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ABSTRACT

In two varieties of apples, Golden Delicious and
Granny Smith, the temperature dependence of different thermo-
physical properties has been investigated.’ Detailed regress-
jon equations are given to cover the variations of thermal
conductivity, apparent specific heat and thermal diffusivity
of apples with temperature both above and below the freezing
point. Tissue density has been studied at four different

temperatures.
The thermo-physical properties determined in this

study have been employed to predict the freezing times of

apples under various conditions of freezing using different
models reported in the literature. The freezing conditions included
for both variety of apples were: five freezing systems viz.,
freezing in air at -21 to -25°C and at -28 to -30°C, freezing

by immersion in ethylene glycol at -18 to -20°C and -20 to -24°C
and by immersion in liquid nitrogen at -197°C; three container
sizes, viz., cans of size 300x407, 307x409 and 401x411; two
initial product temperatures, 16-25°C and 1-7°C; and two target
temperatures, -10° and -18°C.

Two types of prediction methods were used, the ana-
lyticalxmnhodsof?Plank (194D, Nagaoka et al. (1955, I.I.R. (1972),
Mellor (1976), Cleland and Earle. (1979b), and the numerical
methods with constant as well as varying thermal properties.

The predicted values of freezing times by the different
models were compared with experimental values and the rela-.-
tive merits of each model discussed. Based on an analysis of
the prediction errors, a modification of Plank's equation to

i



give the least error was suggested as follows:

ot = [O.SOZZ-CIICTi - Tf) + L + 2.428 C2
p . 2
: 2 Pd - Rd
(Tf - TC)] W ‘[—H + kZ]

The mean overall prediction error of the suggested
model was 6.64% which was less than 5% beyond the experi-

mental error of 2.38%.
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INTRODUCTION

Food preservation by freezing is becoming increas-
ingly important as more foods in larger quantities are being
preserved, day after day, by freezing. Freezing is a pro-
cess of bringing down the temperature of the product below
its freezing point to a temperature at which it is subse-
quently stored. _It has been generally recognized that the
location and size of the ice crystals formed is associated
with the rate of freezing. In general, slow freezing results
in the formation of large ice crystals located in extra-
cellular spaces while rapid freezing results in small ice
crystals in both intra- and extra-cellular spaces (Fennema,
1966). Formation of ice crystals, particularly larger ones,
damages the cell structure and thus the food material upoh
thawing will have a poorer texture. This aspect has been
reviewed by Fennema and Powrie (1964), Van Arsdel et al.
(1969), Tressler et al. (1968), and Fennema et al. (1973).

Food engineers dealing with freezing or defrosting of foods
are often faced with the need to predict temperature
history curves as well as freezing and thawing times.
Therefore, the manner in which the phase change takes
place, the freezing times, rates of freezing and tempera-
ture history of the material.being frozen and subsequently

stored are important in the design and optimization of



processing equipment , and in exercizing control over the
quality of the product during freezing and subsequent
storage.

It has been a common practice, however, to rely
on emperical experiences for these predictions. Over the
years there have been numerous efforts to solve this
problem. The complexity of the problem is greatly enhanced
by the dependence of the freezing times on different
thermo-physical properties which often change during the
freezing process. Varietal differences, agricultural prac-
tices, seasonal variations, growth locations, and other
factors also influence these properties. This ;omplexity
has led to many assumptions and approximations. Hence, the
accuracy of any prediction model depends on how close the
experimental conditions match the assumptions.

The model proposed by Plank (1941) is one of the
early and most widely used prediction models. This model,
however, does not take into account the initial super-
heat or the later subcooling since it assumes the material
to be at the freezing point. Based on experimental results
many modifications have been reported to include these
factors (Nagaoka et al., 1955; Levy, 1958; Tanaka and
Nishimoto, 1959, 1960, 1964; Cowell, 1967;

Mott, 1964; International Institute of Refrigeration,

1972; Cleland and Earle, 1976, 1977, 1979a, 1979b).



Another approach was to obtain solutions for the
Fourier equation of heat conduction (Charm and Slavin,
1962) . However, Cowell (1967) reported that this method
overestimates the freezing time when the Biot number (Bi)
is less than 1. Tao (1967) developed charts for estimating
the freezing times by numerically solving the Fourier
equation. Two types of numerical finite difference schemes
have been used. The first kind takes into account the
initial -superheat as well as the convective boundary
condition, but assumes that all the latent heat is released
at a unique freezing temperature (Charm et al., 1972).
However, foods do not exhibit sharp freezing points. The
second way of approaching the problem is to take into
account the variation of thermal conductivity andvapparent
specific heat with temperature thereby completely avoiding
the phase change front (Comini et al., 1974). Finite differ-
ence schemes of this type are therefore expected to be
more accurate. One other aspect of this prediction time
problem is the lack of a standardized method for deter-
mining the surface heat transfer coefficient. Methods
based on dependence of the surface film conductance and
the thermal diffusivity on the slope of the heating curve (Charm
et al., 1972), cooling curve of a block of high thermal

conductivity (Cowell and Namor, 1974; Earle, 1971), and



finite difference method using a block of low thermal con-
ductivity (Cleland and Earle, 1976) have been suggested.

The aim of the present research was to study the
temperature dependence of the thermal properties of apples
and examine the available prediction models for the accuracy
of freezing time estimations in order to find an equation
which would give the least prediction error. The variables
included in theexperiment are: variety, initial temperature,
freezing temperature, contailner size, the temperature

to which the product is ultimately cooled and the heat

transfer coefficient.



LITERATURE REVIEW

Freezing Time Definitions

Lack of a consistent definition for freezing time
is one of the major problems in the published literature
concerned with freezing of foodstuffs. This apparent lack
of information is caused by the fact that the temperature
distribution within the product during the freezing process
varies significantly énd therefore freezing time or rate
has to be defined with respect to a given location and
between two reference temperatures. The 'thermal center’
or the location that cools most slowly is commonly used as
the reference point. Foods do not have a well defined
freezing point unlike pure systems. Due to soluble
components dispersed in the fluids of foods, the latent heat is
released over a range of temperature (most of it being
released in the region -1 to -5°C, which is referred to as
the zone of maximum ice crystal formation). Some authors
use the duration of this phase change period as the
freezing time while others (Brennan et al., 1976) define it
‘as the duration of the entire process including precooling,
phase change and the subsequent cooling to the final
temperature. The various methods that have been used by

different authors to express freezing rate have been reviewed



by Fennema and Powrie (1964). The 'thermal arrest time'
(duration to cross the zone 0 to -5°C) has been shown to

depend on the initial product temperature (Long, 1955).

Prediction Models

The subject matter of freezing time prediction
by different methods has been reviewed by Bakal and Hayakawa
(1973), Brennan et al. (1976), Charm (1978), Cleland
and Earle (1976, 1977, 1979b), Heldman.(1975), and Rebellato
et al. (1978).

The prediction models are usually based on many
assumptions. The body to be frozen is assumed to have a
uniform initial temperature and is cooled by a constant
temperature medium, thereby providing a uniform and constant
surface heat transfer coefficient between the cooling |
medium and the surface of the body. It is also assumed
in most models that the product will have constant
thermo-physical properties in the unfrozen and frozen
states, and also possess a defined freezing point at which
all the latent heat is liberated.

These assumptions enable the freezing process to
be divided into three distinct phases: the precooling

period in which the temperature of the product is lowered



from its initial temperature (Ti) to the freezing point
(Tf), the bhase change period in which the latent heat is
released and a tempering period in which the temperature
is lowered from the freezing point to the target tempera-
ture (TC). Another phenomenon observed during the freezing
process is the supercooling period (Fennema and Powrie,
1964) in which the temperature of the product falls well
below its freezing point without the occurrence of freez-
ing. Following supercooling, the temperature increases
to the freezing point and the normal freezing process
continues. None of the freezing time prediction models

takes this supercooling period into consideration.

Plank's model

The model proposed by Plank (1941) is one of the
early and most widely used methods for freezing time esti-

mations. This model is based on three basic heat balance

equations:

k
Heat conduction: q = A(T0 - Tf) iz
Heat convection: q = AH(Ta - TO)

Heat generated at the freezing front:

dx
q = Ale; 3¢



where q is the rate of heat flow, x is the thickness of

the ice front, dx/dt, the velocity of the ice front, A, area
of cross section perpendiculaf to the direction of heat
flow, T_ and To’ the ambient and the surface temperatures,

a
Tf, the freezing point, L, the latent heat, Py and kZ’
the density and thermal conductivity of the frozen product
and h, the surface heat transfer coefficient. These three

equations are combined to get the most general form of

Plank's equation (Plank, 1941)

o,L 2
. . P2 (Pd , Rd

(T -T) & k

] (1)
2

where d is the thickness of a slab or diameter of a cylinder
or sphere, P and R are constants depending on the product
geometry. The values of P are 0.500, 0.250 and 0.167 for

an infinite slab, cylinder and sphere respectively; and

the corresponding values of R are 0.125, 0.0625 and 0.0417.
A chart for providing P and R when applied to a brick or
block geometry is given by Ede (1949).

Plank's model assumes that the product is ini-
tially at its freezing point and hence does not take into
account the precooliﬁg or tempering period. Hence the
value predicted will be generally low when used under

conditions involving precooling or tempering periods.



However, Ede (1949) and Earle and Fleming (1967) reported
that this formula gives fairly accurate estimation of freez-
ing times.

Based on experimental results many modifica-
tions have been reported to include the precooling and

tempering periods in Plank's equation.

Nagaoka Modification

Nagaoka et al. (1955) suggested the following modifica-

tion to Plank's equation:

-AH

p 2
2 R
[Ei + _d_'__]

(Tf-Ta) h k

(2)
2

where AH = [Cl(Ti—Tf) + L+ CZ(Tf - TC)
Levy Modification
Levy (1958) suggested that the L in Plank's
equation be replaced by AH, the enthalpy change at the
thermal center over the entire process to get the nominal
freezing time, t . Then the effective freezing time 1s
calculated as

te= t [1 + 0.0081(T;-Tg)] (3)

ef
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I.I.R. Modification

The International Institute of Refrigeration, 1972
recommended only replacing L in Plank's equation by the

enthalpy change over the entire process to get the freezing

time.
Mellor modification
Mellor (1976) suggested replacing L by a factor
1 1 . i
[7 Cl(Ti - Tf) + L + 5 CZ(Tf - Ta)] in Plank's equation

to predict the freezing time.

Cleland and Earle Modifications

Plank's equation has been expressed in terms of

dimensionless numbers by Cowell (1967).

Fo - pi2 + ¢ | (4)
Ko Bi
. . _ ot . . _ hd
where Fo is the Fourier. Number = = Bi, Biot Number = X and
d 2
Ko is the Kossovitch Number = L and D and G are
CZ(Tf - Ta)

constants determined by the product geometry.
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More recently, Cleland and Earle (1976, 1979a,

1979b) expressed Plank's equation in the dimensionless

form
= Pt 1
Fo = P(gyisge) * R(Ste) (5)
Cp(Tg - Tp)
where Ste is Stefan Number = . Defining the
AH
sensible heat during the precooling period by a dimensionless
Cq(T; - T
number, Plank's Number, Pk = 1( i f) , the authors
' AH

suggested modifications of the constants P and R in Plank's

equation to predict the freezing times more accurately.

Slab: P = 0.5072 + 0.2018 Pk + Ste (0.3224 Pk +
0.0125
R = 0.1684 + Ste (0.2740 Pk - 0.0135)

+

‘Cylinder: P = 0.3751 0.0999 Pk + Ste (0.4008 Pk +

0.0710
—pT 0.5865)
R = 0.0133 + Ste (0.0415 Pk + 0.3957)

The freezing times predicted, using these values
for P and R, were reported by the authors to be in very good

agreement with experimental values as well as those predicted



12.

by finite difference numerical methods. Cleland and

Earle (1979a) also found that even after the above modifica-
tions, the predicted values for freezing in rectangular
bricks were very low. They reported, therefore, that the
assumptions made by Plank (1941) in arriving at the geome-
tric factors are unjustified and hence the methods using
these factors (Nagaoka et al., 1955; Mellor, 1976) can
certainly be expected to give erronous results. The authors
have modified the equations to find P and R further, to

cover rectangular bricks.

Gutschmidt Equation

For products of irregular shape Gutschmidt

(1964) suggested the eduation:

k

_ AH A 2
(Tg - Ta)kz

+

) (6)

d
2

For other geometrics such as parallelipiped, right cir-

cular cone and others,equations have been given by Lorentzen and

Rosvik (1960) and Tanaka and Nishimoto (1959, 1960, 1964).
{

Mott's Procedure

Mott (1964) developed several tables, to get the

thermo-physical data needed to use Plank's prediction model,



13.

by dimensional analysis of experimental data which included
different product and package characteristics and various
conditions of freezing. In this procedure, a functional
relationship among three dimensionless groups is utilized
for freezing time calculation. The different equations

are given below.
=22 - A (7)

B='2—k (8)

t h(T, - T.)
G = szg 3 (9)

where S, B and G are the three dimensionless groups.

Fourier Models

A different approach in solving the prediction
time problem is to obtain solutions for Fourierxsheat
conduction equations under suitable boundary conditions.
The validity of Fourier's equation has been proven and
this equation has been widely used in engineering sciences.
However, the solutions are rather complicated, and
therefore, not many are available in the published litera-

ture. Carslaw and Jaeger (1959) and Muehlbauer and
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Sunderland (1965) gave excellent reviews on the formulas
for estimating heat conduction in a solid when there is a

phase change in the sample.

Newman 's Solution

The Newman's solution published‘in Carslaw and
Jaeger (1959) utilizes a unidimensional heat transfer
in a semi-infinite slab. /The assumptions which hold good
for Plank's equation are made here also. The partial
differential equations representing the temperature dis-
tribution in the unfrozen and frozen regions are repre-

sented as:

3 T1 1 8T1

—;;Z = Eq's?_' Unfrozen region (10)
BZTZ 1 BTZ

— = = Frozen region (11)
3X 2

The equation expressiﬁg the heat flux between
the frozen and the unfrozen portion which must be equal
to the heat liberated at the freezing front is

oT oT

1 9X
ks ™ kisx

The Newman's solution utilizes several boundary conditions

such as
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Tl(x, 0) = Ti

Tl(o, t) = Ts(t)

Tz(x, t) = Tl(x, t ) = Tf
d

0T, (&> t)

I S
X

Using these assumptions the equation expressing temperature
as a function of time and position in an infinite slab

is given below.

T
_ f X
T2 = STEX erf 177 (13)
2[a2t]

Where T2 = Tf, equation 13 reduces to
x = zx(azt)l/z- (13a)

suggesting that the location of the freezing front can be
linearized on a log log plot with a slope of 0.5 and A can
be calculated from the intercept (Bakal and Hayakawa, 1970).
Charm and Slavin (1962) used equation 13 for calculating
the freezing time of cod fillets by using a modified

k
thickness equal to (% + 7%0' However, Cowell (1967)
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reported that this modified thickness results in over-
estimating the freezing time when the Biot number is less

than 1.

Tao's Charts

Tao (1967) developed charts for estimating the
freezing times in an infinite slab, cylinder and a sphere
by numerically solving the Fourier heat conduction

equations using three dimensionless groups.

th =t k, (T, - Ta)/dzsz (14)
B = kz/Hd (15)

The charts show a relationship between t* and B at different

values of Y.

Numerical Methods

The different methods discussed so far assume
constant thermal properties. But the actual situation

requires solution of the equation of type
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A OR (17)

which is a partial differential equation of one dimen-
sional heat conduction in a slab with thermal diffusivity
as a function of temperature. The more general way of
expressing the relationship is as follows for a slab,

cylinder, and a sphere.

2
Slab: cer) 3L - () 2L (18)
T a?
X
i - 5T _ 9 5
Cylinder (a=1) c(m) ay ar[k(T) gz] + akgT) az (19)

Sphere (a=2)

The most common boundary condition is that with a surface
heat transfer coefficient, sometimes referred to as Newton's
law of cooling or as a boundary condition of the third kind
that uses the convective heat transfer coefficient between
the cooling medium and the surface of the product. This-

is represented as

- oT

h(T, - T.) = [k(T) ==] (20)
a S ox x = 0 for slabs

R(T. - T.) = [k(T) 244 d
a S ord r = % for cylinders (21)

2
or spheres
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The solution of the above equations (17-21) are
difficult without the use of numerical methods. Two types
of numerical finite difference schemes have been used.

The first type takes into account the precooling and tem-
pering éeriods as well as the third kind of boundary con-
dition but assumes all the latent heat to be released at

a unique freezing temperature (Charm et al., 1972).
However, foods do not exhibit sharp freezing points, so the
solutions of this type depart substantially from the actual
situation. The second way that phase change in freezing
foods can be accommodated is to take into aceount the
variations of thermal conductivity k(T), and apparent
specific heat capacity C(T). This completely avoids the
need'to define a phase change front. The versatility

of this method has been demonstrated by Bonacina and

Comini (1973), Rebellato et al. (1978), Cleland

and Earle (1976, 1977, 1979a, 1979b). The finite element
methods are more complex. For unidimensional heat transfer
it offers no distinct advantage over the finite differ-
ence schemes (Cleland and Earle, 1979b). For a radial

heat transfer, a three time-level finite difference

scheme proposed by Cleland and Earle (1979b) is given

below.
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Ti+1 ) T1-1
i "m m 1 i i+l i+1 i i
C = [k (T - T + 7T - T
m Int S(Ar)z m+1/2% m+1l m m+1 m
i-1 i-1 i i+1 i+l
*Tha ~ T ) - km-l/Z(Tm - Thal
i L1 i-1 L1-1
* Tm Tm—l Tm Tm )} o+
ki
m i+1 | i+l i i
ImAr 2AT Tm+1 Tm-l * Tm+1 Tm-l
i-1 i-1
*Ther " Tne1) (22)
At the center (m = o),
1 3T BZT :
limit = == » —= (23
>0 r oT 31‘2 )
Cl T;"'l - Tl'l i 1 [Zkl (Ti+1 Ti+1 N Tl Tl
= o]
o At 3(Ar)2 m+l/2% o o] 1
+ Tl-l - Tl‘l)] (24)
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_ : _ .1 9T
At the surface (m = M), h(Ta T ) = kM (5?) r’ and

. i o i
setting kM+1/2 = hAr and TM+1 = Ta’
ci T§+l ) T§-1 _ 1 (ki (3T - i*l | gl Tl-l)
M nt sarZ | Me1/2 a M M~ Im
i+l i+l i i
"k Ty 7 s Ty * Ty - Ty
i-1  oi-1 — i+l
Ty Ty !+ BT, - T -
i ri-1y,3p (25)
M~ Iy
where
1 I P | i
kw172 = 7k + ki)
X - Lad sl (27)
m-1/2 2°m m-1 :

These numerical methods require the use of a computer.

(26)

Charm (1978), Cordell and Webb (1972), Bonacina and Comini

(1973), Fleming (1971), Cleland and Earle (1977, 1979a,

1979b) have used computer programs to solve the above
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equations, some using constant thermal properties (Charm,
1978) while others using variable thermal properties.
Rebellato et al. (1978) extended the finite element
analysis to include irregular shaped products also.

Albin et al. (1976, 1979) used Goodman's integral techni-
que (Goodman, 1964) to solve the partial differential equa-

tions (17-21) using four dimensionless numbers.

Surface Heat Transfer Coefficient Determinations

One of the major problems involved in prediction
models is the lack of a standard method for determining
the surface heat transfer coefficient. A commonly used
approach is the so-called heat penetration method where
the cooling curve of a block of metal of high thermal
conductivity is found under the conditions that will apply
in the freezing system. This method has been used by’
Cowell and Namor (1974) in plate freezing and Earle (1971)
in air blast freezing. Charm (1971) suggested the use of
an equation employed by Ball and Olson (1957) describing
the effect of surface conductance and thermal diffusivity

on the slope of the heating curve,

2.303
%2

— 12 2
= )\1 + ul (28)

where f is the negative reciprocal of the slope of the



22.

heating curve -obtained - -by using a Jackson

Plot, A, = first root of cot A(1l/2) = (kz/H)X

Hy = first root of Jo(ur) = u(kz/H) Jl(ur),.l represents the
the depth of a slab or cylinder, r = radius of cylinder.
Use of the finite difference methods using gel samples

of thermal properties close to those of food materials

is recommended by Cleland and Earle (1976). This method
involves the determination of surface temperatures and

then use of an explicite finite difference scheme with the

third kind of boundary conditions to get an estimate of

h at each step.

Thermo-physical Properties of Apples

Very little work has been published on the eva-
luation of thermo-physical properties or prediction of
freezing times for apples. One of the earliest reports on
the thermal conductivity of apples comes from Gane (1936)
who gave values for thermal conductivity, apparent density,
mean specific heat and thermal diffusivity at 15.6°C for
apples, apple juice, apple juice concentrate and apple
sauce. In a survey of thermal conductivity of fruits and

vegetables, Sweat (1974) reported values for density and

thermal conductivity at 28°C for green and red apples
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(p = 790 and 840 kg/m> and k = 0.422 and 0.513 W/mK°
respectively). He also gave a regression equation express-
ing the relationship between thermal conductivity and

moisture content (% wet basis) at room temperature.

k = 0.148 + 0.00493 (% Moisture) (29)

Lozano et al. (1979) expressed the relationship between
the moisture content (fraction, X, dry basis) and thermal
conductivity of Granny Smith apples in the following
equation
k = [0.283 - 0.256 exp(-0.206X)] x 1.731 W/mK°®
(30)

Values obtained by Sweat (1974) were significantly higher
than those reported by Lozano et al. (1979). Riedel (1951)
has given tables for the enthalpy of apple juice, apple
juice concentrate and apple sauce at different temperatures.
Riedel (1949) expressed a general relationship between k
and moisture content at temperatures above freezing point

by the quadratic equation (with temperature in F°)

k, = [307 + 0.645T - 0.00105T%] [0.46 +
3

0.054 (% Moisture)] x 10 ° BTU/h ftF° (31)
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EXPERIMENTAL
Material

Two varieties of apples, viz., Golden Delicious
and Granny Smith, obtained from the local market, were used

in the study. The apples were stored at 1-2°C until use.

Methods

Thermal Conductivity [k(T)]

Thermal conductivity was measured by the transient
method using a thermal conductivity probe 3.81 cm long and
0.0813 cm diameter as described by Sweat and Haugh (1972).
Apples were mechanically peeled and sliced into octets. The probe
was inserted into a slice in the longitudinal direction,
the slice with probe was placed in a long closely fitting
retort pouch (12 um polyester/9 um Al fo0il/50 um polypro-
pylene) and clamped at both the ends to secure the position.
The slices were then cooled to different temperatures in a
constant temperature bath, and held at least for % h. for
equilibration. Each measurement was made as follows: when

the temperature of the sample was steady, a current of 160 mA

was applied to the probe. The resulting temperature rise
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was recorded as the thermocouple millivolt output using a

Digitec data logger (United Systems Corp.) The millivolt record

thus obtained was used to provide temperatures occurring
at one second intervals up to 40 s of the heating time.

t
The time-temperature data [in the form 1n(f2) vs T] were

subjected to a linear regression through a least squares
procedure using the University of British Columbia computer
(Amdahl 470V/6-I1). To avoid points which do not fall
in a straight line, the first 10 s of heating time was
not used in the calculation of the slope. Further, the
data with a correlation coefficient of iess than 0.90 were
rejected. The thermal conductivity was calculated using
the relationship

Q 1n (;Z)

1

k = (31a)
4 (T2 - Tl)

where Q is the power consumed by the probe heatér, T1 and
T2 are the temperatures of the probe thermocouple at time
tq and t, respectively. With the calculated slope, the
equation reduces to the form k = Q(slope)/4m. Experiments
were conducted in 3 replicates at different temperatures

between 25 and -25°C.
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Apparent Specific Heat {[C(T)]

Differential thermal analysis (DTA) is a technique
for ?ecording the difference in temperature, AT, between a
test substance and an inert reference material as samples
of the two are warmed or cooled,-at a constant rate. If
the test substance is thermally active, then the curve
obtained by plotting AT, against temperature showsirregu-
larities or peaks or valleys. These peaks indicate the
occurrence and measure the extent of energy-involving
reactions, transitions or phase changes within the test
sample. When techniques to measure these changes directly
in energy units are available, the measurement is referred
to as differential scanning calorimetry (DSC). The
different aspects of DSC and DTA have been discussed in
detail in the book of MacKenzie (1970).

The Dupont 900 DSC was used to obtain the
warming thermograms. This instrument was calibrated to
obtain the calibration constant, ET’ using zinc (purity
99.999%). Samples of apple tissues [8 to 14 mg] were
cooled in the DSC cell to -100°C using liquid nitrogen.
The cooling curves were not recorded. The samples were
held for sufficient time (% to 1 h) to.achieve equilibra-
tion. The warming thermograms were recorded while heating

at 20C°/min.
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The specific heat data were obtained as follows:
Two empty pans were first warmed at 20C°/min on the DSC
from -100 to 80°C to obtain a blank thermogram. Then the
sample was placed in one of the pans and the sample and
reference pans were again warmed from -100 to 80°C. From
the resulting thermograms of sample and blank, the apparent
specific heat at any temperature is calculated by measur-

ing the AT values for sample and blank at that temperature,
and using the following equation:

_ (ATBlank * ATSample)T ET
(C)T =

(Heating Rate) (Mass)

(32)

Density (p)

For determining density, apples were cut into
cylinders of 1.9 cm diameter and 1.6 cm length and weighed
(M) individually. Density was then calculated using the

equation:

M _ _4M
PV T | (33)

The temperatures used were 2 and 25°C. For determining
density in the frozen state, the apples were cut into brick
shaped slices of approximate dimensions 1.0 x 1.0 x 3.0 cm ,

frozen to -20 and -35°C in freezer rooms, where they were
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left packaged for 1 wk for equilibration. Six of the above
slices were placed in a measuring cylinder previously tared
with a sinker and weighed (M). To this, 50 ml of water

at 2-3°C were added and the volume recorded. From this volume,
the volume of 50 ml water plus the sinker was subtracted

to yield the volume (V) of the slices and the density was
determined using equation 33. Eight replicates were used

at each temperature.

Thermal diffusivity [a(T)]

Thermal diffusivity (a) was calculated using

the equation,

(W = (o7 (34)

Moisture (M)

Moisture was estimated by drying a known weight
of the sample in a vacuum oven at 70°C for 24 h. Twelve

replicates were used each time.

Latent Heat (L)

Latent heat of fusion (L) was calculated based on

the moisture content (% wet basis) using the equation:

0

L= 2 Mgggture x 334.9 x 10° J/kg (35)
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Texture

Texture of whole apples was measured using a
Magness-Taylor puncture probe attached to an Instron tester.
Two readings were taken on each fruit and eight fruits
were sampled at each time. The load (kg) required to
puncture the apple tissue (with a thin section of the skin
removed at the point of puncture before the measurement) was

taken as an index of the texture.

"Total Soluble Solids and Acidity

Total soluble solids and titratable acidity were
determined using the juice obtained from two slices taken
from eight different fruits by the methods suggested by Ruck
(1969) .

Moisture, total soluble solids, acidity and
texture values were determined four times during the period
of study for each variety as a measure of the quality of

the apples.

Freezing Conditions

Freezing experiments were carried out under five
freezing systems, three container sizes, two distinct initial

and final temperatures for both varieties of apples. The



30.

different conditions are described below:

1. Freezing Systems: a) Freezer room at -21 to -25°C
b) Freezer room at -28 to -30°C
c) Immersion in ethylene glycol
(60%) at -18 to -20°C
d) Immersion in ethylene glycol
(100%) at -20 to =-24°C
e) Immersion in liquid nitrogen

at - 197°C

2. Container: Tin- a) 300 x 407

plate cans of three b) 307 x 409

different sizes c) 401 x 411
()
3. Initial Temperatures (Ti) a) 16-25C
b) 1-7°%
o
4., Final Temperature (TC) a) -10 C
-18°

For freezing, apples were peeled and sliced into
octets, dipped in a potassium metabisulfite solution
containing approximately 200 ppm of sulfur dioxide. The

slices were orderly and tightly packed into the cans so as

to minimize the extent of empty spaces inside the can.
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The can ends were insulated with 3 cm thick cardboard
planks. A needle type Eklund copper-constantan thermo-
couple was inserted into the can in such a way that the tip
of the thermocouple was at the geometric center of the
can, embedded inside one of the apple slices. Temperature
at the center of the can as well as that of the freezing
medium were recorded as the thermocouple millivolt output
using a Digitec data logger (United Systems Corp.) at

2 min. intervals. These data were used to evaluate the
experimental freezing times to cool the material to -10°C
and -18°C and also to determine the time taken to cross

. . . o
the zone of maximum ice crystal formation (-1 to -5C).

Surface Heat Transfer Coefficient

Surface heat transfer coefficients were determined
using Plank's equation as well as by the method of Charm
(1972). For using Plank's equation, the apples were
packed into cans as in the freezing experiments, stored
in a room at 1 to 2°C until equilibration was Treached, and
then frozen in the different freezing systems. Using the
freezing time to reach -10°C (tf(—lo))’ the heat transfer

coefficient (h) was calculated by the equation
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- , Pd (36)
tec-10) (T - Ta)  Rra
[ o BH "X ]_

When using Charm's (1972) method the slope of the heating
curve was calculated both from the freezing data and
by allowing the frozen sample to warm up in the freezing

system.

Freezing Time Predictions

Freezing time predictions were made using the
models suggested by Plank (1941), Nagaoka et al. (1955),
International Institute of Refrigeration (1972),
Mellor (1976), Cleland and Earle (1979b), and a suggested
modification of Plank's equation. Numerical finite dif-
ference methods for a radial heat transfer with a two time
level scheme with constant as well as varying thermal
properties were also used to predict the freezing times.
The schemes were similar to that proposed by Cleland and

Earle (1979b) using a three time level scheme.
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RESULTS AND DISCUSSION

Thermo-Physical Properties
j

The different physico-chemical properties,
moisture, total solids and the Magness-Taylor texture
values for the two varieties of apples did not change
significantly during the period of study (Table 1).
Golden Delicious was, however, higher in moisture content
and lower in total solids, acidity as well as texture value
as compared to Granny Smith. From the observed moisture
and texture values it was presumed that the quality of the
apples remained essentially constant throughout the period

of study (approximately two months).

Thermal Conductivity

The probe method of conductivity measurement
was found to give accurate and consistent results. The
thermal conductivity values for a 0.4% agar gel in eight
different runs were found to be 1.48, 1.51, 1.57, 1.53,
1.54, 1.41, 1.43 and 1.45 W/mKo with a mean value of 1.49
W/mK (and a standard deviation of 0.057) as compared
to the expected value of 1.52 W/mK®. Thus, the experimental
value was found to be within 2% of the actual value.
With food samples, the accuracy of the probe methods have

been reported to *5% at temperatures above freezing and



Table 1. Physio-chemical properties of apples during storage at 1-2°C.

PROPERTY

Golden Delicious

Granny Smith

Aug 2

Aug 7

Aug 9 Aug 16

Oct §

Moisture (%)a

Total Soluble Solids (%)b

Acidity (mg malic/100 g)b

Texture (Magness-Taylor
puncture probe, kg)€

87.81

11.00

170

2.32

85.46

12.10

506

2.98

85.64 86.31

12.10 11.75

481 453

2.87 2.86

85.40

12.65

480

2.66

a average of nine replicates

b average of duplicates from pooled pulp

c average of 12 replicates

2
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+10% at temperatures below freezing point (Sweat and Haugh,
1972). Vos (1955) reported that only when the expression

ﬂg%—was greater than 0.6 the error due to finite sample
a

size was noticeable. In the present set of experiments
o varied from 1.342 to 9.422 X 10_7m2/s; t, the heating
time consiﬁered was 25 s; and a, the shortest distance
from the thermocouple to the boundary = 1.5 cm or

.015 m. Hence the factor ranged from 0.0596 to 0.418.
Therefore, the boundary influence was taken to be
negligible.

| The variations in the thermal conductivity of
Golden Delicious and Granny Smith apples with temperature
are shown in Figures 1 and 2. A comparison of the two
figures indicates that the two varieties showed similar conductivity
variations with temperature. The. thermal conductivity
values of both the varieties showed a more consistent
variation with temperature above freezing point (corre-
lation coefficient of 0.735 and 0.815 respectively

for Golden Delicious and Granny Smith respectively).

The linear regression equations for thermal conductivity

at temperatures above freezing were:

Golden Delicious:

k(T) = 0.394 + 0.00212T (W/mkK®), T > T, (37)
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Granny Smith:

k(T) = 0.367 + 0.00250T (W/mK®), T > T,  (38)

Below the freezing point, thermal conductivity
values showed a larger scattering with temperature.
Linear regression analysis of the data gave correlation
coefficients of 0.394 and 0.650 for Golden Delicious and
Granny Smith respectively, which were however significant
at 5% level. The linear regression equations under these

conditions were:
Golden Delicious:

1.289 - 0.0095T (W/mK®), T <

k(T) = < Tg (39)
Granny Smith:
k(T) = 1.066 - 0.0111T (W/mk®), T < Tg (40)

For obtaining the mean values of thermal conduc-
tivity in the unfrozen and frozen region, all the observed
values at temperatures above and below the freezing point

(-1°C) respectively were used.
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The greater variability observed in the values
of thermal conductivities at temperatures below the freezing
point are presumed to be related to the complexities of
the freezing system, particularly to the varying degree of
jce crystallization at different temperatures.

In Figures 1 and 2, the lines represent the
regression equations 37 to 40. These data were utilized
in prediction of freezing time by finite difference numeri-
cal methods. However, for use in other prediction models
a mean value of 0.427 and 0.398 W/mK® respectively in the
unfrozen state and 1.445 and 1.220 W/mK® respectively in
the frozen state for Golden Delicious and Granny Smith were
used.

The observed values of thermal conductivity (mean
values at temperatures above freezing point) were slightly
higher than those computed by equation 30, given by
Lozano et al. (1979). Using the equation for moisture
contents (g HZO/g dry matter) of 6.874 and 7.033 corres-
ponding to Golden Delicious and Granny Smith, the thermal
conductivities were found to be 0.383 and 0.368 W/mK°,
as compared to observed valuesof 0.427 and 0.398 W/mK°.

The values reported by Sweat (1974) were, however, signi-
ficantly higher (0.578 and 0.571 W/mK®, calculated from

equation 29, and 0.513 W/mK® reported for red apples with
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84.9% moisture content). The equation of Riedel (1949)
also gave a higher value for apples (0.55 w/mK® at 20°C and
85% moisture). There has been no published information on
the thermal conductivity of apples at temperatures below
the freezing point.

The values of thermal conductivities both below
and above freezing point for Golden Delicious were more than
those for Granny Smith. Since the slopes of the regression
lines for the two varieties were observed to be very close
(equations 37 to 40) both at temperatures above and
below freezing, it is reasonable to assume that the differ-
ences in the thermal conductivity between the two varie-
ties at different temperatures arise mainly because of
the differences in moisture content. Golden Delicious had
a mean moisture content of 87.3% and Granny Smith, 85.8%.
Based on a regression analysis of the thermal conductivity
data for the two varieties pooled together, an equation
expressing the dependence of thermal conductivity on

moisture content and temperature can be written as follows.

k(T,M) = 0.667M (0.027 - 0.00038T) + 0.0213T - 1.13 W/mK°®,
T > Tf (41)
k(T,M) = 0.667M (0.223 + 0.0016T) - 0.10T - 11.63 Ww/mK®,

T < Tf ' (42)
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Apparent Specific Heat

A typical thermogram recorded using the Dupont
DSC for a sample of Golden Delicious apple and a blank are
given in Figure 3 and - the computed values of apparent
specific heat for both the varieties as a function of temp-
erature are given in Figure 4. The values for temperatures
above and below freezing were obtained from different
thermograms. Each point in Figure 4 represents the
mean value of four replicates. The pattern of the apparent
specific heat curves for both varieties were similar.
However, for Golden Delicious the observed values were
higher than those observed for Granny Smith as with thermal
conductivity data. This difference presumably arises from
the differences in the moisture content of the two vafieties.

The regression equations are expressed, here,
on the basis of four levels of temperature, below —25°C,
-25 to —10°C, -10 to -1°% and above -1°%. The equations

are:

Golden Delicious:

(o]

C(T) = 3.36 + 0.0075T (kJ/kgC®), T > -1°C  (43)

C(T) = 2.18 - 1.484T (kJ/kgC®), -1 > T > -10°C

(44)
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Figure 3. Warming thermogram of frozen Golden Delicious apples and of empty
pan (blank) in a Dupont DSC. (AT scale of 2C°/unit refers to only
the small peak area at the center while 0.5C°/unit refers to the
rest of the curve).
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Figure 4. Mean apparent specific heat of apples at various temperatures.
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C(T) = [24.40+0.791T] x 10° (J/kgC%, -10> T > -25°C
(45)

C(T) = [2.89+0.0138T] x 10° (J/kgC®), T < -25°C (46)

Granny Smith:

C(T) = [3.40+0.0049T] x 10° (J/kgC®), T > -1°C  (47)

C(T) = [2.65=1.421T] x 10° (J/kgC®), -1 > T>-10°C
(48)

C(T) = [24.93+0.760T] x 10° (J/kgC®), -10 > T>-25°C
(49)

C(T) = [2.50 + 0.0118T] x 10°(J/kgC®), T < -25°C  (50)

These equations expressing the apparent specific heat as

a function of temperature are used in the estimation of
freezing time by finite difference numerical methods.

For the purpose of freezing time computations by other
models, the mean value of apparent specific heat between

20 and 60°C was taken for temperatures'above the freezing
point and the mean value between -30 and -80°C was taken
for temperatures below the freezihg point. At temperatures
between 0 and —25°C, the effect of the release of latent

heat was reflected in the apparent specific heat curve
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and hence were not used for calculating the mean values.
The mean specific heats were 1.946 and 1.678 kJ/kgK° below
the freezing point and 3.690 and 3.578 kJ/kgKk® above the
freezing point respectively, for Golden Delicious and
Granny Smith apples. The apparent specific heat above
freezing point was about 1.9 to 2.1 times more than that
below the freezing point. There is not much information
available in the published literature regarding the speci-
fic heat data for apples. Gane (1936) reported a value
of 3.768 kJ/kgK® for apples without mentioning the mois-
ture content. Ordinanz (1946) gave a range of specific
heat for apples with moisture contents between 75-85% as
3.73 - 4.02 kJ/kgk®.

It has been generally recognized that the speci-
fic heat in foods containing high moisture can be esti-
mated using a simple relationship (at temperatures above

freezing point)

M

105 X 0.8(4187) + 0.2 (4187)  J/kgk® (51)

C =

which gives a value of 3.76 and 3.71 kJ/kgK° for Golden
Delicious and Granny Smith with 87.3% and 85.8% moisture
content respectively. The observed values were slightly

lower than the values reported in literature. The
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observed values of apparent specific heats of apples were
consistent with the observations of Short and Bartlett
(1944), at temperatures below -7°C. Short and Bartlett
(1944), however, reported a constant value of 3.73 kJ/kgKo

at temperatures above freezing point.

Density

For determination of density, the methods used
were different for frozen and unfrozen samples. For the
unfrozen material the method was straight forward. There
was no difficulty in cutting the apples into cylinders using
a cork borer of known internal diameter and then to cut
the cylinders to a known length using two spaced knives.

The reproducibility of the resuits was good. This method
was not suitable for frozen samples because of the diffi-
culty in cutting the samples into proper size. The modi-
fication suggested . to accommodate the frozen samples
is simple enough. The main disadvantage of the method

was that the temperature of material did not remain
constant over the period of measurement, since the volume
displacement was measured using water at 1-2°C.  The experi-
ment needed only a few seconds and the temperature

change estimated during that time was less than 5C°. Hence

the temperature of measurement could be taken as +3° of the



47.

specified temperature. This method was not recommended for
use with unfrozen samples because of the porosity of the
apple slices. In the frozen state, however, because of the

ice formation, the structure would be harder and less
porous. The mean values of density for Golden Delicious

and Granny Smith respectively were 843 and 837 kg/m3 at 25°C,
847 and 820 kg/m> at 2°C, 785 and 789 kg/m> at -20°C and 791
and 787 kg/m3 at -35°C. The values for .the two varieties
were more comparable in the frozen state than in the unfrozen
state. The changes in the density below and above freez-
ing point with respect to temperatures were not signi-
ficant. However, the density in the frozen state was
approximately 5.2 to 6.8% less than the density in the
unfrozen state. For the purpose of computafion of freez-
ing times by different models a mean value of 845 and 788
kg/m3 for Golden Delicious and 829 and 786 kg/m3 for

Granny Smith were taken for temperatures above and

below freezing point respectively.

Thermal Diffusivity

Thermal diffusivity of apples was calculated
using the relationship given in the equation 34. The mean

values of thermal diffusivity above and below freezing
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and 9.430 x 10-7 mz/s

7

point respectively were 1.371 x 10”7

for Golden Delicious and 1.342 x 107/ and 9.257 x 10
mz/s for Granny Smith. The mean value reported by Gane
(1936) for unfrozen apples (0 to 32°C ) was 1.265 x 1077
mz/s. Thermal diffusivity of frozen apples was about

6.9 times that of unfrozen samples. Using equations (37-40,
43-50) which express thermal conductivity and specific

heat as functions of temperature, the variations of thermal
diffusivity with temperature (assuming density of the

material to be constant in unfrozen and frozen states)

are shown in the following equations

Golden Delicious:

a(T) = (0.00278T+1.389) x107 (m?/s) T > T, (52)

a(T) = ¢0.109T + 5.085 x 1077 (n’/s) T < T, (53)
Granny Smith:

o(T) = (0.00556T+1.309) x 10~ '(m?/s) T » T, (54)

a(T) = (-0.130T+4.745) x 107 (°/ ) T < T, (55)
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These equations (52-55) assume the latent heat to be
released at the freezing point. Hence the apparent speci-
fic heat at temperatures between -30 to -80°C was consi-
dered to cover the whole frozen region. To get the more
realistic approach of latent heat release over a range of
temperature, the apparent specific heat between -1 to -30°C
which reflects the latent heat effect had to be considered.
The regression equations for thermal diffusivity depen-

dence on temperature in this region are given below:

Golden Delicious

0 (T) = (0.437T + 4.367) x 107/ (m%/s) T

¢ > T > -10°C  (56)

o (T) = (-0.187T 1.215 x 107 (m%/s) ~-10 > T > -25°C (57)

Granny Smith

7

o (T) = (0.339T-+ 3.656) x 107/ (m%/s) T

g2 T >-10°C (58)

o (T) = (-0.123T - 0.603) x10™/ (m®/s) -10 > T > -25°C (59)

Equations 52 and 54 hold good for T > Tf and 53 and 55 for
T < -25°C to complete the spectrum of temperature -80 to

60°C.
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Surface Heat Transfer Coefficient

Two methods were tried for determining surface
heat transfer coefficients associated with the freezing
systems. The method suggested by Charm (1972) involved
warming up of a material of known thermal properties 1n
the freezing system, thus necessitating cooling of the
test material below the temperature of the freezing system.
Hence this was not suitable for use in determining the h
associated with liquid nitrogen. Alternatively, the slope
could be determined from the latter part of the freezing
data. Experiments carried out in two systems (freezing in
air at -21°C and immersion in ethylene glycol at -18°C)
showed that the reciprocals of the slopes calculated using
the warming and freezing data were fairly close. Further,
the mean value of surface heat transfer coefficients for
the system of freezing in ethylene glycol (100%) at -20 to
-24°C calculated by the method of Charm (1972) was 54.06
W/m2K° and, by using Plank's formula (equation 35) was
55.59 W/m2K°. Since these two methods gave similar results,
for other freezing systems, Plank's method was used.
Measurement of surface temperature was not attempted
because of the non-homogeneity of the apple pack to have
a uniform contact at the surface. Hence, the method

suggestéd by Cleland and Earle (1976) was not employed.
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The mean values of four to eight replicates of
the surface heat transfer coefficients for the different
freezing systems were as follows:

Immersion in ethylene glycol (100%) at -20 to
-24°C, 55.59 W/mZKo; immersion in ethylene glycol (60%)
at -18 to -20°C, 59.68 W/m’K®; freezing in air at -21 to
_25°C, 17.83 W/m?K®; freezing in air at -28 to -30°C, 13.85
W/mzKo; and immersion in liquid nitrogen at -197°C, 68.42
W/mzKo. The heat transfer coefficient in 100% ethylene
glycol was relatively small compared to that for 60%
ethylene glycol although the freezing temperature was
lower in the latter. This was probably due to higher vis-
cosity associated with 100% ethylene glycol at lower
temperatures. Also the heat transfer coefficient asso-
ciated with the freezer room at -21 to -25°C was higher
than that provided in the freezer room at -28 to -30°C

because of a slightly higher air velocity in the former.

Prediction of Freezing Times

Experimental Freezing Times

Thirty three freezing experiments were conducted
with each variety of apples. The experimental design was

set up to cover a wide range of conditioms that are
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commonly encountered in food freezing. The cooling medium
temperature was varied from -18 to -30°C (and -197°C in
liquid nitrogen), initial temperature from 1 to 25°C, dia-
meter of the container 0.076 to 0.103m, surface heat tfans-
fer coefficient from 13.85 to 68.42 W/mzKo.

Tables 2 and 3 show the experimental conditions
for each run, the experimental freezing times to reach
-10 C and -18°C from the onset of cooling and also the time
taken to cross the zone of maximum ice crystal formation (-1
to -SOC)in each run.

"Based on forty four replicates of duplicate
values under the different experimental conditions shown
in Tables 2 and 3, the mean experimental error was esti-
mated to be 2.38%. This low experimental error reflected
considerable uniformity in the method of packing the apples
into the can.

The freezing curves for the two varieties of
apples in 300 x 407 cans in five different freezing sys-
tems are given in Figure 5. The initial temperature of
the apples varied from 20 to 23°C. Freezing curves for the
two varieties under similar conditions with an initial

temperature of 3.5 to 7.0°C are given in Figure 6.
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Table 2. Experimental data for freezing of Golden Delicious apples.
Freezing Conditions Freezing Characteristics
j j h Time to cross
Code Can Size Ti T, Mode Tlme-igoéeach T1me-§gozeac 1 io : rsfc
(°C) (°O (h) g (h) th)
GD1 300x407 21.0 -20 1 2.03 2.33 0.37
GD2 300x407 21.0 -20 I 2.06 2.33 0.40
GD3 300x407 21.0 -27 A 5.13 5.57 2.67
GD4 300x407 21.0 -27 A 5.13 5.63 2.57
GDS 300x407 21.0 -18 I 2.47 2.93 1.00
GDo6 300x407 21.0 -18 I 2.27 2.93 1.13
GD7 300x407 23.0 -21 A 5.25 6.08 2.83
GD8 300x407 23.0 =21 A 5.47 6.25 3.05
GD9 300x407 20.0 -197 L 0.242 0.250 0.013
GD10 300x407 20.0 -197 L 0.23 0.23 0.012
GD11 300x407 4.5 -24 1 1.77 1.95 0.90
GD12 300x407 5.5 -24 I 1.70 1.87 0.74
GD13 300x407 4.0 -29 A 4,47 4,90 3.20
GD14 300x407 4.0 -29 A 4,53 4.97 3.20
GD15 300x407 3.5 =20 1 2.13 2.50 1.27
GD16 300x407 3.5 -20 1 2.23 2.53 1.30
GD17 300x407 5.0 -22 A 4.20 5.20 2.53
GD18 300x407 7.0 =22 A 4,33 4.97 2.57
GD19 300x407 6.0 -197 L 0.193 0.205 0.062
GD20 307x409 18.0 -23 I 2.73 3.00 1.23
GD21 307x409 17.0 =23 1 2.83 3.07 1.33
GD22 307x409 18.0 -22 A 5.37 6.03 3.13
GD23 307x409 18.0 -22 A 5.30 5.90 3.20
GD24 307x409 18.5 -197 L 0.325 0.328 0.033
GD25 307x409 2.0 -23 1 2.33 2.60 1.70
GD26 307x409 2.0 -24 A 5.47 6.10 3.97
GD27 | 307x409 2.0 -197 L 0.267 0.268 0.072
GD28 401x411 19.0 =20 1 3.86 4,27 2.00
GD29 401x411 16.0 -23 A 6.36 7.13 2.90
GD30 401x411 19.0 -197 L 0.360 0.408 0.032
GD31 401x411 2.0 -22 1 3.60 3.97 2.23
GD32 401x411 1.0 -25 A 5.97 6.06 4.10
GD33 401x411 2.0 -197 L 0.310 0.340 0.095

I
A

Air

L =Liquid Nitrogen Immersion

Immersion in ethylene glycol
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Table 3. Experimental data for freezing of Granny Smith apples.

Freezing Conditions Freezing Characteristics

Time to reach Time to reach Time to CToOSSs

Code Can Size Ty T, Mode -10°C -18°C 15 to -5°C
(°c)  (°0) (h) (h) (h)

GS1 300x407 24,5 -22.0 1 2.20 2.43 0.43
GS2 300x407 24,5 -22.0 1 2.10 2.33 0.33
GS3 -300x407 24.5 -28.0 A 4.70 5.20 2.60
GS4 300x407 24.5 -28.0 A 4.67 5.17 2.60
GS5S 300x407 23.0 -18.0 1 2.30 2.93 v 1.07
GS6 300x407 23.0 -18.0 1 2.37 2.97 1.10
GS7 300x407 23.5 -21.0 A 5.30 6.43 2.25
GS8 300x407 23.5 =-21.0 A 4.80 5.93 1.93
GS9 300x407 23.5 -197 L 0.215 0.222 0.017
GS10 300x407 23.5 =197 L 0.260 0.272 0.025
Gs11 300x407 2.0 -21.0 1 2.17 2.47 1.50
GS12 300x407 2.0 -21.0 1 2.17 2.50 1.47
GS13 300x407 1.5 -30.0 A 3.50 3.77 2.63
GS14 300x407 1.5 -30.0 A 4.03 4.43 2.90
GS15 300x407 1.5 -20.0 I 2.30 2.73 1.33
GS16 300x407 1.5 -20.0 1 2.17 2.60 1.50
GS17 300x407 3.0 -22.0 A 4.00 4.83 2.80
GS18 300x407 3.0 -22.0 A 4.47 5.40 2.93
GS19 300x407 4.0 -197 L 0.198 0.208 0.063
GS20 307x409 16.0 -22.0 1 2.90 3.26 1.53
GS21 307x409 18.0 -22.0 1 2.90 3.23 1.50
GS22 307x409 18.5 -22.0 A 5.53 6.33 2.97
GS23 307x409 18.5 =-22.0 A 5.70 6.37 3.43
GSz4 307x409 18.5 -197 L 0.310 0.322 0.029
GS25 307x409 2.0 -23.0 1 2.33 2.53 1.67
GS26 307x409 2.0 -24.0 A 5.44 6.00 3.73
GS27 307x408 4.5 -197 L 0.270 0.302 0.075
G528 401x411 19.0 -20.0 1 4.00 4.33 2.03
GS29 401x411 21.0 -23.0 A 6.56 7.70 3.33
GS30 401x411 19.0 -197 L 0.380 0.419 0.035
GS31 401x411 2.0 -22.0 1 3.73 4.20 2.56
GS32 401x411 3.0. -25.0 A 6.17 7.10 3.83
GS33 401x411 2.0 -197 L 0.330 0.362 0.100

I
A

Air

Immerson in ethylene glycol

L = Liquid Nitrogen Immersion
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Freezing curves for Golden Delicious and
Granny Smith apples under different condi-
tions in atinplate can ©Of size 300x407, with
a product initial temperature of 20-23°C.
(LN, Immersion in liquid nitrogen at -197°C,

11, 12, immersion in ethylene glycol at -20 and

-18°C, Al and A2, freezing in air at -27 and
-23°C respectively.)
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Freezing curves for Golden Delicious and Granny
Smith apples under different conditions 1n a tin-
plate can of size 300x407 with a product initial
temperature of 2-7°C. (LN, liquid nitrogen
freezing at -197°C, Il1, I2, immersion in ethylene
glycol at -21 and -20°C, Al and A2, freezing in
air at -30 and -22°C respectively).
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The Zone of Maximum Ice Crystal Formation

A comparison of Figures 5 and 6 and Tables 2 and
3 indicates that the time required to cross the zone of
maximum ice crystal formation (-1 to -5°C) dépended on the
temperature of the freezing medium, heat transfer coeffi-
cient as well as the initial temperature of apples. For higher
initial temperature, the time taken to cross the zone
was shorter . provided the freezing system remained the same
This time has been termed the 'thermal arrest time' because
the temperature in this zone changes more slowly with time or
is arrested. until the latent heat is released. This finding
is in agreement with the findings of Long (1955) on
the freezing of fish. In order to provide a better com-
parison, the 'thermal arrest time' has been plotted against
the freezing time to reach -10°C (a function of freezing
temperature as well as the heat transfer coefficient) at
two mean initial temperatures, 20.3°C and 3.0°C in Figure
7, for the data of two varieties pooled. The regression
equations showed very high . linear cbrrelations (0.97

at 20°C and 0.99 at 3°C). The equations were:

o, .70
o. _ 0.57
At 20 C: t(—l to -5) - 3600 tf(-lO) 0.28 (h) (61)



TIME TO CROSS -1TO-5 c°[h]

58.

H
§

s Ti=203°C
o T;=3.0 °C

i 1 1 ] I} i

Figure 7.

1 2 3 4 5 6
FREEZING TIME[h]

Variations in the time taken to cross the zone
of maximum ice crystal formation (-1 to -5°90)
with freezing time to reach -10°C, at two mean
initial temperatures, 3.0 and 20.3°C.
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Predicted Freezing Times: Analytical Methods

Freezing times were calculated using the different
methods proposed in the literature and the results com-
pared with the experimental freezing time to calculate
the percentage difference between the two which is termed
as 'the prediction error' of the particular model. The
methods investigated were divided into two groups, those
requiring numerical evaluation by a computer and those
requiring only a simple calculation.

For all prediction models involving constant thermo-
physical properties, the data obtained from part A of this
investigation were made use of. These values have been
summarized in Table 4.

Most of the prediction models (other than the
numerical analysis methods) are based on Plank's
equation. The predicted freezing times by models proposed
by Plank (1941), tP,Nagaoka et al. (1955), typ, tNC,I.I.R.(1972L'tI,and
Mellor (1976), tyo along with the prediction errors are
summarized in Appendix 1 and 2 for the varieties Golden
Delicious and Granny Smith respectively.

When the pooled data from all the experimental

conditions for the two varieties of apples were analy:zed,

the mean prediction errors (taking only the absolute value
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Table 4. Thermo-physical data for freezing time
computations.
Goden Delicious Granny Smith
Parameter
Unfrozen Frozen Unfrozen Frozen

Thermal cgnduct1v1ty 0.427 1.445 0.398 1.220

(W/mk®)
Specific heat X 103 3.690 1.946 3.578 1.678

(J/kgk®°)
: 3 2¢

Density (kg/m”)x10 8.450 7.880 8.290 7.860
Thermal dlffu51v1ty 1.371 9.430 1.342 9.257

(mé¢/s x 10-7)d
Moisture (3%)° 81.3 85.8
Latent heat (J/kg x 105)f 292.4 287.4
Freezing point (°c)® -1.0 -1.0
Surface f11m conduc—

tance (W/m2K°)h 12.7-68.4 12.7-68.4
Initial temperature (°C) 1-25 1-25
Final temperature (°C) -10, -18 -10, -18
Ambient temperature (°C) -18 to -30 -18 to -30
Can Size (Diameter) (m) 0.076-0.103 0.076-0.103

D00 Hh O AL O

-average of

average of
average of
calculated
average of
calculated
taken from
average of

three replicates at different temperatures
four replicates at different temperatures
eight replicates at 4 temperatures

from a, b and ¢

36 replicates 0 :
from gatent heat = < mgégture
freezing curves

4-8 replicates

x 334.9 kJ/kg
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of the errors) in using the different models were: tos

18.2%; t 9.0%; 17.0%; 12.9% and t 13.9%.

I’ tNE? tNee M?

typ is the freezing time in hours by Nagaoka's model cal-
culated using the British umnits and the? the same using the
Metric units. The above-mentioned values, however, do not
represent the true performance of the different prediction
models in their capacity to predict the freezing times
under the different conditions of freezing.

In Table 5, the observations have been grouped

into four general freezing conditions for each variety

based on the initial and final temperatures as follows

Cl = Freezing from T; = 16 to 25°C to T_ = -10°C
C2 = Freezing from T. = 1 to 7°C to T, = -10°C
. (o] o]
C3 = Freezing from Ti = 16 to 25 C to TC = -18 C
. 0 0
C4 = Freezing from Ti =1 to7¢C to TC = -18 C

The mean percentage prediction errors under these four conditions
obtained by using the different prediction models on the
two varieties of apples are given in Table 5. Under these
different conditions significant differences in the predic-

tion errors were observed between the conditions Cl and C2Z



Table 5.

Mean errors in predicting freezing times of apples by different
models under different conditions of freezing.

Freezing Conditions Golden Delicious Granny Smith
Code Ty Te tp v Y ots p Y tw ts
° OC Q 9 0, ) 9
¢y o0 OO EO RO O (2)
C1 16-25 -10 17.7 12.3 11.2 28.4 9.2 14.1 15.6 13.2 36.1 7.3
C2 1-7 -10 12.4 7.2 14.0 7.9 6.4 9,7 5.513.0 5.9 6.6
C3 16-25 -18 26.7 6.1 12,5 18.2 6.9 24.6 7.2 12.6 23.4 4.8
C4 1-7 -18 20.8 8.3 17.7 7.5 5.3 19.4 9.7 17.3 8.5 6.6
¢ Two ¥arieties mixed
I Yy NF tg
) ) @) s ()
C1 16-25 -10 15.9 14.0 12.2 32.3 8.3
C2 1-7 -10 11.1 6.4 13.5 6.9 6.5
C3 16-25 -18 25.6 6.7 12.6 20.8 5.8
C4 1-7 -18 20.1 9.0 17.5 8.0 6.0
tp Freezing time model, Plank (1941)
tg Freezing time model, International Institute of Refrigeration (1972)
tg Suggested model
tNE Freezing time model, Négaoka et al. (1955)
t Freezing time model, Mellor (1976)
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in most of the above-mentioned models and between C3 and C4,
Cl and C3, and C2 and C4 in some models (Table 5). This
clearly indicates the differences in the capability of the
different models in accounting for the precooling and

tempering periods.

Plank's Model

Plank's equation assumes that the material is
initially at the freezing point and estimates the time
required to complete the freezing (to reach a temperature
of -10°C). Hence, this method had the least error under
condition C2 (Ti = 1-7°C and TC = -10°C) which was about
11.1%, and maximum error under condition C3 (Ti = 16-25°C

and T_ = -18°C) which was about 24.6 to 26.7% (Table 5).

I.I.R. Modification

The prediction error in the model proposed by the
International Institute of Regrigeration (1972) was found
to be the least among the four models. This model does
take into account the precooling as well as the tempering
period by replacing the latent heat factor in Plank's
equation by the enthalpy from Ti to Tc' Even so, the
prediction errors were quite high. Under the condition

Cl1 which had a greater influence due to the precooling

period (Ti = 16-25°C, TC = -10°C), the . mean prediction error
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ranged from 12.3 to 15.6%. Significant differences in the
prediction errors were observed only when Cl was compared

with C2, C3 and C4 (Table 5).

Nagaoka Modifications

The Nagaoka et al. (1955) modifications resulted
generally in a considerable overestimation of the freez-
ing time except under conditions where the initial temp-
erature was low. This model under low Ti’ however, was
no different from the one proposed by the International Insti-
tute of Refrigeration (1972) which had already been shown
to give low prediction errors under the condition CZ.

Another point worth noticing in the model of
Nagaoka et al. (1955) is that an additional dimensional
property in the form of [1 + 0.00445 (Ti - Tf)] has been
used as a factor to be multiplied by t; to get the modi-
fied freezing time. Because of the dimensional property
(temperature in this case), the factor assumes different
values depending on the unit in which the temperature 1is

measured. If (T; - Tg) is equal to 25°C°, the factor would

be 1.111 and for a corresponding temperature difference in
F°, the factor would be 1.200. Hence tNF which was obtained
by using F° in the above factor was always greater than

t where temperature was taken in C°. Model t resulted

NC NF
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in mean prediction errors of 20.8 to 32.3% when Ti was

16-25°% (Table 5).

Mellor Modification

Mellor's (1976) modification showed a consistently
higher prediction error under all four conditions
for both the varieties. This model suffers from two
drawbacks. Firstly, it does not have any factor to account
for differences in the tempering period. Hence the freez-
ing time estimated to -10°C would be same as that for -18°C.
Secondly, because of the factor (Tf - Ta) C2 in the AH
calculation, under conditions when the freezing temperatures
were very low (e.g. liquid nitrogen, -197°C), the model
resulted in considerable overestimation of the freezing
time (as high as 50%). The prediction mean error in this
model was 11.2 to 14.0% under Cl to C3 and 17.3 to 17.7% under

the condition C4 (Table 5).

General Considerations

In general, between the two varieties there were
no significant differences in the mean prediction errors
by using the different models under the four different
conditions. The mean errors for the two varieties pooled

are dlso included in Table 5.
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On the basis of the results given in Table 5, it
would not be possible to determine whether the models over-
estimate the freezing time or underestimate 1t because
the table was based on the absolute values of the predic-
tion errors giving only their magnitudes. Figures 8, 9
and 10 represent the frequency histograms of the predic-
tion errors, under the four different conditions, asso-
ciated with the different prediction models for
Golden Delicious, Granny Smith and the two pooled together
respectively. In these diagrams the ordinate scale for
frequency is an arbitrary one such that the area under
each histogram is the same. These figures could be used to
obtain the information on the quality of the prediction
error of the different models under the different freez-
ing conditions as to whether it overestimated or underestimated
the freezing time.

Plank's equation thus resulted 1in gross
underestimation while Nagaoka et al. (1955) model under
Ti = 16-25°C largely overestimated the freezing time, and
under condition C4 resulted in considerable underestimation.
Mellor's(1976) model showed a larger scatter under all the
conditions with a peak frequency at 0% error under condi-
tions where TC = -10°%. With TC = -18°C the model largely

underestimated the freezing time for obvious reasons.
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Figure 8. Frequency histograms for prediction error percentage in
Golden Delicious apples using different models; Plank
(1941), tp; I.I.R. (1972), ty; Nagaoka et al. (1955),
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Figure 9. Frequency histograms for prediction error percentage
in Granny Smith apples using different models; Plank
(1941), tp; I.I.R. (1972), tg; Nagaoka et al. (1955),
tNfF; Mellor (1976), ty; author's modification6 tg, under
various conditions: Cl(Ti = 16=25°C, T, = -10°C), C2
(Ty = 1-7°C6 Tc = -10°C%E C3(Ty = 16-25°C, Tc = -18°C)and
-C4(Ty; = 1-77C, T, = -18 ).
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Figure 10. Frequency histograms for prediction error percentage

in apples of two varieties using different models; Plank
(1941), tp; I.I.R. (1972), ty; Nagaoka et al. (1955),

tygs; Mellor (1976), ty; author's m%dification, te, under
various conditions: C1(Tj = 16-25°C, Tc = -10°C), C2

(T; = 1-7°cb T, = -10°C), C3(Tj = 16-25°C, Tc = -18°C) and

. : soL R
C4(Ti =1-7°C, TC 187°C).
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A Suggested Modification

Most of the modifications of'Plank's equation
attempt at altering AH, the amount of heat to be released
from the material in order that it is cooled from its
initial temperature down to the final temperature. This
included the latent heat L, the temperature differential
(Ti - Tf) and specific heat before freezing (Cl) for the
precooling period, and the temperature differential (Tf -
TC) and the specific heat after freezing (C,) for the temp-
ering period. Taking into consideration the model proposed
by International Institute of Refrigeration (1972) in
Table 5 and Figures 8 and 9, it can be observed that
conditions C1 and C3 resulted in overestimation of freez-
ing time (with mean errors of 14.0 and 6.7 % respectively)
and C2 and C4 resulted in underestimation (mean errors
of 6.4 and 9.0%respectively). The influencing factor in
Cl was essentially the sensible heat during the precooling
period and in C4, the sensible heat in the tempering period.
These two represent the extreme conditions on either
side of the freezing point, thus experience the maximum
errors of overestimation of the precooling period and under-
estimation of the tempering period. The other two inter-
mediate conditions C2 and C3 which have these two influences

acting together resulted in intermediate errors.
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The correction factor should, therefore, be aimed
at minimizing the influence of the factors Cl(Ti - Tf)
and CZ(Tf - TC). This could be achieved by suitably
reducing the magnitude of the former and increasing the
magnitude of the latter by a multiple regression analysis
of the experimental values of Cl(Ti - Tf) and CZ(Tf - TC)
on the expected value of their sum (AH - 1), obtained by
using the actual experimental freezing times in the predic-
tion model of International Institute of Refrigeration
(1972) under each of 33 different runs for both the
varieties. The regression equation gave a significantly
high correlation coefficient (0.635) with 40.3 % of the
variance being explained by the two variables.

Based on the above regression equation the
suggested modification to take into account the different

freezing conditions is given below.

t = [0.3022 Cl(Ti - Tf) + L + 2.428 CZ(Tf - TC)]-
o 2
2 Pd Rd
. [._—— + —] (62)
Te - Ty 'n k,

The mean percentage error and the frequency histo-
trams under the different conditions of freezing for the

suggested model are also shown in Table 5 and Figures 8-10.
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The mean errors under -the four conditions Cl1 to C4 were
7.3 to 9.2% (Cl1), 6.4 to 6.6% (C2), 4.8 to 6.9%
(C3) and 5.3 to 6.6% (C4) which were more consistent
than those observed for any other model. The overall mean
error observed was 6.6%. Considering that the mean
experimental error was 2.38%, the mean prediction error
associated with the suggested model was less than 5%
beyond the experimental error.

Figure 11 shows a relationship between the experi-
mental freezing times and the values predicted by the
suggested modification (ts). A least squares regression

analysis gave a coefficient of determination of 0.984

with the equation for the fitted line as follows:

te = 0.986 te * 0.0784 (h) (63)

S

Predicting Freezing Times: Numerical Methods

The numerical methods constitute a.second major
group of methods used for predicting freezing times of

foods. In the present study only one type of numerical
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Figure 11. Relationship between the experimental freezing
time and the time predicted by using the suggested
modification of Plank's equation.



74.

method has been tried, the finite difference method. The
finite element methods are also applicable, but are more
complex and offer no distinct advantage when used for
unidimensional heat transfers as in the case of cylinders
(Myers, 1971 and Albasiny, 1956). The finite difference
method using constant as well as variable thermal
properties has been used in this study.

For calculating the freezing times of slabs,
cylinders and spheres, it has been reported that the
three time level scheme of Lees (1966) was more accurate
than the two time level scheme becauée of smaller trunca-
tion errors (Cleland and Earle, 1979b). However, in this

study only the two time level scheme has been employed.

Finite Difference Scheme with Variable Thermal

Properties

The general radial heat conduction equation can
be approximated by a two level finite difference scheme

as follows:

i,..1 i 1,1 1
i Tn - T _ km(Tm+1 ) Tm) } km(Tm B Tm-l)
Cm At - 2
(ar)
i, 1 1
+ km(Tm+1 ) Tm—l) (64)

Zm(Ar)2
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where m Ar = r is the distance from the center. This
represents the internal nodes.

At the center (m = 0), the equation takes the

form:
i+l i i1 i i,q1 i
Ci TS - TS ) k (T - To) km(TO Tl)
o At (Ar)z
because T;+1 = T;_l = Ti at m = 0 due to the symmetry.

This equation can be simplified further to

i+l i . . .
i % T _axl(ry - 1)
(ar)

At the surface (m = M), the third kind of boundary

condition is taken into account by using,

1+1 i T i 1
ol v~ Ty _ h(T, - Ty a + g
M At (Ar)
1,01 i
) Ky (Ty = Ty-1)
(Ar)Z’ (66)

where MATr = R is the radius of the cylinder. One other

assumption that has been made here is that k;+1 = km =
Z
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- 1  which enables further simplication of the computation
2

program. By selecting At and Ar such that the expression

i

km At 1
= > , 'equations 64 to 66 reduce to

cl(ar 2

M
. Ti Ti Ti - Ti

(internal node) T;+1 - m*l > m-1 m+14m m-1 (67)

(center) T1+1 = 1! (68)
o] 1
. Ti + Ti = .

(surface) T§+1 - M > M-1 , zﬁr (Ta - T&) (69)

M

The computer program that was used for the above finite

difference scheme has been given in Appendix 3 (see also Appendix 4 for

a schematic diagram of the finite difference method).

Finite Difference Scheme with Constant

Thermal Properties

The equations used in this method were similar
to the ones used in the scheme with varying thermal
properties. Constant values of thermal conductivity (kl,

kz) and specific heat (C;, C,) were plugged into the
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equations above and below the freezing point. The major
problem here was to accommodate the release of the latent
heat. For this purpose the latent heat was assumed to be
released in a range of temperature (5C° taken arbitrarily)
below the freezing point. Then the latent heat was con-
verted into apparent specific heat. The specific heat and
thermal conductivity during the phase change period were

calculated as

(o]
c=L=*5.0x 0 J/kgK (70)

and

k=Lt 2 W/mK® (71)

Other than this modification, the procedure was
exactly the same as thatdescribed for the scheme with varying
thermal properties.

The predicted values of freezing times by the
two numerical finite difference methods as well as those
by the suggested modification of Plank's equation along with
the percentage prediction error Calculated on the basis of
experimental values of freezing time are given in Table 6
for Golden Delicious and Table 7 for Granny Smith. These

tables do not contain all the experimental conditions
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Table 6. Comparison between the predicted freezing times and
prediction errors of numerical methods and modified
Plank's equation under different conditions of
freezing of Golden Delicious apples.
h te tS E tnc E th E
Code gim¥k) () () G (h) (%) CORNCY
- GD1 55.59 2.03 2.46 +21.2 3.54 +74 .4 1.49 -26.7
‘ 2.33 2.72 +16.7 3.82 +63.9 3.26 +39.9
GD4 13.85 5.13 4.92 -4.1 6.40 +24.8 2.75 -46.4
5.57 5.43 -2.5 6.77 +24.7 5.28 -5.2
GD7 17.83 5.25 5.23 -0.3 6.74 +28.4 2.96 -43.6
6.08 5.77 -5.2 7.34 +20.7 7.02 +15.5
GD11 55.59 1.77 1.93 +9.0 1.25 -29.4 1.00 -43.5
1.95 2.13 +9.3 1.40 -28.1 1.89 -3.0
GD12 55.59 1.70 1.94 +13.8 1.36 -20.0 1.04 -38.8
1.87 2.14 +14.3 1.51 -19.3 1.92 +2.7
GD13 13.85 4.47 4.30 -3.8 4.76 +6.5 2.00 -55.3
4.90 4.80 -2.1 5.08 +4.8 4.12 -15.9
GD16 59.68 2.23 2.24 +0.3 1.47 -34.1 1.14 -48.9
2.53 2.48 -2.0 1.73 -31.6 2.81 +11.1
GD17 17.83 4.20 4.71 +12.1 5.34 +27.1 2.28 -45.7
5.20 5.22 +0.3 5.85 +12.5 5.69 +9.4
GD18 17.83 4,33 4.74 +9.4 5.70 +31.6 2.36 -45.5
4.97 5.25 +5.5 6.21 +24.9 5.77 +16.0
GD20 55.59 2.73 2.56 -6.4 3.21 +17.6 1.55 -43.2
3.00 2.82 -6.0 3.41 +13.7 2.74 -8.7
GD21 55.59 2.83 2.54 -10.1 3.07 +8.5 1.55 -45.2
3.07 2.81 -8.5 3.27 +6.5 2.73 -11.0
GD22 17.83 5.37 5.77 +7.4 7.42 +38.2 3.21 -40.2
6.03 6.37 +5.6 8.01 +32.8 7.14 +18.4
GD25 55.59 2.33 2.42 +4.0 1.09 -53.2 1.18 -49.4
2.60 2.69 +3.4 1.29 -50.4 2.37 -8.8
GD26 17.83 5.47 5.00 -8.6 4.55 -21.0 2.29 -58.1
6.10 5.54 -9.2 5.00 -18.0 5.30 -13.1
GD28 55.59 3.86 3.82 -1.0 4.28 +10.8 1.97 -49.0
4.27 4,23 -0.3 4.64 +8.7 4,23 0.0
GD29 17.83 6.36 6.74 +5.9 7.74 +21.7 3.26 -54.3
7.13 7.44 +4.3 8.28 +16.1 6.91 -3.1
GD31 55.59 3.60 3.27 -9.0 1.31 -63.6 1.35 -62.5
3.97 3.62 -8.7 1.55 -61.0 2.85 -28.2
GD32 17.83 5.97 5.88 -1.5 3.83 -35.8 2.34 -60.8
6.06 6.53 +7.8 4.27 -29.5 5.20 -14.2
Footnote: as in Table 7.
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Table 7. Comparison between the predicted freezing times and
prediction errors of numerical methods and modified
Plank's equation under different conditions of
freezing of Granny Smith apples.

h te ts E tnc E th E

(W/m“K®) (h) (h) (%) (h) (%) (h) (%)
GS1 §5.59 2.20 2.35 +6.8 3.37 +53.2 1.48 -32.7
2.43 2.56 +5.5 3.54 +45.8 2.57 +5.8
GS3 13.85 4.70 4.77 +1.5 6.18 +30.0 2.81 -40.2

5.20 5.20 0.0 6.49 +24.8 4.96 -4.6
GS7 17.83 5.30 5.25 -1.0 6.64 +25.3 3.05 -42.5
6.43 5.73 -11.0 7.16 +11.4 6.80 +5.8
GS11 55.59 2.17 2.30 +5.8 1.05 -51.6 1.12 -48.4
2.47 2.51 +1.8 1.25 -49.4 2.44 -1.2
GS13 13.85 3.50 4.12 +17.6 3.54 +1.1 1.89 -46.0
3.77 4.51 +19.6 3.80 +0.7 3.73 -1.1

GS15 59.68 2.30 2.32 +0.7 1.05 -54.3 1.12 -51.3

2.73 2.55 -6.7 1.29 -52.7 2.68 -1.8
GS17 17.83 4.00 4.68 -17.0 4.75 +15.8 2.25 -43.8
4.83 5.12 +6.0 5.19 +7.5 5.42 +12.2
GS20 55.59 2.90 2.79 -3.8 3.12  +7.6 1.67 -42.4
3.26 3.05 -6.5 3.32 +1.8 2.96 -9.2
GS21 §5.59 2.90 2.81 -3.1 3.42 +17.9 1.72 -40.7
3.23 3.07 -5.0 3.62 +12.1 3.00 -7.1
GS22 17.83 5.53 5.80 +5.0 7.45 +34.7 3.34 -39.6
6.33 6.33 0.0 7.96 +25.8 6.96 +10.0
GS25 55.59 2.33 2.54 +8.8 1.05 -58.7 1.21 -48.1
2.53 2.79 +10.3 1.23 -51.4 2.30 -7.9
GS26 17.83 5.44 5.02 -7.7 4.33 -13.7 2.38 -56.3
6.00 5.50 -8.3 4.73 -14.0 5.15 -14.2
GS28 55.59 4.00 4.04 +1.0 4,34 +7.4 2.09 -47.8
4.33 4.40 +1.7 4.66 +7.6 4.20 -3.0
GS29 17.83 6.56 6.92 +5.5 8.10 +17.1 3.55 -48.7
7.70 7.54 -2.0 8.58 +13.8 6.89 -10.5
GS31 55.59 3.73 3.45 -7.4 1.29 -62.6 1.43 -61.7
4.20 3.78 -10.1 1.61 -57.4 2.82 -32.9
GS32 17.83 6.17 5.97 -3.2 3.73 -37.5 2.54 -58.8
7.10 6.55 -7.8 4.01 -38.8 5.18 -27.0

. . O~
First line under each code refers to freezing time to reach -10 g
Second line under each code refers to freezing time to reach -18°C

te Experimental freezing time. o ) :

tg Freezing time by the suggested modification of Plank's
equation.

E Prediction error.

tnc tnv Freezing times by numerical finite difference scheme with
) constant and variable thermal properties respectively.
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discussed earlier for the other analytical methods based
on Plank's equation for certain reasons which will be

discussed later.

Constant Thermal Property Scheme

The prediction error varied from -63.6 to
+74.4% for Golden Delicious and -62.6 to +53.2% for Granny
Smith by using the numerical method with constant thermal
properties, as compared to -10.1% to +21.2% and -17.0 to
+19.6% respectively by using the suggested modification.(Tables 6& 7).
Examination of the analysis showed that conditions Cl and
C3 (Ti = 16-25%C and TC = -10 and -18°C respectively)
resulted in overestimation of the freezing time, while the
freezing conditions C2 and C4 (Ti = 1—7°C, and TC = -10 and -18°C)
resulted in underestimating the freezing time. The mean
errors (absolute values) of freezing time estimation
by this method for conditions Ti = 16-25°C (TC = -10 or
-18°C) and Ti = 1-7% (TC = -10 or —18°C) respectively
were 25.7% and 30.1% for Golden Delicious and 21.0% and
35.5% for Granny Smith apples. It has been generally
recognized that the finite difference schemes with constant
thermal properties based on the latent heat being released
at a unique freezing point often result in overestimating

the freezing times (Charm et al., 1972). The results under
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conditions Cl1 and C3 supported this observation in spite of
the modification made to accommodate the release of the latent
heat uniformly over a temperature range of 5C° below the
freezing point. Another important phenomenon that has been
frequently encountered with numerical finite difference
schemes is commonly known as "jumping" of the latent heat
peak. This problem arises where the calculation procedure
does not follow the specific heat curve and undercuts

a portion of the peak. This problem worsens as the Biot
Number increases because the cooling rate also increases.
Further, this can also occur when the latent heat is
assumed to be released in a short range of temperature and
the initial temperature is close to the freezing point

with a low ambient temperature. This was probably one

of the reasons for the under prediction of the freezing
times under conditions C2 and C4. The problem became

worse when used to predict freezing times in liquid nitro-
gen immersion systems (Ta = —197°C). These results were
not included because of gross underestimations (up to

100%).

Variable Thermal Property Scheme

The prediction error varied from -62.5 to +12.2%

for Golden Delicious and -61.7 to +39.9% for Granny Smith
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apples by using the numerical method with variable thermal
properties. A break up of analysis showed, in this case,
however, that there is no significant difference in the
freezing times between conditions Cl and C3, contrary to
the model with constant thermal properties. However, condi-
tions Cl and C3 (freezing time to reach —10°C) resulted

in large underestimations of freezing times (-26.7 to
-62.5% for Golden Delicious and -32.7 to -61.7% for Granny
Smith) while conditions C2 and C4 (freezing time to reach
-18°C) gave fairly accurate predictions (-10.5 to +5.8%
for Granny Smith and -14.2 to 16.0% for Golden Delicious
except in two cases where the values were -32.9%

and +39.9%). The mean errors (absolute values) of freezing
time estimations by this method were 47.6% and 11.7% for
Golden Delicious and 46.8% and 8.6% for Granny Smith
respectively under conditions of TC = -10°C (Ti = 16-

25°C or 1-7°C) and T_ = -18°C (T; = 16-25°C or 1-7%).
Thus the mean error for the two varieties in estimating
freezing time to reach -18°C was approximately 10% pre-
dominantly towards underestimation. This error could have
been caused probably by the partial skipping of the latent
heat peak or the incomplete release of latent heat at

-18°c. However, the phenomenal underestimatimation of
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about 45% in freezing time computation to reach -10°C was
obviously due to incomplete liberation of latent heat

at -10°C. The apparenf specific heat curve (Figure 4)
clearly shows that the release of latent heat is complete
only at temperatures below -25°C. Up to -10°C probably
one half of the latent heat was not accounted for, and
hence the underestimation of about 45%. This problem does
not arise in the finite difference scheme with constant
thermal properties because of the assumption made that the
entire latent heat was released within 5C° below the freezing
point (-IOC) or in the other prediction models where the
total latent heat was considered.

Further, for the conditions involving freezing
at an ambient temperature of -18°C (GD5, GD6, GS5 and
GS6), the numerical methods were not used because the
freezing times to reach -18°C would be become a very
large number. The method was also not useful for estima-
ting of freezing times when the ambilent temperature was
very low (liquid nitrogen freezing at —197°C).

Under conditions similar to those in which the
numerical methods were used, the suggested modifications
of Plank's model gave mean errors of 6.67% for Golden
Delicious and 6.2% for Granny Smith with a mean value of

6.46% for the two varieties pooled, which was much better
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than 10% for the numerical method with variable thermal
properties and 23.4% for the numerical method with con-

stant thermal properties.
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CONCLUSIONS

There has not been much published information
available on the thermo-physical properties of apples.

In this study, the temperature dependence of the thermo-
physical properties of two varieties of apples, Golden
Delicious and Granny Smith, have been investigated.

Detailed regression equations by the méthod of
least squares fitting to cover.the variations of thermal
conductivity, thermal diffusivity and apparent specific
heats with temperature have been presented. Density varia-
tions at four different temperatures are given. The
thermo-physical properties determined in this study have
been used to predict freezing times of apples under dif-
ferent conditions of freezing by using the various predic-
tion models available in the literature.

The predicted values of the freezing times by
the different models have been compared with the experi-
mental values of the freezing times and based on the predic-
tion error analysis, an equation which gives the least
error has been suggested.

Plank's model (1941) has been the basis for the
determination of freezing times of foods. However, this

model assumes that the material is initially at its

v
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freezing point and hence does not take into account the
precooling or tempering periods. Hence, this model results
in considerable underestimation of the freezing time when
used under the conditions of initial temperatures higher than
the freezing point and final temperatures below the zone

of maximum ice crystal formation (-1 to -SOC).

Over the years, many modifications have been
suggested to Plank's model to include the precooling and
tempering periods. All these modifications are based on
some empirical relationships used to accommodate the
deviations of the value predicted by Plank's model from
the experimental values. Most of these modifications
(Nagaoka et al., 1955; International Institute of
Refrigeration, 1972; Mellor, 1976; Levy, 1958) are aimed
at substituting the latent heat (L) in Plank's equation
by different proportions of the total amount of heat fo
be removed from the body in order to bring it down from
its initial temperature to the final temperature. The
present suggested modification also belongsto this
category. The simple fact that the performance of the
different models is so different under the different con-
ditions of freezing indicates that no such simple empiri-
cal modification can be used to cover all the practical
situations. Each of the suggested modifications to

Plank's equation must have been the optimum solution when
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used under the conditions tested by the respective authors.
Obviously, the differences in the behavior of the dif-
ferent models appear to be due to the fact that only the
properties of the frozen material (pz and kz) are used
even to consider the situations where the product is ini-
tially at temperatures much higher the freezing point.
A model which accounts for all the three distinct phaées
precooling, phase change and tempering periods, on the
merits of the thermal properties of these phases should
be the ideal one.

After extensive research on a model system
as well as food materials under various conditions of
freezing, Cleland and Earle (1977, 1979a, 1979b) suggested
modifying the values of P and R on the basis of three
dimensionless quantities, Biot Number, Plank's Number
and Stefan's Number and using the total quantity of heat
to be removed over the entire range of temperature
instead of L. Even in this model the structure is essen-
tially based on the thermal properties of the frozen
material. Hence, it cannot be an ideal one. This model
when used under the conditions menpioned in this
investigation resulted in about 20-30% overestimation in
most cases and as high as 100-150% when used to

predict the freezing times in liquid nitrogen freezing at
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- 197°%. The Stefan's Number under the conditions of liquid
nitrogen freezing was very large (close to 1.0) and the
accuracy of the model has not been verified by the authors
(Cleland and Earle, 1979b) to cover this condition.

The numerical methods have the versatility of
accommodating any kind of boundary condition as well as
variations in the thermal properties of the product. By
identifying the nature of the problem these methods could
be easily modified to yield accurate freezing time esti-
mations. The major disadvantages of these methods are,
however, the absolute necessity of access to a computer,
time required to program the computer (packaged programs
are rarely available) and the need to have detailed
information on the variation of thermal properties with
temperature without which the accuracy of the method suffers.

In spite of the disédvantages discussed
earlier, the analytical models of Plank's type are very
useful because they are so simple and requires only a hand
calculator to do the job. The suggested modification
estimates the freezing times of apples in tinplate cans under
various conditions of freezing with errors less than 5%

beyond the experimental error.
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Appendix 1

Comparison between the experimental and predicted freezing times. Golden Delicious
COde FZ t tp l-: t[ E tNF E tNC l‘;} tM E‘.
W/m“K°) () (h)  (3)  (h) (%) (h) (5)  (h) 3)  (h) (%)
GD1 55.59 2.03 2.00 -1.1 2.68 +32.4 3.16 +55.8 2.95 +45.3 2.41 +18.9
55.59 2.33 2.00 -13.8 2.79 +19.8 3.28 +40.9 3.06 +31.6 2.41 +3.6
GD2 55.59 2.06 2.00 -2.5 2.68 +30.4 3.16 +53.5 2.95 +43.2 2.41 +17.1
55.59 2.33 2.00 -13.8 2.79 +19.8 3.28 +41.0 3.06 +31.6 2.41 +3.6
GD3 13.85 5.13 4.01 -21.7 5.36 +4.6 6.31 +23.1 5.89 +14.9 4.91 -4.1
13.85 5.57 4.01 -28.0 5.57 +0.1 6.56 +17.8 6.12 +10.0 4.91 -11.7
GD4 13.85 5.13 4.01 -21.7 5.36 +4.6 6.31 +23.1 5.89 +14.9 4.91 -4.1
13.85 5.63 4.01 -28.7 5.57 -1.0 6.56 +16.6 6.12 +8.8 4.91 -12.7
GD5 59.68 2.47 2.15 -12.6 2.88 +16.8 3.39 +37.5 3.17 +28.3 2.57 +4.4
59.68 2.93 2.15 -26.4 2.99 +2.3 3.52 +20.4 3.29 +12.4 2.57 -12.0
GD6 59.68 2.27 2.15 -4.,9 2.88 +27.1 3.39 +49.6 3.17 +39.6 2.57 +13.6
59.68 2.93 2.15 -26.4 2.99 +2.3 3.52 +20.4 3.29 +12.4 2.57 -12.0
GD7 17.83 5.25 4.23 -19.2 5.77 +10.0 6.89 +31.3 6.39 +21.8 5.16 ~-1.7
17.83 6.08 4.23 -30.3 5.99 -1.4 7.15 +17.7 6.64 +9.2 5.16 -15.1
GD8 17.83 5.47 4.23 -22.5 5.77 +5.6 6.89 +26.0 6.39 +16.9 5.16 -5.6
17.83 6.25 4.23 -32.2 5.99 -4.0 7.15 +14.5 6.64 +6.2 5.16 -17.4
GD9 68.42 0.242 0.172 -28.6 0.228 -5.4 0.267 +10.5 0.250 +3.4 0.308+27.3
68.42 0.250 0.172 -30.9 0.237 -4.9 0.278 +11.2 0.260 +4.1 0.308 +23.3
GD10 68.42 0.230 0.172 -24:9 0.228 =-0.5 0.267 +16.3 0.250 +8.8 0.308+34.0
68.42 0.230 0.172 -24.9 0.237 +3.4 0.278 +20.9 0.260 +13.1 0.308+34.0
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Code h t t i t E t E t E t E
2,0 P I ; NC M
(W/m“K®) ) (h) (%) (h) (% (h§r (%) (h) (%) (h) (%)
GD31 55.59 3.60 2.83 -21.3 3.11 -13.5 3.18 -11.4 3.15 12.3
. . . . . . . -12. 3.08 -14.2
55.59 3.97 2.83% -28.6 3.25 -17.9 3.33 -15.9 3.30 -16.8 3.08 -22.3
GD32 17.83 5.97 5.10 -14.4 5.54 -7.0 5.64 5.5 5.59
. . . . . -5. . -6.2 5.58 -6.4
17.83 6.06 5.10 -15.7 5.81 -4.1 5.90 -2.5 5.86 -3.2 5.58 -7.9
GD33 68.42 0.310 0.273 -11.7 0.300 -3.0 0.308 -0.6 0.304
. . . . . . -1.6 0.457 +47.5
68.42 0.340 0.273 -19.5 0.314 -7.4 0.322 =-5.1 0.319 -6.1 0.457 +34.6
1 First line under each code refers to freezing time to reach -10°C
2 Second line under each code refers to freezing time to reach -18°C
3 t, represents experimental value of freezing time
4 tp = value predicted by Plank's equation (Plank, 1941)
5 ty = value predicted by a modified Plank's equation
(International Institute of Refrigeration (1972))
6 tyg and INC Nagaoka et al. modification (1955)of Plank's equation
7 tM, Mellor (1976) modification
8 E is the.prediction error based on experimental value.
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Appendix 2

Comparison between experimental and predicted freezing times. Granny Smith
Code h, t, tp E tg E tyg E tye  E ty E
Gmike) ¢S @ ® w & @y ® w8
GS1 55.59 2.20 1.92 -12.7 2.63 +19.7 3.17 +44.2 2.93 +33.3 2.34 +6.5
55.59 2.4% 1.92 -21.0 2.72 +11.9 3.28 +34.9 3.03 +24.7 2.34 -3.5
GS2 55.59 2.10 1.92 -8.5 2.63 +25.3 3.71 +51.1 2.93 +24.7 2.34 +11.6
55.59 2.33 1.92 -17.6 2.72 +16.7 3.28 +40.7 3.03 +30.0 2.34 +0.6
GS3 13.85 4.70 3.89 -17.0 5.34 +13.8 6.44 +37.1 5.95 +26.7 4.82 +2.7
13.85 5.20 3.89 -25.0 5.52 +6.2 6.65 +28.0 6.15 +18.3 4.82 -7.1
GS4 13.85 4.67 3.89 -16.5 5.34 +14.4 6.44 +37.9 5.95 +27.4 4.82 +3.3
13.85 5.17 3.89 -24.6 5.52 +6.8 6.65 +28.7 6.15 +18.9 4.82 -6.7
GS5 59.68 2.30 2.28 -0.5 3.09 +34.5 3.69 +60.5 3.42 +48.9 2.74 +19.3
59.68 2.93 2.28 -21.9 3.19 +9.2 3.81 +30.2 3.54 +20.9 2.74 -6.3
GS6 59.68 2.37 2.28 3.4 3.09 +30.5 3.69 +55.7 3.42 +44.5 2.74 +15.8
59.68 2.97 2.28 -22.9 3.19 +7.7 3.81 +28.5 3.54 +19 2.74 -7.6
GS7 17.83 5.30 4.30 -18.7 §5.84 +10.3 6.99 +32.0 6.48 +22.4 5.21 ~-1.6
17.83 6.43 4.30 -33.1 6.04 -6.0 7.23 +12.5 6.70 +4.3 5.21 -18.9
GS8 17.83 4.80 4.30 -10.3 5.84 +21.8 6.99 +45.8 6.84 +35.1 5.21 +8.6
17.83 5.93 4.30 -27.4 6.04 +1.9 7.23 +22.0 6.700 +13.1 5.21 -12.0
GS9 68.42 0.215 0.184 -14.2 0.250 +16.4 0.300 +39.3 0.277 +29.1 0.317 +47.8
68.42 0.222 0.184 -17.0 0.258 +16.6 0.309 +39.5 0.286 +29.3 0.317 +43.2
w
GS10 68.42 0.260 0.184 -29.1 0.250 -3.7 0.300 +15.2 0.277 +6.8 0.317+22.2 °
68.42 0.272 0.184 -32.3 0.258 -4.9 0.309 +13.8 0.286 +5.5 0.317 +16.9
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— 2 . E t E
Code h t tp E t E t E e B Mo
w/mike) B w3 WF w8
GS31 55.59 3.73 3.03 -18.6 3.31 -11.3 3.39 -9.0 3.35 -10.0 3.27 -12.1
55.59 4.20 3.03 -27.7 3.44 -17.9 3.53 ~-15.9 3.49 -16.8 3.27 -21.9
GS32 17.83 6.17 5.23 -15.1 5.77 -6.4 5.96 -3.3 5.88 -4.7 5.73 -7.0
17.83 2.10 5.23 -26.3 6.01 -15.3 6.21 -12.5 6.12 -13.7 5.73 -19.2
GS33 68.42 0.330 0.295 -10.4 0.322 -2.2 0.330 +0.2 0.327 -0.9 0.470+42.6
68.42 0.362 0.295 -18.3 0.336 -7.2 0.344 -4.9 0.340 -5.9 0.470 +30.0
1 First line under each code refers to freezing time to reach -10°C
2 Second line under each code refers to freezing time to reach -18°C
3 t, represents experimental value of freezing time
4 tp = value predicted by Plank's equation (Plank, 1941)
5 ti = value predicted by a modified Plank's equation
(International Institute of Refrigeration (1972))
6 typ and tync, Nagaoka et al. modification (1955)of Plank's equation
7 tM, Mellor (1976) modification
8 E is the prediction error based on experimental value.
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Appendix 3 A computer program for predicting freezing times
‘ of foods with variable thermal properties in
cylindrical containers.

THIS PROGRAM CALCULATES THE FREEZING TIME IN FOODS IN
CYLINDRICAL CONTAINERS BASED DN VARYING THERMAL PROPERTIES

OO0

IMPLICIY REAL *8(A-H,0-Z)
DIMENSION T{100},XK{100),C{100)
500 READ(SvlyENO=16)RM1DR'RH01,RH02,HTC'TI.TF.TA,TM,TC.EV)T

1 FORMAT (F5.49F64512F5.1¢F5.295F5.14F3.1)
N=RM/DR+2
DO 10 I=1,N
T(1)=TI

10 CONTINUE
990 WRITE (6,2000) TIME,(T({I},1=14N)
2000 FORMAT(' TIME(HOURS)',20X,'TEMPERATURE C'+/15Xy

2° TT T2 T3 T4 T5%4 /23X,
3 ¥6 17 18 Y9 T10 T11 TC*
4///2XsFBeby5Xe5F8.14/23X,7FB.1)
XK(I)=3.,6%(0.367+0.00250%T1(1))
C(1)=3.40+0.0049%T(1])
DTH=(RHO1*C (1) *(DX3*%2))/(XK(1)%2.0)
K=ENDT/DTH
TIME=0.0
DO 19 J=14K

11 DO 15 I=1.N

XK(1)=3.6%(0.367+0.,00250%*T(1))
C(1)=3,4040.0049%T(1])
XN=XK{ 1) /{HTC*DR)

C
, IF {(T{I)=-TF) 204+20,12
P12 IF (I-1) 254254+30
30 IF (I-N) 204,40,40
c

25 T(1)=2%T(2)-T(1)+(TA-T(1L))*=(N=1)/ {XN*(N-2))
DTH=(RHOL1*C (1) *{DR&*2))/(XK(]1)*2.0)
IF(T(1).LT.TF) GOTOD 26
GO 10 15

26 T(1)=TF '
GO 1O 15

204 T(I)=(TCI+1)+TLI-1))/2.
TX=(T(I-1)-T{I+1))/(4.0%(N-1))
TOI)=TUI)+TX
TY=T(N-1)

IF(T(1).LT.TF) GOTO 27
GOTO 15

27 T(I1)=TF
GO 10 15

40 TIN)=(T(N-1)+4TY)/2.0
IF(T(N).LY.TF) GOTO 28
GOTO 15

28 T(N)=TF
GO0 70 15
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TZ2=TM=-T(1)

IF(TZ.57.0.0) GOTO 220
XK(1)=3.6%(1.066-0.0111*T(1))
C(11=2.65-1.421%T1])
XN=XK (1) /(HTC*DR )

IF(I-1) 125,125,130

IF (I-N) 304,140,140
T(1)=2.2T(2)=-T{1)+(TA-T(1)I*(N=-1)/I{XN®(N=-2))
DTH=(RHD2*C(I) *(DR*%2) )/ {XK(I)*2.0)
GO TD 15

TY(E)=(T(I+1)+47(1I-1))/2.0
TX={T{I-1)=-T{I+1))/ (4. 0%(N~-1))
TUII=TUI)4TX

TY=T(N-1)

GO 70 15

TIN)=({TI(N-1)+TY)/2.0

GG 70 15

XK{I1)=3.6%(1.,066-0.0111%7(1))
C(1)=24.,40+0.7910%T( 1)
XN=XK(1)/(HTC*DR)

IF (1-1) 225,225,230

IF (I-N) 404,240,240
T{L)=2.2T{2)=-T(1)+{TA-TL{L))%(N=-1)/ (XN®(N=2))
DTH=(RHO2#C (1) *(DR%*2))/{XK{[)*2.0)
GO 70 15

TII)=(T(1+1)+T7(1-1))/2.0
TX=(T(I-1)=-T(I+1))/ (4. 0%({N-1))
TOI)=T(I)+TX

TY=T{N-1)

GO 70 15

TINY={(T(N-1)+TY) /2.0

CONTINUE

IF (T(N)-TC) 500,85,85
TIME=TIME+DTH

WRITE (6,2001) TIME,(T(I),I=14N)
FORMAY (2X,FB.445X,5F8.1/23X,7F8.1)
CONTINUE

SToP

END

RM=RADIUS, DR=RADIUS INCREMENT, RHO1=DENSITY OF UNFROZEN MATERIAL
RHD2==DENSITY OF FROZEN MATERIAL, HTC=HEAT TRANSFER COEFFICIENT,
TI=INITIAL TEMPERATURE, TF=FREEZING POINT,TA=AMBIENT TEMPERATURE,
TM=INTERMEDIATE TEMPERATURE, TC=TARGET TEMPERATURE, ENDT=TIME
LIMIT, DTH=TIME I, XK(I) AND C(I) ARE TEMPERATURE FUNCTIOJNS 3JF
THERMAL CONDUCTIVITY AND APPARENT SPECIFIC HcAT
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Appendix 4 Schematic diagram of the sections of a
cylinder for a finite difference scheme.

Center line

Centre; m =0

Surface; m = M

Interior; M > m > 0



