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ABSTRACT 

For control of an electric generator, i t is desirable to approximate 

the remote part of the power system by a low order model, whose parameters 

can be estimated from measurements. The proposed model for the remote system 

consists of a large synchronous machine and a random varying load to account 

for the dynamic behaviour and for the small fluctuations that are always 

present. 

The maximum likelihood algorithm i s a good method for parameter 

estimation of a noisy system. It can even be used for estimation from 

measurements alone, without applied disturbance, which could be of great 

advantage in a power system. The algorithm i s derived in a form suitable 

for efficient d i g i t a l processing of sampled measurements from a linear con­

tinuous system with physical parameters. 

The performance of the algorithm i s tested by computer simulation 

of a simplified model for several cases of deterministic and/or stochastic 

input. It is demonstrated, that good estimates can be found from the output 

of a disturbed system when no intentional input i s applied. 

i i 
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' NOMENCLATURE 

General: 

small letter, eg. x or x column- vector 
T 

x row- vector 
capital letter, eg. A matrix or scalar quantity of power system 

T 
A transpose of matrix A 

E[x], x mean of random vector x 
T 

E[x.x ] covariance matrix of random vector x 
6(t) Dirac delta 

6,, Kronecker delta k l 
L, V likelihood function (scalar) 

Time: 

t continuous time 

t^, k discrete time, t^ = k.At 

State space description: 

x state vector 

y (model) output vector 

z (actually measured) output vector 

u control input vector 

w input noise vector 

v measurement noise vector 

a vector of unknown physical parameters 

A, B, C, H system matrices of continuous- time model 

F, G, H system matrices of discrete- time model 

Q, R noise covariance matrices 

v i 



Kalman f i l t e r : 

x(-) , x(+) extrapolated and updated state estimate 

P(-) , P(+) covariance matrix of x(-), x(+) respectively 

e innovations vector 

P innovations covariance matrix e 
K Kalman gains 

Power system quantities: 

a l l quantities except <5 are per unit quantities 

E, V voltage 

I current 

P, Q real and reactive power 

X reactance 

X' transient reactance 

T torque or time constant 

T' transient time constant 

M machine inertia 

D macine damping 

6 angle (in rad) between machine q- axis and synchronous 

frame of reference 

a angle (in rad) between machine q- axis and bus voltage 

Aw speed deviation from synchronous speed 

v i i 



Indices: 

e e l e c t r i c a l 

m mechanical 

d d- axis 

q q- axis 

i local generator i 

j external macine j 

t terminal of local generat 

L load bus 

FD voltage regulator 

G speed governor 

v i i i 



1. 

I INTRODUCTION 

1.1 Dynamic Power System Models 

There is continued interest to improve dynamic and transient 

st a b i l i t y limits in electric power systems. Modern control theory offers 

new methods to achieve this goal. Linear optimal control designs show 

great promise [1]. These techniques in turn require a good model for the 

power system. The interest here is a model for a single generator to be 

controlled which is connected to a large system. 

The class i c a l approach is to model the generator as a machine 

connected to an i n f i n i t e bus [ 2 ] , This implies that the machine under 

consideration has no influence upon the dynamic behaviour of the rest of the 

power system. This assumption is too re s t r i c t i v e , especially for a large 

generator. 

On the other hand, each machine in the entire interconnected 

system may be modelled individually. The resulting model is then much too 

large and must be simplified to become tractable. 

An intermediate approach is to model the generator under consid­

eration (the "internal" system) in some detail and postulate a simple model 

for the remaining "external" system. Parameters of this simple model are 

then identified from measurements taken at the "internal" system 

generator. This method has two advantages: F i r s t , only the dynamics of the 

external system that interact strongly with the internal system heed be 

represented, and second, the parameters could be estimated by an on-line 

computer and the model therefore adapted to the actual state of the power 

network. 



2. 

The proposed external system usually consists of one (or several) 

very large synchronous machines [ 3 - 7 ] . Yu, et a l . [ 3 ] used a small disturb­

ing input signal and estimated the parameters from the system response. It 

was assumed that there were no disturbances in the external system. 

In the following, additional random fluctuations in the external 

system are considered. The problems treated are the modelling of these 

disturbances and estimating of parameters in a noisy system. 

1.2 Parametric Models for Identification 

o _ 

Basic properties of identification problems are treated by Astrom 

and Eykhoff in [8]. In the following i t i s assumed that a mathematical model 

for a power system i s derived from a p r i o r i knowledge and the identification 

problem is reduced to the estimation of several unknown parameters. State- 

space models have been chosen for several reasons: they are easily obtained 

from dif f e r e n t i a l equations, can describe multi-output systems easily, and 

form the basis for optimal control. 

(a) Deterministic models 

If a l l inputs and outputs of the system can be measured accurately, 

a general linear state space model is of the form: 

x(k+l) = F(a) . x(k) + G(a) . u(k) (1-1) 

y_(k) = H(a) . x (k) (1-2) 

a_ is the vector of unknown parameters and shall not depend on time. 

The discrete-time form of the state equation is chosen because 

the input and output signals shall be sampled and processed by a discrete 
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machine (computer). I f a continuous-time model 

x(t) = A(o).x(t) + B(a).u(t) (1-3) 

i s derived from d i f f e r e n t i a l equations, i t can be exactly converted i n t o 

form (1-1) by i n t e g r a t i o n over one time step, provided that the input u_(t) 

changes only at the d i s c r e t e time points. This i s not a severe r e s t r i c t i o n 

for a power system. 

(b) Stochastic models 

The system may have inputs (disturbances) which cannot be measured 

and the measurements of the outputs may be inaccurate. A state space model 

for a system with a d d i t i v e noise i s : 

v(k) and w(k) are random v a r i a b l e s of input and measurement noise r e s p e c t i v e l y . 

A d d i t i o n a l assumptions l i k e zero mean, independent sequences are usually made. 

It should be noted that the model state and output are now random 

var i a b l e s too, i . e . , x.(k) and y_(k) are described by a p r o b a b i l i t y density 

function. 

1.3 Input Signal Requirements 

Let x(0)=0_. Then i d e n t i f i c a t i o n i s only p o s s i b l e i f some minimal 

requirements about the input are met. For many estimators, a s u f f i c i e n t 

condition of "pe r s i s t e n t e x c i t a t i o n " was o u t l i n e d by Astrom i n [8], I t may 

be interpreted that the input s i g n a l must have some amplitude f o r every 

frequency i n the band of i n t e r e s t . 

x(k+l) = F(o) . x(k) + G(a) . u(k) + M(a) . w(k) d-4) 

y_(k) = H(a). x(k) + v(k) d-5) 

o 



Stochastic models have two types of input signals, the control 

_u(k) which is deterministic and the noise w(k) which i s stochastic. 

(a) Deterministic inputs 

These include disturbances applied for the sake of estimation. 

Such disturbances are a compromise between what is desired for estimation 

purposes and what can be realized under physical and operational constraints. 

For estimation of power system dynamics input signals can be applied at the 

governor or the voltage regulator. Since any interference into normal opera­

tion is undesirable, these signals should be small and of short duration. 

Yu, et a l . [3] proposed a step change of mechanical torque for a short time, 

the simplest signal with "persistent excitation". 

(b) Noise inputs 

Observed changes in the system under test, which are neither due 

to applied inputs nor to parameter changes may be attributed to additional 

stochastic inputs w. These inputs may be considered a nuisance since they 

make a correlation of applied input and measured output much more d i f f i c u l t . 

But on the other hand, one might ask i f the noise alone disturbs 

the system enough so that identification i s possible from output measurements 

only. A white or colored Gaussian noise sequence for example would meet the 

requirement of persistent excitation. The less i s known about these noise 

inputs, the system identification gets more d i f f i c u l t , since not only the 

system parameters , but also parameters of the postulated noise process 

have to be estimated. But this i s compensated by the advantage that the 

estimation process requires no interference of the normal operation of the 

system at a l l , an advantage that would count very high for power system 

identification. 



In fact, a few attempts have been made to estimate power system 

dynamics from normal operating data. Lindahl and Lyung [4] tried to f i t 

several models by processing actual power system measurements and estimated 

parameters of a very simple 5th order model. They achieved not unreasonable 

estimates but expressed a desire to introduce additional intentional disturb­

ances. Price et a l . [7] tuned simulation programs to produce output signals 

that were very similar to actual f i e l d measurements. They concluded that 

parameter estimation from on-line measurements i s possible, but that a choice 

of several model structures should be available, based upon knowledge from 

system planning data. 

(c) Effects of noise and feedback 

One has to be careful in choosing an input signal that i t is not 

the result of a feedback. An example of what can happen i s given in [8] for 

a transfer function model 

U G(z) 1—6 
noise 
w 

H(z) 

An attempt to identify G(z) from measurements would yield the estimate 

Y(z) _ 1 
u(z) H(z) ' 

For a power system model the excitation voltage and the mechanical 

torque can be treated as input signals only i f the feedback loops of the 

governor and voltage regulator are open. 
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1.4 Sources of Input Noise i n Power Systems 

F i e l d measurements of terminal q u a n t i t i e s on a generator (e.g. [7]) 

show f l u c t u a t i n g s i g n a l s even i f no i n t e n t i o n a l disturbance i s applied. 

These f l u c t u a t i o n s come from changes i n the i n t e r n a l or external system and 

the model of the e n t i r e system should take them into account. In t h i s t h e s i s , 

only f l u c t u a t i o n s i n the external system power demand w i l l be considered. 

The simplest way to account for these demand changes i s to model the a c t i v e 

and r e a c t i v e power demand as sto c h a s t i c processes with the steady state 

power as mean value. Hence a l l load dynamics should be included i n the one-

machine model that describes the dynamics of the external system. 

P r i c e et a l . [5-7] introduced power demand as a s t o c h a s t i c input 
) 

i n t h e i r model, whereas L i n d a h l } et al.[4] introduced a general noise vector w 

with unknown covariance. 

The e a s i e s t noise process from an estimation standpoint i s Gaussian 

white noise and t h i s rather r e s t r i c t i v e assumption i s made for most of the 

following chapters. How a somewhat more r e a l i s t i c noise sequence can be 

introduced i n the power system model i s shown i n section 2-7. 

1.5 Methods for Parameter Estimation 

There are a v a r i e t y of methods a v a i l a b l e , the problem i s to f i n d 

one which y i e l d s an unbiased, r e l i a b l e , s table estimate with reasonable 

computing e f f o r t . 

(a) Parameter estimation as state estimation 

For state estimation i n l i n e a r systems, the Kalman f i l t e r i s a 

very e f f i c i e n t and w e l l proven estimator. The parameters a_ i n eq. (1-4) 
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can be considered as system states which obey the equation cx(k+l) = tx(k) . 

The parameter estimation problem can therefore be viewed as estimation of 

the states of the augmented model [9]: 

' x(k+l)' " F(a(k)) 0 " ' 2L(k)' 

a(k+l) 0 I 
* 

a(k) 

This method has two drawbacks: The augmented system becomes nonlinear even 

i f the original system was linear and the order becomes higher too. It i s 

not too well suited for estimation of unknown parameters [10] , but i t should 

be considered for parameter tracking i f very good i n i t i a l estimates are 

available. 

(b) Least squares methods 

Least squares methods involve minimization of a cost which i s a 

quadratic function of some error. The error results from comparison of the 

model behaviour with the measurements on the real system. 

The error i s normally so defined that i t is linear in the para­

meters. The cost function can be minimized in one step. These so called 

"equation error" methods yield efficient algorithms and are easily imple­

mented as recursive estimators. Unfortunately, they can produce strongly 

biased estimates when noise i s present in the system [8]. 

In "output error" methods, the error i s the difference between 

measured output and model output. This error i s not linear in the parameters 

and nonlinear techniques are applied to optimize the cost function. This 

method was used by Yu, et a l . [3] for a deterministic system. It can be 

generalized for the case with noise and i s related to the maximum likelihood 

method (see section 2-5). 



(c) Maximum likelihood method 

The maximum likelihood method i s designed for stochastic system 

models where the outputs are random variables. It basically adjusts the 

model parameters in a way that maximizes the probability that the model 

delivers the measured output. It i s reported to yield stable, unbiased 

estimates [8] and has been shown useful for power system estimation [4-7, 

11]. 

The maximum likelihood method works for systems with several 

outputs and also for systems with only noise inputs. Although i t i s 

numerically expensive, i t can be implemented on a modern large computer. 



2. THE MAXIMUM LIKELIHOOD ALGORITHM 

FOR PARAMETER ESTIMATION 

In this chapter, the maximum likelihood algorithm for parameter 

estimation is developed. The major component of the estimator is a linear 

optimal f i l t e r (Kalman f i l t e r ) . The f i l t e r presented is useful for d i g i t a l 

processing of sampled measurements from a continuous process. In the case 

of a general white input noise, the model and f i l t e r should be rearranged 

with the f i l t e r gain as unknown stochastic parameters to insure uniqueness. 

Alternatively, a n input-noise model of low order may be preferable. 

A comparison with a least squares algorithm i s made. Some methods 

for nonlinear function optimization are presented. The system model is 

extended to include correlated noise input. 

2.1 State Space Description and Likelihood Function 

Let the physical system be described by the following equations: 

x(t) = A(ct) . x(t) + B(a) . u(t) + C(a) . w ( t ) (2-1) 

y ( t k ) = H(a) . x(t k) + v ( t k ) (2-2) 

with the vectors: 

x: state u: control input y: model output 

w: plant or input noise v: measurement noise 

a: unknown physical parameters 

The mixed continuous (2-1) and discrete (2-2) form indicates that 

the model is derived from dif f e r e n t i a l equations but measurements are sampled 

and processed in discrete time, w is a Gaussian white noise process with 
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zero mean and constant covariance Q, i.e.: 

E[w(t)] = 0 E[w(t). W T ( T ) ] = Q . 6(t-r) (2-3) 

v i s a Gaussian white noise vector with zero mean and constant covariance R, 

i.e.: 

E[v(k)] = 0 E[v(k) . v T(*)] = R .6 k A (2-4) 

where the index k denotes time t. . 
k 

In addition to a , Q and R may be unknown too. 

With these assumptions for v and w, the probability density function 

of the output pr(y(k)) can be calculated for a l l k as a function of a , Q 

and R from Eqs. (2-1, 2-2). 

The likelihood function is the value of the joint probability density 

for the actually measured output sequence pd ' ,„ (z(N) , z(N--l) ,. 
y(N),y(N-l),...,y(l) 

. . . , z ( l ) | a,Q,R) where z(l) ....z(N) denote the available output measure­

ments. The maximum likelihood method attempts to find those parameter 
t*. 

estimates a, Q, R for which the likelihood function is maximized. 

Calculation of the log likelihood function [10] 

The joint probability density function is computed recursively by 

application of Bayes' rule. With the abbreviation 

Y(k) = [y(k),y(k-l),...,y(l)] andZ(k) - [z(k),z(k-l),...,z(1)](2-5) 

pd Y ( k )(Z(k)|o,Q,R) = pd ( k )(z(k)|z(k-l);a,Q,R) . pd Y ( k_ 1 )(Z(k-l)|a,Q,R) (2-6) 

If L denotes the negative logarithm of the likelihood function, Eq. (2-6) 

becomes 
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-L(k;a,Q,R) = -L(k-l;a,Q,R) + In pd ( k )(z(k) jZ(k-l);a,Q,R) (2-7) 

For L(0)=0 and with the recursion carried out 

N 
L(N;a,Q,R) = - £ In pd (z(k)|Z(k-l);a,Q,R) (2-8) 

k=l y V ; 

Minimizing L w i l l maximize the likelihood, since the logarithm is a monotonic 

function. It remains to evaluate the conditional probability density of y(k). 

Because of the Gaussian assumption for the noises w and v, this density i s 

also a normal distribution. 

The normal distribution for a random variable i s 

P d y ( z ) = ( 2 . T 7 . C T
2 ) _ i . exp(-e 2/ 2a 2) (2-9) 

where e=z-y , y=E[y], a 2= E[(y-y) 2] 

The corresponding multivariable normal distribution for a random 

vector i s 

P d
y ( k ) ( z ( k ) | z ( k - l ) ) =[(2.u) m. det P y ( k | k - l ) ] _ i . e x P [ - \ e T(k) 

. P y
- : L(k|k-l).e(k)] (2-10) 

where m = dimension of the vector y 

e(k) = z(k) - y(k|k-l) 

y(k|k-l) = E[y(k)| Z(k-l);a,Q,R] 

Py(k|k-1) = E[(y(k)-y(k))(y(k)-y(k)) T |z (k-1) ;a,Q,R] 

The conditional mean and the covariance of y(k) are provided by an 

optimal linear f i l t e r (Kalman f i l t e r ) that processes the measurements z(l) 

... z(k-l) for the specified values of a, Q, R. 
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2.2 The Continuous-Discrete Kalman F i l t e r 

The Kalman f i l t e r for the model (2-1, 2-2) i s a combination of the 

discrete and continuous f i l t e r s described by Gelb [9]. 

(a) Propagation in the absence of measurements 

Between t, .. and ti, no measurements are available and the state k-1 K-

estimate x(t) and i t s error covariance P(t) are simply extrapolated: 

x (t) = A . x(t) + B . u(t) (t k_ 1<t<t k) (2-11) 

P (t) = A . P(t) + P(t).A T + C.Q.C T(t k_ 1<t<t k) (2-12) 

(b) Update with new measurement 

At time t k a new measurement, z ( t k ) , i s available and is used to 

update state estimate and covariances. There i s a discontinuity at this 

point and the indices t k and t k
+ (or simply k- and k+) are used to indicate 

the quantities before and after the updating takes place. 

y(k-) = H- x(k-) output estimate (2-13) 

e(k) = z(k) - y(k-) innovations (2-14) 

P e(k) = H • P(k-)*H T + R innovations covariance (2-15) 

x(k+) = x(k-)+K(k)-e(k) updated state estimate (2-16) 

P(k+) = [I - K(k)«H] • P(k-) updated error covariance (2-17) 

K(k) = P(k-)-H T»[H.P(k-).H T+R]~ 1 Kalman gains (2-18) 

y(k-) and P e(k) are the required mean and covariance y(k|k-l) and Pv(k|k-1) 

in the likelihood formula (2-10). 
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Substitution of (2-10) into (2-8) yields 

N 

L(N;cc,Q,R) = j £ m-TT+ln det P^(t) + e T(k)-P e (k) .e(k) ] (2-19) 
k=l 

The calculation of the likelihood value can be done by a slightly modified 

Kalman f i l t e r . 
Solution of the Differential equations (2-11, 2-12) 

It i s possible to integrate both x(t) and P(t) numerically, for 

example by the Runge-Kutta method, but the computational burden would be 

excessive. Since the model parameters are a l l time-invariant, Eq. (2-11) 

and (2-12) may be converted into difference equations. 

x(t) = A-x(t) + B-u(t) t k + 1 < t < t k , x(t k+ x) given (2-11) 

the superposition integral i s 

x ^ k > = • < v t k - i ) - * ( t i * - i ) + $ (t -x)« B-u(x)dx with the transi-

tion matrix $(x) = exp(A'x). If the input u i s allowed to change i t s value 

only at the time points t^ , k=l ... N (see section 1-2), then the constant 

term B.u(x)=B.u(tk_^) can be taken out of the integral. 

With At = t ^ - t ^ (2-20) 

f A t -1 
exp[A-(At-x)].dx-B = A (a)•[F(a)-I]-B(a) (2-22) 

0 

F(a) = *(At,a) = exp(A(a)- At) (2-21) 

G(a) = 

the integrated version of (2-11) is 

x(t-) = F(a).x(t+_ 1) + G(a).u(tHh_1) (2-23) 



For the coveriance equation (2-12) the same approach as for the Matrix 
• T 

Ricatti equation [9, p.136 ] is taken. For the equation P = A-P+P.A +CQC 

(2-12) the transformations X = P«y and u = -A «y define a linear system 

X 

with the solution 

r - A T o" 

A 
• X 

r y(At)' 

X(At) 

(F'V 0 y (0) 

x (0) 

where 

<F-V 
exp At 

T 1 
r - A 0- * 

C.Q.C A 
(2-24) 

and for P 

P(t~) = T • F T + F • P(t+ .) k-1' (2-25) 

There are many methods to evaluate the matrix exponentials numerically, 

see section 4-3. 

2.3 Steady State of the Kalman F i l t e r 

The calculation of one likelihood value L(N;a, Q,R) as developed 

in the previous sections involves two steps 

T 

(1) For given values of a, Q, R and P(0) = E[x(0)-x (0)], the system 

matrices F(a), G(a), H(a) , the Kalman gains K ( t k ) , k=l...N and the 

innovations covariance P g(tj c), k=l...N are calculated. 



(2)1 The measurements u(0) ... u(N-l); z(l) .... z(N) are processed by the 

Kalman f i l t e r to yield the innovation sequence e(l)...e(N) and L. 

Since both the system dynamics F, G, H and the noise s t a t i s t i c s Q, R are 

assumed independent of time, the Kalman f i l t e r w i l l reach a s t a t i s t i c a l 

steady state, i.e., the matrices P ( t k ) , P(t-), Pe(t£)» ^^k^ converge to 

constant matrices P(+), P(-), P , K. The estimation algorithm requires 

relatively long data sequences (> 100 points), the time dependent covariance 

and gain matrices can therefore be replaced by the steady-state matrices, 

with the additional advantage, that dependence upon the unknown i n i t i a l 

covariance P(0) i s removed. 

The steady state value could be obtained by solving the matrix 

equation P(t^) = ^ ( ^ - i ^ * However, this system of nonlinear algebraic 

equations is d i f f i c u l t to solve. It i s numerically more convenient to 

calculate the Kalman gains as shown in the f i r s t step above with an arbi­

trary matrix P(0) and use the values to which the gains converge. 

For the power system model considered i n section 3-5 and the 

choice P(0)=0, convergence to 5 digits was usually obtained in 5 to 10 steps, 

an indication that s t a t i s t i c a l steady-state can safely be assumed. 

Summary of Equations for the Likelihood Function 

System model (process): 

x(t) = A(a) • x(t)•+ B(a).u(t) + C(a)-w(t) (2-1) 

z(k) = H(a)-x(t k) + v(k) (2-2) 

E[w(t)-w T(x)] = Q • 6(t-x) (2-3) 

E[v(k)-vT(£)] = R • 6̂  (2-4) 



Kalman F i l t e r : 

x(k-) > = F-x(k-l+) + G.u(k-1+) 

e(k) = z(k) - H-x(k-) 

x(k+) = x(k-) + K-e(k) 

(2-23) 

(2-13/14) 

(2-16) 

likelihood function (constant term mir neglected) : 

N 
L(N; a, Q,R) = ^ {N-£n det P + £ e T(k)-P 1 . e(k)} (2-19) 

k=l 

Steady state matrices: 

K= lim K(k) , 
k-x» 

P = lim P„(k) from e , e K 

P(k-) = F-P(k-1+).FT + T-F T ; P(0+) = 0 

P e(k) = H-P(k-)-HT + R 

K(k) = P(k-)-H T. P e
_ 1 ( k ) 

P(k+) = [I-K(k)-H].P(k-) 

(2-25) 

(2-15) 

(2-18) 

(2-17) 

Remark: This form of the Kalman f i l t e r i s valid also i n the case of perfect 

measurements (R=0), although numerical d i f f i c u l t i e s may arise when inverses 

are calculated. 

Continuous-discrete relationship: 

F = exp(At-A(a)) G = A _ 1.(F - I)-B (2-21, 2-22) 

(F"V 0 " 
= exp At • 

F 

-A 0-T 

C.Q.C A 

(2-24) 

By use of the identify 
T T x • A • y = trace (A* y • x ) 

the time independent matrix P £ can be taken out of the summation in the 



likelihood formula. Hence 

1 N 
L(N;a,Q,R) = N-£n det P + trace(P £ e(k)-e (k)) (2-27) 

k=l 

2.4 Maximum Likelihood Estimates 

The existence of optimal parameter estimates i s now investigated. 

Uniqueness of optimal parameters 

The major drawback of state space models i s their non-uniqueness; 

many combinations of the matrices A,B,C,H account for the same input-output 

sequence. For multivariable systems even canonical forms are not unique 

[11]. For a physically derived model with a small set of parameters a, 

this need not be a big problem. Care should be exercised in the choice of 

parameters, so that the transfer functions H- (sI-A) "̂B and H-(sI-A) ̂"C 

are unique. 

o _ 

Both Astrom [11] and Kashyap [12] point out, that i n general the 

noise st a t i s t i c s (Q and R) cannot be determined by the likelihood method. 

Different noise covariances may give the same values for K and P e and there-
o 

fore the same likelihood L. Astrom suggests that L be minimized as a 
function of a, K and P . 

e 

The Innovations Representation [8,11] 

The equations of Kalman f i l t e r and system model can be combined 

to the following model: 

x(t~) = F(a).x(t~_ 1) + G(a)-u(t k_ 1) + K ' - e C t ^ ) (2-28) 

z(t k ) = H(a).£(tk) + e(t k) (2-29) 



where K'=F.K and e(t^) , k=l..N i s a sequence of independent vectors with 

zero mean and covariance P . These equations can be solved for the innova-
e n 

tions e i f a, K', u and z are given. The likelihood function i s 

1 -1 N T L(N;a,K;Pe)= ^ {N-ln det P + trace(P . £ e(k)-e (k))} (2-30) 
6 6 k=l 

The minimization with respect to P g is done analytically. Setting the 

derivatives of L to each element of P £ to zero gives the condition 

N 
?e opt = I I e(k)-e T(k) (2-31) 

k=l 
The maximum likelihood algorithm is then restated as: 

N 
minimize V(N;cc,K*) = det £ e(k)-e (k) (2-32) 

k=l 

e(k) = z(k) - H(a).x(k) (2-33) 

x(k) = F(a)-x(k-l) + G(a)-u(k-l) + K'e(k-l) (2-34) 

x(0) = 0, e(0) =0 

This i s very similar to a minimum variance estimator; the relationship i s 

shown in the next section. 

Kashyap [12] provides a proof of convergence and the necessary 

conditions for estimation from an innovations representation. However, he 

uses a different type of input-output description to avoid the ambiguities 

of the state-space model. The conclusions of [12] can be interpreted i n 

the following way: 

Under the assumptions of 

- zero mean, Gaussian input noise with a certain covariance 

- zero mean, independent Gaussian measurement noise 
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- stable feedback system and linear optimal f i l t e r (i.e. eigenvalues 

of both F and F-K'H inside unit circle) 

the maximum likelihood estimates of both the parameters in F and H and the 

f i l t e r gains K w i l l converge to the true values as the number of samples N 

goes to in f i n i t y (NB: This includes the case with no deterministic inputs). 

Choise of reference model 

For the theoretical reasons mentioned, the innovations description 

should be used for estimation of a general model. This was done by Lindahl 

[4] , who made no special assumptions about the manner in which the input 

noise enters the system. 

On the other hand, i f there i s a simple physical description of the 

source of the input noise, then the noise covariance Q may contain only a 

few unknown entries. The simple power system model of section 3-5 contains 

only one stochastic parameter (the load demand variance), but at least six 

Kalman gains. In this case, the original function L(a,Q,R) should be 

optimized, since i t involves fewer parameters. Price et a l . [5] also choose 

this approach for their model. 

2.5 Least Squares Algorithms 

(a) Single output systems 

For a physically derived model with measurement noise the output 

error method is used. The cost function i s 
N • 

J(a) = I e(k/a) , e(k/a) = z(k)-y(k/a) (2-35) 
k=l 



The output error or residual e i s the difference between the measured out­

put z and the output y of a reference model. Nonlinear optimization methods 

are used to minimize J(a). 

Convergence properties of the estimates depend on the reference 

model that provides the y(k). If the reference model i s of the form 

x(k) = F(a)-x(k-l) + G(a)-u(k-l) (2-36) 

y(k) = H(a)-x(k) (2-37) 

which does not include any noise, but the measurements are created by a 

process disturbed by noise at the input (w(k)), then the residuals e(k) w i l l 

be a correlated sequence. In this case the least squares estimate i s biased 

[8]. 

For transfer function models with noise, the least squares method 

is generalized by pre-filtering the measurements u(k) and z(k) in such a way 

that the residuals e(k) become uncorrelated. For a state space model, this 

is accomplished by the Kalman f i l t e r . If the innovations model (2-33, 2-34) is 

used as reference instead of (2-36,2-37), then the residuals are the uncorrelat 
innovations. 

In fact, for a single output system the likelihood function (2-30) 

is N N 
V(a,k) = det I e(k)e X(k) = £ e^(k)=J(a,K) (2-38) 

k=l k=l 

In the case of a single output, the maximum likelihood estimate and the 

least squares estimate (for the innovation model) are accordingly indentical. 

In addition, i t i s also the minimum variance estimate, since J(ot,K) i s an 

unbiased approximation of the variance of e. 
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(b) Multiple outputs 

The least squares cost function for several outputs i s 

N T 
J(a) = I e (k/a)-W.e(k/a) ; e(k/a)=z(k)-y(k/a) (2-39) 

k=l 
with an arbitrary weighting matrix W. 

If the e(k) are independent Gaussian vectors (from an innovations model) 

then i t can be shown that the optimal choice for W is the inverse of the 

covariance matrix and for this choice the least squares estimate is equal to 

the minimum variance estimate with the cost function 

N N 
J'(a) = trace £ e(k)<e (k) = 1 1 e 2(k) (2-40) 

k=l k=l i 1 

this i s different from the likelihood function which involves the determinant 

of the covariance of e. Kashyap [12] points out that the likelihood function 

i s the correct criterion and that there are cases where estimation with Eq. 

(2-40) does not yield the true parameters. 

2.6 Optimization Methods 

With a minimum for the likelihood function guaranteed and the 

necessary equations to compute function values available, the problem of 

how to find the minimum value s t i l l remains. A great number of nonlinear 

optimization methods exist, but i t i s not easy to find one that is both 

reliable and effi c i e n t . A l l the methods discussed here are described in 

Adby and Dempster [13]; some of them are available at UBC as subroutines, 

see Manual UBC NLP [14]. 



(a) Search methods 

These methods attempt to find an optimum by using function 

evaluations only. Problems arising from computation of derivatives are 

avoided, but a large number of function evaluations are needed. A simple 

method is the nonlinear simplex technique, a more sophisticated one is Powell' 

method of conjugate directions. 

(b) Gradient methods 

Gradient methods are based on a f i r s t order Taylor expansion for 

the Objective function 

T 3T V(a +Ao) = V(a )+gV )Aa, g = -~- (2-41) 
O o o da 

They are normally superior to search methods for functions with continuous 

derivatives. Examples are steepest descent and conjugate gradient methods. 

A second order Taylor expansion involving the Hessian matrix 

V(a°+Aa) = V(a°)+gT.Aa+ -|AaT. H •Aa (2-42) 

leads to Newton's method with the update formula 

Aa = -H - 1. g (2-43) 

The direct use Newton's method i s limited, because the Hessian i s usually 

very expensive to evaluate and the method i s prone to divergence for i n i t i a l 

values not near the optimum. But there are many approximations, known as 

quasi-Newton methods, that seek to approximate theHessian by a positive-

definite matrix using only derivatives of f i r s t order. For least squares 

problems the Gauss-Newton method is often applied, with several possible 



modifications. Another group consists of the variable metric methods, the 

best known of which is the DFP (Davidon-Fletcher-Powell) algorithm. 

Bard [15] compared several of the gradient methods for several 

static parameter estimation problems and found that the Gauss-Newton methods 

usually performed best. 

(c) Evaluation of gradients 

For the innovations model (2-31, 2-32) and the likelihood function 

V'(a,K) = j £n V(a,k) = j In det S; S = £ e(k)-e T(k) (2-44) 
1 k 

the derivative to the physical parameter <x is given by 

9 * ' ^ i - I «< ! f 7 • S"1) " I ^ S " 1 . . * ) (2-45) 
i k i 

and the sensitivity equations 

3e/3a± = -3H/3a • x(k) + H . 3x(k)/3a ± (2-46) 

3x/3a± =3F/3ai-x(k-l)+F-3x(k-l)/3ai+3G/3ai-u(k-l) (2-47) 

The sensitivity matrices 3F/3o^ , 3G/3a^ are f i n a l l y obtained from 3A/3a^, 

3 B / a a ± . 

For a physical power system model as developed i n Chapter 3, 

the analytical derivatives of the system matrices w.r.t. the parameters 

become very complicated. 

A computationally simpler approach i s to perturb each parameter 

in turn by a small amount Aa^ and evaluate the gradient from the approxima­

tions 

3V/3a± % [V(a+Aa±) - V(a)]/Aa (2-48) 



Each perturbation A a ^ must be small enough that the linear approximation is. 

true, but large enough that roundoff errors are kept small. 

A gradient evaluation requires as many function evaluations as 

there are unknown parameters. 

Choice of an optimization method 

The theoretical advantage of the gradient methods seems question­

able in view of the computational effort required to compute the gradient. 

The main reason for this i s that the model derived by physical principles 

tends to have only a small number of parameters, which enter the model in 

a complex way. 

The option to experiment with several methods on the actual model 

should be l e f t open. At UBC this i s easily possible by working with the 

Nonlinear Optimization Monitor [14], which offers a choice of optimization 

methods. 

From the limited experience that was gained by working with the 

model developed in section 3-5, i f seems that Powell's method of conjugate 

directions performs best for this type of model. 

2.7 Correlated Input Noise 

The model proposed i n section 2-1 may be inadequate for two 

reasons: 

- The input noise w i s not white but band limited and would better be 

modelled as a f i r s t order Gauss-Markov process: 

w(t) = A -w(t) + s(t) , s(t) white noise (2-49) 



The input noise w may influence the output directly, so that Eq. 

i(2-2) is replaced by 

y(t) = H(a).x(t)+D(a)-w(t)+v(t) (2-50) 

The resulting complications for the estimator can be resolved by 

including w in an augmented state vector [6]: 

x(t) A(<x) 

_w(t) 0 w 

y( t k ) = [H(a) D(a)] 

" x(t) 

. w(t) 

x(t k) 

w(t k) 

B(a)' " 0 
+ • u(t) + 

. 0 s(t). 
(2-51) 

+ v ( t k ) (2-52) 

This augmented stated space model has the same stochastic properties as the 

original one. The elements of the matrix Ar? may be considered additional 

unknown parameters or may be assigned empirical values. 



3. DYNAMIC POWER SYSTEM MODEL 

A two machine equivalent with random load demand i s used as a 

dynamic power system model. A general method to obtain a linearized state 

space model from a system of mixed algebraic and diff e r e n t i a l equations i s 

presented and applied for the two-machine case. A simplified version of 

the model is used for testing the estimation algorithm. 

3.1 Structure of the Model 

The .following model i s used for parameter estimation: 

*di' xqi 

local generator 

Vt 
- T Y Y V W 

_rmm_ 

Fig. 3.1 
external system 

- local generator ( i ) : 

This i s the generator for which a dynamic bus model shall be 

identified. The generator i s described as a salient pole machine of 3rd 

order (state variables 6±, u^, E ^ ) with an additional voltage regulator 

and governor, each of f i r s t order (state variables E,.,., T .). A l l para-b ' f d i mx 

meters are known. Measurements can be made at this local generator only. 

They include the terminal quantities V t, P t, Qt and the rotor speed OK. 



- external system: 

The traditional concept of an i n f i n i t e bus is replaced by a simple 

external system consisting of: 

- a large external round-rotor synchronous machine (j) which represents 

the dynamics of the external system. A third order description 

includes the equations of motion and armature reaction (state v a r i ­

ables 6 ., oj. , E' . ) 
J J q j 

unknown parameters: 

M. - total external inertia 
3 

D_. - total external damping 

X_. - steady-state reactance of machine j 

X' - transient reactance 
3 

T* .- transient open circuit time constant 

- a bus load P + jQ . No dynamics are included for this load, but 
Li Li 

the load demand is assumed to vary randomly in the following way: 

P = P + AP , where P is the steady-state load and APT is a 

Gaussian white-noise process. 

- the network interconnection, which consists of the unknown transmission 

line reactance X t between the machine terminal and the f i c t i t i o u s 

bus. Only algebraic equations are considered. These are obtained 

from phasor diagrams for synchronous speed. 

Depending on the size of the load P n , Q n , the external machine 

is operating as a motor or a generator. The sign convention for a generator 

is always employed. 
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3.2 Derivation of the State Equations 

The following approach was chosen because i t allows both s i m p l i f i ­

cation of the resulting model as well as generalization for more machines. 

The desired model i s linear, valid for small transient deviations 

from steady state. It is obtained by a f i r s t order approximation of the 

nonlinear equations about the steady state. The steady state i s evaluated 

separately, i t depends upon the unknown parameters (see section 3-6). 

From the physical model, two types of equations are obtained: 

(1) state equations of one machine with respect to the load bus (section 

3-3): They can be written i n the form x=f(x,u,r) where x are the states 

(6, a), E^ , . . . ) , u are the control inputs and r are intermediate variables 

of the load bus (<5 , V ). The linearized one machine model developed in 

section 3-3 is very similar to the one of De Mello and Concordia [2] with 

two differences: 

- the voltage V of the load bus is variable 
L i 

- the machine angle <5̂  i s different from the angle between machine 

q-axis and bus voltage (a.=S.-<5 ) 
X X Li 

The output equations are of the form y=h(x,r,v) where v stands for the 

measurement noise. 

The linearized equations of a l l machines are combined and one 

machine angle can be eliminated. 

(2) Algebraic equations for the connecting network (load bus, section 3-4): 

Energy balance conditions at the load bus are expressed by equations 

g(x,r,w)=0 where w stands for the random loads P T, QT. 



In order to obtain a single state space model, the equations g=0 

are solved for the intermediate variables r and substituted into the state 

equations. In the nonlinear form, this constitutes a load-flow problem 

which can be solved by iteration only. However, in the linearized case 

Ag(Ax,Ar,Aw)=0 can be solved directly by Gaussian elimination. For the 

very simple model of section 3-5 the substitution is done analytically. 

3.3 Dynamic Equations for One Machine 

- equations of motion 

M • Aw + D • Aw = T m - T e (3-1) 

I = ID - Aw (3-2) 
(> o 

a l l quantities i n per unit, except 6[rad] and Wo=120TT rad/sec 

J- wo 2 

M= — inertia constant 

base 

D damping constant 

T m mechanical torque 
T > P = V,• I, + V «I e l e c t r i c a l torque e ^ e d d q q ^ 

to -w rot o . . • «_ • Aco = speed deviation w o 

6 angle between rotor axis and synchronous frame of reference 

- e l e c t r i c a l equations 

assumptions: 

- 3 windings: d,q,f 

- resistance in stator winding negligible 

- flux changes in d and q-axis negligible - speed deviation negligible 



from Kimbark [16], p. 73 

*d = M f * T f " L d ' X d 

yq q q . 

* f = L f f ' T f " I M f ' x d 

d o q 

E f = Rf • I f + * 

with X, = a) • L J , X = w *L_ , T, = X' = X, - | - M " d o d ' q o q ' do R,. d d 2 
n f f f 

' - wQ.Mf „ (o M 
q o f f q L f

 r f FD Rf f 

the following equations are obtained: 

Tdo • ^q + E q = EFD ' h <3"3> 

V d = X q • I q (3-4) 

V = E - X,«I, = E' - X'-I, (3-5) q q d d q d d v 

In the following a linearized model with the load bus as reference i s 

developed. 
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Power transfer between two buses: 

Fig. 3.2 

This simplified phasor diagram of Fig. 3*2 is used i n the following. 

Equations for both machines (i) and (j) are obtained through the substitu­

tions : 

Machine ( i ) : E=E(\ , V=VL , Xd=X^. + X t , Xq=Xq.+ X t , 

a=a.=6.-6L , I d = I d ± , I q=I 

Machine ( i ) : E=E1 . , V=VT , X =X! , X =X. 
qj L ' d 3 ' q 3 

a=a.=6.-6T , I =1 ,. , I =1 . J J L d dj q qj 

incoming power at the load bus V: 

S = P+jQ = V- I = <Vd+jV ) . ( I d - j I ) 

Q - ~ Vd-Iq + V q . I d 

(3-6) 

(3-7) 

(3-8) 

V,= V. sina = X .1 d q q 

Vq= V. cosa = E-X d.I d 



Substitution of I J and I yields: d q 
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„ V-E«sin a , 1 „ ? . ' p _ + — V̂ 1 «sin2a 
XJ 2 

1 1_ 
x q x d 

(3-9) 

n _ V-E- cos a ,T2 r • 2 Q = - v^'Isin^a 
X d 

1_ _ 1_ 
X q X d X d 

(3-10) 

For small variations AV,AE,Aa: 

AP 9P 
9V 

. AV+ 3P 

9E 

3P ,AE+ — . .Aa da 1 a 
(3-11) 

with 9P _ VE- cosa 
3a " XJ + V 2cos 2a 1 1 

l X q " X d i 

3P 
3E 

V* sina 

3P 
3V 

E« sing 
X , + V . sin 2a 1 1 

^ x 

q V 
where V, E, a on the right hand side are steady state values. 

Equations for generator (i) 

- el e c t r i c a l torque 

with the appropriate substitutions: 

AT . £ AP . = K -Aa.+ K 'AE' + K7.-AVT ex ex lx i 2x q /x L (3-12) 

3 P 

with K ex 
l i 3a 

3 P e i 
K 2 i 3E'. 

q i 

V L . E q l - c o s a 2 

-xT.+x + V L • c o s 2 a i 
dx t 

V sina. L' i 
X'+X d t 

v x -+x-v qx t X'+X„ dx t 
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8 P e i E q i ' S i n a i 

K71 " I v f • - % ^ + V s i " 2 « i I x q l + x t - x - i + x t j 

. and are equal to and in the paper of De Mello and Concordia [2] 

- internal voltage Eq.: 

X -X' 
AE . =AE' . + (X -X' ).AI,. = AE'. + r - ~ T ~ - (AE' . —A(V .cosai)) qx qx dx dx dx qx XJ +X qx L 

or AE . = - r - • AE'. + K,..Aa.+ KQ.•AV (3-13) qx qx 4x x 8x L 

with 
v = dx t 
3i X..+X,. 

dx t 

„ dx dx „ 
K 4 i = 3rrTx— ' v s i n a i 

dx t 
dx dx 

K 8 i = ~ X'.+X • C O S a i dx t 

- terminal voltage V. 

2 2 2 A V d t ' V d t + A W  
V t = V d t + V q t A V t = V f c ' ' 

X . 
AV = X .AI . = v J l • A(V-sina) dt qx qx X .+X L n n qx t 

X X* 
AV =AE\ - X' .AI,. = Y, ,„ -AE', + , J. -A(V .cosa) 

qt qx dx dx x
d i

+ x
t q 1 X d i t 

hence AV = K Aa .+ K, . . AE' . + K . . AV (3-14) t 5x x 6x qx 9x L 

with 

hf ¥ • X ^ T \ • xpr • V ^ ° i t qx t t dx t 
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V X 
K - q t * 6i V X' .4X t di t 

T. dt a i . , qt di 
K 9 i = — ' T r T T ' s i n a i + " v " ' Y T T T ' c o s a i 

t qi t t di t 

- terminal power 

AP_ = AP = AT . (3-15) t L e i 

Again, the constants K„. through K,. are identical with K„ through K, in [2] 
J l ox j b 

- voltage regulator 

TFD'^FDi + A E F D i " KFD < A Vref " A V ( 3 " 1 6 ) 

- governor and turbine 

T_ ' A T . + AT . = K_ . (A co -Ao . ) (3-17) G mi mi - G ref I 

AV • and Aco . are input signals through which an intentional disturbance ref ref 
can be applied. 

Summary of equations for machine (i) 

A6 . =co . Aw . 1 o i 

M-J «Au). = T . - T . - D - A j j i ' X I mi e i A 

T -AT . = - A T .• + YLr(W .-Aw.) G mi mi » ref i 

T ' , - A E ' = - A E . + A E - . dot q qi FDi 

TFD- A EFDi = " A E F D i + K F D ( A V r e f - A V t > 
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where 

AT . = K,.•Aa. + K_.•AE'. + K_.•AVT 

e i l i i 2x qi 7x L 

AE . = r^=— • AE' . + K. .* Aa. + K 0 ." AVT 

qx. qx 4x x 8x L 

AV. = Kc . •Aa. + K,.•AE'. + Krt..AV 
t 5x x 6x qx 9x L 

Summary of equations for machine (j) 

A6. = w„ . Aw. 

M. • Aw. = -D. • Aco. - AT . 
3 1 3 3 e J 

T' .AE'. = -AE . doj qj qj 

AT . = K * Aa. + K • AE' . + K_ . • AV 
ej l j J 2j qj 7j L 

AE . = ^ — AE' . + K..•Aa. + Ka.* AV 
qj qj 4j j 8j L 

In the combined model for both machines, one machine angle can be eliminated, 

since only relative positions of the machine axes are of interest, A<5 = A<5_̂-A6_., 

This reduces the order of the model by one. 

3.4 Load Bus Equations 

Three more equations are required to eliminate AV^^\a^,Aa2 from the 

state equations. Two relations are from power continuity conditions: 

PT = P. . + PT . QT = Q . + Q . L Lj Lx L Lj L i 

and one is an angular relationship 

Ac$..-A<50 =Aan -Aa„ = A6 
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hence 

K,.Aa. +K.,.Aa. +K-.AE1. +K„.AE'. + (K-. ,+K_ . )-* AVT lx x 1] ] 2x qi 2j qj 7x 7j L 

AQL = 

A6 = Aa^ - Ao^ (3-18) 

The 3 equations can be solved for AV^Ao^jAa by Gaussian elimination. This 

is best done numerically. The expressions are substituted in the state 

equations of the machines, which in effect w i l l modify the constants .-K^. 

3.5 Simplified Dynamic Model 

Since the estimation algorithm posed some problems and is expensive 

in computing time, a simplified model was used: 

- the voltage change on the load bus AV is assumed to be negligible 

- the load bus i s assumed to keep the frequency of the external machine 

Aa ± ^ A6 Aa 2 ̂  0 

Under these assumptions, only the equations of motion of the machine (j) re­

main relevant and i t s e l e c t r i c a l torque can be expressed as 

AT . = APT - AT . ej L ex (3-19) 

State equations for simplified model: 

A6 = w ( A O V J - A W . ) 

o v 1 y 

M. • Aw-4. = -D4 . A all +AT . -AT . i 1 1 mx ex 

M.'AtD. = -D.-Au). -AT . 
3 3 3 3 ej 

(3-20) 

(3-21) 

(3-22) 
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T. .AT . = -AT . + K^(Au> , - A O J , ) (3-23) G mi mi G r e f 1 

T d o ' A E q i • A E F D " A E q i ( 3 " 2 4 ) 

T F D , A E F D i = - A E F D i + K F D ( A V r e f - A V (3~25) 

AT . = K -A6 + K *AE'. (3-26) e i l i 2 i q i 

AE . = K..A6 + AE'. (3-27) 
q i 4 1 K 3 i q i 

AV. = K C.A6 + K-.AE'. (3-28) t 5 i 6 i q i 

AT . = AP -AT . (3-29) ei L e i 

This i s a 6th order model with the 3 unknown parameters Mj , Dj, X t and the 

unknown covariance of the random input AP . Measurable q u a n t i t i e s for the 

estimation procedure are: speed ^ , terminal voltage AV t > terminal power 

AP t=AT e i. 

3.6 Steady State Values 

The steady state is computed from the known system parameters 

(M^, ^ j i ' •••)» estimates of the unknown parameter and the terminal steady 

state quantities V Q, PtQ> Qj:0" ^ e l ndex 0 i s omitted in the following. 



Fig. 3.3 Steady state phasor diagram 

are: 
The equations (3-9, 3-10) applied for the terminal of machine (i) 

P. = 
V .E .,..siniK 
t qdx Tx 

X . 

V .E' . .sinijj. o t qx l ^ 
di 

+ V . siniJj. cosil;. t x i X . X« 
qi dx > 

V .E ...cosiji. V_ t qdi Yx t 
X . 
q i 

X 

and 

-P. = 
Vt.VL.sin(-i|»t) V t . V L . c o s ( - * t ) V t -

with the solutions 

*V r t = arc tan (3-29) arc tan ^ (3-30) 

q i 
p . x' 

E' . = „ t . + V -cos*, qx V .sxnijj. t x 

t x. 

1-
X . 
q i 

V .sinijij. (3-32) 

(3-31) 

(3-33) 



4. IMPLEMENTATION OF ALGORITHM 

This chapter contains a short description of the computer imple­

mentation of the estimator and of some methods to reduce computing time. 

4-1 Calculation of Likelihood Values 

The following flow-chart shows the major steps in the calculation of 

one likelihood value: 

arguments a, Q, R 

+ 
calculation of system matrices A(a) , B(a), C(a) 
equations of power system model, sections 3-5, 3-6 
4-
conversion to discrete-time system A(a) ,B(a) F(a),G(a) 
C.Q.CT QD= T-F 
method see section 4-3 
4-

calculation of steady-state Kalman gains K 
and (expected) innovations covariance P e 

iterative equations, see section 2-3 

+ 

processing of the measurement arrays u, z 
with the Kalman f i l t e r and summation of 
the innovations (sample) covariance S 
equations, see section 2-3 
4-

likelihood value L(a, Q, R) 

The f i r s t of the steps above contains the physical model. The 

following steps are independent of i t . The computation sequence i s simpler 

for the case without input noise when there i s no Kalman f i l t e r . 
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4-2 Optimization Procedure 

The Monitor for nonlinear optimization available at UBC [14] was 

employed to find parameter estimates. It supports interactive processing 

and switching among different optimization methods. The following user 

routines were added: 

FUNCTION XDFUNC - Calculation of a likelihood value as described 
in section 4-1 

SUBROUTINE INIT - an i n i t i a l i z a t i o n routine that must be called 
f i r s t and asks for the necessary data. 

Most of the available algorithms in [14] were tried, but none of the methods 

based on gradient evaluation performed well. A possible cause is that the 

parameter steps taken for the difference approximation of the derivative were 

not suitable. Good results were achieved by the conjugate directions algorithm 

(routine POWEL). 

4-3 Computation Efficiency 

The number of function evaluations i s high for any optimization 

algorithm. Since a function evaluation involves the setting up and running 

of a linear f i l t e r , computation time i s long even for a small system. A 

considerable reduction i s achieved by using the following techniques. 

(a) F i l t e r equations and matrix operations 

The mathematical operations of the f i l t e r are simple but highly 

repetitive. Since multiplications of a vector by a matrix are among the 

most frequent operations, a l l matrices are stored by rows, so that a. . 

becomes A(J,I) in Fortran. In most subroutines, array elements are addressed 

by a single index only. 



A package of short matrix subroutines was written in Fortran. The 

order in which the elements are stored is chosen carefully. These matrix 

routines run several times faster than their more general counterparts in 

the system library. 

(b) Conversion of continuous to discrete time 

This can be done by numerical integration. If x(0) is chosen as 

the i-th unit vector, then integration of the system x=Ax over one time 

step At w i l l yield the i-th column of the transmission matrix F. The number 

of integration steps required is therefore equal to the order of the system. 

It was found that by using the Runge-Kutta method, up to 80% of the total 

computing time was spent on this integration. 

A much faster procedure is obtained through approximation of the 

matrix exponential by i t s series: 

At -2 

F = exp(A-At) = I + Af A+ jf~ A2+ ... (4-1) 

In general this method may suffer from several numerical problems, such as 

roundoff errors and slow convergence. But for the model in section 3-5, 

approximation by the f i r s t eight terms is accurate to 6 digits and about 

ten times faster than numerical integration. 

The complete recursive algorithm for F, G and T i s obtained from 

the series expansion of Eqs. (2-21, 2-22, 2-24): 

F(n) = F(n-l) + • A(n) F(0)=I (4-2) 

G(n) = G(n-l) + • B(n) G(0)=0 (4-3) 

T(n) = T(n-l) + ^ r - • T(n) T(0)=0 (4-4) n! 
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A(n) = A(n-l) • A A(1)=A=A-At (4-5) 

B(n) = B(n-l) • B B(l)=B=B"At (4-6) 

T(n) =-T(n-l)-A T+A(n-1)-f T(l)=f=C.Q-C T.At (4-7) 

(c) Achieved computing times 

The evaluation of a l i k e l i h o o d value for a system of 6th order, with 

one input, one output and 100 measurement points requires the following 

approximate CPU-times ( f o r an Amdahl 470 computer): 

24 msec for d e t e r m i n i s t i c case (no Kalman gain) 

55 msec for the s t o c h a s t i c case 

A t y p i c a l estimation run with 6 i t e r a t i o n s of the conjugate d i r e c ­

tions algorithm requires about 100 function evaluations or 5 sec CPU-time. 

This i s s t i l l considerable for such a simple model. 

Further improvements are p o s s i b l e . Most of the c a l c u l a t i o n s 

( e s p e c i a l l y the f i l t e r ) could probably be done with s i n g l e instead of double 

p r e c i s i o n . Of most importance would be a f a s t e r , r e l i a b l e method for com­

puting the steady state Kalman gains. 

4.4 Simulation Programmes 

A l l data used for the estimation process was obtained from a com­

puter simulation with the same model. Many of the subroutines were the 

same for estimation and simulation. The simulation data i s therefore i d e a l 

and f u l f i l l s a l l assumptions of s t r u c t u r a l and noise properties that the 

estimator presupposes. 



5 DATA AND RESULTS 

The simulation data and the performance of the maximum likelihood 

estimation method are shown for the following cases: 

Case 1 - deterministic input only 

Case 2 - combined deterministic and stochastic inputs 

Case 3 - stochastic input only 

Case 4 - stochastic input and measurement noise 

5.1 Parameters and Input Data 

The following parameters were used in simulation program: 

- sampling time step At=0.05 sec 

(a) Deterministic parameters ( a l l per unit) 

- internal generator: 

M.=5 
X 

D.=10 
X 

T* =8 
di 

X d i = 1 • Xd.=0.3 X =0.6 
q 

K F D = 5 ° KG=10 V 0 . 5 

— external system (unknown parameters a) 

- transmission reactance: Xt=0.5 

- unknown machine: M.=9 D.=26 

- steady state values: 

v t o = 1 - 0 5 p t o = 0 - 9 Q t o = 0 - 3 



(b) Deterministic input 

The control input in case 1 and 2 is a short pulse applied at the 

reference input of the governor/turbine loop. 

0.25 0.75 
A W r e f ( p u . ) 

0 

2 -10 r3 

t(sec) 
5s»-

Fig. 5.1 Deterministic Input 

(c) Stochastic input 

A random disturbance AP^ was applied in cases 2 to 4. Only white 

noise with a variance Q=E[AP ]=10 4 was considered. In discrete time this 

corresponds to a random sequence with a standard deviation of a m=/Q'At = 
if Li 

_ 3 
2.2'10 p.u. 

For cases 1 to 3, measurement noise is neglected. In case 4, 
_9 -3 

measurement noise with covariance R=10 (o- =0.032-10 ) was added to the 
v 

simulated output Au)j_. 

5.2 Output Data 

The simulated outputs were APt , AVt and Acô . Each example con­

sists of a sequence of 100 points. Some examples for each case are shown 

in Fig. 5.2 to 5.9. Table 5.1 contains for a l l simulated sequences the 

mean values m, the standard deviation a, the maximum absolute amplitude |A| 

and the expected innovation standard deviation /p^T of a Kalman f i l t e r with 

the true parameters. 



Table 5-1: Simulation Results: 

Case Signal m |A| Fig. 

1 AP t -11.3 (23.9) 94.1 _ 5.2 

AV, 0.19 (2.02) 7.66 - 5.3 

Acô  -0.43 (0.62) 1.84 - 5.4 

2 A p t -8.78 (30.3) 85.7 same 5.5 

AV t 0.31 (4.10) 11.2 as -
A(o^ -0.33 (0.83) 2.46 case 3 5.6 

3 AP t 2.53 21.8 42.7 3.33 5.7 

AV t 0.120 3.07 6.26 0.388 -

Aw^ 0.099 0.445 0.881 0.0268 5.8 

4 Ao). i 0.1011 0.447 0.884 0.0806 5.9 

A l l values x 10 per unit. 
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5.3 Convergence of parameter estimate 

Parameters were estimated from the simulated measurements for 

a l l four cases. In a l l examples the cost function was minimized by the 

conjugate directions algorithm (routine P0WEL[14]). Only single output 

sequences were considered. This is sufficient in the cases without 

measurement noise, because one output contains a l l available information 

about the system. Estimation from multiple output sequences was not 

attempted, because numerical problems were encountered in the calculation 

of the Kalman gains. This should be further investigated for the case 

with measurement noise. 

Table 5-2 contains a summary of the obtained optimal estimates 

for a l l examples. Fig. 5-10 to 5-18 show how the estimates converged 

and are followed by comments for the individual cases. 



Table 5-2 Es t imat ion Results 
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Fig. 5-10 Case 1 - deterministic 
output AP 

Fig. 5-11 Case 2 - mixed input 
output AP 



oc (p.u) 

Fig. 5-12 Case 2 - mixed input 

output AID. 

Fig. 5-13 Case 2 - mixed input 

output Aw 





F i g . 5-17 Case 4 - with measurement noise 

output Aw., 

F i g . 5-18 Case 4 - with measurement noise 

output Aw. 
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(a) Case 1 - deterministic 

In this special case there is no Kalman f i l t e r . The estimator is 

the ordinary least squares estimator with the cost function 

V = I e 2(k). 
k 

Rapid convergence to the true parameters was obtained for AP t(Fig. 

5-10) and Aŵ  measurements. The algorithm failed for the AVt measurements, 

because the i n i t i a l steps were too large. 

(b) Case 2 - deterministic and stochastic input 

The same cost function was used, but now the e(k) are the innovations 

of a Kalman f i l t e r . For negligible measurement noise (R-K)), the Kalman gains 

depend on the parameters a only and the expected innovations covariance P £ 

is proportional to Q. Q is therefore estimated from the sample covariance 

Pe=V/N. 

Speed of convergence is comparable to the deterministic case, but 

the estimates have some bias (Fig. 5-11, 5-12). The f i r s t step of the 

algorithm always seems to make M. and D. larger, even i f they are already 
J J 

too large (Fig. 5-13). It seems preferable to start with estimates that are 

smaller than expected. 

(c) Case 3 - stochastic input only 

Estimation with the cost function V= £ e 2(k) did not bring satisfactory 

results. Slightly biased estimates of M̂. and D_. were found i f X t was held 

constant at the true value 0.5. But this i s only one local minimum of V and 

lower minima can be found for quite different values of M, , and Xfc. 
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Good results were obtained with the original likelihood cost function 

L=£n det Pe+ £ e 2(k)/P e, where P e is the estimated covariance of the Kalman 

f i l t e r . Estimates from a l l of the three outputs converged (Figs. 5-14 to 

5-17), with a small bias for M. and and a rather large bias for D.. 
3 t J 

(d) Case 4 - input and measurement noise 

In the f i r s t example (Fig. 5-l7) Q and R are held constant at the 

true values and only a i s optimized. The results are similar as in case 3. 

In the second example (Fig. 5-18) only R i s fixed, a and Q are 

estimated simultaneously. After four iteration steps, the estimates seem to 

converge reasonably. However, in the next iteration step very different 

estimates were found, for slightly lower function value. For this short 

measurement sequence, the algorithm w i l l not converge to the true values. 
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6 CONCLUSIONS 

The maximum likelihood method is a general method for estimation 

of parameters in a linear system disturbed by both input and measurement 

noise. The stochastic parameters can be modelled either as unknown gains 

of a linear f i l t e r or as parameters of a low order model derived from 

physical knowledge. 

The second approach is given preference and a low order model for 

the remote part of a power system is proposed that explains small fluctua­

tions by varying load demand. 

Estimation results were obtained for a simplified system from one 

output at a time. They show that the maximum likelihood method can in fact 

produce good estimates for a heavily disturbed system. Parameter estimates 

from a system with noise input only are also possible. However, convergence 

problems may arise for short measurement sequences. False convergence to a 

wrong set of parameters is possible, especially i f the measurement noise is 

appreciable. This case would need further investigation with longer data 

sequences and a more r e a l i s t i c power system model. 

Estimation of the dynamics of a real power system from measurements 

alone should be possible i f 

... - accurate measurements of small fluctuations are available. 

- the dynamic behaviour and the source of fluctuations of the external 

system with respect to a generator can be represented with sufficient 

accuracy by a very low order model. 



To answer these q u e s t i o n s , a c t u a l measurements from a genera tor 

should be i n v e s t i g a t e d . 
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