# AN ANALYSIS OF THE EFFECTS OF M.U.R.B. LEGISLATION ON VANCOUVER'S RENTAL HOUSING MARKET

bу

ANNE PATRICIA WICKS
B.COMM., UNIVERSITY OF BRITISH COLUMBIA, 1978

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE
IN BUSINESS ADMINISTRATION
in

THE FACULTY OF COMMERCE AND BUSINESS ADMINISTRATION (URBAN LAND ECONOMICS DIVISION)

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

April, 1982

C Anne Patricia Wicks, 1982

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

| Department | of | URBAN | LAND | ECONOMICS |  |
|------------|----|-------|------|-----------|--|
| _          |    |       |      |           |  |

The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3

| Date | APRIL 2 | 25, | 1982 |  |
|------|---------|-----|------|--|
|      |         |     |      |  |

#### **ABSTRACT**

The purpose of this paper is to examine the impact of federal M.U.R.B. legislation on Vancouver's rental housing market, and to see what conclusions can be drawn about the effectiveness of this subsidy policy in achieving its objective, which was to increase the allocation of resources to the housing sector of the economy by stimulating the construction of rental units.

It is the thesis of this paper that the M.U.R.B. legislation was not effective in achieving its objective, since the inelasticity of the land supply function, as imposed by junior levels of government through zoning and other supply constraints, prevented the rental market from responding to these incentives in the form of increased production. It is hypothesized that the real effect of the program was to create windfall gains for existing owners of multiple family zoned land at the time the legislation was passed. It is argued further that real estate markets are more efficient than they are generally given credit for, in the sense that tax shelter benefits associated with M.U.R.B. properties will be fully capitalized into the value of such properties, thus preventing M.U.R.B. investors from earning rates of return superior to those earned by owners of comparable non-M.U.R.B. properties.

The paper begins with a brief history of M.U.R.B. legislation, and an analysis of the magnitude and cost of the program to the Canadian government. This is followed by a graphical analysis of the impact of M.U.R.B. legislation on the multiple family housing market, and a discussion and review of the literature pertaining to the

theory of efficient markets, the capitalization of costs and benefits into value, and the various models of land value which have been formulated. Two theoretical models are then presented as the underlying basis for the empirical research in the paper. The first is a valuation function for apartment investments, where the dependent variable is the selling price of an apartment building; the second is a model of the determinants of multiple family land values, where the dependent variable is the price of a site.

The two theoretical models are tested using multiple regression techniques. The data results provide evidence which contradicts the general case for the operation of the multiple family housing market, where renters should receive the full benefits of the M.U.R.B. program in the form of lower rents. The research shows that the future tax shelter benefits associated with M.U.R.B. properties are fully capitalized into the market values of completed M.U.R.B. buildings, and that M.U.R.B./investors do not earn rates of return superior to those of investors in non-M.U.R.B. apartment properties. The research suggests further that the expected M.U.R.B./ tax shelter benefits were over-capitalized into higher land value premiums during the life of the program, thus creating windfall gains for existing landowners at the time the program was introduced.

The results suggest that the full capitalization of M.U.R.B. benefits into both land and apartment block values resulted in all of the benefits of the subsidy policy not filtering through to renters. Some benefits most likely did reach renters, since it is unrealistic to assume no substitution in the production function for apartments, but the actual distribution of policy benefits between renters and existing landowners cannot be measured within the scope of this research.

# **TABLE OF CONTENTS**

|              |                                                                                                                             | Page Number                |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------|
|              | ABSTRACT                                                                                                                    | (ii)                       |
|              | TABLE OF CONTENTS                                                                                                           | (iv)                       |
|              | LIST OF TABLES                                                                                                              | (v)                        |
|              | ACKNOWLEDGEMENTS                                                                                                            | (vi)                       |
| 1.0          | INTRODUCTION                                                                                                                | 1                          |
| 2.0          | HISTORY OF THE M.U.R.B. PROGRAM                                                                                             | 3                          |
| 3.0          | THEORETICAL FRAMEWORK 3.1 The Multiple Family Housing Market 3.2 Efficient Markets 3.3 Capitalization 3.4 Land Price Models | 10<br>10<br>17<br>19<br>24 |
| 4.0          | DATA BASE 4.1 M.U.R.B. Resale Sample 4.2 Land Sale Sample                                                                   | 32<br>32<br>33             |
| 5 <b>.</b> 0 | ESTIMATION OF APARTMENT VALUATION FUNCTION 5.1 Capitalization 5.2 Rates of Return to M.U.R.B. vs. Non-M.U.R.B. Investors    | 36<br>36<br>40             |
| 6.0          | ESTIMATION OF MULTIPLE FAMILY LAND PRICE MODEL 6.1 Description of Variables 6.2 Empirical Results                           | 45<br>45<br>52             |
| 7.0          | CONCLUSIONS AND IMPLICATIONS                                                                                                | 65                         |
|              | FOOTNOTES                                                                                                                   | 70                         |
|              | BIBLIOGRAPHY                                                                                                                | 72                         |
|              | APPENDIX "A" - VARIABLE LISTS                                                                                               | 74                         |
|              | APPENDIX "B" - DESCRIPTIVE STATISTICS                                                                                       | 87                         |
|              | APPENDIX "C" - SCATTER PLOTS                                                                                                | 94                         |
|              | APPENDIX "D" - RESIDUAL PLOTS                                                                                               | 100                        |
|              | APPENDIX "E" - DATA FILE LISTINGS                                                                                           | 139                        |

# LIST OF TABLES

|   |                                                          | Page Number |
|---|----------------------------------------------------------|-------------|
| 1 | ESTIMATED M.U.R.B./FEDERAL REVENUE LOSSES (1975 - 1980)  | . 7         |
| 2 | APARTMENT BLOCK VALUATION FUNCTION                       | 37          |
| 3 | RATES OF RETURN: M.U.R.B./VS. NON-M.U.R.B./APARTMENTS    | 41          |
| 4 | THE REGRESSION EQUATIONS FOR MULTIPLE FAMILY LAND VALUES | 54          |
| 5 | CORRELATION MATRIX - FULL MODEL VARIABLES                | 58          |

#### **ACK NOW LEDGEMENTS**

There are many individuals and organizations who have assisted me during the course of this research, either through their explicit participation in it or through their general encouragement and support. It is not possible to acknowledge all of them, but some do deserve special recognition here.

I would like to thank the B.C. Assessment Authority and B.C. Land Title Office for allowing me to search their records to gather my data, and special thanks should go to Canada Mortgage and Housing Corporation, firstly for the graduate scholarship which they awarded me in 1979, and secondly for the statistical data which was provided by Ted Mitchell and Helmut Pastrick. I would like to thank my committee chairman, Professor George W. Gau, for his invaluable guidance and encouragement throughout the somewhat lengthy period of this research, and I would also like to thank the other members of my committee, Professors Dennis R. Capozza and Norman Carrothers, for their assistance.

For their assistance in data collection, I would like to thank Darryl Yea, Paul Smith, Craig Homewood and Helen Evans. For their assistance in coding, thanks should go to Melaney Gleeson-Lyall and Michael Wicks. For their excellent word processing and production assistance, I would like to thank Kelly Gariepy, Renate Vetter and Joan Choo. I would also like to say a special thank you to my sister, Mary Gleeson, for her valuable assistance and stamina in data collection, coding, proofing and production.

Finally, there are two people who deserve special mention for their long-standing moral support throughout my university career. I would like to thank my mother, Mrs. Kathleen W. Lyall, for her continual encouragement. Most of all, I would like to thank my husband, Michael, for his undying tolerance and understanding, throughout what sometimes seemed an endless task.

In 1972, the Federal Government removed the tax shelter benefits available to owners of residential real estate investments, resulting in severe criticism from the real estate industry, and in claims that construction of rental housing would decline or even terminate as a result. Since the demographic characteristics of Canada's population continued to put pressure on the market for rental accommodation (given that the peak of the baby boom cohort was still only 14 years of age at the time, and the front end was 27 years of age), the public pressure which ensued prompted the Federal Government in 1974 to reinstate tax shelter benefits on a limited basis. This took the form of the Multiple Unit Residential Building (M.U.R.B.) Program, whose objective was to increase the allocation of resources to the housing sector of the economy by stimulating the construction of rental units. The purpose of this paper is to examine the impact of this legislation on Vancouver's rental housing market, and to see what conclusions can be drawn about the effectiveness of the policy in achieving this objective.

It is the thesis of this paper that the M.U.R.B. legislation was not effective in achieving its objective, since the inelasticity of the land supply function, as imposed by junior levels of government through zoning and other supply constraints, prevented the rental market from responding to these incentives in the form of increased production. It is hypothesized that the real effect of the program was to create windfall gains for existing owners of multiple family zoned land at the time the legislation was passed. It is argued further that real estate markets are more efficient than they are generally given credit for, in the sense

that tax shelter benefits associated with M.U.R.B. properties will be fully capitalized into the value of such properties, thus preventing M.U.R.B. investors from earning rates of return superior to those earned by owners of comparable non-M.U.R.B. properties.

The paper begins with a brief history of M.U.R.B. legislation in Canada, and an analysis of the magnitude and cost of the program to the government. This is followed by a graphical analysis of the impact of M.U.R.B. legislation on the multiple family housing market, and a discussion and review of the literature pertaining to the theory of efficient markets, the capitalization of costs and benefits into value, and the various models of land value which have been formulated. Two theoretical models are then presented as the underlying basis for the empirical research in this paper. The first is a valuation function for apartment investments, where the dependent variable is the selling price of an apartment building; the second is a model of the determinants of multiple family land values, where the dependent variable is the price of a site.

The empirical testing of the two theoretical models utilizes multiple regression techniques. The objective will be to estimate the magnitude and significance of the M.U.R.B. tax shelter benefits in the determination of the capital value of apartment buildings sold during 1979 and 1980 and in the determination of multiple family zoned land values in the City of Vancouver from 1972 to 1978.

The final section of this paper will discuss the implications of the empirical findings in the context of Vancouver's rental housing market. The broader implications for government policy will also be addressed.

The new Canadian Income Tax Act which came into effect on January 1, 1972, introduced major changes in tax law relating to capital gains tax provisions, income tax rates, income averaging, corporate tax treatment, and resource taxation. The tax change most pertinent to the analysis in this paper was the elimination of tax sheltering of "other" income by capital cost allowance (CCA) deductions claimed on residential investment properties. CCA deductions could only be used to offset any positive income on a particular investment property, rather than other non-real estate income of the taxpayer. The new Act also eliminated the "pooling" of assets with values exceeding \$50,000, thus preventing a taxpayer from deferring recapture on disposition of one asset by adding new assets to the same class.

The federal budget presented in November, 1974 re-introduced limited provisions for the full deductibility of capital cost allowances on residential investment properties from any income source of the taxpayer. As a consequence, two new asset classes were created under the Income Tax Act which were exempted from the 1972 tax reform removal of tax shelter benefits: Class 31 frame buildings (10 per cent annual CCA on a declining balance) and Class 32 concrete buildings (5 per cent annual CCA on a declining balance). These two asset classes were obtainable only through C.M.H.C. certification on new residential construction containing at least two units, and where at least 80 per cent of the gross floor area of the proposed building was to be allocated to residential use. <sup>3</sup>

The M.U.R.B. designation provided annual capital cost allowance deductibility against any income of the taxpayer, as well as the traditional deductibility of front-end "soft costs" associated with the development of the building. These soft costs, which generally comprise between 15 and 25 per cent of the total capital value of a building, include the following:

- survey, engineering and architects' fees
- legal and accounting fees
- property taxes
- interim financing
- marketing and administrative expenses
- landscaping costs
- limited servicing costs

Although initially the M.U.R.B. program was intended to remain in effect only until December 31, 1975, subsequent revisions to the Income Tax Act extended it on an annual basis until the end of 1979. As of December 31, 1979, the Act was amended in such a way that any transfer of a M.U.R.B.-designated building with Class 31 status (10 per cent CCA) would automatically move the building into the Class 32 asset class (5 per cent CCA), this presumably a first step towards the elimination of the program altogether. However, the program was reintroduced in late 1980 with a termination date of December 31, 1981. The federal budget announced on November 12, 1981, and subsequent revisions, indicated that the M.U.R.B./program would not be continued beyond 1981, but that certification would still be available until May 31, 1982 to those developers/investors who had submitted application for M.U.R.B. designation prior to the budget date.

As a supplement to the M.U.R.B. program in stimulating construction of multiple-unit rental buildings, the Federal Government, in 1975 and in 1976, in concert with several provincial governments, introduced the Assisted Rental Program (A.R.P.). This program initially involved an outright monthly per-unit grant of \$900 to the developer through Canada Mortgage and Housing Corporation, with annual reductions in the grant over a ten-year period and accompanying escalations in economic rent, effectively allowing the developer a constant rate of return on equity from operating flows over the ten-year period.

The involvement of provincial governments in 1976, most notably B.C.land Ontario, resulted in variations in A.R.P. program provisions, so that C.M.H.C's commitment was in the form of a second mortgage which accumulated over a ten-year interest-free period, while the provincial government provided annual per-unit grants. Units were rented at market levels, while annual reductions in both the federal second mortgage and provincial grant ensured a constant rate of return on equity to the developer over the ten-year contract period.

Thus, the combination of the M.U.R.B. and A.R.P. program provisions created very attractive tax incentives to potential investors and developers of multi-unit residential properties. The question is, of course, whether the tax revenues foregone by the Federal Government induced an increase in the construction of rental units which would not otherwise have occurred.

Unfortunately, the actual cost to the Federal Government of the estimated 195,000 units built under the M.U.R.B. program is not publicly available, although future

lost tax revenue has been estimated at \$514 million in 1981 dollars, assuming a discount rate of 12 per cent and an average marginal tax rate of 40 per cent for M.U.R.B./investors (Clayton Research, 1981). However, this estimate is based on the unrealistic assumption that none of the tax shelter benefits will be recaptured by the government upon disposition of these properties over the next 30 years.

Table 1 sets out an estimate of accumulated federal tax losses associated with M.U.R.B. units built from 1975 to 1979. Due to the "off and on" nature of the program in both 1980 and 1981, estimates for these years have been omitted.

Based on estimates in the Clayton Research Associates study, 60 per cent of those units with M.U.R.B. certification actually were built and operated as M.U.R.B.!s. Assuming an average federal marginal tax rate of 40 per cent, a one-year construction period, an average CCA rate of 7.5 per cent (reflecting an equal weighting of properties in the 5 per cent and 10 per cent asset classes), and an opportunity cost of 12 per cent per annum to the government on foregone tax revenues from 1975 to 1979, the federal tax losses accumulated by 1981 as a result of the M.U.R.B. program amounted to some \$304 million. 4

These estimates assume further that one-half of the CCA deductions are claims that can be attributable only to the M.U.R.B. program. The exact portion of CCA that can be deducted solely due to the M.U.R.B. exemption is quite difficult to estimate since it would differ among properties depending on financing arrangments and among investors depending on their other real estate holdings. For non-M.U.R.B. properties, the general rule is that "annual capital cost allowances on all

Table 1 ESTIMATED M.U.R.B. FEDERAL TAX REVENUE LOSSES (1975 - 1980)

|                                                | 1975                                                     | 1976                                             | 1977                                | 1978                   | 1979      | Present<br>Value of<br>Foregone<br>Revenue<br>1981<br>(\$000)       |
|------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|-------------------------------------|------------------------|-----------|---------------------------------------------------------------------|
| Multiple starts <sup>1</sup>                   | 107,527                                                  | 138,890                                          | 137,321                             | 117,638                | 87,932    | ·                                                                   |
| M.U.R.B. certifi-<br>cates issued <sup>2</sup> | 8,517                                                    | 35,219                                           | 82,265                              | 80,089                 | 76,550    |                                                                     |
| Rental units <sup>3</sup>                      | 5,110                                                    | 21,131                                           | 49,359                              | 48,043                 | 45,930    |                                                                     |
| Per unit construc-<br>tion cost                | \$35,000                                                 | \$ 39,000                                        | \$42,650                            | \$46,650               | \$51,350  |                                                                     |
| Deductible CCA (\$00                           | 0)                                                       |                                                  |                                     |                        |           |                                                                     |
| 1976<br>1977<br>1978<br>1979<br>1980           | \$13,414<br>\$12,408<br>\$11,478<br>\$10,617<br>\$ 9,821 | \$ 61,809<br>\$ 57,174<br>\$ 52,886<br>\$ 48,919 | \$157,887<br>\$146,046<br>\$135,092 | \$168,127<br>\$115,517 | \$176,888 |                                                                     |
| <u>Tax Loss</u> (\$000)                        |                                                          |                                                  |                                     |                        |           |                                                                     |
| 1976<br>1977<br>1978<br>1979<br>1980           | \$ 2,683<br>\$ 2,482<br>\$ 2,296<br>\$ 2,123<br>\$ 1,964 | \$ 12,362<br>\$ 11,435<br>\$ 10,577<br>\$ 9,784  | \$31,577<br>\$29,209<br>\$27,018    | \$33,625<br>\$31,103   | \$35,378  | \$ 4,728<br>\$ 23,357<br>63,654<br>94,750<br>\$117,877<br>\$304,366 |

<sup>1)</sup> 

<sup>2)</sup> 

C.M.H.C., <u>Canadian Housing Statistics</u>, 1976-1980. Clayton Research Associates, <u>Tax Expenditures - Housing</u>, p. B./2. Assumed to be 60 per cent of M.U.R.B. certificates, based on results of Clayton Reasearch Associates study.

C.M.H.C., 1975 - Table 90; 1980 - Table 100. 4)

of the taxpayer's rental properties combined is limited to the amount, if any, of his net income minus losses on those properties computed before deducting capital cost allowance" (Harris, 1979: 223). Thus, the incremental CCA benefit of a M.U.R.B. is dependent on the difference between the available CCA claim and the remaining aggregate rental income of the investor after deducting operating and interest expenses (the CCA that could be claimed on a non-M.U.R.B.). In this analysis, it is assumed that half of the total CCA deductions would have been claimed in the abence of M.U.R.B.!s, offsetting positive rental income flowing from rental properties.

Offsetting the estimated federal tax losses in the future will be the federal tax revenue resulting from any recapture of the CCA at the time of sale of the M.U.R.B. properties. Since 1972, the Income Tax Act requires that any CCA claimed during an investment which is greater than the actual economic depreciation of the asset be recaptured upon sale and taxed as ordinary income. This "excess" CCA is effectively an interest-free loan provided by the government during the holding period of the investment. The net cost over time of the incremental CCA claimed under the M.U.R.B. program is therefore an interest expense to the federal government of this CCA loan. With interest rates for government borrowings at the 15 per cent level, and assuming all the incremental CCA will be recaptured, the annual federal interest expense of the above foregone tax revenue is approximately \$46 million.

In the context of the Vancouver rental market, which is the subject of the analysis in this paper, 448 M.U.R.B. projects were started during the period 1975 through

May 31, 1981.<sup>5</sup> If each of these properties contained an average of 20 suites, a total of about 9,000 multiple family rental units in the city would be presently under the M.U.R.B. program. This represents approximately 10 per cent of the current stock of multiple family dwellings.<sup>6</sup>

The next section of this paper presents a theoretical framework for analysing the impact of the M.U.R.B. program on Vancouver's rental housing market. Two models will be presented. The first is a valuation function for apartment buildings, while the second is a model of the determinants of multiple family land values.

#### THEORETICAL FRAMEWORK

This section of the paper presents a theoretical framework for analyzing the impact of the M.U.R.B. program on Vancouver's rental housing market. The theoretical discussion begins with a graphical analysis of the expected impact of M.U.R.B./legislation on the sub-sectors of the multiple family housing market under various assumptions. The concept of efficient markets is then examined, followed by a discussion of capitalization and a review of the land price models which have been formulated through previous empirical research.

## 3.1 THE MULTIPLE FAMILY HOUSING MARKET

Within the multiple family housing market, there are three groups who would react to or benefit from the introduction of the preferential tax treatment associated with M.U.R.B.'s - landowners, investors and renters. In this context, developers merely act as the middlemen between landowners and investors, thus they can play either of two roles in the market, depending upon whether they owned the land prior to development, or were expecting to hold the property over the long term after completion.

The following paragraphs review the impact which M.U.R.B./legislation should have on each of the three sub-groups within the multiple family housing market, under

various assumptions concerning the elasticity of the supply and demand schedules for each of these groups.

## Case 1: General Case

In the general case, the supply and demand schedules for landowners, investors and renters are all neither perfectly elastic nor perfectly inelastic. Under these conditions, the introduction of M.U.R.B. legislation should cause a shift in the demand schedule of landowners (as shown in Figure 1), resulting in higher prices for multiple family sites and an increased supply of such sites available for development. Similarly, the demand schedule of apartment block investors should shift upward in response to the special M.U.R.B. tax benefits, resulting in higher apartment block prices and higher production of units. This increase in supply of apartment units will cause a corresponding shift in the supply schedule for renters, who will thus benefit in the form of lower rents.







FIGURE 1

In the above case, because of the slope of the demand and supply schedules, the increase in the price of both land and apartment blocks should be less than the actual present value of the M.U.R.B. tax shelter benefits to either landowners or investors. Furthermore, if there is substitution in the production function for apartment blocks, i.e. if the increase in demand induces substitution of capital for land and higher density apartment blocks are produced, the supply curve for investors should be more elastic than that for landowners, and the increase in apartment block prices should be lower than the increase in land prices as a result of the M.U.R.B. program, assuming of course that the slope of both demand curves is equivalent.

## Case 2: Perfectly Elastic Investor Demand

In this case, the demand curve for investors is perfectly elastic, i.e. it is horizontal. This would be the case where there is a totally efficient apartment investment market, where an increase in expected profits causes an equivalent increase in the price of apartments (see Figure 2). The shape of the supply schedule for investors under such conditions would have no effect on the magnitude of the increase in price of apartment blocks, although it would certainly affect the magnitude of increased production of apartments as a result of the shift in demand.



#### FIGURE 2

The impact of the M.U.R.B. on landowners and renters in this case should not vary from Case 1, since it does not follow that their demand curves would also be perfectly elastic.

## Case 3: Inelastic Land Supply

If the multiple family land supply function were perfectly inelastic, a shift in the demand schedule for landowners as a result of higher demand for sites by investors would induce a proportionate increase in prices of such land, and no additional land would be made available for the production of multiple family housing (see Figure 3). However, if there is substitution in production, the higher demand for apartments by investors would result in production to higher densities of existing multiple family sites, through demolition of structures not presently representing full capacity on these sites. Thus, the supply curve for

investors would be flatter than the land supply curve; the actual slope of this curve would of course depend upon the magnitude of substitution and hence the shape of the production function.



## FIGURE 3

## Case 4: Inelastic Land Supply and Perfectly Elastic Investor Demand

If the supply of multiple family land were inelastic and the demand for apartment blocks by investors were perfectly elastic, the impact of M.U.R.B. legislation should be as shown in Figure 4. No additional land would be made available for production, and land prices should rise at least by the amount of the present value of the M.U.R.B. benefits. If there is substitution in production, more sites should be redeveloped to higher densities, but to a lesser extent than in Case 3, since more of the M.U.R.B. tax benefits will go into higher prices because of the flat investor demand curve. Renters should still benefit under these conditions, but again to a lesser degree than in Case 3. The magnitude of their benefit would

depend upon the slope of the investors' supply curve, and hence on the degree of substitution in production.



## FIGURE 4

# Case 5: Inelastic Land and Apartment Supply

Figure 5 illustrates the impact of M.U.R.B. legislation where both the land supply and apartment supply functions are inelastic. Under these circumstances, no increase in apartment production would result from the introduction of M.U.R.B.'s, and land and apartment block prices would rise by the equivalent of the present value of the M.U.R.B. benefits. There would be no benefits accruing to renters because of M.U.R.B.'s; however, it does not follow that the renters supply curve is inelastic, since there can be tenure changes in existing multiple family properties from condominium to rental.



## FIGURE 5

The conditions necessary for this case to be true, however, are not very realistic. In order for apartment supply to be perfectly inelastic, there can be no substitution of capital for land in the production of apartments. This implies that all existing multiple family sites are built to capacity, which is clearly not the case in many metropolitan areas, and Vancouver is no exception.

It is hoped that the research in this paper will provide some evidence as to the filtering of the M.U.R.B. tax shelter benefits through to the various sub-groups of the multiple family housing market. The following paragraphs review previous work which has been done in real estate and other capital markets relating to these concepts.

## 3.2 EFFICIENT MARKETS

Considerable research has been undertaken to test the efficiency of competitive speculative markets, particularly with respect to the stock market (Fama, 1970). An efficient market has been defined as one in which current market prices "fully reflect" available information, and it is assumed that such information is fully and rapidly capitalized into prices. Fama has distinguished three types of market efficiency:

- weak form where market prices are a reflection of historical price information;
- semi-strong form where market prices fully reflect public information, e.g. dividend declarations;
- strong form where market prices take into account all available information, even that held by those with special knowledge, such as professional speculators or management.

The empirical research of stock market prices which has been done to test the efficient markets model has generally supported both the weak and semi-strong concepts of efficiency (Fama, 1970). However, strong form efficiency has not held up well, as seen in the work of Figlewski, who found that "when there is a wide range of forecasting ability or a diversity of expectations among the participants, the market may deviate relatively far from efficiency" (1978: 597).

Efficiency in the context of real estate markets is to date a relatively untested concept, although it has been argued that numerous characteristics of real estate markets preclude their efficient operation, characteristics such as:

- the local orientation of real estate markets;
- a lower incidence of transactions for specific properties;
- the uniqueness and lack of comparability of various parcels of real estate vis-a-vis different common stocks;
- the importance of financing and the specialized nature of some real estate financing techniques;
- the lack of sophistication of investors;
- a dearth of disciplined analysis of future events and the use of crude rule-of-thumb techniques;
- the divergence between expectations and actual accomplishments of participants, and their widely varying investment objectives;
- the extreme volatility in construction activity, which leads to sharp swings in vacancy factors and related short-term cash flow yields (Roulac, 1976).

Although real estate markets do suffer from these deficiencies, <sup>7</sup> it nevertheless seems reasonable that prudent investors would compare expected investment returns on real estate assets to expected returns on other capital assets, and that public information, such as the announcement of the M.U.R.B. program in 1974, would be reflected in subsequent transactions prices of both multiple family zoned land, whose future cash flow benefits would be considerably enhanced, as well as the transactions prices of M.U.R.B. properties once built. Although this paper will not test the speed of the market's reaction to M.U.R.B. legislation, it will nevertheless seek some evidence of semi-strong form efficiency to the extent that the change in expected cash flows associated with M.U.R.B. properties caused a proportionate increase in their values relative to comparable non-M.U.R.B. properties of similar risk, and that investors in M.U.R.B. properties earn equivalent rates of return to investors in non-M.U.R.B. properties in the same risk class.

## 3.3 CAPITALIZATION

The empirical research which has been undertaken on the concept of capitalization does have some overlap with the efficient markets concept, in the sense that it is measuring the extent to which (although not the speed with which) market values of assets have capitalized changes in expected future costs or benefits. Work by Tullock (1975) suggests that changes in government regulation which create preferential benefits for certain groups (e.g., owners of taxi cab medallions) effectively create windfall gains for persons already in the group, since these benefits are competed away and hence become capitalized into the value of the

commodity by other market participants trying to obtain it. As Krueger has pointed out in her study of import licenses in India, the efforts of persons trying to obtain the special benefits associated with import licenses actually change the optimal allocation of goods in the domestic economy, since resources are diverted from other sectors in the attempt to attain those "rents". Hence, as argued by Posner, the competition to obtain special rights of a monopolistic nature results in the transformation of potential monopoly profits into social costs (1975: 807).

The property tax literature lends support to the concept of capitalization of future benefits into real estate values. Hamilton's (1976) study of the effects of interjurisdictional differences in tax rates supported previous work (Mieszkowski, 1969, 1972) on the capitalization of varying rates of property taxation into property values across localities, although he demonstrated further that it is these tax rate differentials relative to public sector benefits which should be capitalized rather than just the tax differentials themselves. His model reflects an arbitrage process whereby the fiscal surplus or deficit created by the difference between actual tax rates and the level of public sector benefits results in proportional variations in the values of properties owned by high and low income households. He concludes, among other things, that in communities containing a variety of high-value and low-value dwellings, land value differentials between those properties will exactly reflect the present value of their fiscal surplus differentials.

Further work on property taxation by Mills (1981) indicated that the nature of property taxes does have an effect on the land-use allocation of land, as a result of the impact of the tax on the income streams of different land uses. For example, a

property tax on the value of land rather than the income generated from that land will favour the construction of projects with earlier income streams, since the effective discount rate or required rate of return is increased by the property tax on vacant land.

Thus, the research relating to the capitalization concept has shown that some real estate markets have responded to differential future costs and benefits and to changes in public regulation, by bidding up the prices of capital assets to yield returns similar to those which existed before the change occurred. In the context of this paper, the impact of the M.U.R.B. program on the value of M.U.R.B. - certified apartment buildings can be analyzed through a valuation model, in which the value of a real estate investment is equal to the present value of its future after-tax cash flows. In the form of a before-financing framework: 8

$$V = \begin{bmatrix} \frac{n}{1} & \frac{0_i - (0_i - C_i)t}{(1+k)^i} \\ \frac{n}{1} & \frac{S_n - T_n}{(1+k)^n} \end{bmatrix}$$

where V = market value of the property;

0; = net operating income in year i;

C; = capital cost allowance in year i;

T<sub>n</sub> = taxes resulting from sale of property;

t = marginal tax rate;

k = market rate of return.

The operating flows received each year during the investor's holding period ( $i=1,\ldots,n$ ) are equal to the net rental income after operating expenses,  $0_i$ , minus taxes (determined by the taxable income,  $0_i$  -  $C_i$ , and the tax rate). The final cash flow at the end of the holding period is the after-tax proceeds resulting from the sale of the property.

If an investor acquires a property for a price equal to V, his expected rate of return, r, is equal to k, the return required in the market given the risk level of the investment. If, however, the price is less than V, r would be greater than k. With all flows held constant, there is an inverse relationship between the acquisition price of a property and an investor's expected rate of return.

As discussed earlier, the purpose of the M.U.R.B. program was to increase the allocation of resources to multiple family rental housing and stimulate construction by increasing the rates of return of investors in properties under the program. In terms of the valuation framework, the M.U.R.B. program, by raising C<sub>i</sub> in the equation, causes the taxable income of the investment to be negative and thereby increases the after-tax cash flows to the M.U.R.B. investor. If the prices of these

properties were not affected by being in the program, the r of M.U.R.B. investments would be greater than k (the rate of return expected on other investments of equivalent risk), and investors would be encouraged to allocate more funds to rental housing.

However, in competitive real estate markets, there is little reason to believe that the market value of M.U.R.B. properties would be unaffected by the tax subsidies available under the program. If investors recognize and respond to the additional cash-flow benefits, they should increase their demand for these properties and bid up the price of the investments. Acquisition prices would rise until r equals k. Real estate investors should not be able to earn abnormal or superior returns from the benefits of publicly-known tax incentive programs. Real estate markets would be expected to capitalize into property values the tax benefits of this program by competing away the excess cash flow benefits until the rate of return of M.U.R.B. investors is the same as the rate expected on other investments of similar risk. Thus, the benefits of the program would accrue to existing owners at the time of its introduction.

The analytical framework for assessing the impact of the M.U.R.B. program on land values (as apart from completed M.U.R.B. apartment buildings) will be addressed in the next subsection of this paper.

## 3.4 LAND PRICE MODELS

There have been numerous empirical investigations of the determinants of urban land values, but there are four studies which seem most relevant to the topic of this paper - Brigham (1965), Adams (1968), Witte (1975), and Diamond (1980). All of these studies examine residential land value determinants, albeit for single family dwellings rather than medium or high density residential properties.

Brigham's study is the most pertinent to the present analysis, since it is a cross-sectional study of residential land values within a single metropolitan area. The underlying model in his study assumes that the value of an urban site is functionally related to its accessibility to economic activities, to its topography, to its present and future use, and to certain historical factors that affect its utilization (1968: 325). He employed multiple regression to analyze a sample of land values by census tract within the Los Angeles metropolitan area in 1964. His estimation of residential land values was able to explain 79 to 89 per cent of variations in price, where the independent variables included accessibility to employment opportunities and the central business district, the level of median family income, a measure of crowding, average value of dwellings in the neighbourhood, and a dichotomous topography dummy variable. The major difficulties he faced were the highly collinear nature of some of the data, and the instability of some of the coefficients.

Adams et al (1968) also developed an intrametropolitan model of the determinants of peripheral land value, using a series of over 1,100 transactions in Philadelphia

between 1945 and 1962. Their empirical results showed that variation in the price of residential sites during this period could be 60 per cent explained by distance from the central business district, distance to public transportation, location on a major arterial, zoning, and "state of the land" variables (e.g. servicing availability). However, the authors do not employ any measures of income or population over the 17-year period, factors which one would expect to have an impact on residential land values, particularly at the periphery of an urban area.

Witte (1975) develops and estimates a derived demand model for single family residential sites, in an attempt to explain differences in residential land values across SMSA's from 1966 to 1969. Her model, which explained 78 per cent of the variation in average prices per square foot of residential sites across SMSA's, suggests that average residential site values are determined primarily by the average size of sites in various urban areas, the value of agricultural land, population density, current annual family income levels, and the rate of change in population (as a proxy for households). It is interesting to note that average site size is a significant determinant, possibly a reflection of economies of scale or decreasing marginal returns as site sizes rise above what is considered "essential" for the average homebuyer. The absence of location or amenity variables as determinants of residential land value is explained by the very aggregate nature of her data (e.g. average price of land in an SMSA).

Further work on intraurban land values was done recently by Diamond, who utilized bid-price theory to strengthen the empirical relationship between land prices and locational amenities (1980: 32). His results were similar to previous studies in

terms of the importance of proximity to the central business district and public transit. However, his amenity variable measures differed somewhat from those used in other studies – they included crime rates, particulate pollution levels, distance to a lake, and topography, all of which were important determinants of land value ( $R^2 = 0.75$ ).

In the context of the present analysis, the theoretical framework for estimating the determinants of multiple family zoned (RM-3)<sup>9</sup> land values is a derived demand model similar to that employed by Witte (1975), since the value of multiple family zoned land will be derived from the demand for multiple family housing. Since land is a residual in the development process, we would expect the value of land to vary with the expected future costs and benefits associated with multiple family housing, which in turn will be affected by broad demand and supply variables influencing the rental market. The basic land residual equation states that land value is equal to the difference between the selling price of the lot fully developed and the cost to construct the building on the site:

Land Value = (Selling Price - Construction Costs)

The selling price of the fully developed site will be a function of the net income accruing to the property, the investor's required rate of return, CCA deductions, the investor's marginal tax rate, and the expected capital gains accruing to the property over the investor's holding period. The valuation function described in Section 3.2 represents the selling price portion of the land value equation above,

while construction costs are deducted from this selling price to yield the residual land value. Thus, using the net cash flow equation, residual land value is equal to:

$$V = \left[ \sum_{i=1}^{n} \frac{0_i - (0_i - C_i)t}{(1+k)^i} \right] + \frac{S_n - T_n}{(1+k)^n} - CC$$

The following paragraphs break down the land value equation into the various demand and supply variables which will affect the net cash flows accruing to multiple family zoned sites, and hence the residual value of such sites.

The dependent variable in this model of the determinants of multiple family land value is the price of a multiple family zoned site  $(P_s)$ , which is a function of both the demand for  $(Q^d)$  and the supply of  $(Q^s)$  such sites, as shown in (1):

(1) 
$$P_s = f(Q^d, Q^s)$$

The quantity demanded of multiple family zoned sites will be a function of the net cash flows accruing to the developer, including the income generated from the property (I), the cost of construction (CC), and the price of the land ( $P_s$ ), as shown in (2):

(2) 
$$Q^d = g(I, CC, P_s)$$

The income generated from multiple family housing will be a function of numerous cash flow variables: the potential rents attainable by any specific property (R), the cost of debt (i), apartment vacancy rates (VR), the cost of equity or required rate of return (k), which will determine the present value of the future income stream to the investor, and any special tax benefits available, in this case the M.U.R.B. benefits. All of these variables will affect the holding period cash flow of a multiple family property, as shown in (3):

(3) 
$$I = h(R, i, VR, k, MURB)$$

Thus, I represents the entire bracketed expression in the LV cash flow equation presented above.

The rent component of income can be divided into two functions - current rents  $(R_{_{\rm C}})$  and expected future rents  $(R_{_{\rm f}})$ . Current rents will be a function of general market rent levels per unit  $(R_{_{\rm m}})$ , the number of units which can be built on the site (UNITS), market vacancy rates (VR), and the location of the site (L):

(4) 
$$R_c = j(R_m, UNITS, VR, L)$$

Future rents ( $R_f$ ) will be a function of growth in the number of non-family households ( $\Delta$  HH), who are the primary demanders of multiple family housing, growth in future income levels of non-family households ( $\Delta$  Y) -- under the assumption that the marginal propensity to consume housing is positive -- and a supply constraint (STARTS), which will affect the level of future competition for

multiple family housing and hence future rents. Growth in household income  $(\Delta Y)$  can be specified either in nominal  $(\Delta Y)$  or real  $(\Delta Y^*)$  terms. The  $R_f$  equation, which represents a growth function, is shown as (5):

(5) 
$$R_f = m (\triangle HH, \triangle Y, STARTS)$$

STARTS are expected to have a negative influence on land value since increased future competition implies lower future rent levels attainable by the developer, and hence lower residual land value. On the other hand,  $\triangle$  HH, UNITS and  $\triangle$  Y are expected to have a positive influence on land value, since as they rise, so does the demand for multiple-family housing and hence future rent levels.

The nominal capitalization rate or required rate of return on multiple family properties, k, has three components: inflation ( $\pi$ ), the real interest rate ( $i^*$ ) or return on risk-free capital assets, and the excess return or risk premium required to invest in multiple family properties ( $ER_a^*$ ). This relationship is shown in (6), while (7) and (8) show the derivation of  $ER_a^*$ , which is simply the real capitalization rate ( $k^*$ ) minus  $i^*$ .

(6) 
$$k = \pi' + i^* + ER_a^*$$

(7) 
$$k = k^* + \pi$$

(8) 
$$ER_a^* = k^* - i^*$$

The real capitalization rate is equal to the nominal capitalization rate (k) minus  $\pi$ , where the nominal capitalization rate represents the overall rate of return on typical multiple family investment properties, i.e. gross income divided by selling price.

Turning to the supply side of equation (1), the quantity of multiple family sites supplied will be a function [9] of the price of sites ( $P_s$ ), the size of sites (SS), and zoning (Z).

(9) 
$$Q^{S} = m(P_{S}, SS, Z)$$

The zoning variable will constrain the supply of multiple family land, since unless a site is included in the appropriate zoning category, it is not available to be developed as multiple family housing. The size of sites affects supply in the sense that a large number of small sites would prevent economies of scale in development and hence the effective supply of sites would be reduced.

By substituting all of the supply and demand equations into (1), one obtains:

(10) 
$$P_s = f(R_m, UNITS, L, \Delta Y^*, \Delta HH, STARTS, i,$$

$$VR, ER_a^*, MURB, CC, SS, Z)$$

By dividing through by SS and converting to real terms where appropriate, the reduced theoretical model of multiple family land values, where the dependent variable is the real price per square foot of sites, becomes:

(11) 
$$P_s^*/SS = f(R_m^*, UNITS, L, \Delta Y^*, \Delta HH, STARTS, i^*, VR, ER_a^*, MURB, CC^*, Z)$$

In the context of the land residual equation discussed previously,

$$LV = (SP - CC)$$

all of the variables except CC in equation (10) will determine the selling price or value of a fully developed site. Thus,

$$P_s = (SP - CC)$$

and from (11) 
$$P_s^*/SS = (SP - CC)^*/SS$$

Equation (11) is thus the land model to be tested in the empirical section of this paper, where the critical concern will be the significance and sign of the MURB variable in the land value equation.

The major portion of the data for this research was collected during the summer and fall of 1980; it was later supplemented in the spring and summer of 1981. The primary sources of data were the B.C. Assessment Authority, the B.C. Land Title Office, Canada Mortgage and Housing Corporation, and Statistics Canada. Two separate samples were collected: a sample of sales transactions of M.U.R.B. apartment buildings and a matching set of non-M.U.R.B./apartment buildings (the "RESALES" file), and a sample of multiple family land sale transactions (the "LANDSALES" file). The RESALES sample will be used to estimate the apartment block valuation function presented in Section 3.2, while the LANDSALES sample will be used to estimate the land price model presented in Section 3.3. The characteristics of the data contained in each of these files will be discussed in turn in the next two subsections.

## 4.1 M.U.R.B. RESALE SAMPLE

A sample of 46 apartment block transactions in the City of Vancouver in 1979 and 1980 were identified through B.C. Assessment Authority records. This sample consists of 7 M.U.R.B. apartment buildings and 39 matching non-M.U.R.B apartment buildings sold during the same time period. These non-M.U.R.B. properties are similar to the M.U.R.B.'s in terms of number of suites in the building, location within the city and holding period. Although the non-M.U.R.B. buildings in the

matching sample do vary in age, and in all cases are older than the M.U.R.B.'s, they are nevertheless considered comparable in terms of total investment risk.

For each of these apartment blocks in the sample, information was obtained from the B.C. Assessment Authority and B.C. Land Title Office concerning the physical characteristics of the property (e.g., number of suites, lot size, number of storeys, etc.), construction and land costs, and the rental incomes earned during the investor's holding period. A complete list of the data collected on a variable-by-variable basis is included as Appendix Table A-1. The data were sufficient to allow for an accurate measurement of the actual operating cash flows and capital gains received by owners of both M.U.R.B. and non-M.U.R.B. properties, as well as an analysis of the determinants of the market prices of these properties.

Appendix Table B-1 contains the descriptive statistics for all variables in this sample, which includes for each variable the minimum value, maximum value, mean and standard deviation. The average sales price in the sample is \$785,220, the average building size 27 suites, the average lot size 10,566 square feet, and the average age 26 years.

## 4.2 LAND SALE SAMPLE

A sample of 115 arms length sales transactions of RM-3 zoned land which occurred in the City of Vancouver from 1972 to 1978 were identified through the B.C. Assessment Authority and B.C. Land Title Office records. 11 The site-specific

information for each transaction includes the lot size, location, selling price and date of sale, on a quarterly basis. The location variable is disaggregated into four sub-areas:

| Vancouver<br>Sub area | Number of<br>Observations |
|-----------------------|---------------------------|
| West End              | 10                        |
| Kitsilano             | 33                        |
| Marpole               | 2                         |
| East Vancouver        | _70                       |
|                       | <u>115</u>                |

In addition to the site-specific information on the land sales, the 90 variables in the "LANDSALES" data file include measures, in varying forms, of all of the determinants of multiple family land values identified in the theoretical model (refer to Appendix Table A-2). Data were gathered from Statistics Canada and Canada Mortgage and Housing Corporation on measures of population, income, unemployment, interest rates, housing construction activity, rent levels, construction costs, vacancy rates, and various measures of inflation.

The existence of M.U.R.B. legislation is specified in this data set as a dichotomous dummy variable with a value of 0.0 during the period preceding the introduction of the M.U.R.B. program in 1974 (0.0 for sales during the first quarter of 1972 through the fourth quarter of 1974), and a value of 1.0 during the period following the legislation. Since the 1972 to 1974 period was one characterized by a slowdown in

apartment construction activity, it was difficult to find a large number of land transactions during that period. Nevertheless, 19 transactions were identified from 1972 to 1974, with the remaining 96 transactions in the sample occurring after the M.U.R.B. program was introduced. This 5 to 1 ratio of non-M.U.R.B. to M.U.R.B. transactions in the sample is not considered large enough to bias the data results.

As Appendix Table B-2 indicates, the average real sales price (indexed by the general CPI for Vancouver) of the land transactions is \$10.81 per square foot, while the average lot size is 9,285 square feet.

#### 5.0 ESTIMATION OF APARTMENT VALUATION FUNCTION

This section of the paper presents two methods for analyzing the impact of the M.U.R.B. program on the resale values of M.U.R.B. apartment buildings. These analyses were done using the matching sample in the "RESALES" file which, as discussed, contains 7 M.U.R.B. properties and 39 matching non-M.U.R.B. properties, all of which have holding periods terminating in 1979 and 1980.

## 5.1 CAPITALIZATION

In order to measure the extent of the capitalization of M.U.R.B. tax shelter benefits into market values of M.U.R.B. properties, a valuation function is estimated from the "RESALES" sample using multiple regression analysis. This valuation function shows the relationship between the selling price of an apartment block and its physical and financial characteristics, such as age, number of suites, gross income, and cost of debt.

Numerous runs on the dependent variable (selling price) were made using various combinations of the variables in the data file in an attempt to find the best fit of variables which fully represents the determinants of apartment block value, and which best explains the variation in prices of apartment blocks, in both a statistically significant and intuitive sense. Table 2 presents the best estimation of the apartment block valuation function, which explains 84.5 per cent of the

## Table 2

# APARTMENT BLOCK VALUATION FUNCTION

$$R^2 = .845$$

$$F = 51.202$$

$$SE = 293010.$$

$$n = 46$$

SP sales price MURB = 0-1 variable with

1 = M.U.R.B.

GI gross income at time

of sale

number of years since AGE

construction

= interest rate I

<sup>-</sup> statistics in parentheses. = coefficients significant at .05 level.

variation in apartment block prices. According to this equation, the price of an apartment building will be determined by its gross income, the existence of M.U.R.B./tax shelter benefits, the cost of debt (the weighted average interest rate on all financing at the time of sale), and the age of the building; as expected, the former two variables have a positive and significant effect on value (at the .05 level), while the latter two have a negative effect on value. MURB is a dichotomous dummy variable, with a value of 1.0 for M.U.R.B. properties and 0.0 for non-M.U.R.B. properties.

In the context of the theoretical apartment block valuation function discussed in Section 3.3, GI in the estimated equation is a measure of  $O_i$ , MURB is a measure of  $C_i$ , AGE will have an impact on operating expenses and hence  $O_i$ , and the cost of debt, I, represents one component of the investor's required rate of return, k. The disposition term does not enter into the estimated equation, since there is no way of measuring an investor's expectations concerning either his optimal holding period or the anticipated selling price of the property. Presumably, such expectations are part of the 15.5 per cent of selling price variations which cannot be explained by the estimated equation.

These regression results clearly show that the presence of M.U.R.B. benefits in an apartment investment do have a significant impact on value. Given the magnitude of the M.U.R.B. coefficient, M.U.R.B. investors in this sample apparently paid an average premium of \$63,526 to acquire these properties. At the 5 per cent level of significance, this represents a confidence interval of \$63,526 + \$59,800. The actual

value of the M.U.R.B. benefits to an apartment block investor can be calculated in terms of the following present value equation:

$$PV_{MURB} = \begin{bmatrix} \sum_{i=1}^{n} & \frac{CCA_{MURB}}{(1+r)^{i}} \end{bmatrix} - \frac{Recapture}{(1+r)^{n}}$$

$$SP_{MURB} - SP_{nonMURB}$$

$$+ \frac{(1+r)^{n}}{(1+r)^{n}}$$

where PV<sub>MUR</sub>

= the present value of the M.U.R.B. tax shelter

benefits.

CCAMURB

= the marginal CCA deductions allowed on a M.U.R.B. building over and above what would be available on a non-M.U.R.B. building.

Recapture

= the recapture of the marginal M.U.R.B. CCA deductions upon disposition of the property.

SP<sub>MURB</sub> - SP<sub>nonMURB</sub>

receives because of the remaining M.U.R.B benefits available to the purchaser of his building.

r = the investor's discount rate.

n = the investor's holding period.

Based on an average depreciable basis of the properties in the sample of \$560,000,<sup>12</sup> a CCA rate of 5 per cent (all are Class 31 properties), a marginal tax rate of 55 per cent,<sup>13</sup> and a discount rate of 12 per cent, the present value at the

time of purchase of the future M.U.R.B. tax shelter benefits, assuming a seven-year holding period, is \$61,972. This is extremely close to (and lower than) the M.U.R.B. premium estimated in the equation; however, it does not take into account the sales premium on disposition, since this is not possible to measure. This is nevertheless strong evidence that M.U.R.B. subsidies are fully capitalized into the market values of M.U.R.B. properties.

## 5.2 RATES OF RETURN TO M.U.R.B. VS. NON-M.U.R.B. INVESTORS

In order to determine whether M.U.R.B. investors actually achieved rates of return superior to those of non-M.U.R.B. investors, the seven M.U.R.B. apartment properties identified as having complete holding periods by the end of 1980 (i.e., they were built, rented and sold to investors by that year) are matched with seven comparable non-M.U.R.B. apartment properties with similar holding periods. Again, comparability was defined in terms of size of building and location. To eliminate the influence on the rates of return of specific financing arrangements by investors, the before-financing rates of return are calculated recognizing the income, capital appreciation, and, if applicable, the tax shelter benefits accruing to each investment in the sample. <sup>14</sup> The returns are after-tax, assuming a marginal tax rate of 55 per cent.

The comparative rates of return for the M.U.R.B. and non-M.U.R.B. properties are presented in Table 3. The average returns earned on the two groups of real estate investments are essentially equivalent - 12.8 per cent for the M.U.R.B. properties

|                        | M.U.R.B. | Non-M.U.R.B. |
|------------------------|----------|--------------|
| Average Rate of Return | 12.8%    | 13.2%        |
| Standard Deviation     | 5.4      | 8.0          |
| t-Value                | .1       | 3            |
| Number of Observations | 1        | 4            |

and 13.2 per cent for the non-M.U.R.B. properties. The following statistical test supports the hypothesis that the means of these two samples are not significantly different:<sup>15</sup>

Let  $\overline{Y}$  = the mean return on M.U.R.B. properties

 $\overline{Z}$  = the mean return on non-M.U.R.B. properties

Let  $(\overline{Y} - \overline{Z})$  be an estimator of  $u_1 - u_2 = -0.4$ .

Let  $s^2(\overline{Y} - \overline{Z})$  be the estimator of the variance of the sampling distribution of  $(\overline{Y} - \overline{Z})$ 

where:  $s^{2}(\overline{Y} - \overline{Z}) = s^{2} \left[ \frac{1}{n_{1}} + \frac{1}{n_{2}} \right]$ 

and where  $s^2$  is the estimator of the common variance:

 $s^{2} = \frac{s_{1}^{2} + s_{2}^{2}}{\frac{1}{n_{1} + n_{2} - 2}}$ 

Therefore  $s^2 = 7.763$ 

 $s^2(\overline{Y} - \overline{Z}) = 2.218$ 

$$s(\overline{Y} - \overline{Z}) = 1.489$$

Since

The hypothesis that  $u_1 = u_2$  holds where:

$$A_1 \le (\overline{Y} - \overline{Z}) \le A_2$$

where

$$A_1 = -t (0.975; 12) s (\overline{Y} - \overline{Z})$$

$$A_2 = t (0.975; 12) s (\overline{Y} - \overline{Z})$$

Therefore, since

$$A_1 = -2.179 (1.489)$$

$$A_2 = +3.24$$

the condition holds that

$$A_1 \le (\overline{Y} - \overline{Z}) \le A_2$$

since 
$$-3.24 \le -0.4 \le 3.24$$

These results indicate that M.U.R.B. investors do not necessarily receive a higher rate of return, but rather earn the same returns as are experienced on other apartment investments of similar risk. Hence, the proposition that superior rates of return on M.U.R.B. properties will shift the allocation of resources into the rental housing sector is not supported, since the program does not in fact create superior rates of return for investors. This occurs essentially because the market competes away any special profits expected from M.U.R.B. properties and the future tax benefits associated with M.U.R.B.'s become fully capitalized into higher apartment transactions prices, as supported by the empirical results in Section 5.1. Thus, the apartment valuation and comparable rates of return results yield the same conclusion -- M.U.R.B. apartment block investors do not appear to have earned preferential ex ante rates of return as a result of the M.U.R.B. program.

There are two groups other than investors who may have benefitted from the M.U.R.B. program - landowners and renters. The next section of this paper tests whether it was landowners who benefitted by estimating the impact of the legislation on multiple family land values.

## 6.0 ESTIMATION OF MULTIPLE FAMILY LAND PRICE MODEL

The objective of this analysis of the determinants of multiple family land value is to find an estimation of the land price model which fully represents those factors which influence land values, so that the estimated impact of the M.U.R.B. variable on land values will be unbiased. To this end, careful selection of variables for inclusion in the regression equation was made, both in terms of the actual measure of specific variables in the theoretical model and in terms of how those variables were represented in empirical terms. The structure of the M.U.R.B. variable as a 0-1 dummy, which is 0.0 during the pre-1975 period and 1.0 thereafter, meant that any time trend existing in other independent variables would have to be eliminated in order to clearly identify the M.U.R.B. impact. Hence, all variables are specified in real terms (where applicable).

Before discussing the regression results, the following paragraphs describe the 12 variables which have been included in the preferred estimation of the theoretical model.

## 6.1 DESCRIPTION OF VARIABLES

# **6.1.1** Location Variables

As previously discussed, the two location variables which were significant in estimating multiple family land values (West End and East Vancouver)

are 0-1 dummy variables indicating whether or not the land transaction took place in that sub-area of the city. Since the West End district is much closer to Vancouver's central business district, and hence is a much more established apartment district, one would expect sites in this area to be greater in value than sites in East Vancouver.

## 6.1.2 M.U.R.B. Variable

This 0-1 dummy variable is expected to have a positive effect on multiple family land values, since the presence of M.U.R.B. increases the expected future net after-tax cash flows to the developer of an apartment building.

# 6.1.3 <u>Vacancy Rates</u>

The first measure of vacancy rates used in the final estimation is the overall vacancy rate in apartment buildings in the City of Vancouver which have been completed for at least six months. Another measure which was tested was the vacancy rate in the sub-area in which the land sale occurred, but this measure did not perform well, i.e. the coefficient was positive and significant rather than negative in preliminary regressions. One would expect the vacancy rate coefficient to have a negative sign since an increase in potential vacancies would reduce expected future cash flows to the developer and hence reduce the amount he would be willing to pay for apartment zoned land. A possible reason why this measure did not perform as expected is the fact that the vacancy rate was higher in the

West End throughout the study period, but land values were also higher in that area. Some correlation problem may thus have occurred.

The second measure of vacancy rates used in the analysis is the vacancy rate in new multiple family dwellings, defined as the stock of newly completed and unoccupied multiple family dwellings in the City of Vancouver divided by multiple family completions over the previous four quarters. An increase in this vacancy rate should have even greater negative impact on developers' expectations regarding future cash flows than the overall vacancy rate in existing apartments, since new apartments will represent developers' strongest competition in the marketplace.

## 6.1.4 Income

The income measure used in this analysis is real per capita income (indexed by the general CPI for Vancouver) in British Columbia over the study period. Ideally, one would use the average income of non-family households in the Vancouver metropolitan area, since such households are the primary market for multi-unit housing. However, income information at the metropolitan level is severely deficient, particularly as far back as 1971. Although taxation statistics are available at the metropolitan and municipal levels, such statistics do not account for changes in average household income, since they are on an individual taxpayer basis rather than on a household basis. Hence, although the B.C. per capita income measure is not specific to non-family households, it is considered the best

information available which can represent real changes in income over the required time period.

# 6.1.5 Interest Rates

The interest rate measure employed in this analysis is the real interest rate (adjusted by the general CPI for Vancouver) on NHA approved lender rental properties (i\*). This rate is considered more appropriate than the conventional mortgage rate, which would be more representative of rates on single family dwellings than on apartment properties.

## 6.1.6 "Excess" Apartment Returns

It is reasonable to assume that one inducement for developers to buy multiple family land is the rate of return expected on apartment properties over and above the rate of return on a risk-free asset. This "excess returns" variable is thus defined as the real capitalization rate minus the real interest rate on NHA approved lender rental properties, which in a sense represents the leverage opportunities available to apartment block investors. The measure of capitalization rates is derived from a data file containing the universe of arms length apartment block transactions in the City of Vancouver from 1969 to 1981. Since this data included information on a quarterly basis on the selling price and gross income for each apartment block transaction, a standard representative apartment

block was selected in each quarter, for which the capitalization rate was used.

## 6.1.7 Rents

One would expect developers' decisions concerning the price they are willing to pay for multiple family zoned land to reflect current market rents being achieved on new apartment buildings. However, there is no public or private source of such information over the seven-year study period of this paper. Therefore, the measure of rental rates used is the Statistics Canada rent index for Vancouver (adjusted by the general CPI for Vancouver). 18

A second variable which should have an impact on developers' expectations about future rents is the level of apartment dwelling starts in the City of Vancouver. As the number of potential competitive units rises, other things being equal, a developer should expect this competition to reduce future market rents and hence the rents he will be able to achieve in his building. Therefore, this variable is expected to have a negative effect on multiple family land values.

## 6.1.8 Construction Costs

The construction cost variable represents the Statistics Canada construction cost index for British Columbia (adjusted by the general CPI for

Vancouver). 19 This variable is expected to have a negative impact on multiple family land values, since increases in this variable would decrease expected future cash flows to the developer.

# 6.1.9 Population

The measure used as a proxy for growth in households is the quarterly growth in British Columbia's total population which, although probably too macro a measure to fully represent the effect of increasing numbers of households and decreasing household size in the Vancouver region, is the only measure available on a quarterly basis. Several alternate measures were attempted, one being the change in households in the City of Vancouver interpolated between census years, and the other the annual change in main residence telephone listings in the City of Vancouver. <sup>20</sup> Neither of these measures performed well in the equation for various reasons.

In the case of the census information on households, the interpolation between five-year intervals created time trend problems with the M.U.R.B. variable, since the total change in households in Vancouver between 1976 and 1981 was higher than the change between 1971 and 1976;<sup>21</sup> thus, the structure of the variable resulted in high collinearity with the M.U.R.B. variable, preventing efficient estimation of their individual effects on multiple family land values.

When added to the equation, the regression coefficient for the telephone listings variable was negative, which is contrary to the expected positive effect of growth in households on land values. There are two possible explanations for this result. Firstly, using the City of Vancouver statistics may be too narrowly defining how the housing market operates. Presumably, demand for multiple family housing, and hence pressure on multiple family land values, is coming from migration and undoubling within the entire Vancouver region, rather than just in the City of Vancouver. Secondly, the growth in total households includes family as well as non-family households, hence the effect on non-family housing and land values may not be clearly represented.

# 6.1.10 The Zoning Issue

The underlying assumption throughout this analysis will be that the zoning variable in the theoretical model remains constant. It seems appropriate to address this issue directly and to present evidence that it is indeed a valid assumption.

If during the study period of this paper, any major change in the supply of multiple family zoned land occurred, this would clearly bias the representation of the multiple family land market, and hence the M.U.R.B. and other coefficients in the equation. However, discussions with planning officials in the Greater Vancouver region has revealed that the supply of multiple family zoned land on a regional basis was fairly constant throughout the 1972 to 1978 period. Although the West End was downzoned in

1975, reducing build-out capacity in that area by 5,000 to 10,000 units, other parts of the city were upzoned to increase total capacity, as were other municipalities in the region, most notably Richmond, Burnaby and Surrey. Thus, it appears reasonable to assume that the multiple family zoning variable is a constant over the study period of this research.

Since zoning is assumed to be constant, both Z and UNITS will drop out of the theoretical model (equation (11)); the number of units per square foot will be constant for all sites because of the constant floor space ratio.

#### 6.2 EMPIRICAL RESULTS

The results of the estimation of the multiple family land value model are shown in Table 4. Each of the regression equations is discussed in turn in the paragraphs which follow.

## **6.2.1** Run Number 1

This equation represents the estimation of the theoretical model with all variables measured as expected theoretically. However, there is an extreme collinearity problem with two variables, real rents and real income, whose correlation with the MURB variable are greater than .90, as shown in Table 5 (for RLRENT2 and REALINC). This collinearity prevents an efficient estimation of the true effect of each of these three variables

on land values; the MURB variable consequently shows a negative sign, contrary to what is expected.

An examination of the scatter plots of RLRENT2 and REALINC versus QUARTER included in Appendix "C" provides an explanation for the high collinearity of these two variables with MURB. Essentially, the very small number of data points in the middle of the study period, which was the time when M.U.R.B.'s were introduced, compared to the larger number of data points at the two extreme ends of the study period, results in high positive and negative correlation between MURB and any time trend variable. This does introduce a bias into the data results, but it is an unresolvable problem in terms of availability of transactions data, due to the paucity of land sales in the City of Vancouver during the 1973 to 1975 period.

The objective of this analysis is to find an efficient and unbiased estimate of the significance of the MURB and other variables in determining multiple family land values. The collinearity problem identified above creates an efficiency problem; however, the usual remedies for reducing collinearity, i.e. collecting more data and taking first differences on both sides of the regression equation, are not available in this case. An alternative representation of the rent and income variables is their change from quarter to quarter, which removes the time trend interference with MURB, as can be seen from Table 5 (for GRRLINC and LAGRENT). However, it must be recognized that although some gain in efficiency is

Table 4
THE REGRESSION EQUATIONS FOR MULTIPLE FAMILY LAND VALUES

|                                                                                                                                            |                                |                 |                   | Regression Coefficients of the Independent Variables (t-values in parentheses) |                  |                 |                              |                  |                               |                                 |                                |                 |                   |                 |          |        |      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|-------------------|--------------------------------------------------------------------------------|------------------|-----------------|------------------------------|------------------|-------------------------------|---------------------------------|--------------------------------|-----------------|-------------------|-----------------|----------|--------|------|------|
| Dependent<br>Variable                                                                                                                      | Constant                       | L <sub>we</sub> | L <sub>ev</sub>   | MURB                                                                           | VR               | NEWVRATE        | Y*                           | <del>i*</del>    | Rm*                           | STARTS                          | _cc*_                          | <u>Дрор</u>     | ER*               | _R <sup>2</sup> | <u>n</u> | F-stat | D₩   | SE   |
| Real price<br>per square<br>foot of<br>multi-family<br>zoned sites<br>in the City<br>of Vancouver<br>during the<br>1972 to 1978<br>period. | Run Number 1 -252.63 (-4.12)*  | 1.81 (1.81)     | -3.26<br>(-5.52)* | -5.64<br>(-1.44)                                                               | -1.66<br>(-1.60) | 0.05<br>(0.60)  | 0.06<br>(4.41)*              | -0.35<br>(-0.72) | 0.84<br>(3.53)*               | -0.004<br>(-3.90)*              | -0.30<br>(-3.89)*              | 1.42<br>(1.34)  | -0.37<br>(-2.18)  | . 592           | 112      | 11.98  | 2.11 | 2.44 |
| н .                                                                                                                                        | Run Number 2  -8.66 (-1.65)    | 2.77<br>(2.66)* | -3.13<br>(-4.97)* | 8.37<br>(3.41)*                                                                | 0.18<br>(0.11)   | 0.14<br>(1.53)  | 0.69 <sup>b</sup><br>(1.96)* | -0.26<br>(-0.43) | 0.23 <sup>ab</sup><br>(2.24)* | -0.002<br>(-1.91)               | 0.07<br>(2.41)*                | 2.23<br>(2.00)* | -0.65<br>(-2.79)* | . 532           | 112      | 9.38   | 1.88 | 2.61 |
| •                                                                                                                                          | Run Number 3 10.36 (1.46)      | 2.48<br>(2.29)* | -3.20<br>(-5.14)* | 0.65<br>(0.20)                                                                 | -1.94<br>(-1.23) | 0.33<br>(3.38)* | 0.12 <sup>b</sup><br>(0.42)  | 0.99<br>(1.84)   | -0.11<br>(-1.57)              | -0.004 <sub>*</sub><br>(-3.46)* | -0.22 <sup>b</sup><br>(-2.30)* | 2.75<br>(2.42)* | -0.35<br>(-1.51)  | . 540           | 112      | 9.70   | 2.05 | 2.59 |
| 11                                                                                                                                         | Run Number 4<br>0.56<br>(0.16) | 3.20<br>(3.12)* | -3.22<br>(-5.20)* | 5.20<br>(2.22)*                                                                | -2.46<br>(-1.68) | 0.35 *          | 0.20 <sup>b</sup><br>(0.66)  | 0.97<br>(1.82)   | 0.18 <sup>ab</sup><br>(1.89)  | -0.004 <sub>*</sub><br>(-3.23)* | -0.27 <sup>b</sup><br>(-2.98)* | 3.22<br>(2.95)* | -0.44<br>(-1.89)  | . 545           | 112      | 9.90   | 1.97 | 2.57 |
|                                                                                                                                            | Run Number 5 -1.31 (-0.23)     | 3.21<br>(2.89)* | -3.14<br>(-4.97)* | 4.74<br>(1.89)                                                                 | -2.84<br>(-1.93) | 0.40<br>(4.10)* | 0.10 <sup>b</sup><br>(0.27)  | 1.33<br>(2.27)*  | -0.29 <sup>b</sup><br>(-0.47) | -0.004 <sub>*</sub><br>(-3.19)* | -0.23 <sup>b</sup> *           | 3.16<br>(2.84)* | -0.42<br>(-1.77)  | . 530           | 112      | 9.30   | 2.10 | 2.61 |
| n                                                                                                                                          | 9.28<br>(0.73)                 | 2.17<br>(1.96)* | -3.18<br>(-4.95)* | 1.72<br>(0.38)                                                                 | -0.67<br>(-0.42) | 0.20<br>(2.35)* | 0.30 <sup>b</sup><br>(0.95)  | 0.42<br>(0.72)   | -0.13<br>(-1.31)              | -0.002 *<br>(-2.47) *           | 0.02<br>(0.44)                 | 2.19<br>(1.92)  | -0.47<br>(-1.88)  | .517            | 112      | 8.82   | 1.94 | 2.65 |

~ ,,

Table 4 (cont'd) THE REGRESSION EQUATIONS FOR MULTIPLE FAMILY LAND VALUES

|                                                                                                                                            |                          |                             |                   |                    | Regressio         | n Coefficients  | of the Indep | endent Varial   | oles (t-values               | in parenthes                    | es)                            |                 |                               |                   |          |        |      |           |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|-------------------|--------------------|-------------------|-----------------|--------------|-----------------|------------------------------|---------------------------------|--------------------------------|-----------------|-------------------------------|-------------------|----------|--------|------|-----------|
| Dependent<br>Variable                                                                                                                      | Constant _               | L <sub>we</sub>             | L <sub>ev</sub>   | MURB               | VR                | NEWVRATE        | Y*           | i*              | _Rm*                         | STARTS                          | _cc*                           | <u> </u>        | ER*                           | _R <sup>2</sup> _ | <u>n</u> | F-stat | DW   | <u>SE</u> |
| Real price<br>per square<br>foot of<br>multi-family<br>zoned sites<br>in the City<br>of Vancouver<br>during the<br>1972 to 1978<br>period. | Run Number 7 1.52 (0.47) | 3.04<br>(3.06)*             | -3.21<br>(-5.20)* | 4.11<br>(2.48)*    | -3.10<br>(-2.81)* | 0.38<br>(4.47)* |              | 1.18 (2.78)*    | 0.16 <sup>ab</sup><br>(1.78) | -0.004 <sub>*</sub><br>(-3.58)* | -0.28 <sup>b</sup><br>(-3.06)* | 3.28<br>(3.02)* | -0.33<br>(-1.97)*             | . 543             | 112      | 10.82  | 1.95 | 2.56      |
| Ħ                                                                                                                                          | 0.73<br>(0.23)           | 3.03<br>(3.02)*             | -3.17<br>(-5.08)* | 4.30<br>(2.57)*    | -2.84<br>(-2.57)* | 0.38<br>(4.50)* |              | 1.20<br>(2.82)* |                              | -0.40<br>(-3.46)*               | -0.25 <sup>b</sup><br>(-2.80)* | 3.20<br>(2.93)* | -0.40<br>(-2.42)*             | . 529             | 112      | 11.34  | 1.93 | 2.59      |
| •                                                                                                                                          | 7.79<br>(9.58)*          |                             |                   | 3.54<br>(4.02)*    |                   |                 |              |                 |                              |                                 |                                |                 |                               | .125              | 112      | 16.20  | 1.48 | 3.35      |
| Average real price per square foot of land sale transactions in quarter x.                                                                 | 23.48<br>(1.04)          | 0.16 <sup>c</sup><br>(0.20) |                   | -5. 27<br>(-0. 76) | -0.04<br>(-0.02)  |                 |              |                 | -0.21<br>(-1.21)             | 0.13 <sup>d</sup><br>(0.22)     | 0.03<br>(0.30)                 |                 | -0.04 <sup>e</sup><br>(-0.14) | . 446             | 20       | 1.38   | 2.75 | 3.57      |
| n                                                                                                                                          | 9.32<br>(6.64)*          | Ĺ                           |                   | 2.52<br>(1.45)     |                   |                 |              |                 |                              |                                 |                                |                 |                               | . 104             | 20       | 2.10   | 1.68 | 3.71      |

Lagged by one quarter.
Change since last quarter.
Location index variable, weighted by sub-area.
Expectations variable, defined as the lag over the past six quarters in Vancouver rents.
Real capitalization rate variable.
Indicates t-value significant at .05 level.

achieved by taking these first differences, there is also some loss in unbiasedness in the results. The following paragraphs describe the data results using these new specifications for rent and income.

# 6.2.2 Run Numbers 2 and 3

Run Number 2 includes  $\triangle$   $R_m^*$  and  $\triangle$   $Y^*$  in the regression equation, both of which are significant and have the expected positive sign. Other variables in this equation which are significant and have the expected sign are the two location variables (West End and East Vancouver), MURB, population growth ( $\triangle$  POP), and excess returns on apartment investments ( $ER_a^*$ ). Variables which do not have the expected sign are the vacancy rate (VR), the vacancy rate in new multiple family dwellings (NEWVRATE), and construction costs (CC\*).

Since the specification of the rent variable is in quarterly change terms rather than the actual level, it would seem more consistent to include construction costs in quarterly change terms as well, particularly since the coefficient for the level of construction costs does not make intuitive sense. Run Number 3 replaces  $CC^*$  with  $\Delta CC^*$ , but keeps  $R_m^*$  rather than  $\Delta R_m^*$ , to see what the effect of  $\Delta CC^*$  is in the equation, independent of  $\Delta R_m^*$ . As Table 4 shows,  $\Delta CC^*$  is in fact significant and negative as expected in this equation, but  $R_m^*$  is also negative. The equations in the following paragraphs will specify both  $\Delta R_m^*$  and  $\Delta CC^*$ , as this is considered to be most consistent.

## **6.2.3** Run Number 4

This equation represents my preferred estimation of the theoretical model, since all but two of the variables have the expected sign and the collinearity between independent variables has been minimized (refer to Table 5). According to this equation, the most statistically significant determinants (at the 5 per cent level) of multiple family land values are: location (the West End having a positive effect and East Vancouver a negative effect), MURB, the level of apartment dwelling starts, construction costs, and population growth. Other variables which are not statistically significant, but which do contribute to the explanation of multiple family land values, hence minimizing bias in the estimation of the MURB coefficient, are: vacancy rates, change in real income, the real interest rate, a one quarter lag in the change in rents, <sup>23</sup> and excess returns expected on apartment investments.

The NEWVRATE and i\* variables do not have the expected negative sign in this equation, although these measures are consistent with the theoretical determinants of multiple family land values. Furthermore, neither of these variables is severely collinear with other independent variables in the equation, although the correlation coefficient of .75 between NEWVRATE and MURB, and .79 between REALINT and VACRATE, may be causing statistical problems.

Table 5

# CORRELATION MATRIX FULL MODEL VARIABLES

# <u>Variable</u> <u>Correlation Coefficients</u>

| 39.NEWREALP | 1.0000        |                 |              |               |                |                |                |                |                  |                |                |                |                 |                  |               |                 |                 |                |                |                |                 |
|-------------|---------------|-----------------|--------------|---------------|----------------|----------------|----------------|----------------|------------------|----------------|----------------|----------------|-----------------|------------------|---------------|-----------------|-----------------|----------------|----------------|----------------|-----------------|
| 7.WESTEND   | . 3899        | 1.0000          |              | •             |                |                |                |                |                  |                |                |                |                 |                  |               |                 |                 |                |                |                |                 |
| 8.KITS      | .0931         | -, 1910         | 1.0000       |               |                |                |                |                |                  |                |                |                |                 |                  |               |                 |                 |                |                |                |                 |
| 9.EASTVAN   | 3227          | 3675            | 8035         | 1.0000        |                |                |                |                |                  |                |                |                |                 |                  |               |                 |                 |                |                |                |                 |
| 10.MARPOLE  | .0692         | 0399            | 0871         | 1676          | 1.0000         |                |                |                |                  |                |                |                |                 |                  |               |                 |                 |                |                |                |                 |
| 25.MURBSTAT | . 3592        | . 0335          | 4362         | . 3730        | .0570          | 1.0000         |                |                |                  |                |                |                |                 |                  |               |                 |                 |                |                |                |                 |
| 22. VACRĄTE | 1656          | .0725           | . 3697       | 3638          | 0799           | 4390           | 1.0000         |                |                  |                |                |                |                 |                  |               |                 |                 |                |                |                |                 |
| 92.NEWVRATE | . 3794        | .0178           | 3200         | . 2582        | . 1126         | .7542          | 3859           | 1.0000         |                  |                |                |                |                 |                  |               |                 |                 |                |                |                |                 |
| 42.REALINC  | . 4204        | . 1252          | 3930         | . 2936        | .0130          | .9143          | 3073           | .6911          | 1.0000           |                |                |                |                 |                  |               |                 |                 |                |                |                |                 |
| 52.GRRLINC  | 2679          | 1790            | . 2359       | 1188          | 0065           | 6092           | . 1562         | 2042           | 6280             | 1.0000         |                |                |                 |                  |               |                 |                 |                |                |                |                 |
| 55.REALINT  | 1810          | .0147           | .2124        | 1686          | - , 1395       | 2924           | . 7956         | 2820           | 1436             | . 3289         | 1.0000         |                |                 |                  |               | •               |                 |                |                |                |                 |
| 93.RLRENT2  | 4081          | 1094            | .4340        | 3380          | 0229           | - 9554         | . 4469         | 6997           | 9736             | .6742          | .3162          | 1.0000         |                 |                  | ٠             |                 |                 |                |                |                |                 |
| 97.RLRNTLAG | 4 105         | 1034            | . 4444       | 3492          | 0298           | 9649           | .,4611         | 7407           | 9711             | .6141          | . 30 15        | . 9954         | 1.0000          |                  |               |                 |                 |                |                |                |                 |
| 60. LAGRENT | . 1821        | . 0505          | 0819         | . 056 1       | 0285           | . 1991         | .0976          | . 1557         | . 1578           | 3394           | . 1092         | 1107           | - , 1036        | 1.0000           |               |                 |                 |                |                |                |                 |
| 94.STARTS   | .0273         | 0563            | 1136         | . 1562        | 0695           | .4122          | . 1489         | . 2860         | .5768            | 2515           | . 2758         | 4800           | 4576            | .0800            | 1.0000        |                 |                 |                |                |                | 4               |
| 95.REALCOST | . 2123        | . 1814          | 0323         | 0682          | 0096           | . 1827         | . 2233         | . 1098         | .5279            | 2516           | . 3523         | - , 3532       | 3346            | .0356            | . 4897        | 1.0000          |                 |                |                |                |                 |
| 63.CCOSTBC2 | 0439          | . 0861          | . 0269       | -,1281        | . 2029         | 2522           | 0496           | . 1285         | 3371             | .4573          | 0172           | . 3578         | . 3039          | .0161            | 6018          | 0913            | 1.0000          |                |                |                |                 |
| 51 POPGRTH  | 2766          | 0432            | . 4330       | 3711          | 0333           | 8013           | . 4500         | 7042           | 6895             | .4488          | . 2004         | . 7351         | . 7576          | 2551             | 1030          | 0779            | .0170           | 1.0000         |                |                |                 |
| 70.RLAPTRTN | 1325          | 0774            | . 1160       | 0780          | .0475          | 1747           | , 2318         | . 1416         | -,1811           | . 7039         | . 3305         | . 2672         | . 1976          | 2041             | . 1078        | 0184            | . 3307          | . 2938         | 1.0000         |                |                 |
| 12.BCP0P    | . 4130        | . 1146          | 4135         | . 3 180       | .0154          | . 9482         | 3639           | . 6945         | .9919            | 6595           | -,2156         | 9929           | 9901            | . 1433           | . 5264        | . 4309          | 3558            | 7208<br>·      | 2 190          | 1.0000         |                 |
| 53.INFLATIO | . 2539        | 0251            | 3353         | . 3030        | .0880          | . 5281         | 8816           | . 4358         | . 3539           | 3854           | 9273           | 5347           | 5321            | 0560             | 1812          | 3548            | 0998            | 4498           | 3687           | . 4378         | 1.0000          |
|             | 39.<br>Newrea | 7.<br>LP WESTEN | 8.<br>D KITS | 9:<br>EASTVAN | 10.<br>MARPOLE | 25<br>MURBSTAT | 22.<br>VACRATE | 92.<br>Newvrat | 42.<br>E REALING | 52.<br>GRRLINC | 55.<br>REALINT | 93.<br>RLRENT2 | 97.<br>RLRNTLAC | 60.<br>G LAGRENT | 94.<br>STARTS | 95.<br>REALCOST | 63.<br>CCOSTBC2 | 51.<br>POPGRTH | 70.<br>Rlaptrt | 12.<br>N BCPOP | 53.<br>Inflatio |

It is worthwhile noting that the R-squared of .545 for this equation is quite acceptable for cross-sectional studies of this nature. Although the sample contains transactions which occurred over a seven-year period, the removal of the time trend, and the conversion to real terms changes the data to a cross-sectional sample. One would expect a much higher R-squared in time series studies such as those by Witte and Adams et al.

These data results suggest that the introduction of the M.U.R.B. program in 1974 had a significant impact on multiple family land values, and that developers paid a premium of \$5.20 per square foot (compared to the average real sales price per square foot of \$10.81) to obtain such land over the period of the program. Hence, a developer would pay an extra \$52,000 (in 1971 dollars) for a typical 100' x 100' apartment site (this is somewhat smaller than the average apartment block in the RESALES sample). At the 5 per cent level of significance, this represents a confidence interval of \$52,000 + \$45,891. If one assumes that the developer built a typical (Class 31) 25-unit apartment block on this site, with a marginal tax rate of 55 per cent, a real discount rate of 2 per cent and a seven-year holding period, the present value of the future marginal tax shelter benefits associated with the M.U.R.B. certification is \$23,180 (in 1971 dollars). Converting to 1980 dollars, the equation estimates that a developer would pay \$108,680 to acquire a site with future tax shelter benefits worth \$48,446. This estimate is again based on the PV<sub>MURB</sub> equation described previously:

$$PV_{MURB} = \begin{bmatrix} \frac{n}{\sum_{i=1}^{n} \frac{CCA_{MURB}}{(1+r)^{i}}} & \frac{Recapture}{(1+r)^{n}} \end{bmatrix}$$

Thus, the M.U.R.B. premium on land price estimated in these data results represents a significant over-capitalization of future M.U.R.B. tax shelter benefits.

# **6.2.4** Run Number 5

This equation shows the impact of using  $\triangle$   $R_m^*$  in current rather than lagged form. Although the R-squared is only moderately affected (it is reduced, however), the sign of  $\triangle$   $R_m^*$  is incorrect, and  $\triangle$   $Y^*$  is no longer significant. It also reduces slightly the significance of  $i^*$ ,  $\triangle$   $CC^*$  and  $\triangle$  POP, although it only marginally affects the MURB coefficient. This equation shows that the specification of the rent variable in current terms is not as good a measure as lagged rents in explaining developers' behaviour. This may result from information lags, or it may be that developers are merely slow in reacting to changes in the market.

## **6.2.5** Run Number 6

Run Number 6 show the regression results where income is specified as a quarterly change, but rents and construction costs are specified in level terms. Only three variables are statistically significant - WESTEND, EASTVAN, and STARTS, while four variables do not have the correct sign - NEWVRATE, i\*, R\*, and CC\*. Thus, Run Number 4 is still considered the preferred estimate of the theoretical model, although this run could be considered more theoretically appealing.

## 6.2.6 Run Numbers 7 and 8

These two equations show the variables which remain in equation four at the .10 and .05 significance levels, respectively. In the former equation, only  $\triangle$  Y \* drops out of the equation, while in the latter,  $\triangle$  R \* also drops out. In both cases, NEWVRATE and i \* still have the incorrect sign. These results are generally encouraging, in that ten variables remain in the estimated equation even at the 5 per cent level of significance, with an acceptable R-squared of 53 per cent.

# **6.2.7** Run Number 9

A run was made including only MURB as the independent variable. It is interesting to note that the MURB coefficient in this equation is 3.54

(significant at .05 level), and although the R-squared is only .125, the regression is significant at the .05 level (F = 16.20).

## 6.2.8 Run Number 10

In an attempt to reduce the bias in the regression equation which may result from the large number of land sale observations in some quarters compared to others during the study period, an additional run on the data was made on a quarterly rather than on a transactions basis. This effectively reduced the sample size to 20, since of the 27 quarters over the 1972 to 1978 time period, 7 quarters had no occurrence of land sales transactions.

The dependent variable in this equation is the average real price per square foot of all land transactions during a quarter. A location index was created, which gave a weighting of 3.0 for sales in the West End, - 3.0 for sales in East Vancouver, and 0.0 for sales occurring in either Kitsilano or Marpole. These weights are based on the earlier regression results, which showed quite stable coefficients for WESTEND and EASTVAN, while KITS and MARPOLE were never significant in the equations (see Appendix "C" for these regression results).

Due to the dramatic reduction in the sample size for this run, the number of variables included in the equation was reduced to seven. Only the existing vacancy rate was included, while an expectations variable, NEWRMLAG, which represents a six-quarter moving average of the real growth of rents in Vancouver, replaces  $\Delta$  Y\*, STARTS and  $\Delta$  POP. The i\* and ER\* variables are collapsed into one rate of return variable, the real capitalization rate.

As can be seen from Table 4, the results of this regression are quite disappointing, since not one variable is significant at even the 20 per cent level of significance, nor is the regression as a whole significant, although the R-squared is a surprising 44.6 per cent. An examination of the residual plot and histogram of residuals for this regression (refer to Appendix "D", page 127), reveals a possible outlier in the data, which may be causing high standard errors and thus biasing the results. A regression was run excluding this possible outlier (refer to Appendix "D", page 134); however, the results are very comparable to Run Number 10, although the coefficients of the MURB, REALCOST and VACRATE variables switch signs, and the standard error is reduced somewhat and t values improved, as would be expected. 24 A possible explanation for these small sample results is that the number of variables is still too large for this sample size. However, to remove more independent variables would bias the full representation of the multiple family housing market.

## **6.2.9** Run Number 11

This regression equation shows the small sample results where only MURB is included as the independent variable. Although MURB is not significant,

its coefficient has a value of 2.52, which is reasonably close to the value in Run 9. The R-squared is again very low (.102), while the F statistic is not significant at the .05 level.

#### **CONCLUSIONS AND IMPLICATIONS**

7.0

The results of the foregoing analysis provide evidence which contradicts the general case for the operation of the multiple family housing market, where renters should receive the full benefits of the M.U.R.B. program in the form of This research has shown that the future tax shelter benefits lower rents. associated with M.U.R.B. properties are fully capitalized into the market values of completed M.U.R.B. buildings, and that M.U.R.B. investors do not earn rates of return superior to those of investors in non-M.U.R.B. apartment properties. Similarly, these results do not support the widely made argument that adverse tax revisions (such as reductions in tax shelter benefits) cause inferior ex ante rates of return in real estate investment.<sup>25</sup> In competitive capital markets, equilibrium comparative returns among alternative investments are not determined by Government subsidies or differential tax treatments. Expected rates of return among assets of equivalent risk must be equal; otherwise, investors will enter or leave a specific investment market, causing prices to rise or fall until the returns The only way government programs effect among the assets are similar. differential returns is through any investment risk created by having a fluctuating or uncertain tax or subsidy policy.

This research suggests further that the expected M.U.R.B. tax shelter benefits were over-capitalized into higher land value premiums during the life of the program. Thus, using Tullock's (1975) terminology, a major effect of the program

was to create transitional gains for existing landowners at the time the program was introduced. The expected favourable tax shelter benefits were thus competed away, resulting in higher multiple family land prices. Although the data results show clearly the impact of the M.U.R.B. on land values, a weakness in the data, i.e. there were very few land sales occurring immediately before and after the introduction of the program, must be recognized, since it may be biasing the results to some extent.

The data results nevertheless suggest that one of two cases discussed in Section 3.1 holds. The over-capitalization of M.U.R.B. benefits into land values, combined with the full capitalization of M.U.R.B. benefits into the resale values of apartment blocks, would result if the land supply function were inelastic and the investors demand function were perfectly elastic (Case 4). This would imply that there is substitution in the production function for apartment blocks, i.e. developers will substitute capital for land and increase the density on existing sites as a result of the increase in demand caused by M.U.R.B. legislation. This is also evidence of semi-strong form efficiency of real estate markets, since the tax shelter benefits were fully capitalized into resale values of M.U.R.B. apartment properties. However, since this research has not tested the speed with which the market reacted to the introduction of the M.U.R.B. program, it does not provide conclusive evidence of real estate market efficiency.

The data results also cannot reject the conditions under Case 5, where both the land and apartment supply functions are perfectly inelastic, since the confidence

interval of the MURB coefficient includes the case where the present value of the M.U.R.B. benefits is equal to the estimated increase in land values which occurred as a result of M.U.R.B. legislation. However, this would imply no substitution in production, which is not very likely. Furthermore, conclusive evidence of this case could only be found by either observing the movement in rents after M.U.R.B.'s were introduced in comparison to what would have occurred in the absence of M.U.R.B.'s., or by deriving structural estimates of the supply and demand curves in the land and apartment markets. Clearly, such a comparison is not possible with these data.

A third possible market situation which is supported by the data results is where the demand schedules of both investors and landowners are perfectly elastic, a consequence of both an efficient land and apartment investment market. A definitive answer is not possible, however, without some knowledge of the change in apartment rents which resulted from the M.U.R.B. program.

What the results do suggest, however, is that the full capitalization of M.U.R.B. benefits into both land and apartment block values resulted in the full benefits of the M.U.R.B. program not filtering through to renters. Some benefits most likely did reach renters, since it is unrealistic to assume no substitution in production, but the extent of renters' benefits cannot be measured within the scope of this research.

If the supply of multiple family land is in fact inelastic and government assistance programs which increase the demand for rental housing or apartment zoned land,

are not accompanied by policies at junior levels of government which concurrently increase the supply of developable land, these assistance programs can become marginally effective tools for increasing the allocation of resources to the housing sector. This research has in fact shown that the M.U.R.B. was a very expensive subsidy policy and that its effectiveness in achieving its objective was limited by the nature of the multiple family housing market. The evidence regarding the slope of the supply and demand curves for landowners and investors suggests that the full impact of the M.U.R.B. tax shelter benefits was split between windfall gains to landowners and decreased rents for renters. However, the distribution of the benefits between these two groups is not clear from these data results.

If the introduction of the M.U.R.B. program in 1974 created windfall gains for existing landowners, then it follows that the termination of the program will create windfall losses. It also follows that the "off and on" nature of the program over the past seven years should have created considerable uncertainty for prospective land purchasers and developers, resulting in increased risk of holding real estate. Nevertheless, after termination of the program, once the market has adjusted to the lower costs of production, future market participants should earn "normal" market rates of return on apartment investments.

This research has shown that there is still much to be learned about how housing markets operate. It would be instructive to do a similar study in another metropolitan area, particularly where land sales between 1973 and 1975 were not so scarce, in order to compare market reactions in another local marketplace.

Before more definitive conclusions can be drawn concerning the behaviour of various market participants, more research needs to be done on rent movements and on the speed with which real estate markets react to changes in information.

#### **FOOTNOTES**

- Statistics Canada, Vital Statistics, Catalogue Number 84-204.
- See Harris (1979: 4-14) for a discussion of the tax reform process.
- See Interpretation Bulletin IT-367R2, September 7, 1981. After 1978, with few exceptions, all new M.U.R.B.-certified buildings came under the 5 per cent CCA asset class (Class 32).
- There will also be foregone provincial tax revenues, which will vary from province to province.
- Based on information obtained from Helmut Pastrick at CMHC in Vancouver.
- 6 City of Vancouver Planning Department estimates.
- Stock markets also suffer from some of these deficiencies, such as lack of sophistication, and divergence between expectations and actual accomplishments. The efficiency of stock markets nevertheless has been empirically supported.
- For additional information on this type of framework for real estate investment analysis, see Gau and Kohlhepp (1976, 1978).
- The RM-3 zoning classification in the City of Vancouver allows a maximum floor space ratio (FSR) of 1.5, i.e., the ratio of total gross building area to lot size.
- Comparable holding period in terms of acquisition and sales date.
- Although the present data file contains 112 transactions, the original data collected comprised some 496 transactions which occurred from 1963 to 1978. However, the pre-1972 data were not useable due to constaints in other data and because of problems which arose with the representation of the 1971 tax reform legislation in the model.
- Assuming a typical structure-to-property value ratio of 70 per cent on the average selling price in the sample.
- In 1980 in British Columbia, a 55 per cent marginal tax rate would apply to investors with a taxable income of \$70,000 or more.

- For the M.U.R.B. developments, the analysis assumes that 15 per cent of the construction costs are soft; in other words, outlays that could be expensed when incurred as opposed to being capitalized into the depreciable basis of the property. The 15 per cent figure is the average soft cost ratio (after eliminating syndication-type fees) found in a survey of ten registered M.U.R.B. syndicates offered in Western Canada in the third quarter of 1981.
- Refer to Neter and Wasserman (1974: 12-13) for a discussion of this test.
- The other two location variables, KITS and MARPOLE, did not have significant coefficients in preliminary regressions.
- 17 This data was also collected from B.C. Assessment Authority records, under the supervision of Professor George W. Gau.
- 18 Catalogue Number 62-010.
- 18 Catalogue Number 62-007.
- Obtained from the B.C. Telephone Company.
- Statistics Canada, Census of Canada, for 1971 and 1976, and preliminary census counts for 1981.
- Based on information obtained from the Planning Departments of the City of Vancouver, the Municipalities of Richmond, Burnaby and Surrey, and the Provincial Land Commission.
- All independent variables were tried with a lag to see if the specification of the model improved, but  $\triangle$  R was the only variable which performed better when specified on a lagged basis.
- This same observation was excluded from a separate run on the large sample (in Runs 1 and 4), and similarly, the regression results changed only marginally.
- An example of such an argument can be found in Smith (1981).

#### **BIBLIOGRAPHY**

Adams, F. Gerard; Milgram, Grace; Green, Edward W.; and Mansfield, Christine, "Undeveloped Land Prices During Urbanization: A Micro-Empirical Study Over Time", Review of Economics and Statistics, Vol. 50, No. 2, May, 1968, pp. 248-258.

Bailey, Martin J., "Progressivity and Investment Yields under U.S. Income Taxation", Journal of Political Economy, Vol. 82, No. 6, 1974, pp. 1157-1175.

Baxter, Cheryl, "The Impact of Government Policies and Programs on Land Values", The Real Estate Appraiser and Analyst, Vol. 45, May-June, 1979, pp. 42-45.

Brigham, Eugene F., "The Determinants of Residential Land Values", <u>Land Economics</u>, Vol. 41, August, 1965, pp. 325-334.

Canada Mortgage and Housing Corporation, Canadian Housing Statistics, Ottawa.

Clayton Research Associates Ltd., <u>Tax Expenditures-Housing</u>; research paper prepared for C.M.H.C.; March, 1981, Ottawa.

Diamond, Douglas B. Jr., "The Relationship Between Amenities and Urban Land Prices", Land Economics, Vol. 56, No. 1, February, 1980, pp. 21-32.

Fama, Eugene F., "Efficient Capital Markets: A Review of Theory and Empirical Work", Journal of Finance, 25 (May) 1970, pp. 383-423.

Figlewski, Stephen, "Market 'Efficiency' in a Market with Heterogeneous Information", Journal of Political Economy, Vol. 86, No. 4, 1978, pp. 581-597.

Fisher, Ted L., "Tax Leveraging and Real Estate Tax Shelters", The Appraisal Journal, July, 1980, pp. 414-422.

Gau, George W., and Kohlhepp, D.B., "Estimation of Equity Yield Rates Based on Capital Market Returns", The Real Estate Appraiser and Analyst, Vol. 44, November-December, 1978, pp. 33-39.

Gau, George W., and Kohlhepp, D.B. J. "Reinvestment Rates and the Sensitivity of Rates of Return in Real Estate Investment", AREUEA Journal, Vol. 4, Winter, 1976, pp. 69-83.

Goldman, M. Barry, and Sosin, Howard B., "Information Dissemination, Market Efficiency and the Frequency of Transactions", <u>Journal of Financial Economics</u>, Vol. 7, 1979, pp. 29-61.

Hamilton, Bruce W., "Capitalization of Intrajurisdictional Differences in Local Tax Prices", The American Economic Review, December, 1976, Vol. 66, No. 5, pp. 743-753.

Harris, E.C., Canadian Income Taxation, Toronto, 1979.

Janssen, Christian T.L., and Hoskins, Colin G., "Analysis of ARP and CCA Projects", Appraisal Institute Magazine, May, 1980, pp. 26-32.

Krueger, Anne O., "The Political Economy of the Rent-Seeking Society", American Economic Review, June, 1974.

Linnemann, P., "The Demand for Residence Site Characteristics", <u>Journal of Urban</u> Economics, March, 1981, 9(2), pp. 129-148.

Mills, David E., "The Non-Neutrality of Land Value Taxation", National Tax Journal, Vol. 34, No. 1, March, 1981, pp. 125-129.

Needham, Barrie, "A Neo-Classical Supply-Based Approach to Land Prices", <u>Urban Studies</u>, Vol. 18, No. 1, February, 1981, pp. 91-104.

Posner, Richard A., "The Social Costs of Monopoly and Regulation", <u>Journal of Political Economy</u>, August, 1975, pp. 807-827.

Ricks, R. Bruce, "Imputed Equity Returns on Real Estate Financed with Life Insurance Company Loans", The Journal of Finance, December, 1969, pp. 921-937.

Roulac, Stephen E., "Can Real Estate Returns Outperform Common Stocks?", <u>The Journal of Portfolio Management</u>, Winter, 1976, pp. 26-43.

Shenkel, William M., "The Valuation of Multiple Family Dwellings by Statistical Inference", The Real Estate Appraiser, January-February, 1975, pp. 25-36.

Smith, L.B., "Federal Housing Programs and the Allocation of Credit and Resources", in Government in Canadian Capital Markets: Selected Cases, edited by J.E.! Pesando and L.B./Smith, C.D./Howe Research Institute, Montreal, 1978.

Smith, L.B./ "Canadian Housing Policy in the Seventies", Land Economics, Vol. 57, August, 1981, pp. 338-352.

Tullock, Gordon, "The Transitional Gains Trap", Bell Journal of Economics, Autumn, 1975, pp. 671-678.

Valachi, Donald J. "The Arithmetic of Real Estate Tax Shelter", <u>Journal of Property Management</u>, Vol.44, July/August, 1979, pp. 209-215.

Von Furstenberg, G.M., "The Impact of Government Housing and Credit Programs on the Cost of Housing", in <u>The Cost of Housing</u>, Federal Home Loan Bank of San Francisco, San Francisco, 1977.

Wendt, Paul F., and Wong, Sui N., "Investment Performance: Common Stocks Versus Apartment Houses", The Journal of Finance, December, 1965, pp. 633-646.

White, Wilbert L., "Price Indexing for Time Adjustments", The Appraisal Journal, Vol. 48, January, 1980, pp. 15-23.

Witte, Ann Dryden, "The Determination of Interurban Residential Site Price Differences: A Derived Demand Model with Empirical Testing", The Journal of Regional Science, Vol. 15, No. 3, 1975, pp. 351-364.

Witte, Ann Dryden, "An Examination of Various Elasticities for Residential Sites", <u>Land</u> Economics, Vol. 53, No. 4, November, 1977, pp. 401-409.

Zerbst, Robert H. and Eldred, Gary W., "Improving Multiple Regression Valuation Models Using Location and Housing Quality Variables", <u>Assessors Journal</u>, Vol. 12, No. 1, March, 1977, pp. 1-15.

# APPENDIX "A" VARIABLE LISTS

#### Table A-1

## LIST OF VARIABLES APARTMENT "RESALES" FILE

| Variable<br><u>Number</u> | Symbol    | Description                                                                                                                                                                                                                |
|---------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                         | FILENO1   | File reference                                                                                                                                                                                                             |
| 2                         | MONTH     | Quarter of sale:<br>1 = 01/77                                                                                                                                                                                              |
| 3                         | PRICE     | Selling price of building                                                                                                                                                                                                  |
| 4                         | FINANCE   | Total mortgages outstanding                                                                                                                                                                                                |
| 5                         | FILENO2   | File reference                                                                                                                                                                                                             |
| 6                         | INTPMO    | Interest payable on demand note                                                                                                                                                                                            |
| 7                         | INTRATE   | Weighted average interest rate on Total FINANCE.                                                                                                                                                                           |
| 8                         | PURCHTYPE | Type of purchaser:  1 = Individual  2 = 2 or more individuals.  3 = Holding or management co.  4 = Developer or construction co.  5 = Couple  6 = Co-operative  7 = Financial institution  8 = Miscellaneous co.           |
| 9                         | PURCHLOC  | Address of purchaser:  1 = Vancouver westside  2 = Vancouver eastside  3 = CBD  4 = West Vancouver  5 = North Vancouver  6 = Richmond  7 = Burnaby  8 = Elsewhere in GVRD  9 = Elsewhere in B.C.  10 = Elsewhere in Canada |
| 10                        | AGE       | Year Building was completed.                                                                                                                                                                                               |

| Variable<br>Number | Symbol  | Description                                                                                  |
|--------------------|---------|----------------------------------------------------------------------------------------------|
| 11                 | SUITES  | Number of suites in building                                                                 |
| 12                 | AREA    | Total gross floor area of building                                                           |
| 13                 | AVERAGE | Average suite size                                                                           |
| 14                 | LOTSIZE | Square footage of site                                                                       |
| 15                 | BACHS   | Number of bachelor suites                                                                    |
| 16                 | ONES    | Number of one-bedroom suites                                                                 |
| 17                 | TWOS    | Number of two-bedroom suites                                                                 |
| 18                 | THREES  | Number of three-bedroom suites                                                               |
| 19                 | FOURS   | Number of four-bedroom suites                                                                |
| 20                 | CONSTN  | Type of construction: 0 = Frame 1 = Concrete                                                 |
| 21                 | HEATING | Type of heating: 0 = Oil 1 = Electric 2 = Gas                                                |
| 22                 | STOREYS | Number of storeys                                                                            |
| 23                 | PARKING | <ul><li>0 = None</li><li>1 = Above Ground</li><li>2 = Underground</li><li>3 = Both</li></ul> |
| 24                 | LAUNDRY | Dummy variable:<br>1 = Yes<br>0 = No                                                         |
| 25                 | ELEV    | Number of elevators in building                                                              |
| 26                 | BALC    | Dummy variable:<br>1 = Yes<br>0 = No                                                         |
| 27                 | POOLREC | Dummy variable:<br>1 = Yes<br>0 = No                                                         |

| Variable<br>Number | Symbol   | Description                                                   |
|--------------------|----------|---------------------------------------------------------------|
| 28                 | SAUNA    | Dummy variable: 1 = Yes 0 = No                                |
| 29                 | PENTHS   | Number of PH suites                                           |
| 30                 | FILENO3  | File reference                                                |
| 31                 | TAXSHELT | M.U.R.B. dummy variable                                       |
| 32                 | GI       | Gross income of building                                      |
| 33                 | EXPENSES | Operating expenses                                            |
| 34                 | NOI      | Net operating income                                          |
| 35                 | RENTCONT | Dummy variable:<br>1 = Yes<br>0 = No                          |
| 36                 | МТСРМТ   | Annual pmt on FINANCE                                         |
| 37                 | ARPSUPP  | Amount of ARP subsidy (if applicable)                         |
| 38                 | ECC      | Estimated construction cost of building (per building permit) |
| 39                 | RVALUE   | Replacement value of building (per B.C. assessment)           |
| 40                 | ACC      | Actual construction cost (per owner)                          |
| 41                 | ARPSTAT  | Dummy variable:<br>1 = Yes<br>0 = No                          |
| 42                 | INCDATE  | Date GI applicable                                            |
| 43                 | FINDATR  | Registration date of financing                                |
| 44                 | FINDATC  | Cancellation date of financing                                |
| 45                 | FINAMT   | Financing amount                                              |
| 46                 | LVRATIO  | FINANCE/PRICE x 100                                           |
| 47                 | REALAGE  | No. of years since completion                                 |
|                    |          |                                                               |

| Variable<br><u>Number</u> | Symbol  |                                                |
|---------------------------|---------|------------------------------------------------|
| 48                        | SPPSF   | Selling price per square foot of building area |
| 49                        | SPPSTE  | Selling price per suite                        |
| 50                        | OERATIO | Operating expense ratio                        |

<sup>1)</sup> Sources of data: B.C. Assessment Authority records, B.C. Land Title Office, Statistics Canada, Real Estate Board of Greater Vancouver. This file contains M.U.R.B. apartment block resales and a matching sample of non-M.U.R.B. apartment block sales in the same time period.

#### Table A-2

## LIST OF VARIABLES "LANDSALES" FILE

| Variable<br>Number | Symbol   | Description                                                           |
|--------------------|----------|-----------------------------------------------------------------------|
| 1                  | FILENOI  | File Reference: #5001-6050                                            |
| 2                  | QUARTER  | Quarter in series:<br>1 = 1st Qtr, 1963                               |
| 3                  | PRICE    | Selling price of lot                                                  |
| 4                  | LOTSIZE  | Total square footage of lot                                           |
| 5                  | FRONTAGE | Frontage of lot in feet                                               |
| 6                  | DEPTH    | Depth of lot in feet                                                  |
| 7                  | WESTEND  | Dummy variable:<br>l = Yes<br>0 = No                                  |
| 8                  | KITS     | as above                                                              |
| 9                  | EASTVAN  | as above                                                              |
| 10                 | MARPOLE  | as above                                                              |
| 11                 | KERRISDL | as above                                                              |
| 12                 | ВСРОР    | Estimate of B.C. population in quarter x.                             |
| 13                 | BCPERINC | Estimate of per capita personal income for B.C. during quarter x.     |
| 14                 | UNEMPLUA | Unadjusted unemployment rate in B.C. during quarter x.                |
| 15                 | UNEMPLSA | Seasonally adjusted unemployment rate in B.C. during quarter x.       |
| 16                 | COMPLVAN | Total dwelling completions in the City of Vancouver during quarter x. |
| 17                 | FILENO2  | File reference: #5001-6050                                            |

| Variable<br><u>Number</u> | Symbol   | Description                                                                                                                                                                                                       |
|---------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18                        | COMPLBC  | Total dwelling completions in B.C.                                                                                                                                                                                |
| 19                        | CPIALL   | Consumer Price Index - All items; City of Vancouver, during quarter x.                                                                                                                                            |
| 20                        | CPIHOUSG | Consumer Price Index - Housing Component;<br>City of Vancouver, during<br>quarter x.                                                                                                                              |
| 21                        | NONFAMHH | Non-family households as a proportion of total households in quarter x; non-family households defined as those in the 15-19, 20-24, and 65+ age groups; extrapolation of census data used to arrive at estimates. |
| 22                        | VACRATE  | Apartment vacancy rate (in buildings completed for at least 6 months) in the City of Vancouver during quarter x.                                                                                                  |
| 23                        | NHARATE  | N.H.A. interest rate on approved lender rental properties during quarter x.                                                                                                                                       |
| 24                        | CONVRATE | Conventional mortgage lending rate during quarter x.                                                                                                                                                              |
| 25                        | MURBSTAT | Dummy variable (0=No; 1+Yes) indicating whether MURB legislation was in effect (or pending) during quarter x.                                                                                                     |
| 26                        | CCASTAT  | Dummy variable indicating whether C.C.A. allowances were permitted as tax shelters on <u>all</u> rental properties during quarter x.                                                                              |
| 27                        | CCANEW   | Dummy variable indicating whether C.C.A. allowances were permitted as tax shelters on new rental properties; this reflects both pre-1971 and post 1974 situations.                                                |
| 28                        | CCANEWWP | Same as variable 27, except that allowance is made for the White Paper re-leased in the 4th quarter of 1969, which introduced the first possibility that tax shelters on rental properties might be removed.      |
| 29                        | ARPSTAT  | Dummy variable indicating whether ARP benefits were available during quarter x.                                                                                                                                   |

| Variable<br>Number | Symbol     | Description                                                                                                                  |
|--------------------|------------|------------------------------------------------------------------------------------------------------------------------------|
| 30                 | RENTCONT   | Dummy variable indicating whether rent control legislation (of any form) was in effect in British Columbia during quarter x. |
| 31                 | HOLDPER    | Holding period of lot x prior to construction of apartment building (in years).                                              |
| 32                 | SPPERSF    | Selling price per square foot of lot x.                                                                                      |
| 33                 | SPPERFF    | Selling price per front foot of lot x.                                                                                       |
| 34                 | SPPERDF    | Selling price per foot of depth of lot x.                                                                                    |
| 35                 | DEFLATOR   | Apartment Sales price index (from Transactions File).                                                                        |
| 36                 | REALSP     | PRICE/DEFLATOR                                                                                                               |
| 37                 | REALPPSF   | REALSP/LOTSIZE                                                                                                               |
| 38                 | CPINEW     | CPIALL/100                                                                                                                   |
| 39                 | NEWREALP   | SPPSF/CPINEW                                                                                                                 |
| 40                 | RLINTRTE   | NHARATE/CPINEW                                                                                                               |
| 41                 | POPGRRTE   | Growth in B.C. population since 01/71.                                                                                       |
| 42                 | REALINC    | BCPERINC/CPINEW.                                                                                                             |
| 43                 | INCGRRTE   | Growth in real B.C. income per capita since 01/71.                                                                           |
| 44                 | NEWQTR     | Categorical variable for QUARTER.                                                                                            |
| 45                 | RENTLEVEL  | Average nominal monthly rents in Vancouver apartments, weighted by local area.                                               |
| 46                 | GRRTRENT   | Growth rate in RENTLEVEL since 01/71.                                                                                        |
| 47                 | CONSTNCOST | Construction cost index for Canada.                                                                                          |
| 48                 | GRRTCOST   | Growth rate in CONSTNCOST since 01/71.                                                                                       |
| 49                 | RENTGRTH   | Growth since last quarter in nominal rent levels.                                                                            |

| Variable<br>Number | Symbol    | Description                                                                                                                                      |
|--------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 50                 | COSTGRTH  | Growth since last quarter in construction cost index for Canada.                                                                                 |
| 51                 | POPGRTH   | Growth since last quarter in B.C. population.                                                                                                    |
| 52                 | GRRLINC   | Growth since last quarter in B.C. real per capita income.                                                                                        |
| 53                 | INFLATION | Growth since last quarter in CPIALL, on an annualized basis.                                                                                     |
| 54                 | GRRLRENT  | Growth since last quarter in real rents in Vancouver apartments.                                                                                 |
| 55                 | REALINT   | NHARATE - INFLATION                                                                                                                              |
| 56                 | REALRENT  | Average monthly real rent (RENTLEVEL/CPINEW) in Vancouver apartments.                                                                            |
| 57                 | CCOSTBC   | Growth since last quarter in construction cost index for B.C.                                                                                    |
| 58                 | RNTGRTH2  | Growth since last quarter in rent index for Vancouver (Statistics Canada).                                                                       |
| 59                 | RNTGRTH3  | Growth since last quarter in rents in a sample of Vancouver apartments less than 5 years old (from Transactions File).                           |
| 60                 | LAGRENT   | One quarter lag in real rent index growth since previous quarter (RNTGRTH2 - INFLATION).                                                         |
| 61                 | LAGCOSTS  | One quarter lag in real construction cost index growth since previous quarter (CCOSTBC - INFLATION).                                             |
| 62                 | RNTGRTH4  | Real growth since last quarter in Vancouver rent index (RNTGRTH2 - INFLATION).                                                                   |
| 63                 | CCOSTBC2  | Real growth since last quarter in B.C. construction cost index (CCOSTBC - INFLATION).                                                            |
| 64                 | CAPRATE   | The real capitalization rate (nominal - INFLATION) being achieved by a standard Vancouver apartment block in quarter x (from Transactions File). |

| Variable<br><u>Number</u> | Symbol   | Description                                                                                                                               |
|---------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 65                        | CAPRTLAG | One quarter lag in CAPRATE.                                                                                                               |
| 66                        | NOMCAPRT | The nominal capitalization rate being achieved by a standard Vancouver apartment block in quarter x (from Transactions File).             |
| 67                        | CAPGAIN  | Real capital gain from a sample of Vancouver apartment blocks since last quarter (from Transactions File).                                |
| 68                        | CAPGNLAG | One quarter lag in CAPGAIN.                                                                                                               |
| 69                        | POPLAG   | One quarter lag in POPGRTH.                                                                                                               |
| 70                        | RLAPTRTN | Excess returns earned on Vancouver apart-<br>ment blocks (CAPRATE - REALINT).                                                             |
| 71                        | RLINCLAG | One quarter lag in GRRLINC.                                                                                                               |
| 72                        | VACRTLAG | One quarter lag in VACRATE.                                                                                                               |
| 73                        | RLINTLAG | One quarter lag in REALINT.                                                                                                               |
| 74                        | APRTNLAG | One quarter lag in RLAPTRTN.                                                                                                              |
| 75                        | INFLALAG | One quarter lag in INFLATION.                                                                                                             |
| 76                        | INTCHGE  | Change since last quarter in NHARATE.                                                                                                     |
| 77                        | APTCOMCH | Net change since last quarter in apartment stock in the City of Vancouver (defined as apartment completions minus apartment demolitions). |
| 78                        | HHCHANGE | Quarterly increase in total households in the City of Vancouver (based on interpolation of census data).                                  |
| 79                        | RLINTCHG | Change since last quarter in REALINT.                                                                                                     |
| 80                        | ERCHANGE | Change since last quarter in RLAPTRTN.                                                                                                    |
| 81                        | APTSTSCH | Change since last quarter in apartment starts in the City of Vancouver.                                                                   |
| 82                        | NEWWE    | Categorical variable for WESTEND.                                                                                                         |

| Variable<br>Number | <u>Symbol</u> | Description                                                                                                                                                                                                                                   |
|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 83                 | NEWKITS       | Categorical variable for KITS.                                                                                                                                                                                                                |
| 84                 | NEWEV         | Categorical variable for EASTVAN.                                                                                                                                                                                                             |
| 85                 | NEWMAR        | Categorical variable for MARPOLE.                                                                                                                                                                                                             |
| 86                 | NEWKERR       | Categorical variable for KERRISDL.                                                                                                                                                                                                            |
| 87                 | SUBVACRT      | Vacancy rate in apartments 6 months or older in the sub-area and quarter in which the land sale observation occurred.                                                                                                                         |
| 88                 | NEWVACCH      | Change since last quarter in the stock of newly completed (in past six months) and unoccupied apartment and row dwellings in the City of Vancouver.                                                                                           |
| 89                 | REZONING      | Dummy variable reflecting the major down-zoning of the West End enacted in August, 1975.                                                                                                                                                      |
| 90                 | VACRTCHG      | Change since last quarter in VACRATE.                                                                                                                                                                                                         |
| 91                 | NEWHH         | Change since the last quarter in the number of main residence telephone listings in the City of Vancouver.                                                                                                                                    |
| 92                 | NEWVRATE      | Vacancy rate in newly completed multiple family dwellings in the City of Vancouver - defined as the stock of newly completed and unoccupied multiple family dwellings divided by multiple family completions over the previous four quarters. |
| 93                 | RLRENT2       | Level of the Statistics Canada Rent Index for Vancouver (in real terms).                                                                                                                                                                      |
| 94                 | STARTS        | The number of apartment dwellings starts in the City of Vancouver in quarter x.                                                                                                                                                               |
| 95                 | REALCOST      | Level of the Statistics Canada Construction Cost Index for B.C. (in real terms).                                                                                                                                                              |
| 96                 | NEWVRLAG      | A one quarter lag in NEWVRATE.                                                                                                                                                                                                                |
| 97                 | RLRNTLAG      | A one quarter lag in RLRENT2.                                                                                                                                                                                                                 |

| Variable<br><u>Number</u> | Symbol   | Description                                                                                                   |
|---------------------------|----------|---------------------------------------------------------------------------------------------------------------|
| 98                        | RLCSTLAG | A one quarter lag in REALCOST.                                                                                |
| 99                        | NEWVACMF | The number of newly completed and unoccupied multiple family dwellings in the City of Vancouver in quarter x. |

Sources of data: B.C. Assessment Authority records, B.C. Land Title Office, Statistics Canada, Real Estate Board of Greater Vancouver.

# APPENDIX "B" DESCRIPTIVE STATISTICS

Table B-1

## DESCRIPTIVE STATISTICS "RESALES" FILE

| <u>Variable</u> | <u>N</u> | Minimum      | <u>Maximum</u> | <u>Mean</u> | Standard<br>Deviation |
|-----------------|----------|--------------|----------------|-------------|-----------------------|
| 1.FILENO1       | 59       | 103.00       | 1112.0         | 816.19      | 344.92                |
| 2.MONTH         | 59       | 4.0000       | 16.000         | 13.458      | 2.5415                |
| 3.PRICE         | . 59     | 66666.       | .30000 +7      | .78522 +6   | .70338 +6             |
| 4.FINANCE       | 58       | 0.           | .75000 +7      | .60342 +6   | . 10686 +7            |
| 5.FILENO2       | 59       | 103.00       | 1112.0         | 816.19      | 344.92                |
| 6.INTPMO        | 37       | Ο.           | 26250.         | 2404.4      | 5248.5                |
| 7.INTRATE       | . 58     | Ο.           | 17.200         | 10.993      | 3.5687                |
| 8.PURCHTYP      | 57       | Ο.           | , 8.0000       | 2.4561      | 1.5592                |
| 9.PURCHLOC      | 44       | 1.0000       | 10.000         | 2.9091      | 2.2805                |
| 10.AGE          | 59       | 5.0000       | .79.000        | 53.915      | 24.883                |
| 11.SUITES       | 59       | 5.0000       | 93.000         | 27.220      | 19.111                |
| 12.AREA         | 59       | 4200.0       | 57229.         | 18760.      | 13480                 |
| 13.AVERAGE      | 59       | 196.00       | 1241.0         | 674.41      | 169.16                |
| 14.LOTSIZE      | 58       | 3050.0       | 35000.         | 10566.      | 6184.2                |
| 15.BACHS        | 54       | Ο.           | 60.000         | 7.2593      | 12.189                |
| 16.0NES         | 54       | Ο.           | 68.000         | 17.463      | 14.457                |
| 17.TWOS         | 54       | Ο.           | 21.000         | 2.1852      | 4.2563                |
| 18. THREES      | 54       | Ο.           | 7.0000         | . 27778     | 1.2196·               |
| 19.FOURS        | 54       | Ο.           | 1.0000         | .18519 -1   | . 13608               |
| 20.CONSTN       | 56       | . <b>O</b> . | 1.0000         | . 19643     | . 40089               |
| 21.HEATING      | 58       | Ο.           | 2.0000         | 1.3276      | . 80324               |
| 22.STOREYS      | 59       | 1.0000       | 17:000         | 3.5763      | 2.6209                |
| 23.PARKING      | 59       | Ο.           | 3.0000         | 1.4746      | 1.0061                |
| 24.LAUNDRY      | 50       | Ο.           | 1.0000         | .92000      | . 27405               |
| 25.ELEV         | 59       | 0.           | 2.0000         | . 49153     | . 59807               |
| 26.BALC         | 55       | Ο.           | 1.0000         | . 50909     | . 50452               |
| 27.POOLREC      | 58       | , O          | 1.0000         | .51724 -1   | . 22340               |

### Table B-1 (Cont'd)

### DESCRIPTIVE STATISTICS "RESALES" FILE

| <u>Variable</u> | <u>N</u> | Minimum    | Maximum    | <u>Mean</u> | Standard<br>Deviation |
|-----------------|----------|------------|------------|-------------|-----------------------|
| 28. SAUNA       | 58       | . 0.       | , 1 , 0000 | .51724 -1   | . 22340               |
| 29 PENTHS       | 58       | Ο.         | 2.0000     | . 12069     | . 37825               |
| .30.FILEN03     | 59       | 103.00     | 1112.0     | 816.19      | 344.92                |
| 31.TAXSHELT     | 59       | Ö.         | 10.000     | . 45763     | 1.3432                |
| 32.GI ·         | 55       | . 25000    | .25348 +6  | 72979.      | 59494.                |
| 33.EXPENSES     | 28       | 2904.0     | 56240.     | 21305.      | 18268.                |
| 34.NOI          | 27       | 9697.0     | 14212 +6   | 39329.      | 30589.                |
| 35.RENTCONT     | 58       | 0.         | 1.0000     | . 74138     | . 44170               |
| 36.MTGPMT       | 56       | · o .      | .32562 +6  | 60456.      | 82411.                |
| 37.ARPSUPP      | 11       | ٥.         | 76263.     | 19802.      | 25419.                |
| 38.ECC          | . 12     | . 10000 +6 | .43600 +7  | .85451 +6   | .11690 +7             |
| 39.RVALUE       | 49       | 74150.     | . 20690 +7 | .51253 +6   | .41474 +6             |
| 40.ACC          | 5        | 25250 +6   | . 17800 +7 | .99806 +6   | .59411 +6             |
| 41.ARPSTAT      | 59       | Ο.         | 1.0000     | . 13559     | . 34529               |
| 42.INCDATE      | 55       | Ο.         | 127.00     | 49.436      | 23.899                |
| 43.FINDATR      | 51       | 1.0000     | 193.00     | 98.275      | 33.404                |
| 44.FINDATC      | 5        | 42.000     | 131.00     | 104.60      | 37.753                |
| 45.FINAMT       | 50       | 21000.     | .23100 +7  | .38676 +6 , | .42146 +6             |
| 46.FILEN04      | 59       | 103.00     | 1112.0     | 815.83      | 344.62                |
| 47.SOLD77       | 59       | Ο.         | 1.0000     | . 16949 - 1 | . 13019               |
| 48.SOLD78       | 59       | 0.         | 1.0000     | . 16949 - 1 | . 13019               |
| 49.SOLD79:      | 59       | Ο.         | 1.0000     | . 32203     | .47127                |
| 50.SOLD80       | 59       | Ο.         | 1.0000     | .64407      | .48290                |
| 51.REALAGE      | 59       | Ο.         | 75.000     | 26.492      | 25.549                |
| 52.LVRATIO '    | 58       | Ο.         | 112.50     | 2.5335      | 14.698                |
| 53.SPPSF        | 59       | 3.1503     | 93.329     | 40.343      | 17.129                |
| 54.SPPSTE       | 59       | 3072.7     | 61000.     | 27606.      | 10766.                |
| 55.OERATIO      | 28       | . 13158    | .21638 +6  | 7728.3      | 40893.                |
| 56.GIPERSTE     | 55       | 71429 -2   | 6231.3     | 2766.9      | 1101.6                |

Table B-2

## DESCRIPTIVE STATISTICS "LANDSALES" FILE

| <u>Variable</u> | <u>N</u> | Minimum | Maximum    | Mean       | Standard<br>Deviation |
|-----------------|----------|---------|------------|------------|-----------------------|
| 1.FILENO1       | 115      | 1001.0  | 6025.0     | 2220.5     | 1992.2                |
| 2.QUARTER       | 115      | 37.000  | 63.000     | 54.652     | 7.1390                |
| 3.PRICE         | 115      | 18000   | . 15000 +7 | . 15293 +6 | .20603 +6             |
| 4.LOTSIZE       | 115      | 2950.0  | 67054.     | 9285.1     | 11446.                |
| 5.FRONTAGE      | 115      | 25.000  | 400.00     | 72.817     | 75.698                |
| 6.DEPTH         | 115      | 100.00  | 168.00     | 123.06     | 9.0934                |
| 7.WESTEND       | 115      | 0.      | 1.0000     | .86957 -1  | 28300                 |
| 8.KITS          | 115      | O. ·    | 1.0000 .   | . 28696    | . 45432               |
| 9.EASTVAN       | 115      | Ο.      | 1.0000     | . 60870    | . 49018               |
| 10.MARPOLE      | 115      | O .     | 1.0000     | .17391 -1  | . 13130               |
| 11.KERRISDL     | 115      | Ο.      | Ο.         | Ο.         |                       |
| 12.BCPOP        | 115      | 2223.6  | 2533.2     | 2451.8     | 86.515                |
| 13.BCPERINC     | 115      | 3859.3  | 8677.8     | 7094.3     | 1360.9                |
| 14.UNEMPLUA     | 115      | 6.0000  | 9.6300     | 8.1999     | .62711                |
| 15.UNEMPLSA     | 115      | 5.5300  | 9.0700     | 8.3520     | . 52081               |
| 16.COMPLVAN     | 115      | 104.00  | 1353.0     | 755.77     | 219.22                |
| 17.FILEN02      | 115      | 1001.0  | 6025.0     | 2220.5     | 1992.2                |
| 18.COMPLBC      | 115      | 5846.0  | 12091.     | 8187.6     | 1201.5                |
| 19.CPIALL       | 115      | 102.70  | 176.27     | 150.83     | 20.648                |
| 20.CPIHOUSG     | 115      | 101.33  | 170.50     | 147.17     | 21.184                |
| 21.NONFAMHH     | 115      | 26 640  | 28.870     | 28.297     | . 60357               |
| 22.VACRATE      | 115      | . 10000 | 2.0000     | .84000     | . 49187               |
| 23.NHARATE      | 115      | 8.8900  | 11.880     | 10.620     | . 83352               |
| 24 CONVRATE     | 115      | 8.9800  | 11.980     | 10.583     | .82093                |
| 25.MURBSTAT     | 115      | 0.      | 1.0000     | .85217     | . 35648               |
| 26.CCASTAT      | 115      | Ο.      | 1.0000     | .34783 -1  | . 18403               |
| 27.CCANEW       | 115      | 0.      | 1.0000     | . 86087    | . 34760               |
| 28. CCANEWWP    | 115      | o. ·    | 1.0000     | .85217     | . 35648               |
| 29.ARPSTAT      | 115      | O .     | 1.0000     | . 85217    | : 35648               |
| 30.RENTCONT     | 115      | O.      | 1.0000     | . 86957    | 33826                 |
| 31.HOLDPER      | 102      | Ο.      | _5.0000    | 1.2255     | . 70229               |
|                 |          |         | 90         |            |                       |

- 90 -

#### Table B-2 (Cont'd)

### DESCRIPTIVE STATISTICS "LANDSALES" FILE

| Variable     | <u>N</u> | Minimum  | Maximum    | Mean     | Standard<br>Deviation |
|--------------|----------|----------|------------|----------|-----------------------|
| 32.SPPERSF   | 115,     | 4.2853   | . 33.898   | 16.585   | . , 6.2763            |
| 33.SPPERFF   | 115      | 539.77   | 4242.4     | 2039.7   | 794.80                |
| 34.SPPERDF   | 115      | 150.00   | 8928.6     | 1198.0   | 1399.7                |
| 35.DEFLATOR  | 115      | 1.2470   | 2.6520     | 2.0897   | . 45541               |
| 36.REALSP    | 115      | 14320.   | .70588 +6  | 75246.   | . 10029 +6            |
| 37. ŘEALPPSF | 115      | 2.1200   | 15.863     | 7.9269   | 2.7262                |
| 38.CPINEW    | 115      | 1.0270   | 1.7627     | 1.5083   | . 20648               |
| 39 NEWREALP  | 115      | 2.7578   | 21.541     | 10.807   | 3.5675                |
| 40.RLINTRTE  | 115      | 5.9454   | 8.7537     | 7.1474   | 87049                 |
| 41.POPGRRTE  | 115      | 1.0084   | 1.1488     | 1.1119   | .39234 -1             |
| 42.REALINC   | 115      | 3757.8   | 4923.0     | 4658.8   | 336.06                |
| 43. INCGRRTE | 115      | 1.0168   | 1.3320     | 1.2605   | .90929 -1             |
| 44.NEWQTR    | 115      | 37.000   | 63.000     | 54.652   | 7.1390                |
| 45.RENTLEVE  | 112      | 168.80   | . 278 . 00 | 251.02   | 32.821                |
| 46.GRRTRENT  | 112      | 1.6880   | 2.7800     | 2.5102   | . 32821               |
| 47.CONSTNCO  | 112      | 105 . 10 | 194.50     | 162.67   | 24.040                |
| 48.GRRTCOST  | 112      | 1.0510   | 1.9450     | 1.6267   | د · . 24040           |
| 49 RENTGRTH  | 112      | Ο.       | 14.900     | 5.6250   | 2.8106                |
| 50 COSTGRTH  | 112      | 2.0000   | 20.100     | 8.3714   | 5.2952                |
| 51.POPGRTH   | 112      | . 77000  | 4.0100     | 1.5454   | 63257                 |
| 52.GRRLINC   | 112      | -1.8000  | 9.0400     | 3.5627   | 2.6694                |
| 53.INFLATIO  | 112      | 3.8500   | 12.230     | 7.5704   | 1.9916                |
| 54 . GRRLRNT | 112      | -8.0200  | 11.840     | -1.8899  | 3.2739                |
| 55.REALINT   | 112      | -1.6100  | 5.2900     | 3.0391   | 1.4552                |
| 56 REALRENT  | 112      | 157.71   | 182.02     | 166.31   | 3.1433                |
| 57. CCOSTBC  | 112      | 3.2600   | 21.320     | 9.1174   | 4.9600                |
| 58.RNTGRTH2  | 112      | 1.1900   | 7.9500     | 4.9119   | 1.9262                |
| 59.RNTGRTH3  | 112      | -14.890  | 17.410     | 7.6050 - | 7.2952                |
| 60 LAGRENT   | 112      | -9.9900  | 1.7700     | -2.0659  | 2.9628                |
| 61.LAGCOSTS  | 112      | -7.8800  | 7 . 6400   | 3.4312   | 4.6865                |

### Table B-2 (Cont'd)

## DESCRIPTIVE STATISTICS "LANDSALES" FILE

| Variable     | <u>N</u> . | Minimum | Maximum  | <u>Mean</u> | Standard<br>Deviation |
|--------------|------------|---------|----------|-------------|-----------------------|
| 62.RNTGRTH4  | 112        | -5.8300 | -1.1800  | -2.6585     | 1.1913                |
| 63.CCOSTBC2  | 112        | -3.8100 | , 12.370 | 1.5471      | 4.7458                |
| 64.CAPRATE   | 112        | -4.9000 | 10.520   | 5.0375      | 3.1156                |
| 65.CAPRTLAG  | 112        | -5.1000 | 10.410   | 5.1224      | 3.3439                |
| 66.NOMCAPRT  | 112        | 11.000  | 13.780   | 12.735      | . 73109               |
| 67.CAPGAIN   | 112        | -5.9000 | 13.030   | 5.7133      | 6.1479                |
| 68.CAPGNLAG  | 112        | -6.9400 | 13.030   | 3.2793      | 5.0261                |
| 69.POPLAG    | 112        | . 77000 | 3.4000   | 1.5371      | .77142                |
| 70. RLAPTRTN | 112        | -5.4300 | 5.2300   | 1.9984      | 2.3157                |
| 71.RLINCLAG  | 112        | -1.8000 | 9.6900   | 3.9503      | 2.4711                |
| 72.VACRTLAG  | 112        | . 10000 | 2.1000   | .84241      | . 55905               |
| 73.RLINTLAG  | 112        | -5.8900 | 6.3800   | 3.4554      | 2.5880                |
| 74.APRTNLAG  | 112        | 88000   | 5.1400   | 1.6670      | 1.4522                |
| 75.INFLALAG  | 112        | 2.7300  | 15.900   | 7.2872      | 2.8396                |
| 76.INTCHGE   | 112        | 65000   | . 83000  | 13321       | . 27534               |
| 77.APTCOMCH  | 112        | -908.00 | 613.00   | 19.491      | 258 36                |
| 78. HHCHANGE | 115        | 341.00  | 663.00   | 559.40      | 151.08                |
| 79 RLINTCHG  | 112        | -8.8200 | 10.010   | 54357       | 3.7617                |
| 80.ERCHANGE  | 112        | -2.3100 | 2.1300   | 45866       | 1.2049                |
| 81.APTSTSCH  | 112        | -737.00 | 698,00   | 243.66      | 427.35                |
| 82.NEWWE     | 10         | 1.0000  | 1.0000   | 1.0000      | •                     |
| 83.NEWKITS   | 33         | 1.0000  | 1.0000   | 1.0000      | •                     |
| 84 NEWEV     | 70         | 1.0000  | 1.0000   | 1.0000      |                       |
| 85 NEWMAR    | 2          | 1.0000  | 1.0000   | 1.0000      | •                     |
| 86 NEWKERR   | 0          |         |          |             | •                     |
| 87.SUBVACRT  | 112        | 70000   | . 55000  | . 15670     | . 22546               |
| 88.NEWVACCH  | 112        | -221.00 | 156.00   | -13,911     | 80.628                |
| 89.REZONING  | 115        | Ο.      | 1.0000   | .77391      | . 42013               |
| 90.VACRTCHG  | 112        | 75000   | . 30000  | . 17411 -1  | . 19759               |

#### Table B-2 (Cont'd)

## DESCRIPTIVE STATISTICS "LANDSALES" FILE

| <u>N</u> | Minimum                                              | Maximum                                                                                                       | Mean                                                                                                                                                                                                                                                                                                     | Standard<br>Deviation                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                      | • •                                                                                                           | -                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 112      | -418.00                                              | 2133.0                                                                                                        | 19,2.93                                                                                                                                                                                                                                                                                                  | 760.19                                                                                                                                                                                                                                                                                                                                                                                                           |
| 112      | 1.1200                                               | 29.200                                                                                                        | 16.625                                                                                                                                                                                                                                                                                                   | 7.1638                                                                                                                                                                                                                                                                                                                                                                                                           |
| 112      | 34.070                                               | 91.020                                                                                                        | 48.012                                                                                                                                                                                                                                                                                                   | 16.272                                                                                                                                                                                                                                                                                                                                                                                                           |
| 112      | 32.000                                               | 1385.0                                                                                                        | 822.13                                                                                                                                                                                                                                                                                                   | 437.97                                                                                                                                                                                                                                                                                                                                                                                                           |
| 112      | 112.24                                               | 153.67                                                                                                        | 131.27                                                                                                                                                                                                                                                                                                   | 11.740                                                                                                                                                                                                                                                                                                                                                                                                           |
| 112      | 1.1200                                               | 29.200                                                                                                        | 17.184                                                                                                                                                                                                                                                                                                   | 7.8095                                                                                                                                                                                                                                                                                                                                                                                                           |
| 112      | 35.450                                               | 95.160                                                                                                        | 49 . 755                                                                                                                                                                                                                                                                                                 | 16.754                                                                                                                                                                                                                                                                                                                                                                                                           |
| 112      | 103.11                                               | 151.46                                                                                                        | 129.91                                                                                                                                                                                                                                                                                                   | 14.404                                                                                                                                                                                                                                                                                                                                                                                                           |
| 112      | 31.000                                               | 553.00                                                                                                        | 349.99                                                                                                                                                                                                                                                                                                   | 137.33                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | 112<br>112<br>112<br>112<br>112<br>112<br>112<br>112 | 112 -418.00<br>112 1.1200<br>112 34.070<br>112 32.000<br>112 112.24<br>112 1.1200<br>112 35.450<br>112 103.11 | 112       -418.00       2133.0         112       1.1200       29.200         112       34.070       91.020         112       32.000       1385.0         112       112.24       153.67         112       1.1200       29.200         112       35.450       95.160         112       103.11       151.46 | 112       -418.00       2133.0       192.93         112       1.1200       29.200       16.625         112       34.070       91.020       48.012         112       32.000       1385.0       822.13         112       112.24       153.67       131.27         112       1.1200       29.200       17.184         112       35.450       95.160       49.755         112       103.11       151.46       129.91 |

## APPENDIX "C" SCATTER PLOTS

```
N= 115 OUT OF 115 42.REALING VS. 2.QUARTER
REALINC
 4923.0
                                                     9 X
                                                   Χ
                                                 6
                                                6
                                              8
 4690.0
                                          4 7
                                      3
 4456.9
 4223.9
 3990.9
               3
              3
 3757.8 +6
                                                          QUARTER
                                                57.800
                             47.400
         37.000
                                                          63.000
                   42.200
                                       52.600
COMMAND
?SCATTER V=93,2 CASES=380-388,390-396,398-496
SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
           N= 112 OUT OF 115 93.RLRENT2 VS. 2.QUARTER
RLRENT2
 91.020
           +6
              3 3
  79.630
                      2
```

68.240 +

```
56.850
 45.460
                                                66
 34.070
                                                 57.800
         37.000
                             47.400
                                                          63.000
                                       52.600
                   42.200
COMMAND
?SCATTER V=93,25 CASES=380-388,390-396,398-496
SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
           N= 112 OUT OF 115 93.RLRENT2 VS. 25.MURBSTAT
 RLRENT2
 91.020
           +6
  79.630
  68.240
  56.850
  45.460
```

34.070 +

- 96

```
O. . .40000 .80000 MURBSTAT
.20000 .60000 1.0000
```

```
COMMAND
?SCATTER V=22,92 CASES=380-388,390-396,398-496
```

```
SCATTER PLOT CASES=CASE#:380-388,390-396,398-496

N= 112 OUT OF 115 22.VACRATE VS. 92.NEWVRATE

VACRATE

2.0000 +6
```

3

1.6200 +

1.2400 + \* \* \* \* \* \* \* \*

.86000 +

+

.48000 + 6

8 + \* 7 4 \*

1.1200 + 6 1.1200 12.352 23.584 NEWVRATE 6.7360 17.968 29.200

COMMAND ?SCATTER V=12.2 CASES=380-388,390-396,398-496

SCATTER PLOT CASES=CASE#:380-388,390-396,398-496 N= 115 OUT OF 115 12.BCPOP VS. 2.QUARTER

BCPOP +

v 0

6

ΧS

```
8 6
 2471.3 +
                                          4 7
                                      3
 2409.4
 2347.4
 2285.5
 2223.6
                                                57.800
                                                          QUARTER
                             47.400
         37.000
                                      52.600
                                                          63.000
                   42.200
COMMAND
?SCATTER V=51,2 CASES=380-388,390-396,398-496
 SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
           N= 112 OUT OF 115 51 POPGRTH VS. 2.QUARTER
POPGRTH
 4.0100
  3.3620
  2.7140
  2.0660
                      2
```

```
1.4180
                                                 66 X
  .77000
                                                           QUARTER
                                                  57.800
                             47.400
         37.000
                                                           63.000
                                        52.600
                   42.200
 COMMAND
?SCATTER V=12,25 CASES=380-388,390-396,398-496
 SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
            N= 115 OUT OF 115 12.BCPOP VS. 25.MURBSTAT
 ВСРОР
  2533.2
  2471.3
  2409.4
  2347.4
  2285.5
  2223.6
                                                            MURBSTAT
                                                   .80000
          Ο.
                               .40000
                                                            1.0000
                                         .60000
                    .20000
```

COMMAND ?SCATTER V=51,25 CASES=380-388,390-396,398-496 66

# APPENDIX "D" RESIDUAL PLOTS

```
. 101 -
```

Run Number 1

.0001

```
SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
           N= 112 OUT OF 115 51.POPGRTH VS. 25.MURBSTAT
POPGRTH
 4.0100
 3.3620
 2.7140
           +5
 2.0660
  1.4180
  .77000
                                                           MURBSTAT
                                                  .80000
         Ο.
                             .40000
                                                           1.0000
                                        .60000
                   . 20000
COMMAND
?REG V=39,7,9,25,22,92,42,55,93,94,95,51,70 CASES=380-388,390-396,398-496
LEAST SQUARES REGRESSION CASES=CASE#:380-388,390-396,398-496
 ANALYSIS OF VARIANCE OF 39 NEWREALP N= 112 OUT OF 115
                                                   F-STAT
                                                             SIGNIF
                         DF SUM SQRS
                                        MEAN SOR
      SOURCE
                                                               .0000
                                                   11.984
                         12 852.31
                                        71.026
      REGRESSION
                         99 586.76
                                        5.9268
      ERROR
                        111 1439.1
      TOTAL
      MULT R= .76959 R-SQR= .59227 SE= 2.4345
                                       STD ERROR
                                                   T-STAT
                                                              SIGNIF
                              COEFF
      VARIABLE
                   PARTIAL
```

-252.63

CONSTANT

61.277

-4.1228

```
- 102 -
```

```
.0737
                                                    1.8078
                                         1.0009
   7.WESTEND
                     . 17877
                             1.8095
                                                                .0000
                                          . 59069
                                                    -5.5220
                   -.48526
                             -3.2618
   9.EASTVAN
                                                    -1.4397
                                                                . 1531
                             -5.6441
                                         3.9203
  25.MURBSTAT
                    -.14320
                                                    -1.6010
                                                                . 1126
                             -1.6637
                                         1.0392
                    -.15886
  22. VACRATE
                                         .83433 -1 .59857
                                                                . 5508
                              .49941 -1
  92.NEWVRATE
                     .06005
                                                                .0000
                                          , 13252 -1 4.4057
                              .58387 -1
  42.REALINC
                     .40488
                                                    -.71767
                                                                .4746
                             -.34626
                                          .48247
                    -.07194
  55. REALINT
                                                     3.5282
                                                                .0006
                                          .23949
                              .84497
                     .33421
  93.RLRENT2
                                                                 .0002
                                         .90157 -3 -3.9035
                    -.36522
                             -.35193 -2
  94.STARTS
                                                                 .0002
                                          .77618 -1 -3.8912
                    -.36422
                             -.30203
  95.REALCOST
                                                                . 1834
                                                     1.3398
                                          1.0589
                              1.4186
   51.POPGRTH
                     . 13345
                                                                 .0318
                                          . 17140
                                                    -2.1783
                    -.21386 -.37337
   70. RLAPTRTN
COMMAND
?SAVE V100=RESIDUAL
LABEL FOR THE RESULT VARIABLE(S)
=RESIDUAL
CASES TO SELECT
=380-388,390-396,398-496
RESIDUAL USING: REGRESS CASES=CASE#:380-388,390-396,398-496
      VARIABLE TOTAL VALID
                                MISS
                          112
                                   3
  100. RESIDUAL
                   115
 COMMAND
?SCATTER V=100.39 CASES=380-388,390-396,398-496
 SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
            N= 112 DUT OF 115 100.RESIDUAL VS. 39.NEWREALP
 RESIDUAL
  6.2029
  3.2202
                                 2522*
                                22 *
                                         2
  .23750
                                53
                                                  *2
 -2.7452
```

```
-8.7106 +*
+---+---+---+---+---+---+---+---+
2.7578 10.271 17.784 NEWREALP
6.5144 14.027 21.541
```

COMMAND ?SCATTER V=100,2 CASES=380-388,390-396,398-496

```
SCATTER PLOT: CASES=CASE#:380-388,390-396,398-496
           N= 112 OUT OF 115 100.RESIDUAL VS. 2.QUARTER
RESIDUAL
 6.2029
 3.2202
                                                     2 2
 .23750
-2.7452
-5.7279
-8.7106
                                                           QUARTER
                             47.400
                                                 57.800
        37.000
                                       52.600
                                                           63.000
                   42.200
```

COMMAND
?HISTOGRAM V=100 INT=10 OP=HIST%
CASES TO SELECT
=380-388,390-396,398-496

```
104 -
```

```
HISTOGRAM CASES=CASE#:380-388,390-396,398-496
          HIST% . COUNT FOR 100.RESIDUAL (EACH X= 1)
MIDPOINT
              . 9
                     1 +X
-8.7106
                     0 +
-7.0535
             0.
                     4 +XXXX
             3.6
-5.3965
             2.7
                     3 +XXX
-3.7394
            16.1
                    18 +XXXXXXXXXXXXXXXXX
-2.0824
                    34.8
-.42532
                    30 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
            26.8
 1.2317
                    11 +XXXXXXXXXXX
             9.8
 2.8888
 4.5458
             4.5
                     5 +XXXXX
 6.2029
              . 9-
                     1 +X
 MISSING
                     3
                   115 (INTERVAL WIDTH= 1.6571)
 TOTAL
COMMAND
?TRANS V101=V100/2.4345
LABEL FOR THE RESULT VARIABLE(S)
=STANDRES
CASES TO SELECT
=380-388,390-396,398-496
DIVIDE TRANSFORMATION CASES=CASE#:380-388,390-396,398-496
     VARIABLE TOTAL VALID
                             MISS
  101.STANDRES
               115
                        112
                                 3
 COMMAND
?SCATTER V=101,2 CASES=380-388,390-396,398-496
 SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
           N= 112 OUT OF 115 101. STANDRES VS. 2. QUARTER
 STANDRES
  2.5479
  1.3227
                                                    2 2
  .97556 -1+
            3
```

-2.3528

-3.5780

57.800 47.400 37.000 63.000 52.600 42.200

COMMAND

?REG V=39,7,9,25,22,92,52,55,60,94,95,51,70 CASES=380-388,390-396,398-496

LEAST SQUARES REGRESSION CASES=CASE#:380-388,390-396,398-496

ANALYSIS OF VARIANCE OF 39.NEWREALP N= 112 OUT OF 115

SIGNIF F-STAT DF SUM SQRS MEAN SQR SOURCE .0000 63.803 9.3794 12 765.63 · REGRESSION 6.8024 99 673.44 ERROR 111 1439.1 TOTAL

MULT R= .72941 R-SQR= .53203 SE= 2.6081

| VADTADLE    | PARTIAL | COEFF      | STD ERROR   | T-STAT   | SIGNIF   |
|-------------|---------|------------|-------------|----------|----------|
| VARIABLE    | PARTIAL | COLLI      | JID CKKOK   | . 3.,,,, | <b>V</b> |
| CONSTANT    |         | -8.6634    | 5.2630      | -1.6461  | . 1029   |
| 7.WESTEND   | . 25848 | 2.7661     | 1.0390      | 2.6623   | . 009 1  |
| 9.EASTVAN   | 44710   | -3.1317    | .62970      | -4.9733  | . 0000   |
| 25 MURBSTAT | .32397  | 8.3651     | 2.4551      | 3.4072   | .0010    |
| 22. VACRATE | .01123  | . 17959    | 1.6069      | . 11177  | .9112    |
| 92.NEWVRATE | . 15198 | . 13919    | .90979 -1   | 1.5299   | . 1292   |
| 52 GRRLINC  | . 19347 | .68528     | . 34927     | 1.9621   | .0526    |
| 55 REALINT  | 04331   | 26336      | .61060      | 43131    | . 6672   |
| 60 LAGRENT  | : 21939 | . 23084    | . 10317     | 2.2374   | .0275    |
| 94.STARTS   | - 18856 | - 17540 -2 | .91811 -3   | -1.9104  | .0590    |
| 95 REALCOST | . 23555 | .74282 -   | . 30802 - 1 | 2,4116   | .0177    |
| 51.POPGRTH  | . 19694 | 2.2256     | 1.1136      | 1.9986   | :0484    |
| 70 DIADTOTN | - 27027 | 65161      | . 23329     | -2.7931  | .0063    |

COMMAND

?SAVE V100=RESIDUAL LABEL=RESIDUAL CASES=380-388,390-396,398-496

RESIDUAL USING: REGRESS CASES=CASE#:380-388,390-396,398-496

VARIABLE TOTAL VALID MISS

Run Number 2

```
* CASES CHANGED IN EXISTING VARIABLE
COMMAND
?SCATTER V=100,39 CASES=380-388,390-396,398-496
 SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
           N= 112 OUT OF 115 100.RESIDUAL VS. 39.NEWREALP
 RESIDUAL
 7.0373
  4.0374
  1.0375
 -1.9625
. -4.9624
 -7.9623
                                                           NEWREALP
                                                 17.784
                             10.271
         2.7578
                                                           21.541
                                       14.027
                   6.5144
 COMMAND
?SCATTER V=100,2 CASES=380-388,390-396,398-496
 SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
            N= 112 OUT OF 115 100 RESIDUAL VS. 2.QUARTER
```

115

100.RESIDUAL

RESIDUAL 7.0373

112

```
107 -
```

```
4.0374
 1.0375
-1.9625
-4.9624
-7.9623
                                                    QUARTER
                                           57.800
                          47.400
        37.000
                                                    63.000
                                  52.600
                 42.200
COMMAND
?HISTOGRAM V=100 INT=10 OP=HIST%
CASES TO SELECT
=380-388,390-396,398-496
HISTOGRAM CASES=CASE#:380-388,390-396,398-496
          HIST% COUNT FOR 100.RESIDUAL (EACH X= 1)
MIDPOINT
                   1 +X
 -7.9623
             . 9
                   2 +XX
 -6.2957
            1.8
                   3 +XXX
 -4.6290
            2.7
                   8 +XXXXXXXX
 -2.9624
            7.1
                   -1.2958
            33.0
                   31.3
  . 37081
                   15 +XXXXXXXXXXXXXXXX
  2.0374
            13.4
                    5 +XXXXX
  3.7040
            4.5
                    3 +XXX
  5.3707
            2.7
                    3 +XXX
            2.7
  7.0373
  MISSING
                  115 (INTERVAL WIDTH= 1.6666)
  TOTAL
 COMMAND
?TRANS V101=V100/2.6081 CASES=380-388,390-396,398-496
```

LABEL FOR THE RESULT VARIABLE(S)

```
DIVIDE TRANSFORMATION CASES=CASE#:380-388,390-396,398-496
     VARIABLE TOTAL VALID
                              MISS
  101.STANDRES
                  115
                         112
 * CASES CHANGED IN EXISTING VARIABLE
COMMAND
?SCATTER V=101,2 CASES=380-388,390-396,398-496
 SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
            N= 112 OUT OF 115 101.STANDRES VS. 2.QUARTER
 STANDRES
  2.6982
  1.5480
  .39778
            3
 -.75245
 -1.9027
 -3.0529
                                                 57.800
                                                           QUARTER
                              47.400
         37.000
                                                           63.000
                                       52.600
                   42.200
```

COMMAND ?REG V=39.7,9,25,22,92,52,55,93,94,63,51,70 CASES=380-388,390-396,398-496

LEAST SQUARES REGRESSION CASES=CASE#:380-388,390-396,398-496

| ANALYSIS OF | VARIANCE | OF | 39.NEWREALP | N≃ | 112 | OUT | OF | 115 |
|-------------|----------|----|-------------|----|-----|-----|----|-----|
|-------------|----------|----|-------------|----|-----|-----|----|-----|

| SOURCE              | DF | SUM SQRS                   | MEAN SQR         | F-STAT | SIGNIF |
|---------------------|----|----------------------------|------------------|--------|--------|
| REGRESSION<br>ERROR | 99 | 777.58<br>661.48<br>1439.1 | 64.799<br>6.6816 | 9.6980 | .0000  |

MULT R= .73508 R-SQR= .54034 SE= 2.5849

| PARTIAL | COEFF                                                                                                  | STD ERROR                                                                                                                                                                                | T-STAT                                                                                                                                                                                                                                                                                      | SIGNIF                                                                                                                                                                                                                                                                                                                                         |
|---------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 10.362                                                                                                 | 7.1117                                                                                                                                                                                   | 1.4571                                                                                                                                                                                                                                                                                      | . 1483                                                                                                                                                                                                                                                                                                                                         |
| . 22442 | 2.4837                                                                                                 | 1.0839                                                                                                                                                                                   | 2.2914                                                                                                                                                                                                                                                                                      | . 0241                                                                                                                                                                                                                                                                                                                                         |
| 45866   | -3.1962                                                                                                | .62236                                                                                                                                                                                   | -5.1356                                                                                                                                                                                                                                                                                     | .0000                                                                                                                                                                                                                                                                                                                                          |
| .01987  | .64773                                                                                                 | 3.2757                                                                                                                                                                                   | . 19774                                                                                                                                                                                                                                                                                     | .8437                                                                                                                                                                                                                                                                                                                                          |
| 12310   | -1.9362                                                                                                | 1.5687                                                                                                                                                                                   | -1.2342                                                                                                                                                                                                                                                                                     | . 2200                                                                                                                                                                                                                                                                                                                                         |
| . 32202 | .33336                                                                                                 | .98500 -1                                                                                                                                                                                | 3.3843                                                                                                                                                                                                                                                                                      | .0010                                                                                                                                                                                                                                                                                                                                          |
| .04208  | . 12366                                                                                                | . 29512                                                                                                                                                                                  | .41901                                                                                                                                                                                                                                                                                      | . 6761                                                                                                                                                                                                                                                                                                                                         |
| . 18221 | . 99055                                                                                                | . 53722                                                                                                                                                                                  | 1.8438                                                                                                                                                                                                                                                                                      | .0682                                                                                                                                                                                                                                                                                                                                          |
| 15570   | 11392                                                                                                  | .72638 -1                                                                                                                                                                                | -1.5683                                                                                                                                                                                                                                                                                     | . 1200                                                                                                                                                                                                                                                                                                                                         |
| 32828   | 41391                                                                                                  | -2 .11970 -2                                                                                                                                                                             | -3.4580                                                                                                                                                                                                                                                                                     | .0008                                                                                                                                                                                                                                                                                                                                          |
| 22526   | 21603                                                                                                  | .93908 -1                                                                                                                                                                                | -2.3004                                                                                                                                                                                                                                                                                     | . 0235                                                                                                                                                                                                                                                                                                                                         |
| . 23632 | 2.7463                                                                                                 | 1.1349                                                                                                                                                                                   | 2.4198                                                                                                                                                                                                                                                                                      | .0174                                                                                                                                                                                                                                                                                                                                          |
| 15033   | 35266                                                                                                  | . 23309                                                                                                                                                                                  | -1.5129                                                                                                                                                                                                                                                                                     | . 1335                                                                                                                                                                                                                                                                                                                                         |
|         | . 22442<br>45866<br>.01987<br>12310<br>.32202<br>.04208<br>.18221<br>15570<br>32828<br>22526<br>.23632 | 10.362<br>.22442 2.4837<br>45866 -3.1962<br>.01987 .64773<br>12310 -1.9362<br>.32202 .33336<br>.04208 .12366<br>.18221 .99055<br>1557011392<br>3282841391<br>2252621603<br>.23632 2.7463 | 10.362 7.1117<br>.22442 2.4837 1.0839<br>45866 -3.1962 .62236<br>.01987 .64773 3.2757<br>12310 -1.9362 1.5687<br>.32202 .33336 .98500 -1<br>.04208 .12366 .29512<br>.18221 .99055 .53722<br>1557011392 .72638 -1<br>3282841391 -2 .11970 -2<br>2252621603 .93908 -1<br>.23632 2.7463 1.1349 | 10.362 7.1117 1.4571 .22442 2.4837 1.0839 2.291445866 -3.1962 .62236 -5.1356 .01987 .64773 3.2757 .1977412310 -1.9362 1.5687 -1.2342 .32202 .33336 .98500 -1 3.3843 .04208 .12366 .29512 .41901 .18221 .99055 .53722 1.84381557011392 .72638 -1 -1.56833282841391 -2 .11970 -2 -3.45802252621603 .93908 -1 -2.3004 .23632 2.7463 1.1349 2.4198 |

COMMAND

?SAVE V100=RESIDUAL LABEL=RESIDUAL CASES=380-388,390-396,398-496

RESIDUAL USING: REGRESS CASES=CASE#:380-388,390-396,398-496

VARIABLE TOTAL VALID MISS

100.RESIDUAL 115 112 3\*

\* CASES CHANGED IN EXISTING VARIABLE

COMMAND

?SCATTER V=100,39 CASES=380-388,390-396,398-496

SCATTER PLOT CASES=CASE#:380-388,390-396,398-496 N= 112 DUT DF 115 100.RESIDUAL VS. 39.NEWREALP RESIDUAL 8.2391 +

5.1610

2 \*

•

Run Number 3

```
- 110 -
```

```
2.0830
-.99504
-4.0731
-7.1511 +*
                                                17.784
         2.7578
                             10.271
                                                          21.541
                                      14.027
                   6.5144
COMMAND
?SCATTER V=100.2 CASES=380-388,390-396,398-496
SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
           N= 112 OUT OF 115 100 RESIDUAL VS. 2.QUARTER
 RESIDUAL
 8.2391
  5.1610
  2.0830
 -.99504
 -4.0731
```

```
111 -
```

COMMAND
?HISTOGRAM V=100 INT=10 OP=HIST%
CASES TO SELECT
=380-388,390-396,398-496

HISTOGRAM CASES=CASE#:380-388,390-396,398-496

```
HIST% COUNT FOR 100. RESIDUAL (EACH X= 1)
MIDPOINT
                 1 +X
           . 9
-7.1511
-5.4411
          3.6
                 4 +XXXX
-3.7311
          4.5
                 5 +XXXXX
                21 +XXXXXXXXXXXXXXXXXXXXXXX
-2.0210
          18.8
                35.7
-.31103
                1.3990
          25.0
                 4 +XXXX
3.1090
          3.6
                 7 +XXXXXXX
4.8190
          6.3
                 1 +X
           . 9
6.5291
                 1 +X
8.2391
                 3
MISSING
                115 (INTERVAL WIDTH= 1.7100)
TOTAL
```

COMMAND ?TRANS V101=V100/2.5849 LABEL=STANDRES CASES=380-388,390-396,398-496

DIVIDE TRANSFORMATION CASES=CASE#:380-388,390-396,398-496

VARIABLE TOTAL VALID MISS

101.STANDRES 115 112 3\*

\* CASES CHANGED IN EXISTING VARIABLE

COMMAND 75CATTER V=101,2 CASES=380-388,390-396,398-496

SCATTER PLOT CASES=CASE#:380-388,390-396,398-496 N= 112 OUT OF 115 101.STANDRES VS. 2.QUARTER STANDRES 3.1874 + \*

COMMAND ?REG V=39,7,9,25,22,92,52,55,60,94,63,51,70 CASES=380-388,390-396,398-496

LEAST SQUARES REGRESSION CASES=CASE#:380-388,390-396,398-496

ANALYSIS OF VARIANCE OF 39.NEWREALP N= 112 OUT OF 115

| SOURCE                       | DF              | SUM SQRS                   | MEAN SQR         | F-STAT | SIGNIF |
|------------------------------|-----------------|----------------------------|------------------|--------|--------|
| REGRESSION<br>ERROR<br>TOTAL | 12<br>99<br>111 | 784.78<br>654.29<br>1439.1 | 65.398<br>6.6090 | 9.8953 | .0000  |

MULT R= .73847 R-SQR= .54534 SE= 2.5708

| VARIABLE    | PARTIAL | COEFF    | STD ERROR | T-STAT  | SIGNIF   |
|-------------|---------|----------|-----------|---------|----------|
| CONSTANT    |         | . 56 185 | 3.5761    | . 15711 | . 8755   |
| 7.WESTEND   | . 29935 | 3.2022   | 1.0258    | 3.1216  | .0024    |
| 9.EASTVAN   | 46335   | -3.2222  | .61937    | -5.2024 | . 0000   |
| 25.MURBSTAT | . 21785 | 5.2002   | 2.3414    | 2.2210  | . 0286   |
| 22.VACRATE  | 16632   | -2.4589  | 1.4652    | -1.6783 | . 0965   |
| 92 NEWVRATE | . 35359 | . 35300  | .93856 -1 | 3.7611  | .0003    |
| 52 GRRLINC  | .06619  | . 19922  | . 30184   | . 65999 | . 5 108  |
| 55.REALINT  | . 17967 | .96650   | . 53185   | 1.8172  | .0722    |
| 60.LAGRENT  | . 18669 | . 18379  | .97205 -1 | 1.8908  | .0616    |
| 94.STARTS   | 30850   | 38300 -3 | .11869 -2 | -3.2270 | . 00 1 7 |
|             |         |          |           |         |          |

Run Number 4

```
.0036
                                         .90895 -1 -2.9804
   63.CCOSTBC2
                   -.28695 -.27091
                                                               .0040
                    . 28434
                             3.2185
                                         1.0907
                                                 2.9509
   51.POPGRTH
                                                   -1.8875
                                                               .0620
                   -.18637 -.43530
                                         . 23063
   70. RLAPTRTN
COMMAND
?SAVE V100=RESIDUAL LABEL=RESIDUAL CASES=380-388,390-396,398-496
 RESIDUAL USING: REGRESS CASES=CASE#:380-388,390-396,398-496
      VARIABLE TOTAL VALID
                               MISS
  100.RESIDUAL
                  115
                         112
 * CASES CHANGED IN EXISTING VARIABLE
 COMMAND
?SCATTER V=100,39 CASES=380-388,390-396,398-496
 SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
            N= 112 OUT OF 115 100 RESIDUAL VS. 39 NEWREALP
 RESIDUAL
  9.2064
  5.9503
  2.6942
                                                 *2
 - . 56<sup>-</sup>190
 -3.8180
 -7.0741
```

10.271

6.5144

2.7578

17.784

14.027

NEWREALP

21.541

. 113 -

```
COMMAND
?SCATTER V=100,2 CASES=380-388,390-396,398-496
SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
           N= 112 OUT OF 115 100.RESIDUAL VS. 2.QUARTER
 RESIDUAL
  9.2064
  5.9503
  2.6942
 -.56190
 -3.8180
 -7.0741
                            47.400
                                               57.800
                                                         QUARTER
         37.000
                                                         63.000
                                      52.600
                   42.200
 COMMAND
?HISTOGRAM V=100 INT=10 OP=HIST%
 CASES TO SELECT
=380-388,390-396,398-496
 HISTOGRAM CASES=CASE#:380-388,390-396,398-496
            HIST% COUNT FOR 100.RESIDUAL (EACH X= 1)
 MIDPOINT
               . 9
                      1 +X
 -7.0741
               . 9
                      1 +X
 -5.2652
             14.3
                     16 +XXXXXXXXXXXXXXXXX
 -3.4562
                     -1.6473
             20.5
```

19 +XXXXXXXXXXXXXXXXXXXXXX

35.7

17.0

. 16168

1.9706

```
- 115 -
```

```
3.7796
             8.0
                     9 +XXXXXXXXXX
 5.5885
             1.8
                     2 +XX
                     0 +
 7.3975
             Ο.
                     1 +X
 9.2064
              . 9
 MISSING
                     3
                   115 (INTERVAL WIDTH= 1.8090)
 TOTAL
COMMAND
?TRANS V101=V100/2.5708 LABEL=STANDRES CASES=380-388,390-396,398-496
DIVIDE TRANSFORMATION CASES=CASE#:380-388,390-396,398-496
     VARIABLE TOTAL VALID
                              MISS
                        112
  101.STANDRES
                 115
                                 3*
 * CASES CHANGED IN EXISTING VARIABLE
 COMMAND
?HISTOGRAM V=101 INT=10 CASES=380-388,390-396,398-496 OP=HIST%
 HISTOGRAM CASES=CASE#:380-388,390-396,398-496
            HIST% COUNT FOR 101. STANDRES (EACH X= 1)
MIDPOINT
 -2.7517
               . 9
                      1 +X
               . 9
                      1 +X
 -2.0481
                     16 +XXXXXXXXXXXXXXXX
 -1.3444
             14.3
                     23 +XXXXXXXXXXXXXXXXXXXXXXXXXXX
             20.5
 -.64076
                     .62893 -1
             35.7
                     19 +XXXXXXXXXXXXXXXXXXXXX
             17.0
  .76655
                      9 +XXXXXXXXX
             8.0
  1.4702
  2.1739
              1.8
                      2 +XX
  2.8775
             0.
                      0 +
                      1 +X
  3.5812
               . 9
  MISSING
                    115 (INTERVAL WIDTH= .70365)
  TOTAL
 COMMAND
?SCATTER V=101,2 CASES=380-388,390-396,398-496
 SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
            N= 112 OUT OF 115 101.STANDRES VS. 2.QUARTER
 STANDRES
  3.5812
```



COMMAND ?REG V=39,25 CASES=380-388,390-396,398-496

LEAST SQUARES REGRESSION CASES=CASE#:380-388,390-396,398-496

ANALYSIS OF VARIANCE OF 39.NEWREALP N= 115 OUT OF 115

| SOURCE                       | DF | SUM SQRS                   | MEAN SQR         | F-STAT | SIGNIF |
|------------------------------|----|----------------------------|------------------|--------|--------|
| REGRESSION<br>ERROR<br>TOTAL |    | 181.88<br>1269.0<br>1450.9 | 181.88<br>11.230 | 16.195 | .0001  |

MULT R= .35405 R-SQR= .12535 SE= 3.3512

| VARIABLE                | PARTIAL | COEFF            | STD ERROR        | T-STAT           | SIGNIF |
|-------------------------|---------|------------------|------------------|------------------|--------|
| CONSTANT<br>25.MURBSTAT | . 35405 | 7.7878<br>3.5432 | .81278<br>.88046 | 9.5817<br>4.0243 | .0000  |

CDMMAND ?REG V=39,7.9,25,22,92,52,55,60,94,63,51,70,38 CASES=380-388,390-396,398-496

LEAST SQUARES REGRESSION CASES=CASE#:380-388,390-396,398-496

ANALYSIS OF VARIANCE OF 39.NEWREALP N= 112 OUT OF 115

Run Number 9

\* CASES CHANGED IN EXISTING VARIABLE

VARIABLE TRANSFORMATION STRAT=NEWQTR:51

VARIABLE TOTAL VALID MISS

98.RLCSTLAG

\* CASES CHANGED IN EXISTING VARIABLE

End of command file "\*SOURCE\*" at line 999  $\,\Omega$ 

COMMAND ?REG V=39,25 CASES=380-388,390-396,398-496 STRATA=NONE

LEAST SQUARES REGRESSION CASES=CASE#:380-388,390-396,398-496

ANALYSIS OF VARIANCE OF 39 NEWREALP N= 115 OUT OF 115

| SOURCE                       | DF | SUM SQRS                   | MEAN SOR         | F-STAT | SIGNIF |
|------------------------------|----|----------------------------|------------------|--------|--------|
| REGRESSION<br>ERROR<br>TOTAL |    | 181.88<br>1269.0<br>1450.9 | 181.88<br>11.230 | 16.195 | .0001  |

MULT R= .35405 R-SOR= .12535 SE= 3.3512

| VARIABLE                | PARTIAL | COEFF            | STD ERROR        | T-STAT           | SIGNIF |
|-------------------------|---------|------------------|------------------|------------------|--------|
| CONSTANT<br>25.MURBSTAT | . 35405 | 7.7878<br>3.5432 | .81278<br>.88046 | 9.5817<br>4.0243 | .0000  |

COMMAND ?SAVE V200=RESIDUAL OPTION=TEST LABEL=RESIDUAL CASES=380-388,390-396,398-496

RESIDUAL USING: REGRESS CASES=CASE#:380-388,390-396,398-496

DW #VAR VARIABLE TOTAL VALID MISS

115 115 1.4775 200 RESIDUAL

?HISTOGRAM V=200 INT=20 OP=HIST% CASES=380-388,390-396,398-496

HISTOGRAM CASES=CASE#:380-388,390-396,398-496

HIST% COUNT FOR 200.RESIDUAL (EACH X= 1) MIDPOINT

-8.5732 -7.41270 +

```
118.
```

```
-6.2522
              . 9
                     1 +X
             1.7
                     2 +XX
-5.0918
             3.5
                     4 +XXXX
-3.9313
-2.7708
            13.9
                    16 +XXXXXXXXXXXXXXXX
                    28.7
-1.6103
                    19 +XXXXXXXXXXXXXXXXXXX
-.44979
            16.5
 .71070
             7.0
                     8 +XXXXXXXXX
             7.8
                     9 +XXXXXXXXX
 1.8712
             5.2
                     6 +XXXXXXX
 3.0317
                     3 +XXX
 4.1922
             2.6
                     4 + XXXX
             3.5
 5.3527
             4.3
                     5 +XXXXX
 6.5132
                     1 +X
              . 9
 7.6737
                     1 +X
              . 9
 8.8341
              . 9
                     1 +X
 9.9946
                     0 +
 11.155
             Ο.
                     0 +
 12.316
             Ο.
                     1 +X
              . 9
 13.476
                   115 (INTERVAL WIDTH= 1.1605)
 TOTAL
COMMAND
?SCATTER V=200,2 CASES=380-388,390-396,398-496
SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
           N= 115 OUT OF 115 200.RESIDUAL VS. 2.QUARTER
RESIDUAL
 13.476 +
  9.0662
                                                 2 3
  4.6564
  .24651
            3 *
                                                     * 3
                                                     * 3
                2
 -4.1634
```

-8.5732

47.400 52.600 QUARTER 42.200 52.600 63.000

COMMAND ?REG V=39,7,9,25,22,92,52,55,60,94,63,51,70,53 CASES=380-388,390-396,398-496

LEAST SQUARES REGRESSION CASES=CASE#:380-388,390-396,398-496

ANALYSIS OF VARIANCE OF 39. NEWREALP N= 112 OUT OF 115

| SOURCE                       | DF | SUM SQRS                   | MEAN SQR         | F-STAT | SIGNIF |
|------------------------------|----|----------------------------|------------------|--------|--------|
| REGRESSION<br>ERROR<br>TOTAL | 98 | 844.46<br>594.61<br>1439.1 | 64.958<br>6.0675 | 10.706 | .0000  |
|                              |    |                            |                  |        |        |

MULT R= .76603 R-SQR= .58681 SE= 2.4632

| VARIABLE                                                                                                                          | PARTIAL                                                                                               | COEFF                                                                                                                 | STD ERROR                                                                                                                        | T-STAT                                                                                                                               | SIGNIF                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| CONSTANT 7.WESTEND 9.EASTVAN 25.MURBSTAT 22.VACRATE 92.NEWVRATE 52.GRRLINC 55.REALINT 60.LAGRENT 94.STARTS 63.CCOSTBC2 51.POPGRTH | .37307<br>44450<br>.36552<br>30921<br>.43885<br>.23838<br>19115<br>.26034<br>41933<br>40256<br>.36235 | 33.083<br>4.0617<br>-2.9469<br>13.287<br>-5.4805<br>.47177<br>.87753<br>-2.1565<br>.25613<br>79959<br>66067<br>4.1977 | 10.921<br>1.0204<br>.59991<br>3.4179<br>1.7027<br>.97577 -1<br>.36114<br>1.1186<br>.95951 -1<br>-2 .17486 -2<br>.15176<br>1.0907 | 3.0293<br>3.9806<br>-4.9123<br>3.8875<br>-3.2188<br>4.8348<br>2.4299<br>-1.9278<br>2.6693<br>-4.5726<br>-4.3535<br>3.8486<br>-3.3936 | .0031<br>.0001<br>.0000<br>.0002<br>.0017<br>.0000<br>.0169<br>.0568<br>.0089<br>.0000<br>.0000 |
| 70.RLAPTRTN<br>53.INFLATIO                                                                                                        | 32428<br>30201                                                                                        | 90736<br>-3.7397                                                                                                      | . 26737<br>1 . 1924                                                                                                              | -3.3936                                                                                                                              | .0023                                                                                           |

COMMAND
?SAVE V200=RESIDUAL OPTION=TEST LABEL=RESIDUAL CASES=380-388,390-396,398-496

RESIDUAL USING: REGRESS CASES=CASE#:380-388,390-396,398-496

VARIABLE TOTAL VALID MISS DW #VAR

200.RESIDUAL 115 112 3\* 2.0430 13

\* CASES CHANGED IN EXISTING VARIABLE

COMMAND . ?HISTOGRAM V=200 INT=20 OP=HIST% CASES=380-388,390-396,398-496

HISTOGRAM CASES=CASE#:380-388,390-396,398-496

With INFLATION variable

```
. 120 -
```

```
HIST% COUNT FOR 200.RESIDUAL (EACH X= 1)
MIDPOINT
                      1 +X
               . 9
-6.7265
                      0 +
-5.9522
              0.
-5.1779
                      0 +
              Ο.
-4.4035
                      2 +XX
              1.8
              4.5
                      5 +XXXXX
-3.6292
              6.3
                      7 +XXXXXXX
-2.8549
-2.0805
              8.9
                      10 +XXXXXXXXXX
-1.3062
             10.7
                      12 +XXXXXXXXXXXXXX
                      14 +XXXXXXXXXXXXXXX
-.53189
             12.5
                      20 +XXXXXXXXXXXXXXXXXXXXX
 . 24243
             17.9
                      15 +XXXXXXXXXXXXXXXX
 1.0168
             13.4
                      8 +XXXXXXXXX
 1.7911
              7.1
                      5 +XXXXX
 2.5654
              4.5
                      7 +XXXXXXX
              6.3
 3.3397
 4.1141
              3.6
                       4 +XXXX
                      0 +
 4.8884
              Ο.
                      ò+
 5.6627
              0.
 6.4371
               . 9
                       1 +X
                       0 +
 7.2.114
              Ο.
                       1 +X
 7.9857
 MISSING
                     115 (INTERVAL WIDTH= .77433)
 TOTAL
COMMAND
?SCATTER V=200,2 CASES=380-388,390-396,398-496
 SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
            N= 112 OUT OF 115 200.RESIDUAL VS. 2.QUARTER
 RESIDUAL
 7.9857
  5.0433
  2.1008
 -.84162
                                                          2
                                                          3
                                                          2
            +3
 -3.7841 +
```

COMMAND ?REG V=39,7,9,8,25,22,92,52,55,60,94,63,51,70 CASES=380-388,390-396,398-496

LEAST SQUARES REGRESSION CASES=CASE#:380-388,390-396,398-496

ANALYSIS OF VARIANCE OF 39 NEWREALP N= 112 OUT OF 115

| SOURCE                       | DF | SUM SORS                   | MEAN SQR         | F-STAT | SIGNIF |
|------------------------------|----|----------------------------|------------------|--------|--------|
| REGRESSION<br>ERROR<br>TOTAL |    | 784.79<br>654.28<br>1439.1 | 60.368<br>6.6763 | 9.0421 | .0000  |

MULT R= .73847 R-SQR= .54534 SE= 2.5839

| VARIABLE                                                                          | PARTIAL                                                           | COEFF                                                                                            | STD ERROR                  | T-STAT                                                     | SİGNIF                           |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------|----------------------------------|
| CONSTANT 7.WESTEND 9.EASTVAN 8.KITS 25.MURBSTAT 22.VACRATE 92.NEWVRATE 52.GRRLINC | . 14929<br>16813<br>00348<br>. 21712<br>16621<br>.35253<br>.06616 | COEFF<br>.62439<br>3.1392<br>-3.2857<br>68919<br>5.1946<br>-2.4621<br>.35330<br>.19913<br>.96881 | 4.0269<br>2.1004<br>1.9460 | . 15505<br>1.4946<br>-1.6884<br>34441<br>2.2019<br>-1.6686 | .8771<br>.1382<br>.0945          |
| 55.REALINT<br>60.LAGRENT<br>94.STARTS<br>63.CCOSTBC2<br>51.POPGRTH<br>70.RLAPTRTN | . 17873<br>. 18669<br>30657<br>27979<br>. 28410<br>18640          | . 18391                                                                                          | .97763 -1                  | 1.8812<br>2 -3.1884                                        | .0629<br>.0019<br>.0048<br>.0042 |

With KITS variable

COMMAND
?SAVE V200=RESIDUAL OPTION=TEST LABEL=RESIDUAL CASES=380-388,390-396,398-496

RESIDUAL USING: REGRESS CASES=CASE#:380-388,390-396,398-496

VARIABLE TOTAL VALID MISS DW #VAR
200.RESIDUAL 115 112 3\* 1.9642 13

\* CASES CHANGED IN EXISTING VARIABLE

```
HISTOGRAM CASES=CASE#:380-388,390-396,398-496
           HIST% COUNT FOR 200.RESIDUAL (EACH X= 1)
MIDPOINT
                      1 +X
-7.0724
               . 9
-6.2154
              Ο.
                      0 +
-5.3585
              Ο.
                      0 +
-4.5015
              3.6
                      4 +XXXX
              2.7
                      3 +XXX
-3.6446
             10.7
                     12 +XXXXXXXXXXXXX
-2.7876
-1.9306
              8.0
                      9 +XXXXXXXXXX
                     16 +XXXXXXXXXXXXXXXXX
-1.0737
             14.3
                     17 +XXXXXXXXXXXXXXXXX
             15.2
-.21672
 .64024
             17.0
                     19 +XXXXXXXXXXXXXXXXXXXX
                     11 +XXXXXXXXXXXX
 1.4972
              9.8
                      8 +XXXXXXXXX
 2.3542
              7.1
                      2 +XX
 3.2111
              1.8
                      7 +XXXXXXX
 4.0681
              6.3
 4.9250
               . 9
                      1 +X
                      0 +
 5.7820
              0.
               .9
                      1 +X
 6.6390
              Ο.
                      0 +
 7.4959
                      0 +
              Ο.
 8.3529
               . 9
                      1 +X
 9.2098
                      3
 MISSING
                     115 (INTERVAL WIDTH= .85696)
 TOTAL
COMMAND
?SCATTER V=200,2 CASES=380-388,390-396,398-496
 SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
            N= 112 OUT OF 115 200.RESIDUAL VS. 2.QUARTER
 RESIDUAL
 9.2098
  5.9534
  2.6969
                                                        2 2
                                                          2
                                                          3
                                      2
                                                          6
 -.55950
                                                          3
                                                          3
```

CDMMAND ?REG V=39.7.9.10.25.22.92.52.55.60.94.63.51.70 CASES=380-388.390-396.398-496

LEAST SQUARES REGRESSION CASES=CASE#:380-388,390-396,398-496

ANALYSIS OF VARIANCE OF 39.NEWREALP N= 112 OUT OF 115

| SOURCE                       | DF              | SUM SQRS                   | MEAN SQR         | F-STAT | SIGNIF |
|------------------------------|-----------------|----------------------------|------------------|--------|--------|
| REGRESSION<br>ERROR<br>TOTAL | 13<br>98<br>111 | 784.79<br>654.28<br>1439.1 | 60.368<br>6.6763 | 9.0421 | .0000  |

MULT R= .73847 R-SQR= .54534 SE= 2.5839

| VARIABLE    | PARTIAL  | COEFF     | STD ERROR  | T-STAT   | SIGNIF  |
|-------------|----------|-----------|------------|----------|---------|
| CONSTANT    |          | . 55547   | 3.5990     | . 15434  | .8777   |
| 7.WESTEND   | . 296 16 | 3.2081    | 1.0451     | 3.0696   | .0028   |
| 9.EASTVAN   | 45155    | -3.2168   | .64207     | -5.0100  | .0000   |
| 10.MARPOLE  | .00348   | .68919 -1 | 2.0010     | .34441 - | 1 .9726 |
| 25.MURBSTAT | .21712   | 5.1946    | 2.3591     | 2.2019   | . 0300  |
| 22. VACRATE | 16621    | -2.4621   | 1.4756     | -1.6686  | .0984   |
| 92.NEWVRATE | . 35253  | . 35330   | .94738 -1  | 3.7293   | .0003   |
| 52.GRRLINC  | .06616   | . 19913   | . 30339    | . 65635  | .5131   |
| 55.REALINT  | . 17873  | .96881    | . 53873    | 1.7983   | .0752   |
| 60 LAGRENT  | . 18669  | . 18391   | .97763 -1  | 1.8812   | .0629   |
| 94.STARTS   | 30657    | 38353 -2  | . 12029 -2 | -3.1884  | .0019   |
| 63.CCOSTBC2 | 27979    | - 27169   | .94174 -1  | -2.8850  | . 0048  |
| 51.POPGRTH  | . 28410  | 3.2206    | 1.0979     | 2.9333   | .0042   |
| 70.RLAPTRTN | 18640    | 43538     | . 23181    | -1.8782  | .0633   |
| /U.KLAPIKIN | . 10040  | . 40000   | . 20101    |          |         |

COMMAND
?SAVE V200=RESIDUAL OPTION=TEST LABEL=RESIDUAL CASES=380-388,390-396,398-496

RESIDUAL USING: REGRESS CASES=CASE#:380-388,390-396,398-496

VARIABLE TOTAL VALID MISS DW #VAR
200.RESIDUAL 115 112 3\* 1.9642 13

With MARPOLE variable

```
COMMAND
?HISTOGRAM V=200 INT=20 OP=HIST% CASES=380-388,390-396,398-496
 HISTOGRAM CASES=CASE#:380-388,390-396,398-496
            HIST% COUNT FOR 200 RESIDUAL (EACH X= 1)
 MIDPOINT
                      1 +X
 -7.0724
               . 9
                      0 +
 -6.2154
              Ο.
 -5.3585
              Ο.
                      0 ÷
 -4.5015
              3.6
                      4 +XXXX
              2.7
                      3 +XXX
 -3.6446
 -2.7876
             10.7
                     12 +XXXXXXXXXXXXX
                      9 +XXXXXXXXXX
 -1.9306
              8.0
                     16 +XXXXXXXXXXXXXXXXX
 -1.0737
             14.3
                     17 +XXXXXXXXXXXXXXXXXXXXX
 -.21672
             15.2
                     .64024
             17.0
  1.4972
              9.8
                     11 +XXXXXXXXXXXX
                      8 +XXXXXXXXX
  2.3542
              7.1
              1.8
                      2 +XX
  3.2111
              6.3
                      7 +XXXXXXX
  4.0681
               . 9
                      1 +X
  4.9250
                      O ÷
  5.7820
              Ο.
  6.6390
               . 9
                      1 +X
  7.4959
              Ο.
                      0 +
  8.3529
                      0 +
                       1 +X
  9.2098
               . 9
                      Ġ
  MISSING
                     115 (INTERVAL WIDTH= .85696)
  TOTAL
 COMMAND
?SCATTER V=200,2 CASES=380-388,390-396,398-496
 SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
            N= 112 OUT OF 115 200 RESIDUAL VS. 2.QUARTER
 RESIDUAL
  9.2098
  5.9534
  2.6969
```

Run Number 3

CDMMAND ?REG V=39.7.9.25.22.92.52.55.93.94.63.51.70 CASES=380-388.390-396.398-496

LEAST SQUARES REGRESSION CASES=CASE#:380-388,390-396,398-496

ANALYSIS OF VARIANCE OF 39 NEWREALP N= 112 OUT OF 115

| SOURCE                       | ĎF | SUM SORS                   | MEAN SQR         | F-STAT | SIGNIF |
|------------------------------|----|----------------------------|------------------|--------|--------|
| REGRESSION<br>ERROR<br>TOTAL | 99 | 777.58<br>661.48<br>1439.1 | 64.799<br>6.6816 | 9.6980 | .0000  |

MULT R= .73508 R-SOR= .54034 SE= 2.5849

| VARIABLE                                                                                                                                     | PARTIÁL                                                                                                               | COEFF                                                                                                                        | STD ERROR                                                                                                                                     | T-STAT | SIGNIF                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------|
| CONSTANT 7. WESTEND 9. EASTVAN 25. MURBSTAT 22. VACRATE 92. NEWVRATE 52. GRRLINC 55. REALINT 93. RLRENT2 94. STARTS 63. CCOSTBC2 51. POPGRTH | . 22442<br>- 45866<br>. 01987<br>- 12310<br>. 32202<br>. 04208<br>. 18221<br>- 15570<br>- 32828<br>- 22526<br>. 23633 | 10.362<br>2.4837<br>-3.1962<br>.64773<br>-1.9362<br>.33336<br>.12366<br>.99055<br>11392<br>41391<br>21603<br>2.7463<br>35266 | 7.1117<br>1.0839<br>.62236<br>3.2757<br>1.5687<br>.98500 -1<br>.29512<br>.53722<br>.72638 -1<br>-2 .11970 -2<br>.93908 -1<br>1.1349<br>.23309 |        | . 1483<br>. 0241<br>. 0000<br>. 8437<br>. 2200<br>. 0010<br>. 6761<br>. 0682<br>. 1200<br>. 0008<br>. 0235<br>. 0174<br>. 1335 |
| 70.RLAPTRTN                                                                                                                                  | -, 15033                                                                                                              | . 55200                                                                                                                      | . 23000                                                                                                                                       |        |                                                                                                                                |

COMMAND
25AVE V200=RESIDUAL OPTION=TEST LABEL=RESIDUAL CASES=380-388,390-396,398-496

RESIDUAL USING: REGRESS CASES=CASE#:380-388,390-396,398-496

```
VARIABLE TOTAL VALID
                              MISS
                                             #VAR
                                       2.0508
                                               12
 200.RESIDUAL
                  115
                         112
 * CASES CHANGED IN EXISTING VARIABLE
COMMAND
?HISTOGRAM V=200 INT=20 OP=HIST% CASES=380-388,390-396,398-496
HISTOGRAM CASES=CASE#:380-388,390-396,398-496
            HIST% COUNT FOR 200. RESIDUAL (EACH X= 1)
 MIDPOINT
                      1 +X
 -7.1511
               . 9
                      0 +
 -6.3411.
              Ο.
              2.7
                      3 +XXX
-5.5311
 -4.7211
              1.8
                      2 +XX
              1.8
                      2 +XX
 -3.9111
              2.7
                      3 +XXX
 -3.1011
 -2.2911
              8.9
                     10 +XXXXXXXXXXX
                     15 +XXXXXXXXXXXXXXXX
 -1.4810
             13.4
              9.8
                     11 +XXXXXXXXXXXX
 -.67103
             21.4
                     . 13898
             13.4
                     15 +XXXXXXXXXXXXXXXX
  .94899
  1.7590
             11.6
                     13 +XXXXXXXXXXXXXX
              1.8
                      2 +XX
  2.5690
              1.8
                      2 +XX
  3.3790
              4.5
                      5 +XXXXX
  4.1890
             1.8
                      2 +XX
  4.9990
  5.8090
              Ο.
                      0 +
  6.6191
               . 9
                      1 +X
                      0 +
  7.4291
              0.
  8.2391
               . 9
                      1 +X
                      3
  MISSING
                    115 (INTERVAL WIDTH= .81001)
  TOTAL
?SCATTER V=200,2 CASES=380-388,390-396,398-496
 SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
            N= 112 OUT OF 115 200.RESIDUAL VS. 2.QUARTER
 RESIDUAL
  8.2391
```

5.1610

```
2.0830
 -.99504
            3
            2
 -4.0731
 -7.1511
                                                    57.800
                                                               QUARTER
                               47.400
         37.000
                                                               63.000
                                          52.600
                    42.200
 COMMAND
?REG V=39,7,9,25,22,92,52,55,93,94,95,51,70 CASES=380-388,390-396,398-496
 LEAST SQUARES REGRESSION, CASES=CASE#:380-388,390-396,398-496
 ANALYSIS OF VARIANCE OF 39. NEWREALP N= 112 OUT OF 115
                                                                 SIGNIF
                                                      F-STAT
                                           MEAN SQR
                           DF
                               SUM SQRS
      SOURCE
                                                      8.8202
                                                                   .0000
                           12 743.57
                                           61.964
      REGRESSION
                               695.50
                                           7.0252
                           99
      ERROR
                          111 1439.1
      TOTAL
      MULT R= .71882 R-SQR= .51670 SE= 2.6505
                                          STD ERROR
                                                      T-STAT
                                                                 SIGNIF
                                COEFF
                    PARTIAL
     VARIABLE
                                                       .73290
                                                                   .4654
                               9.2826
                                           12.666
      CONSTANT
                                                       1.9577
                                                                   .0531
                               2.1747
                                           1.1109
    7.WESTEND
                      . 19305
                                                                   .0000
                                                      -4.9513
                                           .64309
    9.EASTVAN
                     -.44551
                              -3.1841
                                                                   .7033
                                           4.4936
                                                       .38204
                      .03837
                               1.7167
   25. MURBSTAT
                                                                   .6728
                                                      -.42358
                                           1.5736
                     -.04253
                              -.66655
   22. VACRATE
                                                                   .0206
                                           .86815 -1
                                                      2.3537
                      .23020
                                .20433
   92. NEWVRATE
                                                                   .3459
                                                       .94714
                      .09476
                                .30075
                                           .31753
   52. GRRLINC
```

Run Number 6

.4708

. 1944

.0152

.6628

.0575

.0632

.72399

. 43735

1.9218

-1.8788

.58313

1.1396

. 24866

.40203 -1

.97400 -1 -1.3064

.97377 -3 -2.4694

.07257

-.13018

-.24088

.04391

. 18965

-.18555

.42219

2.1902

-.46718

-.24046 -2

.17583 -1

-.12725

55. REALINT

93.RLRENT2

95.REALCOST

51.POPGRTH

70. RLAPTRIN

94.STARTS

```
RESIDUAL USING: REGRESS CASES=CASE#:380-388,390-396,398-496
                                              #VAR
     VARIABLE TOTAL VALID
                              MISS
                  115
                         112
                                  3∗
                                        1.9386
                                               12
 200.RESIDUAL
 * CASES CHANGED IN EXISTING VARIABLE
COMMAND
?HISTOGRAM V=200 INT=20 OP=HIST% CASES=380-388,390-396,398-496
HISTOGRAM CASES=CASE#:380-388,390-396,398-496
           HIST% COUNT FOR 200 RESIDUAL (EACH X= 1)
 MIDPOINT
 -7.8277
                      1 +X
               . 9
 -7.0181
                      0 +
              Ο.
 -6.2084
               . 9
                      1 +X
 -5.3988
                      1 +X
              2.7
                      3 +XXX
 -4.5892
 -3.7796
              . 9
                      1 +X
 -2.9700
              5.4
                      6 +XXXXXX
                      6 +XXXXXX
 -2.1603
              5.4
                     15 ÷XXXXXXXXXXXXXXX
 -1.3507
             13.4
                     19 +XXXXXXXXXXXXXXXXXXXXXX
             17.0
 - . 54 109
                     . 26853
             19.6
                     16 +XXXXXXXXXXXXXXXXX
             14.3
  1.0782
                      7 +XXXXXXX
  1.8878
              6.3
              3.6
                      4 +XXXX
  2.6974
                      1 +X
               . 9
  3.5070
                      3 +XXX
  4.3166
              2.7
                      1 +X
              . 9
  5.1263
              1.8
                      2 +XX
  5.9359
  6.7455
              1.8
                      2 +XX
               . 9
                      1 ÷X
  7.5551
  MISSING
                    115 (INTERVAL WIDTH= .80962)
  TOTAL
 COMMAND
?SCATTER V=200,2 CASES=380-388,390-396,398-496
 SCATTER PLOT CASES=CASE#:380-388,390-396,398-496
            N= 112 OUT OF 115 200.RESIDUAL VS. 2.QUARTER
```

N= 112 OUT OF 115 200.RESIDUAL VS. 2.QUARTE
RESIDUAL
7.5551 + \*

- 3

```
1.4020
-1.6746
-4.7511
-7.8277
                                                 57.800
                             47.400
        37.000
                                                           63.000
                                       52.600
                  42.200
```

?CORRELATE V=39.7,8,9,10,25,22,92,42,52,55,93,97,60,94,95,63,51,70,12,53 CASES=380-388,390-396,398-496

CORRELATION MATRIX CASES=CASE#:380-388,390-396,398-496

N= 112 DF= 110 R@ .0500= .1857 R@ .0100= .2425

VARIABLE

| 39.NEWREALP | 1.0000 | 0      |        |        |        |        |
|-------------|--------|--------|--------|--------|--------|--------|
| 7.WESTEND   | . 3899 | 1.0000 |        |        |        |        |
| 8.KITS      | . 0931 | 1910   | 1.0000 |        |        |        |
| 9.EASTVAN   | 3227   | 3675   | 8035   | 1.0000 |        |        |
| 10.MARPOLE  | .0692  | 0399   | 0871   | 1676   | 1.0000 |        |
| 25 MURBSTAT | . 3592 | .0335  | -,4362 | . 3730 | .0570  | 1.0000 |
| 22.VACRATE  | 1656   | .0725  | . 3697 | 3638   | 0799   | 4390   |
| 92.NEWVRATE | . 3794 | .0178  | 3200   | . 2582 | . 1126 | .7542  |
| 42.REALINC  | . 4204 | . 1252 | 3930   | . 2936 | .0130  | .9143  |
| 52.GRRLINC  | 2679   | 1790   | . 2359 | 1188   | 0065   | 6092   |
| 55.REALINT  | 1810   | .0147  | .2124  | 1686   | 1395   | 2924   |

5.5260

+

6 3 3.8500 + 3 \*

37.000 47.400 57.800 QUARTER 42.200 52.600 63.000

CDMMAND PREG V=101,102,25,22,64,93,103,95 CASES=380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496

LEAST SQUARES REGRESSION CASES=CASE#:380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496

ANALYSIS OF VARIANCE OF 101. RLAVGSP N= 20 OUT OF 20

| SOURCE                       | DF | SUM SQRS                   | MEAN SQR         | F-STAT | SIGNIF |
|------------------------------|----|----------------------------|------------------|--------|--------|
| REGRESSION<br>ERROR<br>TOTAL | 12 | 123.60<br>153.28<br>276.88 | 17.658<br>12.773 | 1.3824 | . 2966 |

MULT R= .66814 R-SQR= .44642 SE= 3.5739

| VARIABLE                                                           | PARTIĀL                                    | COEFF                                         | STD ERROR             | T-STAT                                                 | SIGNIF         |
|--------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------|--------------------------------------------------------|----------------|
| CONSTANT 102 LOCINDEX 25 MURBSTAT 22 VACRATE 64 CAPRATE 93 RLRENT2 | .05842<br>21313<br>00503<br>04032<br>33074 | 23.479<br>.16037<br>-5.2688<br>42969<br>41806 | i . 29907<br>. 17544  | 1.0388<br>.20272<br>75567<br>17424<br>13979<br>-1.2140 | .8911<br>.2481 |
| 103 NEWRMLAG                                                       | .06222                                     | . 13219<br>25976 -                            | .61214<br>1 .87283 -1 | . 21595<br>. 29760                                     | .8327<br>.7711 |

Run Number 10

COMMAND
?SAVE V200=RESIDUAL OPTION=TEST LABEL=RESIDUAL CASES=380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496

RESIDUAL USING: REGRESS CASES=CASE#:380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496

VARIABLE TOTAL VALID MISS DW #VAR
200 RESIDUAL 20 20 0\* 2.7524

\* CASES CHANGED IN EXISTING VARIABLE

```
COMMAND
?HISTOGRAM V=200 INT=20 OP=HIST% CASES=380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496
HISTOGRAM CASES=CASE#: 380,386,390,393,394,396,398,399,405,408,412,
 419,427,433,439,450,459,494,495,496
          HIST% COUNT FOR 200 RESIDUAL (EACH X= 1)
 MIDPOINT
 -4.2056
              5.0
                      1 +X
 -3.5245
              Ο.
                      0 +
              5.0
                      1 +X
 -2.8433
             15.0
                      3 +XXX
 -2.1622
 -1.4811
              Ο.
                      0 +
                      7 +XXXXXXX
 -.79993
             35.0
              Ο.
                      0 +
 -.11880
                      5 +XXXXX
  . 56234
             25.0
                      0 +
              Ο.
  1.2435
                      0 +
              Ο.
  1.9246
  2.6057
              5.0
                      1 +X
                      0 +
  3.2869
              0.
                      0 +
  3.9680
              Ο.
            . 0.
                      .0 +
  4.6491
              5.0
                       1 +X
  5.3303
  6.0114
              Ο.
                      0 +
              Ο.
                      0 +
  6.6925
  7.3737
              Ο.
                      0 +
  8.0548
              Ο.
                      0 +
              5.0
                       1 +X
  8.7359
                      20 (INTERVAL WIDTH= .68113)
  TOTAL
```

COMMAND ?SCATTER V=200,2 CASES=380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496

SCATTER PLOT CASES=CASE#:380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496

N= 20 OUT OF 20 200.RESIDUAL VS. 2.QUARTER

RESIDUAL 8.7359 +

6.1476 +

3.5593 +

+

.97102 +\*

-1.6173

+ \*

37.000 47.400 57.800 QUARTER 63.000

COMMAND
?REG V=101,102,25,92,64,93,103,95 CASES=380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496

LEAST SQUARES REGRESSION CASES=CASE#:380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496

ANALYSIS OF VARIANCE OF 101. RLAVGSP N= 20 OUT OF 20

SIGNIF F-STAT SOURCE SUM SQRS MEAN SQR 1.3932 . 2927 17.733 7 124.13 REGRESSION 152,75 12.729 ERROR 12 19 276.88 TOTAL

MULT R= .66957 R-SQR= .44833 SE= 3.5678

SIGNIF STD ERROR T-STAT COEFF VARIABLE PARTIAL .98259 .3452 22.467 22.865 CONSTANT . 28224 .7826 .64868 . 18308 102.LOCINDEX .08121 .4474 -.78544 6.8914 25. MURBSTAT -,22112 -5.4127 .8412 .34752 -1 . 16978 .20469 .05898 92.NEWVRATE -.20905 .8379 -.62205 -1 . 29756 -.06024 64.CAPRATE -1.1374 .2776 . 17880 -.31196 -.20337 93.RLRENT2 .7704 .47860 .29855 .08587 . 14289 103, NEWRMLAG .7540 . 32058 .85813 -1 .09215 .27510 -1 95.REALCOST

COMMAND
7SAVE V200=RESIDUAL OPTION=TEST LABEL=RESIDUAL CASES=380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496

With NEWVRATE variable

RESIDUAL USING: REGRESS CASES=CASE#:380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496

VARIABLE TOTAL VALID MISS DW #VAR
200.RESIDUAL 20 20 0\* 2.7901

\* CASES CHANGED IN EXISTING VARIABLE

```
COMMAND
?HISTOGRAM V=200 INT=20 OP=HIST% CASES=380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496
HISTOGRAM CASES=CASE#: 380,386,390,393,394,396,398,399,405,408,412,
 419.427,433,439,450,459,494,495,496
           HIST% COUNT FOR 200 RESIDUAL (EACH X= 1)
 MIDPOINT
                      1 +X
 -4.3017
              .5.0
              Ο.
                      0 +
 -3.6085
                      1 +X
              5.0
 -2.9152
             10.0
                      2 +XX
 -2.2220
              5.0
                      1 +X
 -1.5287
                      7 +XXXXXXX
 -.83546
             35.0
                      0 +
 -.14221
              Ο.
             25.0
                      5 +XXXXX
  .55104
  1.2443
              Ο.
                      0 +
                      0 +
  1.9375
              0.
              5.0
                       1 +X
  2.6308
  3.3240
              Ο.
                       0 +
                      0 +
  4.0173
              0.
                      1 +X
              5.0
  4.7105
              Ο.
                      0 +
  5.4038
                       0 +
  6.0970
              Ο.
  6.7903
              Ο.
                      0 +
              Ο.
                      0 +
  7.4835
              Ο.
                      0 +
  8.1768
              5.0
                       1 +X
  .8.8700
                      20 (INTERVAL WIDTH= .69325) ,
  TOTAL
 COMMAND
?SCATTER V=200,2 CASES=380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496
 SCATTER PLOT CASES=CASE#:380,386,390,393,394,396,398,399,405,408,412,
 419,427,433,439,450,459,494,495,496
            N= 20 OUT OF 20 200.RESIDUAL VS. 2.QUARTER
 RESIDUAL
  8.8700
  6.2357 +
```

3.6013 +

```
.96699
-1.6674
-4.3017
                                                    57.800
                                                               QUARTER
                               47.400
        37.000
                                                               63.000
                                         52.600
                    42.200
```

?CORRELATE V=101,102,25,22,92,64,93,103,95 CASES=380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496 COMMAND

.3989

CORRELATION MATRIX CASES=CASE#:380,386,390,393,394,396,398,399,405, 408,412,419,427,433,439,450,459,494,495,496

R@ .0500= .4438 R@ .0100= .5614

101.RLAVGSP

VARIABLE

1.0000

102 LOCINDEX . 1777 1.0000

1.0000 25. MURBSTAT .3230 -.3980

-.1968 1.0000 22. VACRATE . 1987 -.2010

-.3673 .8094 -.1610 1.0000 92.NEWVRATE .3067

. 1566

-.0774 .5806 1.0000 -.1202 -.1811 64.CAPRATE -.3466

-.5363 93.RLRENT2 .4183 .5312 .1092 . 1849

-.9047

-.3542 -.0149 103. NEWRMLAG

.0563 -.0613 .3561 .3531 -.1082.0703 95.REALCOST

> 64. 25. 22. 92. 101. 102. NEWVRATE CAPRATE LOCINDEX MURBSTAT VACRATE RLAVGSP

.3221

-.7573

1.0000 93.RLRENT2

1.0000 103. NEWRMLAG -.0571

1.0000 95.REALCOST -, 1337 . 1925

> 93. 103. 95.

Correlation Matrix Small Sample Variables

0 +

6 +XXXXXX

4 +XXXX

2 +XX

2 +XX 1 +X

0 +

Ο.

30.0

20.0

10.0

Ο.

10.0

5.0

-2.8435

-2.0219

-1.2003

-.37866

.44295 1.2646

2.0862

COMMAND ?REG V=101,25 CASES=380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496 LEAST SQUARES REGRESSION CASES=CASE#:380,386,390,393,394,396,398,399, 405,408,412,419,427,433,439,450,459,494,495,496 ANALYSIS OF VARIANCE OF 101.RLAVGSP N= 20 OUT OF 20 SIGNIF F-STAT DF SUM SQRS MEAN SOR SOURCE . 1648 2.0973 1 28.895 28.895 REGRESSION 13.777 18 247.99 ERROR 19 276.88 TOTAL Run Number 11 MULT R= .32304 R-SQR= .10436 SE= 3.7117 T-STAT SIGNIE COEFF STD ERROR PARTIAL VARIABLE 1.4029 6.6422 .0000 9.3184 CONSTANT . 1648 1.4482 1.7401 2.5200 25.MURBSTAT .32304 ?SAVE V200=RESIDUAL OPTION=TEST LABEL=RESIDUAL CASES=380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496 COMMAND RESIDUAL USING: REGRESS CASES=CASE#:380,386,390,393,394,396,398,399, 405,408,412,419,427,433,439,450,459,494,495,496 VARIABLE TOTAL VALID MISS #VAR 1.6831 20 0\*200.RESIDUAL \* CASES CHANGED IN EXISTING VARIABLE 2HISTOGRAM V=200 INT=20 OP=HIST% CASES=380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496 HISTOGRAM CASES=CASE#:380,386,390,393,394,396,398,399,405,408,412, 419,427,433,439,450,459,494,495,496 HIST% COUNT FOR 200.RESIDUAL (EACH X= 1) MIDPOINT 2 +XX -3.6651 10.0

.

```
136
```

```
0 +
  3.7294
              0.
  4.5510
             10.0
                      2 +XX
                      0 +
              Ο.
  5.3726
  6,1943
              0.
                      0 +
  7.0159
              Ο.
                      0 +
  7.8375
              Ο.
                      0 +
                      0 +
  8.6591
              Ο.
  9.4807
              0.
                      0 +
                      0 +
              Ο.
  10.302
                      0 +
  11.124
              Ο.
                      1 +X
  11.946
              5.0
                      20 (INTERVAL WIDTH= .82161)
  TOTAL
 COMMAND
?SCATTER V=200,2 CASES=380,386,390,393,394,396,398,399,405,408,412,419,427,433,439,450,459,494,495,496
SCATTER PLOT CASES=CASE#:380,386,390,393,394,396,398,399,405,408,412,
 419,427,433,439,450,459,494,495,496
            N= 20 OUT OF 20 200.RESIDUAL VS. 2.QUARTER
 RESIDUAL
  11.946
  8.8234
  5.7013
  2.5791
 -.54299
 -3.6651
                                                            QUARTER
                                                  57.800
         37.000
                              47.400
                                                            63.000
                                        52.600
                    42.200
```

2.9078

Ο.

0 +

```
ANALYSIS OF VARIANCE OF 101. RLAVGSP N= 19 DUT OF 19
                                                     F-STAT
                                                                SIGNIF
      SOURCE
                             SUM SQRS
                                          MEAN SQR
                                                     5.0520
                                                                 .0088
                             125.89
                                          17.984
      REGRESSION
                           7
                              39.157
                                          3.5597
      ERROR
                          11
                              165.04
      TOTAL
                          18
      MULT R= .87335 R-SQR= .76275 SE= 1.8867
                                                                SIGNIF
      VARIABLE
                               COEFF
                                         STD ERROR
                                                     T-STAT
                                                                                               Run Number 10
                    PARTIAL
                                                                                            (excluding outlier)
                               16.141
                                          12.002
                                                     1.3448
                                                                 . 2058
      CONSTANT
                                                                 . 2003
                                                     1.3625
                               .57781
                                          .42408
  102.LOCINDEX
                     .38000
                                                                 .6976
                                                      .39892
  25. MURBSTAT
                     . 11942
                              1.5448
                                          3.8725
                                                      .38971
                                                                 .7042
                                          1.3055
  22. VACRATE
                     . 11670
                              .50876
                                                                 . 7999
                                                    -.25966
                             -.40996 -1
                                          . 15788
  64.CAPRATE
                    -.07805
                                                                 .3415
                             -.94411 -1
                                          .94955 -1 -.99427
  93.RLRENT2
                    -.28716
                                                                 .4661
                                                      . 75505
                     . 22198
                              . 24446
                                          .32376
  103. NEWRMLAG
                                                                 .9502
                                          .46360 -1 -.63958 -1
  95. REALCOST
                    -.01928
                             -.29651 -2
 COMMAND
?SAVE V200=RESIDUAL OPTION=TEST LABEL=RESIDUAL CASES=380,386,390,393,394,398,399,405,408,412,419,427,433,439,450,459,494,495,496 STR
                                                                                                                                      1
 RESIDUAL USING: REGRESS CASES=CASE#:380,386,390,393,394,398,399,405,
 408.412.419.427,433,439,450,459,494,495,496
                                          DW
                                                #VAR
                                MISS
      VARIABLE TOTAL VALID
                                          2.2702
                    19
                            19
  200. RESIDUAL
 COMMAND
?HISTOGRAM V=200 INT=20 OP=HIST% CASES=380,386,390,393,394,398,399,405,408,412,419,427,433,439,450,459,494,495,496
 HISTOGRAM CASES=CASE#:380,386,390,393,394,398,399,405,408,412,419,
 427,433,439,450,459,494,495,496
            HIST% COUNT FOR 200. RESIDUAL (EACH X= 1)
 MIDPOINT.
               5.3
                       1 +X
 ~2.0720
                       0 +
 -1.7236
               Ο.
 -1.3753
               5.3
                       1 +X
 -1.0269
              15.8
                       3 +XXX
                       2 +XX
 -.67858
              10.5
 -.33022
              21.1
                       4 +XXXX
              15.8
                       3 +XXX
 . . 18134 - 1
                       2 + XX
              10.5
  .36649
               5.3
                       1 +X
  .71484
                       0 +
  1.0632
               Ο.
  1.4116
               Ο.
                       0 +
```

0 +

0 +

0.

0.

1.7599

2.1083

2.4566

```
128
```

```
1 +X
  2.8050
              5.3
                      0 +
  3.1533
              0.
                      0 +
  3.5017
              0.
                      0 +
  3.8500
              Ο.
  4.1984
              Ο.
                      0 +
  4.5467
 TOTAL
                     19 (INTERVAL WIDTH= 34836)
COMMAND
?SCATTER V=200.2 CASES=380,386,390,393,394,398,399,405,408,412,419,427,433,439,450,459,494,495,496
 SCATTER PLOT CASES=CASE#:380,386,390,393,394,398,399,405,408,412,419,
 427,433,439,450,459,494,495,496
            N= 19 OUT OF 19 200 RESIDUAL VS. 2.QUARTER
 RESIDUAL
  4.5467 +
  3.2230
  1.8993
  .57550
 - . 74825
 -2.0720
                                                  57.800
                                                            QUARTER
                              47.400
          37.000
                                                            63.000
                                        52.600
                    42.200
 COMMAND
?REG V=101,102,25,22,64,93,103,95 CASES=380,386,390,393,394,398,399,405,408,412,419,427,439,450,459,494,495,496
```

LEAST SQUARES REGRESSION CASES=CASE#:380,386,390,393,394,398,399,405,408,412,419,427,439,450,459,494,495,496

## APPENDIX "E" DATA FILE LISTINGS

```
MTS (DH4A/ANNA/10267)
#SIG GAU
#Enter user password.
#**Last signon was: 14:14:37
# User "GAU." signed on at 14:19:06 on Tue Apr 20/82
NO MESSAGES
 CTL-P - *PRINT* CTL-F - *FTN CTL-O - %PAGE
 CTL-T - FORT.TABS CTL-R - R MIDAS CTL-G - %WF=36
 CTL-W - *STATUS CTL-Q - PORTRAT CTL-Y - %UC
 CTL-U - %DUPLEX CTL-L - *LISTER CTL-Z - %LC
                CTL-X - CANCEL CTL-V - S $=ON
 CTL-S - SIG $
               α - %WB=36
   - %WF
                > - %WR=60
   < - %WL
                PROUTE=ANGS
 CTL-D - DEL LINE CTL-B - PAUSE
                            CTL-H - LEFT
 CTL-E - DEL END CTL-M - RETURN CTL-I - RIGHT
 CTL-C - EOF CTL-K - HOME CTL-N - UP
 CTL-A - INSERT
                              CTL-J - DOWN
#SET PROUTE=CNTR
# $.04, $.07T
#CONTROL *PRINT* LANDSCAPE ONESIDED COPIES=3
#*PRINT* assigned job number 523752
#*PRINT* RM523752 held
# $.09. $.15T
#LIST RESALES
          100432464621205825 EAST 7TH LA W53'B98,DL264A,P5738
                                                            1611785821000000
    1
          1004 975913.7500 3 277 36 24117 670 6466 1 4 2 1 1 1 0 0 0
         1004 1111900 1 147548 35489 600000 804550 1 44101
                                                                     369148
        1004 00 00 00 01 03
     3.5
          1011317607234501556 CHARLES L 5-12 B49, DL264A, P430 161876000 963287
          1011 10.7500 2 277 47 33792 719 25254 0 2 4 2 1 1 1 1 0 0
          1011 1151620 0 211597 0000005850001155100
                                                          1 34184
                                                                     328248
          1011 00 00 00 01 03
     6.5
          1016321234633011925 WOODLAND L17-20,B74,DL264A,P442 1511380000000000
     7
          1016 0.0000 4 277 30 21152 705 16104
                                                           0 2 4 2 1 1 1 0 0 0
     8
                                                         1 29193
          1016 1 89220 0 123662 32844360000
     9
     9.5
          1016 00 00 00 01 03
          1034317631234431545 E 2ND L'A', B65, DL264A, PL16291 1613900001257988
    10
          1034 11.7500 2 276 48 26698 556 20130 29 19 0 0 0 0 1 3 2 1 1 1 0 0 0
    11
          1034 1134940 0 188549 52775 757000
                                                  921895 1 24 95
    12
          1034 00 00 00 01 04
    12.5
          13
          1037 0.0000 2 278 75 52022 694 35000 3 68 4 0 0 1 2 4 2 1 1 1 0 0 0
    14
                              0 320475 762631500000 1780000 1 40 24 422310018
          1037 1251880
    15
          1037 00 00 00 01 02
    15.5
          1042337770235701574-78KINGSWAY L'1&2',B7,9&11,DL352,PL2170 15 327000 322052
    16
          1042 10.6666 4 278 10 6536 654 4925 0 8 0 0 0 0 1 3 3 1 0 1 0 0 0
    17
          1042 1 24000 0 44923 8883 100000 1 44103
    18
          1042 00 00 00 01 02
    18.5
          1046606606116651331 NELSON L'17', B34, DL185, P92 15 666667500000
          1046606606116651331 NELSUN
1046 61215.0000 4 178 17 21162 715 8646 0 1 3 2
    19
>
                                                         0132111000
    20
          1046 1 75120 0 19058 260000
    21
          1046 00 00 00 01 02
    21.5
          104832364419454334 E 5TH L'G', B28, DL200A, P15786 13 985000 130900
    22
          1048 971912.5000 2 276 32 23752 742 18117 3 27 2 0 0 0 2 4 2 1 1 1 0 0 0
    23
                                            320000 673000 0 37 96
                                                                      21000
                               0 18948
          1048 1102282
```

```
24.5
          1048 00 00 00 01 04
          1050207648095951905 W 8TH L'11', B306, DL526, P590
                                                             04 80000 27228
    25
          1050 160512.2356 1 278 5 6092 1218 6000 0 0 2 3 0 1 3 2 1 0 1 0 1 0
    26
                                                        252496 0036
          1050 1 30300 0 27228
                                            260000
    27
          1050 01 00 00 00 00
    27.5
          1060212683146972885 SPRUCE L'A', DL526, B414, VR542, P17065 0719910001697994
    28
          1060 797410.7500 4 277 40 26878 672 18750 0 39 1 0 0 0 1 4 2 1 1 1 0 0 0
    29
                              0 183755
                                                       1362920 0
          1060 1
    30
    30.5
          1060 00 01 00 00 01
>
                                                              13 4180001131135
                                    L'A' B112 DL540 P17099
          106512969003853 3663 W 16TH
    31
          1065 010.6250030378 30 18060 602 0 30 0 0 0 302 01 0000 0
    32
                                                 885510 01 42 97 1131135
          1065 0186940 4482014212000 0 27000
    33
          1065 00 00 00 01 02
    33.5
          041531763123205 1421 E 2ND L21822824 B66 DL264A P448 1211730001170000
    34
                   10.2066010677 33 18022 546 16104 6 27 0 0 00001 30201 101000000
    35
                                            656400 888950 00 34 92 961066618
          041501100848 00 100764
    36
    36.5
          0415 00 00 01 00 02
                                                             12 275000 184250
          O42132164123416 1602-06 E 6TH L13 B154 DL264A P1141
    37
          0421 11.0000010179 12 7356 613 9863 6 6 0 0 00001 302010001000000
    38
                                                  339700 00 64 94 185000
          042101 36000 7269 28731 0 21368
    39
          0421 00 00 01 00 00
    39.5
                                     L11 B348 DL526 P1949
                                                             12 155000
          014521165412095 1705 W 10TH
    40
               0.0000020125 5 4739 947 6250 0002 20000000000000
    41
                                                         00 58121 600000
          014501 15600 3000 12600 1 0
                                                   142350
    42
    42.5
          0145 00 00 01 00 54
          012321214665492 1195 W 11TH LA-C 19820 B374 DL526 P2014 11 800000 621382
    43
                 10.4561010178 18 14878 827 12400 0 14 4 0 000010302010101000000
    44
          0123
          012301 75372 65892 755775 775750
                                                             00 58 97
    45
          0123 00 00 01 00 01
    45.5
          O10321213465093 2555 HEMLOCK LA 17&18 B351 DL526 P2334 121060000 643707
    46
                   10.5000010279 24 15267 636 12500 3 20 1 0 00001 40201 101000000
    47
          0103
                                                         00 106
                                                                        645000
                             0 68187
                                                   851600
          010301
    48
    48.5
          0103 00 00 01 00 00
          O41231723460605 1209 WOODLAND L5 B 41 DL264A P399&1771 11 197000 128000
    49
                  012.7500010178 5 4780 956 6250 0 0 5 0 00001 201010001000000
    50
                                                 191600 00 52116 128000
          0412 1 22800 3000 19800 0 0
    51
          0412 00 00 01 00 01
    51.5
>
          012221168312467 1535 W 13TH L19&20 B410 DL526 P1949 10 390000 157417
    52
          0122 0 9.7617010441 17 10891 640 9375 1 16 0 0 00002 201010000000000
    53
                                                           00 34 90
          0122 0 37878 1 17172
                                                   334400
    54
    54.5
          0122 00 00 01 00 38
          O13621568612470 1536 W 14TH L7&8 B450 DL526 P11949
                                                             11 435000 245700
    55
                  010.2500020128 21 13632 649 9375 10 10 1 0 00002 201010000000000
    56
                                                   322300
                                                           00 59 94
          0136 0 51084 14727 36357 1
    57
          0136 00 00 01 00 51
    57.5
          030526014483004 8606-20 HUDSON L11&12 B17 DL318 P1749
                                                               12 190000
    58
                  0 0.000010144 6 24167 587 11500 0 0 0 5 10002 1010000000000
          0305
    59
          0305 0 8820 1 0 164800 00 00
    60
          0305 00 00 01 00 35
    60.5
          044232767023483 1657 E 12TH
                                       L88 B161 DL264A P222
                                                           12 240000 187751
    61
          0442 010.9768010412 11 6327 575 6350 11 0 0 0 00001020001000000000
    62
                                                                        90000
                            1 1626 3750
                                                            00 56 95
                                                   216800
          0442 0 29000
    63
          0442 00 00 01 00 67
    63.5
                                                              12 212000 126000
          O43O32465O21438 938 E BROADWAY LC B158 DL264A P9068
    64
                  0013.4762010255 10 8200 820 6710 0 9 1 0 00002 20200000000000
    65
                                                                        120000
                                                           00 55 55
                                                   178300
          0430 0 26328 5809 20518 1
    66
    66.5
          0430 00 00 01 00 24
          O41431763023026 1344 E 1ST L9-12 B67 DL264A P442
                                                            11 630000 590993
    67
                  010.6749010270 30 19833 632 15708 6 24 0 0 00002 20201 101000000
          0414
>
    68
         0414 0 73980 1 90958 548700 00 51 71
```

|            |       |                                                                                         |                            | •                                       |
|------------|-------|-----------------------------------------------------------------------------------------|----------------------------|-----------------------------------------|
| >          | 69.5  | 0414 00 00 01 00 09                                                                     |                            | 40 700000 400000                        |
| > ;        | 70    | 040931058026504 2200 DUNDAS L                                                           | 1-3 B24 DL184 P1/8 .       | 12 788000 499000                        |
| >          | 71    | 0409 011.3191010169 35 22514                                                            | 640 18117 6 28 1 0         | 00002 202 1 000000                      |
|            | 72    | 040910.2500 54096 1 4908                                                                | 642390                     | 00 116 460000                           |
| >          |       | 0.400, 00, 00, 04, 00, 40                                                               |                            |                                         |
| >          | 72.5  | 0409 00 00 01 00 10<br>060321917070205 3707 CAMBIE L<br>0603 9.5000 000149 8 5176       | 0 BC00 DI E0C D0076        | 12 190000 45056                         |
| >          | 73    | 060321917070205 3707 CAMBIE L                                                           | .2 B600 DL526 P2976        | 12 190000 43030                         |
| >          | 74    | 0603 9.5000 000149 8 5176                                                               | 647 3757 2 6 0 0           | 00000 200010001000000                   |
| >          | 75    | 0603 0 15852 6154 9697 1 6072                                                           | 143500                     | 00 60 41 55000                          |
|            | 75 5  | 0000 00 00 01 00 30                                                                     |                            |                                         |
| >          | 75.5  | 043733918872899 4899 QUEBEC L                                                           | 0 P4 D1634 D1436           | 11 109000 95693                         |
| >          | 76    | 043733918872899 4899 QUEBEC L                                                           | .8 B4 DL634 F1426          | 00003 304040000000000                   |
| >          | 77    | 0437 011.555901 10 6 4200                                                               | 700 3848 0 5 1 0           | 00002 201010000000000                   |
| >          | 78    | 0437 011.555901 10 6 4200<br>0437 0 15900 1 928<br>0437.00 00 01 00 69                  | 1500 105000                | 00 57 93 78300                          |
| >          | 70 5  | 0437 00 00 01 00 69                                                                     |                            |                                         |
|            | 70.5  | 041832163423411 1515 E 4TH L                                                            | 33 R145 DL2644 P222        | 10 153000 110000                        |
| >          | 79    | 041832163423411 1515 E 4TH L                                                            | 740 6100 1 5 1 0           | 00002 201000000000000                   |
| >          | 80    | 0418 011.7243010955 / 5180                                                              | 740 6100 1 5 1 0           | 00002 2010000000000000                  |
| >          | 81    | 0418 0 14880 3030 11849 1 1840                                                          | 0 111500                   | 00 57 18 63000                          |
| >          | 0.4 5 | 0440 00 00 04 00 04                                                                     |                            |                                         |
| >          |       |                                                                                         | 12 B55 DL 302 P198         | 12 155000 79160                         |
|            | 02    | 040221469018667 137 E 161H L 0402 012.0000030164 8 4765 0402 0 17472 3656 13816 1 10216 | 595 5440 2 5 1 0           | 00002 201010001000000                   |
| >          | 83    | 0402 012.0000030164 8 4763                                                              | 142050                     | 00 43 67 82500                          |
| >          | 84    | 0402 0 17472 3656 13816 1 10216                                                         | 142830                     | 00 40 07 02000                          |
| >          | 84.5  | 0402 00 00 01 00 15<br>031226313883350 8860 MONTCALM L                                  | •                          |                                         |
| >          | 0.5   | 024226242882350 8860 MONTCALM                                                           | _13&14 B6 DL318 P1749      | 12 430000                               |
|            | 0.0   | 0111 0.7 0000010964 94 17917                                                            | 6.40 14000 3 14 1 0        | 00000 3020 1000 10000 1                 |
| >          | 86    | 0312 0 31980 1<br>0312 00 00 01 00 15                                                   | 464200                     | 00.00                                   |
| >          | 87    | 0312 0 31980                                                                            | 404200                     |                                         |
| >          | 87.5  | 0312 00 00 01 00 15                                                                     |                            | 44 440000 444379                        |
| >          | 88    | 030726014583046 8650 SELKIRK L                                                          | _8&9 B'P' DL318 P1903      | 11 440000 414378                        |
| >          | 0.0   | 0207 011 2590010859 21 20952                                                            | 680 10996 2 18 1 U         | 00002 20101000000000                    |
|            | 00    | 0307 0 49936 13004 36932 1 32304                                                        | 398300                     | 00 47103 290000                         |
| >          |       |                                                                                         |                            |                                         |
| >          | 90.5  | 0307 00 00 01 00 20<br>104221266413425 1373 W 11TH L                                    | 40 DOZO DI EGG DOG1 :      | 15 275000 106142                        |
| >          | 91    | 104221266413425 1373 W 111H                                                             | _18 B3/2 DE526 P391        | 00000 101 00000000000000000000000000000 |
| >          | 0.0   | 10/10 15 5000080307 8 4384                                                              | 548 625U 2 2 4 U           | 00000 201 000000000                     |
| >          | 93    | 1042 0 28400 5153 21297 1 13836 .                                                       | 164150                     | 00 49 83 110000                         |
| >          | 93 5  | 1042 00 00 00 01 71                                                                     |                            |                                         |
|            | 93.5  | 1042 00 00 00 01 71<br>105521265414965 1035 W 10TH                                      | 14 B355 DI526 P991         | 16 389000 84000                         |
| >          | 94    | 105521265414965 1035 W 1017<br>1055 011.5000051060 10 7645                              | 704 0050 1 9 1 0           | 00002 2010100000000000                  |
| >          | 95    | 1055 011.5000051060 10 /645                                                             | 764 6250 1 8 1 0           | 00 00111                                |
| >          | 96    | 1055 0 17856 1 10572<br>1055 00 00 00 01 20                                             | 232200                     | 00 00112 84000                          |
| >          | 96.5  | 1055 00 00 00 01 20                                                                     |                            |                                         |
| >          | 97    | 4004C00C0C140E7 16EE NELSON   1                                                         | 74-78 R58 DL 185 P92       | 1423000002300720                        |
|            |       | 1004 1040540 0007000070 75 57507                                                        | 713 76959 74 41 8 0        | 1000000                                 |
| >          | 98    | 1024 1312512.8697030372 73 33307<br>1024 0253476 1 325620<br>1024 00 00 00 01 08        | 1629650                    | 00 63119 1500000                        |
| >          | 99    | 1024 0253476 1 325620                                                                   | 1629630                    | 00 00110 1000000                        |
| >          | 99.5  | 1024 00 00 00 01 08                                                                     |                            |                                         |
| > .        | 100   | 400CC0C4E4490E 4220 RUTE                                                                | 1 18 F HI F& 19 B58 DL 185 | P92 1326070002383077                    |
| >          |       | 4000 40 442002 67 92 57229                                                              | 615 17292 60 33 0 0        | 001011703010201010100                   |
|            | 101   | 1036 10.143903 67 93 37229<br>1036 0179276 1 63645<br>1036 00 00 00 01 13               | 2068950                    | 00 01 01 725000                         |
| >          | 102   | 1036 01/92/6                                                                            |                            |                                         |
| >          | 102.5 | 1036 00 00 00 01 13                                                                     |                            | 1625000000575074                        |
| >          | 103   | 103760260611063 1735 NELSON                                                             | L11812 B26 DL185 P92       | 1623000000373074                        |
| >          | 104   | 1036 00 00 00 01 13<br>103760260611063 1735 NELSON<br>1037 281311.0000020269 62 38114   | 615 12969 0 62 0 0         | 00100110301020101 02                    |
| >          | 105   | 1037 0108822 41740 67082 1 160424<br>1037 00 00 00 01 11                                | 1361300                    | 00 56101 598500                         |
|            | 105   | 1037 00 00 00 01 11                                                                     |                            |                                         |
| >          | 105.5 | 1037 00 00 00 01 11<br>108030757919862 662 ALEXANDER                                    | 1 42 PA2 DI 106 P106       | 15 75000 0                              |
| >          | 106   | 108030757919862 662 ALEXANDER                                                           | 356 3050 12 0 0 0          | 00003 300 0000000000                    |
| >          | 107   | 1080 014.7768011012 12 4276                                                             | 356 3050 12 0 0 0          | 00 56128 50000                          |
| >          | 108   | 1080 0 14280 2904 11376 1 0                                                             | 74150                      | 00 56128 50000                          |
| >          | 108.5 | 1000 00 00 00 01 68                                                                     |                            |                                         |
|            |       | 100760760711596 1091 RP0UGHTON                                                          | I 1 B 48 DL185 P92         | 151200000 950000                        |
| >          | 109   | 1027 477311.5000030312 40 49657                                                         | 12/1 86/6 0 28 12 0        | 00002 60001 100000000                   |
| >          | 110   | 1027 4//311.5000030312 40 4965/                                                         | 020400                     | 00 67 75 130000                         |
| . >        | 111   | 1027 0174763 1 61476                                                                    | 939400                     | 00 07 73 100000                         |
| <b>'</b> > | 111.5 | 1027 00 00 00 01 68                                                                     |                            | 14 100000 105000                        |
| >          | 112   | 107221150610824 634 F GEORGIA                                                           | L7 B91 DL196 P196          | 14 169000 135000                        |
| >          | 113   | 1073 013.864201 05 55 10800                                                             | - 196 - 3050 42 13 - U - U | 00002 400 000000000                     |
|            |       | 1073 0 49200 15277 33923 1 13793                                                        | 158500                     | 00 41123 95000                          |
| >          | 114   | 10/3 0 43200 132// 33320 1 10/30                                                        |                            |                                         |

| >   | 114.5 | 1073 00 00 00 01 75<br>101060661311647 1345 BURNABY                                                                                 | 1 46 DOO DI 495 DOO     | 15 394000 148055                        |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|
| > - | 115   | 101060661311647 1345 BURNABY<br>1010 011.250005 60 15 9133                                                                          | 116 B38 DL185 P92       | 00003 304040004000004                   |
| >   | 116   |                                                                                                                                     |                         |                                         |
| >   | 117   | 1010 0 36448 8153 28295 1 23580                                                                                                     | 247500                  | 00 38 91 132000                         |
| >   | 117.5 | 1010 00 00 00 01 20<br>101460360511765 1231 BARCLAY                                                                                 |                         | 15 625000 521000                        |
| >   | 118   | 101460360511765 1231 BARCLAY                                                                                                        | L24 B33 DL185 P92       | 15 625000 521000                        |
| >   | 119   | 4044 0 0 000006 69 31 131/19                                                                                                        | 675 8646 7 19 () ()     | 000000000000000000000000000000000000000 |
| >   | 120   | 1014 0 61584 23402 38182 1 23100                                                                                                    | 383500                  | 00127107 200000                         |
| >   | 120.5 | 1014 00 00 00 01 18                                                                                                                 |                         | 46 460000 350000                        |
| >   | 121   | 1014 00 00 00 01 18<br>101560260511425 1549 BARCLAY                                                                                 | L12 B45 DL185 P92       | 16 460000 230000                        |
| >   | 122   | 1015 291614 0000030358 21 12077                                                                                                     | 5/5 8646 2 18 1 0       | 00002 30 10 10000000000                 |
| >   | 123   | 1015 0 56280 24200 32080 1 0                                                                                                        | . 339500                | 00 /2130 250000                         |
| >   | 123.5 | 1015 00 00 00 01 22                                                                                                                 |                         |                                         |
| >   | 124   | 110030923558826 322&326 WOODLAND                                                                                                    | LB B15 SUB'C' DL183 P54 | 43 08 1/0000 114361                     |
| >   | 125   | 1100 . 03 10 32 11880                                                                                                               | 383 4455 32 0 0 0       | 00000 300 0000000000                    |
| >   | 126   | 1100 0 32520 14756 17764 1 1070                                                                                                     | 156500                  | 00 58 95 60000                          |
| >   | 126.2 | 1100 00 00 00 01 70<br>111232568319404 310 E 13TH                                                                                   |                         | 46 705000 605000                        |
| >   | 127   | 111232568319404 310 E 13TH                                                                                                          | L1&2 B112 DL301 P18/    | 16 /35000 605000                        |
| >   | 128   | 1112 12.000001 60 26 15732                                                                                                          | 605 12078 2 24 0 0      | 00002 2010100 000000                    |
| >   | 129   | 1112 0 70800 1 35516                                                                                                                | 439800                  | 00 /110/ 285000                         |
| >   | 129.5 | 1112 12.000001 60 26 15732<br>1112 0 70800 1 35516<br>1112 00 00 00 01 20<br>107820964816318 686 W 8TH<br>1078 13.000001 26 18 9936 |                         |                                         |
| >   | 130   | 107820964816318 686 W 8TH,                                                                                                          | L2 B339 DL526 P7916     | 14 368000 257500                        |
| >   | 131   | 1078 13.000001 26 18 9936                                                                                                           | 552 5850 0 18 0 0       | 00002 300 0000000000                    |
| >.  | 132   | 1078 0 48384 15240 33144 1 35988                                                                                                    | 286650                  | 00 66122 189500                         |
| >   | 132.5 | 1078 00 00 00 01 54                                                                                                                 | ,                       |                                         |
| >   | 133 - | 1078 00 00 00 01 54<br>111121468718604 3122 QUEBEC                                                                                  | LD OF SUB1&2 B55 DL3O2  | P6105 15 365000 228000                  |
| >   | 134   | 1111 011 500001 50 10 9000                                                                                                          | 695 7663 1 12 0 0       | 000000 2010100 000000                   |
| >   | 135   | 1111 0 33600 1 13860                                                                                                                | 263700                  | 00 69107 120000                         |
| >   | 135.5 | 1111 011.500001 55 13 6520<br>1111 0 33600 1 13860<br>1090 00 00 00 01 70                                                           |                         |                                         |
| >   | 136   |                                                                                                                                     | 12 D20 D1 104 D179      | 15 164000 173716                        |
| >   | 137   | 1000 011 255205 10 9 1/8/                                                                                                           | 560 6034 0 8 0 0        | 00101 2010100000000000                  |
| >   | 138   | 1090 0 10904 3842 17062 1 14832                                                                                                     | 128600                  | 00 72 96 126000                         |
| >   | 138.5 | 1090 00 00 00 01 70                                                                                                                 |                         |                                         |
| >   | 139   | 1090 00 00 00 01 70<br>100760360711796 1065&1085 BUTE<br>1007 13.6229030339 26 14088                                                | L1 B36 DL185 P92        | 16 585000 407000                        |
| >   | 140   | 1007 13.6229030339 26 14088                                                                                                         | 542 8646 21 5 0 0       | 00002 200010000000000                   |
| >   | 141   | 1007 0 62145 26722 35423 1 47292                                                                                                    | 372900                  | 00 67129 307000                         |
| >   | 141.5 | 1007 00 00 00 01 41                                                                                                                 |                         |                                         |
| >   | 142   | 1007 00 00 00 01 41<br>101660260711317_1675 COMOX<br>1016 14.000002 61 21 13250                                                     | L23 B59 DL185 P92       | 16 660000 65000                         |
| >   | 143   | 1016 14.000002 61 21 13250                                                                                                          | 630 8646 0 21 0 0       | 00002. 201010000000000                  |
| >   | 144   | 1016 0 58884 25320 33564 1 37008                                                                                                    | 377300                  | 00 77122 263000                         |
| >   | 144.5 | 1016 00 00,00 01 19                                                                                                                 |                         | ·                                       |
| >   | 145   | 107720864813045 1455 W 8TH                                                                                                          | L11 B311 DL526 P590     | 14 400000 291756                        |
| >   | 146   |                                                                                                                                     | 650 6000 E 16 1 0       |                                         |
| >   | 147   | 1077 0 51220 1 26412                                                                                                                | 332150                  | 00 17 71131 203000                      |
| >   | 147.5 | 1077 2625012 4483040312 25 17611<br>1077 0 51220 1 26412<br>1077 00 00 00 01 68                                                     |                         |                                         |
| >   | 148   | 1077 00 00 00 01 68<br>103460660911784 1222 PENDRELL<br>1034 10 2879030365 43 25653                                                 | L2 B37 DL185 P92        | 151440000 769069                        |
| >   | 4.40  | 1034 10.2879030365 43 25653                                                                                                         | 596 8646 1 40 2 0       | 00102 90301 101000001                   |
| >   | 150   | 1034 0119709 1 83136                                                                                                                | 884500                  | 00 56101 600000                         |
|     | 150.5 | 1034 00 00 00 01 15                                                                                                                 | •                       |                                         |
| >   | 151   | 1034 00 00 00 01 15<br>103560360311825 1155 HARD                                                                                    | L14 B19 DL185 P 92      | 1618000001254882                        |
| >   | 152   | 1035 12.3988040368 50 25240                                                                                                         | 505 8646 34 15 1 0      | 00100 803010100 01                      |
| >   | 153   | 1035 0148000 56240 91760 1 313904                                                                                                   |                         | 00 75101 281972                         |
| >   | 153.5 | 1035 00 00 00 01 12                                                                                                                 |                         |                                         |
| >   | 154   | 106012064208485 2211 W 5TH                                                                                                          | L23-26 B243 DL526 P590  | 131060000 190564                        |
| >   | 155   | 1060 0 7.750003 67 35 23242                                                                                                         | 664 16800 7 27 1 0      |                                         |
| >   | 156   | 1060 0131940 52776 79164 1 21972                                                                                                    | 657550                  | 00 74                                   |
| >   | 156.5 | 1060 00 00 00 01 13                                                                                                                 | •                       |                                         |
| >   | 157   | 106112064808727 2185 W 8TH                                                                                                          | L18&19 B304 DL526 P590  | 14 600000 350000                        |
| >   | 158   | 1061 014.000005 66 20 12696                                                                                                         | 633 12000 5 13 2 0      | 00002 203010001000001                   |
| >   | 159   | 1061 0 72162 28865 43297 1 24620                                                                                                    | 389700                  | 00 75 65125 213150                      |
|     |       |                                                                                                                                     |                         | •                                       |

```
1061 00 00 00 01 14
  159.5
         102960360711955 1041 COMOX L14 B8 DL185 P92
                                                         1610800000785809
   160
         1029 12.6600030311 34 32768 963 8646 7 6 21 0 00100 400010100000000
         1029 0103884 1 10548 689400 00 58106 470490
   162
         1029 00 00 00 01 69
   162.5
         103160260610920 1872 NELSON L6 B69 DL185 P 92 15 930000 249241
   163
         1031 0 9.0000030359 35 25176 716 8646 14 21 0 0 00102 70301 101000000
   164
         1031 0105564 41170 64394 1 28814 667050 00 71
   165
         1031 00 00 00 01 21
   165.5
         103060360711697 1075 JERVIS L19 B35 DL185 P92 151075000 750000
   166
         1030 620817.2000040358 37 28663 772 8646 0 30 7 0 00100 803 0100000000
   167
         1030 0 57924 1 74496 698800 00 00117129 650000
   168
         1030 00 00 00 01 22
   168.5
         103260260510796 2010 BARCLAY LB 14-16 B68 DL185 P8501 161070000 350000
   169
         1032 015.0000 52 39 34801 892 12965 18 15 6 0 00102 403010100000001
   170
         1032 0133884 52215 81669 1 0 755150 00 72130 370000
   171
         1032 00 00 00 01 28
   171.5
         102851659711704 610 JERVIS LC B30 DL185 P92 161550000 955088
   172
         1028 320814.0748030310 51 47149 922 9108 0 25 19 7 00100 600 0200000000
>
   173
         1028 0 1 167304 607100 00 12111 815000
   174
         1028 00 00 00 01 70
   174.5
                                                          16 610000 268000
   175
         1042
                10.7500 78 10 6536 654 4925 0 8 2 0 0 0 1 3 3 1 0 1 0 0 0
         1042
   176
         1042 1 0 44923 8883 100000 . 1
   177
         1042 00 00 00 01 02
  178
#End of File
# $.09, $.25T
#$C *MSOURCE*@SP *PRINT*
```

University of British Columbia Computing Centre - Device: DSE7 Task: 168 # THE SYSTEM WILL BE IN UNATTENDED MODE FROM MIDNIGHT TO 4 AM TONITE\*\*\* # sig gau # Enter user password. \*\*Last signon was: 18:37:27 User "GAU." signed on at 19:18:54 on Fri Apr 23/82 NO MESSAGES # set proute=cntr \$.02, \$.03T # control \*print\* landscape onesided copies=2 \*\*\* THE XEROX 9700 IS TEMPORARILY DOWN\*\*\*\* # \*PRINT\* assigned job number 533737 \*PRINT\* RM533737 held \$.10, \$.13T list landsales(759,992) # 0120000 018000 150 120 00 01 00 00 00 2223.6 3859.3 8.17 7.57 0341 759 6004 037 6004 06639 102.70 101.33 26.64 2.00 08.99 08.98 0.0 0.0 0.0 0.0 0.0 0.0 760 6005 037 0112500 018000 150 120 00 01 00 00 00 2223.6 3859.3 8.17 7.57 0341 761 6005 06639 102.70 101.33 26.64 2.00 08.99 08.98 0.0 0.0 0.0 0.0 0.0 762 0130000 012000 100 120 00 01 00 00 00 2223.6 3859.3 8.17 7.57 0341 5007 037 763 5007 06639 102.70 101.33 26.64 2.00 08.99 08.98 0.0 0.0 1.0 0.0 0.0 0.0 01 764 0112500 018000 150 120 00 01 00 00 00 2223.6 3859.3 8.17 7.57 0341 765 5038 037 5038 06639 102.70 101.33 26.64 2.00 08.99 08.98 0.0 0.0 0.0 0.0 0.0 0.0 00 766 0120000 018000 150 120 00 01 00 00 00 2223.6 3859.3 8.17 7.57 0341 5039 037 767 5039 06639 102.70 101.33 26.64 2.00 08.99 08.98 0.0 0.0 0.0 0.0 0.0 0.0 00 768 0020000 003000 025 120 00 01 00 00 00 2223.6 3859.3 8.17 7.57 0341 5039 037 769 5039 06639 102.70 101.33 26.64 2.00 08.99 08.98 0.0 0.0 0.0 0.0 0.0 0.0 00 770 5058 038 / 0018000 003000 025 120 00 01 00 00 00 2235.3 3973.5 7.87 7.97 0484 77.1 > 5058 06531 103.70 101.73 26.77 1.90 08.89 09.19 0.0 0.0 0.0 0.0 0.0 01 772 0020000 003000 025 120 00 01 00 00 00 2235.3 3973.5 7.87 7.97 0484 773 5058 038 5058 06531 103.70 101.73 26.77 1.90 08.89 09.19 0.0 0.0 0.0 0.0 0.0 01 774 5304 038, 0053000 006250 050 125 00 01 00 00 00 2235.3 3973.5 7.87 7.97 0484 775 5304 06531 103.70 101.73 26.77 1.90 08.89 09.19 0.0 0.0 0.0 0.0 0.0 0.0 01 776 > 0760000 023793 198 131 01 00 00 00 00 2235.3 3973.5 7.87 7.97 0484 6008 038 777 > 6008 06531 103.70 101.73 26.77 1.90 08.89 09.19 0.0 0.0 0.0 0.0 0.0 778 0031500 006534 050 132 00 00 01 00 00 2245.9 4087.8 7.37 8.03 0656 6006 039 779 > 6006 08486 104.40 102.30 26.91 1.15 09.11 09.40 0.0 0.0 0.0 0.0 0.0 0.0 780 0056000 013068 099 132 00 00 01 00 00 2245.9 4087.8 7.37 8.03 0656 6007 039 781 > 6007 08486 104.40 102.30 26.91 1.15 09.11 09.40 0.0 0.0 0.0 0.0 0.0 782 0107500 012500 100 125 00 01 00 00 00 2245.9 4087.8 7.37 8.03 0656 783 5304 039 5304 08486 104.40 102.30 26.91 1.15 09.11 09.40 0.0 0.0 0.0 0.0 0.0 0.0 01 784 > 0075000 012000 100 120 00 01 00 00 00 2261.3 4202.0 7.83 7.93 0507 5011 040 785 > 5011 09441 105.23 103.07 27.04 0.40 09.14 09.29 0.0 0.0 0.0 0.0 0.0 0.0 02 786 64000 10692 99 108 00 00 01 00 00 2292.1 4562.0 6.67 6.70 0799 787 1006 042 > 1006 07742 109.83 105.00 27.30 0.60 08.97 09.32 0.0 0.0 0.0 0.0 0.0 0.0 05 788 > 5011 042 0062500 006000 050 120 00 01 00 00 00 2292.1 4562.0 6.67 6.70 0799 789 5011 07742 109.83 105.00 27.30 0.60 08.97 09.32 0.0 0.0 0.0 0.0 0.0 0.0 02 790 0300000 012000 100 120 00 01 00 00 00 2349.8 5131.8 6.10 5.53 0945 791 6003 045 6003 09710 117.57 110.93 27.69 0.20 09.67 10.02 0.0 0.0 0.0 0.0 1.0 792 6027 045 0075000 002000 040 050 00 01 00 00 00 2349.8 5131.8 6.10 5.53 0945 > 7,93 6027 09710 117.57 110.93 27.69 0.20 09.67 10.02 0.0 0.0 0.0 0.0 0.0 1.0 794 > 0085000 006288 048 131 01 00 00 00 00 2382.5 5551.3 6.00 6.47 0629 6025 047 > 795 6025 08055 126.23 118.53 27.95 0.15 10.62 11.83 0.0 0.0 0.0 0.0 0.0 1.0 > 796 6002 050 0305000 018000 150 120 00 01 00 00 00 2427.9 6125.0 7.93 8.03 0905 797 6002 06917 135.37 126.77 28.35 0.10 10.30 10.96 1.0 0.0 1.0 1.0 1.0 798 > 4092 33 124 00 00 01 00 00 2427.9 6125.0 7.93 8.03 0905 1016 050 36000 > 799 1016 06917 135.37 126.77 28.35 0.10 10.30 10.96 1.0 0.0 1.0 1.0 1.0 0.0 800 4688 38 125 00 00 00 01 00 2427.9 6125.0 7.93 8.03 0905 1038 801 > 06917 135.37 126.77 28.35 0.10 10.30 10.96 1.0 0.0 1.0 1.0 1.0 03 802 1038

4026 33 122 00 00 01 00 00 2427.9 6125.0 7.93 8.03 0905 1020 050 06917 135.37 126.77 28.35 0.10 10.30 10.96 1.0 0.0 1.0 1.0 1.0 03 4026 33 122 00 00 01 00 00 2427.9 6125.0 7.93 8.03 0905 06917 135.37 126.77 28.35 0.10 10.30 10.96 1.0 0.0 1.0 1.0 1.0 03 6039 50 122 00 00 01 00 00 2427.9 6125.0 7.93 8.03 0905 06917 135.37 126.77 28.35 0.10 10.30 10.96 1.0 0.0 1.0 1.0 1.0 03 4880 40 122 00 00 01 00 00 2437.5 6307.0 8.30 8.93 1034 07371 140.17 130.50 28.48 0.10 11.03 11.60 1.0 0.0 1.0 1.0 1.0 1.0 02 4697 39 122 00 00 01 00 00 2437.5 6307.0 8.30 8.93 1034 1011 051 1011 07371 140.17 130.50 28.48 0.10 11.03 11.60 1.0 0.0 1.0 1.0 1.0 0.2 0150000 008646 066 131 01 00 00 00 00 2437.5 6307.0 8.30 8.93 1034 6001 07371 140.17 130.50 28.48 0.10 11.03 11.60 1.0 0.0 1.0 1.0 1.0 4026 33 122 00 00 01 00 00 2457.1 6709.8 9.63 8.67 0104 05846 145.27 139.03 28.74 0.15 11.81 11.85 1.0 1.0 1.0 1.0 1.0 00 4026 33 122 00 00 01 00 00 2457.1 6709.8 9.63 8.67 0104 1034 053 1034 05846 145.27 139.03 28.74 0.15 11.81 11.85 1.0 1.0 1.0 1.0 1.0 1.0 00 4026 33 122 00 00 01 00 00 2457.1 6709.8 9.63 8.67 0104 05846 145.27 139.03 28.74 0.15 11.81 11.85 1.0 1.0 1.0 1.0 1.0 00 4026 33 122 00 00 01 00 00 2457.1 6709.8 9.63 8.67 0104 05846 145.27 139.03 28.74 0.15 11.81 11.85 1.0 1.0 1.0 1.0 1.0 01 6250 63 100 00 01 00 00 00 2461.8 6930.5 9.03 9.07 0712 07968 150.73 143.87 28.87 0.20 11.88 11.98 1.0 0.0 1.0 1.0 1.0 02 4026 33 122 00 00 01 00 00 2461.8 6930.5 9.03 9.07 0712 1016 054 > 1016 07968 150.73 143.87 28.87 0.20 11.88 11.98 1.0 0.0 1.0 1.0 1.0 01 90000 6100 50 122 00 00 01 00 00 2461.8 6930.5 9.03 9.07 0712 07968 150.73 143.87 28.87 0.20 11.88 11.98 1.0 0.0 1.0 1.0 1.0 01 722000 43548 357 122 00 00 01 00 00 2461.8 6930.5 9.03 9.07 0712 07968 150.73 143.87 28.87 0.20 11.88 11.98 1.0 0.0 1.0 1.0 1.0 02 > 5917 49 122 00 00 01 00 00 2461.8 6930.5 9.03 9.07 0712 1018 054 1018 07968 150.73 143.87 28.87 0.20 11.88 11.98 1.0 0.0 1.0 1.0 1.0 1.0 02 5917 49 122 00 00 01 00 00 2461.8 6930.5 9.03 9.07 0712 1018 054 1018 07968 150.73 143.87 28.87 0.20 11.88 11.98 1.0 0.0 1.0 1.0 1.0 02 5917 49 122 00 00 01 00 00 2461.8 6930.5 9.03 9.07 0712 > 1018 054 1018 07968 150.73 143.87 28.87 0.20 11.88 11.98 1.0 0.0 1.0 1.0 1.0 02 > 4026 33 122 00 00 01 00 00 2469.6 7151.3 8.10 8.67 0562 09005 152.87 146.47 28.79 0.35 11.79 11.82 1.0 0.0 1.0 1.0 1.0 01 > 5917 49 122 00 00 01 00 00 2469.6 7151.3 8.10 8.67 0562 1018 055 > 09005 152.87 146.47 28.79 0.35 11.79 11.82 1.0 0.0 1.0 1.0 1.0 02 > 830000 67054 400 168 00 00 01 00 00 2469.6 7151.3 8.10 8.67 0562 > 09005 152.87 146.47 28.79 0.35 11.79 11.82 1.0 0.0 1.0 1.0 1.0 02 55000 5742 50 116 00 00 01!00 00 2469.6 7151.3 8.10 8.67 0562 > 09005 152.87 146.47 28.79 0.35 11.79 11.82 1.0 0.0 1.0 1.0 1.0 02 0480000 018750 150 125 00 01 00 00 00 2469.6 7151.3 8.10 8.67 0562 6016 09005 152.87 146.47 28.79 0.35 11.79 11.82 1.0 0.0 1.0 1.0 1.0 > 6039 50 122 00 00 01 00 00 2469.6 7151.3 8.10 8.67 0562 09005 152.87 146.47 28.79 0.35 11.79 11.82 1.0 0.0 1.0 1.0 1.0 01 3020 25 122 00 00 01 00 00 2469.6 7151.3 8.10 8.67 0562 > 09005 152.87 146.47 28.79 0.35 11.79 11.82 1.0 0.0 1.0 1.0 1.0 01 > 3020 25 122 00 00 01 00 00 2469.6 7151.3 8.10 8.67 0562 09005 152.87 146.47 28.79 0.35 11.79 11.82 1.0 0.0 1.0 1.0 1.0 01 > 6039 50 122 00 00 01 00 00 2476.1 7372.0 7.70 8.00 0938 > 12091 155.23 151.07 28.71 0.50 11.76 11.48 1.0 0.0 1.0 1.0 1.0 01 3020 25 122 00 00 01 00 00 2476.1 7372.0 7.70 8.00 0938 > 12091 155.23 151.07 28.71 0.50 11.76 11.48 1.0 0.0 1.0 1.0 1.0 01 965000 67054 400 168 00 00 01 00 00 2476.1 7372.0 7.70 8.00 0938 12091 155.23 151.07 28.71 0.50 11.76 11.48 1.0 0.0 1.0 1.0 1.0 02 4191 33 127 00 00 01 00 00 2476.1 7372.0 7.70 8.00 0938 > 12091 155.23 151.07 28.71 0.50 11.76 11.48 1.0 0.0 1.0 1.0 1.0 01 > 50000 4191 33 127 00 00 01 00 00 2476.1 7372.0 7.70 8.00 0938 .861 12091 155.23 151.07 28.71 0.50 11.76 11.48 1.0 0.0 1.0 1.0 1.0 01 

4191 33 127 00 00 01 00 00 2476.1 7372.0 7.70 8.00 0938 1002 056 69500 863 12091 155.23 151.07 28.71 0.50 11.76 11.48 1.0 0.0 1.0 1.0 1.0 01 1002 864 5368 44 122 00 00 01 00 00 2482.6 7561.0 9.53 8.53 1034 94800 1010 057 865 1010 08137 157.37 154.27 28.63 0.80 11.11 10.42 1.0 0.0 1.0 1.0 1.0 01 866 0150000 005900 050 118 00 01 00 00 00 2482.6 7561.0 9.53 8.53 1034 867 5016 057 08137 157.37 154.27 28.63 0.80 11.11 10.42 1.0 0.0 1.0 1.0 1.0 01 868 5016 0150000 005900 050 118 00 01 00 00 00 2482.6 7561.0 9.53 8.53 1034 869 5016 08137 157.37 154.27 28.63 0.80 11.11 10.42 1.0 0.0 1.0 1.0 1.0 01 870 0200000 005900 050 118 00 01 00 00 00 2482.6 7561.0 9.53 8.53 1034 5016 057 871 5016 08137 157.37 154.27 28.63 0.80 11.11 10.42 1.0 0.0 1.0 1.0 1.0 01 872 550000 20130 165 122:00 00 01 00 00 2482.6 7561.0 9.53 8.53 1034 1013 057 873 1013 08137 157.37 154.27 28.63 0.80 11.11 10.42 1.0 0.0 1.0 1.0 1.0 01 874 550000 20130 165 122 00 00 01 00 00 2482.6 7561.0 9.53 8.53 1034 875 1014 08137 157.37 154.27 28.63 0.80 11.11 10.42 1.0 0.0 1.0 1.0 1.0 01 1014 876 126667 8052 66 122 00 00 01 00 00 2489.2 7750.0 8.33 8.33 0972 877 1062 058 08032 160.43 158.33 28.55 1.10 10.50 10.33 1.0 0.0 1.0 1.0 1.0 01 1062 878 4323 33 131 01 00 00 00 00 2489.2 7750.0 8.33 8.33 0972 058 120000 879 1043 1043 08032 160.43 158.33 28.55 1.10 10.50 10.33 1.0 0.0 1.0 1.0 1.0 1.0 01 880 4323 33 131 01 00 00 00 00 2489 2 7750 0 8 33 8 33 0972 1043 058 120000 881 1043 08032 160.43 158.33 28.55 1.10 10.50 10.33 1.0 0.0 1.0 1.0 1.0 01 882 110000 4323 33 131 01 00 00 00 2489.2 7750.0 8.33 8.33 0972 1043 058 883 1043 08032 160.43 158.33 28.55 1.10 10.50 10.33 1.0 0.0 1.0 1.0 1.0 01 884 4323 33 131 01 00 00 00 00 2489.2 7750.0 8.33 8.33 0972 885 1043 058 140000 > 1043 08032 160.43 158.33 28.55 1.10 10.50 10.33 1.0 0.0 1.0 1.0 1.0 01 886 4323 33 131 01 00 00 00 00 2489.2 7750.0 8.33 8.33 0972 > 887 1043 058 1043 08032 160.43 158.33 28.55 1.10 10.50 10.33 1.0 0.0 1.0 1.0 1.0 01 888 95000 21472 176 122 00 00 01 00 00 2489.2 7750.0 8.33 8.33 0972 1010 058 889 08032 160.43 158.33 28.55 1.10 10.50 10.33 1.0 0.0 1.0 1.0 1.0 01 > 890 1010 3660 30 122 00 00 01 00 00 2489.2 7750.0 8.33 8.33 0972 1033 058 60000 > 891 1033 08032 160.43 158.33 28.55 1.10 10.50 10.33 1.0 0.0 1.0 1.0 1.0 01 > 892 3113 25 125 00 00 01 00 00 2489.2 7750.0 8.33 8.33 0972 1023 058 49500 > 893 1023 08032 160.43 158.33 28.55 1.10 10.50 10.33 1.0 0.0 1.0 1.0 1.0 01 894 3113 25 125 00 00 01 00 00 2489.2 7750.0 8.33 8.33 0972 > 895 1023 08032 160.43 158.33 28.55 1.10 10.50 10.33 1.0 0.0 1.0 1.0 1.0 01 896 1023 > 135000 8052 66 122 00 00 01 00 00 2489.2 7750.0 8.33 8.33 0972 897 1062 08032 160.43 158.33 28.55 1.10 10.50 10.33 1.0 0.0 1.0 1.0 1.0 01 898 1062 > 320000 16104 132 122 00 01 00 00 00 2496.5 7939.0 8.07 8.60 0791 > 899 1065 1065 08864 163.13 161.17 28.48 1.05 10.51 10.35 1.0 0.0 1.0 1.0 1.0 1.0 01 900 4026 33 122 00 01 00 00 00 2496.5 7939.0 8.07 8.60 0791 1065 059 901 > 08864 163.13 161.17 28.48 1.05 10.51 10.35 1.0 0.0 1.0 1.0 1.0 01 1065 > 902 465000 23909 196 122 00 00 01 00 00 2496.5 7939.0 8.07 8.60 0791 > 903 1018 059 08864 163.13 161.17 28.48 1.05 10.51 10.35 1.0 0.0 1.0 1.0 1.0 01 1018 > 904 514000 27765 228 120 00 00 01 00 00 2496.5 7939.0 8.07 8.60 0791 905 1015 059 > 08864 163.13 161.17 28.48 1.05 10.51 10.35 1.0 0.0 1.0 1.0 1.0 01 1015 > 906 36000 4026 33 122 00 00 01 00 00 2496.5 7939.0 8.07 8.60 0791 1005 059 > 907 08864 163.13 161.17 28.48 1.05 10.51 10.35 1.0 0.0 1.0 1.0 1.0 01 1005 908 1500000 67054 400 168 00 00 01 00 00 2496.5 7939.0 8.07 8.60 0791 1001 909 > 08864 163.13 161.17 28.48 1.05 10.51 10.35 1.0 0.0 1.0 1.0 1.0 01. 910 1001 55000 4026 33 122 00 00 01 00 00 2496.5 7939.0 8.07 8.60 0791 1028 911 08864 163.13 161.17 28.48 1.05 10.51 10.35 1.0 0.0 1.0 1.0 1.0 01 1028 912 > 350000 13988 112 125 00 00 00 01 00 2496.5 7939.0 8.07 8.60 0791 913 1038 059 > 08864 163.13 161.17 28.48 1.05 10.51 10.35 1.0 0.0 1.0 1.0 1.0 01 1038 914 0080400 006000 050 120 00 01 00 00 00 2496.5 7939.0 8.07 8.60 0791 915 5036 08864 163.13 161.17 28.48 1.05 10.51 10.35 1.0 0.0 1.0 1.0 1.0 02 916 5036 80000 6000 50 120 00 01 00 00 00 2506.4 8128.0 8.10 8.53 0751 917 1050 060 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 1050 918 125000 6039 50 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 919 1029 060 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 1029 920 76000 5319 44 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 1029 921 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 922

6039 50 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 8646 66 131 01 00 00 00 00 2506.4 8128.0 8.10 8.53 0751 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 02 8646 66 131 01 00 00 00 00 2506.4 8128.0 8.10 8.53 0751 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 02 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 > 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 08198 166.20 164.17, 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 215000 12480 125 100 00 01 00 00 00 2506.4 8128.0 8.10 8.53 0751 1063 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 3000 25 120 00 01 00 00 00 2506.4 8128.0 8.10 8.53 0751 1040 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 3000 25 120 00 01 00 00 00 2506.4 8128.0 8.10 8.53 0751 1040 060 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 6000 50 120 00 01 00 00 00 2506.4 8128.0 8.10 8.53 0751 1040 060 1040 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 1.0 01 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 1.0 01 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 1031 060 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 1031 060 1031 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 > 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 1024 060 > 9.59 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 4026 33 122 00!00 01 00 00 2506.4 8128.0 8.10 8.53 0751 > 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 > 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 > 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 1024 060 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 > 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 > 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 . 1024 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 > 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 > 365000 20149 165 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 1.0 01 > 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 4026 33 122 00 00 01 00 00 2506.4 8128.0 8.10 8.53 0751 > 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 > 0090000 006000 050 120 00 01 00 00 02506.4 8128.0 8.10 8.53 0751 > 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 0068500 002950 025 118 00 01 00 00 00 2506.4 8128.0 8.10 8.53 0751 > 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 0064000 002950 025 118 00 01 00 00 00 2506.4 8128.0 8.10 8.53 0751 > 5025 08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01 

```
08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0 01
     984
             5025
٠ >
                         0215000 012480 125 100 00 01 00 00 02506.4 8128.0 8.10 8.53 0751
     985
             6019
                   08198 166.20 164.17 28.40 1.00 10.51 10.34 1.0 0.0 1.0 1.0 1.0
     986
             6019
                         0337000 018649 173 108 00 00 01 00 00 2517.6 8311.3 9.43 8.40 1353
     987
             6023
                   061
                   06708 169.10 166.33 28.32 1.10 10.34 10.32 1.0 0.0 1.0 1.0 1.0
     988
             6023
                         0510000 018000 150 120 00 01 00 00 00 2524.1 8494.5 7.73 7.80 1003
     989
             6017
                   08105 173.03 168.37 28.24 1.20 10.45 10.39 1.0 0.0 1.0 1.0 1.0
     <u>9</u>90
             6017
                         0150000 006288 048 131 01 00 00 00 00 2533.2 8677.8 7.67 8.27 1057
     991
             6024
                   07950 176.27 170.50 28.16 1.15 10.48 10.43 1.0 0.0 1.0 1.0 1.0
     992
             6024
                         0335000 020130 165 122 00 00 01 00 00 2533.2 8677.8 7.67 8.27 1057
     993
             6022 07950 176.27 170.50 28.16 1.15 10.48 10.43 1.0 0.0 1.0 1.0 1.0
   . 994
 #End of File
    $.07.
              $.17T
 #LIST LAND.MIDAS.2
             $RUN M:MIDAS
              READ VAR=1-31 CASES=1-496 FILE=LANDSALES FORMAT=(F4.0,2X,F3.0,3X,F7.0,&
       2
             1X, F6.O, 1X, F3.O, 1X, F3.O, 5(1X, F2.O), 2(1X, F6.1), 1X, F4.2, 1X, F4.2, 1X, F4.O, &
             2X,/,F4.0,2X,F5.0,2(1X,F6.2),1X,F5.2,1X,F4.2,1X,F5.2,1X,F5.2,1X,F3.1,&
       4
             5(1X,F3.1),1X,F2.0) LABELS=FILENO1,QUARTER,PRICE,LOTSIZE,FRONTAGE,DEPTH,&
       5
             WESTEND, KITS, EASTVAN, MARPOLE, KERRISDL, BCPOP, BCPERINC, UNEMPLUA, UNEMPLSA, &
             COMPLVAN, FILENO2, COMPLBC, CPIALL, CPIHOUSG, NONFAMHH, VACRATE, NHARATE, &
             CONVRATE, MURBSTAT, CCASTAT, CCANEW, CCANEWWP, ARPSTAT, RENTCONT, HOLDPER
             TRANS V32=V3/V4 LABEL=SPPERSF
      10
             TRANS V33=V3/V5 LABEL=SPPERFF
             TRANS V34=V3/V6 LABEL=SPPERDF
      11
             TRANS V35=1.000 CASES=287-320 LABEL=DEFLATOR
      12
             TRANS V35=1.137 CASES=321-333 LABEL=DEFLATOR
      13
             TRANS V35=1.171 CASES=334-344 LABEL=DEFLATOR
      14
             TRANS V35=1.160 CASES=345-348 LABEL=DEFLATOR
      15
             TRANS V35=1.142 CASES=349-352 LABEL=DEFLATOR
      16
             TRANS V35=1.231 CASES=353-355 LABEL=DEFLATOR
      17
             TRANS V35=1.170 CASES=356 LABEL=DEFLATOR
      18
             TRANS V35=1.142 CASES=357 LABEL=DEFLATOR
      19
             TRANS V35=1.077 CASES=358-372 LABEL=DEFLATOR
      20
             TRANS V35=1.104 CASES=373-374 LABEL=DEFLATOR
      21
             TRANS V35=1.193 CASES=375-377 LABEL=DEFLATOR
      22
             TRANS V35=1.101 CASES=378-379 LABEL=DEFLATOR
      23
             TRANS V35=1.247 CASES=380-385 LABEL=DEFLATOR
      24
             TRANS V35=1,257 CASES=386-389 LABEL=DEFLATOR
      25
             TRANS V35=1.310 CASES=390-392 LABEL=DEFLATOR
      26
             TRANS V35=1.293 CASES=393 LABEL=DEFLATOR
      27
             TRANS V35=1.382 CASES=394-395 LABEL=DEFLATOR
      28
             TRANS V35=1.576 CASES=396-397 LABEL=DEFLATOR
      29
             TRANS V35=1.681 CASES=398 LABEL=DEFLATOR
      30
             TRANS V35=1.662 CASES=399-404 LABEL=DEFLATOR
      31
             TRANS V35=1.803 CASES=405-407 LABEL=DEFLATOR
      32
             TRANS V35=1.752 CASES=408-411 LABEL=DEFLATOR
      33
             TRANS V35=1.944 CASES=412-418 LABEL=DEFLATOR
      34
             TRANS V35=1.887 CASES=419-426 LABEL=DEFLATOR
      35
             TRANS V35=2.063 CASES=427-432 LABEL=DEFLATOR
      36
             TRANS V35=2.152 CASES=433-438 LABEL=DEFLATOR
      37
             TRANS V35=2.087 CASES=439-449 LABEL=DEFLATOR
      38
             TRANS V35=2.125 CASES=450-458 LABEL=DEFLATOR
      39
             TRANS V35=2.652 CASES=459-493 LABEL=DEFLATOR
      40
             TRANS V35=2.196 CASES=494 LABEL=DEFLATOR
      41
             TRANS V35=2.118 CASES=495 LABEL=DEFLATOR
      42
             TRANS V35=2.218 CASES=496 LABEL=DEFLATOR
      43
             TRANS V36=V3/V35 CASES=ALL LABEL=REALSP
      44
             TRANS V37=V36/V4 LABEL=REALPPSF
      45
              TRANS V38=V19/100.0 LABEL=CPINEW
      46
```

TRANS V49=5.6 STRATA=V44:55 LABEL=RENTGRTH

106

```
TRANS V49=5.6 STRATA=V44:56 LABEL=RENTGRTH
     107
. >
             TRANS V49=5.5 STRATA=V44:57 LABEL=RENTGRTH
     108
             TRANS V49=5.4 STRATA=V44:58 LABEL=RENTGRTH
     109
             TRANS V49=4.3 STRATA=V44:59 LABEL=RENTGRTH
     110
             TRANS V49=4.1 STRATA=V44:60 LABEL=RENTGRTH
     111
             TRANS V49=4.2 STRATA=V44:61 LABEL=RENTGRTH
     112
             TRANS V49=4.0 STRATA=V44:62 LABEL=RENTGRTH
     113
             TRANS V49=0.0 STRATA=V44:63 LABEL=RENTGRTH
     114
             TRANS V50=10.7 STRATA=V44:36 LABEL=COSTGRTH
     1.15
             TRANS V50=6.3 STRATA=V44:37 LABEL=COSTGRTH
     116
             TRANS V50=11.5 STRATA=V44:38 LABEL=COSTGRTH
     117
             TRANS V50=11.2 STRATA=V44:39 LABEL=COSTGRTH
     118
             TRANS V50=20.1 STRATA=V44:40 LABEL=COSTGRTH
     119
     120
             TRANS V50=17.2 STRATA=V44:42 LABEL=COSTGRTH
             TRANS V50=6.4 STRATA=V44:45 LABEL=COSTGRTH
     121
             TRANS V50=4.5 STRATA=V44:47 LABEL=COSTGRTH
     122
             TRANS V50=18.2 STRATA=V44:50 LABEL=COSTGRTH
     123
             TRANS V50=9.3 STRATA=V44:53 LABEL=COSTGRTH
     124
             TRANS V50=13.0 STRATA=V44:54 LABEL=COSTGRTH
     125
             TRANS V50=8.5 STRATA=V44:55 LABEL=COSTGRTH
     126
             TRANS V50=7.6 STRATA=V44:56 LABEL=COSTGRTH
     127
             TRANS V50=7.2 STRATA=V44:57 LABEL=COSTGRTH
     128
             TRANS V50=13.7 STRATA=V44:58 LABEL=COSTGRTH
     129
             TRANS V50=13.3 STRATA=V44:59 LABEL=COSTGRTH
     130
     131
             TRANS V50=2.0 STRATA=V44:60 LABEL=COSTGRTH
             TRANS V50=8.7 STRATA=V44:61 LABEL=COSTGRTH
     132
             TRANS V50=13.0 STRATA=V44:62 LABEL=COSTGRTH
     133
             TRANS V50=10.0 STRATA=V44:63 LABEL=COSTGRTH
     134
             TRANS V51=3.13 STRATA=V44:36 CASES=ALL LABEL=POPGRTH
     136
     137
             TRANS V51=3.40 STRATA=V44:37 LABEL=POPGRTH
             TRANS V51=2.12 STRATA=V44:38 LABEL=POPGRTH
     138
             TRANS V51=1.91 STRATA=V44:39 LABEL=POPGRTH
     139
             TRANS V51=2.77 STRATA=V44:40 LABEL=POPGRTH
     140
             TRANS V51=2.10 STRATA=V44:42 LABEL=POPGRTH
     141
             TRANS V51=4.01 STRATA=V44:45 LABEL=POPGRTH
     142
             TRANS V51=3.08 STRATA=V44:47 LABEL=POPGRTH
     143
             TRANS V51=1.60 STRATA=V44:50 LABEL=POPGRTH
     144
             TRANS V51=1.51 STRATA=V44:53 LABEL=POPGRTH
     145
             TRANS V51=0.77 STRATA=V44:54 LABEL=POPGRTH
     146
             TRANS V51=1.27 STRATA=V44:55 LABEL=POPGRTH
     147
             TRANS V51=1.06 STRATA=V44:56 LABEL=POPGRTH
     148
             TRANS V51=1.05 STRATA=V44:57 LABEL=POPGRTH
     149
             TRANS V51=1.07 STRATA=V44:58 LABEL=POPGRTH
     150
             TRANS V51=1.18 STRATA=V44:59 LABEL=POPGRTH
     151
             TRANS V51=1.60 STRATA=V44:60 LABEL=POPGRTH
     152
             TRANS V51=1.80 STRATA=V44:61 LABEL=POPGRTH
     153
             TRANS V51=1.04 STRATA=V44:62 LABEL=POPGRTH
     154
             TRANS V51=1.45 STRATA=V44:63 LABEL=POPGRTH
     155
             TRANS V52=6.20 STRATA=V44:36 LABEL=GRRLINC
     156
             TRANS V52=6.88 STRATA=V44:37 LABEL=GRRLINC
     157
             TRANS V52=8.10 STRATA=V44:38 LABEL=GRRLINC
     158
             TRANS V52=9.04 STRATA=V44:39 LABEL=GRRLINC
     159
             TRANS V52=8.17 STRATA=V44:40 LABEL=GRRLINC
     160
             TRANS V52=8.20 STRATA=V44:42 LABEL=GRRLINC
     161
             TRANS V52=6.84 STRATA=V44:45 LABEL=GRRLINC
     162
             TRANS V52=1.51 STRATA=V44:47 LABEL=GRRLINC
     163
             TRANS V52=3.86 STRATA=V44:50 LABEL=GRRLINC
     164
             TRANS V52=4.21 STRATA=V44:53 LABEL=GRRLINC
     165
             TRANS V52=-1.80 STRATA=V44:54 LABEL=GRRLINC
     166
             TRANS V52=7.15 STRATA=V44:55 LABEL=GRRLINC
     167
```

```
- 157 -
```

168 TRANS V52=6.22 STRATA=V44:56 LABEL=GRRLINC . > 169 TRANS V52=4.76 STRATA=V44:57 LABEL=GRRLINC > TRANS V52=2.20 STRATA=V44:58 LABEL=GRRLINC 170 171 TRANS V52=3.01 STRATA=V44:59 LABEL=GRRLINC TRANS V52=1.97 STRATA=V44:60 LABEL=GRRLINC 172 TRANS V52=2.02 STRATA=V44:61 LABEL=GRRLINC 173 TRANS V52=-0.47 STRATA=V44:62 LABEL=GRRLINC 174 TRANS V52=1.13 STRATA=V44:63 LABEL=GRRLINC 175 TRANS V53=3.96 STRATA=V44:36 LABEL=INFLATION 176 TRANS V53=4.16 STRATA=V44:37 LABEL=INFLATION 177 TRANS V53=4.19 STRATA=V44:38 LABEL=INFLATION 178 TRANS V53=3.85 STRATA=V44:39 LABEL=INFLATION 179 TRANS V53=3.85, STRATA=V44:40 LABEL=INFLATION 180 TRANS . V53=5.91 STRATA=V44:42 LABEL=INFLATION 181 TRANS V53=9.64 STRATA=V44:45 LABEL=INFLATION 182 TRANS V53=12.23 STRATA=V44:47 LABEL=INFLATION 183 TRANS V53=11.02 STRATA=V44:50 LABEL=INFLATION 184 TRANS V53=9.78 STRATA=V44:53 LABEL=INFLATION 185 TRANS V53=11.35 STRATA=V44:54 LABEL=INFLATION 186 TRANS V53=9.06 STRATA=V44:55 LABEL=INFLATION 187 TRANS V53=8.68 STRATA=V44:56 LABEL=INFLATION 188 189 TRANS V53=8.33 STRATA=V44:57 LABEL=INFLATION TRANS V53=6.44 STRATA=V44:58 LABEL=INFLATION 190 TRANS V53=6.71 STRATA=V44:59 LABEL=INFLATION 191 TRANS V53=7.07 STRATA=V44:60 LABEL=INFLATION 192 TRANS V53=7.45 STRATA=V44:61 LABEL=INFLATION 193 TRANS V53=7.85 STRATA=V44:62 LABEL=INFLATION 194 TRANS V53=8.05 STRATA=V44:63 LABEL=INFLATION 195 TRANS V54=-0.17 STRATA=V44:36 LABEL=GRRLRNT 196 TRANS V54=-2.37 STRATA=V44:37 LABEL=GRRLRNT 197 TRANS V54=-1.04 STRATA=V44:38 LABEL=GRRLRNT 198 TRANS V54=11.84 STRATA=V44:39 LABEL=GRRLRNT 199 TRANS V54=10.78 STRATA=V44:40 LABEL=GRRLRNT 200 TRANS V54=3.05 STRATA=V44:42 LABEL=GRRLRNT 201 TRANS V54=-4.38 STRATA=V44:45 LABEL=GRRLRNT 202 TRANS V54=-8.02 STRATA=V44:47 LABEL=GRRLRNT 203 TRANS V54=-3.74 STRATA=V44:50 LABEL=GRRLRNT 204 205 TRANS V54=3.12 STRATA=V44:53 LABEL=GRRLRNT TRANS V54=-5.03 STRATA=V44:54 LABEL=GRRLRNT 206 TRANS V54=-0.14 STRATA=V44:55 LABEL=GRRLRNT 207 TRANS V54=-0.71 STRATA=V44:56 LABEL=GRRLRNT 208 TRANS V54=-0.12 STRATA=V44:57 LABEL=GRRLRNT 209 TRANS V54=-2.39 STRATA=V44:58 LABEL=GRRLRNT 210 TRANS V54=-2.48 STRATA=V44:59 LABEL=GRRLRNT 211 TRANS V54=-3.41 STRATA=V44:60 LABEL=GRRLRNT 212 TRANS V54=-2.80 STRATA=V44:61 LABEL=GRRLRNT 213 TRANS V54=-5.13 STRATA=V44:62 LABEL=GRRLRNT 214 TRANS V54=-7.17 STRATA=V44:63 LABEL=GRRLRNT 215 TRANS V55=V23-V53 STRATA=NONE LABEL=REALINT 216 TRANS V56=V45/V38 STRATA=NONE CASES=378-496 LABEL=REALRENT 217 TRANS V57=8.17 STRATA=V44:36 CASES=ALL LABEL=CCOSTBC 218 TRANS V57=6.06 STRATA=V44:37 LABEL=CCOSTBC 219 TRANS V57=9.44 STRATA=V44:38 LABEL=CCOSTBC 220 TRANS V57=10.37 STRATA=V44:39 LABEL=CCOSTBC 221 TRANS V57=16.22 STRATA=V44:40 LABEL=CCOSTBC 222 TRANS V57=11.52 STRATA=V44:42 LABEL=CCOSTBC 223 TRANS V57=13.92 STRATA=V44:45 LABEL=CCOSTBC 224 TRANS V57=11.84 STRATA=V44:47 LABEL=CCOSTBC 225 > TRANS V57=21.32 STRATA=V44:50 LABEL=CCOSTBC 226 TRANS V57=11.58 STRATA=V44:53 LABEL=CCOSTBC 227

TRANS V57=8.02 STRATA=V44:54 LABEL=CCOSTBC 228 TRANS V57=10:77 STRATA=V44:55 LABEL=CCOSTBC 229 TRANS V57=11.52 STRATA=V44:56 LABEL=CCOSTBC 230 TRANS V57=9.94 STRATA=V44:57 LABEL=CCOSTBC 231 TRANS V57=13 17 STRATA=V44:58 LABEL=CCOSTBC 232 TRANS V57=13.72 STRATA=V44:59 LABEL=CCOSTBC 233 TRANS V57=3.26 STRATA=V44:60 LABEL=CCOSTBC 234 235 TRANS V57=10.84 STRATA=V44:61 LABEL=CCOSTBC TRANS V57=13.03 STRATA=V44:62 LABEL=CCOSTBC 236 TRANS V57=8.72 STRATA=V44:63 LABEL=CCOSTBC 237 TRANS V58=1.20 STRATA=V44:36 LABEL=RNTGRTH2 238 TRANS V58=1.19 STRATA=V44:37 LABEL=RNTGRTH2 239 TRANS V58=1.59 STRATA=V44:38 LABEL=RNTGRTH2 240 TRANS V58=1.98 STRATA=V44:39 LABEL=RNTGRTH2 241 TRANS V58=1.97 STRATA=V44:40 LABEL=RNTGRTH2 242 TRANS V58=3.53 STRATA=V44:42 LABEL=RNTGRTH2 243 TRANS V58=3.81 STRATA=V44:45 LABEL=RNTGRTH2 244 TRANS V58=7.15 STRATA=V44:47 LABEL=RNTGRTH2 245 TRANS V58=7.95 STRATA=V44:50 LABEL=RNTGRTH2 246 TRANS V58=7.12 STRATA=V44:53 LABEL=RNTGRTH2 247 TRANS V58=5.97 STRATA=V44:54 LABEL=RNTGRTH2 248 TRANS V58=7.57 STRATA=V44:55 LABEL=RNTGRTH2 249 TRANS V58=7.43 STRATA=V44:56 LABEL=RNTGRTH2 250 TRANS V58=6.96 STRATA=V44:57 LABEL=RNTGRTH2 251 TRANS V58=5.26 STRATA=V44:58 LABEL=RNTGRTH2 252 TRANS V58=4.88 STRATA=V44:59 LABEL=RNTGRTH2 253 TRANS V58=3.90 STRATA=V44:60 LABEL=RNTGRTH2 254 TRANS V58=2.37 STRATA=V44:61 LABEL=RNTGRTH2 255 TRANS V58=2.95 STRATA=V44:62 LABEL=RNTGRTH2 256 TRANS V58=3.82 STRATA=V44:63 LABEL=RNTGRTH2 257 TRANS V59=1.31 STRATA=V44:36 LABEL=RNTGRTH3 258 TRANS V59=-0.94 STRATA=V44:37 LABEL=RNTGRTH3 259 TRANS V59=0.50 STRATA=V44:38 LABEL=RNTGRTH3 260 TRANS V59=-7.62 STRATA=V44:39 LABEL=RNTGRTH3 261 TRANS V59=-8.12 STRATA=V44:40 LABEL=RNTGRTH3 262 TRANS V59=-13.96 STRATA=V44:42 LABEL=RNTGRTH3 263 TRANS V59=10.27 STRATA=V44:45 LABEL=RNTGRTH3 264 TRANS V59=-6.21 STRATA=V44:47 LABEL=RNTGRTH3 265 TRANS V59=-2.00 STRATA=V44:50 LABEL=RNTGRTH3 266 TRANS V59=10.20 STRATA=V44:53 LABEL=RNTGRTH3 > 267 TRANS V59=1.08 STRATA=V44:54 LABEL=RNTGRTH3 268 TRANS V59=17.41 STRATA=V44:55 LABEL=RNTGRTH3 269 TRANS V59=15.54 STRATA=V44:56 LABEL=RNTGRTH3 270 TRANS V59=15.13 STRATA=V44:57 LABEL=RNTGRTH3 271 TRANS V59=11.57 STRATA=V44:58 LABEL=RNTGRTH3 272 TRANS V59=10.92 STRATA=V44:59 LABEL=RNTGRTH3 273 TRANS V59=9.29 STRATA=V44:60 LABEL=RNTGRTH3 274 TRANS V59=9.18 STRATA=V44:61 LABEL=RNTGRTH3 275 TRANS V59=6.09 STRATA=V44:62 LABEL=RNTGRTH3 276 TRANS V59=-14.89 STRATA=V44:63 LABEL=RNTGRTH3 277 TRANS V60=-2.88 STRATA=V44:36 LABEL=LAGRENT 278 TRANS V60=-2.02 STRATA=V44:37 LABEL=LAGRENT 279 TRANS V60=-4.33 STRATA=V44:38 LABEL=LAGRENT 280 TRANS V60=-2.36 STRATA=V44:39 LABEL=LAGRENT 281 TRANS V60=-0.75 STRATA=V44:40 LABEL=LAGRENT 282 TRANS V60=-5.86 STRATA=V44:42 LABEL=LAGRENT 283 TRANS V60=-4.07 STRATA=V44:45 LABEL=LAGRENT 284 TRANS V60=-9.99 STRATA=V44:47 LABEL=LAGRENT 285 TRANS V60=-2.63 STRATA=V44:50 LABEL=LAGRENT 286 TRANS V60=0.16 STRATA=V44:53 LABEL=LAGRENT 287

| · > | 288  | TRANS V60=0.11 STRATA=V44:54 LABEL=LAGRENT                                               |
|-----|------|------------------------------------------------------------------------------------------|
| >   | 289  | TRANS V60=-9.93 STRATA=V44:55 LABEL=LAGRENT                                              |
| >   | 290  | TRANS V60=1.77 STRATA=V44:56 LABEL=LAGRENT                                               |
| >   | 291  | TRANS V60=1.11 STRATA=V44:57 LABEL=LAGRENT                                               |
| >   | 292  |                                                                                          |
|     |      | TRANS V60=1.33 STRATA=V44:58 LABEL=LAGRENT                                               |
| >   | 293  | TRANS V60=-2.75 STRATA=V44:59 LABEL=LAGRENT                                              |
| >   | 294  | TRANS V60=-2.02 STRATA=V44:60 LABEL=LAGRENT                                              |
| >   | 295  | TRANS V60=-3.84 STRATA=V44:61 LABEL=LAGRENT                                              |
| >   | 296  | TRANS V60=-4.79 STRATA=V44:62 LABEL=LAGRENT                                              |
| >   | 297  | TRANS V60=-6.68 STRATA=V44:63 LABEL=LAGRENT                                              |
| >   | 298  | TRANS V61=6.37 STRATA=V44:36 LABEL=LAGCOSTS                                              |
| >   | 299  | TRANS V61=4.95 STRATA=V44:37 LABEL=LAGCOSTS                                              |
| >   | 300  | TRANS V61=0.54 STRATA=V44:38 LABEL=LAGCOSTS                                              |
| >   | 301  | TRANS V61=5.49 STRATA=V44:39 LABEL=LAGCOSTS                                              |
| >   | 302  | TRANS V61=7.64 STRATA=V44:40 LABEL=LAGCOSTS                                              |
| >   | 303  | TRANS V61=5.17 STRATA=V44:42 LABEL=LAGCOSTS                                              |
| >   | 304  | TRANS V61=2.24 STRATA=V44:45 LABEL=LAGCOSTS                                              |
| >   | 305  | TRANS V61=-5.15 STRATA=V44:47 LABEL=LAGCOSTS                                             |
| >   | 306  | TRANS V61=-7.12 STRATA=V44:50 LABEL=LAGCOSTS                                             |
| >   | 307  | TRANS V61=-0.24 STRATA=V44:53 LABEL=LAGCOSTS                                             |
| >   | 308  | TRANS V61=4.57 STRATA=V44:54 LABEL=LAGCOSTS                                              |
| >   | 309  | TRANS V61=-7.88 STRATA=V44:55 LABEL=LAGCOSTS                                             |
| >   | 310  | TRANS V61=4.97 STRATA=V44:56 LABEL=LAGCOSTS                                              |
| >   | 311  | TRANS V61=5.20 STRATA=V44:57 LABEL=LAGCOSTS                                              |
| >   | 312  | TRANS V61=4.31 STRATA=V44:58 LABEL=LAGCOSTS                                              |
| >   | 313  | TRANS V61=5.16 STRATA=V44:59 LABEL=LAGCOSTS                                              |
| >   | 314  | TRANS V61=6.82 STRATA=V44:60 LABEL=LAGCOSTS                                              |
| >   | 315  | TRANS V61=-4.48 STRATA=V44:61 LABEL=LAGCOSTS                                             |
| >   | 316  | TRANS V61=3.68 STRATA=V44:62 LABEL=LAGCOSTS                                              |
| >   | 317  | TRANS VOT-3.00 STRATA=V44:02 CABEL=LAGCOSTS                                              |
| >   | 318  | TRANS V61-3.40 STRATA-V44.65 CABEL-EAGCOSTS TRANS V62=V58-V53 LABEL=RNTGRTH4 STRATA=NONE |
| >   | 319  | TRANS V62=V58 V53 LABEL=CCOSTBC2 STRATA=NONE                                             |
| >   | 320  | TRANS V63=V37-V33 LABEL-CCG31BC2 STRATA-NONE TRANS V64=10.41 STRATA=V44:36 LABEL=CAPRATE |
| >   | 321  |                                                                                          |
|     |      | TRANS V64=7.72.STRATA=V44:37 LABEL=CAPRATE                                               |
| >   | 322  | TRANS V64=9.83 STRATA=V44:38 LABEL=CAPRATE                                               |
|     | 323  | TRANS V64=10.20 STRATA=V44:39 LABEL=CAPRATE                                              |
| >   | 324  | TRANS V64=10.52 STRATA=V44:40 LABEL=CAPRATE                                              |
| >   | 325  | TRANS V64=1.74 STRATA=V44:42 LABEL=CAPRATE                                               |
| >   | 326  | TRANS V64=1.20 STRATA=V44:45 LABEL=CAPRATE                                               |
| >   | 327  | TRANS V64=-2.76 STRATA=V44:47 LABEL=CAPRATE                                              |
| >   | 328  | TRANS V64=3.64 STRATA=V44:50 LABEL=CAPRATE                                               |
| >   | 329  | TRANS V64=4.81 STRATA=V44:53 LABEL=CAPRATE                                               |
| >   | 330  | TRANS V64=-4.90 STRATA=V44:54 LABEL=CAPRATE                                              |
| >   | 331  | TRANS V64=6.48 STRATA=V44:55 LABEL=CAPRATE                                               |
| >   | 332  | TRANS V64=6.63 STRATA=V44:56 LABEL=CAPRATE                                               |
| >   | 333  | TRANS V64=6.20 STRATA=V44:57 LABEL=CAPRATE                                               |
| >   | 334  | TRANS V64=5.34 STRATA=V44:58 LABEL=CAPRATE                                               |
| >   | 335  | TRANS V64=5.06 STRATA=V44:59 LABEL=CAPRATE                                               |
| >   | 336  | TRANS V64=5.44 STRATA=V44:60 LABEL=CAPRATE                                               |
| >   | 337  | TRANS V64=6.61 STRATA=V44:61 LABEL=CAPRATE                                               |
| >   | 338  | TRANS V64=2.73 STRATA=V44:62 LABEL=CAPRATE                                               |
| >   | 339  | TRANS V64=5.73 STRATA=V44:63 LABEL=CAPRATE                                               |
| >   | 340  | TRANS V65=9.84 STRATA=V44:36 LABEL=CAPRTLAG                                              |
| >   | 34 t | TRANS V65=10.41 STRATA=V44:37 LABEL=CAPRTLAG                                             |
| >   | 342  | TRANS V65=7.72 STRATA=V44:38 LABEL=CAPRTLAG                                              |
| >   | 343  | TRANS V65=9.83 STRATA=V44:39 LABEL=CAPRTLAG                                              |
| >   | 344  | TRANS V65=10.20 STRATA=V44:40 LABEL=CAPRTLAG                                             |
| >   | 345  | TRANS V65=6.34 STRATA=V44:42 LABEL=CAPRTLAG                                              |
| >   | 346  | TRANS V65=4.43 STRATA=V44:45 LABEL=CAPRTLAG                                              |
| >   | 347  | TRANS V65=-5.10 STRATA=V44:47 LABEL=CAPRTLAG                                             |
|     |      |                                                                                          |

356 357 358 359 355 353 354 360 396 395 392 389 378 376 37.5 370 369 3,66 363 362 352 351 350 349 405 403 399 398 391 385 382 383 384 380 381 379 374 373 372 371 368 367 365 364 393 388 387 386 377 402 401 400 397 394 406 TRANS **TRANS** TRANS TRANS TRANS FRANS TRANS **TRANS** TRANS TRANS TRANS TRANS RANS TRANS V65=6.48 STRATA=V44:56 LABEL=CAPRTLAG V65=4.81 STRATA=V44:54 LABEL=CAPRTLAG V65=5.92 STRATA=V44:53 LABEL=CAPRTLAG V65=5.34 STRATA=V44:59 LABEL=CAPRTLAG V65=6.63 STRATA=V44:57 LABEL=CAPRTLAG V65=-4.90 STRATA=V44:55 LABEL=CAPRTLAG V66=13.24 STRATA=V44:37 V65=5.06 STRATA=V44:60 LABEL=CAPRTLAG V65=6.20 STRATA=V44:58 LABEL=CAPRTLAG V68=-3.41 STRATA=V44:47 LABEL=CAPGNLAG V68=-0.51 STRATA=V44:45 LABEL=CAPGNLAG V68=-5.19 STRATA=V44:38 LABEL=CAPGNLAG V68=-6.94 STRATA=V44:37 LABEL=CAPGNLAG V67=13.03 STRATA=V44:60 LABEL=CAPGAIN V67=6.49 STRATA=V44:59 LABEL=CAPGAIN V67=3.87 STRATA=V44:58 LABEL=CAPGAIN V67=9.21 STRATA=V44:57 LABEL=CAPGAIN V67=2.72 STRATA=V44:55 LABEL=CAPGAIN V67=-5.90 STRATA=V44:54 LABEL=CAPGAIN V67=-1.41 STRATA=V44:53 LABEL=CAPGAIN V67=4.33 STRATA=V44:47 LABEL=CAPGAIN V67=2.23 STRATA=V44:42 LABEL=CAPGAIN V67=10.92 STRATA=V44:40 LABEL=CAPGAIN V67=1.42 STRATA=V44:38 LABEL=CAPGAIN V67=-5.19 STRATA=V44:37 LABEL=CAPGAIN V66=13.43 STRATA=V44:63 V66=12.36 V66=13.18 V66=11.96 V66=11.83 STRATA=V44:57 V66=12.95 V66=12.28 STRATA=V44:55 V66=11.00 STRATA=V44:54 V66=11.82 V66=13.15 V66=12.11 V66=11.86 V66=11.80 V66=13.74 STRATA=V44:40 V66=12.93 V66=13.78 STRATA=V44:38 LABEL=NOMCAPR V66=13.63 STRATA=V44:36 LABEL=NOMCAPRI V65=2;73 STRATA=V44:63 LABEL=CAPRTLAG V65=6.61 STRATA=V44:62 V65=5.44 STRATA=V44:61 LABEL=CAPRTLAG V68=4.77 STRATA=V44:42 LABEL=CAPGNLAG V68=3.69 STRATA=V44:40 V68=1.42 STRATA=V44:39 LABEL=CAPGNLAG V68=-6.99 STRATA=V44:36 LABEL=CAPGNLAG V67=1.63 STRATA=V44:63 LABEL=CAPGAIN V67=2.44 STRATA=V44:62 V67=7.73 STRATA=V44:61 LABEL=CAPGAIN V67=3.84 STRATA=V44:56 V67=2.31 STRATA=V44:50 LABEL=CAPGAIN V67=0.18 V67=3.69 STRATA=V44:39 LABEL=CAPGAIN V67=-6 V66=13.77 V66=13.35 .24 STRATA=V44:50 LABEL=CAPRTLAG .94 STRATA=V44:36 STRATA=V44:45 STRATA=V44:60 LABEL=NOMCAPR STRATA=V44:47 STRATA=V44:42 STRATA=V44:39 STRATA=V44:62 STRATA=V44:53 STRATA=V44:50 STRATA=V44:45 STRATA=V44:61 LABEL=NOMCAPRI STRATA=V44:59 STRATA=V44:58 STRATA=V44:56 LABEL=CAPRTLAG LABEL=CAPGAIN LABEL=CAPGAIN LABEL=CAPGNLAG LABEL=CAPGAIN LABEL=CAPGAIN LABEL=NOMCAPR LABEL=NOMCAPRI LABEL=NOMCAPR LABEL=NOMCAPR LABEL=NOMCAPR1 LABEL=NOMCAPRT LABEL=NOMCAPRI LABEL = NOMCAPR LABEL=NOMCAPRI LABEL=NOMCAPRT LABEL=NOMCAPR LABEL=NOMCAPRI LABEL=NOMCAPR LABEL = NOMCAPRT LABEL = NOMCAPRI LABEL = NOMCAPR

```
TRANS V68=-1.00 STRATA=V44:53 LABEL=CAPGNLAG
    409
    410
            TRANS V68=-1.41 STRATA=V44:54 LABEL=CAPGNLAG
    411
            TRANS V68=-5.90 STRATA=V44:55 LABEL=CAPGNLAG
    412
            TRANS V68=2.72 STRATA=V44:56 LABEL=CAPGNLAG
    413
            TRANS V68=3.84 STRATA=V44:57 LABEL=CAPGNLAG
    414
            TRANS V68=9.21 STRATA=V44:58 LABEL=CAPGNLAG
    415
            TRANS V68=3.87 STRATA=V44:59 LABEL=CAPGNLAG
    416
            TRANS V68=6.49 STRATA=V44:60 LABEL=CAPGNLAG
    417
            TRANS V68=13.03 STRATA=V44:61 LABEL=CAPGNLAG
    418
            TRANS V68=7.73 STRATA=V44:62 LABEL=CAPGNLAG
    419
            TRANS V68=2.44 STRATA=V44:63 LABEL=CAPGNLAG
    420
            TRANS V69=1.89 STRATA=V44:36 LABEL=POPLAG
    421
            TRANS V69=3.13 STRATA=V44:37 LABEL=POPLAG
    422
            TRANS V69=3.40 STRATA=V44:38 LABEL=POPLAG
    423
            TRANS V69=2.12 STRATA=V44:39 LABEL=POPLAG
    424
            TRANS V69=1.91 STRATA=V44:40 LABEL=POPLAG
    425
            TRANS V69=3.39 STRATA=V44:42 LABEL=POPLAG
    426
            TRANS V69=3.39 STRATA=V44:45 LABEL=POPLAG
    427
            TRANS V69=2.53 STRATA=V44:47 LABEL=POPLAG
    428
            TRANS V69=2.95 STRATA=V44:50 LABEL=POPLAG
    429
            TRANS V69=1.72 STRATA=V44:53 LABEL=POPLAG
    430
            TRANS V69=1.51 STRATA=V44:54 LABEL=POPLAG
    431
            TRANS V69=0.77 STRATA=V44:55 LABEL=POPLAG
    432
            TRANS V69=1.27 STRATA=V44:56 LABEL=POPLAG
    433
            TRANS V69=1.06 STRATA=V44:57 LABEL=POPLAG
    434
            TRANS V69=1.05 STRATA=V44:58 LABEL=POPLAG
    435
            TRANS V69=1.07 STRATA=V44:59 LABEL=POPLAG
>
    436
            TRANS V69=1.18 STRATA=V44:60 LABEL=POPLAG
    437
            TRANS V69=1.60 STRATA=V44:61 LABEL=POPLAG
    438
            TRANS V69=1.80 STRATA=V44:62 LABEL=POPLAG
    439
            TRANS V69=1.04 STRATA=V44:63 LABEL=POPLAG
    440
            TRANS V70=V64-V55 STRATA=NONE CASES=378-496 LABEL=RLAPTRTN
    441
            TRANS V71=5.55 STRATA=V44:36 LABEL=RLINCLAG CASES=ALL
    442
            TRANS V71=6.20 STRATA=V44:37 LABEL=RLINCLAG
    443
            TRANS V71=6.88 STRATA=V44:38 LABEL=RLINCLAG
    444
            TRANS V71=8.10 STRATA=V44:39 LABEL=RLINCLAG
    445
            TRANS V71=9.04 STRATA=V44:40 LABEL=RLINCLAG
    446
            TRANS V71=9.69 STRATA=V44:42 LABEL=RLINCLAG
    447
            TRANS V71=7.56 STRATA=V44:45 LABEL=RLINCLAG
    448
            TRANS V71=1.47 STRATA=V44:47 LABEL=RLINCLAG
    449
            TRANS V71=5.16 STRATA=V44:50 LABEL=RLINCLAG
    450
            TRANS V71=3.89 STRATA=V44:53 LABEL=RLINCLAG
    451
            TRANS V71=4.21 STRATA=V44:54 LABEL=RLINCLAG
    452
            TRANS V71=-1.80 STRATA=V44:55 LABEL=RLINCLAG
    453
            TRANS V71=7.15 STRATA=V44:56 LABEL=RLINCLAG
    454
            TRANS V71=6.22 STRATA=V44:57 LABEL=RLINCLAG
    455
            TRANS V71=4.76 STRATA=V44:58 LABEL=RLINCLAG
    456
            TRANS V71=2.20 STRATA=V44:59 LABEL=RLINCLAG
    457
            TRANS V71=3.01 STRATA=V44:60 LABEL=RLINCLAG
            TRANS V71=1.97 STRATA=V44:61 LABEL=RLINCLAG
    458
    459
            TRANS V71=2.02 STRATA=V44:62 LABEL=RLINCLAG
    460
            TRANS V71=-0.47 STRATA=V44:63 LABEL=RLINCLAG
    461
            TRANS V72=2.90 STRATA=V44:36 LABEL=VACRTLAG
    462
            TRANS V72=2.10 STRATA=V44:37 LABEL=VACRTLAG
    463
            TRANS V72=2.00 STRATA=V44:38 LABEL=VACRTLAG
    464
            TRANS V72=1.90 STRATA=V44:39 LABEL=VACRTLAG
    465
            TRANS V72=1.15 STRATA=V44:40 LABEL=VACRTLAG
    466
            TRANS V72=0.50 STRATA=V44:42 LABEL=VACRTLAG
            TRANS V72=0.20 STRATA=V44:45 LABEL=VACRTLAG
    467
```

TRANS V68=7.69 STRATA=V44:50 LABEL=CAPGNLAG

408

```
468
            TRANS V72=0.20 STRATA=V44:47 LABEL=VACRTLAG
    469
            TRANS V72=0.10 STRATA=V44:50 LABEL=VACRTLAG
    470
            TRANS V72=0.10 STRATA=V44:53 LABEL=VACRTLAG
    471
            TRANS V72=0.15 STRATA=V44:54 LABEL=VACRTLAG
    472
            TRANS V72=0.20 STRATA=V44:55 LABEL=VACRTLAG
    473
            TRANS V72=0.35 STRATA=V44:56 LABEL=VACRTLAG
    474
            TRANS V72=0.50 STRATA=V44:57 LABEL=VACRTLAG
    475
            TRANS V72=0.80 STRATA=V44:58 LABEL=VACRTLAG
    476
            TRANS V72=1.10 STRATA=V44:59 LABEL=VACRTLAG
    477
            TRANS V72=1.05 STRATA=V44:60 LABEL=VACRTLAG
    478
            TRANS V72=1.00 STRATA=V44:61 LABEL=VACRTLAG
    479
            TRANS V72=1.10 STRATA=V44:62 LABEL=VACRTLAG
    480
            TRANS V72=1.20 STRATA=V44:63 LABEL=VACRTLAG
            TRANS V73=5.22 STRATA=V44:36 LABEL=RLINTLAG
    481
            TRANS V73=6.11 STRATA=V44:37 LABEL=RLINTLAG
    482
    483
            TRANS V73=3.47 STRATA=V44:38 LABEL=RLINTLAG
    484
            TRANS V73=4.94 STRATA=V44:39 LABEL=RLINTLAG
    485
            TRANS V73=6.38 STRATA=V44:40 LABEL=RLINTLAG
            TRANS V73=1.20 STRATA=V44:42 LABEL=RLINTLAG
    486
    487
            TRANS V73=1.60 STRATA=V44:45 LABEL=RLINTLAG
    488
            TRANS V73=-5.89 STRATA=V44:47 LABEL=RLINTLAG
            TRANS V73=3.18 STRATA=V44:50 LABEL=RLINTLAG
    489
    490
            TRANS V73=3.93 STRATA=V44:53 LABEL=RLINTLAG
    491
            TRANS V73=4.80 STRATA=V44:54 LABEL=RLINTLAG
    492
            TRANS V73=-4.02 STRATA=V44:55 LABEL=RLINTLAG
            TRANS V73=5.99 STRATA=V44:56 LABEL=RLINTLAG
    493
    494
            TRANS V73=5.44 STRATA=V44:57 LABEL=RLINTLAG
    495
            TRANS V73=5.48 STRATA=V44:58 LABEL=RLINTLAG
    496
            TRANS V73=2.49 STRATA=V44:59 LABEL=RLINTLAG
            TRANS V73=3.61 STRATA=V44:60 LABEL=RLINTLAG
    497
    498
            TRANS V73=2.77 STRATA=V44:61 LABEL=RLINTLAG
>
    499
            TRANS V73=3.18 STRATA=V44:62 LABEL=RLINTLAG
    500
            TRANS V73=0.82 STRATA=V44:63 LABEL=RLINTLAG
    501
            TRANS V74=4.62 STRATA=V44:36 LABEL=APRTNLAG
    502
            TRANS V74=4.30 STRATA=V44:37 LABEL=APRTNLAG
    503
            TRANS V74=4.25 STRATA=V44:38 LABEL=APRTNLAG
    504
            TRANS V74=4.89 STRATA=V44:39 LABEL=APRTNLAG
    505
            TRANS V74=3.82 STRATA=V44:40 LABEL=APRTNLAG
    506
            TRANS V74=5.14 STRATA=V44:42 LABEL=APRTNLAG
    507
            TRANS V74=2.83 STRATA=V44:45 LABEL=APRTNLAG
    508
            TRANS V74=0.79 STRATA=V44:47 LABEL=APRTNLAG
    509
            TRANS V74=2.06 STRATA=V44:50 LABEL=APRTNLAG
    510
            TRANS V74=1.99 STRATA=V44:53 LABEL=APRTNLAG
    511
            TRANS V74=0.01 STRATA=V44:54 LABEL=APRTNLAG
    512
            TRANS V74=-0.88 STRATA=V44:55 LABEL=APRTNLAG
    513
            TRANS V74=0.49 STRATA=V44:56 LABEL=APRTNLAG
    514
            TRANS V74=1.19 STRATA=V44:57 LABEL=APRTNLAG
    515
            TRANS V74=0.72 STRATA=V44:58 LABEL=APRTNLAG
    516
            TRANS V74=2.85 STRATA=V44:59 LABEL=APRTNLAG
    517
            TRANS V74=1.45 STRATA=V44:60 LABEL=APRTNLAG
            TRANS V74=2.67 STRATA=V44:61 LABEL=APRTNLAG
    518
    519
            TRANS V74=3.43 STRATA=V44:62 LABEL=APRTNLAG
            TRANS V74=1.91 STRATA=V44:63 LABEL=APRTNLAG
    520
    521
            TRANS V75=4.08 STRATA=V44:36 LABEL=INFLALAG
    522
            TRANS V75=3.22 STRATA=V44:37 LABEL=INFLALAG
    523
            TRANS V75=5.52 STRATA=V44:38 LABEL=INFLALAG
            TRANS V75=3.95 STRATA=V44:39 LABEL=INFLALAG
    524
    525
            TRANS V75=2.73 STRATA=V44:40 LABEL=INFLALAG
    527
            TRANS V75=7.82 STRATA=V44:42 LABEL=INFLALAG
    528
            TRANS V75=7.91 STRATA=V44:45 LABEL=INFLALAG
```

```
- 158 -
```

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548 549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

TRANS V75=15.68 STRATA=V44:47 LARFL=INFLALAG

TRANS V75=7.70 STRATA=V44:50 LABEL=INFLALAG

TRANS V75=7.81 STRATA=V44:53 LABEL=INFLALAG

TRANS V75=7.01 STRATA=V44:54 LABEL=INFLALAG

TRANS V75=5.80 STRATA=V44:56 LABEL=INFLALAG

TRANS V75=6.32 STRATA=V44:57 LABEL=INFLALAG

TRANS V75=5.63 STRATA=V44:58 LABEL=INFLALAG

TRANS V75=8.01 STRATA=V44:59 LABEL=INFLALAG

TRANS V75=6.90 STRATA=V44:60 LABEL=INFLALAG

TRANS V75=7.74 STRATA=V44:61 LABEL=INFLALAG

TRANS V75=7.16 STRATA=V44:62 LABEL=INFLALAG

TRANS V75=9.63 STRATA=V44:63 LABEL=INFLALAG

TRANS V76=.03 STRATA=V44:36 LABEL=INTCHGE

TRANS V76=-.34 STRATA=V44:37 LABEL=INTCHGE

TRANS V76=- 10 STRATA=V44:38 LABEL=INTCHGE

TRANS V76=.22 STRATA=V44:39 LABEL=INTCHGE

TRANS V76=.03 STRATA=V44:40 LABEL=INTCHGE

TRANS V76=-.05 STRATA=V44:42 LABEL=INTCHGE TRANS V76=.16 STRATA=V44:45 LABEL=INTCHGE

TRANS V76=.83 STRATA=V44:47 LABEL=INTCHGE

TRANS V76=.07 STRATA=V44:53 LABEL=INTCHGE

TRANS V76=.07 STRATA=V44:54 LABEL=INTCHGE

TRANS V76=-.09 STRATA=V44:55 LABEL=INTCHGE

TRANS V76=-.03 STRATA=V44:56 LABEL=INTCHGE

TRANS V76=-.65 STRATA=V44:57 LABEL=INTCHGE

TRANS V76=-.61 STRATA=V44:58 LABEL=INTCHGE

TRANS V76=.01 STRATA=V44:59 LABEL=INTCHGE

TRANS V76=.00 STRATA=V44:60 LABEL=INTCHGE

TRANS V76=.11 STRATA=V44:62 LABEL=INTCHGE

TRANS V76=.03 STRATA=V44:63 LABEL=INTCHGE

TRANS V77=-69 STRATA=V44:36 LABEL=APTCOMCH

TRANS V77=174 STRATA=V44:38 LABEL=APTCOMCH

TRANS V77=126 STRATA=V44:39 LABEL=APTCOMCH

TRANS V77=283 STRATA=V44:42 LABEL=APTCOMCH

TRANS V77=156 STRATA=V44:45 LABEL=APTCOMCH

TRANS V77=313 STRATA=V44:47 LABEL=APTCOMCH

TRANS V77=245 STRATA=V44:50 LABEL=APTCOMCH

TRANS V77=497 STRATA=V44:54 LABEL=APTCOMCH

TRANS V77=-57 STRATA=V44:55 LABEL=APTCOMCH

TRANS V77=208 STRATA=V44:57 LABEL=APTCOMCH

TRANS V77=-163 STRATA=V44:58 LABEL=APTCOMCH

TRANS V77=-140 STRATA=V44:59 LABEL=APTCOMCH

TRANS V77=54 STRATA=V44:60 LABEL=APTCOMCH

TRANS V77=13 STRATA=V44:63 LABEL=APTCOMCH

TRANS V79=.89 STRATA=V44:36 LABEL=RLINTCHG

TRANS V77=613 STRATA=V44:61 LABEL=APTCOMCH

TRANS V77=-331 STRATA=V44:62 LABEL=APTCOMCH

TRANS V78=341 STRATA=V44:36-54 LABEL=HHCHANGE

TRANS V78=663 STRATA=V44:55-63 LABEL=HHCHANGE

TRANS V79=-2.64 STRATA=V44:37 LABEL=RLINTCHG

TRANS V79=1.47 STRATA=V44:38 LABEL=RLINTCHG

TRANS V79=1.44 STRATA=V44:39 LABEL=RLINTCHG

TRANS V79=-.46 STRATA=V44:40 LABEL=RLINTCHG

TRANS V77=64 STRATA=V44:56 LABEL=APTCOMCH

TRANS V77=-908 STRATA=V44:53 LABEL=APTCOMCH

TRANS V77=-123 STRATA=V44:40 LABEL=APTCOMCH

TRANS V77=-209 STRATA=V44:37 LABEL=APTCOMCH

TRANS V76=-.17 STRATA=V44:61 LABEL=INTCHGE

TRANS V76=-.58 STRATA=V44:50 LABEL=INTCHGE

TRANS V75=15.90 STRATA=V44:55 LABEL=INFLALAG

```
589
            TRANS V79=-2.29 STRATA=V44:42 LABEL=RLINTCHG
    590
            TRANS V79=-2.59 STRATA=V44:45 LABEL=RLINTCHG
    591
            TRANS V79=1.64 STRATA=V44:47 LABEL=RLINTCHG
    592
            TRANS V79=-2.39 STRATA=V44:50 LABEL=RLINTCHG
    593
            TRANS V79=.87 STRATA=V44:53 LABEL=RLINTCHG
    594
            TRANS V79=-8.82 STRATA=V44:54 LABEL=RLINTCHG
    595
            TRANS V79=10.01 STRATA=V44:55 LABEL=RLINTCHG
    596
            TRANS V79=-.55 STRATA=V44:56 LABEL=RLINTCHG
    597
            TRANS V79=.04 STRATA=V44:57 LABEL=RLINTCHG
    598
            TRANS V79=-2.99 STRATA=V44:58 LABEL=RLINTCHG
    599
            TRANS V79=1.12 STRATA=V44:59 LABEL=RLINTCHG
    600
            TRANS V79=-.84 STRATA=V44:60 LABEL=RLINTCHG
    601
            TRANS V79=.41 STRATA=V44:61 LABEL=RLINTCHG
    602
            TRANS V79=-2.36 STRATA=V44:62 LABEL=RLINTCHG
>
    603
            TRANS V79=1.96 STRATA=V44:63 LABEL=RLINTCHG
    604
            TRANS V80=-.32 STRATA=V44:36 LABEL=ERCHANGE
    605
            TRANS V80=-.05 STRATA=V44:37 LABEL=ERCHANGE
    606
            TRANS V80=.64 STRATA=V44:38 LABEL=ERCHANGE
    607
            TRANS V80=-1.07 STRATA=V44:39 LABEL=ERCHANGE
    608
            TRANS V80=.78 STRATA=V44:40 LABEL=ERCHANGE
    609
            TRANS V80=-2.31 STRATA=V44:42 LABEL=ERCHANGE
    610
            TRANS V80=-.64 STRATA=V44:45 LABEL=ERCHANGE
    611
            TRANS V80=.70 STRATA=V44:47 LABEL=ERCHANGE
    612
            TRANS V80=.79 STRATA=V44:50 LABEL=ERCHANGE
    613
            TRANS V80=-1.98 STRATA=V44:53 LABEL=ERCHANGE
    614
            TRANS V80=-.89 STRATA=V44:54 LABEL=ERCHANGE
    615
            TRANS V80=1.37 STRATA=V44:55 LABEL=ERCHANGE
            TRANS V80=.70 STRATA=V44:56 LABEL=ERCHANGE
    616
    617
            TRANS V80=-.47 STRATA=V44:57 LABEL=ERCHANGE
    618
            TRANS V80=2.13 STRATA=V44:58 LABEL=ERCHANGE
    619
            TRANS V80=-1.40 STRATA=V44:59 LABEL=ERCHANGE
    620
            TRANS V80=1.22 STRATA=V44:60 LABEL=ERCHANGE
    621
            TRANS V80=.76 STRATA=V44:61 LABEL=ERCHANGE
    622
            TRANS V80=-1.52 STRATA=V44:62 LABEL=ERCHANGE
    623
            TRANS V80=1.04 STRATA=V44:63 LABEL=ERCHANGE
    624
            TRANS V81=-87 STRATA=V44:36 LABEL=APTSTSCH
    625
            TRANS V81=-329 STRATA=V44:37 LABEL=APTSTSCH
    626
            TRANS V81=-303 STRATA=V44:38 LABEL=APTSTSCH
    627
            TRANS V81=131 STRATA=V44:39 LABEL=APTSTSCH
    628
            TRANS V81=173 STRATA=V44:40 LABEL=APTSTSCH
    629
            TRANS V81=659 STRATA=V44:42 LABEL=APTSTSCH
    630
            TRANS V81=-61 STRATA=V44:45 LABEL=APTSTSCH
    631
            TRANS V81=-689 STRATA=V44:47 LABEL=APTSTSCH
    632
            TRANS V81=342 STRATA=V44:50 LABEL=APTSTSCH
    633
            TRANS V81=-444 STRATA=V44:53 LABEL=APTSTSCH
    634
            TRANS V81=130 STRATA=V44:54 LABEL=APTSTSCH
    635
            TRANS V81=575 STRATA=V44:55 LABEL=APTSTSCH
    636
            TRANS V81=419 STRATA=V44:56 LABEL=APTSTSCH
    637
            TRANS V81=-456 STRATA=V44:57 LABEL=APTSTSCH
    638
            TRANS V81=30 STRATA=V44:58 LABEL=APTSTSCH
    639
            TRANS V81=-11 STRATA=V44:59 LABEL=APTSTSCH
    640
            TRANS V81=698 STRATA=V44:60 LABEL=APTSTSCH
    641
            TRANS V81=-737 STRATA=V44:61 LABEL=APTSTSCH
    642
            TRANS V81=-616 STRATA=V44:62 LABEL=APTSTSCH
    643
            TRANS V81=167 STRATA=V44:63 LABEL=APTSTSCH
    644
            CODE V82=V7 LABEL=NEWWE CASES=ALL STRATA=NONE
    645
            CODE V83=V8 LABEL=NEWKITS CASES=ALL STRATA=NONE
    646
            CODE V84=V9 LABEL=NEWEV CASES=ALL STRATA=NONE
   647
            CODE V85=V10 LABEL=NEWMAR CASES=ALL STRATA=NONE
    648
            CODE V86=V11 LABEL=NEWKERR STRATA=NONE
```

```
- 160 -
```

```
649
. >
              TRANS V87=-.3 STRATA=V44:36*V82:1 LABEL=SUBVACRT
     651
              TRANS V87=-.7 STRATA=V44:38*V82:1 LABEL=SUBVACRT
 >
     656
              TRANS V87=.00 STRATA=V44:47*V82:1 LABEL=SUBVACRT
     663
              TRANS V87=.55 STRATA=V44:58*V82:1 LABEL=SUBVACRT
     665
              TRANS V87=-.1 STRATA=V44:60*V82:1 LABEL=SUBVACRT
     668
              TRANS V87=-.15 STRATA=V44:63*V82:1 LABEL=SUBVACRT
     669
              TRANS V87=-1.5 STRATA=V44:36*V83:1 LABEL=SUBVACRT
     670
              TRANS V87=.25 STRATA=V44:37*V83:1 LABEL=SUBVACRT
     671
              TRANS V87=.25 STRATA=V44:38*V83:1 LABEL=SUBVACRT
     672
              TRANS V87=-.5 STRATA=V44:39*V83:1 LABEL=SUBVACRT
     673
              TRANS V87=-.5 STRATA=V44:40*V83:1 LABEL=SUBVACRT
     674
              TRANS V87=.05 STRATA=V44:42*V83:1 LABEL=SUBVACRT
     675
              TRANS V87=.05 STRATA=V44:45*V83:1 LABEL=SUBVACRT
              TRANS V87=.00 STRATA=V44:50*V83:1 LABEL=SUBVACRT
     677
     679
              TRANS V87=-.05 STRATA=V44:54*V83:1 LABEL=SUBVACRT
     680
              TRANS V87=.05 STRATA=V44:55*V83:1 LABEL=SUBVACRT
     682
              TRANS V87=.1 STRATA=V44:57*V83:1 LABEL=SUBVACRT
     684
              TRANS V87=-.1 STRATA=V44:59*V83:1 LABEL=SUBVACRT
     685
              TRANS V87=-.1 STRATA=V44:60*V83:1 LABEL=SUBVACRT
     687
              TRANS V87=.00 STRATA=V44:62*V83:1 LABEL=SUBVACRT
     692
              TRANS V87=-.7 STRATA=V44:39*V84:1 LABEL=SUBVACRT
              TRANS V87=.35 STRATA=V44:42*V84:1 LABEL=SUBVACRT
     694
     697
              TRANS V87=.00 STRATA=V44:50*V84:1 LABEL=SUBVACRT
 . >
     698
              TRANS V87=.15 STRATA=V44:53*V84:1 LABEL=SUBVACRT
     699
              TRANS V87=.15 STRATA=V44:54*V84:1 LABEL=SUBVACRT
     700
              TRANS V87=.3 STRATA=V44:55*V84:1 LABEL=SUBVACRT
     701
              TRANS V87=.3 STRATA=V44:56*V84:1 LABEL=SUBVACRT
     702
              TRANS V87=.25 STRATA=V44:57*V84:1 LABEL=SUBVACRT
     703
              TRANS V87=.25 STRATA=V44:58*V84:1 LABEL=SUBVACRT
     704
              TRANS V87=.3 STRATA=V44:59*V84:1 LABEL=SUBVACRT
     705
              TRANS V87=.3 STRATA=V44:60*V84:1 LABEL=SUBVACRT
     706
              TRANS V87=-.05 STRATA=V44:61*V84:1 LABEL=SUBVACRT
     717
              TRANS V87=.00 STRATA=V44:50*V85:1 LABEL=SUBVACRT
     724
              TRANS V87=-. 15 STRATA=V44:59*V85:1 LABEL=SUBVACRT
     729
              TRANS V88=-161 STRATA=V44:36 LABEL=NEWVACCH
     730
              TRANS V88=-78 STRATA=V44:37 LABEL=NEWVACCH
     731
              TRANS V88=76 STRATA=V44:38 LABEL=NEWVACCH
     732
              TRANS V88=-38 STRATA=V44:39 LABEL=NEWVACCH
     733
              TRANS V88=-17 STRATA=V44:40 LABEL=NEWVACCH
     734
              TRANS V88=33 STRATA=V44:42 LABEL=NEWVACCH
              TRANS V88=-14 STRATA=V44:45 LABEL=NEWVACCH
     735
     736
              TRANS V88=97 STRATA=V44:47 LABEL=NEWVACCH
     737
              TRANS V88=25 STRATA=V44:50 LABEL=NEWVACCH
     738
              TRANS V88=-172 STRATA=V44:53 LABEL=NEWVACCH
     739
              TRANS V88=119 STRATA=V44:54 LABEL=NEWVACCH
     740
              TRANS V88=131 STRATA=V44:55 LABEL=NEWVACCH
     741
              TRANS V88=56 STRATA=V44:56 LABEL=NEWVACCH
     742
              TRANS V88=-57 STRATA=V44:57 LABEL=NEWVACCH
     743
              TRANS V88=-1 STRATA=V44:58 LABEL=NEWVACCH
     744
              TRANS V88=4 STRATA=V44:59 LABEL=NEWVACCH
     745
              TRANS V88=-76 STRATA=V44:60 LABEL=NEWVACCH
     746
              TRANS V88=156 STRATA=V44:61 LABEL=NEWVACCH
     747
              TRANS V88=27 STRATA=V44:62 LABEL=NEWVACCH
     748
              TRANS V88=-221 STRATA=V44:63 LABEL=NEWVACCH
     749
              TRANS V89=1.0 STRATA=V44:53-63 LABEL=REZONING
     750
              TRANS V89=0.0 STRATA=V44:36-51 LABEL=REZONING
     752
              TRANS V90=-.80 STRATA=V44:36 LABEL=VACRTCHG
     753
              TRANS V90=-.10 STRATA=V44:37 LABEL=VACRTCHG
     754
              TRANS V90=-. 10 STRATA=V44:38 LABEL=VACRTCHG
     755
              TRANS V90=-.75 STRATA=V44:39 LABEL=VACRTCHG
```

756 TRANS V90=+.75 STRATA=V44:40 LABEL=VACRTCHG 757 TRANS V90=. 10 STRATA=V44:42 LABEL=VACRTCHG 758 TRANS V90=.00 STRATA=V44:45 LABEL=VACRTCHG 759 TRANS V90=-.05 STRATA=V44:47 LABEL=VACRTCHG 760 TRANS V90=.00 STRATA=V44:50 LABEL=VACRTCHG 761 TRANS V90=.05 STRATA=V44:53 LABEL=VACRTCHG 762 TRANS V90=.05 STRATA=V44:54 LABEL=VACRTCHG 763 TRANS V90= . 15 STRATA = V44:55 LABEL = VACRTCHG 764 TRANS V90=.15 STRATA=V44:56 LABEL=VACRTCHG 765 TRANS V90=.30 STRATA=V44:57 LABEL=VACRTCHG 766 TRANS V90=.30 STRATA=V44:58 LABEL=VACRTCHG 767 TRANS V90=-.05 STRATA=V44:59 LABEL=VACRTCHG 768 TRANS V90=-.05 STRATA=V44:60 LABEL=VACRTCHG 769 TRANS V90=.10 STRATA=V44:61 LABEL=VACRTCHG 770 TRANS V90=.10 STRATA=V44:62 LABEL=VACRTCHG 771 TRANS V90=-.05 STRATA=V44:63 LABEL=VACRTCHG 772 TRANS V91=1277 STRATA=V44:37 LABEL=NEWHH 773 TRANS V91=1277 STRATA=V44:38-40 LABEL=NEWHH 774 TRANS V91=1184 STRATA=V44:42 LABEL=NEWHH 775 TRANS V91=1426 STRATA=V44:45-47 LABEL=NEWHH 776 TRANS V91=1381 STRATA=V44:50 LABEL=NEWHH 777 TRANS V91=424 STRATA=V44:53-56 LABEL=NEWHH 778 TRANS V91=-418 STRATA=V44:57-60 LABEL=NEWHH 779 TRANS V91=2133 STRATA=V44:61-63 LABEL=NEWHH 780 TRANS V92=1.12 STRATA=V44:37 LABEL=NEWVRATE 781 TRANS V92=5.41 STRATA=V44:38 LABEL=NEWVRATE 782 TRANS V92=5.42 STRATA=V44:39 LABEL=NEWVRATE 783 TRANS V92=4.02 STRATA=V44:40 LABEL=NEWVRATE 784 TRANS V92=5.53 STRATA=V44:42 LABEL=NEWVRATE 785 TRANS V92=2.71 STRATA=V44:45 LABEL=NEWVRATE 786 TRANS V92=9.47 STRATA=V44:47 LABEL=NEWVRATE 787 TRANS V92=25.61 STRATA=V44:50 LABEL=NEWVRATE 788 TRANS V92=6.78 STRATA=V44:53 LABEL=NEWVRATE 789 TRANS V92=13.13 STRATA=V44:54 LABEL=NEWVRATE 790 TRANS V92=20.58 STRATA=V44:55 LABEL=NEWVRATE 791 TRANS V92=26.03 STRATA=V44:56 LABEL=NEWVRATE 792 TRANS V92=29.20 STRATA=V44:57 LABEL=NEWVRATE 793 TRANS V92=19.83 STRATA=V44:58 LABEL=NEWVRATE 794 TRANS V92=19.55 STRATA=V44:59 LABEL=NEWVRATE 795 TRANS V92=16.44 STRATA=V44:60 LABEL=NEWVRATE 796 TRANS V92=23.81 STRATA=V44:61 LABEL=NEWVRATE 797 TRANS V92=21.49 STRATA=V44:62 LABEL=NEWVRATE 798 TRANS V92=11.99 STRATA=V44:63 LABEL=NEWVRATE 799 TRANS V93=91.02 STRATA=V44:37 LABEL=RLRENT2 800 TRANS V93=88.89 STRATA=V44:38 LABEL=RLRENT2 801 TRANS V93=88.22 STRATA=V44:39 LABEL=RLRENT2 802 TRANS V93=87.12 STRATA=V44:40 LABEL=RLRENT2 803 TRANS V93=76.66 STRATA=V44:42 LABEL=RLRENT2 804 TRANS V93=65.71 STRATA=V44:45 LABEL=RLRENT2 805 TRANS V93=54.58 STRATA=V44:47 LABEL=RLRENT2 806 TRANS V93=49.04 STRATA=V44:50 LABEL=RLRENT2 807 TRANS V93=46.36 STRATA=V44:53 LABEL=RLRENT2 808 TRANS V93=41.76 STRATA=V44:54 LABEL=RLRENT2 809 TRANS V93=42.50 STRATA=V44:55 LABEL=RLRENT2 810 TRANS V93=42.97 STRATA=V44:56 LABEL=RLRENT2 811 TRANS V93=43.54 STRATA=V44:57 LABEL=RLRENT2 812 TRANS V93=42.34 STRATA=V44:58 LABEL=RLRENT2 813 TRANS V93=41.49 STRATA=V44:59 LABEL=RLRENT2 814 TRANS V93=38.90 STRATA=V44:60 LABEL=RLRENT2 815 TRANS V93=37.98 STRATA=V44:61 LABEL=RLRENT2

```
816
             TRANS V93=35.45 STRATA=V44:62 LABEL=RLRENT2
. >
     817
             TRANS V93=34.07 STRATA=V44:63 LABEL=RLRENT2
     818
             TRANS V94=473 STRATA=V44:37 LABEL=STARTS
     819
             TRANS V94=170 STRATA=V44:38 LABEL=STARTS
     820
             TRANS V94=301 STRATA=V44:39 LABEL=STARTS
     821
             TRANS V94=474 STRATA=V44:40 LABEL=STARTS
     822
             TRANS V94=807 STRATA=V44:42 LABEL=STARTS
     823
             TRANS V94=222 STRATA=V44:45 LABEL=STARTS
     824
             TRANS V94=193 STRATA=V44:47 LABEL=STARTS
     825
             TRANS V94=508 STRATA=V44:50 LABEL=STARTS
     826
             TRANS V94=160 STRATA=V44:53 LABEL=STARTS
     827
             TRANS V94=290 STRATA=V44:54 LABEL=STARTS
     828
             TRANS V94=705 STRATA=V44:55 LABEL=STARTS
     829
             TRANS V94=1124 STRATA=V44:56 LABEL=STARTS
     830
             TRANS V94=668 STRATA=V44:57 LABEL=STARTS
     831
             TRANS V94=698 STRATA=V44:58 LABEL=STARTS
     832
             TRANS V94=687 STRATA=V44:59 LABEL=STARTS
     833
             TRANS V94=1385 STRATA=V44:60 LABEL=STARTS
     834
             TRANS V94=648 STRATA=V44:61 LABEL=STARTS
     835
             TRANS V94=32 STRATA=V44:62 LABEL=STARTS
     836
             TRANS V94=199 STRATA=V44:63 LABEL=STARTS
     837
             TRANS V95=112.24 STRATA=V44:37 LABEL=REALCOST
     838
             TRANS V95=118.40 STRATA=V44:38 LABEL=REALCOST
     839
             TRANS V95=127.45 STRATA=V44:39 LABEL=REALCOST
     840
             TRANS V95=144.01 STRATA=V44:40 LABEL=REALCOST
     841
             TRANS V95=153.67 STRATA=V44:42 LABEL=REALCOST
     842
             TRANS V95=147.60 STRATA=V44:45 LABEL=REALCOST
     843
             TRANS V95=135.76 STRATA=V44:47 LABEL=REALCOST
     844
             TRANS V95=115.28 STRATA=V44:50 LABEL=REALCOST
     845
             TRANS V95=122.14 STRATA=V44:53 LABEL=REALCOST
             TRANS V95=112.51 STRATA=V44:54 LABEL=REALCOST
     846
     847
             TRANS V95=118.10 STRATA=V44:55 LABEL=REALCOST
     848
             TRANS V95=124.25 STRATA=V44:56 LABEL=REALCOST
     849
             TRANS V95=129.60 STRATA=V44:57 LABEL=REALCOST
     850
             TRANS V95=136.29 STRATA=V44:58 LABEL=REALCOST
     851
             TRANS V95=145.58 STRATA=V44:59 LABEL=REALCOST
     852
             TRANS V95=139.06 STRATA=V44:60 LABEL=REALCOST
     853
             TRANS V95=144.18 STRATA=V44:61 LABEL=REALCOST
     854
             TRANS V95=149.08 STRATA=V44:62 LABEL=REALCOST
     855
             TRANS V95=150.60 STRATA=V44:63 LABEL=REALCOST
     856
             TRANS V96=3.51 STRATA=V44:37 LABEL=NEWVRLAG
     857
             TRANS V96=1.12 STRATA=V44:38 LABEL=NEWVRLAG
     858
             TRANS V96=5.41 STRATA=V44:39 LABEL=NEWVRLAG
     859
             TRANS V96=5.42 STRATA=V44:40 LABEL=NEWVRLAG
             TRANS V96=3.25 STRATA=V44:42 LABEL=NEWVRLAG
     860
     861
             TRANS V96=4.18 STRATA=V44:45 LABEL=NEWVRLAG
     862
             TRANS V96=2.20 STRATA=V44:47 LABEL=NEWVRLAG
     863
             TRANS V96=22.19 STRATA=V44:50 LABEL=NEWVRLAG
     864
             TRANS V96=13.68 STRATA=V44:53 LABEL=NEWVRLAG
     865
             TRANS V96=6.78 STRATA=V44:54 LABEL=NEWVRLAG
     866
             TRANS V96=13.13 STRATA=V44:55 LABEL=NEWVRLAG
     867
             TRANS V96=20.58 STRATA=V44:56 LABEL=NEWVRLAG
     868
             TRANS V96=26.03 STRATA=V44:57 LABEL=NEWVRLAG
     869
             TRANS V96=29.20 STRATA=V44:58 LABEL=NEWVRLAG
     870
             TRANS V96=19.83 STRATA=V44:59 LABEL=NEWVRLAG
     871
             TRANS V96=19.55 STRATA=V44:60 LABEL=NEWVRLAG
     872
             TRANS V96=16.44 STRATA=V44:61 LABEL=NEWVRLAG
             TRANS V96=23.81 STRATA=V44:62 LABEL=NEWVRLAG
     873
     874
             TRANS V96=21.49 STRATA=V44:63 LABEL=NEWVRLAG
 >
     875
             TRANS V97=95.16 STRATA=V44:37 LABEL=RLRNTLAG
```

```
877
        TRANS V97=88.89 STRATA=V44:39 LABEL=RLRNTLAG
878
        TRANS V97=88.22 STRATA=V44:40 LABEL=RLRNTLAG
879
        TRANS V97=82.01 STRATA=V44:42 LABEL=RLRNTLAG
880
        TRANS V97=70.54 STRATA=V44:45 LABEL=RLRNTLAG
881
        TRANS V97=59.14 STRATA=V44:47 LABEL=RLRNTLAG
882
        TRANS V97=49.81 STRATA=V44:50 LABEL=RLRNTLAG
883
        TRANS V97=46.31 STRATA=V44:53 LABEL=RIRNTLAG
884
        TRANS V97=46.36 STRATA=V44:54 LABEL=RLRNTLAG
885
        TRANS V97=41.76 STRATA=V44:55 LABEL=RLRNTLAG
886
        TRANS V97=42.50 STRATA=V44:56 LABEL=RLRNTLAG
        TRANS V97=42.97 STRATA=V44:57 LABEL=RLRNTLAG
887
888
        TRANS V97=43.54 STRATA=V44:58 LABEL=RLRNTLAG
889
        TRANS V97=42.34 STRATA=V44:59 LABEL=RLRNTLAG
890
        TRANS V97=41.49 STRATA=V44:60 LABEL=RLRNTLAG
891
        TRANS V97=38.90 STRATA=V44:61 LABEL=RLRNTLAG
892
        TRANS V97=37.98 STRATA=V44:62 LABEL=RLRNTLAG
893
        TRANS V97=35.45 STRATA=V44:63 LABEL=RLRNTLAG
894
        TRANS V98=111.64 STRATA=V44:37 LABEL=RLCSTLAG
895
        TRANS V98=112.24 STRATA=V44:38 LABEL=RLCSTLAG
896
        TRANS V98=118.40 STRATA=V44:39 LABEL=RLCSTLAG
897
        TRANS V98=127.45 STRATA=V44:40 LABEL=RLCSTLAG
898
        TRANS V98=151.46 STRATA=V44:42 LABEL=RLCSTLAG
        TRANS V98=142.94 STRATA=V44:45 LABEL=RLCSTLAG
899
900
        TRANS V98=140.00 STRATA=V44:47 LABEL=RLCSTLAG
901
        TRANS V98=103.11 STRATA=V44:50 LABEL=RLCSTLAG
        TRANS V98=116.80 STRATA=V44:53 LABEL=RLCSTLAG
902
903
        TRANS V98=122.14 STRATA=V44:54 LABEL=RLCSTLAG
904
        TRANS V98=112.51 STRATA=V44:55 LABEL=RLCSTLAG
        TRANS V98=118.10 STRATA=V44:56 LABEL=RLCSTLAG
905
906
        TRANS V98=124.25 STRATA=V44:57 LABEL=RLCSTLAG
907
        TRANS V98=129.60 STRATA=V44:58 LABEL=RLCSTLAG
        TRANS V98=136.29 STRATA=V44:59 LABEL=RLCSTLAG
908
909
        TRANS V98=145.58 STRATA=V44:60 LABEL=RLCSTLAG
910
        TRANS V98=139.06 STRATA=V44:61 LABEL=RLCSTLAG
911
        TRANS V98=144.18 STRATA=V44:62 LABEL=RLCSTLAG
912
        TRANS V98=149.08 STRATA=V44:63 LABEL=RLCSTLAG
913
        TRANS V99=31 STRATA=V44:37 LABEL=NEWVACMF
914
        TRANS V99=107 STRATA=V44:38 LABEL=NEWVACMF
915
        TRANS V99=69 STRATA=V44:39 LABEL=NEWVACMF
916
        TRANS V99=52 STRATA=V44:40 LABEL=NEWVACMF
917
        TRANS V99=74 STRATA=V44:42 LABEL=NEWVACMF
918
        TRANS V99=39 STRATA=V44:45 LABEL=NEWVACMF
919
        TRANS V99=138 STRATA=V44:47 LABEL=NEWVACMF
920
        TRANS V99=449 STRATA=V44:50 LABEL=NEWVACMF
921
        TRANS V99=194 STRATA=V44:53 LABEL=NEWVACMF
922
        TRANS V99=313 STRATA=V44:54 LABEL=NEWVACMF
923
        TRANS V99=444 STRATA=V44:55 LABEL=NEWVACMF
924
        TRANS V99=500 STRATA=V44:56 LABEL=NEWVACMF
925
        TRANS V99=443 STRATA=V44:57 LABEL=NEWVACMF
926
        TRANS V99=442 STRATA=V44:58 LABEL=NEWVACMF
927
        TRANS V99=446 STRATA=V44:59 LABEL=NEWVACMF
928
        TRANS V99=370 STRATA=V44:60 LABEL=NEWVACMF
929
        TRANS V99=526 STRATA=V44:61 LABEL=NEWVACMF
930
        TRANS V99=553 STRATA=V44:62 LABEL=NEWVACMF
931
        TRANS V99=332 STRATA=V44:63 LABEL=NEWVACMF
932
        TRANS V100=7.222 STRATA=V44:37 LABEL=AVGPPSF
933
        TRANS V100=7.429 STRATA=V44:38 LABEL=AVGPPSF
934
        TRANS V100=5.902 STRATA=V44:39 LABEL=AVGPPSF
```

TRANS V100=6.250 STRATA=V44:40 LABEL=AVGPPSF

TRANS V97=91.02 STRATA=V44:38 LABEL=RLRNTLAG

>

876

935

```
936
            TRANS V100=8.201 STRATA=V44:42 LABEL=AVGPPSF
    937
            TRANS V100=25.000 STRATA=V44:45 LABEL=AVGPPSF
    938
            TRANS V100=13.518 STRATA=V44.47 LARFL=AVGPPSF
    939
            TRANS V100=13.254 STRATA=V44:50 LABEL=AVGPPSF
    940
            TRANS V100=13.887 STRATA=V44:51 LABEL=AVGPPSF
    941
            TRANS V100=15.377 STRATA=V44:53 LABEL=AVGPPSF
    942
            TRANS V100=16.688 STRATA=V44;54 LABEL=AVGPPSF
    943
            TRANS V100=15.627 STRATA=V44:55 LABEL=AVGPPSF
    944
            TRANS V100=16.029 STRATA=V44:56 LABEL=AVGPPSF
    945
            TRANS V100=26.175 STRATA=V44:57 LABEL=AVGPPSF
    946
            TRANS V100=20.522 STRATA=V44:58 LABEL=AVGPPSF
    947
            TRANS V100=18.314 STRATA=V44:59 LABEL=AVGPPSF
    948
            TRANS V100=17.867 STRATA=V44:60 LABEL=AVGPPSF
    949
            TRANS V100=18.071 STRATA=V44:61 LABEL=AVGPPSF
            TRANS V100=28.333 STRATA=V44:62 LABEL=AVGPPSF
    950
    951
            TRANS V100=23.855 STRATA=V44:63 LABEL=AVGPPSF
    952
            TRANS V101=V100/V38 STRATA=NONE LABEL=RLAVGSP
    953
            TRANS V102=0.00 STRATA=V44:37 LABEL=LOCINDEX
    954
            TRANS V102=0.00 STRATA=V44:38 LABEL=LOCINDEX
    955
            TRANS V102=-2.00 STRATA=V44:39 LABEL=LOCINDEX
    956
            TRANS V102=0.00 STRATA=V44:40 LABEL=LOCINDEX
    957
            TRANS V102=-1.50 STRATA=V44:42 LABEL=LOCINDEX
    958
            TRANS V102=0.00 STRATA=V44:45 LABEL=LOCINDEX
    959
            TRANS V102=3.00 STRATA=V44:47 LABEL=LOCINDEX
    960
            TRANS V102=-2.00 STRATA=V44:50 LABEL=LOCINDEX
>
    961
            TRANS V102=-1.00 STRATA=V44:51 LABEL=LOCINDEX
    962
            TRANS V102=-3.00 STRATA=V44:53 LABEL=LOCINDEX
    963
            TRANS V102=-2.57 STRATA=V44:54 LABEL=LOCINDEX
    964
            TRANS V102=-2.63 STRATA=V44:55 LABEL=LOCINDEX
    965
            TRANS V102=-3.00 STRATA=V44:56 LABEL=LOCINDEX
>
    966
            TRANS V102=-1.50 STRATA=V44:57 LABEL=LOCINDEX
>
    967
            TRANS V102=-0.27 STRATA=V44:58 LABEL=LOCINDEX
    968
            TRANS V102=-1.67 STRATA=V44:59 LABEL=LOCINDEX
>
    969
            TRANS V102=-1.80 STRATA=V44:60 LABEL=LOCINDEX
    970
            TRANS V102=-3.00 STRATA=V44:61 LABEL=LOCINDEX
    971
            TRANS V102=0.00 STRATA=V44:62 LABEL=LOCINDEX
>
    972
            TRANS V102=3.00 STRATA=V44:63 LABEL=LOCINDEX
    973
            TRANS V103=-2.454 STRATA=V44:37 LABEL=NEWRMLAG
    974
            TRANS V103=-3.609 STRATA=V44:38 LABEL=NEWRMLAG
    975
            TRANS V103=-3.463 STRATA=V44:39 LABEL=NEWRMLAG
    976
            TRANS V103=-3.090 STRATA=V44:40 LABEL=NEWRMLAG
    977
            TRANS V103=-3.703 STRATA=V44:42 LABEL=NEWRMLAG
    978
            TRANS V103=-5.528 STRATA=V44:45 LABEL=NEWRMLAG
    979
            TRANS V103=-7.988 STRATA=V44:47 LABEL=NEWRMLAG
    980
            TRANS V103=-8.430 STRATA=V44:50 LABEL=NEWRMLAG
    981
            TRANS V103=-7.166 STRATA=V44:51 LABEL=NEWRMLAG
    982
            TRANS V103=-4.051 STRATA=V44:53 LABEL=NEWRMLAG
    983
            TRANS V103=-2.389 STRATA=V44:54 LABEL=NEWRMLAG
    984
            TRANS V103=-4.319 STRATA=V44:55 LABEL=NEWRMLAG
            TRANS V103=-3.343 STRATA=V44:56 LABEL=NEWRMLAG
    985
    986
            TRANS V103=-1.599 STRATA=V44:57 LABEL=NEWRMLAG
>
    987
            TRANS V103=-1.324 STRATA=V44:58 LABEL=NEWRMLAG
    988
            TRANS V103=-2.109 STRATA=V44:59 LABEL=NEWRMLAG
    989
            TRANS V103=-0.099 STRATA=V44:60 LABEL=NEWRMLAG
    990
            TRANS V103=-1.562 STRATA=V44:61 LABEL=NEWRMLAG
    991
            TRANS V103=-3.062 STRATA=V44:62 LABEL=NEWRMLAG
    992
            TRANS V103=-5.090 STRATA=V44:63 LABEL=NEWRMLAG
    993
            TRANS V92=17.87 STRATA=V44:51 LABEL=NEWVRATE
    994
            TRANS V64=-2.84 STRATA=V44:51 LABEL=CAPRATE
    995
            TRANS V66=12.12 STRATA=V44:51 LABEL=NOMCAPRT
```