COMPUTATIONAL METHODS FOR MARKOV DECISION PROBLEMS
 by
 -. MOON WHIRL SHIN
 B. Sc., Seoul National University, 1969 MiSc., Texas Tech University, 1974

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
in
THE FACULTY OF GRADUATE STUDIES (Management Science)

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA August 1980
(c) Moon Whirl Shin, 1980

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. 1. further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Management Science
The University of British Columbia
2075 Wesbrook Place
Vancouver, Canada
V6T lW

Date \qquad

ABSTRACT

In this thesis we study computational methods for finite discounted Markov decision problems and finite discounted parametric Markov decision problems over an infinite horizon. For the former problem our emphasis is on finding methods to significantly reduce the effort required to determine an optimal policy. We discuss the implementation of Porteus' scalar extrapolation methods in the modified policy iteration algorithm and show that the results using only a final scalar extrapolation will be the same as those obtained by applying scalar extrapolation at each iteration and then using a final scalar extrapolation. Action elimination procedures for policy iteration and modified policy iteration algorithms are presented. The purpose of these techniques is to reduce the size of the action space to be searched in the improvement phase of the algorithm. A method for eliminating non-optimal actions for all subsequent iterations using upper and lower bounds on the optimal expected total discounted return is presented along with procedures for eliminating actions that cannot be part of the policy chosen in the improvement phase of the next iteration. A numerical comparison of these procedures on Howard's automobile replacement problem and on a large randomly generated problem suggests that using modified policy iteration together with one of the single iteration elimination procedures will lead to large savings in the computational time for problems with large state spaces. Modifications of the algorithm to reduce storage space are also discussed.

For the finite discounted Markov decision problems in which the reward vector is parameterized by a scalar we present an algorithm to determine the optimal policy for each value of the parameter within an interval. The algorithm is based on using approximations of values to : resolve difficulties caused by roundoff error. Also, several action elimination procedures are presented for this problem. Bi-criterion Markov decision problems and Markov decision problems with a single constraint are formulated as parametric Markov decision problems. A numerical comparison of algorithms with and without action elimination procedures is carried out on a two criterion version of Howard's automobile replacement problem. The results suggest ithat the algorithm with one of the action elimination procedures will lead to efficient solution of this problem.

TABLE OF CONTENTS

Page
ABSTRACT. ii
LIST OF TABLES. vi
LIST OF FIGURES vii
ACKNOWLEDGMENT. viii
CHAPTER I. INTRODUCTION. 1
CHAPTER II. IMPROVED COMPUTATIONAL METHODS FOR DISCOUNTED MARKOV DECISION PROBLEMS. 4

1. Introduction 4
2. Preliminaries 7
3. Scalar Extrapolations 11
4. Elimination of Non-optimal Actions 23
5. Elimination of Actions for One Iteration 28
6. Action Elimination Algorithms. 34
7. Computational Results 46
8. Conclusions 53
CHAPTER III. COMPUTATIONAL METHODS FOR PARAMETRIC MARKOV DECISION PROBLEMS 56
9. Introduction 56
10. Preliminaries 58
11. An Algorithm Based on Parametric Linear Programming 59
12. An Algorithm for Finding ε_{n}-Optimal 68 Policies.都
13. Action Elimination. 73
14. Action Elimination Algorithms 76
15. Application of Markov Decision Problems with One Parameter. 84
16. Computational Results 94
17. Conclusions and Extensions 96
REFERENCES 99
APPENDIX 102

LIST OF TABLES

Table Page
2.1 Data for the Automobile Replacement Problem. 48
2.2 Comparison of Action Elimination Procedures with Policy Iteration - Automobile Replacement Problem 51
2.3 Comparison of Action Elimination Procedures with Policy Iteration - Randomly Generated Problem. 52
2.4 Computational Time 54
3.1 Comparison of Selection Rules 97
3.2 Comparison of Action Elimination Procedures 97

LIST OF FIGURES

Figure Page
2.1 Implication of Proposition 2.6 30
2.2 Flow Chart of an Action Elimination Algorithm 35

ACKiNOWLEDGMENT

I wish to thank Professor Martin L. Puterman for his help, advice and especially for his careful reading of my several drafts of this thesis; Sharon Haller, for turning hundreds of pages of scrawls and correction into this final manuscript; and my wife Yaeree Oh for encouraging me throughout this ordeal.

In addition, I am grateful to the National Science Engineering Research Council for the financial support through Grant A-3609.

CHAPTER I

INTRODUCTION

In this thesis we consider computational methods for finite state and action infinite horizon discounted Markov decision problems. In Chapter 2 we propose several methods to improve the efficiency of methods for solving these problems and in Chapter 3 present algorithms for solving finite discounted Markov decision problems parameterized by a single scalar.

The policy iteration method is usually attributed to Howard [14].
Later, Puterman and Shin [26] and van Nunen [29,30] developed independently the modified policy iteration to reduce computation for problems with large state spaces. In Chapter 2 we are concerned with increasing the efficiency of the policy iteration and modified policy iteration procedures. Porteus and Totten [23] and Porteus [21] investigated the use of extrapolation methods such as the trivial scalar extrapolation, the trivial lower bound extrapolation, row sum extrapolation and delayed scalar extrapolation to reduce the computational effort in the evaluation of expected total discounted return of a Markov and semi-Markov chain. All of these extrapolations reduce to scalar extrapolations in the discounted Markov decision problem considered here. We discuss the implementation of these scalar extrapolation methods in the modified policy iteration algorithm and show that the results using only a final scalar extrapolation will be the same as those obtained by applying scalar extrapolation at each iteration and then using a final scalar extrapolation.

To reduce computations in the improvement phase the idea of using bounds on the optimal return function to identify actions that are not part of an optimal policy was introduced by MacQueen [16]. Then Porteus [19,20], Hastings and Mello [10], Hastings [11], Hastings and van Nunen [12] and Hübner [15] studied action elimination procedures for value iteration algorithms and variants. Grinold [9] studied an action elimination procedure for policy iteration. Motivated by the discovery in Puterman and Shin [26] that modified policy iteration was considerably more efficient than value iteration and in many cases policy iteration, we introduce bounds and action elimination procedures for the policy iteration and modified policy iteration algorithms. A method for eliminating non-optimal actions for all subsequent iterations using upper and lower bounds on the optimal expected total discounted return is presented along with procedures for eliminating actions that cannot be part of the policy chosen in the improvement phase of the next iteration. A numerical comparison of these procedures on Howard's [14] automobile replacement problem and on a large structured randomly generated problem suggests that using modified policy iteration together with one of the single iteration elimination procedures will lead to large savings in the computational time for problems with large state spaces. Modifications of the algorithms to reduce storage space are also discussed.

In Chapter 3 we study finite discounted Markov decision problems in which the reward vector is parameterized by a scalar and present an algorithm to determine the optimal policy for each value of the parameter within an interval. The algorithm is based on a modification of parametric linear programming in which approximations of values are used to resolve difficulties caused by roundoff error. Also, several action elimination
procedures are presented for this problem. Bi-criterion Markov decision problems and Markov decision problems with a single constraint are then formulated as parametric Markov decision problems. A numerical comparison of algorithms with and without action elimination procedures is carried out on a two criterion version of Howard's [14] automobile replacement problem. The results suggest that using the algorithm with one of the action elimination.. procedures is an efficient method for solving this problem.

IAPROVED COMPUTATIONAL METHOLS FOR DISCOUNTED MARKOV DECISION PROBLEMS

1. Introduction.

In this chapter we consider methods for increasing the efficiency of the policy iteration (Howard [14]) and modified policy iteration (Puterman and Shin [26] and van Nunen [31,32]) algorithms for solving finite discounted Markov decision problems over an infinite horizon. The modified policy iteration algorithm was suggested by Porteus [19] and Morton [18] and its properties were studied by van Nunen [31,32], Puterman and Brumelle [24,25], Puterman and Shin [26], van der Wal [30] and Rothblum [27].

In a series of papers Porteus [21] and Porteus and Totten [23] investigated the use of extrapolation methods to reduce the computational effort to evaluate the expected total discounted return of a Markov or semiMarkov chain. Porteus and Totten [23] sought improved iterative methods such as the trivial scalar extrapolation and the trivial lower bound extrapolation to compute the expected discounted return in a Markov chain. Recently Porteus [21] studied other improved iterative schemes such as row sum extrapolation and delayed scalar extrapolation for Markov and semiMarkov chains. A relevant survey is that of Porteus [22]. All of the
extrapolations reduce to scalar extrapolations in the discounted Markov decision problem considered here. The iniplementation of these scalar extrapolation schemes in the modified policy iteration algorithms is studied in Section 3 and it is shown that the policy selected using modified policy iteration with and without scalar extrapolations is identical and the value obtained by the algorithm using only a final scalar extrapolation will give exactly the same result as that obtained by using scalar extrapolations at each iteration in the evaluation phase and then applying a final scalar extrapolation. However, when there are unequal row sums, such as in the case of semi-Markov decision problems, scalar extrapolations may have an important influence on the results.

The idea of using bounds on the optimal return function to identify actions that are not part of an optimal policy and reduce computations in the improvement phase was introduced by MacQueen [16]. At each iteration of a value iteration algorithm such actions are identified and discarded from the action set for all subsequent iterations. Porteus [19] and [20] strengthened MacQueen's bounds and extended them to more general decision processes. Later, Hastings and Mello [10] and Porteus [20] considered a modification of MacQueen's and Porteus' [19] procedures that reduces storage requirements. Grinold [9] used bounds similar to those of Porteus [20] to develop an action elimination procedure for policy iteration. Much of this material is surveyed in an article by White [35].

In the above papers, actions are eliminated only if they are nonoptimal. Hastings [11] proposed a procedure to eliminate an action for one or more iterations after which, it could reenter the decision set. His work was concerned with the average reward criteria and was extended
by Hübner [15] to discounted problems with arbitrary discount factors. Hastings and van Nunen [12] applied Hübner's results to the case where the discount factor was less than one and through an example showed that this procedure eliminated more actions than that of Hastings and Mello [10]. In all of these papers, with the exception of that of Grinold [9], elimination procedures were developed for value iteration algorithms and variants. Motivated by the discovery in [26] that modified policy iteration was considerably more efficient than value iteration and in many cases policy iteration, we introduce bounds and elimination procedures for the modified policy iteration and policy iteration algorithms. The bounds are motivated by the Newton method representation for modified policy iteration in [26]. However, as pointed out by Porteus in a private communication, they can be derived from results in [20].

In Section 4 a method for eliminating non-optimal actions for all subsequent iterations using upper bounds and lower bounds on the optimal expected total discounted return at each iteration of modified policy iteration and policy iteration algorithms is presented. In Section 5 procedures for eliminating actions that cannot be part of the policy chosen in the improvement phase of the next iteration are developed. The relationship with the action elimination procedure of Hastings and van Hunen [12] and Hübner [15] is discussed.

Section 6 presents modified policy iteration algorithms which incorporate the above action elimination procedures. The storage requirements of these algorithms are discussed and some methods to reduce them are proposed. Numerical results appear in Section 7 where a comparison of these procedures on Howard's [14] automobile replacement problem and on a sparse randomly generated test problem with a large action set are presented.

2. Preliminaries.

We consider a discrete time finite state and action discounted Markov decision problem over an infinite horizon. Let I be the set of finite states labeled by integers $\mathbf{i}=1,2, \cdots, N$. For each $i \varepsilon I$, we have a set K_{i} of finite actions denoted by $k=1,2, \cdots, M_{i}$. The policy space is defined by the Cartesian product of each action set, that is, $\Delta=K_{1} \times K_{2} \times \cdots \times K_{N}$. By a policy $\delta \varepsilon \Delta$, we mean $\delta(i) \varepsilon K_{i}$. Then a strategy π is defined by a sequence $\left\{\delta^{t} \varepsilon \Delta, t=1,2, \cdots\right\}=\left\{\delta^{l}, \delta^{2}, \cdots, \delta^{t}, \cdots\right\}$ and is an element of strategy space denoted by $\Pi=\Delta x \Delta x \cdots$. A strategy π is stationary if $\pi=(\delta, \delta, \cdots)$.

Let us consider a sequential decision problem where at each stage $t=0,1,2, \cdots$ we observe the state of the system and then choose an action. More precisely, if the system is in state $i \varepsilon I$ at stage t and an action $k \varepsilon K_{i}$ is selected, the expected one period reward is $r(i, k)$ and the system moves to state $j \varepsilon I$ at stage $t+1$ with probability $P(i, j, k)$. We assume that

$$
\sum_{j \in I} P(i, j, k)=1 \quad \text { for } i \varepsilon I \text { and } k \varepsilon K_{i}
$$

and
$\operatorname{Max}_{i \in I \operatorname{Max}_{k \in K_{i}}}|r(i, k)| \leq M<+\infty$.

Denote the one period discount rate by $\lambda \varepsilon[0,1)$. For $\delta \varepsilon \Delta$ define P_{δ} by $P_{\delta}(i, j)=P(i, j, \delta(i))$ and r^{δ} by $r^{\delta}(i)=r(i, \delta(i))$. Let V denote the Banach space of bounded real valued functions on I with norm $\|v\|=\operatorname{Max}_{i \varepsilon I}|v(i)|$.

For each $\pi \varepsilon \Pi$, let v^{π} be the expected total discounted reward
vector. For each stationary strategy $\pi=(\delta, \delta, \cdots)$, let v^{δ} be the expected
total discounted reward vector. Then the problem we study is that of finding an optimal policy $\delta{ }^{*} \varepsilon \Delta$ and a $v^{*} \varepsilon V$ such that

$$
\begin{equation*}
v^{*}=v^{\delta^{*}}=\operatorname{Max}_{\delta \varepsilon \Delta}^{\delta} \tag{1}
\end{equation*}
$$

That there exists an optimal stationary strategy $\pi^{*}=\left(\delta^{*}, \delta^{*}, \ldots\right)$, i.e., there exists an optimal policy δ^{*}, in the discounted Markov decision problem, is shown in Blackwell [2,3] and Denardo [6].

For a given $v \varepsilon V$ and $\delta \varepsilon \Delta$ define the linear operators B, T, B_{δ} and T_{δ} mapping V to V by

$$
\begin{equation*}
\operatorname{Bv}(i, \delta(i)) \equiv r(i, \delta(i))+\lambda \sum_{j \in I} P(i, j, \delta(i)) v(j)-v(i) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Tv}(i, \delta(i)) \equiv r(i, \delta(i))+\lambda \sum_{j \in I} P(i, j, \delta(i)) v(j) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
B_{\delta} v(i) \equiv B v(i, \delta(i)) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
T_{\delta} v(i) \equiv \operatorname{Tv}(i, \delta(i)) \tag{5}
\end{equation*}
$$

and define the policy δ_{V} and the operator $H: V \rightarrow V$ by
(6)

$$
H v \equiv B_{\delta_{V}} v=\operatorname{Max}_{\delta \varepsilon \Delta} B_{\delta} v
$$

where δ_{v} is the policy that maximizes the right hand side of (4) for each i at v. This maximum is attained at each $v \varepsilon V$ since Δ is finite.

The problem defined by (1) is equivalent to finding a $v^{*} \varepsilon V$ and a $\delta^{*} \varepsilon \Delta$ that-satisfy

$$
\begin{equation*}
B v^{*}{ }^{*}=H v^{*}=0 \tag{7}
\end{equation*}
$$

This is the usual functional equation of dynamic programming written in the form of Puterman and Brumelle [25].

For clarity we will use $\delta_{n}, r_{n}, P_{n}, B_{n}$ and T_{n} instead of $\delta_{v_{n}}$, $r^{\delta_{v_{n}}}, P_{\delta_{v_{n}}}, B_{\delta_{v_{n}}}$ and $T_{\delta_{v_{n}}}$. The symbol $\tilde{1}$ will denote a column vector of ones and for $u \varepsilon V$ we adopt the notation

$$
\operatorname{sp}[u] \equiv \operatorname{Max}_{i \in I} u(i)-\operatorname{Min}_{i \in I} u(i) .
$$

Our analysis will be based on the following modified policy iteration algorithm.

I. Initialization

Select $\varepsilon>0$, to be used as a stopping criterion. Set $n=0$
and define $\delta_{0} \varepsilon \Delta$ by

$$
r_{0}(i)=r\left(i, \delta_{o}(i)\right)=\operatorname{Max}_{k \varepsilon K_{i}} r(i, k)
$$

Set

$$
\begin{equation*}
v_{0}=\frac{1}{1-\lambda}\left(\operatorname{Min}_{i \varepsilon I} r_{0}(i)\right) \cdot \tilde{1} \tag{8}
\end{equation*}
$$

II. Evaluation Phase:

Calculate $v_{n+1}=T_{n}^{m+1} v_{n}$ iteratively by successive approximations using T_{n}. (The order of the algorithm, m, can be predetermined or else chosen to be

$$
\begin{equation*}
\left.\operatorname{Min}\left\{s: \operatorname{sp}\left[T_{n}^{s+1} v_{n}-T_{n}^{s} v_{n}\right] \leq \varepsilon\right\} .\right) \tag{9}
\end{equation*}
$$

Increment n by one.

III. Improvement Phase:

Find δ_{n} such that

$$
B_{n} v_{n}=B_{\delta_{n}} v_{n}=\operatorname{Max}_{\delta \varepsilon \Delta} B_{\delta} v_{n}=H v_{n} .
$$

If $\operatorname{sp}\left[B_{n} v_{n}\right] \leq \varepsilon$, go to IV. Otherwise return to II.
IV. Final Extrapolation:

$$
\text { Set } \hat{v}=v_{n}+B_{n} v_{n}+\frac{\lambda}{1-\lambda} \underline{B_{n}} v_{n} \cdot \tilde{1} \quad \text { where } \quad B_{n} v_{n}=\operatorname{Min}_{i \in I} B_{n} v_{n}(i)
$$

Some comments about this algorithm are in order. The selection of v_{0} in the initialization phase is to ensure that $H v_{n} \geq 0$ for all n. As demonstrated by Puterman and Shin [26, Thm. 1] this ensures monotone convergence of the sequence of iterates $\left\{v_{n}\right\}$. In practice the order of the algorithm, m, will usually be determined by (9). However this criteria might be too stringent and require excessive calculations. If the order
is prespecified, though not necessarily fixed from iteration to iteration, this algorithm is similar to that presented in [26]. In that setting we observed that when $m=+\infty$, the algorithm was policy iteration and that $\mathrm{m}=0$ gave value iteration.

As a consequence of the stopping criteria, and the extrapolation in IV the sequence $\left\{v_{n}\right\}$ will terminate with a value function \hat{v} that is $\varepsilon \lambda(1-\lambda)^{-1}$ optimal. This is shown in Proposition 2.4.

The following propositions summarize some results that will be needed in the seque1. The proof of the first appears in Puterman and Shin [26] and the proof of the second in Puterman and Brumelle [25].

Proposition 2.1.
Suppose $v_{n+1}=T_{n}^{m+1} v_{n}$. Then

$$
\begin{equation*}
v_{n+1}=v_{n}+\sum_{s=0}^{m}\left(\lambda P_{n}\right)^{s} B_{n} v_{n}=v_{n}+\sum_{s=0}^{m}\left(\lambda P_{n}\right)^{s} H v_{n} . \tag{10}
\end{equation*}
$$

Proposition 2.2. (Support Inequality)
For any u, $v \in V$

$$
\begin{equation*}
H u \geq H v+\left(\lambda P_{\delta_{v}}-I\right)(u-v) . \tag{11}
\end{equation*}
$$

3. Scalar Extrapolations.

To reduce the computational effort to evaluate the expected total discounted return in Markov and semi-Markov chains Porteus and Totten [23] and Porteus [21] developed the extrapolation methods called trivial lower
bound extrapolation, trivial scalar extrapolation, row sum extrapolation and delayed scalar extrapolation. In the Markov chains arising from discounted Markov decision problems all of the above extrapolation methods reduce to scalar extrapolation methods. For value iteration Porteus [20] mentioned ". . .When there are equal row sums, such an extrapolation would have an entirely predictable influence; that is, the results without such extrapolation would differ by a constant (pointwise) and the same policies would be 'optimal' at each iteration. . . ." and suggested using the extrapolation at each iteration. But in this section we show that the algorithm in Section 2 will give the same result as that using scalar extrapolations at each iteration and then applying the final scalar extrapolations for modified policy iteration. For semi-Markov chains or unequal row sums Markov chains these results do not hold.

In this section we discuss the incorporation of these scalar extrapolation schemes into the modified policy iteration procedure. Suppose in the evaluation phase of the algorithm in Section 2 we calculate v_{n+1} iteratively using one of these extrapolation schemes with v_{n} as the initial value. Then the resulting iterative extrapolation method can be represented by:

$$
\begin{align*}
& \tilde{v}_{n}^{s}=T_{n} v_{n}^{s-1} \tag{12}\\
& v_{n}^{s}=\tilde{v}_{n}^{s}+c_{n}^{s}
\end{align*}
$$

where

$$
v_{n}^{0}=v_{n}
$$

(14) $\quad C_{n}^{S}=\frac{\lambda}{(1-\lambda)} \underline{B}_{n} v_{n}^{S-1} \quad \tilde{1} \quad$ for the trivial lower bound extrapolation [TLBE],
(15) $\quad c_{n}^{S}=\frac{\lambda}{2(1-\lambda)}\left[{\overline{B_{n}}}_{n}^{S-1}+\underline{B}_{n} v_{n}^{S-1}\right] \tilde{1}$ for the trivial scalar extrapolation and other extrapolations [TSE],

$$
B_{n} v_{n}^{\ell}=\operatorname{Min}_{i \in I} B_{n} v_{n}^{\ell}(i),
$$

and

$$
\overline{B_{n} v_{n}^{l}}=\operatorname{Max}_{i \in I} B_{n} v_{n}^{l}(i)
$$

Note that the quantity c_{n}^{S} defined in (14) and (15) is a scalar times a column vector of ones. Hence these are called scalar extrapolations.

The following lemma gives the value of v_{n}^{s} and $B_{n} v_{n}^{s}$ after the sth iteration of these iterative extrapolation methods.

Lemma 2.1.
At iteration s of the above iterative extrapolation methods

$$
\begin{equation*}
v_{n}^{s}=T_{n}^{s} v_{n}+\sum_{\ell=1}^{s} \lambda^{s-\ell} c_{n}^{\ell} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
B_{n} v_{n}^{s}=\left(\lambda P_{n}\right)^{s} B_{n} v_{n}+(\lambda-1)\left[\sum_{\ell=1}^{s} \lambda^{s-\ell} c_{n}^{\ell}\right] \tag{17}
\end{equation*}
$$

Proof. For $s=1$, from (12) and (13)

$$
v_{n}^{1}=T_{n} v_{n}+c_{n}^{1}
$$

Assuming (16) is true for $s=p$, from (3), (12) and (13)

$$
\begin{aligned}
v_{n}^{p+1} & =T_{n} v_{n}^{p}+c_{n}^{p+1} \\
& =T_{n}\left(T_{n}^{p} v_{n}^{\prime}+\sum_{l=1}^{p} \lambda^{p-\ell} c_{n}^{\ell}\right)+c_{n}^{p+1} \\
& =T_{n}^{p+1} v_{n}+\lambda \sum_{l=1}^{p} \lambda^{p-\ell} c_{n}^{\ell}+c_{n}^{p+1} \\
& =T_{n}^{p+1} v_{n}+\sum_{\ell=1}^{p+1} \lambda^{p+1-\ell} c_{n}^{\ell} .
\end{aligned}
$$

Therefore (16) is true for any s.

$$
\begin{aligned}
& \text { From (10) and (16) } \\
& B_{n} v_{n}^{s}=B_{n}\left[T_{n}^{s} v_{n}+\sum_{\ell=1}^{s} \lambda^{s-\ell} c_{n}^{\ell}\right] \\
& =B_{n}\left[v_{n}+\sum_{l=0}^{s-1}\left(\lambda P_{n}\right)^{\ell} B_{n} v_{n}+\sum_{\ell=1}^{s} \lambda^{s-l} c_{n}^{\ell}\right] \\
& =r_{n}+\lambda P_{n}\left[v_{n}+\sum_{\ell=0}^{s-1}\left(\lambda P_{n}\right)^{\ell} B_{n} v_{n}+\sum_{\ell=1}^{s} \lambda^{s-\ell} c_{n}^{\ell}\right] \\
& -\left[v_{n}+\sum_{l=0}^{s-1}\left(\lambda P_{n}\right)^{\ell} B_{n} v_{n}+\sum_{\ell=1}^{s} \lambda^{s-l_{n}} c_{n}\right. \\
& =r_{n}+\lambda P_{n} v_{n}-v_{n}+\sum_{\ell=1}^{s}\left(\lambda P_{n}\right)^{\ell} B_{n} v_{n}-\sum_{\ell=0}^{s-1}\left(\lambda P_{n}\right)^{\ell} B_{n} v_{n} \\
& +(\lambda-1) \sum_{\ell=1}^{s} \lambda^{s-\ell} c_{n}^{\ell} \\
& =B_{n} v_{n}+\sum_{\ell=1}^{S}\left(\lambda P_{n}\right)^{\ell} B_{n} v_{n}-\sum_{\ell=0}^{s-1}\left(\lambda P_{n}\right)^{\ell} B_{n} v_{n}+(\lambda-1) \sum_{\ell=1}^{s} \lambda^{s-\ell} C_{n}^{\ell} \\
& =\left(\lambda P_{n}\right)^{S} B_{n} v_{n}+(\lambda-1) \sum_{l=1}^{s} \lambda^{s-\ell} c_{n}^{\ell} \text {. }
\end{aligned}
$$

Define

$$
\begin{aligned}
& \frac{\left(\lambda P_{n}\right)^{S} B_{n} v_{n}}{M_{i \varepsilon I}} \operatorname{Min}^{\left(\lambda P_{n}\right)^{S}} B_{n} v_{n}(i) \\
& \overline{\left(\lambda P_{n}\right)^{S} B_{n} v_{n}}=\operatorname{Max}_{i \varepsilon I}\left(\lambda P_{n}\right)^{S} B_{n} v_{n}(i) .
\end{aligned}
$$

From Lemma 2.1 we obtain the following result which exhibits the relationship between $T_{n}^{s+1} v_{n}$ and v_{n}^{s+1}.

Lemma 2.2.
At iteration s of the iterative extrapolation method
where

$$
\begin{aligned}
& c_{n+1}=\frac{\lambda}{(1-\lambda)} \underline{\left(\lambda P_{n}\right)^{s} B_{n} v_{n}} \tilde{1} \text { for TLBE } \\
& c_{n+1}=\frac{\lambda}{2(1-\lambda)}\left[\left(\overline{\left(\lambda P_{n}\right.}\right)^{S_{n} B_{n} v_{n}}+\frac{\left.\left(\lambda P_{n}\right) S_{n} B_{n} v_{n}\right] \tilde{1} \text { for TSE. }}{} .\right.
\end{aligned}
$$

Proof. From (16)

$$
v_{n}^{s+1}=T_{n}^{s+1} v_{n}+\sum_{\ell=1}^{s+1} \lambda^{s+1-\ell} c_{n}^{\ell}
$$

$$
\begin{equation*}
=T_{n}^{s+1} v_{n}+\lambda \sum_{\ell=1}^{s} \lambda^{s-\ell} c_{n}^{\ell}+c_{n}^{s+1} \tag{19}
\end{equation*}
$$

First we consider TLBE. From (14) and (17)

$$
c_{n}^{s+1}=\frac{\lambda}{(1-\lambda)} B v_{n}^{s} \tilde{1}
$$

$$
\begin{aligned}
& =\frac{\lambda}{(1-\lambda)}\left[\left(\lambda P_{n}\right)^{s} B_{n} v_{n} \tilde{1}+(\lambda-1) \sum_{\ell=1}^{s} \lambda^{s=\ell} c_{n}^{\ell}\right] . \\
& =\frac{\lambda}{(1-\lambda)} \underline{\left(\lambda P_{n}\right)^{s} B_{n} v_{n} \tilde{1}-\lambda \sum_{\ell=1}^{s} \lambda^{s-\ell} c_{n}^{\ell}}
\end{aligned}
$$

For TSE it follows from (15) and (17) that

$$
\begin{aligned}
c_{n}^{s+1}= & \frac{\lambda}{2(1-\lambda)}\left[\overline{B_{n} v_{n}^{s}}+\overline{\left.B_{n} v_{n}^{s}\right]} \tilde{1}\right. \\
= & \frac{\lambda}{2(1-\lambda)}\left[\overline{\left(\lambda P_{n}\right)^{s} B_{n} v_{n}} \tilde{1}+(\lambda-1)\left(\sum_{\ell=1}^{s} \lambda^{s-\ell} c_{n}^{\ell}\right)\right. \\
& +\frac{\left(\lambda P_{n}\right){ }^{s} B_{n} v_{n}}{\tilde{1}}+(\lambda-1)\left(\sum_{\ell=1}^{s} \lambda^{s-\ell} c_{n}^{\ell}\right) \\
= & \frac{\lambda}{2(1-\lambda)}\left[\overline{\left[\left(\lambda P_{n}\right)^{s} B_{n} v_{n}\right.}+\underline{\left.\left(\lambda P_{n}\right)^{s} B_{n} v_{n}\right]} \tilde{1}-\lambda \sum_{\ell=1}^{s} \lambda^{s-\ell c_{n}^{\ell}}{ }_{n}\right. \\
= & c_{n+1}^{\prime}-\lambda \sum_{\ell=1}^{s} \lambda^{s-\ell} c_{n}^{\ell} .
\end{aligned}
$$

Substituting (20) or (21) into (19)

$$
\begin{aligned}
v_{n}^{s+1} & =T_{n}^{s+1} v_{n}+\lambda \sum_{\ell=1}^{s} \lambda^{s-\ell} c_{n}^{\ell}+c_{n+1}-\lambda \sum_{\ell=1}^{s} \lambda^{s-\ell} c_{n}^{\ell} \\
& =T_{n}^{s+1} v_{n}+c_{n+1} .
\end{aligned}
$$

We show in the following theorem that for the stopping critierion (9) in the evaluation phase we will have the same order of the algorithm, m_{n}, at iteration n whether or not we use any of the iterative extrapolation methods.

Theorem 2.1.

At iteration s in the evaluation phase
(22) $\quad \operatorname{sp}\left(v_{n}^{s+1}-v_{n}^{s}\right)=\operatorname{sp}\left(T_{n}^{s+1} v_{n}-T_{n}^{S} v_{n}\right)$.

Proof. From (16)

$$
\begin{aligned}
s p\left(v_{n}^{s+1}-v_{n}^{s}\right) & =\operatorname{sp}\left(T_{n}^{s+1} v_{n}+\sum_{\ell=1}^{s+1} \lambda^{s+1-\ell} c_{n}^{\ell}-T_{n}^{S} v_{n}-\sum_{l=1}^{s} \lambda^{s-\ell} c_{n}^{\ell}\right) \\
& =s p\left(T_{n}^{s+1} v_{n}-T_{n}^{s} v_{n}\right)
\end{aligned}
$$

since adding a constant to each of the vectors does not change $\mathrm{sp}[\mathrm{u}]$.

Lemma 2.2 and Theorem 2.1 imply that using these scalar extrapolation schemes at each iteration in the evaluation phase of the algorithm will give the same result as using these scalar extrapolations only at the end of the iteration in the evaluation phase. This result appears in Theorem 2.2 below.

Suppose we use extrapolations only at the end of iterating T_{n} in the evaluation phase. Then we exit the evaluation phase of iteration $n+1$ with value v_{n+1}^{\prime} defined by

$$
\begin{equation*}
\tilde{v}_{n+1}^{\prime}=T_{n}^{m+1} \quad v_{n}^{\prime} \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
v_{n+1}^{\prime}=\tilde{v}_{n+1}^{1}+c_{n+1}^{\prime} \tag{24}
\end{equation*}
$$

and

$$
v_{0}^{\prime}=v_{0},
$$

where

$$
\begin{equation*}
c_{n+1}^{\prime}=\frac{\lambda}{(1-\lambda)}\left(\lambda P_{n}\right)^{m} B_{n} v_{n}^{\prime} \tilde{1} \text { for TLBE, } \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
c_{n+1}^{\prime}=\frac{\lambda}{2(1-\lambda)}\left[\overline{\left(\lambda P_{n}\right)^{m} B_{n} v_{n}^{\prime}}+\left(\lambda P_{n}\right)^{\left.m_{B_{n}} v_{n}^{\prime}\right] \tilde{1} \text { for TSE }}\right. \tag{26}
\end{equation*}
$$

and m is the order of algorithm in the evaluation phase at iteration n of the algorithm. For clarity m is used instead of m_{n}.

Let v_{n} be the value obtained in the evaluation step without the above extrapolation scheme. Then the following theorem gives the relationship between v_{n+1} and v_{n+1}^{\prime}.

Theorem 2.2

At iteration n of the algorithm

$$
\begin{equation*}
v_{n+1}^{\prime}=v_{n+1}+c_{n+1} \tag{27}
\end{equation*}
$$

where

$$
c_{n+1}=\frac{\lambda}{(1-\lambda)}\left(\lambda P_{n}\right)^{m} B_{n} v_{n} \tilde{1} \text { for TLBE }
$$

and

$$
c_{n+1}=\frac{\lambda}{2(1-\lambda)}\left[\overline{\left(\lambda P_{n} m_{B_{n}} v_{n}\right.}+\left(\lambda P_{n}\right) m_{n} v_{n}\right] \tilde{1} \text { for TSE. }
$$

Proof. Note $v_{0}^{\prime}=v_{0}$.

For TLBE, at $n=0$ from (18) with $s=m$

$$
v_{1}^{\prime}=v_{1}+c_{1}
$$

Suppose (27) is true at iteration ($n-1$), i.e.,
(28) $\quad v_{n}^{\prime}=v_{n}+c_{n}$.

Then at iteration $n+1$ from (10), (23) and (24)

$$
v_{n+1}^{\prime}=T_{n}^{m+1} v_{n}^{\prime}+c_{n+1}^{\prime}
$$

$$
\begin{equation*}
=v_{n}^{\prime}+\sum_{\ell=0}^{m}\left(\lambda P_{n}\right)^{\ell} B_{n} v_{n}^{\prime}+c_{n+1}^{\prime} . \tag{29}
\end{equation*}
$$

From (28)

$$
\begin{aligned}
B_{n} v_{n}^{\prime} & =B_{\underline{n}}\left(v_{n}+c_{n}\right) \\
& =r_{n}+\lambda P_{n} v_{n}+\lambda P_{n} c_{n}-v_{n}-c_{n} \\
& =r_{n}+\lambda P_{n} v_{n}-v_{n}+\lambda c_{n}-c_{n}
\end{aligned}
$$

(30)

$$
=B_{n} v_{n}+(\lambda-1) c_{n} .
$$

From (30)

$$
\begin{aligned}
c_{n+1}^{\prime} & =\frac{\lambda}{(1-\lambda)}\left(\lambda P_{n}\right)^{m} B_{n} v_{n}^{\prime} \\
& =\frac{\lambda}{(1-\lambda)}\left[\left(\lambda P_{n}\right)^{m} B_{n} v_{n} \tilde{1}+\lambda^{m}(\lambda-1) c_{n}\right]
\end{aligned}
$$

$$
\begin{equation*}
=c_{n+1}-\lambda^{m+1} c_{n} \tag{31}
\end{equation*}
$$

Substituting (10), (28), (30) and (31) in (29) we obtain

$$
\begin{aligned}
v_{n+1}^{\prime}= & v_{n}+c_{n}+\sum_{l=0}^{m}\left(\lambda P_{n}\right)^{\ell}\left[B_{n} v_{n}+(\lambda-1) c_{n}\right]+c_{n+1}-\lambda^{m+1} c_{n} \\
= & v_{n}+\sum_{l=0}^{m}\left(\lambda P_{n}\right)^{\ell} B_{n} v_{n}+c_{n+1}+c_{n}+\sum_{l=0}^{m}(\lambda)^{l} c_{n}-\sum_{\ell=0}^{m}(\lambda)^{\ell} c_{n} \\
& -\lambda^{m+1} c_{n} \\
= & v_{n}+\sum_{l=0}^{m}\left(\lambda P_{n}\right)^{\ell B_{n} v_{n}+c_{n+1}} \\
= & v_{n+1}+c_{n+1} .
\end{aligned}
$$

For TSE all of the results are the same as for TLBE except that

$$
\begin{align*}
c_{n+1}^{\prime}= & \frac{\lambda}{2(1-\lambda)}\left[\overline{\left(\lambda P_{n}\right)^{m} B_{n} v_{n}^{\prime}}+\underline{\left.\left(\lambda P_{n}\right)^{m} B_{n} v_{n}^{\prime}\right]}\right] \\
= & \frac{\lambda}{2(1-\lambda)}\left[\overline{\left(\lambda P_{n}\right)^{m} B_{n} v_{n}} \tilde{1}+\lambda^{m}(\lambda-1) c_{n}+\underline{\left(\lambda P_{n}\right)^{m} B_{n} v_{n}} \tilde{1}\right. \\
& \left.+\lambda^{m}(\lambda-1) c_{n}\right] \\
= & \frac{\lambda}{2(1-\lambda)}\left[\overline{\left(\lambda P_{n}\right)^{m} B_{n} v_{n}}+\underline{\left.\left(\lambda P_{n}\right)^{m} B_{n} v_{n}\right]} \tilde{1}+\lambda^{m+1} c_{n}\right. \\
= & c_{n+1}+\lambda^{m+1} c_{n} . \tag{32}
\end{align*}
$$

Therefore using (32) instead of (31) the result follows.

The following theorem shows that at each iteration we will select the same policy and have the same test value, $s p\left[B_{n} v_{n}\right]$, for the stopping criterion in the improvement phase of the algorithms whether we use scalar extrapolations or not.

Theorem 2.3.
At iteration n of the algorithm

$$
\begin{equation*}
B_{\delta} v_{n}^{\prime}=B_{\delta} v_{n}+(1-\lambda) c_{n} \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
\left\{\delta_{n} \varepsilon \Delta \mid B_{\delta_{n}} v_{n}^{\prime}=\operatorname{Max}_{\delta \varepsilon \Delta} B_{\delta} v_{n}^{\prime}\right\}=\left\{\delta_{n} \varepsilon \Delta \mid B_{\delta_{n}} v_{n}=\operatorname{Max} B_{\delta} v_{n}\right\} \tag{34}
\end{equation*}
$$

(35) $s p\left[B_{n} v_{n}^{\prime}\right]=s p\left[B_{n} v_{n}\right]$.

Proof. From (27)

$$
\begin{aligned}
B_{\delta} v_{n}^{\prime} & =B_{\delta}\left(v_{n}+c_{n}\right) \\
& =r^{\delta}+\lambda P_{\delta}\left(v_{n}+c_{n}\right)-\left(v_{n}+c_{n}\right) \\
& =r^{\delta}+\lambda P_{\delta} v_{n}-v_{n}+(\lambda-1) c_{n} \\
& =B_{\delta} v_{n}+(\lambda-1) c_{n} .
\end{aligned}
$$

(34) and (35) follow from (33).

Corollary 2.2.
In the final extrapolation step of the algorithm

$$
\begin{aligned}
\hat{v} & =v_{n}^{\prime}+B_{n} v_{n}^{\prime}+\frac{\lambda}{(1-\lambda)} \underline{B_{n}} v_{n}^{\prime} \tilde{\eta} \\
& \left.=v_{n}+B_{n} v_{n}+\frac{\lambda}{(1-\lambda)} \underline{B}_{n} v_{n}\right] \text { for TLBE }
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{v} & =v_{n}^{\prime}+B_{n} v_{n}^{\prime}+\frac{\lambda}{2(1-\lambda)}\left[\overline{B_{n} v_{n}^{\prime}}+\underline{\left.B_{n} v_{n}^{\prime}\right]} \tilde{1}\right. \\
& =v_{n}+B_{n} v_{n}+\frac{\lambda}{2(1-\lambda)}\left[\overline{B_{n} v_{n}}+B_{n} v_{n}\right] \tilde{1} \text { for TSE. }
\end{aligned}
$$

Proof. For TLBE from (27)

$$
\begin{aligned}
\hat{v} & =v_{n}^{\prime}+B_{n} v_{n}^{\prime}+\frac{\lambda}{(1-\lambda)} \underline{B_{n} v_{n}^{\prime}} \tilde{1} \\
& =v_{n}+c_{n}+B_{n}\left(v_{n}+c_{n}\right)+\frac{\lambda}{(1-\lambda)} \underline{B_{n}\left(v_{n}+c_{n}\right)} \tilde{1} \\
& =v_{n}+c_{n}+B_{n} v_{n}+(\lambda-1) c_{n}+\frac{\lambda}{(1-\lambda)} \underline{B_{n} v_{n}} \tilde{1}-\lambda c_{n} \\
& =v_{n}+B_{n} v_{n}+\frac{\lambda}{(1-\lambda)} \underline{B}_{n} v_{n} \tilde{1} .
\end{aligned}
$$

For TSE from (27)

$$
\begin{aligned}
\hat{v} & =v_{n}^{\prime}+B_{n} v_{n}^{\prime}+\frac{\lambda}{2(1-\lambda)}\left[B_{n} v_{n}^{\prime}+\underline{\left.B_{n} v_{n}^{\prime}\right]} \tilde{1}\right. \\
& =v_{n}+\dot{c}_{n}+B_{n}\left(v_{n}+c_{n}\right)+\frac{\lambda}{2(1-\lambda)}\left[\overline{B_{n}\left(v_{n}+c_{n}\right)}+\underline{B}_{n}\left(v_{n}+c_{n}\right)\right] \tilde{1}
\end{aligned}
$$

$$
\begin{aligned}
&=v_{n}+c_{n}+B_{n} v_{n}+(\lambda-1) \hat{c}_{n}+\frac{\lambda}{2(1-\lambda)}\left[\overline{B_{n} v_{n}} \tilde{1}+(\lambda-1) c_{n}\right. \\
&+\frac{\left.B_{n} v_{n} \cdot \tilde{1}+(\lambda-1) c_{n}\right]}{} \\
&=v_{n}+B_{n} v_{n}+\frac{\lambda}{2(1-\lambda)}\left[\overline{B_{n} v_{n}}+B_{n} v_{n}\right] \tilde{1}+c_{n}+(\lambda-1) c_{n}-\lambda c_{n} \\
&= v_{n}+B_{n} v_{n}+\frac{\lambda}{2\left(\cdot \frac{1-\lambda)}{}\left[\overline{B_{n} v_{n}}+B_{n} v_{n}\right] \tilde{1} .\right.}
\end{aligned}
$$

Hence Corollary 2.2 implies that the value obtained by the algorithm using only the final scalar extrapolations will give exactly the same result as that obtained by using scalar extrapolations at each iteration in the evaluation phase and then applying the final scalar extrapolation.
4. Elimination of Non-optimal Actions.

We will use the following notation in this section

$$
B v(i, k)=r(i, k)+\lambda \sum_{j \varepsilon I} P(i, j, k) v(j)-v(i) .
$$

Throughout this section except where noted we will assume that $\left\{v_{n}\right\}$ is generated by the modified policy iteration algorithm described in Section 2.

Proposition 2.3.
(36)

$$
\begin{aligned}
& v_{n}+\left(\frac{1}{1-\lambda} \underline{B_{n} v_{n}}\right) \tilde{1} \leq v_{n}^{\prime}+B_{n} v_{n}+\left(\frac{\lambda}{1-\lambda} \underline{B_{n} v_{n}}\right) \tilde{1} \leq v_{n+1}+\left(\frac{\lambda^{m+1}}{1-\lambda} \underline{B_{n} v_{n}}\right) \tilde{1} \\
& \leq v^{*} \leq v_{n}+B_{n} v_{n}+\left(\frac{\lambda}{1-\lambda} \overline{B_{n} v_{n}}\right) \tilde{1} \\
& \leq v_{n}+\left(\frac{1}{1-\lambda} \overline{B_{n} v_{n}}\right) \tilde{1} .
\end{aligned}
$$

where $\quad v_{n+1}=T_{n}^{m+1} v_{n}$.

Proof. Applying the support inequality (11) at v^{*} gives

$$
B_{n} v_{n} \geq H v^{*}+\left(\lambda P_{\delta^{*}}-I\right)\left(v_{n}-v^{*}\right)
$$

Rearranging terms and noting $\mathrm{Hv}^{*}=0$ implies that

$$
\begin{aligned}
v^{*} \leq v_{n} & +\left(I-\lambda P_{*}^{*}\right)^{-1} B_{n} v_{n} \leq v_{n}+B_{n} v_{n}+\left(\frac{\lambda}{1-\lambda} \overline{B_{n} v_{n}}\right) \tilde{1} \\
& \leq v_{n}+\left(\frac{1}{1-\lambda} \overline{B_{n} v_{n}}\right) \tilde{l} .
\end{aligned}
$$

This establishes the upper bounds for v^{*}.
To derive the lower bounds, use the support inequality at v_{n} to obtain

$$
H v^{*} \geq B_{n} v_{n}+\left(\lambda P_{n}-I\right)\left[v^{*}-v_{n}\right] .
$$

Rearranging terms we find that

$$
\begin{aligned}
v^{*} & \geq v_{n}+\left(I-\lambda P_{n}\right)^{-1} B_{n} v_{n}+\sum_{s=0}^{\infty}\left(\lambda P_{n}\right)^{s} \cdot B_{n} v_{n} \\
& =v_{n}+\sum_{s=0}^{m}\left(\lambda P_{n}\right)^{s_{B}} B_{n} v_{n}+\sum_{s=m+1}^{\infty}\left(\lambda P_{n}\right)^{s} B_{n} v_{n} \\
& \geq v_{n+1}+\left(\frac{\lambda^{m+1}}{1-\lambda} B_{n} v_{n}\right) \tilde{1} .
\end{aligned}
$$

The last inequality follows from the definition of v_{n+7}. Next observe that from (10) it follows that

$$
\begin{aligned}
v_{n+1}+\left(\frac{\lambda^{m+1}}{1-\lambda} \underline{B_{n} v_{n}}\right) \tilde{1} & =v_{n}+B_{n} v_{n}+\sum_{s=1}^{m}\left(\lambda P_{n}\right)^{s} B_{n} v_{n}+\left(\frac{\lambda^{m+1}}{1-\lambda} \underline{B_{n}} v_{n}\right) \tilde{1} \\
& \geq v_{n}+B_{n} v_{n}+\left(\frac{\lambda}{1-\lambda} B_{n} v_{n}\right) \tilde{1} \geq v_{n}+\left(\frac{1}{1-\lambda} B_{n} v_{n}\right) \tilde{1}
\end{aligned}
$$

which establishes the result.

When $\left\{v_{n}\right\}$ is generated by policy iteration, in which case $m=+\infty$, then the first lower bound for v^{*} in (36) becomes $v_{n+1} \leq v^{*}$.

The extreme lower bound and upper bound for v^{*} in (36) were established by MacQueen [16] for $\left\{v_{n}\right\}$ generated by value iteration. For policy iteration, Grinold [9] established the second lower bound for v^{*}. Our results for modified policy iteration are obvious extensions of these earlier results; however, the tightest lower bound for v^{*} is new.

As a consequence of the stopping criteria and the final extrapolation of the algorithm in Section 2 the sequence $\left\{v_{n}\right\}$ will terminate with a value function \hat{v} that is $\varepsilon \lambda(1-\lambda)^{-1}$ optimal. This is shown in the following proposition.

Proposition 2.4.

$$
\begin{aligned}
& \hat{v} \text { is } \varepsilon \lambda(1-\lambda)^{-1} \text { optimat, i.e., } \\
& \hat{v}(i) \leq v^{*}(i) \leq \hat{v}(i)+\varepsilon \lambda(1-\lambda)^{-1} \text { for all i } \varepsilon I .
\end{aligned}
$$

Proof. From (36)

$$
\hat{v}(i)=v_{n}(i)+B_{n} v_{n}(i)+\frac{\lambda}{(1-\lambda)} B_{n} v_{n} \leq v^{*}(i)
$$

and

$$
\begin{aligned}
v^{*}(i) & \leq v_{n}(i)+B_{n} v_{n}(i)+\frac{\lambda}{(1-\lambda)} \overline{B_{n} v_{n}} \\
& =v_{n}(i)+B_{n} v_{n}(i)+\frac{\lambda}{(1-\lambda)} B_{n} v_{n}+\frac{\lambda}{(7-\lambda)}\left(\overline{B_{n} v_{n}}-B_{n} v_{n}\right) \\
& =\hat{v}(i)+\varepsilon \lambda(1-\lambda)^{-1} .
\end{aligned}
$$

Action elimination is based on the following result of MacQueen [16]. The short proof is included for completeness.

Proposition 2.5.
If $B v^{*}(i, k)<0$ then k is a non-optimal action in state i.

Proof. Suppose k^{*} is an optimal action in state i. Then $B v^{*}\left(i, k^{*}\right)=0>$ $B v^{*}(i, k)$. Therefore k is non-optimal.

Combining these two propositions we obtain an action elimination procedure for modified policy iteration.

Theorem 2.4.
Suppose at iteration n that

$$
\begin{equation*}
r(i, k)+\lambda \sum_{j \varepsilon I} P(i, j, k) v_{n}(j)+\left(\frac{\lambda}{1-\lambda} \overline{B_{n} v_{n}}\right)<v_{n+1}(i)+\left(\frac{\lambda^{m+1}}{1-\lambda} B_{n} v_{n}\right) \tag{37}
\end{equation*}
$$

Then action $k \varepsilon K_{i}$ is non-optimal in state i.

Proof. From (36) and (37)

$$
\begin{aligned}
r(i, k)+\lambda \sum_{j \in I} P(i, j, k) v^{*}(j) & \leq r(i, k)+\lambda \sum_{j \varepsilon I} P(i, j, k)\left[v_{n}(j)\right. \\
& \left.+\left(\frac{1}{1-\lambda} \overline{B_{n} v_{n}}\right) \tilde{i}\right] \\
& =r(i, k)+\lambda \sum_{j \in I} P(i, j, k) v_{n}(j) \\
& +\left(\frac{\lambda}{1-\lambda} \overline{B_{n} v_{n}}\right) \\
& <v_{n+1}(i)+\left(\frac{\lambda^{m+1}}{1-\lambda} B_{n} v_{n}\right) \leq v^{*}(i) .
\end{aligned}
$$

Hence $B v^{*}(i, k)<0$ and by Proposition 2.5 it follows that $k \varepsilon K_{i}$ is nonoptimal.

In the case of policy iteration
Corollary 2.3.
Suppose $\left\{v_{n}\right\}$ is generated by policy iteration and that

$$
\begin{equation*}
r(i, k)+\lambda \sum_{j \in I} P(i, j, k) v_{n}(j)+\left(\frac{\lambda}{1-\lambda} \overline{B_{n} v_{n}}\right)<v_{n+1}(i) \tag{38}
\end{equation*}
$$

Then $k \in \mathrm{~K}_{\mathbf{i}}$ is non-optimal in state i .

Grinold [7] replaced the term v_{n+1} on the righthand side of (38) by either $v_{n}(i)+\left(\frac{1}{1-\lambda} B_{n} v_{n}\right)$ or $v_{n}(i)+B_{n} v_{n}(i)+\left(\frac{\lambda}{1-\lambda} B_{n} v_{n}\right)$ in his action elimination algorithms. Since v_{n+1} is a tighter lower bound for v^{*} than either of these two bounds and is calculated prior to an action elimination step (see Section 6), it is surprising that he did not use the stronger test, (38), for action elimination.

5. Elimination of Actions for One Iteration.

The purpose of this section is to develop procedures to eliminate actions for a single iteration of a modified policy iteration algorithm. We use the following notation.

$$
\begin{aligned}
& D v_{n, \ell}=v_{n+\ell}-v_{n} \\
& {\overline{D v_{n, \ell}}}=\operatorname{Max}_{i \varepsilon I} D v_{n, \ell}(i) .
\end{aligned}
$$

The following lemma is of a technical nature and important in our development.

Lemma 2.3.

$$
\begin{equation*}
B_{n} v_{n+1}=\left(\lambda P_{n}\right)^{m+1} B_{n} v_{n} \tag{39}
\end{equation*}
$$

where

$$
v_{n+1}=T_{n}^{m+1} v_{n}
$$

Proof. From the definition of $B_{n} y$ and (10)

$$
\begin{aligned}
B_{n} v_{n+1} & =r_{n}+\left(\lambda P_{n}-I\right) v_{n+1} \\
& =r_{n}+\left(\lambda P_{n}-I\right)\left(v_{n}+\sum_{s=0}^{m}\left(\lambda P_{n}\right)^{s} B_{n} v_{n}\right) \\
& =B_{n} v_{n}+\left(\lambda P_{n}\right)^{m+1} B_{n} v_{n}-B_{n} v_{n}=\left(\lambda P_{n}\right)^{m+1} B_{n} v_{n} .
\end{aligned}
$$

The following proposition is the basis for a single iteration elimination procedure.

Proposition 2.6.
Suppose

$$
\begin{equation*}
B v_{n+1}(i, k)<\left[\left(\lambda P_{n}\right)^{m+1} B_{n} v_{n}\right](i) . \tag{40}
\end{equation*}
$$

Then $k \varepsilon K_{i}$ cannot attain the maximum in state i in the improvement phase of iteration $n+7$.

Proof. From (39) and (40) we obtain

$$
B v_{n+1}(i, k)<\left[\left(\lambda P_{n}\right)^{m+1} B_{n} v_{n}\right](i)=B_{n} v_{n+1}(i) \leq H v_{n+1}(i)
$$

From which we conclude the result.

Figure 2.1 shows schematically the implication of Proposition 2.6. If $B v_{n+1}(i, k)<B_{n} v_{n+1}(i)=\left[\left(\lambda P_{n}\right)^{m+1} B_{n} v_{n}\right](i)$ then $B v_{n+1}(i, k)<$

Figure 2.1. Implication of Proposition 2.6.
$B_{n} v_{n+1}(i) \leq H v_{n+1}(i)$ as shown in Figure 2.1. Therefore $k \varepsilon K_{i}$ can be eliminated at iteration $n+1$.

Noting that for policy iteration, $m=+\infty$, we conclude the following:

Corollary 2.4.
Suppose $\left\{v_{n}\right\}$ is generated by policy iteration and

$$
B v_{n+1}(i, k)<0 .
$$

Then action $k \in K_{i}$ cannot be optimal in state i at iteration $n+1$.

To make use of Proposition 2.4 in action elimination we must obtain bounds for both expressions in (40) that are easily computable from the quantities available at the completion of an evaluation step. These bounds are obtained in the course of proving the following theorem which gives an action elimination procedure.

Theorem 2.5.
Suppose at iteration ($n+1$) that for some $\ell \leq n$
(41) $\quad r(i, k)+\lambda \sum_{j \varepsilon I} P(i, j, k) v_{\ell}(j)+\sum_{p=\ell}^{n} \overline{D v}_{p, 1}-v_{n+1}(i)<\lambda\left(\lambda P_{n}\right)^{m} B_{n} v_{n}$

Then action $k \in K_{\mathbf{i}}$ is non-optimal in state i at iteration ($n+1$)

Proof. From (40) and (41)

$$
B v_{n+1}(i, k)=r(i, k)+\lambda \sum_{j \in I} P(i, j, k) v_{n+1}(j)-v_{n+1}(i)
$$

$$
\begin{align*}
& =r(i, k)+\lambda \sum_{j \varepsilon I} P(i, j, k)\left[v_{n+1}(j)-v_{\ell}(j)+v_{\ell}(j)\right]-v_{n+1}(i) \\
& =r(i, k)+\lambda \sum_{j \in I} P(i, j, k) v_{\ell}(j)+\lambda \sum_{j \in I} P(i, j, k) D v_{\ell, n-\ell+1} \\
& -v_{n+1}(i) \tag{i}\\
& \leq r(i, k)+\lambda \sum_{j \in I} P(i, j, k) v_{\ell}(j)+\lambda \sum_{p=\ell}^{n} \overline{D v_{p, 1}}-v_{n+1}(j) \\
& <\lambda\left(\lambda P_{n}\right)^{m_{B}} v_{n}=\lambda P_{n}\left[\left(\lambda P_{n}\right)^{m_{B}} \dot{v}_{n} \cdot \tilde{1}\right](i) \\
& \leq\left[\left(\lambda P_{n}\right)^{m+1} B_{n} v_{n}\right](i) .
\end{align*}
$$

(42)

Therefore by Proposition 2.4, $k \varepsilon K_{i}$ is non-optimal in state i of iteration $(n+1)$.

An alternative action elimination algorithm can be based on the following corollary.

Corollary 2.5.
Suppose at iteration $(n+1)$ that for some $\ell \leq n$

$$
\begin{equation*}
r(i, k)+\lambda \sum_{j \in I} P(i, j, k) v_{\ell}(j)+\lambda \bar{D}_{\ell, n-\ell+1}-v_{n+1}(i)<\lambda\left(\lambda P_{n}\right) m_{B_{n}} v_{n} \tag{43}
\end{equation*}
$$

Then action $k \in K_{i}$ is non-optimal in state i at iteration $(n+1)$.

Proof. Using $\overline{D v}_{\ell, n-\ell+1}$ instead of $\sum_{p=\ell}^{n} \overline{D v}_{p, 1}$ in (42) gives the result.

Single iteration action elimination algorithms for policy iteration can be obtained by replacing the bound on the right hand side of (41) or (43) by 0.

We discuss the relation of the results in this section to those of Hastings and van Nunen [12] and Hübner [15]. Hastings and van Nunen have proposed the following test for detecting non-optimal actions at iteration $n+\ell$ of value iteration; an action $k \varepsilon K_{i}$ is non-optimal in state i at iteration $n+\ell i f$

$$
\begin{equation*}
v_{n+1}(i)-\left[r(i, k)+\lambda \sum_{j \in I} P(i, j, k) v_{n}(j)\right]-\lambda \sum_{p=n}^{n+l-1} s p\left[v_{p+1}-v_{p}\right]>0 \tag{44}
\end{equation*}
$$

To investigate the equivalence of this test and the test based on (41) we set $m=0$ and $\ell=n$ in (41) and $\ell=1$ in (44). This is because with $m=0$, modified policy iteration is value iteration and with $\ell=1$ Hastings and van Nunen's algorithm eliminates actions at the next iteration. We find in this case that the two procedures are equivalent.

Hubner.'s elimination procedure [15] is based on replacing the last term on the left hand side of (44) by

$$
\begin{equation*}
\delta_{i k} \sum_{p=n}^{n+l-1} \lambda^{p-n} s p\left[v_{p+1}-v_{p}\right] \tag{45}
\end{equation*}
$$

where

$$
\delta_{\mathfrak{i} k}=\operatorname{Max}_{k^{\prime} \varepsilon K} \lambda\left(1-\sum_{j \varepsilon I} \operatorname{Min}\left(P(i, j, k), P\left(i, j, k^{\prime}\right)\right)\right)
$$

and

$$
\delta=\operatorname{Max}_{(i, k),\left(i^{\prime}, k^{\prime}\right)}^{\lambda\left(1-\sum_{j \varepsilon I} \operatorname{Min}\left(P(i, j, k), P\left(i^{\prime}, j, k^{\prime}\right)\right)\right) .}
$$

He showed that $\delta_{i k} \leq \delta \leq \lambda$ and that a test based on substituting (45) into (44) is more efficient than using (44) directly. In applications $\delta_{i k}$ and δ are usually approximated with more easily computable quantities.

6. Action Elimination Algorithms

In this section we apply results from the previous sections to develop computational procedures. Policy iteration and modified policy iteration algorithms including action elimination are represented by the flow chart in Figure 2.2.

For the action elimination step we select one of the procedures below. The first, which is due to Grinold [9] applies to policy iteration only, while the remainder have versions for both policy iteration and modified policy iteration. Except in the first case we state the modified policy iteration versions of these procedure.
I. (Policy Iteration) Suppose that at iteration $n+1$

$$
\begin{equation*}
r(i, k)+\lambda \sum_{j \in I} P(i, j, k) v_{n}(j)<v_{n}(i)+\frac{1}{1-\lambda} B_{n} v_{n}-\frac{\lambda}{1-\lambda} \overline{B_{n} v_{n}} . \tag{46}
\end{equation*}
$$

Then action $k \varepsilon K_{j}$ in state i is non-optimal and need not be considered in the improvement phase of iterations $n+1, n+2, \cdots$.
II. Suppose that at iteration $n+1$.

Figure 2.2. Flow Chart of an Action Elimination Algorithm.

$$
\begin{equation*}
r(i, k)+\lambda \sum_{j \in I} P(i, j, k) v_{n}(j)<v_{n+1}(i)+\frac{\lambda^{m+1}}{1-\lambda} B_{n} v_{n}-\frac{\lambda}{1-\lambda} \overline{B_{n} v_{n}} \tag{47}
\end{equation*}
$$

Then action $k \in K_{i}$ in state i is non-optimal and need not be considered in the improvement phase of iterations $n+1, n+2, \cdots$.

In the case of policy iteration set $m=+\infty$ in (46) to obtain

$$
\begin{equation*}
r(i, k)+\lambda \sum_{j \in I} P(i, j, k) v_{n}(j)<v_{n+1}(i)-\frac{\lambda}{1-\lambda} \overline{B_{n} v_{n}} . \tag{48}
\end{equation*}
$$

The above two procedures detect non-optimal actions and eliminate them from all subsequent iterations. The following two procedures eliminate actions at the subsequent iteration only. Consequently, if action $k \varepsilon K_{i}$ has been eliminated in state i at iteration n, the test quantity $r(i, k)+\lambda \sum_{j \in I} P(i, j, k) v_{n}(j)$ has not been computed and hence is not available for action elimination at iteration $n+1$. Because of this fact, we introduce the following.

Define $E_{n}(i)$ to be the set of actions that have been eliminated in state i at iteration n and set $E_{0}(i)=\emptyset$. Define $F_{\ell, n}(i)$ to be the set of actions that have been eliminated for iterations $\ell+1, \ell+2, \cdots, n$ and last evaluated at iteration ℓ, i.e.,

$$
F_{\ell, n}(i)=\left[\bigcap_{p=\ell+1}^{n} E_{p}(i)\right] \cap\left(E_{\ell}(i)\right)^{c}
$$

where the superscript c indicates complement.

The elimination procedures are as follows:
III. Suppose that at iteration $n+1$ and for $k \varepsilon K_{i}-E_{n}(i)$

Then $k \in E_{n+1}(i)$.

Further, if for $\ell=n-1, n-2, \cdots, 1$ and $k \varepsilon F_{\ell, n}(i)$ the following holds:

$$
\begin{equation*}
\dot{r}(i, k)+\lambda \sum_{j \in I} P(i, j, k) v_{\ell}(j)+\lambda \sum_{p=\ell}^{n}{\overline{D v_{p, 1}}}^{n}<v_{n+1}(i)+\lambda \underline{\left(\lambda P_{n}\right)^{m} B_{n} v_{n}} \tag{50}
\end{equation*}
$$

Then $k \varepsilon E_{n+1}(i)$.
IV. Replace (50) by

$$
\begin{equation*}
r(i, k)+\lambda \sum_{j \in I} P(i, j, k) v_{\ell}(j)+\lambda{\overline{D v_{l}}}_{\ell, n-\ell+1}<v_{n+1}(i)+\lambda\left(\lambda P_{n}\right) m_{B_{n}} v_{n} . \tag{51}
\end{equation*}
$$

For policy iteration, the quantity $\lambda\left(\lambda P_{n}\right)^{m} B_{n} v_{n}$ is replaced by 0 in (49)-(51).

We now discuss the implementation of procedures III or IV in the modified policy iteration algorithm. We initialize by selecting v_{0}
according to (8). We next evaluate $v_{1}=T_{0}^{m+1} v_{0}$. It may be computationally efficient to perform action elimination before the first improvement. That is because for action elimination we compute

$$
\begin{equation*}
r(i, k)+\lambda \sum_{j \in I} P(i, j, k) v_{0}(j)+\lambda{\overline{D v_{0,1}}}-v_{1}(i) . \tag{52}
\end{equation*}
$$

Since v_{0} is a constant vector we see that (52) is equal to

$$
r(i, k)+\frac{\lambda}{1-\lambda}\left(\operatorname{Min}_{i \varepsilon I} r_{0}(i)\right)+\lambda{\overline{D v_{0,1}}}-v_{1}(i)
$$

which can be evaluated by fewer calculations than the test quantity

$$
r(i, k)+\lambda \sum_{j} \cdot P(i, j, k) v_{p}(j)
$$

in the subsequent improvement step. But it will not eliminate many actions since $\frac{\lambda}{1-\lambda}\left(\operatorname{Min}_{i \in I} r_{0}(i)\right)+\overline{D v_{0}}, 7$ is usually larger than $\lambda \sum_{j} P(i, j, k) v_{1}(j)$. Therefore action elimination procedures will start from iteration 1.

The difference between III and IV is the quantities $\sum_{p=\ell}^{n} \overline{D v}_{p, 1}$ and $\overline{\mathrm{D}}_{\ell, n+1-\ell}$. Note that

$$
\begin{align*}
&{\overline{D v_{l, n+1-\ell}}}=\operatorname{Max}_{i \in I}\left[v_{n+1}(i)-v_{\ell}(i)\right]=\operatorname{Max}_{i \in I}\left[\sum_{p=\ell}^{n}\left(v_{p+1}(i)-v_{p}(i)\right)\right] \tag{53}\\
&\left.\leq \sum_{p=\ell i \varepsilon I}^{n}{\operatorname{Max}\left[v_{p+1}\right.}(i)-v_{p}(i)\right]=\sum_{p=\ell}^{n} \overline{D v}_{p, 1} .
\end{align*}
$$

Hence IV will eliminate more actions than III but require storing the vectors v_{1}, \cdots, v_{n}. In practice this algorithm converges quite quickly and this additional storage will be fairly insignificant.

Note also that the bound used on the right hand side of (49), (50) and (51) is

$$
\lambda\left(\lambda P_{n}\right)^{m_{n}}{ }_{n} v_{n}=\lambda \operatorname{Min}_{i \in I}\left(\left[\left(\lambda \cdot P_{n}\right)^{m_{B}}{ }_{n} v_{n}\right](i)\right) .
$$

It is evident from the proof of Theorem 2.4 that a better lower bound would be

$$
\operatorname{Min}_{i \in I}\left(\left[\left(\lambda P_{n}\right)^{m+1} B_{n} v_{n}\right](i)\right) .
$$

However this would require an additional calculation after evaluating v_{n+1} while $\lambda\left(\lambda P_{n}\right)^{m} B_{n} v_{n}$ is readily available. This is because

$$
\begin{equation*}
\left(\lambda P_{n}\right)^{m_{B}} v_{n} v_{n}=T_{n}^{m+1} v_{n}-T_{n}^{m} v_{n} . \tag{54}
\end{equation*}
$$

Both terms on the right hand side of (54) are compuated in the evaluation step.

We present the detailed algorithm incorporating action elimination procedure II, III and IV into the modified policy iteration procedure. Minor changes will give the corresponding algorithms for policy iteration. We will initialize an additional array, $\mathrm{Flag}_{\mathrm{n}}(\mathrm{i}, \mathrm{k})$, to indicate whether an action has been eliminated. It is subscripted as n only for the purpose of stating the algorithm.

STEP 1) Initialization:
Select $\varepsilon>0$ to be used as a stopping criterion. Set $n=0$ and find $\delta_{0} \varepsilon \Delta$ such that

$$
r_{0}(i)=r\left(i, \delta_{0}(i)\right)=\operatorname{Max}_{\operatorname{keK}_{i}} r(i, k), \quad i \in I .
$$

Set

$$
v_{0}=\frac{1}{(1-\lambda)}\left(\operatorname{Min}_{i \varepsilon I} r_{0}(i)\right) \cdot \tilde{l}
$$

Calculate $v_{1}=T_{0}^{m+1} v_{0}$ where m is determined by

$$
m=\min \left\{s: \operatorname{sp}\left[T_{n}^{s+1} v_{n}-T_{n}^{S} v_{n}\right] \leq \varepsilon\right\}
$$

Set $n=n+1$ and $\operatorname{Flag}_{n}(i, k)=0$ for all $i \varepsilon I$ and $k \varepsilon K_{i}$. Go to step 2 .

STEP 2) Improvement Phase:
For each $\mathbf{i} \varepsilon I, k \in K_{i} i f \operatorname{Flag}_{n}(i, k) \leq 0$ calculate $\operatorname{Tv}_{n}(i, k)$. Otherwise do not calculate $T v_{n}(i, k)$. Find δ_{n} such that

$$
\operatorname{Tv}_{n}\left(i, \delta_{n}(i)\right)=\operatorname{Max}_{\operatorname{MeK}_{i}}\left\{\operatorname{Tv}_{n}(i, k) \mid F 1 \operatorname{lag}_{n}(i, k) \leq 0\right\}
$$

Compute $\overline{B_{n} v_{n}}$ and $B_{n} v_{n}$. If $\operatorname{sp}\left(B_{n} v_{n}\right) \leq \varepsilon$ go to step 5. Otherwise go to step 3.

STEP 3) Evaluation Phase:

$$
\begin{aligned}
& v_{n+1}=T_{n}^{m+1} v_{n} \text { where } m \text { is determined by } \\
& m=\operatorname{Min}\left\{s: s p\left[T_{n}^{s+1} v_{n}-T_{n}^{s} v_{n}\right] \leq \varepsilon\right\}
\end{aligned}
$$

Go to step 4.

STEP 4) Elimination Phase:
In procedure II;
If Flag ${ }_{n}(i, k) \leq 0$ and $T_{n} v_{n}(i, k)-v_{n+1}(i)<\frac{\lambda^{m+1}}{(1-\lambda)_{n}} v_{n}-$ $\frac{\lambda}{(1-\lambda)} \overline{B_{n} v_{n}}$, then $\operatorname{Flag}_{n+1}(i, k)=1$. Otherwise $\operatorname{Flag}_{n+1}(i, k)=\operatorname{Flag}_{n}(i, k)$. Set $n=n+1$ and go to step 2 .

In procedure III;

Set $\operatorname{Tv}_{n+1}(i, k)=T v_{n}(i, k)+\overline{D v}_{n, 1}$.
If: $\operatorname{Tv}_{n+7}(i, k)<v_{n+1}(i)+\lambda\left(\lambda P_{n}\right)^{m} \cdot B_{n} v_{n}$ then $\operatorname{Flag}_{n+1}(i, k)=1$. Otherwise $\operatorname{Flag}_{n+1}(i, k)=0$. Set $n=n+1$ and go to step 2 .

In procedure IV;
If $\operatorname{Flag} n(i, k) \leq 0$ and $T v_{n}(i, k)+\lambda \overline{D v}_{n, 1}<v_{n+1}(i)+\lambda\left(\lambda P_{n}\right)^{m_{B}}{ }_{n} v_{n}$ then $\operatorname{Flag}_{n+1}(i, k)=n$.

$$
\text { If } F 1 \lg _{n}(k, k) \leq 0 \text { and } \operatorname{Tv}_{n}(i, k)+\lambda \overline{D v}_{n, 1} \geq v_{n+1}(i)+\lambda\left(\lambda P_{n}\right)^{m_{B}} v_{n}
$$ then $\operatorname{Flag}_{\mathrm{n}+1}(\mathrm{i}, \mathrm{k})=\operatorname{Flag}_{\mathrm{n}}(\mathrm{i}, \mathrm{k})=0$.

If $\operatorname{Flag}_{n}(i, k)=\ell>0$ and $\operatorname{Tv}_{\ell}(i, k)+{\overline{D v_{l, ~}^{n-\ell+1}}}<v_{n+1}(i)+$ $\lambda\left(\lambda P_{n}\right)^{m_{B}} v_{n}$ then Flag $_{n+1}(i, k)=\ell$.

If $\operatorname{Flag}_{n}(i, k)=\ell>0$ and $\operatorname{Tv}_{\ell}(i, k)+\lambda \overline{\operatorname{Dv}}_{\ell, n=\ell+\rceil} \geq v_{n+1}(i)+$ $\lambda\left(\lambda P_{n}\right) m_{n} v_{n}$ then Flag $_{n+1}(i, k)=0$.

Set $n=n+1$ and go to step 2.

STEP 5) Final Extrapolation:
Set $v=v_{n}+B_{n} v_{n}+\frac{\lambda}{(1-\lambda)} B_{n} v_{n} \tilde{1}$ and stop.

Some comments about this algorithm are in order. For procedure III we do not have to store the indicator of the last evaluated iteration, ℓ, because the only term added to the left hand side of (50) at each iteration is always $\overline{\mathrm{D}}_{\mathrm{n}, 1}$. On the other hand, the last evaluated iteration, ℓ, must be stored for procedure IV because the value of $\lambda \overline{D v}_{\ell, n-\ell+1}$ must be stored for procedure IV because the value of $\lambda \overline{D v}_{\ell, n-\ell+1}$ in (56) depends on v_{n+1} and v_{ℓ}. Therefore in procedure IV, if $k \in F_{\ell, n}(i)$ then $\operatorname{Flag}_{n}(i, k)=\ell$. In the above algorithms with action elimination procedures we must store the $N \times M$ array, $\operatorname{Tv}(i, k)$, and the $N \times M$ array, Flag(i,k), in addition to the storage space required for the algorithm without an action elimination procedure. Here N is the number of states and M is the number of actions in each state assuming each state has an equal number of actions. Furthermore in procedure IV we require additional space to store the vectors v_{1}, \cdots, v_{n} and in procedure III additional space to store the vector v_{n}. Therefore at least $2 N \times M$ additional storage space is required for the algorithms above. But compared to the space to store the $N^{2} \times M$ array for the transition probabilities, $P(i, j, k)$, this additional storage reguirement is not too significant.

In the cases where even $2 N \times M$ additional words cannot be put into core storage, we can utilize another method to decrease the $2 \mathrm{~N} \times \mathrm{M}$ spaces to $N \times M$ spaces by using $P(i, 1, k)$ as $\operatorname{Flag}(i, k)$. Changes to be made in the algorithms above are as follows:
(a) We initialize $P(i, j, k)=\lambda P(i, j, k)<1$ for $i \in I, j \in I, k \varepsilon K_{i}$. Drop λ in the calculation of $T v_{n}(i, k)$ and $B v_{n}(i, k) . \quad\left(\lambda P_{n}\right)^{m} B_{n} v_{n}$ becomes $\underline{\left(P_{n}\right) m_{n} v_{n}}$.
(b) In the improvement phase: If $P(i, 1, k)<1$ calculate $T v_{n}(i, k)$. Otherwise do not calculate $T v_{n}(i, k)$. Find δ_{n} such that
$\operatorname{Tv}_{n}\left(i, \delta_{n}(i)\right)=\operatorname{Max}_{\operatorname{kEK}_{i}}\left\{\operatorname{Tv}_{n}(i, k) \mid P(i, 1, k)<1\right\}$
(c) In the elimination phase:

For procedure II; If $P(i, j, k)<1$ and (47) is satisfied then $P(i, 1, k)=1+P(i, 1, k)$. Otherwise do not change $P(i, 1, k)$.

For procedure III; If $\operatorname{Tv}_{n+1}(i, k)<v_{n+1}(i) \lambda\left(P_{n}\right) m_{B}{ }_{n} v_{n}$ then $P(i, 1, k)=1+P(i, 1, k)$. Otherwise, $P(i, 1, k)=P(i, 1, k)-1$ if $P(i, 1, k) \geq 1$ and $P(i, 1, k)=P(i, 1, k)$ if $P(i, 1, k)<1$.

For procedure IV; If $\mathrm{P}(\mathrm{i}, \mathrm{l}, \mathrm{k})<1$ and (49) is satisfied then $P(i, l, k)=n+P(i, 1, k)$. If $P(i, 1, k)<1$ and (49) is not satisfied then $P(i, 1, k)=P(i, 1, k)$. If $P(i, l, k) \geq 1$ and (51) with $\ell=$ greatest integer in $P(i, 1, k)$ is satisfied then $P(i, 1, k)=P(i, 1, k)$. If $P(i, 1, k) \geq 1$ and (51) with $\ell=$ greatest integer in $P(i, 1, k)$ is not satisfied then $P(i, 1, k)=$ $P(i, 1, k)-\ell$.

For a problem with large state and action spaces, the transition probabilities may be stored in a file or on a tape and read at each improvement phase. In this case, if we use "P(i,l,k) as Flag(i,k) we have to read $P(i, 1, k)$ from a file or a tape to check whether an action is eliminated or not. The operation of reading from a file or tape into core storage is quite inefficient and requires considerable CPU time. This can be avoided by storing . Flag(i,k) and $\operatorname{Tv}(\mathbf{i}, \mathrm{k})$ in the same array for procedures II and III. Storing Flag(i,k) and $\operatorname{Tv}(\mathbf{i}, \mathrm{k})$ in the same array may not be done for procedure IV since we have to identify the last evaluated iteration, ℓ, of each action eliminated. To store Flag(i,k) and $\operatorname{Tv}(i, k)$ in the same array, we use a scalar constant \bar{v} that is greater than Max $v^{*}(i)$. This scalar value \bar{v} can be calculated easily in the initializaI\&I tion phase as follows:

$$
\begin{aligned}
& r_{0}(i)=r\left(i, \delta_{0}(i)\right)=\operatorname{Max}_{k \varepsilon K_{i}} r(i, k), i \varepsilon I . \\
& \bar{v}=\frac{1}{(7-\lambda)} \operatorname{Max}_{i \in I} r_{0}(i)>\operatorname{Max}_{i \in I} v^{*}(i) .
\end{aligned}
$$

Using \bar{v} above the changes necessary in the algorithm for procedure II and III are as follows:
(a) In improvement phase: If $\operatorname{Flag}_{n}(i, k) \leq 0$ calculate $T v_{n}(i, k)$ and set $F \operatorname{lag}_{n}(i, k)=\operatorname{Tv}_{n}(i, k)-\bar{v} \ll 0$.
(b) In elimination phase:

For procedure II; If $\operatorname{Flag}_{n}(i, k) \leq 0$ and $\operatorname{Flag}_{n}(i, k)+\bar{v}<v_{n+1}(i)+$ $\frac{\lambda^{m+1}}{(1-\lambda)} \operatorname{Bn}_{n} v_{n}-\frac{\lambda}{(1-\lambda)} \overline{B_{n} v_{n}}$, then $\operatorname{Flag}_{n+1}(i, k)=1$.

Otherwise $\mathrm{Flag}_{n+1}(i, k)=\operatorname{Flag}_{n}(i, k)$.

For procedure III; If $\operatorname{Flag}_{n}(i, k) \leq 0$ and $A_{n}(i, k)=\operatorname{Flag}_{n}(i, k)+$ $\bar{v}+\lambda \overline{D v}_{n, 1}<v_{n+1}(i)+\lambda\left(\lambda P_{n}\right)^{m} B_{n} v_{n}$ then $\operatorname{Flag}_{n+1}(i, k)=v_{n+1}(i)+$ $\lambda\left(\lambda P_{n}\right)^{m} B_{n} v_{n}-A_{n}(i, k)>0$. If Flag $n(i, k) \leq 0$ and $A_{n}(i, k) \geq v_{n+1}(i)+$ $\lambda\left(\lambda P_{n}\right)^{m_{B}} v_{n}$ then Flag $_{n+1}(i, k)=\operatorname{Flag}_{n}(i, k)$. If Flag $n(i, k)>0$ and $C_{n}(i, k)=-F \operatorname{lag}_{n}(i, k)+v_{n}(i)+\lambda\left(\lambda P_{n-1}\right) m_{n-1} v_{n-1}+\lambda \overline{D v}_{n, 1}<v_{n+1}(i)+$ $\lambda\left(\lambda P_{n}\right)^{m} B_{n} v_{n}$ then $\operatorname{Flag}_{n+1}(i, k)=v_{n+1}(i)+\lambda\left(\lambda P_{n}\right) m_{n} v_{n}-C_{n}(i, k)>0$. If Flag $n(i, k)>0$ and $C_{n}(i, k) \geq v_{n+1}(i)+\lambda\left(\lambda P_{n}\right) B_{n} v_{n}$ then Flag $_{n+1}(i, k)=0$.

Some comments about the two storage saving methods are in order. $A_{n}(i, k)$ and $C_{n}(i, k)$ are just the terms on the left hand side of (49) and (50) respectively. $A_{n}(i, k)$ and $C_{n}(i, k)$ are used for clarity but are not required to be stored. For the value iteration algorithm an alternative approach to reduce storage has been developed by Hastings and Mello [10] and Porteus [20]. Their methods eliminate fewer actions than those based on the best available bounds because they use less tight bounds to reduce storage. Using $\mathrm{P}(\mathrm{i}, \mathrm{l}, \mathrm{k})$ as $\operatorname{Flag}(\mathrm{i}, \mathrm{k})$ their methods require no additional storage space. While in the case where the $P(i, j, k)$ array is stored in a file or tape and a Flag(i,k)-type array is used to indicate whether or not an action has been eliminated, a modification similar to that described above using Flag(i,k) and $\operatorname{Tv}(i, k)$ in the same array with tighter bounds than in Hastings and Mello [10] and Porteus [20] will eliminate more actions without increasing storage. For modified policy iteration a similar approach to that in [10] and [20] would eliminate far fewer actions than the methods herein because v_{n+1} is much greater than v_{n}.

7. Computational Results

To determine the efficiency of the algorithm described in the previous section we solved Howard's [14] automobile replacement problem and a randomly generated problem with discount rates $.8333, .86956, .909$ and .9532. These discount rates were chosen because they were also used by Grinold [9] in testing his procedure. We first describe the automobile replacement problem in detail.

Automobile Replacement Problem. (Howard [14, p. 54].)
Consider the problem of automobile replacement over a time interval of ten years. The state of the system, i, is described by the age of the car in three-month periods; i running from 1 to 40 . Every three months we decide whether to keep our present car ($k=1$) or to trade it in for a car of age $k-2 ; k$ running from 2 to 41 . In order to keep the number of states finite, a car of age 40 remains a car of age 40 forever (it is considered to be essentially worn out). The actions available in each state are: to keep the present car for another quarter ($k=1$) or to buy a car of age $k-2, k=2,3, \cdots, 41$. The problem has 40 states with 41 actions in each state. Hence there are 41^{40} possible stationary strategies.

The data supplied are the following: C_{j} is the cost of buying a car of age $i: T_{i}$ is the trade-in value of a car of age $i ; E_{i}$ is the expected cost of operating a car of age \mathbf{i} until it reaches age $\mathbf{i + 1}$; and P_{i} is the probability that a car of age i will survive to be $i+1$ without incurring a prohibitively expensive repair.

The probability defined here is necessary to limit the number of states. A car of any age that has a hopeless breakdown is immediately sent to state 40 . Naturally, $P_{40}=0$.

Using our earlier notation we have

$$
\begin{aligned}
& r(i, k)=-E_{i} \text { for } k=1 \\
& r(i, k)=T_{i}-C_{k-2}-E_{k-2} \text { for } k>1 \\
& P(i, j, k)=\left\{\begin{array}{cc}
P_{i} & j=i+1 \\
1-P_{i} & j=40 \\
0 & \text { others }
\end{array}\right\} \quad \text { for } k=1 \\
& P(i, j, k)=\left\{\begin{array}{cc}
P_{k-2} & j=i+1 \\
1-P_{k-2} & j=40 \\
0 & \text { others }
\end{array}\right\} \quad \text { for } k>1 .
\end{aligned}
$$

The numerical values for these parameters are listed in Table 2.1.

The Randomly Generated Problem.
The randomly generated problem had 40 states and 100 actions in each. It was generated as follows: the data for the expected one period rewards, $r(i, k)$, were generated from a truncated normal distribution, the transition probabilities, $P(i, j, k)$, were selected so that there were non-zero entries at three random locations in each state for each action and the non-zero probabilities were generated from a uniform distribution.

Table 2.1
Data for the Automobile Replacement Problem

| Age in
 Periods
 i | Cost | Trade-in
 Value
 T_{i} | Operating
 Expense
 E_{i} | Survival
 Probability
 P_{i} | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | C_{i} | | | Age in
 Periods
 i | Cost
 C_{i} | Trade-in
 Value
 T_{i} | Operating
 Expense
 E_{i} | Survival
 Probability
 P_{i} | |
| 0 | $\$ 2000$ | $\$ 1600$ | $\$ 50$ | 1.000 | | | | | |
| 1 | 1840 | 1460 | 53 | 0.999 | | | | | |
| 2 | 1680 | 1340 | 56 | 0.998 | 21 | $\$ 345$ | $\$ 240$ | $\$ 115$ | 0.925 |
| 3 | 1560 | 1230 | 59 | 0.997 | 22 | 330 | 225 | 118 | 0.919 |
| 4 | 1300 | 1050 | 62 | 0.996 | 24 | 315 | 210 | 121 | 0.910 |
| 5 | 1220 | 980 | 65 | 0.994 | 25 | 290 | 200 | 125 | 0.900 |
| 6 | 1150 | 910 | 68 | 0.991 | 26 | 280 | 180 | 129 | 0.890 |
| 7 | 1080 | 840 | 71 | 0.988 | 27 | 265 | 170 | 133 | 0.880 |
| 8 | 900 | 710 | 75 | 0.985 | 28 | 250 | 160 | 141 | 0.865 |
| 9 | 840 | 650 | 78 | 0.983 | 29 | 240 | 150 | 145 | 0.850 |
| 10 | 780 | 600 | 81 | 0.980 | 30 | 230 | 145 | 150 | 0.820 |
| 11 | 730 | 550 | 84 | 0.975 | 31 | 220 | 140 | 155 | 0.790 |
| 12 | 600 | 480 | 87 | 0.970 | 32 | 210 | 135 | 160 | 0.760 |
| 13 | 560 | 430 | 90 | 0.965 | 33 | 200 | 130 | 167 | 0.660 |
| 14 | 520 | 390 | 93 | 0.960 | 34 | 190 | 120 | 175 | 0.590 |
| 15 | 480 | 360 | 96 | 0.955 | 35 | 180 | 115 | 182 | 0.510 |
| 16 | 440 | 330 | 100 | 0.950 | 36 | 170 | 110 | 190 | 0.430 |
| 17 | 420 | 310 | 103 | 0.945 | 37 | 160 | 105 | 205 | 0.300 |
| 18 | 400 | 290 | 106 | 0.940 | 38 | 150 | 95 | 220 | 0.200 |
| 19 | 380 | 270 | 109 | 0.935 | 39 | 140 | 87 | 235 | 0.100 |
| 20 | 360 | 255 | 112 | 0.930 | 40 | 130 | 80 | 250 | 0 |

R.A. Howard, "Dynamic Programming and Markov Processes." M.I.T. Press, Cambridge, Massachusetts, 1960.

PAGE 49 HAS BEEN OMITTED

The computer program for the randomly generated problem is in the Appendix. The randomly generated problems in Puterman and Shin [26] were not used since the optimal policies for these problems were found in one or two: iterations. In the problem used here the structure varied considerably from policy to policy and consequently required more effort to solve. This was advantageous for investigating the properties of our algorithm.

We solved these problems using policy iteration and modified policy iteration alone and with each of the action elimination procedures. The evaluation phase was terminated by using (9) with $\varepsilon=0.1$ This value of ε was also used for stopping the algorithm.

All calculations were performed on the University of British Columbia AMDAHL 470 computer using the codes in the Appendix. Results reported in Tables 2.2. and 2.3 are the fraction of actions eliminated at each iteration. These results are based on using policy iteration. We found that when modified policy iteration was used results did not differ in every case. In the cases where different results were obtained the modified policy iteration results are included in parentheses. For modified policy iteration, we did not use procedure I which was clearly dominated by procedure II.

It is interesting to note that in all cases except those indicated by * in Table 2.2 the number of actions eliminated by procedures III and IV increased at each iteration. The reason for the decrease in those cases marked by * is that $\sum_{p=\ell}^{n} \overline{D v}_{p, 1}$ is not a very good upper bound for $v_{n+1}-v_{\ell}$. When the better upper bound, $\overline{D v}_{\ell, n+1-\ell}$, was employed this monotonicity property was prêserved (see (53)). It was interesting to note that although

Table 2.2
Comparison of Action Elimination Procedures with Policy Iteration -
Automobile Replacement Problem
(Numbers are fraction of actions eliminated at iteration n, asterisked cells are described in text.)

- ${ }^{\lambda}$. 8333				. 86956				. 909				. 9532			
$n^{n} c^{c} d_{u_{e}}$	I	II	III	IV												
1	. 0	. 0	. 4573	. 4573	. 0	. 0	. 4707	. 4707	. 0	. 0	. 4152	. 4152	. 0	. 0	. 3409	. 3409
2	. 0561	. 0707	. 5518	. 6659	. 0	. 0	. 5037	. 6311	. 0	. 0	. 4183	. 5530	. 0	. 0	$\begin{aligned} & .3 \star 77 \\ & (.3171) \end{aligned}$. 4470
3	. 2549	. 2683	. 7152	. 8561	. 0982	$(.1000)$. 5829	. 8238	. 0	. 0	. 5366	. 7726	. 0	. 0	$\begin{gathered} .3 \star 28 \\ (.3134) \end{gathered}$. 5311
4	opt.	opt.	opt.	opt.	. 4585	$\begin{gathered} .4604 \\ (.4616) \end{gathered}$. 8183	. 9110	. 0823	. 0835	. 5671	. 8695	. 0	. 0	$\begin{aligned} & .6628 \\ & (.6622) \end{aligned}$. 7927
5					opt.	opt.	opt.	opt.	. 1628	$\begin{aligned} & .1652 \\ & (.1640) \end{aligned}$. 7732	. 8921	. 0	. 0	. $4^{\star} 54$. 8195
6									. 3738	$(.3744)$	$(.8512$. 9372	opt.	opt.	opt.	opt.
									opt.	opt.	opt.	opt.				

Table 2.3
Comparison of Action Elimination Procedures with Policy Iteration Randomly Generated Problem
(Numbers are fractions of actions eliminated at iterations n)

PrO_{0}	. 8333				. 86956				. 909				. 9532			
\xrightarrow{n}	I	II	III	IV												
1	. 0	. 0	. 6972	. 6972	. 0	. 0	. 6525	(.6525	. 0	. 0	. 6255	. 6255	. 0	. 0	. 5667	. 5667
2	. 0100	$\left\lvert\, \begin{gathered} .0445 \\ (.0345) \end{gathered}\right.$	$\begin{gathered} .7620 \\ (.7617) \end{gathered}$	$\begin{gathered} .9163 \\ (.9160) \end{gathered}$. 0	${ }_{\text {(. }}^{\text {. } 0010}$. 7592	$\left\|\begin{array}{c} .9150 \\ (.9152) \end{array}\right\|$. 0	. 0	(.7445	$\left\lvert\, \begin{gathered} .9122 \\ (.9117) \end{gathered}\right.$. 0	. 0	$\begin{gathered} .5800 \\ (.5797) \end{gathered}$. 8530
3	. 6005	$\left\lvert\, \begin{gathered} .6915 \\ (.6797) \end{gathered}\right.$	$\begin{aligned} & .8920 \\ & (.8917) \end{aligned}$. 9765	. 3833	$\begin{aligned} & .5427 \\ & (.4947) \end{aligned}$	$(.8872$	$\left\lvert\, \begin{gathered} .9765 \\ (.9763) \end{gathered}\right.$. 0510	$\begin{aligned} & .1513 \\ & (.0963) \end{aligned}$	$\left\lvert\, \begin{aligned} & .8817 \\ & (.8820) \end{aligned}\right.$	$\begin{gathered} .9752 \\ (.9750) \end{gathered}$. 0	. 0	. 8547	. 9710
4	. 9602	$\left\lvert\, \begin{gathered} .9663 \\ (.9645) \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & .9540 \\ & (.9545) \end{aligned}\right.$. 9877	. 9027	$(.9065)$. 9338	$\begin{gathered} .9858 \\ (.9860) \end{gathered}$. 9197	$\begin{array}{\|c\|} \hline .9238 \\ (.9217) \end{array}$	$\left\lvert\, \begin{gathered} .9575 \\ (.9580) \end{gathered}\right.$	$\begin{array}{\|l\|} \hline .9877 \\ \hline \end{array}$. 6005	$\begin{gathered} .6542 \\ (.6130) \end{gathered}$	$\begin{gathered} .9433 \\ (.9422) \end{gathered}$. 9877
5	. 9890	. 9890	. 9865	. 9900	opt.											
6	opt.	opt.	opt.	opt.												

the number of actions eliminated at each iteration increased in the remaining cases, we could not conclude that an action eliminated at a particular iteration would remain eliminated at subsequent iterations. This is the reason for defining the sets $F_{\ell, n}(i)$ for procedures III and IV. For the automobile replacement problem, we also combined procedure II, with III and IV. In each case we obtained the same results as using procedures III and IV alone.

The CPU times to solve problems using various procedures are shown in Table 2.4. Reduction of CPU times using procedures III and IV were significant in each problem. For instance, in the randomly generated problem with $\lambda=.8333$, policy iteration with procedure IV took only 34.8 per cent of the CPU time taken by policy iteration without any action elimination procedure. Modified policy iteration was slower than policy iteration in every case. This is due to the small state spaces of the problems. This issue is discussed in detail in Puterman and Shin [26, p. 1134].
8. Conclusions.

We were very encouraged by our computational results. As indicated in Table 2.2 and 2.3 procedures III and IV were very effective in decreasing the size of the action space to be searched during an improvement step. In problems with a large number of actions, this will decrease computational requirements considerably, i.e., if there are N states and M actions then without action elimination each improvement step will require $M N^{2}$ multiplications while if 100α per cent of the actions have been eliminated, only (l- α)MN ${ }^{2}$ multiplications would be required. Also as indicated

Table 2.4
Computational Time

		CPU Time (Secs.) for the automobile replacement problem		CPU Time (Secs.) for the randomly generated problem	
		Policy Iteration	Modified Policy Iteration	Policy Iteration	Modified Policy Iteration
. 8333	*	. 683	. 812	2.422	2.457
	I	. 682		1.549	
	II	. 652	. 789	1.457	1.538
	III	. 432	. 564	. 861	. 919
	IV	. 429	. 534	. 844	. 884
. 86956	*	. 856	1.061	2.015	2.076
	I	. 820	-	1.629	
	II	. 796	1.025	1.531	1.622
	III	. 501	. 717	. 852	. 920
	IV	. 476	. 678	. 815	. 860
. 909	I	1.197	1.492	2.024	2.077
	I	1.171	1.420	1.759	-
	III	1.134 .660	$\begin{array}{r}1.420 \\ \hline 944\end{array}$	1.666	1.758
	II I	.660 .586	.944 .840	.863 .823	.935 .874
. 9532	*	1.040	1.494	2.013	2.103
	I	1.090	,	1.910	-
	II	1.063	1.542	1.830	1.926
	II I	. 717	1.224	. 968	1.045
	IV	. 648	1.099	. 872	. 927

(* indicates results without action elimination procedures.)
in Table 2.4 we obtained significant reduction in computation time by including action action elimination procedures III and IV.

For problems with large state spaces, Puterman and Shin [26] found modified policy iteration to be considerably more effective than policy iteration and value iteration with all its variants. We recommend using modified policy iteration together with procedure IV for solving discounted Markovian decision problems with large state spaces and policy iteration together with procedure IV for problems with small state spaces and large action spaces.

COMPUTATIONAL METHODS FOR FARAMETRIC MARKOV

DECISION PROBLEMS

1. Introduction.

In this chapter we study finite discounted Markov decision problems (MDP) in which the reward vector is parametrized by a scalar and develop algorithms to solve them. The algorithms use dynamic programming methods based on properties of the optimality equation and results in the previous chapter on action elimination. Without action elimination the method is similar to the parametric simplex algorithm of linear programming (c.f. Dantzig [5]). Because of the sensitivity of results to roundoff error a modification based on approximations to the expected total discounted returns is also presented.

These algorithms are of interest because bi-criterion MDP and MDP subject to a single constraint can be formulated as problems with the reward vector including a single parameter.

Henig [13] investigated a general class of dynamic programs with vector criterion and presented conditions which imply that the set of policies with nondominated total returns can be characterized and approximated by the set of all nondominated stationary policies. Viswanathan,

Aggarwal and Nair [33] and Henig [13] have suggested solution procedures for MDP with vector criterion based on solution procedures for vector criterion linear programming methods. Later, White and Kim [34] reformulated the MDP with vector criterion as a specially structured partially observed MDP and introduced two procedures for solving them based on successive approximations and policy iterations. These methods in [34] were developed by Smallwood and Sondik [28] and Sondik [29] for partially observed problems. However, a shortcoming of these methods in [34] is that they require more computational time and storage than the method proposed here simply because they require more evaluation and improvement steps.

In Section 2 the problem and notation are defined. Algorithms based on parametric linear programming with simplex and block pivoting are developed using dynamic programming terminology in Section 3. The algorithm in Section 3 is motivational and the actual computational method is discussed in Section 4 using approximations of values to resolve the difficulties caused by roundoff error.

In Section 5 an action elimination procedure for this problem is developed and the detailed algorithms are presented in Section 6 to reduce computational efforts.

Bi-criterion MDP and one-constrained MDP are formulated as parametric MDP in Section 7. Numerical results appear in Section 8 where a comparison of algorithms with and without action elimination procedures on Howard's [14] automobile replacement problem with another criterion are presented.
2. Preliminaries.

In this chapter we use the same notation as in Chapter 2 except for the additional quantities defined below. Let α denote the scalar parameter of variation in the one-stage rewards and define constants $\underline{\alpha}$ and $\bar{\alpha}$ such that $\underline{\alpha} \leq \alpha \leq \vec{\alpha}$. When the system is in state $i \varepsilon I$ and an action $k \varepsilon K_{i}$ is selected, $r(i, k)$ and $d(i, k)$ are the one-stage rewards. Let $r^{\delta}(i)$ and $d^{\delta}(i)$ be $r(i, \delta(i))$ and $d(i, \delta(i))$. Define r_{α}^{δ} by $r_{\alpha}^{\delta}=r^{\delta}+\alpha d^{\delta}$. For each $\delta \varepsilon \Delta$ let v_{α}^{δ} and u^{δ} be the expected total discounted rewards with respect to r_{α}^{δ} and d^{δ}. Then

$$
\begin{equation*}
v_{\alpha}^{\delta}=v^{\delta}+\alpha u^{\delta} \tag{1}
\end{equation*}
$$

For each α, the problem we study is that of finding a $\delta_{\alpha}^{*} \varepsilon \Delta$ and $v_{\alpha}^{*} \varepsilon V$ such that

$$
\begin{equation*}
v_{\alpha}^{*}=v_{\alpha}^{\delta_{\alpha}^{*}}=\operatorname{Max}_{\delta \varepsilon \Delta} v_{\alpha}^{\delta} \tag{2}
\end{equation*}
$$

For a given $v, u \varepsilon V$ and $\delta \varepsilon \Delta$, define the linear operators $\mathrm{T}_{\delta}^{\alpha}, \mathrm{S}_{\delta}, \mathrm{B}_{\delta}^{\alpha}$ and $\mathrm{G}_{\delta}^{\prime}$ mapping V to V by

$$
\begin{equation*}
T_{\delta}^{\alpha} v \equiv r_{\alpha}^{\delta}+\lambda P_{\delta} v \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
S_{\delta} u \equiv d^{\delta}+\lambda P_{\delta} u \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{B}_{\delta}^{\alpha} \mathrm{v} \equiv \mathrm{~T}_{\delta}^{\alpha} \mathrm{v}-\mathrm{v} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
G_{\delta} u \equiv S_{\delta} u-u \tag{6}
\end{equation*}
$$

and define the policy $\delta_{v_{\alpha}}$ and the operator $H^{\alpha}: V \rightarrow V$ by

$$
\begin{equation*}
H^{\alpha} v_{\alpha} \equiv B_{\delta_{v_{\alpha}}^{\alpha}} v_{\alpha}=\operatorname{Max}_{\delta \varepsilon \Delta} B_{\delta}^{\alpha} v_{\alpha} \tag{7}
\end{equation*}
$$

For $k=\delta(i) \varepsilon K_{i}$ we use the following notation:

$$
\begin{aligned}
& B_{\delta}^{\alpha} v_{\alpha}(i)=B^{\alpha} v_{\alpha}(i, \delta(i))=B^{\alpha} v_{\alpha}(i, k) \\
& G_{\delta} u(i)=G u(i, \delta(i))=G u(i, k) .
\end{aligned}
$$

The problem defined by (2) is equivalent to finding v_{α}^{*} and δ_{α}^{*} that satisfy

$$
\begin{equation*}
\mathrm{B}_{\delta_{\alpha}^{\alpha}}^{\alpha} \mathrm{v}_{\alpha}^{*}=H^{\alpha} v_{\alpha}^{*}=0 \tag{8}
\end{equation*}
$$

For clarity we will use $r_{n}^{\delta}, \delta_{n}, v_{n}, u_{n}, B^{n}, T^{n}$ and H^{n} instead of $r_{\alpha_{n}}^{\delta}, \delta_{\alpha_{n}}^{*}, v_{\alpha_{n}}^{*}, u^{\delta_{n}}, B^{\alpha_{n}}, T^{\alpha_{n}}$ and $H^{\alpha_{n}}$.

3. An Algorithm Based on Parametric Linear Programming.

The linear programming formulation of the discounted MDP was first given by D'Epenoux [7]. Mine and Osaki [17] studied the relationship between policy iteration and linear programning and showed that the policy iteration is a modification of the simplex algorithm of linear
programming in which the pivot operations for many variables are performed simultaneously. Here we develop an algorithm based on parametric linear programming to solve the parametric BDP . In this algorithm pivoting is done on a block of variables or states. We use dynamic programming terminology throughout.

The following proposition is of a technical nature and is needed in the sequel.

Proposition 3.1.
The following equalities hold for all $\alpha \varepsilon[\underline{\alpha}, \bar{\alpha}]$ and $\delta \varepsilon \Delta$;

$$
\begin{equation*}
v_{\alpha}^{\delta}=v+\left(I-\lambda P_{\delta}\right)^{-1} B_{\delta}^{\alpha} v \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
u^{\delta}=u+\left(I-\lambda P_{\delta}\right)^{-1} G_{\delta} u \tag{10}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
v+\left(I-\lambda P_{\delta}\right)^{-1} B_{\delta}^{\alpha} u & =v+\left(I-\lambda P_{\delta}\right)^{-1}\left[r_{\alpha}^{\delta}+\left(\lambda P_{\delta}-I\right) v\right] \\
& =\left(I-\lambda P_{\delta}\right)^{-1} r_{\alpha}^{\delta}=v_{\alpha}^{\delta} \\
u+\left(I-\lambda P_{\delta}\right)^{-1} G_{\delta} u & =u+\left(I-\lambda P_{\delta}\right)^{-1}\left[d^{\delta}+\left(\lambda P_{\delta}-I\right) u\right] \\
& =\left(I-\lambda P_{\delta}\right)^{-1} d^{\delta}=u^{\delta} .
\end{aligned}
$$

Proposition 3.2.
Suppose δ_{n} is optimal at α_{n}. Then

$$
\begin{equation*}
B^{n} v_{n}(i, k) \leq 0, \quad i \varepsilon I \text { and } k \varepsilon K_{i}, \text { and } \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
v_{\alpha}^{\delta_{n}}=v_{n}+\left(\alpha-\alpha_{n}\right) u_{n} \tag{12}
\end{equation*}
$$

Proof. Inequality (11) is an immediate consequence of (7) and the definition of v_{n}.

From (1) and the definition of v_{n} and u_{n},

$$
\begin{aligned}
v_{\alpha}^{\delta}{ }_{\alpha} & =v^{\delta}{ }^{\delta}+\alpha u^{\delta} n=v^{\delta}{ }^{\delta}+\alpha_{n} u^{\delta}{ }^{\delta}+\left(\alpha-\alpha_{n}\right) u^{\delta_{n}} \\
& =v_{n}+\left(\alpha-\alpha_{n}\right) u_{n} .
\end{aligned}
$$

As a consequence of (12) the following lemmas hold.

Lemma 3.1.

Suppose δ_{n} is optimal at α_{n}. Then

$$
\begin{align*}
& B^{\alpha} v_{\alpha}^{\delta_{n}}(i, k)=B^{n} v_{n}(i, k)+\left(\alpha-\alpha_{n}\right) G u_{n}(i, k), \quad i \varepsilon I \text { and } k \varepsilon K_{i} \text { and } \tag{13}\\
& B_{\delta_{n}}^{\alpha} v_{\alpha}^{\delta_{n}}=0 .
\end{align*}
$$

Proof. Equation (13) follows from substituting (12) into $B^{\alpha} v_{\alpha}^{\delta}{ }^{\delta}(i, k)$ and rearranging terms.

From (13) we have
$B_{\delta_{n}}^{\alpha} v_{\alpha}^{\delta_{n}}=B_{\delta_{n}}^{n} v_{n}+\left(\alpha-\alpha_{n}\right) G_{\delta_{n}} u_{n}$.
$B \delta_{n}^{n} v_{n}$ and $G_{\delta_{n}} u_{n}=0$ since $v_{n}=\left(I-\lambda P_{\delta_{n}}\right)^{-1} r_{n}{ }_{n}$ and $u_{n}=\left(I-\lambda P_{\delta_{n}}\right)^{-1} d^{\delta_{n}}$. Therefore (14) follows.

Lemma 3.2.
Suppose

$$
\begin{equation*}
B^{\alpha} v_{\alpha}^{\delta_{n}}(i, k) \leq 0, \quad i \varepsilon I \text { and } k \varepsilon K_{i} . \tag{15}
\end{equation*}
$$

Then δ_{n} is optimal at α.

Proof. The result follows immediately from (14).

$$
\text { Define } A_{n} \equiv\left\{(i, k) \mid G u_{n}(i, k)>0\right\}, R_{n}(i, k) \equiv \frac{-B^{n} v_{n}(i, k)}{G u_{n}(i, k)} \text { and }
$$

let Φ denote the null set. Then the following theorem is the basis for the algorithm to solve the parametric MDP.

Theorem 3.1.
The optimal policy δ_{n} at α_{n} is optimal for α satisfying $\alpha_{n} \leq \alpha \leq \alpha_{n+1}$ where α_{n+1} is defined by

$$
\begin{equation*}
\alpha_{n+1}=\alpha_{n}+\hat{\alpha} \tag{16}
\end{equation*}
$$

and

$$
\hat{\alpha}= \begin{cases}\operatorname{Min}_{(i, k) \varepsilon A_{n}}\left\{R_{n}(i, k)\right\} & \text { if } A_{n} \neq \Phi \\ +\infty & \text { if } A_{n}=\Phi\end{cases}
$$

Proof. If $A_{n}=\Phi$, i.e., $G u_{n}(i, k) \leq 0$ for all i εI and $k \varepsilon K_{i}$ then for all $\alpha \geq \alpha_{n}, B^{\alpha} v_{\alpha}{ }_{\alpha}{ }^{n}(i, k) \leq 0, i \varepsilon I$ and $k \varepsilon K_{i}$ from (13) and (11). Therefore from (15) δ_{n} is optimal for all $\alpha \geq \alpha_{n}$.

Otherwise at α satisfying $\alpha_{n} \leq \alpha \leq \alpha_{n}+\hat{\alpha}$

$$
B^{\alpha} v_{\alpha}^{\delta} n^{\delta}(i, k) \leq 0 \quad \text { for }(i, k) \notin A_{n} \text { from (13) and (11) }
$$

and

$$
\left(\alpha-\alpha_{n}\right) \leq \hat{\alpha} \leq R_{n}(i, k) \quad \text { for } \quad(i, k) \varepsilon A_{n} .
$$

Thus

$$
B^{\alpha} v_{\alpha}^{\delta}{ }^{\delta}(i, k)=B^{n} v_{n}(i, k)+\left(\alpha-\alpha_{n}\right) G u_{n}(i, k) \leq 0 \text { for }(i, k) \varepsilon A_{n} .
$$

Therefore from (15) δ_{n} is optimal for α satisfying $\alpha_{n} \leq \alpha \leq \alpha_{n}+\hat{\alpha}$.

$$
\text { At } \alpha_{n+1}<\bar{\alpha} \text { define } \delta_{n+1} \text { as follows: }
$$

$$
\delta_{n+1}(i)=\delta_{n}(i) \quad \text { for } \quad i \notin I_{n}
$$

(A)

$$
\delta_{n+1}(i)=k_{i}^{*} \quad \text { for } \quad i \varepsilon I_{n}
$$

where

$$
\begin{aligned}
& I_{n}=\left\{i \varepsilon I \mid R_{n}(i, k)=\hat{\alpha} /(i, k) \varepsilon A_{n}\right\} \\
& K_{i}^{n}=\left\{k \varepsilon K_{i} \mid R_{n}(i, k)=\hat{\alpha} /(i, k) \varepsilon A_{n}, i \varepsilon I_{n}\right\}
\end{aligned}
$$

and

$$
k_{i}^{*} \varepsilon K_{i}^{n} \text { is determined by }
$$

$$
\operatorname{Gu}_{n}\left(i, k_{i}^{*}\right)=\operatorname{Max}_{k \varepsilon K_{i}^{n}} G u_{n}(i, k)
$$

When there exist ties in determining $k_{i}^{*} \varepsilon K_{i}^{n}$ we choose any $k_{i}^{*} \varepsilon K_{i}^{n}$.
This selection of a new optimal policy at α_{n+1} is different from the usual selection of a new optimal policy if an approach similar to parametric linear programming was used. In that case only one action would be changed and the selection rule is

$$
\begin{array}{lll}
\delta_{n+1}(i)=\delta_{n}(i) & \text { for } & i \neq i^{*} \\
\delta_{n+1}(i)=k^{*} & \text { for } & i=i^{*}
\end{array}
$$

where i^{*} and k^{*} are selected by

$$
\begin{aligned}
\operatorname{Gu}_{n}\left(i^{*}, k^{*}\right)= & \operatorname{Max}_{i \varepsilon I_{n}}\left\{G u_{n}(i, k)\right\} . \\
& k \varepsilon K_{i}^{n}
\end{aligned}
$$

Each of these selection rules will give a new optimal policy at α_{n+1} and a better policy than the current policy, δ_{n}, over the region of $\alpha, \alpha>\alpha_{n+1}$, But the selection rule (A) may save computation if there is more than one state in I_{n}. Therefore we will use the selection rule (A) in the sequel even though the same results hold with the other selection rule.

Corollary 3.1.

Suppose δ_{n+1} is selected using the rule (A) and $\alpha_{n+1} \leq \bar{\alpha}$. Then at α_{n+1} both δ_{n} and δ_{n+1} are optimal and $v_{\alpha}{ }^{\delta_{n+1}}>v_{\alpha}{ }^{\delta_{n}}$ for all $\alpha>\alpha_{n+1}$.

Proof. Using (1), (9), (10) and the selection rule (A),

$$
\begin{aligned}
v_{\alpha_{n+1}}^{\delta_{n+1}} & =v_{\alpha_{n}}^{\delta_{n+1}}+\left(\alpha_{n+1}-\alpha_{n}\right) u^{\delta_{n+1}} \\
& =v_{n}+\left(I-\lambda P_{\delta_{n+1}}\right)^{-1} B_{\delta_{n+1}^{n}}^{n} v_{n}+\left(\alpha_{n+1}-\alpha_{n}\right)\left[u_{n}+\left(I-\lambda P_{\delta_{n+1}}\right)^{-1} G_{\delta_{n+1}} u_{n}\right] \\
& =v_{n}+\left(\alpha_{n+1}-\alpha_{n}\right) u_{n}+\left(I-\lambda P_{\delta_{n+1}}\right)^{-1}\left[B_{\delta_{n+1}^{n}}^{n} v_{n}+\left(\alpha_{n+1}-\alpha_{n}\right) G_{\delta_{n+1}} u_{n}\right] \\
& =v_{\alpha_{n+1}}^{\delta_{n}} .
\end{aligned}
$$

Because δ_{n} is optimal at α_{n+1} from Theorem 3.1, δ_{n+1} is also optimal at α_{n+1}.

$$
\text { For } \alpha>\alpha_{n+1} \text { from the selection rule (A) }
$$

$$
\begin{equation*}
B_{\delta_{n+1}}^{\alpha} v_{\alpha}^{\delta_{n}}=B_{\delta_{n+1}^{n+1}}^{n+1} v_{n+1}+\left(\alpha-\alpha_{n+1}\right) G_{\delta_{n+1}} u_{n}=\left(\alpha-\alpha_{n+1}\right) G_{\delta_{n+1}} u_{n}>0 \tag{17}
\end{equation*}
$$

Therefore from (9) and (17)

$$
\begin{aligned}
v^{\delta_{n+1}} & =v^{\delta_{n}}+\left(I-\lambda P_{\delta_{n+1}}\right)^{-1} B_{\delta_{n+1}}^{\alpha} v^{\delta_{n}} \\
& =v_{\alpha}^{\delta_{n}}+\sum_{s=0}^{\infty}\left(\lambda P_{\delta_{n+1}}\right)^{s} B_{\delta_{n+1}}^{\alpha} v_{\alpha}{ }^{\delta_{n}} \geq v_{\alpha}^{\delta_{n}}+B_{\delta_{n+1}}^{\alpha} v_{\alpha}{ }^{\delta_{n}}>v_{\alpha}^{\delta_{n}} .
\end{aligned}
$$

In the following corollary we show that at α_{n+1}, v_{n+1} and $B_{\delta}^{n+1} v_{n+1}$ can be calculated directly from the values available at α_{n}.

Corollary 3.2.
At α_{n+1} we have

$$
\begin{equation*}
v_{n+1}=v_{n}+\left(\alpha_{n+1}-\alpha_{n}\right) u_{n} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
B_{\delta}^{n+1} v_{n+1}=B_{\delta}^{n} v_{n}+\left(\alpha_{n+1}-\alpha_{n}\right) G_{\delta} u_{n} \tag{19}
\end{equation*}
$$

Proof. (18) follows from the fact that δ_{n} is still optimal at α_{n+1}. Equation (13) evaluated at α_{n+1} gives (19).

From the above we develop the following algorithm to solve the problem for all $\alpha \varepsilon[\underline{\alpha}, \bar{\alpha}]$.

STEP 1) Set $\alpha_{0}=\underline{\alpha}$ and $n=0$. Find $\delta_{0}, v_{0}, B^{0} v_{0}(i, k)$ and $u_{0}=$ $\left(I-\lambda P_{\delta_{0}}\right)^{-1} d^{\delta_{0}}$. Go to step 2.

STEP 2) Calculate $G u_{n}(i, k)=d(i ; k)+\lambda \sum_{u \in I} P(i, j, k) u_{n}(j)-u_{n}(i)$ for all $i \in I$ and $k \varepsilon K_{i}$. Go to step 3.

STEP 3) If $G u_{n}(i, k) \leq 0$ for all $i \in I$ and $k \varepsilon K_{i}$, stop. In this case δ_{n} remains optimal for all $\alpha \geq \alpha_{n}$. Otherwise, set $\alpha_{n+1}=\alpha_{n}+\hat{\alpha}$ where $\hat{\alpha}$ is defined by (16). Choose δ_{n+1} using the selection rule (A). Go to step 4.

STEP 4) If $\alpha_{n+1} \geq \bar{\alpha}$, stop. Otherwise set

$$
\begin{aligned}
& v_{n+1}=v_{n}+\left(\alpha_{n+1}-\alpha_{n}\right) u_{n} \\
& B^{n+1} v_{n+1}(i, k)=B^{n} v_{n}(i, k)+\left(\alpha_{n+1}-\alpha_{n}\right) G_{n}(i, k) \\
& u_{n+1}=\left(I-\lambda P_{\delta_{n+1}}\right)^{-1} d^{\delta_{n+1}}=u_{n}+\left(I-\lambda P_{\delta_{n+1}}\right)^{-1} G_{\delta_{n+1}} u_{n} .
\end{aligned}
$$

Set $n=n+1$ and go to step 2.

Note that the calculation of $\left(I-\lambda P_{\delta_{n+1}}\right)^{-1}$ in step 4 can be implemented by block pivoting.

One might conjecture that for some $m \alpha_{n}=\alpha_{m}<\bar{\alpha}$ for all $n \geq m$, i.e. we do not find an optimal policy for $\alpha, \alpha_{n}<\alpha \leq \bar{\alpha}$. But this is not the case because even if $\alpha_{m+1}=\alpha_{m}, u_{m+1}>u_{m}$. Hence the finiteness of the policy set implies that for some $k>m, \alpha_{k}>\alpha_{m}$.

However difficulties might arise because of roundoff. In particular A_{n} might not include potentially optimal actions because $G u_{n}(i, k)$ might have the wrong sign or α_{n+1} might be less than α_{n} because for some $(i, k) \in A_{n}, B^{n} v_{n}(i, k)$ might be positive instead of negative. In the first case, a nonoptimal policy might be selected while in the later case the algorithm would cycle. A method to alleviate these difficulties is presented in the next section.
4. An Algorithm for Finding ε_{n}-Optimal Policies.

In this section we develop an algorithm based on approximations of the values of v_{n} and u_{n} to resolve the problems caused by roundoff when we implement the algorithm of the previous section. This algorithm is based on redefining $R_{n}(i, k)$ and A_{n} to eliminate cycling and ensure selection of optimal actions.

Let \hat{v}_{n} and \hat{u}_{n} be approximations of v_{n} and $u{ }^{\hat{\delta}_{n}}$ where $\hat{\delta}_{n}$ is defined such that $H^{n} \hat{v}_{n}=B \hat{\delta}_{n}^{n} \hat{v}_{n}, \varepsilon_{n} \equiv \varepsilon_{0}+\alpha_{n} \varepsilon^{\prime}$ for $\varepsilon_{0}>0$ and $\varepsilon^{\prime}>0, \operatorname{sp}\left(H^{n} \hat{v}_{n}\right) \leq$ $(1-\lambda) \varepsilon_{n}$ and $\operatorname{sp}\left(G_{\delta_{n}} \hat{u}_{n}\right) \leq(1-\lambda) \varepsilon^{\prime}$. Then we have the following proposition.

Proposition 3.3.
Suppose $\operatorname{sp}\left(H^{n} \hat{\hat{v}}_{n}\right)=\operatorname{sp}\left(B \hat{\delta}_{n}^{n} \hat{v}_{n}\right) \leq(1-\lambda) \varepsilon_{n}$. Then $\hat{\delta}_{n}$ is ε_{n}-optimal,
i.e.,

$$
\begin{equation*}
v_{\alpha_{n}}^{\hat{\delta}_{n}} \leq v_{n} \leq v_{\alpha_{n}}^{\hat{\delta}_{n}}+\varepsilon_{n} \tag{20}
\end{equation*}
$$

Proof. The left inequality of (20) is true because $v_{\alpha_{n}}^{\hat{\delta}} \leq v_{\alpha_{n}}^{\delta}=v_{\alpha_{n}}^{*}=v_{n}$.

From (9)

$$
\begin{aligned}
v_{n}-v_{\alpha_{n}}^{\delta_{n}} & =\hat{v}_{n}+\left(I-\lambda P_{\delta_{n}}\right)^{-1} B_{\delta_{n}}^{n} \hat{v}_{n}-\left[\hat{v}_{n}+\left(I-\lambda P_{\hat{\delta}_{n}}\right)^{-1} B \hat{\delta}_{n}^{n} \hat{v}_{n}\right] \\
& =\left(I-\lambda P_{\delta_{n}}\right)^{-1} B_{\delta_{n}}^{n} \hat{v}_{n}-\left(I-\lambda P_{\delta_{n}}\right)^{-1} B \hat{\delta}_{n}^{n} \hat{v}_{n} \\
& \leq\left(I-\lambda P_{\delta_{n}}\right)^{-1} H^{n} \hat{v}_{n}-\left(I-\lambda P_{\hat{\delta}_{n}}\right)^{-1} B \hat{\delta}_{n}^{n} \hat{v}_{n} \\
& =\left(I-\lambda P_{\delta_{n}}\right)^{-1} B B_{\hat{\delta}_{n}^{n}}^{v_{n}}-\left(I-\lambda P_{\delta_{n}}\right)^{-1} B \hat{\delta}_{n}^{n} \hat{v}_{n} \\
& \leq\left(I-\lambda P_{\delta_{n}}\right)^{-1} \frac{\hat{\delta}_{\hat{\delta}_{n}^{n}}^{n} \hat{v}_{n} \hat{1}-\left(I-\lambda P_{\hat{\delta}_{n}}\right)^{-1} B \hat{\delta}_{n}^{n} \hat{v}_{n} \hat{\imath}}{} \\
& =\frac{1}{(1-\lambda)} \operatorname{sp}\left(B \hat{\delta}_{n}^{n} \hat{v}_{n}\right) \leq \varepsilon_{n}
\end{aligned}
$$

where $\quad \overline{B \hat{\delta}_{n}^{n} \hat{v}_{n}}=\operatorname{Max}_{i \in I} B \hat{\delta}_{n}^{n} \hat{v}_{n}(i)$ and $B{\hat{\delta_{n}}}_{n}^{n} \hat{v}_{n}=\operatorname{Min}_{i \in I} B \hat{\delta}_{n}^{n} \hat{v}_{n}(i)$.
Therefore $v_{n} \leq v_{\alpha_{n}}{ }_{n}+\varepsilon_{n}$ and (20) holds.

Define $v_{\alpha} \hat{\delta}_{n}$ by
(21)

$$
\hat{\mathrm{v}}_{\alpha}^{\hat{\delta}_{n}}=\hat{v}_{n}+\left(\alpha-\alpha_{n}\right) \hat{u}_{n}
$$

We drop hats to facilitate typing and use the same notation as in Section 3. But all v_{n}, u_{n} and δ_{n} are \hat{v}_{n}, \hat{u}_{n} and $\hat{\delta}_{n}$. Then the following lemma is immediate from (21).

Lemma 3.3.

$$
\text { For } \alpha \geq \alpha_{n}
$$

(22) $\quad B_{\delta}^{\alpha} v_{\alpha}^{\delta}{ }^{\delta}=B_{\delta}^{n} v_{n}+\left(\alpha-\alpha_{n}\right) G_{\delta} u_{n}$.

Lemma 3.4.
Suppose for $\alpha \geq \alpha_{n}, B_{\delta}^{\alpha} v_{\alpha}{ }^{\delta}{ }^{n}<-B_{\delta_{n}}^{\alpha} V^{\delta_{n}}$ for all $\delta \varepsilon \Delta$. Then δ_{n} is ε_{α}-optimal at α where $\varepsilon_{\alpha}=\varepsilon_{n}+\left(\alpha-\alpha_{n}\right) \varepsilon^{\prime}$.

Proof. Note $H^{\alpha} v_{\alpha}{ }^{\delta_{n}}=B_{\delta_{n}}^{\alpha} v^{\delta^{\delta}}{ }^{n}$.

$$
\begin{aligned}
& \operatorname{sp}\left(H^{\alpha}{ }^{\alpha}{ }_{\alpha}{ }_{\alpha}{ }_{n}\right)=\operatorname{sp}\left(B_{\delta_{n}}^{\alpha}{ }^{{ }^{\delta}{ }_{\alpha}}{ }^{\prime}\right)=\operatorname{sp}\left(B_{\delta_{n}}^{n}{ }_{n}+\left(\alpha-\alpha_{n}\right) G_{\delta_{n}} u_{n}\right) \\
\leq & \operatorname{sp}\left(B_{\delta_{n}}^{n} v_{n}\right)+\left(\alpha-\alpha_{n}\right) \operatorname{sp}\left(G_{\delta_{n}} u_{n}\right) \leq(1-\lambda) \varepsilon_{n}+\left(\alpha-\alpha_{n}\right)(1-\lambda) \varepsilon^{\prime} \\
= & (1-\lambda)\left[\varepsilon_{n}+\left(\alpha-\alpha_{n}\right) \varepsilon^{\prime}\right]=(1-\lambda) \varepsilon_{\alpha} .
\end{aligned}
$$

Therefore δ_{n} is ε_{α}-optimal at α from Proposition 3.3.

Lemma 3.4 indicates that we can find the region where δ_{n} is ε_{α}-optimal by identifying α for which

$$
H^{\alpha} v_{\alpha}^{\delta_{n}}=B_{\delta_{n}}^{\alpha} v_{\alpha}^{\delta_{n}}=B_{\delta_{n}}^{n} v_{n}+\left(\alpha-\alpha_{n}\right) G_{\delta_{n}} u_{n} .
$$

Redefine $A_{n} \equiv\left\{(i, k) \mid G u_{n}(i, k)-G u_{n}\left(i, \delta_{n}(i)\right)>0\right\}$ and $R_{n}(i, k)$ by

$$
R_{n}(i, k)=\frac{B^{n} v_{n}\left(i, \delta_{n}(i)\right)-B^{n} v_{n}(i, k)}{G u_{n}(i, k)-G u_{n}\left(i, \delta_{n}(i)\right)}
$$

Theorem 3.2.

The ε_{n}-optimal policy δ_{n} at α_{n} is ε_{α}-optimal for α satisfying $\alpha_{n} \leq \alpha \leq \alpha_{n+1}$ where α_{n+1} is defined by

$$
\begin{align*}
\alpha_{n+1} & =\alpha_{n}+\hat{\alpha} \tag{23}\\
\hat{\alpha} & = \begin{cases}\operatorname{Min}_{n} & \left\{R_{n}(i, k)\right\} \\
(i, k) \varepsilon A_{n} & \text { if } \\
+\infty & A_{n} \neq \Phi \\
+\infty & \text { if } A_{n}=\Phi .\end{cases}
\end{align*}
$$

Proof. Using Lemma 3.4 and (22) instead of (11) and (15), and (13) in the proof Theorem 3.1 gives the result.

At $\alpha_{n+1}<\bar{\alpha}$ we will have the same rule for selecting δ_{n+1} as the selection rule (A) in Section 3 except using $R_{n}(i, k)$ and A_{n} redefined here. Let us call it the selection rule (B). Also we can have the same
selection rule based on the change of a single action as done in Section 3 by using $R_{n}(i, k)$ and A_{n} redefined here. Then each of these selection rules gives an ε_{n+1}-optimal policy at α_{n+1} by defining $v_{\alpha_{n+1}}^{\delta_{n}} \equiv v_{n+1} \equiv v_{\alpha_{n+1}}^{\delta_{n+1}}$.

Corollary 3.3.

Suppose δ_{n+1} is selected using the rule (B) and $\alpha_{n+1}<\bar{\alpha}$. Then at α_{n+1} both δ_{n} and δ_{n+1} are ε_{n+1}-optimal.

Proof. From (23)

$$
B_{\delta_{n+1}^{n+1}}^{n} v_{\alpha_{n+1}}^{\delta_{n}}=B_{\delta_{n+1}^{n+1}}^{n} v_{n+1}=B_{\delta_{n}^{n+1}} v_{n+1}=H^{n+1} v_{n+1} .
$$

I.e., δ_{n} and δ_{n+1} are ε_{n+1}-optimal at α_{n+1} from Lemma 3.4.

At α_{n+1}, v_{n+1} and $B_{\delta}^{n+1} v_{n+1}$ can be calculated directly from the values available at α_{n} in the following way:

$$
\begin{align*}
& v_{n+1}=v_{n}+\left(\alpha_{n+1}-\alpha_{n}\right) u_{n} \tag{24}\\
& B_{\delta}^{n+1} v_{n+1}=B_{\delta}^{n} v_{n}+\left(\alpha_{n+1}-\alpha_{n}\right) G_{\delta} u_{n}
\end{align*}
$$

The changes to be made in the algorithm of the previous section are as follows:
(a) In step 1, find v_{0} with $H^{0} v_{0}=B_{\delta_{0}^{0}}^{0} v_{0}$ and $\operatorname{sp}\left(H^{0} v_{0}\right) \leq(1-\lambda) \varepsilon$.
(b) In step $3, \hat{\alpha}$ is defined by (24) and choose δ_{n+1} using the selection rule (B).
(c) In step 4, find u_{n+1} with $\operatorname{sp}\left(G_{\delta_{n+1}} u_{n+1}\right) \leq(1-\lambda) \varepsilon^{\prime}$.
5. Action Elimination.

The purpose of this section is to develop action elimination procedures for the algorithm of the previous section. To eliminate a certain action at step 2 and 3 of the algorithm we need upper bounds on $B^{n} v_{n}(i, k)$, $G u_{n}(i, k)$ and α_{n+1}. A special feature of this procedure is eliminating actions at the subsequent iteration only by using bounds for α_{n+1}. We use the following notation.

$$
\begin{equation*}
U G u_{p}^{s}(i, k) \equiv G u_{s}(i, k)+\sum_{q=s}^{p-1}\left[\lambda \overline{D u}_{q, 1}-D u_{q, 1}(i)\right] \text { for } p \geq s+1 \tag{26}
\end{equation*}
$$

or

$$
\begin{equation*}
\equiv G u_{s}(i, k)+\lambda \overline{D u}_{s, p-s}-D u_{s, p-s}(i) \text { for } p \geq s+1 \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
U B v_{n}^{\ell}(i, k) \equiv B^{\ell} v_{\ell}(i, k)+\sum_{p=\ell}^{n-1}\left(\alpha_{p+1}-\alpha_{p}\right) U G u_{p}^{\ell-1}(i, k) \text { for } n \geq \ell+1 \tag{28}
\end{equation*}
$$

where $\overline{D u}_{q, 1}, D u_{q, 1}, \overline{D u}_{s, p-s}$ and $D u_{s, p-s}$ are defined in Section 5 of Chapter 2.

Lemma 3.5.
$U G u_{p}^{S}(i, k)$ and $U B v_{n}^{\ell}(i, k)$ are the upper bounds of $G u_{p}(i, k)$ and $B^{n} v_{n}(i, k)$ respectively.

Proof. $G u_{p}(i, k) \leq U G u_{p}^{S}(i, k)$ follows from the results in the proof of Theorem 2.5 and Corollary 2.5.

$$
\begin{aligned}
& \text { From (25) and } G u_{p}(i, k) \leq U G u_{p}(i, k) \\
& \begin{aligned}
B^{n} v_{n}(i, k)= & B^{n-1} v_{n-1}(i, k)+\left(\alpha_{n}-\alpha_{n-1}\right) G u_{n-1}(i, k) \\
= & B^{n-2} v_{n-2}(1, k)+\left(\alpha_{n-1}-\alpha_{n-2}\right) G u_{n-2}(i, k)+\left(\alpha_{n}-\alpha_{n-1}\right) \\
& G u_{n-1}(i, k) \\
& \vdots \\
& \vdots \\
= & B^{\ell} v_{\ell}(i, k)+\sum_{p=\ell}^{n-1}\left(\alpha_{p+1}-\alpha_{p}\right) G u_{p}(i, k) \\
\leq & B^{\ell} v_{\ell}(i, k)+\sum_{p=\ell}^{n-1}\left(\alpha_{p+1}-\alpha_{p}\right) U G u_{p}^{l-1}(i, k)=U B v_{n}^{\ell}(i, k) .
\end{aligned}
\end{aligned}
$$

Assuming $\alpha_{n+1} \geq \alpha_{n+1}$ is known at iteration n, the following lemma is the basis for an action elimination procedure.

Lemma 3.6.

Suppose at iteration n

$$
\begin{equation*}
B^{\alpha_{n+1}^{\prime}} v_{\alpha_{n+1}^{\prime}}^{\delta_{n}}(i, k)<B_{\delta_{n}}^{\alpha_{n+1}^{\prime}} v_{\alpha_{n+1}}^{\delta_{n}}(i) \tag{29}
\end{equation*}
$$

Then $k \varepsilon K_{i}$ is not ε_{n+1}-optimal in state i at $\alpha_{n+\rceil}$.

Proof. If $G u_{n}(i, k)-G u_{n}\left(i, \delta_{n}(i)\right) \leq 0$, then $(i, k) \notin A_{n}$ and so $k \varepsilon K_{j}$ is not ε_{n+1}-optimal at α_{n+1}. Otherwise, from (29) and (25)
$B^{n} v_{n}(i, k)+\left(\alpha_{n+1}^{1}-\alpha_{n}\right) G u_{n}(i, k)<B^{n} v_{n}\left(i, \delta_{n}(i)\right)+\left(\alpha_{n+1}^{1}-\alpha_{n}\right) G u_{n}\left(i, \delta_{n}(i)\right)$. Hence $\left(\alpha_{n+1}^{\prime}-\alpha_{n}\right)\left[G u_{n}(i, k)-G u_{n}\left(i, \delta_{n}(i)\right)\right]<\left[B^{n} v_{n}\left(i, \delta_{n}(i)\right)-B^{n} v_{n}(i, k)\right]$. Because $G u_{n}(i, k)-G u_{n}\left(i, \delta_{n}(i)\right)>0, R_{n}(i, k)>\left(\alpha_{n+1}^{1}-\alpha_{n}\right) \geq\left(\alpha_{n+1}-\alpha_{n}\right)$. Therefore $k \varepsilon K_{i}$ is not $\varepsilon_{n+\rceil}$-optimal in state i at $\alpha_{n+\rceil}$.

To use Lemma 3.6 in action elimination we need bounds for the terms in (26), (27) and (28).

Theorem 3.3.
Suppose at iteration n that for some $\ell \leq n-1$

$$
\begin{equation*}
U B v_{n}^{\ell}(i, k)+\left(\alpha_{n+1}^{\prime}-\alpha_{n}\right) U G u_{n}^{l-1}(i, k) \leqslant B_{\delta_{n}}^{n} v_{n}(i)+\left(\alpha_{n+1}^{1}-\alpha_{n}\right) G_{\delta_{n}} u_{n}(i) . \tag{30}
\end{equation*}
$$

Then $k \varepsilon K_{i}$ is not ε_{n+1}-optimal in state i at α_{n+1}.

Proof. From (22), Lemma 3.5 and (30)
(31)

$$
\begin{align*}
B^{\alpha_{n+1}^{\prime}}{ }^{v_{v_{\alpha+1}^{\prime}}^{\delta}}{ }_{n}^{\prime}(i, k) & =B^{n} v_{n}(i, k)+\left(\alpha_{n+1}^{\prime}-\alpha_{n}\right) G u_{n}(i, k) \\
& \leq U B v_{n}^{\ell}(i, k)+\left(\alpha_{n+1}^{\prime}-\alpha_{n}\right) U G u_{n}^{l-1}(i, k) \\
& <B_{\delta_{n}}^{n} v_{n}(i)+\left(\alpha_{n+1}^{\prime}-\alpha_{n}\right) G_{\delta_{n}} u_{n}(i)=B_{\delta_{n}}^{\alpha_{n+1}^{\prime}} v_{\alpha^{\prime}}^{\delta_{n+1}} \tag{i}
\end{align*}
$$

The result follows from Lemma 3.6.

For $\ell=n$ we obtain the following corollary.

Corollary 3.4.

Suppose at iteration n

$$
B^{n} v_{n}(i, k)+\left(\alpha_{n+1}^{\prime}-\alpha_{n}\right) U G u_{n}^{n-1}(i, k)<B_{\delta_{n}}^{n} v_{n}(i)+\left(\alpha_{n+1}^{\prime}-\alpha_{n}\right) G_{\delta_{n}} u_{n}(i)
$$

Then $k \varepsilon K_{i}$ is not ε_{n+1}-optimal in state \mathbf{i} at α_{n+1}.

Proof. Using $B^{n} v_{n}(i, k)$ instead of $\operatorname{UBv}_{n}^{\ell}(i, k)$ in (31) gives the result.

Finding appropriate α_{n+1}^{\prime} and using $U G u_{p}^{\ell-1}(i, k)$ in (26) or (27) we can develop several action elimination algorithms.
6. Action Elimination Algorithms.

In this section we develop specific computational procedure based on choosing appropriate values for α_{n+1}^{\prime} and $U G u_{n}^{\ell-1}(i, k)$ in Theorem 3.3 and Corollary 3.4. These action elimination procedures will be included at the second step of the algorithm presented in Section. 4. This is a little different from the action elimination procedures in Chapter 2 . The reason is that we have to calculate $G_{\delta_{n}} u_{n}$ at step 3 even for the algorithm without action elimination. We use $E_{n}(i)$ defined in Section 6 of Chapter 2 but redefine $F_{\ell, n}(i)$ to be the set of actions that have been eliminated for iterations $\ell, \ell+1, \cdots, n$, i.e.,
$F_{\ell, n}(i)=\left[\bigcap_{p=\ell}^{n} E_{p}(i)\right] \cap\left(E_{\ell-1}(i)\right)^{c}$.

Action Elimination Procedure (I); $\quad \alpha_{n+1}^{\prime}=\bar{\alpha}$.
Suppose at step 2 of iteration n in the algorithm of Section 4 and for $k \in K_{i}-E_{n-1}(i)$

$$
\begin{equation*}
B^{n} v_{n}(i, k)+\left(\bar{\alpha}-\alpha_{n}\right) U G u_{n}^{n-1}(i, k)<B^{n} v_{n}\left(i, \delta_{n}(i)\right)+\left(\bar{\alpha}-\alpha_{n}\right) G u_{n}\left(i, \delta_{n}(i)\right) . \tag{32}
\end{equation*}
$$

Then $k \varepsilon E_{n}(i)$:
Furthermore, if for $\ell=n-1, n-2, \cdots, 1$ and $k \in F_{\ell, n-1}(i)$ the following holds:

$$
\begin{equation*}
U B v_{n}^{\ell}(i, k)+\left(\bar{\alpha}-\alpha_{n}\right) U G u_{n}^{\ell-1}(i, k)<B^{n} v_{n}\left(i, \delta_{n}(i)\right)+\left(\bar{\alpha}-\alpha_{n}\right) G u_{n}\left(i, \delta_{n}(i)\right) . \tag{33}
\end{equation*}
$$

Then $k \in E_{n}(i)$.

Let procedure (I-1) and (I-2) denote the action elimination procedure (I) with $U G u_{p}^{S}(i, k)$ of (26) and (27) respectively. Then $U B v_{n}^{\ell}(i, k)$ and $U G u_{n}^{\ell-1}(i, k)$ in (32) and (33) can be calculated as follows:
or

$$
\begin{equation*}
U B v_{n}^{\ell}(i, k)=U B v_{n-1}^{\ell}(i, k)+\left(\alpha_{n}-\alpha_{n-1}\right) U G u_{n-1}^{\ell-1}(i, k) \text { for } \ell \leq n-2 \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
=B^{n-1} v_{n-1}(i, k)+\left(\alpha_{n}-\alpha_{n-1}\right) U G u_{n-1}^{\ell-1}(i, k) \text { for } \ell=n-1 \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
U G u_{n}^{n-1}(i, k)=G u_{n-1}(i, k)+\overline{D u}_{n-1,1}-D u_{n-1,1}(i) \tag{36}
\end{equation*}
$$

In procedure (I-1);
$U G u_{n}^{\ell-1}(i, k)=U G u_{n-1}^{\ell-1}(i, k)+\lambda \overline{D u}_{n-1,1}-\overline{D u}_{n-1,1}(i)$ for $\ell \leq n-1$.

In procedure (I-2);

$$
\begin{align*}
& U G u_{n}^{\ell-1}(i, k)=U G u_{n-1}^{\ell-1}(i, k)+\lambda\left(\overline{D u}_{\ell-1, n+1-\ell}-\overline{D u}_{\ell-1, n-\ell}\right)-D u_{n-1,1}(\tag{38}\\
& \quad \text { for } \ell \leq n-1 . \tag{i}
\end{align*}
$$

Flag ${ }_{n}(i, k)$ indicates whether an action $k \varepsilon K_{i}$ is eliminated or not. In procedure (I-2) $\mathrm{Flag}_{n}(\mathrm{i}, \mathrm{k})=\ell$ if $k \varepsilon \mathrm{~F}_{\ell, \mathrm{n}}(\mathrm{i})$. But in procedure (I-1) we do not have to store ℓ for $k \varepsilon F_{\ell, n}(i)$ because the term added to $U G u_{n}^{\ell-1}(i, k)$ for $U G u_{n-1}^{\ell-1}(i, k)$ in (37) is $\lambda \overline{D u}_{n-1,1}-D u_{n-1,1}(i)$. Redefine A_{n} by $A_{n} \equiv\left\{(i, k) \mid G u_{n}(i, k)-G u_{n}\left(i, \delta_{n}(i)\right)>0\right.$ and $\left.F 1 a g_{n}(i, k)<0\right\}$. When there is a difference between procedure (I-1) and (I-2), procedure (I-2) is shown in parenthesis in the following algorithm.

STEP 1) Set $\alpha_{0}=\underline{\alpha}$ and $n=0$. Find $\delta_{0}, v_{0}, B_{\delta}^{0} v_{0}$ and u_{0} with $H^{\rho} v_{0}=B_{\delta_{0}}^{0} v_{0}$, $\operatorname{sp}\left(H^{0} v_{0} \leq \varepsilon_{0}\right.$ and $\operatorname{sp}\left(G_{\delta_{0}} u_{0}\right) \leq \varepsilon^{\prime}$. Initialize $\operatorname{Flag}_{0}(i, k)=-1$ for all $i \varepsilon I$ and $k \varepsilon K_{i}$ and calculate $G u_{0}(i, k)$ for all $i \varepsilon I$ and $k \varepsilon K_{j}$ and go to step 3.

STEP 2) Calculate $G_{\delta_{n}} u_{n}$.

$$
\text { If Flag } n-1 \text { (i,k) < } 0 \text { and (32) is satisfied then } \operatorname{Flag}_{n}(i, k)=1
$$

$\left[\operatorname{Flag}_{n}(i, k)=n\right]$ and do not calculate $\mathrm{Gu}_{\mathrm{n}}(i, k)$.

If $\operatorname{Flag}_{n-1}(i, k)<0$ and (32) is not satisfied then Flag $_{n}(i, k)=$ $\operatorname{Flag}_{n-1}(i, k)$ and calculate $G u_{n}(i, k)$.

If Flag $n-1$ (i,k) ≥ 0 and (33) is satisfied then Flag $_{n}(i, k)=$ $\operatorname{Flag}_{n-1}(i, k)$ and do not calculate $G u_{n}(i, k)$.

If $\operatorname{Flag}_{n-1}(i, k) \geq 0$ and (33) is not satisfied then $\operatorname{Flag}_{n}(i, k)=$ -1 and calculate $B^{n} v_{n}(i, k)$ and $G u_{n}(i, k)$.

Go to step 3.
STEP 3) $\operatorname{If} G u_{n}(i, k)-G u_{n}\left(i,{ }_{n}(i)\right) \leq 0$ for all $i \varepsilon I$ and $k \varepsilon K_{i}$ where Flag $n(i, k)<0$, then δ_{n} remains α-optimal for all α satisfying $\alpha \geq \alpha_{n}$ and stop. Otherwise, set α_{n+1} as in (23) and choose δ_{n+1} by the selection rule (B).

STEP 4) If $\alpha_{n+1} \geq \bar{\alpha}$ stop. Otherwise set $v_{n+1}=v_{n}+\left(\alpha_{n+1}-\alpha_{n}\right) u_{n}$ and calculate u_{n+1} with $\operatorname{sp}\left(G_{\delta_{n+1}} u_{n+1}\right) \leq \varepsilon^{\prime}$. Set $B^{n+1} v_{n+1}(i, k)=B^{n} v_{n}(i, k)+$ $\left(\alpha_{n+1}-\alpha_{n}\right) G u_{n}(i, k)$ for $k \varepsilon K_{i}$ where $\operatorname{Flag}_{n}(i, k)<0$. For $k \varepsilon K_{i}$ where Flag $n(i, k) \geq 0$, calcualte $U B v_{n+1}^{\ell}(i, k)$ and $U G u_{n+1}^{\ell-1}(i, k)$ using (34) or (35) and (36) or (37) [using (34) or (35) and (36) or (38) depending on $\ell=$ $\left.\operatorname{Flag}_{n}(i, k)\right]$. Set $n=n+1$ and return to step 2.

Some comments about this algorithm are in order. $U B v_{n}^{\ell}(i, k)$ and $U G u_{n}^{l-1}(i, k)$ can be stored in the same arrays as $B^{n} v_{n}$ and $G u_{n}(i, k)$ respectively. $U G u_{p}^{S}(i, k)$ of (27) is a tighter upper bound for $G u_{p}(i, k)$ than $U G u_{p}^{S}(i, k)$ of (26). Hence procedure (I-2) will eliminate more actions than procedure ($I-1$), but requires storage of the vectors $u_{0}, u_{1}, \cdots, u_{n}$, whereas procedure (I-1) only requires storage of the vector u_{n}. Therefore the algorithm above with action elimination procedure (I-1) or (I-2) requires at least an $N \times M$ array, Flag $_{n}(i, k)$, in addition to the storage space : required for the algorithm without the action elimination procedure. Here N is the number of states and M is the number of actions in each state assuming each state has an equal number of actions.

Using $P(i, 1, k)$ for $\mathrm{Flag}_{n}(i, k)$ as in Section 6 of Chapter 2 we can reduce the additional storage requirements. Furthermore, for a problem with a large state and action space, the transition probabilities may be stored in a file or on a tape and read whenever needed. Denote $a_{n}(i)$ by $a_{n}(i)=B^{n} v_{n}\left(i,{ }_{n}(i)\right)+\left(\bar{\alpha}-\alpha_{n}\right) G u_{n}\left(i, \delta_{n}(i)\right)$. In this case a method for storing only $\mathrm{Flag}_{n}(\mathrm{i}, \mathrm{k})$ and $\mathrm{a}_{\mathrm{n}}(\mathrm{i})$ instead of $B^{n} \mathrm{v}_{\mathrm{n}}(\mathrm{i}, \mathrm{k})$ and $\mathrm{Flag}_{n}(i, k)$ is based on rearranging terms in (33) to obtain;

$$
\begin{align*}
U B v_{n-1}^{\ell}(i, k) & +\left(\bar{\alpha}-\alpha_{n-1}\right) U G u_{n-1}^{\ell-1}(i, k)+\left(\bar{\alpha}-\alpha_{n}\right)\left(\lambda \overline{D u}_{n-1,1}-D u_{n-1,1}(i)\right] \tag{39}\\
& <a_{n}(i)
\end{align*}
$$

where

$$
\operatorname{UBv}_{n-1}^{\ell}(i, k)=B^{n-1} v_{n-1}(i, k) \text { for } \ell=n-1
$$

The quantity $F 1 \operatorname{lag}_{n-1}(i, k)$ is redefined as either $B^{n} v_{n}\left(i, \delta_{n}(i)\right)$ $B^{n} v_{n}(i, k)$ or $U B v_{n-1}^{\ell}(i, k)+\left(\bar{\alpha}-\alpha_{n-1}\right) U G u_{n-1}^{\ell-1}(i, k)-a_{n-1}(i)$ with $U B v_{n-1}^{\ell}(i, k)=$
$B^{n-1} v_{n-1}(i, k)$ for $\ell=n-1$. If an action $k \in K_{i}$ is not eliminated at iteration $(n-1)$, Flag $_{n-1}(i, k)$ takes on the former value which is nonnegative while if the action is eliminated it takes on the latter value which is negative. Then (32) becomes for $k \in K_{i}-E_{n-1}(i)$

$$
\begin{equation*}
b_{n}(i, k)=-F l a g_{n-1}(i, k)+\left(\bar{\alpha}-\alpha_{n}\right)\left[U G u_{n}^{n-1}(i, k)-G u_{n}\left(i, \delta_{n}(i)\right)\right]<0 \tag{40}
\end{equation*}
$$

and (33) or (39) becomes for $k \in F_{\ell, n-1}(i)$

$$
\begin{align*}
c_{n}(i, k) & =F \operatorname{lag}_{n-1}(i, k)+a_{n-1}(i)+\left(\bar{\alpha}-\alpha_{n}\right)\left[\lambda \overline{D u}_{n-1,1}-\overline{D u}_{n-1,1}(i)\right] \tag{41}\\
& -a_{n}(i)<0 .
\end{align*}
$$

In the above procedure we require an array of $a_{n}(i)$ instead of $B^{n} v_{n}(i, k)$. Therefore there will be significant storage saving if there is large action space in each state. Let (I-1') denote this storage saving procedure. Then the changes to be made in the algorithm with procedure (I-1) to incorporate procedure (I-1') are as follows:

In step 1; Initialize Flag $(i, k)=B^{0} v_{0}\left(i, \delta_{0}(i)\right)-B^{0} v_{0}(i, k) \geq 0$ for all $i \varepsilon I$ and $k \varepsilon K_{j}$.

In step 2; If Flag ${ }_{n-1}(i, k) \geq 0$ and (40) is satisfied then 1. $\operatorname{Flag}_{n}(i, k)=b_{n}(i, k)<0$ and do not calculate $G u_{n}(i, k)$. If Flag $\operatorname{lin}(i, k) \geq$ 0 and (40) is not satisfied then $\operatorname{Flag}_{n}(i, k)=F \operatorname{lag}_{n-1}(i, k)$ and calculate $G u_{n}(i, k)$. If $F l a g_{n-1}(i, k)>0$ and (41) is satisfied then $\operatorname{Flag}_{n}(i, k)=$
$c_{n}(i, k)$ and do not calculate $G u_{n}(i, k)$. If Flag $n_{n-7}(i, k)>0$ and (41) is not satisfied then calculate $B^{n} \cdot v_{n}(i, k)$ and $G u_{n}(i, k)$ and set $F l a g_{n}(i, k)=$ $a_{n}(i)-\left(\bar{\alpha}-\alpha_{n}\right) G u_{n}\left(i, \delta_{n}(i)\right)-B^{n} v_{n}(i, k)=B^{n} v_{n}\left(i, \delta_{n}(i)\right)-B^{n} v_{n}(i, k) \geq 0$.

In step $3 ; A_{n}$ is defined by $A_{n}=\left\{(i, k) \mid G u_{n}(i, k)-\right.$ $G u_{n}\left(i, \delta_{n}(i)\right)>0$ and $\left.F \operatorname{Flag}(i, k) \geq 0\right\}$. If $G u_{n}(i, k)-G u_{n}\left(i, \delta_{n}(i)\right) \leq 0$ for all i εI and $k \in K_{i}$ where $\operatorname{Flag}_{n}(i, k) \geq 0$, then δ_{n} remains α-optimal for all $\alpha, \alpha>\alpha_{n}$ and stop.

In step 4; (Add the following calculations.) If $\operatorname{Flag}_{\mathrm{n}}(\mathrm{i}, \mathrm{k}) \geq 0$, reset $\operatorname{Flag}_{n}(i, k)=F \operatorname{lag}_{n}(i, k)+\left(\alpha_{n+1}-\alpha_{n}\right)\left[G u_{n}\left(i, \delta_{n}(i)\right)-G u_{n}(i, k)\right]=$ $B^{n+1} v_{n+1}\left(i, \delta_{n+1}(i)\right)-B^{n+1} v_{n+1}(i, k)>0$.

This kind of storage saving procedure may not be used for procedure (I-2) since there, we have to store ℓ, i.e., the last evaluated iteration for $B^{\ell} v_{\ell}(i, k)$ for each $k \in F_{\ell, n-1}(i)$.

The following action elimination procedures are based on a tighter upper bound for α_{n+1}, than $\bar{\alpha}$.

Action Elimination Procedure (II); $\quad \alpha_{n+1}^{1}=\bar{\alpha}_{n+1}$.
Here all the results are exactly the same as in procedure (I) except we use $\bar{\alpha}_{n+1}$ instead of $\bar{\alpha} . \bar{\alpha}_{n+1}$ satisfying $\alpha_{n+1} \leq \bar{\alpha}_{n+1} \leq \bar{\alpha}$ can be calculated at the beginning of step 2 of iteration n using the following method.

First find (i^{\prime}, k^{\prime}) at the end of step 3 of iteration $n-1$ so that

$$
\begin{aligned}
G u_{n-1}\left(i^{\prime}, k^{\prime}\right)-G u_{n-1}\left(i^{\prime}, \delta_{n-1}\left(i^{\prime}\right)\right)= & \operatorname{Max}\left\{G u_{n-1}(i, k)-G u_{n-1}\left(i, \delta_{n-1}(i)\right)\right\} \\
& i \varepsilon \bar{I}_{n-1} \\
& k \varepsilon K_{i}^{n-1}
\end{aligned}
$$

where

$$
\begin{aligned}
\bar{A}_{n-1} \equiv & \left\{(i, k) \mid G u_{n-1}(i, k)>G u_{n-1}\left(i, \delta_{n}(i)\right) \text { and Flag }{ }_{n-1}(i, k)<0\right\}, \\
\alpha^{\prime}= & \operatorname{Min} \quad\left\{R_{n-1}(i, k)\right\}, \\
& (i, k) \varepsilon \bar{A}_{n-1} \\
\bar{I}_{n-1}= & \left\{i \mid R_{n-1}(i, k)=\alpha^{\prime} /(i, k) \varepsilon \bar{A}_{n-1}\right\}
\end{aligned}
$$

and

$$
\bar{k}_{i}^{n-1}=\left\{k \varepsilon K_{i} \mid R_{n-1}(i, k)=\alpha^{\prime} /(i, k) \varepsilon \bar{A}_{n-1}\right\} \text { for } i \varepsilon \bar{I}_{n-1}
$$

Note $R_{n-1}(i, k)$ is defined in Section 4.

Then at the beginning of step 2 calculate $\bar{\alpha}_{n+1}$ as follows; define

$$
\tilde{\alpha}_{n+1}= \begin{cases}\alpha_{n}+R_{n}\left(i^{\prime}, k^{\prime}\right) & \text { if } G u_{n}\left(i^{\prime}, k^{\prime}\right)>G u_{n}\left(i, \delta_{n}(i)\right) \\ \bar{\alpha} & \text { otherwise }\end{cases}
$$

and set $\bar{\alpha}_{n+1}=\min \left(\bar{\alpha}, \tilde{\alpha}_{n+1}\right)$.
Then $\bar{\alpha}_{n+1} \geq \alpha_{n+1}$ because $\alpha_{n+1}=\alpha_{n}+\operatorname{Min}_{(i, k) \varepsilon A_{n}}\left\{R_{n}(i, k)\right\}$ and if $G u_{n}\left(i^{\prime}, k^{\prime}\right)>$ $G u_{n}\left(i^{\prime}, \delta_{n}\left(i^{\prime}\right)\right)$ then $\left(i^{\prime}, k^{\prime}\right) \varepsilon A_{n}$.

Denote by (II-1) and (II-2) the above procedure with $U G u_{p}^{S}(i, k)$ of (26) and (27) respectively. Then all the algorithms with procedure (II-T) and (II-2) are exactly the same as the algorithms with procedure (I-1) and (I-2) except we replace $\bar{\alpha}$ by $\bar{\alpha}_{n+1}$. All of the above results concerning storage saving also apply.

7. Application of Parametric Markov Decision Problems.

The most simple application of a MDP with one parameter is sensitivity analysis of the one-stage reward when it is in the form, $r_{\alpha}^{\delta}=r^{\delta}+$ αd^{δ}. Another application is MDP with two criteria. The objective of the discounted MDP with vector criterion is to determine strategies with nondominated expected total discounted rewards. In this setting $v(i)$ is an S-vector of $\left\{v_{1}(i), v_{2}(i), \cdots, v_{S}(i)\right\}$ where S is the number of criteria, i.e., v is a $N \times S$ matrix where N is the number of states. Then the problem is to find the set of $\pi \varepsilon \pi$, the nondominated set, such that there does not exist a $\rho \in \Pi$ with the properties: $v^{\rho} \geq v^{\pi}$ and for some $i \in I, v^{\rho}(i) \neq$ v^{π} (i). Henig [13] has shown that it is sufficient to restrict our attention to stationary strategies in determining the nondominated v^{π} since any nondominated v^{π} generated by a nonstationary strategy will be contained in the convex hull of the set of all nondominated v^{δ}. It has been shown in Henig [13] and Viswanathan, Aggarwal and Nair [33] that the set of all $\delta \varepsilon \Delta$ which generate nondominated v^{δ} can be determined by considering the following scalar criterion problem.

$$
\begin{equation*}
v_{a}^{*}=v_{a}^{\delta_{a}^{*}}=\operatorname{Max}_{\delta \varepsilon \Delta}\left\{v^{\delta} \cdot a\right\} \tag{42}
\end{equation*}
$$

Where $v^{\delta} \cdot a$ is an inner product of v^{δ} and a, a is a column vector of $\left(a_{1}, a_{2}, \cdots, a_{S}\right), a_{s} \geq 0$ for $s=1,2, \cdots, s$ and $\sum_{S=1}^{S} a_{s}=1$.

For the MDP with two criteria the problem can be written as follows:

$$
\begin{equation*}
v_{a}^{*}=v_{a}^{\delta} a^{*}=\operatorname{Max}_{\delta \varepsilon \Delta}\left\{a_{1} v_{1}^{\delta}+a_{2} v_{2}^{\delta}\right\} \tag{43}
\end{equation*}
$$

where $a_{1}+a_{2}=1, a_{1} \geq 0, a_{2} \geq 0$ and $a=\left(a_{1}, a_{2}\right)^{t}$.

Setting $a_{1}=1-a_{2}$, (43) becomes

$$
\begin{equation*}
v_{a_{2}}^{*}=v_{a_{2}}^{\delta_{a_{2}}^{*}}=\operatorname{Max}_{\delta \varepsilon \Delta}\left\{v_{1}^{\delta}+a_{2}\left(v_{2}^{\delta}-v_{1}^{\delta}\right)\right\} \tag{44}
\end{equation*}
$$

where $0 \leq a_{2} \leq 1$.
Then setting $\alpha=a_{2}, u^{\delta}=v_{2}^{\delta}-v_{1}^{\delta}$ and $v^{\delta}=v_{1}^{\delta}$ the problem (44) is exactly the same as MBP with one parameter.

Another interesting application of an MDP with one parameter is a problem with one constraint. From now on we extend the range of decisions to include randomized (or mixed) strategies. Let Π denote the set of all randomized strategies. Nonrandomized stationary strategies will be called pure strategies. The problem to be considered here is to find a $\pi^{*} \varepsilon \Pi$ such that

$$
\begin{align*}
& a v^{\pi^{*}}=\operatorname{Max}_{\pi \varepsilon \Pi} a v^{\pi} \tag{45}\\
& \text { s.t. } \quad a u^{\pi} \geq b
\end{align*}
$$

where $a(i)$ is the probability that the system is in state $i \varepsilon I$ at stage 0 with $\sum_{I \varepsilon I} a(i):=1$ and $a(i) \geq 0$ for each $i \varepsilon I, b$ is a scalar and v^{π} and u^{π} are the expected total discounted reward vectors corresponding to one stage reward vectors r and d respectively for strategy $\pi \varepsilon \Pi$. Note the constraint $a \tilde{u}^{\pi} \leq \tilde{b}^{\prime}$ can be transformed to $a u^{\pi} \geq b$ by setting $u^{\pi}=-\tilde{u}^{\pi}$ and $b=-\tilde{b}$.

To solve the above problem we introduce the following problem:

$$
\begin{equation*}
a v_{\alpha}^{\pi_{\alpha}^{*}}=\operatorname{Max}_{\pi \varepsilon \Pi} a v_{\alpha}^{\pi} \tag{46}
\end{equation*}
$$

where $v_{\alpha}^{\pi}=v^{\pi}+\alpha u^{\pi}$ and $\alpha \geq 0$. Then we have the following lemma describing the relationship of these two problems above.

Lemma 3.7.
Suppose π_{α}^{*} is optimal in the problem (46) for some α and $a u^{\pi}{ }^{*}=b$. Then π_{α}^{*} is optimal in the problem (45).

Proof. Suppose π_{α}^{*} were not optimal $\operatorname{jin}_{\pi^{*}}$ the problem (45), then there would exist a strategy π^{\prime} such that $a v^{\pi^{\prime \prime}}>a v^{\pi_{\alpha}^{*}}$ and $a u^{\pi^{\prime}} \geq b=a u^{\pi^{*}}$. Then $a v^{\pi^{\prime}}+\alpha a u^{\pi^{\prime}}>a v^{\pi_{\alpha}^{*}}+\alpha a u^{\pi_{\alpha}^{*}}$. This contradicts the fact that π_{α}^{*} is optimal in the problem (46). Hence π_{α}^{*} is optimal in the problem (45).

The optimal strategy π_{α}^{*} of (45) given α will have an optimal pure strategy independent of a since the problem (46) given α is an ordinary discounted MDP. Therefore the problem reduces to that of finding δ_{α}^{*} such that

$$
\begin{equation*}
v_{\alpha}^{\delta_{\alpha}^{*}}=\operatorname{Max}_{\delta \varepsilon \Delta} v_{\alpha}^{\delta} \tag{47}
\end{equation*}
$$

where $v_{\alpha}^{\delta}=v^{\delta}+\alpha u^{\delta}$ and $\alpha \geq 0$. Recall Δ is the set of nonrandomized policies.

The problem (47) can be solved using the algorithm developed in Section 3 with $\underline{\alpha}=0$ over the region of α. But an upper bound for α, i.e. $\bar{\alpha}$, is not given and so the region of α may be unbounded. We will show the boundedness of α in Proposition 3.5 and the stopping rules of the algorithm that result in an optimal strategy to the problem (45). We will use the notation of Section 3 for $\alpha_{n}, \delta_{n}, v_{n}$ and u_{n} where $v_{n}=v^{\delta}{ }^{\delta}+$ $\alpha_{n} u^{\delta_{n}}$ and $u_{n}=u^{\delta_{n}}$. The following proposition motivates the stopping rules of the algorithm for solving the problem (45).

Proposition 3.4.
$\delta_{n} \quad \delta_{n+1}$ At iteration $n+1, u^{\delta}{ }^{\delta+1}=u_{n+1}>u_{n}=u^{\delta} n$ and if $\alpha_{n+1}>0$, $v^{\delta} n>v^{\delta}{ }^{\delta+1}$.
$\frac{\text { Proof. }}{\delta}$. From Proposition 3.1 at α_{n+1} and the selection rule (A)
$u^{n+1}=u_{n+1}=u_{n}+\left(I-\lambda P_{\delta_{n+1}}\right)^{-1} G_{\delta_{n+1}} u_{n}>u_{n}=u^{\delta_{n}}$.

$$
v^{\delta_{n+1}}+\alpha_{n+1} u^{\delta_{n+1}}=v_{\alpha_{n+1}}^{\delta_{n+1}}=v_{\alpha_{n+1}}^{\delta_{n}}=v^{\delta_{n}}+{ }_{\alpha} \alpha_{n+1} u^{\delta} n_{n}
$$

Therefore $v^{\delta_{n+1}}<v^{\delta_{n}}$ since $u^{\delta_{n+1}}>u^{\delta_{n}}$ and $\alpha_{n+1}>0$.

The following proposition implies that the region of α to be considered is actually bounded.

Proposition 3.5.

There. exists α_{N} such that for all $\alpha \geq \alpha_{N}, \delta_{N}$ is optimal in the problem (47) and δ_{N} is also optimal for the problem of Max u^{δ}. $\delta \varepsilon \Delta$

Proof. The fact that $u_{n+1}>u_{n}$ in Proposition 3.4 and the finiteness of policy space implies that there exists α_{N} such that for all $\alpha \geq \alpha_{N}$, δ_{N} is optimal in the problem (47).

Suppose δ_{N} is not optimal for the problem of maximizing u. Then choose δ^{\prime} such that $u^{\delta^{\prime}}=\underset{\delta \varepsilon \Delta}{\operatorname{Max} u^{\delta}}$. There exists $i^{\prime \prime} \varepsilon I$ such that $u^{\delta^{\prime}}\left(i^{\prime}\right)>$ $u^{\delta_{N}}\left(i^{\prime}\right)$ since $u^{\delta^{\prime}} \geq u^{\delta_{N}}$ and $u^{\delta^{\prime}} \neq u^{\delta_{N}}$. Then there exists α^{\prime} such that for all $\alpha>\alpha^{\prime} \geq \alpha_{N}, \alpha\left(u^{\delta^{\prime}}\left(i^{\prime}\right)-u^{\delta_{N}}\left(i^{\prime}\right)\right)>v^{\delta_{N}}\left(i^{\prime}\right)-v^{\delta^{\prime}}\left(i^{\prime}\right)$, i.e., $v^{\delta^{\prime}}\left(i^{\prime}\right)+$ $\alpha u^{\delta^{\prime}}\left(i^{\prime}\right)>v^{\delta_{N}}\left(i^{\prime}\right)+\alpha u{ }^{\delta_{N}}\left(i^{\prime}\right)$. This contradicts the fact that for all $\alpha \geq \alpha_{N}, \delta_{N}$ is optimal in the problem (47). Hence δ_{N} is optimal for the problem of $\operatorname{Max} u^{\delta}$. $\delta \varepsilon \Delta$

Therefore using the algorithm in Section $3 \delta_{\alpha}^{*}$ can be found for each $\alpha, 0 \leq \alpha \leq \alpha_{N}$ where α_{N} will be determined in the algorithm. The following theorems indicate how to modify the algorithm of Section 3 to find the optimal strategy, π^{*}, of the problem (45).

Theorem 3.4.

Suppose $a u_{0} \geq b$. Then $\pi^{*}=\left(\delta_{0}, \delta_{0}, \cdots\right)$ is an optimal pure strategy to the problem (45).

Proof. Since $\alpha_{0}=\underline{\alpha}=0, \delta_{0}$ is optimal in the problem of $\operatorname{Max} a v^{\pi}$ without the constraint and δ_{0} satisfies the constraint, i.e., $a u^{\delta}{ }^{\delta}=a u_{0} \geq b$. Therefore δ_{o} is optimal in the problem (45).

Theorem 3.5.
i) Suppose $a u_{0}<b$ and $a u_{n}=b$ for $n \geq 1$. Then $\pi^{*}=\left(\delta_{n}, \delta_{n}, \cdots\right)$ is an optimal pure strategy to the problem (45).
ii) Suppose $a u_{0}<b$ and $a u_{n}<b<a u_{n+1}$ for $n \geq 0$. Then the strategy, π^{*}, of using ($\delta_{n}, \delta_{n}, \cdots$) with probability p^{*} and $\left(\delta_{n+1}, \delta_{n+1}, \cdots\right)$ with probability $\left(1-p^{*}\right)$ at stage 0 where $p^{*}=\left(a u_{n+1}-b\right) /\left(a u_{n+1}-a u_{n}\right)$ is optimal in the problem (45).

Proof. First observe in (ii) $a u^{\pi^{*}}=p^{*} a u_{n}+\left(1-p^{*}\right) a u_{n+1}=\left[\left(a u_{n+1}-b\right) /\right.$ $\left.\left(a u_{n+1}-a u_{n}\right)\right] a u_{n}+\left[\left(b-a u_{n}\right) /\left(a u_{n+1}-a u_{n}\right)\right] a u_{n+1}=b$. And in (ii) π^{*} is also optimal in the problem (46) for $\alpha=\alpha_{n+1}$ since δ_{n} and δ_{n+1} are both optimal in the problem (46) at α_{n+1}. Therefore for (i) and (ii) $a u^{\pi}{ }^{*}=b$ and π^{*} is optimal in the problem (46). Hence by Lemma $3.7 \pi^{*}$ is optimal in the problem (45).

Theorem 3.6.
Suppose $a u_{N}<b$. Then there is no feasible strategy to the problem (45).

Proof. \quad Note $a u_{N}=a u^{\delta_{N}}$ and δ_{N} is optimal at α_{N}. Then by Proposition $3.5 \delta_{N}$ is optimal for the problem of $\operatorname{Max}_{\delta \varepsilon \Delta} u^{\delta}$, i.e., $\left(\delta_{N}, \delta_{N}, \cdots\right)$ is an optimal strategy for the problem of $\operatorname{Max}_{\pi \varepsilon \Pi} u^{\pi}$. Because $a u^{\delta}{ }^{\delta}<b$ there is no feasible strategy.

Note (ii) of Theorem 3.5 leads to choosing an infeasible strategy with probability p^{*}. To resolve this problem we can consider two alternatives one of using a stationary randomized strategy and the other of finding the best pure strategy.

Proposition 3.6.
Suppose $a u_{0}<b$ and $a u_{n}<b<a u_{n+1}$ for $n \geq 0$. Then there exists an optimal stationary randomized strategy.

Proof. Assuming $\alpha_{n+1}>0$ [otherwise Theorem 3.4 holds at $\alpha_{n+1}=0$ and we have an optimal pure strategy] $v^{\delta_{n}}>v^{\delta}{ }^{n+1}$ by Proposition 3.4. Let π^{*} be the optimal strategy defined in (ii) of Theorem 3.5. Then there exists \hat{p} such that $v^{\pi^{*}}=(I-\lambda \hat{p})^{-1} \hat{\dot{r}}$ where $\hat{p}=\hat{\mathrm{p}} \mathrm{\delta}_{\delta_{n}}+(1-\hat{\mathrm{p}}) \mathrm{P}_{\delta_{n+1}}$ and $\hat{r}=p r^{\delta}{ }^{\delta}+(1-\hat{p}) r^{\delta}{ }^{\delta}+1$ because $(I-\lambda \hat{P})^{-1} \hat{r}$ is continuous in \hat{p} with $(I-\lambda \hat{P})^{-1} \hat{r}=$ $v^{\delta} n$ at $\hat{p}=1$ and $(I-\lambda \hat{P})^{-1} \hat{r}=v^{\delta}{ }^{\delta}+1$ at $\hat{p}=0$ and $v^{\delta_{n}}>v^{\pi *}>v^{\delta_{n+1}}$. I.e., there exists an optimal stationary randomized strategy.

Theorem 3.7.
Suppose $a u_{0}<b$ and $a u_{n}<b<a u_{n+1}$ for $n \geq 0$. Then $\left(\delta_{n+1}, \delta_{n+1}, \cdots\right)$
is an optimal pure strategy among all pure strategies feasible to the problem (45).

Proof. Suppose there were a better pure feasible strategy, say ($\left.\delta^{\prime}, \delta^{\prime}, \ldots.\right)^{\prime}$, than $\left(\delta_{n+1}, \delta_{n+1}, \cdots\right)$, i.e., $a v^{\delta \prime}>a v^{\delta}{ }^{\prime \prime}+1$ and $a u^{\delta \prime}: \geq b$. Setting $p^{\prime \prime}=$ $\left(a u^{\delta^{\prime}}-b\right) /\left(a u^{\delta^{\prime}}-a u_{n}\right)$ we have $p^{\prime} a u_{n}+\left(1-p^{\prime}\right) a u^{\delta^{\prime}}=b$.
If $p^{\prime} \geq p^{*}$ then $p^{\prime} a v^{\delta}+\left(1-p^{\prime \prime}\right) a v^{\delta}>p v^{\delta}+\left(1-p^{i}\right) a v^{\delta} n+1$
$p * a v^{\delta}+\left(1-p^{*}\right) a v^{\delta+1}$. The last inequality follows from Proposition 3.4. Therefore by denoting π^{\prime} as a strategy using ($\delta_{n}, \delta_{n} \cdots$) with probability p^{\prime} and ($\delta^{\prime}, \delta^{\prime}, \ldots$) with probability ($1-p^{\prime}$) at stage 0 , $a v^{\pi^{\prime}}=p^{\prime} a v^{\delta} n^{\prime}+$ $\left(1-p^{\prime}\right) a v^{\delta^{\prime}}>p p^{*} a v^{\delta n}+\left(1-p^{*}\right) a v^{\delta n+1}=a v^{\pi *}$ and $a u^{\pi^{\prime}}=p^{\prime} a u_{n}+\left(1-p^{\prime}\right) a u^{\delta^{\prime}}=b$. Thus π^{\prime} is a better strategy than π^{*} contradicting Theorem 3.4.

$$
\text { If } p^{\prime}<p^{*} \text { then } p^{\prime} a v^{\delta} n+\left(1-p^{\prime}\right) a v^{\delta^{\prime}}>p^{\prime} a v^{\delta} n+\left(1-p^{\prime}\right) a v^{\delta} n+1
$$

and $p^{\prime} a u_{n}+\left(1-p^{\prime}\right) a u^{\delta^{\prime}}=b=p^{*} a u_{n}+\left(1-p^{*}\right) a u_{n+1}>p u_{n}+\left(1-p^{\prime}\right) a u_{n+1}$ because $u_{n+1}>u_{n}$ from Proposition 3.4. and $p^{\prime \prime}<p^{*}$. Therefore $p^{\prime} a v^{\delta}{ }^{\delta}+$ $\left(1-p^{\prime}\right) a v^{\delta^{\prime}}+\alpha_{n+1}\left[p^{\prime} a u_{n}+\left(1-p^{\prime}\right) a u^{\delta^{\prime}}\right] *>p^{\prime} a v^{\delta} n+\left(1-p^{\prime}\right) a v^{\delta} n+1+$ $\alpha_{n+1}\left[p^{\prime} a u_{n}+\left(1-p^{\prime}\right) a u_{n+1}\right]$. I.e., $p^{\prime}\left[a v^{\delta} n+\alpha_{n+1} a u_{n}\right]+\left(1-p^{\prime}\right)\left[a v^{\delta!}+\right.$ $\left.\alpha_{n+1} a u^{\delta^{\prime}}\right]>p^{\prime}\left[a v^{\delta n}+\alpha_{n+1} a u_{n}\right]+\left(1-p^{\prime}\right)\left[a v^{\delta} n+1+\alpha_{n+1} a u_{n+1}\right]$. Hence $a v^{\delta^{\prime}}+\alpha_{n+1} a u^{\delta^{\prime}}>a v^{\delta+1}+\alpha_{n+1} a u_{n+1}$ since $p^{\prime}<1$ by the assumption of $a u_{n}<b$. This contradicts the fact that δ_{n+1} is optimal in the problem (47). Therefore $\left(\delta_{n+1}, \delta_{n+1} \cdots\right)$ is an optimal pure strategy among all pure strategies feasible to the problem (45).

The stopping rules to be changed or added in the algorithm of Section 3 are as follows:
(a) At the end of step I; If $a u_{0} \geq b$, stop. Then δ_{0} is optimal in the problem (45).
(b) At the beginning of step 3; If $B u_{n}(i, k) \leq 0$ for all $i \varepsilon I$ and $k \varepsilon K_{i}$ and $a u_{n}<b$, stop. There is no feasible strategy to the problem (45). If $B u_{n}(i, k) \leq 0$ for all $i \varepsilon I$ and $k \varepsilon K_{j}$ and $a u_{n} \geq b$, stop. Then π^{*} defined in Theorem 3.5 is optimal.
(c) At the beginning of step 4; If $a u_{n} \geq 0$ [instead of "if $\left.\alpha_{n+1} \geq \bar{\alpha}^{\prime \prime}\right]$, stop. Then π^{\star} defined in Theorem 3.5 is optimal.

Furthermore, α_{0} in Theorem 3.4, α_{n} in (i) of Theorem 3.5 and α_{n+1} in (ii) of Theorem 3.5 give the shadow price of the constraint in the problem (45).

Another application of MDP with one parameter is the MDP with one ratio constraint. Solution procedures for liDP with a ratio criterion were studied by Derman [8] for the undiscounted case and by Aggarwal, Chandrasekaran and Nair [1] and Brosh, Schlifer and Schweitzer [4] for the discounted case. Here we consider the following ratio constrained MDP;

$$
\begin{align*}
& \operatorname{Max}_{\pi \varepsilon I} a \tilde{v}^{\pi}-a \tilde{u}^{\pi} \tag{48}\\
& \text { s.t. } \frac{a \tilde{v}^{\pi}}{a \tilde{u}^{\pi}} \geq R
\end{align*}
$$

where $\tilde{v}^{\pi}(i),-\infty<\tilde{v}^{\pi}(i)<+\infty$ and $\tilde{u}^{\pi}(i), 0<\tilde{u}^{\pi}(i)<+\infty$ are the expected total discounted returns and costs respectively in state i if we take a strategy π. This problem can be rewritten as
$\operatorname{Max}_{\pi \varepsilon \Pi} a \tilde{v}^{\pi}-a \tilde{u}^{\pi}$
s.t. $\quad a \tilde{v}^{\pi}-R a \tilde{u}^{\pi} \geq 0$.

Then setting $v^{\pi}=\tilde{v}^{\pi}-\tilde{u}^{\pi}, u^{\pi}=\tilde{v}^{\pi}-R \tilde{u}^{\pi}$ and $b=0$, the problem (49) is exactly the same as the problem (45). All the results for the problem (45) hold for this problem.

8. Computational Results.

In this section we discuss the results of applying the algorithms developed in Section 4 to a two-criterion version of Howard's [14] automobile replacement problem. Included are a comparison of the algorithms under the various selection rules and action elimination procedures.

Let r_{1}^{δ} and r_{2}^{δ} be the expected one-stage rewards corresponding to v_{1}^{δ} and v_{2}^{δ} in (43) and defined as follows:

$$
r_{1}(i, k)=r(i, k) \text { defined for the automobile replacement problem }
$$ in Section 8 of Chapter 2 and

$$
r_{2}(i, k)= \begin{cases}\frac{400}{\sqrt{k-T}} & \text { if } k \neq 1 \\ \frac{400}{\sqrt{i+1}} & \text { if } k=1\end{cases}
$$

where $r_{2}(i, k)$ is an additive expected one-stage utility function for time preference if we take action $k \varepsilon K_{i}$ in state $i \varepsilon I$. Therefore if we keep the present car of age $i(k=1)$ then the time preference utility for one period will be $400 / \sqrt{i+T}$. If we trade it in for a car of age $k-2$ the one-period time preference utility will be $400 / \sqrt{k-T}$.

$$
\text { Resetting } r(i, k)=r_{7}(i, k) \text { and } d(i, k)=r_{2}(i, k)-r_{1}(i, k) \text { the }
$$ nondominated strategies of the automobile replacement problem with two criteria can be generated by solving the following problem;

$$
\begin{aligned}
& \operatorname{Max}_{\delta \varepsilon \Delta}\left\{v^{\delta}+\alpha u^{\delta}\right\} \\
& 0 \leq \alpha \leq 1
\end{aligned}
$$

where v^{δ} and u^{δ} are the expected total discounted reward corresponding to r^{δ} and d^{δ} respectively. In the notation of this chapter this means we take $\underline{\alpha}=0$ and $\bar{\alpha}=1$.

We solved this problem with $\lambda=.96$ and $\lambda=.97,(1-\lambda) \varepsilon_{0}=0,001$ and $(1-\lambda) \varepsilon^{\prime}=0.001$ using the algorithm with and without action elimination procedures. All calculations were performed on the University of British Columbia AMDAHL 470 computer using the codes in the Appendix. For the algorithms without action elimination we used the selection rule (B) and the other selection rule (denoted from now on as (C)) of changing only a single action as described in Section 4. The selection rule (B) leads to block pivoting while the other selection rule leads to simplex pivoting. Block pivoting always gives a value of u_{n+1} greater than or equal to that of simplex pivoting, which implies that block pivoting will generate optimal policies over the region of α in fewer iterations than simplex pivoting, The initial optimal actions, i.e. at $\alpha=0$, with $\lambda=0.96$ are $k=18$ (trade in for the car of age 16, i.e., the 4 year-old car) for i from 1 to 7 and from 28 to 40 and $k=1$ (keep the current car) for i from 8 (2 year-old car) to 27 (6 3/4 year-old car). The action $k=2$ (trade in for a new car) is optimal in all states for $\alpha \geq 0.782133444$ and $\lambda=0.97$ are $k=14$ (trade in for thecar of age 12, i.e., the 3 year-old car) for i from 1 to 3 and from 27 to 40 and $k=1$ for i from 4 (1 year-old car) to 26 (6 1/2
year-old car). All optimal actions for $\alpha \geq 0.781641042$ are $k=2$ in all states. In between optimal actions for $\lambda=0.96$ and $\lambda=0.97$ are presented in the Appendix.

The CPU times required after the initialization and the number of iterations (r in the algorithm of Section 4) required are shown in Table 3.1 for the algorithm with the selection rule (B) and (C) and without action elimination. Clearly the algorithm using the rule (B) is much faster than the rule (C). This is because for $\lambda=.97,17$ actions changed together at the one particular value of α and for $\lambda=.96$ there were values of α at which 17 actions and 16 actions changed together. Thus for the algorithms with action elimination procedures we used only the selection rule (B). The CPU times required after the initialization and the average fraction of actions eliminated for the algorithm with each action elimination procedure are shown in Table 3.2. Reduction of CPU times using action elimination procedure (II-1) and (II-2) were significant. For instance, with $\lambda=.96$ the algorithm with the action elimination procedure (II-2) took only 47.81 per cent of the CPU time taken by the algorithm with the rule (B) and without action elimination and only 28.78 per cent of the CPU time taken by the algorithm only with the rule (C).

9. Conclusions and Extensions.

The algorithm developed in Section 4 can be implemented to solve a problem with a large state and action space. As shown by the results in Table 3.1 use of an algorithm with the selection rule (B) is recommended. Even though we used codes based on policy iteration, similar codes based

Table 3.1
Comparison of Selection Rules [CPU Times (Secs.)/Number of Iterations Required]

(λ) Discount Rate	Algorithm with the Selection Rule (B)	Algorithm with the Selection Rule (C)
0.96	$8.623 / 37$	$14.326 / 68$
0.97	$7.121 / 31$	$9.875 / 47$

Table 3.2
Comparison of Action Elimination Procedures
[CPU Times (Secs.)/Average Fraction of Actions Eliminated]

(λ) Discount Rate	Procedure $(\mathrm{I}-1)$	Procedure $(\mathrm{I}-2)$	Procedure $(\mathrm{II}-1)$	Procedure $(\mathrm{II}-2)$
0.96	$7.158 / .2939$	$6.104 / .4553$	$4.792 / .6681$	$4.123 / .7778$
0.97	$5.829 / .3193$	$4.645 / .5065$	$4.530 / .5925$	$3.880 / 7127$

on modified policy iteration can be developed and will be more efficient for problems with very large state and action spaces. Results based on using the action elimination procedure (II-1) and (II-2) are also very encouraging and we recommend incorporating them in an algorithm.

An interesting extension would be to develop an algorithm for the problem with a vector of parameters. This would have application to more than two criterion MDP and MDP with several constraints. The methods developed here would be applicable but modifications to efficieintly search the parameter set would be required.

REFERENCES

1. Aggarwa1, V., Chandrasekaran, R. and Nair, K.P.K., "Markov Ratio Decision Processes", JOTA 21, 1977, 27-37.
2. Blackwell, D., "Discrete Dynamic Programming", Ann. Math. Statist. 33, 1962, 719-726.
3. Blackwell, D., "Discounted Dynamic Programming", Ann. Math. Statist. 36, 1965, 226-235.
4. Brosh, I., Schlifer, E., Schweitzer, P.J., "Generalized Markovian Decision Processes", Zeitschrift für Operations Research 21, 1977, 173-186.
5. Dantzig, G.B., Linear Programming and Extensions, Princeton Univ. Press, Princeton, New Jersey, 1963.
6. Denardo, E., "Contraction Mappings in the Theory Underlying Dynamic Programming", SIAM Rev. 9, 1967, 165-177.
7. D'Epenoux, F., "Sur un Probleme de Production et de Stockage dans 1'Aetoire", Revue Franç. Rech. Operationelle 14, 1960, 3-16; (translation in Man. Sci. 10, 1963, 98-108).
8. Derman, C., "On Sequential Decision and Markov Chains", Man. Sci. 9, 1962, 16-24.
9. Grinold, R., "Elimination of Suboptimal Actions in Markov Decision Problems", Oper. Res. 21, 1973, 848-85.
10. Hastings, N.A.J. and Mello, J.M.C., "Tests for Suboptimal Actions in Discounted Markov Programming", Man. Sci. 19, 1973, 10191022.
11. Hastings, N.A.J., "A Test for Nonoptimal Actions in Undiscounted Finite Markov Decision Chains", Man. Sci. 23, 1976, 87-92.
12. Hastings, N.A.J., and van Nunen, J.A.E.E., "The Action Elimination Algorithm for Markov Decision Processes", in Markov Decision Theory, Eds. H.C. Tijms and J. Wessels, Mathematical Centre Tract 93, Amsterdam, 1977.
13. Henig, M.I., "Multicriteria Dynamic Programming", Ph.D. Thesis, Yale Univ., New Haven, Conn., 1978.
14. Howard, R.A., Dynamic Programming and Markov Processes, MIT Press,
Cambridge, 1960 .
15. Hübner, G., "Improved Procedures for Eliminating Suboptimal Actions in Markov Programming by the Use of Contraction Properties", $\frac{\text { Transactions of the Seventh Prague Conference, Volume A, 1977, }}{257-263 .}$
16. MacQueen, J., "A Test for Suboptimal Actions in Markov Decision Problems", Oper. Res. 15, 1967, 559-561.
17. Mine, H. and Osaki, S., Markovian Decision Process, Amer. Elsevier Pub. Co., Inc., New York, 1970.
18. Morton, T., "Undiscounted Markov Renewal Programming via Modified Successive Approximations"; Oper. Res. 19, 1971, 1081-1089.
19. Porteus, E., "Some Bounds for Discounted Sequential Decision Processes", Man. Sci. 18, 1971, 7-11
20. Porteus, E., "Bounds and Transformations for Finite Markov Decision Chains", Oper. Res. 23, 1975, 761~784.
21. Porteus, E., "Improved Iterative Computation of the Expected Discounted Return in a Semi-Markov Chain", Working Paper, Stanford University, 1978.
22. Porteus, E., "Overview of Iterative Methods for Discounted Finite Markov and Semi-Markov Decision Chains", to appear in: D. White Ed.: Pro. of Intl. Conf. on Markov Decision Processes, Manchester, 1979.
23. Porteus, E. and Toten, J., "Accelerated Computation of the Expected Discounted Return in a Markov Chain", Oper. Res. 26, 1978, 350-358.
24. Puterman, M.L. and Brumelle, S.L., "The Analytic Theory of Policy Iteration", in Dynamic Programming and Its Applications, Pro. of Intl. Conf. on Dynamic Programming, Ed., M.L. Puterman, Academic Press, New York, 1978.
25. Puterman, M.L. and Brumelle, S.L., "On the Convergence of Policy Iteration in Stationary Dynamic Programming", Math. of Oper. Res. 4, 1979, 60-69.
26. Puterman, M.L. and Shin, M.C., "Modified Policy Iteration Algorithms for Discounted Markov Decision Problems", Man. Sci. 24, 1978, 1127-1137.
27. Rothblum, U., "Iterated Successive Approximation for Sequential Decision Processes", Working Paper, Yale Univ., New Haven, 1979.
28. Smallwood, R.D. and Sondik, E.J., "The Optimal Control of Partially Observable Markov Processes over a Finite Horizon", Oper. Res. 21, 1973, 1300-1322.
29. Sondik, E.J., "The Optimal Control of Partially Observable Markov Processes over the Infinite Horizon: Discounted Costs", Oper. Res. 26, 1978, 282-304.
30. van der Wal, J., "Discounted Markov Ganes: Generalized Policy Iteration Method", JOTA 25, 1978, 125-138.
31. van Nunen, J.A.E.E., "A Set of Successive Approximation Methods for Discounted Markovian Decision Problems", Zeitschrift für Oper. Res. 20, 1976, 203-208.
32. van Nunen, J.A.E.E., Contracting Markov Decision Processes, Mathematical Center Tract 71, Amsterdam, 1976.
33. Viswanathan, B., Aggarwal, V.V. and Nair, K.P.K., "Multiple Criteria Markov Decision Processes", North Holland TIMS Studies in Management Science, 6, 1977, 263-272.
34. White, C.C. and Kim, K.W., "Two Solution Procedures for Solving Vector Criterion Markov Decision Processes", Working Paper, Univ. of Virginia, Charlottesville, Virginia, 1979.
35. White, D.J., "Elimination of Non-optimal Actions in Markov Decision Processes", in Dynamic Programming and Its Applications, Pro. of Int1. Conf. on Dynamic Programming, Ed., M.L. Puterman, Academic Press, New York, 1978.

APPENDIX

Page
A) Code for Policy Iteration without Action Elimination 103
B) Code for Policy Iteration with Procedure (I) 105
C) Code for Policy Iteration with Procedure (II). 107
D) Code for Policy Iteration with Procedure (III) 109
E) Code for Policy Iteration with Procedure (IV). 112
F) Code for Modified Policy Iteration without Action Elimination. 115
G) Code for Modified Policy Iteration with Procedure (II) 117
H) Code for Modified Iteration with Procedure (III) 120
I) Code for Modified Policy Iteration with Procedure (IV) 123
J) Code for Generating Random Data. 126
K) Code for Generating Data of Two Criterion Automobile Replacement Problem 127
L) Code for Parametric MDP with Selection Rule (B). 128
M) Code for Parametric MDP with Selection Rule (C). 134
N) Code for Parametric MDP with Procedure (I-1) 140
$0)$ Code for Parametric MDP with Procedure (I-2) 147
P) Code for Parametric MDP with Procedure (II-1). 155
Q) Code for Parametric MDP with Procedure (II-2). 163
R) Computational Result of Two Criterion Automobile Replacement Problem Using Code L with Discount Rate of .96 171
S) Computational Result of Two Criterion Automobile Replacement Problem using Code Lewith Discount Rate of .97. 175

```
Cあな晾
C&क* A) CODE FOR POLICY ITERATION WITHOUT ACTION ELIMINATIDN
            DIMENSION V(40),C(40,100),CPV(40,100),P(40,100,40),IIPOL(40),
            IA(40,40),T(40,40),B(40,1),IPERM(100),KKPOL(40)
            REWIND8
            REWIND9
            ND IMA = 40
            ND IMBX=40
            NDIMT=40
            NSOL=1
            READ(5,L) NST,NAC,DISCR,DERR
    1 FORMAT(I5,I5,2F10.5)
    READ(8)((CII,K),I=1,NST),K=1,NAC)
    DO 2 I=1,NST
    READ(9)({P(I,K,J),K=1;NAC),J=1,NST)
    2 CONTINUE
    CALL TIME(O)
    ITER=0
    ELM=O.
    TNM=NST*NAC
    KN=0
    DO 50 I=1,NST
    DO 20 K=1,NAC
    IF(K.EQ.1) GO TO 10
    IF(OCI.GE.C(I,K)) GO TO 20
    10 OCI=C(I,K)
    I I P =K
    20 CONTINUE
    B(I,1)=OCI
    KKPOL(I)=IIP
    DO 40 J=1,NST
    IF(I.EQ.J) GO TO }3
    A(I,J)=-DISCR*P(I,IIP,J)
    GO TO 40
    30 A(I,J)=1.-DISCR*P(I,IIP,J)
    40 CONTINUE
    50 CONTINUE
    GO TO 130
    60 ITER=ITER+1
    DO 120 I =1,NST
    DO 110 K=1,NAC
    IF(FLAG(I,K),GE.1.0) GO TO 110
    KN=KN+1
    PV=0.
    OO 100 J=1,NST
    PV=PV+P(I,K;J)*V(J)
100 CONTINUE
    CPV(I,K)=C(I,K)+DISCR*PV
    IF(KN.EQ.1) GO TO 105
    IF(CVI.GE.CPV(I,K)) GO TO 110
105 CVI=CPV(I,K)
    II P=K
110.CONTINUE
    KN=0
    DO 115 J=1,NST
    IF(I.EQ.J) GO TO 113
    A(I;J)=-DISCR*P(I,IIP,J)
    GO TO 115
113 A(I,J)=1.-DISCR*P(I,IIP,J)
```

115 CONTINUE
B(I, I) $=$ C(I,IIP)
$B \vee I=C V I-V(I)$
IIPOL(I) =IIP
IF(I.EQ.1) GO TO 116
IF (BVMAX.GE.BVI) GO TD 117
$B \vee M A X=B \vee I$
GO TO 120
116 BVMAX=BVI
$B \vee M I N=B \vee I$
GO TO 120
117 IF(BVMIN.LE.BVI) GO TO 120
BVMIN=BVI
120 CONTINUE
DO $125 \mathrm{I}=1$, NST
IF(IIPOL(I).NE.KKPOL(I)) GO TO 127
125 CONTINUE
GO TO 200
127 DO $129 \mathrm{I}=1$, NST
KKPOL(I)=IIPOL(I)
129 CONTINUE
C*** SOLVE A SYSTEM OF EQUATIONS $A * V=B$ 3Y CALLING SUBROUTINE FSLE
130 CALL FSLE (NST, NDIMA, A, NSOL, NDIMBX,B,V,IPERM, NDIMT, T, DET, JEXP) IF (DET) $135,175,135$
135 GO TO 60
175 WRITE 6,180)
180 FORMAT('SOLUTION FAILED')
200 CALL TIME (1, 1)
WRITE $(6,210)$
210 FORMAT (10X, STATE', 10 X, 'POLICY', 15 X, 'RETURN', 10 X, 'OPT. POLICY')
WRITE $(6,250)(I, N A C, V(I), I I P O L(I), I=1, N S T)$
250 FORMAT (10X,13,12X,13,10X,E16.7,10X,13/)
WRITE $(6,260)$
260 FORMAT (10X,'DISCR', $10 X,{ }^{\prime}$ DERR', $10 X$, 'ITERATION')
WRITE (6,300) DISCR,DERR,ITER
300 FORMAT (10X,F5.3, 8X,F8.5.8X, I5)
STOP
END

DIMENSION V(40),C(40,100),CPV(40,100),P(40,100,40),IIPOL(40),
$1 \mathrm{~A}(40,40), \mathrm{T}(40,40), \mathrm{B}(40,1), \operatorname{IPERM}(100), \mathrm{KKPOL}(40), \mathrm{FLAG}(40,100)$,
2FV(40)
REWIND8
REWIND9
ND IMA $=40$
ND IMBX $=40$
ND IMT $=40$
$\mathrm{NSOL}=1$
READ(5,1) NST,NAC,DISCR,DERR
1 FORMATA15,15,2F10.51
READ (8) ((C(I,K), $I=1, N S T), K=1, N A C)$
DO $21=1$,NST
READ(9)((P)I,K,J),K=1,NAC),J=1,NST)
2 CONTINUE
CALL IIME(0)
ITER=0
EL M $=0$.
TNM $=$ NST $\# N A C$
$K N=0$
DO $50 \quad \mathrm{I}=1$, NST
DO $20 \mathrm{~K}=1$, NAC
$F L A G(I, K)=0$.
IFIK.EQ.1) GO TO 10
IFIOCI.GE.C(I,K)) GO TO 20
10 OCI $=C(I, K)$
II $P=K$
20 CONTINUE
$B(I, 1)=O C I$
KKPOL (I) $=$ I IP
DO $40 \mathrm{~J}=1$, NST
IF(I.EQ.J) GO TO 30
$A(I, J)=-D I S C R * P(I, I I P, J)$
GO IO 40
$30 \mathrm{~A}(\mathrm{I}, \mathrm{J})=1 .-\mathrm{DISCR} \mathrm{\neqP(I,IIP,J)}$
40 CONTINUE
50 CONTINUE
GO TO 130
60 ITER=ITER+1
DO $120 \quad \mathrm{I}=1$, NST
DO $110 \mathrm{~K}=1$, NAC
IF(FLAG(I,K).GE.1.0) GO TO 110
$K N=K N+1$
$P V=0$.
DO $100 \mathrm{~J}=1$, NST
$P V=P V+P(I, K, J) * V(J)$
100 CONTINUE
$\operatorname{CPV}(I, K)=C(I, K)+D I S C R * P V$
IF (KN.EQ.1) GO TO 105
IF(CVI.GE.CPV(I,K)) GO TO 110
$105 \mathrm{CVI}=\mathrm{CPV}(\mathrm{I}, \mathrm{K})$
II $P=K$
110 CONTINUE
$K N=0$
DO $115 \mathrm{~J}=1$, NST
IF(I.EQ.J) GO TO 113
$A(I, J)=-\operatorname{DISCR*P(I,IIP,J)}$

GO TO 115
$113 \mathrm{~A}(\mathrm{I}, \mathrm{J})=1 .-\operatorname{DSCR} * P(I, I I P, J)$
115 CONTINUE
$B(I, 1)=C(I, I I P)$
BVI $=C V I-V(I)$
FV(I)=V(I)
IIPOL(I)=IIP
IF(I.EQ.1) GO TO 116
IF (BVMAX.GE.BVI) GO TO 117
BVMAX=BVI
GO TO 120
116 BVMAX=BVI
BVMIN=BVI
GO TO 120
117 IFIBVMIN.LE.BVII GO TO 120
BVMIN=BVI
120 CONTINUE
DO $125 \mathrm{I}=1$, NST
IF(IIPOL(I).NE.KKPOLII) GO TO 127
125 CONTINUE
GO TO 200
127 DO $129 \mathrm{I}=1, \mathrm{NST}$
KKPOL(I)=IIPOL(I)
129 CONTINUE
C*** SOLVE A SYSTEM OF EQUATIONS A*V=B BY CALLING SUBROUTINE FSLE
130 CALL FSLE (NST, NDIMA, A, NSOL, NDIMBX, B, V, IPERM, NDIMI, T, DET, JEXP)
IF(DET) 135,175,135
135 IF(ITER.EQ.O) GO TO 60
ADD3 $=$ BVMIN/(1.-DISCR)
SUBT=(DISCR*BVMAX)/(1.-DISCR)
DO $171 \mathrm{I}=1$,NST
$\triangle D V I=F V(I)+A D O 3-S U B T$
DO $170 \mathrm{~K}=1$, NAC
IF(FLAG(I,K).GE.1.0) GO TO 170
IF (CPV (I,K).GE.ADVI) GO TO 170
FLAG(I,K)=1.
$E L M=E L M+1$.
170 CONTINUE
171 CONTINUE
PRCNT=ELM*100. 1 TNM
WRITE(6,172) PRCNT
172 FORMAT (5X,'PRCNT',5X,F10.5)
GO TO 60
175 WRITE 6,180$)$
180 FORMAT('SOLUTION FAILED')
200 CALL TIME (1,1)
WRITE $(6,210)$

WRITE $(6,250)(I, N A C, V(I), I I P O L(I), I=1, N S T)$
250 FORMAT (10X,13,12X,13,10X,E16.7,10X,13/)
WRITE $(6,260)$
260 FORMAT (10X,'DISCR', $10 X$, 'DERR', $10 X$,'ITERATION')
WRITE $(6,300)$ DISCR,DERR, ITER
300 FORMAT (10X,F5.3, $8 \mathrm{X}, \mathrm{F} 8.5,8 \mathrm{X}, \mathrm{I} 5$)
STOP
END

C**

DIMENSION V(40), C(40,100), CPV(40,100),P(40,100,43), IIPPOL(40),
1A(40,40),T(40,40),B(40,1),IPERY(100), KKPDL(40),FLAG(40,100),
REWIND8
REWIND 9
ND I $M A=40$
ND I MBX $=40$
ND I $M T=40$
$\mathrm{NSOL}=1$
READ (5,1) NST,NAC,DISCR,DERR
1 FORMATII5,I5,2F10.5)
READ (8)($(C(I, K), I=1, N S T), K=1, N A C)$
DO $2 \mathrm{I}=1$, NST
READ(9)((P(I,K,J), $K=1, N A C), J=1, N S T)$
2 CONTINUE
CALL TIME(O)
ITER=0
ELM $=0$.
TNM = NST $\#$ NAC
$K N=0$
DO $50 \quad \mathrm{I}=1, \mathrm{NST}$
DO $20 \mathrm{~K}=1$, NAC
$F L A G(I, K)=0$.
IF(K.EQ.1) GO TO 10
IFIOCI.GE.C(I,K)) GOTO 20
10 OCI=C(I,K)
II $P=K$
20 CDNTINUE
$\mathrm{B}\{\mathrm{I}, 1)=\mathrm{OC} I$
KKPOL (I) $=I I P$
DO $40 \mathrm{~J}=\mathrm{I}, \mathrm{NST}$
IF(I.EQ.J) GO TO 30
$A(I, J)=-D I S C R * P(I, I I P, J)$
GO TO 40
30 A(I:J) $=1 .-\operatorname{DISCR*P(I,IIP,J)}$
40 CONTINUE
50 CDNTINUE
GO TO 130
60 ITER=ITER+1
DO $120 \mathrm{I}=\mathrm{I}$, NST
DO $110 \mathrm{~K}=1$, NAC
IF(FLAG(I,K).GE.I.0) GO TO 110
$K N=K N+1$
$\mathrm{PV}=0$.
DO $100 \mathrm{~J}=1, \mathrm{NST}$
$P V=P V+P(I, K, J) * V(J)$
100 CONTINUE
CPV(I,K) $=C(I, K)+D I S C R * P V$
IFIKN.EQ. 1 G GO TO 105
IFICVI.GE.CPV(I,K)) GO TO 110
$105 \mathrm{CVI}=\mathrm{CPV}(\mathrm{I}, \mathrm{K})$
II $P=K$
110 CONTINUE
$\mathrm{KN}=0$
DO $115 \mathrm{~J}=1, \mathrm{NST}$
IF (I.EQ.J) GO TO 113
$A(I, J)=-D I S C R * P(I, I I P, J)$
GO TO 115

```
113 A(I,J)=1.-DISCR*P(I,IIP,J)
115 CONTINUE
B(I,1)=C(I,IIP)
BVI=CVI-V(I)
IIPOL(I)=IIP
IF(I.EQ.1) GO TO 116
IF(BVMAX.GE.BVI) GO TO }11
BVMAX=BVI
GO 1O 120
116 BVMAX=BVI
    BVMIN=BVI
    GO TO 120
117 IF(BVMIN.LE.BVI) GO TO 120
    BVMIN=BVI
120 CONTINUE
    DO 125 [=1,NST
    IF(IIPOLII).NE.KKPOLII)).GO TO 127
125 CONTINUE
    GO TO 200
127 DO 129 I=1,NST
    KKPOL(I)=IIPOL{I)
    129 CONTINUE
C*** SOLVE A SYSTEM OF EQUATIONS A*V=B BY CALLING SUBROUTINE FSLE
130 CALL FSLEINST,NDIMA,A,NSOL,NDIMBX,B,V,IPERM,NDIMT,T,DET,JEXP)
    IF{DET|135,175,135
    135 IF(ITER.EQ.O) GO TO 60
    SUBT=(DISCR*BVMAX)/(1.-DISCR)
    DO 171 I=1,NST
    ADVI=V(I)-SUBI
    DO 170 K=1,NAC
    IF(FLAG(I,K).GE.1.0) GO TO 170
    IF(CPV(I,K).GE.ADVI) GO TO 170
    FLAG(I,K)=1.
    ELM=ELM+1.
    170 CONTINUE
    171 CONTINUE
        PRCNT=ELM*100./TNM
        WRITE{6,172) PRCNT
    172 FORMAT(5X,'PRCNT',5X,F10.5)
    GO TO 60
    175 WRITE(6,180)
    180 FORMAT('SOLUTION FAILED')
    200 CALL TIME(1,1)
    WRITE (6,210)
    210 FORMAT (10X,'STATE',IOX,'POLICY',15X,'RETURN',IJX,'DPT. POLICY')
    WRITE (6,250) (I,NAC,V(I),IIPOL(I),I=1,NST)
    250 FORMAT (10X,13,12X,I3,10X,E16.7,10X,13/1
    WRITE (6,260)
    260 FORMAT(10X,'DISCR',10X,'DERR',10X,'ITERATION')
    WRITE (6,300) DISCR,DERR,ITER
    300 FORMAT(10X,F5.3,8X,F8.5,8X,I5)
    STOP
    END
```


C**

DIMENSION V(40),C(40,100),CPV(40,100),P(40,100,40),IIPOL(40),
1A(40,40), T(40,40),B(40,1), IPERM(100), KKPOL(40),FFLAG(40,100),
2FV(40)
REWIND 8
REWIND9
ND IMA $=40$
ND IMBX $=40$
ND IMT $=40$
NS OL=1
READ(5,1) NST,NAC,DISCR,DERR
1 FORMAT (15,15,2F10.5)
READ(8) ($(C, I, K), I=1, N S T), K=1, N A C)$
DO $2 I=1$,NST
READ(9)($(P(I, K, J), K=1, N A C), J=1, N S T)$
2 CONTINUE
CALL TIME (O)
ITER=0
EL $M=0$.
TNM $=$ NST $\#$ NAC
$K N=0$
DO $50 \quad \mathrm{I}=1$, NST
DO $20 \mathrm{~K}=1$, NAC
FLAG(I,K)=0.
IF (K.EQ. 1) GO 1010
IF(OCI.GE.C(I,K)) GO TO 20
10 OC I=C (I,K)
II $P=K$
20 CONTINUE
B(I, 1$)=0 C I$
KKPOL (I) $=11$ IP
DO $40 \mathrm{~J}=1$, NST
IF(I.EQ.J) GO TO 30
$A(I, J)=-D I S C R * P(I, I I P, J)$
GO JO 40
30 A(I,J)=1.-DISCR*P(I,IIP,J)
40 CONTINUE
50 CONTINUE
GO TO 130
60 ITER=ITER+1
DO $120 \quad \mathrm{I}=1$, NST
DO $110 \mathrm{~K}=1$, NAC
IF(FLAG(I,K).GE.1.0) GO TO 110
$\mathrm{KN}=\mathrm{KN}+1$
$\mathrm{PV}=0$.
DO $100 \mathrm{~J}=1$, NST
$P V=P V+P(I, K, J) * V(J)$
100 CONTINUE
CPV(I,K)=C(I,K)+DISCR*PV
IF (KN.EQ.1) GO TO 105
IFACVI.GE.CPV(I,K)) GO TO 110
$105 \mathrm{CVI}=\mathrm{CPV}(1, \mathrm{~K})$
II $P=K$
110 CONTINUE
$K N=0$
DO $115 \mathrm{~J}=1$, NS T
IF(I.EQ.J) GO TO 113
$A(I, J)=-D I S C R * P(I, I I P, J)$

GO 10115
113 A(I;J) $=1 .-$ DISCR*P(I,IIP,J)
115 CONTINUE
$\mathrm{B}(\mathrm{I}, \mathrm{I})=\mathrm{C}\{\mathrm{I}, \mathrm{II} \mathrm{P}$)
BVI $=C V I-V(I)$
FVIII=V(I)
IIPOL (I)=IIP
IF(I.EQ.1) GO TO 116
IF (BVMAX.GE.BVI) GO TO 117
BVMAX=BVI
GO TO 120
116 BVMAX=BVI
BVMIN=BVI
GO 10120
117 IF(BVMIN.LE.BVI) GO TO 120
BVMIN=BVI
120 CONTINUE
DO $125 I=1$,NST
IF(IIPOLII).NE.KKPOL(I)) GO TO 127
125 CONTINUE
GO 10200
127 DO $129 \mathrm{I}=1$, NST
KKPDL(I)=IIPOL(I)
129 CONTINUE
C*** SOLVE A SYSTEM OF EQUATIONS $A * V=B$ BY CALLING SUBROUTINE FSLE
130 CALL FSLEINST, NDIMA, A, NSOL, NDIMBX, B, V, IPERM, NDIMI, T, DET, JEXP)
IF(DET) 135,175,135
135 IFATTER.EQ.O) GO TO 60
DD $163 \mathrm{I}=1$, NST
DVI=V(I)-FV(I)
IF(I.EQ.1) GO TO 161
IF (DVMAX.GE.DVI) GO TO 163
161 DVMAX=DVI
163 CONTINUE
$A D O 1=D I S C R * D V M A X$
ELM $=0$.
OO $1711=1$, NST
$A D V I=V(I)$
DO $170 \mathrm{~K}=1$, NAC
CPVII,K)=CPV(I,K)+ADDI
IF(CPV(I,K).LT.ADVI) GO TO 165
$F L A G(I, K)=0$.
GO TO 170
165 FLAG(I,K)=1.
EL M=ELM+1.
170 CONTINUE
171 CONTINUE
PRCNT $=$ ELM*100./TNM
WRITE(6,172) PRCNT
172 FORMAT (5X,'PRCNT', 5X,F10.5)
GO TO 60
175 WRITEA6,1801
180 FORMAT ('SOLUTION FAILED')
200 CALL TIME (1,1)
WRITE $(6,210)$

WRITE $(6,250)(I, N A C, V(I) ; I I P C L(I), I=1, N S T)$
250 FORMAT (10X, $13,12 \mathrm{X}, 13,10 \mathrm{X}, \mathrm{E} 16.7,10 \mathrm{X}, 13 / 1)$
WRITE $(6,260)$
260 FORMAT (10X,'DISCR', $10 \mathrm{X},{ }^{\prime}$ DERR', 10 X, 'ITERATION')
DIMENSION V(40),C(40, 100), CPV(40, 100), P(40, 100,40), IIPDL(40),
$1 A(40,40), T(40,40), B(40,1)$, IPERM $(100), K K P O L(40), F L A G(40,100)$,
2FV(40,100), DVMX(100)
REWIND 8
REWIND9
ND I MA $=40$
ND $\operatorname{IMBX}=40$
ND IMT=40
$\mathrm{NSOL}=1$
READ(5,1) NST,NAC,DISCR,DERR
1 FORMAT(I5,I5,2F10.5)
$\operatorname{READ}(8)((C(I, K), I=1, N S T), K=1, N A C)$
DO $2 I=1, N S T$
$\operatorname{READ}(9)((P(I, K, J), K=1, N A C), J=1, N S T)$
2 CONTINUE
CALL TIME(O)
ITER=0
ELM=0.
TNM $=$ NST $\# N A C$
$K N=0$
DO $50 \quad \mathrm{I}=1$, NST
DO $20 \mathrm{~K}=1$, NAC
FLAG(I,K)=0.
IF(K.EQ.1) GO TO 10
IF(OCI.GE.C(I,K)) GO TO 20
10 OCI=C(I,K)
II $P=K$
20 CONTINUE
$B(I, 1)=O C I$
KKPOL (I)=IIP
DO $40 \mathrm{~J}=1$, NST
IF (I.EQ.J) GO JO 30
A(I, J) $=-$ DISCR*P(I,IIP,J)
GO TO 40
$30 \mathrm{~A}(\mathrm{I}, \mathrm{J})=1 .-\mathrm{DISCR} * P(I, I I P, J)$
40 CONTINUE
50 CONTINUE
GO TO 130
60. ITER=ITER+1
DO $120 \quad I=1$, NST
DO $110 \mathrm{~K}=1$, NAC
IF(FLAG(I,K).GE.1.0) GO TO 110
$K N=K N+1$
$P V=0$.
DO $100 \mathrm{~J}=1$, NST
$P V=P V+P(I, K, J) * V(J)$
100 CONTINUE
$C P \vee(I, K)=C(I, K)+D I S C R * P V$
IF(KN.EQ. 11 GO TO 105
IF(CVI.GE.CPV(I,K)) GO TO 110
$105 \mathrm{CVI}=\mathrm{CPV}(\mathrm{I}, \mathrm{K})$
II $P=k$
110 CONTINUE
$K N=0$
DO $115 \mathrm{~J}=1$,NST
IF(I.EQ.J) GO TO 113
$A(I, J)=-D I S C R * P(I, I I P, J)$

GO TO 115
$113 \mathrm{~A}([, J)=1 .-\operatorname{DSCR} * P(I, I I P, J)$
115 CONTINUE
$\mathrm{B}(\mathrm{I}, 1)=\mathrm{C}(\mathrm{I}, \mathrm{II} \mathrm{P})$
BVI $=C V I-V(I)$
$F \vee(I, I I E R)=V(I)$
II POL(I)=IIP
IF(I.EQ.1) GO TO 116
IF (BVMAX.GE.BVI) GD TD 117
BVMAX=BVI
GO TO 120
116 BVMAX=BVI
BVMIN=BVI
GO TO 120
117 IF (BVMIN.LE.BVII GO TO 120
BVMIN=BVI
120 CONTINUE
DO $125 \mathrm{I}=1$, NST
IF(IIPOL(I).NE.KKPOL(I)) GO TO 127
125 CONTINUE
GO TO 200
127 DO 129 I=1,NST
KKPOL (I)=IIPOL(I)
129 CONTINUE
C*** SOLVE A SYSTEM OF EQUATIDNS $A * V=B$ BY CALLING SJBRDUTINE FSLE
130 CALL FSLE(NST,NDIMA, A, NSOL, NDIMBX,B,V,IPERM,NDIMT,T,DET, JEXP)
IF (DET) 135,175,135
135 IF(ITER.EQ.O) GO TO 60
DO $163 \mathrm{~K}=1$, ITER
DO $162 \mathrm{I}=1$,NST
DVIK=V(I)-FV(I,K)
IF(I.EQ.1) GO TO 161
IF (DVMAX.GE.DVIK) GO TO 162
161 DVMAX=DVIK
162 CONTINUE
DVMX(K)=DVMAX
163 CONTINUE
EL M=0.
DO $171 \mathrm{I}=1$,NST
$\triangle D V I=V(I)$
DO $170 \mathrm{~K}=1$, NAC
$L=F L A G(I, K)$
IF(L.LE.O) GO TO 165
CPVAD=CPV(I,K) +DISCR*DVMX(L)
IF(CPVAD.LT.ADVI) GO TO 167
FLAG(I,K)=0.
GO TO 170
165 CPVAD=CPV(I,K) + DISCR*DVMX(ITER)
IF(CPVAD.GE.ADVI) GO TO 170
FLAG(I,K)=ITER
167 ELM=ELM+1.
170 CONTINUE
171 CONTINUE
PRCNT $=E L M * 100 . /$ TNM
WRITE(6,172) PRCNT
172 FORMAT (5X,'PRCNT', 5 X, F10.5)
GO TO 60
175 WRITE(6.180)
180 FORMAT('SOLUTION FAILED')
200 CALL TIME (1,1)

WRITE (6,210)
210 FORMAT (10X,'STATE',10X,'POLICY',15X,'RETURN', 10X,'JPT. POLICY') WRITE (6,250) (I,NAC,V(I),IIPOL(I),I=1,NST)
250 FORMAT (10X,13,12X,I3,10X,E16.7,10X,13/)
WRITE $(6,260)$
260 FORMAT (10X, 'DISCR', 10 X, 'DERR', 10 X, 'ITERATION')
WRITE $(6,300)$ DISCR,DERR, ITER
300 FORMAT (10X,F5.3,8X,F8.5,8X,15)
STOP
END

```
C*##
115.
C**)FI CODE FOR MODIFIED POLICY ITERATIDN WITHOUT ACTIDN ELIMINATION
Cれあ%
            OIMENSION V(40),CV(40),IIPOL(40),CPV(40,100),C(40,100),BV(40),
            1P(40,100,40),OP(40,40),OC140)
            REWIND8
            REWIND9
            READ(5,1) NST,NAC,DISCR,DERR
    1 FORMAT (I5,I5,2F10.5)
            READ(8)((C)I,K),I=1,NST),K=1,NAC)
            DO 2 I=1,NST
            READ(9)((P(I,K,J),K=1,NAC),J=I,NST)
    2 CONTINUE
    CALL JIME\O)
            ITER=0
            ELM=0.
            TNM=NST#NAC
            KN=0
            DO 50 I= 1,NST
            DO 20 K=1,NAC
            IF(K.EQ.I) GO TO 10
            IF(OCI.GE.C(I,K)) GO TO 20
            10 OCI=C(I,K)
            II P=K
    20 CONTINUE
            IF(I.EQ.1) GO TO 30
            IFICMN.LE.OCI\ GO TO 40
            30 CMN=OCI
    40 OC (I)=OCI
            IIPOL(I)=IIP
            DO 45 J=1,NST
            OP (I,J)=P(I,IIP,J)
            45 CONTINUE
            50 CONTINUE
            AD=(DISCR*CMN)/(1.-DISCR)
            DO 55 I=1,NST
            CV(I)=OC(I)+AD
            55 CONTINUE
            NORD=0
            GO TO 130
    60 ITER=1TER+1
    DO 120 I= 1,NST
    DO 110 K=1,NAC
    IF(FLAG{I,K).GE.1.O) GO TO 110
    KN=KN+1
    PV}=0
    DO 100 J=1,NST
    PV=PV+P(I,K,J)*V(J)
100 CONTINUE
    CPV(I,K)=C\I,K)+DISCR*PV
    IF(KN.EQ.1) GO TO 105
    IF(CVI.GE.CPV(I,K)) GO TO 110
105 CVI=CPV(I,K)
    IIP=K
110 CONTINUE
    KN=0
    DO 115 J=1,NST
    OP{I,J)=P(I,IIP,J)
115 CONTINUE
    OC(I)=C(I,IIP)
```

```
    CV(I)=CVI
    IIPOL(I)=IIP
    BVI=CVI-V(I)
    IF(I.EQ.1) GO TO 116
    IF(BVMAX.GE.BVI) GO 10 117
    BVMAX=BVI
    GO TO 120
116 BVMAX=BVI
    BVMIN=BVI
    GO TO 120
117 IF{BVMIN.LE.BVI) GO TO 120
    BVMIN=BVI
120 CONTINUE
    ERR=BVMAX-BVMIN
    IF(ERR.LE.DERR) GO TO 200
    NORD=0
130 NORD=NORD+1
    DO 140 I= L,NST
    OP V=0.
    DO 135 J=1,NST
    OPV=OPV+OP(I,J) %CV(J)
135 CONTINUE
    VI=OC(I)+DISCR*OPV
    V(I)=VI
    PBV=VI-CV(I)
    IF(I.EQ.1) GO TO 139
    IF(PBVMX,GE.PBV) GO TD 136
    PBVMX=PBV
    GO TO 140
136 IF(PBVMN.LE.PBV) GO.TO 140
    PBVMN=PBV
    GO TO 140
139 PBVMX=PBV
    PB VMN=PBV
140 CONTINUE
    ERR=PBVMX-PBVMN
    IF(ERR.LE.DERR)GO TO 151
    DO 141 I=1,NST
    CV(I)=V(I)
141 CONTINUE
    GO TO 130
151 WRITE (6,155) NORD
155 FORMAT(10X,'NORD',5X,I4)
    GO TO 60
200 CALL TIME:1,11
    WRITE (6,210)
210 FORMAT (1OX,'STATE*, LOX,'POLICY',15X,'RETURN',IOX,'JPT. POLICY')
    AD=DISCR*BVMIN/(1.-DISCR)
    DO 205 I=1,NST
    V(I|=CVII)+AD
205 CONTINUE
    WRIIE (6,250) (I,NAC,V(I),IIPOL\I),I=1,NST)
250 FORMAT (10X,I3,12X,I3,10X,E16.7,10X,I3/)
    WRITE (6,260)
260 FORMAT (10X, 'DISCR', 10X.'DERR',10X,'IIERAIION')
    WRITE (6,300) DISCR,DERR,ITER
300 FORMAT (10X,F5.3,8X,F8.5,8X,I5)
    STOP
    END
```

```
C*** G) CODE FOR MODIFIED POLICY ITERATION WITH PROCEDJRE (II)
C***
            DIMENSION V(40),CV(40),IIPOL(40),CPV(40,100),C(40,100),BV(40),
            1P(40,100,40),OP(40,40),OC(40),FLAG(40,100)
            REWIND8
            REWIND9
            READ(5,1) NST,NAC,DISCR,DERR
            l FORMAT(I5,I5,2F10.5)
            READ(8)((C(I,K),I=1,NST),K=1,NAC)
            DO 2 I=1,NST
            READ(9)((P(I,K,J),K=1,NAC),J=1,NST)
            2 CONTINUE
            CALL TIME(O)
            ITER=0
            ELM=0.
            TNM=NST*NAC
            KN=0
            DO 50 I=1,NST
            DO 20 K=1,NAC
            FLAG(I,K)=0.
            IF(K.EQ.1) GO TO 10
            IF(OCI.GE.C(I,K)) GO TO 20
            10 OCI=C(I,K)
            IIP=K
            20 CONTINUE
            IF(I.EQ.1) GO TO 30
            IF(CMN.LE.OCI) GO TO 40
            30.CMN=OC I
            40 OC (I)=OCI
                            II POL (I)=IIP
                            DO. 45 J=1,NST
                            OP(I,J)=P(I,IIP,J)
4 5 \text { CONTINUE}
50 CONTINUE
                            AD=(DISCR*CMN)/(1.-DISCR)
                            DO 55 I=1,NST
                            CV(I)=OC(I)+AD
    55 CONTINUE
    NDRD=0
    GO TO 130
    60 ITER=1TER+1
    DD 120 I=1,NST
    OD 110 K=1,NAC
    IF(FLAG(I,K).GE.1.0) GO TO 110
    KN=KN+1
    PV=0.
    DO 100 J=1,NST
    PV=PV+P(I,K,J)*V(J)
100 CONTINUE
    CPV(I,K)=CII,K)+DI SCR*PV
    IF(KN.EQ.1) GO TO 105
    IF(CVI.GE.CPV(I,K)) GO TO 110
105 CVI=CPV(I,K)
    II P=K
110 CONTINUE
    KN=0
    DO 115 J=1,NST
    OP(I,J)=P(I,IIP,J)
115 CONTINUE
```

$O C(I)=C(I, I I P)$
$\operatorname{CV}(I)=C V I$
IIPOL(I)=IIP
BVI=CVI-V(I)
IF(I.EQ.1) GO TO 116
IF (BVMAX.GE.BVI) GO TO 117
BVMAX=BVI
GO TO 120
116 BVMAX=BVI
BVMIN=BVI
GO TO 120
117 IF(BVMIN.LE.BVI) GO TO 120
BVMIN=BVI
120 CONTINUE
$E R R=B V M A X-B V M I N$
IF(ERR.LE.DERR) GO TO 200
NORD=0
130 NORD=NORD +1
DO $140 \mathrm{I}=1$, NST
$O P V=0$.
DO $135 \mathrm{~J}=1$, NST
$O P V=O P V+O P(I ; J) * C V(J)$
135 CONTINUE
VI =OC(I)+DISCR*OPV
V(I)=VI
PBV=VI-CV(I)
IF(I.EQ.1) GO TO 139
IF (PBVMX.GE.PBV) GO 10136
$P B \vee M X=P B V$
GO TO 140
136 IF (PBVMN.LE.PBV) GO 10140
$P B \vee M N=P B V$
GO 10140
$139 \operatorname{PBVMX=PBV}$
$P B \cup M N=P B \vee$
140 CONTINUE
$E R R=P B V M X-P B V M N$
IFIERR.LE.DERRI GO TO 151
DO $141 \quad I=1$, NST
CV(I)=V(I)
141 CONTINUE
GO TO 130
151 WRITE (6,155) NORD
155 FORMAT (10X, 'NORD',5X,I4)
IF(ITER.EQ.O) GO TO 60
SUBT=1DISCR*BVMAX-(DISCR**(NORD+1))*BVMIN)/(L.-DISCR)
DO $171 \mathrm{I}=1$, NST
ADVI=V(I)-SUBT
DO $170 \mathrm{~K}=1$, NAC
IFIFLAG(I,K).GE. 1.01 GO TO 170
IF(CPV(I,K).GE.ADVI) GO TO 170
FLAG(I,K)=1.
$E L M=E L M+1$.
170 CONTINUE
171 CONTINUE
PRCNT $=E L M * 100 . /$ TNM
WRITE(6,172) PRCNI
172 FORMAT(30X, 'PRCNT',5X,F10.5)
GO TO 60
200 CALL TIME 11,1$)$

WRITE $(6,210)$
210 FORMAT $\left\{10 X\right.$, STATE', $10 X$, PPOLICY', $15 X$, 'RETURN', $10 X,{ }^{\prime}$ JPT. POLICY' $\triangle D=D I S C R * B V M I N /(1 .-D I S C R)$
DO $205 \mathrm{I}=\mathrm{I}$, NST
$V(I)=C V(I)+A D$
205 CONTINUE
WRITE (6,250) (I,NAC,V(I),IIPOL(I),I=1,NST)
250 FORMAT $110 \mathrm{X}, \mathrm{I} 3,12 \mathrm{X}, \mathrm{I} 3,10 \mathrm{X}, \mathrm{E} 16.7,10 \mathrm{X}, 13 / 1$
WRITE $(6,260)$
260 FORMAT (10X,'DISCR', 10X, 'DERR', 10 X, 'IIERATION')
WRITE $(6,300)$ DISCR,DERR, ITER
300 FORMAT(IOX,F5.3,8X,F8.5,8X,I5)
STOP
END

IP $(40,100,40)$, OP $(40,40), O C(40), F L A G(40,100), F V(40)$

REWIND 8
REWIND9
READ（5，1）NST，NAC，DISCR，DERR
1 FORMAT（15，I5，2F10．5）
$\operatorname{READ}(8)((C(I, K), I=1, N S T), K=1, N A C)$
DO $2 \mathrm{I}=\mathrm{l}$ ，NS T
$\operatorname{READ}(9)((P(I, K, J), K=1, N A C), J=1, N S T)$
2 continue
CALL TIME（O）
II $E R=0$
ELM＝0．
$T N M=N S T * N A C$
$K N=0$
DO $50 \quad 1=1$ ，NST
DO $20 \mathrm{~K}=1$ ，NAC
$F L A G(I, K)=0$ ．
IF（K．EQ．1）GO TO 10
IF（OCI．GE．C（I，K））GO TO 20
10 OCI $=C(1, K)$
11 $\mathrm{P}=\mathrm{K}$
20 CONTINUE
IF（I．EQ．1）GO TO 30
IF（CMN．LE．OCI）GO TO 40
$30 \mathrm{CMN}=\mathrm{OC}$ I
40 OC（I）$=0 \mathrm{OCI}$
IIPOL（I）I IIP
DO $45 \mathrm{~J}=1, \mathrm{NST}$
OP（I，J）＝P（I，IIP，J）
45 CONTINUE
50 CONTINUE
$A D=(D I S C R * C M N) /(1,-D I S C R)$
DO $55 \quad I=1$ ，NST
$C V(I)=O C(I)+A D$
55 CONTINUE
NORD $=0$
GO 10130
60 ITER＝ITER＋1
DO $120 \mathrm{I}=1$ ，NST
DO $110 \mathrm{~K}=1$ ，NAC
IF（FLAG（I，K）．GE．1．0）GO TO 110
$K N=K N+1$
$P V=0$ ．
DO $100 \mathrm{~J}=1, \mathrm{NST}$
$P V=P V+P(I, K, J) * V(J)$
100 CONTINUE
$C P \vee(I, K)=C(I, K)+D I S C R * P V$
IF（KN．EQ． 1 ）GO TO 105
IF（CVI．GE．CPV（I，K））GO TO 110
$105 \mathrm{CVI}=\mathrm{CPV}(\mathrm{I}, \mathrm{K})$
II $P=K$
110 CONTINUE
$K N=0$
DO $115 \mathrm{~J}=1$ ，NST
$O P(I, J)=P(I, I I P, J)$
115 CONTINUE

OC(I)=C(I,IIP)
$\operatorname{CV}(I)=\operatorname{CVI}$
IIPOL(I)=IIP
BVI=CVI-V(I)
FV(I) $=\mathrm{V}(\mathrm{I})$
IF(I.EQ.1) GO TO 116
IF(BVMAX.GE.BVI) GO TO 117
BVMAX=BVI
GO 10120
116 BVMAX=BVI
$B \vee M I N=B \vee I$
GO TO 120
117 IF (BVMIN.LE.BVI) GO TO 120
BVMIN=BVI
120 CONTINUE
ERR=BVMAX-BVMIN
IF (ERR.LE.DERR) GO TO 200
NORD=0
130 NORD=NORD+1
DO $140 \quad[=1, N S T$
$O P V=0$.
DO $135 \mathrm{~J}=1$,NST
$O P V=O P V+B P(I ; J) * C V(J)$
135 CONTINUE
VI =OC(I) +OISCR*OPV
V(I)=VI
PBV=VI-CV(I)
IF(I.EQ.1) GO TO 139
IF (PBVMX.GE.PBV) GO 10136
$P B \vee M X=P B V$
GO TO 140
136 IF (PBVMN.LE.PBV) GO TO 140
$P B \vee M N=P B V$
GO TO 140
139 PBVMX=PBV
$P B \vee M N=P B V$
140 CONTINUE
$E R R=P B \vee M X-P B V M N$
IF(ERR.LE.DERR) GO TO 151
DO $141 I=1$,NST
CV(I) $=V(I)$
141 CONTINUE
GO IO 130
151 WRITE (6.155) NORD
155 FORMAT (10X, 'NORD',5X, [4)
IF(ITER.EQ.0) GO 1060
DO $163 \mathrm{I}=1$, NST
DVI=V(I)-FV(I)
IF(I.EQ.1) GO TO 161
IF (DVMAX.GE.DVI) GO TO 163
161 DVMAX=DVI
163 CONTINUE
ADDI = D I SCR $\ddagger D V M A X$
AOD2=D I SCR*PBVMN
ELM=0.
DO $171 \quad I=1$, NST
$A D V I=V(I)+A D D 2$
DO $170 \mathrm{~K}=1$, NAC
$C P V I I, K)=C P V(I, K)+\triangle D D I$
IF (CPV (I,K).LT.ADVI) GO TO 165
$\operatorname{FLAG}(I, K)=0$.
$165 \operatorname{FLAG}(I, K)=1$. $E L M=E L M+1$.
170 CONTINUE
17.1 CONTINUE

PRCNT=ELM*100./TNM
WRITE(6,172) PRCNT
172 FORMAT (30X, 'PRCNT',5X,F10.5)
GO TO 60
200 CALL TIME (1,1)
WRITE (6,210)
 $A D=D I S C R * B V M I N /(1 .-D I S C R)$
DO $205 I=1$, NST
$V(I)=C V(I)+A D$
205 CONTINUE
WRITE (6,250) (I,NAC,V(I);IIPOL(I),I=1,NST)
250 FDRMAT (10X,13,12X,13,10X,E16.7,10X,13/)
WRITE $(6,260)$
260 FORMAT (IOX,'DISCR', 10 X, 'DERR', IOX,'ITERATION')
WRITE (6,300) DISCR,DERR,ITER
300 FORMAT (10X,F5.3.8X,F8.5,8X,I5)
STOP
END
$1 P(40,100,40), \operatorname{OP}(40,40), O C(40), F L A G(40,100), F V(40,100), O V M X(100)$
REWIND8
REWIND9
READ(5,1) NST,NAC,DISCR,DERR
1 FORMAT (15,I5,2F10.5)
READ(8)((C) I, K), I=1,NST),K=1,NAC)
DO $2 \mathrm{I}=1$, NST
$\operatorname{READ}(9)((P) I, K, J), K=1, N A C), J=1, N S T)$
2 CONTINUE
CALL TIME(O)
ITER=0
ELM=0.
TNM $=$ NST $7 N A C$
$K N=0$
DO $50 \mathrm{I}=1$, NST
DO $20 \mathrm{~K}=1$,NAC
FLAG\{I,KJ=0.
IF(K.EQ.I) GO TO 10
IF(OCI.GE.C(I,K)) GO TO 20
10 OCI=C(I,K)
II $\mathrm{P}=\mathrm{K}$
20 CONTINUE
IF(I.EQ.1) GO TO 30
IFICMN.LE.OCI) GO TO 40
$30 \mathrm{CMN}=\mathrm{OC}$ I
40 OC (1) $=0 C 1$
IIPOL(I)=IIP
DO $45 \mathrm{~J}=1, \mathrm{NST}$
OP(I,J)=P(I,IIP,J)
45 CONTINUE
50 CONTINUE
$A D=(D I S C R * C M N) /(1 .-D I S C R)$
DO $55 \mathrm{I}=1$, NST
$C V(I)=O C(I)+A D$
55 CONTINUE
NORD $=0$
GO TO 130
60 ITER= ITER +1
DO $120 \quad I=1$, NST
DO $110 \mathrm{~K}=1$, NAC
IF(FLAG(I,K).GE.1.0) GO TO 110
$\mathrm{KN}=\mathrm{KN}+1$
$P V=0$.
DO $100 \mathrm{~J}=1$,NST
$P V=P V+P(I, K, J) * V(J)$
100 CONTINUE
CPV(I,K)=C(I,K)+DISCR*PV
IF(KN.EQ. 1) GO TO 105
IFICVI.GE.CPV(I,K)) GO TO 110
$105 \mathrm{CVI}=\mathrm{CPV}(\mathrm{I}, \mathrm{K})$
II $\mathrm{P}=\mathrm{K}$
110 CONTINUE
$\mathrm{KN}=0$
DO $115 \mathrm{~J}=1, \mathrm{NSI}$
$O P(I, J)=P(I, I I P, J)$
115 CONTINUE

```
    OC(I)=C(I,IIP)
CV(I)=CVI
    IIPOL(I)=IIP
    BVI=CVI-V(I)
    FV(I,ITER)=V(I)
    IF(I.EQ.I) GO TO 116
    IF(BVMAX.GE.BVI) GO TO 117
    BVMAX=BVI
    GO TO 120
116 BVMAX=BVI
    BVMIN=BVI
    GO JO 120
117 IF(BVMIN.LE.BVI) GO TO 120
    BVMIN=BVI
120 CONTINUE
    ERR=BVMAX-BVMIN
    IF(ERR.LE.DERR) GO TO 200
    NORD=0
130 NORD=NORD +1
    DO 140 I= 1,NST
    OPV=0.
    DO 135 J=1,NST
    OPV=OPV+OP(I,J)*CV(J)
135 CONTINUE
    VI=OC(I) +DISCR*OPV
    V(I)=VI
    PBV=VI-CV(I)
    IF(I.EQ.1) GO TO 139
    IF(PBVMX.GE.PBV) GO TO 136
    PBVMX=PBV
    GO TO 140
136 IF (PBVMN.LE.PBV) GO TO 140
    PB VMN = PBV
    GO TO 140
139 PBVMX=PBV
    PBVMN=PBV
140 CONTINUE
    ERR=PBVMX-PBVMN
    IF(ERR.LE.DERR) GO TO 151
    DO 141 I=1,NST
    CV(I)=V(I)
141 CONTINUE
    GO TO 130
151 WRITE (6,155) NORD
155 FORMAT (10X, 'NORD', 5X, I4)
    IF{ITER.EQ.O\ GO TO 60
    DO 163 K=1, ITER
    DO 162 I=1,NST
    DVIK=V(I)-FV(I,K)
    IF(I.EQ.1) GO TO 16I
    IF(DVMAX.GE.DVIK) GD TO 162
161 DVMAX=DVIK
162 CONTINUE
    DVMX(K)=DVMAX
163 CONTINUE
    ADD2=DISCR*PBVMN
    ELM=0.
    DO 171 I=1,NST
    ADVI=V(I)+ADD2
    DO 170 K=1,NAC
```

```
    L=FLAG(I,K)
    IF(L.LE.O) GO TO 165
    CPVAO=CPV(I,K)+DISCR*DVMX(L)
    IF{CPVAD.LT.ADVI) GO TO 167
    FLAG(I,K)=0.
    GO TO 170
165 CPVAD=CPV(I,K) +DISCR*DVMX(ITER)
    IF(CPVAD.GE.ADVI) GO TO 170
    FLAG(I,K)=ITER
167 ELM=ELM+1.
170 CONTINUE
171 CONTINUE
    PRCNT=ELM*100./TNM
    WRITE(6,172) PRCNT
172 FORMAT ( 30X,'PRCNT', 5X,F10.5)
    GO TO 60
200 CALL TIME(1,1)
    WRITE (6,210)
210 FORMAT (10X,'STATE',10X, 'POLICY', 15X,*RETURN', 10X,'JPT. POLICY')
    AD=DISCR*BVMIN/(1.-DISCR)
    DO 205 I=1,NST
    V(I)=CV(I)+AD
205 CONTINUE
    WRIIE (6,250) (I,NAC,V(I),IIPOL(I),I=1,NST)
250 FORMAT (10X,13,12X,[3,10X,E16.7,10X,13/)
    WRITE (6,260)
260 FORMAT (10X,'DISCR', 10X, 'DERR', 10X,'ITERATION')
    WRITE (6,300) DISCR,DERR,ITER
300 FORMAT(10X,F5.3,8X,F8.5,8X,I 5)
    STOP
    END
```

DIMENSION P $(400,100), I P(100), C(100,400)$
REWIND8
REWIND9
READ（5，10）NST，NAC，NZERO，S，R
10 FORMAT（315．2F10．3）
$X=$ RANDN（S ）
$Y=R A N D(R)$
$J N Z=I R A N D(-N S T)$
DO $200 \quad I=1, N S T$
DO $100 \mathrm{~K}=1$ ，NAC
$20 \mathrm{X}=0 .-$ FRANDN（S）
IF \｛X．LT．O．1 $X=-X$
IF（X．GE．2．）GO TO 20
ICIK＝1000．$-X * 100$ ．
$C(I, K)=I C I K-I * 10$
100 CONTINUE
200 CONTINUE
WRITE（8）（（C（I，K），I＝1，NST），K＝1，NAC）
$I=1$
250 DO $400 \mathrm{~K}=1$ ，NAC
DO $300 \mathrm{~J}=1$ ，NST
$P(K, J)=0$ ．
300 CONTINUE
I SUM＝0
DO $320 \quad L=1$ ，NZERO
$I Y=F R A N D(R) \div 100 .+100$ ．
$I S U M=I S U M+I Y$
$I P\{L\}=I Y$
320 CONTINUE
NMZR＝NZERO－1
$M=1$
SSUM＝0．
340 PKL $=100 *$ IP（M）／ISUM
350 JNZ $=$ IRAND（NST）
IF（P（K，JNZ）．GT．0．0）GO TO 350
$P(K, J N Z)=P K L * 0.01$
SSUM＝SSUM＋P（K，JNZ）
IF（M．GE．NMZR）GO $T 0360$
$M=M+1$
GO TO 340
360 JNZ $=$ IRAND（NST）
IF（P（K，JNZ）．GT．O．O）GOTO 360
$P(K, J N Z)=1 .-5 S U M$
400 CONTINUE
WRITE（9）（（P（K，J），$K=1, N A C), J=1, N S T)$
IF（I．GE．NST）GO TO 500
$I=I+1$
GO TO 250
500 WRITE $(9,510)$
510 FORMAT（＇\＄CONTINUE WITH DR40×40＇）
STOP
END

6あまれ
C＊＊＊K）CODE FOR GENERATING DATA OF TWO CRITERION AUTOMOBILE

```
            DIMENSION CS(50),T(50),E(50),PR(50),C(50,50),P(5),50),GTHR(50,50)
            REWIND8
            REWIND9
            DO 200 I= 1,41
            READ(5,100) CS(I),T(I),E(I),PR(I)
100 FORMAT (F10.1,F10.1,F10.1,F10.3)
    WRITE(6,100) CS(I),T(I),E(I),PRII)
200 CONTINUE
    DO 500 I= 1,40
    M=I+1
    |I=M
    DO 400 K=1,41
    IF{K.EQ.1)GO TO 210
    L=K-1
    AL=L
    C(I,K)=T(M)-CS(L)-E(L)
    CTHR(I,K)=400./(AL**0.5)-C(I,K)
    GO TO 220
210C(I,K)=-E(M)
    CTHR(I,K)=400./(AIt**0.5)-C(I,K)
    220 DO 300 J=1,40
    IF(K.GE.2) GO TO 250
    IF(I.GE.39) GO TO 245
    IF(J.EQ.M) GO TO 230
    IF(J.EQ.40) GO TO 240
    P(K,J)=0.
    GO TO 300
    230 P(K,J)=PR(M)
    GO TO 300
240 P(K,J)=1.-PR(M)
    GO IO 300
245 IF(J.EQ.40) GO TO 246
    P(K,J)=0.
    GO TO 300
246P(K,J)=1.0
    GO TO 300
250 IF(K.EQ.41) GO TO 280
    IF(J.EQ.L) GO TO 260
    IF(J.EQ.40) GO TO 270
    P{K,J)=0.
    GO TO 300
260P(K,J)=PR(L)
    GO TO 300
270 P(K,J)=1.-PR(L)
    GO IO 300
280 IFIJ.EQ.401 GO TO 290
    P{K,J}=0.0
    GO TO 300
290 P|K,J)=1.0
300 CONTINUE
400 CONTINUE
    WRITE(9)((P(K,J),K=1,41),J=1,40)
500 CONTINUE
    WRITE(8)((CII,K),CTHR(I,K),I=1,40),K=1,41)
    STOP
    END
```

REAL＊8 TALPH，DALPH，ALPHA，A，B，T，V，DET，COND，U，RV，DJ，BV，BU，PV，PU， LOBV，OBU，BVIK，BUIK，ODBU，BVMX，BVMV，BUMX，BUMV，RBV，D3J，JJMX，PDUMX， 2DUMAX，EXALP，SALPH，ADEPS，SBEPS
DIMENSION V（50），R（50，50），P（50，50，50），IIPOL（50），0（50，50），A（50，50）， IT（50，50）， $3(50,1), I P E R M(100), K K P O L(50), U(50), R V(5)), D J(50)$ ， $2 \mathrm{BV}(50,50), \mathrm{BU}(50,50), \mathrm{BUI}(50)$
REWIND 8
REWIND9
$E R R=0.001$
EPSLN＝0．000001
ND I $M A=50$
ND I $M B X=50$
NDIMT $=50$
NSOL＝1
READ（5，1）NST，NAC，DISCR，ALPMN，ALPMX
1 FORMAT（2I5．3F10．5）
$A L P H A=A L P M N$
$R E A D(8)((R(I, K), D(I, K), I=I, N S T), K=1, N A C)$
ITER＝0
ITR＝0
DO $2 I=1$ ，NST
$\operatorname{READ}(9)(1 P(I, K, J), K=1, N A C), J=1, N S T)$
2 CONTINUE
DO $50 \mathrm{I}=1$ ，NST
DO $20 \mathrm{~K}=1$ ，NAC
$R D I K=R(I, K)+A L P H A * D(I, K)$
IF（K．EQ． 1 ）GO TO 10
IF（ORI．GE．RDIK）GO TO 20
10 ORI＝RDIK
II P＝K
20 CONTINUE
$B(I, L)=O R I$
KKPOL（I）$=1 \mathrm{IP}$
DO $40 \mathrm{~J}=1$ ，NST
IF（I．EQ．J）GO TO 30
$A(I, J)=-D I S C R * P(I, I I P, J)$
GO TO 40
30 A $(I, J)=1 .-D I S C R * P(I, I I P, J)$
40 CDNTINUE
50 CONTINUE
GO TO 130
60 ITER＝ITER＋1
DO $120 \quad I=1, N S T$
DO $110 \mathrm{~K}=1$ ，NAC
$P V=0$ ．
DO $100 \mathrm{~J}=\mathrm{l}$ ，NST
$P V=P V+P(I, K, J) \neq V(J)$
100 CONTINUE
RPVIK＝R（I，K）＋ALPHA＊D（I，K）＋DISCR＊PV
IF（K．EQ．1）GO JO 105
IF（RVI．GE．RPVIK）GO TO 110
$105 \mathrm{RVI}=\mathrm{RPVIK}$
II $P=K$
110 CONTINUE
DO $115 \mathrm{~J}=1$ ，NST
IF（I．EQ．J）GO TO 113
$A(I, J)=-D I S C R * P\{I, I I P, J\}$

```
        G0 IO 115
    113 A(I,J)=1.-DISCR*P(I,IIP,J)
    115 CONTINUE
        B(I,I)=R(I,IIP)+ALPHA*D(I,IIP)
        IIPOL|I|=IIP
    120 CONTINUE
        DO 125 I=1,NST
        IF(IIPDL(I).NE.KKPOL(I)) GO TO 127
    125 CONTINUE
        GO TO 190
    127 DO 129 I=1,NST
        KKPOL(I)=1IPOL(I)
    129 CONTINUE
C*** SOLVE THE SYSTEM OF EQUATIONS AV=B BY CALLING SUBROUTINE SLE
    130 CALL SLE(NST,NDIMA,A,NSOL,NDIMBX,B,V,IPERM,NDIMT,T,JET,JEXP)
        IF(DET) 135,175,135
    135 GO 10 60
    175 WRITE(6,180)
    180 FORMAT(5X,'SOLUTION FAILED')
        GO TO 700
    190 DO 200 I=1,NST
        IIP=IIPOL(I)
        PV=0.
        DO 192 J=1,NST
        PV=PV+P(I,IIP,J)*V(J)
    192 CONTINUE
    RV(I)=R(I,IIP)+ALPHA*D(I,IIP)+DISCR*PV
    RBV=RV(I)-VII)
    [F(I.EQ.1) GO T0 198
    IF(RBV.GT.BVMX) GO TO 194
    IF(RBV.LT.BVMN) GO TO 196
    GO TO 200
    194 BVMX=RBV
    GO TO 200
    196 BVMN=RBV
    GO TO 200
    198 BVMX=RBV
    BVMN=RBV
    200 CONTINUE
        VERR=BVMX-BVMN
        IFIITR.EQ.O.AND.VERR.LE.ERRI GO TO 206
        ADD=DISCR*BVMN/(1.-DISCR)
        OO 202 I=1,NST
        V(I)=RV(I)+4OD
    202 CONTINUE
        IF(VERR.LE.ERR) GO TO 204
        ITR=ITR+1
        GD TD 190
    204 WRITE(6,205) ITR
    205 FORMAT(5X,'NUMBER OF ITERATION IN T-DPERATION FJR V IS',5X,I5)
    GO TO 60
    206 WRITE{6,205) ITR
    WRIJE(6,208)ALPHA
    208 FDRMAT (5X,'ALPHA =',F20.14)
    ADD=BVMN/(1.-DISCR)
    DO 209 I=1,NST
    V(II=V(I)+ADD
    209 CONTINUE
    WRITEI6,210)
210 FORMAT(10X,'STATE',10X,'POLICY',15X,'RETJRN',IOX,'OPT. POLICY')
```

WRITE(6,220)(I,NAC,V(I),IIPOL(I),I=1,NST)
220 FORMAT $110 \mathrm{X}, 13,12 \mathrm{X}, 13,10 \mathrm{X}, \mathrm{E} 16,7,10 \mathrm{X}, \mathrm{I} 3 / 1$
WRITE $(6,230)$
230 FORMAT (10X, DISCR', IOX, 'ITERATION')
WRITE $(6,240)$ DISCR, ITER
240 FORMAT (10X,F7.5,6X,I5)
WRITE (6,242)
242 FORMAT $/ / / / 1 X$, *** OPTIMAL ACTIONIS) TO BE GHOSEN FOR THE CURREVT 1OPTIMAL POLICY*///)
C* FIND THE INVERSE OF MATRIX A BY CALLING SUBROUTINE INV
CALL INV(NST, NDIMA, A,IPERM,NDIMT,T,DET, JEXP, COND)
IF (DET) $245,620,245$
245 DO $250 \quad I=1$, NST
ID $=0$.
DO $247 \mathrm{~J}=1$, NST
IIP=IIPOL(J)
$T D=T D+T(I, J) * D(J, I I P)$
247 CONTINUE
U(I)=TD
250 CONTINUE
ITR=0
260 DO $300 \quad I=1$,NST
IIP =IIPOL(I)
$P U=0$.
DO $265 \mathrm{~J}=1$, NST
$P U=P U+P(I, I I P, J) * U(J)$
265 CONTINUE
$\mathrm{DU}(I)=\mathrm{D}(\mathrm{I}, \mathrm{II} \mathrm{P})+\mathrm{DISCR} \boldsymbol{\mathrm { P }} \mathrm{C}$
$\mathrm{DBU}=\mathrm{DU}(\mathrm{I})-\mathrm{U}(\mathrm{I})$
IFII.EQ.1) GO TO 290
IF (DBU.GT.BUMX) GO TD 270
IFIDBU.LT.BUMNI GO TO 280
GO TO 300
270 BUMX=DBU
GO TO 300
$280 \mathrm{BUMN}=\mathrm{DBU}$
GO TO 300
290 BUMX $=$ DBU
$B U M N=D B U$
300 CDNTINUE
UERR $=B U M X-B U M N$
IF (UERR.LE.ERR) GO TO 310
DO $3051=1$,NST
U(I) = DU(I)
305 CONTINUE
ITR=ITR+1
GO TO 260
310 ADD=DISCR*BUMN/(1.-DISCR)
DO $320 \quad I=1$, NST
$U(I)=D U(I)+A D D$
320 CONTINUE
WRITE 6,590$)$ ITR
DO $325 \quad I=1$, NST
DO $323 \mathrm{~K}=1$, NAC
$P V=0$.
DO $321 \mathrm{~J}=1, \mathrm{NST}$
$P V=P V+P(I, K, J) * V(J)$
321 CONTINUE
$B V(I, K)=R(I, K)+A L P H A * D(I, K)+D I S C R * P V-V(I)$
323 CONTINUE

```
325 CONTINUE
    call TIME(0)
    ITER=1
330 DO 340 I=I,NST
    DO 335 K=1,NAC
    PU=0.
    DO 333 J=1,NST
    PU=PU+P(I,K,J)*U(J)
333 CONTINUE
    BU(I,K)=D(I,K)+DISCR*PU-U(I)
335 CONTINUE
340 CONIINUE
    KN=0
    DO 380 I=1,NSI
    IIP=IIPOL(I)
    OBV=BV(I,IIP)
    OBU=BU{I,IIP)
    DO 370 K=1,NAC
    IF(K.EQ.IIP) GO TO }37
    BVIK=BV(I,K)
    BUIK=BU(I,K)
    IF(BUIK.LE.OBU) GO TO 370
    IF(BVIK.GT.OBV) GO TO 360
    KN=KN+1
    TALPH=I-BVIK+OBV)/(BUIK-DBU)
    IF{KN.EQ.1) GO TO 350
    ADEPS=DALPH+EPSLN
    SBEPS=DALPH-EPSLN
    IF(TALPH.GE.ADEPS) GO TO 370
    IFITALPH.LE.SBEPS) GO TO 350
    IF(BUIK.LE.BUI(I)) GO TO 370
    KKPOL(I)=K
    BUI(I)=BUIK
    GO TO 370
350 DALPH=TALPH
    DO 357 J=1,NST
    IF(J.EQ.I) GO TO }35
    KKPOL(J)=IIPOL(J)
    BUI(J)=0.
    GO TO 357
355 KKPOL(J)=K
    BUI(J)=BUIK
357 CONTINUE
    GO TO 370
360 WRITE(6,365)I,K,BVIK,BUIK,OBV,OBU
365 FORMAT(5X,'BETTER POLICY EXIST',5X,2I5,4E15.71
370 CONTINUE
380 CONJINUE
385 IF(KN.EQ.O) GD TO 600
    AL PHA=ALPHA +DALPH
    DO 393 I=1,NST
    IF(KKPOL(I).EQ.IIPOL(I)) GD TO 393
    WRITE(6,390) ALPHA,I,KKPOL(I)
390 FORMAT(5X,'ALPHA =',F20.14,5X,'I =',I5,5X,'K =', [5)
393 CONTINUE
    IF(ALPHA.GE.ALPMX) GO TO 700
    IF(ALPHA.LT.ALPMNJ GO TO 700
399 DO 950 K=1,NST
    IF(KKPOL(K).EQ.IIPOL(K)) GO TO 900
    IFRST=K
```

```
        KFRST=KKPOL(K)
        DO 410 J=1,NST
    IF(J.EQ.IFRST) GO TO 400
    RV(J)=-DISCR*P(IFRST,KFRST,J)
    GO T0 410
400 RV(J)=1.-DISCR*P(IFRST,KFRST,J)
410 CONTINUE
    DO 430 I=1,NST
    PU=0.
    DO 420 J=1,NST
    PU=PU+RV(J)*T(J,I)
420 CONTINUE
    DU(I)=PU
430 CDNTINUE
    PU=DU(IFRST)
    IF{PU.EQ.O.J GO TO 620
    DO 450 J=1,NST
    IFIJ.EQ.IFRST\ GO TO 440
    DU(J)=-DU(J)/PU
    GO TO 450
440 DU(J)=1/PU
450 CONTINUE
    DO 480 I=1,NST
    PV =T(I,IFRST)
    DO 470 J=1,NST
    IF(J.EQ.IFRST) GO TO 460
    T(I,J)=T(I,J)+PV*DU(J)
    GO TO 470
460 T(I,J)=PV:DU(J)
470 CONTINUE
480 CONTINUE
900 IIPOL(K)=KKPOL(K)
950 CONTINUE
    DO 490 I=1.NST
    V(I)=V(I)+DALPH*U(I)
    PU=0.
    DO 485 J=1,NST
    IIP=IIPOL(J)
    PU=PU+T(I,J)*BU(J,IIP)
485 CONTINUE
    U(I)=U(I)+PU
490 CONTINUE
    ITR=0
500 DO 550 I=1,NST
    IIP=IIPOL\I )
    PU=0.
    DO 510 J=1,NST
    PU=PU+P(I,IIP,J)*U(J)
510 CONTINUE
    DU(I)=D(I,IIP)+DISCR*PU
    DBU=DU(I)-U(I)
    IF(I.EQ.1) GO TO 540
    IF(DBU.GT.BUMX) GO TD 520
    IF(DBU.LT.BUMN) GO TO 530
    GO TO 550
520 BUMX=DBU
    GO TO 550
530 BUMN=DBU
    GO TD 550
540 BUMX=DBU
```

$B U M N=D B U$
550 CONTINUE
UERR=BUMX-BUMN
IF (UERR.LE.ERR) GO TO 570
DO $560 \mathrm{I}=1$, NST
U(I)=DU(I)
560 CONTINUE
ITR=ITR+1
GO TO 500
570 ADD=DISCR*BUMN/(1.-DISCR)
DO $580 \mathrm{I}=1, \mathrm{NST}$
$U(\mathrm{~F})=\mathrm{DU}(\mathrm{I})+\triangle D D$
580 CONTINUE
WRITE (6,590) ITR
590 FORMAT(5X, NUMBER OF ITERATIDN IN S-OPERATION FOR U IS', 5X, I5)
DO $599[=1, N S T$
DO . $597 \mathrm{~K}=1$, NAC
$B V(I, K)=B V(I, K)+D A L P H * B U(I, K)$
597 CONTINUE
599 CONTINUE
ITER=ITER+1
GO TO 330
600 WRITE $(6,610)$
610 FORMATI5X,'OPIIMAL FOR ALL ALPHA GREATER THAN THE ©JRRENT VALUE')
GO TO 700
620 WRITE $(6,630)$
630 FORMAT (5X,'INVERSION FAILED')
700 CALL TIME(1,1)
STOP
END

REAL＊8 TALPH，DALPH，ALPHA，A，B，T，V，DET，COND，U，RV，DJ，BV，BJ，PV，PU， IOBV，OBU，BVIK，BUIK，OOBU，BVMX，BVMN，BUMX，3UMN，RBV，D3J，DJMX，PDUMX， 2DUMAX，EXALP，SALPH，ADEPS，SBEPS
DIMENSION V（50），R\｛50，50），P（50，5），50），IIPOL（50），D（50，50），A（50，50）， 1T（50，50），B（50，1），IPERM（100），KKPOL150），U（50），RV（50），DU（50）， $2 \operatorname{BV}(50,50), \operatorname{BU}(50,50), \operatorname{BUI}(50)$
REWIND8
REWIND9
$E R R=0.001$
$E P S L N=0.000001$
ND IMA $=50$
ND I $M B X=50$
ND IMT $=50$
NS OL＝1
READ（5，1）NST，NAC，DISCR，ALPMN，ALPMX
1 FORMAT（2I5，3F10．5）
AL PHA＝ALPMN
READ（8）（（R（I，K），D（I，K），I＝1，NST），$K=1, N A C)$
IT $E R=0$
ITR＝0
DO $2 I=1$ ，NST
$\operatorname{READ}(9)(1 P(I, K, J), K=1, N A C), J=1, N S T)$
2 CONTINUE
DO $50 \quad[=1$ ，NST
DO $20 \mathrm{~K}=1$ ，NAC
RDIK＝R（I，K）＋ALPHA＊D（I，K）
IF（K．EQ．I）GO TO 10
IF（ORI．GE．RDIK）GO TO 20
10 ．ORI I RDIK
I I $P=K$
20 CONTINUE
$\mathrm{B}(\mathrm{I}, \mathrm{l})=\mathrm{OR} \mathrm{I}$
KKPOL（I）$=$ IIP
DO $40 \mathrm{~J}=1$ ，NST
IF（I．EQ．J）GO TO 30
$A!I, J)=-D I S C R * P(I, I I P, J)$
GO TO 40
$30 \mathrm{~A}(\mathrm{I}, \mathrm{J})=1 .-\operatorname{DISCR*P(I,IIP,J)}$
40 CONTINUE
50 CONTINUE
GO 10130
60 ITER＝ITER＋1
DO $120 \mathrm{I}=1$ ，NST
DO $110 \mathrm{~K}=1$ ，NAC
$\mathrm{PV}=0$ ．
DO $100 \mathrm{~J}=1$ ，NST
$P V=P V+P(I, K, J) \neq V(J)$
100 CONTINUE
$R P \vee I K=R(I, K)+A L P H A * D(I, K)+D I S C R * P V$
IFIK．EQ．1）GO TO 105
IFIRVI．GE．RPVIK）GO TO 110
105 RVI＝RPVIK
II $\mathrm{P}=\mathrm{K}$
110 CONTINUE
DO $115 \mathrm{~J}=1$ ，NST
IF（I．EQ．J）GO TO 113
$A(I, J)=-D I S C R * P(I, I I P, J)$

```
    GO TO 115
    113 A(I,J)=1.-DISCR*P(I,IIP,J)
    115 CONTINUE
    B(I,I)=R(I,IIP)+ALPHA*D(I,IIP)
    IIPOL(I)=IIP
    120 CONTINUE
    DO 125 I=1,NST
    IF(IIPOL(I).NE.KKPOL(I)) GO TO 127
    125 CONTINUE
    GO TO 190
    127 DO 129 I=1,NST
    KKPOL(I)=IIPOL(I)
    129 CONTINUE
C*** SOLVE THE SYSTEM OF EQUATIONS AV=B By CALLING SUBRDJTINE SLE
    130 CALL SLEINST,NDIMA,A,NSOL,NDIMBX,B,V,IPERM,NDIMI,T,OET,JEXP)
    IF(DET) 135,175,135
    135 GO TO 60
    175 WRITE(6,180)
    180 FORMAT(5X,'SOLUTION FAILED')
    GO TO 700
    190 DO 200 I=1,NST
    IIP=IIPOL(I)
    PV=0.
    DO 192 J=1,NST
    PV=PV+P(I,IIP,J)*V(J)
    192 CONTINUE
    RV(I)=R(I,IIP)+ALPHA*D(I,IIP)+DISCR*PV
    RBV=RV(I)-V(I)
    IF(I.EQ.1) GO TO 198
    IF(RBV.GT.BVMX) GO TO 194
    IF{RBV.LT.BVMNI GO TO 196
    GO TO 200
    194 BVMX=RBV
    GO TO 200
    196 BVMN=RBV
    GO TO 200
    198 BVMX=RBV
    BVMN=RBV
    200 CONTINUE
    VERR=BVMX-BVMN
    IFIITR.EQ.O.AND.VERR.LE.ERRI GO TO 2OS
    ADD=DISCR*BVMN/(1.-DISCR)
    DO 202 [=1,NST
    V(I)=RV(I)+ADD
    202 CONTINUE
    IF(VERR.LE.ERR) GO TO 204
    ITR=ITR+1
    GO TO 190
    204 WRITE(6,205) ITR
    205 FORMAT(5X,'NUMBER OF ITERATION IN T-OPERATION FOR V IS',5X,I5)
    GO TO 60
    206 WRITE(6,205) ITR
    WRITEI6,208)ALPHA
    208 FORMAT(5X,'ALPHA =',F20.14)
    ADD=BVMN/(1.-DISCR)
    DO. 209 I=1,NST
    V(I)=V(I)+ADD
    209 CONTINUE
        WRITE(6,210)
    210 FORMAT(10X,'STATE',IOX,"POLICY',15X,'RETURN',IOX,'JPT. POLICY']
```

```
            WRITE(6,220)(I,NAC,V(I),IIPOL(I),I=1,NST)
220 FORMAT 1 10X,I 3,12X,I3,10X,E16.7,10X,I3/1
WRITE(6,230)
                                    136.
230 FORMAT (10X, 'DISCR', 10X, 'ITERATION*)
    WRITE(6,240)DISCR,ITER
    240 FORMAT (10X,F7.5,6X,15)
    WRITE(6,242)
    242 FORMAT(///1X,' OPTIMAL ACJIONIS) TO BE CHOSEN FOR THE CURRENT
    IOPTIMAL POLICY'///I
C* FIND THE INVERSE OF MATRIX A BY CALLING SUBROUTINE INV
    CALL INV(NST,NDIMA,A,IPERM,NDIMT,T,DET,JEXP,COND)
    IF(DET) 245,620,245
    245 DO 250 I= L,NST
    TD=0.
    DO 247 J=1,NST
    IIP=IIPOL(J)
    TD=TD+T(I,J)*D(J,IIP)
247 CONTINUE
    U(I)=TD
250 CONTINUE
    ITR=0
260 DO 300 I=1,NST
    IIP=IIPOL(I)
    PU=0.
    DO 2.65 J=1,NST
    PU=PU+P{I,IIP,J)*U(J)
265 CONTINUE
    DU{I)=D(I,IIP)+DISCR*PU
    DBU=DU(I)-U(I)
    IF(I.EQ.I) GO TO 290
    IF(DBU.GI.BUMX) GO TO 270
    IF(DBU.LT.BUMN) GD TO 280
    GO TO 300
270 BUMX=DBU
    GO TO 300
280 BUMN=DBU
    GO TO 300
290 BUMX=DBU
    BUMN=DBU
300 CONTINUE
    UERR = BUMX - BUMN
    IF (UERR.LE.ERR) GO TO 310
    DO 305 I=1,NST
    U(I)=DU(I)
305 CONTINUE
    ITR=ITR+1
    GO TO 260
310 ADD=DISCR*BUMN/(1.-DISCR)
    DO 320 I=1,NST
    U\I)=DU(I)+ADD
320 CONTINUE
    WRITE(6,590) ITR
    DO 325 I=1,NST
    DO 323 K=1,NAC
    PV=0.
    DO 321 J=1,NST
    PV=PV+P(I,K,J)*V(J)
321 CONTINUE
    BV(I,K)=R(I,K)+ALPHA*D(I,K)+DISCR*PV-VII)
323 CONTINUE
```

```
325 CONTINUE
    CALL TIME(O)
    ITER=1
137.
330 DO 340 I=1,NST
    DO 335 K=1,NAC
    PU=0.
    DO 333 J=1,NST
    PU=PU+P(I,K,J)*U(J)
3 3 3 \text { CONTINUE}
    BU(I,K)=D(I,K)+DISCR*PU-U(I)
335 CONTINUE
340 CONTINUE
    KN=0
    DO 380 I=1,NST
    IIP=IIPOL(I)
    OBV=BV{I,IIP)
    OBU=BU(I,IIP)
    DO 370 K=1,NAC
    IF(K.EQ.IIP) GO JO 370
    BVIK=B\vee(I,K)
    BUIK=BU(I,K)
    IF(BUIK.LE.OBU) GO TO 370
    IF(BVIK.GT.OBV) GO TO 360
    KN=KN+1
    BUIK=BUIK-OBU
    TALPH=(-BVIK+OBV)/BUIK
    IF(KN.EQ.1) GO TO 350
    IF(DALPH.LT.TALPH) GO TO 370
    IF(DALPH.GT.TALPHI GO TO 350
    IF(BUIK.LE.OOBU) GO TO }37
350 DALPH=TALPH
    IFRST=I
    KFRST=K
    OOBU=BUIK
    GO TO 370
360 WRITE(6,365)I,K,BVIK,BUIK,OBV,OBU
365 FORMAT(5X,'BETTER POLICY EXIST',5X,215,4E16.7)
370 CONTINUE
380 CONTINUE
385 IF(KN.EQ.O) GO TO 600
    AL PHA = ALPHA +DALPH
    1IPOL(IFRST)=KFRST
    WRITE(6,390)ALPHA,IFRST,KFRST
390 FORMAT(5X,'ALPHA =',F20.14,5X,'I =',I5,5X,*K =',[5)
    IF(ALPHA.GE.ALPMX) GO TO 700
    IF(ALPHA.LT.ALPMN) GO TO 700
    DO 410 J=1,NST
    IF(J.EQ.IFRST) GO TO 400
    RV(J)=-DISCR*P(IFRST,KFRST,J)
    GO TO 410
400 RV(J)=1.-DISCR*P(IFRST,KFRST,3)
410 CONTINUE
    OO 430 I=1,NST
    PU}=0
    DO 420 J=1,NST
    PU=PU+RV(J)*T(J,I)
420 CONTINUE
    DU(I)=PU
430 CONTINUE
    PU=DU(IFRST)
```

```
    IFIPU.EQ.O.) GO TO 620
    DO 450 J=1,NST
    IF(J.EQ.IFRST) GO TO 440
    DU(J)=-DU(J)/PU
    GO TO 450
440 DU(J)=1/PU
450 CONTINUE
    DO 480 I= 1,NST
    PV=T(I,IFRST)
    DO 470 J=1,NST
    IF(J.EQ.IFRST) GO TO 460
    T(I,J)=T(I,J)+PV*DU(J)
    GO TO 470
460 T(I,J)=PV*DU(J)
470 CONTINUE
480 CONTINUE
    DO 490 I=1,NST
    V(I)=V(I)+DALPH*U(I)
    PU=0.
    DO 485 J=1,NST
    IIP=IIPOL(J)
    PU=PU+T(I;J)*BU(J,IIP)
485 CONTINUE
    U(I)=U(I)+PU
490 CONTINUE
    ITR=0
500 DO 550 I=1,NST
    IIP=IIPOL(I)
    PU=0.
    DO 510 J=1,NST
    PU=PU+P(I,IIP,J)*U(J)
510 CONTINUE
    DU(I)=D(I,IIP)+DISCR*PU
    DBU=DU(I)-U(I)
    IF(I.EQ.1) GO TO 540
    IF(DBU.GT.BUMX) GO TO 520
    IF(DBU.LT.BUMN)GO TO 530
    GOTO 550
520 BUMX=DBU
    GO TD 550
530 BUMN=DBU
    GO TO 550
540 BUMX=DBU
    BUMN=DBU
550 CONTINUE
    UERR=BUMX-BUMN
    IF|UERR.LE.ERR GO TO 570
    DO 560 I=1,NST
    U(I)=DU(I)
560 CONTINUE
    ITR=ITR+1
    GO TO 500
570 AOD=DISCR*BUMN/(1.-DISCR)
    DO 580 I=1,NST
    U(I)=DU(I)+ADD
580 CONTINUE
    WRITE(6,590) ITR
590 FORMAT (5X,'NUMBER OF ITERATION IN S-OPERATION FOR U IS',5X,I5)
    DO 599 I= ,NST
    DO 597 K=1,NAC
```

$B \vee(I, K)=B V(I, K)+D A L P H * B U(I, K)$
597 CONTINUE
599 CONTINUE
ITER=ITER+1
GB TD 330
$600 \operatorname{WRITE}(6,610)$
610 FORMAT (5X,'OPIIMAL FOR ALL ALPHA GREATER IHAN THE CJRRENT VALUE') GO TO 700
620 WRITE $(6,630)$
630 FORMAT (5X,'INVERSION FAILED')
700 CALL TIME (1,1)
STOP
END

REAL＊8 TALPH，DALPH，ALPHA，A，B，T，V，DET，COND，U，RV，DJ，BV，BU，PV，PU， LOBV，OBU，BVIK，BUIK，OOBU，BVMX，BVMV，BUMX，BUMN，RBV，DJJ，DJ JX，PDUMX， 2DUMAX，EXALP，SALPH，$\triangle D E P S, S B E P S$
DIMENS ION V（50），R（50，50），P（50，50，50），IIPGL（50），D（50，50），A（50，50），
$1 \mathrm{~T}(50,50), \mathrm{B}(50,1), \mathrm{I}$ PERM（100）， $\operatorname{KKPQL}(50), 0(50), \operatorname{RV}(5)), 0 \cup(50)$ ， $2 \operatorname{BV}(50,50), \operatorname{BU}(50,50), F L A G(50,50), B \cup I(50)$
REWIND8
REWIND9
$E R R=0.001$
EPSLN＝0．000001
ND IMA $=50$
ND I $M B X=50$
ND IMT $=50$
NSOL $=1$
READ（5，1）NST，NAC，DISCR，ALPMN，ALPMX
1 FORMAT（2I5，3F10．51
$A L P H A=\triangle L P M N$
$E X A L P=A L P M X$
TNAC＝NST＊NAC
ELM＝0．
$A P R N T=0$ ．
READ（8）（ $R(I, K), D(I, K), I=1, N S T), K=1, N A C)$
IT $E R=0$
$I T R=0$
DO $21=1$ ，NS T
READ（9）（IP（I，K，J），K＝1，NAC），J＝1，NST）
2 CONTINUE
DO $50 \quad I=1$ ，NST
DO $20 \mathrm{~K}=1$ ，NAC
FLAG（I，$K)=-1$
RDIK $=R(I, K)+A L P H A * D(I, K)$
IF（K．EQ．1）GO TO 10
IF（ORI．GE．RDIK）GO TO 20
10 ORI＝RDIK
1 I $P=K$
20 CDNTINUE
B（I， 1$)=O R I$
KKPOL（I）＝IIP
DO $40 \mathrm{~J}=1, \mathrm{NST}$
IF（I．EQ．J）GD TO 30
$A(I, J)=-D I S C R * P(I, I I P, J)$
GO IO 40
$30 \mathrm{~A}(\mathrm{I}, \mathrm{J})=1 .-\mathrm{DISCR} * P(I, I I P, J)$
40 CONTINUE
50 CONTINUE
GO TO 130
60 ITER＝ITER＋1
DO $120 \mathrm{I}=1$ ，NS I
DO $110 \mathrm{~K}=1$ ，NAC
$\mathrm{PV}=0$ ．
DO $100 \mathrm{~J}=1, \mathrm{NST}$
$P V=P V+P(I, K, J) * V(J)$
100 CONTINUE
$R P \vee I K=R(I, K)+A L P H A * D(I, K)+D I S C R * P V$
IF（K．EQ．1）GO TO 105
IF（RVI．GE．RPVIK）GO TO 110
105 RVI＝RPVIK

```
        IIP=K
110 CONTINUE
    DO 115 J=1,NST
141.
    IF(I.EQ.J) GO TO 113
    A(I,J)=-DISCR*P(I,IIP,J)
    GO TO 115
    113 A(I,J)=1.-DISCR*P(I,IIP,J)
    115 CONTINUE
    B(I,I)=R(I,IIP)+ALPHA*D(I,IIP)
    IIPOL(I]=IIP
    120 CONTINUE
    DO 125 I=1,NST
    IFIIIPOL(I).NE.KKPOL(I)) GO TO 127
    125 CONTINUE
    GO TO 190
    127 DO 129 I=1,NST
    KKPOL(I)=IIPOL(I)
    129 CONIINUE
C*s* SOLVE THE SYSTEM OF EQUATIONS AV=B BY CALLING SUBROJTINE SLE
    130 CALL SLEINST,NDIMA,A,NSOL,NDIMBX,B,V,IPERM,NOIMT,T,JET,JEXP)
    IF(DET) 135,175,135
    135 GO TO 60
    175 WRITE(6,180)
    180 FORMAT(5X,'SOLUTION FAILED')
    GO TO 700
    190 00 200 I=L,NST
    IIP=IIPOL\I)
    PV=0.
    DO 192 J=1,NST
    PV =PV+P{I,IIP,J|*V(J)
    192 CONTINUE
    RV(I)=R(I,IIP)+ALPHA*D(I,IIP)+DISCR*PV
    RBV=RV(I)-V(I)
    IF(I.EQ.1)GOTO198
    IF(RBV.GT.BVMX) GO TO 194
    IF(RBV.LT.BVMN) GO TO 196
    GO 10 200
    194 BVMX=RBV
    GO TO 200
    196 BVMN=RBV
    GO TO 200
    198 BVMX=RBV
        BVMN=RBV
    200 CONTINUE
        VERR=BVMX-BVMN
        IF(ITR.EQ.O.AND.VERR.LE.ERR) GO TO 206
        ADD=DISCR*BVMN/(1.-DISCR)
        OO 202 I=1,NST
        V(I)=RV(I)+ADD
    202 CONTINUE
        IF(VERR.LE.ERR) GO TO 204
        ITR=ITR+I
        GO TO 190
    204 WRITE(6,205) ITR
    205 FORMAT(5X, 'NUMBER OF ITERATION IN T-IPERATION FOR V IS',5X,I5)
    GO TO 60
    206 WRITE(6,205) ITR
        WRITE (6,208)ALPHA
    208 FGRMAT (5X,'ALPHA =',F20.14)
        ADD=BVMN/(1.-DISCR)
```

```
        DO 209 I= L,NST
        V(I)=V(I)+ADD
    209 CONTINUE
        142.
    WRITE(6,210)
    210 FORMAT(10X,'STATE',10X,'POLICY',15X,'RETURN',IOX,'JPT. POLICY')
    WRITE(6,220\(I,NAC,V(I),IIPOLII),I=1,NST)
    220 FORMAT(10X,13,12X,13,10X,E16,7,10X,I3/)
    WRITE(6,230)
    230 FGRMAT(1OX,'DISCR',IDX,'ITERATION')
    WRITE{6,240)DISCR,ITER
    240 FORMAT (10X,F7.5,6X,I5)
    WRITE(6,242)
    242 FORMAT(///IX,*** OPTIMAL ACTION(S) TO BE CHOSEN FOR THE CURREVT
    IOPTIMAL POLICY'///I
C*** FIND IHE INVERSE OF MATRIX A BY CALLING SUBROUTINE INV
    CALL INV(NST,NDIMA,A,IPERM,NDIMT,T,DET,JEXP,COND)
    IF (DET) 245,620,245
    245 DO 250 I=1,NST
    TD =0.
    DO 247 J=1,NST
    II P=IIPOL(J)
    TD=TD+T(I,J)*D(J,IIP)
    247 CONTINUE
    U(I)=TD
    250 CONTINUE
    ITR=0
    260 DO 300 I= I,NST
    IIP=IIPOL(I)
    PU=0.
    DO 265 J=1,NST
    PU=PU+P(I,IIP,J)\not=U\J)
265 CONTINUE
    DU(I)=D(I,IIP)+DISCR*PU
    DBU=DU(I)-U(I)
    IFII.EQ.1) GO TO 290
    IF(DBU.GT.BUMX) GO TO 270
    IF(DBU.LT.BUMN) GO TO 280
    GO TO 300
270 BUMX=DBU
    GO TO 300
280 BUMN=DBU
    GO TO 300
290 BUMX=DBU
    BUMN=DBU
300 CONTINUE
    UERR = BUMX-BUMN
    IF(UERR.LE.ERR) GO TO }31
    DO 305 I=1,NST
    U(I)=DU(I)
305 CONTINUE
    ITR=ITR+1
    GO TO 260
310 ADD=DISCR*BUMN/(1.-DISCR)
    DO 320 I= ,NST
    U(I)=DU(I)+ADD
320 CONTINUE
    WRITE\6,590) ITR
    DO 325 I=1,NST
    DO 323 K=1,NAC
    PV =0.
```

```
    DQ 321 J=1,NST
    PV=PV+P(I,K,J)*V(J)
321 CONTINUE
        143.
    BV(I,K)=R{I,K)+ALPHA*D(I,K)+DISCR*PV-V(I)
    323 CONTINUE
    325 CONTINUE
    CALL TIME(O)
    IT ER=1
    330 DO 340 I= L,NST
    B(I,1)=U(I)
    DO 335 K=1,NAC
    PU=0.
    DO 333 J=1,NST
    PU=PU+P(I,K,J)*U(J)
333 CONTINUE
    BU(I,K)=D(I,K)+DISCR*PU-U(I)
335 CONTINUE
340 CONTINUE
    KN=0
    OO 380 I=1,NST
    IIP=IIPOL\I)
    OBV=BV(I,IIP)
    OBU=BU(I,IIP)
    OO 370 K=1,NAC
    IF(K.EQ.IIP) GO TD 370
    BVIK=BV(I,K)
    BUIK=BU(I,K)
    IF(BUIK.LE.OBU) GO TO 370
    IF(BVIK.GT.OBV) GD TO 360
    KN=KN+1
    TALPH=(-BVIK+OBV)/(BUIK-OBU)
    IF(KN.EQ.1) GO TO 350
    ADEPS=DALPH+EPSLN
    SBEPS=DALPH-EPSLN
    IF(TALPH.GE.ADEPS) GO TO }37
    IF(TALPH.LE.SBEPSI GO TO }35
    IF{BUIK.LE.BUI(I)) GO TO 370
    KKPOL(I)=K
    BUI(T)=BUIK
    GO TO 370
350 DALPH=TALPH
    DO 357 J=1,NST
    IF(J.EQ.I) GO TO 355
    KKPOL{J)=IIPOL(J)
    BUI(J)=0.
    GO TO 357
355 KKPOL(J)=K
    BUI(J)=BUIK
357 CONTINUE
    GO TO 370
360 WRITE\6,365)I,K,BVIK,BUIK,OBV,OBU
365 FORMAT(5X,'BETTER POLICY EXIST',5X,2I5,4E1S.7)
370 CONTINUE
380 CONTINUE
385 IF(KN.EQ.O) GO FO 600
    AL PHA=ALPHA + DALPH
    DO 393 I=1;NST
    IF(KKPOL(I).EQ.IIPOL(I)) GO TO 393
    WRITE(6,390)ALPHA,I,KKPOL (I)
390 FORMAT (5X,'ALPHA =',F20.14,5X,'I=',I5,5X,'K=',I 5)
```

```
393 CONTINUE
    PRCNT=(ELM/TNAC)*100.
    WRITE(6,394) PRCNT
394 FORMAT(5X,'PRCNT',5X,F10.6)
    APRNT = APRNT +PRCNT
    ELM=0.
    IF(ALPHA.GE.ALPMX) GO TO 700
    IF(ALPHA.LT.ALPMN) GO TO 700
399 DO 950 K=1,NST
    IF(KKPDL(K).EQ.IIPOL(K)) GO TO 900
    IFRST=K
    KFRST=KKPOL (K)
    DO 410 J=1,NST
    IF(J.EQ.IFRST) GO TO 400
    RV(J)=-DISCR*P(IFRST,KFRST,J)
    GO TO 410
400 RV(J)=1.-DISCR*P(IFRST,KFRST,J)
410 CONTINUE
    DO 430 I=1,NST
    PU=0.
    DO 420 J=1,NST
    PU=PU+RV(J)*T(J,I)
420 CONTINUE
    DU(I)=PU
430 CONTINUE
    PU=DU(IFRST)
    IF(PU.EQ.O.) GO TO 620
    DO 450 J=1,NST
    IF(J.EQ.IFRST) GO TO 440
    DU(J)=-DU(J)/PU
    GO TO 450
440 DU(J)=1/PU
450 CONTINUE
    DO 480 [=1,NST
    PV=T(I,IFRST)
    DO 470 J=1,NST
    IF(J.EQ.IFRST) GO TO 460
    T(I,J)=T(I,J)+PV*DU(J)
    GO TO 470
460 T([,J)=PV*DU\J)
470 CONTINUE
480 CONTINUE
900 1IPOL(K)=KKPOL(K)
950 CONTINUE
    OO 490 I=1,NST
    V(I)=V(I)+DALPH*U(I)
    PU=0.
    OO 485 J=1,NST
    IIP=IIPOL(J)
    PU=PU+T(I,J)*BU(J,IIP)
485 CONTINUE
    U(I)=U(I)+PU
490 CONTINUE
    ITR=0
500 DO 550 I=1,NST
    IIP=1IPOL(I)
    PU=0.
    DO 510 J=1,NST
    PU=PU+P(I,IIP,J)*U(J)
```

510 CONTINUE

```
    DU(I)=D(I,IIP)+DISCR*PU
    OBU=DU(I)-U(I)
    IF(I.EQ.1) GO TO 540
        145.
    IF(DBU.GT.BUMX) GD TO 520
    IF(DBU.LI.BUMN) GO TO 530
    GO TO 550
520 BUMX=DBU
    GO TO 550
530 BUMN=DBU
    GO TO 550
540 BUMX=DBU
    BUMN=DBU
550 CONTINUE
    UERR=BUMX-BUMN
    IF(UERR.LE.ERR) GO TO 570
    DO 560 I=1,NST
    U(I)=DU(I)
560 CONTINUE
    ITR=ITR+1
    GO TO 500
570 ADD=DISGR*BUMN/(1.-DISCR)
    DO 580 I= 1,NST
    U&I)=DU(I)+ADD
    DU(I)=U(I)-B(I,I)
    IF(I.EQ.1) GO TO 575
    IF(DU(I).LE.DUMX) GO TO }58
575 DUMX=DU(I)
500 CONIINUE
    WRITE(6,590) ITR
590 FORMAT (5X, 'NUMBER DF ITERATION IN S-DPERATION FOR J IS',5X,I5,
    DUMX=DISCR*DUMX
    DO 599 I=1,NST
    DO 597 K=1,NAC
    BV(I,K)=BV(I,K)+DALPH*BU(I,K)
    BU(I,K)=BU(I,K)+DUMX-DU(I)
597 CONIINUE
599 CONTINUE
    ITER=ITERR+1
820 KN=0
    DO 880 I=1,NST
    B(I, 1)=U(I)
    IIP=IIPOLII)
    PU=0.
    DO 830 J=1,NST
    PU=PU+P{I,IIP,J)*U(J)
830 CONTINUE
    BU(I,IIP)=D(I,IIP)+DISCR*PU-U(I)
    OBV=BV(I,IIP)
    OBU=BU(I,IIP)
    DBU=OBV +(EXALP-ALPHA)*OBU
    DO 870 K=1,NAC
    IF(K.EQ.IIP) GO TO 870
    RBV=BV(I,K)+(EXALP-ALPHA)*BU(I,K)
    IF (FLAG(I,K).LE.O.) GO TO 840
    IF(RBV.LT.DBU) GO TO 853
    FLAG(I,K)=-1.
    PV=0.
    PU=0.
    DO 835 J=L,NST
    PV=PV+P(I,K,J)*V(J)
```

```
    PU=PU+P(I,K,J)*U(J)
    835 CONTINUE
    BV(I,K)=R(I,K)+ALPHA*D(I,K)+DISCR*PV-V(I)
        146.
    BU(I;K)=D(I;K)+DISCR*PU-U(I)
    GO TD 855
    840 IF(RBV.LT.OBU) GO TO 850
    PU=0.
    DO 845 J=1,NST
    PU=PU+P(I,K,J) %U(J)
845 CONTINUE
    BU(I,K)=D(I,K)+DISCR*PU-U\I)
    GO TO 855
850 FLAG(I,K)=1.
853 ELM=ELM+1.
    GO TO 870
855 BVIK=BV(I,K)
    BUIK=BU(I,K)
    IFIBUIK.LE.OBU) GO TO 870
    IF(BVIK.GT.OBV) GO TO }86
    KN=KN+1
    TALPH=(-BVIK+OBV)/(BUIK-OBU)
    IF(KN.EQ.1) GO TO 857
    ADEPS=DALPH+EPSLN
    SBEPS=DALPH-EPSLN
    IF(TALPH.GE.ADEPS) GO TO 870
    IF(TALPH.LE.SBEPS) GO TO 857
    IF(BUIK.LE.BUI(I)) GO TO 870
    KKPOL{I:=K
    BUI(I)=BUIK
    GO TO 870
857 DALPH=TALPH
    DO 859 J=1,NST
    IF{J.EQ.I) GO TO 858
    KKPOL(J)=IIPOL(J)
    BUI(J)=0.
    GO TO 859
858 KKPOL(J)=K
    BUI(J)=BUIK
859 CONTINUE
    GO TO 870
860 WRITE(6,865)I,K,BVIK,BUIK,OBV,OBU
865 FORMAT(5X, BETTER POLICY EXIST',5X,2I5,4E16.7)
870 CONTINUE
880 CONTINUE
    GO TO 385
600 WRITE(6,610)
610 FORMAT(5X, "OPTIMAL FOR ALL ALPHA GREATER THAN THE CJRRENT VALUE')
    GO TO 700
620 WRITE (6,630)
630 FORMAT (5X,'INVERSION FAILED')
700 CALL TIME(1,1)
    PV=ITER
    APRNT=APRNT/PV
    WRITE(6,750) APRNT
750 FORMAT (5X,'AVERAGE PRCNT =',5X,F10.6)
    STOP
    END
```

REAL*8 TALPH,DALPH,ALPHA,A,B,T,V,DET,COND,U,RV,DJ,BV, BJ,PV,PU, LOBV, OBU, BVIK, BUIK, OOBJ, BVMX, BVMV, BUMX, BUMV, RBV, D3 J, JJMX, PDUMX, 2DUMAX,EXALP,SALPH, ADEPS,SBEPS
DIMENS ION $V(50), R(50,50), P(50,50,50)$, IIPOL(50), O(50,50), A $(50,50)$,
$1 T(50,50), B(50,1), I P E R M(100), \operatorname{KKPOL}(50), J(50), R V(5)), 0 J(50)$,
$2 \operatorname{BV}(50,50), \operatorname{BUI} 50,50), F L A G(50,50), \operatorname{DUMX}(50), \operatorname{PDUMX}(5)$), BJI(50)
REWIND8
REWIND9
$E R R=0.001$
EPSLN=0.000001
ND IMA $=50$
ND I MBX $=50$
ND IMT=50
NSOL=1
READ(5,1) NST,NAC,DISCR,ALPMN,ALPMX
1 FORMAT (215,3F10.5)
$A L P H A=A L P M N$
$E X A L P=A L P M X$
TNAC=NST*NAC
ELM $=0$.
APRNT $=0$.
READ (8) ($(R(I, K), D(I, K), I=1, N S T), K=1, N A C)$
ITER=0
ITR=0
DO $2 I=1$, NST
$\operatorname{READ}(9)((P(I, K, j), K=1, N A C), j=1, N S T)$
2 continue
DO $50 \mathrm{I}=1$, NST
DO $20 \mathrm{~K}=1$, NAC
FLAG(I,K) $=-1$
RDIK=R(I,K)+ALPHAD(I,K)
IF (K.EQ. 1) GO TO 10
IF (ORI.GE.RDIK) GO TO 20
10 ORI=RDIK
II $P=K$
20 CONTINUE
B(I,I)=ORI
KKPOL (I) $=11$ P
DO $40 \mathrm{~J}=\mathrm{L}, \mathrm{NST}$
IF(I.EQ.J) GO TO 30
$A(I, J)=-D I S C R * P(I, I I P, J)$
GO TO 40
30 A(I,J)=1.-DISCR*P(I,IIP,J)
40 CONTINUE
50 CONTINUE
GO TO 130
60 ITER = ITER + 1
DO $120 \quad \mathrm{I}=1$, NST
DO $110 \mathrm{~K}=1$, NAC
$P V=0$.
DO $100 \mathrm{~J}=1$, NST
$P V=P V+P(I, K, J) \neq V(J)$
100 CONTINUE
$R P \vee I K=R(I, K)+A L P H A * D(I, K)+D I S C R * P V$
IF(K.EQ.1) GO TO 105
IF(RVI.GE.RPVIK) GO TD 110
105 RVI R RPVIK

```
        II P=K
    110 CONTINUE
    DO 115 J=1,NST
        148.
    IF(I.EQ.J) GO TO 113
    A(I,J)=-DISCR*P(I,IIP,J)
    GO TO 115
    113 A(I,J)=1.-DISCR*P(I,IIP,J)
    115 CDNTINUE
    B(I,I)=R(I,IIP)+ALPHA*O(I,IIP)
    IIPOL(I)=IIP
    120 GONTINUE
    DO 125 I=1,NST
    IF(IIPOL(I).NE.KKPOLII) GO TO 127
    125 CONTINUE
    GO TO 190
    127 DO 129 I=1,NST
    KKPOL(I)=IIPOL(I)
    129 CONTINUE
C*** SOLVE THE SYSTEM OF EQUATIONS AV=B BY CALLING SUBRDUTINE SLE
    130 CALL SLEINST,NDIMA,A,NSOL,NDIMBX,B,V,IPERM,NDIMT,T,JET,JEXP)
    IF(DET) 135,175,135
    135 GO TO 60
    175 WRITE(6,180)
    180 FORMAT(5X,'SOLUTION FAILED')
    GO TO 700
    190 DO 200 I=1,NST
    IIP=IIPOL(I)
    PV=0.
    DO 192 J=1,NST
    PV=PV+P(I,IIP,J)*V(J)
    192 CONTINUE
    RV(I)=R(I,IIP)+ALPHA*D(I,IIP)+DISCR*PV
    RBV=RV{I)-V(I)
    IF(I.EQ.1) GO TO 198
    IF(RBV.GT.BVMX) GO TO 194
    IF(RBV.LT.BVMN) GO TO }19
    GO TO 200
    194 BVMX=RBV
    GO TO 200
    196 BVMN=RBV
    GO TO 200
    198 BVMX=RBV
    BVMN=RBV
    200 CONTINUE
    VERR=BVMX-BVMN
    IF(ITR.EQ.O.AND.VERR.LE.ERRJ GD TO 206
    ADD=DISCR*BVMN/(1.-DISCR)
    DD 202 I=1,NST
    V(I)=RV(I)+ADD
    202 CONTINUE
    IF(VERR.LE.ERR) GO TD 204
    ITR=ITR+1
    GO TO 190
    204 GRITE(6,205) ITR
    205 FORMAT(5X.'NUMBER OF ITERATION IN T-DPERAIION FOQ V IS',5X,I5)
    GO TO 60
    206 WRITE(6,205) ITR
    WRITE{6,208)ALPHA
    208 FORMAT(5X,'ALPHA =',F20.14)
    ADD=BVMN/(1.-DISCR)
```

```
        DO 209 I=1,NST
        V(I)=V(I)+ADD
209 CONTINUE
    WRITE(6,210)
210 FORMAT(10X,'STAIE',10X,'POLICY',15X,'RETJJRN',IOX,'JPI, POLICY')
WRITE(6,220)(I,NAC,V(I),IIPOL(I),I=I,NST)
220 FORMAT(10X,I3,12X,I3,10X,E16.7,10X,13/)
    WRITE(6,230)
230 FORMAT(1OX,'DISCR',10X,'ITERATION')
    WRITE{6,240IDISCR,ITER
240 FORMAT(10X,F7.5,6X,I5)
    WRITEI6,242)
242 FORMAT(///1X,'*** OPIIMAL ACTIONIS) TJ BE CHOSEN FJR THE CURRENT
    LOPTIMAL POLICY'///)
C*** FIND THE INVERSE OF MATRIX A BY CALLING SUBROUTINE INV
    CALL INV(NST,NDIMA,A,IPERM,NDIYT,T,DET,JEXP,COND)
    IF(DET)245,620,245
245 DO 250 I=1,NST
    TD=0.
    DO 247 J=1,NST
    II P=IIPOL(J)
    TD =TD+T(I,J)*D(J,IIP)
247 CDNTINUE
    U(I)=TD
250 CONTINUE
    I TR=0
260 DO 300 I=l,NST
    IIP=1IPOL(I)
    PU=0.
    DO 265 J=1,NST
    PU=PU+P(I,I[P,J)#U(J)
265 CONTINUE
    DU(I)=D(I,IIP)+DISCR*PU
    DBU=DU(I)-U(I)
    IF(I.EQ.1) GO TO 290
    IF(DBU.GT.BUMX) GO TO 270
    IF(DBU.LT.BUMN) GO TO 280
    GO TO 300
270 BUMX=DBU
    GO TO 300
280 BUMN=DBU
    GO TO 300
290 BUMX=DBU
    BUMN=DBU
300 CONTINUE
    UERR=BUMX-BUMN
    IF(UERR.LE.ERRI GO TO 310
    DO 305 I=1,NST
    U(I)=DU(I)
305 CDNTINUE
    ITR=ITR+1
    GO TO 260
310 ADD=DISCR*BUMN/(1.-DISCR)
    DO 320 I=1,NST
    U(I)=DU(I)+ADD
320 CONTINUE
    WRITE(6,590) ITR
    DO 325 I=1,NST
    DD 323 K=1,NAC
    PV=0.
```

```
    DO 321 J=1,NST
    PV=PV+P{I,K,J]*V(J)
        150.
321 CONTINUE
    BV(I,K)=R(I,K)+ALPHA*D(I,K)+DISCR*PV-V(I).
    323 CONTINUE
    325 CONTINUE
    CALL TIME(O)
    ITER=1
    330 DO 340 I=1,NST
    A(I,ITER)=U(I)
    DO 335 K=1,NAC
    PU=0.
    DO 333 J=1,NST
    PU=PU+P(I,K,J)榇(J)
333 CONTINUE
    BU(I,K)=D(I,K)+DISCR*PU-U(I)
335 CONTINUE
340 CONTINUE
    KN=0
    DO 380 I=1,NST
    IIP=IIPOL(I)
    OBV=BV(I,IIP)
    OBU=BU(I,IIP)
    DO 370 K=1,NAC
    IF(K.EQ.IIP) GO TO 370
    B\veeIK=B\vee(I,K)
    BUIK=BU(I,K)
    IF(BUIK.LE.OBU) GO TO 370
    IF{BVIK.GT.OBVI GO TO 360
    KN=KN+1
    TALPH=1-BVIK+OBV)/(BUIK-OBU)
    IFIKN.EQ.1) GO TO 350
    ADEPS=DALPH+EPSLN
    SBEPS=DALPH-EPSLN
    IF(TALPH.GE.ADEPS) GO TO 370
    IF(TALPH.LE.SBEPS) GO TO 350
    IF(BUIK.LE.BUIIII) GO TO 370
    KKPOL(I)=K
    BUI(I)=BUIK
    GO TO 370
350 DALPH=TALPH
    DO 357 J=1,NST
    IF(J.EQ.I) GO TO 355
    KKPOL(J)=IIPOL(J)
    BUI(J)=0.
    GO TO 357
355 KKPOL(J)=K
    BUI(J)=BUIK
357 CONTINUE
    GO TO 370
360 WRITE (6,365)I,K,BVIK,BUIK,OBV,OBU
365 FORMAT(5X,'BETTER POLICY EXIST',5X,2[5,4E16.7)
370 CONTINUE
380 CONTINUE
385 IF(KN.EQ.O1 GO TO 600
    AL PHA = ALPHA +DALPH
    DO 393 I=1,NST
    IF(KKPOL(I).EQ.IIPOL(I)) GO TO 393
    WRITE(6,390 I ALPHA,I,KKPOLII)
390 FORMATI5X,'ALPHA =',F20.14,5X,'I =',15,5X,'K = ', (5)
```

```
3 9 3 ~ C O N T I N U E
    PRCNT=(ELM/TNAC)*100.
    WRITE(6,394) PRCNT
394 FORMAT (5X,'PRCNT',5X,F10.6)
    APRNT = APRNT +PRCNT
    ELM=0.
    IF(ALPHA.GE.ALPMX) GO TO 700
    IF(ALPHA.LT.ALPMN) GO TO 700
399 DO 950 K=1,NST
    IFIKKPOL(K).EQ.IIPOL(K)) GO TO 900
    IFRST=K
    KFRST=KKPOL\K)
    DO 410 J=1,NST
    IF(J.EQ.IFRST) GO TO 400
    RV(J)=-DISCR*P(IFRST,KFRSI,J)
    GO T0 410
400 RV(J)=1.-DISCR*P(IFRST,KFRST,J)
410 CONTINUE
    DO 430 I=1,NST
    PU=0.
    DO . 420 J=1,NST
    PU=PU+RV(J)*T(J,I)
420 CONTINUE
    DU(I)=PU
430 CONTINUE
    PU=DU(IFRST)
    IF(PU.EQ.O.) GO TO 620
    DO 450 J=1,NST
    IF(J.EQ.IFRST) GO TO 440
    DU(J)=-DU(J)/PU
    GO TO 450
4 4 0 ~ D U ( J ) = 1 / P U
450 CONTINUE
    DO 480 I=1,NST
    PV=T(I,IFRST)
    DO 470 J=1,NST
    IF(J.EQ.IFRST) GO TO 460
    T(I,J)=T(I,J)+PV*DU{J).
    G0 TO 470
460 T(I,J)=PV*DU(J)
470 CONTINUE
480 CONTINUE
900 IIPOL(K)=KKPOL(K)
950 CONTINUE
    DO 490 I=1,NST
    V(I)=V(I)+DALPH*U(I)
    PU=0.
    DO 485 J=1,NST
    IIP=IIPOL(J)
    PU=PU+T(I,J)*BU(J,IIP)
485 CONTINUE
    U(I)=U(I)+PU
490 CONTINUE
    ITR=0
500 DO 550 I=1,NST
    IIP=IIPOL(I)
    PU=0.
    DO 510 J=1,NST
    PU=PU+P(I,IIP,J)*U(J)
510 CONTINUE
```

```
    DU(I)=D(I,IIP)+DISCR*PU
    DBU=DU(I)-U(I)
    IF(I.EQ.1) GO TO 540
    IF(DBU.GT.BUMX) GO TO 520
    IF (DBU.LT.BUMN) GO TO 530
    GO TO 550
520 BUMX=DBU
    GO TO 550
530 BUMN=DBU
    GO TO 550
540 BUMX=DBU
    BUMN=DBU
550 CONTINUE
    UERR=BUMX-BUMN
    IF(UERR.LE.ERR) GO TO }57
    DO 560 I=1,NST
    U(I)=DU([)
560 CONTINUE
    ITR=ITR+1
    GO TO 500
570 ADD=DISCR*BUMN/(1.-DISCR)
    DO 580 I=1,NST
    U(I)=DU(I) +ADD
580 CONTINUE
    WRITE(6.590) ITR
590 FORMAT (5X, 'NUMBER OF ITERATION IN S-DPERATION FOZ J IS',5X,I5)
    DO 594 K=1,ITER
    DO 592 I=1,NST
    DUIK=U(I)-A(I,K)
    IF{K.EQ.ITER) DU(I)=DUIK
    IF(I.EQ.1) GO TO 591
    IF(DUMAX.GE.DUIK) GOTO }59
591 DUMAX=DUIK
5 9 2 ~ C O N T I N U E ~
    IF(ITER.EQ.L) GO TO 593
    IF(K.EQ.ITER) GO TO 593
    PDUMX(K)=DUMX(K)
593 DUMX(K)=DISCR*DUMAX
5 9 4 ~ C O N T I N U E ~
    DO 599 I=1,NST
    DO 597 K=1,NAC
    BV(I,K)=BV(I,K)+DALPH*BU(I,K)
    L=FLAG(I,K)
    IF(L.LE.O.OR.L.EQ.ITER) GO TO 595
    BU(I,K)=BU(I,K)+DUMX(L)-PDUMX(L)-DU{I)
    GO TO 597
595 BU(I,K)=BU(I,K)+DUMX\ITER)-DU(I)
597 CONTINUE
599 CONTINUE
    ITER=ITER +I
820 KN=0
    DO 880 I=1,NST
    A(I,ITER)=U(I)
    IIP=IIPOL\I|
    PU=0.
    DO 830 J=1,NST
    PU=PU+P(I,IIP,J)*U(J)
830 CONTINUE
    BU{I,IIP)=D(I,IIP)+DISCR*PU-U(I)
    OBV=BV{I,IIP)
```

```
    OBU=BU(I,IIP)
    DBU=OBV+(EXALP-ALPHA)*OBU
    DO }870\textrm{K}=1,NA
        153.
    IFIK.EQ.IIP) GO TO. }97
    RBV=BV(I,K)+(EXALP-ALPHA)*BU(I,K)
    IF(FLAG(I,K).LE.O.) GO TO 840
    IF{RBV.LT.DBU) GO TO 853
    FLAG(I,K)=-1.
    PV=0.
    PU=0.
    DO 835 J=1,NST
    PV =PV+P(I,K,J)\not=V(J)
    PU=PU+P(I,K,J)次U(J)
835 CDNTINUE
    BV(I,K)=R(I,K)+ALPHA*D(I,K)+DISCR*PV-V(I)
    BU(I,K)=D(I,K)+DISCR*PU-U(I)
    GO TO 855
840 IF(RBV.LT.DBU) GO TO 850
    PU=0.
    DO 845 J=1,NST
    PU=PU+P(I,K,J)*U(J)
845 CONTINUE
    BU(I,K)=D(I,K)+DISCR*PU-UII)
    GO TO 855
    850 FLAG(I,K)=ITER-1
    853 ELM=ELM+1.
    GO TO 870
855 BVIK=BV(I,K)
    BUIK=BU(I,K)
    IF(BUIK.LE.OBU) GO TO 870
    IF(BVIK.GT.OBV) GO TO 860
    KN=KN+1
    TALPH=(-BVIK+OBV)/(BUIK-OBU)
    IF{KN.EQ.1) GO TO }85
    ADEPS=DALPH+EPSLN
    SBEPS=DALPH-EPSLN
    IF(TALPH.GE.ADEPS) GO TO }87
    IFITALPH.LE.SBEPSI GO TO 857
    IF(BUIK.LE.BUI(I)) GO TO 870
    KKPOL(I)=K
    BUI(I)=BUIK
    GO TO 870
857 DALPH=TALPHi
    DO 859 J=1,NST
    IF(J.EQ.I) GO TO 858
    KKPOL(J)=IIPOL(J)
    BUI\J)=0.
    GO TO 859
858 KKPOL(J)=K
    BUI(J)= BUIK
859 CONTINUE
    GO TO 870
860 WRITE(6,865)I,K,BVIK,BUIK,OBV,OBU
865 FORMAT(5X,'BETTER POLICY EXIST',5X,2I5,4ELÓ.7)
870 CONTINUE
880 CONTINUE
    GO TO 385
600 WRITE (6,610)
610 FORMAT (5X, 'OPTIMAL FOR ALL ALPHA GREATER THAN THE SJRRENT VALUE')
    GO TO }70
```

```
620 WRITE (6,630)
630 FORMAT (5X,'INVERSION FAILED')
700 CALL TIME(1,1)
    PV:=ITER
    APRNT=APRNT/PV
    WRITE(6,750) APRNT
    750 FORMAT {5X, AVERAGE PRCNT =, 5X,F10.6}
    STOP
    END
```

REAL＊8 TALPH，DALPH，ALPHA，$A, B, T, V, D E T$, ZOND，U，RV，DJ，BV，BJ，PV，PU， LOBV，OBU，BVIK，BUIK，OOBU，BVMX，BVMV，BUMX， $3 J M N, R B V, D 3 J, כ U M X, P D U M X$, 2DUMAX，EXALP，SALPH，ADEPS，SBEPS
DIMENS ION V（50），R（50，50），P（50，50，50），IIPOL（50），D（50，50），A（50，50），
1T（50，50），B（50，1），IPERM（100），KKPOL（50），U（50），RV（5）），3J（50），
2BV（50，50），BU（50，50），FLAG（50，50），BUI（50）
REWIND8
REWIND 9
$E R R=0.001$
EP SLN $=0.000001$
ND IMA $=50$
ND I $M B X=50$
ND IMT＝50
NSOL＝1
READ（5，1）NST，NAC，DISCR，ALPMN，ALPMX
1 FORMAT（215，3F10．5）
AL PHA $=A L P M N$
TNAC＝NST＊NAC
ELM $=0$ ．
$\triangle P R N T=0$ ．
READ（8）（（RAI，K），D（I，K），I＝1，NST），K＝1，NAC）
ITER＝0
ITR＝0
DO $2 I=1$ ，NST
$\operatorname{READ}(\mathrm{S})((\mathrm{P}(\mathrm{I}, \mathrm{K}, \mathrm{J}), \mathrm{K}=\mathrm{I}, \mathrm{NAC}), \mathrm{J}=\mathrm{I}, \mathrm{NST})$
2 CONTINUE
DO $50 \quad I=1$ ，NST
OO $20 \mathrm{~K}=1$ ，NAC
FLAG（I，K）$=-1$
RDIK $=R(I, K)+A L P H A * D(I, K)$
IF（K．EQ．1）GO TO 10
IF（ORI．GE．RDIK）GO TO 20
10 ORI＝RDIK
II $P=K$
20 CONTINUE
B（I，l）＝ORI
KKPOL（I）＝IIP
DO $40 \mathrm{~J}=1, \mathrm{NST}$
IF（I．EQ．J）GO TO 30
$A(I, J)=-D I S G R * P(I, I I P, J)$
GO TO 40
$30 \mathrm{~A}(\mathrm{I}, \mathrm{J})=1 .-\operatorname{DISCR} * P(I, I I P, J)$
40 CONTINUE
50 CONTINUE
GO TO 130
60 ITER＝ITER＋ 1
DO $120 \mathrm{I}=1$ ，NST
DO $110 \mathrm{~K}=1$ ，NAC
$P V=0$ ．
DO $100 \mathrm{~J}=1$ ，NST
$P V=P V+P(I, K, J) * V(J)$
100 CONTINUE
$R P \vee I K=R(I, K)+A L P H A * D(I, K)+D I S C R * P V$
IFIK．EQ．1）GO TO 105
IF（RVI．GE．RPVIK）GO TO 110
105 RVI＝RPVIK
II $P=K$

```
    110 CONTINUE
    DO 115 J=1,NST
    IF(I.EQ.J) GO TO 113
        156.
    A(I,J)=-DISCR*P(I,IIP,J)
    GO TO 115
    113 A(I,J)=1.-DISCR*P(I,IIP,J)
    115 CONTINUE
    B(I,I)=R(I,IIP)+ALPHA*O(I,IIP)
    IIPOL(I)=IIP
    120 CONTINUE
    DO 125 I= I,NST
    IF(IIPOL(I).NE.KKPOL(I)) GO TO 127
    125 CONTINUE
    GO TO 190
    127 DO 129 I=1,NST
    KKPOL(I)=IIPOL(I)
    129 CONTINUE
C*** SOLVE THE SYSTEM OF EQUATIONS AV=B by CALLING SUBROUTINE SLE
    130 CALL SLE(NST,NDIMA,A,NSOL,NDIMBX,B,V,IPERM,NDIMT,T,JET,JEXP)
    IF(DET) 135,175,135
    135 GO TO 60
    175 WRITE(6,180)
    180 FORMAT(5X,'SOLUTION FAILED')
    GO TO 700
    190 DO 200 I=1,NST
    II P=IIPOL|I)
    PV}=0
    DO 192 J=1,NST
    PV=PV+P(I,IIP,J)*V(J)
    192 CONTINUE
    RV(I)=R(I,IIP)+ALPHA*Q(I,IIP)+DISCR#PV
    RBV=RV(I)-V(I)
    IF(I.EQ.1) GO TO 198
    IF(RBV.GI.BVMX) GO TO }19
    IF(RBV.LT.BVMN) GO TO 198
    GO TO 200
    194 BVMX=RBV
    GO TO 200
    196 BVMN=RBV
    GO TO 200
    198 BVMX=RBV
    BVMN=RBV
    200 CONTINUE
    VERR=BVMX-BVMN
    IF(ITR.EQ.O.AND.VERR.LE.ERR) GO TO 206
    ADD=DISCR*BVMN/(1.-DISCR)
    DO 202 I=1,NST
    V(II)=RV(I)+ADD
    202 CONTINUE
    IF(VERR.LE.ERR) GO TO 204
    IT R=ITR+I
    GO TO 190
    204 WRITE(6,205) ITR
    205 FORMATI5X,'NUMBER OF ITERATION IN T-DPERAIION FOR V IS',5X,I5I
    GO TO 60
    206 WRITE(6,205) ITR
    WRITE(6,208) 4LPHA
    208 FORMAT(5X,'ALPHA = ',F20.14)
    ADD=BVMN/(1.-DISCR)
    DO 209 I=1,NST
```

```
    V(I)=V(I)+ADD
209 CONTINUE
WRITE (6,210)
210 FORMAT\IOX,'STATE', 1OX, 'POLICY',I5X,'RETURN*,IOX,'JPT, PGLICY')
    WRITE(6,220)(I,NAC,V(I),IIPOL(I),I=1,NST)
220 FORMAT (10X,13,12X,13,10X,E16.7,10X,13/)
    WRITE(6,230)
230 FORMAI(10X,'DISCR', IOX,'ITERATION'3
    WRIJE(6,240)DISCR,ITER
240 FORMAT (10X,F7.5,6X,I5)
    WRITE(6,242)
242 FORMAT(///IX,'% OPTIMAL ACTIONIS) TJ BE CHOSEN FOR THE CURRENT
    IOPTIMAL POLICY'///)
Cれ%妾 FIND THE INVERSE OF MATRIX A BY CALLING SUBROUTINE INV
    CALL INV (NST,NDIMA,A,IPERM,NDIMT,T,DET,JEXP,COND)
    IF(DET)245,620,245
245 DO 250 I=1,NST
    TD=0.
    DO 247 J=1,NST
    IIP=IIPOL(J)
    TO=TD+T(I,J)*D(J,IIP)
247 CONTINUE
    U(I)=TD
250 CONTINUE
    ITR=0
260 DO 300 I=1,NST
    IIP=IIPOL\IF
    PU=0.
    DO 265 J=1,NST
    PU=PU+P(I,IIP,J)㢺(J)
265 CONTINUE
    DU(I)=D(I,IIP)+DISCR*PU
    DBU=DU(I)-U(I)
    IF(I.EQ.1) GO TO 290
    IF(DBU.GT.BUMX) GO TO 270
    IF(DBU.LT.BUMN) GO TO 280
    GO TO 300
270 BUMX=GBU
    GO TO 300
280 BUMN=DBU
    GO TO 300
290 BUMX=DBU
    BUMN=DBU
300 CONTINUE
    UERR=BUMX-BUMN
    IF(UERR.LE.ERR) GO TO }31
    OO 305 I= L,NST
    U(I)=DU(I)
305 CONTINUE
    ITR=ITR+1
    GO TD 260
310 ADD=DISCR*BUMN/(1.-DISCR)
    DO 320 I=1,NST
    U(I)=DU(I)+ADD
320 CONTINUE
    WRITE(6,590) ITR
    DO 325 I=1,NST
    DO 323 K=1,NAC
    PV=0.
    DO 321 J=1,NST
```

```
    PV=PV+P(I,K,J)*V(J)
321 CONTINUE
    BV(I,K)=R(I,K)+ALPHA*D(I,K)+DISCR*PV-V(I)
158.
323 CONTINUE
325 CONTINUE
    CALL TIME(O)
    ITER=1
330 DO 340 I=1,NST
    B(I,1)=U(I)
    DO 335 K=1,NAC
    PU=0.
    DO 333 J=1,NST
    PU=PU+P(I,K,J)*U(J)
333 CONTINUE
    BU(I,K)=D(I,K)+DISCR*PU-U(I)
335 CONTINUE
340 CONTINUE
    KN=0
    DO 380 I=1,NST
    IIP=IIPOL(I)
    OBV=BV(I,IIP)
    OBU=BU(I,IIP)
    DG 370 K=1,NAC
    IF(K.EQ.IIP) GO TO 370
    BVIK=BV(I,K)
    BUIK=BU(I,K)
    IF(BUIK.LE.OBUS GO TO 370
    IF(BVIK.GT.OBV) GO TO 360
    KN=KN+1
    TALPH=(-BVIK+OBV)/(BUIK-OBU)
    IF(KN.EQ.1) GO TO 350
    ADEPS=DALPH+EPSLN
    SBEPS=DALPH-EPSLN
    IF(TALPH.GE.ADEPS) GO TO }37
    IF(TALPH.LE.SBEPS) GO TO 350
    IF(BUIK.LE.BUI(I)).GO TO }37
    KKPOL(I)=K
    BUI\I)=BUIK
    GO TO 370
350 DALPH=TALPH
    DO 357 J=1,NST
    IF(J.EQ.I) GO TO }35
    KKPOL(J)=IIPOL(J)
    BUI(J)=0.
    GO TO 357
355 KKPOL(J)=K
    BUI(J)=BUIK
357 CONTINUE
    GO TO 370
360 WRITE(6,365)I,K,BVIK,BUIK,OBV,OBU
365 FORMAT(5X,'BETTER POLICY EXIST',5X,2I5,4E16.7)
370 CONTINUE
380 CONTINUE
385 IF(KN.EQ.O) GO TO 600
    ALPHA=ALPHA DALPH
    DO 393 I=1,NST
    IF(KKPOL(I).EQ.IIPOL(I)) GO TO 393
    WRITE(6,390) ALPHA,I,KKPOL(I)
390 FORMAT (5X,'ALPHA = ',F20.14,5X,'I =',I5,5X,'K = ', [5)
393 CONTINUE
```

```
PRCNT=(ELM/TNAC)*100.
WRITE(6,394) PRCNT
394 FDRMAT(5X, 'PRCNT',5X,F10.6)
    APRNT=APRNT+PRCNT
    ELM=0.
    IF(ALPHA.GE.ALPMX) GO TO }70
    IF(ALPHA.LT.ALPMN) GO TO }70
    IF(KN.EQ.I) GO TO 398
    KN=0
    OO 397 I=1,NST
    KKP=KKPOL\I)
    OOBU=BU(I,KKP)
    IIP=IIPOL{I)
    DBV=BV(I,IIP)
    OBU=BU(I,IIP)
    DO 396 K=1,NAC
    IF(K.EQ.IIP) GO TO 396
    IF(FLAG(I,K).GI.O.) GO TO 396
    BUIK=BU(I,K)
    IF(BUIK.LE.OOBU) GO TO }39
    BVIK=BV(I,K)
    IF(BVIK.GT.OBV) GO TO 396
    BUIK=BUIK-DBU
    TALPH=(OBV-BVIK)/BUIK
    KN=KN+1
    IF(KN.EQ.1) GO TO 395
    IF(SALPH.LT.IALPH) GO TO 396
    IF(SALPH.GT.TALPH) GO TO }39
    IF(BUIK.LE.PU) GO TO 396
395 SALPH=TALPH
    I S CND=I
    KSCND=K
    PU=BUIK
396 CONTINUE
397 CONTINUE
    GO TO }39
398 KN=0
399 DO 950 K=1.NST
    IF(KKPOL(K).EQ.IIPOL(K)) GO TO 900
    IFRST=K
    KFRST=KKPOLIK)
    DO 410 J=1,NST
    IF(J.EQ.IFRST) GO TO 400
    RV(J)=-DISCR*P{IFRST,KFRST,J)
    GO TO 410
400 RV(J)=1.-DISCR*P(IFRST,KFRST,J)
4l0 CONTINUE
    DO 430 I=1,NST
    PU=0.
    DO 420 J=1,NST
    PU=PU+RV(J)奴(J,I)
420 CDNTINUE
    DU(I)=PU
430 CONTINUE
    PU=DU{IFRST )
    IF(PU.EQ.O.) GO TO 620
    DO 450 J=L,NST
    IF(J.EQ.IFRST) GO TO 440
    DU(J)=-DU(J)/PU
    GO TO 450
```

```
440 DU(J)=1/PU
450 CONTINUE
    DO 480 I=1,NST
    PV=T(I,IFRST)
    DO 470 J=1,NST
    IF(J.EQ.IFRST) GD TO 460
    T(I,J)=T(I,J)+PV*DU(J)
    GO TO 470
460 T(I,J)=PV*DU(J)
470 CONTINUE
4 8 0 ~ C O N T I N U E ~
900 IIPOL(K)=KKPOL(K)
950 CONTINUE
    DO 490 I=1,NST
    V(I)=V(I)+DALPH*U(I)
    PU=0.
    DO 485 J=1,NST
    II P=IIPGL(J)
    PU=PU+T(I,J)*BU(J,IIP)
485 CONTINUE
    U(I)=U(I)+PU
490 CONTINUE
    ITR=0
500 DO 550 I=1,NST
    II P=IIPOL(I)
    PU=0.
    DO 510 J=1,NST
    PU=PU+P(I,IIP,J)*U(J)
510 CONTINUE
    DU(I)=D(I,IIP)+DISCR*PU
    DBU=OU(I)-U(I)
    IF(I.EQ.1) GO TO 540
    IF(DBU.GT.BUMX) GO TO 520
    IF(DBU.LT.BUMN) GO TO 530
    GO TO 550
520 BUMX=DBU
    GO TO 550
530 BUMN=DBU
    GO TO 550
540 BUMX=DBU
    BUMN=DBU
550 CONTINUE
    UERR=BUMX-BUMN
    IF(UERR.LE.ERR) GO TO 570
    DO 560 I=1,NST
    UII)=DU(I)
560 CONTINUE
    ITR=ITR+1
    GO TO 500
570 ADD=DISCR*BUMN/(1.-DISCR)
    DO 580 I=1,NST
    U(I)=DU(I)+ADD
    DU(I)=U(I)-B(I,I)
    IF(I.EQ.1) GO TO 575
    IF(DU(I).LE.DUMXI GO TO 580
575 DUMX=DU(I)
580 CONTINUE
    GRITE{6,590) ITR
590 FORMAT(5X,'NUMBER OF ITERATION IN S-GPERATION FOR U IS',5X,I5)
    DUMX=DI SCR*DUMX
```

```
    DO 599 I=1,NST
    DO 597 K=1,NAC
    BV(I,K)=BV(I,K)+DALPH*BU(I,K)
        161.
    BU(I,K)=BU(I,K)+DUMX-DU(I)
597 CONTINUE
599 CONTINUE
    ITER=ITER +1
    IF(KN.EQ.O) GO TO 810
    IIP=IIPOL(ISCND)
    PU=0.
    PV}=0
    DO 800 J=1,NST
    PU=PU+P{ISCND,IIP,J)*U(J)
    PV =PV +P(ISCND,KSCND,J)*U(J)
800 CONTINUE
    PU=D(ISCND,IIP) +DISCR*PU-U(ISCND)
    PV=0(ISCND,KSCND)+DISCR*PV-U(ISCND)
    IF (PU.GE.PV) GO TO 810
    EXALP=ALPHA+(BV(ISCND,IIP)-BV(ISCND,KSCND) )/(PV-?IJ)
    IFIEXALP.LT.ALPHA.OR.EXALP.GF.ALPMX) GO TO 810
    GO TO 820
810 EXALP=ALPMX
820 KN=0
    DO 880 I= l,NST
    B(I,1)=U(I)
    IIP=IIPOL(I)
    PU=0.
    DO 830 J=1,NST
    PU=PU+P(I,IIP,J)*U(J)
830 CONTINUE
    BU(I,IIP)=D(I,IIP)+DISCR*PU-U(I)
    OBV=BV{I,IIP)
    OBU=BU(I,IIP)
    DBU=OBV+(EXALP-ALPHA)*OBU
    DO }870\textrm{K}=1.NA
    IF(K.EQ.IIP) GO TO 870
    RBV=BV(I,K)+(EXALP-ALPHA)*BU{I,K)
    IF{FLAG(I,K).LE.O.J GO TO }84
    IF(RBV.LT.DBU) GO TD }85
    FLAG(I,K)=-1.
    PV =0.
    PU=0.
    DO }835\textrm{J}=1,NS
    PV=PV+P(I,K,J)*V(J)
    PU=PU+P(I,K,J)*U(J)
835 CONTINUE
    BV{I,K)=R(I,K)+ALPHA*D(I,K)+DISCR*PV-VII)
    BU(I,K)=D(I,K)+DISCR*PU-U(I)
    GO TO 855
840 IF(RBV.LT.DBU) GO TO 850
    PU=0.
    DO }845\textrm{J}=1,NS
    PU=PU+P(I,K,J)*U(J)
845 CONTINUE
    BU(I,K)=D(I,K)+DISCR*PU-U(I)
    GO TO 855
850 FLAG(I,K)=1.
853 ELM=ELM+1.
    GO TO 870
855 BVIK=BV(I,K)
```

```
    BUIK=BU(I,K)
    IF(BUIK.LE.OBU) GO TO 870
    IF(BVIK.GT.OBV) GO TO 860
    KN=KN+1
    TALPH=(-BVIK+OBV)/(BUIK-DBU)
    IF(KN.EQ.I) GD TO 857
    ADEPS=DALPH+EPSLN
    SBEPS=DALPH-EPSLN
    IF(TALPH.GE.ADEPS) GO TO }87
    IF(TALPH.LE.SBEPS) GO TO 857
    IF(BUIK.LE.BUI(I)) GO TO 870
    KKPOL(I)=K
    BUI(I)= BUIK
    GO TO 870
857 DALPH=TALPH
    DO }859\textrm{J}=1\mathrm{ ,NST
    IF(J.EQ.I) GD TO 858
    KKPOL(J)=IIPOL(J)
    BUI(J)=0.
    GO TO 859
858 KKPOL(J)=K
    BUI(J)=BUIK
859 CONTINUE
    GO TO 870
860 WRITE(6,865)I,K,BVIK,BUIK,OBV,OBU
865 FORMAI(5X, 'BETIER POLICY EXIST',5X,2I5,4E16.7)
870 CONTINUE
880 CONTINUE
    GO TO 385
600 WRITE(6,610)
```



```
    GQ TO 700
620 WRITE (6,630)
630 FORMAT (5X,'INVERSION FAILED')
700 CALL TIME(1,1)
    PV = ITER
    APRNT=APRNT/PV
    WRITE(6,750) APRNT
750 FORMAT(5X, AVERAGE PRCNT =*,5X,F10.6)
    STOP
    END
```

```
C*ま安
C** Q) CODE FOR PARAMEIRIC MDP WITH PROCEDURE (II-2)
C辛%*
    REAL*8 TALPH,OALPH,ALPHA,A,B,T,V,DET,COND,U,RV,DJ,BV,BJ,PV,PU,
    LOBV,OBU,BVIK,BUIK,OOBU,BVMX,BVMN,BJMX, BUMN,RBV,DBJ,DJMX,PDUMX,
    2DUMAX, EXALP,SALPH, ADEPS,SBEPS
        DIMENSION V(50),R(50,50),P(50,50,50), IIPOL(50),D(50,50),A(50,50),
    IT(50,50),8(50,1),IPERM(100),KKPOL(50),U(50),RV(5)),JJ(50),
    2BV(50,50),BU(50,50),FLAG(50,50);DUMX(50),PDUMX(53),BUI(50)
        REWIND8
    REWIND9
    ERR=0.001
    EPSLN=0.000001
    ND IMA=50
    ND IMBX=50
    NDIMT=50
    NSOL=1
    READ(5,1) NST,NAC,DISCR,ALPMN,ALPMX
    l FORMAT(2I5.3F10.5)
    AL PHA = ALPMN
    TNAC=NST*NAC
    ELM=0.
    \trianglePRNT=0.
    READ(8)((R(I,K),D(I,K),I=1,NST),K=1,NAC)
    ITER=0
    ITR=0
    DO 2 I=1,NST
    READ(9)({P(I,K,J),K=1,NAC),J=1,NST)
    2 CONTINUE
    DO 50 I=1,NST
    DO 20 K=1,NAC
    FLAG(I,K)=-1
    RDIK=R(I,K)+ALPHA*D(I,K)
    IF(K.EQ.1) GO TO 10
    IF(ORI.GE.RDIK) GO TO 20
    10 ORI=RDIK
    II P=K
    20 CONTINUE
    B(I,I)=ORI
    KKPOL(I)=IIP
    DO 40 J=1,NST
    IF(I.EQ.J) GO TO 30
    A(I,J)=-DISCR*P(I,IIP,J)
    GO TO 40
    30 A(I,J)=1.-DISCR*P(I,IIP,J)
    40 CONTINUE
    50 CONTINUE
    GO TO 130
    60 ITER=ITER+1
    DO 120 I=1,NST
    DO 110 K=1,NAC
    PV=0.
    DO 100 J=1,NST
    PV=PV+P(I,K,J)*V(J)
100 CONTINUE
    RP\veeIK=R(I,K)+ALPHA*DII,K)+DISCR*PV
    IFIK.EQ.I) GO TO 105
    IF(RVI.GE.RPVIK) GO TO 110
105 RVI=RPVIK
    IIP=K
```

```
    110 CONTINUE
    DO 115 J=1,NST
    IF(I.EQ.J) GO TO 113
        164.
    A(I,J)=-DISCR*P(I,IIP,J)
    GO TO 115
    113 A\I,J)=1.-DISCR#P(I,IIP,J)
    115 CONTINUE
    B(I,I)=R(I,IIP)+ALPHA*D(I,IIP)
    II POL(I)= IIP
    120 CONTINUE
    DO 125 I=1,NSI
    IF(IIPOL{I).NE.KKPOL(I|) GO TO 127
    125 CDNTINUE
    GO TO 190
    127 DO 129 I=1,NST
    KKPOL(I)=1IPOL(I)
    129 CONTINUE
C*** SOLVE THE SYSTEM OF EQUATIONS AV=B BY CALLING SUBRDJTINE SLE
    130 CALL SLE(NST,NDIMA,A,NSOL,NDIMBX,B,V,IPERM,NOIMT,T,JET,JEXP)
    IF(DET) 135,175,135
    135 GO TO 60
    175 WRITE(6,180)
    180 FORMAT(5X,'SOLUTION FAILED')
    GO TO 700
    190 DO 200 I=1,NST
    IIP=IIPOL(I)
    PV=0.
    DO 192 J=1,NST
    PV=PV+P(I,IIP,J)*V(J)
    192 CONTINUE
    RV(I)=R(I,IIP)+ALPHA*D(I,IIP)+DISCR*PV
    RBV=RV(I)-V(I)
    IF(I.EQ.1) GO TO 198
    IF(RBV.GT.BVMX) GO TO 194
    IF(RBV.LT.BVMN) GO TO 196
    GO TO 200
    194 BVMX=RBV
    GO TO 200
    196 BVMN=RBV
    GO TO 200
    198 BVMX=RBV
    BVMN=RBV
    200 CONTINUE
    VERR=BVMX-BVMN
    IF(ITR.EQ.O.AND.VERR.LE.ERR) GO TO 206
    ADO=DISCR*BVMN/(1.-DISCR)
    DO 202 I=1,NST
    V{II=RV(I)+ADD
    202 CONTINUE
    IF(VERR.LE.ERR) GO TO }20
    ITR=ITR+1
    GO TO 190
    204 WRITE (6,205) ITR
    205 FORMAT(5X,'NUMBER OF ITERATION IN T-OPERATION F3R V IS',5X,I5)
    GO TO 60
    206 WRITEI6,205) ITR
    WRITE(6,208)ALPHA
    208 FORMAT (5X,'ALPHA = , F20.14)
    ADD=BVMN/(1.-DISCR)
    DO 209 I=1,NST
```

V(I)=V(I) $+A D D$
209 CONTINUE
WRITE(6,210).
165.

210 FORMAT (10X,'STATE', $10 X$, POLICY', 15 X, 'RETURN', $10 \mathrm{X},{ }^{\prime}$ 'JPT. POLICY')
WRITE (6,220)(I,NAC, VII), IIPOLII),I=1,NST)
220 FORMAT (10X,13,12X,13,10X,E16.7,10X,131)
WRITE $(6,230)$
230 FORMAT(IOX,'DISCR', $10 X$, 'ITERATION')
WRITEIG,240IDISCR,ITER
240 FORMAT (10X,F7.5.6X,15)
WRITE (6,242)
242 FORMAT(///IX, **** OPTIMAL ACTIONISI TO BE CHOSEN FOR THE CURRENT IOPTIMAL POLICY'///I
C*** FIND THE INVERSE DF MATRIX A BY CALLING SUBRDUTINE INV
CALL INVINST,NDIMA,A,IPERM,NDIMT,T,DET,JEXP, COND)
IF (DET) $245,620,245$
$24500250 \mathrm{I}=1$, NST
TD $=0$.
DO $247 \mathrm{~J}=1$, NSI
IIP=IIPOL(J)
$T D=T D+T(I, J) * D(J, I I P)$
247 CONTINUE
$U(I)=T D$
250 CONTINUE
IT $R=0$
260 DO $300 \mathrm{I}=1$, NST
IIP 1 I P OL (I)
$\mathrm{PU}=0$.
DO $265 \mathrm{~J}=1$, NST
$P U=P U+P(I, I I P, J) * U(J)$
265 CONTINUE
$D \cup(I)=D(I, I I P)+D I S C R * P U$
$D B U=D U(I)-U(I)$
IF(I.EQ.1) GO TO 290
IF (DBU.GT.BUMX) GO TO 270
IF (DBU.LT.BUMN) GO TO 280
GO 10300
$270 \mathrm{BUMX}=\mathrm{DBU}$
GO TO 300
$280 \mathrm{BUMN}=\mathrm{DBU}$
GO TO 300
290 BUMX=DBU
$B U M N=D B U$
300 CONTINUE
UERR=BUMX-BUMN
IF(UERR.LE.ERR) GO TO 310
DO $305 \mathrm{I}=\mathrm{I}$,NST
U(I)=DU(I)
305 CONTINUE
IT $R=I T R+1$
GO TO 260
310 ADD=DISCR*BUMN/(1.-DISCR)
DO $320 \mathrm{I}=1$, NST
$U(I)=D U(I)+A D O$
320 CONTINUE
WRITE (6,590) ITR
DO $325 \mathrm{I}=1$,NST
DO $323 \mathrm{~K}=1$, NAC
$\mathrm{PV}=0$.
DO $321 \mathrm{~J}=\mathrm{I}$,NST

```
    PV=PV+P(I,K,J)*V(J)
321 CONTINUE
    BV(I,K)=R(I,K)+ALPHA*O(I,K)+DISCR*PV-V(I)
l66.
323 CONTINUE
325 CONTINUE
    CALL TIME(O)
    ITER=1
330 DO 340 I =1,NST
    A(I,ITER)=U(I)
    DO 335 K=1,NAC
    PU=0.
    DO 333 J=1,NST
    PU=PU+P(I,K,J)*U(J)
333 CDNTINUE
    BU(I,K)=D(I,K)+DISCR*PU-U(I)
335 CONTINUE
340 CONTINUE
    KN=0
    DO 380 I= L,NST
    IIP=IIPOL(I)
    OBV=BV(I,IIP)
    OBU=BU(I,IIP)
    DO 370 K=1,NAC
    IF(K.EQ.IIP) GO TO 370
    BVIK=BV(I,K)
    BUIK=BU{I,K)
    IF(BUIK.LE.DBU) GO TD 370
    IF(BVIK.GT.OBV) GO TO 360
    KN=KN+1
    TALPH=(-BVIK+OBV)/(BUIK-OBU)
    IFIKN.EQ.II GO TO 350
    ADEPS=DALPH+EPSLN
    SBEPS=DALPH-EPSLN
    IF(TALPH.GE.ADEPS) GO TO 370
    IF(TALPH.LE.SBEPS) GO TO 350
    IF(BUIK.LE.BUIII|) GO TO 370
    KKPOL{I)=K
    BUI{I)=BUIK
    GO TO 370
350 DALPH=TALPH
    DO 357 J=1,NST
    IF(J.EQ.I) GO TO 355
    KKPOL(J)=IIPOL(J)
    BUI(J)=0.
    GO TO 357
355 KKPOL(J)=K
    BUI(J)=BUIK
357 CONTINUE
    GO TO 370
360 WRITE(6,365)I,K,BVIK,BUIK,OBV,OBU
365 FORMAT(5X,'BETTER POLICY EXIST',5X,2I5,4E16.7)
370 CONTINUE
380 CONTINUE
385 IF (KN.EQ.O) GO TO 600
    AL PHA=ALPHA + DALPH
    DO 393 I= L,NST
    IF\KKPOL(I).EQ.IIPOL\I)| GO TO 393
    WRITE{6,390) ALPHA,I,KKPOL(I)
390 FORMAT (5X,'ALPHA =',F20.14,5X,'I =',I5,5X,'K=*,I5)
393 CONTINUE
```

```
    PRCNT=(ELM/TNAC)*100.
    WRITE(6,394) PRCNT
394 FORMAT (5X,'PRCNT', 5X,F10.6)
    APRNT=APRNT +PRCNT
    ELM=0.
    IF(ALPHA.GE.ALPMX) GO TO 700
    IF(ALPHA.LT.ALPMN) GO TO }70
    IF(KN.EQ.I) GO TO 398
    KN=0
    DO 397 I=1,NST
    KKP=KKPOL(I)
    OOBU=BU(I,KKP)
    IIP=IIPOL(I)
    OBV=BV(I,IIP)
    OBU=BU(I,IIP)
    DO 396 K=1,NAC
    IF{K.EQ.IIP) GO TO 396
    IF{FLAG(I,K).GT.0.) GO TO 396
    BUIK=BU(I,K)
    IF(BUIK.LE.OOBU) GO TO }39
    BVIK=BV(I,K)
    IF(BVIK.GT.OBV) GO TO 396
    BUIK=BUIK-OBU
    TALPH=|OBV-BVIK|/BUIK
    KN=KN+1
    IF\KN.EQ.1) GO TO 395
    IF(SALPH.LT.TALPH) GO TO 396
    IF(SALPH.GT.TALPH) GO TO }39
    IF(BUIK.LE.PU) GO TO 396
395 SALPH=TALPH
    I SCND=I
    KSCND=K
    pu=BUIK
396 CONTINUE
397 CONTINUE
    G0 T0 399
398 KN=0
399 DO 950 K=1,NST
    IF(KKPOL(K).EQ.HPOL{K)\ G0 ro 900
    IFRST=K
    KFRST=KKPOL(K)
    DO 410 J=1,NST
    IF(J.EQ.IFRST) GO TD 400
    RV(J)=-DISCR*P(IFRST,KFRST,J)
    GO TO 410
400 RV(J)=1.-DISCR*P{IFRST,KFRST,J)
410 CONTINUE
    DO 430 I=1,NST
    PU=0.
    DO 420 J=1,NST
    PU=PU+RV(J)*T(J,I)
4 2 0 ~ C O N T I N U E ~
    DU(I)=PU
4 3 0 ~ C O N T I N U E ~
    PU=DU(IFRST)
    IF(PU.EQ.O.) GO TO 620
    DO 450 J=1,NST
    IF(J.EQ.IFRST) GD TO 440
    DU(J)=-DU(J)/PU
    GO TO 450
```

```
440 DU(J)=1/PU
450 CONTINUE
    DO 480 I= 1,NST
                                    168.
    PV=T(I,IFRST)
    DO 470 J=l,NST
    IF(J.EQ.IFRST) GO TO 460
    T\I,J)=T(I,J)+PV*DU(J)
    GO TO 470
460 T(I,J)=PV*DU(J)
470 CONTINUE
480 CONTINUE
900 IIPOL(K)=KKPOL(K)
950 CONTINUE
    DO 490 I=1,NST
    V(I)=V(I)+DALPH*U(I)
    PU=0.
    DO 485 J=1,NST
    IIP=IIPOL(J)
    PU=PU+T(I,J)*BU(J,IIP)
435 CONTINUE
    U(I)=U(I)+PU
490 CONTINUE
    ITR=0
500 DO 550 I=1,NST
    IIP=IIPOL(I)
    PU=0.
    DO 510 J=1,NST
    PU=PU+P(I,IIP,J)*U(J)
510 CONTINUE
    DU(I)=D(I,IIP)+DISCR*PU
    DBU=DU(I)-U(I)
    IF(I.EQ.1) GO TO }54
    IF(DBU.GT.BUMX) GO TO 520
    IF(DBU.LT.BUMN) GO TO 530
    GO TO 550
520 BUMX=DBU
    GO TO 550
530 BUMN=DBU
    GO TO 550
540 BUMX=DBU
    BUMN=DBU
550 CONTINUE
    UERR=BUMX-BUMN
    IF(UERR.LE.ERR) GO TO 570
    DO 560 1=1,NST
    U(I)=DU(I)
560 CONTINUE
    ITR=IIR+1
    GO TO 500
570 ADD=DISCR*BUMN/(1.-DISCR)
    DO 580 I=1,NST
    U(I)=DU(I)+ADD
580 CONTINUE
    WRITE(6,590) ITR
590 FORMAT (5X, 'NUMBER OF ITERATION IN S-OPERATION FOR U IS',5X,I5)
    DO 594 K=1,IIER
    DO 592 I=1,NST
    DUIK=U(I)-A(I,K)
    IF(K.EQ.ITER) DU(I)=DUIK
    IF(I.EQ.1) GO TO 591
```

IF (DUMAX.GE.DUIK) GO TO 592
591 DUMAX=DUIK
592 CDNTINUE
IF (ITER.EQ. 1$)$ GO TO 593
IF (K.EQ.ITER) GO TO 593
PDUMX(K)=DUMX(K)
593 DUMX(K)=DISCR*DUMAX
594 CONTINUE
DO $599 \mathrm{I}=1$, NST
DO $597 \mathrm{~K}=1$, NAC
$B \cup(I, K)=B V(I, K)+D A L P H * B U(I, K)$
$L=F L A G(I, K)$
IF(L.LE.O.OR.L.EQ.ITERI GO TO 595
BU(I,K)=BU(I,K)+DUMX(L)-PDUMX(L)-DU(I)
GO TO 597
$595 \operatorname{BU}(I, K)=B U(I, K)+D U M X(I T E R)-D U(I)$
597 CONTINUE
599 CONTINUE
ITER=ITER+1
IF(KN.EQ.O) GO TO 810
IIP=IIPQL(ISCND)
$\mathrm{PU}=0$.
$P V=0$.
DO $800 \mathrm{~J}=1$,NST
$P U=P U+P(I S C N D, I I P, J) * U(J)$
$P V=P V+P(I S C N D, K S C N D, J) * U(J)$
800 CONTINUE
$P U=D(I S C N D, I I P)+D I S C R * P U-U(I S C N D)$
$P V=D(I S C N D, K S C N D)+D I S C R * P V-U(I S C N D)$
IF(PU.GE.PV) GO TO 810
EXALP = ALPHA + (BV (ISCND, IIP)-BV(ISCND,KSCND))/(PV-PJ)
IF(EXALP.LT.ALPHA.OR.EXALP.GI.ALPMX) GJ TJ 810
GO TO 820
810 EXALP = ALPMX
$820 \mathrm{KN}=0$
DO $880 \quad[=1$, NST
$A(I, I T E R)=U(I)$
II $P=I I P O L(I)$
$\mathrm{PU}=0$.
DO $830 \mathrm{~J}=1$, NST
$P U=P U+P(I, I[P, J)$ \# $U(J)$
830 CONTINUE
BU(I,IIP)=D(I,IIP)+DISCR*PU-U(I)
$O B V=B V(I, I I P)$
$O B U=B U\{I, I I P\}$
$D B U=O B V+(E X A L P-A L P H A) * O B U$
DO $870 \mathrm{~K}=1$, NAC
IF(K.EQ.IIP) GO TO 870
RBV $=B \vee(I, K)+(E X A L P-A L P H A) * B U(I, K)$
IF(FLAG(I,K).LE.O.) GD TO 840
IF (RBV.LT.DBU) GO TO 853
$F L A G(I, K)=-1$.
$P V=0$.
$\mathrm{PU}=0$.
DO $835 \mathrm{~J}=1$,NST
$P V=P V+P(I, K, J) * V(J)$
$P U=P U+P(I, K, J) * U(J)$
835 CONTINUE
$B \vee(I, K)=R(I, K)+A L P H A * D(I, K)+D I S C R * P V-V(I)$
$B \cup(I, K)=D(I, K)+D I S C R * P U-U(I)$

```
    GO TO 855
840 IF(RBV.LT.DBU) GO TO 850
PU=0.
    DO 845 J=1,NST
    PU=PU+P(I,K,J)*U\J)
845 CONTINUE
    BU(I,K)=D(I,K)+DISCR*PU-U(I)
    GO TO 855
850 FLAG(I,K)=ITER-1
853 ELM=ELM+1.
    GO TO 870
855 BVIK=BV(I,K)
    BUIK=BU(I,K)
    IF{BUIK.LE.OBU) GO TO 870
    IF(BVIK.GT.OBV) GO TO }86
    KN=KN+1
    TALPH=(-BVIK+OBV)/(BUIK-OBU)
    IF(KN.EQ.1) GO TO }85
    ADEPS=DALPH+EPSLN
    SBEPS=DALPH-EPSLN
    IF(TALPH.GE.ADEPS) GO TO 870
    IF(TALPH.LE.SBEPS) GO TO 857
    IF(BUIK.LE.BUI(I)) GO TO 870
    KKPOL(I)=K
    BUI(I)=BUIK
    GO TO 870
857 DALPH=TALPH
    DO }859\textrm{J}=1,NS
    IF(J.EQ.I) GO TO 858
    KKPOL(J)=I]POL(J)
    BUI(J)=0.
    GO TO 859
858 KKPOL{J)=K
    BUI(J)=BUIK
859 CONTINUE
    GO TO 870
860 WRITE(6,865)I,K,BVIK,BUIK,OBV,OBU
865 FORMAT(5X,"BETTER POLICY EXIST',5X,2I5,4E16.7)
870 CONTINUE
880 CONTINUE
    GO TO 385
600 WRITE(6,610)
610 FORMAT(5X,'DPTIMAL FOR ALL ALPHA GREATER THAN THE CJRRENI VALUE')
    GO TO 700
620 WRITE (6,630)
630 FDRMAT (5X,'INVERSION FAILED')
700 CALL TIME(1,1)
    PV =ITER
    APRNT=APRNT/PV
    WRITE(6,750) APRNT
750 FORMAT(5X,'AVERAGE PRCNT =',5X,F10.6)
    STOP
    END
```


27	41
28	41
29	41
30	41
31	41
32	41
33	41
34	41
35	41
36	41
37	41
38	41
39	41
40	6

$-0.3742019 E+04$	1
$-0.3752761 E+04$	18
$-0.3952761 E+04$	18
$-0.3757751 E+04$	18
$-0.3972761 E+04$	18
$-0.3977761 E+04$	18
$-0.3982761 E+04$	18
$-0.3992761 E+04$	18
$-0.3797761 E+04$	18
$-0.4002761 E+04$	18
$-0.4007761 E+04$	18
$-0.4017761 E+04$	18
$-0.4025761 E+04$	18
$-0.4032761 E+04$	18

[^0]| NUMBER DF | ITERATION IN S | | FOR | IS | K | | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALPHA $=$ | 0.00223520805536 | $1=$ | $=$ | | | | |
| NUMBER OF | ITERATION IN S-OPE | ON | FOR | IS | | | |
| ALPHA $=$ | 0.04782711267229 | , | | | K | | |
| NUMBER OF | ITERATION IN S-OP | | FOR | IS | | | 0 |
| ALPHA $=$ | 0.05753709652306 | I | 27 | | K | = | 18 |
| NUMBER OF | ITERATION IN S-DPE | | FOR | IS | | | 0 |
| ALPHA | 0.06824467713929 | 1 | $=$ | | K | $=$ | |
| NUMBER OF | IJERAIION IN S-OP | Iov | FOR | IS | | | |
| ALPHA $=$ | 0.07544087286022 | I | | | K | $=$ | |
| NUMBER OF | ITERATION IN 5-DPE | | FOR | IS | | | 0 |
| ALPHA $=$ | 0.08670211920300 | 1 | $=1$ | | K | $=$ | 14 |
| ALPHA | 0.08670211920300 | 1 = | $=2$ | | K | $=$ | 14 |
| ALPHA | 0.08670211920300 | I $=$ | $=3$ | | K | $=$ | 14 |
| ALPHA | 0.08670211920300 | $\mathrm{I}=$ | 27 | | K | $=$ | 14 |
| ALPHA | 0.08670211920300 | I $=$ | 28 | | K | $=$ | 14 |
| ALPHA | 0.08670211920300 | I $=$ | 29 | | K | $=$ | 14 |
| ALPHA | 0.08670211920300 | I $=$ | 30 | | K | = | 14 |
| ALPHA | 0.08670211920300 | 1 | 31 | | K | | 14 |
| ALPHA | 0.08670211920300 | $1=$ | 32 | | K | = | 14 |
| ALPHA | 0.08670211920300 | I $=$ | 33 | | K | = | 14 |
| ALPHA | 0.08670211920300 | I $=$ | 34 | | K | | 14 |
| ALPHA | 0.08670211920300 | I | $=35$ | | K | $=$ | 14 |

ALPHA	0.08670211920300	36		K	=	14
ALPHA	0.08670211920300	37		K	$=$	4
ALPHA	0.08670211920300	39		K	$=$	4
ALPHA	0.08670211920300	39		K	$=$	14
ALPHA	0.08670211920300	40		K	$=$	4
NUMBER OF	ITERATION IN S-OPERA	ION FOR J	IS			
ALPHA $=$	0.21459945512724	$I=25$		K	$=$	4
NUMBER OF	ITERATION IN S-OPERA	ION FOR	IS			0
ALPHA $=$	0.25049353888991	I		K	$=$	
NUMBER DF	ITERATION IN S-DPERA	ION FOR	IS			
ALPHA	0.25565032155634	$\mathrm{I}=$		K	$=$	
NUMBER OF	ITERATION IN S-OPER	IOV FOR	IS			
ALPHA $=$	0.26155063770537	$1=$		K	$=$	
NUMBER OF	ITERATION IN S-OPERA	ION FOR	15			0
ALPHA $=$	0.32894307829057	$1=25$		K	$=$	4
NUMBER OF	ITERATION IN S-OPERAI	ION FOR U	15			0
ALPHA $=$	0.42463104236151	$I=25$		K	$=$	2
ALPHA	0.42463104236151	$I=25$		K		
ALPHA	0.42463104236151	27		K		2
ALPHA	0.42463104236151	28		K	$=$	
ALPHA	0.42463104236151	29		K		2
ALPHA	0.42463104236151	30		K		
ALPHA	0.42463104236151	31		K		
ALPHA	0.42463104236151	$I=32$		K		2
ALPHA	0.42463104236151	$I=33$		K		2
ALPHA	0.42463104236151	$I=34$		K		2
ALPHA	0.42463104236151	$I=35$		K		2
ALPHA	0.42463104236151	$I=36$		K		2
ALPHA	0.42463104236151	$I=37$		K		2
ALPHA	0.42463104236151	38		K		2
ALPHA	0.42463104236151	$1=39$		K		2
ALPHA	0.42463104236151	$1=40$		K		2
NUMBER OF	ITERATION IN S-DPERATI	ON FOR U	IS			0
ALPHA	0.42561664613784	$\mathrm{I}=24$		K	$=$	2
NUMBER OF	ITERATION IN S-OPERATI	ON FOR J	IS			0
ALPHA	0.44289342537689	$\mathrm{I}=22$		K	$=$	2
NUMBER OF	ITERATION IN S-DPERATI	ON FOR U	IS			0
ALPHA $=$	0.44428425680768	$\mathrm{I}=23$		K	$=$	2
NUMBER OF	ITERATION IN S-OPERATI	ON FOR U	15			0
ALPHA	0.45444687773132	$I=21$		K	$=$	2
NUMBER OF	ITERATION IN S-OPERATI	OV FOR U	IS			0
ALPHA =	0.46745478620674	$I=20$		K	$=$	2
NUMBER OF	ITERATION IN S-GPERATI	ON FOR U	I 5			0
ALPHA	0.48028381234698	$I=18$		K	$=$	2
NUMBER OF	Iteration in s-operati	ON FOR J	IS			0
ALPHA	0.48105384274671	$\mathrm{I}=19$		K	$=$	2
NUMBER OF	ITERATION IN S-OPERATI	OV FOR J	IS			0
ALPHA $=$	0.48582284110104	$I=7$		K	$=$	2
NUMBER OF	ITERATION IN S-Operatio	OV FOR J	IS			0
ALPHA	0.48738723143245	$I=11$		K	$=$	2
NUMBER DF	ItERATION IN S-OPERATI	ON FOR U	IS			0
ALPHA	0.49032200229026	$I=17$		K	$=$	2
NUMBER OF	ItERATION IN S-OPERATI	ON FOR U	IS			0
ALPHA $=$	0.49438128081422	$I=12$		K	$=$	2
NUMBER OF	ITERATION IN S-OPERATI	ON FOR J	IS			0
ALPHA	0.49584291440344	$\mathrm{I}=15$		K	$=$	2
NUMBER OF	ITERATION IN S-OPERATI	ON FOR J	IS			0
$\triangle \mathrm{ALPHA}=$	0.49798662127968	$I=13$		K	$=$	2
NUMBER OF	ITERATION IN S-OPERATI	ON FOR J	IS			0
ALPHA $=$	0.49927546453550	$I=16$		K		

27	41
28	41
29	41
30	41
31	41
32	41
33	41
34	41
35	41
36	41
37	41
38	41
39	41
40	41
$0 I S C R$	9
0.97000	

$-0.5214717 E+04$	14
$-0.5224717 E+04$	14
$-0.5234717 E+04$	14
$-0.5239717 E+04$	14
$-0.5244717 E+04$	14
$-0.5249717 E+04$	14
$-0.5254717 E+04$	14
$-0.5254717 E+04$	14
$-0.5269717 E+04$	14
$-0.5274717 E+04$	14
$-0.5279717 E+04$	14
$-0.5289717 E+04$	14

14

SCR
0.97000

ITERATION
9

[^0]: *** DPJIMAL ACTION(S) TO BE CHOSEN FJR THE こJRRENT OPTIMAL POLICY

