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ABSTRACT 

The study of phosphate i n f l u x i n roots of i n t a c t b a r l e y 

(Hordeum vulgare L. var. Bonanza) revealed the presence of two 

d i s t i n c t r e g u l a t o r y processes f o r phosphate absorption. 

One of these processes, which was e l i c i t e d i n response 

to phosphate d e p r i v a t i o n , i n the form of enhanced phosphate 

uptake, became evident between 11 and 13 days a f t e r germination. 

At 16 days the "uptake ra t e s of these p l a n t s had reached a maxi­

mum value at 2.43umol/g.f.wt./hour which compared to a value of 

0.39umol/g.f.wt./hour f o r phosphate s u f f i c i e n t p l a n t s . Simul­

taneously, d i f f e r e n c e s between the r e s p e c t i v e treatments were 

a l s o noted i n growth ra t e s and phosphate pools. 

A second r e g u l a t o r y process brought about a r a p i d 

r e d u c t i o n of phosphate i n f l u x upon the p r o v i s i o n of orthophosphate 

to p l a n t s p r e v i o u s l y starved of phosphate during the phase of 

enhanced uptake. W i t h i n hours of supplying i n o r g a n i c phosphate 

to these p l a n t s i n f l u x was reduced by greater than 50% and during 

t h i s p e r i o d i n f l u x values were l i n e a r l y c o r r e l a t e d w i t h root 

orthophosphate concentrations. The time s c a l e of t h i s second 

response i s suggestive of an a l l o s t e r i c i n h i b i t i o n of i n f l u x by 

i n t e r n a l orthophosphate l e v e l s . 

Both r e g u l a t o r y systems s t u d i e d represented p h y s i o l o g i c a l 

adaptations which would b e t t e r enable p l a n t s , under f i e l d c o n d i t i o n s , 



i i 

to o b t a i n a s u f f i c i e n t phosphate supply. Severe phosphorus 

.dep.riyatipn e v e n t u a l l y r e s u l t e d i n a morphological response such 

as the production of longer, narrower roots providing, the p l a n t s 

a greater surface area, presumably f o r greater phosphate absorption. 

At a l a t e r time, an increased formation of r o o t - h a i r s r e s u l t e d i n 

even greater surface area m o d i f i c a t i o n . 
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I . INTRODUCTION 

There i s now considerable evidence to suggest that the 

a c t i v e or energy dependent uptake of d i s t i n c t i n o r g a n i c ions by the 

roots of higher p l a n t s , i s subject to independent negative feedback 

c o n t r o l (Cram, 1976). This c o n t r o l i s thought to be e l i c i t e d i n 

response to changes of the i n t e r n a l c oncentration of the p a r t i c u ­

l a r n u t r i e n t , which u l t i m a t e l y exerts c o n t r o l over the root uptake 

process. 

The i n v e s t i g a t i o n of the mechanism un d e r l y i n g the c o n t r o l 

of uptake would appear, a p r i o r i , to be more complicated i n the cases 
2- -of metabolized i o n s , such as SO. , N0„ , H„PO. , e t c . , by v i r t u e 4 3 2 4 

of the d i v e r s i t y of the end products of t h e i r metabolism. This may 

consequently account f o r the more extensive i n v e s t i g a t i o n s of t h i s 

aspect of uptake of non-metabolized i o n s . Thus, feedback c o n t r o l 

mechanisms have been proposed f o r potassium (Humphries, 1951; Johansen 

e t . a l . , 1970; Young e t . a l . , 1970; Glass, 1976; Jensen and P e t t e r s s o n , 

1978), N a + (Pitman e t . a l . , 1968), C l " (Cram, 1968; 1973; Mott and 

Steward, 1972), and B r " ( S u t c l i f f e , 1954; Cseh e t . a l . , 1970). I n 

the case of an i o n which i s metabolized, c o n t r o l of i n f l u x might 

be achieved v i a concentrations of the i o n i t s e l f or one of i t s 

metabolic products. S u l f a t e uptake f o r example, has been shown to be 

reduced by p r i o r feeding w i t h the s u l f u r - c o n t a i n i n g amino acids 
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cysteine and methionine (Hart and F i l n e r , 1969; F e r r a r i and 

Renosto, 1972; Cram, 1976). S i m i l a r r e s u l t s have been obtained f o r 

the i n f l u e n c e of NH^ + and amino acids upon n i t r a t e uptake (Heimer 

and F i l n e r , 1970). 

P l a n t s grown i n low phosphorus regimes c o n s i s t e n t l y 

d i s p l a y e l e v a t e d r a t e s of phosphate uptake (Humphries, 1951; Bowen, 

1970; Barber, 1972; Cartw r i g h t , 1972; Clarkson e t . a l . , 1978) and 

a n a l y s i s of t o t a l phosphate concentrations i n these p l a n t s reveals 

that i n f l u x and phosphate content are n e g a t i v e l y c o r r e l a t e d 

(Barber, 1972; Clarkson e t . a l . , 1978). 

L i v i n g organisms might be imagined to possess long- and 

short-term mechanisms by which they are able to modify t h e i r r a t e s 

of i o n uptake through biomembranes. The " c a r r i e r " systems r e s p o n s i b l e 

f o r t r a n s p o r t a c r o s s ' n a t u r a l membranes are thought to be composed 

of p r o t e i n molecules ( M i t c h e l l , 1967). On a long-term b a s i s " c a r r i e r " 

degradation or sy n t h e s i s could e f f e c t changes of tr a n s p o r t r a t e s . 

A much more r a p i d , d i r e c t enzymatic c o n t r o l mechanism could be 

e l i c i t e d by a l l o s t e r i c c o n t r o l of " c a r r i e r " a c t i v i t y or energy supply 

f o r the s p e c i f i c t r a n s p o r t phenomenon i n question. F l u c t u a t i o n of 

n u t r i e n t l e v e l s w i t h i n p l a n t s could act as the s i g n a l f o r n u t r i e n t 

uptake r e g u l a t i o n through the mechanisms described above. The present 

study i s d i r e c t e d toward a b e t t e r understanding of the s i g n a l s and 

mechanisms which govern phosphate uptake i n b a r l e y (Hordeum vulgare 

(L.) c v . Bonanza) . 
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I n higher p l a n t s i n t e r n a l orthophosphate concentration 

i s much more s u s c e p t i b l e to f l u c t u a t i o n s i n phosphorus supply 

than the organic phosphorus concentration ( B i e l e s k i , 1968; Nassery, 

1971). Because of the f l e x i b i l i t y of the i n o r g a n i c phosphate 

l e v e l i t s absolute magnitude w i t h i n p l a n t c e l l s represents a good 

candidate f o r e f f e c t i v e r e g u l a t i o n of phosphate uptake. With 

t h i s i n mind the a n a l y s i s of i n o r g a n i c and organic phosphate 

l e v e l s w i t h i n the pla n t was conducted simultaneously w i t h measure­

ments of phosphate uptake rates under d i f f e r e n t e x t e r n a l phosphate 

regimes. The p l a n t chosen f o r t h i s study, namely b a r l e y , i s one 

of economic value and r e p r e s e n t a t i v e of the c e r e a l crop p l a n t s 

r a i s e d i n Canada. 
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I I . METHODS 

1. Hydroponic P l a n t Growth 

A. Seeds 

Seeds of b a r l e y (llordeum vulgare (L.) c v . Bonanza) 

purchased from B u c k e r f i e l d s , Vancouver, were surface s t e r i l i z e d 

f o r ten minutes i n 1% h y p o c h l o r i t e and a f t e r s e v e r a l washings 

w i t h d i s t i l l e d water were germinated i n sand at 27±2C. 

B. Choice of Phosphate Levels and Growth Regimes 

Many workers i n previous s t u d i e s have employed phosphate 

l e v e l s which were u n n a t u r a l l y high (Cartwright, 1972; Clarkson e t . 

a l . , 1978; B i e l e s k i , 1968; Barber, 1967). I t was considered worth­

w h i l e i n the present study to use phosphorus l e v e l s which were more 

re p r e s e n t a t i v e of s o i l s o l u t i o n phosphorus concentrations ( B i e l e s k i , 

1973). These c r i t e r i a are met by a 15uM orthophosphate l e v e l i n 

hydroponic media. P l a n t s were th e r e f o r e grown i n e i t h e r f u l l 

n u t r i e n t s o l u t i o n (+P) or n u t r i e n t s o l u t i o n i n which no phosphorus 

was s u p p l i e d (-P, see Table 1). Because of the la r g e volume of 

c i r c u l a t e d growth medium i t was necessary to monitor and top up 

phosphate l e v e l s to 15yM only twice d a i l y . Both +P and -P growth 

media were replaced i n f u l l every four days. P l a n t s were grown i n 

an environmental regime which co n s i s t e d of 16h days at 27±2C and 
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-2 i r r a d i a n c e of 3.0 mW cm , and 8h n i g h t s at 19±2C. 
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Table 1. Composition of hydroponic growth media 

- Concentrations are uMolar 

-P 111.2 KNO„ 0.11 MnSO..H„0 3 4 2 
83.3 Mg(N0 3) 2 0.11 ZnS0 4.7H 20 

27.8 MgS0 4 0.03 CuS0 4.5H 20 

55.6 C a ( N 0 3 ) 2 0.03 H 2Mo0 4 

2.7 KC1 0.11 FeEDTA 

1.4 H 3B0 3 

Buffered to pH 6.25 w i t h lOuM N a 3 C i t r a t e : C i t r i c A c i d 

+P as -P plus 

5.0 Na 2HP0 

10.0 NaH„P0 
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2. Determination of Phosphate I n f l u x Method 

A. Root Wash P e r i o d 

The c e l l w a l l or f r e e space of p l a n t c e l l s contain sub­

s t a n t i a l i o n r e s e r v o i r s which possess h a l f - l i v e s f o r i o n exchange 

of the order of 1-3 min (Walker and Pitman, 1976; Cram, 1973; 

Dainty and Hope, 1959). P r i o r to i n f l u x experiments of r e l a t i v e l y 

short d u r a t i o n , designed to estimate i n i t i a l plasmalemma f l u x e s , 

i t i s necessary th e r e f o r e to standardize the c e l l w a l l phosphate 

st a t u s of roots grown i n d i f f e r i n g phosphate regimes. Otherwise 

the p o s s i b l e t r a n s f e r of phosphorus w i t h i n the root free space to 

the uptake s o l u t i o n would change the s p e c i f i c a c t i v i t y of phosphate 

i n the uptake s o l u t i o n and introduce u n c e r t a i n t y to the c a l c u l a t e d 

f l u x . 
32 

By loading the root w i t h 15uM P - l a b e l l e d orthophosphate 

and subsequently t r a n s f e r r i n g these roots to n o n - l a b e l l e d 15uM ortho­

phosphate a measure of the h a l f - l i f e of c e l l w a l l exchange can be 
32 

made. This was done by measuring release of P to the n o n - l a b e l l e d 

wash medium at i n t e r v a l s of time up to 30 min a f t e r t r a n s f e r . The 

estimated value of the h a l f - l i f e f o r c e l l w a l l i o n exchange can 

be used to determine the appropriate d u r a t i o n of the s t a n d a r d i z i n g 

prewash. 

To o b t a i n an estimate of plasmalemma i n f l u x i t i s necessary 

to d i s t i n g u i s h the a c t i v e uptake from passive adsorption i n the c e l l 
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w a l l . The h a l f - l i f e f o r c e l l w a l l exchange can be used here to 

obt a i n the necessary s e p a r a t i o n . 

B. Phosphate I n f l u x 

Rates of orthophosphate uptake were determined a f t e r a 

5 min prewash i n 50yM CaSO^ at 30C. The uptake s o l u t i o n was 
32 

i d e n t i c a l to the +P growth medium w i t h P - l a b e l l e d orthophosphoric 

a c i d and/or RbCl,, added. E i t h e r 10 min (short-term) or 24h (long„ 

term) uptake periods were used. I n a l l but one experiment the 

uptake s o l u t i o n was v i g o r o u s l y s t i r r e d and aerated. Uptakes were 

performed at 30C i n s o l u t i o n volumes (1.6 1) where n u t r i e n t deple­

t i o n was n e g l i g i b l e . The uptake p e r i o d was followed immediately 

by a 5 min desorption p e r i o d i n c o l d +P s o l u t i o n at 4C. Thereafter 

p l a n t samples were spun i n a basket c e n t r i f u g e to remove e x t r a ­

neous water. These samples were weighed"into glass v i a l s to o b t a i n 

f r e s h weights and f i n a l l y ashed at 500C. The r e s u l t a n t ashed samples 

were d i s s o l v e d i n 10 ml d i s t i l l e d Ĥ O and t h e i r r a d i o a c t i v i t y was 

determined by Cerenkov counting ( L a u c h l i , 1969; G l a s s , 1978a) w i t h 

an Isocap/300 l i q u i d s c i n t i l l a t i o n counter. 
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3. E f f l u x A n a l y s i s 

E f f l u x determination was performed a f t e r feeding p l a n t s 
32 

i n a constant P/P +P n u t r i e n t s o l u t i o n f o r f i v e days. These 
pl a n t s were then placed i n n o n - l a b e l l e d +P s o l u t i o n s at 30C and 

_2 

an i r r a d i a n c e l e v e l of 3.0 mW cm . I n order to estimate e f f l u x 

uncomplicated by p l a n t r e a b s o r p t i o n of i s o t o p e , standard procedure 

i s to r e p l a c e the e f f l u x medium w i t h f r e s h n o n - l a b e l l e d s o l u t i o n 

at r e g u l a r i n t e r v a l s . By t h i s methodology i s o t o p i c f l u x from the 

medium back to the cytoplasm i s presumed to be zero. At the end 

of the e f f l u x a n a l y s i s t o t a l phosphate content as w e l l as i s o t o p i c 

content remaining i n the root t i s s u e , was determined. This 

enabled subsequent c a l c u l a t i o n s of the p a t t e r n of e f f l u x according 

to standard methodology (Walker and Pitman, 1976). 
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4. Determination of the P l a n t s ' Phosphate Concentrations 

A. T o t a l Phosphate Concentrations 

Fresh root and shoot samples were weighed, ashed, 

d i s s o l v e d i n 10ml d i s t i l l e d water, and assayed f o r t o t a l phosphorus 

by the method of E i b l and Lands (1969). Values expressed through­

out the text are i n umol/g.f.wt. 

B. Inorganic Phosphate Concentrations 

Inorganic phosphorus pools of both shoots and roots were 

obtained by a v a r i a t i o n of the method of Daley and Vines (1977). 

Samples were plunged i n t o b o i l i n g water f o r two min, then were 

r a p i d l y f r o z e n , thawed, and placed i n b o i l i n g baths f o r 5 min, 

twice i n succession. Using samples of glucose-6-P and ATP, i t was 

e s t a b l i s h e d that t h i s method,as claimed by H u l e t t (1970), caused 

no h y d r o l y s i s of organic P bonds. 
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5. Double L a b e l l e d Uptake Determination 
32 86 

P and Rb were used simultaneously to determine 

phosphate and potassium i n f l u x e s ( L a u c h l i and E p s t e i n , 19 70) 

r e s p e c t i v e l y . The s e p a r a t i o n of these isotopes was obtained by 

anion-exchange chromatography of the ashed samples. Dowex-lx8-100 

was primed i n one hundred times i t s volume of 5M NaOH. 2 ml Pasteur 

p i p e t t e columns were then poured and washed three times w i t h deionized 

water. 2 ml of wet Dowex-lx8-100 r e s i n has an exchange c a p a c i t y of 

2.8 m i l l i - a q u i y a l e n t s . By the means described i n Table 2 a s u i t a b l e 
regime was defined f o r use on b i o l o g i c a l samples. The s e p a r a t i o n 

86 32 

of Rb and P by t h i s method was e q u a l l y e f f e c t i v e whether these 

isotopes were present i n ca r r i e r s - f r e e s o l u t i o n s or i n s o l u t i o n s 

more r e p r e s e n t a t i v e of the n a t u r a l d i s t r i b u t i o n of potassium and 

phosphate. Samples were counted before and a f t e r exposure to 
86 32 

the defined regime. I n i t i a l counts gave estimates of Rb + P 
a c t i v i t y . Counting of the e l u a t e obtained a f t e r anion-exchange 86 32 chromatography gave Rb a c t i v i t y . P counts were obtained by sub-

86 32 

t r a c t i n g the l a t t e r a c t i v i t y from the combined Rb + P r a d i o ­

a c t i v i t y . 
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Table 2. Determination of regime required f o r e l u t i o n of a l l 
86 32 

Rb and r e t e n t i o n of a l l P from anion-exchange columns. 10 ml 

of s o l u t i o n s shown (A to F) were a p p l i e d to the columns and 

elu a t e c o l l e c t e d 1. without f u r t h e r column washing. 2. a f t e r 

e l u t i o n w i t h 10 ml H^O. 3. a f t e r e l u t i o n w i t h a f u r t h e r 10 ml 

of H 20. 

E f f i c i e n c y of e l u t i o n of Kb or P expressed as % 

of known counts a p p l i e d to column 

8 6Rb 

Treatment A. C a r r i e r - f r e e B. +0.1M K C. +0.1MK+ 3 2 P + 2.0mM P 

1. 75.5 80.7 81.6 

2. 24.0 20.3 18.4 

3. 0.5 n i l n i l 

32 ' 

D. C a r r i e r - f r e e E. +2.0mM P F. +2.0mM P + 8 6Rb + 0.1M K 

1. n i l n i l n i l 

2. n i l n i l n i l 

3. n i l n i l n i l 
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6. Determination of Root E x t e r n a l P r o t e i n 

The e o s i n p r o t e i n s t a i n i n g technique of W i l l i a m s 

(1962) was used to determine root e x t e r n a l p r o t e i n . The procedure 

i s presented i n Table 3. 
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Table 3. Eo s i n s t a i n i n g technique 

Treatment Duration (min) 

1. Weighing of root samples 

2. 2 d i s t i l l e d water r i n s e s 

3. 0.1 N HC1 1.0 

4. 5 d i s t i l l e d water r i n s e s 

5. 0.2% e o s i n 0.5 

6. 5 d i s t i l l e d water r i n s e s 

7. 0.1 M KC1 + K0H (pH = 0.5 

13.0) 3 ml. volume 

8. O p t i c a l Density measure­

ment at 520 nm. 



I I I . RESULTS AND DISCUSSION 

1. E f f e c t of Phosphate L e v e l on Growth 

Fresh weights of b a r l e y p l a n t s were monitored, f o r a 20 

day growth p e r i o d (see Figure 9 ) . There were no d i f f e r e n c e s between 

+P and -P seedlings up to day 11 (a = 0.05), beyond which stage the 

f u l l y nourished p l a n t s e x h i b i t e d e x p o n e n t i a l growth rates w h i l e the 

phosphate starved p l a n t s increased t h e i r mass at a l i n e a r r a t e 

(Treatments s i g n i f i c a n t l y d i f f e r e n t at 12 days and o l d e r , a = 0.05, 

see Table 4 ) . By day 20 the r a t i o of +P to -P p l a n t weights was 

i n excess of two but no q u a l i t a t i v e morphological d i f f e r e n c e s were 

apparent between the treatments. The diameters of roots i n the +P 

and -P p l a n t s are shown i n Figures 1 to 8. Phosphate s t r e s s has 

been p r e v i o u s l y shown to r e s u l t i n decreased root diameters (Bowen 

e t . a l . , 1974). Increased r o o t - h a i r development became apparent i n 

-P roots only w e l l a f t e r day 20 (see Figures 7 and 8). 

Beyond day 13 -P p l a n t s demonstrated s t a t i s t i c a l l y s i g n i f i ­

cant (a = 0.05) root:shoot r a t i o increases (see Figure 10) when 

compared to +P p l a n t s . By day 20 f o r example, -P p l a n t s had favoured 

root growth to such an extent that the root:shoot r a t i o e q u a l l e d 2 

compared to 0.5 f o r +P p l a n t s . This p r e f e r e n t i a l growth enabled the 

-P p l a n t s to form almost as much root mass as the f u l l y nourished 

p l a n t s (Figure 11). I n the s o i l environment where phosphate supply 

may be l i m i t e d and d e p l e t i o n zones sharply l o c a l i z e d due to the 



- 16 -

Table 4. +P and -P growth equations 

A. +P ex p o n e n t i a l growth equation from day 5 to 20, 

y = 0 . 1 0 7 2 e 0 , 1 7 4 3 x , r = 0.9967 

B. -P l i n e a r growth equation from days 12 to 20. 

y = -1.1667 + 0.13983x, r = 0.9679 

y = p l a n t s i z e (g.f.wt./plant) 

x = age of p l a n t s (days) 
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r e l a t i v e i m m o b i l i t y of phosphate, increased surface area and s o i l 

e x p l o r a t i o n would be an adaptive advantage (Harley, 1969). 

Growth st u d i e s performed w i t h numerous species under 

various phosphorus regimes have shown p o s i t i v e c o r r e l a t i o n s between 

growth and P^ supply. The magnitude of growth response i s depen­

dent upon the species i n v o l v e d (Clarkson, 1967; P i g g o t t , 1971; 

Rorison, 1968; Asher and Loneragan, 1967; Bradshaw e t . a l . , 1960). 

Root to shoot r a t i o s o f t e n i n c r e a s e i n p l a n t s grown i n low phosphate 

environments (Hackett, 1968; Asher and -Loneragan, 1967), but t h i s 

i s not always the case (Troughton, 1977). Increased root growth, 

however, might have occurred i f Troughton had used lower l e v e l s 

of phosphorus (Bradshaw e t . a l . , 1960). The root:shoot r a t i o s of 

a number of grasses grown at d i f f e r e n t P - l e v e l s are comparable to 

the b a r l e y data obtained (Figure 10). Because r o o t - h a i r formation 

i s retarded i n hydroponic c u l t u r e (Bole, 1973) , i t i s of p a r t i c u l a r 

i n t e r e s t that r o o t - h a i r s were observed to develop under severe 

P - d e f i c i e n c y and only once has t h i s phenomenon been p r e v i o u s l y 

reported (Brewster e t . a l . , 1976). Root-hairs enable p l a n t s to 

increase t h e i r P-uptake from the s o i l environment where a v a i l a b l e 

phosphate i s s t r o n g l y l o c a l i z e d and d i f f u s i o n i s o f t e n l i m i t i n g 

the uptake process (Barley and R o v i r a , 1970). 
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Figure 1. 5 day o l d root t i p s (8 times l i f e - s i z e ) 

F igure 2. 10 day o l d root t i p s (8 times l i f e - s i z e ) 



Figure 4. 20 day o l d root t i p s (8 times l i f e - s i z e ) 
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Figure 5. 25 day o l d root t i p s (10 times l i f e - s i z e ) 

Figure 6. 30 day o l d root t i p s , +P above, -P below 
C26 times l i f e - s i z e ) 
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Figure 8. 40 day old -P root t i p (30 times l i f e - s i z e ) 
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Figure 9. P l a n t growth vs. age 
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Figure 10. Root: shoot r a t i o vs. p l a n t age 
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Figure 11. Growth of roots 
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2. C h a r a c t e r i z a t i o n of Phosphate I n f l u x 

A. Determination of Root Wash P e r i o d 
32 

The k i n e t i c s of P re l e a s e from roots exposed to l a b e l l e d 
medium f o r 10 min are shown i n Figure 12. Greater than 96% of 

32 

the rapidly-exchanging P f r a c t i o n had e f f l u x e d by 5 min. In 

subsequent experimentation t h e r e f o r e , a 5 min wash p e r i o d was 

adopted as standard procedure wherever i t was necessary to estimate 
32 

i n t r a c e l l u l a r , as opposed to e x t r a c e l l u l a r phosphate or P-phosphate 

content. 



Figure 12. E f f l u x of 32p f r o m R a p i d Exchange Phase 
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B. Temperature and pH Optimums. 

Transport of phosphate i n t o the symplasm from the e n v i r o n ­

ment i s probably an enzymatic process ( E p s t e i n , 1976) and the " c a r r i e r s " 

which c a t a l y z e v e c t o r i a l phenomena are the r e f o r e s u s c e p t i b l e to 

changes i n environmental temperature and pH. These p h y s i c a l para­

meters could f e a s i b l y a l t e r the r a t e of phosphate uptake by 

modifying the molecular c o n f i g u r a t i o n of s p e c i f i c enzymes or by an 

e f f e c t on the general energy metabolism i n t o t o (Boyer, 1970). The 

temperature at which b a r l e y roots express t h e i r optimum P-uptake 

rat e i s approximately 30C (see Figure 13). The optimum pH f o r 

phosphate uptake w i t h i n a reasonable s o i l range of 5.0 to 7.5 was 

6.25 (Fi g u r e 14). P l a n t s i n general p r e f e r e n t i a l l y absorb mono­

va l e n t ions over d i v a l e n t or t r i v a l e n t ions ( E p s t e i n , 19 76) and Hagen 

and Hopkins (1955) have hypothesized that phosphate uptake i s 

d i r e c t l y p r o p o r t i o n a l to the amount of monovalent orthophosphate 

present i n the medium as determined by medium pH. Although pH does 
2-

c o n t r o l H^PO^ :HP0^ r a t i o s , t h i s r e l a t i o n s h i p d i d not appear to 

be the only e f f e c t of pH upon orthophosphate uptake i n the present 

study. Dunlop and Bowling's (1978) study w i t h white c l o v e r i n d i ­

cated that pH may a f f e c t phosphate uptake i n ways other than i t s 

c o n t r o l on the absolute amount of a v a i l a b l e monovalent orthophosphate. 

A l l phosphate f l u x determinations were subsequently performed 

at 30C i n media b u f f e r e d to pH = 6.25 by 10uM N a ^ c i t r a t e and c i t r i c 

a c i d . 



- 28 -

Figure 14. pH Curve of Phosphate Uptake at 30C 
6.0 r 
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3. Phosphate E f f l u x K i n e t i c s 

The e f f l u x k i n e t i c s of w e l l nourished f i v e day o l d 

Bonanza b a r l e y p l a n t s are shown i n Figure 15. The data revealed 

a r a t h e r s t r a i g h t f o r w a r d s e p a r a t i o n i n t o three phases of e f f l u x . 

Considerations of the s i z e and the k i n e t i c constants of exchange 

f o r these phases have l e d workers to the conclusion that these 

phases represent a s e r i e s arrangement of the c e l l w a l l , cytoplasm, 

and vacuolar f r a c t i o n s (Walker and Pitman, 1976). Most work i n 

root i o n exchange p r e v i o u s l y p u b l i s h e d , however, has d e a l t w i t h 

non-metabolized ions such as K +, Na +, C l , e t c . (Cram, 1973; 

Walker and Pitman, 1976). A p r i o r i i t was a n t i c i p a t e d that the 

k i n e t i c s of phosphate e f f l u x would be complex. Not only would the 

P^ f r a c t i o n be expected to show the standard t r i p h a s i c p a t t e r n 

but organic f r a c t i o n s could be expected to overlay t h i s b a s i c form. 

By contrast the s t r i k i n g ' s i m i l a r i t y to p r e v i o u s l y reported 

k i n e t i c s l e a d to the c o n c l u s i o n that the observed k i n e t i c s d e s c r i b e 

the exchange of a s i n g l e P species - most probably i n o r g a n i c phos­

phate si n c e under the present c o n d i t i o n s of growth i t would represent 

the major P - f r a c t i o n . Furthermore the enzymatic r e a c t i o n s which 

would r e l e a s e l a b e l l e d orthophosphate from metabolized forms are 

probably not l i m i t i n g exchange. I f such re a c t i o n s were r e s t r i c t i n g 

e f f l u x the exchange process would almost c e r t a i n l y be much more 

complex. As such i t i s reasonable to b e l i e v e that the three phases 

represent c e l l w a l l , cytoplasmic and vacuolar exchange of P^. 
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C a l c u l a t i o n of the P-content of the f r a c t i o n w i t h the 

lowest exchange r a t e gave a maximum pool s i z e of 11.97ymol/g.f.wt. 

(see Figure 15). Although t h i s value i n c l u d e s non-exchanging 

components such as s t a b l e DNA ( B i e l e s k i , 1973), the m a j o r i t y of 

the exchanging phosphate probably a r i s e s from the vacuoles of 

c e l l s and the root xylem i f a comparison can be made, to non-

metabolized ions ( J e s c h k l e , 1973). This estimate i s e n t i r e l y 

c o n s i s t e n t w i t h the l i t e r a t u r e values which place vacuolar P - l e v e l s 

i n t h i s range ( B i e l e s k i , 1973). 

The second f a s t e s t exchanging phase has a magnitude of 

1.27ymol/g j f ,#wt. and an exchange h a l f - l i f e of approximately 45 min 

which i s comparable to the h a l f - l i f e of cytoplasmic exchange f o r 

other ions (Walker and Pitman, 1976). 

The f r e e space phase contained 2.38ymol/g,jf..wt. arid had 

a h a l f - l i f e of approximately 2 min which i s again s i m i l a r .to values 

obtained f o r other ions (Walker and Pitman, 1976). These data 

provide c o n f i r m a t i o n that a f i v e min wash pe r i o d i s s u f f i c i e n t to 
32 

release the bulk of f r e e space P, as w e l l as v a l i d a t i n g the use 

of a 10 min f l u x p e r i o d to estimate plasmalemma i n f l u x . 

These three phases are c o n s i s t e n t w i t h the b e l i e f that 

only a s i n g l e phosphate species i s being exchanged and that compart-

mental b a r r i e r s are the plasmalemma and tono p l a s t . The terms " p o o l " 

and "compartment" as defined by Oaks and B i d w e l l (1970) denote the 

s i t u a t i o n where d i f f e r e n t p o r t i o n s of a compound are m e t a b o l i c a l l y 
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Figure 15. T o t a l phosphate e f f l u x k i n e t i c s 
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i s o l a t e d from one another, whether or not t h i s i s due to t h e i r 

p h y s i c a l s e paration i n c e l l o r g a n e l l e s . Smith (1966) has shown that 

i n excess of 90% of the s o l u b l e phosphate-esters such as sugar-

phosphates are present i n the cytoplasm. The t e r m i n a l P-groups of 

ATP turn over w i t h a h a l f - l i f e of 2-20 sec and most P-esters have 

h a l f - l i v e s of l e s s than 30 min ( B i e l e s k i , 1968; Johnson and B l u f f , 

1967; Loughman, 1960; Weigl, 1963). I n a d d i t i o n i f as has been 

suggested, the greater p r o p o r t i o n of phosphate i s i n the form of 

orthophosphate, i t i s not unreasonable to assume that the magnitude 

of P-esters would not l i m i t the exchange of P_̂  at the membrane l e v e l . 

Very l i t t l e i s known about the turnover of P l i p i d s and RNA which 

cont a i n over 75% of the metabolized phosphate i n p l a n t s ( B i e l e s k i , 

19 73). Although the h a l f - l i v e s of these compounds may vary consider-
32 32 

abl y , i f the magnitude of P-ester to P. conversion i s many f o l d 
32 32 

higher than that of P - l i p i d s or P-RNA, then the l a t t e r ' s c o n t r i ­

b u t i o n t o the cytoplasmic exchange phase would be n e g l i g i b l e . DNA 
32 

i s not expected to c o n t r i b u t e any exchangable P. RNA and P - l i p i d 

turnover could be of importance i n the slowest exchange phase, 

however the la r g e vacuolar P^-content ( B i e l e s k i , 1973) would render 

t h i s u n l i k e l y . 

I t i s encouraging to observe e s s e n t i a l l y s i m i l a r p atterns 

of phosphate e f f l u x to those d e s c r i b i n g the e f f l u x of non-metabolized 

i o n s . The h a l f - l i f e of cytoplasmic exchange may be of importance i n 

short-term r e g u l a t i o n of phosphate uptake p a r t i c u l a r l y i n severely 
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P - d e f i c i e n t p l a n t s where the vacuole i s no longer able to supply P^ 

to the cytoplasm ( B i e l e s k i , 1968; Crossett and Loughman, 1966; 

Greenway and Klepper, 1968). 
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4. Enhancement of Phosphate Uptake Rate by Phosphate 

D e p r i v a t i o n 

A. Phosphate Uptake 

As f u l l y nourished b a r l e y seedlings aged t h e i r phosphate 

uptake ra t e s on a per gram f r e s h weight b a s i s d e c l i n e d . A s i m i l a r 

trend occurred i n -P grown p l a n t s u n t i l they were 12 days o l d (see 

Figure 16), at which time a r a p i d increase or enhancement of i n o r ­

ganic phosphate uptake was i n i t i a t e d i n the low P p l a n t s . By day 

16 the uptake r a t e of -P p l a n t s was 6.3 times that of +P p l a n t s , 

however w i t h i n two days a dramatic d e c l i n e became evident. 

P l a n t s exposed to low amounts of phosphate have o f t e n 

been shown to express enhanced uptake ra t e s (Barber, 1972; Cartwright, 

1972; Clarkson e t . a l . , 1978), however the phosphate l e v e l s employed 

p r e v i o u s l y were high i n comparison to t h i s study. Clarkson and h i s 

colleagues (1978), f o r example, s u p p l i e d b a r l e y p l a n t s w i t h 150uMe... 

phosphate f o r a p e r i o d of seven days before t r a n s f e r r i n g h i s -P 

p l a n t s to phosphate minus s o l u t i o n s . As such, uptake r a t e s obtained 

by these researchers were i n some instances an order of magnitude 

lower than the present r e s u l t s . 4-P p l a n t s i n the present s t u d i e s 

could almost be described as -P by comparison w i t h the former s t u d i e s . 

These r e s u l t s i n d i c a t e the extent of the r e g u l a t o r y response to 

P-status. The present choice of 15yM P, as p r e v i o u s l y s t a t e d , was an 

attempt to simulate more n a t u r a l s o i l c o n d i t i o n s . 
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Clarkson e t . a l . (1978) obtained four f o l d d i f f e r e n c e s 

i n uptake between P - d e f i c i e n t and f u l l y nourished treatments on a 

per gram f r e s h weight b a s i s . S i m i l a r l y Cartwright's (1972) work 

y i e l d e d a 2.5 f o l d i n c r e a s e i n the uptake ra t e of -P p l a n t s . 

When P^-uptake per pl a n t i s p l o t t e d (see Figure 17) 

s i m i l a r r a t e s are witnessed f o r +P and -P p l a n t s at younger ages, but 

at day 13 dramatic increases i n uptake a b i l i t i e s were i n i t i a t e d 

i n both treatments. On a per p l a n t b a s i s r e d u c t i o n i n uptake ra t e s 

as seen i n the per gram f r e s h weight p r e s e n t a t i o n ( a f t e r day 16) d i d 

not occur. Rather the rat e s reached a maximum value at day 16, 

which was sustained u n t i l the te r m i n a t i o n of the experiment at day 

20. Throughout the p e r i o d from day 16 to 20 the r a t i o of uptake 

rates (-P/+P) remained steady at 4. 

The response of b a r l e y p l a n t s to low phosphorus l e v e l s (-P) 

i n hydroponic c u l t u r e c l e a r l y shows t h e i r a b i l i t y to regulate 

phosphate uptake rates i n r e l a t i o n to phosphate s t a t u s . The enhance­

ment curve of the -P p l a n t s ' uptake r a t e s on a per gram f r e s h weight 

b a s i s can be d i v i d e d i n t o three regions; a l a g stage, an enhancement 

stage, and a d e c l i n e stage. The length of the l a g and r a p i d i t y of 

the enhancement stage might be dependent on the balance of n u t r i e n t 

s t o r e s w i t h i n the seeds used. Changes i n the phosphate uptake ra t e s 

can be a t t r i b u t e d to p h y s i o l o g i c a l p r o p e r t i e s of the p l a n t since the 

uptakes were performed under co n d i t i o n s where phosphate d i f f u s i o n 

was not l i m i t i n g the phosphorus supply to the roots ( P o l l e and Jenny, 

1971). 



FIGURE 17. Pj Uptake vs. Plant A g e 
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I t i s i n t e r e s t i n g to compare the d i f f e r e n c e s i n the time 

s c a l e of response i n t h i s experiment to those e x h i b i t e d by K-uptake 

rat e s i n b a r l e y i n response to K - d e p r i v a t i o n (Glass, 1975), I n 

the l a t t e r experiments t r a n s f e r of p l a n t s from K - s u f f i c i e n t to K-

minus s o l u t i o n s produced increased i n f l u x w i t h i n hours. This 

may be a t t r i b u t e d to the major osmotic f u n c t i o n of potassium. 

Enzyme a c t i v a t i o n requirements have been p o s t u l a t e d to be i n the 

range of 5-10uM, whereas osmotic requirements n e c e s s i t a t e up to 

100-200mM K. This l a r g e demand f o r K by contrast to the r e l a t i v e l y 

low l e v e l s of P required may account f o r the extreme responsiveness 

i n the c o n t r o l of K-uptake. The r a p i d i t y of r e g u l a t i o n i n the case 

of K has l e d to the proposal of an a l l o s t e r i c c o n t r o l ( G l a s s , 1976; 

Pe t t e r s s o n and Jensen, 1978). The time s c a l e of the P-response 

makes i t d i f f i c u l t to assess the importance of a l l o s t e r i c as opposed 

to t r a n s c r i p t i o n a l r e g u l a t i o n . 

On a per gram f r e s h weight b a s i s there was a d e c l i n e 

stage i n P-uptake r a t e s . This may be a t t r i b u t e d to a r a p i d d e c l i n e 

i n v i g o u r of the p l a n t s r e s u l t i n g from P - d e p r i v a t i o n although, at 

t h i s stage no obvious signs of P - d e f i c i e n c y , other than reduced 

growth by comparison to +P p l a n t s , were apparent. The mechanism 

i n v o l v i n g t h i s response might be e i t h e r p h y s i o l o g i c a l e.g. a 

te r m i n a t i o n of " c a r r i e r " s y n t h e s i s , e t c . , or morphological e.g. an 

increased r e l a t i v e root growth. Fresh weight a n a l y s i s i n d i c a t e s 

that the roots of -P p l a n t s were a c t i v e l y growing during that time 
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p e r i o d a f t e r P-uptake per p l a n t had reached i t s maximum l e v e l . This 

suggests that the vigour of the p l a n t was not s e v e r e l y retarded and 

that metabolic energy was a v a i l a b l e f o r numerous biochemical 

processes. I t i s u n l i k e l y that there would have been an energy 

l i m i t a t i o n upon the a c t i v e uptake processes and t h e r e f o r e the 

d e c l i n e i n P-uptake per gram f r e s h weight was probably the r e s u l t 

of a c e s s a t i o n i n net " c a r r i e r " s y n t h e s i s . 

On a per p l a n t b a s i s the l a g , enhancement, and l e v e l l i n g 

o f f stages are of i d e n t i c a l d u r a t i o n i n both +P and -P treatments. 

These simultaneous occurrences r e v e a l t h e i r developmental o r i g i n as 

d i s t i n c t and independent of the phosphorus s t a t u s . The magnitude 

of the enhancement of P-uptake, however, could be a t t r i b u t e d to a 

c r i t i c a l l e v e l of P^ and/or one or more of i t s numerous metabolites. 

Growth patterns already presented showed divergence between 

+P and -P grown p l a n t s at the p e r i o d between days 11 and 13 which i s 

concurrent w i t h the divergence i n phosphate uptake rates between 

the two treatments. Therefore the morphological responses revealed 

through d i s t i n c t growth patterns are p a r a l l e l e d by p h y s i o l o g i c a l 

d i f f e r e n c e s i n orthophosphate uptake. Although phosphate d e f i c i e n c y 

has o f t e n been shown to r e s u l t i n e l e v a t e d P-uptake rates (Humphries, 

1951; Barber, 1972; Cartwright, 1972; Bowen, 1970; Clarkson e t . a l . , 

1978), such simultaneous p h y s i o l o g i c a l and morphological e f f e c t s of 

phosphate s t a t u s have not been p r e v i o u s l y reported. 
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B. T o t a l Phosphate and Inorganic Phosphate Le v e l s w i t h i n 

the P l a n t s . 

A d e c l i n e i n t o t a l phosphate content of -P r o o t s on a per 

gram f r e s h weight b a s i s , as expected, d i d occur as the b a r l e y 

seedlings aged (Figure 18). Such a d e c l i n e was not evident i n the 

i n o r g a n i c phosphate p o o l (confidence l e v e l a = 0.05), although t h i s 

p ool represented but a small percentage of the t o t a l P. The shoots 

of P - d e f i c i e n t p l a n t s dropped i n phosphorus content by over one 

h a l f between days 11 and 12, and a subsequent steady d e c l i n e followed 

(see Figure 19). The i n o r g a n i c phosphorus amounts i n -P shoots a l s o 

dropped s i g n i f i c a n t l y (a = 0.05), but t h i s occurred between days 9 

and 11. 

The i n o r g a n i c phosphate content of -P roots remained 

constant w h i l e a steady d e c l i n e i n t o t a l phosphate was present through­

out the i n v e s t i g a t i o n p e r i o d . At as e a r l y as day 5 the P^-content 

was at i t s minimum l e v e l and s i n c e P. i s considered the most f l e x i b l e 
l 

of P-pools i n higher p l a n t s ( B i e l e s k i , 1973) i t i s not s u r p r i s i n g 

that the P . - l e v e l had reached a minimum before the d e c l i n e i n the 

root organic phosphate was evident. The subsequent d e c l i n e i n organic 

phosphate could be r e s p o n s i b l e f o r the enhancement of phosphate uptake, 

however i t i s impossible to d i s c e r n to what extent a l l o s t e r i c and 

t r a n s c r i p t i o n a l processes were i n v o l v e d . Obviously no a l l o s t e r i c 

c o n t r o l could be a t t r i b u t e d to the i n t e r n a l orthophosphate whose amount 

was e s s e n t i a l l y constant throughout the experiment. Discounting the 
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p o s s i b i l i t y of developmental uptake processes which, would be 

independent of the p l a n t s ' P'-status, the timing of the enhancement 

of phosphate uptake must of n e c e s s i t y be c o n t r o l l e d by the l e v e l s 

of one or more organic phosphates. Although p o s i t i v e c o r r e l a t i o n s 

between phosphate absorption and ATP l e v e l s have been reported i n 

h i g h e r ^ p l a n t s ( L i n and Hanson, 1974) negative c o r r e l a t i o n s between 

uptake and organic phosphate content of roots have not. On^fche 

other hand, as already discussed, there does appear to be a develop­

mental c o n t r o l over P-uptake and as such the absolute magnitude of a 

phosphate s p e c i e s , P^ i n c l u d e d , could govern the extent of P-uptake 

enhancement. 

The t o t a l amount of phosphorus per gram f r e s h weight 

decreased s l o w l y i n the roots of P - s u f f i c i e n t p l a n t s w h i l e a subse­

quent i n c r e a s e i n P^-content ensued (see Figure 20). T o t a l phosphate 

i n the +P shoots increased r a p i d l y between days 5 and 7, and then 

decreased g r a d u a l l y throughout the d u r a t i o n of the experiment (Figure 

20). A p o s s i b l e s i g n a l f o r the r e g u l a t i o n of P-uptake i s the 

dramatic 17 f o l d i n c r e a s e i n orthophosphate l e v e l s w i t h i n the +P 

shoots which occured between days 11 and 12. This was followed by 

a l e v e l l i n g o f f of the P^-concentration at approximately 8umol/g.f.wt. 

The l a c k of such a s h i f t i n phosphate pool composition could be the 

s i g n a l f o r increased P-uptake i n -P r o o t s . 

I n the present study, where a l l determinations of P-uptake 

were performed w i t h i n t a c t p l a n t s , the shoot's phosphate s t a t u s could 

e f f e c t change i n the r o o t s ' phosphate uptake r a t e s . -P shoots d i d 
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Figures 18 to 21 . P^ and t o t a l phosphorus of aging b a r l e y 
p l a n t s 
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show a large decrease i n t o t a l phosphorus at the time of i n i t i a t i o n 

of enhanced P-uptake (Days 11 and 12). There i s a l s o a drop i n 

these shoots' P_^-levels between days 9 and 11. These occurrences 

could t r i g g e r c o n t r o l through t r a n s l o c a t i o n of hormones from the 

shoot to the uptake organ. Several studies have shown that hormones 

ap p l i e d to t i s s u e s increase t h e i r i o n uptake ra t e s (Luttge and 

Higinbotham, 1979). Exc i s e d maize r o o t s , however, d i d not i n c r e a s e 
86 36 

i n Rb or C l uptake when auxin was a p p l i e d (van Steveninck, 1974), 
2-

and auxin induced only a 20% s t i m u l a t i o n of SO^ uptake i n beetroot 

s l i c e s ( N e i r i n c k x , 1968). P u r s u i t s i n the hormonal c o n t r o l of root 

P^-uptake, per se, have been neglected. 

Where hormones have been e x t e r n a l l y a p p l i e d to t i s s u e s 

i t i s not c l e a r whether increased i o n i n f l u x was the cause or 

the r e s u l t of increased growth r a t e s . -P p l a n t s demonstrated a 

p r e f e r e n t i a l root growth at the time of i n i t i a t i o n of increased 

P^-uptake r a t e s . However, the -P growth media contained no phosphate, 

and t h e r e f o r e increased growth could not be due to orthophosphate 

accumulation. P l a n t growth i s thought to be mediated through i n t e r ­

a c t i o n s between the major p l a n t hormones. Since growth i m p l i e s a 

greater demand f o r a l l n u t r i e n t s i n c l u d i n g i n o r g a n i c i o n s , i t i s not 

s u r p r i s i n g to f i n d that increased growth rates i n response to hormonal 

treatments are a s s o c i a t e d w i t h higher r a t e s of i n o r g a n i c i o n uptake. 

In t h i s manner, the hormonal i n f l u e n c e upon i o n absorption i s an 

i n d i r e c t , general e f f e c t p r o v i d i n g no opportunity f o r the c o n t r o l of 
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uptake of s p e c i f i c i o n s . Nevertheless on a short-term b a s i s there 

are c l e a r i n d i c a t i o n s that hormones such as IAA and ABA may i n f l u e n c e 

s p e c i f i c i o n tr a n s p o r t systems e.g. H + e x t r u s i o n ( C l e l a n d , 1973) and 
+ 86 32 K tr a n s p o r t i n t o guard c e l l s (van Steveninck, 1976). Rb and P 

d o u b l e - l a b e l l e d experiments performed at various p l a n t ages i n d i c a t e d 

complete independence of t h e i r i n f l u x (see Table 6) and i t would 

be d i f f i c u l t to a t t r i b u t e t h i s to the general hormonal e f f e c t s 

discussed. 

I n t h i s study the shoot was designated to comprise the 

seed and green t i s s u e of the s e e d l i n g . The r a t h e r l a r g e ortho­

phosphate pool which was suddenly formed i n the +P shoots i s more 

re p r e s e n t a t i v e of the P^ i n higher p l a n t s than are the l e v e l s witnessed 

at the younger b a r l e y ages ( B i e l e s k i , 1973). The breakdown of p h y t i n , 

s t a b l e orthophosphate uptake and t r a n s l o c a t i o n , and a net conversion 

of shoot organic-P could a l l c o n t r i b u t e to t h i s i n c r e a s e i n ortho­

phosphate con c e n t r a t i o n . Phosphate s t o r e d as p h y t i n could have 

broken down to r e l e a s e l a r g e amounts of phosphorus a v a i l a b l e f o r the 

photosynthesizing t i s s u e i n the t r a n s l o c a t e d form of orthophosphate 

(Morrison, 1965; Selvendran, 1970). C o r r e l a t i o n s between p h y t i n hydro­

l y s i s and P^ increases have been demonstrated i n seedlings starved 

f o r phosphorus (Mukherji e t . a l . , 1971; E r g l e and Guinn, 1959). The 

a c t i o n of phytase i s retarded when phosphate i s su p p l i e d to the 

seedlings ( B i a c h e t t i and S a r t i r a n a , 1967; S a r t i r a n a and B i a c h e t t i , 

1967) and although these s t u d i e s were terminated at 6 days growth, 
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p h y t i n l e v e l s d e c l i n e d g r a d u a l l y during t h i s p e r i o d u n t i l at the 

t e r m i n a t i o n of the study they were almost exhausted. Hence i t i s 

u n l i k e l y that a sudden breakdown of p h y t i n could have occurred at 

day 11 of the present study (Figure 21). P^ uptake from the 15uM P 

growth media could have accounted f o r approximately one t h i r d of 

the i n c r e a s e , i . e . i f a l l P_̂  taken up was t r a n s l o c a t e d unchanged to 

the leaves. Polyphosphates have been found i n r e l a t i v e l y low l e v e l s 

i n a few higher p l a n t s ( M i y a c h i , 1961; Nassery, 1969; Tewari and 

Singh, 1964; Vagabov and Kulaev, 1964) and t h e r e f o r e they could be 

only -a minor source f o r orthophosphate. Organic P sources are the 

best candidates f o r breakdown to supply the observed P ^ - l e v e l s i n 

the +P shoots beyond day 11. 

Expression of i n o r g a n i c and t o t a l phosphate l e v e l s on a 

per p l a n t b a s i s gives f u r t h e r i n s i g h t i n t o phosphorus n u t r i t i o n . 

Although the t o t a l phosphorus and i n o r g a n i c phosphate amounts w i t h i n 

the -P p l a n t s remained r e l a t i v e l y constant throughout the f i r s t 18 

days of growth, a drop i n t o t a l phosphorus which was not p a r a l l e l e d 

i n the i n o r g a n i c pool occurred between day 18 and 20 (see Figure 22). 

This i m p l i e s that phosphorus had e f f l u x e d i n t o the environment and 

t h i s may have been due to minor losses of plasmalemma i n t e g r i t y . 

I n d i r e c t evidence, r e c e n t l y put forward by Menge e t . a l . (1978), 

suggests that leakage of root m a t e r i a l s i n phosphorus d e f i c i e n t p l a n t s 

may be a p r e r e q u i s i t e f o r the i n i t i a t i o n of r o o t - m y c o r r h i z a l f u n g a l 

a s s o c i a t i o n s . The f a c t that the number of these a s s o c i a t i o n s i n a 
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given s o i l environment does c o r r e l a t e n e g a t i v e l y w i t h the a v a i l a b l e 

phosphate l e v e l may a l s o be ex p l a i n e d , however, by the reduced 

s u r v i v a l rates of m y c o r r h i z a l spores under hig h l e v e l s of P - a p p l i c a t i o n 

i n modern a g r i c u l t u r a l p r a c t i c e s .(Ducey, 1980). These rhizosphere 

a s s o c i a t i o n s , although apparently impossible to form i n hydroponic 

c u l t u r e are b e l i e v e d to be e s s e n t i a l f o r proper p l a n t phosphorus 

n u t r i t i o n i n low phosphorus s o i l s (Gerdemann, 1968). P l a n t phosphate 

compensation p o i n t s are o f t e n i n excess of 0.5uM ( B i e l e s k i , 1973) 

and could t h e r e f o r e account f o r some of the -P p l a n t s ' phosphate l o s s 

(-P medium was changed every 4 days). A r a p i d increase i n the 

l e v e l s of i n o r g a n i c phosphate occurred i n the +P treatment between 

days 11 and 12 (see Figure 23), which can be a t t r i b u t e d to the shoot 

phenomenon which has already been discussed at length. 

The increase i n phosphate i n f l u x i n both +P and -P p l a n t s 

on a per p l a n t b a s i s s t a r t e d and f i n i s h e d at the same time (see 

Figure 17). These phenomena per se cannot be a t t r i b u t e d to n u t r i t i o n a l 

s t a t u s and t h e r e f o r e appear to be developmental i n nature. Crop 

p l a n t s t u d i e s have i n d i c a t e d that t h e i r P as w e l l as N and K l e v e l s 

vary i n a manner which can be timed to d i s t i n c t morphological stages 

w i t h i n the p l a n t s ' development (Mengel, 1969; Mengel and K i r k b y , 

1978). I t th e r e f o r e f o l l o w s that the i n i t i a t i o n of elevat e d phosphate 

uptake i n the present study might a l s o be of a predetermined nature, 

however the extent of t h i s i n c r e a s e appears to be n e g a t i v e l y r e l a t e d 

to i n t e r n a l phosphorus l e v e l s . A p o s s i b l e candidate f o r the c o n t r o l 
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Figure 22. Phosphate concentration i n -P barl e y p l a n t s 
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of the extent of enhancement i s the concentration of the r o o t s ' 

i n t e r n a l orthophosphate or organic phosphate at the beginning and 

during the P - i n f l u x enhancement p e r i o d . The r a t i o s of P. (+P / ° i ro o t s / 
-P ) are 10.4 and 15.7 at days 11 and 16 r e s p e c t i v e l y ; the roots 
same r a t i o s f o r organic phosphate are 1.5 and 2.4. Clarkson e t . a l . 

(1978) obtained a +P/-P root t o t a l phosphorus r a t i o of 2.4 and a 

-P/+P i n f l u x r a t i o of 3.9. Because P^ i s much more f l e x i b l e i n 

magnitude than the organic phosphates i t could act as a more f i n e l y 

tuned r e g u l a t o r y s i g n a l f o r P-uptake i n r o o t s . 
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C. P h y s i o l o g i c a l C h a r a c t e r i s t i c s of Enhanced P-uptake. 

i . Uptake Isotherms 

The k i n e t i c p l o t s , e i t h e r Michaelis-Menten or Eadie-Hofstee 

(see Figures 24 and 25) i n d i c a t e that the phosphate uptake Vmax of 

-P p l a n t s had increased (-P Vmax = 1.25nmol/.g.f.wt./hour; +P Vmax = 

0.32umol/g.f.wt./hour), whereas there was no s i g n i f i c a n t (a = 0.05) 

increase i n the -P roots a f f i n i t y f o r phosphate, i . e . no s i g n i f i c a n t 

decrease i n the Km (-P Km = 2.37uM; +p Km = 3.00yM) of the phosphate 

uptake system occurred. 

The r a t i o of -P to +P V max's i s approximately 4 and the 

-P p l a n t s i n these isotherm experiments had not reached t o t a l P-uptake 

enhancement (see Figure 16). The high P-concentration used by 

many researchers (Nissen, 1973) and the m u l t i p h a s i c nature of 

the orthophosphate uptake isotherms (Barber, 1972; Nissen, 1973) 

make i t d i f f i c u l t to compare Km and Vmax val u e s . Because of the 

m u l t i p h a s i c uptake p a t t e r n i n p l a n t s , only n a t u r a l s o i l P-concentrations 

were used i n the present study f o r i n f l u x isotherm determinations. 

In t h i s n a t u r a l range ( c i r c a lOuM), F a r r a r (1976) working w i t h l i c h e n s 

obtained comparable Km and Vmax values to the -P t r e a t e d b a r l e y roots 

of t h i s study, whereas Carter and L a t h w e l l (1967) working w i t h corn 

found values s i m i l a r to the +P treatment. These workers' r e s u l t s 

can be a t t r i b u t e d to the phosphorus n u t r i t i o n of t h e i r experimental 

p l a n t s . Barber, using excised b a r l e y roots ( a n a l y s i s by Nissen, 1973) 



Figure 24., Orthophosphate uptake k i n e t i c s : Miehaelis-Menten p l o t 



Figure 25. Orthophosphate uptake k i n e t i c s : Eadie-Hofstee p l o t 
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obtained, i n phosphate d e f i c i e n t p l a n t s , approximately a 4 f o l d 

Vmax increase over that of w e l l nourished p l a n t s and h i s -P Km 

values were lower than i n h i s +P treatments, though as i n the 

present study the d i f f e r e n c e s of Km were not s t a t i s t i c a l l y s i g n i f i ­

cant. Cartwright (1972) a l s o showed an increase i n the a f f i n i t y 

f o r phosphate by -P b a r l e y p l a n t s , although no changes i n Vmax were 

reported. This could be due to the n u t r i e n t status of the p l a n t s 

employed as w e l l as the P-concentration range over which i n f l u x 

determinations were performed. At higher e x t e r n a l concentrations 

of i n o r g a n i c ions d i f f e r e n c e s i n uptake r a t e s between p l a n t s which 

are apparent at lower concentrations, may be l o s t (Glass and Dunlop, 

1978). This combined w i t h the m u l t i p h a s i c nature of i o n uptake i n 

pl a n t s would suggest that an isotherm determined over a greater 

range of i o n concentration might overlay the p a t t e r n of uptake 

which occurs at the lower P-concentrations such as those used i n 

the present study. 

The present study together w i t h those c i t e d now c l e a r l y 

show that increased P-status may be ass o c i a t e d w i t h both decreases 

of Vmax values f o r P-uptake as w e l l as increases of Km although 

i n the present study s i g n i f i c a n t Km d i f f e r e n c e s were not observed. 
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i i . Uptake from S t i r r e d and N o n - s t i r r e d Media 

A l l uptake determinations so f a r described were performed 

i n w e l l s t i r r e d media and the r e f o r e the d i f f u s i o n a l l i m i t a t i o n on 

phosphate supply to the root was reduced t o a minimum. D i f f u s i o n 

i s the l i m i t i n g " f a c t o r f o r i o n uptake when roots are bathed i n 

n o n - s t i r r e d s o l u t i o n s of concentration below lOuM ( P o l l e and Jenny, 

1971; B o l e , 1977). I n such an environment an increase i n the root 

area r e l a t i v e to i t s weight would c o n t r i b u t e to an increased uptake 

r a t e . By comparison of uptake rates i n a d i f f u s i o n and a non-

d i f f u s i o n l i m i t i n g system i n s i g h t can be gained i n t o p h y s i o l o g i c a l 

and morphological c o n t r i b u t i o n s to enhanced P^-uptake rates (see 

Table 5 ) . 

The f a c t that the -P to +P uptake r a t i o s were c o n s i s t e n t l y 

lower under the n o n - s t i r r e d compared to the s t i r r e d c o n d i t i o n s 

might be explained by presuming that increased uptake r a t e s i n -P 

p l a n t s a r i s e from increased " c a r r i e r " s y n t h e s i s and i n c o r p o r a t i o n 

i n t o the plasmalemma. Under co n d i t i o n s where uptake rates are 

d i f f u s i o n l i m i t e d (the n o n - s t i r r e d treatment) the overlap of 

d e p l e t i o n zones ( i n -P p l a n t s ) would be a n t i c i p a t e d to more adversely 

reduce uptake rates than i n the +P p l a n t s . An analogy can be drawn 

to the phenomenon of gas exchange at the stomata of leaves (Heath, 

1975). As Raven (1977) has pointed out, however, sp e c u l a t i o n s 

regarding " c a r r i e r " s y n t h e s i s w i l l remain tenuous u n t i l the i s o l a t i o n 

and c h a r a c t e r i z a t i o n of these p u t a t i v e molecules. 
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Table 5. Uptake rates from 2.5yM P s o l u t i o n w i t h (S) s t i r r i n g 

or without (WS) s t i r r i n g , (umoles/g.f.wt./h.) Ratios are shown. 

Day S r a t i o -P/+P WS r a t i o -P/+P 

8 -P 744.14 304.30 
2.22 1.46 

+P 335.46 207.75 

11 -P 693.33 225.12 
2.47 1.27 

+P 281.49 176.70 

14 -P 548.16 161.84 
2.73 1.24 

+P 201.61 130.52 
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The seedlings employed i n t h i s and the remaining 

experiments of the t h e s i s a t t a i n e d optimum P-uptake rates at e i g h t 

days of age, not 16 as i n the previous p l a n t l e t s . D i f f e r e n c e s i n 

the age needed to reach optimum uptake rates does not appear to be 

s o l e l y dependent upon phosphate sto r e s (see Figures 18, 19, 27 and 

28), and other n u t r i e n t s , although not i n v e s t i g a t e d , may be 

i n v o l v e d . 
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i i i . D o u b l e - l a b e l l e d Uptake Experiment 

Phosphorus d e p r i v a t i o n can a l t e r the metabolic c y c l i n g 

of energy through a l i m i t a t i o n upon energy coupling which occurs 

v i a the s y n t h e s i s and h y d r o l y s i s of ATP. The concentrations of 

both the ATP precursors ADP and m e t a b o l i c a l l y a v a i l a b l e ortho­

phosphate r e l y on a source of phosphorus which could be w i t h i n the 

c e l l as a storage pool and/or w i t h i n the r o o t s ' e x t e r n a l environment. 

Even i f these sources were depleted i t i s p l a u s i b l e that an increase 

i n the r a p i d i t y of phosphate c y c l i n g through perhaps an increase i n 

phosphatase a c t i v i t y could prolong the p l a n t s a b i l i t y to maintain 

high l e v e l s of energy co u p l i n g . I n f a c t high phosphatase a c t i v i t i e s 

commonly occur i n P - d e f i c i e n t p l a n t s ( B i e l e s k i , 1973). 

I n the event that p l a n t ATP s u p p l i e s became lowered as 

a r e s u l t of phosphate d e p r i v a t i o n , the r e l a t i v e e f f e c t upon a l l 

the organism's endergonic i o n uptake processes might be expected to 

be of s i m i l a r magnitude b a r r i n g a l l o s t e r i c changes w i t h i n the " c a r r i e r s " 

or changes i n the number of s p e c i f i c " c a r r i e r s " during the course 

of P - s t a r v a t i o n . I n order to s p e c i f i c a l l y a s c e r t a i n whether the 

d e c l i n e i n P- uptake during P - d e f i c i e n c y (Figure 16) was due to 

l i m i t a t i o n upon energy resources f o r a c t i v e t r a n s p o r t i t was decided 

to examine the uptake of another a c t i v e l y transported i o n i c s p e c i e s , 

namely K +. By means of d o u b l e - l a b e l l e d uptake experiments the uptake 
86 32 

of Rb and P was determined simultaneously during t h i s p e r i o d of 
86 

P-uptake d e c l i n e i n -P p l a n t s . Rb i s the isotope of choice f o r 
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Table 6. Uptake rates of P from a 15uM P s o l u t i o n and K from 

a l l l u M K s o l u t i o n . (nmoles/g.f.wt./h.) K concentrations of the 

roots are also presented, (mmoles/g.f.wt.) 

Day P uptake K uptake K concentration 

8 -P 2678.12 889.12 0.092±0.021 

+P 886.48 1080.64 0.067±0.008 

11 -P 2247.08 410.27 0.080±0.005 

+P 867.75 9.74.55 0.079±0.003 

14 -P 1259.39 618.56 0.077±0.013 

+P 699.80 901.59 0.085±0.006 
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the determination of potassium uptake i n higher p l a n t s ( L a u c h l i 

and E p s t e i n , 1970). While the w e l l nourished p l a n t s g r a d u a l l y 

reduced t h e i r uptake ra t e s of both ions over the time p e r i o d 

i n v e s t i g a t e d , there was no such r e l a t i o n s h i p between the r e s p e c t i v e 

i o n uptakes i n the -P p l a n t s . From day 8 to day 14 phosphate 

uptake rates i n the -P p l a n t s were halved, and w h i l e the potassium 

uptake decreased considerably by day 11, i t had increased again 

by day 14. 

Because of the independence of the two i o n uptake ra t e s 

i t appears that energy supply to the " c a r r i e r s " which might be 

expected to act s i m i l a r l y upon a c t i v e uptake processes does not 

seem to be the o v e r r i d i n g cause f o r r e d u c t i o n i n phosphate uptake 

rates and t h e r e f o r e a more l i k e l y cause of the P-uptake d e c l i n e i s 

a net l o s s of a c t i v e P - " c a r r i e r s " on the root s u r f a c e . 

I n both the +P and -P p l a n t s a r e l a t i o n s h i p between 

P-uptake and potassium content of the roots i s d i f f i c u l t to a s c e r t a i n . 

Cram ( i n p r e s s ) , on the other hand showed d e c i s i v e l y that KC1 fed 

to c a r r o t d i s c s r e s u l t e d i n a decreased phosphate abso r p t i o n . F r a n k l i n 

(1969) showed that adsorbed ca t i o n s increased phosphate uptake by 

b a r l e y r o o t s , whereas conversely, a p p l i e d phosphate has never been 

reported to augment K-uptake r a t e s . In the present study +P p l a n t s 

c o n s i s t e n t l y showed greater K-uptake ra t e s than -P p l a n t s and t h i s 

may be a t t r i b u t e d to the greater growth rates of the +P p l a n t s . 
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i v . Determination of Root E x t e r n a l P r o t e i n 

Because of the ubiquitous metabolic r o l e s i n which 

phosphorus i s i n v o l v e d i t was of i n t e r e s t to determine i f d e p r i v a ­

t i o n of t h i s e s s e n t i a l n u t r i e n t would r e s u l t i n the reduced 

s y n t h e s i s of p r o t e i n and i n p a r t i c u l a r p r o t e i n s which would be 

exposed to the e x t e r i o r of the r o o t . P r o t e i n s o r i e n t e d w i t h i n the 

root plasmalemma could be r e s p o n s i b l e f o r mineral uptake and f o r 

the s t r u c t u r a l i n t e g r i t y of the membrane i t s e l f . 

E o s i n i s a p r o t e i n s p e c i f i c s t a i n which penetrates 

b i o l o g i c a l membranes at a very slow r a t e and as such can be used to 

measure r e l a t i v e amounts of root e x t e r n a l p r o t e i n ( W i l l i a m s , 1962). 

At 10 days of age the s t a i n i n g value f o r -P p l a n t s ' roots was 

20.82±5.04 O.D.,-™ u n i t s / g . f .wt. and that of +P roots was 520nm 
35.28±9.06. The diameters of the main roots of both +P and -P 

p l a n t s were 0.45±0.05mm (see Figure 2 ) . At 30 days of age p r o t e i n 

values were 16.61±3.86 and 16.53±1.78 f o r the -P and +P roots 

r e s p c t i v e l y and w h i l e the +P root diameter had not changed from 

0.45±0.05mm, the -P root width had decreased to 0.20±0.02mm (Figure 

6 ) . 

The primary root^s surface area to volume r a t i o might be 

taken as r e p r e s e n t a t i v e of the e n t i r e root system, i n which case the 

c a l c u l a t i o n of surface area per g.f.wt. root revealed that per u n i t 

area at both days 10 and 30 there was approximately 0.6 times as 

much e x t e r n a l p r o t e i n on -P as on +P r o o t s . P - d e f i c i e n t p l a n t s seem 
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to have produced and sustained much l e s s plasmalemma and c e l l w a l l 

p r o t e i n . This combined w i t h the apparent increase i n d e n s i t y of 

phosphate uptake s i t e s (see s t i r r e d vs. n o n - s t i r r e d experiment) 

would suggest that the -P p l a n t s possessed a s u b s t a n t i a l enrichment 

i n the membrane p r o t e i n s r e s p o n s i b l e f o r phosphate uptake. Such 

an enrichment could be e x p l o i t e d as a source f o r o b t a i n i n g a p u r i ­

f i c a t i o n of the phosphate " c a r r i e r " i n question, a f e a t not yet 

accomplished i n p l a n t s . The low p r o t e i n l e v e l may also be p a r t l y 

r e s p o n s i b l e f o r the l o s s of phosphate from the roots of the 20 day 

o l d -P p l a n t s (see Figure 22). A leakage of phosphate could have 

r e s u l t e d from a decreased root I n t e g r i t y caused by an inadequate 

production of s t r u c t u r a l membrane p r o t e i n s . 



- 61 -

5. Regulation of Rapid D e c l i n e of Enhanced P^-uptake 

A. Short-term versus Long-term Uptake 

-P p l a n t s which demonstrated enhanced P-uptake r a t e s i n 

short-term determinations (10 min i n f l u x periods) d i d not show as 

pronounced an elevat e d uptake rat e when a 24h uptake p e r i o d was 
32 

used (see Table 7). Dep l e t i o n of P - l a b e l l e d uptake media was 

n e g l i g i b l e i n both s h o r t - and long-term experiments and cannot 

t h e r e f o r e have been re s p o n s i b l e f o r t h i s e f f e c t . When -P p l a n t s 

were exposed to +P media f o r 24h p r i o r to short-term uptake d e t e r ­

mination the values of P-uptake revealed that the su p p l i e d 15uM 

phosphate had r e s u l t e d i n a considerable r e d u c t i o n i n t h e i r P - i n f l u x , 

dropping the rate to a l e v e l s i m i l a r to that of the +P p l a n t s . 

Short-term s t u d i e s of +P and -P p l a n t s at days 7 and 8 i n d i c a t e d 

that no developmental d e c l i n e i n uptake had occurred. The low 

uptake rates which Clarkson and h i s colleagues (1978) obtained i n 

t h e i r low phosphate p l a n t s may be a t t r i b u t e d , at l e a s t i n p a r t , to 

the 24h i n f l u x determinations employed. D i f f e r e n c e s i n the values 

obtained f o r P - i n f l u x through the use of e i t h e r s h o r t - or lo n g -

term assays i n d i c a t e d that the r e g u l a t i o n of phosphate uptake i n -P 

p l a n t s was extremely s e n s i t i v e to i n t e r n a l P - l e v e l s . This c o n t r o l 

mechanism, by v i r t u e of the r a p i d i t y of i t s response, could be 

f u r t h e r i n v e s t i g a t e d only through the use of the short-term assays 

i n which minimal exposure to phosphate r e s u l t s i n a measure of the 

i n i t i a l P-uptake r a t e . 



Table 7. Short-term ( s . t . ) v s . long-term ( l . t . ) uptake r a t e 

determination 

P l a n t Status at 
Assay Employed Uptake (ymol./g.f.wt./h)* 

Beginning of Assay 

A. 7 day -P s . t . 2.047±0.226 

B. 7 day +P s . t . 0.699±0.144 

C. 8 day -P s . t . 2.587±0.481 

D. 8 day +P s . t . 0.616±0.104 

E. 7 day -P plus 
s . t . 0.65L+0.016 

1 day +P 

F. 7 day -P l ' . t . 0.73210.052 

G. 7 day +P l . t . 0.579±0.039 

*Mean and standard d e v i a t i o n of four r e p l i c a t e s . 
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B. P-uptake Rates and P l a n t Phosphorus Levels F o l l o w i n g 

Exposure of P l a n t s to 15uM Phosphate 

I n order to determine the r a p i d i t y of the -P p l a n t s ' 

response to the 15yM P s u p p l i e d , short-term i n f l u x estimates were 

obtained a f t e r these p l a n t s had been fed 15uM P f o r i n c r e a s i n g 

time p e r i o d s . Figure 26 presents the time course of the e f f e c t of 

15uM phosphate upon -P p l a n t s ' uptake r a t e s . The r a t e s began 

decreasing w i t h i n l h which i n c i d e n t a l l y i s c l o s e to the h a l f - l i f e 

of cytoplasmic P-exchange (estimated at 45 min, see E f f l u x K i n e t i c s ) . 

The d e c l i n e was r a p i d u n t i l 6 hours, beyond which no f u r t h e r reduc­

t i o n was e v i d e n t . The uptake determinations f o r times 10 to 24h 

were c a r r i e d out on the second day of the 2 day experiment, however 

the e l e v a t e d values at 12, 16 and 20h cannot be due to the p l a n t s ' 

d i u r n a l c y c l e s i n c e a l l procedures were performed w i t h i n the 6 

c e n t r a l hours of the l i g h t p e r i o d . Rate determination of non-treated 

+P and -P p l a n t s at 0 and 24h revealed only minimal changes. 

The t o t a l phosphorus content per gram f r e s h weight of the 

t r e a t e d p l a n t s d i d not show a net gain over the 24h feeding p e r i o d 

(Figures 27 and 28). Rapid growth, causing d i l u t i o n of absorbed P 

and thus maintenance of P at a r e l a t i v e l y constant l e v e l , best e x p l a i n s 

t h i s phenomenon. The f a c t that P-content decreased i n the non-

t r e a t e d -P p l a n t s over the same time p e r i o d i s i n accord w i t h t h i s 

e x p l a n a t i o n . The i n o r g a n i c phosphorus component of both the shoots 

and roots changed considerably as phosphate was s u p p l i e d to -P p l a n t s 
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Figure 26. Phosphate uptake ra t e vs. time of root 
exposure to 15uM orthophosphate 
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Figure 27. T o t a l phosphorus concentration during the p e r i o d of 
phosphate lo a d i n g of -P grown b a r l e y p l a n t s 
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Figure 28. T o t a l phosphorus concentration during the p e r i o d of 
phosphate l o a d i n g of -P grown b a r l e y p l a n t s 
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and although no obvious P-uptake c o n t r o l s i g n a l can be a t t r i b u t e d 

to the shoots, there appears to be a r e l a t i o n s h i p between the 

P^-content of the root and the P - i n f l u x (see Figure 29). The 

uptake ra t e p l o t t e d against the root's i n t e r n a l orthophosphate 

concentration (Figure 30, feeding curve) b r i n g s to l i g h t a negative 

c o r r e l a t i o n which was maintained u n t i l 6h of exposure to 15yM P. 

A f t e r 6h the i n t e r n a l phosphate showed a d e c l i n e to approximately 

0.75umol/g.f.wt. (not shown i n Figure 30) w h i l e the P-uptake r a t e s 

remained at r e l a t i v e l y low v a l u e s . This suggests that beyond 6h 

some c o n t r o l mechanism other than d i r e c t P_̂  feedback upon uptake 

had a l s o presented i t s e l f . Moreover, the i n o r g a n i c phosphate l e v e l 

of the +P roots at the end of the 24h feeding p e r i o d was lower than 

i n the t r e a t e d roots and r e g u l a t o r y processes may s t i l l at t h i s 

time be a c t i v e l y s t a b i l i z i n g the b e t t e r nourished root's physiology. 

Evidence the r e f o r e supports the p o s s i b i l i t y of two c o n t r o l mechanisms: 

1) i n which a r a p i d feedback occurs at the e a r l y stage, and 

2) a slower mechanism which might act through the degrada-

t i v e r e d u c t i o n i n the number of a c t i v e phosphate " c a r r i e r s " . 

A lso presented i n Figure 30 are the root i n o r g a n i c 

phosphate l e v e l s and P-uptake ra t e s of 11 to 16 day o l d -P p l a n t s 

during the -P phosphate uptake enhancement phase (see Figure 16). 

I n t h i s case i n t e r n a l P ^ - l e v e l s d i d not c o r r e l a t e n e g a t i v e l y w i t h 

the enhanced uptake and as such i n t e r n a l orthophosphate could not 

have acted as an a l l o s t e r i c r e g u l a t o r of the i n f l u x process. The 
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Figure 30. Phosphate uptake rate vs. ?± concentration 
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i n t e r n a l P^-concentration remained at a minimum l e v e l throughout 

the enhancement stage and hence i n h i b i t i o n of uptake by i n t e r n a l 

orthophosphate would, as such, a l s o be at a minimum. I t f o l l o w s 

that a p o s s i b l e mechanism f o r the c o n t r o l of enhanced P-uptake i s 

through the a d d i t i o n of new " t r a n s p o r t e r p r o t e i n s " , each of which 

was f r e e from a l l o s t e r i c i n h i b i t i o n . This agrees w i t h the argument, 

already put forward, that phosphate uptake enhancement r e s u l t e d 

from an increased d e n s i t y of " c a r r i e r s " on the root s u r f a c e . I t 

does remain p o s s i b l e that during the enhancement phase of P-uptake 

a concomitant d e c l i n e i n one or more organic phosphates r e s u l t e d 

i n the re l e a s e of an a l l o s t e r i c i n h i b i t i o n of the uptake process. 

This was not f u r t h e r i n v e s t i g a t e d i n the present study. 

Several s t u d i e s i n v o l v i n g ions which are not metabolized 

have demonstrated negative r e l a t i o n s h i p s between the rate of 

uptake of a given i o n and i t s i n t e r n a l c o n c e n t r a t i o n . The i o n 

i t s e l f would i n these cases be the most e f f i c i e n t d i r e c t feedback 

s i g n a l f o r uptake. 

Rapid d e c l i n e s i n Rb + uptake occurred when corn was 

su p p l i e d w i t h potassium (Leigh and Wyn Jones, 1973) and i n c r e a s i n g 

potassium n u t r i t i o n caused decreasing Rb + uptake r a t e s i n sunflower 

( P e t t e r s s o n , 1975) and Lemna minor (Young e t . a l . , 1970). A l l o s t e r i c 

c o n t r o l of rubidium and potassium uptake has been reported i n b a r l e y 

and sunflower (Glass, 1976; 1977; 1978b; P e t t e r s s o n and Jensen, 1978; 

1979; Jensen and P e t t e r s s o n , 1978). C l uptake decreases as i n t e r n a l 
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CI l e v e l s increase i n carrot tissues and barley roots (Cram, 1973) 

and Br i s absorbed more slowly i n Br fed beets ( S u t c l i f f e , 1954) 

and wheat (Cseh et. a l . , 1970). 

By v i r t u e of t h e i r metabolism the study of the maintenance 

of s u l f u r , nitrogen, and phosphate l e v e l s i n plants i s complicated. 

Ivan Smith's work (1975) with cultured tobacco c e l l s indicated 

that s u l f a t e uptake rates correlated negatively with i n t e r n a l 

s u l f a t e l e v e l s . I f methionine and cysteine were applied e x t e r n a l l y , 

s u l f a t e uptake rates declined i n tobacco (Hart and F i l n e r , 1969) and 

barley ( F e r r a r i and Renosto, 1972), however conversion of the 

S-compounds to s u l f a t e may precede the given e f f e c t (Smith, 1975). 

Very l i t t l e evidence has been reported to suggest that i n t e r n a l 

NO^ l e v e l s regulate NO^ uptake i n higher plants (Smith, 1973; Cram, 

1973) and such studies are rendered more d i f f i c u l t because of the 

a b i l i t y of n i t r a t e to induce n i t r a t e reductase a c t i v i t y (Jackson et. 

a l . , 1976). 

The l i n e a r r e l a t i o n s h i p between root P_^-level and P-uptake 

rates points to an a l l o s t e r i c control mechanism. The sigmoidal curve 

c h a r a c t e r i s t i c of a l l o s t e r i c mechanisms (Ferdinand, 1976) may not 

present i t s e l f i n the case of inorganic metabolites within the plant. 

Minimum and maximumsP^-levels may be governed by r e v e r s i b l e conver­

sions into organic forms and hence control may appear only as a 

l i n e a r r e l a t i o n s h i p . The l i n e a r transformation of the H i l l equation: 

i i Vmax-v . - I _ I log K = log — + n log | S | 
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was employed to evaluate the H i l l c o e f f i c i e n t (n) or the degree of 

c o o p e r a t i v i t y present i n the uptake process (Glass, 1976). An n 

value of 1.81 ±0.29 ( s i g n i f i c a n t l y d i f f e r e n t from 1.0 at a = 0.01 

l e v e l ) was obtained from the slope of the l i n e a r r e l a t i o n s h i p 

shown i n Figure 31. I f no c o o p e r a t i v i t y were present n would have 

a value of 1. n values have erroneously been claimed, by enzymolo-

g i s t s , to represent the number of a l l o s t e r i c m o d i f i e r s i t e s when 

i t i s a c t u a l l y a measure of the degree of c o o p e r a t i v i t y possessed 

by the enzymes i n v o l v e d (Ferdinand, 1976). As such, although the 

number of r e g u l a t o r y s i t e s per P - " c a r r i e r " was not a s c e r t a i n e d , 

c o n t r o l of orthophosphate uptake appeared to be a cooperative 

process w i t h respect to the r o o t s ' i n t e r n a l orthophosphate l e v e l . 

The r a p i d 'shutdown' of phosphate uptake could a l s o be 

explained by more complicated p h y s i o l o g i c a l processes. These 

mechanisms would of n e c e s s i t y i n v o l v e i n d i r e c t feedback o c c u r r i n g 

through intermediates such as hormones and/or organic phosphates. 

Because of the need f o r added biochemical steps i n such r e g u l a t o r y 

processes t h e i r occurrence might seem u n l i k e l y , e s p e c i a l l y i n l i g h t 

of the p o s s i b i l i t y of a more d i r e c t orthophosphate feedback upon 

phosphate uptake. 
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Figure 31. H i l l p l o t (v/Vmax - v against i n t e r n a l 
. P i concentration) 
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IV. CONCLUSION 

A n a l y s i s of short-term phosphate uptake i n i n t a c t b a r l e y 

c v . Bonanza has provided considerable i n s i g h t i n t o two processes 

which appear to be e l i c i t e d by d i s t i n c t c o n t r o l mechanisms. 

The enhancement of p o t e n t i a l phosphate uptake r a t e s 

through P - d e p r i v a t i o n takes place over a pe r i o d of days which 

would be ample time f o r metabolic processes such as p r o t e i n synthesis 

or degradation to occur. There i s evidence f o r an enrichment i n 

P-uptake s i t e s on the -P p l a n t s ' root surface. This enrichment may 

be the end e f f e c t of numerous biochemical processes which u l t i m a t e l y 

r e s u l t i n an adaptive response to P - d e p r i v a t i o n . C o n t r o l s i g n a l s 

may be e l i c i t e d through growth p a t t e r n s , or i n o r g a n i c or organic 

phosphate l e v e l s of e i t h e r the p l a n t s ' shoots or r o o t s . Because of 

the apparent developmental process governing P-uptake rates, the 

root absolute P^-concentration could c o n t r o l the extent of enhanced 

uptake. 

The d e c l i n e i n p o t e n t i a l phosphate uptake rates revealed-

when phosphate was s u p p l i e d to p l a n t s possessing elevated i n f l u x , 

r ates, suggests the occurrence of two r e g u l a t o r y systems. The r a p i d 

d e c l i n e process s t a r t s w i t h i n one hour, and p r o t e i n degradation 

the r e f o r e i s not l i k e l y to have been i t s cause. This process appears 

to be a l l o s t e r i c a l l y c o n t r o l l e d by the ro o t s ' i n t e r n a l orthophos­

phate c o n c e n t r a t i o n . The time necessary to e l i c i t d e c l i n e i s 
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s i m i l a r to the cytoplasmic P-exchange h a l f - l i f e and hence vacuolar 

P-fluxes may be i n v o l v e d i n the t r i g g e r i n g of P-uptake decreases. 

The process which occurs a f t e r 8 hours pretreatment w i t h ortho­

phosphate i s d i s t i n c t from that of the previous time p e r i o d because 

i n the l a t t e r p e r i o d the r e d u c t i o n of P-uptake by P^ f a i l e d to 

demonstrate p r o p o r t i o n a l i t y to P ^ - l e v e l s as i n the former p e r i o d . 

At the longer exposure times to phosphate supply reduced P-uptake 

may be achieved by " c a r r i e r " degradation. 

The f l e x i b i l i t y of the p h y s i o l o g i c a l component of phosphate 

absorption rates enables homeostatic c o n t r o l of phosphate concen­

t r a t i o n s w i t h i n b a r l e y p l a n t s . 

I n the s o i l environment a v a i l a b l e phosphate a c t i v i t y i s 

b u f f e r e d by adsorption to s o i l p a r t i c l e s . This p h y s i c a l a s s o c i a t i o n 

i s a l s o r e s p o n s i b l e f o r the l i m i t e d m o b i l i t y of P i n s o i l s . The 

growth of p l a n t roots i n t o a r e g i o n of high phosphate such as i n 

the d r i l l i n g and banding of P i n a g r i c u l t u r a l p r a c t i c e might lead 

to excessive P-absorption w i t h subsequent d e l e t e r i o u s e f f e c t s such 

as 'burning' of a e r i a l p a r t s . This a p p l i e s not only to p l a n t s adapted 

to low-P s o i l s but even i n a g r i c u l t u r a l l y important crop p l a n t s 

( B h a t t i and Loneragan, 1970a, b; Green e t . a l . , 1973a, b; S i d d i q i , 

1978). Therefore the c a p a c i t y to 'shutdown' P-uptake f a i r l y r a p i d l y 

i n response to increased P - a v a i l a b i l i t y i s decidedly important under 

n a t u r a l c o n d i t i o n s . Those cases c i t e d of t i s s u e damage from excess 

P-uptake may r e f l e c t e i t h e r an i n a b i l i t y to r e g u l a t e , as i n p l a n t s 
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adapted through e v o l u t i o n to low-P environments (e.g. heath p l a n t s ) , 

or an i n a b i l i t y to respond r a p i d l y enough as i n the case of crop 

p l a n t s acclimated to low-P regimes. 

P h y s i o l o g i c a l adaptations f o r increased P-uptake are 

l e s s energy consuming than morphological adaptations which of 

n e c e s s i t y , r e q u i r e growth. I n n u t r i e n t l i m i t e d c o n d i t i o n s t h i s 

d i f f e r e n c e may be c r i t i c a l . B a r l e y p l a n t s grown i n -P media revealed 

increases i n main root surface area only w e l l a f t e r the p h y s i o ­

l o g i c a l uptake rates had maximized on a per p l a n t b a s i s . Increased 

r o o t - h a i r development occurs at a s t i l l l a t e r age as perhaps a 

l a s t r e s o r t . Morphological adaptations may surface only a f t e r 

severe P - d e p r i v a t i o n , enabling the roots t o , i n e f f e c t 'search' f o r 

l o c a l i z e d s o i l phosphorus sources, however there remains the p o s s i ­

b i l i t y that the hydroponic environment used i n t h i s study u n n a t u r a l l y 

retarded root morphogenesis. 

The work presented i n t h i s t h e s i s has tended to concentrate 

upon the p h y s i o l o g i c a l b a s i s of p l a n t adaptation to P - d e p r i v a t i o n . 

I t i s apparent nevertheless that dependent upon the d u r a t i o n or 

s e v e r i t y of the s t r e s s , morphological changes may a l s o be i n i t i a t e d . 

I n order to appreciate the f u l l c a p a c i t y f o r adaptation to n u t r i e n t 

s t r e s s i n p l a n t s i t i s e s s e n t i a l to give equal c o n s i d e r a t i o n to 

both l e v e l s of response. 
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