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ABSTRACT 

Granular water-insoluble l i g n i n s were is o l a t e d from a series 

of aqueous organic solvent (organosols) cooks designed for pulping/sac-

c h a r i f i c a t i o n of Douglas-fir sawdust. Among the factors a f f e c t i n g y i e l d 

and c h a r a c t e r i s t i c s of the i s o l a t e d organosolv l i g n i n s , only cooking 

time (5-20 minutes) and concentration of acid c a t a l y s t (0-0. IN HC1) were 

investigated as cooking variables. Cooking temperature (200°C) and s o l ­

vent composition (acetone/water=60:40) were held constant. 

It was learned that the a c i d i f i e d organosolv cooking system 

i s f a r more e f f i c i e n t i n d e l i g n i f i c a t i o n and s a c c h a r i f i c a t i o n than a-

queous acid hydrolysis under i d e n t i c a l conditions. In organosolv cook­

ing, simultaneous d i s s o l u t i o n of l i g n i n and sugars occurs i n the cook­

ing l i q u o r , allowing continued and t o t a l d i s s o l u t i o n of the wood cons­

t i t u e n t s . In the present study, only the water-insoluble l i g n i n f r a c ­

t i o n was i s o l a t e d and analyzed. 

An almost quantitative recovery of the p r e c i p i t a b l e l i g n i n 

was accomplished by evaporation of the organic solvent from the spent 

liquor, followed by removal of sugars dissolved i n the aqueous s o l u t i o n 

and r e p r e c i p i t a t i o n of the crude l i g n i n i n t o water. To eliminate the 

interference from hydrogen bonding and unconjugated carbonyl group i n 

the i s o l a t e d organosolv l i g n i n s , a c e t y l a t i o n or reduction was' c a r r i e d 

out before the l i g n i n samples were characterized. The r e s u l t i n g l i g n i n 

samples were found to be completely free of cabohydrate contaminants. 

Both cooking time and acid concentration were found to have 

a profound e f f e c t on the y i e l d of l i g n i n f r a c t i o n s , and chemical and 

macromolecular properties of the l i g n i n molecules due to two competing 
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reactions, h y d r o l y t i c depolymerization and recondensation. These re­

actions take place simultaneously i n the cooking l i q u o r during organo-

solv cooking. 

The balance between these two reactions i s believed to be 

responsible f o r not only the content of functional groups, as revealed 

by nuclear magnetic resonance, infrared and u l t r a v i o l e t s p e c t r a l ana­

lyses, but also the si z e of l i g n i n molecules, as measured by gel per­

meation chromatographic and scanning electron microscopic analyses of 

the i s o l a t e d organosolv l i g n i n s . 

The f u n c t i o n a l group contents, determined by elemental and 

s p e c t r a l analyses, were found to be 0.86-0.97 methoxyl, 0.20-0.49 aro­

matic hydroxyl and 0.68-0.99 a l i p h a t i c hydroxyl groups per C^-unit of 

the organosolv l i g n i n molecules. I t was also noted that 63-68% of aro­

matic n u c l e i have condensed forms with carbon-carbon linkages, having 

only two hydrogens on each guaiacyl nucleus. 

The organosolv l i g n i n s were found to have much lower molecu­

l a r weights than those of pr o t o l i g n i r i i n wood;, Ty p i c a l values of the 

number average molecular weight of the i s o l a t e d l i g n i n s ranged from 823 

to 1,144. The low molecular weight values are due to degradation reac­

tions during the cooking by cleavage of a r y l - a l k y l linkages of l i g n i n 

molecules. The p a r t i c l e size of the sph e r i c a l p r e c i p i t a t e d l i g n i n s 

ranged from 25 to 500 nm. 
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1. INTRODUCTION 

The r i s i n g cost and expected shortage of crude o i l and 

natural gas, which are the main raw material sources f o r the organic 

chemical industry, have stimulated search f o r alternate chemical feed­

stocks. L i g n o c e l l u l o s i c materials, such as wood and straws which 

represent the largest renewable bio-resources on the earth, are consi­

dered to be one of the most important near-term substitutes f o r o i l 

and natural gas (74,75,78,79,154). 

During the past several years, considerable attention has 

been given to chemical u t i l i z a t i o n of wastes from the chemical pulping 

industry, and the l i t e r a t u r e i s abundant with suggestions f o r the re­

covery of by-products from spent li q u o r s (74,118,129,131,133). Spent 

cooking and wash liquors, recovered from chemical pulping processes, 

contain p r a c t i c a l l y a l l the n o n - c e l l u l o s i c wood constituents such as 

l i g n i n , hemicelluloses and minor constituents of wood. 

Based on data of the primary production of wood and other 

annual and perennial land plants, i t can be calculated that the world­

wide annual production of l i g n i n s , which represent about a quarter of 

l i g n o c e l l u l o s i c materials, i s about 20 b i l l i o n tons (154). According 

to FAO information (154), the t o t a l amount of l i g n i n obtained e i t h e r 

as a l k a l i l i g n i n or as l i g n o s u l f o n i c acid i s approximately 40 m i l l i o n 

tons annually. About 70 to 80% of t h i s amount i s burt f o r heat re­

covery i n the pulp m i l l s (131). 
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Although t h i s transformation of l i g n i n into heat i s an econo­

mic method of disposal of the waste l i q u o r as f a r as the pulping proces­

ses are concerned, i t seems l i k e a wasteful manner of t r e a t i n g such a 

valuable chemical raw material. With marketable l i g n i n preparations, 

the chemical value of l i g n i n i s greater than i t s f u e l value,and l i g n i n 

becomes an important revenue generating by-product of pulping (118,133, 

154). 

At the present time, l i g n i n i s not only used as s t a r t i n g or 

intermediate raw material for monomeric organic chemicals, but i s also 

widely used i n adhesives, binders, dispersants, and as extenders for 

resins and rubbers, emulsion s t a b i l i z e r , grinding aid, b o i l e r water i n ­

gredient and ion exchange resins (74,78,132). The features of l i g n i n 

important for chemical u t i l i z a t i o n are i t s aromatic character and co-

valent carbon-carbon bonding (78). 

Although biomass processing holds promise for generation of 

chemical feedstocks for both chemical and processing i n d u s t r i e s , only 

few economic processes are known to produce organic chemicals from l i g ­

nin today. D i f f i c u l t i e s arise mainly due to the condensed and contami­

nated state of i n d u s t r i a l l i g n i n s (154). Pulping processes, which allow 

separation of the main components of l i g n o c e l l u l o s i c materials i n such 

a manner that l i g n i n can be obtained free of contaminants ( e s p e c i a l l y 

without sulfur-substituents and sugar residues) and i n a less condensed 

state, may o f f e r better p o t e n t i a l f or i t s u t i l i z a t i o n as a raw material 

for the chemical industry. 

With increasing provisions by law and public concern over the 

environmental impact of pulp m i l l e f f l u e n t s , development of new non- or 

l e s s - p o l l u t i n g pulping processes i s also one of the most important prob-
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lems to be solved f o r the pulping industry (112). 

A new organosolv pulping process, which may provide some 

of the answers to these problems, have been worked out i n the pulp 

and paper laboratory of the Faculty of Forestry over the l a s t few 

years. The present study i s concerned with i s o l a t i o n of l i g n i n 

from the organosolv cooking and ch a r a c t e r i z a t i o n of the is o l a t e d 

l i g n i n . In e a r l i e r studies, Chang and Paszner (36,37) concentrated 

on describing the processes which lead to maximum sugar y i e l d s and 

the t o t a l d i s s o l u t i o n of aspen and Douglas-fir woods i n organosolv 

cooking l i q u o r s , but no attention was paid to the q u a l i t y of the d i s ­

solved l i g n i n . Thus, the objectives of t h i s study were: 

1) to i s o l a t e the organosolv l i g n i n from Douglas-fir sawr 

dust which comprises a substantial portion of the wood raw material 

supply to many pulp m i l l s i n the P a c i f i c Northwest, 

2) to investigate the e f f e c t of various cooking conditions 

on chemical and macromolecular properties of the i s o l a t e d l i g n i n , and 

3) to draw inferences from these data as to the s e n s i t i v i t y 

of organosolv l i g n i n to degradation, d i s s o l u t i o n and recondensation as 

well as molecular condensation with other sugars or t h e i r d e r i v a t i v e s 

formed during the high temperature cooking process. 
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2. LITERATURE REVIEW 

2.1 D e f i n i t i o n s 

L i g n i n : L i g n i n has never been s p e c i f i c a l l y defined because 

i t i s not a d e f i n i t e chemical e n t i t y , and i t s polymeric chemical s t r u c ­

ture has not been f u l l y ; e l u c i d a t e d . 

L i g n i n , however, i s generally considered to be a system of a 

thermoplastic tridimensional polymer i n which C g-phenylpropane u n i t s ( I ) , 

linked together by C-O-C and C-C linkages appear to be the basic units 

(26,68,131). The concept of l i g n i n derived from an enzyme-initiated 

dehydrogenation polymerization of a mixture of three primary precursors, 

namely c o n i f e r y l alcohol ( I I ) , s i n a p y l alcohol ( I I I ) and p-coumaryl a l ­

cohol (IV), i s now well established (65,66,67). 

(I) (II) (III) (IV) 
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Organosolv Lign i n : Lignins obtained by procedures of ex­

t r a c t i o n by means of organic solvents, usually i n the presence of a 

ca t a l y s t , have been c a l l e d "organosolv l i g n i n s " (131). These orga­

nosolv l i g n i n s are soluble i n organic solvents employed as well as 

other solvents generally known as l i g n i n solvents. 

2.2 D i s t r i b u t i o n of Lig n i n 

U n t i l early i n the 19th century, wood was considered to be 

a single chemical e n t i t y . This b e l i e f was held u n t i l Payen (130), i n 

a paper published i n 1838, showed that wood i s composed of several com­

ponents including a fibrous material, c e l l u l o s e and an "encrusting ma­

t e r i a l " which was l a t e r termed as " l i g n i n " . In plants, the f i r s t i n ­

d i c a t i o n of l i g n i f i c a t i o n can be seen at the time of the onset of the 

wall thickening phase (163,164). In 1965, Wardrop (164) showed that 

the f i r s t deposition was at the c e l l corners within or just inside the 

primary wall. Following t h i s i n i t i a l deposition at the c e l l corners, 

l i g n i f i c a t i o n then extends along the middle lamella and into the secon­

dary wall (63,162). 

L i g n i n d i s t r i b u t i o n i n wood has been of considerable i n t e r ­

est f o r both t h e o r e t i c a l and p r a c t i c a l reasons. According to R i t t e r 

(140), l i g n i n e x i s t s i n wood i n two forms, namely, the 'middle lamella 

l i g n i n ' , and the ' c e l l wall l i g n i n ' , implying differences not only i n 

lo c a t i o n but a c c e s s i b i l i t y , composition and possible a s s o c i a t i o n with 

other c e l l w all components, mainly hemicelluloses. 
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The r e s u l t s of most recent workers i n the f i e l d were 

reviewed by Sarkanen and Hergert i n 1971 (148), and Cote i n 1977 (43). 

In 1965, Berlyn and Mark (19) showed that l e s s than 40% of the t o t a l 

l i g n i n i n softwood i s i n the middle lamella, most of i t being found i n 

the secondary wall of coniferous tracheids. This new p o s i t i o n has 

been supported by more recent evidences (18,44,45,69,128). 

Using u l t r a v i o l e t and fluorescence o p t i c s , Frey-Wyssling (69) 

demonstrated the uniformity - of d i s t r i b u t i o n of l i g n i n across the 

secondary c e l l w all as w e l l as across the middle lamella. Sacks et a l . 

(142) suggested that a greater portion of l i g n i n i s concentrated i n the 

compound middle lamella of maple, and that the l i g n i n network i n the 

secondary w a l l appears le s s dense than i n softwoods. The same conclu­

sion has been drawn from u l t r a v i o l e t i n v e s t i g a t i o n on hardwood tissues 

(101). 

More recently, i n 1978 G r a t z l and his co-workers (143) deve­

loped a new method to determine l i g n i n d i s t r i b u t i o n by using energy-

dispersive X-ray analysis of brominated wood sections coupled with 

scanning electron microscopy. The data from the corresponding peaks of 

brominated wood samples show that the l i g n i n concentration i s very high 

i n the middle lamella region, decreases toward middle part of the c e l l 

w a l l , and s l i g h t l y increases again near the lumen. The o v e r a l l l i g n i n 

d i s t r i b u t i o n i s i n agreement with the r e s u l t s of e a r l i e r microscopic 

studies (128,142) on l i g n i n skeletons created by the removal of carbo­

hydrates with hydro f l u o r i c acid. L i g n i n d i s t r i b u t i o n across the c e l l 

wall has important implications i n d e l i g n i f i c a t i o n and f i b e r separation 

from l i g n o c e l l u l o s i c s a f f e c t i n g both f i b e r y i e l d and c e l l u l o s e purity 

of pulps. 
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2.3 Formation'and Chemical Structure of L i g n i n 

The plant l i g n i n s of i n t e r e s t can be divided into three 

classes, which are commonly c a l l e d (i) gymnosperm or softwood l i g n i n s , 

( i i ) angiosperm or hardwood l i g n i n s and ( i i i ) monocotyledonous angiosperm 

or grass l i g n i n s (131). According to several e a r l i e r investigations 

(65,158,161), i t was known that the most p r i m i t i v e land plants, as well 

as softwoods, have l i g n i n s i n which g u a i a c y l n u c l e i or c o n i f e r y l alcohol 

(II) predominates whereas i n hardwood l i g n i n s , both c o n i f e r y l alcohol 

(II) and s y r i n g y l n u c l e i or sinapyl alcohol (III) are present even though 

there are some exceptions to t h i s generalization (54,55,73). Grass 

or annual plant l i g n i n s generally are polymers of synapyl alcohol (III) 

and p-hydroxylphenyl propane (I) u n i t s . 

In common with a l l other organic plant constituents, l i g n i n 

must be derived u l t i m a t e l y from carbon dioxide. Although the complete 

scheme of biogenesis of l i g n i n i n the tree i s s t i l l f a r from t o t a l l y 

known, there appears to be l i t t l e doubt that l i g n i n o r i g i n a t e s from the 

carbohydrates which are formed from atmospheric carbon dioxide by the 

process of photosynthesis (87,131). Thus, the f i r s t phase of l i g n i n 

biogenesis involves the conversion by l i v i n g plant c e l l s of non-

aromatic precusors such as carbohydrates into compounds containing 

benzenoid type rings which becomes a part of the basic structure of l i g n i n . 

As the f i r s t clues to t h i s conversion, around 1955, Davis, Sprinson, 

and t h e i r co-workers (47,103,157) demonstrated that radiation-induced 
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mutants of the bacterium Escherichia c o l i , which lacked enzymes 

necessary for aromatic r i n g formation, accumulated i n growth-medium 

compounds that have proved to be obligatory intermediates i n the 

conversion of sugars to benzenoid compounds. The so-called Davis-

Sprinson pathway (102,131), as understood at present time on the 

basis of more recent findings (28,29,50,71,152), for the biosynthesis 

of the aromatic precursors of l i g n i n i s pictured i n F i g . 1. 

D-Erythrose-4-phosphate (V) and 2-phosphoenolpyruvic acid 

(VI) , both formed from glucose combined to form an intermediate phosphate 

(VII) , which then forms the c y c l i c 5-dehydroquinic acid (VIII). The 

biosynthesis then proceeds through the obligatory intermediates, 

5-dehydroshikimic acid (IX) and shikimic acid (X). On the basis of 

tracer and enzyme studies, Brown (28,29) proposed the pathways from 

shikimic acid (X) to the three lignin-monomers ( I I , I I I , I V ) . He pointed 

out the fact that not a l l reactions i n t h i s pathway occur i n a l l species. 

The scheme indicates that a l l l i g n i f i e d plants possess the enzymes 

necessary to carry out the reactions i n the sequence. It should be 

emphasized that l i g n i f i c a t i o n pathways other than those shown i n F i g . 1 

may also e x i s t . 

The second phase of l i g n i n biosynthesis involves the 

dimerization of the monomer precursors (II,III,IV) and the continued 

growth of molecule by the oxidative polymerization. The e f f o r t s to 

c l a r i f y the structures of the d i f f e r e n t types of l i g n i n have resulted i n 

a d e t a i l e d p i c t u r e of the various modes i n which the phenylpropane units 
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Figure 1. Pathways for the conversion of glucose to 
lignin-monomers i n plant (131). 
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(I) are l i n k e d together i n the polymer. This problem has been 

inv e s t i g a t e d by two general methods, degradation and synthesis of 

l i g n i n . 

As early as 1933, Erdtman was succe s s f u l i n dehydrogenating 

a number of monomer model compounds to dimeric products (51,52). He 

suggested that l i g n i n i s formed i n nature by an oxidative polymerization 

of phenolic precursors. Freudenberg and co-workers (67,68) showed that 

enzymes with laccase and peroxidase a c t i v i t i e s are probably responsible 

f o r dehydrogenation. 

Freudenberg formulated the following mechanism for i n i t i a l 

r e actions of the dehydrogenation polymerization of c o n i f e r y l a l c ohol (II) 

as shown i n F i g . 2 (2). 

H2COH H2COH H2COH h^COH HjCOH H2COH 
CH CH 
II - H II CH » CH " ' 

OH 
OCH3 

(II) (II-a) ( H -b) (I I - c ) (II-d) (II-e) 

Figure 2. Dehydrogenation of c o n i f e r y l a l c ohol ( I I ) . 
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The enzymatic dehydrogenation is a one-electron transfer 

resulting i n the formation of a resonance-stabilized phenoxy radical, 

dehydrogenated from coniferyl alcohol (II). Stabilization of the 

radical occurs by coupling to another radical in any of the positions 

of the unpaired electron given i n resonance structures (Il-a,II-b,II-c, 

II-d,II-e). These mesomeric radicals then intercombine. The continued 

growth of the molecule w i l l predominantly take place by what has been 

called "end-wise" polymerization (145). The process i s il l u s t r a t e d by 

an example in Fig. 3 where a coniferyl alcohol radical in i t s resonance 

form (Il-b) i s attached by /̂ -O-4 coupling to an end group radical (Il-a). 

The result of this coupling w i l l be a quinonemethide (XI) which w i l l 

react further by addition of a molecule of water to give the ether 

structure (XII). 

OH 

(II-b) 

Figure 3. 

(H-a) (XI) 

"End-wise" polymerization (2). 

(XII) 
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The formation of dimers i s followed by further poly­

merization to tetrameric and high molecular weight aggregates. A 

great many formulae f o r l i g n i n polymers have been proposed over 

the years (3,24,51,52,64,65,67). 

In 1965, Freudenberg (65) proposed a s t r u c t u r a l formulation 

of F i g . 4 as a c o n s t i t u t i o n a l model for softwood l i g n i n based on 

enzymatic dehydrogenation: experiments. The r e s u l t i n g formulation 

containing 18'Cg-units are i n t e r l i n k e d i n a fashion corresponding to the 

biochemical growth of the n a t u r a l l y occurring l i g n i n molecule. It 

represents only a f r a c t i o n of a l i g n i n molecule. More recently the 

prominent substructures of spruce l i g n i n were c o l l e c t e d i n a scheme 

(Fig. 5) comprising 16 Cg-units (2,53). 

In 1974, Glasser and Glasser (73) developed a mathematical 

simulation of reactions with softwood l i g n i n b u i l d i n g units by computer. 

The simulated structure of softwood l i g n i n molecule, which consists 

of 81 Ccj-units, involves rather large globular configurations that are 

d i f f i c u l t to represent on a two-dimensional scale. The s t r u c t u r a l 

sketch depicted by them shows that 15% of the C^-units are derived from p-

coumaryl alcohol (IV), 79% from c o n i f e r y l alcohol (II) and 6% from 

sinapyl alcohol ( I I I ) . The proportions of the three monomers (II,III,IV) 

involved i n the copolymerization process vary i n d i f f e r e n t woods (53) 

and even i n d i f f e r e n t morphological parts of the wood, thus giving 

r i s e to the d i f f e r e n t l i g n i n s (2). These studies point out the poten­

t i a l d i f f i c u l t i e s i n obtaining uniformly depolymerized l i g n i n s . 



Figure h. Fre'udenberg' s formulation of softwood l i g n i n (65) 

Figure 5. Prominent structures i n Spruce l i g n i n (2). 
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2.4 I s o l a t i o n of Lignin 

No method has yet been developed f o r the i s o l a t i o n of the 

p r o t o l i g n i n i n i t s e n t i r e t y o r i g i n a l l y present i n the wood. Many 

common methods of i s o l a t i o n cause fundamental changes i n the l i g n i n 

structure and the l i g n i n s obtained are d i f f e r e n t i n many physi c a l 

and chemical properties from the native l i g n i n i n wood (131). 

In order to i s o l a t e l i g n i n from l i g n i f i e d substances, 

Brauns (26) has noted that the extraneous materials of the s t a r t i n g wood 

must be pre-extracted as completely as possib l e , because they might not 

only be i s o l a t e d as an inseparable part of the l i g n i n but also might 

form condensation products with the l i g n i n during the i s o l a t i o n procedure. 

It should be noted, however, that the s t a r t i n g wood has never been pre-

extracted i n some cases, such as studies on the chemistry of l i g n i n s 

i s o l a t e d from the spent pulping l i q u o r s . 

2.4.1 Native l i g n i n s 

In 1939, Brauns (25) reported that a few per cent of the l i g n i n 

of black spruce i s found among the extractives obtained by ext r a c t i o n 

with aqueous ethanol and can be p u r i f i e d by series of p r e c i p i t a t i o n s 

with water and ether. The r e s u l t i n g cream-colored powder was found to 

possess a l l of the chemical properties associated with the t o t a l l i g n i n 

and thus was termed Brauns Native L i g n i n (BNL). On account of i t s low 
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y i e l d , however, i t may be doubled whether BNL can be considered as re­

presentative f o r the bulk of the l i g n i n i n a l l respects (21). 

In 1951, Nord and Schubert (123) t r i e d to set the l i g n i n s 

of hardwood and softwood free for extraction with neutral solvents by 

removal of carbohydrates by biochemical decomposition. They u t i l i z e d 

the "brown-rotting fungi", one of two main types of fungi which decom­

pose the components of wood, to digest polysaccharides leaving l i g n i n 

more accessible to solvent extraction. Enzymatically liberated l i g n i n 

and BNL are outstandingly s i m i l a r , as proven by extensive studies by 

Nord and his co-workers (122,123,152). 

A few years l a t e r , Bjorkman (21) reported investigations on 

milled-wood l i g n i n (MLW), is o l a t e d from spruce by using a v i b r a t i n g b a l l 

m i l l i n the presence of a non-swelling solvent, such as toluene. 

Bjorkman's method i s based on the finding that about 30% of the l i g n i n 

becomes extractable with dioxane-water, i f wood i s suspended i n toluene 

and f i n e l y disintegrated i n a vibr a t o r y b a l l m i l l (21). A conventional 

rotary b a l l m i l l was introduced by Brownell (31) to overcome some disad­

vantages, such as poor y i e l d s and length of time required f o r Bjorkman's 

procedure. According to his method, the milled wood i s completely s o l ­

uble i n an aqeuous s o l u t i o n of sodium thiocyanate, and the l i g n i n i s 

liberated by various treatments, such as tr a n s f e r i n t o the organic phase 

by l i q u i d - l i q u i d p a r t i t i o n i n g . ( 3 1 ) . 

In 1979, Wegener and Fengel (167) used u l t r a s o n i c s to speed up 

the dioxane extraction of b a l l - m i l l e d wood i n t h e i r e l ectron microscopic 

studies of lignin-polysaccharide complexes. By using a modified Bjorkman's 
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procedure with shaking and u l t r a s o n i c extraction, t h e i r l i g n i n i s o l a t i o n 

method supplied highly reproducible y i e l d s of well defined l i g n i n s i n 

a reasonably short time. 

However, the best l i g n i n preparation now ava i l a b l e i s probably 

the c e l l u l o l y t i c enzyme l i g n i n , developed by Chang et_ a l . (35). They 

treated wood meal which had been m i l l e d under toluene with an enzyme , 

preparation possessing high c e l l u l o l y t i c and h e m i c e l l u l o l y t i c a c t i v i t i e s , 

and the l i g n i n was i s o l a t e d by extracting the digested material 

successively with aqueous dioxane. 

2.4.2 Lignins from i n d u s t r i a l pulping processes 

Lignins obtained from i n d u s t r i a l pulping processes are always 

heterogeneous i n nature. In a l l pulping processes the l i g n i n i s obtained 

i n aqueous s o l u t i o n along with spent cooking chemicals and other materials 

dissolved from the wood. These l i g n i n s are usually not sui t a b l e f o r 

fundamental studies because of the presence of extractives i n the o r i g i n a l 

wood chips. Ready a v a i l a b i l i t y of the l i g n i n s from i n d u s t r i a l pulping, 

however, caused these l i g n i n s to be used widely as experimental l i g n i n s , 

even without any p u r i f i c a t i o n (131). 

A c i d i f i c a t i o n of any of the commercial black l i q u o r s from the 

a l k a l i n e pulping, both k r a f t and soda processes, y i e l d s an a l k a l i l i g n i n . 

I s o l a t i o n of a l k a l i l i g n i n s , e s p e c i a l l y k r a f t l i g n i n s , was thoroughly 

reviewed by P e a r l and h i s co-workers i n a se r i e s of annual reviews (132). 
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In 1962, Merewether (117) investigated the p r e c i p i t a t i o n of 

l i g n i n from commercial Eucalyptus k r a f t black li q u o r s with acids and 

reported on the optimum conditions necessary f o r s a t i s f a c t o r y i s o l a t i o n 

He also studied k r a f t black l i q u o r s prepared i n the laboratory 

from e x t r a c t i v e - f r e e wood (117,118). The kra f t l i g n i n s d i f f e r from 

lignosulfonates i n that they are soluble only i n a l k a l i n e s o l u t i o n above 

a pH of approximately 9. 

The i n s o l u b i l i t y of k r a f t l i g n i n s i n a c i d i c s o l u t i o n has been 

overcome by Westvaco Corporation at Charleston, South Carolina (88) and 

a commercial l i g n i n "Indulin" has been produced i n three grades: 

I) Indulin C (crude sodium s a l t of l i g n i n ) , i i ) Indulin B ( p u r i f i e d 

sodium s a l t of l i g n i n ) and I i i ) Indulin AT ( a c i d i f i e d - l i g n i n ) . 

In 1980,Lundquist and Kirk (109) reported a simple p u r i f i c a t i o n 

procedure of an i n d u s t r i a l k r a f t l i g n i n , Indulin ATR-C by f r a c t i o n a t i o n 

through a serie s of l i q u i d - l i q u i d extractions. A f r a c t i o n which i s 

water-insoluble, chloroform-soluble and ether-soluble i s considered to 

be the p u r i f i e d k r a f t l i g n i n and i t accounts for more than 60% of the 

s t a r t i n g Indulin ATR-C. 

The spent l i q u o r s from s u l f i t e pulping processes contain more 

than 50% l i g n i n i n the form of l i g n o s u l f o n i c acids, which are mixed with 

sugars and other carbohydrate decomposition products, wood extractives, 

and pulping chemicals (131). Lignosulfonates have been i s o l a t e d from 

spent s u l f i t e l i q u o r s by a v a r i e t y of means. Most of the procedures f a l l 

w ithin a few general classes, including p r e c i p i t a t i o n as an insoluble basic 

lignosulfonate, s a l t i n g out with acids or s a l t s , p r e c i p i t a t i o n with alco­

hols and ion exchange ( 1 3 2 , 1 3 3 ) . 
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The most important way of i s o l a t i n g and p u r i f y i n g 

lignosulfonates i s the Howard process inaugurated by Marathon 

Corporation at Rothschild, Wisconsin (132). After removal of most of the 

s u l f i t e and s u l f a t e by lime addition to pH 10.5, more lime i s added 

to the f i l t r a t e to give a basic calcium lignosulfonate which p r e c i p i t a t e s 

i n the pH i n t e r v a l of 10.5 - 12.2. More than ha l f the lignosulfonates 

quantity can be recovered by t h i s process (84). 

2.4.3 Lignins from organosolv pulping 

Organosolv cooking of wood i n an aqueous organic solvent 

system with a proper ca t a l y s t at an elevated temperature provides an 

excellent procedure f o r simultaneous d i s s o l u t i o n and almost quantitative 

recovery of both sugar and l i g n i n f r a c t i o n s of wood. Organosolv pulping 

may be the only procedure which y i e l d s l i g n i n as a by-product of pulping 

process i n a le s s condensed state and free of inorganic contaminants(154). 

Since Klason used 5% HCl-ethanol to extract l i g n i n from 

spruce sawdust i n 1893, many investigators have reported on a wide 

v a r i e t y of organosolv lignins.-. In 1978 Paszner (129) reviewed a/large, 

number of papers" on organosolv pulping. Among the organic.solvents most 

frequently used are lower a l i p h a t i c alcohols, such as ethanol and butanol, 

ethylene g l y c o l , g l y c e r o l , dimethyl sulphoxide and dioxane. 

In an e a r l i e r study of various organic solvents that exhibit 

a c e r t a i n degree of solvent action on the i s o l a t e d l i g n i n s , Schuerch 

(97,153) showed that the a b i l i t y of solvents to dissol v e or swell the 
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i s o l a t e d l i g n i n s increases as the hydrogen-bonding c a p a c i t i e s of 

solvents increase and as t h e i r solubility-parameters ( £ ) approach a 

value of around 11. Although very powerful l i g n i n - s o l v e n t s , ketones, 

such as acetone ( S ~ 10), have not been used as often as lower 

a l i p h a t i c alcohols (129). 

A's early as 1931, K l e i n e r t and Tayenthal (96) introduced 

aqueous ethanol s o l u t i o n with hydrochloric acid as a cat a l y s t to cook 

wood above 150°C and obtained good y i e l d of c e l l u l o s e of low l i g n i n 

content. In 1936, Aronovsky and Gortner (10) c a r r i e d out a serie s of 

cooking on aspen sawdust and chips at constant pressure and i n the 

temperature range of 160° to 185°C with aqueous solution (1:1 r a t i o ) of 

various organic solvents such as methanol, ethanol, propanols (n-, iso-), 

butanols (n-, i s o - , t e r t - ), amyl alcohols (n-, i s o - , t e r t - ), dioxane 

and ethylene g l y c o l as cooking agents. They found that the normal 

primary alcohols were better pulping agents than the secondary or t e r t i a r y 

alcohols, and n-butanol yielded better pulp than was obtained with other 

solvents. However, when the same procedure was applied to pine, the 

r e s u l t of d e l i g n i f i c a t i o n was poor and no pulp was produced (149). It 

was l a t e r found that d e l i g n i f i c a t i o n of hardwoods was about twice as fast 

as that of the softwoods when cooks of. spruce and poplar sawdust were com­

pared (94). 

In a serie s of studies (93,94,95), K l e i n e r t investigated the 

k i n e t i c s of bulk d e l i g n i f i c a t i o n that apply generally to organosolv pul­

ping using aqueous ethanol solutions. I t was found that d e l i g n i f i c a t i o n 

proceeded i n two stages, an i n i t i a l f a s t bulk d e l i g n i f i c a t i o n followed 

by a slow removal of the remaining l i g n i n . K l e i n e r t also demonstrated 
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that aqueous solutions of ethanol were better d e l i g n i f y i n g agents 

than ethanol alone ( 9 3 , 9 4 , 9 5 ) . . The preferred pulping agents were 

mixture of ethanol and water i n the range between 20 to 75% ethanol by 

weight. 

K l e i n e r t also studied the influence of pH changes on 

organosolv pulping and reported that organic acids l i b e r a t e d i n the 

pulping process had an acc e l e r a t i n g e f f e c t upon d e l i g n i f i c a t i o n (94). 

In 1973, Kosfkova and P o l c i n reported on the influence of 

varying concentrations of added acid c a t a l y s t and water content i n the 

cooking l i q u o r on the y i e l d of extracted l i g n i n by aqueous solutions of 

dioxane (97). It was found that pure dioxane was able to dissolv e only 

very small amounts of l i g n i n from wood. Addition of acid c a t a l y s t 

such as HC1 increased the rate of d e l i g n i f i c a t i o n s i g n i f i c a n t l y (97, 

153). The i s o l a t i o n of l i g n i n with dioxane i s b a s i c a l l y an a c i d o l y t i c 

s p l i t t i n g of the lignin,macromolecule and a lignin-carbohydrate complex 

into i n d i v i d u a l components which are soluble i n dioxane. In previous 

inv e s t i g a t i o n s on wood a c i d o l y s i s , great importance was attached to the 

presence of a polar-solvent, mainly water, which s u b s t a n t i a l l y improved 

y i e l d s of the i s o l a t e d l i g n i n ( 1 2 1 , 1 3 5 , 1 5 3 ) . 

The p o t e n t i a l of recovering l i g n i n s from large scale organo­

solv pulping process i s very promising because of i t s many desirable 

properties. Among these, i t s high, s o l u b i l i t y i n the usual l i g n i n 

solvents such as ethanol, methanol, pyridine, chloroform, THF and acetone 

i s most important. The i s o l a t e d organosolv l i g n i n retains -it's good 

s o l u b i l i t y i n l i g n i n solvents-even a f t e r repeated p r e c i p i t a t i o n and'isO-

l a t i o n from the spent l i q u o r ( 3 7 , 3 9 ) . 



21 

2.5 Characterization of L i g n i n ,: . 

2.5.1 Degradation of l i g n i n 

D irect proofs of structure of native l i g n i n have been very 

lew because the polymeric l i g n i n involves many complex linkages. 

Nevertheless, the c h a r a c t e r i z a t i o n of l i g n i n . has evolved from 

degradation and synthetic i n v e s t i g a t i o n s . 

.2,5.1.1 Streng oxidation 

Strong oxidative degradation of methylated spruce l i g n i n with 

permanganate (68) y i e l d s methoxyl-substituted aromatic acids, v e r a t r i c 

acid (XIII), isohemipinic a c i d (XIV) and dehydro-diveratric acid (XV). 

The formation of isohemipinic a c i d (XIV) seemed to support the occurrence 

of o<-5 or ^-5 condensed structures and that of v e r a t r i c a c i d (XIII) 

i n d i c a t e d that noncyclic ether bridge between a side chain hydroxyl group 

and phenolic hydroxyl group of the adjacent unit were also important. 

OH OH OH OH 
i • • 

(xiii) (xrv) (xv) 



22 

Though the oxidation of l i g n i n with permanganate a f t e r 

methylation l e d to many i n t e r e s t i n g suggestions about the possible 

s t r u c t u r e of l i g n i n , the oxidation products f a i l e d to provide information 

concerning arrangement of side chains (144). 

2.5.1.2 Mild oxidation 

Mild o x i d a t i v e degradation method such as nitrobenzene i n the 

presence of hot a l k a l i produced s u b s t a n t i a l y i e l d s of aromatic aldehydes 

(20,136,159-); Spruce wood gave about 25% v a n i l l i n (XVI) based on the 

Klason l i g n i n content, whereas mixtures of v a n i l l i n and syringaldehyde 

(XVII) were obtained from hardwoods. In a d d i t i o n to these two aldehydes, 

grasses afforded p-hydroxybenzaldehyde (XVIII). These degradation 

reactions g i v i n g three major aldehydes became one of the 

most important t o o l s f o r the i n v e s t i g a t i o n of l i g n i n m aterials. Later, 

small amounts of p-hydroxybenzaldehyde (XVIII) were also found i n the 

oxidation mixtures from both softwoods and hardwoods (2).' 

o o o 

OH OH OH 
(XVI) (XVII) (XVIII) 
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In 1951, Stone and Blundell (159) published a simple 

procedure f o r the rapid microdetermination of aldehydes found i n the 

nitrobenzene oxidation of l i g n i f i e d materials. This method involved 

separating the aldehydes chromatographically on a paper s t r i p and 

thereby has become a valuable t o o l i n d i f f e r e n t i a t i n g between 

l i g n i f i e d and n o n - l i g n i f i e d materials. 

2.5.1.3 Ethanolysis 

Solvolysis methods applied to l i g n i n y i e l d derivatives of 

phenylpropane (I). Acid catalyzed ethanolysis of coniferous wood l i g n i n 

produces Hibbert's ketones (7,46,119,134) and i s considered to be one 

of the mildest methods to i s o l a t e arylpropane monomers from l i g n i n 

(100). A great many investigators applied t h i s ethanolysis technique 

to a variety of materials as quantitative and q u a l i t a t i v e a n a l y t i c a l 

methods. 

Hibbert and his co-workers (27,46,119) succeeded i n i s o l a t i n g 

several monomeric phenylpropane u n i t s , so-called Hibbert's ketones 

(XIX, XX, XXI, XXII), from spruce wood by refluxing with 2-3% ethanolic 

hydrochloric acid. 

(XIX) (XX) (XXI) (XXII) 
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The importance of g u a i a c y l g l y c e r o l - ^ - a r y l ether (XXIII), from which 

the phenolic Hibbert's monomers ori g i n a t e d during ethanolysis, has 

been recognized by numerous researchers. 

( X X I I I ) 

In 1952, Alder and h i s co-workers (5) synthesized dimeric phenylpropane 

compounds of j j - a r y l ether which was considered to be incorporated i n 

the l i g n i n macromolecule e i t h e r as end group or as an e a s i l y hydrolysable 

u n i t . They showed that Hibbert's ketones were formed through s p l i t t i n g 

of benzyl ether and jS-aryl ether bonds of l i g n i n . 

According to Gardner (70), Hibbert's ketones (XIX, XX, XXI, XXII) 

were derived from ethanolysis of a k e t o l , 3-hydroxy-l-(4-hydroxy-3-

methoxyl)-2-propanone (XXIV) v i a i t s enol (XXV). 

The side-chain structures of these Hibbert's ketones c e r t a i n l y 

had to be regarded as modifications of the o r i g i n a l structures caused 

by the a c i d during ethanolysis (2). Thus, the exact 7 nature of 

side-chains i n l i g n i n i s s t i l l an open question. 
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2.5.1.4 Hydrogenolysis 

Together, mild hydrolysis and c a t a l y t i c hydrogenolysis 

products from l i g n i n represent almost a l l the linkage patterns which 

e x i s t i n the enzymatic dehydrogenation products of c o n i f e r y l alcohol. 

C a t a l y t i c hydrogenolysis mainly cleaves ether linkages and reduces 

i n part the hydroxyls on side-chains (1,9,14,83,85,125,155). 

In 1938, Harris and h i s co-workers (85) hydrogenated aspen 

methanol l i g n i n i n dioxane under high temperature and high pressure of 

hydrogen over a copper-chromatic c a t a l y s t obtaining f a i r y i e l d s of 

monomeric propylcyclohexane d e r i v a t i v e s and i t was established that 

l i g n i n might be b u i l t up from C^(C^ - C^) u n i t s . This experiment also 

constituted the f i r s t p o s i t i v e proof that l i g n i n was predominantly 

aromatic i n character. 

Recently, dimers and trimers were i s o l a t e d from hydrogenolysis 

products of p r o t o l i g n i n and t h e i r structures were i d e n t i f i e d by means of 

u l t r a v i o l e t (UV) spectroscopy, i n f r a r e d (IR) spectroscopy, nuclear 

magnetic resonance (NMR) spectroscopy and mass spectroscopy (114,115,116, 

126). 

2.5.2 Spectroscopic studies on functional groups 

Most of the e a r l i e r studies on UV spectra, IRu-speetra and NMR 

spectra of l i g n i n , for determination of f u n c t i o n a l groups and linkages 

i n l i g n i n preparations, have been reviewed i n d e t a i l by Goldschmid (76), 

Hergert (86) and Ludwig (105), r e s p e c t i v e l y . 
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2.5.2.1 Benzyl alcohol and benzyl ether groups 

Since Holmber, i n the middle of 1930's, made the important 

suggestion that c h a r a c t e r i s t i c reactions of l i g n i n were reactions of 

benzyl alcohol or benzyl ether, numerous inv e s t i g a t i o n s by UV spectra 

(5,22), I R spectra (56,67) and NMR spectra (120) have lent support 

t h i s suggestion. The t o t a l amount of benzyl alcohol and benzyl ether 

per 100 Cg-units of spruce l i g n i n was estimated 24 groups (2,67). 

Benzyl alcohol and benzyl ether groups are known to be highly unstable 

under acid or a l k a l i n e conditions and therefore, they are almost l i k e l y 

absent i n most pulp l i g n i n s (120). 

2.5.2.2 Phenolic hydroxyl group 

In the middle of 1950's Aulin-Erdtman (11,12) and 

Goldschmid (77,111) c a r r i e d out ser i e s of studies independently to 

determine phenolic hydroxyl content of l i g n i n . I R spectral analyses by 

Alder and h i s co-workers (2,4) showed that phenolic hydroxyl groups of 

the l i g n i n u nits are l a r g e l y e t h e r i f i e d ( ot-aryl ether or |3 - a r y l 

ether structure) and determination of the amount of free phenolic 

hydroxyl groups should give a measure of the number of ether groups 

present. They reported that the amount ofC^-units with free phenolic 

hydroxyl group i n unaltered spruce l i g n i n ,1s ..less than. 20 per 100 
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Cg-units which means i n a great majority of the guaiacylpropane units 

(II) the phenolic hydroxyl group i s e t h e r i f i e d (4). 

2.5.2.3 Methoxyl group 

In 1967, Chang et a l . (147) showed that the 280. nm UV 

absorption maximum of reduced softwood and hardwood l i g n i n s c orrelates 

w e l l with the values of methoxyl groups vs. carbon r a t i o . They also 

reported that the c a l i b r a t i o n curves obtained from the r a t i o of the IR 

absorbance of the i n d i v i d u a l maxima from 1,600 cm ^ to 1,045 cm ^ and 

that of the maximum at 1,500 cm ^ can be used to determine the 

corresponding methoxyl group per Cg-unit of the l i g n i n . More recently 

Faix and Schweer (57) determined the methoxyl content per Cg-unit from 

the integrated NMR spectra of the acetylated l i g n i n polymer models. 

Their r e s u l t s showed that the c a l c u l a t i o n by NMR spectra gives a l i t t l e 

higher values than those obtained by the conventional methods. 

2.5.2.4 Carbonyl group 

Studies on the IR spectra of various l i g n i n s indicated the 

presence of minor amounts of conjugated as well as non-conjugated carbonyl 

groups (6,35). T o t a l number of carbonyl group i s known to be 20 per 100 

C q-units, of which ha l f was found to be conjugated•carbonyl groups (2,6). 
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2.5.3 Macromolecular properties of l i g n i n 

2.5.3.1 Molecular weight d i s t r i b u t i o n of l i g n i n 

The molecular weight of l i g n i n and i t s d i s t r i b u t i o n i s one 

of the most fundamental c h a r a c t e r i s t i c s of l i g n i n . The determination 

of molecular weight of l i g n i n macromolecules has been reviewed i n . . 

d e t a i l by Brauns (26) and Goring (81). 

In a serie s of studies (15,16,17) Benko characterized 

lignosulfonates by the d i f f u s i o n c o e f f i c i e n t method. He reported 

molecular weights of f r a c t i o n s obtained from a v a r i e t y of lignosulfonates 

and calculated a molecular weight d i s t r i b u t i o n curve from o p t i c a l density 

readings of the d i f f u s a t e . He also found that v i s c o s i t y measurements 

on i d e n t i c a l l i g n i n samples i n d i f f e r e n t solvents showed changes i n 

molecular weight values due to i n t e r a c t i o n of the dissolved l i g n o s u l -

fonates with the solvent (15). 

Marton and Marton (113), using a vapor pressure osmometer, 

obtained highly consistent number average molecular weights (Mn) of 

several k r a f t l i g n i n s . The Mn values they obtained, however, ranged 

from 900 to 2,500 and gave only a one-sided picture of the p o l y d i s p e r s i t y 

of l i g n i n . Therefore, i t s use f o r macromolecular ch a r a c t e r i z a t i o n of 

l i g n i n i s of l i m i t e d importance. 

In 1970,Brownell (30) measured the i n t r i n s i c v i s c o s i t i e s and . 

Mn values of fractionated m i l l e d wood l i g n i n . The r e s u l t s obtained 

suggested that the degree of branching was greater i n high molecular 
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weight (5,000 - 19,000) than i n low molecular weight (ca. 3,500) 

l i g n i n f r a c t i o n s . Because of the non-linear structure of l i g n i n , the 

i n t r i n s i c v i s c o s i t y depends not only on the molecular weight but 

also on the degree of c r o s s - l i n k i n g and the i n t e r a c t i o n of e l e c t r o s t a t i c 

charges on molecular chains (82,139). V i s c o s i t y measurements were, 

therefore, not very valuable i n molecular weight measurements of l i g n i n 

solutions. 

Goring and h i s co-workers (110), using the u l t r a c e n t r i f u g e 

method, determined weight average molecular weight (Mw) of kr a f t l i g n i n s 

prepared from spruce sawdust. They obtained Mw ranging from 1,800 to 

51,000. The disadvantage of the u l t r a c e n t r i f u g e method i s that the 

p o l y d i s p e r s i t y of l i g n i n s o l u t i o n a f f e c t s the sedimentation speed and 

thus the molecular weight r e s u l t s . Another d i f f i c u l t y i s the intense 

c o l o r of l i g n i n solutions, because the concentration gradients developed 

i n the u l t r a c e n t r i f u g e c e l l are usually detected o p t i c a l l y (81). 

Currently, the most r a p i d l y developing method i s gel permeation 

chromatography (GPC). Since i t s discovery i n 1959, GPC has gained 

r a p i d l y i n success because the molecular weight d i s t r i b u t i o n (MWD) can 

be determined quickly and e a s i l y . Depending on t h e i r s i z e , the l i g n i n 

macromolecules can d i f f u s e i n varying proportions into the porous volume 

of the column. Thus the e l u t i o n volume of any p a r t i c u l a r f r a c t i o n i s 

a function of the dimension of l i g n i n macromolecules and the siz e of the 

pores i n the gel (81). 
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A great many GPC investigations on l i g n i n have used 

dextran gels (Sephadex) (41,42,110,124,151,166,168) or agarose gels 

(Sepharose) (89,90) as the stationary phase for GPC to determine 

molecular weights and MWD of l i g n i n . Both types of gels (Sephadex 

gels and Sepharose gels) have c e r t a i n disadvantages. The 

Sephadex gels can be used only up to molecular weight of 100,000 (89) 
6 

and Sepharose gels up to 4 x 1 0 ( 9 0 ) . T h e l a t t e r contains charged groups 

which may i n t e r f e r e with the l i g n i n (89). Although the cross linked 

copolymer of styrene and divinylbenzene beads (Styragel) i s the most . 

commonly used column packing gel f o r high polymers (127), no a p p l i c a t i o n 

of t h i s g e l for l i g n i n macromolecules has been reported yet. 

2.5.3.2 Shape and size of l i g n i n molecules 

There are only a few papers describing l i g n i n investigations by 

electron microscopy, mostly connected with degradation of the c e l l wall 

or with the i n v e s t i g a t i o n of polysaccharides containing a c e r t a i n 

amount of l i g n i n (57,58,60,61,62,99). 

In 1963 Rezanowich e_t a l . (139) reported that the molecules 

of dioxane l i g n i n had s p h e r i c a l configuration i n s o l u t i o n . The 

sp h e r i c a l shape was also supported by agreement between the sedimentation 

equilibrium molecular weights and values obtained by s u b s t i t u t i o n of 

i n t r i n s i c v i s c o s i t y and d i f f u s i o n constant into an equation derived 

from the E i n s t e i n v i s c o s i t y r e l a t i o n s h i p for s p h e r i c a l p a r t i c l e s . 

The low i n t r i n s i c v i s c o s i t y of l i g n i n solutions suggested that l i g n i n 

molecules behave l i k e E i n s t e i n spheres i n s o l u t i o n (81). 
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Further evidence for the sphe r i c a l shape of l i g n i n 

macromolecules.. was provided by • electron micrographs of high 

molecular weight f r a c t i o n s of sodium lignosulphonates (138). 

A l k a l i l i g n i n s and organosolv l i g n i n s were found to behave inore l i k e 

E i n s t e i n spheres than the lignosulfonates (81). In 1978 Kosikova 

et a l . (99) confirmed that BNL and methanol l i g n i n from beech wood and 

MWL from spruce wood showed c h a r a c t e r i s t i c s p h e r i c a l aggregates of 

lignin-macromolecules. In their/electron: microscopic investigations 

on the above l i g n i n samples, they found that a l l these l i g n i n s 

. had c h a r a c t e r i s t i c structures of small sphe r i c a l p a r t i c l e s of about 

100 to 400 nm. . A s t a t i s t i c a l p a r t i c l e s i z e d i s t r i b u t i o n was 

reported for Bjorkman l i g n i n and BNL by Fengel (59). Further, his 

studies indicated l i t t l e , i f any, e f f e c t of the i s o l a t i o n method on 

granular shape and siz e d i s t r i b u t i o n of the above l i g n i n s . 

In summary, i t i s evident that most i s o l a t e d l i g n i n s e x i s t 

as high molecular weight f r a c t i o n s and show behavior i n s o l u t i o n cha­

r a c t e r i s t i c of E i n s t e i n spheres of microscopic to macroscopic size. 

The inside structure of such spheres has not been investigated yet. 
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3. MATERIALS AND METHODS 

The present i n v e s t i g a t i o n involved the i s o l a t i o n and limited 

chemical and physical c h a r a c t e r i z a t i o n of the organosolv l i g n i n s from ex­

t r a c t i v e - f r e e Douglas-fir sawdust. Dissolved sugars were not analyzed i n 

t h i s study. Nor were the pulps analyzed beyond t h e i r y i e l d and residual 

l i g n i n content. 

Though Douglas-fir was e x c l u s i v e l y used as the s t a r t i n g ma­

t e r i a l for t h i s thesis, other species were also investigated during the 

preliminary cooking experiments for comparative purpose and included sp­

ruce, aspen, birch, sugar cane and wheat straw ( 3 9 ) . 

The f r a c t i o n a t i o n of the l i g n i n s from organosolv cooking was 

done according to the scheme summarized i n Fig. 7 . D i f f i c u l t i e s were 

experienced with quantitative i s o l a t i o n of the water-soluble f r a c t i o n . 

For c h a r a c t e r i z a t i o n of the i s o l a t e d l i g n i n s , some of the 

most powerful tools available f or l i g n i n i n vestigations, such as high­

speed GPC, scanning electron microscopy (SEM) as well as UV, IR, and 

NMR spectrometries were employed. 

3.1 Materials 

3.1.1 S e l e c t i o n of s t a r t i n g material 

Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco,) sawdust 

served as s t a r t i n g material for t h i s study to i s o l a t e and characterize 

the l i g n i n s from organosolv cooking. Douglas-fir sawdust comprises a 

a s u b s t a n t i a l portion of the raw material supply for many pulp m i l l s i n 
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Douglas-fir sawdust 

1) Cook at 200° C. 
2) F i l t e r 
3) Wash with acetone 

F i l t r a t e s + Washings Residue 

-Evaporate acetone 

(Fiber) 

Aqueous s o l u t i o n S o l i d p r e c i p i t a t e s 

Residual l i g n i n 
(FRACTION I) 

1) Dilute with water 
2) F i l t e r / c e n t r i f u g e 
3) L i q u i d - l i q u i d ex­

t r a c t i o n 

1) Re-dissolve i n acetone 
2) P r e c i p i t a t e from water 
3) F i l t e r 
4) Wash with water 
5 ) Dry 

Water-insoluble l i g n i n 
(FRACTION II) 

Aqueous layer Organic layer 

Sugars,etc. 

-Evaporate organic solvent 

Water-soluble l i g n i n 
(FRACTION III) 

Figure 7. Frac t i o n a t i o n of l i g n i n from organosolv cooking. 
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i n the P a c i f i c Northwest (34) and i s r e a d i l y available i n large quanti­

t i e s . The fresh sawdust was obtained from the production l i n e of L & K 

Lumber, Ltd., North Vancouver, B r i t i s h Columbia. The Douglas-fir trees 

ware about 80 years old and originated from the P a c i f i c coastal region. 

The p a r t i c l e size of the sawdust (sp. gr.=0.42) selected 

for t h i s study covered a wide range. The r e s u l t s of a sieve analysis 

on p a r t i c l e s i z e d i s t r i b u t i o n of the a i r - d r y Douglas-fir sawdust sam­

ple are shown i n Table 1. 

Table 1. Sieve analysis of Douglas-fir sawdust. 

Sieve size(mesh) <10 10-20 20-40 40-60 60-80 >80 Total 

Frequency(%) 30,9 36. 7 21.9 6.3 1.6 2. 6 100 

The f r a c t i o n accepted for t h i s study was that passed through 

a 10-mesh sieve and retained on a 40-mesh sieve, which constituted about 

60% (based on a i r - d r y weight) of the f r e s h sawdust c o l l e c t e d . 

3.1.2 Preparation of e x t r a c t i v e - f r e e sawdust samples 

In order to obtain e x t r a c t i v e - f r e e sawdust as cooking material, 

the a i r - d r y sawdust sample was extracted with a mixture of 95% ethanol and 

benzene (1:2 by volume) i n a large Soxhlet extractor for 8 hours followed 

by extraction with 95% ethanol for 40 hours (a modified procedure of TAPPI 

Standard T12m-59). The content of alcohol-benzene extractives was found 
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to be 3,9%, of oven-dry un-extracted sawdust. 

After proper washing with ether and a i r - d r y i n g , the extrac­

t i v e - f r e e sawdust sample was stored i n the CTH room (21°C/50%'RH) before 

moisture content was determined. The moisture content of the ex t r a c t i v e -

free sawdust was 9.44%. Analysis of chemical composition of the extrac­

ted sawdust was also c a r r i e d out, and the r e s u l t s are given i n Table 2. 

3.1.3 Preparation of organosolv l i g n i n samples 

A 5 g ("oven-dry. basis) portion of the e x t r a c t i v e - f r e e saw­

dust sample was placed i n a 65 ml capacity s t a i n l e s s s t e e l bomb-diges­

ter along with 50 g of cooking l i q u o r (wood/liquor ratio=l:10). The 

cooking l i q u o r consisted of acetone and water (60:40 by volume), with 

various concentrations of hydrochloric acid as the c a t a l y s t . 

Cooking was carried out i n a glycerine-bath equipped with 

Universal Relay (Type R-10), PTR-Electronic Controller (Type R-20/2) 

and P-120 E l e c t r o n i c Programmer, for the desired periods of time at 

200°C. Each cook was duplicated to obtain r e p l i c a t e y i e l d s of pulp 

and l i g n i n f r a c t i o n s . 

After cooking, the undissolved l i g n o c e l l u l o s i c residue 

was separated from the spent l i q u o r by vacuum f i l t r a t i o n and washed 

with acetone (ca. 100 ml). The residue was slushed with acetone 

(ca. 300 ml) i n a blender at a low speed for further d i s i n t e g r a t i o n 

to remove the trapped l i g n i n . The s l u r r y was f i l t e r e d and washed 

with fresh acetone (ca. 200 ml). 

The r e s i d u a l f i b e r s were then dried i n an oven at 105+3°C 

and pulp y i e l d and the r e s i d u a l l i g n i n (FRACTION I ) were determined. 
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The combined s o l u t i o n of f i l t r a t e s and washings was evaporated on a 

f l a s h evaporator at 50°C to obtain dark brown mass (a quasi-molten 

•phase) of crude l i g n i n and a cl e a r yellowish aqueous s o l u t i o n which 

contained sugars and water-soluble l i g n i n (FRACTION I I I ) . 

The dark brown l i g n i n mass was redissolved i n a minimum 

amount of acetone (ca. 20 ml) and pre c i p i t a t e d into an excess amount 

of d i s t i l l e d water (1,000 ml) with vigorous s t i r r i n g . The water-in­

soluble l i g n i n p r e c i p i t a t e s were c o l l e c t e d by vacuum f i l t r a t i o n and 

washed thoroughly with warm (40-45°C) water. This powdered water-

insoluble organosolv l i g n i n (FRACTION II) was dried over phosphoric 

anhydride i n a desiccator placed i n an oven at 50°C. 

3.1.4 Preparation of acetylated l i g n i n samples 

Acetylation of the is o l a t e d organosolv l i g n i n samples was 

done by the method used by DeStevens and Nord (48). 

The l i g n i n sample (0.4 g) was dissolved i n pyridine (6 ml), 

and acetic anhydride (5 ml) was added to the s o l u t i o n with s t i r r i n g . 

The mixture was then allowed to stand for 48 hours at room temperature 

and centrifuged at a rotor-speed of 12,000 rpm for 15 minutes. The 

cle a r s o l u t i o n portion was separated from the fine p r e c i p i t a t e s and 

poured into ice-water (200 g) to p r e c i p i t a t e the acetylatedr l i g n i n . 

The p r e c i p i t a t e s were c o l l e c t e d by vacuum f i l t r a t i o n through a M i l l i -

pore f i l t e r (pore size:0.2 um) and washed with 0.1 N hydrochloric acid 

(100 ml) to neut r a l i z e any remaining pyridine. The acetylated l i g n i n 

was then washed with d i s t i l l e d water several times u n t i l the f i l t r a t e 

was no more a c i d i c and dried over phosphoric anhydride at 50°C as men­

tioned above. 
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3.1.5 Preparation of reduced l i g n i n samples 

Borohydride-reduced l i g n i n samples were prepared by a modi­

f i e d method of the procedures adapted by Alder ejt al. (4) and Gierer e_t 

a l . (72). 

The i s o l a t e d l i g n i n (0.12 g) was dissolved i n a mixture of 

ethanol (8 ml) and 0.1 N sodium hydroxide (2 ml) under nitrogen atmos­

phere. Sodium borohydride (0.04 g) and a d d i t i o n a l water (4 ml) were 

added to the mixture with s t i r r i n g . The reaction mixture was allowed 

to stand overnight and a c i d i f i e d to pH 2 with d i l u t e hydrochloric acid. 

The p r e c i p i t a t e s formed were co l l e c t e d by centrifuging and washed with 

water several times. The reduced l i g n i n was then dried over phosphoric 

anhydride at 50°C. 

3.2 Methods 

3.2.1 Analysis of l i g n i n f r a c t i o n s 

3.2.1.1 Klason l i g n i n 

To determine acid-insoluble Klason l i g n i n content of the 

e x t r a c t i v e - f r e e sawdust, the procedure described i n TAPPI Standards . 

T13 os-54 was followed. A modified secondary hydrolysis with 3% s u l ­

f u r i c acid was used by t r e a t i n g the reaction mixture i n an autoclave 

under pressure of 20 psig steam pressure and 127.5°C f o r 1 hour. 

The insoluble residue (Klason l i g n i n ) was c o l l e c t e d by 

vacuum f i l t r a t i o n on a medium porosity glass c r u c i b l e , dried at 105 

+3°C and weighed. The f i l t r a t e from the f i l t r a t i o n was saved for the 
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determination of acid-soluble l i g n i n content. 

3.2.1.2 Acid-soluble l i g n i n 

The acid-soluble l i g n i n was determined according to TAPPI 

Useful Method 250. The acid solution, which contained the acid-soluble 

l i g n i n , was obtained from the Klason l i g n i n determination. 

The maximum UV absorbance of the acid s o l u t i o n was measured 

around 205 nm and used for c a l c u l a t i o n of acid-soluble l i g n i n content 

by using the following equation (TAPPI UM 250). A Unicam SP 800 Spec­

trophotometer was used to obtain the UV spectrum. 

T . . „ B x V x 100 Lignin, /o = —• 
1000 x W 

where V = t o t a l volume of s o l u t i o n (ml) 

W = oven-dry weight of wood (g) 

B = l i g n i n content (g/lOOOml) and 

B can be calculated by: 

B - A X D 

110 

where A = UV absobance 

D = d i l u t i o n factor 

3.2.1.3 Residual l i g n i n 

The r e s i d u a l l i g n i n content (FRACTION I) i n the f i b e r residue 

was determined by the micro Kappa number method described i n TAPPI Useful 
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Method 246. Sample preparation was done according to TAPPI Stan­

dards T 236 m-76. The r e s i d u a l l i g n i n i n the pulp was computed from 

the following equation (32): 

Residual l i g n i n , % = Kappa number x 0.15 

3.2.1.4 Water-soluble l i g n i n and degradation products 

The aqueous portion, following evaporation of the organic 

solvent of the cooking liquor, was separated and d i l u t e d to 100 ml with 

d i s t i l l e d water. In order to separate the water-soluble l i g n i n from 

the dissolved sugars, the yellowish aqueous sol u t i o n was extracted 

with chloroform i n a s p e c i a l l y designed l i q u i d - l i q u i d extractor. 

The organic layer from the e x t r a c t i o n was concentrated to about 10 ml 

on a rotary evaporator at 50 + 5°C and a t h i n - l a y e r chromatography 

(TLC) sample was taken from the concentrated s o l u t i o n at t h i s stage. 

The evaporation of the organic layer was continued u n t i l a highly v i s ­

cous syrup-like residue (FRACTION III) was obtained. 

A small portion (0.1-0.5 g) of the water-soluble l i g n i n 

(FRACTION I I I ) , which was not r e a d i l y soluble i n neutral water or met­

hanol, was re-dissolved i n acetone (15 ml) and d i l u t e d to 50 ml with 

methanol. The c l e a r s o l u t i o n was concentrated on a rotary evaporator 

at a low temperature (40°C) to remove the acetone. To remove any re­

maining acetone, a large amount (caP 50 ml) df methanol was -added to the 

sample and concentrated again.. This procedure was repeated several times 

u n t i l no detectable acetone by UV absorption remained. 

The acetone-free methanol sol u t i o n was then d i l u t e d to the 

desired concentration with methanol and UV spectrum was taken on a Uni-
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cam SP 800 Spectrophotometer. The c a l c u l a t i o n for the water-soluble 

l i g n i n content was e s s e n t i a l l y the same as that suggested by TAPPI 

Useful Method 250, but methanol was used as reference instead of 3% 

s u l f u r i c acid. 

Q u a l i t a t i v e TLC analysis was conducted by the methods 

described by K r a t z l and Paszner (100) and Barton (13) with minor 

modifications, using TLC glass plates (20 cm x 20 cm) coated with 

0.25 mm thick S i l i c a Gel G. Benzene-acetone (60:40), methanol-

chloroform (30:70), benzene-ethanM (150:22) and benzene-chloroform-

methanol (70:28:2) were used as developing systems. 

The plates were f i r s t examined under UV l i g h t and the 

spots were i d e n t i f i e d by t h e i r R^ values and colors developed upon 

spraying with the various reagents. The spraying reagents used 

were Folin-Denis reagent (100) and diazotized s u l p h a n i l i c acid (13). 

To detect the presence of carbonyl groups and Hibbert's ketones, 

2,4-dinitophenyl hydrazine (80) and f e r r i c chloride-potassium f e r -

ricyanide reagents (70) were also used. 

3.2.2 Chemical analyses of i s o l a t e d organosolv l i g n i n s 

Some equipment, such as elemental analyzer, was not d i r e c ­

t l y accessible f or the present study. Due to the limited funds a v a i l ­

able for r e n t a l , a minimum number of acetylated or reduced organosolv 

l i g n i n samples, representing series of two cooking variables (cooking 

time and acid c a t a l y s t concentration), were selected for the extensive 

chemical c h a r a c t e r i z a t i o n of the is o l a t e d organosolv l i g n i n s . 

For cooking time series, selected samples PC-11 (5 min), 
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PC-12 (9 min), PC-13 (12 min), PC-14 (17 min) and PC-15 (20 min), a l l 

prepared with the same concentration of aeid c a t a l y s t (0.05 N H G 1 ) , -

and for acid concentration series, PC-9 (0.025 N HC1), PC-14 (0.05 N 

HC1) and PC-19 (0.1 N HC1), a l l of the same cooking period (17 min), 

were selected for elemental and s p e c t r a l analyses. 

These selected samples were part of the complete experi­

mental scheme for both cooking time and acid concentration series, 

which w i l l be presented l a t e r (Table 3) i n connection with discussion 

of the e f f e c t of various cooking conditions on l i g n i n y i e l d . 

3.2.2.1 Elemental analysis and methoxyl content determination 

The elementary composition of the acetylated l i g n i n was 

determined by standard methods of organic combustion analysis for 

per cent carbon and hydrogen contents based on the freeze-dry l i g n i n 

samples. 

A small amount(0.7 mg) of the freeze-dried acetylated l i g ­

n i n sample was weighed i n a t i n container loaded into the sample hol­

der and injected i n t o a combustion reactor at 1,010°C. The combus­

t i o n gases were carried by a constant flow of helium through to the 

c a t a l y t i c section of the reactor for complete oxidation to CO^, Ĥ O, 

N„ and N 0 . The gas mixture flowed into a second reactor kept at 2 x y 

644°C which was f i l l e d with copper for reduction of the nitrogen oxides. 

The gas mixture was then directed into a chromatographic column for N^, 

CO^, Ĥ O separation. The gas components were q u a n t i t a t i v e l y ana­

lyzed by a thermal conductivity detector. The machine used was an 
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Elemental Analyzer-Model 1106 equipped with Model CSI 38-Digital 

Integrator. 

For the determination of the methoxyl content of the 

i s o l a t e d l i g n i n and e x t r a c t i v e - f r e e sawdust samples, TAPPI Standards 

T209 su-72 was followed with a few modifications. The t e s t specimens 

(0.1 g for l i g n i n ; 0.3 g for sawdust) were reacted with 56.6% 

hydroiodic a c i d (6 ml) and propionic acid (2 ml) at 150°C for 40 

minutes. The resultant methyl iodide was removed from the reaction 

f l a s k by a current of nitrogen and oxidized i n an a c i d i c s o l u t i o n of 

potassium acetate containing bromine to give i o d i c a c i d . 

The i o d i c a c i d was determined by t i t r a t i o n with 0.1 N sodium 

t h i o s u l f a t e . The methoxyl content was then calculated by the following 

equation (TAPPI T 209 su-72). 

v i v 0.0517 (A - B) Methoxyl, % = — w 

where, A = volume of 0.1 N N a2^2^3 so-'-ut:'-on required for 

specimen (ml) 

B = volume of 0.1 N Na^S^O^ so l u t i o n required for 

blank (ml) 

W = moisture-free weight of the specimen (g). 

3.2.2.2 U l t r a v i o l e t spectra 

The UV spectra for the i s o l a t e d l i g n i n and the reduced l i g n i n 

samples were recorded with a Unicam SP 800 Spectrophotomer. The 
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procedure selected for the determination of the phenolic hydroxyl 

group was the method of Goldschmid (77). 

The i s o l a t e d l i g n i n sample (0.2 g) was dissolved with gentle 

heating (50-60°C) i n pH 12 buffer s o l u t i o n (100 ml) which was made 

of 6.2 g of boric acid i n 1,000 ml of 0.1 N sodium hydroxide. A portion 

of t h i s l i g n i n s o l u t i o n (2 ml) was d i l u t e d to 50 ml with pH 12 buffer 

s o l u t i o n ( a l k a l i n e s o l u t i o n ) , and another portion (2 ml) was neutralized 

with 0.1 N s u l f u r i c acid (2 ml) and d i l u t e d to 50 ml with pH 6 buffer 

s o l u t i o n (neutralized s o l u t i o n ) . 

The d i f f e r e n t i a l spectrum was determined by measuring the 

absorbance of the a l k a l i n e s o l u t i o n r e l a t i v e to that of the neutralized 

s o l u t i o n which was placed i n the reference c e l l of the spectrophotometer 

as the blank. 

Phenolic hydroxyl groups were estimated by using the 

following equation (77). 

Phenolic hydroxyl, % = A x 17/41 
a, max 

where A = a b s o r p t i v i t y d i f f e r e n c e at maximum peak a,max 
(1/g.cm). 

3.2.2.3 Infrared spectra 

IR spectra of the borohydride-reduced l i g n i n samples were 

obtained with a Perkin-Elmer 521 Spectrophotometer with. an. extended 



45 

range interchange which can eliminate the environmental problems, 

such as s e n s i t i v i t y to moisture and temperature. The frequency 

range was 4,000 cm ^ to 250 cm \ with accuracy of + 0.5 cm ^ and 

r e p r o d u c i b i l i t y of 0.25 cm \ 

The procedure followed was s i m i l a r to the method adapted 

by Naveau (121). The KBr p e l l e t s were made by mixing the reduced 

l i g n i n (4 mg) and potassium bromide (200 mg) and pressing under a 

pressure of 12,000 p s i into a 1 cm diameter p e l l e t . 

3.2.2.4 Nuclear magnetic resonance spectra 

NMR spectra of the acetylated l i g n i n samples were obtained on 

a Varian EM-390 90 mHz NMR Spectrometer. 

The acetylated l i g n i n (ca. 10 mg) was dissolved i n deutero-

chloroform (300 jul ) and f i l t e r e d through glass wool into a 5 mm 

thin-wall sample tube. Tetramethylsilane (TMS) was added as an 

i n t e r n a l reference standard. Sweep width was 10 ppm and sweep time 

was 2 minutes. Spectrum amplitude varied from 5000 to 6000. The integ­

r a t i o n of the spectrum was "recorded to obtain the r e l a t i v e peak areas. 

3 .2.3 Macromolecular analyses of i s o l a t e d organosolv l i g n i n s 

3 . 2.3 . 2 Gel permeation chromatography 

GPC r e s u l t s were obtained on a high-speed GPC, Water Associates 

Model ALC/GPC-201 equipped with a d i f f e r e n t i a l r e f r a c t i v e index detector. . 
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The acetylated l i g n i n sample (25 mg) was dissolved i n 

tetrahydrofuran (5 ml) to make about 0.5% s o l u t i o n . To minimize 

the p o s s i b i l i t y of viscous f i n g e r i n g , the s o l u t i o n was f i l t e r e d 

through two M i l l i p o r e f i l t e r s (pore s i z e : 0.45 Jll m). 

The i n j e c t i o n of the sample (250 jul ) was done with the 

aid of a Model U6K u n i v e r s a l i n j e c t o r . The separation of f r a c t i o n s 

with d i f f e r e n t molecular weights was accomplished through a seri e s 

of four columns packed with d i f f e r e n t sizes of highly porous gel p a r t i c l e s 

(^t-Styragel). The columns used were 10 A , 10 A , 500A and 100A 

for molecular weights of 10,000-200,000, 1,000-20,000, 50-10,000 and 

0-700, re s p e c t i v e l y . The pressure of the flowing solvent system was 

1,000 p s i and the flow rate was 1 ml per minute. 

The d i f f e r e n t i a l refractometer detected a change i n 

r e f r a c t i v e index as small as 10 7 Rl units which corresponds to a 

concentration change of 1 ppm of l i g n i n sample. An X-Y recorder 

converted the d i f f e r e n t i a l refractometer s i g n a l to a continuous trace 

on the chart. The time required for a complete run was about 50 mi-

nutes. To construct a c a l i b r a t i o n curve, the detector count number 

was p l o t t e d on the X-axis against the corresponding value of a known 

molecular weight on the logarithmic Y-axis on semi-log paper (Fig. 8). 

To c a l c u l a t e the weight average molecular weight (Mw) and 

the number average molecular weight (Mn), peak height of each count 

number was measured and the p o l y d i s p e r s i t y was expressed by the r a t i o 

of Mw/Mn. ,r Mw and Mn were calculated by the following equations ,(8). ; 
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Figure 8. GPC c a l i b r a t i o n curve. 
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Mn= Z w /EHh 

where, H = height of peak of each count number 

M = molecular weight converted from count number 
(from c a l i b r a t i o n curve, F i g . 8) 

Two selected sample series, PC-11, 12, 13, 14 and 15 for 

cooking time and PC-9, 14 and 19 for acid concentration s e r i e s , were 

investigated for GPC analysis of the iso l a t e d organosolv l i g n i n s . 

3.2.3.2 Scanning electron microscopy 

An ETEC Autoscan SEM was used to investigate the nature of 

the p a r t i c l e s of the acetylated l i g n i n samples. The primary beam 

voltage applied was 20 KV. 

The SEM specimen was prepared by d i s s o l v i n g a small amount 

(0.01 g) of the acetylated l i g n i n sample i n acetone (1 ml) and the 

sol u t i o n was added drop by drop to d i s t i l l e d water (ca. 8 ml) with 

vigorous s t i r r i n g and d i l u t e d to 10 ml with d i s t i l l e d water. 

One drop of the suspension was put on a M i l l i p o r e 

f i l t e r and a i r - d r i e d . In order to prevent e l e c t r o s t a t i c charging, 

a t h i n gold f i l m was deposited on the surface of the specimen. 

The specimens thus prepared were observed by SEM and photographed 

with a Polaroid 545 Camera at 20,000 magnification. 

The samples used for the SEM i n v e s t i g a t i o n were exactly 

the same as those used i n the GPC analysis. 
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4. RESULTS 

The chemical composition of the e x t r a c t i v e - f r e e Douglas-

f i r sawdust i s presented i n Table 2. The contents of »<-cellulose, 

hemicellulose, Klason l i g n i n and acid-soluble l i g n i n were not cor­

rected f o r ash content which i s about 0.2% for Douglas-fir wood (141). 

Table 2 also includes methoxyl content of the e x t r a c t i v e - f r e e sawdust. 

The y i e l d s of pulp and l i g n i n f r a c t i o n s are tabulated i n 

Table 3 . The y i e l d s of pulp and the i s o l a t e d organosolv l i g n i n (FRAC­

TION II) are further plotted against cooking time and acid concentra­

t i o n i n Figs. 9 and 11, respectively. F i g . 10 shows temperature r i s e 

i n s i d e the bomb-digester, which was measured by copper-constantan 

thermocouple, during a prolonged period ( 3 0 min) of cooking. The re­

s u l t s of preliminary cooking experiments with various wood species 

are presented i n Table 4. Changes i n pH value of the cooking li q u o r s 

with various concentrations of acid c a t a l y s t , before and a f t e r cooking 

for 20 minutes, are compared i n Table 5. 

Table 6 indicates c h a r a c t e r i s t i c TLC colors and R^ values 

of the known degradation compounds and phenolic model substances which 

are most l i k e l y present i n the spent cooking liquor. TLC r e s u l t s , ob­

tained from PC-15 (0.05 N HC1;20 min. cook) a f t e r removing the sugars 

from the spent liquor, are presented i n Table 7. 

Table 8 presents the elementary compositions of some se­

l e c t e d acetylated l i g n i n samples representing several cooking time 

and acid concentration series. Methoxyl contents of the selected 

acetylated l i g n i n samples and t h e i r parent l i g n i n s are also given i n 

the same table. 
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F i g . 12 demonstrates a t y p i c a l NMR spectum of the a c e t y l - . 

ated organosolv l i g n i n from e x t r a c t i v e - f r e e Douglas-fir sawdust with 

d e s c r i p t i o n of each region of the spectrum. Assignments of the s i g n a l 

regions are l i s t e d i n Table 9. Figs. 13-19 reproduce the NMR spectra 

of the selectedr acetylated l i g n i n samples. Comparison of these NMR 

spectra i s i l l u s t r a t e d i n Fig. 20. From each NMR spectrum, the r e l a ­

t i v e i n t e n s i t i e s of various proton types were obtained and the r e s u l t s 

are computed i n Table 10. From these values, contents of the various 

fu n c t i o n a l groups i n l i g n i n molecules were estimated and the r e s u l t s 

are expressed as the number of fu n c t i o n a l groups per C^-unit of l i g n i n 

molecule i n Table 11. 

E f f e c t s of cooking time and acid concentration on the IR 

spectra of the selected reduced organosolv l i g n i n samples are compared 

i n Figs. 21 and 22, respectively. Assignments of absorption bands i n 

the IR spectra are tabulated i n Table 12. 

Fig. 23 presents the difference curve of UV absorption of 

the selected reduced l i g n i n samples. From maximum peaks of the d i f ­

ference curve, the molar a b s o r p t i v i t y was measured for each sample and 

the r e s u l t s along with the calculated phenolic contents are given i n 

Table 13. 

The values of Mw and Mn as well as the p o l y d i s p e r s i t y i n ­

dices obtained from GPC analysis are presented i n Table 14. E f f e c t 

of cooking conditions on Mw and Mn of the selected, acetylated l i g n i n 

samples are summarized i n four diagrams i n F i g . 24. Comparative mole­

cular weight d i s t r i b u t i o n s , as affected by cooking time and acid cata­

l y s t concentration,are i l l u s t r a t e d i n Figs. 25 and 26, respectively. 



51 

Scanning electron photomicrographs depicting p a r t i c l e size 

v a r i a t i o n of the uniformly p r e c i p i t a t e d l i g n i n s as affected by cooking 

time and acid concentration are shown i n Figs. 27 and 28, respectively. 

Changes i n p a r t i c l e s i z e due to varying cooking time and concentration 

of acid c a t a l y s t are shown i n Table 15 by tabulating p a r t i c l e size f r e -
o 

quency d i s t r i b u t i o n s of the acetylated l i g n i n samples. From the data, 

p a r t i c l e s i z e d i s t r i b u t i o n diagrams for 'the cooking time and acid con­

centration series were constructed and are presented i n Figs. 29 and 

30, respectively. 
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5. DISCUSSION 

In the present study, the main objectives were to i s o l a t e 

the p r e c i p i t a b l e organosolv l i g n i n from Douglas-fir sawdust and to 

characterize i t s chemical and macromolecular properties. For t h i s 

reason, only b r i e f treatment was given to other f r a c t i o n s , such as 

water-soluble l i g n i n or degradation products of l i g n i n , without mak­

ing a serious e f f o r t i n completing the picture. 

No analysis was conducted to investigate the dissolved 

carbohydrates (hemicelluloses and glucose). Such sugar ana­

l y s i s was^ carried out e a r l i e r and the r e s u l t s were published (36, 

37), and thus was not considered as part of the present study. 

5.1 Chemical Composition of E x t r a c t i v e - f r e e Douglas-fir Sawdust 

As shown i n Table 2, the average l i g n i n content of the 

e x t r a c t i v e - f r e e Douglas-fir sawdust was found to be 31.81 7», based 

on the oven-dry e x t r a c t i v e - f r e e sawdust, or 30.66 %, based on the 

oven-dry unextracted sawdust. While most of the recorded l i g n i n 

contents of Douglas-fir l i e between 27-29 %, a substantial v a r i a ­

t i o n (24.5-33.5 7») i n the content has also been reported (148). 

Such a v a r i a t i o n e x i s t s not only between members of a single spe­

c i e s grown under d i f f e r e n t environmental conditions or from d i f ­

ferent seed source, but also within incremental growth zones of a 

single tree (170). Since the sawdust used i n the present study 

was obtained from an i n d u s t r i a l lumber production l i n e , i t was not 
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Table 2. Chemical composition of e x t r a c t i v e - f r e e Douglas-fir sawdust. 

Wood component Amount ( % ) a Test method used 

Holocellulose 68.19 b (65. 74) C Acid c h l o r i t e method 

o<-cellulose 43.04(41.49) TAPPI T203 os-61 

Hemicellulose 25.15(24.25) 

Li g n i n 31.61 (30.66) 

Klason l i g n i n 31.50(30.37) TAPPI T13 os-54 

Acid-soluble l i g n i n 0.31(0.29) TAPPI UM 250 

Weight l o s s ( E x t r a c t i v e s ) - (3.60) 

Tot a l 100(100) 

Methoxyl content 5.19(5.00) TAPPI T209 su-72 

Not corrected f o r ash content. 
'Percentage values based on oven-dry e x t r a c t i v e - f r e e sawdust. 
Percentage values in-parentheses based on oven-dry unextracted 
sawdust. 
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possible to trace the natural o r i g i n of the r e l a t i v e l y high l i g n i n con­

tent. Klason l i g n i n , which was 31.50 % of the e x t r a c t i v e - f r e e oven-dry 

sawdust, accounted for 99.06 % of t o t a l l i g n i n , whereas the acid-soluble 

l i g n i n f r a c t i o n was less than 1 % of the t o t a l l i g n i n content. 

The contents of <<-cellulose and hemicellulose of the extrac­

t i v e - f r e e sawdust were found to be 43.04 % and 25.15 %, re s p e c t i v e l y 

(Table 2). The c e l l u l o s e content of softwoods was reported to be be­

tween 41-45 % (141, 160) and i t i s also well known that higher or low­

er values indicate the presence of reaction wood (160). Kennedy and 

Jaworsky (92) reported that no f u l l y s a t i s f a c t o r y explanation for a 

v a r i a t i o n i n c e l l u l o s e content of Douglas-fir (70 to 85 years old) 

could be found i n spite of thorough analyses on crown cl a s s , s i t e , ra­

d i a l p o s i t i o n , growth rate and per cent summerwood. However, i t was 

suggested that most of the v a r i a t i o n i n c e l l u l o s e content could be at­

tributed to inherent genetic c h a r a c t e r i s t i c s of i n d i v i d u a l trees. Con­

sid e r i n g the fact that the c o l l e c t e d sawdust was a mixture of a l l pos­

s i b l e cases, the r e s u l t of <<-cellulose content (43.04 % ) , which i s very 

close to the reported average value, i s quite normal. 

The weight loss of o r i g i n a l sawdust due to alcohol-benzene 

extraction, which can be considered to be the content of extraneous 

substances extracted was found to be 3. 60 7» of the unextracted sawdust. 

This value i s s l i g h t l y lower than the recorded value of 4.4 7» (141). 

The reason f o r t h i s may be explained by the fact that extractive depo­

s i t s i n s i d e lumens can not be completely extracted even with prolonged 

alcohol-benzene e x t r a c t i o n (91). 
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The methoxyl content of the e x t r a c t i v e - f r e e sawdust was 

found to be 5.0%, which i s well within the reported range of 4.97-

5.67%, for Douglas-fir wood (148,170). 

5.2 I s o l a t i o n of Organosolv Lignins 

As mentioned e a r l i e r , no method by which p r o t o l i g n i n can 

be i s o l a t e d i n an unchanged state has yet.been developed. Isolated l i g ­

nins from organosolv pulping or s a c c h a r i f i c a t i o n processes seem to be 

the only l i g n i n s which can be generated on a large scale, i n a less-con­

densed state and free of organic or inorganic impurities (154). 

It i s known that i s o l a t i o n of l i g n i n from wood by acid-

catalyzed organosolv cooking i s e s s e n t i a l l y an acid hydrolysis of 

polymeric l i g n i n molecules and of the lignin-carbohydrate matrix (97, 

121,169). The a c i d i f i e d organosolv cooking system i s far more e f f i ­

c ient i n d e l i g n i f i c a t i o n and sugar hydrolysis than aqueous acid 

hydrolysis due to superior penetration power of the organic solvent 

and simultaneous d i s s o l u t i o n of a l l hydrolysed products, including 

l i g n i n . In order to find the optimum composition of the aqueous 

organic cooking liquor, not only the y i e l d of l i g n i n s , but also so­

l u b i l i t y of the i s o l a t e d l i g n i n s i n various solvent systems were com­

pared. The optimum composition of the cooking l i q u o r was found to 

be an acetone-water system with a r a t i o of 3:2 by volume. 

Acetone was chosen as the organic component:of the aqueous 

organic solvent system because of i t s excellent solvent power for the 

polymeric l i g n i n fragments. It i s reported that the a b i l i t y of s o l ­

vents to dissolve an a c i d o l y t i c a l l y attacked l i g n i n macromolecule or 

lignin-carbohydrate complex increases as t h e i r s o l u b i l i t y parameter 
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( 6 ) approaches the value of around 11 (153). Acetone has a value of 

^"=10, i . e . i t i s very close to the optimum value for l i g n i n s o l u b i l i ­

ty. For the simultaneous removal of liberated l i g n i n f r a c t i o n s during 

acid hydrolysis, a solvent having such high s o l u b i l i t y parameter must 

be chosen (97,129,153). 

Aft e r cooking, there are several choices available for i s o ­

l a t i o n of the dissolved l i g n i n s from organosolv spent cooking liquor. 

While perhaps d i r e c t p r e c i p i t a t i o n of the spent l i q u o r i n t o an excess 

(8 to 15 volumes) of d i s t i l l e d water i s the easiest way, the recovered 

l i g n i n f r a c t i o n s a f t e r such a procedure do not provide good y i e l d s for 

l i g n i n mass balance because of the large amounts l o s t due to p a r t i a l 

d i s s o l u t i o n of low molecular weight l i g n i n f r a c t i o n s i n water. 

Quantitative recovery of the water-insoluble f r a c t i o n of l i g ­

nin i s best accomplished by evaporation of the organic solvent from the 

spent l i q u o r on a f l a s h evaporator at low temperature. This obtains 

a mass of crude l i g n i n and s l i g h t l y yellowish c l e a r aqueous s o l u t i o n 

which contains dissolved sugars and the water-soluble l i g n i n f r a c t i o n . 

The concentration of dissolved sugars i n the aqueous s o l u t i o n did 

not exceed 21% even from the prolonged cooks (20 min), and i t was noted 

that a l l the dissolved sugars were present as monomers i n the spent l i ­

quor (37). Water-soluble l i g n i n (FRACTION III) w i l l be discussed l a t e r 

i n connection with TLC analysis. 

A f t e r removing the yellowish aqueous solution, the mass (a 

quasi-molten phase) of crude l i g n i n was redissolved i n a minimum amount 

of acetone to r e p r e c i p i t a t e i t i n a large excess of d i s t i l l e d water. "Yield 

of the i s o l a t e d water-insoluble organosolv l i g n i n s (FRACTION II) varies 

between 8.65-31.15% (based on oven-dry e x t r a c t i v e - f r e e sawdust), depend-
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ing on the cooking conditions as shown i n Table 3. More detai l e d d i s ­

cussion on y i e l d and purity as well as methoxyl content of the i s o l a t e d 

l i g n i n s w i l l be presented i n the following-sections. 

There are several methods av a i l a b l e to p u r i f y the p r e c i p i ­

tated organosolv l i g n i n . However, no p u r i f i c a t i o n was c a r r i e d out be­

cause such methods involve d i s s o l u t i o n of the crude l i g n i n i n c e r t a i n 

organic solvents for r e p r e c i p i t a t i o n . This may a f f e c t the structure of 

l i g n i n molecules due to solvent e f f e c t s . Most of the tests for the pre­

sent study were conducted on e i t h e r acetylated or reduced organosolv 

l i g n i n s which can be considered to be p u r i f i e d (freed from sugars) dur­

ing the reactions and work-up processes.. 

There i s a p o s s i b i l i t y that the crude l i g n i n s from the spent 

l i q u o r might have been i s o l a t e d together with hemicellulose f r a c t i o n s . 

The sugars could have been covalently bonded to l i g n i n molecules or trap­

ped i n the tridimensional l i g n i n matrix (26,97,98,141). This possi­

b i l i t y w i l l be discussed l a t e r i n conjunction with microanalysis of the 

i s o l a t e d organosolv l i g n i n s . 

From a preliminary experiment on moisture hysteresis of the 

i s o l a t e d organosolv l i g n i n samples, i t was learned that they picked up 

about 12-16% moisture when the samples were exposed to saturated a i r con­

d i t i o n i n an Amineo cabinet (31°C/96'98% RH). At GTH room condition (21° 

C/50% RH), the moisture content of these l i g n i n samples was found to be 

4. 43-4. 81%, which'-is about h a l f of that of Douglas-fir sawdust (9.44%) 

under 1'identical conditions. In order to prevent any p o t e n t i a l moisture 

e f f e c t , the-isolated organosolv l i g n i n samples were kept dry i n a phos­

phoric anhydride desiccator at 50°C. Underi such drying conditions, less 

than 1% moisture content was obtained within 12 hours. 
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5.3. E f f e c t of Cooking Conditions on Yield s of Fiber Residue and 
L i g n i n Fractions 

Among the factors a f f e c t i n g the out-come of organosolv 

cooking, only cooking time and concentration of acid c a t a l y s t were 

chosen as cooking var i a b l e s . Other important cooking conditions, 

such as temperature, cooking l i q u o r composition and wood/liquor 

r a t i o , were kept constant because optimum conditions for these va­

r i a b l e s were worked out i n previous studies (36,37,129) under simi­

l a r or i d e n t i c a l conditions as used i n the present study. I t was 

found that the cooking "temperature had a profound e f f e c t on the 

rate of hydrolysis of Douglas-fir sawdust. -For example, the f i b e r 

residue y i e l d a f t e r 20-min cooking at 160°C was 63. 787o, whereas the 

values obtained at 180° and 200°C a f t e r the same period of cooking 

were markedly reduced to 41.88% and 6.50%, r e s p e c t i v e l y (37). In 

order to obtain high l i g n i n y i e l d s , 200°C was chosen as constant 

cooking temperature for this study. The e f f e c t s of temperature and 

concentration of acid c a t a l y s t on the rate of hydrolysis were found to 

be interchangable to some extent, i.e. a low acid concentration can 

be o f f s e t by r a i s i n g the cooking temperature and vice versa (37). 

Acetone/water r a t i o of the organosolv cooking l i q u o r sys­

tem and wood/liquor r a t i o were 3:2 by volume and 1:10 by weight, res­

pectively, as mentioned before. 

E a r l i e r , a s i g n i f i c a n t e f f e c t of p a r t i c l e size of Douglas-

f i r sawdust on pulp y i e l d and Kappa number was reported (34). To e l i ­

minate the extremely fin e andicoarse . p a r t i c l e s , only'-+the 10-40 mesh f r a c ­

t i o n of the sawdust c o l l e c t e d was selected as cooking material. 

Since moisture content i s one of the most important factors 
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a f f e c t i n g the rate of liqu o r penetration (37), the e x t r a c t i v e - f r e e 

sawdust samples were kept i n the CTH room to maintain a constant 

moisture content (9.44%) before cooking. 

5.3.1 E f f e c t of cooking time 

As Tables 3 and 4 show, cooking time seems to be the most 

-significant single parameter i n regulating the r e s u l t s of the cooks. 

In general, longer cooking time gives lower f i b e r y i e l d and higher re­

covery of p r e c i p i t a b l e l i g n i n (Fig.9). 

In a preliminary cooking experiment (39), under s i m i l a r 

cooking conditions as used i n the present study, i t was found that the 

f i b e r y i e l d for long cooks (20 min) was only one-quarter to one-third 

of that for short cooks (7 min). On the other hand, l i g n i n recovery 

from long cooks was about 2 to 5 times of that from short cooks. These 

trends were found to hold for a l l wood species studied as i l l u s t r a t e d 

i n Table 4. 

In Table 3, i t can be seen that the t o t a l l i g n i n content 

accounted for i n cook nos. 15, 18, 19 and 20 were higher than the po­

t e n t i a l l i g n i n content (31.81%). It i s believed that substantial amo­

unts of hemicelluloses removed from wood were i s o l a t e d together with 

the l i g n i n f r a c t i o n (26). Hydrolysis, which aids the d i s s o l u t i o n of 

l i g n i n into the cooking liquor, also occurs at aryl-glycoside bonds of 

l i g n i n - s a c c h a r i d i c complex during the acid-catalyzed cooking (98,141). 

In e a r l i e r studies (36,37), i t was found that about one-

t h i r d of the l i g n i n and a large f r a c t i o n (71%,) of hemicelluloses were 

dissolved i n the f i r s t 5 minutes during the hydrolysis of Douglas-fir 



Table 3. Ef f e c t of cooking conditions on y i e l d s of f i b e r residue and l i g n i n f r a c t i o n s 

from extractive-free Douglas-fir sawdust. 

Cook Cooking Acid(HCl) Yield of Yie l d of Yields of l i g nin fractions ( 7 o ; 
a 

No. time concent­ f i b e r re­ l i g n i n - Residual Isolated Water-soluble Total - . 
(min) r a t i o n ^ ) s i d u e ^ ) free pulp l i g n i n , l i g n i n , l i g n i n , l i g n i n 

FRACT'N I FRACT'N II FRACT'N I I I accounted 

1 5 _ _ _ _ _ -
2 9 - 92.06 - - - - -
3 12 - 90. 16 - - - - -
4 17 - 86.09 - - - - -
5 20 - 83.14 - - - - -
6 5 0.025 69.03 50.99 18. 04 8. 65 1. 20 27. 89 
7 9 0.025 33. 74 27.70 6.04 14.95 1.94 22.93 
8 12 0.025 12.94 11. 17 1.77 18.45 2.66 '22. 88 
9 17 0. 025 11. 71 10.13 1. 58 25.00 2. 27 28. 85 
10 20 0.025 9.97 8. 67 1.30 26. 20 2.55 30.05 

11 5 0.05 67.02 49. 81 17. 21 9.12 1.10 27.43 
12 9 0.05 29.37 24.18 5.19 17.80 2.04 25.03 
13 12 0.05 13. 75 11. 82 1.93 23.65 2.25 27. 83 
14 17 0.05 6.36 5.55 0.81 26.95 2.25 30.01 
15 20 0.05 3.03 2.59 0.44 29.12 2. 69 32. 29 

16 5 0.1 64. 45 48.65 15.88 9.85 1.11 26. 84 
17 9 0.1 22.54 19.08 3.46 23.40 2.08 28.92 
18 12 0.1 7.11 6.23 0. 88 28. 25 2. 76 31. 89 
19 17 0.1 3.88 3.42 0.46 30.30 2.33 33.09 
20 20 0.1 2.47 2. 18 0. 29 31.15 2.66 34. 10 

(Cooking temperature=200°C; Wood/liquor r a t i o ^ l r l O by weight) 

Percentage values based on oven-dry extractive-free sawdust. 
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Cooking time (min. ) 

Figure 9. E f f e c t of cooking time on y i e l d s of pulp and i s o l a t e d 
l i g n i n (FRACTION II) from e x t r a c t i v e - f r e e Douglas-fir 
sawdust. 
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Table 4. E f f e c t of cooking time on y i e l d s of f i b e r and water-insoluble 
Si 

l i g n i n from various wood species - preliminary cooking experi­
m e n t ^ ) . 

b c 
Species Cooking time Fiber y i e l d ' Lignin y i e l d 

(min. ) (%) (%) 

b. 

Spruce 20 19. 78 19.94 
7 57.97 9.74 

Douglas-fir 20 14. 44 24. 78 
7 63.53 5.74 

Aspen 20 23. 78 16.34 
7 57. 88 6.89 

Birch 20 12. 68 18.36 
7 49. 44 8. 44 

Sugar cane 20 6.45 9.37 
7 38. 23 2. 61 

lWood samples were not pretreated to remove extractives. 

Percentage values based on oven-dry wood samples. 

Yields were not corrected for re s i d u a l l i g n i n . 
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sawdust by a c i d i f i e d organosolv cooking under i d e n t i c a l cooking condi­

tions as those used i n the present study. In a s i m i l a r organosolv 

cooking experiment on Eucalyptus v i m i n a l i s , Gomide (80) also reported 

that about 607, of hemicellulose monomeric units and more than one-

th i r d of the l i g n i n were removed i n the i n i t i a l pulping stage. In 

the present study, i t was found that about 10-13% of l i g n i n , which i s 

equivalent to about one-third of the t o t a l l i g n i n content (31.81%), was 

released from the wood during the i n i t i a l 5-min period of the d e l i g n i -

f i c a t i o n process (Table 3). The temperature at this stage was only 

175°C (Fig. 10). The amount of hemicellulose dissolved within t h i s pe­

riod was about 21-22.5%, which i s equivalent to about 83.5-89.57, of the 

t o t a l p o t e n t i a l hemicellulose content of 25. 157o (Table 2). 

Even though the bulk of l i g n i n and hemicelluloses were removed 

"during 5-9 minutes of cooking, samplesiof cook hos.6,7,11,12,16 and 17 se­

em to be:incompletely d e l i g n i f i e d . Residual l i g n i n content of these cooks 

ranged between 3. 46-18.047,, based on the oven-dry e x t r a c t i v e r f r e e sawdust 

(Table 3).. The high:*residual l i g n i n content i n short cooks might have been 

caused by. experimental errors i n Kappa number determination because, the re­

s i d u a l f i b e r s could not be blended before the addition of 0.IN potassium 

permanganate solution. As a result,the standard reaction time (10 min) 

might have been too" short to complete^ the reaction, r e s u l t i n g i n lower 

consumption of 0.IN potassium permanganate solution, and thus giving er­

roneous Kappa numbers. Another possible explanation for the high content 

of the res i d u a l l i g n i n may be the fact that the decomposed sugars conden­

sed with l i g n i n and pre c i p i t a t e d on the f i b e r residue during the organo­

solv cooking. However, no v i s u a l evidence of t h i s was found. 

It i s also known that c e l l u l o s e degradation i s time depen­

dent (3). After 20-min cooking, cook no.15 (20 min;0.05N HC1) and cook 
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Cooking. time(min. ) 

Figure 10. Cooking-bomb temperature vs. cooking time. 
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no. 20 (20 min;0. IN HC1) gave almost t o t a l d i s s o l u t i o n of the wood cons­

t i t u e n t s leaving less than 3% of the s t a r t i n g material as f i b e r residue 

(Table 3 and Fig.9). When the cooking temperature reached 200°C,-after 

about 11-12 minutes (Fig.10), the maximum pressure registered about 320 

psig and was s t a b i l i z e d . Maximum pressure i n the organosolv cooking 

system was obtained f a s t e r (6-7 min) than the maximum temperature. 

5.3.2 E f f e c t of acid c a t a l y s t concentration 

It was found that the increase of acid c a t a l y s t concentra­

t i o n generally increased the rate of d e l i g n i f i c a t i o n i n organosolv pul­

ping (36,153). This i s attributed to the f a s t e r a c i d o l y t i c s p l i t t i n g 

of the lignin-carbohydrate complex into fragments small enough to be 

soluble i n the aqueous organic cooking system (97). 

Cooking r e s u l t s presented i n Table 3 show that f i b e r re­

sidue y i e l d decreased and the i s o l a t e d l i g n i n (FRACTION II) y i e l d i n c ­

reased as the acid concentration increased from 0.025 to 0.1 N HC1. 

This general observation can be observed i n Fig, 11. The e f f e c t of acid 

concentration on y i e l d s of f i b e r residue and the organosolv l i g n i n , 

however, i s not as s i g n i f i c a n t as that of cooking time ( F i g . 9). The 

increased c a t a l y s t l e v e l seems to cause rapid d i s s o l u t i o n of polysac­

charides as well as rapid d e l i g n i f i c a t i o n because both phenomena must be 

regarded e s s e n t i a l l y as the h y d r o l y t i c s o l v b l y s i s process of wood (153). 

At a high acid concentration (0.IN), extensive d i s s o l u t i o n 

of the wood constituents, beyond the amount represented by hemicellu­

loses and l i g n i n , occurred. As mentioned before, cook nos,18. (0.1 >N 

HC1;12 min), 19 (0,1 N HC1;17 min) and 20 (0.1 N HC1;20 min) produced 

more l i g n i n than the p o t e n t i a l l i g n i n content (31,81%) possibly due 
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A 

Lignin 
Pulp 

A 5 min. cook 
^ 9 min. cook 
• 12 min.cook 
• 17 min.cook 
O 20 min. cook 

—O 

0.025 0.05 0.075 

Acid-catalyst concentration (N,HC1) 

0.1 

gure 11. Effect of acid concentration on yields of pulp and isolated 
lignin (FRACTION II). from extractive-free Douglas-fir sawdust. 
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to contamination by hemicelluloses (26). Cook no. 15, having been made 

at an intermediate acid concentration of 0.05 N, gave s i m i l a r r e s u l t s 

due to the long cooking time (20 min), leading to nearly t o t a l d i s s o l u ­

t i o n of wood and thus r e s u l t i n g i n a mere 2.59% f i b e r residue y i e l d and 

nearly quantitative recovery of the p r e c i p i t a b l e l i g n i n . 

The pH value of pure acetone-water cooking l i q u o r was about 

6 and those of 0.025, 0.05 and 0.1 N hydrochloric acid solutions were 

found to be 2,5, 1.5 and 1.2, respectively. Table 5 shows the change 

of pH values a f t e r 20-min cooking. This change seems to be due to an 

accumulation of organic acids, such as a c e t i c acid and formic acid, l i ­

berated from the wood during cooking (36). Though such organic 

acids can a f f e c t the rate of d e l i g n i f i c a t i o n (94), t h e i r e f f e c t was 

found to be i n s i g n i f i c a n t . In the presence of a strong mineral acid 

such as hydrochloric acid, t h e i r e f f e c t was completely unnoticed and 

unimportant i n spite of the fact that s u b s t a n t i a l decreases i n the f i n a l 

pH of the cooking l i q u o r was noticed (Table 5). 

In the absence of acid catalyst, the rate of h y d r o l y t i c 

d i s s o l u t i o n was obviously very slow, even though the pH of the cooking 

l i q u o r had been lowered to 3.2 at the end of a 20-min cook from the 

near neutral s t a r t i n g pH as shown i n Table 5. The amount of l i g n i n ex­

tracted fromr t h i s series (cook nos.1-5) was too small to i s o l a t e , 

therefore no further analysis was attempted. By a simple extraction with 

organic s o l v e n t s , r i t was found that only about 1% of the o r i g i n a l l i g ­

nin can be extracted (137). This series (cook nos.1-5;without c a t a l y s t ) 

proves that the d e l i g n i f i c a t i o n process i s not just a s o l v o l y s i s process, 

but requires s u f f i c i e n t strength of c a t a l y s t for the hydrolysis reaction, 

i f s u b stantial amount of l i g n i n are to be removed from the wood i n the 

course of high temperature organosolv cooking. 



68 

Table 5. pH values of acid-catalyzed cooking l i q u o r before and a f t e r 
20-min cooking. 

HC1 concentration(N) before cooking a f t e r cooking 

0 6.0 3. 2 

0.025 2.5 2.2 

0.050 1.5 1. 2 

0. 100 1.2 1.1 

Cooking liquor:acetone/water=60/40, by volume. 

Cooking with e x t r a c t i v e - f r e e Douglas-fir sawdust(wood/cooking l i q u o r 
=1/10) 
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5.4 Water-soluble L i g n i n F r a c t i o n 

It was not the i n t e n t i o n of the present study to discuss 

i n d e t a i l the water-soluble l i g n i n (FRACTION I I I ) , but i t must be men­

tioned that some important observations were made with regard to t h i s 

f r a c t i o n . 

As mentioned before, repeated attempts to i s o l a t e the 

water-soluble l i g n i n f r a c t i o n i n the s o l i d state had f a i l e d . Even 

quantitative separation of t h i s f r a c t i o n from aqueous f i l t r a t e s of 

the spent l i q u o r by l i q u i d - l i q u i d e x t raction was found to be somewhat 

a problem since the s o l u b i l i t y of t h i s f r a c t i o n i n water was not very 

much lower than that of chloroform or that of other water-immiscible or­

ganic solvents. The semi-quantitative determination of the water-

soluble l i g n i n by UV spectrophotometry also provided somewhat ques­

tionable r e s u l t s (Table 3). In any cook, less than 370 of the 

e x t r a c t i v e - f r e e sawdust was detected as water-soluble l i g n i n . 

However, i t was found that as cooking time increased, 

the y i e l d of the water-soluble l i g n i n f r a c t i o n seemed to increase. 

For example, increasing theucooking time from 5 to 20 minutes almost 

doubled the y i e l d of water-soluble l i g n i n f r a c t i o n s i n a l l cases. 

P e c u l i a r l y , maximum y i e l d of these f r a c t i o n s occurred for the 12-min 

cooks with only a s l i g h t f a l l - o f f f o r 20-min cooks, i n d i c a t i n g a f a i r 

degree of thermal s t a b i l i t y of water-soluble l i g n i n s . E f f e c t of i n ­

creasing concentration of acid c a t a l y s t on y i e l d of water-soluble l i g ­

n i n seems to be i n s i g n i f i c a n t . 

For the lack of an ,adequate i solation-method, an accurate 

o v e r a l l l i g n i n mass-balance-could not be obtained. .. The quantitative 

determination of t h i s f r a c t i o n , however, w i l l be discussed i n connec-
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t i o n with TLC analysis i n the following section. 

5.5 Thin-Layer Chromatographic Analysis of Water-soluble L i g n i n 
F r a c t i o n from Spent Cooking Liquor 

Regarding the l i g n i n mass-balance, i t i s evident that con­

siderable amounts of l i g n i n and lignin-degradation products were pre­

sent as water-soluble substances i n the spent cooking liquor. Reac­

tions that convert p r o t o l i g n i n into water-soiuble d e r i v a t i v e s have 

been the subject of numerous inv e s t i g a t i o n s . Hibbert and his co-workers 

(27,46,119) were the f i r s t group to investigate these water-soluble 

materials from the ethanolysis of l i g n i n . A number of water-soluble 

compounds which were found to be monomeric phenylpropane C^-units were 

is o l a t e d , i d e n t i f i e d and assumed to be lighin-degr.adation products(26, 

131). 

The organosolv cooking of e x t r a c t i v e - f r e e sawdust i n acid 

medium i s e s s e n t i a l l y an acid hydrolysis. It was reported that aque­

ous hydrolysis l i q u o r s of softwood contain low molecular weight aroma­

t i c materials such as c o n i f e r y l alcohol ( I I ) , v a n i l l i c acid (XIII), 

v a n i l l i n (XVI), acetyl v a n i l l o y l (XXI) and guaiacyl acetone (XXII) as 

well as some Hibbert's ketones (26,97,131). Those compounds which are 

l i k e l y present i n the aqueous f r a c t i o n of the spent cooking liqu o r of 

the present study are l i s t e d i n Table 6 along with the known R^ values 

and c h a r a c t e r i s t i c colors on s i l i c a gel TLC (13,70,100). 

Table 7 presents TLC r e s u l t s of the aqueous f r a c t i o n from 

cook no.15 (20 min;0.05 N HC1) a f t e r removing the sugars. Among the 

compounds i d e n t i f i e d were Hibbert's ketones such as a c e t y l v a n i l l o y l 

(XXI), guaiacyl acetone (XXII), <K-hydroxypropiovanlllone (XXVII) and 
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Table 6. Rf values and characteristic colors of selective lignin degradation products and 
extractives(31,70,100). 

R.f x 100 Color on s i l i c a gel 
Compound 

B-C-M3 B-Eb B-AC M-Cd 
Folin-Denis 
Reagent 

Diazotized sul-
f a n i l i c acid 

Acetyl vanilloyl(XXI) 53 47 52 83 dark brown yellow 

Guaiacyl acetone(XXII) 49 44 60 93 mustard brown 

Vanillin(XVI) 48 40 59 93 orange-red red 

Coniferyl aldehyde(XXVI) 42 47 55 93 wine-red red-brown 

<<-Hydroxypropiovani Hone ( XXVII) 36 30 37 77 yellow brown 

JJ-Hydroxypropiovanillone(XXVIII) 31 20 32 77 brown brown 

Coniferyl alcbhol(II) 28 37 40 76 blue red-brown 

0<-Hydroxyguaiacyl acetone(XXIX) - - - - - -
V a n i l l i c acid(XIII) 25 23 17 42 pale yellow yellow-orange 

w-Hydroxyguaiacyl acetone(XXIV) - 32 43 70 - pink 

Guaiacylglycerol-^-guaiacyl ether 
(XXIII) 

17 - - - yellow -

aBenzene-chloroform-methanol(70:28:2) 
bBenzene-ethanol(150:22) 
"Benzene-acetone(3:2) 
^Methanol-chloroform(3:7) 
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Table 7. Thin-layer chromatography of water-soluble fraction from 
organdsolv spent liquor(after removal of carbohydrates). 

Cpd. Tentative Rf x 100 
No. identification B-C-M* B-Eb B-AC M-Cd 

1. Acetyl vanilloyl(XXI) 53 49 52 89 6 

2. Guaiacyl acetone(XXII) 50 43 62 94 e 

3. Vanillin(XVI) 47 41 58 92 e 

4. Coniferyl aldehyde(XXVI) 44 45 54 90 e 

5. «<-Hydroxypropiovanillone(XXVII) 36 29 32 79 

6. |* - Hyd roxypropiovani Hone ( XXVIII) 31 19 27 74 

7. Coniferyl alcohol(II) 1 37 39 1 

8. V a n i l l i c acid(XIII) 25 ? ? 47 

9. w-Hydroxyguaiacyl acetone(XXIV) ? 1 ? 66 

10. 

11. 

Guaiacylglycerol-fl-guaicyl ether 
(XXIII) 
Undeveloped starting material & 
Furfural(XXX) 

17 

2 

? 

3 

7 

2 

32 

11 

tiBenzene-chlor6form-methanol(70: 28: 2) 
bBenzene-ethanol(150:22) 
cBenzene-acetone(3:2) 
dMethanol-chloroform(3:7) 
Partially overlapped. 
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j8-hydroxypropiovanillone (XXVIII). The presence of these ketones i s a 

good i n d i c a t i o n of lignin-degradation by cleavage of ether bonds during 

the acid-catalyzed organosolv cooking. 

From the data presented i n Table 7, i t can be seen that be­

side the Hibbert's ketones, l i g n i n molecules further proportioned into 

degradation products such as v a n i l l i n (XVI) and c o n i f e r y l aldehyde (XXVI), 

even though the amounts of these f r a c t i o n s seems to be small. K r a t z l 

and Paszner (100) reported that simple aqueous hydrolysis of wood at 

100°C f o r 2-4 hours also y i e l d s these compounds i n somewhat larger pro­

portions. 

TLC r e s u l t s of cook n o s . l F (5 min;0.05 N HC1) and 13 (12 min; 

0.05 N HC1) were found to be s i m i l a r to those of cook no.15 (20 min;0.05 N 

HC1), i n d i c a t i n g that the degradation of l i g n i n molecules takes place to 

about the same extent during the i n i t i a l d e l i g n i f i c a t i o n period of organo­

solv cooking as mentioned before. This observation i s i n good agreement 

with the r e s u l t s obtained from NMR spectra which w i l l be discussed l a t e r . 

The presence of c o n i f e r y l alcohol ( I I ) , v a n i l l i c acid (XIII) 

orco-hydroxyguaiacyl actone (XXIV) could not be confirmed due to the absen­

ce of the corresponding spots i n the developing systems used (Table 7). 

For the same reason, guaiacylglycerol-jj-guaiacyl ether (XXIII), which i s 

pr i m a r i l y responsible for formation of Hibbert's ketones, could not be 

i d e n t i f i e d . Notable missing compounds are benzyl alcohols, presumably 

because of t h e i r i n s t a b i l i t y under a c i d i c cooking conditions. Their 

self-condensation i n the acid medium i s well known (141). 

Inasmuch as a l l of the compounds mentioned above are phenolic 

i n nature, i t appeared that hydrolysis of the non-carbohydrate portion 

of wood reduced part of the l i g n i n molecule to low molecular degradation 
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products (131). The formation of phenolic hydroxyl groups as r e s u l t 

of s p l i t t i n g of ^ - a r y l ether bonds of l i g n i n molecules i s another im­

portant f a c t o r f o r the increased s o l u b i l i t y of lignin-degradation pro­

ducts i n aqueous solution. 

Not s u r p r i s i n g l y , traces of f u r f u r a l (XXX), which i s a sugar 

degradation product (36), were also detected. There were some spots 

which could not be e a s i l y i d e n t i f i e d . These spots might have o r i g i ­

nated from some extract i v e s , such as dihydroquercetin (XXXI), because 

some e x t r a c t i v e deposits i n lumens were reported to r e s i s t a l c o h o l -

benzene e x t r a c t i o n (33,91). 

OH O -

(XXX) (XXXI) 

Since water-soluble l i g n i n or l i g n i n - l i k e compounds were 

not the prime target of the present study and i n s u f f i c i e n t amounts of 

the water-soluble f r a c t i o n were obtained, no further a n a l y s i s was car­

r i e d out as mentioned before. 

5.6 Microanalysis of Isolated Organosolv Lignins 

L i g n i n contains only carbon, hydrogen and oxygen, and the 

elementary compositions reported i n the l i t e r a t u r e show considerable 

v a r i a t i o n because of the v a r i e t y of sources and methods i n l i g n i n pre­

paration. 
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The carbon content of softwood l i g n i n s are i n a range of 60. 2-67.5% 

and the corresponding hydrogen content ranges 4.5-6.4% (32). 

As shown i n Table 8, carbon content of the acetylated 

Douglas-fir l i g n i n samples ranged from 62.99 to 67.66%, while hydrogen 

contents were 4.80 to 6.14%. Average elementary composition of Douglas-

f i r MWL from normal wood are reported to be 63.37% carbon, 6.07% hydrogen 

and 30.56% oxygen (148). 

In Table 8, i t can be seen that methoxyl group content of 

the acetylated l i g n i n generally decreased as both cooking time and acid 

concentration increased. The reason for t h i s observation may be ex­

plained by the as s o c i a t i o n of the i s o l a t e d l i g n i n (FRACTION II) with 

hemicellulose contaminants (26). As the cooking time or acid concen­

t r a t i o n increased, the i s o l a t e d l i g n i n f r a c t i o n seemed to contain i n ­

creasingly larger amounts of carbohydrate fragments due to secondary 

condensation between s o l u b i l i z e d l i g n i n and carbohydrate fragments. 

As a r e s u l t the methoxyl content decreases s i g n i f i c a n t l y . 

However, there are strong points against the secondary con­

densation between l i g n i n and carbohydrates. As an evidence for t h i s 

argument, NMR spectra of the same acetylated l i g n i n samples show no 

signals for hemicellulose contaminants, which w i l l be discussed l a t e r . 

E a r l i e r an attempt to condense l i g n i n and l i g n i n model substances with 

f u r f u r a l gave negative r e s u l t s (169). From t h i s i t may be concluded 

that l i g n i n which has been i s o l a t e d from wood by hydrolysis has under­

gone c h i e f l y an autocondensation i n which the functional groups of the 

side-chain, the phenolic hydroxyl groups, and the reactive hydrogen 

atoms of the aromatic rings are involved (169). 

There i s an a l t e r n a t i v e explanation for the v a r i a t i o n of 

methoxyl content with cooking period. P r o t o l i g n i n i s non-homogeneous 
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Table 8, Elementary composition of acetylated Douglas-fir l i g n i n 
samples. 

:(%) 

b a Sample No. Carbon Hydrogen Oxygen OCHg 

PC- 11 65.62 5.01 29.37 12.90(14. 84) 

PC- 12 64. 25 5. 29 30.46 12.42(14.37) 

PC- 13 64. 50 5. 22 30. 28 12.11(14. 18) 

PC- 14 65. 14 4.91 29.95 11.36(13.24) 

PC- 15 .62. 64 5.48 31. 88 11.18(13.20) 

PC-9 65.08 5.11 29. 81 12.33(13.54) 

PC- 19 66. 61 5.07 28.32 11.07(12. 80) 

Values i n parentheses are for parent i s o l a t e d l i g n i n . 

Sample number code 'PC' was used to distinguished the treated 
(acetylated or reduced) samples from t h e i r parent l i g n i n sam­
ples (FRACTION I I ) . 
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i n terms of methoxyl content (135), and the l i g n i n f r a c t i o n s having 

higher methoxyl contents are most r e a d i l y l i b e r a t e d from wood during 

the organosolv cooking. Thus, short cooks, such as cook nos.11 (5 min) 

and 12 (9 min) produced l i g n i n s with higher methoxyl contents (14.17-

14.6470), while long cooks, such as cook nos.9 (17 min), 14 (17 min), 

19 (17 min) and 20 (20 min) gave l i g n i n s with much lower methoxyl con­

tents (11. 20-13. 547o). 

5.7 Spectroscopic Analyses of Isolated Organosolv Lignins 

5.7.1 Nuclear magnetic resonance spectra 

The l i b e r a t i o n of l i g n i n from wood by acid-catalyzed hyd­

r o l y s i s at high temperature y i e l d s l i g n i n with changed chemical struc­

ture, even when mild reaction conditions are used (107,137). NMR ana­

l y s i s i s one of the best techniques to examine the chemical changes of 

the l i g n i n molecules caused by the various cooking conditions. Though 

NMR s p e c t r a l analysis was done on the acetate derivatives of the i s o ­

lated (parent) organosolv l i g n i n samples, the discussion of the func­

t i o n a l group contents ref e r s to the parent organosolv l i g n i n samples. 

A t y p i c a l NMR spectrum of the acetylated Douglas-fir l i g ­

n i n i s shown i n F i g . 12. To determine quantitative estimations of the 

functional groups, several selected ranges of {{-value were constructed 

according to the method used by e a r l i e r investigators (57,98,105,107). 

The NMR spectra of protons i n organic compounds can usually be integ­

rated e l e c t r o n i c a l l y with a high degree of preci s i o n . However, the 

complexity of l i g n i n spectra made i t necessary to use the method men-
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Figure 12. Typical NMR spectrum of acetylated Douglas-fir l i g n i n . 
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tioned above to determine the percentages of t o t a l s i g n a l strength 

found within the selected ranges (107). Table 9 gives the assign­

ments of signals . for the selected ranges of the NMR spectrum of 

the acetylated l i g n i n sample, shown i n Fig, 12. 

Range A (5 7.20-6,15) gives signals for aromatic and 

<x-vinyl protons. However, since the number of unsaturated struc­

tures of the v i n y l type i n l i g n i n has been shown to be very small, 

interference from oc-vinyl protons i s not appreciable. F i g . 12 

c l e a r l y shows that the guaiacyl unit around & 6.95 predominates 

over that of s y r i n g y l unit around £ 6.60. 

Ranges B ( S 6.15-5.75), C ( J 5.75-5.15), D (S 5.15-4.45), 

E (<T 4.45-4.05) and G ($ 3.40-2.50) represent signals f o r ̂ - v i n y l pro­

tons (and some oi-protons), o<-protons, ^-protons, Jf-protons and ^-pro­

tons, respectively. 

Range F ($ 4.05-3.40) shows signals from aromatic methoxyl 

protons. Ranges H (£ 2.50-2.15) and J (S 2.15-1.50) represent signals 

for aromatic acetoxyl protons and a l i p h a t i c protons, respectively. 

Table 10 shows the percentage estimations of the various 

proton types occurring within the assigned ranges of the integrated 

spectra (Figs. 13-19). From these values and the r e s u l t s from the mic­

roanalysis (Table 8), contents of various functional groups of the pa­

rent l i g n i n samples were estimated and the res u l t s are presented i n 

Table 11. Due to the lack of microanalysis data on parent l i g n i n s , 

accurate empirical formulae could not be calculated. However, s t r i c ­

t l y from the NMR spectra and elemental analysis of acetylated l i g n i n s , 

approximate empirical formulae could be constructed (Table 11). 
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Table 9. Assignments of signals i n NMR spectrum of acetylated 
Douglas-fir lignin., sample. 

Range Chemical 
s h i f t s -

value (ppm) 
Assignment(types of proton) Symbol </" -value 

(ppm) 

Chemical 
s h i f t s -

value (ppm) 
Assignment(types of proton) 

A 7.20-6.15 6.95 aromatic(also some e C-vinylic) 

B 6.15-5.75 6.05 /8-vinylic 
c<-proton of side chain(^-0-4 linkage) 

C 5.75-5.15 5.40-5.80 c<-proton of side chain(^8-5 linkage or 
benzyl aryl; ether) 

D 5.15-4. 45 4. 55 /S-proton of side chain(£-0-4 linkage) 

E 4. 45-4.05 4. 25 Jf-proton of side chain 

F 4. 05-3.40 3. 75 
(3.81) 

methoxyl 

G 3.40-2.50 2. 60-3. 40 /8-proton of side chain(y8-y5 linkage) 

H 2.50-2.15 2. 25 aromatic acetoxyl 

J 2. 15-1.50 2.00 a l i p h a t i c acetoxyl 
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Figure 17. NMR spectrum of sample PC-15. 





Figure 19. NMR spectrum of sample PC-19. 

CO 
CO 
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Table 10. Relative i n t e n s i t y of various proton types i n NMR spectra 
of acetylated l i g n i n samples. (70) 

Symbol 
of 

range 
(T-value 
(ppm) PC-11 PC-12 PC-13 PC-14 PC-15 

A 7.20-6.15 20.32 19.87 20.64 20.19 21.57 

B 6.15-5. 75 2.58 1.30 2.62 2.88 3.85 

C 5. 75-5.15 0.32 0. 65 0. 29 0.96 0.49 

D 5.15-4.45 2.58 2.93 4.07 5. 77 2.94 

E 4. 45-4.05 8.39 9.77 7.85 9.13 5.88 

F 4.05-3.40 24. 84 24.10 25.00 23.03 24.02 

G 3.40-2.50 5.48 8.14 8.43 9. 62 9.31 

H 2. 50-2. 15 10. 00 11.07 13.03 
(29.337 (31.85) 

J 2.15-1.50 25.48 22. 15 18.08 

Combined Ranges H and J together due to overlap. 



Table 11. Empirical formulae and functional group contecnts of isolated,lignin samples. 

Sample Empirical formula 
Apparent Aromatic H Aromatic OH Aliphatic OH 0CH3 

No. 
Empirical formula Weight of -

C q-unit per C 9 7. per C 9 % per C 9 % per C9 7. . 

PC-11 C9H4.63°0.56<0CH3)0.97<OH>1.38 175.12 2.37 1.35 0.39 3. 79 0.99 9.61 0.97 17.17 

PC-12 C9 HS.O5°O.68 ( O C H3 )0.95 ( O H )1.31 175;65 2.35 1.34 0.44 4. 26 0.87 8.42 0.95 16.77 

PC-13 SH4.94°0.80<OCH3)0.94(OH)1.17 174.77 2.35 1.34 0. 49 4.76 0.68 6.61 0.94 16.67 

PC-14 C9 H5.34°1.12< O C H3 )0.88 ( O H )1.12 174.86 2.32 1.32 a a a a 0. 88 15.60 

PC-15 C9 H4.74°0.95 ( O C H3 )0.86< O H )1.14 173.69 2.32 1.34 a a a a 0.86 15.35 

aThese contents were not determined due to poor resolution(overla P of signals for aromatic and 
aliphatic hydroxyl groups). 
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Signal assignments, 6~-Value (ppm) 
A: 5 = 2.0, a l i p h a t i c acetoxyl protons 
B: 6= 2.3, aromatic acetoxyl protons 
C: 6 = 3. 75, 3.80, methoxyl protons 
D: «S = 4.1-6.2, a l i p h a t i c protons 
E: <5= 6.9-7.1, aromatic protons 

A 
c B I 

Figure 20. D i f f e r e n t i a l NMR spectra of cooking time and 
acid concentration series. 
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Fig. 20 shows the comparison of NMR spectra f o r the two 

series of samples, i . e . cooking time series (PC-11 through PC-15) and 

acid concentration series (PC-9, PC-14 and PC-19). Signal broadening, 

which i s obvious from the appearance of the spectra i s thought to be 

due to a tendency toward r i g i d i t y caused by cross l i n k i n g i n the mole­

cular structure of l i g n i n (107). L i g n i n obtained from the short cook 

(PC-11) gave more sharply defined spectrum than those from long cooks 

(PC-12 through PC-15 and PC-19). The reason for t h i s i s the fact that 

sample PC-11 has r e l a t i v e l y low molecular weight, which makes for gre­

ater mobility of the molecules i n solution. The v a r i a t i o n of molecular 

weight of those two series of l i g n i n samples w i l l be extensively d i s ­

cussed l a t e r i n connection with the GPC analysis. 

The spectra shown i n F i g . 20 also demonstrate that the size 

of a l i p h a t i c acetoxyl signals at S 2.00 decreased markedly as cooking 

time increased. The i n t e n s i t y of the si g n a l for the a l i p h a t i c acetoxyl 

protons of the acetylated l i g n i n should correspond to three times of 

that of., a l i p h a t i c hydroxyl protons of the parent l i g n i n . The s i g n i f i ­

cant collapse of a l i p h a t i c hydroxyl groups i n longer cooks can be -.ex_-

plained by the fact that these hydroxyl groups were used f o r carbon-

carbon linkages to form self-condensation products (104). It was noted 

that high a l i p h a t i c hydroxy!,group content i n the parent l i g n i n was as­

sociated with the. low molecular weights of the acetylated l i g n i n . This 

observation w i l l be discussed i n more d e t a i l l a t e r . 

There was no noticeable signal around 5 6,1, i n d i c a t i n g the 

absence of benzylic hydroxyl groups i n the parent l i g n i n samples, d i s p i t e 

the fact that benzyl ether content i n MWL was reported to be.more than 

20 per ,100 C^-units.(2,67). Benzyl alcohol i n a c i d i c medium i s so un­

stable (120) that almost complete recondensation reaction involving ben-
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z y l alcohol seems to take place (108) during the organosolv cooking and 

as a result, there were no longer free benzylic hydroxyl groups to be 

acetylated. 

Table 11 shows a much higher content of aromatic hydroxyl 

group i n the parent l i g n i n s than the reported values, which range 20-25 

per 100 C -untis. This can be explained by the release of phenolic hyd-9 

roxyl group due to almost complete s p l i t t i n g of the a l k y l - a r y l ether 

bonds of l i g n i n during acid-catalyzed cooking (98), Another reason for 

this i s the fact that the functional group contents determined by NMR 

spectra are usually higher than those determined by other methods be­

cause of the overlap of signals from d i f f e r e n t types of protons. This 

comparison w i l l be discussed l a t e r with the r e s u l t s of phenolic hydroxyl 

determination by the spectrophotometric method. 

The estimated methoxyl contents range 86-97. per 100 C -units. 

Table 11 and Fig, 20 show that methoxyl group content of the i s o l a t e d . 

parent l i g n i n s decreases s i g n i f i c a n t l y as cooking time increases from 

5 to 20 minutes, or as acid concentration increases from 0.025 to 0.1 

N HC1. The l a t t e r confirms the dependency of methoxyl content on a c i ­

d i t y of cooking medium (38). In general, the methoxyl contents deter­

mined by NMR spectra were higher than those determined by the TAPPI 

method (Table 8), as to the case of phenolic hydroxyl content, and 

t h i s general trend i s i n good agreement with previous r e s u l t s (57), 

Although the change seems to be very small, the content 

of aromatic protons was found to decrease s l i g h t l y as cooking time 

increased, as indicated i n Table 1L This fi n d i n g has a very s i g ­

n i f i c a n t meaning. Table 11 shows that the content of aromatic pro­

tons for short cook (PC-11) i s 2,37 per Cg-unit, far smaller value 

than 3 protons per guaiacyl nucleus. This means, i f there were l i t -
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t i e or no s y r i n g y l units i n the Douglas-fir organosolv l i g n i n mole­

cules, about 63% of the aromatic rings i n the l i g n i n molecules must 

be somewhat condensed form and have only two aromatic protons per 

Cg-unit, while about 37% of aromatic rings are non-condensed and 

have three hydrogen atoms on each aromatic ring of the l i g n i n mole­

cule; The content of aromatic proton for long cook (PC-15) was 

found to be 2.32 per C^-unit (Table 11), i n d i c a t i n g 68% of aromatic 

rings are condensed and 32% are non-condensed. The re s u l t s s i g ­

n i f y the f i n d i n g that more condensed, l i g n i n s were i s o l a t e d as cook­

ing time increased. 

A l i p h a t i c protons attached to the side-chains of l i g n i n 

molecules were d i f f i c u l t to estimate due to overlapping and i n t e r ­

ference from the strong methoxyl proton signal as mentioned before. 

As a r e s u l t , accurate account for the a l i p h a t i c protons was not pos­

s i b l e . However, r e l a t i v e l y Tow content of these protons was be­

lieved to be due to an elimination reaction of <=<- and p-protons 

i n the c y c l i c <=<-aryl ethers by acid hydrolysis (98,106). 

Methylene protons, terminal methyl protons and possibly 

some highly shielded a l i p h a t i c protons, which are not attached d i r e c ­

t l y to oxygen functions, were excluded from the cal c u l a t i o n s because 

they gave i n s i g n i f i c a n t signals and could hardly be distinguished 

from the baseline noise. 

There was no evidence for the presence of any contamination 

from carbohydrates i n the acetylated organosolv l i g n i n samples used for 

NMR spectra. None of the l i g n i n spectra shows any d e t e c t i b l e signals 

i n the S'8-11 range, i n d i c a t i n g none or very low content, i f any, of 

carboxylic or aldehyde protons. 
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5.7.2 Infrared spectra 

Infrared spectra obtained from two shortened ser i e s of 

reduced l i g n i n samples, cooking time seri e s (Fig. 21) and acid con­

centration series (Fig. 22) were analyzed, and the r e s u l t s were com­

pared with those obtained from NMR spectra of the same samples. 

The test was designed to confirm the s t r u c t u r a l changes of l i g n i n 

molecules which may have occurred as the r e s u l t s of the various 

cooking conditions. Since a general s i m i l a r i t y of^IR'Jspectra i n Figs. 

21 and 22 i s evident f o r . a l l the samples, only those bands which varied 

markedly areodiscusse'd. The absorption band assignments presented i n 

Table 12, based on ^ e a r l i e r ..investigationsi (23; 86,121,146,147) give-a 

considerable degree of confidence i n most cases except i n the region 

1400-1000 cm \ where various aromatic r i n g v i b r a t i o n modes and C-0 

stretching modes occur (86). 

As with many other polymers, the complexity of l i g n i n 

molecules causes band overlapping , d i f f u s e bands, aridecross-linking 

may dampen v i b r a t i o n s (23). Nevertheless, as evident i n Figs. 21 and 22, 

s t r u e t u a l f .changes ; i n the l i g n i n molecules due to the d i f f e r e n t cook­

ing conditions can be observed. In general, samples c o l l e c t e d a f t e r 

short cooking gave sharper absorption bands i n t h e i r IR spectra upon 

reduction. On the hand, an increase i n the acid concentration of the 

cooking l i q u o r did not change the absorption bands markedly. 

Broad bands at 3440-3460 cm"1 shown i n Figs. 21 and 22 

are due to 0-H stretching v i b r a t i o n and medium or weak bands at 1390 cm 1 

seem to be due to 0-H bending v i b r a t i o n . Changes of these bands i n 
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Figure 21. E f f e c t of cooking time on IR spectra of reduced 
Douglas-fir l i g n i n samples. 
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3600 3400 3200 3000 2800 1800 1600 1400 1200 1000 

Wave-numberCcm"1) 

Figure 22. E f f e c t of acid concentration on IR spectra of 
reduced Douglas-fir l i g n i n samples. 



Table 12. Assignments of absorption-bands i n IR spectra of reduced Douglas-fir 
l i g n i n samples. 

Wave-number(cm ^) Assignments 

3440-3460 0-H stretching v i b r a t i o n 

2990, 2940, 2850 C-H stretching v i b r a t i o n 

1710, 1690, 1640 C=0 stretching v i b r a t i o n 

1560 aromatic s k e l e t a l v i b r a t i o n 

1470 C-H deformation v i b r a t i o n 

1430 C-H bending vibration/aromatic s k e l e t a l v i b r a t i o n 

1390 0-H bending v i b r a t i o n ( ? ) 

1300 condenced guaiacyl(?) 

1260 uncondencd guaiacyl 

1230, 1190 asymmetric stretching v i b r a t i o n of aryl-- a l k y l ether(?) 

1100 uncondenced guaiacyl(?) 

1010 condenced guaiacyl(?) 

900 C-H out-of-plane bending v i b r a t i o n 
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various spectra were found to be i n s i g n i f i c a n t , i n d i c a t i n g that the t o t a l 

hydroxyl (aromatic and a l i p h a t i c ) content changes very l i t t l e - w i t h d i f ­

ferent cooking conditions. 

Bands at 2990-2850 cm ^ are c h a r a c t e r i s t i c of various types 

of C-H bonds. No s i g n i f i c a n t e f f e c t of cooking conditions on the inten­

s i t y of these bands was noted, though sample PC-11 (5 min;0.025 NHC1) 

shows l i t t l e sharp bands. 

Since the l i g n i n samples were reduced with sodium borohyd-

ride, absorption bands which are usually well defined ones f o r car­

bonyl group seem to disappear at 1735 cm * and 1375 cm * (146). The 

IR spectrum of the sample PC-11 shows a strong peak at 1690 cm ^ while 

spectra f o r the other samples show only ? trace or very weak peaks at 

t h i s wave number (Fig. 21). Normally, t h i s i s very d i f f i c u l t to exp­

l a i n because both unconjugated ketones and conjugated acid or esters 

absorb at 1715 cm which can be s h i f t e d to 1690 cm * (146). However, 

a possible explanation for t h i s observation can be found because of 

the f a c t that the i n t e n s i t y of the band decreases gradually as cooking 

time increases. As mentioned e a r l i e r i n NMR spectroscopic analysis, 

there was no evidence f o r any aldehyde protons or carboxylic protons 

i n the acetylated l i g n i n samples including PC-11. Therefore, the strong 

band at 1690 cm ^ i n the IR spectrum of PC-11 i s thought to be o r i g i n a ­

ted from -^(.conjugated ketone and seems to be a t t r i b u t a b l e to the pre­

sence of impurities (26,40,86), which can be affected by cooking time. 

The most probable impurities with unconjugated ketones are flavones, 

such as dihydroquercetin (XXXI), which can cause a s h i f t of about 60 

cm ^ to the longer wave-length due to 0-hydroxyl group chelated to the 

carbonyl group (26,86). 
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Dihydroquercetin (XXXI), which has been i d e n t i f i e d as major flavanohe 

of Douglas-fir (33,141), can not be completely removed by alcohol-

benzene extraction as mentioned e a r l i e r , and thus i s believed to be 

l i b e r a t e d from sawdust together with l i g n i n during organosolv-cooking. 

Because of low y i e l d (9.12%) of the i s o l a t e d l i g n i n (FRACTION II) from 

short cook (PC-11;5 min), the r e l a t i v e concentration of t h i s impurity 

i s high, while the i n t e n s i t y of the peak for t h i s impurity i n the sam­

ple from long cook (PC-15;20 min) i s almost unnoticed due to high y i e l d 

(29.12%) of the i s o l a t e d l i g n i n sample (Table 3), As a r e s u l t , the s t ­

rong peak at 1690 cm 1 decreases as cooking time increases. 

Probably, the most s i g n i f i c a n t observation from F i g . 21 i s 

that the i n t e n s i t i e s of the bands at 1260 cm 1 and 1100 cm 1 f o r uncon-

densed guaiacyl nucleus decrease s u b s t a n t i a l l y as cooking time increases, 

confirming the r e s u l t s obtained from NMR spectra. Analysis of NMR spect­

ra indicated that non-condensed aromatic n u c l e i were 37% f o r short cook 

sample PC-11 (5 min)and those f o r long cook sample PC-15 (20 min) were 

32% (Table 11). This observation i s the most important evidence f o r high­

er ̂ molecular, weights of samples from longer cooks.. This w i l l be discussed 

l a t e r in. connection with GPC analysis., 

A somewhat smaller decrease i n longer cooks was also noted 

f o r the band at 1230 cm 1 ( F i g . 21), which has been assigned to asym­

metric C-0 v i b r a t i o n s of a r y l - a l k y l ethers. The recondensation 

reaction, which r e s u l t s i n high molecular weights of l i g n i n samples 

from longer cooks, must have followed the i n i t i a l s c i s s i o n of a r y l -

a l k y l ether linkages due to the prolonged cooking. This evidence was 

also confirmed by NMR analysis. 
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Methyl and methylene groups, and ethylenic double bond 

were not analyzed due to the lack of supporting evidences i n NMR 

spectra. Estimation of methoxyl content by IR spectra (80,147) 

was not attempted because of poor r e s o l u t i o n between wave-number 

1200-1470 cm \ and broadness and overlapping of the absorption 

bands as mentioned e a r l i e r . 

The IR spectra of unreduced l i g n i n samples may be more 

informative as to the o r i g i n a l conditions However, unreduced sam­

ples were observed to be less stable since a continued color change 

was evident on standing at room temperature. 

5.7.3 U l t r a v i o l e t spectra 

A s e r i e s of reduced l i g n i n samples were"analyzed: using UV 

spectrophotometetr t o examine t h e - e f f e c t of cooking time on the con­

tent of'? phenolic—hydroxyl group. F i g , 23 shows that a l l f i v e sam­

ples have somewhat ^similar UV spectra. The maxima appeared around 

294 to 302 nm of the difference curve which i s c h a r a c t e r i s t i c f or 

only the phenolic hydroxyl group (11,12,77,131). The method used i n 

the present study i s based upon the c h a r a t e r i s t i c UV absorption of 

phenols i n a l k a l i n e solution. According to Aulin-Erdtman (11,12), 

the bathochromic s h i f t of the c h a r a c t e r i s t i c 280 nm absorption 

maximum of l i g n i n i n a l k a l i n e s o l u t i o n takes place due to the i o n i ­

zation of the phenolic group. 

In the present method, UV dif f e r e n c e curves were obtained 

d i r e c t l y by scanning the a l k a l i n e vs. the neutral l i g n i n solutions, 

r e s p e c t i v e l y placed i n the sample and reference c e l l s of'the spectro­

photometer (77). \ The r e s u l t s shown i n Table 13 indicate that the 
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Figure 23. Difference UV spectra of reduced l i g n i n samples. 



Table 13. Spectrophotometric determination of phenolic 
hydroxyl group i n Douglas-fir l i g n i n . 

Sample No. A max. Absorbance /Aa,max. Phenolic OH 
(nm) (1/g-cm) (%) 

PC-11 294 0.38 4. 75 1.97 

PC-12 296 0.44 5.50 2. 28 

PC-13 294 0.46 5.75 2.39 

PC-14 299 0. 55 6.88 2.86 

PC-15 302 0.47 5.88 2.44 
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phenolic hydroxyl group content increased as cooking time increased (up 

to 17 min) and then s l i g h t l y decreased, confirming the s i m i l a r r e s u l t s 

of NMR spectra analysis. The calculated phenolic hydroxyl content of 

t h i s series ranged from 1.97 to 2.86% (based on t o t a l weight of l i g n i n ) 

according to the equation provided by Goldschmid. (77). This content 

based on l i g n i n weight i s equivalent to 0.20 to 0.29 hydroxyl groups per 

Cg-unit, i f converted by using the apparent unit weights l i s t e d i n Table 

11. This content i s s l i g h t l y lower than the recorded phenolic hydroxyl 

contents (0.27-0.29/C -unit) of several softwood MWL (148). 
y 

Considering these r e s u l t s i n r e l a t i o n to those obtained from 

NMR spectra, i t -.seems'likely"that-mainly'the active aromatic hydrogens, 

rather than phenolic hydroxyl groups, are involved i n the-recondensation 

reaction of.lrgnrris"to form"C-C linkages because the contents of aromatic 

hydrogen was found to decrease as the cooking time increased, whereas 

the phenolic hydroxyl group content a c t u a l l y increased.-.t It i s s i g n i f i ­

cant that, the net hydroxy! aontent increased gradually due "to a possible 

cleavage -of the a r y l - a l k y l ether linkages as cooking time increased, even 

though some of the phenolic hydroxyl groups might have been consumed i n 

the recondensation.reaction. 

As mentioned above-*., the phenolic hydroxyl content, deter­

mined by the spectrophotometry method, was lower than that obtained 

from NMR spectra (Table 11). There i s one serious l i m i t a t i o n i n the 

method used f o r t h i s test. Because of the assumption that every phenyl 

propane unit of l i g n i n c a r r i e s one methoxyl group, t h i s method can not 

be applicable to those l i g n i n samples which contain s y r i n g y l n u c l e i (77). 



105 

5. 8 Macromolecular Analysis of Isolated Organosolv L i g n i n 

5. 8.1 Gel permeation chromatographs 

5.8.1.1 E f f e c t of cooking time on molecular weight 

According to Goring (81), during the chemical d e l i g n i f i -

c a tion process, penetration by cooking l i q u o r into the secondary wall 

occurs i n i t i a l l y and the low molecular weight l i g n i n of the secondary 

c e l l w all i s the f i r s t to be extracted. As cooking time increased, 

penetration by the cooking l i q u o r into the middle lamella occurred.and 

l i g n i n of high molecular weight was extracted. Thereby, both Mw and 

Mn changed as cooking time increased as shown i n Table 14. Mw and Mn 

f i r s t increased up to about"12 minutes and then decreased as cooking 

period further increased up to 20 minutes ( F i g . 24). 

Lora and Wayman (104) suggested e a r l i e r that there are 

two reactions involved during the d e l i g n i f i c a t i o n under a c i d i c condi­

tions. The f a s t e r f i r s t reaction, p r i m a r i l y occurring by breaking 

of lignin-carbohydrate bonds, produces soluble l i g n i n f r a c t i o n s and the 

slow second reaction, which i s e s s e n t i a l l y a condensation, r e s u l t s i n 

insoluble l i g n i n f r a c t i o n s i n the presence of the organic acids ( a c e t i c 

acid and formic acid) formed during the autohydrolysis. The r e s u l t s 

shown i n Table 14 c l e a r l y demonstrate that at the beginning of cooking, 

the rate of d e l i g n i f i c a t i o n was fast due to rapid increase of the tem­

perature of the cooking mixture (94,96), and*resulted i n low molecular 

weight l i g n i n f r a c t i o n s . However, as cooking time increased, a slow 

recondensation s t a r t s to produce hl"g-He'rX.moi6ouiar.:,wtaight' -lign i n -frae-
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Table 14. Molecular weight averages and p o l y d i s p e r s i t y indices of 
acetylated Douglas-fir l i g n i n samples. 

Sample No. Cooking 
time(min. ) 

Acid(HCl) con­
c e n t r a t i o n ^ ) 

Mw Mn Mw/Mn 

PC-9 17 0.025 7,675 996 7.71 

PC-11 5 0.050 7,984 1,092 7.31 

PC-12 9 0.050 9, 821 1,127 8. 73 

PC-13 12 0.050 10,122 1,144 8. 85 

PC-14 17 0.050 9, 293 1,002 9. 27 

PC-15 20 0.050 8, 762 823 10.65 

PC-19 17 0. 100 10,186 1,005 10. 13 
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Figure 24. Effect of cooking conditions on molecular weight averages of acetylated l i g n i n samples. 
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Figure 25. Change i n molecular weight d i s t r i b u t i o n with cooking time. 
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tions (104), By the time (around 12 min) the temperature reaches 

200°C, however, the extracted l i g n i n i n the cooking l i q u o r i s subject 

to degradation due to a c i d i c condition (0.05 N HC1) as cooking time 

i s prolonged. This r e s u l t s i n a decrease of Mw and Mn as shown i n 

Table 14 and F i g , 24. F i g . 25 suggests that there i s no substantial 

change i n the predominant f r a c t i o n (main peak around molecular weight 

2,500) of the ;acetylated lignin'samples, even i f cooking time i s chan­

ged to 20 minutes. A short cook (PC-11;5 min) gives a narrow main 

peak while longer cooks (PC-12 through PC-15;9-20 min) give broader 

peaks which are more or less symmetrical i n shape. Similar d i s t r i ­

butions were also reported i n e a r l i e r studies (35,89). 

In the MWD curve (Fig. 25) of the longest cook (PC-15;20 

min), i t can be seen that a very d i s t i n c t f r a c t i o n ranged between 

10,000 and 50,000. This observation m a y be explained by the s e l f -

condensation of l i g n i n through C-C linkages due to carbonium ions 

formed i n d i f f e r e n t positions on the side-chain of the phenyl pro­

pane units under a c i d i c conditions during prolonged periods of cook­

ing time (35,165). Somewhat-similar high molecular weight f r a c t i o n s 

were also found i n the other samples (Fig.25). The unusually low 

contents of hydrogen and oxygen i n these l i g n i n samples, as mentioned 

i n NMR s p e c t r a l analysis, may be the d i r e c t r e s u l t of the formation of 

new C-C linkages. NMR spectra i n F i g . 20 c l e a r l y i l l u s t r a t e that 

the sharp s i n g l e t s i g n a l f or a l i p h a t i c hydroxyl groups (£ 2.0) c o l ­

lapses s i g n i f i c a n t l y as cooking time increases. 

There i s another explanation f o r the high molecular weight 

l i g n i n f r a c t i o n s . Sarkanen et a l . (151), i n t h e i r study on hardwood 

l i g n i n s from organosolv cooking (temperature«135-165°C;catalyst«alumi-

num chloride;cooking time=l-6 hrs), found that organosolv l i g n i n s have a 
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tendency to form high molecular weight associated complexes even under 

quite strongly a l k a l i n e aqueous conditions. Even though there i s no 

evidence f o r t h i s tendency i n the present test, i t i s quite possible 

that high molecular weight associated f r a c t i o n s might have formed i n 

the acetylated samples used for GPC analysis. 

Another s i g n i f i c a n t observation i s the small, but very d i s ­

t i n c t peaks around molecular weight 96-108 (Fig. 25). E s p e c i a l l y , sam­

ple PC-15 c l e a r l y shows three peaks i n i t s MWD curve around molecular 

weights of 108, 186 and 273, which can be interpreted as monomer, dimer 

and trimer of the l i g n i n guaiacyl unit, respectively. These peaks seem 

to represent the degradation products formed during the cooking period. 

Recently, Sarkanen et al.(150) noted f i v e or s i x peaks i n the lower 

molecular weight region i n the MWD curve of organosolv l i g n i n from 

cottonwood by Sephadex G-50. Smaller f r a c t i o n s than tetramer were re­

ported., to be i d e n t i f i e d by gas chromatography by Dimmel et al.(49), 

i n t h e i r study on molecular weight changes i n l i g n i n during anthra-

quinone-alkali pulping. Table 24 also shows that p o l y d i s p e r s i t y i n ­

dex (Mw/Mn) increases as cooking time increases, r i s i n g from 7.31 for 

a 5-min cook (PC-11) to 10.65 f o r a 20-min cook (PC-15). Such high 

values of p o l y d i s p e r s i t y , i n d i c a t i n g a wide range of MWD, are not un­

usual for these l i g n i n samples because of simultaneous formation of 

low molecular weight degradation products and high molecular weight 

recondensation products during cooking as mentioned before. 

5.8.1.2 E f f e c t of acid concentration on molecular weights 

Kosikova and P o l c i n (97) reported that d e l i g n i f i c a t i o n 

with hydrochloric acid i n aqueous organic solvent i s b a s i c a l l y an 
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Figure 26. Change i n molecular weight d i s t r i b u t i o n with acid 
concentration. 



112 

a c i d o l y t i c s p l i t t i n g of the l i g n i n macromolecules and of the l i g n i n -

carbohydrate complex in t o i n d i v i d u a l components soluble i n the cook­

ing l i q u o r . As indicated i n Table 14, and Fig. 24, Mw shows a large 

increase while Mn shows a moderate increase as acid concentration 

increased from 0.025 to 0.1 N. 

The MWD curve f o r sample PC-19 (0.1 N HC1;17 min) shows 

a new peak around molecular weight 20,000. This high molecular 

weight f r a c t i o n may be the products of the l i g n i n recondensation re­

action or associated complexes, as mentioned before. The balance between 

decomposition and recondensation i s evidently one of the deciding fac­

tors f o r MWD of low and high f r a c t i o n s of the i s o l a t e d organosolv l i g ­

nin, and the two may be taken as r e s u l t s of two competing reactions. 

One of the most i n t e r e s t i n g observations i n F i g . 25 i s 

the s h i f t of the predominant peak toward the high molecular weight 

end of the MWD curve as acid concentration increased. The main peaks 

of samples PC-9 (0.025 N HC1), PC-14 (0.05 N HC1) and PC-19 (0.1 N 

HC1) appear at molecular weights of 1,850, 2,500 and 3,400, respec­

t i v e l y . The s h i f t of the main peak, which represents the predominant 

f r a c t i o n of the i s o l a t e d l i g n i n , toward the highermolecular weight end 

seems to be the main reason for the increase of Mw and Mn as acid s con­

centration increased. 

The increase of the p o l y d i s p e r s i t y index from 7.71 to 

10.13 i s also observed as acid concentration increased from 0.025 

to 0.1 N (Table 14). Preliminary cooking experiment with the same 

a c i d i c condition (0.025 N HC1) i n methanol-water (7:3 by volume) as 

cooking liquor, resulted i n a much lower "polydispersity index (3.68), 

i n d i c a t i n g that not only acid concentration, but also solvent power 

a f f e c t s the p o l y d i s p e r s i t y of molecular weight of the i s o l a t e d organo-
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solv l i g n i n s . These r e s u l t s prove that acetone-water i s a better s o l ­

vent system.for rapid d e l i g n i f i c a t i o n i n organosolv pulping. 

5.8.2 Scanning electron photomicrographs 

The wide range of l i g n i n p a r t i c l e s i z e can be seen i n the 

scanning e l e c t r o n photomicrographs (Figs. 27 and 28). For example, 

the s p h e r i c a l p a r t i c l e s of sample PC-15, having the highest value of 

p o l y d i s p e r s i t y index, includes-.a wide*range of p a r t i c l e sizes from smaller 

than 25 nm up to 500 nm (Figs 27 and 28, and'Table 15). The larger 

p a r t i c l e s which seem to be aggregates of the smaller granules (137,138) 

may be the high molecular weight f r a c t i o n s shown i n the MWD curves ob­

tained by GPC. 

To c o r r e l a t e MWD curve and p a r t i c l e s i z e d i s t r i b u t i o n (PSD) 

of the same l i g n i n samples, p a r t i c l e s i z e frequency d i s t r i b u t i o n d i a ­

grams based • on:,i cooking time ( F i g . 29) and acid concentration (Fig. 

30) were constructed. Similar patterns of d i s t r i b u t i o n of MWD curve 

and PSD were found for both the cooking time series (Figs. 25 and 29) 

and the acid concentration s e r i e s (Figs. 26 and 30). There i s no hard 

evidence, however, as to whether there i s a d i r e c t r e l a t i o n s h i p between 

the MWD curves obtained from GPC and PSD of the same l i g n i n samples. 

In a l l SEM photos, there i s no evidence of carbohydrate con­

tamination of the acetylated organosolv l i g n i n samples, thus confirming 

the r e s u l t s of NMR spectra analysis on the same l i g n i n samples. 
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PC-13 (12 min) PC-15 (20 min) 

Figure 27. Scanning e l e c t r o n photomicrographs of p a r t i c l e s i z e 
v a r i a t i o n with cooking time. 



PC-9 (0.025N HC1) 

Figure 28. Scanning electron 

PC-14 (0.05N HC1) 

lotomicrographs of p a r t i c l e size 

PC-19 (0.IN HC1) 

i a t i o n with acid concentation. 



Table 15. Frequency of p a r t i c l e sizes of aeetyla-ted; l i g n i n samples. 

\Sample No. 

Diameter>. -
of p a r t i c l e s ^ 
(nm) \ 

PC-11 PC-12 PC-13 PC-14 PC-15 PC-9 PC-19 

< 25 5.2 3.5 4.2 3.4 8.1 2.3 
2 5 — 50 21.5 12.8 10.4 10.3 26.8 11.1 -
5 0 — 75 34.8 27.9 16.2 1.6.2 30.9 46.9 2.6 
75 — 1 0 0 32.6 33.3 26.2 20.5 12.1 33.4 7.9 
100—125 4.1 10.9 24.2 27.4 3.4 3.6 28.3 
125 — 1 5 0 • 1.1 3.8 11.2 15.0 2.0 2.0 31.6 
150 — 175 - 4.5 1.9 3.4 1.3 - 9.2 
175 — 200 0.3 1.9 3.1 0.9 - 0.7 4.6 
200 — 225 0.3 - - 0.4 2.0 - 6.6 
225 — 250 - 0.3 0.8 1.3 0.7 - 5.3 
2 5 0 — 275 - 0.3 0.8 - 1.3 - 0.7 
275 — 300 - - • - 0.4 - - 2.0 
3 0 0 — 325 0.3 - 0.4 0.4 0.7 - -
325 — 350 - 0.6 0.8 - 4.7 - -
350 — 375 - - - 0.4 0.7 - 0.7 
375 — 4 0 0 - - - - 0.7 - • -
4 0 0 — 425 - - - - - -4 2 5 — 450 - - - 2.0 - 0.7 
4 5 0 — 475 - - - • - - - -
4 7 5 — 500 - - - - 1.3 - -

file:///Sample
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'Figure 29. Effect of cooking time on particle size frequency 
distribution. 
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6. RECOMMENDATIONS 

The information derived i n th i s study on the i s o l a t i o n 

and c h a r a t e r i z a t i o n of Douglas-fir organosolv l i g n i n from the acid-

catalyzed cooking allows recommendations for further research on 

organosolv l i g n i n . 

1. An improvement of the i s o l a t i o n technique for the 

water-soluble l i g n i n fraction,which seems to have very low molecu­

l a r weight and high content of phenolic hydroxyl group, i s required. 

Such water-soluble l i g n i n s , i s o l a t e d i n large amounts, could have 

commercial importance. 

2. Simple and e f f e c t i v e separation techniques for d i s ­

solved sugars'from ithe'-spent .liquor-should be developed. Determina­

t i o n o f these sugars could give" invaluable information on pulp and 

the i s o l a t e d organosolv l i g n i n . 

3. Detailed studies should be i n i t i a t e d regarding to 

competition between the l i g n i n degradation reaction (hydrolysis) 

and recondensation reaction since the l a t t e r l i m i t s l i g n i n fragmen­

t a t i o n to low molecular weight products during the cooking. 

4. Influence of various organic solvents (both polar 

and non-polar) used as organic component of the cooking l i q u o r on 

eontent of functional groups o f the i s o l a t e d l i g n i n s should be stu­

died i n more d e t a i l . 

5. Further studies on l i g n i n macromolecular properties 

by GPC and SEM are required i n order to find firm evidence i n sup­

port of a close r e l a t i o n s h i p between MWD of l i g n i n molecules and 

PSD of l i g n i n p a r t i c l e s . 
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7. CONCLUSION 

The following general conclusions can be drawn from 

t h i s study. 

1. At a constant reaction temperature (200°C), both 

cooking time and concentration of acid c a t a l y s t were found to 

have a profound e f f e c t on the rate of hydrolysis of wood c o n s t i ­

tuents during organosolv cooking. These parameters provide the 

means to maximize y i e l d s of l i g n i n and sugars. 

2. Cooking time seems to be a more important parameter 

than acid-concentration i n regulating the quantity and q u a l i t y of 

the i s o l a t e d organosolv. lignins.. In general, lignin-.yield increased 

with prolonged cooking. Cooking time was f®und to a f f e c t the content 

of functional groups and molecular weight.of the organosolv l i g n i n . 

3. The molecular weights of the i s o l a t e d organosolv 

l i g n i n seem to be much lower than those of the p r o t o l i g n i n i n 

wood. The probable reason for t h i s i s thought to be s c i s s i o n 

of ether linkages of p r o t o l i g n i n molecules through^acid, hydro­

l y s i s during cooking. However, prolonged cooking seems to i n ­

crease the molecular weights due to autocondensation of l i g n i n 

molecules? • . 

4. Analyses of NMR, IR, and UV spectra of the i s o ­

lated l i g n i n s provide good evidence of acid hydrolysis of a r y l -

a l k y l ether linkages and the e f f e c t of autocondensation reaction 

during organosolv cooking. The balance of degradation and re? 

condensation reactions was found to be the deciding 7 f a c t o r f o r 
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the size of molecular weight and p o l y d i s p e r s i t y of the i s o l a t e d or­

ganosolv l i g n i n s . 

5. SEM photographs show that p r e c i p i t a t i o n of the acety­

lated organosolv l i g n i n s from Douglas-fir sawdust occurs i n shape of 

sp h e r i c a l p a r t i c l e s with wide v a r i e t y of size. The p a r t i c l e diame­

ters ranges from somewhat smaller than 25 nm t o . about 500 nm. 

PSD obtained from SEM and MWD curves from GPC were found to have s i ­

milar d i s t r i b u t i o n -patterns. 
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