;of. I n t r a c e l l u l a r free amino acids, glutamate and glutamine, 

i n ammonium l i m i t e d Skeletonema costatum at time zero and a f t e r ammonium 

perturbation:-confidence l i m i t s of analysis are ±3%. 

Amino acids Time (min) 
(I O " 1 5  

m o i - c e l l " 1 0 .2.5 

glutamate 

glutamine 

1.28 

0.79 

1.06 

0.94 
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Figure 2. Fluctuations i n l e v e l of free i n t r a c e l l u l a r amino acid pools i n 

response to addition of ammonium (perturbation at T=0) to ammonium l i m i t e d 

Gymnodinivm simplex: T=0 values are steady-state values immediately p r i o r to 

perturbation: 0 = glutamate, V = glutamine. 
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Time (min.) 

Figure 3. Fluctuations i n l e v e l of free i n t r a c e l l u l a r amino acid pools i n 

response to addition of ammonium (perturbation at T=0) to ammonium l i m i t e d 

Gymnodinium simplex: T = 0 values are steady-state values immediately p r i o r 

to perturbation: V = serine, 0 = glycine, A = alanine, 7 = i s o l e u c i n e , and 

D = leucine. 
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5) Discussion 

If the GS pathway i s act i v e i n these two marine phytoplankton, we would 

expect (Equation 1) an equal molar decrease i n glutamate and increase i n 

glutamine immediately following the perturbation ( i . e . , a short enough time so 

that the GOGAT and transaminase systems would cause minimal i n t e r f e r e n c e ) . 

This i s what was observed. The decrease i n glutamate 5 min a f t e r perturbation 

for G. simplex was 0.76 x 1 0 - 1 5 m o l ' c e l l " 1 . This leaves 0.29 x 1 0 _ 1 5 m o l ' c e l l - 1 

of glutamate unaccounted for i f an equal molar GS reaction occurs (Equation 1). 

Likewise i n S. costatum, 0.07 x 10 "'""'moi• c e l l of glutamate was unaccounted 

f o r . This discrepancy can be p a r t i a l l y explained by noting the s l i g h t 

increase i n the l e v e l s of other amino acids (glycine, leucine, tyrosine, 

isoleucine) i n G. simplex c e l l s , over the same period. The biosynthesis of 

these amino acids r e s u l t s i n loss of glutamate by the transaminase enzymes. 

Further interference could a r i s e from the production of glutamate by glutamate 

synthase but, as a r e s u l t of close agreement between the observed and expected 

r e s u l t s a f t e r 5 min, the contribution of GOGAT to the glutamate pool by that 

time was probably small. A f t e r 10 min the contribution of GOGAT to the gl u t a ­

mate pool appeared to be sub s t a n t i a l as indicated by the increased glutamate 

l e v e l s . Amino acids other than glutamate and glutamine were not quantitated 

i n the S. costatum experiment. 

If the GDH was responsible f or the primary a s s i m i l a t i o n of ammonium i n 

th i s organism we would expect to see an i n i t i a l r i s e i n the l e v e l s of gl u t a ­

mate rather than a drop. The reaction mediated by glutamate dehydrogenase 

i s : 
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a-ketoglutarate + NH^ + NAD(P)H + H + 

G D H > glutamate + NAD(P) + + H„0 (2) < 2. 

It would also be impossible to account f o r the rapid r i s e i n 

glutamine concentration i f the GDH system was s o l e l y responsible for ammonium 

as s i m i l a t i o n . Glutamate synthase, the enzyme responsible for the interconver-

sion of glutamate and glutamine i s e s s e n t i a l l y i r r e v e r s i b l e , favoring the 

formation of glutamate from glutamine and a-ketoglutarate (Woolfolk et a l . , 

1966). The reaction catalyzed by GOGAT i s : 

+ GOGAT 
glutamine + a-ketoglutarate + NAD(P)H + H > 

2 glutamate + NAD(P) + (3) 

In G. simplex, the responses of the other major amino acids to the 

perturbation, are markedly d i f f e r e n t from those exhibited by glutamate and 

glutamine. The r e l a t i v e l y constant l e v e l s of the other amino acids from 

0 to 5 min are;consistent with the GS pathway being responsible f o r primary 

ammonium a s s i m i l a t i o n i n t h i s organism. The rapid increase i n the l e v e l s of 

these amino acids 10 min a f t e r the perturbation r e f l e c t s the rapid t r a n s f e r 

of the amino nitrogen throughout the amino acid pool as a r e s u l t of trans­

aminase a c t i v i t y . I n t e r e s t i n g l y , glutamate never rose above i t s steady-

state l e v e l . This implies that glutamate u t i l i z a t i o n increased r a p i d l y 

following the perturbation. 

The decrease i n the amino acid l e v e l s near the end of the time series 

was not due to ammonium l i m i t a t i o n as the ammonium l e v e l s never dropped below 

4 yg-at • I 1 i n the external medium. This l e v e l i s w e l l above the for 

ammonium uptake f o r t h i s organism (Turpin, unpubl.). The decrease, best 

exhibited i n the amino acids other than glutamate and glutamine, i s undoubtedly 

due to some form of l i m i t a t i o n . I t i s possible, due to the low steady-state 
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growth rate (1/5 y ) of the organism that there was a reduction i n the max 

a c t i v i t y of many enzyme systems. This low sub-maximal growth rate could 

r e s u l t i n the i n a b i l i t y of the enzyme systems responsible f o r carbohydrate 

u t i l i z a t i o n and a4cetoglutarate production to provide an adequate source of 

carbon skeletons needed to allow the i n i t i a l rapid ammonium a s s i m i l a t i o n . 

The possible i n t r a c e l l u l a r competition for ATP-between ammonium 

uptake and a s s i m i l a t i o n and CO^ f i x a t i o n could also r e s u l t i n decrease of 

av a i l a b l e carbon skeletons (Falkowski & Stone, 1975). Ei t h e r of these 

p o s s i b i l i t i e s coupled with amino acid u t i l i z a t i o n , would account f o r the 

observed decrease i n the amino acid l e v e l s . .. 

The reason that a. drop i n glutamate, i n response to an ammonium addition, 

was not observed by other workers (Tempest et a l . , 1973) may be due to the 

high metabolic rates of the ba c t e r i a used and the i n a b i l i t y to obtain 

adequate short-term time seri e s data r e l a t i v e to the organism's metabolic rate. 

The experimental conditions were such that the organism's metabolic rate was 

slow enough to allow r e s o l u t i o n of the i n t r a c e l l u l a r glutamate drop. 



33^ 

Chapter II 

LIMITING NUTRIENT PATCHINESS AS 

A FACTOR IN PHYTOPLANKTON ECOLOGY 

1) Summary 

The e f f e c t of l i m i t i n g nutrient patchiness on community structure and 

species succession was examined i n natural phytoplankton communities held i n 

ammonium l i m i t e d continuous culture at a d i l u t i o n rate of 0,3 day \ Under 

a homogeneous d i s t r i b u t i o n of the l i m i t i n g nutrient members of genus Chaetoceros 

dominated but when ammonium was added d a i l y (patchy d i s t r i b u t i o n ) , SkeZetonema 

dominated. Intermediate patchiness gave r i s e to an assemblage dominated by 

both Chaetoceros and SkeZetonema. The nutrient uptake a b i l i t y of each assem­

blage was determined three weeks a f t e r experiment i n i t i a t i o n . Each assemblage 

was best able to optimize uptake of ammonium under i t s p a r t i c u l a r patchy 

nutrient regime. Optimization of a patchy environment took place by an 

increased maximal uptake rate (V ) while optimization of a homogeneous 
max 

environment appeared to take place by increased substrate a f f i n i t y ( i . e . , low 

K g ) . It i s also shown that coexistence of two populations might be expected 

due to the patchiness of a single l i m i t i n g n u t r i e n t . The importance of pat c h i ­

ness i n r e l a t i o n to other factors which determine community structure i s 

discussed. 
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2) Introduction 

The importance of nutrients i n l i m i t i n g phytoplankton growth i n aquatic 

systems has long been r e a l i z e d . There are several mechanisms by which ambient 

nutrient concentrations may control phytoplankton growth and hence community 

structure. Species s p e c i f i c growth and nutrient uptake k i n e t i c s and a s s o c i ­

ated parameters (V , y and K ) have been proposed by Dugdale (1967) and 
TT13X TI13.X S 

shown by Eppley et a l . (1969) to be important i n explaining species succession. 

Titman (1976) and Tilman (1977) showed that ' 

community structure can be affected by d i f f e r e n t resource l i m i t a t i o n s ( s i l i ­

cate and phosphate) which act on d i f f e r e n t populations^ within the commun-

i t y . This idea has also been developed i n simulation models of species comp­

e t i t i o n (Taylor & Williams, 1975). Grenney et a l . (1973) suggested through 

t h e i r modelling e f f o r t s , that low frequency resource f l u c t u a t i o n s may r e s u l t 

i n an unstable coexistence of phytoplankton populations l i m i t e d by a si n g l e 

resource. Stross and Pemrick (1974) and Chisholm and Stross (1976) have 

provided a case for niche separation based on p e r i o d i c i t y i n nutrient uptake 

k i n e t i c s . Mickelson et a l . (1979) observed changes i n the outcome of 

competition between marine diatoms as a r e s u l t of changes i n continuous 

culture d i l u t i o n rate, or i n a more e c o l o g i c a l sense, the s p e c i f i c f l u x of 

the l i m i t i n g n utrient. In t h i s experimental system, species s e l e c t i o n occurs 

on the basis of growth k i n e t i c s . 

A l l the preceding studies considered only a homogeneous d i s t r i b u t i o n 

of the l i m i t i n g nutrient. There have been no studies on the e f f e c t of 

temporal patchiness of the l i m i t i n g n u t r i e n t on phytoplankton competition 

and growth. The a b i l i t y of various populations, or i n d i v i d u a l s of a popula­

t i o n , to u t i l i z e a patchy resource could be instrumental i n mediating resource 

competition and hence species succession i n aquatic systems. 

This study was designed to answer two questions: 1) Can l i m i t i n g 

nutrient patchiness influence phytoplankton succession and community 
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structure? 2) If so, are there p h y s i o l o g i c a l differences ( i . e . , nutrient 

uptake a b i l i t y ) among the r e s u l t i n g assemblages that would allow f or optimal 

use of the l i m i t i n g , nutrient i n a p a r t i c u l a r patchy regime? 

Continuous culture systems have been used extensively by microbiologists 

(Jannasch, 1967, 1968a & b; Meers, 1971, 1973; Veldkamp & Kuenen, 1973; 

Harder et a l . , 1977) to analyze factors i n f l u e n c i n g microbial s e l e c t i o n i n 

mixed species systems. This technique has been adapted f o r the 

study of competition i n phytoplankton communities (Dunstan & Menzel, 1971; 

Titman, 1976; Tilman, 1977; Mickelson et a l . , 1979; Harrison & Davis, 1979). 

Nitrogen i s the most frequent nutrient l r m i t i n g plant growth; i n ' 

the sea- Of i t s inorganic forms," ammonium i s the most r e a d i l y regenerated 

(Dugdale, 1976; Harrison, 1978). ..M chose to examine the .effects.of 

ammonium patchiness on ammonium l i m i t e d natural phytoplankton assemblages ' 

maintained i n continuous culture. 

3) M a t e r i a l and Methods 

The experiments were conducted at the CEPEX (Controlled Ecosystem '.' 

Population Experiment) s i t e at Saanich I n l e t , Vancouver Island, B r i t i s h 

Columbia, Canada. Experiment 1 was conducted i n July 1978 and was duplicated 

(Experiment 2) i n August 1978. 

3.1) Inoculum: 

A natural assemblage of marine phytoplankton was obtained from a large 

c o n t r o l l e d ecosystem enclosure (CEE) as described by Menzel and Case (1977). 

Assemblages for Experiment 1 and 2 were obtained from a sample integrated 

from 4-8 m i n CEE 78-2, on July 10 and August 9, 1978, re s p e c t i v e l y , and 

f i l t e r e d through 153 ym Nitex netting to remove any large zooplankton. The 

inoculum for Experiment 2 was allowed to grow for 4 days and then a small 

inoculum of Skeletonema costatum (Grev.) Cleve, Thalassiosira nordenskioldii 

Cleve, Chaetoceros socialis Lauder and C. constrictus Gran was added so that 
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these species, which were absent from the natural sample but present i n the 

inoculum for Experiment 1, could be observed i n the succession sequence. 

3.2) Incubation: 

Cultures were maintained i n outdoor continuous cultures. Three l i t e r , 

b o r o s i l i c a t e , f l a t bottom, b o i l i n g f l a s k s were placed i n a w a t e r - f i l l e d 

P l e x i g l a s incubator system s i m i l a r to that described by Davis et a l . (1973). 

Temperature was maintained at 13 ± 1°C by a cooling unit (Haws HR4-20). 

Natural sunlight was attenuated and s p e c t r a l l y corrected to simulate J e r l o v 

Type 3 coastal water at 5 m (Holmes, 1957) by surrounding the incubator with 

1/8" blue P l e x i g l a s (Rohm and Hass, #2069) (Davis et a l . , 1973). As the 

culture vessels were submerged i n flowing water, i n f r a - r e d wavelengths were 

also removed. 

3.3) Inflow medium: 

Two hundred l i t e r s of Saanich Inlet surface water were c o l l e c t e d on 

July 11, 1978. The water was f i l t e r - s t e r i l i z e d using a 147 mm, 0.45 um 

M i l l i p o r e f i l t e r and stored i n a 2 0 0 - l i t e r Nalgene b a r r e l i n the dark i n a 

cold room for the duration of the experiment. Nutrient analyses indicated 

that the water had 0.5 yg-at-£ 1 t o t a l inorganic nitrogen (NO^, NOv;, NH^) 
-1 -«+ -1 -3-7.5 yg-at'£ SiO ^ . and 0.4 yg-at•£ PO.^- This water was used as a stock 

supply throughout the experiment. Aliquots were removed and enriched to the 

desired inflow concentrations as needed. Samples of the inflow medium were 

taken r e g u l a r l y to check nutrient concentrations, 

3.4) Patchiness regimes: 

Three continuous cultures were set up as outlined below, with a constant 

d i l u t i o n rate of 0.3 day maintained by piston pumps (Fl u i d Metering, Inc.). 

Each culture received the same amount of ammonium each day and only the temporal 

d i s t r i b u t i o n of ammonium varied, from continual addition, 8 additions/day to 1 

addition/day. 
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a) System 1: Continual addition (Fig. 4). Inflow medium for Experiment 1 
-1 -1 was enriched to 10 ug-at.£ ammonium chloride, 3 yg-at.£ potassium phosphate 

(monobasic) and 20-45 ug-at-£ sodium s i l i c a t e . Vitamins and trace metals 

were added as f/25 ( G u i l l a r d & Ryther, 1962). The inflow medium during 
-3 -4 

Experiment 2 was i d e n t i c a l to Experiment 1, except PO ^ and SiO were 

increased to 3.5 and 50 yg-at-£ \ .respectively. 

b) System 2: 8 additions/day (Fig. 4). D i l u t i o n rate and nutrient 

concentrations i n the inflow medium were i d e n t i c a l to System 1 except the 

l a t t e r contained no added NH^Cl. The NH^Cl additions were co n t r o l l e d by a 

separate pump which was turned on and off with a s p e c i a l l y modified timer 

(C i n c i n n a t i , Model 422). Additions were 1 min i n duration (0.94 ml of 1.2 

mM NH^Cl) and occurred every 3 hr s t a r t i n g at 2400 hr. This resulted i n the 

d a i l y nitrogen f l u x being i d e n t i c a l to that of System 1 ( i . e . , 3 yg-at'£ 

day 1). This system, with i t s independent flow of seawater and non-limiting 

n u t r i e n t s , assured that the only v a r i a b l e between the two systems was the 

temporal d i s t r i b u t i o n of ammonium. 

c) System 3: 1 addition/day (Fig. 4). This system .was s i m i l a r to 

System 2, except the NH^Cl addition was at 0100 hr and consisted of 7.5 ml of 

1.2 mM NH^Cl over a 1 min i n t e r v a l . The d a i l y ammonium f l u x through t h i s 

system was the same as the other systems (3 yg-at-£ "^day "*") . 

3.5) Measurements: 

Culture e f f l u e n t s were c o l l e c t e d d a i l y and preserved for i d e n t i f i c a t i o n 

and enumeration i n Lugol's iodine. An inverted microscope was used for enumer­

ation of samples. Fluorescence was monitored with a fluorometer (Turner Model 

111) equipped with a high s e n s i t i v i t y door. Nutrients i n culture e f f l u e n t s 

were analyzed with a Technicon Autoanalyzer using methods previously described 

(Davis et a l . , 1973). 

Aft e r approximately 3 weeks of exposure to the nutrient regimes, the 

responses of the r e s u l t i n g assemblages to a nutrient pulse or perturbation 



38 

T i m e r 
I — J - — ; — 

S y s t e m 1 System 3 Sys tem 2 

Figure 4. A schematic representation of the three culture systems. A l l 

systems were continuous flow (D = 0.3 d "*") . System 1 received NH^Cl 

continually i n the inflow medium; System 2 received 8 additions/day, while 

System .3 received 1 addition/day of NH^Cl. The f l u x of NH^Cl through a l l 

Systems was 3 yg-at•£ "*".day ''".-.The reactors' were, i n a water bath (13 + 1°C) as 

described i n the text. 
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(Caperon & Meyer, (1972b),was determined. Nutrient disappearance was 

followed with a Technicon Autoanalyzer. The a b i l i t y of each phytoplank­

ton assemblage to respond to the various patchiness regimes was deter­

mined i n t h i s manner. 

4) Results 

4.1) Experiment 1: 

a) Ambient nutrients: The continuous flow pumps were started a f t e r 

the inoculum had grown as a batch culture for 1 day. On day 2, " ^ 

ambient ammonia concentrations (measured each day between 1000-1200 hr) 

reached a maximum of 1.3, 0.8 and 0.9 yg-at•£ 1 for Systems 1, 2 and 3, 

re s p e c t i v e l y . For the rest of the experiment, ambient ammonium con-" 

centration never rose above 0.6 yg-at-£ ^. 

S i l i c a t e concentrations i n the inflow medium were raised p e r i o d i c a l l y 

throughout the experiment to' keep the"ambient l e v e l s w ell 

above s i l i c a t e l i m i t a t i o n s (Fig. 5). A f t e r day 7 there was a d i s t i n c t 

trend i n the ambient s i l i c a t e concentration with System 1 having;, the... 

highest concentration followed by 2 and 3, r e s p e c t i v e l y (Fig. 5). 

b) Community structure: The composition of the i n i t i a l community i s 

i l l u s t r a t e d i n Table I I I . Species present were 

Skeletonema costatwn} Chaetoaevds simplex' Ostenfeld, 

C. simile Cleve, C. eompvessus Lauder, C. eonstrictus} C. debilis Cleve, 

Thalassiosiro .votula Meunier, T. nordenskioldiiNitzsehia longissima 

(de Brebisson ex Kutzing) R a l f s , N. pungens Grunow, N. delicatissima 

Cleve, N. palea (Kutzing),W..Smith, Stephanopyxis tuvvis (Grev.) R a l f s , 

Cevataulina bevgonii (H. Peragallo) Schutt, small f l a g e l l a t e s and a few 

representatives of other diatom genera such as Rhizosolenia and 

Leptooylindvus. 
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Figure 5. Inflow and outflow s i l i c a t e concentrations (Exp. 1). System 1, 

(0); System 2, ( O ) ; System 3, ( A ) . 
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Table I I I . The compostion of the i n i t i a l ' i n o c u l a for Experiments 1 and 2. 

Exp. 1 

(xlO 6 c e l l - l " 1 ) 

Exp. 2 

(xlO 6 c e l l - l - 1 ) 

SkeZetonema 0. 63 1.4 

Chaetoceros 3.5 3.4 

T h a l a s s i o s i r a 0.92 5.9 

Stephanopyxis — 2.4 

Cerataulina — 0.7 

Nitzschia 0.96 1.4 

F l a g e l l a t e s 1.6 8.6 

Others 1.4 — 

TOTAL 9.01 23.5 
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The community structure i n a l l 3 systems remained constant f o r the f i r s t 

3 days as evidenced by: 1) the domination by the genus Chaetoceros, and, 2) 

the constant r e l a t i v e abundances of SkeZetonema and Chaetoceros (Figs. 6A, B, 

C & 7A,B), 

f By day 5, $keJL&tonzma. w a s approximately 5 times more numerous i n the 

patchy systems (2 & 3) than i t was i n System 1 (Fig, 6A,B.,C). From day 9 to 

the termination of Experiment 1, SkeZetonema and Chaetoceros accounted for 

65% to 85% of the t o t a l c e l l numbers i n a l l three treatments. The primary 

difference among the f i n a l assemblages was the r e l a t i v e proportions of 

Chaetoceros and SkeZetonema present, 

Chaetoceros continued to dominate System 1 u n t i l the end of the 

experiment (Figs, 6A & 7B). System 2 (8 additions/day) was dominated by 

Chaetoceros u n t i l day 16 a f t e r which SkeZetonema was the most abundant. 

Chaetoceros was dominant u n t i l day 9 i n System 3 (1 addition/day) with 

SkeZetonema dominating thereafter. 

An ammonium l i m i t e d semi-continuous culture was started at the same time 

as Experiment 1, It was d i l u t e d once a day and had the same turnover rate 

and ammonium f l u x as System 3, and thus, t h i s semi-continuous culture served 

as a r e p l i c a t e . After 3 weeks both Systems 3 and the semi-continuous culture 

r e p l i c a t e d very well (Figs. 7A & B) when considering the treatment differences, 

c) Nutrient uptake: Uptake rates were measured at the end of each 

experiment. The a b i l i t y of each culture to procure ammonium under the 

ammonium addition regimes of the other systems was determined. For example, 

System 3 received an addition of ammonium 'each.: day at. QiQQ-hr bringing the. 

reactor concentration to 3 ug-at'£ \ Therefore, t h i s addition was made to 

aliquots of each of the 3 cultures at 0100 hr and the disappearance of 

ammonium i n the dark was followed, 
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Figure 6 . Accumulative c e l l numbers (Exp. 1) Thalassiosira, (0) ; F l a g e l l a t e s 
( V ) ; Nitzsohia, ( 0 ) ; Chaetoceros, ( V ) ; Skeletonema, ( • ) ; Total numbers, ( a ) 
A, System 1 : B, System 2 : C, System 3 . 
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Figure 7. Relative c e l l numbers (Exp. 1). System 1, (o); System 2, ( o ) ; 

System '3, ( A ) ; semi-continuous culture (A) (see t e x t ) : A, percent 

Skeletonema: B, percent Chaetocevos. 
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The decreases i n ammonium concentration with time f o r the 3 systems i s 

seen i n F i g , 8, The system previously exposed to t h i s once a day addition 

(System 3) had the highest uptake. System 2 was exposed to pulses of lower 

concentration but s t i l l exhibited f ar higher uptake than did System 1 which 

was subject to a r e l a t i v e l y homogeneous ammonium d i s t r i b u t i o n over the 

preceding 3 weeks, 

This uptake experiment was repeated during the day at 1200 hr, The 

pattern of uptake and magnitude of the rates during the day (Fig, 9) were 

e s s e n t i a l l y the same as those at night, with System 3>2>1, i n ranked order of 

a b i l i t y to take up the large pulse of the l i m i t i n g nutrient. 

The uptake c h a r a c t e r i s t i c s of a l l cultures when exposed to the addition 

regime of System 2 were examined by repeating the perturbation experiments •. 

with a smaller nutrient addition (0.38 yg-at•£~ 1) so that the ambient ammonium 

concentration was equivalent to the additions to System 2, At t h i s low NH^Cl 

concentration, the uptake of System 2 was so rapid that no ambient ammonium • 

was detected 2 min a f t e r the addition. It was, however, s t i l l detectable i n 

aliquots from Systems 1 and 3, In another experiment to further assess t h e i r 

rapid uptake a b i l i t i e s , a larger addition of NH^C1(1 yg-at • £ was added to 

another aliquot from each system. The ambient NH^ concentration was 0.36 

yg-at•£ \ 2 min a f t e r the perturbation of System 2. Both Systems 1 and 3 had 

su b s t a n t i a l l y more ammonium remaining af t e r a s i m i l a r 2 min incubation. 

4.2) Experiment 2: 

A dup l i c a t i o n experiment was i n i t i a t e d a few days a f t e r the termination of 

Experiment 1, Systems 2 and 3 were l o s t i n an accident. The differences i n 

the species composition between t h i s inoculum and that of Experiment 1 are 

shown i n Table I I I . The community structure of System 1, expressed as r e l a t i v e 

number of Skeletonema and Chaetocevos , i s shown i n Figure 10, The fact that 

Chaetocevos dominated over Skeletonema throughout the experiment 
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Figure 8. Disappearance of ammonium with time, following an ammonium perturba­

t i o n at 0100 hr (Exp. 1). System 1, (•); System 2, ( V ) ; System 3, (0). 
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Figure. 9. Disappearance of ammonium with time, following an ammonium perturba­

ti o n at 1200 hr (Exp. 1). System 1, (•); System 2, ( V ) ; System 3, (0). 
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Figure 10. Relative diatom numbers (Exp. 2, System 1): percent Skeletonema 

(• ) and Chaetocevos (•). 
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points to the high degree of consistency i n these data, even though both 

the I n i t i a l inofiulun(Table III) and the irradiance (Fig..11) d i f f e r e d 

markedly from that i n Experiment "1. 

5) Discussion 

The primary difference i n community structure among the f i n a l 

assemblages was i n the proportion of SkeZetonema and Chaetoeevos present. 

D i f f e r e n c e s . i n f i n a l " composition must, therefore, have been mediated through 

differences i n competitive a b i l i t y f o r the l i m i t i n g nutrient over the range 

of patchiness presented. 

The reason that System 2 took Up low concentration pulses f a s t e r than 

System 3 (and yet the opposite holds true for high nutrient concentration 

pulses)' may'be due.to -the" complexity of the uptake -mechanism i t s e l f . 

Conway et a l . (1976) and Conway and Harrison (1977) showed that a f t e r 

addition of the l i m i t i n g nutrient to a phytoplankton culture there i s often 

an i n i t i a l , s h o r t - l i v e d , rapid uptake, followed by a more constant, possibly 

i n t e r n a l l y or feedback co n t r o l l e d uptake rate. Due to the dual . .. 

nature of the uptake mechanism, the preceding observations could be explained 

i f System 2 had the more rapid i n i t i a l uptake rate, but System 3 had; the 

more rapid i n t e r n a l l y c o n t r o l l e d or long term uptake rate (see also . ... . 

Appendix I I ) . 

The high uptake rate of the assemblages exposed to a patchy regime 

in d i c a t e d, s e l e c t i o n of populations best able to procure the l i m i t i n g 

nutrient i n i t s patchy d i s t r i b u t i o n . 

It can be i n f e r r e d that assemblage 1 with i t s low maximal uptake rate 

must therefore compensate by having a lower for ammonia than e i t h e r of 

the other assemblages. If t h i s were not the case, assemblage 1 could not 

have been selected for on the basis of nutrient uptake and growth a b i l i t y . 

Mickelson et a l . (1979) have used the same reasoning to rank growth k i n e t i c s 

of 3 species of diatoms based on t h e i r competitive a b i l i t i e s . 
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Figure 11. Surface l i g h t i n t e n s i t y (400-700 nm). 

was used to reduce i t by 50% during experiments. 

Experiment 2, (•). 

A l i g h t f i l t e r (see text) 

Experiment 1, (0)-; 
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The r e s u l t s obtained here are consistent with other published work on 

phytoplankton physiology and competition. Conway and Harrison (1977) showed 

that when ammonium l i m i t e d Skeletonema oostatwn was perturbed with an 

addition i t was able to take up the pulse more r a p i d l y than a s i m i l a r culture 

of Chaetocevos debilis. Mickelson et a l . (1979) showed that i n ammonium 

li m i t e d continuous cultures (with a homogeneous ammonium d i s t r i b u t i o n ) 

Chaetocevos can, i n some cases, out-compete Skeletonema. 

5.1) R e p l i c a b i l i t y : 

In any study i t i s important to draw attention to the reproducibility, 

and consistency of the r e s u l t s . In t h i s study, three treatments (3 v a r i a t i o n s 

i n the temporal d i s t r i b u t i o n of the l i m i t i n g nutrient) were employed. There 

are three sets of observations that i n d i c a t e consistency among treatments: 

F i r s t i s the trend i n community structure, with assemblage 1 being 

dominated by Chaetocevos; assemblage 2 codominated by Chaetocevos 

and Skeletonema and assemblage 3 by Skeletonema; second* the trend 

i n ambient s i l i c a t e concentrations, and t h i r d , the trend i n 

community physiology. 

R e p l i c a b i l i t y was demonstrated by a semi-continuous culture (d a i l y .. 

d i l u t i o n ) most c l o s e l y approximating System 3. The r e s u l t i n g trends i n 

community structure were very consistent (Fig. 7) i n s p i t e of the treatment 

differences (semi-continuous d i l u t i o n , daytime ammonia addition compared 

with continuous d i l u t i o n , nighttime ammonia add i t i o n ) . The d u p l i c a t i o n of 

System 1 i n Experiment 2 showed the same trend-in_community.structure: as'. 

System 1 i n Experiment 1, even though the inoculum and l i g h t conditions 

varied greatly. 

The i n t e r n a l consistency of the data and the r e p l i c a t i o n and d u p l i c a t i o n 

of predominant trends, indicates the consistency of the r e s u l t s as a function 

of the given treatments. 
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5.2) E c o l o g i c a l considerations: 

Limiting nutrient patchiness can occur by many mechanisms. The 

regeneration of nutrients i n the euphotic zone has been shown to be an 

important source of nutrients for phytoplankton growth (Eppley ,et: a l . , 1973; 

Dugdale, 1976). Since nutrient regeneration may occur at point sources, 

concentration gradients and patches may be maintained for some time due to 

the low contribution of turbulence to d i s s i p a t i o n at small s i z e scales. 

Upwelling, runoff, advection, d i e l zooplankton migration and other phenomena 

can cause large scale temporal and s p a c i a l nutrient patchiness. 

Nutrient patchiness would then appear to be a phenomenon that occurs on 

scales from micrometers (bacteria, zooplankton) to kilometers (upwelling and 

r u n o f f ) . 

These experiments showed that, under i d e n t i c a l d a i l y nutrient fluxes, 

the outcome,-of competition between the two dominant populations, SkeZetonema 

and Chaetoceros, was mediated by the patchiness of the l i m i t i n g nutrient.. 

Figure 12 shows a simple competition scheme where the competitive advantage 

of each group i s expressed as a f u n c t i o n o f patchiness. The two 

curves should.intersect.and the point of i n t e r s e c t i o n . 

represents the degree of patchiness mediating coexistence of the two groups. 

This could account for apparent long term coexistence seen i n natural 

systems where more than one organism i s l i m i t e d by a si n g l e resource. 

Optimization of a patchy l i m i t i n g nutrient environment, over the range 

tested, appears to occur by an enhanced maximal uptake rate (V ) while ' r r max 

adaptation to a homogeneous l i m i t i n g nutrient system appears to be more a 

function of substrate a f f i n i t y ( K g ) . Neither of these adaptive mechanisms 

should be considered mutually exclusive as uptake i s s t i l l a function of 

both V and K , at any nonsaturating substrate concentration. 
max s -
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Figure 12. 

SkeZetonema 

Possible changes in competitive advantage between Chaetoceros and 

as a function of ammonium patchiness. 



There are two. factors' of importance i n the outcome of 

competition for a patchy resource. The f i r s t are differences i n i n t e r s p e c i f i c 

n u t r i e n t uptake a b i l i t y . These inherent differences i n the genetic make-up 

of d i f f e r e n t phytoplankton species give r i s e to o v e r a l l differences i n compet­

i t i v e a b i l i t y (Doyle, 1975). Superimposed on t h i s v a r i a b i l i t y i s i n t r a ­

s p e c i f i c v a r i a b i l i t y mediated by such factors as l i f e cycle stage (Davis 

et a l . , 1973), growth rate (Eppley & Renger, 1974; Turpin, unpubl.), past h i s t o r y 

(Chapter 4), l i g h t quantity and q u a l i t y and temperature. When a s h i f t i n communi 

structure i s observed, however, i t can be concluded that the i n t e r s p e c i f i c 

differences are of greater importance. 

The importance of temperature (Eppley, 1972) and l i g h t (Ryther, 1956) 

i n the establishment of upper l i m i t s f o r phytoplankton growth and a f f e c t i n g 

competition i s well documented (Goldman & Ryther, 1976). Under conditions of 

c o n t r o l l e d l i g h t and temperature i t has been shown that the s p e c i f i c f l u x of 

the l i m i t i n g resource can a f f e c t the outcome of competition (Meers, 1971; 

Harder et a l . , 1977; Mickelson, In Press; Mickelson et a l . , 1979; Harrison & 

Davis, 1979). A schematic representation of the e f f e c t s of the s p e c i f i c 

nutrient f l u x of the l i m i t i n g nutrient on community structure i s given i n 

F i g . 13. Once the general community structure has been set by the s p e c i f i c 

f l u x of the l i m i t i n g nutrient factors such as patchiness, fine-tune the system 

with respect to determining population dominance. The s p e c i f i c f l u x i n these 

systems was such that i t selected for fast-growing c e n t r i c diatoms. The 

patchiness imposed, determined which c e n t r i c s would dominate. 

At the same time that one nutrient i s l i m i t i n g f o r some species, other 

species may be l i m i t e d by other nutrients (Titman, 1976; Tilman, 1977; Rhee, 

1978). The same argument f o r community fine-tuning by patchiness can be used 

for populations l i m i t e d by any resource. The importance of d i f f e r e n t i a l 

sinking and herbivore grazing (Steele & Frost, 1977) cannot be ignored as 
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as factors that would have to be included i n any model accounting for 

phytoplankton d i v e r s i t y . 

Based on e a r l i e r arguments that coexistence could be expected on a 

s i n g l e resource due to patchiness, one would expect the maximum 

t h e o r e t i c a l number of coexisting species to be equal to two times the number 

of l i m i t i n g resources. When considering a l l these previously mentioned 

factors i n addition to d i v e r s i t y maintenance by allelopathy (DeFreitas & 

Frederickson, 1978) and the contemporaneous d i s e q u i l i b r i u m hypothesis ,of 

Richerson et a l . (1970), there i s seemingly l i t t l e reason to invoke a 

"paradox of the plankton" (Hutchison, 1961). 

There are several p o t e n t i a l p r a c t i c a l a p plications of l i m i t i n g n u t r i e n t 

patchiness i n manipulating phytoplankton communities. By using the correct 

frequency of nutrient additions coupled with correct nutrient fluxes and 

r a t i o s , favorable species may be selected f or use i n aquaculture systems. The 

Great Central Lake f e r t i l i z a t i o n project (Takahashi & Nash, 1973) has 

resulted i n enhanced f i s h y i e l d s following a r e a l bombing of the lake with 

nutrients (Stockner, pers. comm.). A l t e r a t i o n of the frequency of bombing could 

lead to s e l e c t i o n of more favorable primary producers which i n turn might 

r e s u l t i n enhanced herbivore production and increases i n f i s h y i e l d s . 

The recent work by Marra (1978a; 1978b) indic a t e d the p o t e n t i a l 

importance of f l u c t u a t i n g l i g h t regimes i n terms of primary p r o d u c t i v i t y . 

Both Marra's work and t h i s study seem to show that i n t e r p r e t a t i o n of growth' 

only as a function of constant environmental c o n d i t i o n s " w i l l not lead 

to the accurate understanding and p r e d i c t i o n of phytoplankton dynamics i n the 

sea. The environment of a phytoplankton c e l l i s continually f l u c t u a t i n g and-, 

therefore, work should begin to focus on understanding the growth dynamics of 

these organisms under f l u c t u a t i n g environmental conditions. 
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Chapter I II 

CELL SIZE MANIPULATION IN PHYTOPLANKTON ASSEMBLAGES 

1) Summary 

In cultures of natural phytoplankton and a mixed culture of diatoms, the 

mean c e l l diameter that was selected f o r i n species competition experiments 

was rela t e d to the time between l i m i t i n g nutrient (ammonium) additions ( i . e . , 

temporal patchiness). The mean c e l l s i z e increased as the frequency of the 

nutrient addition decreased. The p o s s i b i l i t y that l i m i t i n g nutrient p a t c h i ­

ness may be of some importance i n c e l l s i z e s e l e c t i o n i n nature i s also 

discussed. 
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2) Introduction 

Factors regulating the c e l l s i z e of phytoplankton i n the sea have been 

discussed (Malone, 1971; Semina, 1971, 1972; Parsons & Takahashi, 1973b; 

Laws 1975) and there has been considerable controversy as to t h e i r importance 

(Parsons & Takahashi, 1973b; Hecky & Kilham, 1974; Parsons & Takahashi, 1974; 

Malone, 1975; Parsons & Takahashi, 1975). Phytoplankton c e l l s i z e has been 

suggested to be important i n determining trophic l e v e l structure and the 

e f f i c i e n c y of food chain energy transfer (Parsons et a l . , 1967; Ryther, 1969; 

Parsons & LeBrasseur, 1970; Greve & Parsons, 1977). I f t h i s hypothesis i s 

to be tested i t w i l l require the manipulation of c e l l s i z e i n natural 

phytoplankton assemblages. This i s not possible at present. 

This chapter reports how c e l l s i z e was manipulated i n diatom-dominated 

laboratory cultures and i n cultures of natural phytoplankton populations, 

by changing the temporal patchiness of the l i m i t i n g nutrient (ammonium). 

3) Methods 

A natural phytoplankton sample taken from 4-8 m i n a c o n t r o l l e d 

ecosystem enclosure (CEE) at the CEPEX s i t e (Menzel & Case, 1977) was f i l t e r e d 

through a 150 ym mesh to remove any large zooplankton. Diatoms predominated i n 

the sample and the most numerous species were ThcLtaiA^OA-iAJX. noK.&QM&\lLoL<iLL, 

ChaCLtodQAOi) spp. and SkoZoXonma. COStotum. U n i d e n t i f i e d small f l a g e l l a t e s 

made up < 40% of the sample c e l l numbers. Further d e t a i l s of the composition 

of t h i s i n i t i a l sample are given i n Experiment 2 i n Chapter 2, p. 41. 

Cultures were grown: i n 3 - l i t e r f l a s k s and incubated at 13 it 1°C i n a 

w a t e r - f i l l e d P l e x i g l a s incubator system (Ch. 3). Natural sunlight was 

attenuated by 50% and s p e c t r a l l y corrected by surrounding the incubator 

with 1/8" blue P l e x i g l a s . D e t a i l s of the incident r a d i a t i o n during the 

experimental period are given i n Experiment 2 i n Chapter 2, p. 50. 
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The culture medium consisted of a 2 0 0 - l i t e r sample c o l l e c t e d from 0-4 m 

i n the CEE and f i l t e r - s t e r i l i z e d using a membrane f i l t e r (0.45 ym) . This water 

was found to be nitrogen depleted (<0.5 yg-at.«£ \)' and was' enriched to give 

f i n a l concentrations of ammonium chlo r i d e , 10 yg-at-£ potassium phosphate 
-1 -1 (monobasic), 3 yg-at•£ ; s i l i c a t e , 50 yg-at•£ and vitamins and trace 

metals to f/25 ( G u i l l a r d &. Ryther, 1962). 

The natural phytoplankton sample described above was used to inoculate 

three outdoor cultures (Exp. 1) i n which the l i m i t i n g n u t r i e n t , ammonium, was 

added continuously i n one culture and semi-continuously at d i f f e r e n t time 

i n t e r v a l s i n the other two cultures. Culture 1 was a continuous flow culture 

with a d i l u t i o n rate of 0.3 day Culture 2 was a semi-continuous culture,, 

d i l u t e d every day ( d i l u t i o n rate = 0.3 day "*") with inflow medium i n which the 

ammonium enrichment of 10 yg-at•£ 1 was omitted. This culture received i t s 

ammoniumsupply as a discre t e pulse of 9 yg-at•£ 1 every 3 days. Culture 3 

was i d e n t i c a l to culture 2 except that 21 yg-at•£ 1 ammoniumwas added once 

every 7 days. A comparison of the treatments used i n a l l three cultures 

indicates that both the d i l u t i o n rate and the l i m i t i n g nutrient f l u x (21 yg-at 

NH*-week ^) wore i d e n t i c a l i n a l l three cultures and only the frequency of 

additions (temporal d i s t r i b u t i o n ) of the l i m i t i n g nutrient varied. 

A s i m i l a r experiment (Exp. 2) was conducted i n the laboratory as a test 

of d u p l i c a t i o n . Cultures were grown i n a l i g h t regime of 16L:8D and an i r r a d -
-2 -1 

iance of 150 yEin'm -sec . U n i a l g a l cultures of Chaetocevos sp. (#277), 

Skeletonema costatvm (#18b) and Thalassiosiva novdenskioldii (#252) .(North­

east P a c i f i c Culture C o l l e c t i o n , Department of Oceanography, U.B.C.) were 

mixed together and maintained i n three cultures as described i n Experiment 1, 

with the exception of culture 1 which was a semi-continuous cul t u r e , d i l u t e d 

d a i l y . Since the temperature was higher (18°C) i n t h i s experiment, the 

d i l u t i o n rate was increased to 0.5 day 1 i n order to achieve a s i m i l a r 

degree of nitrogen l i m i t a t i o n as used i n Experiment 1. Nitrogen fluxes were 
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adjusted so the weekly ammonium f l u x (35 yg-at-£ """) through a l l cultures was 

i d e n t i c a l . Samples of the inflow medium were taken r e g u l a r l y to check 

expected nutrient concentrations and samples from the cultures were frequently 

analyzed to determine ambient nutrient concentrations. A f t e r three weeks of 

treatment, the .organisms 'present i n both Experiments 1 and 2 were i d e n t i f i e d and 

counted. C e l l volumes of the most dominant species were calculated from 

measurements of c e l l dimensions of 50 c e l l s , using an eyepiece micrometer and 

an inverted microscrope. 

4) Results and Discussion 

Nutrient analyses of the culture e f f l u e n t indicated that the ammonium 

was undetectable i n the continuous flow culture. In culture 2, 

the 9 y g - a f £ _ 1 addition of ammonium f e l l below detectable l e v e l s by 

the end of the f i r s t day and as a r e s u l t i t was N-starved for the following 

2 days u n t i l another pulse was given. Culture 3 depleted the 21 yg-at•£ 1 

ammonium addition in•two days, r e s u l t i n g i n a -5-day period of N^ataxyation before 

the next weekly ammonium pulse. 

Figure 14 shows the mean c e l l diameter of the dominant species (>85% of 

culture biomass) from Experiments 1 and 2 as a function of the time between 

ammonium additions. There i s a s i g n i f i c a n t increase ( t - t e s t , p=.01) i n c e l l 

s i z e over the range of treatments. Experiment 1, System 1 (continual 

addition) was dominated by Chaetocevos sp., System 2 by Skeletonema costatwn 

and System 3 by Thalassiosiva novdenskiold-ii. 

I t i s also of i n t e r e s t to note that i n addition to the trend of 

increasing c e l l s i z e with low frequency patchiness, the large c e l l s , such as 

Thalassiosiva and Skeletonema > formed chains, whereas the small. Chaetocevos 

remained s i n g l e - c e l l e d . 

Experiment 2 demonstrated the same trend as Experiment 1 with the mean 

c e l l diameter increasing with the time between ammonium additions (Fig. 14). 
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Figure 14. Mean c e l l diameter as a function of the time between ammonium 

additions for Exp. 1 (0) and Exp. 2 (•). The mean c e l l diameters between 

each treatment "in each experiment were s i g n i f i c a n t l y , d i f f e r e n t (p = .01). 

Mean c e l l diameter was calculated from the mean c e l l volume assuming an 

equivalent sphere. 



Skeletonema, however, washed out of a l l cultures soon a f t e r the experiment was 

i n i t i a t e d . This was probably due to the poor condition of the inoculum 1. 

Culture 1 was dominated by Chaetocevos sp.;, i n culture 2, Chaetocevos sp. and 

Thalassiosiva novdenskiold-ii codominated, while culture 3 was dominated by 

T. novdenskoldii. 

These r e s u l t s are consistent with other recent studies. Nitrogen 

additions were made on a weekly basis to the nitrogen-limited CEE community 

from which the i n i t i a l inoculum for Experiment 1 was taken. The dominant 

phytoplankters over a 60-day period were generally l a r g e - c e l l e d diatoms, such 

as Stephanopyxis tuvvis, Cevataulina bergonii and Thalassionema nitzschiodes 

(Parsley & Davis, pers. comm.). Mickelson (in press) found that over a wide 

range of d i l u t i o n rates (continual l i m i t i n g nutrient addition) i n nitrogen-

l i m i t e d continuous cultures, small c e l l s dominated. He suggested that c e l l 

s i z e must be determined, therefore, by factors other than nutrient supply 

rates. Data from Eppley et a l . (1969) suggest that small c e l l s have a d i s t i n c t 

advantage i n si t u a t i o n s i n which there i s a constant supply of the l i m i t i n g 

nutrient because of t h e i r lower values compared to large c e l l s . When the 

nutrient supply becomes patchy, large c e l l s apparently gain the advantage. 

Even though r e s p i r a t i o n rates were not determined i n t h i s study, i t i s tempt­

ing to suggest that i n a low-frequency patchy environment, small c e l l s , with 

a higher s p e c i f i c r e s p i r a t i o n rate (Laws, 1975; Banse, 1976) tend to "burn 

themselves up" before the appearance of the next nutrient pulse. If r e s p i r a ­

t i o n i s a s i g n i f i c a n t f actor i n species s e l e c t i o n , the competition scheme 

that has been proposed for high-frequency l i m i t i n g nutrient patchiness 

(Turpin & Harrison, 1979; Ch. 3) could be expanded to include the possible 

e f f e c t of size-dependent r e s p i r a t i o n losses at lower frequency 

1 The Skeletonema inoculum appeared to be i n poor health. C e l l s 
were very t h i n , chains were short and often clumped. This was i n contrast 
to the large vigorous c e l l s seen i n the natural sample. 
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patchiness (Fig. 15). 

The r e s u l t s of these indoor and outdoor culture studies i n d i c a t e that 

by varying the frequency of addition of the l i m i t i n g n u t r i e n t , natural phyto­

plankton populations can be manipulated to produce communities dominated by 

e i t h e r large or small c e l l s . Since nutrient f l u x i s a coarse tuning v a r i a b l e 

tending to regulate s e l e c t i o n between phytoplankton groups (Turpin & Harrison, 

1979; Ch. 3), i t may be possible to study c e l l s i z e s e l e c t i o n within f l a g e l ­

l a tes by using a much lower d i l u t i o n rate than was used i n t h i s study. 

The r o l e of pulsed nutrient supplies i n determining c e l l s i z e i n 

natural systems i s not known. The importance of grazing ( M c A l l i s t e r et a l . , 

1960; Parsons et a l . , 1967; Malone, 1971; Steele & Frost, 1977) and sinking 

(Semina, 1972) i n c o n t r o l l i n g c e l l s i z e is.not to be denied, Nevertheless, i t 

does seem possible, that a wide range i n temporal patchiness of the nutrient 

supply may control s e l e c t i v e ce'll s i z e growth i n the sea. 
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Chapter IV 

RESPONSE OF AMMONIUM LIMITED 

SkeZetonema costatum AND Chaetoceros graciZe 

TO LIMITING NUTRIENT PATCHINESS 

1 ) Summary 

The e f f e c t s of pulsed ammonium additions on the ammonia l i m i t e d marine 

diatoms, SkeZetonema costatum and Chaetoceros graciZe were examined. It was 

found that ammonium patchiness produced p e r i o d i c i t i e s i n carbon a s s i m i l a t i o n 

and in vivo fluorescence. Changes i n nutrient uptake a b i l i t y under varying 

l i m i t i n g nutrient patchiness regimes ind i c a t e that a given population may be 

able to adapt i t s nutrient uptake c h a r a c t e r i s t i c s , thereby optimzing the 

temporal d i s t r i b u t i o n of the l i m i t i n g resource. S. costatum shows a greater 

a b i l i t y to u t i l i z e a pulse of ammonium than C. graciZe. This evidence i s 

consistent with the outcome of the competition studies i n Chapter 2. 
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2) Introduction 

In Chapters II and I I I , l i m i t i n g nutrient patchiness was examined as a 

fac t o r a f f e c t i n g the outcome of competition i n phytoplankton assemblages. 

It was shown that the temporal d i s t r i b u t i o n of the l i m i t i n g nutrient affected 

the outcome of competition and the r e s u l t i n g p h y s i o l o g i c a l c h a r a c t e r i s t i c s of 

the community. The observation that the assemblage dominating under patchy 

conditions had a higher V than the one dominating under homogeneous condi-
max 

tions, suggested that i n t e r s p e c i f i c v a r i a b i l i t y i n the nutrient uptake char­

a c t e r i s t i c s was of great importance i n raffecting competition. The remaining 

questions were: to what extent can a given species adapt to a given patchy 

environment, and to what degree does i n t r a s p e c i f i c v a r i a b i l i t y allow for 

optimization of a patchy environment? 

In attempts to answer these questions, two species of marine 

phytoplankton were grown i n u n i a l g a l continuous cultures under a range of 

ammonium patchiness conditions. Their p h y s i o l o g i c a l response to these t r e a t ­

ments was monitored through nutrient uptake and photosynthesis experiments, 

i n addition to the monitoring of culture fluorescence and c e l l numbers. The 

marine diatoms, SkeZetonema *eo,stectum and Chae.toceros gvaciZe> were, studied, 

to gain insight into;the p h y s i o l o g i c a l mechanisms contributing to the out^ 

come of competition-observed'in studies i n Chapter 2. In those studies 

S. costatum dominated under the patchy conditions and a small- Chaetoceros sp. , 

s i m i l a r to C. graciZe, dominated under the homogenous nutrient-conditions. 

3) Materials and Methods 

The inocula were obtained from the Northeast P a c i f i c Culture C o l l e c t i o n 

(NEPCC) at The Uni v e r s i t y of B r i t i s h Columbia (SkeZetonema costatum, NEPCC 18b; 

Chaetoceros graciZe, NEPCC 294) and were grown i n 6 - l i t e r continuous cultures 

at a d i l u t i o n rate of 0.6 d 1 under conditions described i n Chapter 1. Inflow 

medium was a r t i f i c i a l seawater (Davis et a l . , 1973) enriched to f/2 ( G u i l l a r d 
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& Ryther, 1962) with phosphate and s i l i c a t e and to f/25 with vitamin and 

trace metals. The l i m i t i n g n u t r i e n t , ammonium was added as ammonium chloride 

to a concentration of 30 ug-at-£ \ This ••established a d a i l y ammonium f l u x 

through the cultures of 18 pg-atN«£ "'"•day "*". The cultures were grown at 18°C 
-2 -1 

and the irradiance was 150 uEin-m «s , continuous l i g h t (Ch. 1). 

Once steady-state had been attained,the continuous cultures described 

above were divided into two x 2 - l i t e r . f l a s k s with a d i l u t i o n rate of 

0.6 d 1 . System 1 for both species had the same inflow medium as the parent 

culture, whereas System 2 had no added ammonia i n the inflow medium. System 2, 

for both species, received a s i n g l e d a i l y ammonia addition at 1300 hr, 

con s i s t i n g of 12.7 ml of 2.83 mM ammonium chloride s o l u t i o n . This resulted 

i n an i d e n t i c a l ammonia f l u x through both Systems 1 and 2 of 18 ug-atN.£ "'"• 

day "*". The addition was c o n t r o l l e d by a s p e c i a l l y modified timer ( C i n c i n n a t i , 

Model 422) and a c a l i b r a t e d metering pump.(Fluid Metering Inc., New Jersey). 

A diagrammatic representation of these systems appears in-.Fig. 4 

along with an assessment of the experimental design. 

3.1) Measurements: 

Culture e f f l u e n t s were c o l l e c t e d d a i l y and preserved i n Lugol's iodine. 

An inverted microscope was used for enumeration of samples. In vivo f l u o r ­

escence was monitored with a fluorometer (Turner, Model H I ; equipped with a 

high s e n s i t i v i t y door. Nutrients i n culture e f f l u e n t s were analyzed with a 

Technicon Autoanalyzer using methods previously described (Davis et a l . , 

1973). 

Aft e r two weeks of exposure to the nutrient regimes, the response of the 

populations to an ammonia pulse or perturbation (Caperon & Meyer,1972b) was 

determined. A 250 ml . ; sample was removed from a chemostat and perturbed 

with 1.59 ml of 2.83 mM ammonium ch l o r i d e . This r a i s e d the ambient concentra­

t i o n of ammonia to 18 ug-at.£ \ the same concentration that was obtained 
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immediately a f t e r the once per day pulse i n System 2. Since System 2 cultures 

were acclimated to the pulse occurring at 1300 hr, the uptake experiments for 

these cultures were c a r r i e d out at t h i s same time. Ammonium •disappearance 

was then followed with an Autoanalyzer. The a b i l i t y of the various phyto­

plankton populations to respond to the d i f f e r e n t patchiness regimes was 

determined.. 

Carbon a s s i m i l a t i o n was measured over a 24 hr period to observe the 

influence of the d a i l y ammonia addition on photosynthetic a c t i v i t y . This 

was accomplished by placing 50 ml of the culture i n a 50 ml screw top test 
-1 14 

tube and adding 0.4 ml of 2.5 uCi-ml NaH CO^. The samples from 

System 1 were incubated for 1 hr, whereas the samples from System 2 were 

incubated for 8, 3 hr i n t e r v a l s extending over the 24 hr period. The 

shorter incubation time f o r System 1 was chosen to minimize the e f f e c t s of 

nitrogen starvation that occurs upon removing the sample from t h i s continual 

ammonium addition system. A longer incubation time could be used for the 

samples from System 2 because the l i m i t i n g nutrient Ammonium ) was added at 

only one time each day. Following the incubations, samples were f i l t e r e d 

onto 0.45 um M i l l i p o r e f i l t e r s and suspended i n 15 ml of Scinti-Verse s c i n t i l ­

l a t i o n f l u i d . The r a d i o a c t i v i t y i n the samples was determined using a.Unilux 

III, l i q u i d s c i n t i l l a t i o n counter. 

Average d a i l y C/N a s s i m i l a t i o n r a t i o s were calculated f or a l l systems a f t 

determining the t o t a l d a i l y carbon a s s i m i l a t i o n and the calculated d a i l y 

nitrogen a s s i m i l a t i o n . Daily carbon a s s i m i l a t i o n for System 1 was calculated 

by mult i p l y i n g the mean hourly carbon a s s i m i l a t i o n rate by 24. The d a i l y 

carbon a s s i m i l a t i o n for System 2 was calculated by summing the 8, 3 hr incuba­

t i o n values. Average d a i l y nitrogen a s s i m i l a t i o n was equated to the d a i l y 

ammonia fl u x through the culture. Correction was made for the washout of a 

portion of the anmionlum i n System 2 (as ammonia was added i n a d i s c r e t e pulse 
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and, as the uptake of t h i s pulse was not instantaneous some washout occurred). 

This correction did not have to be applied to System 1 as there was e s s e n t i a l l y 

no d e t e c t i b l e ammonia i n the outflow. 

4) Results 

4.1) Fluorescence: 

Culture fluorescence i n the homogeneous cultures remained constant 

throughout the experiment, whereas i t fluctuated markedly i n the once a day 

ammonia addition culture, System 2 (Fig. 16). This f l u c t u a t i o n ' 

.was.most noticeable i n -S. aostatwn. The minimum culture fluorescence 

occurred at ^ 1900 hr, 4 hr a f t e r the addition of the ammonium pulse, while 

the fluorescence maximum occurred at ^ 0300 hr, 14 hr a f t e r the pulse. 

C. gracile (System 2) showed some f l u c t u a t i o n i n culture fluorescence with a 

minimum at ^ 1700 hr, 6 hr a f t e r the ammonium addition, and a maximum at 

^ 0300 hr, 14 hr a f t e r the addition. 

4.2) Carbon a s s i m i l a t i o n : 

System 1, for both species, showed a constant carbon a s s i m i l a t i o n rate 

over the 24 hr period (Fig. 17). In the once a day ammonium addition cultures, 

carbon a s s i m i l a t i o n fluctuated i n response to the d a i l y ammonium addition. For 

both species, a maximum was observed at ^ 0300 hr, 14 hr a f t e r the ammonium 

addition and the minimum occurred d i r e c t l y following the ammonium addition. 

4.3) Carbon/Nitrogen a s s i m i l a t i o n r a t i o s : 

The average d a i l y C/N a s s i m i l a t i o n r a t i o s (by atoms) for S. costatum 

were 14.3±1.2 and 12.8±1.7 for Systems 1 and 2, r e s p e c t i v e l y . This d i f f e r e n c e 

was not s i g n i f i c a n t (p = 0.3). The average d a i l y C/N a s s i m i l a t i o n r a t i o s for 

C. gvacile were 11.6 ± 1.2 and 10.0 ± 1.8 for Systems a and 2, r e s p e c t i v e l y . 

These differences were again not s i g n i f i c a n t (p = 0.07). There was, however, 

a s i g n i f i c a n t difference between the two species grown i n both the homogeneous 

and patchy conditions (p = 0.0001 and p = 0.03, r e s p e c t i v e l y ) . 
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Figure 16. Relative fluorescence over a 24 hr period f o r C. gvacile (Q , 

System 1, continuous addition of ammonia; and fl| , System 2, d a i l y addition 

of ammonia) and S. costatum (0, System 1; System 2). A l l systems were 

continuous flow with a d i l u t i o n rate of 0.6 d 1 and grown under continuous 

l i g h t . The arrow represents the time of the ammonia addition to System 2. 

The point indicated f o r System 1 represents the mean of four values taken 

throughout the day. 
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Figure 17. Carbon f i x a t i o n rate f o r S. costatum, (0, System 1, continual 

addition of ammonia; and • , System 2, d a i l y addition of ammonia) and 

C. grac-LXe,,' — ( 8 f , System .continual' : addition -of-'ammonia; and Cf , 

System 2, d a i l y addition of ammonia) j y indicates time of ammonia addition 

to System 2. Bars represent 95% confidence l i m i t s . 
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4.4) C e l l numbers; 

No trends were apparent i n the c e l l d e nsities i n any of the systems, 
8 —1 

System 1 f o r 5, costatum had an average density of 7,3 ± 0.4 x 10 cells•£ 
8 —1 

whereas System 2 exhibited an average density of 7,4 ± , 08 x 10 cells1'£ 
8 —1 

C. gracile (System 1) had an average c e l l density of 4,7 ± 0,3 x 10 cell-£~ , 
8 -1 

whereas the average density of System 2 was 4.6 ± 1,2 x 10 cell-£ 

4.5) Nutrient uptake: 

a) I n t e r s p e c i f i c d i f f e r e n c e s : The nutrient uptake response of System 1 

(homogeneous d i s t r i b u t i o n of the l i m i t i n g nutrient) to a perturbation equiva­

lent to the d a i l y addition of System 2 i s represented i n F i g , 18, S, costatum 

exhibited a very rapid i n i t i a l uptake (Y^ ; see Appendix II) over the f i r s t 

3 min following the perturbation, when compared to C, gracile. Subsequent 

uptake (V : see Appendix II) i s also more rapid for S, costatum, 

The nutrient uptake response of System 2 (da i l y addition) to i t s d a i l y 

ammonium pulse i s shown i n Figure 19, \ The general features of the r e s u l t s 

are s i m i l a r to System 1 with S, costatum having a higher V (3 min) and a 

continued higher, longer-term uptake, V_̂ , than C, gracile, 

b) I n t r a s p e c i f i c differences; C. gracile: The only diff e r e n c e between the 

nutrient uptake a b i l i t y of the homogeneous population and the one addition per 

day population was i n the i n i t i a l rapid uptake (V' ), In the patchy-grown 
Til cLX 

population, V' was greater than the homogeneous culture (Fig, 20), 
TT13.X 

S. costatum: No major difference i n nutrient uptake rates was apparent 

between the two culture conditions (Fig. 21), There appeared to be some 

smaller differences, however, between the two treatments, System 2 exhibited 

a higher and, as a consequence, the patch-adapted population could take up 

a d a i l y pulse of ammonium fa s t e r than the homogeneous population (System 1), 
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Figure 18. The disappearance of ammonium as a function of time during a 

perturbation experiment for System 1 (continual addition of ammonium) C. graoile, 

Q / and S. costatum , 0 . 



o 
I 
cn 

5 184 
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Figure 19. The disappearance of ammonium as a function of time during a 

perturbation experiment for System. 2 (da i l y addition of ammonium) Q. gracile, ffif 

and S. costatum, 9 . 
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Figure 20. The disappearance of ammonium as a function of time during a 

perturbation experiment for C. gracile, System 1 (continual addition of 

ammonium Q , and System 2 (daily addition of ammonium) @ . 
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Figure 21. The disappearance of ammonium as a function of time during a 

perturbation experiment for S. oostatvm, System 1 (continual addition of 

ammonium) „ 0 '•> and System 2 (daily addition of ammonium), • . 
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5) Discussion 

L i m i t i n g nutrient patchiness (ammonium) i n i t i a t e s a number of p h y s i o l o g i c a l 

p e r i o d i c i t i e s i n phytoplankton populations. The p e r i o d i c i t y i n carbon f i x a t i o n 

did not, however, s i g n i f i c a n t l y a l t e r the average d a i l y C/N a s s i m i l a t i o n 

r a t i o s i n the two species tested. The p e r i o d i c i t y i n carbon f i x a t i o n could be 

explained i n terms of an i n t r a c e l l u l a r energy a l l o c a t i o n mechanism. When the 

l i m i t i n g nutrient i s a v a i l a b l e , energy i s shunted to the uptake process at 

the expense of carbon f i x a t i o n (Falkowski & Stone, 1975). A f t e r the a v a i l a b l e 

nitrogen has been assimilated, enhanced carbon f i x a t i o n occurs. Ohmori & 

•Hattori (1978) obtained some biochemical*evidence to support t h i s type of energy 

a l l o c a t i o n . They showed that the addition of ammonium to an ammoniumlimited 

phytoplankton culture resulted i n a rapid drop i n i n t r a c e l l u l a r ATP. This 

ATP drop was shown to be a r e s u l t of glutamine synthetase a c t i v i t y . 

P e r i o d i c i t i e s i n chlorophyll a fluorescence could be due to e i t h e r a 

change i n c h l o r o p h y l l a l e v e l s or a change i n photosynthetic e f f i c i e n c y . As 

c h l o r o p h y l l a was not d i r e c t l y measured, i t was. not possible to determine the 

underlying p h y s i o l o g i c a l mechanism mediating the fluorescence f l u c t u a t i o n s . 

Under a l l treatments S. costatum had a higher nutrient uptake rate than 

did C. gracile. This i s i n agreement with the work of Conway and Harrison 

(1977) who worked on S. costatum and C. debilis. The two C. gracile popula­

tions (1 and 2) showed some i n t e r e s t i n g differences i n uptake a b i l i t y depending 

on the nutrient past h i s t o r y under which they were grown. The patch-adapted 
T 

population (System 2) showed a much greater V than the homogeneous popula-
max 

t i o n , while the subsequent uptake rate, V , was the same for both populations. 

As a r e s u l t the population grown on a patchy nutrient source was best.able to 

take up a pulse of the l i m i t i n g n u t r i e n t . 

S. costatum also showed s l i g h t differences i n nutrient uptake a b i l i t y i n 

response to l i m i t i n g nutrient patchiness. Over the f i r s t 3 min the 
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i 
homogeneous culture had a s l i g h t l y higher V but the V. was greater i n ° max 1 

the patch-adapted system. Consequently, the population grown under conditions 

of once a day ammonia addition was best able to optimize uptake of the nutrient 

with that patchy temporal d i s t r i b u t i o n . 

Other workers (Chisholm & Stross, 1976) have induced p e r i o d i c i t i e s i n 

phytoplankton c e l l u l a r metabolism by use of light:dark cycles. When 

EugZena gvaoiZis was grown, under l i g h t : dark cycles,. d i u r n a l f l u c t u a t i o n s i n ' 
14 

C a s s i m i l a t i o n and V for phosphate uptake were observed. 
max 

The major differences between the physiology of the populations grown on 

homogeneous or patchy nutrient d i s t r i b u t i o n s was that the pulsed populations 

established; a p e r i o d i c i t y - i n a number of parameters such as chlorophyll-a 

fluorescence and carbon a s s i m i l a t i o n . The observation that c e l l numbers 

remained r e l a t i v e l y constant throughout the 24 hr cycle i n System 2 supported 

the work of Caperon (1969). He suggested that phytoplankton growth was 

an i n t e g r a t i v e r e s u l t of the n u t r i t i o n a l past h i s t o r y of the population over 

the preceding 24 hr period. Changes i n nutrient uptake a b i l i t y suggested that 

populations grown on a pulsed nutrient system tended to exhibit higher nutrient 

uptake rates than those grown on homogeneous d i s t r i b u t i o n of the l i m i t i n g 

nutrient. This phenomenon w i l l be explored further i n Chapter V and i t s 

p o t e n t i a l e f f e c t on phytoplankton growth and competition w i l l be discussed. 

In summary, the r e s u l t s of competition observed i n Chapters II and III 

appear to be due almost e n t i r e l y to i n t e r s p e c i f i c n u t r i e n t uptake dif f e r e n c e s . 

The r o l e of . i n t r a s p e c i f i c v a r i a b i l i t y i n the competition for the l i m i t i n g 

nutrient i s minor when compared to the i n t e r s p e c i f i c differences. Neverthe­

l e s s , the a b i l i t y of a species to a l t e r i t s physiology i n response to a 

patchy environment may be important i n the.optimization, of a p a r t i c u l a r 

nutrient regime. -
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Chapter V 

LIMITING NUTRIENT PATCHINESS AND PHYTOPLANKTON GROWTH: 

A CONCEPTUAL APPROACH 

1) Summary 

A t h e o r e t i c a l framework i s developed to explore the e f f e c t s of l i m i t i n g 

nutrient patchiness on phytoplankton growth. Growth rate i s represented as a 

function of the average ambient substrate concentration i n the medium, the 

degree of patchiness and the patch duration. Phytoplankton growth, i n 

r e l a t i o n to the external substrate concentration, i s mediated by the c e l l 

quota f o r the l i m i t i n g n utrient. 

Two general conclusions can be drawn from t h i s study. F i r s t , the 

degree of patchiness i n the environment can a f f e c t i n d i v i d u a l growth rates 

and thus a l t e r community structure even though there i s no change i n the 

average ambient nutrient concentration. Second, f o r patch-adapted populations, 

the apparent K g for growth can be lowered s i g n i f i c a n t l y by making the d i s t r i ­

bution of the l i m i t i n g nutrient patchy with respect to time. The i n s i g h t s which 

t h i s model provides into future experimental'methodologies.-are also 

discussed. 

6 
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2) Introduction 

The a p p l i c a t i o n of the Monod equation (1) (Monod, 1942) 

vi = ,y. max ' K + [ S ] 

[ S ] U) 

growth rate, (hr ) 

max maximum growth rate (hr ) 

K 

[ S ] 

s 

substrate concentration (yg-at- I ) 

h a l f - s a t u r a t i o n constant (yg-at-£ 1 

to nutrient l i m i t e d phytoplankton growth has generally been unsuccessful i n 

describing growth on nutrients other than carbon (Droop, 1968; Caperon & *.' 

Meyer, 1972a;Fuhs et . a l . , 1972; Goldman et al., 1974; Harrison et a l . , 1976; 

Goldman &^McCarthy, 1978). In many of these l a t t e r cases nutrient l i m i t e d 

growth rates were described better as a function of the c e l l quota (Droop, 

1968; Caperon & Meyer, 1972a;Goldman & McCarthy, 1978). 

The preceding studies were a l l conducted under steady state conditions 

with a r e l a t i v e l y homogeneous d i s t r i b u t i o n of the l i m i t i n g n u t r i e n t . However, 

i t has been shown recently that following an addition of the l i m i t i n g nutrient 

to a nutrient l i m i t e d culture, uptake rate f a r exceeds growth rate (Conway 

et al.,1976; Conway & Harrison, 1977; McCarthy & Goldman, 1979). Davis, 

Breitner and Harrison (1978) provided a model that simulated s i l i c a t e l i m i t e d 

diatom growth at a steady state as well as the transient uptake response to a 

s i l i c a t e addition. The degree to which the transient uptake rate exceeded 

growth was dependent upon the species, the nutrient i n question (Conway & 

Harrison, 1977) and the degree of nutrient l i m i t a t i o n (McCarthy & Goldman, 

1979; Eppley & Renger, 1974). 

The a b i l i t y of some species to respond more r a p i d l y than other species 

to a patch of the l i m i t i n g nutrient could provide a. basis for explaining resource 
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competition and niche separation. Further work (Turpin & Harrison, 1979; 

Chapters I I I , IV & V) has shown that t h i s i s the case with the temporal d i s ­

t r i b u t i o n of the l i m i t i n g nutrient causing modification of community 

structure and physiology. 

Nutrient l i m i t a t i o n i s w e l l documented i n many freshwater and marine 

ecosystems. The c y c l i n g of nutrients for u t i l i z a t i o n by the primary 

producers occurs by d i f f u s i o n from.the n u t r i e n t - r i c h .water below the thermo-

c l i n e , advection (runoff, mixing and. upwelling) and regeneration, e i t h e r 

by zooplankton. or ba c t e r i a . These mechanisms of nutrient supply are_not 

evenly d i s t r i b u t e d over either time or space (Shanks & Trent, 1979). As a 

r e s u l t , the supply of'nutrients to a. system:. i s r n o t homogenous with respect to 

time or space. Spacial patchiness, i n r e l a t i o n to a phytoplankton 

c e l l , could be modelled i d e n t i c a l l y to temporal patchiness since i n both 

cases there would' be a f i n i t e time between patch encounters. 

It i s known that d i f f e r e n t species of nutrient l i m i t e d 

phytoplankton respond to the addition of the l i m i t i n g nutrient with d i f f e r e n t 

uptake rates and that nutrient patchiness can be expected i n aquatic eco­

systems . This chapter attempts to demonstrate how patchiness, average substrate 

concentration and growth rate of a'phytoplankter .could be r e l a t e d . . The 

e c o l o g i c a l implications of such i n t e r r e l a t i o n s h i p s and the i n s i g h t s into 

future experimental methodology w i l l be discussed. 

3) Model 

This model was developed to predict the growth of nutrient l i m i t e d 

phytoplankton under conditions of l i m i t i n g nutrient patchiness. The model 

was designed to account f o r steady state growth k i n e t i c s as w e l l as to 

provide i n s i g h t into the e f f e c t s of nutrient patchiness on phytoplankton 

growth. The model components are outlined below. 
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3.1) Nutrient uptake: 

The amount of nutrient taken up by a c e l l per unit time, p , ( y g - a t - c e l l 1 

•hr ^) i s given by the following equation: 

... P M [ s ] 
P = m 

K G + [S] (2) 

p = maximum uptake rate per c e l l (yg-at• cell;- -hr "*") m 

[S] = substrate concentration (yg-at•£ "*") 

KV. = h a l f saturation constant (yg-at* £ "*") 

In simulations, p̂ - i s assumed to be constant (Dugdale, 1977), or i t i s varied 

i n response to the c e l l quota using the data of McCarthy and Goldman (1979). 

3.2) Dependence of population growth rate on c e l l quota: 

The growth rate of the population i s determined as a function of the c e l l 

quota using the equation of Droop (1968) ; 

M = y <i - Q I N I N / Q ) ' ( 3 ) 

y = growth rate (hr "*") 

y = growth rate when (Q -> °° (hr 1 ) 

Q = c e l l quota ( y g - a t " c e l l "*") 

Q.. = minimum quota needed for growth to proceed ( y g - a t * c e l l 1 ) mxn o r vr-o 

3.3) Determination of quota: 

The change i n quota per unit time (Q) ( g - a f c e l l "^-hr ^) i s the net 

r e s u l t of an increase i n Q due to uptake and a d i l u t i o n of Q as a r e s u l t 

of growth as described by the following equation: 

* " K V [ S ] " P ( 1 ^ m i n / ^ ( 4 ) 

s 

At steady state growth, with a constant substrate concentration [S] , Q w i l l 

approach equilibrium when Q = 0 such that equation (4) reduces to: 
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Wm [S] 
K s + [S] y ( Q " W 

or 

Q = Q m i n + p m [ S ] / ( K
s

+ [ S ]>^ (5) 

The steady state growth rate of the population i s obtained by s u b s t i t u t i n g 

equation (5) into equation (3) as follows: 

V = P < 

1 - min 

Q +_S 
m l n y {K + [S]} 

or rearranging the above equation y i e l d s : 

yp 
y = m :s] (6) 

uQ • + P "Q . K 
» mm m̂ V- min s 

yQ . +P 
M mm m 

+ [S] 

Therefore at steady state, the dependence of growth (y) on substrate 

[S] i s described by a rectangular hyperbola. The population's maximal 

growth rate, (y )_ under any set of conditions (see equation 6) i s 
H13.X 

described by: 

yp m 
max yQ . + P 

M mm m 
(7) 

and the hal f saturation constant for growth -(see equation 6) by: • 

1 The equation f o r steady state growth as a function of external 

nutrient; concentration was derived by Droop (1968). My terminology 

follows that of Dugdale (1977). 
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K' = Vmin Qmin (8) 
S uQ • + P" v mm m 

I have chosen to c a l l the h a l f saturation constant f o r growth, K/ , 

to avoid confusion with the h a l f - s a t u r a t i o n constant for uptake (K ). This 
s 

expression f o r K' indicates that i t i s a v a r i a b l e , dependent on both K s s 
and p , providing y and Q . are constant under a l l conditions, m mm 

Since y and K' depend on three c e l l parameters, y , ̂  m , and K 
max s ^ r s , 

min 

two organisms can have the same dependence of y on [S] at steady state 

( i . e . , same y and K' ) and s t i l l have d i f f e r e n t growth and uptake para-
TTlciX s 

meters (y , ̂ m and K ) . As an extreme example, a population with Q s 

m 
y = 0.2 hr 1 , Pm = 0.2 hr 1 and K =0.2 yg-at• 1 1 w i l l show_-the same steady 

Q • s 

mxn 
growth k i n e t i c s as a population with y = 0.105 hr \ Pm = 2.1 hr 1 and 

Q . 
_ l mxn 

K =2.1 yg-at•1 . s ° 

The s i m i l a r i t y i n growth k i n e t i c s ends at steady state. As the nutrient 

a v a i l a b l e to the c e l l fluctuates over time, differences a r i s e i n the a b i l i t i e s 

of the two species to procure the nutrients and grow. To i l l u s t r a t e t h i s 

point, the average growth rate of c e l l s exposed to an environment i n which the 

nutrients come i n short pulses, separated by periods of nu t r i e n t s t a r v a t i o n , 

has been calculated. The nutrient concentration during the pulse i s adjusted 

i n order to maintain some fixed concentration t ^ a v ] when averaged over the 

period of the patch, P (Fig. 22). For the simulations, the duration of the 

pulse, D , was held constant at 0.1 hr and the i n t e r v a l between pulses, T 

varied. Holding D^constant allowed us to use the compartment model e f f e c t i v e l y . 

In a more complex s i t u a t i o n with a varying pulse duration , the model would have :to be 

modified to include i n t e r n a l pool(s) and feedback control of the uptake rates 

(Davis et a l . , 1978; DeManche et a l . , 1979). 
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When a population i s exposed to a p e r i o d i c nutrient supply (Fig. 22) the 

c e l l quota responds according to equation 5, and approaches an equilibrium 

with Q increasing during the pulse and decreasing during the absence of the 

nu t r i e n t . An average population growth rate i s calculated over t h i s cycle. 

At equilibrium, for a given patchy regime, the absence of a delay between Q 

and u (Cunningham &. Maas, 1978) does not a f f e c t the r e s u l t . As might be 

expected, steady state populations having the same u and K' but d i f f e r -
max s 

ent values of u , _pm and K , show quite d i f f e r e n t growth rates under the 
Q S 

same patchy nutrient regimes. To emphasize t h i s behaviour a second set of 

parameters can be chosen such that i n a steady state system ( i . e . , p = 0 , 

when the l i m i t i n g nutrient i s homogeneously dis t r i b u t e d ) species A may out­

grow species B but as the system becomes patchy, B would outgrow A (Fig.23). 

Simulations were run using a v a r i a b l e p as a function of c e l l quota 
m 

which was calculated from the data of McCarthy and Goldman (1979). This v a r i ­

able, , combined with the growth k i n e t i c data from the same organism (Gold­

man & McCarthy, 197 8) produced r e s u l t s s i m i l a r i n general appearance to F i g . 

23A with growth rate decreasing with lower frequencies of patchiness. This 

demonstrates that a high V alone w i l l not allow an organism to grow 
max 

better under patchy conditions at a given average substrate concentration. 

This i s contrary to the assertion made by McCarthy and Goldman (1979). 

Some preliminary work with n a t u r a l marine phytoplankton communities 

(Turpin & Harrison, 1979) and u n i a l g a l cultures (Ch. IV) suggest that the 

maximum uptake rate of a population increases with the time between nutrient 

pulses. To determine the possible e f f e c t s of such a condition, a r e l a t i o n s h i p 

between p and T i s presented (equation 9) which allows enhancement of 

l i m i t i n g nutrient uptake when the d i s t r i b u t i o n of that nutrient i s patchy. 

Although t h i s r e l a t i o n s h i p can not be v a l i d a t e d with e x i s t i n g data, i t allows 

a representation of enhanced uptake i n a patchy system. The equation i s : 
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Figure 22. A graphical representation of a temporally patchy, nutrient 

l i m i t e d environment. [S] i s the substrate concentration (ug-at*£ ^ ) . 

P i s the p e r i o d i c i t y of the patch (hr), the duration (hr) and T , the 

i n t e r v a l between successive pulses (hr). [S ] i s the substrate concentra-
•3.V 

t i o n averaged over the patch period, P . 
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102 

102 

8-2 

Figure 23. The growth rate, y , (hr ) of two hypothetical species as a 
x r 

function of average substrate concentration,S , (jg-at • Ji, - 1) and the patch period 
3.V 

P , (hr). The patch duration'is constant at 0.1 hr. Species A has the growth 
-1 - -1 - -1 parameters: p /Q ...= 0^2 hr K: = -0.2 yg-at • £ - •: and, y. •= 0.2 -hr .: m mm s '. * 

Species B-'has:: p /Q . = 4.1 h r " 1 ; K = 2.05 yg-at-£ _ 1; and, y = 0.0512 h r " 1 . 
m mm s 
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P max. m 

P P' Q~7 
m m mxn ( . Q . Q . 1\ + T 

mm mxn h 

T, = the i n t e r v a l , T, at which p i s 1/2 p h ' P ' P max _^ _^ 
p • = maximum increase i n uptake under patchy conditions ( y g - a t - c e l l «hr ) 
p TT13.X 

p ' = maximum uptake under homogeneous nutrient d i s t r i b u t i o n s m 

( y g - a t - c e l l "'"-hr 1 ) 

T = i n t e r v a l between pulses (hr) 

The r e s u l t i n g community then grows at an enhanced rate when the l i m i t i n g 

nutrient i s patchy with respect to time even though [S ] i s constant (Fig. 
clV 

24). In other words, the e f f e c t i v e K' of the community i s lowered under 
' s 

conditions of optimal patchiness (Fig. 25) i f a population can demonstrate 

an enhancement i n uptake a b i l i t y i n response to patchiness. 

A s i m i l a r enhancement of y as a function of patchiness can be obtained 

i f one uses an [S ] value (a substrate concentration below which uptake i s 
o 

zero). An example of t h i s simulation i s given i n F i g . 26. 

4) Insights Into Future Experimental Methodology 

The use of the chemostat i s precluded i n e l u c i d a t i n g the r e l a t i o n s h i p 

between growth rate, (y) , average substrate concentration, [S ] , and 

patchiness, (P) . When a patch i s added to a chemostat population, the 

nutrient patch remains i n the medium u n t i l i t i s assimilated or washed out. 

This would not allow the i n v e s t i g a t o r to predetermine [S ] or the patch 
av 

duration as these parameters would depend on the uptake rate of the culture. 

Also the average growth rate would be predetermined or set by the d i l u t i o n 

rate and i t would be independent of both t ^ a v ] a n C i ^ providing they are 

within the l i m i t s of growth for the organism i n question. The only method by 

which a y vs. [S ] and P p l o t could be generated using a chemostat 
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Ks'at POPT 

0-41 , 05 
l<s at P.0 

[ S a v ] 

Figure 25. Growth rate (y) as a function of average substrate concentration 

[S ] for the population i n F i g . 24. The growth response at P = 0 i s 

represented as ( ) and at optimal patchiness (P ) , as (— ). 
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0.08 -f 

Figure 26. The growth rate (y) of a hypothetical species with growth 

parameters [S ] = 0.1 y g - a t - A - 1 ; /Q . = 0.325 h r " 1 ; K =0.1 yg-at-£ _ 1; and r o m min s a 

y = 0.155 h r " 1 . 
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would be to follow [S] over the period of the patch, to determine [S ]. 
av 

There are two manor problems with t h i s method. The f i r s t - i s that [S 1 
J ^ av 

would be a function of the culture uptake rate and the concentration of the 

pulse. The second problem i s the complicating e f f e c t of d e c l i n i n g substrate 

concentration following the creation of the patch. This varying nutrient 

l e v e l and varying patch duration would make the i n t e r p r e t a t i o n of r e s u l t s 

f a r more d i f f i c u l t . The construction of u. vs [S] and P p l o t s , under 

conditions of constant patch duration (Dp) , as i n Figures 23 - 26, would be 

impossible. What i s needed i s a system where the experimenter can set t^ a v-I » 

P and D , while measuring the r e s u l t i n g growth rate. At present such a 
P 

system does not e x i s t f or phytoplankton cultures. 

5) E c o l o g i c a l Considerations 

Two general conclusions are drawn from t h i s study. F i r s t , the degree 

of patchiness i n the environment can a f f e c t growth rates of d i f f e r e n t species 

and thus a l t e r community structure even though there i s no change i n the 

average ambient nutrient concentration. Second, for patch-adapted populations, 

the apparent for growth can be lowered s i g n i f i c a n t l y by making the d i s ­

t r i b u t i o n of the l i m i t i n g nutrient patchy with respect to time. Figure 25 

shows how growth may vary with respect to average substrate concentration 

under homogeneous, (P = 0), and optimal patchiness, t ) • l n s o m e simula­

tions the K/ was over an order of magnitude lower than the f o r growth 

under homogeneous conditions assuming that there i s an enhanced as a 

function of patchiness. 

The presence of an ] value, a substrate concentration below which 

growth does not occur, also r e s u l t s i n an enhancement i n growth as a function 

of patchiness at l i m i t i n g substrate concentrations. Figure 26 shows the 

growth response of a hypothetical species with an [S Q] value. 

D i f f e r e n t species with d i f f e r e n t uptake a b i l i t i e s could then be expected 
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to dominate under various patch regimes even though [S ] does not change. 

Hence, not only i s the ambient nutrient concentration i n the environment im­

portant i n determining species composition, but i t s temporal and s p a c i a l d i s t r i ­

bution may be equally important. 

Nutrient patchiness i n nature could range over many orders of magnitude, 

from millimeters (Shank's & Trent, 1979) to kilometers. Response to t h i s wide 

range of patchiness would be expected to be very d i f f e r e n t . Small scale-

patchiness would tend to generate a regime with pulses of short duration (as 

seen by the c e l l ) . Growth r e s u l t i n g from nutrients procured i n these patches 

could occur outside the patch at some l a t e r time as a r e s u l t of uncoupling 

of uptake and growth (Caperon, 1969; Cunningham & Maas, 1978). Large scale 

patchiness would tend to r e s u l t i n pulses of long duration with growth and an 

increase i n biomass taking place i n the patch. 

Random f l u c t u a t i o n s i n the d i s t r i b u t i o n of the l i m i t i n g n u t r i e n t could 

then give r i s e to a form of coexistence, with species l i m i t e d by a common 

nutri e n t . In a simulat ion model, Grenney, et a l . - (1973) showed, that 

fl u c t u a t i o n s i n chemostat d i l u t i o n rates and inflow concentrations could 

r e s u l t i n the coexistence of several species i n a s i n g l e reactor. 

There are other factors that have not been considered i n the model but 

they are l i k e l y to be associated with communities that are adapted to a patchy 

environment. Of great importance f o r a patch-adapted species i s the a b i l i t y 

to store excess nutrients which would be used when exogenous n u t r i ­

ent supplies are lacking. This a b i l i t y could be manifested i n the form of 

large i n t r a c e l l u l a r inorganic pools. Species with large pools would 

take up large amounts of nutrient before the pool f i l l e d and uptake decreased 

to an i n t e r n a l l y c o n t r o l l e d rate, termed , by Davis, et al . (.1.978). 

Organisms with small i n t e r n a l pools would not be.able to sustain 

the rapid i n i t i a l uptake due to-more rapid pool f i l l i n g (DeManehe 
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et a l . , 1979) 

C e l l s i z e may also be r e l a t e d to an organism's a b i l i t y to survive i n a 

patchy nutrient l i m i t e d environment. A moving c e l l would increase i t s 

chances of encountering a patch. If i t possessed 'chemosensory'-motility 

coupling (Spero, pers. comm.), i t might further increase i t s chances of 

being able to stay i n the patch. Such a s i t u a t i o n would increase the duration 

of the nutrient exposure, hence further optimize uptake and growth. 

Other considerations such as phased c e l l d i v i s i o n i n a population and 

the r e s u l t i n g phased nutrient uptake would need to be considered i n a complete 

simulation model. The e f f e c t s of l i g h t and the r e s u l t i n g d i e l p e r i o d i c i t y 

would also a f f e c t uptake of various nutrients and p o s s i b l y modify trends i n 

the community structure controlled p r i m a r i l y by n u t r i e n t s . 

This work has provided a conceptual framework f o r the evaluation of the 

importance of nutrient patchiness i n determining phytoplankton growth and 

community structure. The problem at t h i s time i s the lack of information on 

the time and space scales of the patches being discussed and the nutrient 

concentrations within them. Future research should approach t h i s problem 

from the b i o l o g i c a l , chemical and p h y s i c a l viewpoints i n an attempt to 

further understand t h i s p o t e n t i a l l y important phenomenon. 
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Chapter VI 

A CONCEPTUAL APPROACH TO NUTRIENTVBASED 

PHYTOPLANKTON ECOLOGY 

Since Dugdale (1967) postulated the importance of nutrient concentration 

i n determining phytoplankton community structure, many models have been 

proposed to account f o r the e f f e c t of nutrients on phytoplankton growth, 

competition and succession. Few models deal with an in t e g r a t i o n of factors 

such as d i l u t i o n r a t e s 1 , nutrient r a t i o s , l i g h t and temperature. Those that 

do (Kremmer & Nixon, 1978), follow a highly mechanical approach. In . 

thi s chapter, I attempt to combine a number of simple nutrient based growth 

models, to. integrate the e f f e c t s of nutrient r a t i o s ? nutrient fluxes j'.temperature 

and light,, and to present a simple conceptual approach to nutrient based 

phytoplankton ecology. 

The importance of d i l u t i o n rates i n determining the outcome of chemostat 

competition experiments i s we l l documented for both b a c t e r i a (Harder et a l . , 

1977) and phytoplankton (Michelson et a l . , 1979; Harrison & Davis, 1979). A 

schematic representation of the importance of the d i l u t i o n rate, or the 

s p e c i f i c f l u x of nitrogen through a nitrogen l i m i t e d system i n determining the 

general phytoplankton community structure i s presented in- F i g . 27 (Turpin 

& Harrison, 1979). At high s p e c i f i c nutrient fluxes fast growing c e n t r i c 

diatoms dominate while at low fluxes, u - f l a g e l l a t e s dominate. This scheme 

agrees with laboratory experiments (Michelson et a l . , 1979; Harrison & Davis, 

1979), and f i e l d observations In which the outcome of 

1 This i s equivalent to the s p e c i f i c f l u x of the l i m i t i n g nutrient ( i . e . 

ds/dt . -1. 

— j r ^ : — = time ) at steady-state. 
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competition was related to d i l u t i o n rate or s p e c i f i c nutrient f l u x . 

Recent work showed the importance of nutrient r a t i o s , . • 

independent of the absolute magnitude of a given f l u x (Titman, 1976; Tilman, 

1977). Such work has confirmed resource-based competition theory, s t i p u l a t i n g 

that under i d e a l conditions ( i d e n t i c a l m o r tality rates or temporal and 

s p a c i a l homogeneity) coexistence of two competing species can take place only 

when both/ species are l i m i t e d by d i f f e r e n t resources. The only reason that the 

outcome of competition was f l u x independent i n the preceding work was because 

the growth-rate (.y), vs, substrate, .[S],, curves for the chosen species 

did not i n t e r s e c t (Titman, 1976;. Tilman, 1977). 

Using species whose p vs. [S] curves i n t e r s e c t , i t i s possible to 

demonstrate the i n t e r a c t i o n of both the s p e c i f i c f l u x or d i l u t i o n rate and the 

nutrient r a t i o . This was accomplished by estimating Monod (1942) growth 

parameters for four hypothetical species competing for two d i f f e r e n t poten-" 

t i a l l y l i m i t i n g n u t r i e n t s , X and Y (Table IV). The outcome of competition 

between the four hypothetical species i s given as a function of both the 

d i l u t i o n rate and the nutrient r a t i o s i n F i g . 28. The boundaries mediated by 

changes i n d i l u t i o n rate were determined by the i n t e r s e c t i o n of y vs. [S] 

curves (Harder et a l . , 1977) (see Introduction). The boundaries mediated by 

resource r a t i o s were determined as described by Titman (1976) (see Introduc­

t i o n ) . . The r e s u l t i s that both the d i l u t i o n rate and the r a t i o of l i m i t i n g 

nutrients i n t e r a c t i n such a way that s u b s t a n t i a l changes to the community 

occur, ranging from complete dominance by one species to coexistence of a 

number of combinations of two species. If the y vs. [S] curves of the species 

i n question did not cross, then the resource r a t i o would be the only factor 

determining the outcome of competition. 

In the natural environment the s p e c i f i c nutrient f l u x and the r a t i o of 

the nutrient fluxes may i n t e r a c t also. In a system where nutri e n t fluxes were 
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Table IV. Growth k i n e t i c parameters f o r the hypothetical species i n Figure 28. 

u i s the maximal growth rate, K Is the h a l f - s a t u r a t i o n constant f o r growth max x 6 

l i m i t e d by resource X and K i s the h a l f - s a t u r a t i o n constant f o r growth l i m i t e d 
y 

by resource Y. 

•\ -PARAMETERS 

y 
m a x 

K 
X 

K 
y 

K /K 
x y 

A 1.0 4.0 0.1 40 

B 0.85 3.0 0.05 60 

C 0.88 2.0 0.5 4 

D 1.0 2.5 0.25 10 
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determined mainly by p h y s i c a l processes such as transport across a thermocline, 

increases i n mixing rates would tend to increase a l l nutrient fluxes simultan­

eously, r e s u l t i n g i n l i t t l e change i n r a t i o s . Conversely, when nutrient fluxes 

are c o n t r o l l e d predominantly by b i o l o g i c a l phenomena, the n u t r i e n t r a t i o s may 

change due to d i f f e r e n t i a l regeneration. Since both p h y s i c a l and b i o l o g i c a l 

factors play an important r o l e i n the nutrient dynamics of natural systems, 

both the magnitude and r a t i o of fluxes can be expected to vary quite dramat­

i c a l l y with space or time. 

In an attempt to integrate the possible e f f e c t s of temperature and l i g h t 

on the structure of a nutrient-based system, a demand/supply (D/S) continuum 

was imposed, such that at high f l u x rates, S was large and D/S approached 

zero. When l i t t l e nutrient was added to the system (low f l u x ) , S was small and 

D/S approached i n f i n i t y (Fig. 27). A s i m i l a r approach has been taken by Kilham 

and Kilham .(in prep;').. The r e s u l t of changing temperature and l i g h t can then 

be viewed through i t s e f f e c t on the D/S continuum as a r e s u l t of changes i n 

demand (D). 

An increase i n water temperature within a given range would increase the 

growth p o t e n t i a l of the community (Eppley, 1972), and therefore increase the 

demand (D) for the l i m i t i n g resource and hence increase D/S.. This increase 

i n temperature should r e s u l t i n a change i n community structure s i m i l a r to 

that implemented through decreasing the s p e c i f i c nutrient f l u x , which also 

increases D/S by decreasing S. Consequently, a low temperature c e n t r i c diatom 

community would be expected to s h i f t through a pennate community to a u - f l a g e l -

l a t e dominated assemblage i n response to a temperature increase and a concomi­

tant increase i n D/S. Such a r e s u l t has been demonstrated by Goldman &Ryther (B76 ) 

where an increase i n temperature drove nitrogen-limited phytoplankton assem­

blages from c e n t r i c through pennate diatoms to f l a g e l l a t e s . 

An increase i n l i g h t that i s below the saturating l e v e l would also tend 
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to increase the growth p o t e n t i a l of the community r e s u l t i n g i n an increase i n 

the p o t e n t i a l demand (D) for the l i m i t i n g resource and consequently, community 

structure should tend to s h i f t to that governed by higher D/S r a t i o s . Some 

evidence also supports t h i s s i m p l i f i e d approach (Harrison & Davis, 1979). 

They found that when the l i g h t i n t e n s i t y was decreased for a culture growing 

at a low d i l u t i o n rate, i t resulted i n natural .assemblages of phytoplankton 

that were s i m i l a r to those i n cultures that were growing at a..higher l i g h t 

and d i l u t i o n rate. 

Temperature and l i g h t e f f e c t s can be conceptualized through t h e i r 

i n t e r a c t i o n with the D/S continuum and to some extent may mimic s p e c i f i c f l u x 

changes. Changes i n temperature and l i g h t are obviously more complex than 

indicated by our D/S continuum, e s p e c i a l l y at the extremes of the temperature 

and l i g h t ranges for a given species. The example of changes i n l i g h t and 

temperature mimicing s p e c i f i c f l u x changes may be r e s t r i c t e d to small changes 

of l i g h t and temperature occurring at intermediate values within a species 

range. 

There i s a continuum of " r " and "K" competition strategy (Pianka, 1970) 

corresponding to the D/S continuum. An " r " selected, organism i s selected on 

the basis of high growth rates, whereas a "K" selected organism i s selected 

on i t s a b i l i t y to compete for the l i m i t i n g resource. When D/S i s low, s e l e c ­

t i o n occurs for fast growing " r " selected organisms, such as the c e n t r i c 

diatoms. When D/S i s high, competition for the l i m i t i n g resource i s high and 

the "K" s t r a t e g i s t , the f l a g e l l a t e s , succeed. 

In conclusion, t h i s simple approach allows for the i n t e g r a t i o n of some of 

the major f a c t o r s , such as nutrient f l u x , nutrient r a t i o , l i g h t and tempera­

ture, that a f f e c t nutrient-based phytoplankton ecology. Nutrient f l u x 

governs the supply, (S), of the l i m i t i n g nutrient while changes i n sub-optimum 

temperature and l i g h t a f f e c t the demand, (D), for the nutrient. Large changes 

i n these:, parameters appear to a f f e c t between group (e.g. diatoms vs. 



f l a g e l l a t e s ) dominance, which i s also the case for large changes i n nutrient 

r a t i o s . On the other hand, patchiness of the l i m i t i n g nutrient or frequency 

of addition of the l i m i t i n g nutrient has been termed a fine-tuning v a r i a b l e 

since t h i s parameter appears to se l e c t for c e r t a i n species within the phyto-^ 

plankton group that was selected by the major s e l e c t i o n f a c t o r s . 
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SUMMARY 

The f l u c t u a t i o n s i n the free i n t r a c e l l u l a r amino acid pools of ammonia 

li m i t e d Gymnodinium simplex and Skeletonema costatum, i n response to an 

ammonia perturbation, are best explained i f the enzyme glutamine synthetase 

(EC. 6.3.1.2) acts as the primary ammonium a s s i m i l a t i n g enzyme. Changes 

i n the l e v e l s of a l l measurable amino acids i n G. simplex following the per­

turbation indicated that the amino group was r a p i d l y shunted between the 

constituents of the amino acid pool. 

The temporal patchiness of a l i m i t i n g n u t r i e n t Ammonium )affected the 

outcome of phytoplankton competition. When the l i m i t i n g nutrient was homo­

geneously d i s t r i b u t e d with time, members of the genus Chaetoceros dominated, 

while under patchy conditions (d a i l y ammonia ad d i t i o n ) , Skeletonema dominated. 

It was shown that each r e s u l t i n g assemblage was best able to optimize uptake 

under i t s p a r t i c u l a r patchy regime. Optimization of a patchy environment 

took place by an increase i n the maximal uptake rate (V ), while optimiza-
max 

t i o n of a homogeneous environment appeared to take place by an increased 

substrate a f f i n i t y ( i . e . , low K ). 

Lim i t i n g nutrient patchiness (ammonia) was shown to a f f e c t the mean.cell 

diameter that was selected i n phytoplankton competition, experiments.. .Low 

frequency patchiness selected large, c e l l s while high' frequency-patchiness 

and homogeneous d i s t r i b u t i o n of the l i m i t i n g nutrient selected small.,.cells. 

Limiting nutrient patchiness induced p e r i o d i c i t i e s - i n : c a r b o n ! 

a s s i m i l a t i o n and in vivo fluorescence i n u n i a l g a l cultures of S.. costatum and 

C. gracile. Observed changes.in nutrient uptake a b i l i t y under varying ̂ limiting, 

nutrient patchiness-regimes suggested that, a given population-may. adapt-its 

nutrient uptake c h a r a c t e r i s t i c s to optimize the' temporal d i s t r i b u t i o n 

of the l i m i t i n g resource. This i n t r a s p e c i f i c v a r i a b i l i t y i n nutrient uptake 

i s minor when compared to i n t e r s p e c i f i c d ifferences. 



104 

A t h e o r e t i c a l framework i s developed to explore the e f f e c t s of l i m i t i n g 

n u t r i e n t patchiness on phytoplankton growth. Two general conclusions can be 

drawn from t h i s study. F i r s t , the degree of patchiness of the l i m i t i n g 

n u t r i e n t i n the environment can a f f e c t i n d i v i d u a l growth rates and thus a l t e r 

community structure even though there was no change i n the average ambient 

nutrient concentration. Second, for patch-adapted populations, the apparent 

K' for growth may possibly be lowered by making the l i m i t i n g nutrient 

patchy with respect to time. 

Gross changes i n nutrient-based phytoplankton community structure were 

mediated by the s p e c i f i c f l u x of the l i m i t i n g n u t r i e n t . Low s p e c i f i c fluxes re­

sulted i n f l a g e l l a t e dominated assemblages, while high s p e c i f i c fluxes resulted 

i n diatom dominated assemblages. The e f f e c t s of temperature and l i g h t on 

community structure can be conceptualized through t h e i r e f f e c t on a Demand/ 

Supply continuum and hence mimic s p e c i f i c f l u x changes. 

Phytoplankton respond to f l u c t u a t i o n s i n nutrient supply at a l l l e v e l s of 

b i o l o g i c a l organization (biochemical, p h y s i o l o g i c a l and e c o l o g i c a l ) . Nutrient 

pulses are r a p i d l y taken up and assimilated. Differences i n the a b i l i t y of 

species to procure nutrients i n t h i s manner r e s u l t i n changes i n competitive 

advantage as a function of the patchiness of the resource. Nutrient 

supply rates to nutrient l i m i t e d systems are not homogeneous with respect to 

time i t appears that the area of f l u c t u a t i n g nutrient conditions i s one that 

merits further study. 
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Appendix I 

CHEMOSTAT THEORY 

Inflow medium i s pumped into the culture reactor at a constant flow rate 

( f ) . Upon addition, t h i s medium i s mixed r a p i d l y and homogeneously throughout 

the culture. The addition of new medium forces an equal volume of culture 

out of the reactor. Consequently the culture volume stays constant. The 

d i l u t i o n rate of the culture (D) i s defined as the flow rate, divided by the 

culture volume, i . e . : 

D = f/v 

where f , the flow rate, has units of ml-time \ and the culture volume, v , 

has units of ml. Hence the d i l u t i o n rate, D , has units of time \ 

The change i n c e l l numbers i n a chemostat i s a function of the growth 

rate of the population, u (hr "*"), defined as — • -j^ - , and the d i l u t i o n rate, 

D . The equation for net growth i s : 

dx 
dt = (y - D)x (1) 

where x = cell'£ 1 at time t. 
dx 

When the culture i s at steady state, such that -ĝ r = 0 , then from equation 1 

y = D. 

By i n t e g r a t i n g and rearranging equation 1, we obtain the so l u t i o n f o r the 

s p e c i f i c growth rate of a population i n a chemostat as: 
y = D + — £n x/x (2) t o 

where x = cell«£ 1 at time o 
o 

x = cell«£ 1 at time t 

If the culture i s at steady state, equation 2 reduces to y = D . For a more 

det a i l e d d e s c r i p t i o n of chemostat theory see Herbert et a l . (1956). 
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Appendix II 

DETERMINATION OF NUTRIENT UPTAKE KINETIC PARAMETERS: 

A COMPARISON OF METHODS 

1) Summary 

The marine chrysophyte, Pseudoped-inella pyviform-is N. Carter, was grown 

i n ammonium l i m i t e d continuous culture. This steady state population was 

used to carry out a comparison of three methods presently used to determine 

the nutrient uptake k i n e t i c parameters, V and K . The f i r s t two methods 
max s 

involved a multiple f l a s k incubation where d i f f e r e n t concentrations of sub­

s t r a t e were added to each f l a s k and therefore the culture past h i s t o r y was 

constant f o r each uptake determination. These two methods were s i m i l a r except 

the incubation time was v a r i a b l e (method 1), or short and constant (method 2). 

The t h i r d method, the perturbation method, involved monitoring the uptake of 

one large addition of the substrate to a culture. Hence, i n t h i s method, the 

past h i s t o r y varied during the experiment. 
Results i n d i c a t e for n u t r i e n t l i m i t e d cultures that the_parameters, V 

max 

and K^ , are best estimated by employing a short, constant incubation time at 

varying substrate concentrations (method 2). It appears that t h i s method 

determines the i n i t i a l maximum uptake rate, r e l a t i v e l y free of feedback regula­

t i o n , when incubation time i s very short. The short incubation time i s neces­

sary because the measured V decreases with increasing incubation time. 
max 

Method 3 provides valuable information on a t h i r d uptake parameter, , the 

approximate rate of a s s i m i l a t i o n of the l i m i t i n g nutrient, that i s not obtained 

using e i t h e r of the other methods. 

2) Introduction 

Nutrient uptake by marine phytoplankton can be r e l a t e d to the ambient 

concentration of the nutrient by a rectangular hyperbola, s i m i l a r to the 

Michaelis-Menten equation f o r enzyme k i n e t i c s where, V = V . [S]/(K + [ S ] ) 
max s 
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and V i s the uptake v e l o c i t y (hr 1). 1, V the maximal v e l o c i t y , [S] the 
max 

concentration of l i m i t i n g nutrient and K the h a l f - s a t u r a t i o n constant 
s 

representing the value of [S] where V = V 12 . The determination of the 
max 

nutrient uptake k i n e t i c parameters, V and K , have been useful i n explain-
max s 

ing competition for the l i m i t i n g nutrients i n the marine system (Dugdale, 1967; 

Eppley et a l . , 1969; Tilman and Kilham, 1976; also see Ch. 1). 

Frequently nutrient uptake i s determined i n d i r e c t l y by measuring the 

decreasing concentration of the l i m i t i n g nutrient i n the culture medium. 
Direct measurements of nutrient uptake rates are also made by using isotopes 

X5 32 30 
such as N, P, and S i . Nutrient incorporation into the c e l l i s then 

determined a f t e r a sui t a b l e incubation time. 

In the methods which i n d i r e c t l y measure uptake rate by the disappearance 

of the nutrient from the medium, there are several possible approaches. The 

f i r s t determinations of V and K were conducted on batch cultures which 
max s 

had j u s t run out of nu t r i e n t s , however, i f the culture was without nutrients 

f o r too long a period, the subsequently determined uptake was "non-linear" 

(Eppley et a l . , 1969; Eppley &-Thomas, 1969). The general protocol for t h i s 

method was to set up a serie s of 5 to 10 f l a s k s to which d i f f e r e n t concentra­

tions of the l i m i t i n g nutrient were added. The experiment was i n i t i a t e d by 

adding a sub-sample of a few hundred m i l l i l i t e r s , of the culture to the f l a s k s . 

The cultures were incubated f o r d i f f e r e n t times. The c r i t e r i o n f o r termin­

ating the experiment was when the l i m i t i n g nutrient concentration was thought 

to be reduced to approximately h a l f the concentration of the o r i g i n a l addition 

or a f t e r a depletion of 2 yg-at•£ 1 at higher substrate l e v e l s . The uptake 

rate f o r the incubation period was then associated with the mean substrate 

concentration i n the f l a s k s . Therefore, i n t h i s method, past h i s t o r y was 

constant ( i . e . , each f l a s k had the same inoculum) and time of incubation and 

substrate addition varied. 
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The second approach was i d e n t i c a l to the f i r s t , except that the time of 

incubation of the cultures exposed to d i f f e r e n t substrate concentrations was 

constant and r e l a t i v e l y short. Rhee (1978) used a constant incubation time of 

20 min for Soenedesmus i n an attempt to a l l e v i a t e past h i s t o r y e f f e c t s of 

n i t r a t e uptake during the experiment. 

Another approach to measuring nutrient uptake rates was developed by 

Caperon and Meyer (1972b). This i s termed the perturbation method. These 

workers grew the experimental culture i n a chemostat and upon reaching steady 

state, the culture was perturbed by adding a r e l a t i v e l y large addition of the 

l i m i t i n g nutrient (e.g., 10 ug-at«£ ^ ) . Continual sampling and analyses with 

an a.utoanalyzer provided a time seri e s of disappearance of the l i m i t i n g 

nutrient from the culture u n t i l steady state was regained or the l i m i t i n g 

nutrient was completely taken up. The changing uptake rate was then re l a t e d 

to the average nutrient concentration over the sample period. This approach 

was also used by Conway et a l . (1976). In t h i s l a t t e r work, s i l i c a t e or 

ammonium-limited cultures exhibited a surge i n the uptake rate, termed V , 

or V by Goldman and McCarthy (1978), immediately a f t e r the addition of max J J ' J 

the l i m i t i n g n u t r i e n t . This method thus incorporated a v a r i a b l e past-history 

e f f e c t into the parameter determination. The population at the end of the 

experiment w i l l have been exposed to high nutrient concentrations for a longer 

time than i t was at the beginning of the experiment. The i n t e r v a l over which 

the uptake rate i s calculated i s constant and a function of the autoanzlyzer-

sampling speed. 

Since i t i s unclear how the choice of e i t h e r of these three methods 

af f e c t s the values of V and K determination, a systematic comparison of 
max s 

these methods was undertaken i n t h i s study. Each method i s then discussed i n 

r e l a t i o n to the other two and recommendations are made as to the s u i t a b i l i t y 

of the various methods. 
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3) Methods and Materials 

3.1) Chemostat system and analyses: 

Fseudoped-inella pyvifovmis N. Carter was obtained from the Northeast 

P a c i f i c Culture C o l l e c t i o n , Department of Oceanography, The U n i v e r s i t y of 

B r i t i s h Columbia, Vancouver, Canada. The culture was grown at 18°C i n a 

6 - l i t e r b o r o s i l i c a t e flat-bottomed b o i l i n g f l a s k and under continuous l i g h t 
-2 -1 -1 with an irradiance of 150 yEin-m -s . The d i l u t i o n rate was 0.5 d . The 

ammonia-limited inflow medium was a r t i f i c i a l seawater (Davis et a l . , 1973) 

enriched with f/20 vitamins and trace metals (Guillard'& Ryther, 1962). The 

concentrations of the macronutrients, ammonia, s i l i c a t e and phosphate were 10, 

45 and 5.5 ug-at-£ \ r e s p e c t i v e l y . 

The methods for nutrient a n a l y s i s , c e l l counts and fluorescence were 

described previously (Davis et a l . , 1973). When no trend was observed i n the 

e f f l u e n t nutrient concentrations, c e l l numbers of fluorescence f o r several 

days, the culture was assumed to be at steady state and the following experi­

ments were i n i t i a t e d . 

3.2) Uptake experiments: 

Since a large 6 - l i t e r chemostat was used, 200 ml could be removed from 

the chemostat without appreciably changing (4%) the d i l u t i o n rate. The 200 ml 

subsample that was removed was replaced by pumping i n new medium by the time 

the next experiment was performed. A small amount of the l i m i t i n g nutrient 

(ammonia) was added to the subsample and the culture was immediately incubated 

under previous growth conditions. Samples were taken every 3 min s t a r t i n g 

2 min a f t e r the nutrient addition. Ammonia disappearance was followed u n t i l 

depletion occurred. A f t e r that time the f l a s k was rinsed and f i l l e d with 

another 200,-ml zsub^sample .from'.the:" chemostat to which another concentration of 

the., l i m i t ing nutrient was added and the same continuous sampling repeated. 

These s e r i e s of uptake experiments were performed over a l i m i t i n g substrate 

concentration range from 0.5 to 20 yg-at•£ \ These time ser i e s data allow 
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the c a l c u l a t i o n of uptake rates using three methods. Method 1 determined the 

uptake rate over the time i t took f o r the substrate to reach a concentration 

of ^1/2 i t s o r i g i n a l concentration. Method 2 used constant time i n t e r v a l s of 

eith e r 2, 5, 17 or 30 min f o r a l l uptake c a l c u l a t i o n s . Method 3 used the 

instantaneous rate of disappearance of the nutrient and re l a t e d i t to the 

average substrate concentration over that i n t e r v a l . 

The i n i t i a l substrate concentration ( i . e . , at T = 0) could not be 

accurately determined by sampling immediately a f t e r the substrate was added to 

the culture and thoroughly mixed. Therefore, the same substrate additions 

were made to f i l t e r e d chemostat e f f l u e n t and measurement of the concentration 

of the l i m i t i n g nutrient was made and taken to represent the concentration at 

T = 0. The uptake rates that were calculated were rel a t e d to the nutrient 

concentration at the middle of the time i n t e r v a l over which the uptake rate 

was calculated. Uptake rates for Method 1 were also calculated by taking 

the i n i t i a l substrate concentration as the f i r s t measurement taken a f t e r the 

substrate addition rather than the true i n i t i a l substrate concentrations at 

T = 0. 

3.3) Uptake rate c a l c u l a t i o n s : 

Uptake rates were calculated from measurements made during the v a r i a b l e 

substrate addition procedure described above. Uptake rates were calculated as 

described by Conway et a l . (1976). The p a r t i c u l a t e values of nitrogen used 

i n the ca l c u l a t i o n s was determined at steady state from a mass balance where 

the disappearance of the l i m i t i n g nutrient was assumed to be equal to the 

increase i n p a r t i c u l a t e nitrogen i n the culture. The nutri e n t uptake k i n e t i c 

paramenters, V and K , were determined by a d i r e c t hyperbola f i t and s t a t -
nicix s 

i s t i c a l analysis was made using the program of Cleland (1967). 
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4) Results 

4.1) Variable incubation time and v a r i a b l e substrate concentration, Method 1; 

The r e s u l t s from t h i s method are given i n Figure 29. When the uptake 

rate was calculated using the true T = 0 concentration (see Methods) the V 

vs. [S] curve generated was not i n the form of a rectangular hyperbola. If 

the f i r s t measured concentration was used as the i n i t i a l substrate concentra­

t i o n a rectangular hyperbola could f i t the data. In t h i s case V was 
max 

0.27 ± 0.04 (s.e.) h r " 1 and -K was 0.14 +0.12 (s.e.) pg-at/fc 

4.2) Constant incubation time and v a r i a b l e substrate concentration, Method 2: 

In Table V, the estimates of the uptake parameters V and K are 
max s 

given as a function of the incubation time used to determine them. These 

r e s u l t s indicated that the. shorter the incubation time, the larger the estimate 

of the maximum uptake rate obtained. Figure 30 shows the r e l a t i o n s h i p of V 
max 

with the incubation time used f o r i t s determination. No observable trend was 

exhibited i n the h a l f - s a t u r a t i o n constant for uptake (K g) as a function of 

incubation time. 

4.3) Perturbation technique, Method 3: 

The uptake parameter estimates are given i n Table VI as a function of the 

concentration of the perturbation. The V from these experiments were a l l 
max 

remarkably s i m i l a r , ranging from 0.24 + 0.02 to 0.27 ± .0.04 h r " 1 . The h a l f -

saturation constants, however, showed a great deal of v a r i a b i l i t y depending on 

the magnitude of - the i n i t i a l perturbation. The larger the perturbation used, 

the greater the K g estimate. A graphic representation of t h i s r e l a t i o n s h i p 

i s given i n F i g . 31. 

5) Discussion 

It i s apparent from the r e s u l t s of t h i s study that the method chosen to 

determine uptake k i n e t i c parameters greatly a f f e c t s the value of the estimate 

obtained. Therefore, comparison of k i n e t i c estimates f o r various phytoplankton 
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V A R I A B L E I N C U B A T I O N T I M E 
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Figure 29. Ammonia uptake ,(hr 1 ) as a function of substrate concentration 
. - . -1 

for P. pyvifovmts grown i n an ammonia l i m i t e d chemostat at 0.5 d . The 

incubation time over which the uptake rate was calculated was the time at 

which the substrate concentration had dropped to ha l f .of the o r i g i n a l concentra­

t i o n . Uptake rates were calculated using the true t = 0 substrate concentra­

t i o n , #, and the f i r s t measured substrate concentration, 0. 
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T I M E ( m i n ) 

T 

Figure 30. Determination of V , using Method 2 (constant incubation time 
nicix 

at a l l substrate concentrations) as a function of incubation time. Bars 

represent one standard error. 
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t 

Figure 31. The h a l f - s a t u r a t i o n constant (K ) as determined by the 
s J 

perturbation technique f o r d i f f e r e n t I n i t i a l 1 substrate -additions. Bars 

represent-one standard, error. 



Table V. K and V (V ') values as determined f or d i f f e r e n t s max max 

incubation times using method 2 in-which incubation, time was 

constant a t - a l l substrate concentrations. 

Incubation Time K ± s.e. V (V ') ± 
s max max 

(min) (yg-at • I "*") (hr" 1) 

2 0.32 ± .09 1.72 ± .07 

5 0.05 '+• .07 0.76 ± .03 

11 0.04 ± .02 0.47 ± .01 

17 0.18 ± .04 0.42 ± .01 

30 0.45 ± .13 0.37 ± .02 



Table. VI. K and V (V.)'values as determined by the perturbation s max 1 • • • J " -

technique (method 3) at d i f f e r e n t perturbation concentrations. 

Perturbation K ±s.e. V (V.) ±s.e. 
s max 1 

(jig-at • a'1) 

5.0 0.97 ±.26 0.24 ±.02 

2.5 0.21 ±.09 0.27 ±.02 

1.0 0.15 ±.05 0.24 ±.04 

0.5 0.08 ±.03 0.27 ±.04 
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species i n the l i t e r a t u r e should be jnade with caution since the actual method 

used to determine the parameters may bias the r e s u l t s . Recent work by 

Burmaster and Chisholm- (1979) -have compared the estimate of parameters obtained 

through the d i r e c t incorporation method (isotope uptake) and the disappearance 

method. Providing a true t = 0 substrate value was not obtained i n the 

disappearance method and absorption was co n t r o l l e d f o r i n the incorporation -

method, l i t t l e d i f f e r e n c e i n the two methods was apparent. Consequently, the 

conclusion of the study outlined i n t h i s appendix should be applicable to 

studies employing the isotope incorporation method. 

Of the three methods used, Method 2, the constant time, v a r i a b l e substrate 

method, gave the highest estimate of V e s p e c i a l l y over short-incubation 

max ' .••.:.;>,. 

periods. This i s a r e s u l t of the n o n - l i n e a r i t y i n nutrient uptake rate 

with time exhibited by t h i s and other organisms (Conway et a l . , 1976; Conway 

& Harrison, 1977) i n response to a perturbation. Figure 32 shows the disappear­

ance of ammonia with time for P. piriformis for a ^3 y g - a t 1 perturbation. 

The i n i t i a l rapid disappearance followed by a slower, long-term uptake response 

i s the phenomenon responsible f or much of the v a r i a b i l i t y i n V estimates, 
max 

depending on the incubation time used. If short incubation times are employed, 

the i n i t i a l rapid uptake phenomenon i s weighted more heavily i n the estimate, 

and consequently high maximal uptake rates are determined. If longer incuba­

t i o n times are used, the slower long-term uptake response (V^) (Conway et a l . , 

1976) i s weighted more heavily i n the estimate, r e s u l t i n g i n a lower estimate 
of V . This r e s u l t i s not unique for ammonia uptake. Similar decreases i n max 

14 

uptake rate with increasing incubation time have been observed for C uptake 

(Marra, 1978a). 

The decreased uptake rate following a perturbation has been r a t i o n a l i z e d 

previously (Conway et a l . , 1976; Conway & Harrison, 1977). These authors f e l t 

that the i n i t i a l rapid uptake (hereafter r e f e r r e d to as V ' a f t e r McCarthy 
max 
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& Goldman, 1979) represented the true uptake p o t e n t i a l of the steady state 

population, whereas represented an a s s i m i l a t i o n phase. An a d d i t i o n a l 

explanation i s that the i n i t i a l rapid uptake, v
m ^ x , may be a c e l l surface 

adsorption phenomenon and V may be the membrane transport component. This 

study was not extensive enough to resolve t h i s p o s s i b i l i t y . Consequently, 

t h i s study w i l l r e f e r to disappearance of the nutrient from the medium as 

uptake. 

In s p i t e of the fact that knowledge i s lacking about the exact process 

observed when nutrient uptake parameters are determined, the population's 

a b i l i t y to remove ammonium from the environment i s s t i l l being measured. There­

fore, determining the maximum nutrient procurement (uptake a b i l i t y ) of a popu­

l a t i o n requires use of an extremely short incubation time i n order to minimize 

the e f f e c t s of feedback regulation of the uptake rate. The shortest uptake 

i n t e r v a l used i n t h i s study was 2 min. This was the f a s t e s t time i n which the 

nutrient could be added, mixed and the c e l l s f i l t e r e d . If a shorter time 

i n t e r v a l were used the measured uptake response may have been even greater, as 
i 

i t has not yet been possible to show the l i n e a r i t y of V over that i n i t i a l 
J max 

T 
2 min. As a r e s u l t the 2-min V estimate i s probably an under-estimate of 

max 
the true maximum uptake rate. In order to acknowledge the dependence of the 

i 
V estimate on the time of incubation we suggest that future designations max & & 6 

include the time over which the uptake response was measured ( i . e . , V 
max 

(2 min)). 

Use of the perturbation technique, as o r i g i n a l l y used by Caperon and Meyer 

(1972b), measures the component, as defined by Conway et a l . (1976) and 
t 

i s a great under-estimate of the i n i t i a l rapid uptake phenomenon, V . The 
max 

V component, however, i s of great e c o l o g i c a l s i g n i f i c a n c e i f the population 

i s exposed to f l u c t u a t i o n s i n nutrient l e v e l s of long duration (low frequency 

patchiness). 
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The estimates from the perturbation technique show a great deal of 

v a r i a b i l i t y depending on the i n i t i a l concentration of the addition (Fig.30). 

The curve through these data represents a v i s u a l extrapolation to a IC value 

at a 0 yg-at«£ 1 perturbation, i n other words, the 1C of the unperturbed 

culture. This f i g u r e shows that the a f f i n i t y f o r the l i m i t i n g nutrient 

r a p i d l y decreases .after the population has been exposed to a nutrient pulse. 

The low l e v e l perturbations are taken up r a p i d l y and do not a f f e c t the popula­

tion's n u t r i e n t - l i m i t e d state. On the other hand, large perturbations which 

are taken up over a period of hours by a n u t r i e n t - l i m i t e d population, 

represents a s u b s t a n t i a l modification i n the population's nutrient physiology. 

For example, uptake of a 5 yg-at'£ 1 of ammonium.represents a 50% increase i n 

population nitrogen quota; (the populations used i n t h i s study had a p a r t i c u ­

l a t e nitrogen value of 10 yg-at«£ "*"). 

The v a r i a b l e incubation time r e s u l t s were calculated i n two ways. The 

f i r s t method used the true T = 0 nutrient value. The uptake v e l o c i t y was 

then calculated over the time i n t e r v a l required for the ambient nutrient 

concentration to drop to half the o r i g i n a l concentration. This method resulted 

i n data that did not f i t a rectangular hyperbola (Fig. 29). The reason for 

t h i s d i f f e r e n t curve i s due to varying contributions of the rapid uptake 

phenomenon. For the low concentration uptake determinations, the i n i t i a l 

r apid uptake phenomenon accounts for most of the nutrient disappearance 

because the uptake i n t e r v a l i s short. Therefore, at low concentrations we 

measure high uptake v e l o c i t i e s . At high concentrations the i n i t i a l rapid 

uptake accounts for only a small portion of the t o t a l uptake. This i s 

because the.' incubation time i s long and there i s a large contribution to 

t o t a l uptake by the V. component. This r e s u l t s i n the lower uptake estimates 

at high concentrations. 

If the f i r s t measured nutrient concentration i s used as the i n i t i a l sub­

strate concentration and uptake v e l o c i t i e s are calculated, then the 
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Figure 32. Disappearance of ammonium-with time, showing the V and V 
max 1 

components. 
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data f i t a rectangular hyperbola (Fig. 29). The V ' , as obtained 
rn 3.x 

by t h i s method, was i d e n t i c a l to the of the perturbation method. The h a l f -

saturation constant as determined by t h i s method was 0.14 ±0.12 yg-at•£ 1 

ammonium. The major problem with t h i s method i s that each uptake determination 

represents a population with a d i f f e r e n t past h i s t o r y or nu t r i e n t time expo­

sure. This could r e s u l t i n d i f f e r e n t contributions of feedback e f f e c t s , by 

the nutrient taken up, on the subsequent uptake rate. 

It appears that the best method for determining the maximum uptake rate 

i s to use a constant incubation time at varying substrate concentrations 

(method 2). The reporting of data should include a notation as to the 

incubation time used. The perturbation technique (method 3) and the v a r i a b l e 

time incubation method (method 1) both give an estimate of the of the 

population. 

The determination of the h a l f - s a t u r a t i o n constant i s not straightforward. 

Using the perturbation technique at varying i n i t i a l n utrient l e v e l s and 

extrapolating to a 0 yg-at•£ 1 perturbation appears to be one method (Fig.31). 

Unpublished work (Harrison, pers. comm.) suggests that t h i s may not be 

univ e r s a l for a l l phytoplankton species. In f a c t , he found that the size of 

the perturbation had no e f f e c t on the K value determined by t h i s method. 
s 

Using a constant incubation time gives K g estimates that overlap at the 

95% confidence l i m i t s , regardless of the incubation times used. The v a r i a b l e 

incubation time also gives an estimate encompassed by the 95% confidence i n t e r ­

v a l s of the constant incubation time method. Therefore, the K data are not 
s 

of s u f f i c i e n t r e s o l u t i o n to resolve any trends that may e x i s t . 

I t i s apparent from the r e s u l t s of t h i s study that caution must be 

exercised when comparing uptake k i n e t i c values which were determined using 

d i f f e r e n t methods. The point must be made that data i n t h i s study pertain 
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only to a nitrogen l i m i t e d population. When l i m i t a t i o n i s not severe, uptake 

appears to be l i n e a r over time (Eppley & Thomas, 1969; Eppley et a l . , 1969). 

The degree of uptake complexity would then appear to be a function of the 

degree of nitrogen l i m i t a t i o n , with the contribution of the V ' component 
max 

increasing with increasing nutrient deficiency (McCarthy & Goldman, 1979) 

and decreasing incubation time. 


