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Abstract
The thesis investigates the possibility of a classical semantics
for quantum propcsitional structures. A classical semantics is defined

as a set of mappings each of which is (i) bivalent, i.e., the value i

- 2
PN

~ (true) or?bf(false) is assigned to each proposition, and (ii) truth-functio-
nal, i.e., the logical operations are preserved. In addition, -this set
.Z@PSﬁ}be ﬁ;ﬁ%ivp.ifgi;?éﬂ;?%éir of distinct propositions is assigned diffe-
rent values by some mapping in the seﬁ. When the propositions make asser-—
tions about the properties of claséical or of quantum systems, the mappings
should also be (iii) "state-induced", i.e., values assigned by the seman-
tics should accord with values assigned by classical or by quantum me-

chanics.

In classical propositional logic, (equivalence .classes.of) propo-

s

. VA
.z sitions form a Boolean algebra, and each semantic imapping assigns the

value 1 to the members of a certain subset of the algebra, namely, an
2 ultrafilter, and assignsgbffo the members of the dual ultraideal, where

"

the union of these two subsets -is the entire algebra. The propositional
structures of classical mechanics are likewise Boolean algebras, so one
can straightforwardly provide a classical semantics, which also satisfies
(iii). However, quaﬁtum propositional structures are non-Boolean, so
it is an opeﬁ question whether a semantics satisfying (i), (ii) and
(iii) can be provided.

Von Neumann first proposed (1932) that the algebraic structures of
the subspaces (or projeétors) of Hilbert space be regarded as the'pro—

positional structures P of quantum mechanics. These structures have

QM
been formalized in two ways: as orthomodular lattices which have the

binary operations "and", "or", defined among all elements, compatible

A and incompatible,é( ; and as partial-Boolean algebras which have the

ii
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binary operations'defined among only compatible elements. In the thesis,
two basic senses in which these structures are non-Boolean are discri-
minated. And two notions of truth-functionality are distinguished: truth-

functionality‘(é ,Ak ) applicable to the P lattices; and truth-functio-

QM

nality (é)) applicable‘to both the P lattices and partial-Boolean alge-

QM

bras. Then it is shown how the lattice definitions of "and", "or", among
incompatibles rule out a bivalent, truth-functional (é>,,éf) semantics

for any P lattice containing incompatible elements. In contrast, the

QM
Gleason and Kochen-Specker proofs of the impossibility of hidden-variables
for quantum mechanics show the impossibility of a bivalent, fruth—func—
tional (é ) semantics for three-or-higher dimensional Hilbert space PQM
structures; and the presence of incompatible elements is necessary but

is not sufficient to rule out such a semantics.

As for (iii), each gquantum state-induced expectation-function on

“®' values to the elements in a

7

QM trutﬁ—functionally assigns 1 andi/
ultrafilter and duval ultraideal of PQM’ where in general the union of
an ultrafilter and its dual ultraideal is smaller than\the entire struc-
ture. Thus it is argued that each expectation;function is the gquantum
analog of a classical semantic mapping, eﬁen though.the domain where
each expectation-function is bivalent and truth-functional is usually
a non-Boolean substructure of PQM.
The final portion of the thesis surveys proposals for the intro-
duction of hidden variables into guantum mechanics, proofs of the im-
possibility of such hidden-variable proposals, and criticisms of these
impossibility proofs. And arguments in favour of the partial-Boolean
algebra, rather than the orfhomodular lattice, formalization of the
quantum propositional structures are reviewed.

T
ciidi s
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CHAPTER 0

INTRODUCTION

In 1932, von Neumann published the first proofs of the
completeness of quantum mechanics and the impossibility of introducing
hidden variables into quantum theory. Thirty years later in 1963, Jauch
and Piron published another proof of the impossibility of hidden variables
which they regarded as a strengthening of von Neumann's impossibility
result. Although von Neumann's proofs were later challenged, the
combleteness of quantum mechanics and the impossibility of hidden
variables were proven anew by Gleason in 1957. And ten years later, Kochen
and Specker published their version of Gleason's impossibility proof.

The proofs by Jauch-Piron and Kochen-Specker are especially
interesting because they connect the enterprise of introducing hidden
variables into quantum theory with the enterprise of assigning 0, 1
values to the algebraic structures of the subspaces (or projectors) of
Hilbert space. Such algebraic structures have been regarded as the
propositional or logical structures of quantum mechanics ever since
von Neumann's proposals, in 1932 and 1936, to consider the subspaces (or
projectors) as the mathematical representatives of quantum propositions
and to consider the operations and relations among the subépaces as the
mathematical representatives of logical operations and relations. So these
proofs of the impossibility of assigning 0, 1 values to the algebraic
structures of guantum propositions in a manner which preserves the logical

operations and relations among the propositions are proofs--or at least



suggestive of a proof--of the impossibility of a classical, that is, a
bivalent and truth-functional, semantics for the quantum propositions.

In Chapter I, the algebraic notions employed throughout this
thesis are presented. In Chapter II, the Boolean Lindenbaum algebra L
of a set of well-formed formulae of classical propositional logic is
introduced, and the notion of a bivalent, truth-functional semantics for
an L is defined as a complete collection of algebraic valuations on L.
We shall see in Chapter V how such a semantics fails to work for the
algebraic structures of quantum propositions. And we shall see in Chapter VI
how such a semantics does work for certain substructures of the quantum
propositional structures.

The quantum propositional structures, labeled P have been

QM °

formalized in two ways: as orthomodular lattices PQML which have the

operations A (and), V (or) defined among all elements, compatible &

and incompatible & ; and as partial-Boolean algebras PbMA which have

A, V defined among only compatible elements. In Chapter IV, some

differences between the PQML and the PQMA formalizations are described.

Also, two notions of truth-functionality are distinguished:

truth-functionality (d,4) appropriate to a and truth-functionality

PbML
(&) appropriate to a PbMA . And two basic senses in which the quantum
propositional structures may be said to be non-Boolean are elaborated.

Then in Chapter V, it is shown how the lattice definitions of A, V -among
incompatibles cause truth-functionality problems which rule out a bivalent,

truth-functional (4,$) semantics for any quantum P containing

QML
incompatible elements. In contrast, the Kochen-Specker 1967 impossibility
proof, which semantically interpreted is a proof of the impossibility of a

bivalent, truth-functional (&) semantics for any three-or-higher



. . . >3 . .
dimensional Hilbert space LA structure, rests upon truth-functionality

QMA
problems caused by the presence of overlapping maximal Boolean

> .

substructures in Pgﬁi ; the presence of incompatible elements is necessary
A . . n=3

but not sufficient to rule out such a classical semantics for a PQMA .

In Chapter VI, amother semantic proposal is considered for the
quantum propositional structures. This is the proposal of a state-induced
semantics, which is partly motivated by the fact that, as described in
Chapter III, the state-induced semantics for a Boolean propositional
structure PCM determined by classical mechanics is exactly analogous to

the classical (algebraic) semantics for a Boolean Lindenbaum algebra L.

So the notion of a state-induced semantics for a P

QM ° with the quantum

state-induced expectation-functions EXPW as semantic mappings, is
investigated. Each Exp¢ on a PQM truth-functionally assigns 0, 1

values to the elements in a substructure of PbM in a manner exactly
analogous to the way algebraic valuations on an L truth-functionally
assign 0, 1 values to the elements in L. Thus EXPW may be regarded

as the quantum analog of the standard valuation of classical propositional

logic, even though the domain where each EXPW is bivalent and

truth-functional is only a sub-structure of PQM rather than the entire
PQM » and even though that substructure may be larger than any Bgolean'
substructure of PQM and so may be a non-Boolean substructure of PQM .

In short, the basic methodology of the quantum state-induced semantics

for a PQM is exactly like the methodology of the classical (aigebraic)

semantics for an L. Thus, when the classical semantic method is applied

to a non-Boolean quantum P the result is a semantics (which happens

QM °

to also be state-induced and) which is non-classical in the sense that the

domain of each semantic mapping Exp¢ is a nonfBoolean substructure of



P . In contrast, in the case of classical mechanics, the domain of each

QM

state-induced semantic mapping is the entire Boolean PbM ; and likewise,

" in the case of classical propositional logic, the domain of each algebraic

valuation is the entire Boolean L.

Chapter VII surveys hidden variable (HV) proposals, proofs of
. their impossibility, amd criticisms of these HV impossibility proofs.1
Kochen-Specker present the clearest notion of the goal of proposed HV

theories: to give a classical, Boolean reconstruction of guantum mechanics,

whereby the statistical results of quantum mechanics are reproduced by
classical probability measures on a proposed Boolean structure PHV of
(subsets of) a proposed classical phase space of hidden variables.
Kochen-Specker require that such a classical HV reconstruction of quantum
mechanics preserve the functional relations among quantum magnitudes and
the logical operations among compatible quantum propositions; in other
words, an HV reconstruction must preserve the partial-Boolean structural
features of the quantum P . Such a requirement may be called a

QM

structural condition. Von Newmann and Jauch-Piron each impose an

additional structural condition requiring the preservation of an operation
among incompatibles. That is, according to von Newmamn and Jauch-Piron,
an HV theory must preserve some of the lattice features of the quantum

PbM 3 this view is criticized in three notes at the end of Chapter VII.
Now Kochen-Specker show that their notion of an HV reconstruction of
quantum mechanics is possible IFF there exists what in this thesis is
called a complete collection of bivalent, truth-functional (&) mappings
on PQM . In this way, the problem of hidden variables for quamntum

mechanics is connected with the problem of a classical semantics for the



quantum propositional structures. And as mentioned above, Kochen-Specker

prove that for P structures, bivalent, truth-functional (&) - mappings

3
QM
are impossible, and so a classical HV reconstruction ig impossible for the
quantum mechanics of three-or-higher dimensional Hilbert space. The other
HV impossibility proofs similarly involve showing the impossibility of
proposed bivalent, operation-preserving HV mappings on the PQM structures.

Critics of these HV impossibility proofs argue that the proofs
rest upon contradictions caused by requiring the proposed HV mappings to
satisfy the various structural conditions imposed by the authors of the HV
impossibility proofs. So whether or not the proofs are accepted depends
upon whether or not the structural conditions are accepted as justifiably
imposed requirements. And as Bub makes clear, the latter depends upon how
quantum mechanics is interpreted. In particular, we have the following
dichotomy articulated by Bub: Either quantum mechanics is taken to be a
(principle) theory which posits a non-Boolean logical-property-event
structure for quantum phenomena, as given by the PQMA structure
abstracted from the fundamental postulates of quantum mechanics; in this
case, the quantum PQMA must be preserved, and as shown by Gleason and
Kochen-Specker, quantum mechanics is a complete theory of quantum phenomena
and an HV reconstruction of quantum mechanics is impossible. Or the
enterprise of providing a classical HV reconstruction of quantum mechanics
is treated as paramount, with respect to which the quantum PQMA need not

be preserved; in this case, as proved by Kochen-Specker, the quantum PQMA

camnot be preserved, and as exemplified by the so-called contextual HV

theories, a classical HV reconstruction which does not preserve PQMA is

possible and quantum mechanics is incomplete relative to such an HV



reconstruction. Bub argues that behind each of these two positions there
is a presupposition about logic: The latter is motivated by the
presupposition that the logical structure of quantum phenomena and quantum

theory must be a Boolean structure like the Boolean PCM structure of

classical phenomena and classical mechanics. The former is motivated by
an open acceptance of the non-Boolean character of the logical structure
of quantum phenomena and quamtum theory, as manifested in the non-Boolean

PQMA structure (which is abstracted from the quantum formalism by the

same way that the Boolean PCM structure is abstracted from the formalism

of classical mechanics). Thus one's views on logic may colour one's
interpretation of quantum mechanics.
But regardless of the above logical point, since 1967 it has

been clear that a classical HV reconstruction of quantum mechanics which

5

preserves the partial-Boolean structural features of the quantum P is

QM

impossible. And it is arguable that because the contextual HV theories

do not preserve the quantum P

QMA ° such theories are not really

reconstructions of quantum mechanics but rather are entirely separate

theories of quantum phenomena which, és Bub puts it, will have to stand on
their own feet. Their feet are shaky since so far, experiments have
falsified the deviations from quantum mechanics predicted by the contextual
HV theories. Thus quantum mechanics, whose state-induced Expw mappings
do preserve the partial-Boolean structural features of PQM and do
successfully predict the results of experiments, marks a radical departure

from classical physical theories and may also mark a radical departure from

classical logic.



In this thesis, two types of HV theories are investigated,
namely, what are called by Belinfante HV theories of the "zeroth kind"
(proved impossible by von Neumann, Jauch-Piron, Gleason, Kochen-Specker)
and HV theories of the "first kind" (also called contextual HV theories).
What Belinfante calls HV theories of the "second kind," that is, the so-called
local HV theories, are not discussed in this thesis. And in particular, the
celebrated paper by Einstein, Podolsky, and Rosen, in which the non-locality
of quantum phenomena is highlighted, is not discussed in this thesis.

Bernard d'Espagnat, in his paper "The Quantum Theory and Reality"
in a recent Scientific American (Vol. 241, No. 5, November, 1979) presents
a lucid and accessible description of the non-locality of quantum phenomena
and of the proposal of a local HV theory. Though d'Espagnat does not say
so, his explanation of the derivation of Bell's Inequality in a local HV
theory makes it clear that the derivation depends upon a set-theoretic, i.e.,
Boolean, manipulation of the properties of correlated quantum systems. Bub
makes a similar point in his book (Bub, 1974, pp. 79, 83); he argues that
the crucial assumption in the derivation of Bell's Inequality in a local HV
theory is not the assumption of locality but rather the assumption that
certain quantum probabilities are to be computed as though they were
classical conditional probabilities on a classical, i.e., Boolean,
probability space. Thus the problems and issues raised by HV theories of
the "second kind" may in fact be no different from the problems and issues
raised by HV theories of the "first kind" which hinge upon attempted Boolean
treatments of quantum properties and propositions. A full explication of
these points is left for future work.




CHAPTER I

ALGEBRAIC PRELIMINARIES

Section A. Group and Ring Structures

Consider an arbitrary, nonempty collection of elements

E={a, b, c, d, e, . . .} with a binary (univalent) operation plus +

defined from E X E to E such that E 1is closed with respect to + ; i.e.,

for any b, ¢ € E, b+ ¢ € E, and the following conditions obtain for any

elements in E:

(1) + is associative, i.e., b+ (c + d) = (b + ¢c) + d.

(2) There exists a distinguished element 0 € E such that
b+0=0+Db=0, for any b € E.

(3) For any b € E, there existsa ¢ € E such that b+ ¢ = 0. It can
be proven that ¢ is unique; it is designated as '"-b" (the additive
inverse of b) and satisfies b + (-b) = 0 = (-b) + b. For any
b, ¢c € E, b+ (-c) is also written as b - c.

The ordered triple <E, +, 0> satisfying closure and (1), (2),

(3) is an additive group. For example, <S, A, #> is a set-theoretic

realization of an additive group, where S 1is a set of subsets of some set,
A is symmetric différence, and @ is the empty set.

If an additive group <E, +, 0> is such that:
(4) + is commutative, i.e., b+ c =c¢c + b, then <E, +, 0> is an
abelian or commutative additive group.

Now let a second binary (univalent) operation dot <+ be defined



from E X E to E such that E is closed with respect to =+, i.e., for
any b, c € E, b c € E (by convention, b * ¢ 1is also written bec),
and these two conditions obtain:

(5) =+ is associative.

(6) + 1is distributive with respect to +, i.e., b ¢ (c + d) = bc + bd

and (¢ +d) » b =c¢cb % db.
The ordered quadruple <E, +, *, 0> satisfying the two closure conditions
and (1)-(6) is a ring. For example, <S, A, N, #> is a set-theoretic
realization of a ring, where h is the intersect operation.
If a ring is such that:
(7) - is commutative,

then the ring is a commutative ring.

Consider also this condition:
(8) There exists a distinguished element 1 € E such that
be«1=14«b=>b, forany b € E,

The ordered five-tuple <E, +, *, 0, 1> satisfying closure, (1)-(6), and

(8) is a ring-with-unit; and a ring-with-unit which satisfies (7) is a

commutative ring-with-unit.

Consider such a ring which also satisfies:
(9) b +*b=>b, forany b € E, that is, each element in E is idempotent.
(By convention, b ¢ b is also written b2.)
Two conditions follow from (9):
(10) Each element b € E is its own.additive inverse.
Proof: For any b € E, (b + 5)2 = b° + b2 + b + b2. And by (9),
(b+°=b+b=b+b+b+b. Soby (2), b+b =0, and so by
(3), b=-b. Q.E.D. Thus for any b, c €E, b+c=Db+ (-¢c) =b - c.

(7) + is commutative.
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Proof: For any b, ¢ € E, (b + c)2 = b2 + bc + cb + c®. and by (9),
(b + c)2 =b+c=Db+bec+cbhb+c. Soby (2), bc+ cb=20, and so
by (3), be = -(cb), and hence by (10), bec = cb. Q.E.D.
(Halmos, 1963, p. 2)

The ordered quadruple <E, +, *, 0> satisfying closure, (1)-(6), (9), and

hence (10) and (7) is a Booléean ring. And the ordered five-tuple

<E, +, *, 0, 1> satisfying closure, (1)-(10) is a qulean ring-with-unit.
Or in other words, the idempotent elements of a commutative ring form a
Boolean ring, and the idempotent elements of a ring-with-unit or a
commutative ringQWith—unit form a Boolean ring-with-unit. For example,

<S, A, N, @, X 1is a set-theoretic realization of a Boolean ring-with-unit,

where S 1is the set of subsets of a given set X.

Section B. The Boolean Algebra and the Boolean Lattice

In a Boolean ring-with-unit, two binary operations meet A and

join V are defined from E X E to E and a unary operation complementation

' is defined from E to E in terms of the ring operations +, * as
follows: for any b, c € E, bAc=besc, bVec=b+c-(b-*c),
b' =1 - b. The resulting sextuple <E, A, V, ', 0, 1> 1is a Boolean
algebra. For example, <S, ﬂ; U, ', 8, x> 1is a set-theoretic realization
of a Boolean algebra, where S 1s the set of all subsets of a given set X,
# 1is the empty set, and (1, U, ' are the set operations intersect, union,
complementation, respectively.

From the above list of conditions (1)-(10) which a Boolean
ring-with-unit sétisfies with respect to + and =+, we can derive a lengthy
list of conditions which a Boolean algebra satisfies with respect to its

operations. However, in addition to the closure of E w.r.t. A, V, ',
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and the existence of the distinguished 0 and l-elements in E, the following
five conditions are necessary and sufficient to characterize a Boolean
algebra: for any b, c, d € E,

(B1) Commutativity: bAc =cADb and bVe=cVb, by (4) and (7).
(B2) Associativity: (bA c)Ad=DbA (cAd) and

(bve)vd=>bvVv(Vvad, by (1), (&), (5), (6), (10).

(B3) Absorption: b A (bVe)=>bH and (bAc)Ve=c, by (2), (3),

(), (8), (9).

(B4) Complementation: b A b' =0 and .b v b'" =1, by (1), (3), (8),
(8), (9), (10).
(B5) Distributivity: b A (cVd) =(bAc)V (bAAJA) and
bv(cAd) =((dVe)A(bvVva, by (3), (6), (9).
Among the many other identities and conditions which can be derived
from (1)-(10) we note the following:
Idempotence: b A b =D and bvb-=h.
Distinguished elements: b A 0=0, bVvO0o=Db, bA1l=Db, and
bvi1=1,
Involution of complementation: (b')' = b, by (1), (2), (10).
Moreover, in a Boolean algebra we may define a binary relation =
in terms of the meet or join operations as: for any b, ¢ € E, b = ¢ IFF

bAac=Db, and b=c IFFbVec=c, It follows that 0 =Db =1, for

every b € E.

Then by (2), (3), (6), (8), and (1), the ' operation also
satisfies the condition: for any b, ¢ € E, b =c¢ IFF ¢' =b'. This
condition together with (B4) and the involution condition define ' as

orthocomplementation * . Since in a Boolean algebra, complementation is

orthocomplementation, I hereafter substitute * for ' in the ordered
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sextuple designation of a Boolean algebra <E, A, V,*, 0, 1>.
Any Boolean algebra also satisfies the following conditions, for
any b, c € E:

. . A
De Morgan's laws: (b A &) =bp"ver and (bve) =bBAct

Compatibility: (b A c )Vvec=1(Ab)VDb, proven as follows.

By (B5), (b Ac*)ve=+(bvVve)a lc-ve), which by (B4) and by the
‘distinguished character of the l-element equals (b v ¢). And by the same
conditions, (¢ ABF)Vb=(cVb)Al=(cVDb). Andby (Bl),
bvec=c¢cVDb. Q.E.D.

Modularity: If b=c then bV (e A c) = (b Ve)Ac, forany
e € E. Modularity follows from (B5).

Orthemodularity: If b <c then b=(bvVvc)Ac and

¢ = (c AB") Vb, which again follows from (B5).

Any elements b, ¢ € E are said to be disjoint or orthogonal

L L : s 4
ItTF b =c¢ , where b =c IFF ¢ =b . Moreover, b = c IFF bAc=0,

proven as follows. Assume Db = cL, then b Ac<c A c, and so by (B4),
bAc=0, i.e., bAc=0 since 0 =e, for every e € E. Assume
bAc=0. Then since b=bAl=bAalcve)=(0mBAc)v(bAacH)

ov®dAc)=bAcY, wehave b =<c’. Q.E.D.

The compatibility, modularity, and orthomodularity conditions and
the relation of disjointedness or orthogonality are mentioned here because
they are important for the quantum structures described in Sections D and E.

With the binary relation = defined as above in a Bbolean algebra,
it follows from the five conditions (B1)-(B5) that w.r.t. < a Boolean
algebra is a Boolean lattice, as will be shown below. A Boolean. i.e., an
orthocomplemented and distributive, lattice is defined as follows.

Consider an arbitrary, nonempty collection of elements
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E = {a,b,c,d,e, . . .} with a binary relation =< ¢ ExE which has the
following properties, for any b,c,d € E:

(= a) Reflexivity: b = b;

(= b) Anti-symmetry: If b =<c¢ and c¢ <b, then b = c.

(= ¢) Transitivity: If b = c. and c¢c =d, themn b =d.

The ordered pair <E,= 1is a partially ordered set, also called a poset.

With respect to =, define the greatest lower bound (g.l.b.)
and the least upper bound (1l.u.b.) of any subset F € E as follows. The
g.l.b. of F 1is that element b € E such that, for every f € F, b =< f,
and for any e € E, if e =f for every f € F then e =b. The l.u.b.

is defined dually, i.e., substitute = for <. (The dual of any condition

is the result of interchanging < and =, A and Vv, and 0 and ‘1
(Halmos, 1963, pp. 7-8, 22).) The uniqueness of the g.l.b. and l.u.b. of
any F CE follows from (= b). A lattice <E,<,A,v> is a poset any two
of whose elements b,c € E have a g.l.b., written b A ¢ and called the
meet of b, ¢, and have a l.u.b., written b V¢ and called the Jjoin of
b, ¢. For example, <S,c,N,U> is a set-theoretic realization of a lattice,
where € 1s the set-inclusion relation .

If a lattice has a g.1l.b., 0, and a l.u.b., 1, and if, for
any b € E, there exists at least one ¢ € E such that b Ac =0 and
bVvec=1 (sucha c will be called the complement of b and be denoted

"b'"), then the lattice is a complemented lattice <E,<,A,V,',0,1>.

If a lattice has a g.1.b., 0, and a l.u.b., 1, and if, for

.any b € E, there exists a unique orthocomplement b €E satisfying:

_L_ .
bAb =0, bvb =1, ()" =b, and b=<c IFF c =b", then the

lattice is an orthocomplemented lattice <E,$,A,V;L,O,1>.
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If the meet and join operations are distributive then the lattice

is distributive. If a lattice is complemented and distributive, then

complémentation is unique and is orthocomplementation (Birkhoff, 1948,
pP. 152). An orthocomplemented, distributive lattice is called a Boolean
lattice.

It is easy to prove that a Boolean algebra is a Boolean lattice
with respect to the partial-ordering relation = defined in a Boolean
algebra as above. For (B1), (B2), and (B3) ensure that < satisfies
(=a), (=b), and (Sc). And (B1), (B2), (B3) ensure that the element b A c
is a lower bound for the subset {b,c} because b A(b Ac) = (b ADb) Ac
=bAc, thus bAc=<b, and c A(c Ab) =(c Ac) Ab=c Ab, thus
bAc<c. And if d is any lower bound for {b,c}, i.e., d Ab=4d
and d Ac=4d, then (bAc) Ad=DbA(cAd)=DbAad=4d, and hence
d =(bAc); thus b A c is the greatest lower bound of {b,c}. Dually,
the element b V ¢ is the least upper bound of the subset {b,c}.
Moreover, b Ac¢ and b V ¢ are each unique because A, Vv in a Boolean
algebra are operations, i.e., they are univalent. Hence, a Boolean algebra
is a lattice with respect to the = relation defined in a Boolean algebra
as above. And in other words, the (B1), (B2), (B3) conditions completely
characterize a lattice (Birkhoff, 1948, p. 18).

It follows from (B4) that the distinguished 0 and 1 elements of a
Boolean algebra are the greatest lower bound of E and the least upper bound of
E, respectively, as shown next. For any b€E, bAl =D A(bvb) = b, so
b<1, and bAO = bA(bAD") = (bAD)AB =bAb = 0, so 0sb; that is, 1
is an upper bound of E, and O is a lower bound of E. If there is an

e €E such that 1 =<=e, i.e., 1 A e =1, then either e =1 or (B3)
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is violated, and dually, if there is an e € E such that e =0, i.e.,
e VO =0, then either e = 0 or (B3) is vioclated; thus 1 is the least
upper bound of E and 0 is the greatest lower bound of E. Q.E.D. So a
Boolean algebra is a complemented lattice. And by (B5), a Boolean algebra
is a distributive lattice whose complementation is unique and is
orthocomplementation .

Thus a Boolean algebra is a Boolean lattice with respect to the
< relation defined in a Boolean.algebfa as above. Conversely, it is easy
to prove that a Boolean lattice is a Boolean algebra.(Bell and Slomson,

1969, pp. 9-11). Hereafter, I use the phrase Boolean structure and the

sextuple B = <E,A,V,-,<,0,1>  to refer to both a Boolean algebra and a
Boolean lattice indiscriminately.

The Boolean structures determined by classical mechanics, which
I label PCM and describe in.Chapter III(B), are o-complete and atomic .
The Boolean structures determined by classical logic, which I label L
and describe in Chapter II(B), are complete and atomic if they are finite.

These additional conditions are defined as follows.

Completeness: B is complete if every subset of elements in B has a
g.1l.b. and a l.u.b. B is o-complete if every denumerable
subset of elements in B has a g.l.b. and a l.u.b..

Atomicity: B is atomic if, for every non-zero element b € B, there is
an. atom a € B such that b = a, where an EESE.iS an element
which covers the O0O-element, i.e., a >0 and a>e >0 is
not satisfied by any e € B. (For any b,c € B, b>c IFF b >c
and b #c.) B is non-atomic if it has no atoms (Halmos, 1963,

p. 69).
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It follows that in an atomic B, every element is the l.u.b. of the atoms
it dominates (Halmos, 1963, p. 70). And in an atomic B, two elements are
equal IFF they dominate the same atoms (Rutherford, 1965, p. 83). Thus for
any distinct elements b # ¢ in an atomic B, there is an atom a ¢ B
such that a <b but a #c, or a <c but a #b.

Every finite B is atomic and complete. Every finite B is
isomorphic to the cartesian product (Z2)n, where n  is the number of
atoms in B and 22 is the two-element Boolean structure
<t = {0,1},A,V;+,<,0,1>. Every finite B is isomorphic to the power set
Boolean structure <E = the set of all subsets of a given set X,N,U,',<,8,X>,
where the number of elements in X is the same as the number of atoms in B.

The diagram of a finite B looks like a two-dimensional

representation of an n dimensional cube, where n 1is the number of atoms

in B. For example:

= " - (2)

*—

X=§x9] = §x3 v {4 1= <31 (Za>

{x} fyl= {x}l <10y (o, 17

AREIVANTY: ' 0=<°,9



In these diagrams, the dots represent the elements of the structure and

the lines connecting the dots represent the operations and relations among

the elements, e.g.,

LT
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= ~ _ = \%
\\sj represents e2 e1 s {///\s%\ represents e2 e1 e3 N
e e e

2 1 3

= A .
and ey \\\\v/// e3 represents e2 e1 e,
e
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Section C. Subsets of a Boolean Structure

In conformity with standard mathematical parlance, I do‘not
distinguish between the structure B and its set of elements E. So
members or subsets of the set E are also more simply referred to as
members or subsets of B.

A subalgebra or sublattice of B is a non-empty subset of B

which is closed with respect to the operations A,V,~ of B. A non-empty
subset of B, when closed with respect to the operations of B, is said
to generate a subalgebra or sublattice of B.

A (proper) filter in B 1is a non-empty (proper) subset F of
B which satisfies:

)
(a) For any b,c € F, b Ac €F.

(b)) For any b € F and for any e € B, if b <e then e € F.
A (proper) ideal in B 1is defined duall&, that is, a (proper) ideal is a
non-empty (pﬂ?per) subset I of B which satisfies: (a')

ia'j For any b,c € I, b vec €1I. /

{(b'; For any b € I and for any e € B, if b = e then e €1I.
The distinguished 1-element of B is a member of every filter in B and

is itself a filter in B. Dually, the O-element is a member of every ideal

in B and is itself an ideal in B. Moreover, it follows from de Morgan's laws
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and from one of the conditions defining = (if b <c¢ then ¢ =bvh)
that, for any filter F in B, the set of elements f{b € B : bT € F} is
an ideal in B; and dually, for any ideal I in B, the set of elements
{b € B: b €¢I} is a filter in B (Sikorski, 1960, pp. 9, 11). Thus for
any F and dual I in B we have:

(¢c) Forany b € B, b €F IFF b €1I.

(c') Forany b € B, b " €¢I IFF b €F.
And if b € F then b £ I, ard if b € I then b £ F. For example, a
filter and dual ideal are designated in the Boolean structure diagrammed

below by triangles around the elements in the filter and squares around the

elements in the dual ideal:

jf=aVbVCVd

The union of any filter and its dual ideal in B 1is a subalgebra or a
sublattice of B (Bell and Slomson, 1969, p. 17).
An ultrafilter UF in B is a proper filter which is not the

proper subset of any proper filter in B. An ultraideal UI in B is a
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proper ideal which is not the proper subset of any proper ideal in B.
Every filter in B 1is contained in an ultrafilter; every ideal in B is
contained in an ultraideal (Sikorski, 1960, pp. 15, 17). Moreover, every
ultrafilter and every ultraideal in any B is prime, that is, for any
b,c € B:

(d) If b ve €UF, then either b € IF or c¢ € UF.

(d') If b Ac €UI, then either b € UL or c¢ € UI.
And equivalently, if b £ UF then b € UF, and if b £ UI then BL € UI.
(Bell and Slomson, 1969, p. 20). It follows that for any UF and its dual
UI inany B and forany b € B, b € UF or b € UI, and thus
B = UF U UI. Proof: For:any UF in any B and for any b € B, b € UF
or b g UF. If b £ UF then b € UF, and so by (c), b € UI. Q.E.D.

Each ultrafilter and its dual ultraideal in a finite atomic B
is a _principal? ultrafilter and a ' principal” ultraideal defined with
respect to an atom a € B as follows: UF_ = {b € B:b=a} and
UIa = {b€B:b=<al}. And in an atomic B, there is a one-to-one
correspondence between atoms atd ultrafilters (and dual ultraideals) (Bell
and Slomson, 1969, p. 27).

For any pair of distinct elements b # ¢ in any B, there is

an ultrafilter UF in B containing one but not the other. Also, eaéh
non-zero element in a B is contained in some ultrafilter in B. (Bell and

Slomson, 1969, p. 16).

Section D. The Quantum Partial-Boolean Algebra

Y

Kochen and Specker define a partial-Boolean algebra by first
defining a partial-algebra over a field. In short, a partial-algebra over

a field is a set of elements E with the usual ring operations + and *
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defined from & to E, where & € EXE is called the compatibility
relation. A commutative algebra is a special case of a partial-algebra,
namely the case where b = ExE. The idempotent elements of a partial-algebra
form a partial-Boolean algebra <E,$,A,V;‘,O,1> which has the Boolean
operations A,V,%+, defined in terms of the ring operations +,., as usual,
but the binary operations A, V -are again defined from only L to E. A
Boolean algebra is a special case of a partial-Boolean algebra, namely the
case where & = ExE. (Kochen-Specker, 1965, pp. 180, 183; 1967, pp. 6u4-65).
Using the terminology and style of Sections (A) and (B), these structures

are described as follows.

A partial-ring-with-unit <E,$,+,-,O,1> is a non-empty set of

elements E = {a,b,c,d,e, . . . ,} including the distinguished 0 and 1,

with a binary relation of compatibility & ¢ ExE and two binary operations

+ and * defined from ) to E such that:

(b a) & is reflexive, i,e., for any b € E, b & b, symmetric, i.e.,

for any b, ¢ € E, if b $c then c¢d b, and non-transitive,

i.e., for any b,c,d € E, if b Le amd ¢ é>d, it does not
follow that b & d.

(&) For every b € E, b 41 and b do.

(be) & is closed under + and *, i.e., for any b,c,d € E, if
b, ¢, d are pairwise compatible then (b+c)d d, (bre) & d,

etc. for all combinations.

And for any subset F S E, if all the elements in F are pairwise
compatible, then by closure they generate a commutative-ring-with-unit.
(Kochen-Specker, 1965, p. 180; 1967, p. 64). Finally, since +, *, are

defined from only <5 to E, rather than from EXE to E, they are
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called partial-operations or partial-functions by Kochen-Specker (1965,
pp. 177, 178).

Kochen and Specker do not state any other conditions which the 0
and 1 elements ana the +, ¢ operations must satisfy. However, since
any partial-ring-with-unit which has b= ExE is a commutative-ring-with-unit
and since any subset of mutually compatible elements in a partial-ring-with-
unit form a commutative-ring-with-unit, the 0 ard 1 elements and the
+,* operations of a partial-ring-with-unit presumably must satisfy all
the conditions (1)-(8) which define.the 0, 1, +, *, of a commutative-ring-
with-unit.

The idempotent elements of a partial-ring-with-unit form a
partial-Boolean-ring-with-unit which is a partial-Boolean algebra
A= <g,b,A,v,>,0,1> when the A,V,* operations are defined in terms of
+ and + as usual and & » 0, 1 are defined as above (Kochen-Specker,
1965, p. 183). In particular, E is non-empty; 0, 1 are the distinguished
elements; b is reflexive, symmetric, and non-transitive; for every b € E,
b &1 and b & 0; & is closed under A,V,*; and finally, for any
subset T ¢ E, if all the elements in F are pairwise compatible, then
by closure they generate a Boolean (sub)structure. Moreover, since all the
elements in a partial-Boolean-ring-with-unit are idempotent, not only
conditions (1)-(8) but also condition (9) and hence condition (10) are all
satisfied. Thus the binary operations A, V -defined from S to E in
terms of + and * as usual satisfy the commutativity, associativity,
absorption, and distributivity conditions which follow from the conditions
(1)-(7), (9), (10) satisfied by + and °* . And since A, V are defined

from ohly & to E, rather than from EXE to E, they are in fact
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partial-operations. The unary operation 1 defined from E to E in
terms of + and the 1-element as usual satisfies the complementation and
invo;ution conditions and (assuming <= is defined in terms of A or V
as usual) the condition: b <c IFF ¢* =< bL, which follow from the
conditions (1)-(3), (6), (8)-(10). Thus * s orthocomplementation.

The partial-ordering relation = 1is defined in a partial-Boolean
algebra in terms of A or V :as usual, i.e., b <c¢ IFF b Ac =D,
and b =c¢ IFF b Ve =c. Since the meet b Ac and the join b Vvec
are defined in A IFF b & ¢, we can be sure that, for any b,c €A, if"
b<c then b c. The partial-ordering relation so defined in A is
reflexive and anti-symmetric as usual. However, if b <c and ¢ =<d but
bpd, then bAd, bVvd are not defined in A and so it does not
follow that b =d. So = may not be transitive, in which case =< is not
a partial-ordering. But < is transitive in the partial-Boolean algebras
considered in this thesis, namely the partial-Boolean algebras determined

by quantum mechanics, which shall be labeled = <E,$,A,V,*,S,O,1>.

PbMA

The PQMA structures are associative, transitive,1 and atomic.
A partial-Boolean algebra A is associative IFF, for any b,c,d € A such
that bb c amd cbd: bd(cAd) IFF (bAc)dbd; and bd (c A d)
implies b A (c Ad) = (b Ac) Ad. A transitive partial-Boolean algebra
A satisfies the condition: For any b,c,d € A, if b =<¢, and c =d,
thenn bd d and b <d. And an atomic partial-Boolean algebra satisfies
the same atomicity condition as an atomic B. (An additional condition on
FbMA structures is-intreduced in Chapter VI(D); nothing-before Chapter VI(D)
is-affected by this additional condition.)

The notion of a:parfial—Boolgan algebra is further: elucidated by the

following construction due to Kochen-Specker. Consider a nonempty family of
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Boolean algebras {B.}

Lt such that the intersection of two algebras of
i71€Index

the family is itself an-algebra of :ithe family; so-all-thefBi share the same"
distihguished 04 % éleméﬁts{“And"ifq{eigez,.. ...} are_elements; of the union
E1=-U.‘Bi- such thatfevérywpéirﬂ6f=themilieTinasome‘common algebra :Bi >
then ihere;is ; .Bk » k € Index such that

{ei,e2, . .}-E-Bk . Then a partial-Boolean algebra A is defined on the
union E as follows. For any b,c,d € E, b & ¢ in A IFF there exists

a iBi - such that b,c E'Bi; bAc=4d in A IFF there exists a Bi such
that b Ac =d in Bi; bve=4a in A IFF there exists a Bi such
that bVve =4 in Bi; b =c¢ in A IFF there exists a Bi such that

b =c¢ im Bi; 1 and 0 in A are the common distinguished elements of
all the Bi . Kochen-Specker state and Hughes proves that every A is

isomorphic to an A constructed on a family of Boolean algebras as above.

(Kochen-Specker, 1965, pp. 183-184; Hughes, 1978, pp. 113-114).

Section E. The Quantum Orthomodular Lattice.

Jauch's definition of the lattice structures determined by gquantum

mechanics, which I label Pb starts with an orthocomplemented lattice

ML °
<E,<,A,V,*,0,1> which is complete in the usual sense that every subset of
E has a g.l.b. and a l.u.b. Then Jauch defines the compatibility relation

& in this lattice as follows: A subset T € E 1is a compatible set if

the lattice generated by F 1is a Boolean sublattice of the original lattice.

(Let {SLi}iEIndex be the family of all the sublattices which contain F;

the sublattice SLo =N SLi is the lattice generated by F. (Jauch, 1968,
i

pp. 74-77, 80-81).) As a binary relation, compatibility L cEXE is

reflexive, symmetric, and non-transitive. And it is easy to show that, for

any b €E, bbd0, b&1, and b & b.
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In order to define P Jauch furthermore postulates the

QML °
conditions: ‘
(P) If b<c then b & ¢, for any b,c € E. Jauch calls this

condition weak modularity.

(A1) Atomicity (as usual).

(A2) If a is an atomand a Ae = 0, then a Ve covers e, for any
e € E (Jauch, 1968, pp. 86-87). And it follows that if a is any
atom, then (a V e) A e’ is also an atom, for any e € E (Piron,
1976, p. 24).

Thus PbML = <E,§,A,V,+,6,O,1> is a complete, orthocomplemented, weakly

modular, atomic lattice.

It is easy to show that in such a lattice, for any b,c € E:
bbdc IFF (bAc) Ves=(cAbB)Vvb=>bVve; bd e IFF

(bAc) V(bAct) =b; and b & c IFF the elements b,“bl, c,»cl;

satisfy the distributive law for any combimation (Jauch, 1968, p. 87;

Piron, 1976, p. 26). Moreover, since b <c¢c IFF b Ac =>b, it follows

from weak modularity that, for any b,c € E, if b =< c¢ then

b=(bvec) A ¢, and if b =c then ¢ = (¢ A bL) vV b. This is the

orthomoduldrity condition, according to Rose (1964, p. 331) and according

to Piren (1976, p. 24). The phrase "orthomodular'" subsumes the two

conditions of orthocomplementation and weak modularity; thus PQML is a

complete, atomic, orthomodular lattice.
Piron develops his definition of the complete, atomic, orthomodular

lattice PQML in.a different mamer which reveals the fact that each

element b € PQML may have non-unique complements defined in PQML besides

. 4 . . . . .
the unique orthocomplement b . Piron starts with a lattice which is
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complete in the usual sense. Since completeness ensures that the entire
lattice has a g.l.b. which is the distinguished O0-element and a 1l.u.b.

which is the distinguished 1-element, a complete lattice is an- ordered

sextuple <E,=<,A,V,0,1>.

In order to define P Piron furthermore postulates the

QML *

conditions:
(A1) and (A2), as in Jauch.

(C) Tor each element b € E, there is at least one compatible complement

b‘ € E, where b, b‘ are complements satisfying the usual

complementation condition (b A b* =0 and bV b‘ = 1), and B, b‘

are compatible in a sense which Piron defines independently of the
A, V, operations and = relation. Most simply, any b, ¢ are
compatible in Piron's sense if they are associated with simultaneously
measurable gquantum propositions.

(P) For any b,c € E, if b =c then the sublattice generated by b, b‘,

c, c* is distributive. Piron calls this condition weak modularity

(Piron, 1976, pp. 21-23).
Two results follow from Piron's weak modularity. First, if b =,

then by (P), the elements b, b¥, ¢ are distributive and so
bv (bL Ac)=(bVDb*) A(bVe)s= 1 A(bVe)=c; similarly, if b =c
then ¢ A (c* V b) = b. This result will be mentioned again shortly.
Secondly, according to Piron, it follows immediately from (P) that, for any
b,c € E, if b =< c¢ then c* = b‘, and it foldows that the compatible
complement of each element is unique. Thus the association of an element

b with its unique b* is orthocomplementation satisfying: b A b& = 0,

bvbd =1, (b*)* = b, amd if b =c then c®=b% (Piron, 1976,

PD. 23424).2



27

¢ , the first result following from (P)

Substituting + for
becomes the orthomodularity condition. And Piron proves that if the
orthocomplement is interpreted as a compatible complement, then any
orthomodular lattice satisfies his conditions (C) and (P).

Moreover, Piron's weak modularity can be shown to be equivalent
to Jauch's weak modularity. Piron later defines the compatibility relation
LCEXE ina complete lattice satisfying (C) ard (P) as follows: b b e

IFF the sublattice generated by b, b‘, c, ct

is distributive. With this
definition of compatibility, Jauch's (P) is equivalent to Piron's (P) with
L substituted for + . Jauch also says that his weak modularity is
equivalent to the postulate that the compatible complement is unique, that
is, the second result which Piron derives from his weak modularity (Jauch,
1968, p. 87).

So like Jauch, Piron defines PbML as a complete, atomic,
orthomodular lattice. Moreover, Piron makes it clear that an element in
PbML may have non-unique complements which satisfy the complementation
condition but which are not compatible complements and are.not orthocomplements.
Thus there arises in PQML

unique (and hence is not an operation), as will be discussed in Chapter IV(F).

the problem of a complementation which is not

The Boolean L and PCM structures and the partial-Boolean algebra PQMA

each have only one complementation, namely, the orthocomplementation, which
is unique.

Finally, as with P

QMa a Boolean structure is a special case

of an orthomodular lattice P namely, the case where & = ExE.

QML °
Moreover, any quantum PQMA can be extended to an orthomodular lattice
P by defining the A, V -operations among incompatible elements. The

QML
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two structures PbMA and PbML will be further compared in Chapter IV(E)
and (F).
Section F. Subsets of PQMA and PQML

The notion of a filter, ideal, ultrafilter, ultraideal, principal

ultrafilter, and principal ultraideal are defined in any lattice, e.g., in

the quantum P exactly as they are defined in a Boolean lattice

QuL ° \
(Birkhoff, 1967, pp. 25, 28). Bub mentions that a filter and an ultrafilter

in the quantum (ard dually an ideal and an ultraideal in P MA) are

Q

defined as in a Boolean algebra, 1.e., any filter satisfies (a), (b), any

PQMA

any ideal satisfies (a'), (b') (Bub, 1974, p. 120). However, R. Hughes

modifies condition (a) (and dually, (a')). The modification is motivated

by the fact that, for any b, ¢ in any filter F C PQMA if b ¢ c then
b Ac is not defined in PQMA . Hughes's modified definition is: A filter
in a PQMA is a non-empty subset F  of PQMA such that, for any b,c,d € PQMA'

(aH) If b,c € F, then there isa d € F such that d £b any d =c.

And Hughes adds as a proviso the condition:

(cH) 0 £ FT.
Condition (b) is left as before; that is, (b), (aH), ard (cH) define a
filter in a PQMA .

According to the definition of a filter in a Boolean structure
B, the entire B is a filter, albeit an improper filter. But according

H . s eas . . . . .
to Hughes's definition of a filter in PQMA » the entire PQMA is not a

filter since 0 € PQMA but according to condition (cH), 0 is not a

member of any filter. Conditions (b), (aH), (cH), actually define a proper
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filter in So we may drop condition (cH) and define a filter ina

PQMA

PQMA as a non-empty subset F of PQMA

The difference between (a) and (aH) may be characterized as

which satisfies (aH) and (b).

follows. For any b,c € F, according to (a) and assuming that b Ac is

defined in (ize., b b c), the element b A c¢ is a member of T,

PQMA

where b A c is the greatest lower bound of {b,c}, as shown in Section
(D); while according to (aH) and regardless of whether or not b Ac 1is

defined in P any one of the lower bounds of {b,c}  is a member of

QMA °

F. Now if b A c¢ is defined in PQMA , then (éH) and (b) do ensure that

bAc €F if b,c € F. For by (aH), some lower bound of {b,c} - is a
member of F if b,c € F, and so by (b), the g.1.b. {b,c}=b Ac is a

member of F if b,c € F. That is, though a filter in a PQMA is defined

by condition (aH) rather than (a), nevertheless a filter in. PQMA does

satisfy condition (a) for those b,c € F such that b b c.
The dual modified conditidon (aé) which, together with the

unmodified (b'), defines an ideal I in a PQMA is, of course, for any

b,c,d € PQMA :

(aé) If b,c € I, then there isa d € I such that 4 =2b and 4 = c.

And as -above, an ideal ina P does satisfy the unmodified condition

QMA
(a') for those b,c € I such that b & c.

As in the Boolean case, we define an ultrafilter (ultraideal) in

a PQMA as a proper filter (ideal) which is not the proper subset of any

proper filter (ideal) in . And a principal ultrafilter and a

PQMA

principal ultraideal are defined with respect to an atom of PQMA as in

Section C.

Hereafter, PQM refers to both PQMA and PQML 1nélscr1m1nately.
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A substructure of P M is a non-empty subset of elements of P which

Q QM

is closed with respect to the A, v,* operations of PQM (where the .

A, V operations of P are partial-operations, as described in Section (D).)

QM

Any non-empty subset of elements of P generates a substructure of P

QM QM

when closed with respect to the operations of P.. . A substructure of

QM

P is Boolean IFF its elements are mutually (i.e., pairwise) compatible.

QM

Any non-empty subset of mutually compatible elements in P, M generates a

Q

Boolean substructure of P when closed with respect to the operations of

QM

PQM . And for any P 4 P2 in PQM s

PQM which contains both P1 N P2 . Any element P € PQM is a member of

some Boolean substructure in P at least the Boolean substructure

there is no Boolean substructure in

Q1 °’

consisting of just the elements {P,PJ;O,l}; A maximal Boolean substructure

mBS of P is a Boolean substructure which is not the proper subset of

QM

any other Boolean substructure of P . And by Zorn's lemma, any Boolean

QM

substructure of P is contained in a maximal one (Varadarajén, 1962,

QM
p. 204).

The centre of a P is the subset of elements in P which

QM QM

are compatible with every element in P, . This subset is in fact a closed

QM

substructure of P and moreover, it is a Boolean substructure. The

Q1 ’

centre of any PQM contains at least the 0, 1 elements of PQM since
3

the O,.1 elements are compatible with every other element in PQM .

Section G. Mappings on a Structure

Let X, Y be any algebraic and/or lattice-theoretic structures
which have A, Vv, operations defined on a set of elements including the

distinguished O-element and 1-element. Any mapping m : X - Y from any
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structure X to any structure Y assigns values as follows:

Ma For any b,c,d € X, m(b) is unique, that is, if b = ¢ in X then
m(b) = m(c) in VY. For example, if b Ac =d in X then
mbAc) =m(d) in Y, if b =c in X then m(b ) = m(c) in V.

Mb m(0) = 0 in Y.
Moreover, any non-trivial mapping m : X =+ Y also assigns:
Mc m(1) =1 in VY.

If Y is the two-element Boolean structure Z then m is a

2 ?
bivalent mapping designated as m : X = {0,1}. A homomorphic mapping

h : X+ Y preserves the operations defined in X, i.e., for any b,c € X,

H1 h(b A e¢) = h(b) A hie).

H2 h(b Vv e) = h(b) Vv h(e).

H3 h(b*) =(h(b))-

A mapping m : X » ¥ is said to be injective IFF, for any
bye € X, if b # c¢ then m(b) # m(c). Clearly, an injective mapping is
one-to-oné into Y. A mapping m : X+ Y is said to be surjective IFF
m(X) = Y, i.e., the image of X under m is the entire Y. An isomorphic
mapping m : X +.V is an injective and surjective mapping, i.e., a one-to-one
mépping, which preserves the operations of X (Lang, 1971, pp. 87, 90, 106;
Birkhoff, 1948, p. vii). An imbedding of one structure into another is a

homomorphic mapping which is injective (Bub, 1974, p. 68).

Notes

1 . : e e s .
" Hughes discusses the problem of the transitivity of = in a
partial-Boolean algebra and proves that a quantum partial-Boolean algebra
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of subspaces of a Hilbert space is associative and transitive (Hughes, 1978,
p. VI.18).

As described in note 5 of chapter IV(E), orthocomplementation
is defined as a type of mapping, namely, a dual automorphism.

Piron defines the centre of a PQML 3 the centre of a PQMA
can: be defined in exactly the same way. (Piron, 1976, p. 29)-.
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CHAPTER II

THE CLASSICAL PRECEDENT FOR A BIVALENT

TRUTH-FUNCTIONAL SEMANTICS

Section A. The Standard Semantics of Classical Propositional Logic

Classical propositional logic assigns truth values to a set

L = {fi’f « « .} of well-formed formulae by semantic mappings, called

0?
valuations, which are bivalent and truth-functional. A valuation v on an
L initially assigns the value 0 (false) or 1 (true) to each of the
atomic (sub)formulae in L. And then the valuation assigns 0, 1 values
to every other formula in L in thebfollowing recursive manner: for any

f. £

1 2,f € L,

TF1 v(f1 A f2) 1 IFF v(fi) v(f2) =1

TF2 v(f1 v f2)

TF3 v(f") =1 IFF v(f) = 0, where "A" designates "and," "W

1 IFF v(fl) 1 or v(f2) =1

designates "or," and "L'" designates '"not." This (redundant) list of

biconditionals characterizes the truth-functionality condition on the

valuations. The bivalency condition requires that every formula in L be
assigned a 0 or 1 value.

According to the truth-table method of schematizing valuations,
there are as many valuations for a set L of formulae as there are rows in
the truth-table for L, where each row in the truth-table is specified by
a different initial assignment of 0, 1 values to the atomic (sub)formulae

occurring in L. And if n is the number of atomic (sub)formulae in L,
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then there are exactly 2" valuations for L. Such a collection of
valuations can be regarded as a bivalent truth-functional semantics for L.
This notion of a bivalent, truth-functional semantics for an L

will be restated in algebraic terms in Section (D).

Section B. The Boolean Structure Determined by Classical Propositional Logic

In the algebraic approach to classical propositienal logic, we
start with a set L of formulae which is closed with respect to the A,
vV, - operations. Such a closed L 1is partitioned into equivalence classes
with respect to the standard, classical proof theoretic equivalence

relation: for any f €L, f ~f_ IFF +f > f_  and b‘f2 > f

1’f2 1 2 1 2

where t is classical derivability. The resulting set of equivalence

1 ]

classes form a Boolean structure, often called the Lindenbaum algebra,

which shall be labeled L = <E = {/fl/’/fQ/’ e v o }aAsV, T, <,0,1>,  (The
equivalence class containing f1 is designated "/fl/”;) For any

£F) €Ly [E/ N/E = /B NE s JE VT = IE VESs [E) = IET;
and /fl/ = /f2/ IFF fl\— f2 . The O-element of | is the equivalence
class of anti-theorems or contradictions, while the 1-element is the
equivalence class of theorems or tautologies. When the number n of atomic
(sub)formulae in L is finite, then the L structure of L is finite and
atomic, with exactly 2211 elements and 2n atoms. But when the number of
atomic (sub)formulae in L is infinite, then the L structure of L is
infinite and atomless.

For example, the closed set L, of propesitional formulae in

2

just two propositional variables, say R and S, is partitioned into

exactly 16 equivalence classes:
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~
~ ~ T i\ ~ O~ O ~ O~
~ + N~ W ~ 4 n n 4 4
w w < < wn " vl w > > o [+ 4
- ~ < < - 4 1 " 4\ _‘\ > > 4 “ < >
Y, NI M M M M~ 0 M M @M M @ M
B B e e e e N s
o1 101 0 0 01 0 0 0 1 1 1 0 0 1
w21 0/lo 1 0 0 01 1 011 01 0 1
2o 1/0 01 0 01 01 1 011 0 1
v o 0l0o 0 01 1 01 1 0 1 11 0 1

These equivalence classes form the Lindenbaum algebra L, diagrammed as

follows: 1= /RV R*/

2

Notice that the four atoms in this Lindénbaum algebra are not the equivalence
classes of the atomic formulae R, S, but rather are the following:
/R AS/y, /RASY, /RS NS/, /RYASY.
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Every Lindenbaum algebra of (equivalence classes of) formulae of
classical propositional logic is a Boolean structure. The simplest
(non-trivial) Boolean structure has just the two elements 0 and 1 and

is often called Z it shall also be labeled {0,1}. Any Boolean

9 H
structure can be homomorphically mapped onto this simplest Boolean structure,

as described next.

Section C. Bivalent Homomorphic Mappings on Any Boolean Structure

Given any Boolean structure B, there exist bivalent, homomorphic
mappings h : B =+ {0,1} - which can be defined with respect to the ultrafilters
in B since there is a one-to-one correspondence between ultrafilters in
B and bivalent homomorphisms on B. Sikorski defines each bivalent
homomorphism h with respect to an ultrafilter UF as follows: for any
element. b € B, h(b) =1 if b € UF and h(b) = 0 if b £ UF (Sikorski,
1960, p. 16). However, each h on a B may be equivalently defined with
respect to UF as: for any b € B, h(b) =1 if b € UF and h(b) = 0 if
b € UI, where Ul is the unique ultraideal dual to UF. In this thesis, the
latter is taken as my usual definition of a bivalent homomorphism. For any
B, my definition and Sikorski's definition are equivalent because, for any
UF and dual UI in B and for any b € B, b £ UF IFF b € UI, as shown
in ‘Chapter I(C). But when we consider the non-Boolean propositional
structures determined by quantum mechanics, it is not always the case that
if b £ UF then b € UI. So the two definitions differ and it is argued
in Chapter VI(B) that my definition is more useful.

Each mapping h : B -+ {0,1} is clearly bivalent. And by

definition, a homomorphism satisfies the conditions H1, H1, H3 listed in
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Chapter I(G), where 1 A1 =1 vi1i=1, 0A0=0vVvVO0=0,
1A0=0A1=0, 1VvO0=0v1=1, and 157=0, 0 =1. It is easy

to show that a bivalent mapping on an algebraic structure is homomorphic
qua H1, H2, H3, IFF it is truth-functional gqua TF1, TF2, TF3 (Bub, 1974,

P. 99). Thus each bivalent homomorphism on a Lindenbaum algebra is bivalent
and truth—functional;

Alternately, the truth-functional character of every bivalent
homomorphism on a B can be shown as follows. As mentioned in Chapter I(C),
every ultrafilter and dual ultraideal in any B is prime, and each
ultrafilter together with its dual ultraideal completely‘exhaust B, il.e.,
B=UF UUI. Moreover, it follows from the eight conditions (a)-(d),
(a')-(d'), listed in Chapter I(C), which define prime UF and prime UI, that
each bivalent homomorphism defined with respect to UF and UI is
truth-functional. For the eight conditions yield the following biconditionals,

for any b,bl,b2 € B:

Ut b, A b2 € UF IFF b, € UF and b, € UF, by (a) and (b).

1
b, Ab, €UL IFF b, €Ul or b, €UI, by (b') and (d').

U2 b, Vb, € F IFF b, €UF or b, € UF, by (b) and (d).
b, Vb, € L IFF b €UI and b, € UL, by (a') and (b').

U3 b“€UF IFF b € UI, by (c).

L

b~ € UI IFF b € UF, by (c').

So by the definition of h : B -+ {0,1}  with respect to UF and UI:

TF1 h(b1 A b2) =1 IFF h(bl) = h(b2) =1
h(b1 A b2) = 0 IFF h(bl) =0 or h(b2) =0
TF2 h(b1 Vv b2) =1 IFF h(bl) =1 or h(BQ) =1
h(b1 Y b2) = 0 IFF h(bl) = h(b2) =0
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TF3 h(bl)

1 IFF h(b) 0

h(b™)

0 IFF h(b) = 1.

Thus each bivalent homomorphism on a B is truth-functional.

Furthermore, any B admits many bivalent homomorphisms. If

b, #Db

1 are any pair of distinct elements in B, then as mentioned in

2
Chapter I(C), there is some ultrafilter in B which contains one element but
not the other. Hence there is some bivalent homomorphism on B which
assigns the value 1 to one element and 0 to therother. 1In other words,

for any pair of distinct elements b1 # b2 in a B, there is some h such

that h(bi) # h(b2); this has been called the semi-simplicity property gg

B (Xochen-Specker, 1967, p. 67). And in particular, as Halmos shows, for
any nonzero b # 0 in a B, there is some h such that h(b) # h(0) = 0,
i.e., such that h(b) =1 since every h assigns the value 0 to the

O-element (Halmos, 1963, p. 77). The former notion shall be taken to define

a complete collection of bivalent homomorphisms on an algebraic structure‘ X,
that is, a collection of bivalent homomorphisms on an X is complete IFF,
for any distinct b #c¢ in X, there is an h such that h(b) # h(c).1
Clearly, the completeness of the collection of bivalent homomorphisms on a
Boolean structure B is ensured by the semi-simplicity property of B.

When B is atomic, then besides the above-mentioned one-to-one
correspondence between bivalent homomorphisms ana ultrafilters (and du;l
ultraideals) there is also a one-to-one cofrespondence between ultrafilters
-and atoms. Each atom a € B is a member of exactly one ultrafilter in
B, namely UF, = {b € B: b= a}. And each atom a is assigned the value
1 by exactly one bivalent homomorphism on B, namely the ha defined with
respect to UFa and its dual UIa . It is easy to show that a collection

of bivalent homomorphisms on an atomic B is complete IFF it is as large as
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the number of atoms in B. Proof: By definition, a complete collection is
large enough so that every atom a # 0 is assigned the value

1 =h(a) # h(0) = 0 by some h on B. Since each atom is assigned the
value 1 by exactly one bivalent homomorphism, the complete collection is
as large as the number of atoms. Conversely, consider the collection of
bivalent homomorphisms on an atomic B which is as large as the number of
atoms in: B. By definition, each bivalent homomorphism in this collection
is an ha defined (via UFa and UIa) with respect to an atom a € B.
Now by a theorem due to Rutherford (Chapter I(B)), for any b # ¢ in B,
there is an atom a € B such that a =b but a £c, or a =<c but
afb. If a=b but af£c, Db € UFa and c £ UFa , and so

ha(b) =1 # ha(c). Similarly, if a <c¢ but a b, then c € UFa and
b £ UF_ » and so ha(c) =1# ha(b). Thus for any b # ¢ in B, there

is an ha on B such that ha(b) # ha(c). Q.E.D.

Section D. The Algebraic Semantics for the Lindenbaum Algebra

These facts about bivalent homomorphisms on a Boolean strﬁcture
are rélevant for the concept of a bivalent truth-functional semantics for
the Lindenbaum algebras of classical propositional logic.

Each ultrafilter in the L structure of a (closed) set of
formulae L 1is itself a subset of (equivalence classes of) formulae in L

which is deductively complete in the sense that, for any UF in the L of

an L, and for any formulae f1,f2 €L, if /fi/ € UF and fi F f2 .

then /f2/ € UF. And each ultrafilter in L 1is maximally consistent in

the sense that the meet of all the elements in any UF is never the 0O-element
of L, i.e., the conjunction of all the (equivalence classes) of formulae

in UF is never a contradiction; but if any element in L which is outside a
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given UF were added to that UF, then the meet of all the elements in UF
would be the O0-element of L.

As described in the previous section, each bivalent homomorphism
on a Lindenbaum algebra is bivalent and truth-functional. Moreover, for
~any element /f/ € L and any UF ¢ L, either /f/ € UF or /E/ € UF
but not both; hence, no bivalent homomorphism on L assigns the value 1
to both /f/ and /fJY since every bivalent homomorphism assigns the value
1 to an ultrafilter of elements in L. And if a bivalent homomorphism were
to assign the value 1 " to any other element in L besides those elements
in the ultrafilter which defines h, then h would assign the value 1 to
the O-element of L. So each bivalent homomorphism can be said to be a
maximally consistent mapping on L.

Moreover, each bivalent homomorphism on the Lindenbaum algebra of
an L is the algebraic version of one of the standard valuations for L.
That is, for any given valuation v, on an L, there is a corresponding
bivalent homomorphism ho on the L of that L such that, for every
formula f € 1, vo(f) = ho(/f/) (Bub, 1974, p. 102). And finally, in
this thesis the complete collection of bivalent homomorphisms on a
Lindenbaum algebra is regarded as a bivalent, truth-functional semantics.

The analogy between the complete collection of bivalent
homomorphisms on'an L and the truth table collection of valuations for an
L. may be elaborated as follows. If we assume that the number n of atomic
(sub)formulae in L is finite, then the L structure of L is finite and
atomic, with exactly 2" atoms. Thus the complete collection of bivalent
homomorphisms on L contains 2™ bivalent homomorphisms, just as the

truth-table collection of valuations for that L contains 2n valuations.



41

Each valuation for L is specified by its initial assignment of 0, 1
values to the n atomic (sub)formulae in L, and likewise each bivalent
homomorphism on the L structure of L 1is specified by its initial
assignment of 0, 1 wvalues to the n equivalence classes of atomic
formulae in L. Tor example, an initial assignment of the values 0 to R
and 1 to S specifies the valuation Vg in the truth table for L2
given in Section (B). Similarly, the initial assignment of the values 0
to /R/ and 1 to /S/ specifies the unique atom /R*/A S/ in the
Lindenbaum algebra L2 of L2;
ultrafilter UF ..., = {/R*AS/, /S/, /R*/, /R vS/, /R*Vv S/, /R* vs*/,
/(R =8)7/, /RV R'/}; and this ultrafilter specifies a unique bivalent

this atom in turn specifies the unique

JR*AS/ on L2 , where

formula f € L2 .

homomorphism h (/£/) = VS(f) for every

B/R*As/

The concept of a bivalent, truth-functional semantics for a
Boolean Lindenbaum algebra described in this chapter will be treated in:this
thesis as a precedent for any proposed bivalent, truth-functional semantics
for the Boolean:propositional structures determined by classical mechanics
and the non-Boolean propositional structures determined by quantum mechanics.
In particular, subsequent chapters make use of the following:

For any propositional structure P, a mapping which assigns the
value 1 to an ultrafilter UF of elements in P and assigns the value 0
to the dual ultraideal UI of elements in P is not only bivalent but also
truth-functional with respect to the elements in UF U UI. Such a bivalent,
truth-functional mapping defined with respect to an UF and dual UI may be

called an ultravaluation because, on a Lindenbaum algebra of classical

propositional logic, such a mapping is the algebraic version of a standard
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valuation, which is regarded in this thesis as the paradigm semantic mapping.

The 0, 1 values assigned by an ultravaluation on a propositional
structure may be interpreted as the truth-values true and false, again
because, on a Lindenbaum algebra, an ultravaluation is the algebraic version
of a standard valuation.

And use is especially made of the notion that a bivalent
truth-functional semantics for a P 1is a complete collection of bivalent,
truth-functional mappings. So it 1is clear that the existence of only one
or several bivalent, truth-functional mappings on a P does not yet
constitute a bivalent, truth-functional semantics for P. But in order to
show the impossibility of such a semantics, it obviously suffices to show

that there is not even one bivalent, truth-functional mapping on P.

Notes

This notion of a complete collection of bivalent homomorphisms
was suggested to me by Kochen and Specker. In their 1967 Theorem 0,
Kochen-Specker prove that a partial-Boolean algebra of quantum propositions,
labeled PQMA s can be imbedded into a Boolean algebra B IFF there
exists what in this thesis is called a complete collection of
bivalent homomorphisms on PQMA . Kochen-Specker also define a weak
imbedding of a P into a Bj; such an imbedding exists IFF there

. QMA . . .
exists a large enough collection of bivalent homomorphisms on P
N . X QMA

so that, for every nonzzero element P # 0 in PQMA , there is some
h PQMA -+ {0,1} - such that h(P) # h(0), i.e., h(P) = 1 since
every h assigns the value 0 to the O-element (Kochen-Specker, 1967,
pp. 67,884). Such a collection may be called weakly complete. The notion
of a weakly complete collection of bivalent homomorphisms on a propositional
structure is mentioned in Chapters V and VI.
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CHAPTER III

THE CLASSICAL PRECEDENT FOR A STATE-INDUCED SEMANTICS

Preface

. s s 1 . .

We consider propositions’ which make assertions about the
real-number values of the magnitudes, i.e., measurable properties, of a
classical physical system, for example:

2

The kinetic energy of a 1 kg swinging pendulum is between 19-20 kg'm2/se02.
(magnitude) (m===—-- system------- ) (value)

As will be described in this chapter, such propositions and the logical
operations "and," "or," "not" among such propositions can.be associated with
various mathematical machinery in the formalism of classical mechanics.
These associations determine the structure of a set of such propositions.
This structure is a o-complete, atomic Boolean structure PCM .

Moreover, the formalism of classical mechanics includes state-induced
bivalent homomorphisms, or equivalently, state-induced dispersion-free
probability measures, which can be regarded as performing the semantic task
of assigning truth-values to the elements of PCM . For each bivalent
homomorphism or dispersion-free probability measure induced by the state of
a classical system is an ultravaluation on the PCM structure of propositions
describing the system, just as each of the standard valuations for a set L
of formulae of classical logic is an ultravaluation on the L structure of
L. This straightforward analogy is a strong motivation for seriously

considering the notion of a state-induced semantics for the propositional

structures determined by classical mechanics and also considering the notion
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of a state-induced semantics for the propositional structures determined by

quantum mechanics, as shall be proposed in Chapter VI.

Section A. The States of a Classical System Determine the Real Values of

That System's Magnitudes

According to the Hamiltonian formalization of classical mechanics,
a physical system is associated with an abstract phase space & which is
parameterized by position and momentum coordinates and whose dimensionality
reflects the degrees of freedom of the system. For example, a physical
system with only one degree of freedom, such as a ball falling in a straight
line, is associated with the simplest phase space which is two dimensional
and has one position coordinate and one momentum coordinate. Each point
w € & represents a pure state of the system associated with R, for a
pure state is a specification of the system's position and momentum values.
According to classical mechanics, the values of every other (mechanical)
magnitude of the system can be calculated once the system's state is
specified. In particular, the classical formalism represents each magnitude

A by a real-valued, measurable3 function f, : -+ R on the phase space

A

associated with the system such that the image of any point w € & under
the function fA is the real-number value a € R (the real-number line)
of the magnitude A when the system is in the state w.
The real-valued functions fA,fB, . . . representing the classical
magnitudes A,B, . . . have the ring operations + and * defined among them as

the usual sum and product of functions: for any fA, f, on R and for every

B
w € Q, (fA-ffB)(w) = fA(w)-+fB(w), and (fA -fB)(w) = fA(w) -fB(w). (Here +

and -+ work like the addition and multiplication of real numbers.)
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For example, consider as a system a 1 kg pendulum swinging so

that its maximum height is 2 m above its minimum height. Let w, and w

1 2
be the following states.
W, At the top of its swing, the pendulum's height position is 2 m and its
momentum is 0 kg m/sec.
W,y Near the bottom of its swing, the pendulum's height position is

nearly 0 m and its momentum is nearly maximal, say 6.2 kg m/sec.

The magnitude kinetic energy, K, is represented in the classical formalism

1

—_— -(momentum)2. So when the
2 *mass

by the real-valued function fK =

. . )
pendulum's state is Wy o the real-number value of K is 0 kg m2/sec

. 2
And when the pendulum's state is Wy o the value of K is 19.2 kg m2/sec .

So the fact that the real-number values of a classical system's
magnitudes depend upon the system's state has been formalized by
representing each magnitude A by a real-valued, measurable function
fA : > R on a classical phase space whose pointsvrepresent-the sygtem's
states.

Alternately, each state w € & can:itself be regarded as a

mapping from a (closed) set FC of functions representing classical

M

magnitudes to the real-number line, i.e., w : FCM -+ R, such that, for any

point w €  and for any function fA : @ - R, w(fA) = fA(w). The

mapping w : ECM -+ R may be called the state-induced mapping. It follows

that each state-induced mapping preserves the + and * operations
defined among the functions: for any given, fixed w €  and for any

£ i = =
unctions f,, £, on &, w(fA + fB) (fA + fB)(w) fA(w) + fB(w)

A’ "B

= w(fA) + w(fB); and w(fA o f ) = (fA °fB)(w) = fA(w) °fB(w) = w(fA) 'w(fB).

B
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This mathematical machinery of real-valued functions and
state-induced mappings not only formalizes the procedure by which real-number
values are assigned to the magnitudes of a classical system, but also
implicitly formalizes a procedure by which truth values can be assigned to
the propositions which make assertions about the real-number values of a

classical system's magnitudes, as will be made explicit in Section (C).

Section B. The Propositional Structure Determined by Classical Mechanics

When a set of real-valued, measurable functions ona & is a
closed set with respect to the +, * operations, then the set forms a .

= <{f ,f , . . .},+,°,0,1>. The

commutative-ring-with-unit, labeled FC A°BR?

M

O-element is the constant function f0 which assigns the real-number 0 to
every w € 8@, and the 1-element is the constant function f1 which
assigns the real-number 1 to every point in .

Some of the functions in F are idempotent functions £

CM P

satisfying: fP 'fP = f i.e., for every w € R, (fP 'fP)(w) = fP(w).

P b

Since the product fP *+ £ is defined as, for every w € &,

P
(fP °fP)(w) = fP(w) °fP(w), it follows that the real-number value r = fP(w)
of an idempotent function is either 0 or 1. In other words, each fP

is a function from ® to {0,1}. A set of idempotent functions which is
closed with respect to the +, °* operations forms a Boolean-ring-with-unit,

or in other words, the idempotent elements of FC form a Boolean-ring-with-

M
unit, as defined in Chapter I(A). And in this Boolean-ring-with-unit, the
Boolean operations A, V,*, and the lattice partial-ordering relation =

can be defined in terms of the ring operations + and * as usual, yielding

a Boolean structure of idempotent functions on a 8.
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Each idempotent function on a classical phase space is a

characteristic function defined with respect to a unique subset W_ ¢ @

P
as follows: for any point w € &, fP(W) =1 if w € WP and fP(w) =0

AL
P

- 1
subset of & and WP = fPl(&l})-= {w € Q : £(w) = 1}; and each WP is

if w £ WP , i.e., w €W_ . Each WP is a measurable (i.e., Borel)

L
p i.e., WP = Q - WP . Thus

the idempotent functions on a & are in a one-to-one correspondence with

the set-theoretic (ortho)complement of W

the Borel subsets of &; each Borel subset uniquely defines an idempotent
function (qua characteristic function) and each idempotent function uniquely
specifies a Borel subset (via its inverse imagel f;l({l})%. The Borel
subsets of a_R form a Boolean-ring-with-unit (with +, °*, 0, 1,

interpreted as symmetric difference, set-intersection, the empty set, and
the entire space {, respectively), which is isomorphic to the

_ Boolean:ring—with—unit of idempotent functions on Q. And the Boolean-ring-

with-unit of Borel subsets of a ® is also a Boolean structure (with

A, V, ™, S, interpreted as set-intersection, set-union,
set-(ortho)complementation, and set-inclusion, réspectively), which is
isomorphic to the Boolean structure of idempotent functions on & (Bub,
1974, p. 105).

The Boolean structure of idempotent functions on a classical phase
space, or isomorphically, the Boolean structure of Borel subsets of the
phase space, have each been regarded as a propositional. structure determined by

classical:mechanics, labeled P .. For in:one way -or .another, propositions

CM
which make assertions about the real-number values of a classical system's
magnitudes have been associated with either the idempotent functions on the

system's phase space or the uniquely corresponding Borel subsets of the

system's phase space. For example, in his 1932 book, von Neumann argues
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that propositions which make assertions about the values of a system's
magnitudes can themselves be regarded as idempotent magnitudes whose 0, 1
values can be interpreted as the "verification" and the non-verification of
the propositions. Mentioning von Neumann's argument, Kochen-Specker
likewise regard propositions as idempotent magnitudes whose 0, 1 values
are interpreted as falsity and truth. There is a better reason, given in
Section (C), why the 0,.1 values exhibited by the idempotent magnitudes
may be interpreted as the truth-values of propositions. Nevertheless, in

the classical formalism, idempotent magnitudes are represented by the above-

described idempotent functions on.a phase space. On the other hand, in

their 1936 paper, von Neumann and Birkhoff associate propositions which make
assertions about a classical system's magnitudes with the subsets of the
system's phase space.,+ Similarly, Jauch associates such propositions with
the Borel subsets of the system's phase space. Either association yields

the Boolean propositional structure P._ = <E = {P ,P .},A,V{L,S,O,1>.

cM 1°°2°

The elements of PCM may be thought of either as idempotent functions or
as Borel subsets of the phase space; the elements of PCM represent or are

associated with propositions. The PCM structure of any @ is a o-complete

atomic, Boolean structure. And each atom Pw in a PCM

idempotent function fW uniquely corresponding with the singleton Borel

is a one-point

subset {w}.

Section C% The Bivalent; Truth-Functional, State-Induced Semantics

for the Boolean PCM Structures

Just as the real-number values of a system's magnitudes depend
upon the system's state (i.e., upon the values of the system's position and

momentum), likewise the truth values of propositions which make assertions
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about the real-number values of a system's magnitudes depend upon that
system's state. For example, when the pendulum described in Section A is

in the state w the truth value of the following proposition is false:

10
The kinetic energy of the pendulum is between 19-20 kg m2/sec2. And when

the pendulum is in the state w the truth value of that proposition is

2 1]

true. The fact that a system's state determines the true Vvalues of
propositions which make assertions about the real-pumber values of the
system's magnitudes may be formalized by defining state-induced

ultravaluations on the PCM structure of these prop%gitions, and such

ultravaluations may be described in two ways. ;Both &ays shall be elaborated,
R‘:‘“ . ,:
even though each yields the same notion of stafe—induceq ultravaluations on

a PCM . For one way makes use of concepts introduced in Section A and

k]
s

thus shows the continuity between ‘the state's detérmining the real-number
values of magnitudes and the state's determining the truth values of
propositions. And the other ;ay makes gse of the concept of a dispersion-free
probability measure, which recurs in Chapters V, VI and VII,

As described in Section A, each state-induced mapping w : FCM -+ R

preserves + and *+, i.e., each state-induced mapping on an FCM is

real-valued and homomorphic. It follows that each state-induced mapping on

the Boolean structure PCM of idempotent elements of an FCM is bivalent

and homomorphic. For by the definition of the mapping w, for any w € &

and for any f_ on Q, w(fP) = fP(w) =1 if we€w,, and w(fP) = fP(W)

P

=0 if w¢ W'L, where WP YW= Q. Thus w: P, - {0,1}, and in

P CM
other words, each pure state of a classical system induces a bivalent,

truth-functional mapping w : PCM -+ {0,1} " on the propositional‘structure

PCM of the phase space associated with the system. .
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In fact, as we would expect, each state-induced mapping on a I%M

is an ultravaluation which assigns the value 1 +to an ultrafilter of

elements in PCM and assigns the value 0 to the dual ultraideal of

elements in PCM s as shown next. Each point w € & specifies a unique

atom PW in the .PCM structure of £, namely, the one-point idempotent

function £ or the corresponding singleton Borel subset ~ {w}.. And the

oM namely the unique

ultrafilter UFW defined by the atom Pw; dually, the set

set {P € PCM : P> Pw} - is an ultrafilter in P

. N
{P eP : P<P } is the unigue ultraideal UI  dual to UF . Now for
q
CM w \ W

any point w € @ and for any Bofel subset W_ c R, w € W, IFF Pw>$ P,

P P

. A A
and also w €W IFF Pﬁ =P, 1i.e.,

that is, fw < f  or {w}c WP ) p

P
IFF P = P;'. So by substitution into the above definition of the mapping

w, for any element P € PCM , w(P) =1 if P ¢ UFW and .w(P) =0 if

P ¢ UIW . Hence, each state-induced mapping on a PCM is an ultravaluation

and so is the classical-mechanical analogue of a standard valuation of
classical-propositional logic.5 And thus the 0, 1 values assigned by the

state-induced ultravaluations to the elements of PC can be interpreted

M

as the truth values false and true.

This notion of the state-~induced ultravaluations on a PCM

étructure may also be developed as follows.

According to the mathematical formalism of classical mechanics
and classical statistical mechanics, each pure state w of a system can be
regarded as inducing a dispersion-free probability measure on the PCM
structure of the system's phase space.§ A measure | is a real-valued
function on a Boolean algebra, e.g., on PCM , which satisfies the following

conditions:



- 51

(na) For any countable set {Pi}iGIndex of disjoint elements of PCM
QY Pi) = z u(Pi). This is the additivity condition.

i i

(ub) 0 = u(P)

1A

w, for every P E'PCM .

(ke) w(0) = 0.
It follows that W 1is isotone, i.e.,

. < -
(pi) 1If P1 < P2 , then u(Pi) < u(PQ), for any Pl’P2 € PCM

(Sikorski, 1960, p. 10).

A probability measure is a normed measure satisfying:

(pn) p(1) = 1.

And hence, for every element P é'PC 0 = u(P) =1, that is,

M H

Mot PCM -+ [0,1], where [0,1] 1is the closed interval from 0 to 1 on

the real-number line. And finally, a dispersion-free probability measure

satisfies the condition:
2 2 .
(ud) w(P") - (u(P))” = 0, for every P € P, .

A dispersion-free probability measure on a PCM is bivalent.
Proof: Since every element P € PCM is idempotent, i.e., P2 =P,
condition (ud) yields the equation: p(P) = (u(P))2, for every P € PCM .
Thus {i(P) =1 or 0. Q.E.D. (Bub, 1974, p. 60). So each dispersion-free

probability measure, hereafter labeled uw s 1s a bivalent mapping

M, PCM -+ {0,1}. Moreover, each dispersion-free probability measure on a
P is also a homomorphic mapping, as shown by the following proof due to
cM P g y g

Gudder (though Gudder does not refer to a Boolean structure like PCM)'

P €EP.

First, it is easy to show that, for any P,,P, oM

1
= bl . . : i i . P
p,W(P1 Vv P2) uw(Pi) + uw(P2) uw(Pl A P2) Proof: The join P1 v P, of
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€P can be written as the join of three mutually disjoint

amy ByaFy € Foy

elements, e.g., P1 A P2 =.P3

P, = P A P’y and P_=P AP

p.
\Y Y r = .
Pm P5 . Where P3 P1 A P2,

Y 1 5 1 5 " Then by additivity,

by - v . . . e
pw(P1 v 2) uw(Pa) + uw(Pu) + uw(PS) And by substitution and additivity:

(Pt (By)o = (Py VL) + p (P v Po) = W (Pa) + ki (Pe) + u (B)

o (P) = w (P, v P) +p (P) = w (P P,) +u (P, A P,). Thus

p.w(P1 \ P2) = uw(Pl) + uwcpz) - uW(P1 A P2). Q.E.D. With this result, it

is easy to prove that any dispersion-free probability measure woo PCM - {0,1} "

is homomorphic, i.e., for any P; 'Pl;PQ-G'PCM . 'uW(PL) = (uW(P))L and

pJ,W(P1 v P2) = uw(Pl),V QW(PQ): "Proof: For any P € PCM .

uw(P v ) = uw(l) = 1; and by'addifivity, MW(P v PY) = uW(P) + uW(PL).

Hence 1= u (P) +p (PY), and so i (P%) =1 - (P) = (u (P)Y". Now

UW(P) =0 or 1, for every P ¢ PCM so in the next part of this .proof,

there are two cases, one of which has two subcases. For Case 1, assume

uw(P1 Y P2)=1d and in -addition; for Sub¢ase la, assume (P, QPé)'='1-

Then since P1 A PQ S.P1 and P1 A P2 < P2 » by condition:(pi) -we have

uw(Pl) = 1 and also 'uw(P2) = 1. Hence |.LW(P1 Y P2) = uw(Pl) Y uw(P2).

For Subcase 1b, assume p,w(P1 A P2) = 0. Then since uw(P1 Y P2)

= uw(Pi) + uw(PQ) - p.w(P1 A P2), either uw(Pl) =1 and uw(PQ) =0 or

else uw(Pl) = 0 and uw(PQ) = 1. Hence, uw(Pl v P2) = uw(Pl) Y uw(Pz) =1,

For case 2, assume p,w(P1 v P2) = 0. Then since P, = P VP, and

P2 < Pl Y P2 s, by condition‘(ui).we have uw(Pl) = uw(P2) = 0. Hence

p,w(P1 v P2) = uW(Pl) v uW(Pg) = 0, Q;E;D. (based on Gudder, 1970, pp. 433-434).
Tﬂus each pure state of a classical system induces a dispersion-free

probability measure W, P, {0;1}' which is a bivalent homomorphism on

CM

the PCM structure of the phase space associated with the system.



.53

Moreover, each uw : P M -+ {0,1} - is an ultravaluation on P

c CM

and is in fact the ultravaluation w : PCM -+ {0,1}  described above, as

shown next. A dispersion-free probability measure on a Boolean algebra of
Borel subsets of a £ is an atomic measure concentrated on a single point
in & (Bub, 1974, p. 47), namely the point w representing the state which

is said to induce the measure. That is, each h, on the PCM' structure

of a @ assigns probability 1 to the singleton subset - {w} = (which is

the atom Pw in PCM) and assigns probability O to every other singleton

subset of points in Q. Now since uW(PW) = 1 and since u_ preserves

e

w
the operation as shown above, it follows that uw(P;) 1% = 0. Then

since b is isotone, we have, for any P € PCM , if P = Pw then

w (P)y =1, and if P = P
W W

then’ QW(P) = 0. Thus each state-induced,
dispersion;free probability measure on a PCM assigns values as follows:
for any P € PCM s uw(P)’= 1 if P € UF = {P ¢ PCM : P = PW}' and
pw(P) =0 if P € UIw = {P GIPCM : P < P;}; So each o is an ultravaluation
on PCM . And clearly, each ng is the very mapping w : PCM - {0,1}
described above; conVersely; each mapping w : PCM -+ {0,1} is a
dispersion-free probability measure on PCM . Also, since each QW is an
ultravaluation, the 0, 1 ~values assigned by b to the elements of PCM
can be interpreted as the truth values false and true.

So the fact that a system's state determines the truth values of
the propositions which make assertions about the real-number values of the
system's magnitude is formalized via the notion of state-induced ultravaluations
on the PbM _structure of the phase space associated with the system. And

this state—induced.procedure of assigning truth values to the elements of a

propositional structure PbM works exactly like the procedure by which
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truth values are assigned to the elements of an L structure determined
by classical propositional logic:

The straightforward analogy between the state-induced ultravaluations
on a PCM and the ultravaluations on an L suggests, for example, that we
may postulate a physical system with an associated phase space underlying
the L2 structure diagrammed in Chapter II(B) so that each ultravaluation

on L2 is induced by a state of the postulated system. Consider a
tetrahedral die with the numbers 1, 2, 3, 4 marked on each side, respectively,
and with the convention that we read the bottom face of the die as the

outcome of a throw and thus as the state of the die.

The phase space associated with the die consists of four points
90 = {wl,w2,w3,w4}, each representing one of the four discrete states of

the die. In order that L2 be the propositional structure of this RO ’
we may interpret the element /R/ € L2 as the proposition: "A number less
7

than three appears (on the bottom face of the die)."  This proposition is
associated with the idempotent function fR : RO -+ {0,1} defined as
follows: for any W, E'RO s fR(wi) =1 |if Wy G‘{wi,wz} - and

. X Ty .
fR(wi) =0 if we € {Wl’w2}' = {w3,w4}f And we may interpret the element
/S/ € L2 as the proposition: "An odd number appears." This proposition
is associated with the idempotent function fS defined as follows: for
any W, € 90 . fs(wi) =1 if wiﬂe'{wl?ws}.-and fs(wi) = 0 if

We € {wé,wu}.- Each of the four ultravaluations on L2 is state-induced



.55

because it i1s the state of the die which specifies an atom in L2_which:in turn
specifies an ultrafilter and dual ultraideal defining an ultravaluation on
LQ». Thus each state of the postulated system is the classical-mechanical
analogue of the initial assignment of 0, 1 valﬁes to R and S which

specifies an atom in L as described in Chapter II(D).

5
Finally, by the semi~simplicity of the Boolean structure PCM s

the collection of state-induced ultravaluations on a PCM’ is complete.

Thus the complete collection of state-induced ultravaluations on a PCM

can be regarded as a state-induced; bivalent, truth-functional semantics

for PCM . This state-induced semantics for PCM shall be regarded as the

precedent for a proposed state-induced semantics for the quantum propositional

structures, as developed in Chapter VI.

Notes

1 s . . . s s
I use the term "proposition" in a philosophically unsophisticated
way; "sentence' or "statement'" could serve as well.

2 ' . . 2 2 .
As suggested by R. E. Robinson, the units kg m /sec , which
help make sense of the real-number values, may be considered to be part of
the magnitude.

The measurability condition on the functions representing
classical magnitudes requires that, for any measurable (i.e., Borel) subset
R ¢ R, the set W of all points w € @ such that fA(w) € R 1is itself
a Borel subset of . (This set W 1is the inverse image of R under
£ .) The measurability restriction on the subsets R SR and WE R

rules out sets such as the set of irrational numbers between 0 and 1,
which is a non-denumerable infinity of disjoint points so that the measure
of this set cannot be expressed as a countable union or sum of the measures
of each of the set's elements. A singleton, one-point set is a Borel set
of measure 0.

4 Birkhoff and von Neumann actually specify a more restricted
class of measurable subsets of @ than the class of Borel subsets, see
(Jauch, 1968, p. 79).
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Bub describes this connection between classical states,
ultrafilters, and bivalent homomorphisms, see (Bub, 1974, pp. 97-106).
However, Bub defines a bivalent homomorphism by the Sikorski definitionm,
as discussed in Chapter II(C).

s The domain of a classical probability measure is usually
specified to be a Boolean ring, field, or algebra of ‘sets, in particular,
the Boolean algebra of Borel subsets of classical phase space. However,

M. Strauss, I. Segal, and others argue that the (isomorphic) Boolean algebra
of idempotent random variables (i.e., idempotent, real-valued, measurable
functions) is preferable as the domain of the measures of probability theory
(Strauss, 1973, p.. 268; Segal, 1954, p. 721). Similarly, Gleason proposes
that we may regard his quantum measures as being defined on the set of
idempotent operators on a Hilbert space rather than the set of subspaces of
Hilbert space (Gleason, 1957, p. 885).

It may seem initially more plausible to interpret the propositional
variables. R, S as propositions associated with idempotent functions on
Qg . Thus any propositions P which makes assertions about what appears
after a throw of the die is a molecular combination of R, S. Let L;
label the closed, denumerable set of all molecular combinations of R, S.
We have no equivalence relation with which to partition L, in order to
get the equivalence classes which are the elements of L, . Strictly
speaking, it is the elements of L, which I want to interpret as propositions
associated with idempotent functions on R, . However, let every P € L,
be directly associated with an idempotent function fj (where fp(w)

is the truth value of P given w), and say that, for any

P, Q€L, , P~Q IFF fP(w) = folw) for every w € %, , where if

fp(w) = fo(w) for every .~ w €8, , then fp = f5 . Thus all the members
of the equivalence class /P/ are assoclated with a single idempotent
function f_ , as we want. And in other words, P~ Q IFF P, Q have

the same truth table, which is the semantic counterpart of the proof-

theoretic equivalence relation stated in Chapter II(B).
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CHAPTER IV

THE NON-BOOLEAN PROPOSITIONAL STRUCTURES DETERMINED BY QUANTUM MECHANICS

Section A. The Fundamental Postulates of Quantum Mechanics

What follows is an extremely simplified exposition of some of the
mathematical formalism of quantum mechanics. It is postulated that a physical
system is associated with a Hilbert space H whose dimensionality reflects
the degrees of freedom of the system. Each magnitude A of the system is
represented by a self-adjoint operator A on the system's H. The operator

A has a spectral representation (for the case of a discrete spectrum):

(D A= Z aiP¢. , where for each i € Index, PW- = |¢i><wi!

i i " 1
and A|Wi> = ailwi>.
The real numbers {a,}, are called the eigenvalues of A and of A. They

i i€Index

are the real-number values and the only real-number values exhibited by the

. 1 .
magnitude A. A pure state V¥ of a quantum system is represented by a vector

! v

PW is self-adjoint and idempotent, that is, PW is a projection operator which

|W> in the system's H or by a density operator P = IW><W| on H. The operator

P , etc. Each

is also called a projector, more generally designated ﬁ, ﬁl’ 2

projector P on an H corresponds uniquely to a subspace H of H, where a subspace
is a set of vectors which form a closed linear manifold (see Bub, 1974, pp. 10,

- 12). The projectors'{ﬁv } and the vectors {Iwi>}. appearing in

3 i€Index i€Index

the spectral representation of any operator A représent the (pure) eigenstates
of A and of A. The set of eigenstates of any A are mutually orthogonal (as

defined in Section C) and satisfy V Ivi> =H and } ﬁv =I. (I is the
i i *i

identity operator which satisfies ilW> = 1|W> for every |¢> €H.)
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The state of a quantum system determines the real-number values of
the system's magnitudes via the following formalism. When a system is in an
eigenstate le>, for some ' j E:Index; ‘of‘the magnitude A, then the
real-number value of A is the eigenvalue aj affiliated with that
elgenstate '|¢j> by the equation R|¢j> = aj}ﬁ¢j>. But when a system is
in an arbitrary pure state w which is not an eigenstate of A, then upon
measurement the magnitude A may exhibit any of its real-number eigenvalues;
the quantum formalism does not specify which eigenvalue A will exhibit.
However, for any pure state '&,- the'Erobability that the real-number value
of A 1s the eigenvalue aj ; for some j € Index, is determined by the
quantum formallism:
|2

- vper 1 = <vIB, 1

(11) Py A(aj) = |<\]/j | v>
0 ]

This probability is a real-number in the closed interval [O,li of the
real-number line. The probability equals 1 (certainty) IFF the system is
in the eigenstate ¢j‘ affiliated with the eigenvalue aj , il.e.,
pwh‘A(aj) = I<Wj|¢j>|2 = 1, And this probability equals 0 (impossibility)
IF%’the system is in any one of the other eigenstates of A.

The average value, i.e., the expectation value, of A when the

system is in an arbitrary pure state V - is defined as the following

weighted sum of eigenvalues of A:

(111) Expw(A) =) a.bls (ai)

R § A A AL

MCRIAS AT

1

<Ry,
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And when the system is in an eigenstate Wj of A, then the expectation
value of A is the eigenvalue 'ai .
Clearly, the expression for the probability (II) is equal to the

expectation value of a projector according to (III), i.e., for any pure
L (al) = Exp, (P, ), where P is
v, AR 2

the projector representing the eigenstate affiliated with the eigenvalue

state ¢ and for any magnitude A,

aj . In fact, instead of moving from the probability expression (II) to
the expectation value expression (III), the former expression (II) can be
derived from (III), as i done, for example, by Messiah (1966, pp. 176-179).
In other words, (I) together with either (II) or (III) are regarded as the
foundational postulates of quantum mechanics. For example, von Neumann
considers (II) to be the more general probability expression but he regards
(III) to be preferable as a fundamental postulate (von Neumann, 1932, pp.

pp. 200-206).

Section B. Incompatibility

In both classical and quantum mechanics, a sufficient condition

}

for the simultaneous measurability of any set of magnitudes {A

i“i€Index

is that each maénitude is equal to a (Borel) function of some common
magnitude, say Bj; that is, for each 1 € Index, Ai = gi(B) for some

Borel function g; (Kochen-Specker, 1967, p. 64). Now for any magnitude

B and any Borel function g, the magnitude g(B) is by definition that
magnitude which exhibits the value g(b) when B exhibits the value b.

So when the real-number value of the common magnitude B is Db, then the
real-number value of each Ai = gi(B) is gi(ﬁ). Hence a single measurement

of B suffices to determine the real-number values of all the magnitudes
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. For example, as mentioned in Chapter III(A), every classical

{a.}

i’i€Index
magnitude is a (Borel) function of the position and/or momentum magnitudes,
and so all classical magnitudés are simultaneously measurable. But it is
not the case that every quantum magnitude is a function of the position
and/or momentum magnitudes; Moréovér; the quantum position and momentum
magnitudes are themselves not simultaneously measurable. And in general,
the set of magﬁitudes describing a quantum system includes magnitudes which
are not simultaneously measurable.

With respect to the (self-adjoint) operator representation of the
quantum magnitudes, a necessary and sufficient condition for the simultaneous
measurability of any magnitudes is the commutativity of their representative

operators. Any operators A, B commute IFF A, B have all their

$ i . COVE . S AL}, of ope rs i
eigenstates in common. Moreover, any .set {Al}lGIndeX perators is

~

mutually commutative IFF there is an operator B and Borel functions

~

S ~
{gi}iEIndex such that Ai = gi(B) = gi(B), for every 1 € Index (von Neumann,

1932, p. 173). Now for any magnitude B and for any Borel function g, if
B has fhé operator ﬁ, then g(B) has the operator é?EB = g(ﬁ).
(von Neumann, 1932, p. 204; Fano, 1971, p. 394). Thus it follows that any
quantum magnitudes are simulfaneouSly measurable IF their representative
operators are mutually commutative; the converse is also shown by von Neumann
(1932, pp. 223-228).

| Commuting operators and simultaneously measurable magnitudes are
said to be compatible; such operators or magnitudes have all their eigenstates

in common. Operators which do not commute and magnitudes which are not

simultaneously measurable.are said to be incompatible; such operators or

magnitudes may nevertheless have one or several eigenstates in common so
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that one or several of their eigenvalues may be simultaneously determined
- by measurement.

When we talk of a propositional structure determined by quantum
mechanics, the propositions we consider are propositions which make
assertions about the real-number eigenvalues of quantum magnitudes.
Propositions which make assertions about the eigenvalues of compatible
magnitudes are said to be compatiblé. Propositions which make assertions

about the eigenvalues of incompatible magnitudes are said to be incompatible

with the following exception. If the eigenvalues happen to be associated.
with eigenstates which are shared in common by the incompatible magnitudes,
then propositions which make assertions about such eigenvalues of
incompatible magnitudes are said to be compatible.2 The attempt to assign
truth-values to incompatible quantum propositions is a problematic enterprise,

as will be shown in Chapter V(A).

Section C. The Propositional Structure Determined by Quantum Mechanics

As in the classical case described in Chapter III, the self-adjoint
operators representing quantum magnitudes have the binary ring operations
+ and <+ defined among them as follows: for any A, B on H and for
every |¢> €H, (§+§)|¢> = A|¢> + Bly>, and (A ﬁ)|¢> = K(§|W>). The
+ operation so‘defined is associative and commutative, as usual. And the
+ operation so defined is associative and distributive with respect to +,
as usual. But <+ is not commutative, i.é., A(ﬁ|¢>)_ need not equal
ﬁ(ﬁ]w>) for every A,ﬁ,|¢>._ In particular, if A(§|¢>).= §(§|¢>) for

every |W> ¢ H, then A, B are said to commute or to be compatible. This

suggests that a closed set. of self-adjoint operators on. a Hilbert space has
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the structure of a non-commutative ring-with-unit whose O-element is the
constant operator 0 satisfying '61¢>”= 0, for every l¢> € H, and whose
l-element is the constant operator I satisfying 'i|¢> = 1, for every

|¢> € H. However, a set of’self;adjoint operators is not closed with
respect to * unless * is restrictedto commuting, i.e., compatible,
operators. For although the sum of any two self-adjoint operators is itself
a self-adjoint operator, the product of two self-adjoint operators is not
itself a self-adjoint operator unless the two commute (von Neumann, 1932,
P. 98). So rather than a non-commutative ring-with-unit, a set of
self-adjoint operators representing quantum magnitudes which is closed with
respect tb + and * form a structure which may be called a

~

partial-dot-ring-with-unit <E = {A,B, . . .},4,8,0,0,1>, where & € EXE,

+ is defined from EXE to E, and * is defined from only 4 to E.

Taking this notion of restricting the binary * operation to a
partial;opération'defined'from only & to E onme step further, we may
define the structure of the self-adjoint operators to be a partial-ring-with-unit
which has both the + and the +* operations defined from only b to E,
where again, & € EXE. As mentioned in Chapter I(D), Kochen-Specker call
such a structure a partial algebra. And they define the structure of a
quantum system's magnitudes, which are represented by and presumably reflect
the structure of self-adjoint operators on the system's Hilbert space, as a
partial-algebra; i.e., as a partial-ring-with-unit in my terminology.

But regardless of the exact structuring of the self-adjoint
operators, it is clear that the structure of the operators representing the
magnitudes of quantum mechanics is different from the structure of the

real-valued functions representing the magnitudes of classical mechanics.
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Thus it is reasonable to expect that the structure of the quantum
propositions which make assertions about the real-number eigenvalues of the
quantum magnitudes is different from the Boolean PCM structure of classical
propositions,

Nevertheless, the procedure by which a quantum propositional
structure is abstracted from the mathematical formalism of quantum mechanics
is exactly analogous to the procedure by which a PCM structure is abstracted
from the classical formalism, as described in Chapter III(B). For gquantum
propositions have historically been associated either with the projectors
(i.e., idempotent, self-adjoint operators) on an H or with the uniquely
corresponding subspaces of H. And the logical operations "and," "or,"
"not," either have been indirectly defined in terms of the projector +
and ¢ operations or have been directly associated with the subspace
intersect A, span V, and orthocomplementation -+ operations, as will
be described shortly. These assoclations defermine the structure of a set
of quantum propositions, or in von Neumann's terms, these associations
determine "a sort of logical calculus" or a "propositional calculus" for
quantum mechanics (von Neumann, 1932, p. 253).

In his 1932 book; von Neumann discusses classical and quantum
propositions under the categorical label: pfoperties of the state of the
system. That is, von Neumann's properties are in fact propositions which
make assertions about the real;number (eigen)values of a system's magnitudes
(von Neumann, 1932, p. 249). For example: The spinX of an electron is
+#4. Von Neumann argues that each such,proposition cantbe associated with
a magnitﬁde which is defined such that its value is 1 1if the proposition
is verified and O if the proposition is not verified. In other words,

each proposition which makes assertions about the real-number eigenvalues of
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a quantum system's magnitudesfcan‘itself be regarded as or associated with
an idempotent magnitude of the system. Since an idempotent magnitude is
represented by a projector on the system's Hilbert space and each projector
in turn corresponds uniquely to a subspace of that Hilbert space, namely,
to the subspace onto which the projector projects every vector in Hilbert
space, von Neumann concludes that quantum propositions can be associated
either with projectors on a Hilbert space or equally well with subspaces of
a Hilbert space.

For example, consider a proposition which asserts that the value
of the magnitude A is in some Borel subset R of the real-number line.
Such propositions are regarded by most authors as the paradigm quantum (or
classical) propositions. As described above, the only values exhibited by

A are its eigenvalues, and each eigenvalue a; is uniquely associated with

a projector B = |¢i><wi . So depending upon how many eigenvalues of A

\l/l

are in the Borel subset R, the above paradigm proposition specifies

either the unique projector ﬁW - and its corresponding subspace Hw when

i n i
only one a, € R, or the unique projector z P¢ ~ and its corresponding
' on i=1 Yi
subspace V H, when several a,, . . . ,a_ € R,
i=1 Vi 1 n

All other authors who discuss a quantum propositional structure
or a guantum logical calculus! also somehow or other associate quantum
propositions with either the projectors on a Hilbert space or the subspaces
of a Hilbert space. So the structure of the projectors on a Hilbert space,
or isomorphically, the structure of the subspaces of that Hilbert space,
is regarded as the propositional structure determined by quantum mechanics,
labeled P, = <E =5{P,P1,P2, . e . }3.8,5,A,V,+,0,1>. The elements of PQM

QM

may be thought of either as projectors or as subspaces of a Hilbert space;
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the elements of P represent or are associated with propositions

QM

p,pi,p2, e+ +. The P M structures have been formalized in two different

Q

ways. But before describing these two ways in the next section, the

features of P which are common to both formalizations are first described,

QM

as follows.

AP is an atomic structure whose atoms, written P¢ or

QM

sometimes P_ , are the one-dimensional projectors on H, e.g., PW = |¥s<y],
or the corresponding one-dimensional subspaces of H, e.g., the subspace

H¢ which is the range of §¢ . The distinguished O0-element of a PQM
is the null projector 0 or the corresponding zero-subspace of H; the

~

distinguished 1-element is the identity projector I or the corresponding
entire H. As with the L and the PCM structures described in Chapters

II and III, the O-element of a P is associated with impossible or

QM
contradictory quantum propositions, and the 1-element is associated with
certain or tautological quantum propositions.

The compatibility relation & of P is reflexive, symmetric,

QM

and non-transitive, and is defined in terms of the A, Vv, L operations as

follows. For any P,,P, € P -P1 S P IPF there exist three mutually

1 QM 2

disjoint (i.e., orthpgonal) elements 'P11°'P22’.P3 . such that P1 = P11 \Y P3

and P, =P, v P_ . And assuming that -P1 Lp it can be shown that

2 22 ' 73 2
1 i _ .
P,, =B, APy, Py, =P AP ,P =P AP, (Jauch, 1968, pp. 28, 97;

Kochen-Specker, 1967, p. 65). Any »P1,P2 € PQM are disjoint or orthogonal
written P1JL P2 IFF Pl' = P;' (Piron, 1976, p. 29). It follows that,
for any Pl’PQ EAPQM , if P1,P2 are d1s391nt then P1<5 P2; and

S & .p+
P, ©.P, IFF P15.P2 .

The binary relation =< of PQM" defined in terms of A or V

P2 IFF PP1 AP, =P, and P =P IFFr P, V P2 = P.),

as usual (i.e., P 5 1 1 2 1 2

o<
1._
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is a partial-ordering (i.e., it is reflexive, anti-symmetric, and transitive).

Moreover, the compatibility of any -Pl,Pé € PQM is a necessary condition
for their being related to the partial-ordering =, that is, if P

3
o -

And finally, the operations A, Vv, of PQM are defined and

<
17 P2

then Plé> P for any Pi’PQ €P

2 H

discussed in the next section.

L]

" Propositional Structures

The P structure has been formalized in two ways: as a

QM

transitive, atomic, partial-Boolean algebra P and as a complete, atomic,

QMA

orthomodular lattice PQML . These structures are defined in Chapter I(D)

and (E). I retain the label PQM to refer to a PQMA or a PQML

indiscriminately. The basic difference between a PQMA and a PQML is
that the former has the binary operations A, v defined among only
compatible elements while the latter has A, V defined among all elements,
compatible and incompatible;' The two fgrmalizations do not differ with
respect to any of the other entries in the ordered octuple PQM .

That the quantum propositional structures have been formalized in
these two ways is at least partly due to differences between the projectors
and the subspaces of H. TFor despite the one-to-one correspondence between
the projectors and the'subspaées; the association of quantum propositions
with projectors naturally yields a PQMA while the association of quantum
propositions with subspaces suggests a PQML , . as will be shown in this

section.

In his 1932 book, von Neumann proposes a logical calculus of
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quantum propositions which has "and" and "or" restricted to compatible
propositions.4 First von Neumann defines "not." For any quantum proposition
p associated with' the projector Pwhose corresponding subspace is H, the
proposition "not p" is associatedbwith the projector I-7=7P" whose
corresponding subspace is Hl; Next; for any compatible propositions

Py s Py o the proposition "-p1 . and p2" is associated with the projector
§1° §2 whose corresponding subspace is H1 A H2 ,» where A 1is interpreted
among subspaces as the set-theoretic intersect operation. Classically

vpl or p2" is equivalent to "not'((not'-pl)‘ and (not'_pz))"; analogously,

von Neumann associates "-p1 . or P, ," for any compatible Py s Py o with

the projector I - ((f-ﬁi)"(if§2)) =-§1 + §2 - (fl ff2) whose corresponding
subspace 1s the cloged linear sum of H1 » H2 , i.e., H1 Y H2 , where V -

is interpreted as the subspace span operation. Thus von Neumann's 1932
logical calculus has the "and," "or," "not" operations among propositions
defined in terms of the +, * operations among projectors in the usual way
that the Boolean operations A, v, , are defiﬁed in terms of the ring
operations +, *. But the binary "and," "or" operations are defined among
only compatible propositions. A similar calculus of quantum propositions
is developed and discussed by Strauss under the appellation "complementary
logic" (Strauss, 1936, p. 196) and later by Kochen-Specker under the
appellation "partial-Boolean algebra."

A lattice structure of calculus of quantum propositions was first
proposed by Birkhoff and von Neumann in their celebrated 1936 paper. There,
in a discussion of their initial association of experimental propositions
with the subsets of a phase space, Birkhoff and von Neumann are especially

concerned to preserve the relation of logical implication among the
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propositions. Logical implication is reflexive, anti-symmetric, and
transitive, and so can be regarded as a partial-ordering. So Birkhoff and
von Neumann postulate that a propositional calculus, determined by either
classical mechanics or quantum mechanics, is a partially ordered set. They
then assume that a propositional calculus has a distinguished O-element,
interpreted as the "identically false" or "ébsurd" proposition, and a
distinguished 1-element, interpreted as the "identically true" or
"gself-evident" proposition. Next Birkhoff and von Neumann claim that:

"In any calculus of propositions, it is natural to imagine that there is a
weakest proposition implying, and a strongest proposition implied by, a .
given pair of propositions" (Birkhoff and von Neumann, 1936, pp. 828-829).
In other words, with respect to the partial-ordering of logical implication,
Birkhoff and von Neumann assume that any given pair of propositions

Py » Py oo in a propositional structure ha; a g.l.b. (the meet Py A p2)
and a l.u.b. (the join P, \Y p2), which they interpret as logical
conjunction and disjunction, respectively. Hence, Birkhoff and von Neumann
postulate that a propositional structure is a lattice which has A, V
defined for every pair of propositions.

But Birkhoff and von Neumann immediately mention the problematic
character of the meets and joins of incompatible propositions. They say
that the meet or the join of incompatible experimental propositions cannot
itself be defined as an experimental proposition but rather must be
expressed as a class of logically equivalent experimental propositions which
they call a phy§ical quality; Nevertheless, Birkhoff and von Neumann go
on to associate quantum propositions with the subspaces of a Hilbert space,

and they associate 'not," "and," "or," among compatible and incompatible
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propositions qua subspaces with the subspace +, A,Vv, as defined by
von Neumann in 1932,
It is noteworthy that the orthocomplement H™ of any subspace
H of a Hilbert space is itself a subspace, and liiewise the set-theoretic
intersect H1 A H2 and the closed linear sum -H1 v H2 of any pair of

subspaces H1 ’ H2 of a Hilbert space are themselves subspaces. So it is
clear that the meets and joins of incompatible propositions qua subspaces
are at least sure to exist, whether as experimental propositions or as
"physical‘qualities."

Birkhoff and von Neumann conclude that the offhocomplemented,
modular, non-distributive lattice of subspaces of a Hilbert space may be
regarded as the logicél structure or propositional calculus of quantum
mechanics; Later, Jauch shows that the subspaces of an infinite dimensional
Hilbert space are not modular, and so Jauch weakens the modularity condition
on the quantum lattice of subspaces to weak modularity (see Chapter I(E)).
Consequently, authors who favour the lattice formalization of quantum
propositions initiated by Birkhoff and von Neumann consider the propositional
structuré or calculus of guantum mechanics to be a completé, atomic,
orthomodular (i.e., orthocomplemented and weakly modular) lattice.

However, when quantum propositions are associated with the
projectors on a Hilbert space rather than the subspaces, then the existence
of the meets and joins of incompatible propositions qua projectors is more
problematic. As mentioned in Section (B), the operators and projectors on
a Hilbert space have + and ¢ interpreted as addition and multiplication
defined among them. But a theorem states that the product of any two

projectors is itself a projector IFF the two are compatible; the sum of any
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two projectors is itself a projector IFF the two are orthogonal (von Neumann,
1932, p. 81). 1In addition, any P isa projector IIF I-P is a projector
(von Neumann, 1932, p. 79); So a set of projectors is closed with respect

to + and ° only if the '+ operation is restricted to orthogonal
projectors and the + operation is restricted to compatible projectors
resulting in a sort of partial-Boolean ring-with-unit

. .}, d,b,4,°,0,1>, where L ¢ L c ExE, + is defined from

]l to E, and - 1is defined from L to E. I write L g<£ because, for

any P1 . P2 , if Pl'L P2 then P1é> P2 , but not the converse.
Now although ﬁi + §2 is a projector IFF ﬁl‘L §2 , 1t is easy
to show that the sum less the product: -P1 + PQ - P1P2 , of any P1 . P2 .
is a projector IFF Piga P2 . For ‘Pl + P2 - P1P2 =I1-1*+ P1 + P2 - P1P2
=1-((I-P) - (P2—P1P2)) =1 - ((I-P I - (I-P)P))) = I - ((1-p,) - (I-P,)).

And by the theorem and additional result stated in the previous paragraph,

for any P1 . P2 . (I_Pi) and (I—Pz)

I- ((i-ﬁl) '(i-§2)) is a projector IFF ((f-ﬁl) L(I-P2)) is a projector;

are each projectors; and
the latter is a projector IFF Qf-?l)é (f—f2), which is the case IFF
ﬁié §2 . Q.E.D. So when the A, V,* operations are defined among
projectors in terms of + and -+ as usual, then a set of projectors is
closed with respect to A, V;J' only if A and V are restricted to
compatible projectors resulting in a partial-Boolean algebra of quantum
propositions qua projectors.

The subspace representation of quantum propositions easily lends
itself to a partial-Boolean algebra structuring, as first suggested by
von Neumann in 1932, Merely restrict the above defined A; v .operations

among subspaces to compatible subspaces (e.g., see Kochen-Specker, 1967,
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p. 65). On the other hand, the projector representation of quantum
propositions may be structured as an orthomodular lattice, but the A, V
operations can be defined in terms of projector addition + and
multiplication =« in the usual way among only compatibles. Among
incompatible propositions qua projectors, the A, V operations are defined

. n L e =
-J : A =1 e P ' = A
by Jauch as follows P1 P2 niE(Pl 2) and P1 P2 (P1 P2)

= T - Lin((I-P,) - (1-P,))" (Jauch, 1968, pp. 38, 219). These definitions
n>e
of A, V reduce to the usual definitions of A, V in terms of +, -

when Picg P2 . So an orthomodular lattice P of quantum propositions

QML

qua projectors is also defined.
Thus regardless of whether quantum propositions are associated
with the projectors or the subspaces of a Hilbert space, both alternatives

have been structured as a PQMA and both have been structured as a PQML .

I have described how the alternatives have been formalized as a PQMA and

as a PQML in order to highlight the problematic character of the meets and

joins of incompatibles defined in PQML . In summary, when quantum propositions
are associated with the subspaces of a Hilbert space, then the meets and
joins of incompatibles are at least sure to exist and the propositions gqua

subspaces can be structured as a P . However, Birkhoff and von Neumann,

QML

for example, do not regard the meets and joins of incompatible propositions
as propositions but rather as "physical qualities." When quantum
propositions are associated with the projectors on a Hilbert space and the
A, V,* operations are defined in terms of projector addition + and
multiplication =« as usual, then the resulting structure is a PQMA rather

than a In order to define a P of quantum propositions qua

PQML ’ QML

projectors, Jauch must introduce definitions of A and V -which involve the

limits of infinite products.
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“rand P

QUA QUL
The fact that a PQML has A, v -defined among incompatible
elements while a P does not have A,V defined among incompatible

QMA

elements may suggest that a P is in some sense missing elements

QMA

compared to a P . TFor example, given an initial set of one~dimensional

QML
subspaces of a Hilbert space, both a PQMA and a PQML can be generated
by closing the initial set with respect to the A, V,* operations as
defined in each structure. When the initial set is finite, the PQMA
generated by closing the initial set is also finite. In contrast, the
lattice definitions of A, v -among incompatibles often results in a
proliferation of lattice elements so that the PQML ~generated by clpsing

a finite initial set may be denumerably infinite. An example of this
proliferation of elements is gi&en in Chapter VI(C). This proliferation of
lattice elements does not occur in the PQML structures of subspaces of
two-dimensional Hilbert space. And it does not occur in higher dimensional
Hilbert space structures when there are certain angular relations among the

subspaces in the initial set. An example is given in note 8 below. 1In

these cases when the proliferation of lattice elements does not occur, both

the PQML and the PQMA generated by closing an initial set have exactly
the same elements.

And in any case, it is not correct to consider a PQMA to be
missing elements compared with a PQML . For given any finite or infinite
PQML , there is a corresponding finite or infinite PQMA which has exactly
the same elements as P but is missing some of the lattice relations

QML

among these same elements. Specifically, an element P € may be the

PQML

meet or join of two incompatible elements in PQML s €.8., P = P1 A P2 s
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i P
1 P2 » in the QMA

which corresponds to that PQML will not be so related becaugse A and V

are not defined among incompatibles in a P

with P1 & p but the same three elements P, P

2 ]

QMA °
Strauss makes a similar point when he argues that the lattice

interpretation of an element P as the meet of two incompatible elements
P1 A P2 is a Eig}nterpretatidn because P # P1 °P2 . In other words, the
A operation cannot be defined in terms of the +¢ operation as usual when
P1 b P2 . Strauss concludes that, compared with a (orthomodular) lattice,
a partial-Boolean algebra does not omit any elements but rather prevents
the misinterpretation of elements.(Strauss, 1936, p. 203). Of course,
authors who favour the lattice structure can argue that the interpretation
of an element P € PQML as the meet of two incompatible elements P1 A P2
is not a misinterpretation, in spite of the fact that P # P1 -P2 . Ssince

Jauch has created the infinite-product definition of the meet of two

incompatible elements in P

QML
Regardless of whether or not the lattice definitions of A and
V -among incompatibles results in misinterpretations, the lattice meets
and joins of incompatibles do cause truth-functionality problems which are
peculiar to the PQML structures but are avoided in the PQMA structures.
For a truth-functional mapping on a PQMA must preserve the unary ~
operation and the binary A, V -operations among only compatibles; while a

<+ operation

truth-functional mapping on a PQML must preserve the unary
and the binary A, V -operations among compatibles and incompatibles.

Hereafter, let truth-functional (&) rvefer to the former condition and let

truth-functional (&,%) refer to the latter condition. The latter

condition is not applicable to a mapping on a PQMA since a PQMA has no
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operations defined among incompatibles. However, both conditions can be

applied to a mapping on a P though a truth-functional (&) mapping

QML ?

on a PQML ignores the lattice meets and joins of incompatibles and thus

preserves only the partial-Boolean structural features of P In

QUL °

Chapter V(A), it is shown how the lattice meets and joins of incompatibles
cause truth-functionality (d,%4) problems which rule out a bivalent,

truth-functional (&,$) semantics for any P which contains incompatible

QML

elements.

The fact that an orthomodular lattice PQML has A, V defined

among incompatibles also affects the notion of a complement in PQM

L

For as mentioned in Chapter I(E), any element P 'in a PQML containing
incompatible elements may have non-unique, incompatible complements. That

is, for any P there may be an element P2 % P1 such that

1 € PQML ?
P1 A P2 = 0 and P1 v P2 10 P2 are complements, but P

are not compatible and are not orthocomplements. TFor example, consider the

P

=1y so P 10 Fp

orthomodular lattice diagrammed as follows, with -P1 $ P2 . (and hence

L
P1 ¥ P2): 1

0

Pt are compatible and are orthocomplements; likewise,

In this lattice, P1 > £y

P2 s PéL are compatible and are orthocomplements. But moreover, as is
- - — —L_
clear from the diagram: P1 A P2 = 0, P1 Y P2 =1, and P1 A P2 =0,
L
P1 v P2 = 1. 8So besides its unique orthocomplement P1 s the element P1

alsoc has two other complements, namely, the element P2 and the element
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L . . .
P2 s which are not compatible with P and are not orthocomplements of

1
However, when we consider the corresponding partial-Boolean
algebra which has exactly the same elements as the above orthomodular
lattice but does not have 'A; V -defined among incompatibles, these same
elements P1 s P2 . P;' are not related via the A, V operations and so
they are not complements; The only complements in a partial-Boolean algebra
are the orthocomplements which are compatible and unique, just as the only
complements in a Boolean structure such as the classical L and PCM are
orthocomplements which are compatible and unique. In contrast, the elements
in an orthomodular lattice may have other complements. The presence of
these other complements in a PQML contributes to the lattice truth-
functionality (&,4%) . problems; as shall be shown in Chapter V(A). And the
presence of these other complements in a PQML raises the question of whether
the“logical '"not'" opération should be associated with erthocemplementation or
with complementation. The fact that the "not" of classical logic is an
operation, that is, is a function which is univalent, provides a precedent
for associating '"not" with. orthocomplementation rather than the other
non-unique complementation;5
It is also worth noting that in a partial-Boolean algebra PQMA )
the material conditional > of (classical) formal logic can be defined in
terms of V "or" and = M"not" as usual; moreovér, as so defined, the
material conditional in PQMA is transitive as usual. But in a PQML .

the material conditional cannot be defined as usual, which raises the

question of how to define > in PQML

In classical logic, the material conditional is defined as, for
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A
D = 1
any formulae fi’f2 €L, f1‘, f2 df. f1 \Y f2 . And the material

conditional is transitive, i.e., for any £ f2,f3 €L, if } f1 > f2

1’
and | £, £, » then F-fi > £, or equivalently, if E £, 2 £, and
E £, 2 f3 » then - E fi o} f3 . Algebraically, for any elements /fl/’ /f2/

in the L structure of L; /fl/‘D /f2/ = /f1 po) f2/ is an element in [,
namely the element '/f1/+ v /fé/: And the relations of logical implication
t or semantic entailment F are interpreted as the partial-ordering
relation =, where for any /f/ €L, = /f/ IFF /f/ = the 1-element.

Then the above transitivity condition can be restated algebraically as
‘follows: For any /fl/’ /f2/, /f3/ €L, if /fl/L V'/f2/ = 1 and

J£ 0%V /5,0 = 1, then [£/T v /£ = 1.

With respect to a quantum P the material conditional

QA °

defined in terms of © and V -as above does satisfy this transitivity

cer : 5 b e . iy -
condition, i.e., for any P1’P2’P3 € PbMA , 1f P1 v P2 = 1 and

1 L _ .
P2 \Y P3 = 1, then P1 v P3 = 1. But with respect to a quantum PbML R

the material conditional is defined in terms of * and V  as usual, then

if

the material conditional is transitive IFF the lattice is Boolean, as shown
by Fay (1967, p. 267). According to Jauch and others who worry about how

to define the material conditional in a non-Boolean quantum P the

QML °
transitivity of the material conditional is necessary for a logic. And so
these lattice theoreticians conclude that D cannot be defined in terms

of +, v as usual in a quantum PbML (Jauch-Piron, 1970, p. 174). So the
correct definition of the material conditional and even the possibility of
a rule like modus ponens have been controversial issues among

lattice-theoreticians.

Yet another ramification of the basic difference between PQMA
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and PQML is described in the next section.

" Structures Are Non-Boolean

In contrast to the Boolean propositional or logical structures
determined by classical mechanics and classical propositiocnal logic, the
quantum propositional structures are said to be non-Boolean. However, both

an orthomodular lattice PQML and a partial-Boolean algebra PQMA can be

non-Boolean in various senses. In this section four senses are described,
three of which are equivalent:

The most celebrated sense is the failure of distributivity. If
~an algebra or lattice is Boolean, then its binary A, V operations are
distributive., So if the A, V operations in an algebra or lattice are not
distributive, then the structure is non-Boolean, In particular, any quantum

PQML which contains incompatible elements exhibits at least one instance

of the failure of distributivity. For as mentioned in Chapter I(E), for

A
PJ', P2 . P2 ,» satisfy the

any Pi,l,?2 € PQML » the four elements fPl > B

‘distributive identity for any combinations of these elements IFF »P1é> P2 .

for any

It follows that distributivity fails in P if P, ¥ P, s

QML

5 € PQML . Most authors who favour the lattice formalization of the

quantum propositional structures, e.g., von Neumann and Birkhoff (1936,

P, ,P

p. 831), Jauch (1963, p. 831); Putnam (1969, p. 226), Friedman and Glymour
(1972, pp. 18, 20), focus upon the failure of distributivity as the
peculiarly non-Boolean feature of the quantum propositional structures which
distinguishes them from the Boolean propositional structures determined by

classical mechanics. Moreover, it is a theorem that a lattice is distributive
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IFF every pair of elements in it is compatible (Jauch-Piron, 1963, p. 831).

It follows that a P ML is non-Boolean in the failure of distributivity

Q

sense IFF it contains incompatible elements. And hence, we can be sure that

instances of the failure of distributivity in a P always involve the

QML

meets and joins of incompatibles.

Since a PQMA has A, V defined among only compatibles these

operations are distributive in a PQMA . Thus the failure of distributivity

can neither capture the sense in which a PQMA is non-Boolean nor

distinguish a P from the Boolean propositional structures determined

QMA

by classical mechanics.

However, Piron defines another sense of non-Boolean for the PQML

structures which is equivalent to the failure of distributivity sense and

which can also be applied to the PQMA structures. Piron defines the

centre of a lattice as stated in Chapter I(F). And it is a theorem that a
lattice is Boolean IFF its centre is the entire lattice (Piron, 1976, p. 29).
So if the centre of a lattice is smaller than the entire lattice, i.e., if
there is an element in the lattice which is not compatible with all other

elements, then the lattice is non-Boolean. Any quantum P containing

QML

incompatible elements is non-Boolean in this sense. And Piron takes this

fact to be the peculiarly non-Boolean feature of the quantum PQML

structures. By the definition of the centre, a PQML is non-Boolean in the
Piron sense IFF it contains incompatible elements. BSo we expect that a

PQML is non-Boolean in the Piron sense IFF it is non-Boolean in the failure

of distributivity sense, as it is easy to show. If distributivity fails in

a P

QuL .then as mentioned above, not all pairs of elements in PQML are

compatible. And so by the definition of centre, the centre of PQML is

smaller than the entire P Conversely, if the centre of PQML is

QML *



- 79

QML that ig, if there is an element P € PQML

which is not in the centre of P

smaller than the entire P

then that P 1is incompatible with

QML °?
at least one other element in PQML . Hence not all pairs of elements in
P are compatible, and so distributivity fails in P ‘Q.E.D.

QML QML

But unlike the failure of distributivity sense of non-Boolean,
‘the Piron sense of non-Boolean does not involve the meets and joins of

incompatibles. So the Piron sense of non-~Boolean can be applied to a

P

QMa ° with the centre of a PQMA defined exactly as the centre of a

And as defined in Chapter I(D), a partial-Boolean algebra is in

PQML .

fact a Boolean algebra IFF its elements are all mutually compatible, i.e.,

IFF its centre is the entire algebra. Thus a PQMA is non-Boolean in the

Piron sense if its centre is smaller than the entire PQMA . And as before,

a PQMA is non-Boolean in this Piron sense IFF it contains incompatible

elements.
Similarly, the mere presence of incompatible elements in a PQML

or a PQMA is a necessary and sufficient condition fer the ultrafilters

(and dual ultrideals) in PQML or PQMA to be not prime; this provides us

with a third sense of non-Boolean. For as mentioned in Chapter I(C), the
ultrafilters (and dual ultraideals) in a Boolean structure are all prime.

So if the ultrafilters in a PQML or a PQMA are not all prime, then that

structure can be said to be non-Boolean. As shown in Chapter VI(B), if a

P contains incompatible elements, then there is at least one ultrafilter

QM

in P which is not prime, where a prime ultrafilter satisfies the

QM

condition (d) stated in Chapter I(C). Hence the presence of incompatible

elements ina P is a sufficient condition for P to be non-Boolean

QM QM

in the sense that its ultrafilters are not all prime. Moreover, this condition
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is also necessary. For if all the elements of a P are mutually

QM

compatible, then that P is in fact a Boolean structure whose ultrafilters

QM

are all prime. So a P is non~Boolean in the sense that its ultrafilters

QM

are not all prime IFF P contains incompatible elements.

QM

In summary, with respect to a P the failure of

QML °?

distributivity sense, the Piron sense, and the not-prime ultrafilter sense

of non-Boolean are all equivalent. And with respect to a P the Piron

QA °

sense and the not-prime ultrafilter sense of non-Boolean are equivalent.

For these senses of non-Boolean are each biconditionally connected with

. ‘ . . : 6
the mere presence of incompatible elements in a PQML or a PQMA .

However, there is an entirely different sense of non-Boolean which
is not biconditionally connected with the mere presence of incompatible
elements. This sense is suggested by Kochen-Specker, who refer specifically

to PQMA structures although their results also apply to .PQML structures.

According to Kochen-Specker, a PQMA is distinguished from the Boolean

propositional structures determined by classical mechanics if the PQMA

cannot be imbedded into a Boolean algebra. And in their Theorem O,

Kochen-Specker prove that a P can be imbedded into a Boolean algebra

QMA

B IFF there exists a sufficiently large collection of bivalent homomorphisms

on PQMA so that, for any pair of distinct elements P, # P2 in PQMA .

there is at least one bivalent homomofphism h : PQMA -+ {0,1} such that

h(Pi) # h(P2). Next Kochen-Specker produce a finite, three-dimensional

Hilbert space PQMA which is shown in their Theorem 1 to admit no bivalent

homomorphisms. Kochen-Specker conclude that the three-or-higher dimensional

Hilbert space PQMA structures of quantum mechanics likewise admit no

bivalent homomorphisms, and thus by Theorem 0, these structures cannot be
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imbedded into a B. Theorem 1 will be discussed in Chapter V; thev
Kochen-Specker proof of Theorem 0 is discussed here.

The "only if" half of the biconditional statement of Theorem 0
follows immediately from the semi-simplicity property of Boolean structures.
Let % be the proposed imbedding. An imbedding is by definition injective,

i.e., for any elements P, # P, in P %(Pl) # %(PQ). And assuming

QA °

that the imbedding % : PQMA -+ B exists, the semi-simplicity property of

B guarantees that there is a bivalent homomorphism h : B - {0,1}  such

that h(%(Pl)) # h(%(Pz)) for any P, #,PQ in P Thus the composition

QMA °
ho$% : PQMA -+ {0,1} ' is the desired homomorphism of PQMA onto 1{0,1}
which separates P1 # P2 , for any -Pl,P2 € PQMA .

Kochen-Specker's proof of the converse half of Theorem 0 is also
worth restating here because it suggests how to construct a Cartesian product

Boolean structure into which a P can be imbedded if the requisite set

QMA

of bivalent homomorphisms on PQMA exist., Assume that this set exists:

let f{h,}. be the set and let s be the cardinality of this set.
i7i€Index

Then an imbedding of P into the Cartesian product Boolean structure

QMA

'(ZZ)S, iesy, %: PQMA - CZQ)S, is given by the association of each

element P € PQMA with the function €p : {hi}iélndex

that gP(hi) = hi(P) for every i € Index, where of course hi(P) € {0,1}

-+ {0,1} defined so

for every i € Index. So for example, the image of any given P € PQMA
under the imbedding is %(P) = <h1(P),h2(P), . e . ,hS(P)> € (Z2)S
(Kochen-Specker, 1967, p. 67). This construction will be referred to again
shortly.

The Kochen-Specker imbeddings and homomorphisms preserve the

operations and relations of a PQMA structure. More exactly, a homomorphism
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h : X > Y between any partial-Boolean algebras X, Y, satisfies, for any
compatible elements b & ¢ € X : h(b)h(e), h(b A ¢) = h(b) A h(c),
h(b") = (h(b)), h(1) = 1 (Kochen-Specker, 1367, pp. 66-67). In my

terminology, an h satisfying the above is a homomorphism(é) from X to

Y, an injective h satisfying the above is an imbedding(d) of X into VY,

and when Y is  {0,1}, i.e., when h is bivalent, an h satisfying the
above is truth-functional(d). Thus Kochen-Specker's Theorem 0 biconditionally

connects the possibility of imbedding(d) a 'PQMA into a Boolean structure

with the existence of what I call a complete collection of bivalent,

truth-functional(é) mappings on P or in other words, a bivalent,

QMA

truth-functional(d) semantics for P . And it is the impossibility of

QMA

imbedding(é) PQMA into a Boolean structure, or equivalently, the .-

impossibility of a bivalent, truth-functional(d) semantics for PQMA s
which Kochen-Specker focus upon as the distinguishing non-Boolean feature

of the quantum PQMA structures. Of course, this sense of non-Boolean

can also be applied to the quantum P structures, although an imbedding(d)

QML

of a P ML, into a Boolean structure or a bivalent, truth-functional(d)

Q

semantics for a PQML ignore the lattice meets and joins of incompatibles

and preserve only the partial-Boolean structural features of PQML .
Like the other senses of non-Boolean described above, the presence
of incompatible elements in a P or P igs a necessary condition for
QMA QML
that structure to be non-Boolean in the Kochen-Specker sense. For as
mentioned in Chapter I(D) and (E), if all the elements of a ‘PQMA or a
PQML are mutually compatible, then that PQM' is a Boolean structure as

defined in Chapter I(B). And any Boolean structure admits a complete

collection of bivalent, homomorphic(d) mappings, i.e., any Boolean structure
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can be imbedded(d) into another Boolean structure. (The suffix (&) is
redundant and harmless since all elements in a Booledn structure are mutually
compatible.) So if a PQM is non-Boolean in the Kochen-Specker sense,

then the elements of that structure cannot be mutually compatible, that is,
the structure must contain incompatible elements. However, unlike the

other senses of non-Boolean described above, the mere presence of
incompatible elements in a PQM is not a sufficient condition for the

structure's being non-Boolean in the Kochen-Specker sense. In particular,

regardless of the presence of incompatible elements, a PQM structure of
two-dimensional Hilbert space does admit a complete collection of bivalent,
homomorphic(é) mappings, i.e., a PQM structure of two-dimensional Hilbert
space can be imbedded($) into a Boolean structure, as shown below,

The peculiar structural feature of three-or-higher dimensional
- .
Hilbert space Pnﬂs structures which makes them non-Boolean in the

Q

Kochen-Specker sense is the presence of overlapping maximal Boolean

substructures. Any Boolean structure has only one maximal Boolean substructure,

namely, itself, And the two-dimensional Hilbert space P2 structure

QM

diagrammed below has many maximal Boolean substructures, but they do not

overlap:
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Except for the trivial Boolean substructure containing just the 0, 1
elements of PSM s every other Boolean substructure of PSM contains the
four elements Pi ’ P;‘; 0, 1, for some i=1,2, .. . , and is a maximal
Boolean substructure mBSi . The mBS's of P2 do share the 0, 1 elements

QM

but do not share any other elements and so are non-overlapping. As shown

next, any two-dimensional Hilbert space P2 can be imbedded($) into the

QM

N . . L U : L i 2°I’
Cartésian product Boolean structure CZQQ , where r 1is the cardinality

of the set of mBS's in PéM and 2 is the dimensionality of the Hilbert

space.

Each mBSi in P2 is isomorphic to the Cartesian product Boolean

QM

structure (Z2)2 diagrammed in Chapter I(B). And by semi-simplicity each

mBSi has exactly two bivalent homomorphisms, for example, the ha s hb on

mBS, and the hC » h, on mBS2 listed in the following table:

1 d

P,| P | By | B, | O |1
hy |2 0 0. |1
1

by, | 0 1 0
h 1 0 o |1

c

hy 0 1 o |1

Since the mBS's of P2 do not overlap, it is possible to define at least

QM
‘ . 2 . .
2 *r bivalent homomorphisms(d) on the entire PQM by simply adding
together the bivalent homomorphisms on each mBSi . For example, assume

2
QM

consisting of just mBS1 and mBS2 together. The above four bivalent

that r is just 2, i.e., consider the six-element fragment of P
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homomorphisms ha s hb s hc s hd on mBS, , mBS2 s Trespectively, can be

1
added together as follows to yield 2 +2 bivalent homomorphisms(d) on
this six-element fragment of PéM :
P1 P1 P2 P2 0 1
h.+h =h 1 0 1 0 0 1
a c 1
hb + hd = h2 0 1 0 1 0 1
hb + hc = h3 0 1 1 0 0 1
h_ + hd = hu 1 0 0 1 0 1

2
QM

2 er bivalent homomorphisms(é) on the entire P2

QM

Kochen-Specker show in their proof of Theorem 0, for each element P € PSM .

r(P)> ‘defines an imbedding(d)

Similarly, for any P with r mBS's, it is possible to define

. And thus, as

the mapping %(P) = <h1(P),h2(P), e« « o« sh
2

2.
oM into the Cartesian product Boolean structure (Z )Q-r. The latter

2
is also written: Hi_l(zz)i . For-example, the six-element fragment of

PSM consisting of just mBS1 . and mBS2 can be imbedded(d) into the
2+2

Cartesian product Boolean.structure ‘ (22)

. 2 = . . ! . = .
Chapter I(B) as follows: o(Pi). <h1(P1),h2(P1),h3(P1),hu(P1)> = <1,0,0,1>;

of P

m
= (ZQ) diagrammed in

%(P;) = <0,1,1,0>;5 %(P)) = <1,0,1,0>; %(P;) = <0,1,0,1>; %(1) = <1,1,1,1>;

%(0) = <0,0,0,0>.
If the maximal Boolean substructures of any three-or-higher

dimensional Hilbert space P 3 structure did not overlap, then it would

QM
similarly be possible to imbed(d) that structure into the Cartesian product

)n°r

Boolean structure (22 .

where again r 1is the cardinality of the set

of mBS's in the structure and n 1s the dimensionality of the Hilbert
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. n=3 e s .
space. For each mBSi ina P structure is isomorphic to the Boolean

QM

n
structure (22) and by semi-simplicity has exactly n bivalent

Eard !
homomorphisms. So if the mBS's of Pn_3 did not overlap, then it would

QM
be possible to simply add together these bivalent homomorphisms on each
. PnES
QM

>
structure. And thus by the Kochen-Specker Theorem 0, the Pgis could be

imbedded(b) into the Cartesian product Boolean structure . (z
n 7

mBSi yielding at least ne-r bivalent homomorphisms(é) on the entire

)n-r

2

which is also written: II- . (Z.))
i=1 7271

However, the mBS's of a three-or-higher dimensional Hilbert

n=3
QM

Consequently, the attempt to define bivalent homomorphisms(d) on a

space P may overlap and do overlap in quantum mechanically relevant

n=3

PQM .
>3 . o

FEM , by simply adding togéther the separate bivalent homomorphisms

>
existing on each mBS of Pgﬁs

Kochen-Specker prove this impossibility; their proof is discussed in

» is problematic and in fact is impossible.

Chapter V(B). An example of a trivial exception to this impossibility is

n>3

QM

given in.the note below; such exceptional P structures are not quantum
mechanically relevant.8

In summary, there are two basic senses in which the quantum
propositional structures may be said to be non-Boolean and may be
distinguished from the Boolean propositional structures determined by
classical mechanics and classical logic. One basic sense subsumes the
failure of distributivity, the Piron, and the not-prime ultrafilter senses

of non-Boolean; the presence of incompatible elements in a P ig necessary

QM
and sufficient for the structure to be non-Boolean in this basic sense.

The other basic sense is suggested by Kochen-Specker's work; the mere

presence of incompatible elements in a P is necessary but is not sufficient

QM
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for the structure to be non-Boolean in this second basic sense.

‘Notes’

1 This fact is actually derived from one or the other of the

fundamental postulates (II) or (III) which define p A and Bxpw(A)
(Messiah, 1966, pp. 178, 297). ¥

2 According to the terminology of his 1932 book, von Neumann calls
such propositions simultaneously decidable. Von Neumann's notion of the
simultaneous decidability of propositions is a refinement of his notion of
the simultaneous measurability of magnitudes. The latter requires that the
self-adjoint operators representing the magnitudes commute. The former
requires that only the projectors representing the propositions commute,
but the magnitudes mentioned in the propositions need not be simultaneously
measurable, i.e., their operators need not commute. So while the operators
representing simultaneously measurable magnitudes share all their eigenstates,
the operators representing the magnitudes mentioned in simultaneously
decidable propositions need share only the eigenstate(s) specified by the
propositions. Von Neumann has his own unusual use of the terms compatible
and incompatible. Nevertheless, simultaneously decidable propositions are
compatible in the usual sense that their representative projectors commute-
(von Neumann, 1932, pp. 251, 253).

With respect to an orthomodular lattice PQML , this condition
is weak modularity, which characterizes the quantum PQML structures.
With respect to a partial-Boolean algebra P this conditioen

. i . QMA °
holds because by definition, P, <P, IFFP, AP_ =P, , but P AP  is
defined in P IFF P, & P, . 1 2 1 2 1 1 2
QMA 1 2

Von Neumann restricts "and" and "or" to what he calls
simultaneously decidable propositions. As mentioned in Note 2 above, such
propositions are compatible in the usual sense that their representative
projectors commute.

> This point was suggested by Dr. R. E. Robinson.

In her discussion of Birkhoff and von Neumann's quantum lattice
structures, S. Haack incorrectly claims that an element in such a structure
may have more than one orthocomplement (Haack, 1974, p. 161). Though it is
true that an element may have more than one complement, the orthocomplement
of an element is by definition unique. For according to Birkhoff, the
association of an element b with its orthocomplement b is a type of
mapping (namely, a dual automorphism h : X - X which is an isomorphism of
a structure with itself satisfying, for every b,c € X, b <c IFF
h(b) = h(e)) (Birkhoff, 1967, p. 3). And as stated in Chapter I(G),
condition Ma, the image of any element b € X under any mapping h : XY
is unique, e.g., h(b) = b is unique.
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Likewise the failure of bivalence sense of non-Boolean proposed
by van Fraassen is biconditionally connected with the mere presence of
incompatible elements in a quantum propositional structure (van Fraassen,
1973, p. 89).

7 Bub makes a similar point (1974, pp. 1lu4u4-1u46).

8 p,n=3 ' Pn23
PQMA structures whose mBS's do not overlap and 0 structures
which admit bivalent homomorphisms(d) even though their mBS's do
overlap, may be generated by closing certain limited sets of one-dimensional

. =3 . - .
subspaces (or projectors) of He with respect to the A, V,+ operations

of PQMA or PQM . For an example of the latter, consider the following
twelve-element PSM structure generated by closing an initial set of
3

five one-dimensional subspaces of H® with respect to the A, v,
operations of PQM s, Where '{Pi’PQ’P3}‘ are mutually compatible and likewise

{PS’Pu’PS} are mutually compatible.

The following five bivalent homomorphisms(d) constitutg a complete collection
of bivalent homomorphisms(d) on this twelve-element PJ

Qu -

P1 P1 P2 P2 P3 P3 P,+ Pu P5 P5 0 11
h1 1 0 0 1 0 1 1 0 0 1 0 |1
h2 0 1 1 0 0 1 0 1 1 0 0 |1
h3 o |,1 0 1 1 0 0 1 0 1 0 |1
hu 0 1 1 0 0 1 1 0 0 1 0 |1
h5 1 0 0 1 0 1 0 1 1 0 0 |1

(Just the first three bivalent, homomorphisms(é) h h, , h , constitute

1.2 3

a weakly complete collection.) This twelve-element PQM is also an example
of a phenomenon mentioned in Section (E) above, namely, an example of how
the proliferation of lattice elements due to the lattice definitions of
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>3
A, V among incompatibles does not occur in PEML structures generated by

. < s e st . . nz=3
closing a finite initial set of one-dimensional subspaces of H '~ when
there are certain angular relations among the subspaces in the initial set;
most simply, in this case, P, , P, , P P_ are all in the same

1 2 y * -5 3 P3
5 And in this case, the PQML and the QMA

two-dimensional subspace P
géﬁerated by closing the initial set of five one-dimensional suspaces of

3 . KN .
H” with respect to the A, V, operations of 'PQML and 'PQMA

respectively, each have exactly the same twelve elements, as diagrammed
above.
P : n=3
Nevertheless, as exemplified by Kochen-Specker, for H ,» the
sets of one-dimensional subspaces representing quantum propositions which
describe actual quantum mechanical systems and situations yield, upon

>
closure, Pgﬁs structures whose mBS's do overlap and overlap in such a
>
way that bivalent homomorphisms(b) on Pgﬂ3 are ruled out. (Kochen-Specker,
=3
1967, Section 4). In other words, quantum mechanically relevant PSM
structures have overlapping mBS's which rule out bivalent

homomorphisms(d).
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CHAPTER V

THE IMPOSSIBILITY OF A BIVALENT, TRUTH-FUNCTIONAL SEMANTICS
FOR THE NON-BOOLEAN PROPOSITIONAL STRUCTURES

DETERMINED BY QUANTUM MECHANICS

Preface

As described in Chapter IV(F), there are two basic senses in
which the quantum propositional structures may be said to be non-Boolean.
And as mentioned in Chapter II(C), any Boolean structure admits a complete
collection of bivalent homomorphisms, and this collection is a bivalent,
truth-functional semantics when the Boolean structure is a logical or
propositional structure. But if a propositional structure is in some sense
non-Boolean, then whether or not it admits such a semantics is an open
question. With respect to the non-Boolean quantum propositional.structures,
answers to this question have already been given or at least suggested by
von Neumann, Jauch-Piron, Gleason and Kochen-Specker.in their proofs and
arguments against the possibility of hidden variables in quantum mechanics.
For as shall be described in Section (D), when interpreted semantically
Gleason's impossibility proof and Kochen-Specker's Theorem 1 show the
impossibility of a bivalent, truth-functional(d) semantics for three-or-higher

dimensional Hilbert space N And

>
QM

interpreted semantically, von Neumann's proof of the impossibility of

structures, whether PQMA or PQML .

dispersion-free quantum ensembles and Jauch-Piron's Corollary 1 suggest the

impossibility of a bivalenf, truth-functional(é,$) semantics for two-or<higher



. >2
dimensional Hilbert space PgML

Jauch-Piron must be interpreted as referring to the orthomodular lattice

structures. The proofs by von Neumann and

structures and the truth-functionality(d,¥) condition because von Neumann
and Jauch-Piron do define operations among incompatibles and do require
the preservation of these operations. In the next section, von Neumann,

Jauch~Piron suggestion is pursued.

Section A. The Impossibility of a Bivalent, Truth-Functional(&,%)

Semantics for any P Which Contains Incompatible Elements

QMI.

Consider the fragment of the PSM structure of two-dimensional

Hilbert space diagrammed below, with~<P1<5 P2 :

6

SML and PéMA have the same elements.

In both structures, the 0, 1 elements are equal to the following meets

As mentioned in Chapter IV(E), P

. s . L 1 L
and joins of compatibles: P1 A P1 = 0, P2 A P2 = 0, P1 V P1 =1,

P2 \Y P; = 1. 1In addition, the 0, 1 elements are equal to the following

o s . . . 2 - -
meets and joins of incompatibles in PQML : P1 A P2 =0, P, AP 0,

e L]
P, VP, =1, P, VP, =1

2 . ~
Any non-trivial mapping m on PQML assigns the value 0 to

each meet which equals the ‘0O-element, e.g., m(P1 A P2) = m(0) = 0.
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Likewise, m aséigns the value 1 to each join which equals the 1-element.1

And now it is easy to prove the following:

Theorem 0. A bivalent, truth—functional($,%) mapping on the

2

QML diagrammed above is impossible.

fragment of P

Proof: Any bivalent m assigns either the value 1 or the value 0 to

the element P so there are two cases. Case 1: Assume m(Pl) =1,

1 ]
We have m(P1 A PQ) = m(0)

1]

0, so by truth-functionality(d,¥),

m(P1 A P2) = m(Pi)_A m(P2) 0. Hence m(P2) #1 since 1 A1 =1, thus

m(P2) = 0. So by truth-functionality(d,$) m(P;) = (m(P2))"L =00 = 1.

Also we have m(P1 A P;) = m(0) = 0, so by truth-functionality(é,%),

m(P1 A Pg) = m(Pl) A m(P;) = 0. Hence m(P;) = 0. So we have a contradiction.
Case 2: Assume m(Pi),= 0. Then as in Case 1, m(P1 \ P2) =m(1) =1 and
m(P1 Y P;) = m(1) = 1 yield contradictory assignments of values to the

element P;'. 'Q{E.D.

Hence a bivalent, truth-functional(d,®) semantics for this

fragment of PgML is impossible. This proof can be generalized to include
>
any two-or-higher dimensional Hilbert space Pgﬁi structure which contains

incompatible elements. (The trivial case of a one-dimensional Hilbert space
structure is excluded because that structure contains just a O-element and
a 1-element which are compatible.)

The generalization makes use of the following lemmas:

" ‘Lemma A, For any atom Pa in any ‘PQM and for any element

peP._, PSP IFF P <P or P <P.
QM a a a

Assume Pa<5 P. By definition of & , there exist three

mutually disjoint elements -Pl,PQ,PS-E PbM such that Pa = P1 \Y P3
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and P=P. VP, . Since P =P VP_ is an atom, P V P, >0

2 3 a 1 3 1
and there is no element P € P such that P, vP,>P > 0.
X QM 1 3 X
i > . > 'l =
Since P1 v P3 = P1 ~and P1 ' P3 > P3 » €eilther P1 0 and

P =P _, or P3 = 0. "and Pa = P1 + If the former, then
P=P_ vP =P ., If the latter, then P =P
2 a a 2

since ‘Pi » P2 .are disjoint, Pa = P1 ,and P = P2 are disjoint.

Assume P_ = P, then Pa}£ P. (See note 3 of Chapter IV.)

v o= P,y and.

. . . 4 4 1
Likewise, if Pa' =P, then Paé P , where Paé P IFF

Paé P. 0Q.E.D.

" 'Lemma B. For any atom Pa in any PQML and for any element

PepP if P 2P then P_ AP = 0.
a a

QML °

By assumption, Pa.> 0 and there is no element Px € PQML

such that P > P >0, But P 2P AP =0, So either
a X a a

P
a

Pa AP or Pa AP = 0. The former is ruled out because

a Pa A P IFF Pa S'P, which contradicts the antecedent of

Lemma B. Hence Pa AP =20 Q.E.D.

Lemma C. Every element P # 0 in PQML is the join of the atoms

it dominates.

Let Pi be any atom in P such that Pi =P, and let

QML
Vv Pi be the (finite or infinite) join of all such atoms. (This
: ‘
join exists because PQML is- complete.) And let PX = Vi Pi .
We want to show that P = Px . Clearly, Px <P, and

. AL L
so P &P. Now if P"AP =0, then P=1AP=(P_ VP )AP
X ) X . X X
=(P AP) V(P AP)=(P AP)VO=P AP, ie., PSP

X X X X X

and thus Px = P, Assume on the contrary that PQ%A P # 0. Then
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. P . . h . .

since QML is atomic, there 1s an atom Pa in ‘PQML such that

. Al

P <P*AP, so P <P and P <P. Since P <P, P =P, ,
a X a X a a a i

for some i, and so P_ <P , i.e., P_ AP =P . And since

a X a X a

P <P, P =P AP =P AP =0, acontradiction. Q.E.D.

a X a a % X x

‘Lemma D. The join of all the atoms in any P is equal to

QML
the 1-element.

Let P, Dbe any atom in P and let V P, be the

QML

i
(finite or infinite) join of all the atoms in PQML .
L
Assume on the contrary that V .Pi # 1. Then (V Pi) Z 0,
i i
and so (V Pi)L-z Pj', for some atom Pj . Clearly, V Pi > Pj
i i :
. AL
It follows that 0 = (v P.) A (v P.Y =2(V P,) AP, =P, ,
;1 . i ; 1 j 3

which is impossible. Hence (V ‘Pi) = 1, Q.E.D.
: i

Lemma E. Any proposed bivalent, truth—functional(é,ﬁ) mapping on

any P must assign the value 1 to at least one of the atoms

QML

in PQML .

Again, let P. be any atom in P and let V P, be the

QML 3

join of all the atoms in PQM . I assume that the truth-

L

functionality(4,%) condition includes the preservation of infinite
meets and joins.

By Lemma D, V Pi = 1, and so any (non-trivial) bivalent,
N :

truth-functional(é,ﬁ) mapping m on PQML assigns the value
v ,m(Pi) = m(v 'Pi) = m(1) = 1. And for every P. o m(Pi) =0
i i

or 1, since m is bivalent. If m(Pi) = 0 for every Pi >

then V .m(Pi) = 0 # 1., Thus at least one of the atoms in PQML
i
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is assigned the value 1 by m. Q.E.’D.2

Besides these lemmas, the generalization makes use of the

distinction between irreducible and reducible PQML structures, defined

as follows. As defined in Chapter I(F), the centre of any PQML contains

at least the 0 and 1 " elements of PQML . A ‘PQML whose centre

contains just the 0, 1 elements is irreducible. A PQML whose centre

contains other slements besides the 0, 1 elements is reducible. As

described in Chapter IV(F), any P contains incompatible elements IFF

QML

its centre is less than the entire structure. Clearly, any P containing

QML

incompatible elements is either irreducible or reducible. And any irreducible

P . L . A e A e . g .

" QUi contains’incompatible elements. A reducible FbML may have all its elements

mutually-compatible, but such a reduciblefPQML is in fact a Boolean structure.
If the centre of a reducible PQML contains any atoms of PQML s

then the structure does admit some bivalent, truth—functiqnal(é,%) mappings,

as shall be described-in a.briefdigression. Each central’atom PC of such

a reducible PQML specifies an ultrafilter UFc and dual ultraideal UIc
by the usual definitions: UF_ = {P € PQML : P> PC} and
UIc = {P € PQML : P =< P:}; And since each central atom is by definition

compatible with every other element in PQML , it follows by Lemma A that,

for every element P € P

QUL ° and for any given central atom Pc » eilther

PzP_ or P> P, - Since by definition of *+ , pt > P, IFF P < P:',
either P = PC or P = PéL. So every element in PQML is either a member
of UF or a member of UI 3 thus P = UF UUI . Then as will be

c . c QML c c

shown in Chapter VI(B), it follows by the conditions defining an ultrafilter

and dual ultraideal that the bivalent homomorphism hC : PQML -+ {0,1},

defined with respect to UFc and UIc as usual, truth-functionally(d,$)
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assigns 0, 1 values to every element in P . In particular, each hc

QML

assigns the value 1 to its affiliated central atom Pc and assigns the

value 0 to every other atom P # Pc in P For every other atom

QML *
e

Pa is compatible with Pc and so by Lemma A, Pa = Pc (the alternative

Pa < Pc is ruled out since 'Pc is an atom); thus Pa € UIc . There are

as many such bivalent, truth-functional(d,$) mappings on a reducible P

QML

as there are central atoms in PQML . Thig ends the digression.

Now the previous Theorem 0 is generalized as follows.

Theorem A, A bivalent, truth-functional(d,$) semantics is

impossible for any (two-or-higher dimensional Hilbert space)

PQML which contains incompatible elements.
Case 1: Irreducible PQML . By Lemma E, any proposed bivalent,
truth-functional(d,%) mapping on any irreducible PQML assigns the value

1 to at least one atom in P say m(Pa) = 1, Since P is not in

QML °?

i €
PQML , there is some element P PQML

Z
such that P_ ¥ P. Then by Lemma A, P £ P and P ZP . So by Lemma B,

the centre of the irreducible

L
Pa AP=0 and Pa AP = 0. Then it follows by the reasoning given in
the case 1 of Theorem 0 that m assigns contradictory values to the element
i .
P, So a proposed bivalent truth-functional(d,$) mapping on an irreducible

PQML is impossible. Hence a bivalent, truth-functional(d,%) semantics for

an irreducible PQML is impossible.

Case 2: Reducible PQML (containing incompatible elements).. Any reducible

PQML contains at least one non-central atom. For if every atom in PQML
were central, then since the centre is a sublattice closed with respect to
the join operation it follows by Lemma C that every element in PQML would

be central, i.e., there would be no incompatible elements in PQML . A
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non-central atom in PQML is clearly distinct from the O-element, and so

a complete collection of bivalent, truth-functional(d,4) mappings on P M

QML

must include a mapping which assigns the value 1 to the non-central atom,
But by the same reasoning given in case 1 of this proof, any proposed
bivalent, truth-functiocnal({,$) mapping which assigns the value 1 to a

non-central atom in PQML will assign contradictory values to some other

element in PQML which is incompatible with that atom. So although a

reducible PQML may admit some bivalent, truth-functional(d,%) mappings,

as shown in the digression above, a reducible P does not admit enough

QML
such mappings to constitute a bivalent, truth-functional(d,$) semantics for

3
PQML . Q.E.D.

One way of avoiding the contradictions which yield this
impossibility proof is to weaken the truth-functionality(é,%) condition to

just truth-functionality(d), thus allowing the semantic mappings on a PQML

to ignore the lattice meets and joins of incompatibles. Such bivalent,
truth-functional(d) mappings which preserve the partial-Boolean structural

features of a PQML or a PQMA are bivalent homomorphisms(b) and are

considered by Kochen-Specker

Section B. The Kochen-Specker Proof of the Impossibility of Bivalent

3
QMA

Homomorphisms(d) on a Three-Dimensional Hilbert Space P

As described in Chapter IV(F), two-dimensional Hilbert space PSM
structures do admit a complete collection of bivalent homomorphisms(é),
i.e., they do admit a bivalent, truth-functional(d) semantics, in spite of

the fact that they contain incompatible elements. But three-or-higher

n=>
dimensional Hilbert space Pg“g structures do not admit bivalent

M
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>
homomorphisms(é). The peculiar structural feature of Pn_3 which rules

QM

out bivalent homomorphisms(d) is not just the presence of incompatible
elements but rather the presence of overlapping maximal Boolean substructures
(for which the presence of incompatibles is a necessary condition).

In their Theorem 1, Kochen-Specker consider a particular finite

3
QMA

homomorphism(é). By definition, a proposed bivalent homomorphism(b) h

P

and show that this structure does not admit even a single bivalent

3 . e : _ 3
on PQMA satisfies, for any three mutually orthogonal atoms P1’P2’P3 € PQMA )

h(Pl) Y h(P2) v h(P3)‘= h(P1 vV P,V P3) = h(1) = 1, and

2
h(Pi) A h(Pj) = h(Pi A Pj) = h(0) =0 for 1 =i # 3j =<3. Thus exactly

. 3 . .
one of every three mutually orthogonal atoms in P is assigned the

QMA
gMA (Kochen-Specker, 1967,

p. 67). More generally, a bivalent homomorphism(é) h on any n dimensional

value 1 by a bivalent homomorphism(d) on P

n

QM

Hilbert space P satisfies:

(Ks1) For any n mutually orthogonal atoms P _,P

n
. B €P

2, . o QM Y

h(Pl) vh(P2) Ve oo vh(Pn) = h(P1 vP_ v SR an) = h(1) = 1,

2
and h(Pi) A h(Pj) = h(Pi A Pj) = h(0) =0 for 1 =1i# 3 <n.

By the Lemma A of the previous section, any two atoms in a P

QM
are orthogonal IFF they are compatible. By closure with respect to the A,

V,* operations of P a set of n mutually orthogonal (i.e.,

0]
compatible). atoms in a PgM generates a Boolean substructure of PgM . In
. n
particular, such a set generates a maximal Boolean substructure of PQM
since the maximum number of mutually compatible atoms in a PSM structure

of n dimensional Hilbert space is n.’4 Thus condition (KS1) refers to

the (maximal) Boolean substructures of a PSM and ensures that their Boolean
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structural features are preserved by a bivalent homomorphism(d). And just
the usual definition of a bivalent homomorphism on a Boolean structure

ensures that any bivalent homomorphism h : mBS - {0,1} satisfies (KS1).

n
QM

satisfies (KS1) does not focus attention upon that peculiarly non-Boolean

So the fact that a bivalent hombmorphism(b) on any P by definition

=
structural feature of Pn'3 structure, namely, the presence of overlapping

QM

v e pTE3
mBS's in PQM .

. >
Bivalent homomorphisms(é) on a pi=

QM

Boolean structural features of every (maximal) Boolean substructure but also

3 preserve not only the

n=3
Qv °’

One way in which the overlap

the partial-Boolean structural features of the entire P
n=3
QM °

patterns can be violated is by allowing different values to be assigned to

in particular,

the overlap patterns of the mBS's in P

a given element P which is a member of two or more overlapping mBS's;
the value assigned to P in the context of one mBS may be different from
the value assigned to P in the context of another mBS. Such proposed

violations of the overlap patterns are further discussed in Chapter VII. A

n=3
Qv

in this way (or in any way). For a bivalent homomorphism(é) is a mapping,

bivalent homomorphism(d) on a P does not violate the overlap patterns
i.e.y, h(P) is unique, as stated in Chapter I(G), and in.particular, h(P)
does not depend upon which mBS is being considered. Kochen-Specker do not
explicitly state this aspect of a bivalent homomorphism(d); here and in

Chapter VII it shall be referred to as:

(Ks2) The values assigned by a bivalent homomorphism(b) h :'PQM'* {0,1}

are unique and do not vary with or depend upon the mBS's of PQM .

This aspect of the notion of a bivalent homomorphism(b) is articulated,



100

though in different terms, by Belinfante (1973, p. 41).

ZMA considered by Kochen-~Specker contains 192
atoms and 118 mBS's.5 Since each mBS in a PSMA contains "three orthogonal
3

QMA

they overlap each other in complex patterns. As mentioned above, the

The particular P

atoms, clearly the mBS's in Kochen-Specker's P share atoms, that is,

>
overlap patterns make bivalent homombrphisms(&)‘on a Pgﬁa impossible. I
shall restate Kochen-Specker's proof of this impossibility for their PSMA
in a manner which elucidates the effect of the overlap patterns and which

explicitly refers to (KSi) and (KS2).

3
QMA

the value 1 to exactly one atom in the mBSO specified by the three atoms

By (KS1), any bivalent homomorphism(b) h on P must assign

Kochen-Specker label ?O s Qg » ro\. Let us initially assume that

h(po)»= 1 and thus h(qo)‘= h(ro).= 0. This initial assignment of values
to the atoms in mBS0 .of course determines the values assigned to all the
other non-atomic elements of mBS0 . But in addition, this initial
assignment of values to the atoms in mBSO .places restrictions upon the
values assigned by h to the atoms in every mBS which overlaps with

mBSO . For example, consider an mBS which contains po and two other
atoms}; by assumption and by (KS2), h(po)-= 1. And so by (KS1), the other
two atoms in every mmBS containing pé .are each assigned the value 0 by
h. These value assignments in turn determine the values assigned by h

to the atoms in every mBS which overlaps with any of the mBS which
overlap with mBS; . And this process continues through the PSMA structure
until we get h(q0)4= 1, which contradicts the statement that h(qo) =0
(which follows by (KS1) from the initial assumption that h(po).= 1). A

similar contradiction results if we instead initially assume that
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h(qo) = 1 and h(PO)'= h&ro)'=‘0. And likewise a contradiction results if

we initially assume that h(ro).= 1 and h(po) = h(qo) = 0. Thus, since
3

QMA

one of the three atoms Py s 95 s Ty .in mBSo .yet all three attempts lead

3
QMA

any bivalent homOmOrphiSm(é) on this P must assign the value 1 to

to contradiction, a bivalent homomorphism(d) on this P considered by
Kochen-Specker is impossible.

In other words, a bivalent, truth-functional(d) mapping on this

PZMA is impossible, and so a bivalent, truth-functional(d) semantics for
. 3 . .
this PQMA is impossible.
Kochen-Specker also consider a much smaller PZMA which contains
27 atoms and 16 overlapping mBS's. This PZMA does admit some bivalent

homomorphisms(b), but as Kochen-Specker point out, there are two distinct
atoms in this structure such that no bivalent homomorphism(b) assigns
different values to fhese two distinct elements. That is, the collection
of bivalent homomorphisms(d) which do exist on this PZMA is not complete,

So like the reducible orthomodular lattice PQML structures discussed in

the digression in the previous section, this PSMA does admit some bivalent,
truth-functional($) mappings, but it does not admit a bivalent, truth-

. . b
functional(d) semantics  (Kochen-Specker, 1967, p. 67).

The Kochen-Specker result is further discussed in Section (D) and

in Chapter VII.

Section C. ‘Avoiding These Impossibility Proofs

There are at least two ways of avoiding not only Theorem A but
also the Kochen-Specker impossibility proof. One way is to further weaken

the truth-functionality(é) condition; another way is to restrict the domains
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of proposed semantic mappings on PQM to certain substructures of PQM .

With regard to the latter, for example, if the domain of the

2
QML

restricted such that m(P2), m(P;) are not defined when m(P1) is

mapping m on the P discussed in the beginning of Section (A) were
defined, then m would not assign contradictory Values.7 " In other words,
if the domain of each proposed semantic mapping on a P were restricted

QM

to an mBS of P then both impossibility proofs would clearly be

Q1 °
avoided. More interestingly, semantic mappings which avoid both impossibility

proofs yet whose domains are substructures of P which include overlapping

QM
mBS's are described in Chapter VI; they-are the quantum state-induced
expectation-functions.

With regard to the first mentioned way of avoiding both
impossibility proofs, Friedman and Glymour propose, for quantum PQML
A

structures, semantic mappings which are required to preserve the

but are allowed to ignore the meets

operation and the = relation of PQML

and joins of both compatibles and incompatibles.(Friedman-Glymour, 1972).
However, as shown in Chapter VI(B), the Friedman-Glymour semantic mappings
are in fact bivalent and truth—functional(é,%) on substructures of PQML
which include overlapping mBS's; in this respect, the Friedman-Glymour
mappings are exactly like the quantum state-induced expectation-functions
mentioned above. So a weakening of the truth-functionality(é,$) condition
to just + , £ preservation nevertheless ensures the preservation of the
meets and joins of compatible and incompatible elements in certain
substructures of PQML .
More extremely, the so-called contextual hidden-variable theories

propose bivalent mappings for PQM' which are not required to preserve even
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the -+ operation and the ' < relation of PbM and which avoid both

impossibility proofs. This proposal is discussed in Chapter VII.

Section D. The Meaning of the Hidden-Variable Impossibility Proofs for the

Issue of a Classical Semantics for the Quantum Propositional

Structures

In his 1957 proof of the completeness of quantum mechanics,
Gleason refers to the infinite set of all subspaces (or projectors) of a
three-or-higher dimensional Hilbert space, but Gleason does not explicitly
state whether the structure of such a set is an orthomodular lattice or a

partial-Boolean algebra. As mentioned in Chapter IV(E), such infinite

PQML and corresponding infinite PQMA structures have exactly the same
elements, but the PQML has its A, V .operations defined among compatible
and incompatible elements while the PQMA has its A, v operations defined

,

among only compatible elements. Nevertheless, Gleason is effectively
committed to partial-Boolean algebra structures because the mapping W

which he defines on the subspaces must satisfy his additivity condition:

(Ga) For any denumérableﬂcollection-'{Pi} of mutually

i €Tndex

orthogonal subspaces, p(v Pi) ) u(Pi); for example,
i i

M(P1 Y P2) = u(Pl) + u,(,Pz) (Gleason, 1957, p. 885).

This additivity condition ensures that when Gleason's mappings are
dispersion-free, i.e., bivalent, then the mappings preserve the‘unary
operation and binary A, V -operations among compatibles.8 But the mappings
do not preserve the“A; V -operations among incompatibles. In other words,

dispersion-free hidden-variable mappings which satisfy (Ga) are bivalent
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homomorphisms(b), and vice versa. Viewed semantically,'such mappings are
bivalent and truth-functional(d).
Such mappings preserve the operations and relations of a PQMA .

But such mappings on a P ignore the lattice meets and joins of

QML

incompatibles. So Gleason is effectively referring to Pgﬁi structures
~ of subspaces, although his results also do apply to Pgii structures.
Clearly, since dispersion-free Gleason mappings igﬁore the meets and joins
of incompatibles, they de not run into the truth-functionality(b,$)
problems which are the basis of Theorem A. However, the mappings do run
into truth-functionality(d) problems. For a corollary to Gleason's
completeness proof shows that proposed dispersion-free hidden-variable
mappings satisfying (Ga) are impoésible on the infinite set of all subspaces
of a three-or-higher dimensional Hilbert space. This corollary is known as
Gleason's proof of the impossibility of hidden variables.

The Kochen-Specker 1967 Theorem 1, described in Section B is a
finite version of Gleason's impossibility proof which makes explicit the
fact that Gleason's proof considers bivalent homomorphisms(d) on P

QMA
structures (although Gleason's result also applies to PQML structures).
Moreover, with their orthohelium example, Kochen-Specker provide a concrete,
quantum mechanical realization of their finite PSMA (1967, pp. 71-74).

Thus Gleason's proof, which refers to all subspaces or projectors of a

Hilbert space, is protected from critics who argue that only some finite

set of operators in fact represent quantum magnitudes or argue that only

some "essential" magnitudes need be assigned values by proposed dispersion-free

hidden-variable mappings (Belinfante, 1973, pp. 48-49; Ballentine, 1970,

p. 376).
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In contrast to the Gleason, Kochen-Specker proofs, both the
von Neumann and the Jauch-Piron impossibility proofs consider mappings which
are fequired to preserve an operation among incompatibles, and both proofs
include the case of'zﬂé;dimensional Hilbert space.

In his 1932 proofs of the completeness of quantum mechanics and
the impossibility of dispersion-free hidden-variable ensembles in quantum
mechanics, von Neumann does not explicitly refer to bivalent, operation-
preserving mappings on either PQMA or PQML structures of subspaces or
projectors of Hilbert space. Rather, von Neumann considers expectation-
functions whose domain is the (infinite) set of quantum magnitudes
represented by self-adjoint operators on a Hilbert space of any dimension,
and he requires that expectation-functions preserve the + operation
defined among the magnitudes represented by operators. However, dispersion-free
expectation-functions which satisfy von Neumann's requirements can be shown
to be bivalent, operation-preserving mappings on quantum propositional
structures as follows.

Consider only the idémpotent quantum magnitudes represented by
projectors on a Hilbert space, and let ExpW be a dispersion-free
expectation-function. As described in Chapter IV(D), the structure of the
projectors on a Hilbert space is a PQM , with the A, v,™ operations of
PQM defined in terms of the ring operations +, *, as usual for compatible
projectors and by means of Jauch's definitions for incompatible projectors.
Moreover, with respect to the idempotent magnitudes represented by projectors,
the dispersion-free condition with which von Neumann characterizes his

hidden-variable ExpW, mappings ensures that the mappings are bivalent, as

shown by a simple proof.9 Thus von Neumann's Expw mappings are bivalent
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mappings on PQM structures. TFurthermore, von Neumann requires any

expectation-function Exp to satisfy his additivity condition, which may

be split into two parts:

(VNY) For any compatible magnitudes A,B, . . . ,
Exp(A+ B+ . . .) = Exp(A) + Exp(B) + . . . .
(vN) For any incompatible magnitudes A,B, . . .

Exp(A+ B+ . . .) = Exp(A) + Exp(B) + . . . . 10

In particular, an Exp must preserve the + operation among compatible
and incompatible idempotent magnitudes represented by projectors. Now
like condition (Ga), the condition (vN4) ensures that the bivalent Exp

mappings preserve the unary =+

operation and the binary A, V operations
. . 11 .
among compatible projectors. Thus the von Neumann Expw mappings are

bivalent and truth-functional(d) mappings on P structures, as are the

QM
Gleason, Kochen-Specker mappings. However, von Neumann's mappings are also
required to preserve the + operation among incompatibles. So considering
just the idempotent magnitudes represented by projectors, von Neumann is
effectively committed to something like a PbML structure as the domain of
his. Expw mappings, because he requires his mappings to preserve a binary
operation among incompatibles.

In their 1963 proof of the impossibility of hidden variables in
quantum mechanics, Jauch-Piron do explicitly refer to dispersion-free, i.e.,
bivalent, mappings w on PQML structures. The mappings are required to

satisfy certain conditions, especially:

(JPd) For any elements P,,P, € PQML , if P1&> P, then

w(Pi) + w(PQ) = w(P1 VR, + w(P, A P2).
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(JPY) For any subset {Pi}iGIndex' of elements in a PQML , if
W(Pi) = 1 for every i € Index, then w(A Pi) = 1,
i
1, then w(P1 A P2) = 1.

for example, if w(Pl).= w(P2)

(Jauch-Piron, 1963, p. 833).

Like (Ga) and (vNd), the condition (JPd) ensures that the bivalent mappings
preserve the unary 4 operation and the binary A, V operations among
compatibles.l2 So the Jauch-Piron mappings are bivalent and
truth-functional(d). But the mappings are in addition required to satisfy
(JP¥) which involves preserving the A operation among compatible and

incompatible elements of a P . So Gleason, Kochen-Specker, von Neumann,

QML
and Jauch-Piron all require their proposed hidden-variable mappings to be
truth-functional(d), but in addition, von Neumann and Jauch-Piron require
their mappings to preserve an operation among incompatibles. And it is
precisely these additional conditions (vN$) and (JP¥) which allow the

von Neumann and the Jauch-Piron proofs to work at all and which allow their
proofs to include the two-dimensional Hilbert space case which is excluded
from the Gleason, Kochen-Specker proofs.

Specifically, using the trace-formalism developed in his completeness
proof, von Neumann shows that dispersion-free expectation-functions which
satisfy his conditions are impossible on the (infinite) set of operators on
a Hilbert space of any dimension (von Neumann, 1932, pp. 320-321). And
Jauch-Piron prove in their Corollary 1 that, with respect to any irreducible
PQML , bivalent mappings which satisfy their conditions are impossible.13
' Semantically interpreted, since the truth-functionality(d,¥)

condition is even stronger than the conditions imposed by either von Neumann

or Jauch-Piron, their impossibility proofs suggest that in general and
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including the two-dimensional Hilbert space case, quantum PbML structures

do not admit bivalent, truth-functional(d,$) mappings and hence do not admit
a bivalent, truth-functional(d,%) semanticé; this is proven in Section A as

Theorem A.

There is an impossibility proof by Zierler and Schlessinger
involving a condition which is as strong as my truth-functionality(d,$)
co-ndition.lL+ In their Theorem 3.1, Zierler-Schlessinger show that if there
is a strongly additive embedding m of an orthomodular partially. ordered
set P into a Boolean algebra, then the join P, VP, exists in P only

1 2

when P1 commutes with P2 (i.e., P1 N P2). A strongly additive embedding

preserves <,%, v, and moreover is monomorphic, i.e., if m(Pl) < m(PQ).

then P1 = P2 (Zierler-Schlessinger, 1964, pp. 254-255, 260).

It is easy to prove that a monomorphic mapping m : P - B which
preserves < is injective, i.e., for any P1 £ P2 in P, m(Pl) # m(P2).
Proof: Assume on the contrary that m(P1) = m(P2) in B. Then since =
is reflexive, m(Pl) < m(P2) and also m(P2) < m(Pl). Since m is
monomorphic, it follows that P1 = P2 and P2 = P1 , thus P1 = P2 which
contradicts P1 # P2 . Q.E.D. And since an imbedding is an injective
homémorphism, it follows that a strongly additive embedding of P into a
B is in fact an imbedding (&,8) of P into B._ So the contrapositive of
Theorem 3.1 says: If the join P1 v P2 exists in P and P1 s P2 » then.

an imbedding (J,%) of P into a B is impossible. Or in other words,

with respect to an orthomodular lattice PQML » which has v defined for
any Pl’PQ € PQML > Theorem 3.1 yields: If a PQML contains incompatible
elements, that is, if the join P1 v P2 of incompatible P1 s P2 exists
in PQML » then an imbedding (&,8) of PQML into a B 1is impossible.
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Then assuming that there is a theorem for imbedding(d,4) 1like the
Kochen-Specker Theorem 0 for imbedding(b), i.e., an imbedding(d,%) of a

PQML into @ B exists IFF a complete collection of bivalent homomorphisms(d,¥)

exists on PQML > the above restatement of the contrapositive of
Zierler-Schlessinger's Theorem 3.1 is equivalent to my Theorem A: If a
PQML contains incompatible elements, then a bivalent, truth-functional(d,¥)

semantics for P M is impossible.

QML

Summary

The general fact of the impossibility of a bivalent,
truth-functional semantics for the propositional structures determined by
quantum mechanics should be more subtly demarcated according to whether

the structures are taken to be orthomodular lattices PQML or

partial-Boolean algebras PQMA 3 according to whether the semantic mappings

are required to be truth-functional(d,$) or truth-functional(d); and

according to whether two-or-higher dimensional Hilbert space P structures

QM

or three-or-higher dimensional Hilbert space PQM structures are being
15

considered.

If the quantum P structures are taken to be orthomodular

QM

lattices, then bivalent mappings which preserve the operations and relations

of a PQML must be truth-functional(b,$). Then as suggested by von Neumann

and Jauch-Piron and as proven in Section A, the mere presence of incompatible

elements in a PQML is sufficient to rule out any semantical or hidden-

variable proposal which imposes this strong condition, for any two-or-higher

>
dimensional Hilbert space Pgﬁf structure. Thus from the orthomodular

¢

lattice perspective, the peculiarly non-classical feature of quantum mechanics
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and the peculiarly non-Boolean feature of the quantum propositional
structures is the existence of incompatible magnitudes and propositions.
However, the weaker truth-functionality(d) condition can instead

be imposed upon the semantic or hidden-variable mappings on the PbML

structures, although such mappings ignore the lattice meets and joins of
incompatibles and preserve only the partial-Boolean algebra structural

features of the PQML structures. Or alternatively, the quantum

propositional structures can be taken to be partial-Boolean algebras, where

bivalent mappings which preserve the operations and relations of a PQMA

need only be truth—functional(&). In either case, the Gleason, Kochen-Specker
proofs show that any semantical or hidden variable proposal which imposes

this truth-functionality(d) condition is impossible for any three-or-higher

n=>3 n=3
PQMA or PQML

or hidden-variable proposals are possible for any two-dimensional Hilbert

dimensional Hilbert space structures. But such semantical

space PéMA or PSML structures, in spite of the presence of incompatibles,

and in spite of the fact that these structures are non-Boolean in the Piron

. . . ' 16
sense and in the not-prime ultrafilter sense.

Notes

1 It is worth noting that these value assignments would be

acceptable to the lattice theoreticians Jauch (1968, p. 76), Putnam (1969,

p. 222), van Fraassen (1973, p. 90), Friedman and Glymour (1972, p. 18).

For these authors do associate the 0 element of a PQML with contradictory
propositions and the 1 element with tautological propositions.

So even though some of these authors do not discuss semantic proposals for

PQML > all would accept the value assignments m(P1 A P2) = m(0) = 0 and

m(P1 \ P2) =m(1) = 1, for any proposed semantic mapping m ona P

QML
For example, Putnam explicitly discusses the conjunction of two quantum
propositions associated with two incompatible, one-dimensional subspaces
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whose intersect is the 0 subspace, e.g., our P1 AP =0 and
P1 A P = 0. Such a conjunction is logically false, according to
Putnam, and S0 he 1s committed to the value assignments m(P, A P ) =

and m(P A P ) = 1

2 Thanks to Edwin Levy, L. Peter Belluce, and Richard E. Robinson
for auditing these proofs. Dr. Belluce especially helped with Lemmas A
and B, and he proved Lemma C, adding that it is a standard proof in Boolean
lattice theory. Dr. Robinson suggested a more economical restatement of
the proofs.

This impossibility holds whether a semantics for a P is
taken to be a complete collection or a weakly complete collectionQ of
bivalent, truth-functional(d,¥) mappings. The notion of a weakly complete
collection is defined in note 1 of Chapter II.

The dimension of a Hilbert space H is the maximum number of
linearly independent vectors in the Hilbert space (Jauch, 1968, p. 20),
and is designated by the superscript n =1,2, . . . . So any

H' has n linearly independent vectors; this set of vectors are a basis

for H" (Lande, 1972, p. 47). A basis may be orthogonalized (by the
Gram-Schmidt process) and normalized (by dividing each vector by its length)
yielding an orthonormal basis. Thus the maximum number of mutually

o . n ., .

orthogondl vectors in any H is n. Since gach vector |W> corresponds
uniquely with the one-dimensional projector PW |W><W| and the
one-dimensional subspace H, which is the range of PW s the maximum

v

number 6f mutually orthogonal, one-dimensional projectors or subspaces of

any H" is n. .Each one-dimensional projector or subspace is an atom in
the PQM structure of the Hilbert space, and by Lemma A, any two atoms in
a P are orthogonal IFF they are compatible. Thus the maximum number

L QM
of mutually compatible atoms in the PnM structure of any H® is n.
And so I claim without proof that when a Q set of n mutually compatible
or orthogonal atoms in a PgM is closed with respect to the A, Vv, ™+

\ A n
operations of PQM we obtain an mBS of PQM .
. 3 .
The three orthogonal atoms in each mBS of the PQMA which
Kochen-Specker consider in their Theorem 1 are represented by a triangle
in the completlon of the graph Kochen-Specker label P (Kochen-Specker,

1967 PP 68- 69) Each identical subportion of this graph, which
Kochen-Specker draw separately as I, , contains 13 points (atoms) and eight
overlapping triangles (mBS's) upon completion. There are 15 such
subportions in F2 » So the completion of F2 contains 195 points and 120

triangles. However, Kochen-Specker further identify the points P, T @

q, © b, and r, = ¢, so that three points and two triangles are redundant.

Thus the PgMA considered by Kochen-Specker contains 192 atoms and 118 mBS's.
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This 1mp0531blllty holds whether a semantlcs for a PbMA is
‘taken to be a complete or a weakly complete collection of
bivalent, truth-functional(d) mappings.

In precisely this manner, the semantic mappings proposed by
I. Hacking for the quantum PQML structures, namely, the evaluations,
side-step the Theorem A impossibility proof. This proposal was
made in an unpublished, 1974 paper which has since been rescinded.

A dispersion-free Gleason mapping is bivalent, as mentioned by
Gudder; a proof is given by Bub and restated in note 9 below. And Gudder
proves that dispersion-free mappings satisfying Gleason's additivity
condition are bivalent homomorphisms(d) (Gudder, 1970, pp. 433-434)., A
version of this proof is restated in Chapter III(C).

By definition, an expectation-function is dispergion-free IFF,
for any quantum mechanical magnitude A, Exp(A2) = (Exp(A))2. So with
respect to any 1d§mpotent magnitude P which by definition satisfies p2 = P,
Exp(P) = (Exp(P))“. That is, Exp(P) =0 or 1. So an Exp ona P
dispersion-free IFF, for any element P € P, Exp(P) =0 or 1 QM
(Bub, 1974, p. 60). QM

Condition (vNd) alone is labeled (D) by von Neumann in his
book. And conditions (vN&), (vNP) together are subsumed by one condition
von Neumann labels (B') (von Neumann, 1932, pp. 309, 311).

11 Kochen-Specker prove that dispersion-free expectation-functions
which preserve the + operation among compatible operators or projectors
also preserve the ¢ operation among compatibles (KXochen-Specker, 1967,

p. 81). Since the A, V,* operations of a P y Structure can be defined
in terms of the ring operations +, *, as Q usual among compatible
projectors, mappings on a Wthh preserve the +, * operations among

compatibles also preserve thg Ay V,* operations among compatibles.

12 The proof by Gudder cited in note 8 above works with condition

(JPd) as well as with condition (Ga).
13 Jauch-Piron's Corollary 1 speaks of coherent proposition systems;
coherency is irreducibility and a proposition system is an orthomodular
lattice (Jauch-Piron, 1963, pp. 831, 834).

o Zierler and Schlessinger's work was called to my attention by
Prof. W. Demopoulos.

5 s s .
Some authors do not make these distinctions. For example,
M. Gardner claims that, "Kochen and Specker have proven that there is no

homomorphism of P [i.e., PQMA] into 2 " (Gardner, 1971, p. 519):

Gardner does clarify that the homomorphisms considered by Kochen-Specker
are homomorphisms(d). But Gardner does not mention that two-dimensional

Hllbert space PgMA structures are exempt from Kochen-Specker's proof;
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that Kochen-Specker give an example of a PgMA which does admit some

homomorphisms(4) into 'Z2 (i.e., bivalent homomorphisms(é)) but does not

admit a complete collection of such mappings; and that the Kochen-Specker
proof also applies to .PQML structures, as explained in Sections B and D.

1 . . .. . . . . 1 sq s
® Most of this chapter is to be published as '"The impossibility
of a classical semantics for the quantum propositional structures," in a
forthcoming issue of Philosophia. ’
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CHAPTER VI
A STATE-INDUCED SEMANTICS
FOR THE NON-BOOLEAN PROPOSITIONAL STRUCTURES

DETERMINED BY QUANTUM MECHANICS

Section A. The Quantum State-induced Expectation-Functions

As described in Chapter IV(A), the quantum formalism associates a
physical system with a Hilbert space H, represents each pure state V¥ -of the
system by a one-dimensional projector on H, and represents each magnitude
A of the system by a self-adjoint operator on #H. The expectation value
of each of the system's magnitudes A,B, , . . 1is determined by the state
¥ of the system according to the expression Exp¢(A) = <¢|Ki¢>, which is

one of the real-number eigenvalues {ai} of A when the state of

i€Index
the system is one of the eigenstates {Wi}iGIndex of A, e.ges |
Exp¢ (4) = aj . Thus, when the state of a system is an eigenstate of any of
3

the system's magnitudes, then the state of the system determines the exact
values of those magnitudes via the expectation-function. When the state
of the system is not an eigenstate of a given magnitude A, then the state
determines the probabilities of that magnitude A exhibiting any one of

V.

i

PW is the projector representing the eigenstate Wi associated with the
i ' X

eigenvalue a; . So for any of the system's magnitudes, each pure state V

its eigenvalues according to the expression p¢ A(ai) = Exp(P, ), where
s :

of the system determines, via the expectation-function EXP¢ » either the
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exact real-number value of the magnitude or the probabilities of the

magnitude exhibiting any one of its exact (eigen)values. And for any pure
state ¢, the expectation-function Expw is unique to w, and conversely,
EXPW unambiguously defines the state ¢ (Fano, lé?l, p. 399).

In fact, for any pure state ¢, the expectation-function EXP¢

acts as a mapping from the set of magnitudes represented by operators to

the real-number line, i.e., EXPW : {K,ﬁ, .« .} > R, which satisfies:
(Ea) Expi (A + B + .) = Exp.(A) + Expi(B) + .
Py Py Py
(Eb) If A=08 then Exp\'y(zi)z_o.
(Ec) *r:xp\‘y'(:f)»= 1. (Fano, 1971, p. 398; von Neumann, 1932, p. 308)

For any pure state V, the uniquely associated mapping
Expw : {A,B, . . .} >R may be called the quantum state-induced mapping,
just as, for any pure state w of a classical system, the uniquely

associated mapping w :-{fA,fB, .+« .} >R 1is called the state-induced

mapping in Chapter III.
As will be shown in this section, conditions (Ea), (Eb), (Eec),

ensure that, with respect to the idempotent elements of {ﬁ,ﬁ, . « .} which

forma P structure, each Exp¢ is a probability measure

QM
EXP¢ : PQM -+ [0,1]. Classically, the analogous result is that each classical

state-induced mapping w :{fA,fB, . . .} »R 1is a dispersion-free

probability measure W, PCM -+ {0,1} with respect to the PCM structure
of idempotent elements of {fA,fB, .« o W}

Moreover, as in the classical case described in Chapter III(C),

this mathematical machinery of quantum state-induced mappings on the set of
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operators on a Hilbert space not only formalizes the procedure by which
real-number values and probabilities are assigned to the magnitudes of a
quantum system, but‘also implicitly formalizes a procedure by which
truth-values and probabilities may be assigned to the propositions which
make assertions about the real-number values of a quantum system's
magnitudes, as shall be shown in this chapter.

As described in Chapter IV(C), propositions which make assertions
~about the values of a quantum system's magnitudes have been associated with
the projectors or subspaces of the system's Hilbert space, and the logical
operations among the propositions have been interpretéd"as or defined in
terms of operations among the projectors or subspaces, yielding a

propositional structure P. . In order to describe how the state-induced

QM

mappings Exp¢ act with respect to a PQM s

elements of P y as projectors, which are by definition idempotent,

Q

self-adjoint, bounded operators whose only eigenvalues are the real-numbers

we focus temporarily upon the

0 and 1. With respect to a PbM of propositions qua projectors, each
state~induced EXPW on PbM satisfies the five conditions which define a

probability measure u, as listed in Chapter III(C). TFor any EXPW on a

P and for any B, eP M

QM 1°72 Q

(pa) As stated in Chabter IV(D); if ﬁl d §2 , then P1
B ve =8 +8 - B and P AP, =P -P,. Andif
ﬁl s ﬁz are disjoint, i.e., ﬁl = ﬁ;’, then §1<5 ?2 and
ﬁl A §2 = 0 (since ﬁl A §2 = §2 A §S'= 0 and P=0 for every
P e PQM)' So if ﬁl s §2 are disjoint, then ﬁl Y §2 = ﬁi + §2
Thus by (Ea), for any disjoint ﬁl R §2 s EXP¢(§1 Vv §2)

= Exp\lr(fs1 + §2) = Exp¢(§1) + Exp¢(§2). And for any countable set
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(ui)
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~

{Pi}iEIndex of pairwise disjoint elements of FEM ,

Expw(v. Pi) Z Expw(P ). Thus (pa) is satisfied.
i

Every element P € FbM is by definition idempotent, i.e.,
a2

= P7; it follows that every element is nonnegative, i.e.,

avH)

Oy

=0 (von Neumann, 1932, p. 308). Hence by (Eb), for every

Oy

€ FbM R Expw(P) > 0. Moreover, since a projector is by

definition a bounded operator (Fano, 1971, p. 288), Exp¢(§) < oo,
for every P € PbM (Fano, 1971, p. 396). So we have:
0= Expw(P) < o, for every element P € P . Thus (ub) is

QM
satisfied.
By (Eb), if P =0 then Expw(P) =0, i.e., Expw(a) = 0. Thus
(uc) is satisfied.
In Halmos's discussiqn of the probability measure u, he says

that the isotone character of y follows from the .non-regative

character of p  (Halmos, 1950, p. 37). This result for any

~

'Exp, ona P is shown as follows. For any P,,P. € P. s
PW y

oM
Expw(ﬁl) < Expw(P ) + ExpW(P AP

1’72 QM
1 “) because ExpW(P) >0 for

any P € P, in particular, for P = B_ A Y. And as stated

QM 2 1
in Chapter IV(D), if Pl = P2 » then Plé P2 (where Plé P
Al A A A
IFF P & B ) and P1 A P2 = P1 3 and so by the mutual
FS ~ 1 ~

compatibility of P1 ’ P2 ) P1 and by the definition of I,
A _ A~ ~ _ ~ A AL _ ~ A kR
P2 = P2 AT P2 A (P1 v P1 ) (P2 A Pl) v (P2 A P1 )
_ ~ ~ ~ _L .

P v (P2 AP7). Soif P, = P, then ExpW(P )
) ~ Al AL A
= E P, v P A P . <

XPW( ( N Moreover, since P2 A P1 P1 . P1

and P2 A P1 are disjoint, and so by (upa): ExpW(P v (P A PiL

= Expw(P ) + Expw(P A P1 ). Hence, for any PI’P2 € PQM , if
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P1 < P2 then EXPW(Pl) < EXPW(Pi) + Exp\]/(P2 A P1 ) Expw(P2)

So EXPW is an isotone mapping, that is, (pi) is satisfied.

(un) By (Ee), Exp¢(f) =1, thus (ui) is satisfied. And so for every

P € PQM , 0= BXP\|,(P) <1, that is, Exp‘y : PQM - [0,1].

So conditions (Ea), (Eb), (Ec), ensure that an EXPW ona P satisfies

QM

the five conditions which define a probability measure (.

However, this classical probability measure [ 1is defined on a

Boolean structure, e.g., on a FhM » while the quantum EXP¢ is defined

on a non-Boolean P structure. So the quantum expectation-functions on

QM

a P y can be regarded as generalized probability measures which satisfy

Q

all the usual defining conditions of a classical probability measure but

which are defined on a non-Boolean P structure rather than on a Boolean

QM

structure.

The notion of a generalized probability measure on a FbMA is

defined by Bub, and a different notion of a generalized probability measure

on a PbML is defined by Jauch-Piron (Bub, 1974, p. 89; Jauch-Piron, 1963,

p. 833). Bub and Jauch-Piron agree that the classical notion of a

probability measure on a Boolean structure must be generalized for PQMA s
PbML » in such a way that on every (maximal) Boolean substructure of PbMA
P the generalized probability measure reduces to the classical

QL

probability measure W. In additdion, with respect to the entire

non-Boolean PQMA , PQML .

generalized probability measure be additive with respect to orthogonal

both Bub and Jauch-Piron require that a

elements; this additivity condition is Gleason's (Ga) stated in Chapter V(D)
Bub does not state this requirement explicitly, but it is clear that he

wants a generalized probability measure to satisfy (Ga). In their 1963
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paper, Jauch-Piron do explicitly require their generalized probability
measures to satisfy an additivity condition which amounts to (Ga), namely,
the condifion (JPL) stated in Chapter V(D). And elsewhere, Jauch_explicitly
imposes (Ga) rather than (JPb) (1976, p. 135). Any quantum Ewa on a

PbM does satisfy (Ga). Tor as shown above, any EXPW on a PbM satisfies
(pa) which is equivalent to (Gé) since disjointedness and orthogonality are
equivalent notions, as stated in Chapter IV(D).1 Besides (Ga), Jauch-Piron
require their generalized probability measures on a PbML to satisfy the
condition (JP$) stated in Chapter V(D), and Jauch-Piron claim that the
quantum EXPW mappings do satisfy (JP¥) (1963, p. 833). Bub does not
impose this condition. The notion of a generalized probability measure is
further discussed in Chapter VII; in particular, Jauch-Piron's imposition
of (JPY) as part of the conditions defining a generalized probability
measure is criticized.

Nevertheless, each state-induced mapping Exp¢ : P~ [0,1] 1is

QM

a generalized probability measure (as defined by either Bub or Jauch-Piron)

on P

o just as each classical state-induced mapping w : PEM -+ {0,1} -

is a classical probability measure b, PCM -+ {0,1}, as discussed in
Chapter III(C). But the classical measures w ~are dispersion-free, where
a dispersion-free measure satisfies the condition (ud) which ensures

bivalency, while the quantum measures Exp, assign dispersive, probabilit
v g P y

values between 0 and 1 to some elements of PbM . Moreover, unlike the
classical measures which are truth-functional mappings on PbM ,» the quantum
Expw _measures are not truth-functional ((b) or (4,%)) mappings on PQM .

Conditions (Ea) and (Ec) do ensure that the quantum measures preserve the

operation of P i.,e., for any Exp¢ ona P and for any PeP M2

QM ° QM Q
Exp(P*) = , by substitution, Exp(I-P) =, by (Ea), Bxp(f) - Exp(ﬁ) =,
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PN AL
by (Ec) and substitution, 1 -Exp(P) =, by definition of J‘, (Exp(P))

But the quantum measures do not always preserve the A, V operations of

~

P... . For example, consider the projectors P

QM

s ]\y1><\yl| and

|W2><¢2| such that §1<5 §2 and LR §2 = 6; and consider the pure

state V¥ represented by the projector B such that ﬁw & ﬁl and

A4
ﬁw ¥ §2 . The EXPW induced by this state V¥ assigns values as follows:

Exp\y(P AP ) = Exp‘ll(a)

v
each i =1,2, Ewa(ﬁi) “¢><Wiu’ £ 0.

However, each gquantum expectation-function EXPW : P, = [0,1]

QM

induced by the pure state V¥ of a quantum system is bivalent with respect

0, but Exp (P ) A Expw(P ) # 0 because, for

to a certain subset of elements of the P structure of the system's H,

QM

namely, the subset of elements in P which are compatible with the atom

QM
P, which qua projector §¢ = |W><Wl represents the pure state YV which

v

induced Expw . In particular, according to the quantum formalism, for any

Exp, ona P Ex (P ) = < and Ex (P = 1 -Ex (P ) =0.
Py qr » Exy(By v \lfl} 1, py(Py ) Py By
In addition, for any element P € PQM , if B ¥ P¢ , then Expw(P) € (0,1);
if P> ?w » then by (pi), Exp¢(§) = 1; and if P < ?J', then by (pi),
Expv(ﬁ) = 0. Rewritten: TFor any Expw on a PQM and for any element
3
P ¢ PQM s ExpW(P) =11 if P = PW
0 if P=<P"
¥ 4
€(0,1) if P P, |.
YJ
So each quantum expectation-function EXPW : PQM -+ [0,1] is bivalent with
respect to the subset {P € PbM : P> P¢ or P < P$]-; by Lemma A of
Chapter V(A), this is the subset of elements in P which are compatible

QM
with P¢ . And each quantum Exp¢ assigns probability values between 0

and 1 to all other elements in PQM , l.e., to all elements in PQM

‘the atom which qua projector P,

¥

which are incompatible with P

\I/ £
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represents the state V¥ which induced Expw .

In the next section, I shall show that, for any atom P, € P .

v QM
A
the subset {P € PbM : P2 PW or P = PW } ' is a closed substructure of
PbM , and the expectation-function EXPW is not only bivalent but also
truth-functional ((&) or (4,8)) on that substructure of PbM .

Section B. The Quantum Expectation-Function As an Ultravaluation on an

Ultrasubstructure of PQM

As described in Chapter I(F), the notions of a filter and dual

ideal are defined in a P M by the conditions (a), (b), and the dual

QML

conditions (a'), (b'), listed in Chapter I(C). To define these notions in

a PbMA which has the A, V -operations defined among only compatibles,

conditions (a) and (a') are modified to the conditions (aH) and (aé) given

in Chapter I(F); nevertheless, any filter in a PbMA still satisfies the
unmodified conditions (a) and (b), and any ideal in a PQMA still satisfies

(a') and (b'). As in the case of a Boolean structure, an ultrafilter

(ultraideal) in a quantum PQM is a proper filter (ideal) which is not the
proper subset of any proper filter (ideal) in PQM .

Making use of Lemma B of Chapter V(A), it is easy to prove that

‘ b= o1 . A
the subset of elements {P € PQML : P = PW}’ for any given atom PW € PQML s
is an ultrafilter UFW in PbML . For any Pl’P2 € PbML , if P1 , P2

are members of the set S = {P € P P> Pw}, i.e., P, = P¢ and

QML 1

> ) > : = ) .
P2 = PW , then P1 A P2 > PW A P2 PW and so P1 A P2 € S; thus S

satisfies (a). For any P, €

1 PQML 2

€ S

and for any P, €8 (i.e., P_= PW)’

if P, 2 P2 » then since P, = PW we have P1 = P¢ , and so P

1 2 1

thus S satisfies (b). So S is a filter in PQML . Moreover, S is a

proper filter, that is, S # PQML » €.g., 0 £ S since 0% P¢ . And



122

finally, S 1is not the proper subset of any proper filter in P . For

QML

assume on the contrary that there is a proper filter F 1in FbML such that
S € F. Then there is an element P € FbML such that P € F but P £ S,
i.e., P 2 Pw . Since Pw € S CF, both PW », P are members of T and
so by (a), P A P¢ € F. But since P # PW , by Lemma B, P A PW = 0.
Thus, O € F, and so by (b), F = PbML , which contradicts the assumption
that F is a proper filter in PbML . Q.E.D.

The proof that the subset of elements {P € PbML : P =< P@f} - is an

Q
Similarly, the subset of elements {P ¢

ultraideal UIw in P ML proceeds dually.

PbMA : P> PW},~ for any
given atom PW € PbMA » 1s an ultrafilter UFW in PbMA ’

1,P2 € PbMA , if P1 . P2 are members of the set
. = : . 1 > ) >
PbMA : P> PW}’ 1.§., P1 > PW and P2 > PW ,

d €S such that 4 = P1 and 4 = P2 R

as shown next.

For any P

S = {p ¢ then there is a

namely, d = P¢; thus S satisfies
(aH). For any P1 € PQMA and for any P2 €S (i.e., P2 > PW)’ if

> 7 > . > .
P1 = P2 s then since P2 > PW we have P1 > PV ,» and so P1 € S; thus S
satisfies (b). So S is a filter in PQMA . Moreover, S 1is a proper
e.g., 0 £S since 0 2>P¢ .

For assume on the

filter, that is, S # PQMA s

is not the proper subset of any proper filter in PQMA .

contrary that there is a proper filter F in PQMA such that S ¢ F. Then

there is an element P GAPQMA such that P € F but P £S, i.e., P # P¢ .

Since PW € SCF, both PW » P are members of F and so by (aH), there

And finally, S

isa d € F such that 4 =< PW and d = P. Since PW is an atom, only

0=<P, and P, =P, . However, P, £ P, and so by (a..), 0 € F. But then
\y \I/ \1/ 9 q/ H y H 9

by (b), F = PQMA » which contradicts the assumption that F is a proper

filter in PQMA . Q.E.D.
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4 .
PbMA : P = PW } is

The proof that the subset of elements {P €

an ultraideal UIW in PQMA

Any such ultrafilter UF

proceeds dually.

¥ and dual ultraideal UI¢

respect to an atom of P is called a principal ultrafilter and a principal

QM

ultraideal, respectively, as mentioned in Chapter I(C) and (F). In the case

defined with

of an infinite dimensional Hilbert space P ,» not every ultrafilter and

QM

. g . s 2 .
not every dual ultraideal is principle. Nevertheless, since a quantum pure

state, as represented by a vector in Hilbert space, is an atom in the P

QM

structure of Hilbert space, each (pure) state-induced mapping is defined
with respect to a principle ultrafilter and dual principle ultraideal in

P, . So we need only consider principle ultrafilters, labeled UF, , and

QM

principle ultraideals, labeled UFW » in this discussion of a state-induced

semantics for a P

QM -

As mentioned above, any filter in a P

QML
by definition satisfies (a'), (b'). Any

by definition satisfies

(a), (b), and any ideal in a PQML

filter in a PQMA by definition satisfies (b) and also satisfies (a), as

shown in Chapter I(F), and any ideal in a PQMA by definition satisfies

(b') and also satisfies (a'). Moreover, it is easy to show that any

ulfrafiltgp UF? and dual ultraideal UI¢ ina P satisfy the conditions

QM
(¢) and (c') stated in Chapter I(C):

A
P € UF, IFF P € UL, .
QM ’ 1 v

A
(e") For any P € P P € UI, IFF P € UF, .
Y QM ° ¥ € Uy

(c) . For any P €P

A 3 . R
Proof: For any P € P P € UF, IFFP =P, IFF P," 2 P IFF P € UI
. y QM ° ¥ ¥ 13

Pt € UI, IFF 3*’5 P&F IFF P¢,S P IFF P € UF

v -

And for any P € P Q.E.D.

Qu ° v
These conditions (a), (a'), (b), (b'), (c), (c'), ensure that,

for any atom P\y €P y » the union UF\]! U UI\'V = {P€p K PE‘P\‘/ or P/'SP\I',L }

Q QM
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' . 3
is closed with respect to the A, V,™ operations of FbM » as shown next.
For any elements P ,P, € FbM » if both P1,P2 € UPW » then by (a)

AT . . . '
P1 P, € UFW » by (b) P1 Vv P2 € UFW (since P1 < P1 Vv P2), and by (c')
£ ) L . '
P, € UIW and P2 € UIW . If both P1,P2 € UIW , then by (a')
' , .
P,V P2 € UIW , by (b") P1 A P2 € UIW (since P1 A P2 < Pl)’ and by (c)

1 . e . .
P1 € UFV and P2 € UFW . If P1 € UFW and P2 € UIW » then by (b)

A
. \ . 1] .
P1 Y P2 € UFW » by (b") P1 A P2 € UIW » by (e¢") P1 € UIW .
.

P € UF. . Since a filter F and an ideal I are each by definition

2 v

nonempty and since, for any P € F, P <1, and for any P €¢I, P =0,

and by (c)

it follows by (b) that the 1 element of PQM is a member of UPW., and

it follows by (b') that the 0 element of PQM is a member of UIW . In

other words, letting US¢ “label the union UFw U UIW , we have 0 ¢ US

1 ¢ USW » and for any elements P1,P2 € PQM , 1if Pl’P2 € US¢ .
P1 A P2 € US¢ R P1 \ P2 € US¢ , and P;‘,PéL € USW . Thus, for any atom

P¢ € PQM ’ 'the subset USw = UF@ U UIW is a closed substructure of PbM

which may be called an ultrasubs‘l:x'uctur'e..l+ Specifically, US: 1is a

v

. This result

\l/ ]
then

-P . . .
subalgebra of QA and USW is a sublattice of PbML

is analogous to the result: In any Boolean structure B (algebra or

lattice), the union 6f a filter and dual ideal form a substructure

(subalgebra or sublattice) of B (Bell and Slomson, 1969, p. 17).
However, it is important to note that this closure of

US, = UF, U UI, with respect to the A, V, = operations of P M guarantees

¥ 4 1 Q

for any elements P1,P2 € PQM" neither that if P1 v P2 € USW then

P S ‘ i ‘
1 €U ¥ or P2 € USW , nor that if P1 A P2 € USW then P1 € USV or

P, eUs, . Forany US, in a P such meets and joins which are

2 ¥ \'g Qu °

themselves members of US' but whose constituent elements P1 s P are not

s 2

both members of US, are hereafter called ng—extra meets and joins.

¥
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¥ in a PQM ) ‘the

ultrastructure Usw is the union of all the Boolean substructures in P

QM

It is also worth noting that, for any atom P

which contain P¢ ,» and in particular, USW is the union of all the

>3 . . : . R
overlapping mBS's in ESM which contain P, . As mentioned in the

v
L
previous section, by Lemma A, {P € FbM : P = PW or P = P¢ }
= {p € PbM : P PW},‘ that is, USW is the (unique) subset of all
elements in P which are compatible with P, . Let mBS, . be any mBS
QM 2 ¥, 1
in P which contains P, , and let U mBS, . be the union of all such
QM ¥ i ¥,i
Sy . . . v
mBSW,i s in FbM . It is easy to show that, for any given atom PW € PbM
and for every element P € P P€Uus, IFTF P €U mBS, . . If P €US
Y QM ° ¥ Vi v

i
then P é PW and so the set of elements {P,PL,Pw,Pif,O,l} - form a Boolean

substructure in P y which contains P

Q ¥

itself contained in some maximal Boolean substructure mBS, . which contains

V,1

and which, by Zorn's lemma, is

g1+ then Pd 2, 5
2

v € PbM and for every

mBS. . containing P, mBS, , cUS ¢ P . In particular, all the
\1’91 g \y > ‘J/,l \l’ QM P ' ?

elements in an mBS, ., are compatible with P

¥, i
compatible, while all the elements in US

Pw ; thus P €U mBSW i Conversely, if P € U 'mBS
i ? i

and so P € US¢ . Q.E.D. So for any given atom P

and are also mutually

\

are compatible with P, but

v 7
need not be mutually compatible.5 Since, as described in Chapter IV(F),

2
QM-

. 2 . ' . 2
v € PQM is a member of only one mBS in PQM s

US, = U mBS, . =mBS, . That is, an ultrasubstructure in a P2 is always
\4 ;0 Vi A4 QM

just a maximal Boolean substructure of P2 . But since the mBS's in a

QM

’ >
three- or higher-dimensional Hilbert space ngs may overlap, e.g., any

. >3 . >3 .
atom P, € P2 may be a member of many mBS's in Po.>, US, = U mBS
14 QM QM v :

may be larger than any ﬁBSw ;e That is, an ultrasubstructure in a
b

the mBS's in a two-dimensional Hilbert space P do not overlap, e.g.,

any atom P

\ 23
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>
Fgﬁs ‘may contain incompatible elements and thus may in some sense be a

n=3
non-Boolean substructure of PQM .
As stated in the previous section, any EXPW on a FbM assigns
values as follows: For any P € FbM » Expw(P) =11 if P = P¢
K9
0 if P =P,
v

€(0,1) if P;&S-Pq,-.

Since UF\'J,={P-€'PM:P2P}, UI\'p:{P»GPM:PSPJ'}, and

Q N4 Q v
‘Us, = {P € : PSP}, it follows that any Exp. on a assigns
values as follows: For any P EPbM s Expw(P) =11 if P ¢ UFw
0 if P € UI,
¥ |
€(0,1) if P gUS, =UF UUI |.-
’ VoY
This result suggests that each EXPW on a PbM is an ultravaluation on the
ultrasubstructure US¢ . (Hereafter, an EXP¢ and its USW may be said to

be affiliated.) Of course, an Exp¢ is bivalent with respect to the
elements in US¢ . Moreover, it shall be shown below that an EXPW is

truth-functional ((&) or (4,8)) with respect to the elements in USw .
Thus an EXPW is a bivalent, truth-functional ((&) or (&,%)) mapping on

US, defined with respect to the ultrafilter UF, and the dual ultraideal

¥ v

UIW , that is, an Exp¢ is an ultravaluation on the affiliated
ultrasubstructure Usw .
The conditions (a), (a'), (b), (b'), (c), (c'), satisfied by any

UFW and dual UI, ina P M yield the following biconditionals and

v Q
conditi@nals. For any UF¢ and dual UI¢ in a PQM , for any P ¢ PQM .
and for any P,,P, € PQM (qua PQML)’ for any P1¢5 P, € PQM (qua PQMA):
ul P, AP, €UF, IFF P, € UF, and P, € UF by (a) and (b);

1% 5 Py 15 Ty 2 & Ty
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. . . . | T
Py AP, €UL IF P/ €UL or P, €UI , by (b');
U2 P) VP, €UF IF P €UF, or P, €UF , by (b);
) . . 1 ry.
Py VP, €UI IFF P €UI and P, €UIL , by (a') and (b");
U3 Pt ¢ UF IFF P € U, . by (c);

L . .
P~ € Ul IFF P € UF by (c').
\y \I/ ] y

It clearly follows that the EXP¢ on PbM which assigns the value 1 +to

the elements in UF, and assigns the value 0 +to the elements in UI

v
satisfies all of the conditions TF1, TF2, TF3, which define a

¥

‘truth-functional mapping and are listed in Chapter II(C), except the
following two: If Expw(P v P, ) =1, then ExpW(P ) = or Expw(P ) =
if ExpW(P A P ) = 0, then Expv(P ) =0 or Expw(P ) = 0. These two

conditionals are missing from the list of conditions satisfied by Exp

v

because the following two conditionals are missing from the list of

conditions U1, U2, U3, satisfied by UF Ul, : If P, vP_ €UF

v 12 v

P1 € UFW or P2 € UFW . If P1 A PQ € UIW , then P1 € UIw or P2 € UI¢ .

These two conditionals in fact characterize a prime ultrafilter and a prime

then

ultraideal, respectively, as shall be discussed next.
Using the definition stated in Chapter I(C), we shall say that an

ultrafilter UFW in a PQM is prime IFF, for any P1’P2 € PQM s

(d) If P1 v P2 € UF¢ , then P1 € UF¢ or P2 € UFW .

If we take PQM to be a PQMA and if P, % P, s then P v P, is not

defined and so trivially, the antecedent of (d) does not obtain, So no

Dually, an ultraideal UI, in a

v

special provision is made for PQMA .

P is prime IFF, for any P sP, € PQM )

QM
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' _ ‘ :
(a") If P1 A P2 € UIW » then P1 € UIW or P2 € UIW .

Every ultrafilter (ultraideal) in a Boolean structure is prime.

But as stated without proof in Chapter IV(F), if a P contains

QM
incompatible elements, then there is some ultrafilter in PQM which is not
prime; i.e., if a PQM contains incompatible elements, then not every
ultrafilter in PQM is prime. .This claim shall be proven with the help of

the following propositions.

Proposition A: For any UF, ina P Mo if UF, is prime,

v Q v

then UF, UUI, =P . In other words, for any UF, in a
¥ oY T ou G Al

PQM , if UFW satisfies (d), then, for any P € PQM , either

P ¢ UF¢ or P € UIW (where UIw is the ultraideal dual’to

UFW)'

For any UFW in a PQM s QM °

P ¢ UF@ or P £ UP¢ . Assuming that UFW satisfies (4),

P £ UF implies P € UF. For P VP =1 €UF, , and so by

and for any PEP either

(d), either P € UF¢ or PV ¢ UFw 3y so if P £ UF then

P" € UF, . And by (c), PV ¢ UF, implies P € UL . So for any

=
P€eP eith P ¢ UF P eUI . .E.D.
QM ° er ¥ or ¥ Q

X

Proposition B: If all the atoms in a PQMA are mutually

compatible, then every element P#0 in PQMA

is the join of

the atoms it dominates.

Let P, be any atom in P ma Such that Pi <P, and let

QMA

Vv .Pi be the (finite or infinite) join of all such atoms. (This
i

join is defined because by assumption, all the atoms in P are

QMA
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mutually compatible.) The rest of the proof proceeds exactly as

the proof of Lemma C in Chapter V(A), with substituted for

PbMA

PQML .

Now the claim stated above may be proven as follows.

Theorem B: Ifa P M contains incompatible elements, then not

Q

every ultrafilter UF, in P M is prime.

v Q
Proof: Assume on the contrary that PQM contains incompatible elements
and every ultrafilter UFW in PbM is prime. Then by Proposition A, for
every UFW in PQM . UF¢ U UI¢ = PbM , where UFw U'UIW = Usw
= {P ¢ PQM : P& P¢} - for some atom P¢ € PbM . Thus each atom PW in
PQM is compatible with every element in PQM 3 in particular, each atom
is compatible with every other atom in PQM » that is, the atoms in PQM
are mutually compatible. It follows that the set of atoms in PQM

generates a Boolean substructure when closed with respect to the A, v, +

operations of P for as stated in Chapter I(D), (E), (F), any set of

Qv °

mutually compatible elements in a generate a Boolean substructure when

PQM
closed with respect to the operations of PbM . Moreover, for PQM qua
PQML » by Lemma C of Chapter V(A), every element P # 0 in PQML is the

join of the atoms it dominates. And similarly, for PQM qua PQMA s Dby

Proposition B, every element P # 0 in PQMA is the join of the atoms it

dominates, where all the atoms in P are mutually compatible. Thus

QMA

every element P in P is a member of the Boolean substructure generated

QM

by closing the set of atoms in P with respect to the A, Vv,

QM

operations of PQM . And so all elements in P are mutually compatible,

QM

which contradicts the assumption that P M contains incompatible elements.

Q
Q.E.D.
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Proposition A and Theorem B, with "ultraideal UIW" interchanged

with "ultrafilter UF, ," can also be proven. In short, any P M which

v Q

contains incompatible elements contains an ultrafilter which does not
satisfy (d) and contains an ultraideal which does not satisfy (d'), and thus

contains an ultrasubstructure US¢ = UF¢ U UIW which is a proper subset of
PbM .

¢ c PbM s 1f we restrict our attention to
the e;ements of PQM whlch are in US¢ .

P,,P, €US, =UF UUL :
1272 ¥ ¥ ¥

However, for any US

then we do have, for any

(a) If P, VP_ € UF then P, € UF, or P_ € UF;

1 2 v 1 g 2 v
' P ' ' .
(a") If P1 A 5 € UIW , then P1 € UIW or P2 € UIW
Proof: Assume on the contrary that P1 v P2 is a member of the ultrafilter
UFW but P1 £ UFW and P2 £ UFW . Then since Pl’PQ € USv = UFW U UIW .
A A .
P,,P, € UIW . So by (e), P oP) € UFW , and so by (a),
b L i . . .
P," AP (P1 VP UFW - (If P, VP, is defined in PQMA » then
P1<5 P, » and it follows that Pjs P +, P, » PQL, are mutually compatible
and so their meets and joins are all defined in PQMA .) Then by (a) again,
L v : ' oo .
0 = (P1 v P2) A (P1 Vv P2) € UFW . And so by (b), UFW = PQM , which
contradicts the assumption that UF? is an ultrafilter, which is a proper
filter, in PQM . The proof of (d') proceeds dually. Q.E.D.
It is noteworthy that if we take USW to be an improper
ol . o
substructure of PQM s 1l.2., USW PQM rather than USW PQM s then the
above works as a proof of the converse of Proposition A: For any UFW in a

P.,» if UF, UUI, = P.. , then UF, is prime. Proof: Assume on the
QM \4 12 QM \4

P, €eP P, vP, €U

contrary that, UFW U UIW = PQM » and for any Pl’ 5 e 5 ¥
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but P1 £ UFW and P2 £ UFW . Then since PQM = UFw U UIW , P1 P2 € UIW .

The rest of the proof continues as above to the end of the penultimate

sentence. Q.E.D. Thus we have: For any UFW in a PbM s UF¢ is prime
IFF UF, UUI, = P, . And ivalently, for any UF, ina P UF
¥ ¥ M n equ1v§ ently, for any ¥ i oM ¥
] t i IFF UF, U UI P i.e. IFF UF, U U1, i
is not prime ¥ ¥ # qu > -ees ¥ ¥ is a proper

substructure of P

QM -

Nevertheless, the point of the proof given in the paragraph

preceding the previous paragraph is to show that, even when UF¢ U UI\‘VCPQM ’

i.e., even when UF, and UI are each not prime in P with respect

\4 ¥ QM °

to the elements in the ultrasubstructure US, = UF, U UI, c P UF:
¥ ¥ 7 Qu ° 12

does satisfy (d) and UI¢ does satisfy (d'), and so UF* and UIW may

each be said to be prime with respect to US¢ . Concordantly, for any atom

Pw € P, even when the state-induced expectation function EXPW on P

QM QM
does not satisfy all of the conditioms listed as TF1, TF2, TF3, nevertheless,

with respect to the ultrasubstructure USW C PbM » EXPW does satigfy all
the conditions: For any P € US C PQM , for any P1,P2 € Usw c PQM (qua
PQML)’ for any P, PN P, € Us¢ c PQM (qua PQMA):
TF1 Exp\p(P1 Vv P2)_= 1 IFF Expw(P ) = ExpW(P ) =
Exp“y(P1 v P2) = 0 IFF BxpW(P ) =0 or Expv(P ) =0
TF2 Exp"y(P1 A P2) =1 IFF Expw(P ) =1 or ExpW(P ) =1
Exp\ll(P1 A P2) = 0 IFF Expw(Pl) = ExpW(P ) =
TF3 Expw(P*) =1 IFF Exp¢(P).= 0
Expw(PL) = 0 IFF Exp,(P) = 1
Thus EXPW is an ultravaluation on the ultrasubstructure USW 3y that is,

EXP¢ » as defined with respect to UF, and the dual UI is a bivalent,

¥ v
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truth-functional ((&) or (4,4)) mapping on Usw = UF? U UI¢ . More

exactly, each quantum state-induced EXPW ona P truth-functionally

QMA
() assigns 0, 1 values to the elements in its affiliated Usw , which

is a subalgebra of P And each quantum state-induced EXP¢ on a

QMA *

PQML truth-functionally (&,4) assigns 0, 1 values to the elements in

its affiliated ultrasubstructure US which is a sublattice of P

v QML °
The truth-functional (&,8) character of Exp¢ on the domain

Usw c PQML may seem surprising in the light of the Chapter V(A) description

of the truth-functionality V(&,&) problems caused by the meets and joins

of incompatible elements in P Yet Expw satisfies TF1, TF2, TF3,

QML °

for any elements P, , P, in USW cP

1 2 QML

among any compatible and incompatible elements in

. Thus EXPW presefves the A,

v operations of PQML

Us¢ ; in other words, EXPW is truth-functional (4,%) on US

v € Pour

As mentioned in Chapter V(C), Friedman and Glymour propose, for

<

the quantum P structures, semantic mappings which are required to

QML

4

preserve the operation and the = relation of P but are not

QML

required to preserve the A, V operations among either compatible or

incompatible elements of PQ . However, it is easy to show that a

ML

Friedman-Glymour mapping is in fact bivalent and truth-functional (&,%)

on an ultrasubstructure of P just like the quantum state-induced

QML °

EXPW mapping. The Friedman-Glymour semantic mappings are called

S3-valuations v : PQML -+ {0,1}  and need only satisfy the following two

conditions: For any P1,P2 € PQML s
(1) v(B)) = 1 IFF v(P*) = 0

(ii) If V(Pi) =1 and P1 < P2 , then V(P2) =1,

It follows from (i), (ii), that, for any S3-valuation v on a PQML and
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for any given element P, € PQML , 1if v(Po) = 1, then for any P € PQML ’
v(P) =1 if P = P0 and v(P) =0 if P = PéL. For if v(Po) =1 and
P2 Py, thenby (ii), v(P) = 1. And since P < P6L IFF P, <ph if
v(PO) =1 and P = P'L, then PO <Pt and so by (ii), v(pt) = 1, and

. _ Ay . S
then by (i), v(P) = v((PH)™) = 0. When PO is an atom PW in PQML s
then as shown in this section, the set {P € PbML : P> Pw - is an

ultrafilter UFW in PQML and the set {P ¢

ultraideal UI, in P . And it follows from the conditions satisfied

v QML

by UFW and UIW that a mapping like the S3-valuation which assigns the

value 1 to the elements in UF, and assigns the value 0 to the

14

elements in UI¢ is not only bivalent but also truth—functional(é,%) on

Pou ¢ P S RJL} - is the dual

the ultrasubstructure UFW U UIW of PQML . So besides being bivalent and
L <

s £ preserving with respect to the entire PQML s

also bivalent, truth-functional(b,%) ultravaluations on the

the S3-valuations are

ultrasubstructures of P M, > &s are the quantum state-induced

Q

expectation-functions.

Of course, for any atom P¢ €P if the ultrasubstructure

QI -’

i-eo, if US\I[ = PQM s

then the quantum expectation-function Expw » which is induced by the pure

Us, = UF, U UI is an improper substructure of P
V2R 2 prop Qu *

state represented by P is a bivalent, truth-functional ((&) or (4,%))

¥’
ultravaluation on the entire PQM structure. In particular, as described
in the digression prior to the proof of Theorem A in Chapter V(A), if PQM
has a nontrivial centre which includes an atom P¢ (labeled PC in the
digression) of PQM s so this P¢ is compatible with every P € PQM s

then the ultrasubstrucutre USW = {P €P : Pé> Pw}‘= PQM . And so the

QM -
mapping (labeled h, in the digression) which assigns the value 1 to the

elements in UFW ~and assigns the value 0 to the elements in UI,

\" 9



134

namely, the state-induced EXP? s truth-functionally ((b) or (é,&))

assigns 0, 1 values to every element in PbM = Usw = UFv U UIW .

However, if P contains incompatible elements, then as shown

QM

by Theorem B, there is some ultrafilter UFW in P which is not prime,

QM

and so by the converse of Proposition A, UFw U UIw 7 PQM » 1l.e.,

UF¢ U UI¢ c PbM . It is precisely because every quantum PQM containing
incompatible elements has at least one ultrasubstructure which is smaller
than the entire PbM that I have chosen to assign 0, 1 truth-values to

the elements of any propositional or logical structure P according to the
definition: TFor any element P € P, v(P) =1 if P € UF and v(P) =0

if P € UI, rather than according to Sikorski's definition of a bivalent
homomorphism: for any element P € P, v(P) =1 if P € UF and v(P) =0
if P £ UF. With respect to a Boolean propositional or logical structure

B, e.g., L or PCM » the two definitions are equivalent bgcause

UF UUI =B for every UF and dual UI in B, since every UF (and dual
UI) in a Boolean structure is prime. So each may be regarded as the
definition of an ultravaluation on a Boolean propositional or logical
structure B. That is, each definition defines a bivalent, truth-functional
mapping on a B with respect to an UF and dual UI in B; such a mapping
is called an ultravaluation because, with respect to the Lindenbaum algebra

L of classical propositional logic, such a mapping is the algebraic version
of a standard valuation. But the two definitions are not equivalent

whenever UF U UI € P. 1In particular, the two definitions are not equivalent

with respect to a quantum P which contains incompatible elements and

QM

thus contains at least one ultrasubstructure UF, U UI < P

¥ VoMo

According to both definitions, any P EIPQM such that
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PWE UFW U UIW is assigned the value 1 if P € UF, and is assigned the

v
value 0 if P € UIW s because for any such P € UF, U UI, ,

¥ v

P € UL, IFF P £ UF So with respect to a given ultrasubstructure

¥ 12

UFw u UIV c PbM s

mapping which assigns 0, 1 values according to either definition is

both definitions are equivalent.” In particular, a

bivalent and truth-functional ((4) or (4,6)) on the ultrasubstructure

UF¢ U UI¢ - PQM . But the two definitions differ with respect to the

elements of P, which are outside of a given UF, UUI, € P, . Ever
QM g vy T Y
PeP such that P £ UF, UUI, K c P is assigned the value 0 accordin
Qu £ UFy U ULy < Py g g
to the Sikorski definition since every such P is not a member of UF¢ .
However, the assignment of the value 0 to every P £ UF, U UI, according

v v

to the Sikorski definition is not a truth-functional ((&) or (&,%))

assignment, as shown by the following example. For any P € P M if

Q
P £ UFw U UIw then Pi'ﬁ UFW U‘UIw . TFor assume on the contrary that
P g UF, UUL , i.e., P AUF, and P £UI, and Pf‘f UF, UUT, 5
f.e., P ¢ UE, or P € ur, . If Pt UFy , thenby (e), P €uUIT
which contradicts the assumpti?n P £ UIW . And if phe¢ UIW s then by
(c'), P € UF¢ » which contradicts the assumption P £ UFv . Thus if
P £ UFW U UIW , then also P‘L £ UFw U UIW . In particular, both P,

pt £ UF, , and so according to the Sikorski definition, v(P) = v(Ph)

But PvpPr=1c¢ UFW , and so v(P v PY) =1, Hence, for any

= 0.

P £ UFW U UIw c PQM s

mapping which assigns values according to the Sikorski definition is

v(P VP =1 #0=vw(P) vviPh. So although a

bivalent on the entire P it is not truth-functional ((4) or (éu¥))

Q1 °

on the entire P . In contrast, the other definition which uses the

QM

condition "if P € UI" rather than the condition "if P £ UF" leaves open

the questions of how and what values are to be assigned to such elements
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P £ UFW U UI¢ c PbM . So the only difference between the two definitions
is that one leaves these questions opeﬁ while the other assigns the &alue

0 to the elements outside a given ultrasubstructure. Since these 0 value
assignments are not truth-functional ((&); or (4,8)), including them as
part of the definition of an ultravaluation on a PQM actually adds little
beyond satisfying in a trivial way the bivalency desideratum. Thus we have
taken the definition which uses the condition "if P € UI" as the
definition of an ultravaluation on a PQM .
As described in the preceding sections, a state-induced

ultravaluation Exp¢ assigns values between 0 and 1 to the elements

outside UFV U Ulw cP . And Exp¢ does preserve the + operation and

QM
the = relation of PQM as it assigns these intermediate values, but the
A, V -operations of PbM are not preserved. So an EXPW is neither
bivalent nor truth-functional ((&) or (4,4)) on the entire PQM .

Friedman and Glymour propose that their S3-valuations on a PQML s
which have been shown to be ultravaluations on the ultrasubstructures of
PQML » also assign 0, 1 values to the elements outside their affiliated
ultrasubstructures. Most simply, the value 0 may be assigned to every
atom (one-dimensional subspace) and the value 1 may be assigned to the
orthocomplement of every atom (two-dimensional subspace) outside a given
ultrasubstructure of a three-dimensional Hilbert space PgML (Friedman-
Glymour, 1972, p. 27). Again, the & operation and the < relation of
PQML are preserved by such 0, 1 value assignments to the elements outside
an ultrasubstructure. And this proposal avoids at least some of the
truth—functionality(é,%) problems of the more simple proposal that the

value O be assigned to every element outside an ultrasubstructure. But

Friedman-Glymour do not describe how 0, 1 values may be assigned for, say,
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4 .
a four-dimensional Hilbert space PQML which has not only one- and

two-dimensional subspaces but also three-dimensional subspaces outside any

.
QML

proposal, and any other proposal of a bivalent semantics for the quantum

given ultrasubstructure of P And of course, this Friedman-Glymour

PQML structures, inevitably runs into truth-functionality(d,¥$) problems,

as shown in Chapter V(A), and also truth-functionality(d) problems, as
shown by Kochen-Specker.
While addressing the issue of a predicate calculus for a

Kochen-Specker P type of quantum propositional logic, Levy proposes

QMA

that, besides the 0, 1 values assigned by a state-induced ultravaluation

to the elements in an ultrasubstructure of P a third truth value,

QMA °
inappropriate, labeled N, be assigned to the elements outside a given

ultrasubstructure,. Such a three-valued semantics for a quantum PQMA or

PQML is, of course, not bivalent and is also not truth-functional (&) or

(6,8)), as Levy mentions.G. An example of a violation of *:
truth-functionality ((&) or (d,%)) is given at the end of the next
section.

This Levy proposal of three-valued semantic mappings for PQM
structures is different from previous proposals of a three-valued semantics
for quantum propositions. For example, Reichenbach assigns his third truth
value I (Indeterminate) to quantum propositions which are meaningless
according to the Bohr-Heisenberg interpretation of quantum mechanics. In
particular, if P1 % P2 then at most one of P1 s P2 is meaningful while

‘ ' v
1 A P2 and P1 P2 are each

meaningless (Reichenback, 1965, pp. lu43-145), However, even though

the other is meaningless, and also P

. H
P1 ¥ P2 » they may both be together in some ultrasubstructure of PQM » in

which case both of them, and their meet and their join are all assigned the
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usual 0, 1 truth values by the state-induced ultravaluation affiliated
with that ultrasubstructure.

In short, although semantic mappings on a P, which assign

QM

values between 0 and 1 or which assign a third truth-value like N +to

the elements outside a given ultrasubstructure of P are not bivalent

QM

semantic mappings on the entire P when UF, U UI cC

QM g Y ULy, < oy o

such mappings are truth-functional ((&) or (&,4)) wherever they are

nevertheless

bivalent, namely, on UF, U UI, . Thus the proposal of such semantic

v v

mappings for P M has the virtue of clearly demarcating the substructures

Q

of PQM with respect to which bivalent, truth-functional ((&) or (b,%))

value assignments are possible, namely, the ultrasubstructures UF, U UL ,

v ¥

for any atom P, € P .
v v * Tom

Section C. An Example

Consider the fragment of the P3 structure of subspaces (or

QM

projectors) of three-dimensional Hilbert space diagrammed below:

1
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This fragment contains four maximal Boolean substructures: mBS2 generated

by the atoms {Pi,P2,P3},- mBS5 generated by the atoms {PS’PH’P5}" mBS,

generated by the atoms {Pu,PG,P7},v and mBS9 generated by the atoms

{P7,P8,Pg}.- Clearly, these four mBS's overlap since they share atoms.
If.we had started with the initial set S = {Pi’PQ’ . e ,Pg}

of these nine one-dimensional subspaces of Ha, then the partial-Boolean

algebra generated by closing S with respect to the A, Vv, operations

of PbMA is the finite fragment of 20 elements diagrammed above. However,

the orthomodular lattice generated by closing S .with respect to the A,

vV, * operations of P M is denumerably infinite and so exemplifies the

QML

proliferation of lattice elements due to the lattice definitions of A, Vv
among incompatible elements, as mentioned in Chapter IV(E). Let us focus

on the element P3 which is compatible with P1 s P2 R P‘+ R P5 . Consider
the incompatible elements P3 ¥ P6 » their join P3 % P6 = PJL. This P;L

is also equal to P, V P_ and to P6 vV P where P3 &rPS and P6<£ P

3 5 7° 7°

So the join P3 \% P6 does not introduce any new element. And the join

P3 % P6 is an example of what Strauss would call the lattice misinterpreta- -

tion of the element Pu . Similarly, consider the incompatible elements

P3 ¥ P7 . Again their join P3 Y P7 = PAL, so no new element is introduced

by having the V -operatioﬁ'defined among these two incompatible elements.
But now consider the two incompatible elements 'P3 & P8 3 their join
P3 v P8 and the meet of their orthocomplements PéL A PéL are each not

equal to any of the twenty elements in the above diagram. Let

Y Lo - L R Sl < p+
P3 A P8 Pu and so P3 Vv P8 (P3 A P8_) Pu . Clearly, P3 < Pu .
L 4 A L
and so P3 é;Pu and also P3 é) Pu . Let P3 A Pu = Pv and so
P, VP = (Prapt)y =p+, Clearly, P~ >=P. and P =P , and so
3 u 3 u v v 3 v u

PV¢5 P3 and Pv é,Pu . Thus {Ps,Pu,PV}- are three mutually compatible
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atoms which generate another maximal Boolean substructure, say mBSv . The

relations among these elements are diagrammed below; for clarity, all the

AL
elements of the first diagram have been omitted except the P3 R P3 s P8 ’

PéL, 0, 1 elements:

But besides P. <P, wh let P AP =P and P VP =P
e 3=y en we 3 g -~ fy 8ndso ry 8 ‘u’

we also have: P_ =< P'L, and so P é P and also P'LéPJ'. Let
8 u 8 u 8 u

PPAP =P andso P, VP = (PTAPY =P . Clearly, P 2P and
u 8 u W w

s
8 u W 8 8
4
P =P , and so P & P, and P & P . Thus {P_.,P ,P } are three
w u W 8 W u 87 uw
mutually compatible atoms which generate yet another maximal Boolean
- Lo
substructure, say mBSW . Moreover: P8 Y PW = P8 v (P8 A Pu )
L i 4 1 1 L L
= = = = A
(Pg ¥ Pg7) A (P8 VP ) = 1A P =P . So PIAP (Pg v Pw) P

1 Ay oL =
(P8/\PW)V(PW/\PW) P8v1 P8’ and thus
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i
P8 = (PdLA P;') = Pu v Pw . All these relations are diagrammed below; for

clarity, all the elements of the first diagram have been omitted except the

4 L
3 ° P8 s P 0, 1 elements:

P, , P g °

3

0]

Similarly, consider the two incompatible elements P3<¥ P9 5

their join P3 v Pg and the meet of their orthocomplements Pg'A P;’ are

each not equal to any of the 26 elements in the abové (combined) diagrams.

;‘)'L = P;L. Thus two more

elements have been introduced, and as described above, by closure, four more

1 L - 1
Let P?)/\Pg-PX and so P3vP9—(P3/\P

S L L L. 1
elements P = P_AP "= P 2 = AP . =
. 3/\ x;’Py P3VPX_, Pz Pg/\Px,and ?z P9

introduced, where {PS’PX’Py} - and {Pg,PX,PZ}' will be two sets of mutually

vV.P will be
X

compatible atoms, each generating two more mBS's, mBS and mBSZ » in
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the PgML generated by closing the initial set S with respect to the A,
V -operations of PbM . Likewise, the incompatible pairs P% 4 Pw s

P3 b PZ may be joined and meeted to introduce even more elements. And, of

course, when we focus upon another element besides P3 s say P2 » which
is incompatible with Pu , P5 . P6 R P7 . P8 . Pg . Pu . Pv R PW R PX . Pz,
vthe joins of P2 with each of these elements will introduce even more
elements, etc. Thus the PZML generated by closing the initial finite set
S with respect to the A, v,* operations of PQML will contain a
denumerable infinity of elements. Nevertheless, the infinite PgML and the
corresponding infinite PgMA of all subspaces of H3 each contain the same

elements, so it is not correct to consider a partial-Boolean algebra of
subspaces to be missing elements compared with an orthomodular lattice of |
subspaces. The point of the above example is to show how, when an
orthomodular lattice of subspaces is generated from an initial set of

subspaces by closing the initial set with respect to the A, v, operations

of P the lattice definitions of A, v among incompatibles may result

QML °

in a proliferation of elements which does not occur when a partial-Boolean
algebra of subspaces is generated from the same initial set by closing the

set with respect to the A, v, operations of PQMA .

Let us assume that the quantum system, which is associated with

3 . ‘ ‘s .
H and which Pl’P2’ .« . ,P9 » Trepresent propositions about, is in the

pure state W3 represented by the projector P3 which is the atom P3 in

the (combined) diagram, which is a fragment of the system's propositional

3 ‘ . .
structure PQM . So we focus on the state-induced expectation-function Exp3
and its affiliated ultrasubstructure US3 = UF3 U UI3 c PgM . With respect

to the twenty element P3

QUA generated by the initial set S, we have:
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N R ‘=_L =.\.
UF3 = {1-,P3,P3 VPi = P2 . P3 vP2 = P1 , P3 qu P5 R P3 vP5 Pu} and
_ R 4 . . e 3
UI3 = {0,P ,P2,P1,P5,P4}. With respect to the denumerably infinite PQML

generated by the initial set S, we have:

= . = - = L = L+ = ’L=
UF3 = {1, P3, P3 vP1 P2 ’ P3 vP2 P1 . P3v Pu P5 ) Pav P5 Pu
L 2
= PyVP = P, VP, , Py VP, = P "= P, VP , P,V P =P,
N .
= = V = . * o 0
P3 VPg PX P3 vP , P3 Px Py , etc., a denumerable

i . 3 . .
infinity of two-dimensional subspaces of H , each containing Ps};

N e s
UI3 = {O,P3 ’PQ’Pl’PS’PH’Pu’Pv’Px’Py’ etc., . . . a denumerable infinity
of one-dimensional subspaces of H3, each contained in Péy};

And with respect to the infinite P3 and P3 of all subspaces of H3,

QMA QML

UF3 in both structures includes the 1 element, P3 » and the

e cas : . . 3 . s
nondenumerable infinity of all two-dimensional subspaces of H containing

P3 . And UI3 in both structures includes the 0 element, PéL, and the

nondenumerable infinity of all one-dimensional subspaces of H3 contained

. e .
in P3 . Hereafter, let us just focus on the twenty element PZMA

generated by S and the denumerably infinite PZML generated by S.

Clearly, US_ = UF3 U uz is larger than the two maximal Boolean

3 3

substructures mBS, and mBS_ which contain P3 in the twenty element

2 5
gMA . And likewise US3 is larger than any of the maximal Boolean

mBS

P

substructures mBS mBSV . mBSy » etc., which contain P in

3
the denumerably infinite fragment PSML . Moreover, by inspection it is

. .. 3 _
clear that in the finite PQMA s US3 = mBS2 U mBS

is clear that in the denumerable PgML .

listed elements in US3 and just the explicitly listed mBS's containing

P, » the listed elements in US_ = mBS_, UmBS_ UmBS U mBS . That is,
3 3 2 5 v y

2° 5°

5 3 and by inspection it

considering just the explicitly
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equals the union of all the mBS's containing P as proven in

3 3°

Section B.

rather than conditions (aH), (b), to define a filter ina P

set S' = UF3 U {P;} -would be a proper filter in the twenty element

It is also worth noticing how, if we had used conditions (a), (b),

Qua ° then the

3
PQMA

diagrammed above., Using (aH), it is easy to show that S' 4is not a filter

. . 3 v s . . Lo o,
in this PQMA . If S is a filter, then since P2 ,P7 €S', by (aH),
I
there is an element d € S' such that 4 =< PéL and d = P7 . In the twenty
3 i L 1 L X i A L
<< C< <
element PQMA » Py=P,, 0sP, ,P SP ,P <P ,P <P, ,0sP,
L L L L 4 L

< < : .
P4 < P7_, P6 =< P7 . P8 < P7 , and P9 = P7 5 soonly 0 = P2 and 0 = P7
But 0 £S', and so S' is not a filter. Q.E.D. But using (a), it turms
out that S' is a proper filter in the twenty element PSMA . If 8' is

a

member of S', but this meet is not defined in the twenty element P3
J_ N
since P2<¥ P; . (If the meet were defined, as in a PBM

and P’L

be

S'

filter, then since P;,P; € S', by (a), the meet of P;’, P;’ is a

QMA

. s 4
containing P

QML 2

1
then the meet P. A P. = 0 thus since 0 £S', S' would not

7° 2 7 i

a filter.) Moreover, except for the 1 element, every other element in

is incompatible with P;' and so the meets of P;' with every other

. . . 3
element in S' are not defined in the twenty element P . And

QMA

i 4 s L
1A P7 = P7 € S'. Thus S' satisfies (a). Also 8! = UF3 U {P7}
satisfies (b); for UF3 satisfies (b), and only 1 = P;', P;'z P%L, and
1, P&LG S'. So S8' 1is a filter in the twenty element PZMA . Q.E.D.
Moreover, since 0 £ S', S' is a proper filter in this PgMA . So UF3
is the proper subset of a proper filter in this PSMA" Thus UF3 is not

an

rather than (aH) to define a filter ina P

ultrafilter in this P a very undesirable result of using (a)

3
QMA °?

QMA

Returning to the state-induced Exp3 » which assigns the value 1
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to elements in UF3 and assigns the value 0 to elements in UI3 , 1t is

easy to find examples of how Exp3 is not a truth-functional(é) mapping on

the entire twenty element PgMA . Consider the compatible elements

3 X L
P6 P7 € PbMA : P6 A P7 =P, ¢ UI3 s

P6,P7 £ UF, UUL, , so Exp3(P )#0 (and # 1) and Exps(P‘L) # 0 (and

s0 Expa(P‘L A P ) = 0. But

# 1). Thus Exp3(P'L) A Exp3(37) £0 = Exp3(P A P7 ). Similarly, it is

easy to find examples of how Exp3 is not a truth—functional(égk) mapping

on the entire denumerable PZML . Consider the incompatible elements

3 . L _ i _ A
P3,P8 € P, © B3 VPg =1 €UF,, so Exp(PrvP) =1. But Pre¢ UL,

Ly o_ 3} 1
50 Exps(P3 ) = 0, =and P8 ¢ UF3 U UI3 ., SO EXPB(PS) #1 (and # 0).

+ = - - 4
Thus ExpS(P3 ) v ExpS(PS) =0V gxpa(PB) = Exps(PS) 21 = Expa(P3 v P).

8
. 4 i
Since the elements 7 P8 ¢ UF U UI s, the meet P6 A P7
and the join P3 v P;’ are examples of what were called Usw-extra meets
and joins in Section B, where here, US¢ is US3 . These are the meets and

joins which cause truth-functionality ((& or (d,%)) problems for Exp, .
Whether they are the meets and joins of compatible elements or of incompatible
elements is irrelevent. What makes such meets and joins problematic for

Exp3 is that one or the other or both of their subformulae are elements of

PbM which are not members of US3 . Moreover, every violation of
truth-functionality ((&) or (&4,%)) by an Expw on a PbM involves such

USW—extra meets and joins. For as has been shown in Section B, any Bxp¢

is truth-functional ((d) or (&) on the domain Usw , that is, EXP¢

does preserve the meets and joins of the elements of PQM which are members
of US, .
¥
As mentioned in Section B, the truth-functional(é,%) character of
an Bxpw on US¢ c PQML may seem surprising in the light of the Chapter V

(A) description of the truth-functionality(d,%) problems caused by the
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meets and joins of incompatible elements in P . However, we can find

QML
many examples of the truth-functionality(b,B) of Exp3 on the

ultrasubstrﬁcture' US3 of the denumerable PbML considered in this section.

L
Consider the incompatible pairs P2 % P5 . PS'%»PY R P1 # Px , and the

L
following meets and joins of these incompatible pairs: P;'A P5 s Pu v Py ’

N _L J_ _ .
P1 A PX . Clearly, P2 € UF3 . P5 € UI3 ,» and P2 A P5 =0 € UI3 3 thus
_ _ _ 4 s
Exp3(P ) A Exps(P ) =1 A0=0-= Expa(P2 A P5). Clearly, P "€ UF, ,
- . ' L -
Py €UI, , and Pu v Py =1 €UF, ; thus Exp3(Pu ) v Exps(Py) 1vo

— g — -L
=1 = Exp (P v Py). Clearly, P, €UI, , P €UL, , and P AP

=0 €UI,; thus Exp3(P1) A EXPB(PX) =0AO0=0-= ExpS(P1 A PX).

It is also easy to find examples of violations of
truth—functionality(é,%) by a semantic mapping v which assigns 0, 1
values to the elements' in US; and in addition assigns 0, 1 values to the

elements outside of US3 according to the Friedman-Glymour proposal mentioned

in Section B. Consider the three mutually compatible elements

Pg,P8 P7 £ US in the denumerable PQML .

proposal, v(P ) = V(P ~) =1 and V(P ) = 0. However, P;'A Pg‘= P7 in

- - _ L i
PQML , and so V(P9 A P ) v(P ) =0#1 A1 = V(P9 ) A v(P8 ).

According to the Friedman-Glymour

Finally, as an example of a violation of truth-functionality(d)
by a semantic mapping v which assigns 0, 1 values to the elements in

US3 and in addition assigns the value N to the elements outside of US3

according to the Levy proposal mentioned in Section B, consider these two

joins of compatible elements in the twenty element PQMA : P6 % PéL

v(P) = v(Ps’L) = v(p,) =

and
P_ . i
P6 Y 7 Since P6 6,P £ US3 PQMA .
Similarly, since Po VP, = P8 £ US3 R V(P6 Y P7) = N. But
L
P6 Vv P6 =1 ¢ UF3 , SO v(P6 Y PéL) = 1. In order to show that v is not

truth-functional(d), assume on the contrary that it is truth-functional(d).
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= J- = L = - =
Then 1 = V(P6 Y P6 ) = v(P6) V_V(PG ) =NVN V(PS) Y V(P7) v(P6 Y P7)
=N, i.e., 1 = N, which contradicts the presupposition that N # 1.

Section D. A State~induced Semantics for the P Structures

QM

As described in Chapter II, a bivalent, truth-functional semantics
for a Lindenbaum Boolean algebra of classical propositional logic is a
complete collection of ultravaluations on the Lindenbaum algebra. And as

described in Chapter III, a state-induced, bivalent, truth-functional

semantics for a Boolean PbM of classical mechanics is a complete collection
of state-induced ultravaluations on the PbM . With these classical

precedents in mind, in order to fully elaborate the notion of a state-induced

semantics for a quantum P it remains to be shown that the collection

QM °
of state-induced ultravaluations on the ultrasubstructures of a P is

QM

complete.
We can establish completeness in the required sense if we can

show that, for any given pair of distinct elements P1 # P2 ina P

QM °?
the. set of atoms dominated by P1 is not the same as the set of atoms
dominated by P2 . For clearly, if PW is an atom dominated by P1 s l.e.,
Pw =< P1 » but not dominated by P2 , 1i.e. PW b3 P2 » then the state-induced

mapping Exp¢ by definition assigns the values Exp(Pl) =1 # Exp(PQ). Now

\ 7 .
as pointed out by van Fraassen, if the elements of a P are regarded as

QM
subspaces of a Hilbert space, it is easy to show that, for any P1 # P2 in
a P the set of atoms dominated by P1 differs from the set of atoms

. TFor as stated in Chapter IV(A), a subspace of a Hilbert

QM °
dominated by P2
space is a set of vectors (which forms a closed linear manifold). Thus any
two subspaces of a Hilbert space are distinct IFF the two subspaces do not

contain exactly the same vectors, where a vector in a Hilbert space is
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uniquely associated with an atom in the P structure of the Hilbert space.

QM

However, we may also consider supporting the completeness result

by an algebraic proof which does not invoke the subspace character of the

elements of a PQM . For the case of a PQML » an algebraic proof of the
completeness result can easily be shown to follow from Lemma C of Chapter V(A).
An algebraic proof of the completeness result for a PQMA is more difficult.

Nevertheless, the weak completeness of the collection of state-induced

ultravaluations on a PQMA or a PQML 1s easily proved as follows:
Proposition C: For any PQM 5 the collection of state-induced
ultravaluations on the ultrasubstructures of PQM is weakly
complete, i.e., for any element P # 0 in PQM » there is an
EXPW such that Expw(P) #_Exp¢(0).
By the atomicity of PQM » for any P # 0 in PQM there is an
atom Pw € PQM such that PW < P, and so the ultrafilter
UFW = {p € PQM : P = P¢} - contains P, while the dual ultraideal
UL, = {P € P_: P <P-} contains 0 since 0 <P . Thus the

N4 QM A4 v

state-induced ultravaluation EXP¢ which assigns the value 1 to

the members of UF, and assigns the value 0 to the members of

v
UIW satisfies: ExpW(P) =1#0-= Expw(O). QfE.D.

For the case of a PQML » the completeness result is an immediate

consequence of the following Proposition D which follows from Lemma C.

3 » : P .
Proposition D: For any QML and for any Pl’PQ € PQML , 1if
PIF%.PQ » then there is an atom PW € PQML such that either

= . <
PW < P1 and PW £ P2 , or PW = P2 and PW .3 P1 .

Assume on the eontrary that P1 # P2 and for every atom PW € PQML’
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_.P IFrF P, <
"y v =
Let {Pi}iEIndex be the set of atoms of PbML which are dominated
by P1 and let V Pi be the join of all such atoms. Let
i
{Pk}k€IndeX be the set of atoms PbML which are dominated
by P2 and let V Pk be the join of all such atoms. By
k
assumption, for every atom P¢ € PQML ) Pw € {Pi}ieIndex
PW € Prhietndex * ™9 Pilicrngex = (Prtierndex » 374 °
Vv = . = . = P .
. Pi v Pk But by Lemma C, P1 V. Pl and P2 v K 3
i k i k
thus P1 = P2 » which contradicts the assumption P1 £ P2 . Q.E.D.
Now the desired result follows as an immediate
Corollary to Proposition D: For any PQML » the collection of
state-induced ultravaluations on the ultrasubstructures of PQML

is complete, i.e., for any P1 #P. in P

5 oML there is an Expw

such that EXP¢(P1) # Exp¢(P2).

If P, # P2 » then by Proposition D, there is an atom

1
. € i = ' =<
PW , PQML such that either PV P1 and PW $‘P2 , or PW P2
, < )
and PW b P1 . If PW = P1 apd PW % P2 s then
€ = € : = P, - .
P, € UF {p PQML P PW} but P, £ UFy, And so

EXPW(Pi) = 1 but Exp¢(P2) # 1; thus Exp¢(P ) # Expw(P ).
Similarly, if PW = P2 and PW ¥ P1 .
P, £ UEW . And so Expw(P ) =1 but ExpW(P ) #1; thus

then P2 € UFW but

ExpW(PQ) # Exp¢(P1). Q.E.D.

For the case of P we now assume that P structures are

QMA ° QMA

not only associative, transitive, and atomic partial-Boolean algebras (as

defined in Chapter I(D)), but also satisfy the following
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Condition A: Every maximal Boolean substructure of a FbMA is

atomic.
And we make use of the following two lemmas proved by Edwin Levy:

Lemma F: TFor any P1 s P2 in a PbM , if P1é> P2 » then there

are these four non-exclusive but jointly exhaustive possibilities:

P1 = P2 s Or P2 = P1 s oOr PlJ_ P2 » or there are non-zero disjoint
elements P11’P§2 € PbM such that P11 < P1 and P22 < P2.

Proof: If P1 é,P then by the definition of compatibility (Chapter IV(C))

2 2
there exist three mutually orthogonal elements

P11,P22,P3 € PbM such that

P1 = P11 v P3 and P2 = P22 \Y P3 . We have eight cases depending upon which

of P,  are or are not equal to the 0 element. (1) If P,, =0

Pig 2 Ppo o Py 11
then P, =0 VP, =P and P, =P vP =P \% P1 5 thus P, =< P2 .

1 3.7 °3 2 22 3 22 1
(2) If P,, =0, then P, =0 VP, = Py and P, =P, VP, =P, VP, ;
thus P, <P, . (3) If Py =P,, =0, then P, =P, =P, . (4) If
Py =Py =0, then P =0 (and so P, = P2). (5) 1If P,, = Py =0, then
P, =0 (and so P, = P1). (6) If Piy =Py = Pé =0, then P, = ?2 = 0.

(Clearly, the results of cases (3), (4), (5), (6), are subsumed by the results

of cases (1) and (2).) (7) If P, =0, then P, =P, vO =P and

3 1 11 11
P,=P,, VO =P, ; thus Pl_L P, since P, | Py + (B) If P, #0
and P22 # 0 and P3 # 0, then since P1 = P11 v P3 ) P11 < P1 . However,
P11 = P1 is ruled out as follows, leaving just P11 < P1 . Since P11 # 0,
P, = P, IFF Py < P11 . And since by assumption P3_L P11 , l.e.,
P3 < Pli , We have P3 < P11 only if P3 = 0. But for this case (8), by
assumption P3 # 0. Thus P11 < P1 . Mutatis mutandis for .P22 <<P2 .

Q.E.D.
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Lemma G: All the atoms of a maximal Boolean substructure of a

[ are also atoms of P, M

QM Q
Proof: Assume on the contrary that there is a maximal Boolean

substructure mBS. .in P and an element P,. € P M such that P_. 1is an

0 QM 0 Q 0
atom of mBS0 -but PO is not an atom of PQM . Since- PbM is an atomic
structure, there is an atom P_ € P such that P < P, (P_ # P_. since
a QM a 0 a 0
by assumption, Py is not an atom of PbM 3y and Pa £ mBSo since by
assumption PO 1is an atom of mBSo .) Now since all elements in a maximal

Boolean substructure are mutually compatible, for every element P € mBS0 N

P é P0 . It follows by Lemma F that, for every element P € mBSO such that

g > ©°F (2) P0<P, or (3) POJ_P,

or (4) there are nonzero elements P',Pé € mBSQ such that P' < P and

P#0 and P # P either (1) P < P

o ?

Pé < PO . Since by assumption, Po is an atom of mBSO and P # 0,

possibility (1) P < PO -is ruled out. Similarly, since by assumption, Py

is an atom of mBS0 » possibility (4) is ruled out. Now considering

possibility (2), if P0 < P, then since Pa < P_  we have Pa < P, and so

0
L

Paép P. Similarly, considering possibility (3), if PO'L P, i.e., P P,

<
0 =

. A 1
then since Pa < P_  we have Pa < P, and so Pa¢£ P , hence Paé> P. So

0

for every element P € mBS, such that P # 0 and P # Py » we have

0

Paé P. Moreover, for P = 0, since Paé 0 we likewise have Paé P.

And for P = P0 , Since Pa.é P0 we likewise have Pat£ P. That is, for

every element P € mBS0 , P& PG and P é'Pa . So the set of mutually

compatible elements mBS U {Pa} - generate a Boolean substructure of P

QM
which contains all the elements of mBS0 plus Pa (and perhaps others).

Thus mBS is the proper subset of a Boolean substructure of P which

0 QM °

contradicts the definition of mBSO as a maximal Boolean substructure.

Q.E.D.
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Furthermore, given the conjecture that every mBS of a PbM is atomic, it
is a trivial point that all atoms of PbM which are in an mBS of PbM

are also atoms of the mBS. For the only way an atom Pa of PbM which is
in an mBS of PbM could not be an atom of mBS is if some other element
P € mBS were between Pa and the O-element in mBS but not in PQM .

But since mBS is a substructure of PbM , 1if some P € mBS were such that
0 <P = Pa in mBS then also 0 <P < Pa in PQM » and so Pa would not

P

be an atom of QM

We also make use of the following results. As mentioned in
Chapter I(D), Hughes has proven that any partial-Boolean algebra is isomorphic
to a partial-Boolean algebra constructed on a family of Boolean algebras
{Bi}iGIndex s as described by Kochen-Specker. Among other conditions, the
constructed partial-Boolean algebra A satisfies, for any elements
b,c,d € A, bVvec=d in A IFF there is a Bi such that b ve =4 in
Bi . Now as part of his proof, Hughes shows that any partial-Boolean algebra

can be constructed on the family of its own Boolean subalgebras. So in

particular, any PQMA can be constructed on the family of its own Boolean

subalgebras. Thus we have the following
Proposition E: For any P

and for any P,P P2 €P

QMA 1° QMA
P = P1 v P2 in PQMA IFF there is a Boolean substructure BS of
PQMA such that P = P1 v P2 in BST

We also make use of these two lemmas.

Lemma H: For any P1,P2 € PQMA s if P1 Y P2 is defined in

'PQMA ,» i.e., if P1é> P2 , then P1 v P2 is the least upper

bound of {Pi,P2}‘ in PQMA .
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. C - > . 3
Proof: C(Clearly, P1 \ P2 > P1 and P1 v P2 > P2 3 thus P, vP, is an

upper bound of {Pi’PQ}" And for any .P € PbMA », if P = P1 s l.e., .
P v P1 =P (and P é’Pi), and P > Pé , i.e., P v P2 = P, then because
P is an associative partial-Boolean algebra which satisfies:

QMA
Plé (P2v P) IFF (P1 v P2)CL P, we have (P1V P2) b P since Plé P and

P=PVP, =P VP (i, P& (P, vP)). So P 47(P1 VP,) and moreover,

2 2

P (P v Pi) v P

Pv P2

=Py (Plv P2), i.e., P>P, vP_. . Q.E.D.

2 1 2

Halmos' Lemma: In an atomic Boolean algebra, every element is the

join (least upper bound) of the atoms it dominates (Halmos, 1963,

p. 70).

Now we may prove the following Theorem C for P which

QMA °

corresponds to the above Proposition D for P ML, (The proof is due to

QML
Levy, Robinson, Chernavska.)
if

Theorem C: For any P MA and for any Pl’PQ €EP

QMA °

is not equal to

Q

PigévPQ,, then the set of atoms dominated by P1

the set of atoms dominated by P2 (i.e., there is an atom

P ¢

" PQMA such that either P¢ < P1 and P¢ £ P2 , oOr P¢ < P2
and PW p 3 Pl)'
Proof: Let A1 be the set of atoms of PQMA which are dominated by P1 R
i.e., A = {PW € PQMA : PW = Pi}; and let A, be the set of atoms of .
PQMA which are dominated by P2 . Assume A1 = A2 . Clearly, if
A1 = A2 = # (the empty set), then P1 = P2 = 0. Assume then that
A1 = A2 # #. Since A1 = A2 # B, there is a nonempty set Ay of mutually

compatible atoms of P each of which is dominated by P, and by P2 .

QMA ° 1

(1) Since P1 dominates each member of A, P1 is compatible with each



154

member of Ay . Thus, A$ U {Pi} - is a set of mutually compatible elements

of containing P

. Hence there is a Boolean subalgebra of P M 1

PQMA QMA

and also containing all members of A, ; and this Boolean subalgebra is

contained in a maximal Boolean subalgebra mBS' of . By Condition A,

PbMA

mBS' is atomic, and by Lemma G, all of its atoms are atoms of PQMA . Let

A' = {P! } be the set of all atoms of mBS' which are dominated by

Vs

P1 3 clearly, A' C A

i€Index

. Now by Halmos's Lemma, P1 is the least upper

bound of A' in mBS', i.e., P1 =V P¢ in mBS'. ‘Then by Proposition E
i i
P, = v P! in P . And by Lemma H, V P' 1is the least upper bound of
ooy QuA ii
A' in P . Now P2 dominates every member of A1 = A2 .

so P2 dominates every member of A', and hence P2 dominates the least

1

and A' ¢ A1 R

upper bound of A!, namely, P1 .

(2) By a similar argument it can be shown thet P1 dominates P2 . Thus,

P1 = P2 . So if P1 £ P2 » then A1 # A2 . Q.E.D.
And as in the PQML case, the desired completeness result follows
as an immediate

Corollary to Theorem C: For any P the collection of

QMA °

state-induced ultravaluations on the ultrasubstructures of PQMA

is complete, i.e., for any P1 £ P2 in P there is an

QA °
Expw such that EXP¢(P1) # ExpW(PQ).

The proof of the corollary proceeds as in the PQML case.

Summary
As described in Chapters II and III, a bivalent, truth-functional

semantics for a Lindenbaum Boolean algebra L of classical propositional
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logic is a complete collection of ultravaluations on' L, and a state-induced,
bivalent, truth-functional semantics for a Boolean PCM of classical

mechanics is a complete collection of state-induced ultravaluations on PCM
In both cases, an ultravaluation is a mapping which assigns the value 1 +to
the elements in an ultrafilter UF and assigns the value 0 to the elements
in the dual ultraideal UI; thus an ultravaluation is said to be defined
with respect to an UF and dual UI. Clearly, an ultravaluation is a
bivalent mapping on UF U UI, i.e., every element in UF U UI 1is assigned
a 0 ora 1 value. And it follows from the conditions satisfied by any

UF and dual UI 1in a Boolean structure that an ultravaluation is a

truth-functional mapping on UF U UI. Moreover, because the L, PCM

structures are Boolean, for any UF and dual UI inan L or a PCM s

UF UUI =L and UF U UI = PCM ,» thus the domain of each ultravaluation is

the entire L, PCM structure. And the completeness of the collection of

ultravaluations on an L ér a PCM is ensured by the semi-simplicity
property of Boolean structures. Furthermore, for the case of classical
propositional logic, each ultravaluation on the L structure of equivalence
classes of well-formed formulae in a (closed) set L is an algebraic version
of one of the standard valuations for L, which is part of the reason
ultravaluations are so called and is the main reason why ultravaluations on
any other propositional or logical structure are regarded in this thesis as

semantic mappings. And for the case of classical mechanics, ultravaluations

are said to be state~induced because in fact it is the states of a classical

mechanical system which induce mappings, namely, dispersion-free classical
probability measures, each of which M, is an ultravaluation on the
UFW U UIW = PCM structure of propositions which make assertions about the

values of the system's magnitudes.
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When we consider a P structure of propositions which make

QM

assertions about the values of a quantum mechanical system's magnitudes, the
states of the system similarly induce mappings, namely, dispersive generalized
probability measures, each of which EXPW is an ultravaluation on

UF\]/ U UI\P - PQM

ultravaluation EXPW is a bivalent mapping on UF, U UI' ; and it follows

¥ v

from the conditions satisfied by any UF, and dual UI: ina P that

v 12 QM

each state-induced ultravaluation is a truth-functional ((b) or (&,8))

. And as in the classical cases, each state-~induced

mapping on UF, U UI . But unlike the classical cases in which

¥ v

UF UUI = L and UFW U UIW = PCM for every ultrafilter and dual ultraideal

in L, PCM » for the quantum case, if PQM contains incompatible elements,

then not every ultrafilter and dual ultraideal in P is such that

QM

UF, Jur, =P rather, for some UF, and dual UI, UF UUI cP. .

¥ Voo ¥ vy Voo
When UFW U UIW is less than the entire PQM s We can at least be sure that
UF¢ U UI¢ is a closed substructure of PQM ,» which may be called an

ultrasubstructure. However, the affiliated state-induced ultravaluation

EXPW is a bivalent, truth-functional ((b) or (&,%)) mapping on just that

ultrasubstructure US. of P .
¥ QM

and every state-induced ultravaluation on a PC

Thus while every ultravaluation on an L

M is a bivalent, truth-

functional mapping on the entire structure, at least some of the state-induced

QM

truth-functional ((4) or (4,8)) mappings on just ultrasubstructures of

ultravaluations on a P containing incompatible elements are bivalent,

P rather than on the entire P . Moreover, the completeness of the

QM QM

collection of state-induced ultravaluations on the ultrasubstructures of a

P must be proven, as done in Section D.

QM

However, the fact that UF U UI < P for some UF and dual
’ ¥y Qe y 0
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UI, ina P containing incompatibie elements need not be a problematic

v QM

feature and is not the only problematic feature of the quantﬁm P -

Q

structures. As described in Chapter V(B), if we ignore the lattice meets and

joins of incompatibles and consider the proposal of a bivalent,

truth-functional(b) semantics for a P the presence of incompatible

Q1 °’

elements in P M is necessary but not sufficient to rule out a bivalent,

Q

truth-functional(é) semantics for P

QM °

2 . . . . . .
space P does admit a bivalent, truth-functional(d) semantics in spite

QM
of the presence of incompatible elements. The peculiar structural feature

=3
M

For a two-dimensional Hilbert

of three-or-higher dimensional Hilbert space P structures which does

Q

rule out a bivalent, truth-functional(é) semantics'is the presence of

=>
overlapping maximal Boolean substructures in Pnﬁa, for which the presence

Q

of incompatible elements is a necessary (but not a sufficient) condition.
The following similar remarks apply here in the Chapter VI discussion of the

proposal of a semantics for P consisting of a complete collection of

QM

(state-induced) ultravaluations on the ultrasubstructures of PQM :

If we ignore the lattice meets and joins of incompatibles and

consider the proposal of a bivalent, truth-functional(d) semantics for P

QM

consisting of ultravaluations, then the fact that UF¢ U UIW c PQM (rather

than UF¢ U UIW = PQM) for some UFW and dual UI¢ in any PQM‘

contains incompatible elements would by itself be harmlessly unproblematic

which

if UF¢ U UIW were equal to just a mBS of PQM and if the mBS's of

PQM were non-overlapping. For example, both these "if's" obtain in a PSM
2

oM does admit a complete collection

of bivalent, truth-functional(d) mappings, where by inspection it is clear

and as described in Chapter IV(F), a P

that each of the four bivalent, truth-functional(d) mappings on the

. 2 s . . . s
six-element P explicitly considered in that Chapter IV(F) is in fact a sum

QM
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of two ultravaluations, each defined on one of the two ultrasubstructures of

the six-element PéM . That is, UF, = {P ¢ PSM} P=P}= {P,l)

UI1 = {P ¢ PSM : P < Pi}v= {P;,O}, and US1 = UFivU UIl = mBS1 ;

UF2 = {PQ,l}, UI2 = {P;,O},v and U82 = UF2 U U12 = mBS2 . So each USi
equals an mBSi in PSM , and as described earlier in that section, the
mBS's of PSM do not overlap. (And the six-element PSM equals the union
of the two ultrasubstructures US1 U USQ.) Moreover, the two mappings ha ’

hb » are ultravaluations on US the two mappings hc s h., are

d

ultravaluations on US2 , and each of the four bivalent, truth-functional(d)

1 H]

1 h2 ’ h3 . hu , on the entire six-element PéM is the sum of

an ultravaluation on 081 plus an ultravaluation on US

six-element p2 » and more generally, any p2

QM QM

truth-functional(d) semantics consisting of a complete collection of

mappings h
5 Thus, the

does admit a bivalent,

bivalent, truth-functional(d) mappings on the entire P2 each of which

0) e
is a sum of ultravaluations on the ultrasubstructures of PSM . So the fact
that UF, UUIL < P for some UF, and dual UI, in an P containin
V2 Ao ¥ y Y Ton &

incompatible elements need not be a problematic feature. In particular, the

. : 2 .. . .
ultravaluations on the ultrasubstructures of a P containing incompatible

QM

elements may be added together to yield a complete collection of bivalent,

truth-functional(é) mappings on the entire PéM s

truth-functional(d) semantics for .PSM » 1in spite of that fact.

"However, neither of the above, underlined "if's" obtain in a

and thus a bivalent,

>
three-or-higher dimensional Hilbert space Pgﬁs.
Pn23 3 . P
QM may overlap, and the ultrasubstructures in a Q

>
any mBS, for each ultrasubstructure USW in a Pgﬁ3 is equal to the union

That is, the mBS's of a
=3
M may be larger than

>
of all the overlapping mBS's in Pgﬁs which share the atom PW s as shown
>
in Section B. So the fact that UF¢ U Ulw c Pgﬁs for some UPV and dual
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>
UIW in any Pn—s containing incompatible elements is problematic. In

QM

-
particular, the best we can do for such a Pgﬁ is to define bivalent,

truth-functional (() or (&,8)) mappings on its ultrasubstructures. We
cannot add together these ultravaluations on the ultrasubstructures of a

>3 . ) >
PSM to get bivalent, truth-functional(dé) mappings on the entire PEM .

=
But the fact that UF, U UI, C Pn—3 is not the only reason why we cannot add

\ v

the ultravaluations in the suggested manner; the other reason is that an

>
ultrasubstructure UF¢ U UIW in a P8§3 is a union of overlapping mBS's
. =3
in P .
Other sorts of semantic mappings may be and have been proposed for

the quantum P structures. But in this thesis, only two semantic

QM
proposals have been seriously considered: the proposal of a bivalent,
truth-functional semantics for PQM and the proposal of a state-induced

semantics for P The former is motivated by the success and usefulness

QM °

of such a semantics for classical logical and propositional structures such

as L, PCM . The latter is motivated by the fact that the state-induced

‘semantics for a PCM » consisting of state-induced o mappings already
present in the formalism of classical mechanics, works exactly like the
algebraic version of the standard, bivalent, truth-functional semantics of
classical propositional logic. And the proposal of a state-induced semantics
for PQM is motivated by the fact that the quantum formalism, like the
classical formalism, includes state-induced mappings which assign 0, 1
values to representatives of gquantum pfopositions, i.e., to the projectors

or subspaces of a Hilbert space. So for a P it is worth considering

QM °
the notion of a state-induced semantics consisting of the state-induced
Exp¢ mappings already present in the quantum formalism. Like the classical

semantic mappings on an L, 1like the classical state-induced B, mappings
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on a PbM s and like the Friedman-Glymour S3-valuations proposed for a

PbML » the state-induced EXP¢ mappings are ultravaluations on the

ultrasubstructures of P . So the basic semantic method in all these cases

QM

is the same. The crucial difference between the classical and the quantum

cases 1is that, for some UF and dual UI, in any P M containing

v v Q

incompatible elements, UF, U UIW is smaller than P M rather than being

v Q
equal to the entire’ PQM » and moreover, UF:. U UI, is larger than any mBS
ina P} 3

_ v v
QM ¥ 1

because UF, U UI is the union of all overlapping mBS's in
>
Pn‘3 which contain the atom P

QM v

Notes:

1 L das . . . s
Though other conditions are sometimes taken as defining the
orthogonality relation, e.g., P, , P, are orthogonal IFF P,* P = 0,

these conditions are satisfied by any - 1 2

. . . . .
Pl’P2 € PQM IFF P1 =< P2Jj i.e., IFF P1 s P2 are disjoint. And, for example,
Piron takes the P1 < P2 condition . as defining the orthogonality relation

(Piron, 1976, p. 29).

2This was pointed out to me independently by Dr. L. P. Belluce and
Dr. J. V. Whittaker.

3The fact that P1 A P2 and P, Vv P2 are not defined in P

when P1 ] P2 does not mean that the union QMA

UF UUI is in any way not closed with respect to the A, v operations of

PQMA . The A, V operations of PQMA = <E,b,<,A,V,+,0,1> are defined from

bC EXE to E rather than from ExE to E. Thus Kochen-Specker call

them partial-operations or partial-functions (1965, pp. 177, 178). By

closure with respect to the A, v operations of P » 1 mean closure with
\ X X QMA

respect to these operations qua partial-operations.

4
Thanks to Dr. Edwin Levy for suggesting the "ultra" terminology.

5In an earlier draft, I claimed that each quantum expectation-
function Exp, ona P M is bivalent and truth-functional with respect to
a Boolean substructure Q of mutually compatible elements in PQM . Thanks
to Jeffrey Bub and Edwin Levy for helping clarify that in fact, the subset
of elements in a PQM which are assigned 0, 1 values by an Expy, on PQM
may include incompatible elements and so may be larger than
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any Boolean substructure of PQM .

6Page 1 of a manuscript by Edwin Levy circulated in December, 1877.
7

As the external examiner, van Fraassen pointed out this alternate
proof of the completeness result in his report on the thesis.
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CHAPTER VII

HIDDEN-VARIABLES RECONSIDERED

Preface

In classical mechanics, a pure state w specifies an exact value
for any magnitude. But in quantum mechanics, a pure state V specifies
an exact (eigen)value for only those magnitudes whose eigenstates are
compatible with ¢. Any magnitude A whose eigenstates are incompatible
with V¥ may, upon measurement, exhibit any of its (eigen)values. In the
quantum formalism, for the given state V the average value of A is
determined by Expw(A) = Zi ai“¢1}<wn2, and the probability that A will
exhibit any one of its (eigen)values, say aj s 1s determined by
Expw(ﬁw') = “wj><w”2, where §¢. represents the eigenstate of A associated
with thi (eigen)value aj . Butjthe quantum formalism does not determine
which exactv(eigen)value A will exhibit. In other words, quantum systems
characterized by the same quantum state V exhiﬁit, upon measurement,
different values for the same magnitude A, yet the quantum formalism does
not determine which of the different values of A wili be exhibited. For
this reason, it has been argued that quantum mechanics is incomplete and
should be supplemented by a hidden variable theory which reflects the
different possible outcomes of a measurement of A for a given V.

In terms of the quantum propositions, this problem is connected
with the fact, described in Chapter VI, that any P which contains

QM

incompatible elements has at least one ultrasubstructure USW = UF, U UI,

¥ v



163

which is smaller than the entire P and each element of P which is

QM i QM
outside USW is assigned a value between 0 and 1 by the affiliated

state-induced Exp,

\Z

by EXPW . At the very least, such a value between 0 and 1 1is interpreted

rather than being assigned an exact 0 or 1 value

as the probability that an element P £ USW » Qqua idempotent magnitude,
will upon measurement exhibit its (eigen)value 1, that is, as the
probabiiity that P, qua proposition, is true of a system or ensemble of
systems whose state is ?. So again, quantum systems characterized by the
same quantum state W exhibit upon measurement, sometimes the truth-value
0 and sometimes the fruth—value 1 for the same proposition P £ USW ’
but which of these truth-values will be the outcome of a measurement is not
determined by the quantum formalism.

Now if we presume that the>physical theory of quantum phenomena
should include a formalism which does determine, given the state of a |
quantum system, exactly whether any P € PQM is true or false, then quantum
mechanics is indeed an incomplete theory and we must seek a supplementary
formalism. The proposals of such supplementary formalisms have been called
hidden—variaﬁle theories. Hidden-variable (HV) theories are extensions or

reconstructions of quantum mechanics which introduce further specifications

of the state of a quantum system so that the so-called hidden state

determines the exact values of magnitudes and propositions which are assigned
dispersive values by a quantum state-induced EXPW . So while a quantum

state ¥ induces the generalized probability measure Exp¢ : P - [0,1]

QM
which is dispersive with respect to every P £ US, , a hidden state induces

or is associated with a dispersion-free probability measure which somehow

assigns an exact 0 or 1 value to such P £ US, . And so in an HV

¥
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reconstruction of quantum mechanics, the presumed incompleteness of quantum
mechanics is reflected by the fact that the set of quantum Ewa measures
is a proper subset of a larger set of measures which includes the
dispersion-free HV measures.

The dispersion-free measures added by an HV theory may be
classical probability measures on some Boolean structure proposed by the HV

theory, or they may be some sort of generalized probability measures defined

on the quantum PQM (or on substructures of PQM)" Von Neumann, Jauch-Piron
and Gleason-Kochen-Specker prove the impossibility of three kinds of
generalized dispersion-free measures on the quantum PQM structures, as

described in Chapter V(D); they thus rule out three kinds of HV theories,
as shall be elaborated below. But besides these three proposed bﬁt
impossible kinds of HV theories, contextual HV theories whose dispersion-free
measures avoid the above impossibility proofs have also been proposed. In
al},four cases, each quantum EXPW measure is represented in the proposed
HV theory as a mixture or complex, e.g., a convex sum or weighted integral,
of dispersion-free HV measures. And all four kinds of HV proposals impose
a statistical condition requiring that the complexes which represent the
guantum EXPW measures in the HV theory must yield statistical results which
reproduce the results given by the quantum EXPW measures (and so far
observed by experiment) (Kochen-Specker, 1967, p. 59; Belinfante, 1973, p. 9).
However, as Kochen-Specker argue, the imposition of this
statistical condition alone does not yet take into consideration the
structural and functional relations among the quantum magnitudes (and
propositions). These relations are embodied in the algebraic structure of

the quantum magnitudes, and concordantly, in the P structure of the

QM
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quantum propositions. Von Neumann, Jauch-Piron, Gleason, and Kochen-Specker
do take this consideration into account by requiring that some or all of
the operations and relations of FbM must be preserved in an HV

reconstruction of quantum mechanics. Such requirements may be called

structural conditions. As shown at length in Chapter V(D), each of these

authors imposes a structural condition which boils down to the requirement

that dispersion-free HV measures, qua generalized probability measures on

the quantum FbM » Must preserve the partial-Boolean structural features
P i.e. - i i

of QM (i.e., PbMA preservation), or in other words, proposed

dispersion-free HV measures must be bivalent homomorphisms(d) on PbM .

In addition, von Neumann and Jauch-Piron each impose a structural condition,
labéled (vNp) and (JPB) in Chapter V(D), which requires that proposed
dispersion-free HV measures preserve an operation among incompatibles. So
von Neumann's notion and Jauch-Piron's notien of what is a generalized
probability measure on PbM is clearly different from Gleason's and
Kochen-Specker's notion. Now all of these structural conditions are
satisfied by the quantum EXPW measures on PbM . The contentious issue
is whether or not the proposed dispersion-free HV measures introduced by a
proposed HV extension or reconstruction of gquantum mechanics must also be
required to satisfy these structural conditions.

The three kinds of HV proposals which require their dispersion-free
HV measures to satisfy the three different sets of structural conditions
imposed by von Neumann, Jauch-Piron, and Gleason-Kochen-Specker have been
shown by these authors to be impossible; either the dispersion-free HV

measures are themselves impossible or else complexes of the dispersion-free

HV measures cannot reproduce the statistical results of the quantum BXPW
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measures, as required by the statistical condition. However, critics of the
above HV impossibility proofs and advocates of the contextual HV proposals
have brought forth the following three sorts of arguments against the
imposition of the structural conditions upon proposed dispersion-free HV
measures:

(i) The structural conditions are inconsistent with the other
conditions which are imposed upon the proposed HV measures, and so the
structural conditions immediately rule out a HV theory. But rather than
concluding that an HV theory is impossible, we should réject the structural
conditions. (ii) The structural conditions relate the results of different

measurements in ways which are not justified if we take into account the

interaction between measuring instruments and quantum phenomena. Thus the
imposition of the structural conditions begs the question, and these
conditions should be rejected. (iii) The imposition of the structural
conditions and the development of the impossibility proofs beg the HV
question in other ways. So the structural conditions should be rejected
and the von Neumann, Jauch-Piron, Gleason, and Kochen-Specker proofs do not
in fact show the impossibility of an HV reconstruction of quantum mechanics.
In Section A, these criticisms are described in detail. Then in
Section B, another perspective on quantum mechanics and the problem of
hidden-variables is introduced, according to which the structural conditions
(vN#) and (JP¥) (and thus the von Neumann and the Jauch-Piron proofs) succumb
to the above criticisms, but the structural condition of PQMA-preservation
(and thus the Gleason and Kochen-Specker proofs) are rescued from these

criticisms.
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Section A. Criticisms of the Hidden-Variable Impossibility Proofs

Von Neumann poses the question of whether the dispersive ensembles
of quantum systems can be resolved into sub-ensembles which are
dispersion-free for any quantum magnitude; in his view, an HV reconstruction
of quantum mechanics involvgs such a resolution. Ensembles of quantum
systems are characterized by expectation-functions, and so the question is
whether the dispersive quantum Expw functions can be represented as
mixtures or weighted sums of different dispersion-free HV Expw functions
(von Neumann, 1932, pp. 305-307, 324). Von Neumann defines an
expectation—fﬁnction'by a list of conditions, one of which subsumes the two
conditions labeled (vN4) and (vN$) in Chapter V(D). The domain of an
expectation-function is the set of quantum magnitudes as represented by
operators on a Hilbert space. And the functional relations among the
magnitudes are given by the functional relations among the operators, that
is, by the algebraic structure of the operators. So in terms of the quantum
propositions qua idempotent magnitudes, a necessary condition for an HV
reéonstruction of quantum mechanics is, in von Neumann's view, the existence

1
of dispersion-free Expw functions on the quantum P, structures.

| QM
As mentioned in Chapter V(D), using his trace-formalism, von Neumann
proves that no such diépersion-free Expw exist; I referred to this result
as von Neumann's impossibility proof. In addition, von Neumann proves that
homogeneous expectation-functions do exist and in fact correspond to the
quantqm EXP¢ functions induced by the pure quantum ¢ states. So the
quantum BXPW cannot be represented as mixtures of dispersion-free Expw s

first because the quantum Expw are themselves homogeneous (where by

definition a homogeneous Exp cannot be represented as a weighted sum of
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different Exp-functions), and second because the dispersion-free Expw do
not exist (von Neumann, 1932, p. 324). It is thus that an HV reconstruction
of quantum mechanics is impoessible, according to von Neumann.

In 1966, Bell discredited von Neumann's impossibility proof by
arguing that it rests upon an inconsistency between the requirement that HV
expectation-functions satisfy (vN$) and the requirement that HY
expectation-functions be dispersion-free. For (vN$) requires the additivity
of the expectation values of incompatible magnitudes and incompatible
propositions qua idempotent magnitudes, and the dispersion-free expectation
value of any magnitude or proposition is an eigenvalue of the magnitude or
proposition. But since the eigenvalues of incompatible magnitudes or
propositions are not additive, an HV expectation-function which satisfies
(vNg) and is dispersion-free is impossible (Bell, 1966, p. 4u49). The
Kochen-Specker version of von Neumann's impossibility proof shows clearly
how (vN#) is the culprit in the proof and so further substantiates Bell's .
criticism (Kochen-Specker, 1967, pp. 81-82). Such HV probosals whose imposed
conditions ére inconsistent with each other are called HV theories of the
zero-th kind by Balinfante; their impossibility is not surprising.

Bell also appeals to the problem of measurement interaction in
order to argue that HV measures (or expectation-functions) need not satisfy
(vn$). The result of a measurement of the sum P1 + P2 of two incompatible
propositions cannot be calculated by simply adding together the results of

separate measurements for P P, . For as exemplified by von Neumann

1?72
(1932, p. 310), a measurement of a sum P1 + P2

an experimental arrangement which is entirely different from the arrangements

of incompatibles involves

by which P1 and P2 are each measured separately. Now although the
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expectation-value assigned to P1 + P2 by any quantum EXP¢ always does

equal the sum of the expectation-values assigned by EXPW to each of the
P1 s P2 separately, this is not a trivial or necessary feature of the
quantum !EXP¢ measures. Rather, it is a very peculiar feature of the
quantum Expy' measures, especially when, as Bell suggests, one remembers
with Bohr "the impossibility of any sharp distinction between the behavior
of atomic objects and the interaction with measuring instruments which
serve to define the conditions under which the [quantum] phenomena appear"
(Bohr quoted by Bell, 1966, p. 447). Bell concludes that there is no
reason to demand that proposed dispersion-free HV measures must be additive
with respect to incompatible magnitudes and propositions, as (vNB) requires.
So when von Neumann imposes his coﬁdition (vN$) and then proves that
dispersion-free HV measures are impossible and thus proves that an HV
reconstruction of quantum mechanics is impossible, he is open to the charge
of begging the HV question since (vN§) is unjustified.

Furthermore, von Neumann's imposition of (vN#) on proposed
dispersion-freé HV measures begs the HV question in another way. One of
the conditipns which von Neumann incorporates as part of his list of
conditions defining an expectatioﬁ-function Exp 1in general is the following,

which he labels (E):

(B) If A,B,... are arbitrary magnitudes, then there is an
additional magnitude A + B + :+- (which does not depend on
the choice of the expectation-function), such that

Exp(A + B + =+*) = Exp(A) + Exp(B) + *--

(von Neumann, pp. 309, 311). With this condition (E), von Neumann lets the
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expectation-functions define the sum of incompatible magnitudes, e.g., the
sum of A, B 1is that magnitude which satisfies (E) for all
expectation-fuhctions. Von Neumann motivates this definition by two facts:
The sum of the operators K, B (representing the magnitudes A, B) is
itself a self-adjoint operator which can represent a quantum magnitude; and
for all quantum Exp¢ expectation—funqtions, Expw(g + B) = Expw(ﬁ) + Expw(ﬁ).
Now if we assume that dispersion-free HV ExpW expectation-functions do
exist, then the sum of A, B as defined by all the quantum Expw and HV
ExpW may be different from the sum of A, B as defined by just all the
quantum Expw . And for example, although the operator A+B does
represent the magnitude which is the sum of A, B as defined by all the
guantum Exp¢ ,» the operator A+B may not represent the sum of A, B
as defined by all the quantum Exp¢ and HV Expw » in which case
Expw(g + B) # Expw(K) + Expw(ﬁ), contrary to von Neumann's (vN§) condition.
Of course, if the dispersion-free HV Expw are impossible, then the two
sums are the same. However, von Neumann imposes (vN#) which presumes that
the two sums are the same (and so presumes that dispersion-free HV Bxpw do
not exist) and which requires proposed dispersion-free HV Expw to satisfy
Expw(ﬁ + B) = Expw(ﬁ) + Expw(ﬁ), and then von Neumann proves that the
proposed dispersion-free HV Bxpw are impossible. Thus von Neumann is
begging the HV question because the imposition of condition (vN$) presumes
what is being proved, namely, the impossibility or non-existence of
dispersion-free HV Expw functions.2

As mentioned in Chapter V(D), using the structural condition (JP¥),

Jauch-Piron prove in their Corollary 1 that dispersion-free measures are

impossible on any irreducible orthomodular lattice. This, they say, is
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von Neumann's old result, i.e., von Neumann's proof of the impossibility of
dispersion-free measures, proven without the contentious condition (vN&).
However, Jauch-Piron argue that the quantum superselection rules ensure that

the quantum orthomodular lattice PbML structures are not irreducible but

rather are reducible lattices with non-trivial centres. So Corollary 1

.

does not rule out dispersion-free measures on the quantum P M

QML

Now according to Jauch-Piron, a quantum P M which does admit

QML

hidden-variables is characterized by the following property: Every measure
on a PQML which admits hidden-variables can be represented as a weighted

sum of dispersion-free measures on P M

QML

Exp, measure on P can be so represented. Then in their Corollary 3

v - QML

and again in their Theorem 2, Jauch-Piron prove that an orthomodular lattice

in particular, every quantum

admits hidden-variables only if all its elements are mutually compatible,
i.e., only if the lattice is Boolean. So any quantum PQML which contains
incompatible elements does not admit hidden-variables, and hence
hidden-variables are impossible in quantum mechanics (Jauch-Piron, 1963,
pp. 835-837).

Bub's elucidation of Jauch-Piron's Qork shows clearly how condition
(JP$) is the culprit in their impossibility proof(s). For Bub shows how the
quantum Ewa ‘measures on a PQML

of dispersion-free measures on P M

QML
are required to satisfy (JP$) (Bub, 1974, pp. 61-62). For example, consider

cannot be represented as weighted sums

when the dispersion-free HV measures

a quantum EXPW which assigns values to two incompatible atoms PW ’ P¢
: L | _ 2
of a PQML as follows: EXPW(PW) =1, EXPW(P@) = “¢><W” € (0,1), and
since P, AP =0, Exp (P, AP ) = Exp (0) = 0. According to the

v e PV e Py g

Jauch-Piron characterization of a hidden-variables proposal, if PQML admits
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hidden-variables then this EXPW measure on P ML ©an be represented as a

Q
weighted sum 2 ixiwi s Wwhere 2 .Xi =1 and each W, is a
i i
dispersion-free (HV) measure on P -« Now in order to reproduce the

QML
assignment EXPW(Pw) = 1, each W, must assign the value 1 to P¢ .

i.e., for every W, in the sum representing Ewa s Wi(P ) =1 so that

1
Z Aw,(P,) =1 = Exp,(P,). And since P, AP =0, w.(Py AP ) = w.(0)
PR Al Py v T T T Tty Mt T
= 0, for every w, in the sum representing EXPW . Moreover, none of the

w, can assign the value 1 to PW because by (JP¥), Wi(PW) =1 and

w,(P ) =1 yields w,(P, AP ) =1, which contradicts w.(P, A P ) = 0;
it iy 0] 1 ¢

1
so Wi(P¢) = 0 for every W, in the sum representing EXPW . Thus the
nonzero value assigned by Ewa “to P¢ cannot be reproduced by any weighted
sum which reproduces the value assignment Exp¢(P¢) = 1., That is, a
weighted sum of dispersion-free (HV) measures satisfying (JP¥) cannot
reproduce the value assignments of this gquantum EXPW measure.

So we can view the impossibility of a Jauch-Piron type of HV
proposal as being due to an inconsistency between three conditions imposed
on proposed HV measures: the structural condition (JP¥), the dispersion-

‘free condition, and the statistical condition, which requires that the
value assignments of the quantum EXPW measures be reproduced by, e.g., a
weighted sum of dispersion-free HV measures. Thus, as Belinfante says,
rather than proving the impossibility of hidden-variables, Jauch-Piron have

"merely shown that their type of HV proposal is of the zero-th kind
(Belinfante, 1973, p. 59).

Bell's objection to the structural condition (JP$) is similar
to his objection to (vN$#). When Pw s Pw are Incompatible, a measurement

of their meet PW A P¢ involves an experimental arrangement which differs

from the arrangements by which PW and P¢ are each measured separately.
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yet (JPP) requires a proposed dispersion-free HV measure to assign the

value 1 to P, A Pcp if it assigns the value: 1 to each P

¥ 12

separately. In spite of the different experimental arrangements, the quantum

Pw s

Exp, measures do satisfy (JP¥). And so it is reasonable to require that

v
the weighted sums of dispersion-free HV measures which représent the
quantum Expw meésures in an HV reconstruction likewise satisfy (JB¥).
But it is not reasonable to require that each diépersion—free HV measure
must itself satisfy (JP&), especially when we recall the problem of
measurement interaction. So when Jauch-Piron impose their structural
condition .(JP¥) on proposed dispersion-free HV measures and then show
that hidden-variables are impossible, they are open to the charge of begging
the HV question since their imposition of (JP¥) is not justified.

Bub also argues that the Jauch-Piron impossibility proof(s) beg
the HV question in the following manner. Jauch-Piron prove the impossi-
bility of representing the quantum Expw measures on a PQML as mixtures
of dispersion-free HV measures on PQML . That is,.the HV measures
considered by Jauch-Piron are a sort of generalized probability measure

defined on the quantum P But then the Jauch-Piron proof does not rule

QML °
out the further possibility of representing the quantum EXPW measures as
mixtures of dispersion-free HV measures which are classical probability
measures defined on a Boolean structure (Bub, 1974, p. 63).

The same criticism can be directed against the proofs and
arguments by which von Neumann purports to show the impossibility of
hidden-~variables. For von Neumann refers to dispersion-free -HV
expectation-functions defined on the set of quantum propositions, qua
idempotent magnitudes represented by projectors, whose structure is a

quantum P Similarly, Gleason's impossibility proof and the

QM
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Kochen-Specker Theorem 1 version of Gleason's proof are also subject to this

criticism. For Gleason's proof shows that his sort of generalized

dispersion-free HV measures (which satisfy (Ga) and thus are PbMA-preserving)
>
are impossible on the quantum Pgﬁs structures, that is, in Kochen-Specker's
>
version, bivalent homomorphisms(d) are impossible on Pgﬁ3. But Gleason's

proof and Kochen-Specker's Theorem 1 do not address the above-mentioned
further possibility of representing the quantum EXPW measures as mixtures
of classical dispersion-free HV measures defined on a Boolean structure.
Moreover, Bub argues that this further possibility precisely
captures the HV enterprise which Kochen-Specker do correctly formulate and
address yet which their Theorem 1 alone does Egz_fule out. Correctly
formulated, the HV enterprise can be said to be the attempt to reconstruct
the statistical results given by <H’PQM’EXP¢>’V i.e., the quéhtum
generalized BXPW probability measures on the non-Boolean PQM structure
of the quantum phase space H (Hilbert space), in terms of é eclassical
measure space <R,PHV,u>, i.e., classical | probability measures on the
Boolean PHV structure of a postulated HV classical phase space &

(Kochen-Specker, 1967, pp. 62, 75). Thus an HV theory may be said to be a

. . 3
Boolean reconstruction of quantum mechanics.

More explicitly, as descfibed by Kochen-Specker, a Boolean HV
reconstruction of quantum mechanics can be formulated as follows. Like the
formalism of classical mechanics described in Chapter III, an HV theory
posits a classical phase space 3 each point w € R represents a pure

hidden state, and each real-valued (Borel) function f. : § - R represents

A
a magnitude in the HV theory. The idempotent functions on &, or

equivalently, the Borel subsets of 2, form a Boolean structure which may

be labeled PHV . Like the PCM structure, this PHV is regarded as the
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propositional structure of the HV theory. That is, an idempotent function

fP : & - {0,1},7 or corresponding Borel subset WP C @, represents a

proposition in the HV theory. Each pure hidden state w induces a
dispersion-free classical probability measure kot FhV -+ {0,1} - which is a

bivalent homomorphism on Fhv .

The HV reconstruction of quantum mechanics proceeds by representing
or associating each of the quantum magnitudes A,B,... with a real-valued
function fA,fB,... on the HV phase space &. Each quantum proposition P,
qua idempotent magnitude, is likewise associated with an idempotent function
fP .on & or corresponding Borel subset WP of . That is, quantum
propositions are associated with the elements of PﬁV ; and let % 1label
this association. Kochen-Specker take'the structure of the quantum

propositions to be a partial-Boolean algebra P this fact is fuprther

; Qua *
discussed below. '
Next, each quantum pure state ¢ is represented in the HV
reconstruction as a mixed state which induces a dispersive classical
probability measure uw : PHV -+ [0,1] on the Boolean th structure. In
the HV theory, these dispersive uw measures represent the quantum EXPW
measures. And these “W measures are required to satisfy the statistical
condition, which Kochen-Specker give as follows: For any quantum w and
for any quantum P, fﬁ fP(w) dpw({w})'= Expw(P) (Kochen-Specker, 1967,
pp. 61, 75). Now by definition, for any fP on ¢ and for any hidden state
wER, £, =1 if weW, and £,(w) = 0 if_wewP*. So by

substitution, the statistical condition reduces to: Bxpw(P) =

= pr 1 duw({w}) + fWP 0 duW({w}) = “W(WP)’ where WP = f;l({l}}. Thus

for a quantum system (or ensemble of quantum systems) whose state is given
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by V¥ in quantum mechanics, the probability that the quantum proposition
P is true is equal to the probability that the pure hidden state w of
the quantum system is a member of that subset WP c & of hidden states

with respect to which the HV representative of P, namely, f has the

P H]
value 1.

Besides the statistical condition, Kochen-Specker also impose the

following structural condition: The association % of the quantum

propositions with the elements of th must be an imbedding(b) which
preserves the PQMA structure of the quantum propositions. That is, an

. . o . . ‘s

imbedding(é) % : PQMA - th is a necessary condition for an HV
reconstruction of quantum mechanics, according to Kochen-Specker. The
arguments by which Kochen-Specker motivate this imbedding(d) condition are

further discussed below.

Next, Kochen-Specker prove in their Theorem 0, discussed in

el

Chapter IV(F), that an imbedding(l) % : P e PHV exists IFF a complete

QM

collection of bivalent homomorphisms(d) h :PQMA -+ {0,1} exists. We can
better understand the "if" half of this biconditional by noting that the
classical probability measures M * PHV -+ {0,1} - and uw : PHV -+ [0,1] of
the HV reconstruction can also be regarded, via the imbedding&ﬁ)

% : PQMA - PHV » as generalized probability measures on the quantum P

QMA

The relationships among these mappings can be schematized as follows:
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7
T = s

The equivalence between the quantum EXPW : P - [0,1] and the composition

QMA
HWO % PQMA -> [0,1] is ensured by the statistical condition. And for
[+)

every pure hidden state w, the composition Ko % PQMA -+ {0,1} - is a

generalized dispersion-free HV measure on PQMA which preserves the
partial-Boolean structural features of PQMA s or in other words, each
composition W o % 1is a bivalent homomorphism(d) on PQMA . Moreover, as

described in Chapter IV(F), an imbedding is by definition an injective"

mapping, i.e., for any Py # P2 in P %(Pl) # %(PQ). And by the

QMA °
semi-simplicity property of the Boolean structure PHV , for any
fP1 # fP2 in PHV » there is a bivalent homomorphism on PHV » namely, a
classical dispersion-free probability measure RS PHV -+ {0,1} - for some

QMA Py

exists, then for every pure hidden state w, the composition Ko % is a

w, such that uw(fP ) # uw(fP ). So if the imbedding(d) % : P
1 2

bivalent homomorphism(b) on P . And for any P, # P, in we

QMA PQMA ?

= % % = i
can be sure that fP1 °(P1) # o(P2) fP2 in PHV ,» and we can be sure
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that for some w, “w(%(P1)) # uw(%(P2)), that is, we can be sure that the

collection of bivalent homomorphisms(d) on PQMA is complete.

Conversely, if a complete collection of bivalent homomorphisms(s)

QA then as described in Chapter IV(F), PbMA can be

imbedded(d) into a Cartesian product Boolean structure. For example, any

exist on P

can be imbedded(d) into

R . . 2 2
two-dimensional Hilbert space PQMA (or PQML)

the Cartesian product Boolean structure (22)2-r’ or equivalently,
HPJ(ZQ)i » where r is the cardinality of the set of maximal Boolean

substructures of the P2 . This Cartesian product Boolean structure can

QM

be taken to be the Boolean Pﬁv structure of a proposed HV reconstruction

of quantum mechanics, e.g., (22)2-r can be regarded as the PHV of a

' - . . 2 .2 .
proposed HV reconstruction of the quantum mechanics of <H ’PQM’EXPW>' Or
in other words, as described by Bub, the classical measure space

<9,PHV,u> = X which provides a Boolean HV reconstruction of the quantum

2

mechanical statistical results given by <H2,P M,]E!xp\'lf> can be regarded as

Q
a Cartesian product measure space X =1I JXi..where i ranges over the set
i - : .
. 2 : i _ .
of maximal Boolean substructures of PQM and each Xi = <9i’PHV’ui> is a
classical measure space introduced for each maximal Boolean substructure
2 . 2 .
mBSi of PQM (Bub, 1974, p. 145). Since each mBSi of PQM is
isomorphic to (Z2)2, each PHV is isomorphic to (Z2)2, and so
_ . . . r 2 .
PHV = Hi‘PHVi is the Cartesian  product Hi’(z2)i mentioned above.

Now the Kochen-Specker proof of the impossibility of such a

proposed <R,PHV,u> reconstruction of the quantum mechanics of

n=3 ,n=>3
=3 pn=
H=, P v

version of Gleason's impossibility proof, Kochen-Specker show that bivalent

,Exp,> proceeds in two stages. First in Theorem 1, which is their

homomorphisms(d), i.e., generalized, dispersion-free Gleason measures, are
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n=>3 nzS)
QMA QML"*
n=>3

follows by Kochen-Specker's Theorem O that an imbedding(é) of any ‘PQMA

impossible on any P (and this result:also applies to P Then it

into any proposed Boolean PﬁV structure of an HV reconstruction is
impossible, and hence, since such an imbedding(d) is a necessary condition
for an HV reconstruction, an HV reconstruction of the quantum mechanical
n>3 n=>3 .
= Z3 pon:
5 QM L] P\I/>

measure space <R,th,u> is impossible; this is the second stage of the

statistical results of <H in terms of some classical HV
Kochen-Specker proof of the impossibility of an HV reconstruction of quantum
mechanics.

So while Gleason's Iimpossibility proof and Kochen-Specker's

Theorem 1 just show the impossibility of bivalent homomorphisms(d), i.e.,

n=>3

QM °

Theorem 0 and imbedding(d) condition connect this result with the further

generalized, dispersion-free Gleason measures, on P Kochen-Specker's

question of the possibility of a <Q’PHV’“> type of HV reconstruction of
quantum mechanics. For the imbedding(d) condition, according to which an
imbedding(d) % : PQMA - PHV is a necessary condition for such an HV
reconstruction, ensures that proposed classical dispersion-free HV measures
o PHV -+ {0,1} - preserve the PQMA

so that, for each hidden state w, the composition pwo % 1s a generalized,

structure of the quantum propositions

dispersion-free Gleason measure on P . And Theorem 0, which

QMA
biconditionally connects the existence of a complete collection of such

measures on a P with the existence of an imbedding(d) % : P P

QMA QMA HV
thus entails that the existence of a complete collection of generalized,
dispersion-free Gleason measures is a necessary condition for a <R,PHV,u>
type of HV reconstruction. In this way, Kochen-Specker apply Gleason's

result to the correctly formulated HV question; while in contrast, the

von Neumann and the Jauch-Piron proofs do not even address the HV question
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as so formulated.

Like the structural conditions (vN¥) and (JPY), the structural
condition FbMA-preservation, whose imposition upon proposed dispérsion—free
HV measures is entailed by the imposition of the (vNb) condition, or the
(JPb) condition, or the (Ga) condition, or the Kochen-Specker imbedding(d)
condition, has also been subject to the three sorts of criticisms listed in
the Preface above. These criticisms will be elaboratéd next. But in
Section B, another perspective on the problem of hidden-variables is

introduced, according to which the structural condition of -preservation

PbMA
emerges unscathed by these criticisms.

In Belinfante's view, the type of HV theory proved impossible by
Gleason and Kochen-Specker is like the types proved impossible by von Neumann
and Jauch-Piron; they are all HV theories of the zeroth kind whose
impossibility is due to an inconsisteﬁcy between the conditions which the
proposed dispersion-free HV measures are required to satisfy (Belinfante,
1973, p. 17). However, the structural condition of PQMA—preservation is
not simply inconsistent with the dispersion-free condition, in the way that
(vN¥) is. Nor is PQMA-preservation inconsistent with the dispersion-free

condition together with the statistical condition, in the way that (JP¥) is.

On the contrary, the structural condition of P, ,-Preservation follows from

QMA

the dispersion-free condition together with (Ga), or the dispersion-free

condition together with (vNd), or the dispersion-free condition together
with (JPb), as described in Chapter V(D). The trouble with
PQMA-preservatidn is more subtle than the troubles with (vN$) and (JR¥). In

fact, the trouble with P,.,,-preservation has to do with the overlap patterns

QMA
' n=3 . .
among the mBS's of a PQM structure, and as Belinfante points out, the
trouble with P. . -preservation has to do with the assumption that HV

QMA
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measures are noncontextual, as shall be described below.

Bell's criticism of Gleason's impossibility proof (and thus of
Kochen-Specker's Theorem 1) hinges upon the difference between what are
sometimes called contextual and noncontextual HV theories, though Bell does
not use these terms. Bell presents a version of Gleason's proof which
focuses upon two structural conditions which Bell derives from Gleason's
~additivity (Ga). Both conditions are subsumed by the structural condition
of PQMA-preservation, which likewise follows from (Ga). Bell shows how the
second condition which he derives from (Ga) rules out (generalized)
dispersion-free HV measures on the set of all projectors or subspaces of a
three-or-higher dimensional Hilbert space; and as shall be described
shortly, this second condition ensures that (generalized) dispersion-free
HV measures are in fact noncontextual. Bell criticizes the imposition of
this second condition upon HV measures because the second condition relates
in a nontrivial and unjustified way thg results of measurements which cannot
be performed simultaneously.

Although Gleason's proof refers to an infinite set of subspaces

(or projectors) of three-or-higher dimensional Hilbert space, in order to

understand Bell's explication and critique of Gleason's proof we need only

consider the following twelve-element fragment of P3 which includes two

QM

overlapping mBS's: 1
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One maximal Boolean substructure mBS1 . is generated by the three mutually

orthogonal (i.e., compatible) atoms {Pi,P2,P3} -and the other mBSL\L is
. - p3 .
generated by {PB,PM,PS}.> A generalized measure |y on PQM which

satisfies (Ga) assigns values to these five atoms as follows:

w(1) = 1, and

u(Pl) + u(Pz) + u(Ps) = u(P1 VP, vPs)

u(P3) + u(Pu) + u(Ps) u(P3 VP, VPg) = u(1) = 1. It follows that if

uw(Ps) = 1 then “w(P1) = uw(PQ) = 03 and similarly, if pw(Pa) = 1 then

uw(Pu) uw(Ps) = 0. (The subscript w is added because a measure which
assigns 0, 1 values is dispersion-free.) These two conditionals are
instances of the first condition which Bell derives from (Ga) and which he
labels (A) (Bell, 1966, p. 450).

Belinfante argues that because Bell's (A) refers to only one triad
of mutually orthogonal atoms at a time, we cannot yet conclude that, if
HW(P3) = 1 then uW(Pl) = uW(PQ) = uw(Pq) = uw(Ps) = 0 (Belinfante, 1973,
P. 65). But such a conclusion is guaranteed by the second condition which
Bell derives from (Ga) and which he labels (B). An instance of (B) is: If

uw(Pl) = uw(P = 0 then, for any other P <P, VP, , uw(P) = 0. Thus

2) 1 2
if uW(Pa) = 1, then by (A), uw(Pl) = “W(PQ) = 0, and then, since
P, TPV P, and P, = P, VP, , Dby (B) uW(Pu) = uW(PS) = 0.

These two conditions (A) and (B) which Bell derives from (Ga)
correspond to the two conditions (KS1) and (KS2) stated in Chapter V(B) and
to the two conditions labeled (61b) and (64) in Belinfante's description of
Kochen-Specker's work (Belinfante, 1973, pp. 39, 41). The first condition
of each pair, namely, (A), (KS1), (61b), ensure that the assignment of 0,

1 values to the atoms in a given mBS of a P y Ppreserve the Boolean

Q

operations and relations, i.e., the Boolean structural features, of the mBS.

And the second condition of each pair, namely, (B), (KS2), (64), ensure that
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the assignment of 0, 1 values to the atoms in any overlapping mBS's in a

Pg;s preserve the overlap patterns among the mBS's. Both sorts of

conditions are subsumed by the structural conditions of P __ . -preservation,

QMA

which itself has two aspects: First, it ensures that the Boolean

structural features of each mBS ina P are preserved; second, it ensures

QM

that the partial-Boolean structural features of the entire P are pre-

QM

served; in particular, it ensures that the overlap patterns among the mBS's
in a Pg§3 are preserved. So Bell rightly points to the second condition
(B), which he derives from (Ga), as the crucial part of Gleason's
impossibility proof. For as described in Chapter V(B), it is the
preservation of the overlap patterns which makes bivalent homomorphismsﬁé)
impossible in Kochen-Specker's Theorem 1 version of Gleason's proof.

Bell argues that proposed dispersion-free HV measures need not be
required to satisfy (B). For any proposition P which is less than or

equal to P1 \ P2 is incompatible with each of P1 . P2 s unless P = P1

or P = P2 . And if Pl& P1 and P ¥ P2 then a measurement of P cannot

be made simultaneously with a measurement of P1 and P2 . Bell also poses

the question of how this condition (B), which in fact refers to the values
assigned to incompatibles, could follow from condition (Ga) which explicitly
refers to only orthogonal elements which are compatible. Bell answers that

it was '"tacitly assumed" that a measurement of, say, P3 must yield the

P

same value regardless of whether P 1° %o

3 is measured together with P

But since P P, are each incompatible with

or together'w1th P# R P5 . 1° %y

each of Pu s P a measurement of P1 . P2 s P, requires an experimental

5° 3

arrangement different from the arrangement by which P P4 » P. are

3°? 5
measured, so there is no reason to believe that the result of a measurement

of P_ together with P

3 P

BERTE should be the same as the result of a
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P (Bell, 1966, p. 451).

measurement of P, together with P,+ » Pg

3

An HV theory which allows its dispersion-free HV measures to

assign different 0, 1 values to a given element P € P M depending upon

Q

which other elements are measured together with P have been called

contextual HV theories. And the tacit assumption mentioned by Bell is the
.assumption that .an HV theory is non-contextual; i.e., its dispersion-free
HV measures assign a unique 0 or 1 value to a given element P € PQM
regardless of which other elements are measured together with P.,+
Now in quantum mechanics, the outcome of a measurement of any
magnitude A (which is always one of A's eigenvalues) or of any idempotent
magnitude P (which is always one of P's 0 or 1 eigenvalues) is
determined by the quantum state W, though if ¢ is incompatible with any
of A's or P's eigenstates, then as described in the Preface, the quantum
formalism at best determines the probability of any one of A's or P's
eigenvalues being the outcome of a measurement and determines the average
value‘(i.e., expectation-value) of A or P for a large number of the same
measurements of A or P on many quantum systems whose state is described

by VY. In a contextual HV theory, the outcome of a measurement of A or P

is determined by the hidden state and the context of measurement. A hidden

state, labeled w above, is specified in a contextual HV theory by the
quantum state V¥ together with the hidden variable(s) &; so hereafter, a
hidden state of a contextual HV theory shall be designated by V¥, £.. And

the context is taken to be the set of all possible outcomes of the measure-

ment as specified by a complete, orthogonal set of eigenstates of the
measured magnitude. As mentioned in Chapter IV(A), the eigenstates of any

magnitude, as represented by projectors {Pi}iGIndex on a Hilbert space,
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are orthogonal and satisfy Z ﬁi = I. In order that the set of eigenstates
i
of a magnitude be complete, it suffices that each Pi is a

one-dimensional projector on H; i.e., an atom in the PbM structure of
5 v .
fH. Thus the context of a measurement of a magnitude represented by an

operator on an n dimensional Hilbert space HY  is specified by a set of

: . . . n .
n orthogonal one-dimensional projectors on H ', i.e., by a set of n

. n n .
mutually orthogonal atoms in the PQM structure of #H . And since a set
of n mutually orthogonal atoms in PgM .generates a unique maximal Boolean
6 ' .
substructure of Po s the context of a measurement of a magnitude

QM
represented by an operator on H" can equally well be specified by an mBS

n

Q

particular, when we consider any idempotent magnitude P, which is

in the P y Structure of Hn, as suggested by Gudder (1970, p. 432). In

< .3 . . n
represented by the projector P on H" and so is an element in the P

QM

n is itself a member of any of

Q °’

which specify possible contexts of measurement of P.

structure of H, P, qua element of P
n
QM

For P is itself a member (or a sum of members) of any set of n

“the mBS's in P

orthogonal, one-dimensional projectors on Hn representing a complete,
orthogonal set of eigenstates of the idempotent magnitude P and so
specifying the context of a measurement of P; thus P, qua element of

PgM » 1s itself a member (or a join of members) of any set of n mutually

n

QM

and so P, qua element of P

orthogonal atoms in P specifying the context of a measurement of P;

n kol
QM ° QM

specifying the context of a measurement of P. In short, in a contextual

is itself a member of any mBS in P

HV theory, the outcome of a measurement of any P € P is determined by

QM

the hidden state V¥, £ and the context of measurement, specified by an mBS

in PQM with P € mBS.

The fact stated in the last sentence can be and has been



186

formalized in any number of ways. Most abstractly, since the outcome of a
measurement of P is always one of P's 0 or 1 eigenvalues, we may
talk of a contextual HV theory proposing contextually-dependent 0, 1 value
assignments to the elements of PQM . For example, Belinfante talks of a
contextual HV theory, which he refers to as a "realistic'" HV theory,
introducing, for a given hidden state V¥, £, a bivalent mapping v whose
arguments are gquantum propositions and which depend not only upon V, &,
but also upon the context of measurement (Belinfante, 1973, pp. 40-42).
Less abstractly, since in this chapter and in Chapters III and VI we have
described how in classical mechanics, quantum mechanics, and proposed HV
theories, 0, 1 value assignments to the elements in PCM . PQM , PHV
structures are preformed by various kinds of state-induced dispersion-free
probability measures, we can in a similar vein say that the hidden stateé
of a contextual HV theory induce dispersion-free HV measures which assign

0, 1 values to elements of P in a contextually dependent manner. For

QM
example, Bub talks in this way (1974, pp. 1u46-147; 1973, p. 51). While

according to Gudder's way of formalizing the contextual HV proposal, a

hidden state of a contextual HV theory induces a dispersion-free HV measure

on only an mBS of P so that the contextual dependence of the measure is

QM

at least partly handled by restricting its domain to one context, i.e., one

mBS (Gudder, 1970, p. 433).
We shall focus upon the notion of the hidden states of a
contextual HV theory inducing dispersion-free HV measures which assign 0,

1 values to the elements of P in a contextually dependent manner. The

QM
contextual-dependence of the dispersion-free measures may be and has been

formulated in two equivalent ways. One way involves contextualizing

propoéed generalized, dispersion-free HV measures u¢ £ on P by having
. H

QM
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the domain of each pw ¥ - be the cross-product of FbM and the set of mBS's
3

in P so that th 1 hich assigns to an element P ¢
in Py S° e value whi MW’E ssig PbM

depends upon which mBS containing P is being considered (i.e., depends
upon the context in which P 1is being measured). Thus a hidden state V,
& induces a contextualized, generalized, dispersion-free HV measure

uw’g : P x {mBS }:

QM eindex 10»1} such that, for example, (<P, ,mBS, >)

",k

need not equal (<P mB84>). According to Bub, the Bohm 1952 HV

My, g

proposal is such a contextual HV theory. However, one would be hard pressed

{mBS }—— {0,1} in Bohm's

to find anything like this i¢Index

g
work or even in Bub's description of Bohm's work (Bub, 1973, p. 51). For

again, the above notion of an measure is an abstraction which helps

"v.g
make sense of Bub's description of Bohm's work and which was suggested to
me by Belinfante's method of contextualizing his bivalent v mappings

(with R. E. Robinson suggesting the cross-product formulation). Now the

alternative way involves proposing that a Boolean PHV structure be the

domain of proposed classical dispersion-~free HV measures

HW,E: PHV - {0,1}

induced by the hidden states, with a contextualized association of the

elements of PQM with the elements of the PHV . Thus we have a

k3 . . o/ -
contextualized association % : PQM x {mBS, }IEEHE;; PHV such ﬁhat, for

example, %(<P3,mBSi>) need not equal %(<P3,mBSu>), and so

(%(<P3,mB81>)) need not equal (%(<P3,mBsu>)). The Bohm-Bub 1966

“¢,£ qug
HV proposal is such a contextual HV theory. According to Bub, both ways of
formulating the contextual HV proposal, either in terms of contextualized
measures on PQM or in terms of a contextualized association of PQM with
PHV , are formally equivalent (Bub, 1973, p. 51). Clearly, both have the

same effect, namely, the proposed dispersion-free HV measure induced by a

hidden state in a contextual HV theory does not assign a unique 0 or 1
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value to a given element P € PbM when P 1s a member of more than one
mBS in PbM » 1.e., when P is a member of two or more overlapping mBS's
in PQM .

Thus the dispersion-free HV measures induced by the hidden states

of a contextual HV theory especially break up the overlap patterns among
n=3

' >

the mBS's of any PQM

assigning different values to a single element which is in more than one

in the manner suggested in Chapter V(B), namely, by

> .
mBS of Pgia. So, for example, although P3 = P3 in the twelve-element
fragment of’ PgM diagrammed above, and although EXPw(PS) = EXPQ(PS) for

every quantum Expw on PZM ,» nhevertheless, in a contextual HV theory,

P3 may be assigned different values, as exemplified in the previous

parégraph. In this sense, the dispersion-free HV measures induced by the
hidden states of a contextual HV theory do not preserve the relation

P, = P, . That is, they do not preserve the = relation of P and so

3 3 QM °
it clearly follows that with respect to elements in overlapping mBS's in
PQM » the dispersion-free HV measures induced by the hidden states of a

contextual HV theory do not preserve any of the operations and relations of
PQM . A contextual HV theory and its dispersion-free HV measures thereby
avoid HV impossibility proofs. Or as Bub puts it, in terms of the second
formulation of the contextual HV proposal which includes a Boolean PHV and

classical dispersion-free HV measures on PH a contextual HV theory is

V E]

a type of Boolean reconstruction of gquantum mechanics (Bub, 1974, p. 146)

which avoids the Kochen-Specker impossibility proof by letting the

association of the elements of P

QM

contextualized mapping which breaks up the overlap patterns among the mBS's

with the elements of PHV be a

n=

>3
of PQM

rather than demanding, as Kochen-Specker do, that this association .

be an'imbedding(é) which preserves P i.e., preserves all the

QMA °
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. >3 . . .
partial-Boolean structural features of Pgﬁ s» including the <= wrelation
(and thus the = relation) and including the overlap patterns among the

mBS's.
Now to continue with the third sort of criticism, labeled (iii)
in the Preface, of the imposition of the structural condition of

PQMA-preservation and of the development of the Gleason, Kochen-Specker HV

impossibility proofs. If, as Bell argues, there is no reason why the

partial-Boolean structural features of P M in particular, the overlap

Q

patterns among the mBS's of P M must be preserved by non-contextually

Q

assigning the same unique 0 or 1 value to, say, P, regardless of whether

3

P is measured in the context mBS1 or in the context mBS

3 then the

T
Gleason and Kochen-Specker HV impossibility proofs beg the HV question.. For
these proofs rest upon contradictions caused by requiring that 0, 1 values
be assigned to the elements of a PQM in a non-contextual, PQMA

manner which is not justified. Moreover, these proofs do not rule out a

-preserving

contextual HV reconstruction of quantum mechanics, and so they do not rule
out hidden variables, as they purport to do.

Kochen-Specker's work is especially vulnerable to the above
criticism because of the following ambiguity, pointed out by Bub, in the
manner in which Kochen-Specker ground the partial-Boolean algebra of quantum
propositions which they require an HV theory to preserve:

(a) On the one hand, Kochen-Specker regard the quantum
propositional structure as simply given by the partial-Boolean algebra of
projéctors or subspaces of Hilbert space, which has been labeled PQMA .
For according to Kochen-Specker, it is a "basic tenet" of Quantum mechanics

that quantum magnitudes are represented by operators on a Hilbert space and
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similarly, quantum propositions, qua idempotent magnitudes, are represented
by projectors on a Hilbert space (Kochen-Specker, 1967, p. 65). That is,

the quantum propositional structure is a P, = structure, in particular, a

QM
PQMA structure, of projectors or subspaces of a Hilbert space. And for

example, two propositions are equivalent in PQMA if they are represented
by the same projectof'(or subspace).
(b) But on the other hand, Kochen-Specker define a partial-Boolean

algebra of quantum propositions with respect to a set of states and measures;

the defined structure shall be labeled pBA to distinguish it from the
above PQMA . The definition éf pBA may yield, for example, that two
propositions are equivalent in pBA if their expectation-values are equal
for all guantum EXPW measures.

If the quantum propositional structure which Kochen-Specker
require an HV theory to preserve is such a pBA defined with respect to
the quantum measures, then Kochen-Specker's impossibility proof, which
rests upon the requirement that the quantum propositional structure be
preserved, begs the HV question. For there is no reason why proposed HV

measures must preserve such a pBA, and in particular preserve the

in pBA, if P, =P

. - '
equivalence P p 3 3

3 3 in pBA only because

Egpw(P3) = ExpW(Pé) for all quantum Expw measures. Moreover, if
dispersion-free HV measures do exist, then the pBA defined with respect to
the quantum measures and the HV measures may be different from the pBA
defined with respect to just the quantum Exp¢ measures. These criticisms
of Kochen-Specker's defined pBA are similar to the criticisms of -

von Neumann's use of his condition (E) to define the sums of incompatibles.

This ambiguity between (a) and (b), and the way in which (b) leads

to a misunderstanding of Kochen-Specker's work and makes the Kochen-Specker
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impossibility result appear to be especially vulnerable to Bell's criticism,
are described by Bub (1974, pp. 84-88). Bub concludes that Kochen-Specker
are best understood referring to PQMA rather than pBA, that is,
‘Kochen—Specker should have used just the (a) notion and not discussed the
(b) notion at all. Moreover, as shall be described in Section B:, from
Bub's perspective on the problem of hidden-variables, the ambiguity between
(a) and (b) is not substantially important, though it is confusing and leads
to a misunderstanding of Kochen-Specker's work, and so the ambiguity is
worth clarifying. In the rest of this section, Kochen-Specker's (b)
definition of pBA ié elaborated, and a reason why Kochen-Specker may have
been motivated to develop this (b) definition is given.

According to Kochen-Specker, a physical theory like classical
mechanics or quantum mechanics or a proposed HV theory consists of a set of
‘magnitudes {A,...}, a set of states {&,...}, and a set of (classical)

probability measures ..} on the real-number line R, or more

{p‘y’A’ *
exactly, on the Boolean structure BR of Borel subsets of R. For any

Borel subset ..R ¢ R, for any magnitude A, and for any state Vs

pv A(R) € [0,1] 1is the probability that the real-value of A is a member
2

of R. These measures on B are related to the more familiar

R

expectation-functions Exp and are related to the HV measures yu of a

pW9A

Kochen-Specker type of HV reconstruction of quantum mechanics, by equations
given below.

Now Kochen;Specker argue that the magnitudes of a physical theory
are not independent of each other but rather are functionally related, e.g.,
the magnitude A2 is clearly a function of A. And the function A2 of
the magnitude A can be measured by simply measuring A and squaring the

resulting value. That is, the real value of any (Borel) function g(A) of
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any magnitude A is calculated by simply applying that function g to the
real value of A. The last sentence 1is a statement of what may be regarded

as an uncontentious general principle which applies to the magnitudes of

any physical theory.
Kochen-Specker also assume that the magnitudes of a physical

theory are determined by the measures in the following sense:

pW,A
~ (R) = p, (R) for

v.a °y,B

every state V¥ and any Borel subset R € R, then A = B.

(*) For any magnitudes A, B, if

With (%), the above general principle suggests the following definition,
which Kochen-Specker label (3), for a function g(A) of any magnitude A:

(3) For any A and any Borel function g,

)(R) = p¢ A(g~1(R)) for any state ¢ and any R ¢ R

pw,g(A
(Kochen-Specker, 1967, pp. 61, 63).

In fact, (3) can be regarded as a restatement of the uncontentious
general principle. For if the real value of A is a member of some Borel
subset R € R, then by the general principle, the real value of g(A) is
a member of the Borel subset g(R) € R. Likewise, if the real value of
g(A) 1is a member of some R ¢ R, then by the general principle, the real
value of A 1is a member of the Borel subset g—i(R) € R. So assuming that
py,g(A)(R) is the probability that the real value of g(A) is in R, and
assuming that the p¢’A measpres determine the magnitude of a physical
theory in the above (%) sense, then by the general principle we can be sure
(R) =

that p (g'i(R)).

,g(A) Py, a

Moreover, with respect to a Kochen-Specker type of HV

reconstruction of quantum mechanics, in which each quantum magnitude A is
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represented by a function f 2 =+ R on the HV phase space { and the

A H
real value of A for any hidden state w €  is fA(w), the general
principle yields the identity: for any w € , fg(A)(W) = g(fA(w)). So
in a Kochen-Specker type of'HY reconstruction, the functions -{fA,...}»
representing the quantum magnitudes in the proposed HV theory must satisfy
the following structural condition labeled (4) by Kochen-Specker:

(4) TFor any quantum magnitude A and any Borel function g,

fg(A) = g(fA).
Kochen-Specker aim to show that an HV reconstruction of quantum mechanics
which satisfies (4) is impossible. But first Kochen-Specker replace (4)
by a more tractable structural condition as follows.

Using (%) and (3), Kochen-Specker define the relation of
commeasurability, i.e., compatibility, among the magnitudes of a physical
theory as stated in Chapter IV(B). Then using (*) and (3) again,
Kochen-Specker define the ring operations + and + among commeasurable
A if A

5 2 1° A2 are

commeasurable, then for some magnitude B and Borel functions gy » g2,

magnitudes as follows: For any magnitudes A1 ’

Ay = gi(B) and A, = gQ(B),' and then

2

(5) A1 + A2

(gi + gz)(B)s

g
o
1]

(g1 . gz)(B).

With + and <+« so defined among compatible magnitudes, the set of
magnitudes of a physical theory acquires the structure of a partial-algebra,
or in the terminology of Chapter I(D), a partial-ring-with-unit. And thus
the set of propositions of a physicai theory, qua idempotent magnitudes,
i.e., qua idempotent elements of a partial-ring-with-unit, has the structure

of a partial-Boolean algebra. In particular, by (#), (3), and (5), the
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mutually compatible_magnitudes of classical mechanics form a commutative-
ring-with~unit, which is a special case of a partial-ring-with-unit,
namely, the case where all elements are mutually compatible, as described
in Chapters III(B) and I(D). And the propositions of classical mechanics
form a Boolean algebra, which again is the special case of a partial-Boolean
algebra where all elements are mutually compatible. Likewise, the magnitudes
of a proposed Kochen-Specker type of HV theory form a commutative-ring-with-
unit, and the propositions of such an HV theory form a Boolean algebra.
And finally, by (%), (3), and (5) the magnitudes of quantum mechanics form
a partial-ring-with-unit, and fhe propositions of quantum mechanics form a
partial-Boolean algebra, labeled pBA. This completes the Kochen-Specker
definition of a pBA of quantum propositions, which shall be further
discussed shortly. |

Kochen-Specker then note that their condition (4) implies that
the partial-operations + and +, which are defined among (just)
compatible quantum propbsifions {P

1

representatives {fP ,fP s+++}  of quantum propositions by the condition
1 2
(5), are preserved by the mapping % which associates the quantum

,P } - and among the compatible HV

2,.&0

0,

6:pBA->PHV-

propositions with their HV representatives, in this case

For example, as elaborated by Bub, for any compatible P1 » P which are

2 2

by the definition of compatibility Borel functions of some common P, say

P, = gl(P) and P, = 32(P), we have: f, . = fgl(P)+g2(P) = (by (5))

2 115,

f(g1+g2)(P) = (by (1)) (g, +g,)(£p) = (by (5)) gi(fP)-ng(fP) = (by (#))

£ (P) + f (p) ° f. + £ (Bub, 1974, p. 87). So, for example, if

g4 g, Py Py

%(P.) = £ and %(P.) = f and %(P, +P.) = f s
1 5 1 2 P1+P2

then by (4) and
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(5) we have: %(P1-+P2) = %(Pi) + %(PQ)' Thus the mapping % which
associates quantum propositions with their HV representatives preserves the
partial-operation + among compatible quantum propds;tions. Similarly,

it can be shown that, by (#) and (5), % preserves the partial-operation

+ among compatible quantum propositions. And so with the'operation“L

and the partial-operations A, VvV defined in terms of +, * as usual, the

A

mapping % : pBA e-FhV preserves these A, V, operations since it

preserves the +, + operations. In other words, % is an imbedding(d)
(Kochen-Specker,. 1967, pp. 63-66).

However, as pointed out by Bub, it is clear that in this (b)

v,A

by (%), the equivalence of quantum propositions, and to define, with (%)

definition of pBA, Kochen-Specker rely upon the p measures to define,

and (3), the functional relations and the compatibility relations among the

quantum propositions. That is, the pBA structure of quantum propositions
which Kochen-Specker require an HV reconstruction to preserve is defined

with respect to the measures. These measures on Bé are related to

pW,A
expectation-functions Exp by the equation: For any magnitude A and any

state V, Expv(A) = ftwr dp¢ A({r}), r € R, And the measures are
H

p\l/,A
related to the @ measures of a Kochen-Specker type of HV reconstruction by

the equation: For any magnitude A, any state V, and any Borel subset

R C R, pw A(R) = uw(fxl(R)) (Kochen-Specker, 1967, p. 61). Now so far, A
9

-and V¥ designate any magnitude and any state in any physical theory. So

with respect to the issue of a proposed HV reconstruction of quantum mechanics,

it is not clear whether the set of { states, which via the measures

pWsA
defines [pBA, 1includes just the quantum states, which are usually designated

by V¥, or includes both the quantum states and the hidden states proposed
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by an HV reconstruction. And as suggested above, the pBA defined with
lrespect to just the quantum states may be different from the pBA defined
with respect to both the quantum and the hidden states; in particular,

while the former is isomorphic to PQMA » the latter might not be.

If Kochen-Specker mean the set of states which define, via the

pW’A measures, their pBA to include both quantum and hidden states, then
they are presuming that hidden states exist and they thus beg the HV

question in a trivial way. If it does not matter whether the set of states
includes just the quantum states or includes both quantum and hidden states,
then Kochen—Specker beg the HV question in the sense that they presume that
the pBA defined with respect to the quantum ¢ states is the same as the

PBA defined with respect to both quantum ¢ and hidden w states; in

particular, they presume that “w(P3) = “W(P3) just as Exp P3) = Exp'(Pa).

(
\Z \
But in a contextual HV theory, an element P3 which is a member of two or

more overlapping mBS's in pBA is not assigned a unique value for a given

hidden state w specified by V, &, e.g., (<P3,mB81>) may not equal

"y, g
MW £(<P mBSu>). And finally, if Kochen-Specker mean the set of states

which define their pBA +to include just the quantum states, then they beg
the HV question in the manner described on page 190. For then by (%),
quantum states determine the identity of the quantum magnitudes and quantum

propositions; i.e., for any quantum propositions Pp.,, P, =P if

ProFps B 5 H
p¢ p (R) = p¢ p (R) for every quantum state V¥ and any Borel subset
b4 9’ .

R ¢ R. Or in other words, by the above equation connecting EXPW with

P P, =P if

we have: TFor any quantum propositions P 5 s 1 5

Py, A 1°

ExpW(P ) = Expw(P ) for every quantum state. But there is no reason why

proposed dispersion-free HV measures induced by the hidden states of a
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proposed HV theory must preserve this equivalence which is defined with
respect to the guantum states and measures. Thus contextual HV measures
which do not preserve the equivalences in pBA may be proposed especially
in order to avoid the Kochen-Specker HV impossibility proof.

So if Kochen-Specker had only the (b) definition of pBA, then
their crucial imbedding(5) condition would unjustifiably demand the
preservation of a structure defined with respect to maybe just the quantum
states and measures. However, Kochen-Specker have not only the defined pBA
~but also the (a) PQMA given by the basic tenets of quantum mechanics. And
as Bub argues, both the Kochen-Specker HV impossibility proof and the
contextual HV counter-proposal are best understood if we give Kochen-Specker
the benefit of the doubt and resolve their ambiguity between (a) and (b) in
favour of the (a) PQMA . The very fact that Kochen-Specker require that the
quantum propositional structure be preserved in an HV reconstruction suggests
that they regard it as something more than a merely statistical structure
defined with respect to the dispersive quantum states and measures.
Moreover, Kochen-Specker specifically declare their Theorem 1 to be a finite
version of Gleason's impossibility proof, which refers to the projectors or
subspaces of Hilbert space. Thus Kochen-Specker's finite version of Gleason's
proof may likewise be understood as referring to the PQMA- structure of
projectors or subspaces of Hilbert space rather than referring to the pBA
structure.

Kochen-Specker may have been motivated to develop their (b)
definition of pPBA in order that their contentious imbedding(d) condition

should follow from the uncontentious general principle as described above.

But then Kochen-Specker should have used the general principle only to
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support, via (4), their imbedding(é) condition rather than to help define,
via (®*), (3), (4), (5), a pBA of quantum propositions. For example, we
may take the gquantum propositional structure to be a PbMA of projectors
or subspaces of Hilbert space; so P1 = P2 if P1 = §2 ,» and the
partial-operations +, * are defined among compatible propositioens és
projector addition and multiplication. Then we may still argue that in a
proposed HV reconstruction of quantum mechanics, where any quantum
proposition P is represented by an idempotent function fP 1 Q> {0,1}
on the HV phase space & and any Borel function g(P) is correspondingly

represented by the idempotent function f the uncontentious general

g(p) °
principle requires that the 0, 1 values issued by fg(P) must be
g-functions of the 0, 1 values issued by fP . And the fulfillment of

this requirement is best ensured by making fg(P) = g(fP), for any P and
any Borel function g. Thus we have condition (4), from which the
imbedding(d) condition follows as described above. In other words, the
crucial Kochen-Specker imbedding(d) condition, which requires that PQMA
be preserved in any proposed HV reconstruction of quantum mechanics, is
supported by the uncontentious general principle which it seems no critic
of Kochen-Specker's HV impossibility proof could reasonably object to.
However, without realizing or disregarding the above elaborated
connection between the general principle and the imbedding(d) condition,
critics of tﬁe Kochen-Specker proof may argue that even if Kochen-Specker
are understood as referring to PQMA rather than pBA, their proof begs
the HV question because their imbedding(d) condition, which requires
PQMA-preservation'and which rules out hidden-variables, is not justified.

In other words, critics may argue that there is no reason why a proposed HV
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reconstrﬁction'must preserve even this PQMA given by the fundamental
postulates of quantum mechanics. In fact, Bell must be understood as making
this further argument; for he addresses himself to the Gleason impossibility
proof and thus to an (a) type of structure rather than a (b) type of
structure.

Bub rescues the Gleason, Kochen-Specker proofs from this

criticism, as described in the next section.

Section B. Either PQMﬁ-preservation or Boolean Reconstruction

Bub argues that the concept of an HV reconstruction of quantum
mechanics does not make sense unless the quantum propositional structure
is preserved. For according to Bub, quantum mechanics is a principle theory

rather than a constructive theory. The distinction is due to Einstein and

is described by Bub as follows. Constructive theories "aim to reduce a
wide class of diverse systems to component systems of a particular kind
(e.g., the molecular hypothesis of the kinetic theory of gases).”" 1In
contrast, principle theories "introduce abstract structural constraints
that events are held to satisfy," e.g., special and general relativity can
be viewed as principle theories of space-time structure (Bub, 1974, pp. vii,
142). Bub regards quantum mechanics and classical mechanics as principle
theories of logical structure because,

. « they introduce constraints on the way in which the
properties of a physical system are structured. The logical
structure of a physical system is understood as imposing the
most general kind of constraint on the occurrence and
non-occurrence of events. (Bub, 1974, p. 149)

The logical-property-event structure of a physical system is given by the

propositional structure as determined by the mathematical formalism of the
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physical theory describing the system, namely, the classical PCM and the

quantum P . So at the very core of quantum mechanics is the non-Boolean

QM

P structure, which Bub and Kochen-Specker explicitly and Gleason

QM

implicitly take(s) to be a PQMA . And according to Bub, (i) the question

of the completeness of quantum mechanics must be posed with respect to

(ii) the quantum probability measures are defined on P and the

PQMA i QMA

statistical results of quantum mechanics make sense with respect to PQMA s

and (iii) any HV reconstruction or extension of quantum mechanics must

preserve the quantum PQMA .

Now as shown by Kochen-Specker and by Gudder, a Boolean HV

reconstruction of quantum mechanics which does not preserve the PQMA

structure is always possible. By a trivial construction, Kochen-Specker
show that is is always possible to introduce a classical measure space
<9,PHV,u> = X which reproduces the quantum statistics but does not preserve

PQMA (Kochen-Specker, 1967, p. 63). And Gudder proves that it is always

possible to introduce a contextual HV Boolean reconstruction which
reproduces the quantum statistics and preserves the Boolean structural

features of the mBS's of PQMA but which breaks up the overlap patterns

among the mBS's and so does not preserve PQMA (Gudder, 1970, pp. 434-436).

However, as Bub argues:

The contribution of Kochen-Specker lies in showing that
the problem of hidden variables is not that of fitting
a theory--i.e., a class of event structures--to a
statistics. This can..always be done in an infinite
number of ways; in particular, a Boolean representation
is always possible. Rather, the problem concerns the
kind of statistics definable on a given class of event
structures. (Bub, 1974, p. 88).

The event structures given by the fundamental postulates of quantum mechanics
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are the non-Boolean P M structures, in particular, the P structures.

Q QMA
So the problem of the completeness of quantum mechanics and the concordant

problem of hidden variables is correctly addressed with respect to the

quantum P

QA as done by Gleason and Kochen-Specker. In Bub's view,

Gleason's completeness proof shows that the quantum formalism generates all
possible (generalized) probability measures on the Pg;i structures of
three-or-higher dimensional Hilbert space. That is, with respect to PQMA s
the quantum mechanics of three-or-higher dimensional Hilbert space is

complete. And it follows as a corollary that, for Pgﬁz s, dispersion-free

(generalized) probability measures which preserve the partial-Boolean

>
structural features of Pn_3 are impossible. And so by Kochen-Specker's

QMA
Theorem 0, an imbedding(d) of PQMA into a Boolean structure is impossible.
Thus a Boolean HV reconstruction of quantum mechanics which preserves P

QMA

is impossible. That is, with respect to P an HV reconstruction of

QMA °
the quantum mechanics of three-or-higher dimensional Hilbert space is
impossible.

The above interpretation of Gleason and Kochen-Specker's work
actuélly depends upon our acknowledging the priority of the PQMA structure
as the core, or at least part of the core, of quantum mechanics which must
be preserved. For dispersion-free HV measures and a Boolean HV

reconstruction which do not preserve P are always possible. So if"

QMA
PQMA were not required to be preserved, then in spite of Gleason's
completeness proof, the fact that all the measures generated by the quantum
formalism are dispersive would signal the incompleteness of quantum mechanics

relative to a possible Boolean HV reconstruction which included

dispersion-free HV measures.
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Now as Bub mentions, the completeness of quantum mechanics with

respect to PQMA s 1.e., the fact that the quantum formalism generates all

>
possible (generalized) probability measures on any Pgﬁi » guarantees that
the PQMA structure given by the fundamental quantum postulates and the

PBA structure defined with respect to the quantum measures are isomorphic
(Bub, 1974, p. 45). So the ambiguity, described in Section .Aj, in

Kochen-Specker's notion of the quantum propositional structure as a (a)

given PQMA and a (b) defined pBA 1is not harmful but merely confusing.
In particular, we can be sure that if Exp?(Pl) = Expv(PQ) for all quantum
EXPW , then P1 = P2 in PQMA .

Moreover, if we acknowledge the priority of the P structure

QMA

in quantum mechanics, then the structural condition of PQMA Preservation
and the Gleason, Kochen-Specker HV impossibility proofs emerge unscathed by
the three sorts of criticisms described in the previous section. In
particular, PQMA-preservation must still be required of a proposed HV theory
in spite of the fact that this condition leads to contradictions which make
the HV theory impdssible and of the zeroth kind, in Belinfante's terminology.
And PQMA-preservation must be required of the proposed dispersion-free
measures of an HV theory in spite of the considerations of measurement
interactiqn which Bell raisés in order to dissuade our imposing this
condition. And finally, the Gleason, Kochen-Specker proofs cannot be

charged with begging the HV question because they impose the
PQMA—preservation'condition; for the question of an HV reconstruction of
quantum mechanics does not even make sense except with respect to the

quantum P structure, which must be preserved.

QMA

In contrast, an HV advocate may choose to regard to quantum P

QM
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structure, whether P or P as not worthy of preservation when

QMA QML °
considered with respect to the larger enterprise of providing a classical,
Boolean reconstruction or re-interpretation of quantum mechanics, especially
because such a reconstruction is possible if the quantum PQM is not

preserved. So rather than affirming the priority of the quantum PQM
structure in the interpretation of quantum mechanics, an HV advocate may
instead affirm that (i') the problem of the completeness of any physical
theory only makes sense when posed or framed with respect to a Boolean
logical-property-event structure, (ii') the probability measures of any
statistical theory like quantum mechanics are to be defined on a Boolean
structure, and (iii') a Boolean HV reconstruction of quantum mechanics need

not preserve the quantum P structure.

QM
As described by Bub, if we acknowledge the priority of a Boolean
HV reconstpuction’of quantum mechanics by affirming these three primed
conditions, then quantum mechanics is incomplete and an HV reconstruction
is possible and completes quantum mechanics. Most simply, a Boolean
structure always admits dispersion-free measures, yet quantum-mechanics
lacks dispersion-free measures. So with respect to a Boolean
logical-property-event structure, quantum mechanics is incomplete; and
quantum mechanics is completed when reconstructed as a Boolean HV theory
which includes dispersiqn—free measufes. Moreover, if we acknowledge the
priority of a Boolean HV reconstruction of quantum mechanics, then the
ambiguity in the Kochen-Specker notion of the quantum propositional structure
is again not harmful but merely confusing; for neither the (a) given PQMA

nor the (b) defined pBA need be preserved. It also follows from the above

acknowledgement that the structural condition of P, , -preservation succumbs

QMA
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to the three sorts of criticisms described in the previous section, as do
the structural conditions (vnd) and (JPB). In particular, since there is
no reason why an HV reconstruction must satisfy any of these structural
conditions, the von Neumann, the Jauch-Piron, the Gleason and the
Kochen-Specker impossibility proofs do beg the HV question since each rests
upon contradictions caused by the imposition of an unjustified condition.
Bell's considerations of measurement interaction lend further support to the
rejection of the structural conditions as unjustified. And since the
structural conditions lead to contradictions, in other words, since HV
fheories which include these structural conditions are of the zeroth kind
and are impossible, we can be sure that the structural conditions are
precisely what a proposed HV reconstruction of quantum mechanics must not
be required to satisfy.

So there are these two ways of interpreting quantum mechanics:
Either the PbMA structure is regarded as the core of quantum mechanics
which must be preserved, in which case quantum mechanics is complete (as
proved by Gleason) and a Boolean HV reconstruction of quantum mechanics is
impossible (as proved by Kochen-Specker). Or the possibility of a Boolean
reconstruction of quantum mechanics is regarded as the most important
consideration’intthe interpretation:of: quantum.mechanics,: in“which case a
contextual Boolean HV reconstruction which does not preserve PQMA is
possible and quantum mechanics is incomplete relative to this reconstruction.
The articulation of this dichotomy is Bub's decisive contribution to the
interpretation of quantum mechanics and the problem of hidden-variables
(see, e.g., Bub, 1973, p. 48). And notice that this dichotomy undercuts

the three sorts of arguments described in Section 'A . For regardless of
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the inconsistency and question begging claims, and regardless of Bell's
considerations of measurement interaction, the structural conditions and the
HV impossibility proofs either stand or fall depending upon which side of
the dichotomy one favours. In fact,.which side of the dichotomy one favours
also determines whether the inconsistency and question begging claims stand
or fall.

In the rest of this secfion, some arguments in favour of the

P MA-preservation side of this dichotomy are described. One might also

Q

consider regarding the orthomodular lattice PbML rather than the

partial-Boolean algebras PbMA as the core of quantum mechanics which must

be preserved; some arguments against regarding P M

QML

. . . . . 7
mechanics are suggested by various points made throughout this thesis.

as the core of quantum

Both sides of the dichotomy imply the imposition of structural
conditions on a proposed Boolean HV reconstruction of quantum mechanics.

Clearly, on the P MA—preservation side, the Boolean structural features of

Q

>
each mBS in a P and the overlap patterns among the mBS's in a Pn_3_

QM QM
must be preserved. And on the Boolean reconstruction side, the Boolean
structural features of each mBS in a PQM may be preserved but, by virtue
of the Gleason, Kochen-Specker results, the overlap patterns among the mBS's
in a Pgis cannot be preserved. So it is not the case that one side of the
dichotomy imposes stringent structural conditions while the other side does

not. Rather, both sides impose equally stringent conditions: either the

overlap patterns among the mBS's must be preserved, or the overlap patterns

must be violated.

The simple proposal that in a proposed Boolean reconstruction,

the operations and relations among compatibles ought to be preserved while
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the operations and relations among incompatibles oughf to be ignored, does
not help decide between the two sides of the dichotomy. All the elements
in an mBS of a PQM are mutually compatible; and for any non-overlapping
mBSi . mBSj of PQM » every element Pi € mBSi (except the distinguished
0, 1 elements) is incompatible with every element Pj € mBSj (except the
distinguished 0, 1 elements). But the elements in any overlapping mBS's
n>

Q§3 are inextricably compatible and incompatible with each other in

the following sense. On the one hand, if the operations and relations among

of P

compatibles are preserved, then the overlap patterns are preserved, and then
it follows, as Bell rightly argues, that some relations among incompatibles
are also preserved. On the other hand, if the overlap patterns are not
preéerved, then these relations among incompatibles are not preserved, but

also some relations among compatibles are not preserved. For example,

consider the relation P1 =< P4 % P5 among the elements P1 R Pu . P5 in
3

the two overlapping mBS's of the twelve-element PQM

TA.. If the overlap pattern between mBS1 and mBSL+ is preserved, then

diagrammed in Section

this relation is preserved even though P1 ¥ P,4 and P1 $ P as Bell

5 b

criticizes. But if the overlap pattern is not preserved, then even though

P1<5 Pq \ P5 » this relation is not preserved in the sense that, for

example, in a contextual HV theory, for a given hidden state ¥, &, P, may

1

be assigned a value which is not less-than-or-equal-to the value assigned to
Y i.e. (< > ‘ < >).

PH P5 , i.e., “\y,g( Pl,mle ) % “\y,g( P,V PS,mBSq ). In short,

relations among compatible elements in overlapping mBS's cannot be preserved

without also preserving relations among incompatibles, and relations among

incompatible elements in overlapping mBS's cannot be ignored without also

ignoring relations among compatibles.
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The contextual HV proposals are the serious contenders on the
Boolean reconstruction side of the dichotomy. As Gudder makes clear,
contextual HV theories preserve the Boolean structural features of the mBS's

in a PbM structure (Gudder, 1970, p. 435). But as described in Section

A , the dispersion-free HV measures induced by the hidden states of a
contextual HV theory violate the overlap patterns among the mBS's by

assigning different 0 or 1 values to a given element P ¢ P M when P

Q

is a member of overlapping mBS's. That is, the value assigned to P when
considered in the context of one mBS may be different from the value
assigned to P when considered in the context of énother mBS. In this
sense, the identity P = P is violated; so clearly, any other operation or
relation among elements in overlapping mBS's may be violated. And, for
example, the dispersion-free HV measures of a contextual HV theory cannot

even preserve just the -+ operation and the < relation of P because,

QM

as shown in Chapter V(C), just *, = preservation is sufficient to ensure
that all operations and relations among compatible and incompatible elements

in the ultrasubstructures of P are preserved, where an ultrasubstructure

QM
>
in a Pgﬁs is a union of overlapping mBS's; thus the overlap patterns among

n>

mBS's in the ultrasubstructures of PQﬁa are preserved if -, < are

preserved.
Quantum mechanics itself is the serious contender on the

PQMA—preservation side of the dichotomy; HV proposals which preserve PQMA

are impossible. The quantum Exp, measures on a P do preserve the
4 v

QM

and they do preserve the

Qu °

A, V .operations among any compatible pairs of elements in P (even

QM

though Bxp¢ .may not be bivalent with respect to every element in P

L

=, = relations and the operation of P

QM);

_measures do preserve P and do preserve the overlap

thus the Exp: QMA

¥
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And in particular, with respect to the domain

EXPW

preserves all the operations and

relations among all (compatible and incompatible) elements in the overlapping

USW where each EXPW is bivalent,

mBS's in US\'y , as shown in Chapter
Tutsch gives an example of’

propositions, i.e., the = wrelation

not preserved in the Bohm-Bub contextual HV theory.

VI(B).
how. the quantum mechanical ordering of

of P

QM and thus the =

relation, is

In this theory, once

the hidden state V, £ and the context of measurement are specified, the

outcome of a measurement of a magnitude

A (which is an eigenvalue of A)

is determined by the so-called polychotomic algorithm, hereafter called the

HV algorithm.
for a given hidden state y, £, the
magnitude /SZ/, the absolute value
while the outcome of

eigenvalue 0,

spin-1 in the 2z direction, is the

function of SZ 3 each magnitude is

three-dimensional Hilbert space; and

Tutsch's example shows how according to the HV algorithm,

outcome of a measurement of the

of spin-1 in the 2z direction, is the
a measurement of the magnitude SZ N
eigenvalue -1. Clearly, /SZ/ is a
represented by an operator on

both magnitudes share the eigenstate

WO associated with their 0 eigenvalues and represented by the

one-dimensional projector Po = |W0><WO|. In both quantum mechanics and a

contextual HV theory, the outcome 0

for a measurement of /Sz/ or for a

measurement of SZ is connected with the assignment of the value 1 to the

€ P

element Po QM

which qua projector represents the eigenstate WO . That

is, in quantum mechanics, for a given quantum state V¥, the outcome of a

measurement of /Sz/ is the eigenvalue 0 (i.e., Exp (/Sz/) =

0) IFF

EXPW(PO) = 1; and likewise, the outcome of a measurement of SZ is the

eigenvalue 0 " (i.e., ExpW(Sz)‘= 0)

(p)) =1.

IFF EXPW 0

Similarly, in a
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contextual HV theory, for a given hidden state V, &,  and for any context
mBS, the outcome of a measurement of /Sz/ is the eigenvalue 0 IFF

(<P09mBS>) = 1; and likewise, the outcome of a measurement of SZ is

.

the eigenvalue 0 IFF uw §(<PO’mBS>) = 1. Furthermore, in the quantum
Ed

3

QM

element PO » which qua projector represents the eigenstate WO s

propositional structure P of three-dimensional Hilbert space, the

represents both of the following propositions: '"The eigenvalue of /SZ/
is 0." "The eigenvalue of SZ is 0." Since both propositions are
represeénted by the same element P, = P in P3

0 0 QM °?

implies the other in the sense that PO = PO and P0 z Py (where the =

each proposition

of P is interpreted as logical implication). And since, for every

QM
quantum state V, Exp‘(/Sz/) = 0 IFF Exp (P.) =1 IFF Exp‘(SZ) = 0,

v y 0 17

each proposition implies the other in the sense that, for any quantum state-
y, if the outcome of a measureﬁent of /SZ/ is the eigenvalue 0, then
the outcome of a measurement of SZ is the eigenvalue 0, and
conversely.8 But in spite of the fact that quantum mechanically, each of
the above propositions implies the other (in both senses of implies),
Tutsch gives an example of how in a contextual HV theory, the proposition
"The eigenvalue of /SZ/ is 0}' need not imply (in either sense) the
propoéition "The eigenvalue of SZ is 0."

According to the description of contextual HV theories given in
Section ‘A , such a deviation from quantum mechanics is possible because
P0 is a member of (at least) two overlapping mBS's specifying possible
contexts of measurements of /SZ/, SZ , described as follows. Besides the

0 eigenvaluey the magnitude SZ has two other eigenvalues, 1, -1, each

associated with an eigenstate represented by a one-dimensional projector



210

|W1><¢1| and P_, = |W_1><W_1|; but the magnitude /Sz/ has only
one other eigenvalue besides 0, namely, the eigenvalue 1 associated with

an eigenstate represented by a two-dimensional projector, say

P =P v P (i.e., the eigenvalue 1 of /S / 1is degenerate).
1,-1 1 -1 z

Though Pl,-i = P1 \ P_1 s 1t is equally true that P1,-1 = Pa v Pb for
any orthogonal Pa,Pb which satisfy Pa v Pb = P1 Y P-i . So the set

{PO 1,P 1}- (i.e., the mBS1 generated by that set) may be the context of

a measurement of /Sz/ as well as the set {PO’Pa’Pb} - (i.e., the mBSa

generated by that set); but only the set {P_, 1} (i.e., mBSi) may

o’ 1’
be the context of a measurement of Sz . And clearly, mBS1 overlaps with
mBSa since both share the element P0 . Now as described in Section A ,

- for a unique hidden state V,£, it is possible that H¢ g(<P ,mBSa>)

# pw £(<P ,mBS >).. So given the connection between the outcome 0 for a
measurement of /Sz/ or Sz and the assignment of the value 1 to the
element P, described above, this possibility: “W g(<P >mBS_ >)

(<P ,mBS >) means that it is possible that if /Sz/ is measured in

Py

the context mBSa and Sz is measured in the context mBS then for a

1’
unique hidden state V,Z, the outcome of the measurement of /SZ/ is the
eigenvalue 0 (which occurs IFF u¢ g(<P0’mBSa>) = 1), while the outcome
L]
of the measurement of SZ is one of Sz's other eigenvalues not equal to
0 (which occurs IFF
My,

hidden state which, according to the HV algorithm, assigns values which

(<PO,mB81>) # 1). In his example, Tutsch gives a

exemplify this possibility. In particular, his hidden state yields the
outcome 0 for /Sz/ but the outcome -1 for SZ . And although Tutsch
does not explicitly state that in his example, /SZ/ is measured in a

context different from the context in which Sz is measured, Tutsch does
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conclude that his example could mean that the two propositions: '"The
eigenvalue of /SZ/ is 0." and "The eigenvalue of SZ is 0." refer to .
"properties of the system plus apparatus and hence, different apparatus may
produce different results." This conclusion suggests that in his example,
/SZ/ is measured in a context different from the context in which Sz is
measured (Tutsch, 1969, pp. 1118-1119).

Belinfante speaks of Tutsch's example as an example of a paradox
which is derived from the HV algorithmg and which is related to but in fact
worse than the Kochen-Specker troubles (which motivate the contextual HV
proposals) in that such paradoxes are "much 1less (if at all) justifiable as
a 'result of the influence of the measuring arangement'" (Belinfante, 1973,
p. 135). Assuming that the above analysis of Tutsch's example is correct,
the example is not an example of a paradox. For /SZ/ and Sz are
measured in different contexts (involving different experimental arrange-
ments), and as Bub makes clear, we must expect the dispersion-free measures
induced by the hidden states of a contextual HV theory to assign different
values even to the same magnitude when measured in different contexts.
Gudder, who was in contact with Tutsch at the time of the publication of
each of their papers, likewise understands Tutsch's example as involving
measurements in different contexts (Gudder, 1970, p. 436). Moreover, the
"paradoxes" exemplified by Tutsch's example are related to the Kochen-Specker
troubles only in the sense that such '"paradoxes' are features of a
contextual HV theory which are necessary in order to avoid the Kochen-Specker
HV impossibility proof. For if the dispersion-free HV measures induced by
the hidden states of a contextual HV theory did not assign different values

to the same magnitude when measured in different contexts and instead
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assigned unique values to an element P, even though P0 is a member of

0
’overlapping mBS's, then such measures would be ruled out by.the Kochen-Specker
proof.

Gudder suggests that the sort of contextual HV deviations from
quantum mechanics which are exemplified by Tutsch's example may be
candidates for experimental verification or falsification. In addition to .
Tutsch's sort of deviations, there is also the following sort of contextual
HV deviations from quantum mechanics which has been the subject of
experimental test.

In a contextual HV theory, a pure quantum state V 1s treated as
a mixed state with respect to the possible hidden states (each represented
by ¢ together with some £), and the mixed state ¢ describes an
ensemblé of hidden states with a so-called equilibrium distribution of
hidden variables. In order that the statistical condition, mentioned in the
Preface to this chapter, be satisfied, this equilibrium distribution of
hidden variables together with ¢ must reproduce, via the HV algorithm,
the statistical results of quantum mechanicé given by the EXPW measures
(Belinfante, 1973, p. 136); or in other words, the statistical results of
quantum mechanics are derived from the HV algorithm by assuming that the
hidden variabies are in,an equilibrium distribution. For example, as
described by Belinfante, consider a large number of quantum systems whose
quantum state is V¥ on which we perform measurements of a magnitude A
and, whenever the outcome is a particular eigenvalue aj » we follow up by
measuring a different magnitude B. In quantum mechanics, the average value
of B 1is determined not by ExpW(B) but rather by Bxp\p.(B), where Wj
is the eigenstate of A associated with the eigenvalue ’ aj 3 that is,

the first measurement of A 1is assumed to have reduced the initial state
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W to the eigenstate yj- of A. 1In a contextual HV theory, in order that
the HV algorithm reproduce this quantum mechanical result Expw.(B), besides
the reduction of ¢ “to Qj‘, it must also be assumed that the]hidden .
variables, which together with ¢j' describe,. the hidden states of the
ensemble of quantum systems after the measurement of A, are in an
equilibrium distribution before the measurement of B occurs (Belinfante,
1973, pp. 139-1u40). However, after the meésurement of A, the HV algorithm
calculations yield a non-equilibrium or biased distribution of hidden-
variables. It is assumed that such biased disfributions of hidden-variables
very rapidly relax to the equilibrium distribution which reproduces the

Ekp¢ (B) result. But if the measurement of B is performed before the
biasid distribution resulting from the measurement of A has relaxed to the
equilibrium distribution, then the biased distribution predicts via the HV
algorithm statisticél results for B which differ from what quantum mechanics
predicts via its Expw (B) formalism (Belinfante, 1973, p. 163).

These sorts ’ of deviations from quantum mechanics which are
connected with non-equilibrium distributions of hidden variables after
measurement are different from the Tutsch sort of deviations which are
connected with different contexts of measurement. For as described by
Bohm-Bub (1966, p. 466), the non-equilibrium sort of deviations occur for
measurements of magnitudes represented by operators on two-dimensional Hilbert

space. But clearly, the contextual sort of deviations can occur for

measurements only of magnitudes represented by operators on a three-or-higher

n>3
QM

The existence of these deviations make it at least in principle

dimensional Hilbert space since only P structures have overlapping mBS's. -

possible to experimentally verify or falsify the predictions of the HV
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algorithm and thus to decide between quantum mechanics and the proposed
contextual, Booléan HV reconstructions of'quantum mechanics. Experiments
testing for the non-equilibrium distribution sort of deviations with a time
interval of less than lO_13 .seconds between the measurements of different
magnitudes (like the measurements of A ana B described above) have so
far found no deviations from the predictions of quantum mechanics and have
thus falsified the predictions of the HV algorithm. However, HV advocates
may argue that the time it takes a biased distribution of hidden variables
to relax to the equilibrium distribution dis less than the lO_13 second
interval between the measurements of the experiments mentioned above. For
as described by Belinfante, "it has not yet been established how fast one
may theoretically expect biased hidden-variable distributions to relax. . . ."
So even if the HV algorithm is falsified at an even shorter time interval in
some future experiment, HV advocates may nevertheless continue to argue that
the shorter time interval is not yet short enough to capture the biased
distribution of hidden-variables before it relaxes to the equilibrium
distribution which reproduces the quantum mechanical predictions. Thus while
experiments have so far falsified and may continue to falsify the HV
algorithm, it may be that no experiment will ever coneclusively decide between
quantum mechanics and the proposed contextual HV theories (Belinfante, 1973,
pp. 88, 100). |
Nevertheless, quantum mechanics is so far supported by experimental
evidence. And as pointed out by Belinfante, the formalism of quantum
mechanics is simpler than the formalism of the contextual HV theories. So
by the usual criteria of experimental evidence and formal simplicity, quantum

mechanics is a better theory of quantum phenomena than is a contextual HV
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theory. So why is quantum mechanics still challenged by the contextual HV
proposals? Four reasons are described, to the end of this section.

1. One reason quantum mechanics is vulnerable to a contextual HV
proposal is because even if it is granted that the classical notion of a
probability measure defined on a Boolean structure may be generalized so as

to be defined on the non-Boolean quantum P M structures, the notion of a

Q
generalized measure on FbM is open with regard to the issue of which
operations and relations of FbM ought to be required to be preserved by

the geheralized measures. As described in Chapter IV(A), Bub and Jauch-Piron

each define two different sorts of generalized measures on P . The

QM

contextual HV measures can be regarded as a third sort of generalized

probability measure on P (even though the domain of a contextual HV

QM

measure is PQM X {mBSi}iEIndex)' All three sorts of generalized measures

preserve the Boolean structural features of the (maximal) Boolean
substructures of PQM . In addition, Bub, Gleason, Kochen-Specker, and
Jauch-Piron require that a generalized probability measure satisfy Gleason's
additivity condition (Ga) which ensures that dispersion-free generalized

probability measures preserve the partial-Boolean structural features of

PQM ,

n>3

QM

in particular, preserve the overlap patterns among the mBS's of P .
Jauch-Piron further require their generalized measures to satisfy (JP¥).

An argument against the inclusion of (JP$) as part of the conditions defining
a generalized probability measure is given in the note below.lo Here we
consider whether or not (Ga), which entails PQMA-preservation, ought to be
included.

The dispersion-free HV measures induced by the hidden states of

a contextual HV theory do not and cannot satisfy (Ga) because together with
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the dispersion-free condition,(Ga) yields P MA—preservationfand (Ga) also

Q
yields the condition labeled (B) by Bell, neither of which is satisfied by
contextual HV dispersion-free measures. However, the inclusion of at least
Gleason's additivity condition as part of the conditions defining a
generalized probability measure on a PQM is strongly supported by the
precedent that in classical probability theory, condition (pa) is included
among the conditions defining a classical probability measure on a Boolean
structure, as stated in Chapter III(C). (see for example, Kolmogorov, 1933,
P. 2). Since elements in a PQM are disjoint IFF they are orthogonal, or
in other words, orthogonality is the quantum analogue of disjointedness;
condition (Ga), which requires that a generalized probability measure on a

P be additive with respect to orthogonal elements of P is the

QM

quantum analogue of condition (pa), which requires that a classical

Q1 °

probability measure on a Boolean structure be additive with respect to
disjoint elements. Or in other words, (Gaj is simply the condition (pa) as
applied to the quantum PQM structures. So it is arguable that because
(na) is one of the conditions defining a classical probability measure, (Ga)
ought to be one of the conditions defining a’generalized probability measure.
Moreover, as elaborated at the end of Section A ., the condition
of PQMA—preservation which follows from (Ga) is.independently supported by
the uncontentious general principle according to which the real vaiue of say
Borel funqtion of any mégnitude in any physical theory is calculated or
determined ﬁy simply applying that Borel function to the real value of the
magnitude. Since any magnitude is compatible with any Borel function of

itself, the general principle refers to the preservation of functional

relations among compatible magnitudes (or propositions). So in a contextual
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HV theory, while the functional relations among compatible elements in any

mBS of P y are preserved, the functional relations among compatible

Q

elements in overlapping mBS's of P are not preserved since the P

QM QMA
structure is not preserved and thus the general principle which entails
PQMA-preservation'is not satisfied in a contextual HV theory. For example,

as suggested by Gudder, if one considered two different mBS's containing P

and g(P) respectively, then one would get independence of the representing

functions fP . fg(P) .

And the excuse given by contextual HV advocates for this violation of the

rather than the functional relation fg(P) = g(fP).

general principle is that the consideration of two different mBS's involves
two separate measurements with different experimental arrangements, and so
in such cases one would expect to obtain independent results for P and
g(P) (Gudder, 1970, p. 435). This excuse ignores or makes light of the
fact that, as determined by quantum mechanics and as (so far) experimentally
observed, the results of any measurements of P, g(P), are not independent
but rather are functionally related in accordance with the general principle.
2. As suggésted again in the previous paragraph, quantum theory
is vulnerable to the contextual HV proposals if measurement interaction or
measurement disturbance is regarded as the cause or basis of the non-
classical peculiarities of quantum mechanics and as (at least part of) the
reason why the von Neumann, Jauch-Piron, and KochenQSpecker type of HV
proposals are impossible. For example, according to Heisenberg's version
of the Copenhagen interpretation of quantum mechanics, one reason why quantum
ensembles cannot be resolved into subensembles which are dispersion-free (as
required in von Neumann's HV proposal) is because quantum systems are

disturbed by measurement. And for an example of how measurement considerations
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support contextual HV propbsals, we have of course Bell's argument, from the
perspective of Bohr's version of the Copenhagen interpretation, that
structural conditions 1like PbMA-preservation which refer even indirectly
to measurements of incompat}ble magnitudes must not be imposed upon the
proposed dispersion-free measures of an HV theory because of the
inextricable wholeness of quantum phenomena and measuring devices.

Now the outcome of a measurement at best determines an assignment
of 0, 1 values to a maximal Boolean substructure of elements in a PQM .
For a measurement of any magnitude A can at best be a measurement of what

is called a complete set of commuting magnitudes including A (and including

just A if none of A's eigenvalues are degenerate) whose eigenstates

{wi}ielndex s as represented by (n) orthogonal atoms {Pi}ielndex in a
Pé;) structure which generate a unique maximal Boolean substructure mBSA
of Péﬁ), specify the context of the measurement of A. And the outcome

of the measurement, which is an eigenvalue aj of A associated with an

eigenstate Wj in the set {wi}; » determines via Exp; in quantum

i€Index Wj

mechanics and via in a contextual HV theory, an assignment of 0, 1

“wj .E
values to the elements in that mBSA . The contextual HV measure does no

more without changing its 0, 1 value assignments to the members of mBSA .

However, without changing its value assignments to the members of mBSA )

the quantum measure Exp. : US. - {0,1} in addition assigns 0, 1 values

to every element in the ultrasubstructure US¢ = {P ¢ PQM :
]

where (unless US? happens to equal mBSA) US¢ is a union of
3 3
overlapping mBS's  including mBS ,

P P,} 2 mBS,

These additional 0, 1 value assignments by the quantum measure

Exp&' mean the following. Let B be any magnitude which shares the
]
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eigenstate Wj' with A even though B & A (i.e., B and A do not share
all their eigenstates). Either alone (if none of B's eigenvalues are
degenerate) or as part of a complete set of commuting magnitudes, B

specifies a unique maximal Boolean substructure mBS_, of P M which

B Q

clearly overlaps with' mBS, since the atom Pj » which qua projector

A

represents the eigenstate Wj s 1s a member of both mBSB and mBSA .

And since every element in mBSB is compatible with Pj s clearly

mBSB c USW ~+ Thus EXPW assigns 0, 1 values to every element in mBSB .
] i

And these value assignments by Exp¢ mean that if B is measured after

' 3

A 1is measured, or if B, instead of A, had been measured with the

outcome bj » then the outcome of the measurement of B, namely, the
eigenvalue bj associated with the eigenstate ¢j » determines an
assignment of 0, 1 values to the elements in mBSB such that the values
assigned to the common elements in mBSA N mBSB match the value assignments
determined by the outcome of the (first) measurement of A.

Thus the 0, 1 value assignments by the quantum measure EXP¢
3

to every element in both mBSA c Us and mBSB c USs are determined by

Y3 ¥

the outcome of one measurement yet refer to the outcomes of more
than one measurement. For A and B cannot be measured simultaneously,
i.e., A¥B. (And if A & B, then mBSA = mBSB in PQM J) In other words,
the fact that a quantum Expw measure assigns 0, 1 values to overlapping
mBS's of elements in a manner which preserves the overlap patterns says
something about different measuréments of incompatible magnitudes. Similarly,
if proposed dispersion-free HV measures are required to assign 0, 1 wvalues

to overlapping mBS's of elements in a manner which preserves the overlap

patterns, then this requirement does refer to different measurements of
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incompatible magnitudes, as the contextual HV advocates argue. For example,
the 192 atoms contained in 118 overlapping mBS's in the PgMA considered

by Kochen-Specker in the Theorem 1 part of their HV impessibility proof
represent the eigenstates of 118 incompatible magnitudes which cannot all

be measured together, yet Kochen-Specker require proposed dispersion-free

HV measures to preserve the overlap patterns among the eigenstates of these
magnitudes. This requirement, which is part of the PbMA—preservation
condition, is very hard to motivate if measurement interaction, as described
by Bohr and Bell, or measurement disturbance, as described by Heisenberg
with his Uncertainty Principle, are treated as central in the interpretation
of quantum mechanics, as the cause of the non-classical peculiarities of
quantum mechanics, and as the reason why hidden-variables are either
impossible or else dependent upon the context of measurement.

In contrast, if the non-Boolean PbMA structure abstracted from
the fundamental postulates of quantum mechanics is treated as central in the
interpretation of quantum mechanics, then the non-classical peculiarities
of quantum mechanics are‘regarded as due to the non-Boolean character of
the PQMA structure rather than due to measurement interaction or
disturbance.ll And as Kochen-Specker and Bub make clear, consideration of
measurement interaction or disturbance are beside the point if the problem
of hidden-variables is correctly understood as posing the question of
whether the statistical results of <H’PQMA’EXP¢> can be reconstructed in
térms~of a classical measure space <9,PHv,u> in a manner which preserves
the core PQMA structure of quantum mechanics. For example, in spite of

Heisenberg's Uncertainty Principle, the statistical results of

<H2’PSMA’EXPW> can be classically reconstructed, as Kochen-Specker
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demonstrate by producing an HV theory for that part of quantum mechanics
which involves just two-dimensional Hilbert space (Kochen-Specker, 1967,
pp. 75-80, 86).

3. Metaphysical prejudices, like the "religious belief that
'nature must be deterministic' . . ." mentioned by Belinfante (1973, p. 18)
make quantum mechanics especially vulnerable to the contextual HV proposals.
As described by Bub, the main reason why quantum mechanics is vulnerable to
contextual HV proposals is because of the presupposition that the
logical-preperty-event structure of reality and of any physical theory about
any portion of reality is and can only be a Boolean structure. Bub argues
that behind the affirmation of the three primed conditions (i'), (ii'),
(iii") describing the Boolean reconstruction side of the dichotomy in the
interpretation of quantum mechanics is the (metaphysical) presupposition .
that the logical-property-event structure of quantum phenomena must be a
Boolean structure, like the Boolean logical-property-event structure of
classical phenomena and classical mechanics. In contrast, behind the
affirmation of the three un-primed conditions (i), (ii), (iii) describing
the PQMA—preservation side of the dichotomy, there is an open acceptance of
the notion of a non-Boolean logical-property-event structure of quantum
phenomena and quantum mechanics (Bub, 1973, p. 543 1974, p. 1l44). This
acceptance is motivated by the following analogy. The logical-property-event
structure of classical phenomena as described by classical mechanics is
identified with (or is considered to be isomorphic with) the Boolean
propositional structure P abstracted from the formalism of classical

CM

mechanics. The non-Boolean propositional structure P in particular,

QM °

the PQMA structure, is abstracted from the formalism of quantum mechanics



222

in a manner exactly analogous to the way in which PbM is abstracted from
the classical formalism. So the logical-property-event structure of quantum
phenomené, as successfully described by quantum mechanics, may be and ought
to be identified with (or considered to be isomorphic with) the PQMA

structure rather than any proposed Boolean PHV structure.

Now if the quantum PQMA could be imbedded(d) into a Boolean
structure, then the statistical results of quantum mechanics could be
reconstructed in terms of a classical measure space <9’th’“> with a
Boolean structure at its core, and thus quantum mechanics could be regarded
as a rather baroque elaboration of what is essentially a classical statistical
theory. For example, PSMA can be imbedded(d) - into a Boolean structure,
and the <H2’PSMA’EXP¢> statistical results can be reconstructed in terms
of a classical measure space, as demonstrated by Kochen-Specker. So if
quantum mechanics made use of just two-dimensional Hilbert space rather than

any higher dimensional Hilbert spaces, then quantum mechanics would in fact

be a classical statistical theory since all of its statistical results could

. >
be classically reconstructed. However, the quantum Pgﬂz structures cannot
. 8 . . ' n=3 ,n=3 _
be imbedded(¢) into a Boolean structure, and the <H ’PQMA’EXP¢>

statistical results cannot be reconstructed in terms of a classical measure
space. TFor Kochen-Specker and for Bub, this fact demarcates quantum
mechanics from classical mechanics.l'2 As Bub says:

I have argued that the transition from classical to quantum
mechanics is to be understood as a generalization of the

Booclean propositional structures of classical mechanics to )
a particular class of non-Boolean structures. (1974, pp. 149-150)

- .
So the fact that a Pgﬁi is not imbeddable(d) into a Boolean structure

signals the separate but equal status of the PQMA structure and the PCM

structure; each structure is theoretically located at the core of quantum
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mechanics and classical mechanics, respectively. And the very fact that it

n=3
QA °
in particular, the preservation of the overlap patterns among the mBS's in
n=3
QMA °

of quantum mechanics, in particular, a contextual HV theory, possible lends

is the‘preservation'of the partial-Boolean structural features of P

P

which must be given up in order to make a Boolean HV reconstruction

further support to locating ithe PbMA structure at the core of quantum

mechanics which must be preserved.

As suggested above, the preservation of the PQMA structure is

further motivated by regarding as the logical structure of quantum

mechanics and as the logical space, in a Wittgensteinian sense, of
micro-events, as Bub does (Bub, 13873, p. 52; Wittgenstein, 1921, p. 35).

Now whether or not the PQMA (or the PbML) structure is accepted as a

new quantum logic depends upon one's views of what logic is and of what role
logic plays in a physical theory. Bub argues that the structure of logical

space is not '"parasitic on the syntactic properties of a formalized

language," is not conventional, and is not "a priori in the sense that the

laws of logicicharacterize necessary features of any linguistic framewofk
suitable for the description'and communication of experience." Rather,
"logic is about the world, not aboﬁt language"  (Bub, 1973, pp. 52-53). And:
"The logical structure of a physical system is understood as imposing the
most general kind of constraint on the occurrence and non-occurrence of
events" (Bub, 1974, p. 1l489). Moreover, as first suggested by Putnam, just
as geometry plays an explanatory role in relativistic mechanics, e.g., the
curved geometry of space-time "explains" gravity, similarly, quantum logic
pPlays an explanatory role in quantum mechanics, e.g., the fact that the

logical core of quantum mechanics is the non-Boolean PQMA structure
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"explains" the non4classical'peguliarities of quantum mechanics (Bub, 1973,
pP. 523 Putnam, 1969).

4, Finally, as>suggested at the end of point (2) above, an
inadequate or incorrect view of the problem of hidden-variables and the
problem of the completeness of quantum mechanics makes quantﬁm mechanics
vulnerable to the contextual HV proposals. As Bub argues, the notion of a
completion or extension of a physical theory only makes sense with respect
to the underlying logical-property-event structure as given by the
propositional structure determined by the theory's formalism. So a
contextual HV thgory which does not preserve the quantum PQMA structure
abstracted from the fundamental postulates of quantum mechanics is not a
completion of quantum mechanics but rather is an entirely separate theory
of quantum phenomena which will have to stand on its own feet (Bub, 1974,
p. 147). Considering the experimental falsifications of the contextual HV
deviations from quantum mechanics, we may conclude with Stapp that quantum
mechanics is complete, in at least the pragmatic sense that

« « .« no theoretical construction can yield [or has so far

yielded] experimentally verifiable predictions about atomic

phenomena that cannot be extracted from the quantum theoretic
description. (Stapp, 1872, p. lLOB)l3

Notes:

1This statement is corroborated by Kochen-Specker (1967, p. 81)
and Gudder (1970, p. 432).

2Belinfante makes a similar point (1973, pp. 25-26).

3 . . - .
Bub uses this phrase in reference to contextual HV theories, as
will be discussed below (Bub, 1974,.p. 146).
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4As mentioned above, Bell claims that Gleason's impossibility
proof rests upon the tacit assumption that dispersion-free HV measures are.
non-contextual. Belinfante substantiates Bell's claim by elaborating how
the condition Bell labels (B) follows from the condition Bell labels (A)
together with the non-contextual assumption (Belinfante, 1973, p. 65).

5If any of the P, representing the eigenstates of A are
two-or-higher dimensional + projectors, which obtains if any of A's
eigenvalues are degenerate, then contextual HV theories have a procedure,
e.g., Tutsch's rule, for augmenting the set of eigenstates so that the set
is complete and unique, and so specifies a context (Belinfante, 1973,
pp. 132-133).

6See note 4 of Chapter V, and the discussion of measurement under
point 2, at the end of the next Section 'B..

7Various points made throughout this thesis suggest the
problematic character of the lattice definitions of A, V among
incompatibles and so favour the partial-Boolean algebra P formalization
QMA
of the 'quantum propositional structures.

As described in Chapter IV, von Neumann first developed, in 1932,
something like a partial-Boolean algebra of gquantum propositions. A lattice
of quantum propositions was developed by von Neumann four years later with
the collaboration of Birkhoff, who had just founded lattice theory and so
no doubt had the idea of a lattice, with = interpreted as logical
implication, strongly in mind. But Birkhoff and von Neumann immediately
recognized the problematic character of the meets and joins of incompatible
propositions, which they said could not be interpreted as experimental
propositions. Moreover, the definition of A, Vv .among incompatible
propositions qua projectors cannot be given simply in terms of + and -
as usual, rather, Jauch had to create definitions involving the limits of
infinite products. It has been said that the lattice definitions of A, Vv
among incompatibles results in misinterpretations:ofthecelements. of PQM .
And the lattice definitions of A, VvV among incompatibles can cause
a proliferation of lattice elements, as exemplified in Chapter VI(C), and
do cause truth-functionality(d,%) problems which are peculiar to the P ML
and are avoided by the PQMA structures, as described in Chapter V. Q

Also see notes 10 and 12 below for further criticisms of the
orthomodular lattice PQML formalization of the quantum PQM .

: 8When Tutsch talks of the "ordinary heuristic sense" of
implication, I understand him to be referring to the latter sense of
implication which involves the outcomes of two measurements. The two
measurements may be successive measurements, or the two measurements may be
alternate measurements performed on two systems in the same prepared state.
In the former case, it is assumed that the first measurement is 'reproducible,"
which loosely speaking means that the measurement can be followed up by
another measurement (e.g., the measured system has not been annihilated)
and which more strictly speaking means that the measurement can serve as
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what has been called a state preparation (Belinfante, 1973, p. 6; Ballentine,
1970, p. 366).

gBelinfante points to the HV algorithm and the so-called Tutsch's
rule as the basis of the '"paradox" exemplified by Tutsch's example
(Belinfante, 1973, pp. 142, 217). As mentioned in note 5 above, Tutsch's
rule is a rule by which a unlque and complete context of measurement is
determined for a measurement of magnltude which has degenerate eigenvalues.
This rule may determine, for example, the context {Po Pa P} (i.e., mBSa)

for a measurement of the magnitude /Sz/ whose eigenvalue 1 1is
degenerate.

OIn classical probability theory, a classical probability measure
is defined as a function p : B+ [0,1] satisfying:

(i) Gleason's additivity condition (Ga), where orthogonality is
equivalent to disjointedness

(ii) w(0) = 0 and (1) = 1 (see Chapter III(C)).

And it is easy to show that u satisfies condition (JP$), i.e., for any
b,c € B, if wb) = plc) =1 then (b Ac) =1 (Jauch, 1976, pp. 136-137).
Now Jauch defines a generalized probability measure as a functien
0ot PbML > ;0,1] satisfying:
(1) (Ga) »
(ii) w(0) = 0 and (1) =

(iii) (Jp¥)

And Jauch remarks that property (iii) "must be postulated since it cannot
be derived from the other two as in the classical probability calculus"
(Jauch, 1976, pp. 135, 136).

In order to help motivate the inclusion of (JP¥) as part of the
conditions defining a generalized probability measure, Jauch mentions his
passive filter interpretation of quantum propositions, according to which
the conjunction P1 A P2 , for P1 & P2 s 1s interpreted as an infinite,
alternating sequence of filters representing P1 . P2 . (This passive
filter interpretation, described in greater detail in Jauch's
(1968, pp. 74-76), has always seemed suspect to me; Jauch proposes it in
order to make sense of the lattice definition of A among incompatibles.)
And using Gleason's Completeness result, Jauch gives a derivation of (iii),
i.e., (JPPH), from (i) and (ii) for the case of PnzS . So although Gleason

QML
does not include (JPY) as part of his definition of a generalized
probability measure, Jauch uses Gleason's résult to help make the inclusion
of (JP¥) as part of Jauch's definition of a generalized probability measure
more palatable. However, Jauch adds:
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The only example known to me of a probability measure on a
lattice which does not satisfy (iii) is in a lattice with
a maximal chain of three elements [i.e., P2 ]. This is
QML
of course precisely the case that is excluded by the
hypothesis of Gleason's theorem that dim H=3. In view
of this fact it would be of considerable interest to prove
property (iii) in the lattice-theoretic setting. No such
proof is known to me.’' (Jauch, 1976, p. 139)

Thus, since there is no derivation of (iii), i.e., (JP¥), from (i) and (iii)
for the quantum PbM of arbitrary dimension, Jauch chooses to make his
(JPH) part of the definition of a generalized probability measure.

In contrast, I would conclude that the notion of a generalized
probability measure is better defined by just (i) and (ii), rejecting (JP¥)
altogether. It follows then that a generalized probability measure on a
P M, Preserves only the partial-Boolean structural features of P

Q QML °
which calls into question the whole enterprise of an orthomodular lattice
formalization of the quantum P structure. Why bother formalizing P
as an orthomodular lattice g when the measures and mappings QM
defined on P preserve Q only the partial-Boolean features of P

QM

and ignore QM the lattice definitions of A and v among .
incompatibles? Even Jauch's difficult to motivate inclusion of (JP$) as
part of the conditions defining a generalized probability measure yu on a

PQML only preserves the A operation among incompatible P1 . P2 » when

u(Pl) = u(P2) = 1; otherwise, the A operation among incompatibles is

ignored, as is the V operation among incompatibles. In fact, nothing less
than the truth-functionality(d,¥) condition considered in Chapters IV and V
ensures the preservation of the features of P which distinguish P

. . QML QML
from PQMA » namely, the meets and joins of incompatibles.
But as far as I know, no author who has considered the problem of how
best to define the notion of a generalized probability measure on the quantum
P structure has advocated the inclusion of a condition as strong as

QM
truth-functionality(d,®).

lSome examples of how the non-Boolean character of the quantum

PQMA structure is the basis of the non-classical peculiarities of the

quantum statistical results are described by Bub (1974, pp. 149, 120-122,
125-127).

l2Bu_b's point about the demarcation between classical mechanics
and quantum mechanics suggests the following criticism of the orthomodular
lattice P formalization of the quantum P structure.

QML QM _

As described in Chapters IV(F) and V, from the PQML perspective,
the peculiarly non-classical feature which distinguishes the quantum
propositional structures from the classical ones and which, for example,
makes a classical HV reconstruction of quantum mechanics impossible, is the
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presence of incompatible elements. This is made clear in the statement of
Theorem A (Chapter V(A)) and, for example, in Jauch-Piron's concluding
remark about their HV impossibility proof: "To rule out hidden variables
it suffices to exhibit two propositions of a physical system which are not
compatible" (Jauch-Piron, 1963, p. 837). In contrast, from the P, MA
perspective, it is not the presence of incompatibles but rather Q the
presence of overlapping mBS's (for which the presence of incompatibles is
necessary but not sufficient) which distinguishes the quantum propositional
structures from the classical ones and makes a classical HV reconstruction
of quantum mechanics impossible. However, as described in Chapter IV(F),
any PQM whose mBS's happen to not overlap can be imbedded(dé) into a
Boolean  structure and so is classical, in a Kochen-Specker sense. And in
particular, the mBS's of a 2 structure do not overlap, 2 can be

PQM PQM
imbedded(d) into a Boolean structure, and the quantum mechanics of
two-dimensional Hilbert space does admit a classical HV reconstruction.

Thus from the PbMA perspective, there is a classical/quantum demarcation
between PbM structures with non-overlapping mBS's and PbM

structures with overlapping mBS's. And in particular, from the P
. . . . QMA

perspective, there is a classical/quantum demarcation between

P2 and szs structures.

QM

These classical/quantum demarcations, which are not recognized
from the P L perspective, are in fact corroborated by the lattice-

QM
theorétician Jauch as follows. Jauch argues that although PQML
structures may be irreducible or may be reducible, the quantum
superselectlon rules ensure that every quantum mechanically relevant PQ MI,
is reducible (Jauch, 1968, p. 109). Thus Jauch makes a
non-quantum/quantum demarcatlon between irreducible P and reducible

PbML . Now it is intuitively obvious that if a PQML QUL is reducible,

then PQML contains overlapping mBS's. For in a reducible
is at least one element P_. # 0,1, such that P. & P
every P ¢ P

P... » there
QML for
QML y thus PO must be a member of more than one
mBS of PQ . ' Contrapositively, if none of the mBS's in a PbML overlap,
then the only elements shared by any mBS's are the 0,1 elements,

and so PQML must have a trivial centre, i.e., PQML 1s irreducible. So

if we consider a reducible P (which falls on the gquantum-side of Jauch's
s . QML . R .

demarcation), since a reducible PQ contains overlapping

. mBS's, a reducible- P also falls on the quantum-side of the P

demarcation. And if QML we con31der a two- dlmen31onal Hilbert space QMA

PgML (which falls on the cla851cal side of thHe QMA demarcatlon), since

the mBS's in a PQ ML, do not overlap, a PQML is irreducible and so falls
on the non-quantum-side of Jauch's demarcation. This suggests, in broad
outline, a correlation between Jauch's demarcation and the PQMA
demarcations, even though the latter are demarcations between
classical/quantum while the former is a demarcation between non-quantum/

quantum. So although the PQMA demarcations between PQM with overlapping
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>
2 and Pn_3 are

QM QM

not recognized from the PQML perspective, they are reflected in Jauch's

mBS's and PQM with non-overlapping mBS's and between P

demarcation between irreducible and reducible structures, which suggests
that the PQMA demarcations are worth recognizing.

Bits of this chapter were included as my contribution to a
co-authored (with Edwin Levy and R. I. G. Hughes) review of Bub's The
Interpretation of Quantum Mechanics. The review appears in the June, 1977,
issue of Philosophy of Science.
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