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Abstract

In this thesis, various fermion-boson strong interaction
‘potentials are determined as functions of the basic fermion-
iboson tfilinéar vertex function.

Working in Fock space, we note that the fermion-boson
trilinear interaction does not explicitly involve physical
particles. We develop a transformation, called the dressing
transformation, which acts on the fundamental particle creators
and annihilators. They are transformed 1into physical particle
operators, and the invariance properties and commutation
relations of the theory are preserved. A precise technique for
perturbatively determining the dressing transformation 1is
formulated, and is applied to some simple models in field
theory.

The dressing transformation makes explicit the physical
particle interactions implicit 1in the original trilinear
interaction. When applied to the nucleon-pion trilinear
interaction, we find a nucleon mass renormalization, a nucleon-
pion scattering term, and a nucleon-nucleon écattering term
present in the second-order dressed Hamiltonian. Using the NNT
vertex function derived from the Cloudy Bag Model, the nucleon-
nucleon coordinate space potential can be calculated. We
discover 'thatv providing the two nucleons are separated by a
distance greater than twice the bag radius, the potential
between them 1is given by the oné pion exchange potential

modified in strength by a function of the bag radius.
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Chapter 1 Introduction

The problem of finding a useful and accurate theory of the
strong 1interactions of nucleons and pions is an ongoing one.
Certainly one important advance in this area was the concept of
one boson exchange potentials, implying that the underlying
fermion-boson strong interaction is a trilinear one. These one
boson exchange potentials provide the basis for the functional
form of the phenomenological nucleon-nucleon potentials. In this
thesis, we develop a technique for finding potentials for direct
fermion-fermion, boson-boson, and fermion-boson interactions, as
well as boson production on two fermions. These interaction
potentials are determined in terms of the fermion-boson
trilinear vertex function. They can serve as the basis for a
phenomenological strong interaction Hamiltonian for systems of
pions and nucleons at intermediate energies.

Using an approach which takes the fundamental dynamical
variables of the theory to be the elementary fermion and boson
creators gl and BT, discussed 1in Chapter 2, the trilinear
interaction involves the integral S hFTFB, where the vertex
function h depends on the momenta involved. We show in Chapter 3
that requiring this interaction to be invariant wunder certain
space-time transformations greatly restricts the vertex function
h. The Cloudy Bag Model is then used to determine a specific
form for the strong interaction vertex function.

One difficulty with this fermion-boson trilinear
interaction is that it does not explicitly involve physical

particles since F*IO> is not an eigenket of the Hamiltonian. In



Chapter 4 we formulate a technique, called the .dressing
transformation, for transforming the elementary particle
creators 1into physical particle creators. This transformation
alters none of the invariance properties or commutation
relations of the theory. The initial work on the dressing
transformation was done by Greenberg and Schweber (1958), who
considered simple, soluble theories such as the scalar field
model and the Lee model. In this thesis we have generalized the
concept of the dressing transformation in order to apply it to
more realistic theories. We give a detailed prescription for
determining the dressing transformation and also for determining
the Hamiltonian as a function of the physical particle
" operators. Both are calculated in a perturbation series in the
strong interaction coupling constant. (A different perturbation
series for the dressing transformation has been given by
Faddeev (1964)).

In Sections 4.2 and 4.3, the dressing transformation is
applied to two simple theories - the scalar field model and the
Lee .model. This application 1illustrates many features of the
transformation, the physical particle creators, and the dressed
Hamiltonian which are present in more complicated theories. The
nucleon-pion trilinear interaction is dressed to second order in
Chapter 5. We consider the resulting physical nucleon-pion and
nucleon-nucleon interactions. Using the Cloudy Bag Model vertex
function, we calculate the seconaforder nucleon-nucleon
potential. We discover that providing the two nucleons are not
touching, this potential is simply a one pion exchange potential

that has been slightly modified in strength.



Many of the Appendices provide useful mathematical formulae
and techniques used in the thesis. For example, they discuss ﬁhe
rotation matrices, spherical harmonics, angular momentum
coupling, and Bessel functions. Other Appendices provide some
background to concepts used in the thesis, discussing such
things as two-body potentials or one pion exchange potentials.

In Appendix H we have generalized the trilinear interaction
to include fermions and bosons of arbitrary spin and isospin.
Thus our technigue can be applied not only to interactions of
nucleons and pions, but to interactions of other fermions and
bosons as well.

Finally, in Appendix K, we discuss a dressing
transformation for a Poincaré invariant system of interacting

fermions and bosons.



Chapter 2 Fermion and Boson Fundamental Dynamical Variables and

Their Properties

This Chapter will provide the background information
necessary for an understanding of the rest of the thesis. We
»will introduce particle creators and annihilators, and we will
give their commutation relations and space-time transformation

" properties.

2.1 The Fundamental Dynamical Variables

Our system of fundamental fermions and bosons with
arbitrary spin and isospin is described by a Hilbert space which
is a direct product of fermion Fock space and boson Fock space.
The fundamental dynamical variables, in terms of which all
observables and operators can be expressed, are the particle
creation and annihilation operators. These are defined as
follows:

F3;+(§), when acting on the vacuum state, yields a one-
fermion ket corresponding to an elementary fermion at position
x, having spin s, z-axis projection m, isospin i, and isospin z-
axis projection M. The adjoint operator, Fi[(ﬁ), when acting on
this one-fermion ket, gives the vacuum state.

Equivalently, we can define the momentum space fermion
creators and annihilators, Fiﬂ*(g) and Fi%jg). These create, or
destroy, an elementary fermion with momentum p. The two creators

are related by a Fourier transform:



= '\ 'RA IR s
":,;A (p) = sz,malz Sd3x e F3L+(—Lj (2.1.1)
Note that
F3itpy= co|FS Ty = 0 (2.1.2)
Lol mat (RY= L0 IFm (1) = .
and _ _
F:‘;& (pylo> = F:’; (xy loy = O (2.1.3)
Similarly, Bi&f(ﬁ), when acting on the vacuum state, gives

a position ket corresponding to an elementary boson at x having

spin s with projection m and isospin i with projection u. The

operators B;;(g), Bi&*(p), and B;;(Q) are defined analogously to

the fermion case. The position and momentum creators are related
by

st + S ~i¥‘.&/¥\ st +
By (1) = (rhy> Sd3P e B () (2.1.4)
The following commutation relations are satisfied by the

fundamental dynamical variables:

L P (1), FEETCENT = 53-8 Ssst Soamr Sitr S (2.1.5)
i Fa (5) FS (s} = % )y, \:S“+(§‘)§=O (2.1.6)
[BS. (3), B“'*(?)]: S(5-1) S5t St Sitr S (2.1.7)
[B5, (9, i (10] = [BILFLE) BEL(§)] =0 (2.1.8)

asitiny, Fvon] = [esiten), B2t (in] =0 (2.1.9)

where [ ] denotes a commutator and { } an anticommutator; i

represents either x or p.



2.2 Space-Time Transformation Properties of the Fundamental

Dynamical Variables

In this Section we discuss the effect of displacements,
rotations, space inversion and time reversal on the particle
creators and annihilators. These results are a consequence of
the requirement of .general Poincaré invariance for a physical
system (Kalyniak (1978)). We will wuse them in Section 3.1 to
determine the form which invariant particle interactions must
have.

To a spatial displacement of the system by amount‘g there

corresponds a linear, unitary operator D(a) such that

Dta) F;;J’li\ D'eay = Fvif (z+a) (2.2.1)
Dty Ryt (n DFea) = B (2+a) (2.2.2)

The resulting creation operator creates a particle at

position x + a rather than x. Using (2.1.1) and (2.1.4) we have

' i ~1aplk

Dia) Ff\ﬁ(p DHa) = F,f];+(¥3e '=F (2.2.3)
' i a-plh

D) Riy, tp) DFa@) = BRy (p) e T (2.2.4)

To a spatial rotation of the system through Euler angles
drp ,¥ there corresponds a linear, unitary operator @(d‘sz’),

such that

. s .
Rpr) Faut () R wpy) = Z Do, (4%) F:‘,;‘L(g_o (2.2.5)

m'=-S

S

. . _
R«pr) B (1) RF i) = m,zz_s Dt (<47 B:*;* (z_) (2-2:8)



The conventions for the Euler angles and rotation matrices

[lid M@UB are as given in Rose (1957). Note that
ZR = M'X ) (2.2.73)
N = My (2.2.7b)

where x is a column vector and M is the matrix defined 1in Rose

(1957, p.65).
From (2.1.1) and (2.1.4) it follows that

Mz‘

Rcam) Fe »* qz) UZ+(4(57)— Z D o AR F;;*+(P~R\) (2.2.8)
| > * ) (2.2.9)
S .2.
“JQ(o({sﬂ B (g\ Rt 4pv) = 'Z—;—.s Dm,m (..(‘gﬂ B.Sn;u. (1‘?-@\
Both the momentum and spatial coordinates, as well as the
spin, are rotated.

To a space inversion transformation there corresponds a

linear unitary operator ®  such that

1+

E’F$‘+(§§P+ F§£+(-§) (2.2.10)

Bs‘ ($) Pt = = Bs“ (-£) (2.2.11)

where the ©plus sign applies to positive parity particles, and
the minus sign to negative parity particles. _Z_ represents
either x or p. Both the position and momentum vectors are
" inverted by this transformation.

To a time reversal transformation on the system there

corresponds an antilinear, antiunitary operator J such that



s .
¢ s s¢t
JF,?,,L+<1>J+= e MZ___—_SDM'M(OTCO) Frw () (2.2.12)
. s S * .
J Bft:}k () j+ = Ng mz,:-s Dm'm (o0) B:“:}L (%) (2.2.13)
3;(’_1_)J+ = _g_‘-y(z_) JJ+ = -g:'k(z_) (2.2.14)
where | £(x) is an arbitrary complex function, and

Mel? =Meg? = 1. M is the time reversal parity of the particle.
It is determined from the space inversion parity and charge
conjugation parity by the requirement of overall TCP invariance

(see Schweber (1961, p.268)). For nucleons, 7g= +1; for pions,

The time reversal transformation does not change the
position coordinates, but does reverse both the momentum and
spin vectors. Reversing the spin is equivalent to rotating the
observer through 180 degrees about an arbitrary axis. We have
chosen this axis to be the y-axis, so the spin rotation has

Euler angles 0,7C,0. Using

Do (omo) = 45 (1) = O™ S ~ (202.15)

m'm

as well as (2.1.1) and (2.1.4), it follows that

¢+ - s

IFmp (R Fen ™" F-:u* (-p) (2.2.16)
¢ S-m ¢

IBmu (It = Mg © B (P (2.2.17)

Finally, to a rotation 1in 1isospin space through Euler
angles «, @, there corresponds a linear, unitary operator

ﬁ&(¢p13 such that



t

Rz bipr) F,f,/f;hf)?ﬁ?;(o(m) - 2 Djj# 4p7) Fms’:, +(§) (2.2.18)
/A

- -t
L

Rr «p7) B,f,; (R tag) = }E_L_ Dﬂ‘.',:‘ (+487) B;;;, (g)  (2.2.19)

The space-time transformations of F,f,;t(_f_) and B.f,;i(_g_) are
easily obtained by taking the adjoint of the transformation

equations for Fﬂb+(§_) and Bi;(g ) given in this Section.
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Chapter 3 The Trilinear Fermion-Boson Interaction

In this Chapter, we introduce and discuss a Hamiltonian for
strongly interacting nucleons and pions. (A more general
trilinear Hamiltonian involving other fermions and bosons is
considered in Appendix H.) We will show, in the firsﬁ Section,
that when this interaction 1is required to be invariant under
certain space-time transformations, it can only then depend on a
single function of one variable. In the next Section, we specify
this vertex function for the Cloudy Bag Model. Finally, we
discuss the concepts of elementary particle and physical

particle, within the context of the trilinear interaction.

3.1 Restrictions Due to Certain Space-Time Invariances

Using the fundamental dynamical variables defined in
Section 2.1, we construct the following Hamiltonian involving
interacting spin one-half, isospin one-half, positive parity
fermions, 1i.e. nucleons, and spin zero, isospin one, negative

parity bosons, i.e. pions:

H= Ho +) H.\ (3.1.1a)

Ho = M%/&" Sd3P [Zl-'-o (g) FmrL"'(g\ Fm,‘ (-P)+ EBo (-P) B,u'+(_"2) &'(PBJ (3.1.1b)

_ MM + 4 (3.1.1¢)
H = m%, »SdBP d3‘§ h M-m: L%) F‘;h)-lu (-F) FVﬂ:.IL(z (P‘$) B/“s ($)+adJ' ©
Fak/ntaat!
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The operator F;P+(Q) corresponds, in the nptation of
Section 2.1, to the operator F;;f(p) with s=1/2 énd i=1/2; m and
. can take the wvalues +1/2. We drop the labels s and i for
simplicity. Similarly, B,(p) corresponds to B;;(Q) with s=m=0,

i=1, u'= %1,0. Also,

E;,(g\= EPZCHMF}JJ‘A (3.1.2)
and

Esot,e) = [P’“c‘+m3:c‘*]h (3.1.3)
are the energies of the elementary fermion and boson,
respectively. Note that the particles are treated 'semi-
relativistically' by 1including relativistic kinematics. Note
also that the 'vertex function' h*¥#**(q) 1is chosen to be a

function only of g.

The trilinear interaction H, may be pictured as follows:

N 'P(m' ‘) -~ N N ’
H P-g (musd LT ()
. %
(M3 /
“m':ml: (33 3 4 k“,:,',‘:ﬂ’i’ *(9)
\\
h "‘\ g_ (/.‘(3) N
. . N _P (m.)u.)
112 g(m Ja \\

Fig. 1 The Trilinear F-B Interaction
Solid lines are fermions; dashed lines are bosons

The 'Hamiltonian (3.1.1) 1is translationally invariant and
conserves the total number of fermions. We can see this by

noting that the total momentum operator

P= m%)u.’ SdaP ? [F‘mp{-(P)Fm,x. P+ B}F(F)B}:'(_p)] (3.1.4)
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and the fermion number operator

N = Z foBp oty e () | (3.1.5)

both commute with H.

We now demand that H also be invariant under rotations in
isospin space, rotations in ordinary space, space inversion, and
time reversal. Ho 1is already invariant under all these
transformations, but in order that H, also be invariant, the
form of the function h¥#*#%(q) appearing in (3.1.1c) must be
restricted (see eqg. (3.1.35)). ‘

First, let wus calculate the effect on H, of a rotation in
isospin space. Using the results (2.2.18) and (2.2.19), we see
that

Rz (apr) H, Ret Gpy) = Z Sd3p d*e hFotts (@) D2 PCTY) D}:’:,;z wp)-

PFV&
Ftﬂzﬂa

¥ + .
. Dﬂs’ﬂs(dp.ﬂ FM'P" (P) sz,i,', (‘P-$3B/‘“3’ ($) +Q.dJ (3.1.6)

Using (A.1) and (A.8) to combine the three rotation matrices

into a single one, we find

Rr M R:T = . Z  fasp 3 hfia? () MECTOE
Ml Moy -
1“|‘H1-'f13'60 t

'(%ﬂ;&ﬁh'lﬁfﬂ)(lélfufu\cp) (ﬁ(Sp(-p'HTAW b&GHJVMIGVX\‘

o (2 Pt (p-9) By (@) + ady. O (3.1.7)

where (J,szhmzljm) is a Clebsch-Gordan coefficient. (See
Appendix D.) In order that (3.1.7) be equal to H,, it can have

no dependence on the angles o, B Y. Therefore, taking
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S=XN=A=0 and using the property (D.12) of the Clebsch-Gordan

coefficients in Appendix D, we have

RI Hl pI+ = Z SdSP ds(’.: hl:'/'"xs (g) l?_ c_)l—z}u. ~ 2y .
Mz M3 ,
"”""’t-ﬂz'}ls

COE  ps T ) (e pa B

. FM-,’;(‘I (-93 EY):.’.A,_' (.P_$3 B/ual (%) + adJ (3. 1 .8)

Comparing with (3.1.1c), we see that

R H R = H, (3.1.9)
if
Ml'}lt' ! MM pd . |"7-/~Jz'2}.13
W e (@) = L WEE () (D) © :
Mz Mz

’("il}i,_'}.{-s'l%#,l)(iz'ﬂ/-l;/l;l-.i}h\ (3.1.10)
From this equation, we note that all of the Hor Marpts
dependence  of hﬂﬂzﬁ(g) is contained in the coefficient

(ilﬂxﬂsléfMB. Therefore, we may write

h“'“z}‘ls (g) = (1;_‘ Ma M \"i/-h) L’WM‘Y):. (%3 (3.1.11)

m.ma

Secondly, we determine the effect on H, of a spatial

rotation. From (2.2.8) and (2.2.9), we have

RupD H RY@pn) = T (Sipaps 15p) 2o (d3p d3q hm.mz('i)'

Hlﬂﬂ/‘l'i m, My
M,/ my!
Yo N _ .
D, @po D2 wpd Bl () B 2-9) B §) +adj. (31412)

This will equal H, if

Y
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We write

Moot (@’: | zzm H’L: (@) P g vt (cp | (3.1.14)

where Y, (g) 1is a spherical harmonic of order { , whose
properties are described in Appendix B.
Substituting (3.1.14) into (3.1.13), we obtain
* =
.E%HL“(QB h““m”“1(@) = L YN '(QRX himnwm ?).

m, '
L't

Ya vy, ¥
* Dan (i) D). (4py)  (3.1.15)
Using (B.2),
* [ 2
‘d,m, (gn) = 27 Dm'm' (Ap¥) Yﬁl'm" (33 (3.1.16)

we act on both sides of (3.1.15) with Swﬂ"¢$3ddg to obtain

N immms (@)= m.Zm;m' Py reten ot (@) Dmyf‘m‘: 4RY) D"l *(4(51) DAY 4gy)  (3.1.17)

Using (A.8) to combine the first two rotation matrices this

becomes
i} ]
himm,m,_(%\ = N\Z:’ ! (2—;) hlvn’m.'m,,’ (%) ( dmam Iz m ) (5 4 m )l"im,’)‘

dm )

. Dr‘f\t\ (,\e;‘) D:m'* (*ij (3.1.18)

Now we integrate on both sides with respect to the Euler angles

A, B, Y. Using (A.9), we find

N, ()= 3 Dot () LA Mam 1500 (5 2ad 1 W) (3.1.19)

ml ml.lﬂ
This egquation determines the m, ,m, ,m dependence of

h ﬂmm,mz( q) :
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(3.1.20)

hlmm.mz ((i-)= (Jiﬂmzml'limly hg ((K_\
Referring to (3.1.14), we write
hmm'h L%}: i %— 1; (9) ('—%_ﬂ mzml'!im13 hl(?\ (3.1.21)

Thirdly, we require that H, be invariant wunder space

inversion. From (2.2.10) and (2.2.11) one has

pH|@+= - Z. SdaP dg? hm,ml ($3 (15_'}&1}15"‘?:)41)'

mima

}-&pt}lg
+ .
gy (7R l:,m}b (-p+g) Buy(-g) +ady. (3.1.22)

This will equal H, if

hM.Mz (¥\= 'hm.mz(—g‘) (3.1.23)

(One deals with positive parity bosons in a similar manner. For

such bosons we would have instead

hmme (@)= hmm, (-9)).

From (3.1.14), we have

ety (-@)= i z.“ Lﬂ: (-¢) N mims (¢

=] 12 E* Y (@ himmma (@) (3:7.20)

where the second step follows from (B.4). Therefore, (3.1.23)

can only be satisfied if

i.e., if L is odd. Referring to (3.1.20) for hj,,m.(9) and to

Figure 1, we see that L may be interpreted as the angular
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momentum of the boson in the trilinear interaction. The Clebsch-
Gordan coefficient (%5 & m.m |5m,) implies that the only possible

odd value of L 1is

Q=1 (3.1.25)

That is, only p-wave pions are allowed. We write

h.(@ = \n(?_\ (3.1.26)

Finally, we demand that H, be invariant under a time
reversal transformation. From (2.2.14), (2.2.16) and (2.2.17)},

we see that

1=, =My

*
J3 e - 2 Sy (L ) Han
/“lﬂv.).(;
+ .
g R E,,zﬁz (-p+g) B, (-g) +adj. (3.1.27)
 This equals H, if )

m+ m?—

Mo (@)= & h ey (=) (3.1.28)

or, from (3.1.23),

l+m ety *

Py (@) = & home (@) (3.1.29)

Now, from (3.1.21) and (3.1.25), we have

* . :

h_m'_m’_ ($3= -1 L')nr/\ L%) (Jil -~ Mg m‘i"ﬂl» h*(?_B (3.1.30)
Using (B.5) and (D.9b), equation (3.1.30) becomes

hfm,-mz (@)= | (—3m V,fn (¢) (51w -m | 5 m) L\"‘(%y (3.1.31)

Since m, is half odd integral,



M e - Y™ (3.1.32)
It follows that
* . *rﬂ|'ml+| L3 L * )
h--N'h--h')z(g-\= tED Ylm (23(3-1\'7)1”’]%?‘0,\%(?) (3.1.33)

Therefore, (3.1.29) is satisfied if

i.e., if h(g) is a real function.

In summary, the requirements of invariance under
displacements, isospin rotations, spatial rotations, space
inversion and time reversal have determined the vertex function

for the trilinear interaction (3.1.1c) to be

ekt @)= 1 (5 lpaps 14 Latmum B m) Yim (@ b)Y (3.1.35)

where h(g) is an arbitrary, real function. Thus the ihteraction
(3.1.1c) can be written
=1 2 Sapddg (51 | L) (L I£M) ¥ (@) hig)-
Hio= 1 &a, Pod (2 lpMaps Zp0) (3] mamlzmoy,, (@ ‘P
MHrply
+ .
R @ R (2-9) Ba (@) + ady. (3.1.36)

At this point it is illustrative to show that the above
expression for H; can be put into a manifestly invariant form.

First, we define the following operator:

- L 1N L L .
S)‘IJ“ (%\ = \S—;?’—; ﬂ%'_nz (2_‘ Mo A |zm.\ (1\ }11.}417./»‘:)
' Mippa

+
-Sd3p Eﬂp.(R7 E%Hz(P‘g) (3.1.37)

Using the properties (2.2.5) and (2.2.18) of the fermion
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operators, we find that

p(e({bﬂ SA,.« (%) {R*(o(!gﬂ = Ag-' D;,}‘ (ap‘(\) S’\.}* LQ_R\) (3.1.38)
and ' h
Re (487) SA,L(Q)?F?I%(W = ’z—_‘ D}:.}J (49,1) S'\r*' (¢) (3.1.39)

i.e., Spu(g) transforms as a vector under rotations in both spin
~and isospin space. Indeed, we may interpret this operator as a
fermion spin-isospin transfer operator. For example, S;, (g)
acting on a one neutron state with spin projection m=-1/2, turns
it into a one proton state with spin up. The spin z-axis
projection is increased one unit ( A=+1), and the isospin z-axis
projection is also increased (u=+1).

The trilinear interaction H, may be expressed in terms of
Sxum(g) as follows. We write Yhflg) in terms of the spherical

components of the unit vector g (see Appendix C) as

* A
'1)”\ (g_): \]-;%: (—5)‘ G- (3.1.40)

and substitute this into (3.1.36). The result is

Hy = gd?’% h(g 9: F 2 Bl + adj. (3.1.41a)
where _
é- S()- Bigy = ,\Z > ‘%_,\ S (@) Bug) (3.1.41b)
P

Using (A.2), (B.2), and (A.6), we find
Riap ¢+ S (- B(g\p’tu(yaﬁ é-n - 2 (g ) Blg ) (3.1.42)

and
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R: (dfn’) é ) (g)- Eli) Wr‘f(,((g;f) = ?A S (§)- B (i) (3.1.43)

The expression (3.1.41) for H, 1is manifestly invariant
under 1isospin space and spatial rotations. Note its similarity
to the more conventional Q-g Tu form for the nucleon-pion
trilinear interaction, such as the Chew-Low interaction
discussed in Schweber (1961, pp.376,377). Indeed, the invariance
requirements considered in this Section determine all bﬁt the
arbitrary real function h(g) for the nucleon-pion trilinear

interaction,

3.2 The Trilinear Vertex Function in the Cloudy Bag Model

The Cloudy Bag Model of Théberge, Thomas, and Miller (1980)
involves a massive pion field in interaction with massless quark
fields. The pion field couples to the guark fields only on a
spherical surface of radius R ('the bag'). In this model the
bare nucleon and delta particles are composed of three massless
up and down quarks confined to the bag. Using the known, lowest
~order bag model quark wave functions, and assuming that the pion
field is small, Théberge et al. have re-expressed the pion-quark
interaction in terms of pion-baryon trilinear interactions. The
resulting Hamiltonian 1is a combination of the Lee model
Hamiltonian (see Section 4.3) and the trilinear Hamiltonian
discussed 1in Section 3.1, For further details on the derivation
and consequences of the Cloudy Bag Model, we refer the reader to

the paper of Thebérge et al. (1980), and references therein,
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In Appendix F we relate the NNT piece of the Cloudy Bag
Model trilinear interaction to our equation (3.1.36). We find
the trilinear vertex function, which we write as h¢am(qg), 1is

given by

hcsm (@) = 3 ‘gL‘ %&iﬁil (3.2.1)
% i Mre % \Jfrc(?)

f, is the NNT coupling constant and

GRIK

(3.2.2)

uut@ﬁ =

wvhere {l(qR/—h) is a spherical Bessel function of order one.
The 'form factor' Uwn(g) takes into account the finite extent of

the bare nucleon; it has the property that

lim., = (3.2.3)
R>o0 uNL{’ ‘
Therefore,
\Irn h ( = 2"__ E_i L .
Roo oM tp © q m) (3.2.4)

In the limit R—>0, the Cloudy Bag Model vertex function becomes
exactly the wvertex function for the Chew-Low interaction

discussed in Schweber (1961, p.374).



21

3.3 Physical Bosons and Fermions

The Hamiltonian (3.1.1) has the following feature:
HB,f(g)\O? = 530(193 B,A+(P)lo> (3.3.1)
H Rl () 167 # €& (p) rm;ﬁ (@ lo> (3.3.2)

for &x(p) an arbitrary function. BP%(Q)|0> is an eigenket of the
Hamiltonian and therefore corresponds to a 'physical boson',
i.e., the elementary boson of the theory is a physical particle
" with mass me = me,. However, FWPT(Q)|O> is.not an eigenket of
the Hamiltonian. The elementary fermion of the ﬁheory is not a
physical fermion; we say that FT creates a 'bare' fermion. The
trilinear interaction is thus not explicitly a physical particle
interaction. In the next’Chapter we shall develop a te;hnique,
the dressing transformation, for obtaining physical particle
creators and a Hamiltonian which explicitly involves physical

* particle interactions.
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Chapter 4 The Dressing Transformation and . Some Simple

Applications

As  we saw in the previous Chapter, the trilinear
interaction does not explicitly involve physical' fermions and
bosons. We seek a transformation on the fundamental dynamical
variables of the theory which will 1lead to a Hamiltonian
expressed in terms of physical particle operators. This
transformation must be unitary and possess certain invariance
properties in order to preserve the basic commutation relations
and transformation properties of the particle creators and
annihilators. We will see that the bare particles acquire a
composite structure via the tfansformation; thus it is called a
dressing transformation.

In the following Sections, we will formulate the dressing
transformation explicitly and apply it to two simple, soluble

models - the scalar field model and thé Lee model.

4.1 The General Dressing Transformation

Consider the unitary operator
U= eD where D+="D (4.1.1)
and where D is invariant under translations, spatial rotations,
space inversion, time.reversal, and rotations in isospin space.
The operator D will be specified further below; it will be a

function of the fundamental dynamical variables, so we write
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D= DI(FR) o (4.1.2)

Let
Foufoy = UFLFut (4.1.3)
and
B3 st ¥ (4.1.4)
Baw () = W B U

where F and B are the fundamental fermion and boson destruction
operators, respectively, defined in Section 2.1. Throughout the
rest of this Section, we will omit the spin and 1isospin labels
on the particle operators, as they only complicate the notation
and change none of the results. We use the symbol V to denote
all transformed operators.

Because U 1is a unitary operator, F and B obey the same
commutation relations as do F and B. (See equations (2.1.5) -
(2.1.9)). Moreover, because of the invariance properties of U, ¥
and g will also transform under translations, spatial rotations,
space inversion, time reversal and rotations in isospin space
according to the transformation laws in Section 2.2.

For any operator A = A(F,B) in the Fock space, we have

wAw Y ut = ACF,B) (4.1.5)

In particular,

D(E &)= UDFEBDU = DF,B (4.1.6)
and using (4.1.5), (4.1.1), and (4.1.6), we have
HiEe) =W HEBW= e H(E,B) e = H(F,B) (4.1.7)

Given D, equation (4.1.7) gives the Hamiltonian as some new
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function ﬁ(g,ﬁ) of the new, independent fundamental dynamical

variables F and ﬁ. Indeed, we can determine the functional form
~S .

of H, expressed below as a function of the dummy variables F and

B, using
_ ~D(F,B) D(F,B)
H(FB) = & H(r,R) e

= H + [H,D]+ 37 COH,PI DI +... (4.1.8)

~
Our strategy will be to calculate H from this equation; from
(4.1.7) we know that the Hamiltonian H(F,B) is equivalent to
nN oo ~ ~
H(F,B) where F and B are the transformed operators.

The total momentum operator 1is

(F,8) (4.1.9)

Ior

P(F,B) =

where

[ng -D (‘:|B) ’ D (EIB)
PLF®)= e P(FB) e (4.1.10)

Since D(F,B) is translationally invariant, i.e.,

[P,D]=0 (4.1.11)
equations (4.1.9) and (4.1.10) imply

PR = P (F,B) (4.1.12)

Now suppose that we can write the Hamiltonian as
H= Ho"‘AH\ (4.1.13)

and that D can be expanded in a perturbation series in A:

w .
D= Z'_l 2" Dn (4.1.14)
n=1

Equation (4.1.8) then becomes the following perturbation series

~N
for H:
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ﬁ = Ho + )\ §H|+ [HO,D!]}

fXLIHLD T F ST MDD+ [Ho, D3 4o (401.15)

We now demand that the transformed operators Ft ana gf

.create physical particles. That is, we require §+|0> and §+]0>
to be eigenkets of the Hamiltonian H(F,B), or eqguivalently of

~N A o
H(F,B). That is,

ijtg,@\ E+Lgﬁlo7 = é}(a) f+(¥))o> (4.1.16)
TN §+(g\|07 = 23(23 §+(Py|o> (4.1.17)

where ¢r(p) and ¢&g(p) are some functions of p. Equations
(4.1.16) and (4.1.17) will hold if, apart from the terms F'F and
B+B, there are no terms in g(F,B), where again F and B are dummy
variables, which contain only one fermion or boson annihilator,
i.e., terms of the form

rireT, FTreTBY, etc. (4.1.18)
ﬁ(F,B) may, however, contain terms of the form

rtrtrr, BYBTBB, F'BTFB, FTFiFFBT, etc. (4.1.19)
which correspond, Trespectively, to direct fermion-fermion,
boson-boson, and_ fermion-boson interactions, and boson
production on two fermions. These terms appear in the
phenomenological Hamiltonian discussed in Hsieh (1978, p.31).

We thus choose the D to eliminate terms of the form

(4.1.18) from g(F,B) given by (4.1.15)., This may be done order
by order in A. For the case that H, is trilinear, we choose D,

such that

[HO>D.]= - H, (4.1.20)
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The expression (4.1.15) then becomes
Ho= He + A% {L [H, DT+ [Ho,Dal}

+ As i%[[”»,DJ,Dn]*’ li [[HO’DZ]’D']A- LZEH"D1]+ fHo,Dal}
e, (4.1.21)

Next, knowing D,, D, is chosen to eliminate terms of the form
(4.1.18) to second order in A, and so on.
The operator D constructed to satisfy the above conditions

is called a dressing operator. The corresponding unitary

transformation 1is a dressing transformation; the transformed
+

~n ~
operators F' and Bf, which create physical particles, are called

dressed creators.

We now go on to illustrate the dressing transformation with

some simple examples.

4,2 The Scalar Field Model

The scalar field Hamiltonian is a trilinear one involving
fermions and bosons. It 1is very similar to the Hamiltonian
discussed in Chapter 3, except that spin and 1isospin are not

included in the scalar field theory. The Hamiltonian is

H = Ho + X Hi (4.2.1a)
Ho = Ja3p [Er p) FHR FIR) + 5, (p) BY(py Bepy ] (4.2.1b)
H = SdspdS? hie) [ Ftp) Fla-9) Blg) + adj. ] (4.2.1c)
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Crs (P) = Epzcz T c“':‘yz (4.2.2)

o (p) = [pre? + mas G (4.2.3)

where mg, and mg, are the masses of the elementary fermion and
boson, respectively.

The operators F and B obey the commutation rules (2.1.5) -
(2.1.9), omitting all reference to spin and isospin; h(qg) is
chosen to be a real function independent of the fermion
momentum.

We may picture the trilinear interaction (4.2.1c) as in

Figure 2:
/
\_2 P—g N 7‘/
/
/
/
M?\ N h(%:\)/
N \\ $ {
\\ 1\2
-3 N

Fig. 2 The Scalar Field Model Interaction
The total momentum operator for the system is
P= §d3p g fFquz)thﬁ + B‘L(g) Bip)] (4.2.4)
The fermion number operator is
N= §d3p Ft () Fip) (4.2.5)

Both P and N commute with the Hamiltonian (4.2.1).
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We note that BT

(p)|0> is an eigenket of the Hamiltonian,
with eigenvalue £g,(p), while FT(E)|0> is not an eigenket.
Therefore we may take mg, = mg, the mass of the physical boson.
We seek a dressing transformation as outlined in Section 4.1.

The following D; satisfies the required 1invariance properties,

and equation (4.1.20):

D. = Sd% de 4 [Ff(p) Flp-)Blg) -adj. ] (4.2.6a)
wvhere
= —il&il—— (4.2.6b)
dipg) Alp.g)
and
A(g,g\ = Ep.,(g-@ + fs(i)— £r (F\ (4.2.6¢)

Note that this operator has a structure identical to H,,
the term it must eliminate. We will find this to be a general
property of the dressing transformation.

We now can compute [H,,D,] and find
[H,D, 1= - [dpd’s hQ FHe Fipd
A(P )2) )
r ¢ hQ)
+ o3¢ da‘% i_@?)_?) FJ"(g) Fﬂg'—g) F(g-%) F(%’)

l

i _t 4 ,
+ hiphig) [ Apg) Mg—g,g')] Ft(p-g) BBl Flp-9)

N (— -t gt ( '
PR | Blpg)  Alpg,g) | Pt o9 B B

+ ady. (4.2.7)
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The last term in [H, ,D, ], being of the form (4.1.18), must
be eliminated from the dressed Hamiltonian given by (4.1.21). D,
can be constructed to accomplish this.

The momentum P is given by (4.1.9) and (4.1.12) to be
P=lapp LFtpFp + BYp Bip] (4.2.8)

The Hamiltonian, dressed to second order, 1is given by

(4.1.7) and (4.1.21) as

~

HirB) = H(FBY= T+ Ver +Ves (4.2.9)
T= Sd% [2.:(123 E‘L(R) Elg) t+ Ealp) §+(;3 ﬁ@] (4.2.10)
Ver = 4§ 03k d3R/d3K Upe (R, &L FH (4RI FH (SR~ RF (SR FReR)  (4.2.11)

Veo= L § d3k k! d3x Vrp (R kyK) F IS kek) BH(sk-p) Blsk-kDF (4

Kek')  (4.2.12)
where
e lp) = Eso(g) (4.2.13)
Er(p) = &r(p) - A" \d3 hz(@ | (4.2.14)
¥ F S i EFo(,E—?)‘FEB(g)-Ero(P)
QEF(Eé”ES = =N h*(k-Rk'T) + R &>k’ (4.2.15)

-_— —

Ero (5K-R) + Eplk-k'") - Ero(fk-h")

Ues (&k4K) = =N h(%k-80) hl5e-81) -

|
. { EralR+R') + €a (%!s—'?s)-&ot‘zp@

! /
EF°(J1_S+E)+EB(J{\$‘E§ -ZE(&)]+ E&E : (4.2.16)
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(E.7)), we
fermion-

These

the discussion in Appendix E (eq.
the

Referring to
recognize Ugr and %Urg as the matrix elements of
and fermion-boson momentum space potentials.

fermion
functions are pictured in Figures 3 and 4:

Nj-

(7.9
+
m

pi-

pi-

Fig. 3 The Fermion-Fermion Potential  ¥ge(k,k” ,K)

P

7 A

NI

I
+
w

1
-

different

Fig. 4 The Fermion-Boson Potential Ugg(k,k”,K)
two

order, there are

Note that, to second
mechanisms (Fig. 4) by which FB scattering can take place; these
correspond to the two terms in Ugg.

Note also that
(4.2.17)

ﬁ(5,§3 E+(Eﬁlo7 = Ep(g) F+g$)lo>
(4.2.18)

‘and

Y E,8) B oy = Es@ B lo>
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wvhere &g(p) 1is the 'renormalized' fermion energy, given to
second order by (4.2.14). Thus $+(Q) now creates a physical

fermion. From (4.1.3) and (4.1.4) we see

Ffe = Froy - TFtey P T 57 [{F*(g\,D],D] Fooo (4.2.19)

Bf ) = Rfp) - [8t(p, D] + 7o [(B*p,0T,0] +... (2.2.20)

Calculation of these dressed creators shows that ?119) is given
by an infinite series of terms; the first term 1is the bare
fermion creator Ff, the second term involves FTB+, the third
term involves FTB1BT, and so on. Thus one says that the physical
fermion consists of a bare fermion surrounded by a 'cloud' of
bosons. Also, we find that Bt equals BT plus a series of terms
which involve fermion operators, all of which give =zero when
acting on the vacuum state. Thus §+(Q)|0> = BT(Q)|0>, although
§+KE) # Bf(p). The dressing transformation has not changed the
physical one boson state.

If we make the simplifying assumption that

ro (p) = Mg, c* (4.2.21)

i.e., the fermion energy 1is independent of its momentum, we
discover several interesting results. In this case, (4.2.6c)

simplifies to

/_\.('E,cp = Es (g) | | (4.2.22)

and as a result the final two terms in eqg. (4.2.7) vanish.

Moreover, now

CLCH,D.I,D\]=0 (4.2.23)
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Thus [H,,D; ] now contains no terms of the form (4.1.18), so
we may take Dz = 0.. In turn (4.2.23) impliés that Ds = 0.
Indeed, Dnh = 0 for n>1, We may write the dressing transformation
exactly as D = D,. The model is thus said to be soluble.

Note that when (4.2.21) holds, the dressed Hamiltonian no
longer contains a fermion-boson scattering term. It does,
however, have a fermion mass renormalization and é fermion-
fermion scattering term. We find equations (4.2.14) and (4.2.15)

become, respectively,

Mec® = vﬁp,cl - A Sd:"? %% (4.2.24)

and s
Ve (@) = 2 52(([:; (4.2.25)
The corresponding coordinate space fermion-fermion

potential may be obtained by from eguation (E.11). It is
gk
Ve (0) = Sd3c; et Ver (@) (4.2.26)

For the specific choice

[
In(cp- \J‘c‘_a@ (4.2.27)

for the wvertex function, the integral in (4.2.26) can be

evaluated. We obtain a coordinate space Yukawa potential, namely

Vre (r) = =-H4x*A*A e_ﬂmscr”\ (4.2.28)
FE r) = v /o el

r

The integral (4.2.24) is mathematically divergent; equation
(4.2.24) is taken as a definition of the bare mass mg, , in terms

of the physical mass m; and the (infinite) integral.
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In conclusion, the scalar field model has illustrated some
interesting features of the +trilinear 1interaction and the
dressing transformation. The physical particle interactions
which were 1implicit 1in the trilinear Hamiltonian (4.2.1) have
been made explicit through the dressing transformation. Physical
particle potentials can be determined from the trilinear vertex
functions. The physical particle creators can be calculated and
we find that the physical fermion corresponds to a bare fermion
surrounded by a cloud of bosons. Finally, we have shown that the
scalar field model 1is soluble only when the approximation
(4.2.21) is made. For the general case that (4.2.2) holds, the
dressing operator 1is given by an infinite series of terms and
thus can only be determined by a perturbative procedure such as

we have developed.

4,3 The Lee Model

The Lee model describes a trilinear interaction involving
two distinguishable fermions and one boson., Like the scalar
field model, the spin and isospin of the particles is neglected.

The Lee Hamiltonian is:

H= Ho+ AH, A (4.3.1a)
2
Ho= J0%p [ Z Eaolp) RAp ) + &) B B ] (4.3.1b)

H, = Sd3p d3? h(g) [F,_*(g)l:.(g—g)atg) +adj. ] (4.3.1¢)
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The momentum operator is

P=Jd%p pl o{é Rl Flp) + B’rcg)B’f(F)] (4.3.2)

Fﬂ', sz, st are the creation operators'for particles

traditionally called N, V, and &, respectively.
2
fuo (p) = [p2e® + wu, ct ]t d=1h2 (4.3.3)
is the energy of the elementary fermion, and

Ego (F\ = [pre® + med Cq]‘/z (4.3.4)

is the energy of the elementary boson.

h(g) is chosen to be a real function. The Lee model is also
solvable when h = h(p,g) but this only complicates the notation
and changes none of the essential results.

‘Note that momentum is conserved by the interaction, as is
the total number of N and V particles and the difference between
the number of N and & particles.

The interaction H, may be pictured as in Figure 5:

g Pt /4

h (_QQ h(g)

¢ \

Fig. 5 The Lee Model Interaction
Thick solid lines are V particles, solid lines
are N particles, and dashed lines are & particles.
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The creation and destruction operators obey the familiar

fermion and boson commutation rules:

= (pY, Eﬁ(;/)} = 8(p-p") Sua! ‘ (4.3.5)
‘B (p), E('(,e'ﬂ = 0 (4.3.6)
LBy, BF (] = $(p-p" (4.3.7)
[Blp),B(pN] =0 (4.3.8)
[Fatp), B(pNT = [Ratp), BRI =0 (4.3.9)
Because
HE Y pyley = & (p) RHp)loy (4.3.10)
and
HB*(;)\(» = &go (P B*’(@lo? (4.3.11)

Fﬁ' and BT create physical particles. Therefore, m,, =m,, the
mass of the physical N particle, and mga, = mg, the mass of the
physical boson.

However, F{f(g)|0> is not an eigenket of the Hamiltonian H
so F,T does not create physical particles. We now perform a
dressing transformation according to the prescription in Section
4.1.

Equation (4.1.20) is satisfied by

D = Sdsp d3? d'(ﬁ'i) [Fz+(2) F L.‘E-Q\ B(g)‘adj-] (4.3.12a)
where
d.(g,g),: bl (4.3.12b)

Alp,q)
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and

A(g,$)= E.I(g-gwf &a (g)-&o(p - (4.3.12c)

Note that this 1is not the same A (p,g) as is used in the
previous Section. To ensure that A(p,g) does not wvanish, we

require that m,<m,+mg, 1i.e., the V particle is stable against

" decay into N + @,

A simple computation now shows that

[u,0 1= - fd% d% _2(_(9,)7 ) Fap)
Pg

3 h2(g) ) '
+ Jdp o d'g %—m% RE@ R (g Fp-p R (@)
-h@DEY Ly B Bl F (g
s P B BRR g

¥ h(g) hlg')

F|+( - /) ML ' -
Y p-g) BHgN Bl F (p-9)]

+ adj. (4.3.13)

Since [H,,D:] contains no terms of the form (4.1.18), we

take

D, = O (4.3.14)

A computation of [[H,,D,],D,] indicates that we must choose

D, = J&%p &% ditp) [RYp F (p-9)Bl) -adj]  (4.3.150)

h*(g") h(¢)
Alp)g) Mg,g'\

—
[ A(E,g\ + 3 A(-P&\)] (4.3_.15b)
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This eliminates all unsuitable terms of the form (4.1.18) from
the dressed Hamiltonian, to order Xﬂ

Note that D, and D; have an identical tfilinear structure.
Indeed it has been previously shown (Greenberg and Schweber
(1958), Piskunov (1974)) that for the Lee model D can be
determined exactly and has a trilinear structure. We give such a
calculation in Appendix G, and determine there the physical V
particle creator Flf.

The dressed Hamiltonian, to second order, 1is given by

(4.1.21) and (4.3.13):

ﬁ(f,§3= T+ Viz + V2 ’r\/ae, (4.3.16)
z ~ ~ ~ ~
T= §ap [ Z_‘ &) T () Fy (p)+ & (p) BB ] (4307
Viz = 7 I03R 3R 'd3X Uiy (k) Ryt (4 k4L o) F F ke E (o) (4.3.18)

Vag = (d% dBk' dsxq_rm(khk\lﬁ( k&) BY (5-R)B (5 k- 0F, (S Kek!)

(4.3.19)

Vie =3 ook PR a3k s Lot O FF ke B (1 0B L K-V FL ) (4 550
where

E(p) = [prct + mprctIh (4.3.21)

2 h*(¢)
E2(p) = Ea0 (p) + AT )43 $ (4.3.22)
P 20 °F S ? Ezo(;) “2.(3-@3-53(?)
Vi lk, k', K) = At ht (R+R") + R e k' (4.3.23)

EV(ZK-R') + S5 (R k') - €20 (S Kktk)
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Ve (R,B'K) = N h(fk-BY h(LK-R) + Rev k! (4.3.24)
£0kek!) +E Ly Kk-R) - Lo (Frrk)
Uig (b k! K) = M h(ik-r") h(3K-R) ke B (4.3.25)

Elzr+i') + & (Tk-R) - & (K)
Note that the energy of the V particle has been

(4.3.22)).

renormalized (eq.
U, Vs, and Vs correspond to Figures 6, 7,

The functions

and 8:

|
S Ktk
[ o072
ZK+k
L ZK+R
\ZE_E
- / //
- Ly-h' A
I k~B' 7 |
k! or 2527 |ME kg
- - - // d
i / [
{
| S Y Lo

Fig. 7 The V-& Potential ;e

! [
TR A
P B _/ \i&{"&[

Fig. 8 The N-& Potential Ujs
There are no N-N or -0 scattering terms present 1in the

Hamiltonian to second order.

that the dressing transformation has made

Again we note
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explicit the phjsical particle interactions described by the
original trilinear interaction. Matrix elements of the physical
particle potentials, ., Use and U, have been determined in
terms of the trilinear vertex function h(g). The physical

particles (see eqg. (G.16)) become composites of elementary ones.
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Chapter 5 Dressing the Trilinear Fermion-Boson Interaction:

The Fermion-Fermion Potential

We saw in Chapter 3 that the nucleon-pion trilinear
interaction discussed there does not explicitly involve physical
fermions. In this Chapter, we use the dressihg transformation
developed in Section 4.1 to transform the elementary particle
creators into physical particle creators. Under this
transformation, we find that to second order the Hamiltonian
contains physical nucleon-nucleon and nucleon-pion interactions.
Concentrating on the nucleon-nucleon term, we use the vertex
function derived from the Cloudy Bag Model to calculate the

second-order nucleon-nucleon potential.

5.1 Dressing the Trilinear Interaction

Consider the nucleon-pion Hamiltonian (3.1.1), with vertex
function h given by (3.1.35). BHT(Q)|0> is an eigenket of this
Hamiltonian so we take £g(p) = &s(p), the energy of the
physical pion. FmpT(E)|O> is not an eigenket of H. We seek a
dressing transformation as in Section 4.1 which will determine a
dressed Hamiltonian ﬁ(F,ﬁ) -expressed explicitly in terms of
physical particle operators.

A first-order dressing operator, which satisfies the

required invariance properties and (4.1.20) is:
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- 3 43 My . ‘ '
DI h 'ﬂzllmz Sd Pd % WL (%) th:l (-F) Eﬂt}iz(g‘g—) Bf‘s ($) - adJ ) (5.1.1)

Mipkapts | Er (§)

In determining this operator we have taken

Eno () = My, €™ (5.1.2)

We are now able to determine [H, ,D;]. We find

[H,D.] = r}m §dp St Bt () R )
M .
] Mptapplpt t + / ‘
T z (n Sd3P ds? da? g‘wz\’ E" maMsz;\l(g) F""V"L'B“g")g\'f*' (g)Eﬂth?) Fm‘)-l'($+$)

Mephzplpepe
MMz ™

F R I 190 Ry (29 Bl @B B (prg)

r S “ (g, Finp" 2@ Foupa (-9) By 09 By (g'ﬁ

+ adj. (5.1.3)
where
[} ok
fit = - 2 fag hham @ Wl (@ (5.1.4)
Mapa gx(?) -
(Ma 1 Mz n ‘ Il*
B e ()= W (@) hARET (g (5.1.5)
E‘u:(?)
‘g}"FtFF"‘u N = L yryey (o, 't &
3 mmam (-(%)?) ix(gl) [ th,:";,l L$3 h}"[:zﬁ' (gl)
‘ ]
~ hfp e (¢ atatel *'(S}’)] (5.1.6)
CHHERRRT 0 o) = RERT gy pR R 3[ = T ] :
¥ mimim 3»? mm, (% Ma W 2 [,r(¥3 fr(?') (5.1.7)
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The first term in [H,,D,] can be simplified using the form

(3.1.35) for h. We have

i = = Lo §dlq (Rl Ep) (R pt 15p)
Mapla g
h2(4)

' | n *
'(%lmzmlliim:) (i‘MLM ljim\ V\m' (g)ﬁjlm"(g) EK(?) (5.1.8)

First, (D.5) is used to sum over w, and u', leaving  §y, u.
Next, (B.8) 1is wused to integrate over ddI?, to give Sm’m™

Finally, we use (D.5) to sum over m, and obtain Sra,,m . Thus
Mg 2z hZ( \
S:'m.m = g? d% ﬁ%}' Sfln/-*gm.,m (5.1.9)

The last term in [H,,D. ] is of the form (4.1.18) and must
therefore be eliminated from the dressed Hamiltonian given by

(4.1.21). We choose

- =L 3, 43 Mopha pap i N .
Dz 2 /""’J"/‘“*'/u”" Sd P d % 'g:q ™, M2m (g ,?.3
™M M ™
: Fm,f(g«\g') R (2-9) B tgd Bur (g1 - adJ“. (5.1.10)

so that [He,D,] exactly equals minus one-half of the last term
in [Hl,D|]o

. . . z
The resulting Hamiltonian, to order A , 183

ﬁ(E,ﬁ\ = T+ Ven + Van (5.1.11)

—_— 2 &2} (s R+ 3
I = ME,;' Sdsp [muc F"‘H (p) Fm’,(p + 31(1238’; (g B,u'@ﬂ (5.1.12)
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V(.M = A_Z Z_ A3k A3k’ 3 ﬂnHa}L/u',L"
b 2 fpapp S R Q%' d*X [v;cN M Wi (&, R)
M. ' o (
+ MM Moy )
Urn ’r;mlmfl Uiili,‘ﬁ)]‘
=+ ~oL ~ R~ '
B (G Buf G By, (1w Fop (o) (5.1.13)
Van = X 2 d*k d3k' 43 Hipo paplp® L
2 M'F‘H’A‘F" g h d )< mh} m.m;mm’ (E E)
ML mm!
'Fm.:\ (ZR+R) Fm.:, (k-8 Frp L2k-RD R, (Bieg)  (51.14)
where
2
Myct = Mygec® - M Sc}’“ dq__}‘_(_@_ (5.1.15)
81:(?)
”"u"/“/""“/"" - L k! Ly \
U e (b0 = _hUSR DD USRB) by e ()
Ex (5K-R) -

L V5O CE U mA TEm) C ot 1) (1 m X ) 5 ma)

-(ilp%z\ipd(i\wn%\%nm)(%lp}p”lipbbilm1X|%wﬂ] (5.1.16)

My M ut _ - ES
Vnn Jp (g) = 2h" () ¥ XK (@'

Mcmamm' fx (?) Iz (%

'[('Elpz/u" IS.}AJ(";_\ moAl Em) sl pp Jip\(lilm'k"limy](s'“”)

We can see from its structure that Vpy = quf.'Using (B.4)
and (D.9), one can easily show that Vyy = VNJ* as well,

The nucleon mass has been renormalized (eqg. (5.1.15)). The
functions (5.1.16) and (5.1.17) may be pictured as in Figures 9

and 10:
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Fig. 10 The N-N Potential V™! MFr (k-k')
] L8

From the Figures, we see clearly that the Clebsch-Gordan
" coefficients appearing in (5.1.16) and (5.1.17) serve to impose
angular momentum and isospin conservation at each vertex. The
two terms in Uxy correspond to the two different diagrams for
t-N scattering shown in Figure 9.

The physical one-nucleon creator may be calculated from

~ D -
Fw\}j(?) = € Fm;(g)e 0 (5.1.18)

One finds that the physical nucleon 1is a composite particle
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conéisting of a bare nucleon surrounded by a cloud of pions.

We have now seen several examples of dressing
transformations and may infer <certain properties of these
transformations. To order n, D, is constructed to have the same
structure as the wunsuitable term which must be cancelled.
Because of the basic commutation relations, [Ho ,Dn] will always
cancel exactly and only those terms reguired. The physicél
particles become composites of elementary ones via the
transformation. Physical particle 1interactions are expressed
explicitly 1in the dressed Hamiltonian. The series for the
dressing operator and the Hamiltonian will terminate or be

summable only for very simple models.

5.2 The Second-Order Nucleon-Nucleon Potential

In this Section we wuse the trilinear fermion-boson
interaction of Chapter 3 and results of dressing it to determine
a coordinate space nucleon-nucleon potential in terms of the
vertex function h(g). It 1is a second-order potential in the
sense that it is obtained from the second-order term Vg, in
NN . . . .

H(F,B). First, we rewrite Ve in eg. (5.1.14) in terms of the

~

two-nucleon operators A:;j’ defined by (E.12) to find

2 3 143 Gpo'p' Nso+t NS“: \
Vi = A 526_‘5 Sd kd*k'd*K Vsusm' (k- k) Amp (k1K) AH'P “3"'((?3.2.1a)

s'we'p
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where _
0’@6(5 . h*(¢) 1 3.3
sHst (g) 2 M'%HI“'}A” in(?) He () Qo( (2_) (1100 '.,QO)
mMwh mm'L
LRt papnts a\)( Z % pp ‘6(5)( 2.1)4-}*“' /«0( 2 p;pfﬁ'p')]'

M AN LD S 1) (5 & Mamls ™) Ca v A 1Em) (I A 3w
(5.2.1b)

c'a!
To arrive at this form for Tfsfsfﬂg) we used (B.6) to

combine the two spherical harmonics in (5.1.17) into a single
one.
Based on the discussion in Appendix E, we recognize
sfsf(g) as the matrix elements of the momentum space two-
nucleon potential. Many of the sums over spin and 1isospin
projection quantum numbers in (5.2.1) can be evaluated, as we
now show.
We apply (D.18) to the first three 1isospin Clebsch-Gordan
coefficients appearing in (5.2.1) to find
2 g pap" T5 ) (55 pop 168) ' (U3 pop 15 4)
Mipp !
Vo | V2

G+t L1
= (- ¥ ,lz(z) %VZ G V‘L% (lzﬂz)*lcﬁ) (5.2.2)

Vo ol Yz?
where % Y= @ Y2) denotes a 6j symbol (see Appendix D). Using

(D.5) to sum over y, and u, we find that the expression in
square brackets reduces to

[ ] . 6“' [ \/1 ! \/1

= 2 =) } '
s v Y2 O V2 SUG 5%:,’ (5.2.3)
MM
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We now consider the five Clebsch-Gordan coefficients inside

the curly brackets in (5.2.1b). Rearranging the fourth

coefficient using (D.9d), we find that these five coefficients

are related exactly by (D.25). Thus

Zoh

7o [P0 ] hmam Ism) (11 =4 M 144)
™Mamw Mm,

Mam
AN AT (S AT ) (S1mlaf 15 (53 mamistn)

i

Ll
Z 39

- J (25 (224D @) (SAM&ISM') o
s % S
L 505 (5.2.4)
;o l'
where Ya Y2 S is a 9j symbol (see Appendix D).
We can combine the results (5.2.3) and (5.2.4) to write
GP l‘i' = ! U GpG'ﬁ.'
U (§)= & [SAMAISMN T (@) U gor (@)

Ss (5.2.5a)

where

GpS' 24 G (Yo | V¥ h*g)
T (9) = boc' O > 4% Z%

NP Yo O Y2l Ex(g)
A
X
2sel Gieo o) ], 5, (5.2.5)

Before continuing 1let wus consider the various factors in

this potential, First, we note that the factor 5@5' 55&' makes the

conservation of isospin and 1its z-axis projection manifest.

Secondly, it can easily be shown that the requirement of

rotational invariance alone means that Qfgfgf(g) must be of the
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form (5.2.5a). The specific form (5.2.5b) is a conséquence of
the trilinéar interaction with which we began. Thirdly, note
that the Clebsch-Gordan coefficient (llo<3l103 {s non—zéro
only for { = 0,2, corresponding to the scalar and tensor parts
of the strong interaction, respéctively.'The conservation of
spin is implicit in the 9j symbol, which 1is zero wunless the
three angular momenta in any row or column form a triad. Thus,
for L =0,2, s =58’ necessarily. The guantum numbers M and M’
are not required to be equal.

Based on the aBove discussion, we may write the nucleon-

nucleon interaction (5.1.14) as

Y N Nso+ R sG
Ny = A2 Sd'-*hd‘k‘dw SHZM' Upn (R-K") Aﬁp (k,K) A'?"'P (‘3'»@(5.2.6)
Sg
where
S5 5 56 & hi(g) ¢
UMH' (%_\2 a-Mn' £ (@) J T (g_\ (5.2.7)
1=0,2 %
sG & S Yo 1Y ]
O = Z_i_ SRR yii\lz_c,n (11o00ll0)
e iy Yo S
L(SaMaIsH) §\r ¢ (5.2.8)
Vo Yo S

This constant specifies the spin and isospin dependence of
the potential. We have determined its numerical values using
Messiah (1958, pp. 1065 - 68) to evaluate the 6j and 9j symbols
and values are given in Table I for various total spins and
isospins.

We may. use (E.11) to relate the momentum space nucleon-
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nucleon

potential U, (g) to the corresponding coordinate space
potential:

’ 1@k
Vpne () = (&g e Vo () (5.2.9)
Using (5.2.7), (B.7), and (B.8), we obtain
L
rgaz, (r) = 2 Vx (v \’USG (r) (5.2.10)
11'0)1.
where

2 SG L
1T;i. (r) = 4K e S

Ex( 42 ( ?/M\ (5.2.11)

Thus, given a trilinear vertex function h(g) we can compute

the corresponding coordinate space second-order N-N potential by

performing the integration in equation (5.2

1).

2=0 2=0 2=2
S=0 S=\ S= |
- - A 2 1 '
G=0 = an' Smo == Sum' gﬁg(tznm-uhn)
G=\ _|" S |S -1 r
tt’ OMo —  Qum! — (12 M M- MIIM)
Table I Values of the Constant $U2

a_MM'
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5.3 The Nucleon-Nucleon Potential in the Cloudy Bag Model

The coordinate space nucleon-nucleon potential functions
QISX'l(r), given by (5.2.11), are the matrix elements of the
scalar (£ =0) and tensor ({=2) parts of the second-order
nucleon-nucleon potential taken between two-nucleon states
having spin $ and isospin O . We now calculate these matrix

elements by substituting the Cloudy Bag Model vertex function

given by (3.2.1) into (5.2.11). We have

G 4 108 r R4 sud
[Ur‘\ﬂ' () Jcgm = —_ Lé_(,_ (lMM' NL(YIRW (56.3.1)
R M C

where
2

Ng (r,R) = gd%?:%‘? 1"2(?%) ﬁ (?R/’Q g=0,2  (5.3.2)

' We show in Appendix I that for the case r > 2R, i.e., when
the two bags do not overlap, the integrals Ng(r,R) are easily
evaluated using a result given in Watson (1966), involving a
contour integration 6ver products of Bessel functions.
Remarkably, the integrals Ny(r,R) factor into the product of a
simple function of the bag radius R and a function of the
coordinate r. Indeed, taking k = mg, b =R, and a =r in

equations (I.13) and (I.14), we discover

sG XL sO £
[QIMMI (C\jcﬁﬂ = [iTMM' LC\]DPEP ﬁ(Rs (5.3.3)
where .
q [ cosh (uR) - sinh (L_AR) ]1
qRY= (qu R (5.3.4)
[«TSGl (r)] are the matrix elements of the central and

MM’ =/ Jopgp
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tensor one pion exchange potential, which 1is discussed in

Appendix J, and

p= = - (5.3.5)

Specifically, the Cloudy Bag Model potentials are

' SG - v
[v§§.°<m]CBM = Yoo (£) (~tR $2he) Qn © i# 8((2}

~

ry2r  (5.3.6)

and

[U3S.2 () Jegm = Taymem (2) (67 S2HE) Qi z

2 2 ) e™
L it (;U\ —= g(R\ r72rR (5.3.7)

Thus, when the two nucleon bags are not touching (r>2R),
the Cloudy Bag Model nucleon-nucleon potential is exactly the
same function of the nucleon separation r as is the potential
calculated from one pion exchange. The spin and isospin
dependence of the two potentials is also identical. In light of
the discussion in Appendix J, we recognize the constants aaxl
as being proportional to the spin-isospin matrix elements of the
nucleon operators 0,-Q, (4 =0) and S, ( 4=2), which appear in
Voeep »

The two potentials Vegy and Vepep differ in overall

strength by the function g(R). Note that

:al:b g(R)= | (5.3.8)

Thus, for r > 0, the Cloudy Bag Model potential becomes exactly
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the one pion exchange potential as R->0. Recall (eq. (3.2.4))
that 1in this 1limit we obtain the Chew-Low interaction. We see
that for this interaction, the integral (5.2.12) diverges when
£=0. This divergence gives rise to the § (r) term in the one
pion exchange potential. There are no such divergences 1in the
Cloudy Bag Model potential. The function uy(qg), which accounts
for the finite siée of the bare nucleon, acts as a physically
meaningful cutoff function which keeps all integrals in the
theory finite.

It is interesting to note that for the value R = 0.72 fm.

predicted by Théberge et al. we find
q (0.72 fm.) = .05 (5.3.9)

The Cloudy Bag Model potential differs only slightly from the
one pion exchange potential, by the factor 1.05.

So far we have considered the Cloudy Bag Model potential
for the case r > 2R. The integrals Ny (r,R) can also be evaluated
for the case r < 2R, although this region is physically less
clear because it implies an overlap of the nucleon bags. For
completeness, hpwever, we give the result for g =0, obtained

from a contour integration:

s§G 0 2 sgo L .

(MR

- ~2uR ur “pe
~{(\-NR13 e v S epR? < - ™
r

S (a+ l{,}"-z-)ulR")} re2R (5.3.10)

This solution matches smoothly with (5.3.6) in the limit r — 2R.
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Unlike the soclution for r > 2R, however, it does not factor into
a function of R and a function of r. Finally, in the limit r—0,

it goes to

E’U"HH, (r ]CSM = 277 'g:ozx\C A um' G,LE)" .
ATE'S
§ O4pR)T e T - (l-,ﬁkl)} (5.3.11)

which becomes infinite for R-0.
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Chapter 6 Summary and Conclusions

Our study of strongly interacting fermions and bosons began
with the nucleon-pion trilinear interaction of Chapter 3. This
interaction was extended to include fermions and bosons of
arbitrary spin and isospin in Appendix H. We found that the
requirement of invariance under translations, spatial rotations,
space inversion, time reversal, and rotations in isospin space
greatly restricted the form of the trilinear vertex function. We
were able to use the Cloudy Bag Model to obtain a specific
expression for the NNJU trilinear vertex function.

The fermion-boson trilinear interaction does not explicitly
involve physical particles, because F+|O> 1s not an eigenket of
the Hamiltonian. In Chapter 4, we developed a dressing
transformation which acted on the bare particle creators and
annihilators to transform them into physical particle operators.
We derived an expression (eqg. (4.1.20)) for the Hamiltonian as a
function of the physical particle creators and annihilators, and
gave a. precise method for determining the dressing
transformation to any desired order 1in perturbation Eheory.
Application of this dressing transformation to the scalar field
model, the Lee model, the nucleon-pion trilinear interaction,
and to the generalized fermion-boscn trilinear interaction
illustrated several common features of the transformation.
First, we discovered that the perturbation series for the
dressing operator only terminates for very simple interactions,
and that for realistic theories a technique such as we have

developed must be used to find the operator'D. Secondly, to any .
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given ordér in perturbation theory, Dn is constructed to have
the same structure as the unsuitable term of the form (4.1.18)
which must be eliminated from the dressed Hamiltonian. [H,,Dn]
will then cancel exactly and only the term required. Thirdly,
the dressing transformation gives a specific expression for the
physical particle creators as composites of the elementary
particle creators. We found a fermion mass renormalization in
the second-order calculations; to higher orders we expect an
analogous vertex renormalization. Finally, the physical particle
interactions implicit in the trilinear Hamiltonian are made
explicit by the dressing transformation, leading to interaction
potentials that can be calculated from the original trilinear
vertex function. |

A second-order nucleon-nucleon potential for the Cloudy Bag
Model was determined 1in Chapter 5. We found that when the two
nucleon bags were not touching, this potential was simply the
one pion exchange potential multiplied by a function of the bag
radius. As the bag radius goes to zero, the Cloudy Bag Model N-N
potential goes to the one pion exchange potential.

The nucleon-pion Hamiltonian, when dressed to second order,
-was found to contain not only a nucleon-nucleon interaction but
also a direct nucleon-pion interaction. When the theory is
extended to include the A, we obtain N-A, A-A, and A-T
interactions as well. Potentials for these interactions can be
calculated analogously to our determination of the nucleon-
nucleon potential. When the fermion-boson trilinear Hamiltonian
is dressed to ‘third order, we find a term describing boson

. . . N"""’T NF"NT 2
production on two fermions, 1i.e. U F F'FFB'. The dressing
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transformation approach allows us to calculate U in terms of an
integral involving the basic trilinear. vertex functionQ This
contrasts with the Hamiltonian.considered by Hsieh (1978), where
this function 7} is determined only phenomenologically. Thus our
work on the dressing: traﬁsformation can be used to find such
interaction potentials. In turn, they can serve as a basis for
the functional form of a 1long-range, strong interaction
Hamiltonian for systems of pions and nucleons at intermediate

energies.
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. . . L
Appendix A The Rotation Matrices Dmm (4 8% )

This

involving

Appendix lists some useful properties and formulae

the Dﬁg'hﬂpi'), the irreducible matrix representations

of the rotation group.

We take the conventions for these matrices to be those used

in Rose (1957) and Messiah (1958). Note that these differ from

the conventions used in Edmonds (1960).

From Rose (1957, p.54), we have

When

'When

Note

The

from Rose

L1 ¥ m-m 4 -
D (ap7) = ©) D et (ABY) (A.1)
L ¥ D -4)
Dm'm (J\(’b\() = Dpm' (‘X)‘ﬁ; (a.2)
L =0,
)
Doo (0{61) = | (A.3)
d =¥= 0, the real matrices d;m\ are defined by
3 N
duien (B = Do L0 p o) (A.4)
that
. )'*_ml
A () = &Y Snyem (A.5)
orthogonality properties of the rotation matrices are,

(1957, p.73):

Z D:.m‘“ Hﬁ‘(\) Dm%'m (o(p]ﬂ = Sm'm” (A.6)

m

g ¥ [ " - 1n
L Dy (48Y) D* (487) = Sm'm (A.7)
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The rule for combining two rotation matrices - into one is

(Rose (1956, p.58)):

;, s o '
Dp.m.("‘Pﬂ D}hmzupﬂ = J.ZLJ.sz.vﬂz I3m) (g popia | ) D,jm (4p¥) (A-8)

Finally, from Rose (1957, p.75), we have

2 1

L { g DJ.,,I~(°(M) D:;m(‘*@ﬂ da sinBdp dY¥

gr o o m'm

= Smlm{ 5nnmz SLJL C i;; (2.9)
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Appendix B The Spherical Harmonics Ygm(g)

This Appendix lists some wuseful properties and formulae

involving the spherical harmonics. We write

%m ((3.3 = Y.Lm (67({7) (B.1)

where & and (@ are the polar and azimuthal angles,
respectively, used to specify the direction of the vector g.
Ygm transforms under rotations according to (Rose (1957,

p.60)):

L
g
kl)ﬂm (%n) = m':z:,[ Dm'm (0((513 L,)lml (%) (B.2)
where
¢ = N]Q (B.3)

In (B.3), g 1is a column vector 1in its three Cartesian
coordinates and M is the matrix given in Rose (1957, p.65).

~From Rose (1957, p.61) we have

T (-9) = QIR (g) (B.4)

e (g) = QUM () (B.5)

(‘);m (i-) Yy.'m' (Q) = ) (l)nmn (‘@) L‘Jl'm' (?—)

)m Z (2040 (28'+1)

J ] i
S Var s~ (Mool todUt’-mm']La) P () (3.6)

where (jijam, m, lym) is a Clebsch-Gordan coefficient (see
Appendix D).

From Rose (1957, p.81),

: ) Lo, . ¥
SEFH s I Z, i () B Bt

m=-L

(B.7)
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Also, from Rose (1957, p.75), we have

L9

2x
Sd@ﬂo? %m (g) ﬁ':' (2‘) = i i "),lm (G,L?) kT)le' (9,@ sing de d(?

= S,Lll Smm' . (B08)
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Appendix C Irreducible Tensor Operators and the Wigner-Eckart

Theorem

An irreducible tensor operator of rank L is a set of 2L+1
quantities T_ 4 (-L £ M < L) which transform under rotations
according to (Rose (1957, p.77)):

’ L
RTmR' = 2 D:Q4(d§73-TLM’ (C.1)

M'=-L
(Note that the above operator R is not the Fock space operator
CRupM).

Any vector k = (ky, ky , kz) is an irreducible tensor of

rank one, with spherical components

ktl = : —\\r;_ (k*t Ibté\)

ko =\Z2 . (c.2)

Alternatively, the spherical components of a vector can be

written in terms of the spherical harmonics:

R
R AT #=t1,0 (c.)

The rotationally invariant scalar product of two vectors
can be written in terms of their spherical components:

g s 2R

d
2 ) ke Gu (C.a)

o«=*1,0
Consider the matrix element of the irreducible tensor
operator T_4 between angular momentum states. The Wigner-Eckart
theorem gives the dependence of this matrix element on the

projection quantum numbers. It states (Rose (1957, p.85)):
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i N Tia lgmy = (gLma 1itm'Y L3 N T (C.5)

where <30T I3 is called the reduced matrix element of the

set of tensor operators T,y.
For the case that the T_» are the angular momentum

operators J, this reduced matrix element is (Rose (1957, p.89)):

G TNgr= JaGey 8 ~(c.6)
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Appendix D Angular Momentum Coupling

In this Appendix, we consider the addition of various
numbers of angular momenta to form a total angular momentum
j(m). Because such a coupling can take place via different
intermediate representations, coefficients to connect these
representations mus£ be defined. These are the Clebsch-Gordan
coefficients, 3j, 6j, 9j and 12j symbols. After defining these
coupling coefficients, we 1list some useful formulae involving

them.

(a) Addition of Two Angular Momenta: The Clebsch-Gordan

Coefficient and the 3j Symbol

Consider a system involving two angular momenta J, and J,
coupled to form a total angular momentum J:

_:_S_|+§z=l ‘ (D.1)

This system can have four simultaneously diagonalizable

operators. Let |j,y» mm,) denote the basis state in which J,

J2, Jw, Jzz are diagonal, and |jijaymY the state in which J,,

J,+ Jd, Jp are diagonal. These two representations are related by

a unitary transformation:

\$szM7 = z; }Jdlwhm‘>45d1"hmx‘jdlim$ (D.2)
™My
and
- L. N C 3
lyigzmimy > = 2 Lyisagm Y40 mamma ly g m? (D.3)
JN\

The elements of this transformation, 4jkﬁ.whmz\5.Janw> ,

are the Clebsch-Gordan coefficients, which we denote by
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thz”hml\d,ﬂ\ . It is possible to define a phase convention for
these coefficients such that they are real:
(132 MM lgm) = (J.jz,m,nnzljm3* (D.4)
Their orthogonality properties are derived from the
requirement that the two representations be normalized:

m% Chrgz mimalym) (Goge momal jim' ) = §iif Somm! (D.5)

62; (5 gamima 13m) (s my w15 = Sonrent Sopamy! (-6
The coefficients have the property that
(J)JIM'W)L \Jm\.:O : (D.7)

unless m;, + mp = m, and (j, ,Jz,j) form a triad, i.e.,

ldn'dl\ & J £ Hl+J1‘ (D.8)

The symmetry relations of the Clebsch-Gordan coefficients

are given in Rose (1957, pp. 38-39):

Jlﬁjl‘js

(jujz mllﬂz\\)‘avfh,) = &) (J.;_ \j, Ma W\:lJlsms) (D.9a)
s3ztiy .
= Jidz -hn\-)nzlgs-'ﬂs) (D.9b)
dim, 2)3+1 < .
= &) 7.?,_4-\ (J,Jg W, -m:_',\‘)l-m13 (D.9¢)
e T—— . |
= (_) 2 1\]_%:'T ()5 J2 ~Ms m-)_l\)\ -m.) (D.9d)

= L_da'Mu %J;% (J‘g\)‘| s —H\.‘J.z ML3 (D.9%e)

<

nitMy '2)‘3,,_ \

- N2yt

(j2 33 ~Ma m3]gme)  (D.9F)
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From Rose (1957, p.42) and (D.9), we have

(J, om0 ng MS) = SJ'Ji Sm|M3 (D.10)

(0 §20malysms) = 8,55 Sum, (D.11)
(_szi-m,_

g 100) = o= i G, (0-12)

One can define a 3j symbol which is related to the Clebsch-

Gordan coefficients by (Edmonds (1960, p.46)):

. - - . _\ _M
3 o JS) N CA3IJL 3

(4 Jzm e by -m (D.13)
M, wl. 145N ’2\)54’) J \)2' 2 d3 35

(b) Addition of Three Angular Momenta: The 6j Symbol

Consider the following two schemes for combining three
angular momenta J,, Jz, Js to form a total J:
tJd, = Ja. JE.F §$ =J (D.14)
and
Jo + J3 = :rza \Il + dyy = ‘ (D.15)
In the first case, the operators J,, J,, Ja, Jip , J can be
made diagonal; we denote the corresponding state by
hjdl)Lleb,‘j> . In the second case, the operators J,, J,, Jj3,
J,3, J can be diagonalized; the state is LL,LJRb)J;}’j Y . The

6j symbol, which relates these two independent representations

is defined by (Edmonds (1960, p.92)):
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1505 (a3 des, 3D

(_)JI*“J\’-QU’J‘ g TR \Sn. %
\1(2\_‘)11+l)(1in+|) J3 \) J23

The two different representations (D.14) and (D.15) can be

- % FETRTR ITRAN (D.16)

built up from Clebsch-Gordan coefficients. For example,

\j\,(\slja}jzs,:)> - 2 (42 33 Mams Lyzs Mas) ( J‘:J‘zs " My \jm)'

My M3
Mz

‘lJ)M.» IJLML> )J3M3> (D.17)

Substituting such expansions into (D.16) and using (D.5),
one finds

>

o (J‘v\}\l M Mo ldn. My ) (\3‘17- :]3 M2 Wl )\)my (j,_j; Whﬂ‘a,\jn mn}
L ARKY
AT

Sirda e I o192 dn

= (<) (2t Qyan ) §J3 3 313)“5‘3"‘3'“"0“\3"‘3(13'18)

The 6j symbol 1is invariant wunder a permutation of its
columns and under interchange of the upper and 1lower variables

in each of any two columns.

In certain cases the 63j symbol can easily be evaluated

numerically. From Edmonds (1960, p.95):

i 32 33 _ 3'*51+33 : ‘ -2
{0 i jzi = (=) [(ZJzﬂ) (2j3+1)] (D.19)
{6. ‘jz ‘5‘3 ‘i ) (-BO‘QIJrJ‘;[ iRz ~32) (Greda ~3341) ]‘/z
y -y, LtV - N . N N D.20
T B3l aat¥r LZ\S’J" ) (2j1+2)(2\)3) (2]3'“) ( )
idl RO % ) G)szm (3r#3ab)s 1) (2% g3=01) ] h (D.21)
Yo 3yYa yale 252 (2j41) (253) (25341 )
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(c) Addition of Four Angular Momenta: The 9j Symbol

Consider the following two schemes for combining four

angular momenta to make a total J:

348, =T T;+3, =Ty  Ju+ J4e =3 (D.22)
and
_Ju *;1_3 ‘-‘3_—\3 :]:z + L = gz* JB + _:_Y,_.* = _:\_- (D.23)

The 95 symbol, which relates these two independent

representations, is defined by (Edmonds (1960, p.101)):

\ qd%n% ' (jlj“')jlq > J > = . Z‘ \ (J"J-Q\iuz ) (j;jqﬁjsct )3 > :
Jiz 34

J‘l \il \jl'l_
L Q) Qg )) gt (2)50810)] o 48y S dad (D.24)
Ju Rl J

Expanding the states in (D.24) as in (D.17) and using (D.5)

twice, one finds

m|ZM‘ (JIJL ™M.m, )\i\l bﬂn.) (3‘3 AL M3 My |\§3“ m3q.) (J|J3 LAFRLIES )._)‘B MB).

Mo My
M3 My IO . . - .
(294 Mymy | yau Mae) LG Jau M Mag |y m)

\ . . . . . . VL

= (G 3w Mia Wiy Jym) [(Z}.ﬁl)(ZquH)(ZJBHB(Z)NH)]'
:)I :)'L J‘\Z
. 33 04 U3y '
L : (D.25)
Jiz ey
Acting on both sides of (D.25) with é? (i Jae "\ququuaﬁ

2

and using (D.5) gives My
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:)‘; Jz. :511
5~3 AL [(-ZJ,1+:3 (2j3q+l\(?.j‘,>+l)(Z\SLqi-l)]-yz-
KRR ’

. Z_ ()iJ.;_ m, Wy lJ,?_ m«:.) LJ; :\4 mg 4 ’\).34 M3‘4>'
M.m;vmfﬂﬂ . -
Mz YWy Py

My ' (Jl 0\3 M, My \;)n Mi3) (jz\iu Wz My Ulq Maa )’

. . . . . . D.26
. (J,; Jau My My \\)M) (J\L y3e Wig sy L)M\ ( :

From (D.26) and the properties of the Clebsch-Gordan
coefficients, we see that the 9j symbol is zero unless the three
angular momenta in any row or column form a triad. The 9j symbol
is invariant under a transposition, or an even permutation of
rows or columns (i.e., an even number of exchanges of adjacent
rows or columns). Under an odd permutation, the phase changes by

(:33-+Jz +33 +34 Foiz b 338 Fdi oy +)
In certain cases, the 9j symbol can be easily evaluated

numerically. From (Edmonds (1960, pp. 101,105,106)):

Ea beg L_)b*’°+e’+§ o b e%
c d e = % (D.27)
£ f JQ2erD) (2540 d ¢ f

Jr Jxr V2 2% . . .
93 34 03 = Z =) (2x+1) id' i3 913 i .
) : Juw K

. iJz J 4 \)zti)l % IEE 334 J i (D.28)
33 Ko gy X & )2
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(d) Addition of Five Angular Momenta: The 123 Symbol

Consider the following two schemes for -combining five
angular momenta to make a total J:
J+J=Ja Js+ 3= 3 J5 + Jy = Jay T+ Sau=3 (D.29)
and |
T +3=3n s +3a=3" JTo+du=doe J"+THu=3 (D.30)
The 12j symbol, which relates these two independent

representations, is defined by (Ord-Smith (1954)):

\ gi;; (\5|53)5|3}J,') (5134351‘& ,5 >

= 2 1 Eis, Grsadn bits Ga ddis, 3> -
Jrz 03y )
. . . - ) - 3j?’z
~[(zurH3(2m4+l)(2y3+ﬂ(2ﬁq+0(1y+ﬂ(% +1 .
Jl \;1 :);7— J'
S 9% Jae (D.31)
dl% :\LQ Js )
Expanding the states in (D.31) in terms of Clebsch-Gordan

coefficients, and using (D.5) three times, we find

m.%m, (Jﬂ.h- W)y M, )JVL m.ﬂ (JB Je M3 My ‘\jzu qu)(jnj_; Mym, U|3m13)‘

My s M2
My Myam"” ' (Js 3y Ms Ma 40 m") (2 Ju " M | jau May )
J J J

035 g Ms i 5wt ) (3 as ldm)

= [(ZJ,1+|) (2530 +1 ) (23 +0) (25441) (2501) (25" +1)] ",
.jl \gl 5\2. .)
(3 g m' g [ym) 3y ge 3w 9" (D.32)

on g IS5 3
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The symmetry relations of the 12j symbol are given in Ord-
Smith (1954). When one element is zero, the 12j symbol

simplifies to

(D.33)

W N o

b e e b e
- Y @

d £ g = [k2e+0(23+0} ’ c d ¢

h o S 9 h S
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Appendix E Two-Particle Operators in Fock Space

This Appendix provides some background to the various two-
body potentials and two-fermion operators that are used in the
thesis.

Two-particle operators in Fock space are constructed from
the corresponding two-body operators in the Hilbert space of n
particles. In this Appendix we deal only with fermion Fock
space; ‘the extension to 1include bosons is easily made. For a
complete derivation of the form of two-particle operators in
Fock space see Schwéber (1961,pp.140-2).

Suppose that the total potential Vh of a system of n
identical physical fermions is due to two-particle interactions.

Then in the n-fermion Hilbert space, we have

n n n n
VY\ = d.z';‘ pZﬂ-z \/qu,gﬁ\ = ‘%: ‘(Z='| pZ:-l\l(?*‘€P\) (E.‘)
22 o #p ‘
providing that
V(84, 5) = VT, 1) (E.2)

54 denotes the coordinates, momentum, spin, and isotopic spin

of fermion d. V(§¢,§p) is the potential between fermions « and

B- |
The corresponding Hermitian operator in Fock space is:
= L sty d3y d3«¢ d3 S, ¢
v 252’_ fdra d3yq 3 d3y’ Uil i (g, 2 g
Ly
LIRS

.Fsuf‘(ﬂ‘:szcz (%3‘: s&a( )Fﬁw />

,4 Mam, MB"; m;;,u (E.3)
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~ _
where the index j runs over 1,2,3,4. F1L is the creation operator
for a physical fermion and

5) ‘-s

U, yg,x, 4

¢<Z,S.M.l:./u, |5<g,57_m,_61}1,_\ \/(gdnia l_'x-_')Squ(,'qquz( l%" S, M, i3/~13>ﬁ (E.4)

.That 1is, the Iﬂi;Kx,z,g',z’) are the coordinate space matrix
elements of the two-fermion potential V(gd,is) taken between
two-fermion states.

Making the change of coordinates

X = RtYar gy = R-%p

x'= B'+Y1£z g-I___ R'—YZQI (E.5)

to center of mass and relative coordinates, and imposing the

condition of displacement invariance, this two-particle operator

becomes
= 2_ d3r d3 ’ 3 5,'(,;' ' _p’Y.
Vo3 Z [ & PR AR YIS (), R-E
MMy~ '
FS L, (R+er‘)Fs""'+(R Yo r \Fs,c, R'~Y2r 3}:544.4 (El+ yzrv)

M
(E.6)

Note that U can only depend on the difference R-R’, if V is to
be translationally invariant.

Using (2.1.1), V can also be expressed as

\ = -‘,Z 2 5d3h d2R’ d3x ’U‘ (h R, K)
s,
"':;}J
~ . +- . nN .
: F‘:,'l;" (3K+R) F:': ¥ (Zk-&) FS’L3( k-k') F:.:;;; (fr+e) (E.7)

where
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ENON . I Si¢:
.o = — 3 r A3 P ! v
U"b/"J (B\E s’i) (ZK'K)B Sd r d3r d?R U’”J.}*.; (E,f. )&\
- BRIk oiRepf/k (RNe'/K
e e e (E.8)
For the special case that
5i &y . 55 % / (E.9)
muy (RS K) = Ul (-8
we find that the inverse of equation (E.8) is
5)'1':!- ' - S).I:_). { (E.TO)
mug (5EHRY = VP (e) S(R) Ste-rt)
where
s
S5t _. 3 U]
By« Jog TR 0l
We now define a two-fermion operator as follows:
A ST+ _ il o :
Ao () 2y Lot T (o (§70
mlm"ﬂlf"l
~N N ~ .
s‘ 1 i
. Fm,;,‘L T ueR) F,f,z;‘ft—‘i\i_g) (E.12)
As a function of the coordinates r and R this becomes
~ + A o
A,,S,'.fk (e, R = Z G (sisamimzlem) (Gl s 10U
551 La
mm’l:.}.l./;,_
~“eot stllz.-\—
'Fm,/u. (R+Y2r) meﬂ,_ (E“/?-£3 (E.13)

. _ .

The two operators Aigfk(g,g) and ﬁ2§i+(£,3), when acting on
the vacuum state, create a two-fermion state having total spin
s, with projection m, and total isospin G, with projection JYRp

They are related, using (2.1;1), by
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op— s tRBi Rl Nvse d (E.14)

Using the properties of the Clebsch-Gordan coefficients in

Appendix D, the two-particle interaction V can be written as

pa . sus's’ y AST+ S
\= 5503005 1 Sd-"k d3R' d3x US"..[-SMJ.HJ (E;B’,K) AM)A, U_:_,,I_(_\ Am'l*‘ (E)t(_) (E.15)
59 s'o!
where
0 (oK) = (s lsm) (4, ISw) (sqs ')
: SJI,M,}L’ RyR',K) = 1 Sa My [Sm rta MoMa (O ¢ S3 Mgy IS m
Co P 5; ¢ .
.(L"f ty /‘L‘fp3 '6/*> ,U—m;“)) (B)E)&) (E'16)
565'G!

- / ‘ ~
hqﬂwéhrk ,K) are the momentum

The potential functions U,
space matrixl elements of the two-fermion potential V(5;,§b)
between two-fermion states of total spin s, isospin O and total
spin s’ , isospin G'. These functions may be pictured as in

Figure 11:

ki
LS.IY)H:\}J.}

Tkek!
(Sqmq (:4 }.lq,)

: : , 505'g!
Fig. 11 The Two-Fermion Potential Qfﬁivaﬂkrkl,ﬁ)
ERNRMIY 5]
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Appendix F Calculation of the Trilinear Vertex Function for the

Cloudy Bag Model

In this Appendix, we determine the NNrx triliﬁear vertex
function h(g) for the Cloudy Bag Model.

The one—nuéleon matrix elements of the nucleon-pion
interaction in the Cloudy Bag Model are (Thebérge et al. (1980,
eq. (2.25))):

NNT d’r NN ;
NTHMT gy = (2 —h §£2w(h)3”2 » WBuk) +adj.  (p.1a)

NN : ~ L
Vi (RY: ( 4z -,7 Un (R 42m, 50,10k T lEme, Zpay  (F.1b)
where f, is the NN coupling constant, m; is the pion mass, and

WR) = (R et ) 'E (F.2)

Us(R) = 33, (RR/ &R (F.3)

where a}(kR) is a spherical Bessel function of order bne and R
is the bag radius. Further, lzm, %> is the spin-isospin
state describing a nucleon with spin projection m and isospin
projection am; S = U/2 is the nucleon spin operator, where O
has as its components the Pauli spin matrices; Iu= Tulz are the
spherical components of the nucleon isospin operator. The above
is written in units where h = ¢ = 1.

Note the similarity between the interaction (F.1) and the
form (3.1.41) for the nucleon-pion trilinear interaction. We

determine the vertex function h(qg) for the Cloudy Bag Model by
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evaluating the spin-isospin matrix elements in (F.1b) and

comparing the result with the one-nucleon matrix elements of H;
given by (3.1.36).

First, we separate the spin and isospin parts of the matrix
element. Expanding S-R in spherical components using (C.4),

we have

i |
CTmonap | Sk Talom, T MY

= 2 MRy 4Em S My <Ep I Tl (Flg)

The Wigner-Eckart theorem (C.5) gives

< 1S Eme> = (5imaad I5mD) 51 Syss  (F.5)

CEpu 1T B my = (S paplzp) ¢5 1 DHL (F.6)
where

s snszy = 451 Tizy = i3)2 (F.7)

Substituting (F.5), (F.6), and (F.7) into (F.1), and wusing

(C.3) to express q, in terms of g and a spherical harmonic, we

find
NNT IR R b\ U (R) LIJ.L
NUHGE NS = {2 2 7 Z 5(—) < Y-
et 2w (Zlmee [5m) B}L(b;\ + ady. (F.8)

Now consider the matrix elements of the interaction H, in
(3.1.36) between one nucleon states. Using the commutation

relations for the fermion operators, we find
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<0l By 1) W, Rt (-9 loy = % §dig h(g) T (g)-

‘(%\MzM|%MJ(é|sz|tHJE%Lg}+Qd&i ' (F.9)

Comparing (F.8) and (F.9), and putting in h and c¢ as
required to give the correct dimensions to the vertex function

which we write as h.gu(g), we see that

thM(?)= \}’3?: %—’; G u”;ff:‘? (F.10)

where Z¢x(g) is given by equation (3.1.3). The two different
formalisms can be made identical by the choice (F.10) for the

vertex function. We are able to do this because both trilinear

interactions, (F.1) and (3.1.36), are required to be invariant
under translations, rotations, space inversion, and time
reversal. Rotational invariance determines that both

interactions will have the same dependence on spin and 1isospin
projection quantum numbers and on the angles g. Space inversion
invariance requires that the orbital angular momentum of the
pion be one, and this 1is manifested in (F.1) by the vector

character of the operator S (eq. (F.5)).
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Appendix G An Exact Dressing Operator for the Lee Model

In this Appendix we follow the work of Piskunov (1974) in
determining an exact dressing operator for the Lee model
discussed in Section 4.3. (The method of solution for the case
h = h(p,g) is analogous to the procedure given here.) As

equations (4.3.12a) and (4.3.15a) suggest, we write

D= S d% dip,g) [R¥(p) Filp-g) B(g) - agj. ] (6.1)

and attempt to find the function d(p,g). We do this by
determining the creator glf(g) in terms of d(p,g) and then
requiring that §z+(p)|0> be an eigenket of the Hamiltonian.
Recall from (4.1.3) that
~ D -D
Fhp) = & Rfm e

= FL+LF\ = £F1+(?7)D]“’ }{T ££ F1+C_?))D3, D]+-~- (G.2)

Using (G.1) for D, and the commutators (4.3.5) - (4.3.9),

we find
LR ey D] = Jd3q dip.g) F¥(p,g9) Bty (G.3)
and
LCRY(,0],0] = - d* () Rtp) (G.4)
where |
d2tg) = (3¢ dlp.g) (G.5)

The series in (G.2) thus separates into two series, each of

which can be summed exactly. We find
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~

Rl = cosdlp) RFep) - Sdgc‘z fp,e) Ff'(g-g}Bﬁg\ (G.6)
where
in d(p)
= d __S.____L (G.7)

This equation gives 5{*(9) in terms of d(p,g). We now

substitute F1+(E) into the equation

HFT (pley = & (p) E#(p)lo) (G.8)

where g,(p) is the energy of the physical V-particle state.
Using the commutators (4.3.5)-(4.3.9) and the expression

(4.3.1) for H, equation (G.8) becomes
{ cosdlp) [&0 ()= Ep)] - 2 (0% b fip ) ] FFp)lod
* Sd%i %)\ cosd(p) %(%3 - 4(3,33 [E'(f‘$)+ E'B(g)—fl(?)]z.
-FXe-9 B"ch) le> =0 (G.9)

Taking the scalar product of this equation from the left

with <0|F, (p’) and then with <0|F, (p’-q’ )B(g’) gives

£20 (P1) - Eng'B = A Sd3? h(%) f(g',g\ (G.10)
' cos d(,F')

flengh Ahtgh (G.11)

cosd (p) £ (pl-g) + £a lg)) - £ () '

Substituting (G.11) into (G.10) gives the result

E2(p) = F2o (p) + A (42 h2(@) - (G.12)
‘E. wF S ? Ez(.g) - £ (g-g)-fs (_?)
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We now solve for d(p,q) by substituting f(p,g) from (G.7)
into (G.11), squaring the resulting equation, and integrating

both sides with respect to g. We find

+hn29($\ = Az1g(P\ (G.13)
where
(p) = gd3 hg) (G.14)
3F VoLl -f(pg) -]’ '
Finally, from (G.11), (G.7), and (G.13), we have
dip,g = h(g) arctan ()q(p)) (G.15)

g(p) [&atp)- 5.(?—$)"€ac$3]

Thus, for the Lee model, we find that one cén write the
dressing transformation exactly, as in (G.1), with d(p,g) given
by (G.15). Indeed, if this D is expanded in a power series 1in
A, one obtains exactly the same dressing transformation to
first, second, and third orders as is given by eguations
(4.3.12), (4.3.14), and (4.3.15). Furthermore, we note that if
we iteratively solve (G.12) for &,(p), the solution to order A®
is that given by equation (4.3.22).

Using (G.15), (G.7) and (G.6) we obtain the physical V-

particle creator:

& h(g) F* (p-9) B¢
\*7_+(g)= cosd(g) [Eﬁg) - gd?’ g) hiip AER (G.16)
. [5.([?—@%25(3)*&(3)]
The physical V-particle state is a superposition of a state
containing an elementary V particle with a state containing one

N and one 6 particle.
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Appendix H A Dressing Transformation For A Generalized Fermion-

Boson Trilinear Interaction

In this‘Appendix we generalize the trilinear interaction of
Chapter 3 to include fermions and bosons of arbitrary spin and
isospin. In doing so, we not only are able to 'consider
interactions of nucleons and pions, but also interactions of
other types of fermions and bosons. First, we examine the
restrictions placed on this generalized interaction by the
requirement that it be invariant under certain space-time
transformations. Secondly, we perform a dressing transformation
on the fundamental dynamical variables as in Section 5.1.
Finally, we consider the various terms in the second-order
dressed Hamiltonian, particularly the fermion-fermion scattering
term.

Although the formulae become more complicated with this
generalized  interaction, the theory of the dressing
transformation can be applied as successfully to this
interaction as to the simpler theories we have previously

étudied.

(a) The Generalized Fermion-Boson Trilinear Interaction

Consider the following generalized trilinear Hamiltonian
constructed from the fundamental dynamical variables defined in

Section 2.1:

[‘l = Hc + /\ H. (H.1a)
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s.Z",; dePfEr,,; (,E) qg) (p + 5&#’(?> Bmp 12)5“(2)] (H.1b)
tm,&
= 3 5525 Gt t3
Hl-s $aS3litaly 5d P d3 h'"'"‘tma/n;uy (%) F ,;J, (F7 FMze (P $\) B,,, L%)
e t+ adJ, (H.1c)
where

.(C_osl.: (?) = [Pzng Mol Cq_] 2 (H.2)

is the energy of the elementary fermion or boson having spin s,
isospin i and isospin z-axis projection .

The fermions and bosdns are treated 'semi-relativistically'
and the vertex function is chosen to be a function of g only.

The interaction H, may be pictured as in Figure 12:

/s
p-¢ g
(S\Yﬂﬂ:l l) - M 7~ .
NP P LSz'ﬂzizHQ P /$ (symy Lsﬂ;\
/ .
NN 7
Si1525y L taly V' L Si5.5 Ll. {5 %
h 193 2'3
m‘mz"\&}‘)'ll,"p %) \\ |Mzm;)‘l,}l;+ls ¥>
\
\
. N -
PR ’“\g(s‘"'"”") B (smucu)
(SLMI(LFI.3 A \
\
\
Fig. 12 The Generalized Trilinear F-B Interaction
The total momentum operator for the system is
P= SOM \S-d3p i) [F - (‘F)F' (_?J'I' Bm. ' (_F) B (P)] (H.3)

St,mp«
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The Hamiltonian H is transiationally invariant. We also
require that it be invariant under rotations in isospin space,
spatial rotations,. space inversion, and time reversal. Heo
already satisfies these reqguirements, but H does not without
further restriction.

First, we consider a rotation in 1isospin space. We must

have

Rr &B7) H, 621+(4(5ﬂ = H, (H.4)

Using (2.2.18) and (2.2.19), we proceed similarly to step§
(3.1.6) through (3.1.10). We discover that 1isospin rotational

invariance implies

S15253 ':ll:zl'3 51815, (ita ('3( ) (H.5)

sy g st (%_) = ({2 (s PaMs l L‘.}JA hm-m;m;

Secondly, we consider a spatial rotation, demanding
Rip®) H, RY wpy) = H, (H.6)
Analogously to (3.1.13), using (2.2.8) and (2.2.9), we find

5152353 l:|(1(3 51515y L'|l..7_l.3
(@) = Z- . W57 (g

et . ma vy
Dy @) Doiar e B 7 @) (H.7)

As in (3.1.14), we write

315153 (:l\-v", 13

S1Sa Sy C.iz(; . +*
h (g): [ lzm Ym (q:) h [ (7') (H.8)

Mlml—mg

Substituting this expression into (H.7), we obtain an

expression comparable to (3.1.17), namely
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hS,SzSB (.ilia (?3 _ Z hSISzS; ':‘(:Lia: (%3 )

LM m Mamy 0 w0 Lm mm2'my

D’ @e®) D wp®) Do ) D::,,,;(o(@ﬂ (H.9)

Using (A.1) and (A.8) to combine the first pair of rotation
matrices into one, and then to combine the second pair into one,
we proceed as in (3.1.18) and (3.1.19). We discover that the m,,

mz, mz, M dependence of the vertex function is given by

1528 ‘. P M
hsm,::n:;,;s (@) = e (sasymamys4) (Ls, ~Mm, |5) -
' S

5(5153 l‘ll:ZL;
LS

. h L?B (H.10)

Therefore, from (B.5) and (H.8), we can write

5,52 ':|(:2‘:3 557_53 |€zl:3
h o (g) = | QZ Tam (g) b (4) -

thLMB

S (Se5smams 182 (LSimm, isst) (H.11)

Thirdly, we require that H, be 1invariant under space

inversion:

PH el - n, | (H.12)

This implies, as in (3.1.22) and (3.1.23), that

S|5153 (‘DL.'LL‘B Slsisg k|Ll(3
h (@) =-h

My My Wiy IMLm; ( %3

(H.13)

for positive parity fermions and negative parity bosons.
Substituting for the vertex function from (H.11), we see that
this implies

(~3l=—l (H.14)

That 1is, {4 must be odd in order to have space inversion
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invariance.
Finally, we consider a time reversal transformation. We

require

3 H, 3T H, (H.15)

Using (2.2.14), (2.2.16) and (2.2.17), this leads to

(SRS M Mas )y SiSas, L Ca ts

518253 (,ll.,z(,3 ‘
W e -my () = A ey (@) (H.16)
where we have taken 7 = 1 and 7g= -1. Following steps similar

to (3.1.29) through (3.1.34), we conclude

Si1S253 ity "3

(C‘_) - h 1S (?\ (H.17)

S5162 53 \'« L"l ':3 ¥
As

h

Thus the interaction (H.1c) can be written

H, = l 2;- .- SCBP d3<} ((2¢s Hz M lLINI) (s, S3 Ma ";73|S°(>'

SiS2Satitaty
MimMams /-h/Jz

M3 is S 5253 L|l-z (3

c(svmm ls) Yy, (cp h ()

' F:'.jI,Jr ) F:;;; (p-¢) Bm,;l; (g) + adj. (H.18)

where { is odd and hxhjga“;é(q) is a real function. Referring
to (H.18) and Figures 12, 13, and 14, we interpret the quantum
number s in hasf§£ﬁ‘g(q) as the total spin resulting from
coupling fermion spin s, to boson spin ss. £ is the orbital
angular momentum of the boson (sy,is) with respect to the
fermion (s,,i.). We see that L+ s =38, in order to conserve
angular momentum.

For the particular case that s, =s;=1,=12=1/2, sy=ma=0,

i3=1, we recover the interaction (3.1.36). From the properties
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of the 'Clebsch-Gordan coefficients in (H.18), we see that
s = 1/2 and £ = 1 for this case. Therefore

L\ Ya¥2 6 Ya V2 L

e gy ()T CE Vopa 2 ) UL mm, 15 M)

. LHlm (g) thVz\Oyz‘/szl (%3 (H.‘IQ)
Noting that
*
Y'migﬁ Dsmmlim)= & Y (@ (5 1m -mlsm) (H.20)

and comparing (H.19) with (3.1.35), we see

Va Yz 0 Yz VY2l ( )

\’\(?3=‘h | Y=o

(H.21)

where h(g) 1is the vertex function introduced in Chapter 3 for

the nucleon-pion interaction.

(b) Dressing the Generalized Interaction

Just as we have noted for the Hamiltonian (3.1.1), the one
boson ket B:;+(p)|0> is an eigenket of the Hamiltonian (H.1),
while the one fermion ket F;;j(g)|0> is not. We regquire a
dressing transformation as aeveloped in Chapter 4. To first
order, a suitably invariant dressing operator that satisfies

(4.1.20) is

- Si525; L:‘L‘;l‘s
Dy = 5.512;3 G2y Sd3p d3c$_ h MMMy MiMaphs LQJ .
M Wy st fo%ls @
. FS\(:!"’( 3 FSz('Z BS;(_'S ) .
M R LTTE (2"$) LETTS ($3 - OdJ, (H.22)

where we have taken
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EF:’:(E\ = mFos’: Cz (H.23)

The commutator [H,,D; ] can now be computed. It is found to
contain an unsuitable term of the form FYFBB + adj., which «can
be eliminated from the second-order dressed Hamiltonian through
~a suitable choice of the dressing operator D,. This operator
will be similar to D, given by (5.1.10). From (4.1.21), the

resulting second-order Hamiltonian is:

Q(E,g} = T + Ngs + Ve (H.24)
= 3 si .2 [ st .25
T—sg-p §a3p [ o P Ty Pt (e &7 Y Bt Bp] 29
S'i'-m'}L'
Vep= 22 T . SdR d%'d3K Vrg CR,R,K)-
2 SiSaSytilgla
mt'ﬂzl’l\\)h’h.}ls ~ . ~_
Wi Fs”‘ HEPR S ,4'(%5-‘1\3:::,( k) s, Cak k)
3 )J:. }13
+ adj. (H.26)
Vee = 2 2 Sk 3R A3 U (R-R)-

51525y L taly

Wt Mt'ﬂb}l‘f-l:.)-ls
s, s‘l. L\ bL|

st -;“*( 5+h31:5‘“ Fsx- HF,;‘;;'}‘;;,' (k==Y For (s vd)

+ady. (H.27)

where

. 55182 L( Lz
M. 5 .2 = _ Zi 2d 2d+P>(h ()
Fpc mF° N 515202 ‘g 2541 oary - (H.28)

e E S:.l; L%)
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|
£ Syeyt 0
B Ha' Lz&‘h)

U;B (B,R'R) = 135'5. \‘)lm (J’Z."_“SIB ‘])JL'M'.“ (Lk-B)

. E (L"L")'L"f*3\ (“/J‘\) (e 63' /J'"’}J"%' ll-.lf"l‘)(sz.ss Maimg | Se()'
c (L semm Isa) (52's5) ma' ma' 15'0') (L5 m'mi IS’
S$15253 L.|l.;L'3

ch s (P -k h772 00 0 Gge-a)

- (L(CS j"|}43ll'1'/4;l) (L'(CS' H'F%I “:1}11\(5!53'““-'“3 IS“L\ .
(s mmy' 1 sa) (Sisy' m,ma' |s/«!) (Nslwﬂml\suf7-

e s "N
. LS'sis3 La'c, ¢y Lyl S25183 Lalil3 Lkl
h (rsk-rD) h 0 (13K _ﬂm.zg)

l

Vie (B-B") = = Yam (R-B') Yy ¥ (R-RD) —r— -
- Ea ;3’03-13')

: L('Il L.3 H‘l/-‘g l (:l)-ll) ((::_I ‘-‘; jJ,z'/..lg l(‘|‘H|') (Sz Sg MLM3 15&3'

c(2s mw L SA) (Sa'sy Malwas 15a?) (LS wm'm/ | su!)
LI 1 A EECR R
SiS253 Litaly Si'sa Sz titats
R T (D h T T (R-R'T)
(H.30)
Equation (H.28) gives the fermion mass renormalization, to
order M.

The functions %Urg and ;. are pictured in Figures 13 and

14:
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| Lk -
Ik+h (i) e
N 2
(sz.'Vﬂz'Lz'/.(z') LY 4 ) ~ 2.5
SI// (53 m;'u/‘;)
1K-k' 4k Rs
(s,m,t/h; - k+k'
- - + .
- - - N K
- (Sﬂ‘ﬂ)h}i') _ (S|m,L.jJ )
>r ~
s~ '?Ji R 1
14>
A (s3" m3' (3"t ,/;
A
//
\
Tk (s, Mt M2 ) / 7Kk TR+R (S Cpun)
s (Samyispy)

Fig. 13 The Fermion-Boson Potential ig(k,k’,K)

TK-R Tk+h
L (sy! lLZ/le (s,m.t ch)
t L
_ s
~
// >/
- .‘3-‘5'.
s~ (Samy Ls/L-s)
1y
: P ZKHR
(s, :.1»:./41\
tk-k'
(s.'vo L.'/u.'\

Fig. 14 The Fermion-Fermion Potential Urelk-k’)

The fermion-fermion potential can be simplified by
evaluating many of the sums over projection quantum numbers in

(H.30). First, we rewrite the fermion-fermion interaction in
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. N SG . . .
terms of the two-fermion operators Ai» defined in Appendix E:

Vee = X 2 Gk ask'dx UTEGE (e ARTHe0 AR (htk )

S(S.S'G' ' sMs'm!
Mep radj.  (H.31)
where
S|5153 l:;lj:.l:; 5|’S;'S‘3 (t.'l::.l {‘3
ﬁ«e(‘?ﬂ” _ Z_ T T MR T )
SHSM SiSaSy Uitaly .~ o
m, m;m;,u }L:.l.lg 3 ;L;S (?)

Si'yy! Sy ta'm, m:'
PR YO 3 AN I8 ,J(znﬂ)tzw+n
Hrc (21+1)

(g 00lL0) Y, (Qﬁ :
. [ ((‘,1(3}1;/.[3 l(,,;.)(é;'vs 'y li,',u,') (e, ¢! Hopa! ’G@)(Cz e JG'ﬁW] '

. %(—BM (55 mma' [SMY(Sa S mam/ 18M) (L' mim | LX) (SaSymamal 4d)*

. Us.vnm. IAd) (52'ss Ma'mg lA'd') (,1'51' m'm,’' ]A'd')} (H.32)

As in (5.2.3), we use (D.18) and (D.5) to show

el + G L2’ ¢3 o
Z [ ] = Q‘) J(ZL‘,‘H) (Zl.','-H) % : }5@5'5 1
Mopaply (» G ¢ 8" (H.33)
,Ul'/-h.'

Next, we rearrange certain of the coefficients in the curly
brackets in equation (H.32) using (D.9), and then apply (D.32)

to obtain

5 (& i Z. L_)s.’+s1+ss+ 28y -25+8' -4+ 1A+ 4+ M
:l‘m.‘:ma ' MMz

an..mm M my m

o(d\ mlddl

4 (Ss Av’ M'sel' lszlfV)z'B (515|'rﬂ1m,'ls"M') (5351 M3y Ma ‘Ao{) .

(S, 4w, ] 2m) (&' S/ ' LU ) (582" myme! [ SM) (L& mm’ 1 L=2)

- Gqsd+sz-sg—s+sﬁu4—4'+n+1' s, 4! S’ S
(SLM)\lS'H'> sy s/ s A
A X S, b

L@ e ) (a0 (20%0) (2041 (ZL-!;(\) (zs+N]" (H.34)
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Sy 4’ s.' s

S). S|/ S' x . . . .
where ( , o s L 1s a 12] symbol, whose properties are
described in Appendix D.

Thus we may write the fermion-fermion potential as

UGpS'p'(gﬁ - - Z 506' gp@, (_.)

£|’+ (,.11' G

J ¢+ (2¢,+1) °

sMs'm! S.s,sa(,{“‘3
Si'sa! GIdy! ' ¢y 4
i.Ll AA' L . % (:L 6 L‘I -
5'4S2 +S3 ~S+5'-4-a" + 2L .
© (2440 (244D . (25+1) (:’i-H) (22'+1),
U

1528 ‘|‘:.. V'ga! MR R
. hss[;tt;(%3 hs s’ s, utlcg(¥3 ?LA($7 (2'0 6ol Lo)-

'’
53 AI 57., S
S, s/ s' X

4 X s/ L

c(sLMAls'm!) (H.35)

The form of this potential is very similar to the nucleonj
nucleon potential (5.2.5). Both have the structure required by
rotational invariance, and in both the conservation of isospin
and isospin z-axis projection is manifest. Indeed, in the case
that s =sz2=8' =s,'=1l,=i,=i\'=1,"'=1/2, s;=my=0, and ig=1, i.e.,
we are considering two nucleons interacting through pion
exchange, the interaction Vi can be shown to equal Vyn given by
(5.2.6), using (H.21) and (D.33). '

Equation (H.35) gives a fermion-fermion potential in terms
of a trilinear vertex function. If we wished to calculate a
nucleon-delta potential, for example, we could use the NAT
‘piece of the Cloudy Bag Model Hamiltonian, pictured in Figure

, 230 Ya3h | :
15, to obtain h  gsm ~ (g), in the same way as we found
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hc3»4(q) in Append;x F. We would then be able to use this NAT

vertex function to integrate as in Section 5.3, giving the

desired N-A potential.

S\=3/2 >\‘ﬂl>
\.P (l:l= 3”‘!“'

hSéﬂ,ﬂﬁg i

Ls ( N
P N
3:3’2\
AN

N \F 5'3:0) [o]

g ST
(53_"“/2,"!,_5 AN

l7_=y1,)~11 \\

Fig. 15 The NAT Trilinear Vertex
Thick solid lines are A particles, solid
lines are nucleons, dashed lines are pions.
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~Appendix I Some Properties of Bessel Functions

In this Appendix, we introduce and 1list some Bessel
functions encountered in the discussion in Chapter 5. We then
consider certain integrals involving these Bessel functions.

For a complete discussion of Bessel functions, we refer to
the book by Watson (1966).

Jv (z) denotes an ordinary Bessel function of the first
kind, of order y and argument z. Both ? and z are
unrestricted, complex variables. The Bessel functions of half-
integral order are called spherical Bessel functions. jn(z) is a
spherical Bessel function of the first kind. It is related to

the ordinary Bessel functions by

jn(z3 = J%; Jneya (2) N=0,%1,. .. (1.1)

The spherical Bessel functions of the second kind are, from

Abramowitz and Stegun (1965, p.433):

(jn (2) = (_\“H 'Zs.-n—l (2) n=o,t1,... (1.2)

We . will also require the modified spherical Bessel
functions of the first, second, and third kinds, namely iq(2),
ign(2), and kn(z), for n = 0,%1,.... They are defined in terms
of the spherical Bessel functions. From Abramowitz and
Stegun (1965, pp. 443-4), we have

Ln (Y = J-—_TE.— Ianz (@) .
22

=hlif, .
e In(®)  (reomzex)

H

3nﬂ-.l‘/z )
e $n(c2) l’;t_<ar32’=7c) (1.3)
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. = ) 3(n+ DT fo
ten (@) = f; I-n~Vz. (2) = @ Yn(ia) L-K(or«a%é 7%3
~(n+D Rif2
= e yot2)  (Ecargz £7) (1.4)
Rn(2) = \S_zlr; Koeva (2) = ()" 7—2? [ine - in(%ﬂ (1.5)

We now list some Bessel functions of small order, taken

from Abramowitz and Stegun (1965, pp. 433-4, 443-4).

go(2) =~ SINZ

T (2) = Sinz _ Cos 2
b z* 7
) = (—i_; - 'l_z)Sm-z - 32 ces2 (1.6)
Yo (2) = - (@)= ~L0s2
Y, (2) = 4.,(2) = -Co82 _ Sin2
22 2
= -4 .(2) = [-2 [ L R
%’z(?\ 6‘3( ) ( 23 t 2\)&)52 E;Slnz (1.7)
() = sinh2
z
[ (2) = cosh2z _  sinh 2z
z 22
@) = (2 s LYy _ 3
2 Y + 2>Smh2 2 C,OShZ (1.8)
ho(?\ = Zf_. g._z
' 22
-2
R, = L e (i+3)
22
NEC S R
2z 2 2*
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The small argument limit of the spherical Bessel functions

is:
. n
() —™ _T
2 350 2! !
l
Yn (2) ;=52 -(2n-Dt 0 ()T (1.10)
where (2n+1)!! = (2n+1)(2n-1)...{(3)(1)

We now consider certain contour 1integrations involving
spherical Bessel functions. From Watson (1966, eg. (9), p.430),
choosing p=3/2, ‘N'=3/2=fﬁ' b,=b,=b, and V=L +1/2 for L an

even integer, we have

o0

Y
S X'f{;\z [ja/,_ (bx3]z (‘31/1 [3'“,\/2 (ax\:(dx

= - [Iz,h(bh\]l Kisve (aR) k7> (1.11)

providing a>2b and { <4.

Writing the ordinary Bessel functions in terms of spherical
ones using (I.1), (I.3), and (I.5), this becomes

b

x> dx : 2
) ';;:E; [ y(bX)I jL(Qx)

1+2/2 ‘ 5 .
) R [l R (ak) a»2b
feH

]

(1.12)



When £ =0, using (I.8) and (I1.9)

¢ xxd : 2
S :1+;z _[j.v(bx)] o (ax)

_ak

- [ cosh (bk) -

a bk

When (=2, using (1.8) and (I.9)

0
2 , :
(. N FRTES LA
0 +
-ak .
- - e L 2
2 ab*k L ah k\"

97

, we find

Slnh Lbh\) :]

a>2p (1.13)

, the integral becomes

] [ cosh (bR) - Slnh(bk)]

av2b (1.14)
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Appendix J One Pion Exchange Potentials (OPEP)

In this Appendix, we summarize the results of calculations
of nucleon-nucleon potentials from one pion exchange. These
potentials are discussed in most texts on nuclear physics. See,
for example, the book by Moravcsik (1963).

Beginning with a suitable non-relativistic limit of the

Lagrangian interaction

o‘("nt = Jur (2m0) rf; [T A (J3.1)

and considering one pion exchange in a perturbative theory, the

following second-order nucleon-nucleon potential is obtained:

_ ~Mrr
Vepep (£) = _‘3; £2(T,-T) - 19.-0, e___x
r
Wit
3 3 X
s (e hﬂxzr'"\} e S, - g.q g(zyi (J.2a)
Ne
where
A A
5\1 = 3@-":@.-:.‘2 = g\'gi (J.2b)

G, and O, are the Pauli spin operators in the Hilbert spaces

of nucleons 1 and 2, respectively; T, and 7. are the analogous

isospin operators; f is the NN® coupling :iconstant (f2 £ ,08).
The relative separation of the nucleons is r = r, -~ r,; me is
the pion mass. The above is written in units where f = ¢ = 1.

Note that this interaction has a scalar part which is
proportional to ©,.G,, and a tensor part, proportional to the
operator S, .

Consider the scalar OPEP, for E,% 0. Taking matrix elements



between two-nucléon states of spin S and isdspin G , we obtain

SG 4=0 =0 [ f
LV amr (2 Jgpep = <5M ,Op | VOPE‘, (e) | s'm’, O'p'>

( 2 ~ ,
=z b e Lsmig, g, I LopiT T, |Gy (3.

A simple calculation shows

ZsM g, -Q, Is'M'> ='555. dnm' -3 S=5'=0
1 $=8'= | (J
Similarly
L3R 1T, T, 10> = Swsﬁp. -3 Q=0'=0
| 6 =0G"=1 (J.

The resulting matrix elements of the potential are given

Table II.
1=0 =0
s$=0 S=|
= e ~Nr
6‘7— O * 1 2 "
35" Sumr mo e -5 8w €
v r
2 - Mt =Myt
G: l "'; S"M' g"\o e— %;z S“M‘ e-__
r r

. [USGO ]
Table I1I Matrix Elements of the Scalar OPEP mm! (D) opep
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Appendix K Dressing a Poincaré Invariant System

In this Appendix we consider the conseguences of applying a
dressing transformation to a system which is invariant wunder a
Poincaré transformation, i.e., one which is not only invariant
under translations, spatial rotations, space inversion and time
reversal, but also under homogeneous Lorentz boosts.

To describe a system which is Poincaré invariant, one must
construct from the fundamental dynamical variables of the system
ten Hermitian operators Pj, JJ, H, Kj (3j=1,2,3) satisfying the
Poincaré algebra (see, for example, Kalyniak (1978, p.23):

[p%,PR]=0 [33,p%T = ik &, PT 0 T3°,3%] = ik £ T*
' (K.1a)-(K.1c)

[P,n]=0 [39,h] =0 [k, 38T =ik €y K*

[k3, PRT = -1k S5 H/c? (K.2a)-(K.2d)

[k, u]= -i% P CRS, KR =ik €y 32 (K.3a)-(K.3b)
LR, = 12,3

The momentum operator P 1is the generator of spatial
translations; the angular momentum J is the generator of spatial
rotations; the Hamiltonian H 1is the generator of time
translations; the operator K is the generator of Lorentz boosts.

For a system of free fermions and bosons the momentum
operator E and the Hamiltonian H are given in Fock space by
equations such as (4.2.4) and (4.2.1b). J, and K, will also
involve FTF and BTB terms and expressions for these free
particle operators in Fock space can be obtained from the

corresponding n-particle operators. For . example, see
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Kalyniak (1978, pp.76,77) for the n-particle angular momentum
and Lorentz boost operators.

To describe a Poincaré invariant system of interacting
fermions and bosons, we introduce interactions using the instant

form of Dirac (1949), i.e., we let

K = Ko+ A K, (K.4)

Thus we have a system of interacting fermions and bosons with
generators P,, J,, H, K which satisfy the Poincaré algebra
(K.1) - (K.3).

We choose the interactions H; and K, to be trilinear. The
vertex function h must be a function of the fermion momentum p
as well as the boson momentum g 1in order to satisfy the
commutation relations involving K and H. The systems which we
have considered previously in this thesis could not be made
Poincaré invariant because we chose the vertex function to
depend only on g. Taking h = h(p,g), the functional dependence
of the vertex function on p and g will be restricted by the
Poincaré algebra, just as its dependence on spin was determined
in Chapter 3 by space-time invariance requirements.

Now consider a dressing transformation on the fundamental
dynamical variables of'this system. The transformation is given
by equations (4.1.1) - (4.1.4). Since the dressing

~

’ ~ ~ ~nJ
transformation is unitary, the operators P,, J,, H, K must still
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obey the Poincaré algebra. D is invariant under translations and

rotations, i.e.,

[P, D] = [J,,0]=0 (K.5)

so the functional form of P, and J, will not be changed by the

dressing transformation:
P. (F,®) = P (F,® (K.6)

T. (F8) = Jo(E,B) (K.7)

As 1s Section 4.1 we write
- ,
D= 'Zl A" D (K.8)
n=
The dressed Hamiltonian H will be given by (4.1.15); E will be
given by a similar expression.
We now choose D, to eliminate unsuitable terms of the form

(4.1.18) from E to order n. Thus

K= Kot A" 3§51 ,0 ]+ [key Da3i4. . (K.9)

That 1is,

KR

o9 ~ : .
VN n?;?_ A K (K.10)

where En contains no terms with a single fermion or boson
annihilator (other than FTF and BTB). This implies that equation
(4.1.20) for H holds, as we now show.

The dressed operators - satisfy the Poincaré algebra;

therefore

-ih §r ﬁ_/c" = [k, P.,h] (K.11)
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We also have, from (K.2d),
'|¥‘th Hb/C"' = L’Mo')') Pok] ' (K.12)
SRSk Hier = LRI LPR] ‘ (K.13)

Taking the commutator of equation (K.9) with P,R, we find

[R9,PRT = [k, PET + )2 35 [TKI, DT, P2]

P ITKed D27, PB4 ... (K1)

Note that we can use (K.5), (K.13) and a Jacobi identity to

show, for example,

0 .
[Lk3,D7,PR] = [Lx? BRI, 0] 4 [[P20, T k']

- -ikic S [H,0/] (K.15)

Therefore, wusing (K.11), (K.12), (K.13) and (K.5) equation

(K.14) becomes

~

H = He +-/\l ifl—l,,D.] + EHO )Dz‘li +... (K. 16)

or

co X
Y- Hot 2 X . (K.17)
n=2

where ﬁn also contains no unsuitable terms of the form (4.1.18),
This is the same series for H that we obtained 1in equation
(4.1.20). Thus if we choose D to eliminate all unsuitable terms
from E , we automatically eliminate all such terms from H as
well,

Is the Poincaré invariance of the resulting theory

satisfied order by order in A ? Certainly (K.1) is still
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satisfied‘by §° and J,. Also, in light of (K.5), we have
[f ,Anl = I3.,Hnl=0 (K.18)
From (K.11), (K.12) and (K.5), it must hold that
I\ ol h] _ Y\ 5 ﬁ kR
L Kn s Po = = sk n (K.19)
and
[Qa?, T8 ] = (h £5re RSE (K.20)

Thus (K.2) 1is 'satisfied By the dressed generators to order n.

Consider (K.3a):
LR, AT =- P> (K.21)
Since

[ Kod JHol = v B! (K.22)

this implies

[+ 2] . .
z )\n 3 [KOJ) “h]{‘ [knJDHO]i
Nn=2
w .
n+m ~ ~
p 2 AT RS L Eml=o0 (k.23)
n,ma 2
Thus (K.3) cannot be satisfied order by order in A. If the
series for g and H are truncated, (K.23) will not hold, and the
Poincaré invariance of the theory is destroyed.
In summary, we have shown that it is possible to apply a
dressing transformation to a Poincaré invariant system by

constructing the dressing operator Dn to eliminate the

unsuitable terms of the form (4.1,18) from K, the generator for
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Lorentz boosts. Procedures similar to those given in Chapter 4
can be uséd to carry out this dressing transformation. As a
consequence, the dressed Hamiltonian contains no unsuitable
terms and thus F' and BT create physical particles. One cannot
truncate the series for H or E and maintain Poincaré invariance.

An alternative perturbative approach to describing a-

Poincaré invariant system is given in Glockle and Muller (1981).



