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ABSTRACT

The inherent uncertainty of a bank's cash flows,‘cqst of funds
and return on investment, along with the increased variability of econo-
mic conditions during the past decade, have emphasized the need for
greater efficiency in the management of a bank's assets and liabilities.
A consequence has been an increased number of studies on how to structure
a bank's assets and liabilities so that an "optimal" trade-off exists
between risk, return and liquidity. Except for the Bradley and Crane
(BC) model, the solution techniques proposed in the literature are
computationally tractable only if uncertainty is ignored. Unfortunately,
the BC model is not operationally appealing due to severe computational
limitations, and a number of undesirable formulation features (such as
the restricted feasible region for first period decisions). Given these
deficiencies in the literature, the purposes of this dissertation are
to develop an asset and liability management model (ALM) that is compu-
tationally tractable for large realistic problems and to demonstrate
that this model is superior to existing models.

The ALM model developed in this dissertation is a stochastic
linear program with simple recourse (SLPR). This model incorporatés
the following essential features of asset and liability management:

1) the stochastic nature of the problem (by uti]izing a set of random

cash flows (deposits) with a givén discrete probability distribution),



2) simultaneous consideration of assets and liabilities, 3) transactions
costs, and 4) multi-periodicity.

The ALM model was applied to Vancouver City Savings Credit
Union's asset and liability management for a five year planning period
in order to demonstrate the effort necessary to implement the model.
Computationa]vtractabi]ity for this large problem was maintained by using
Wets' algorithm for solving SLPR. A simulation was run on a real
(uncertain) environment td compare the decision making effectiveness of
the solutions generated by the SLPR and stochastic dynamic programming
(SDP) models.

The findings of this dissertation are: 1) the ALM model is
superior to an equivalent deterministic model, 2) the solution of the
ALM model is sensitive to the asymmetry of the probability distributions
of the cash flows, 3) the effort required for the implementation of the
ALM model is comparable to that of an equivalent deterministic model,

4) the SLPR formulation is computationally superior to the SDP formula-'
tion utilized by Bradley and Crane, and 5) the simulation indicates that
the SLPR formulation results in a better initial period decision than the
SDP formulation (this is due to the restrictions 1mposed by the SDP
formulation of maintaining feasibility for 611 possible forecasted

economic scenarios for the first period decision).
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Chapter 1

INTRODUCTLOW

1.1 Overviéw»of‘Disseftation

The inherent uncertainty of a bank's cash flows, cost of funds
and return on investments, along with the unsettled economic conditions
of the past decade, have emphasized the need for a greater efficiency in
the management of a bank's assets and liabilities. A consequence has been an
increased number of studies on how to structure a bank's assets and
1iabilities so that an "optimal" trade-off exists between risk, return and
liquidity [7,11,20,70].

These studies focussed on the determination of- the use of funds
given either deterministic or stochastic economic scenarios. Factors that
must be considered in these decisions include: the balancing of anticipated
sources and uses of funds to meet liquidity and capital adequacy constraints
while concurrently maximizing profitability [11,20], allocating funds among
assets based on classification, maturities and rates of return [5,6], and
adjusting a bank's financial structure in terms of liquidity, capital
adequacy and leverage [11,20].

Current research has stressed two approaches. The first approach,
based on Markowitz's theory of portfolio selection, assumes that returns

are normally distributed and that bank managers are risk-averse utility



of wealth maximizers [59,70]. In such a world, the value of an asset depends
not only on the expectation and variance of its return but also on the
covariance of its return with the returns of all other existing and poten-
tial investments.

The second approach assumes that a bank seeks to maximize its
future stream of profits subject to portfolio mix constraints [11,20].

The solution techniques advanced by the proponents of both
approaches are either computationally tractable if they do not capture the
essential features of the asset and liability management problem [10,19] or
computationally intractable if they attempt to capture the essential features
of the asset and 1iability management problem [5,28,36]. As an.example of
the first shortcoming, Cohen and Hammer's [20] Tinear programming asset
management model is computationally feasible for large problems but is
neither stochastic in nature nor does it consider the effect of the choice
of asset instruments on the total portfd]io of the bank's assets and
liabiTities. As an example of the second shortcoming, Wolf's [98] sequential
decision theoretic model includes many of the features inherent in the asset
and liability problem, but is computationally infeasible for realistic
problems that are stochastic in nature. These two approaches show that the
dilemma encountered in developing an asset and liability model is the trade-
off between computational tractability and realism.

The Bradley and Crane (B-C) model attempts in a serious manner to
cope with the above dilemma [5,6,7]. Essentially, their model is a
decision trees that is formulated as a linear program. B-C have developed
a decomposition algorithm that takes advantage of the special structure

of their formulation. Their model has a number of appealing features:



it is dynamic in nature; it incorporates the uncertainty of cash flows and
interest rates; and it is computationally tractable for problems of limited
size. However, there are three major shortcomings of the B-C model.
First, the types of distribution functions thét may be used in their model
are extremely crude - two or three point distributions with cash flows and
interest rates being highiy correlated. Secondly, their model is unable to
handle either a large number of different financial instruments or a planning
horizon with more than three time periods without taxing computer capacity.
Fina11y,the1r model is formulated such that the invgstment decision made
now, has to satisfy all possible future economic scenarios. That is, the
decision will be overly influenced by the worst possible scenario.

Given these deficiences in the literature, the primary purpose
of this dissertation is to develop an asset and 1iability model (ALM) that
is computationally tractable for large realistic problems.

In the remainder of this thesis, the following principle areas
of research will be discussed in turn: the reasons for the existence of
financial intermediaries, the reasons for the use of the net pfesent value
approach as opposed to the expected utility approach as a rationale for
bank management, a critical survey of the net present value models currently
in the financial literature, the presentation of a stochastic linear program
with simple recourse model to solve the asset and liability management
problem, the application of the proposed model to a local financial institu-
tion (Vancouver City Savings Credit Union), and the demonstration of the
"superiority' of the proposed model to existing models using a simulation
of economic scenarios.

The remainder of this chapter will consist of the definitions of

financial terms used in this dissertation, the economic rationale for the



existence of financial intermediaries, the features that an asset and
1iability management model must have, and the justification for using the

net present value approach in preference to the expected value approach.

1.2 Definitions

The Ziquidity of a financial asset will be defined in terms of

marketability and capital certainty. According to Van Horne [83, p. 7]

liquidity has two dimensions: (1) the length of
time and transaction cost required to convert the
asset into money, (2) the certainty of the price
realized. . . . The two factors are interrelated. If
an asset must be converted into money in a very short
period of time, there may be more uncertainty as to
the price realized than if there were a reasonable time
period in which to sell the asset.

Financial Intermediaries will be defined as entities involved in
the business of holding and dealing in financial instruments (which can be
expressed in terms of money). They issue financial instruments (indirect
securities) in order to purchase the financial instruments of others
(primary securities). Financial intermediaries include such institutions
as chartered banks, credit unions and Tife insurance companies. Since this
dissertation is concerned with banks and credit unions, this 1s-the sense
in which the term financial  intermediary will be“used.

Portfolio risk is the risk associated with the rate of return
earned by a bank. Fund risk is the risk associated with the ability of
the bank to meet its commitments. Risk independence occurs when the follow-
ing two conditions are satisfied: (1) the aggregate value of mutually
exclusive investment proposals is equal to the sum of the values of the

proposals considered separately (no synergism), and (2) the financial



instruments under consideration are physically independent [61]. Risk
interdependence is said to occur if either of the necessary conditions for
risk independence are not met

A financial market is any mechanism or institution used to bring
together buyers and sellers of financial instruments. A perfect financial
market satisfies the following conditions: (1) many buyers, sellers and
issuers, all of whom are price takers, (2) transaction costs (including
volume discounts, pooling of independent risks of default and imputed costs
for inconvenience resulting from indivisibility) and taxes do not exist,
and (3) all investors have access to all relevant information at no cost
[52]. An imperfect financial market does not meet one or more of the above

conditions.

1.3 Theory of Financial Intermediation

In order to develop the objectives and behaviour of a financial
intermediary, it is essential to discuss the role of financial inter-
mediaries in the economy. Unfortunately, the theoretical rationale for the
existence of financial intermediaries has not been resolved in the economic
1iterature.] For example, financial intermediaries have not been incor-
porated into a general equilibrium model. Economic rationale for the
existence of financial intermediaries is presented next.

The underlying framework for such a theory is Hirshleifer's inter-

pretation of Fisher's theory of the investment decision [45,46,471. The

theory assumes:

]Contributions have been made to such a theory. See for example

[9,30,70,80].



1) perfect markets,

2) certainty,

3) no borrowing or lending with the auctioneer,

4) two time periods,the present (0) and the future (1),
5) J individuals, where j < e

6) U;(Co;» C);) where U, is the jth individual's utility
function and Cij is the consumption of individual j
in period i (these are the objectives of choice for

the individual investor), and

7) each individual attempts to maximize his utility
function subject to his opportunity set, which con-
sists of his initial endowment (Y,, Y:), financial
opportunities (financial assets) and productive
opportunities (real assets).

Financial opportunities along the market line permit an individual
to transform his initial endowment into alternative (C,, C:) combinations.
By investing or borrowing with other individuals, an individual can attain
the optimal point, P*, on the production possibility locus, PP!, which is
tangent to the highest market line, NN!' (see Figure 1).

The individual attains the optimal point as follows. First the
individual moves to P* from his initial endowment (Y,,Y:). Then he borrows
or lends to attain his utility optimum (Ct,Cf). In the particular case
illustrated in Figure 1, the individual first invests (Y, - Po) and then
borrows (C: - Py) to replenish current consumption.

An individual is defined as a surplus (deficit) unit when (C%§ - P,)

is negative (positive). The existence of surplus and deficit units is a

necessary condition for both direct and indirect financing. However, it is



Figure 1

not a sufficient condition for the»existence of financial 1ntefmediaries
since all financial transfers can take place directly.
Extensions of this model by Arrow [1] and Hirshleifer
[45, 46] to incorporate uncertainty, still do not Justify the existence
of financial intermediaries. Therefore, the existence of uncertainty, per se,
does not justify the economic existence of finéncia] intermediaries.
Relaxing the assumption of perfect capital markets does suggest
two potential reasons why financial intermediaries may interpose themsé]Ves

between ultimate borrowers and lenders. These are cost economies in trading



(especially in a world of negotiated commission rates), cost economies
in the gathering and processing of information, and the benefits of port-
folio diversification (of minor importance for pure financial institutions).

The premise behind the second reason is that surplus units may
not buy primary securities because they cannot economically evaluate the
borrower's credit standing. Furthermore, economies of scale in gathering
and processing information may enable the financial intermediary to develop
superior informational expertise in a subset of primary securities. This
could enable the financial intermediary to formulate more accurate prob-
ability distrfbutions of potential outcomes for the same dollar expenditure
than Surp]us units. As a result the required risk premium for a financial
intermediary may be smaller than that required by a surplus unit.

In summary, the necessary conditions fbr the existence of financial
intermediaries are the existence of surplus and deficit units, and the
imperfection of capital markets. Whether these conditions are also sufficient
is at present unresolved.

Also, at this point in time, it is unresolved whether or not the
assets of financial intermediaries are risk independent. If financial
intermediaries cannot create assets that investors cannot duplicate on their
own account, such as perfect inflation hedges, then the assumption of risk

independence is reasonable.

1.4 Appropriate Criterion for Asset and Liability Management

A principle constraint on the management of bank funds is the need
to meet deposit withdrawal claims on request. To illustrate the nature of

the resulting problem, consider the following simplified example from Tobin [79]:



1) certainty,

2) transaction costs, and

3) two assets, one of which is illiquid and cannot be
liquidated for two periods (infinite transactions
costs up to the end of the second period), and the
second which can be liquidated at the end of the

first period. The returns on the assets are r;
“and r;, respectively, where r; > r,.

Although the allocation of jnitial funds between the two assets is trivial,
the example does emphasize that to make realistic decisions the planning
horizon cannot be infinitesimally short.

This multi-period nature of asset and liability management results
from the existence of assets with different degrees of liquidity, maturity
and yield. The essence of the liquidity management problem is to allocate
resources in a least cost (transactions costs and opportunity costs) manner.
The essence of the asset and liability management problem is not just to
manage cash but to consider all assets and liabilities simultaneously.

Relaxing the assumption of certainty results in two additional
problems - uncertain future market rates and uncertain timing and volume
of cash flows. In viewing a bank as an ongoing entity, it is often argued
that a bank must satisfy demand requests or face the prospect of losing
customers [27]. In anticipation of these uncertain (e.g. loan) requests a
bank must be prepared to provide large amounts of>funds on relatively
short notice. |

In the current financial and economic literature, two criteria
are used in modelling asset and liability management. The first criterion
is developed from the Markowitz mean-variance framework. It assumes that

an intermediary possesses a utility function; which the intermediary
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attempts to maximize. The second criterion is to maximize the net present
value of returns subject to a number of constraints.

Pyle's paper [70] is an example of the use of the first criterion.
It is the most general of such applications since it considers assets and
liabilities simultaneously. However, a fundamental quéstion arises«-
Is is possible to operationalize portfolio theory for corporations? In
particular, what utility function is appropriate for a corporation?

Furthermore, the first criterion leads to a static one-period
model. This implies that the intermediary can select the amount of assets
and liabilities to be maintained over the period and be certain of having
those amounts at all times during the period. Or, stated somewhat dif-
ferently, Pyle's paper ignores fund risk except to the extent that it is
reflected in portfolio .risk. An adverse synchronization of cash flows could
result in trading costs that more than offset market returns and in the
extreme case so]véncy. Other problems such as the transaction cost incurred
in the sale of a security prior to maturity are 1'gnored.2 Thus the one-
period nature of the model precludes the ability of the bank to exercise
any matching (synchronization) of maturities of assets and liabilities and
makes it difficult to insert adequate terminal conditions.

An example of the use of the second criterion, maximizing net
present return, to model the asset and 1iability management problem isg
given by Chambers and Charnes [I1]. Although a review of such literature
will be done in Chapter 2, a few general statements are in order here.

First, models using the second criterion assume risk independence

2Chen, Jen and Zionts have included transactions costs in a
similar model [ 18].
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(defined earlier) as opposed to the Markowitz type models which treat risk
dependence. Second, the types of models range from linear formulations,
which can solve relatively large problems, to stochastic dynamic formulations
which can solve Timited sized problems because of computational intract-
asility; However, neither typetof model is generally considered or accepted
as being the 'best'.

Thus the question remains: which of the two criteria results
in the model which is most suitable for solving the asset and liability
management problem?  Myers [61] attempts to resolve the controversy.

Myers has shown that: 1) risk independence ‘s a heceséary condi-

tion for the existence of security market equilibrium, 2) if security
market equilibrium exists, then this implies the risk independence of
securities, and 3) if risk independence of investment opportunities exists
then the maximization of the expected net present value is the appropriate
objective criterion.

In the case of financial institutions it is observed that: 1) a
state of equilibrium exists for the securities which are held by financial
institutions, and 2) securities purchased do not have a synergetic effect
(implying the risk independence of securities). Therefore, the implication
from (1) and (2) is that the appropriate objective function for a fiﬁancia]
institution is the maximization of the expected net present value.

A further test of the two approaches is their applicability as a
normative tool to the actual problem solving. The risk dependent (Markowitz)
approach does not lend itself to solving large (decision variables) multi-
period problems. On the other hand, the risk independent approach, given

certain assumptions, can solve problems of a more realistic size. If the
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assumptions (underlying risk independence) can be relaxed and if it can be
shown in an operational sense that the risk independent approach yields as
good or better solutions than the risk dependent approach, then this

would imp]& that using the maximization of net present value is a

superior modelling approach.

1.5 Essential Features of an Assét and Liability Management Model That

Maximizes Expected Net Returns

The asset and liability management problem is analvzed in this

dissertation using a constrained optimization model which mazimizes the
expected net returns. A general discussion of-the relevant constraints
follows.

The major constraint on the management of a bank's funds is the
capacity to meet withdrawal claims on demand. Since this capacity must
be maintained across time, the following five features should be incor-

porated in the ideal optimization model.

1

1) multi-periodicity - in order to incorporate:
a) the changing yield spreads across time,

b) the transaction costs associated with
selling assets prior to maturity, and

c) the synchronization of cash flows across
time by matching maturity of assets with
expected cash outflows.

2)  simultaneous consideration of assets and
liabilities - in order to satisfy basic account-
ing principles and more importantly to match
the liquidity qualities of assets with those
of the liabilities.
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3) transaction costs - in order to incorporate:
a) brokerage fees, and

b) other expenses incurred in buying and
selling securities.

L) uncertainty of cash flows - in order to incor-
porate the uncertainty inherent in the depositers'
withdrawal - claims and deposits. (The model must
ensure that the structure of the asset portfolio
is such that the capacity to meet these claims is
maintained by the bank.)

5) uncertainty of market rates - in order to incor-
porate fluctuating interest rates into the decision-
making process so as to avoid lending and borrowing
decisions which may ultimately be detrimental to the
financial well-being of the bank. (For example, if
the bank lends (borrows) Tona when the interest rates

are_relatively Tow (high)).

While there are other constraints that can be incorporated into

the optimization model, these constraints are not universal.

1.6 Importance of Asset and Liability Management

As was stated pnéviou;]y, there have been many attempts to model asset
and liability management. The conclusion derived from this 1iteréture is
- that much work remains to be done on the problem since hot one of the models
proposed, thus far, incorporates all the essential features of the real world
problem whi]e‘maintaining computationally tractability.

The asset'and liability management (ALM) model developed in this
dissertation s an attempt to hé&tffy the above deficiencies. The ALM

model includes: -
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1) the stochastic nature of the problem - by incorporating
a set of random cash flows (deposits) with a given
discrete distribution,

2) simultaneous consideration of assets and liabilities,
3) transaction costs, and
L) multi-periodicity.

These features will be incorporated into the model while maintain-

ing computational tractability for large problems.

1.7 Organization of the Dissertation

In Chapter 2, the literature on the asset and liability management
models using a net present return ' criterion is reviewed. In Chapter 3, the
the ALM model is developed as a stochastic linear program with simple recourse
(SLPR). The appendix to Chapter 3 agives a brief summary of relevant sto-
chastic programming techniques and the theoretical development of SLPR.
Chapter 4 presents the results of an application of the model to one of
Canada's largest credit unions. Computer information about the algorithm
used to solve the problem is also presented. In Chapter 5, the SLPR formula-
tion is compared to an equivalent stochastic dynamic formulation to determine
if the SLPR approach results in better operational solutions for a decision-
maker. This is accomplished by a simulation of the same data (economic
scenarios) for both the SLPR and stochastic dynamic formulations. In the
final chapter, the conclusions and possible extensions of this research are

presented.



Chapter 2

REVIEW UF LITERATURE

2.1 Introduction

Before proceeding to a discussion of the normative analytical
models dealing with asset and liability management, a brief summary of the
results of a study on positive models is in order. Hester and Pierce, in a
recent study [42], use cross-sectional data to analyze the validity of a
number of portfolio selection models in bank fund management. Their main
conclusion is that there is an optimal method of managing a bank's portfolio.
The objective function utilized by Hester and Pierce was either the maximiza-
tion of net discounted returns or the maximization of.a two variable function
(where net discounted returns was dominant).

As a result of the arguments presented in Chapter 1 and the empirical
evidence obtained by Hester and Pierce, the maximization of expected net
discounted returns is taken as the appropriate objective function for a
bank in this dissertation. Therefore, only the asset and-liability mahagement
models using this objective function are discussed in this chapter.

Asset and 1iabf11ty management models fall into two broad categories
The first category consists of deterministic models. These models usé

linear programming, assume particular realizations for all random events,

15
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and are computationally tractable for large problems. Furthermore, these
models have been accepted as a useful normative tool by the banking
industry [20].

The second category of asset and liability management models are
the models that are stochastic in nature. At best these models have achieved
very modest success due to the inherent computational difficulties or to
the oversimplifications needed to achieve computational tractability. The
stochastic models include the use of the following techniques: 1) chance-
constrained programming, 2) dynamic programming, 3) sequential decision
theoretic approach, 4) linear prégramming under uncertainty, and 5) dynamic
linear programming.

The next two sections will review the deterministic and stochastic

modelling techniques.

2.2 Deterministic Models

The models discussed in this section .are important because they
can and are used to solve real portfolio problems.

The 1961 seminal work by Chambers and Charnes (CC) [11] produced a
linear programming model to optimize bank portfolios. The utilization of
linear progrémming (LP) was deemed to be acceptable given the number of
trade-offs between large numbers of variables, the intertemporal nature of
the problem and the Targe number of constraints. Furthermore, it was feasible
to structure the problem in a linear format and efficient algorithms were
readily available to solve Targe scale problems. Since the subsequent develop-
ment of other deterministic models was either a slight extension or an appli-

cation of the CC model, a summary of their article is essential.
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The CC model maximizes net discounted returns, subject to budget
(sources and uses of funds) and liquidity constraints. These constraints
are developed from the capital adequacy formula as put forth by the American
Federal Reserve Board (FRB) [27]. These constraints are presented below
(in a somewhat different form from those originally used by CC) because
they are utilized later in the ALM model

A bank's Tiquidity under 'normal' economic conditions is said to

be adequate when

Market Value Total
of Assets = Liabilities

- (Equity + Surplus) (1)
The value of the total liabilities is defined as their book value and the

market value of assets is defined as their liquidation value as given by:

A =

t {].' Bi] it (2)

l~13

]

where, At is the market value of assets, in period t, Bi is a parameter con-
tained in the capital adequacy formula used to measure the shrinkage in the

value of asset i from book value if the asset has to be liquidated quickly,

and Xit is the book value of asset i held in period t.

If only a single bank were liquidated, then equation (1) would
ensure no loss of principal to depositors. However, in the event of severe
recession (or financial disintermediation), other financial intermediaries
are also likely to be in financial distress. Consequently, according to the
FRB, the discount required to liquidate assets is expected to be greater

(except for cash and treasury bills) than the value used to compute A [27].
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This additional loss is a:function of-both.the anticipated deposit
withdrawals and the asset structure. The functional relationships, for
the additional Toss, is defined by inequalities (4), which are developed
as follows. The dollar value of .the expected deposit withdrawal under

adverse economic conditions is

where wt is the anticipated withdrawal of liabilities in period t, Y; is
the parameter contained in the capital adequacy formula to measure the con-

traction of liability i under adverse economic conditions, and Yi is the

t
book value of liability i in period t.

In order to determine how the asset structure affects liquidation
under severe financial disintermediation, the assets are classified as per
the FRB's capital adequacy formula [27] as follows: 1) "Primary and Secondary
Reserves" (K;) which includes cash (k;), treasury bills (kz), and govern-
ment bonds of less than five years maturity (ks); 2) "Minimum Risk Assets"
(K2) which include government bonds with more than five years maturity (ky)s
municipal bonds (ks); 3) "Intermediate Assets" (Ks;) which includes mortgage
Toans (ke)s and 4) "Portfolio Assets" (Ki,) which consist primarily of personal
loans (k7).

Based on this asset classification, 1iqu1d1tylreserves Pi are con-
structed with the property that they increase as the assets become more
illiquid and/or the liabilities become more liquid.

The extra liquidity required as reserves for possible adverse

economic conditions is determined as follows:
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P. > qy|W - ) oy k}, i=1,2,3, (4)
keKlu---UKi
where o are the parameters contained in the capital adequacy formula used
~ to measure the shrinkage in. the value of asset k from book value if the
asset has to be liquidated quickly under adverse economic conditions, and
q; is a measure of the reserves required by the bank for excess liquidity
of liabilities over assets in K; U ¢-¢ U Ki' Finally, the FRB's capital
adequacy formula is
K
) Bix; < Net Worth -P, -P, -Ps. (5)
i=1
Since decision-makers, operationally, manage assets and liabilities

(and not net worth), an intuitively more appealing manner of stating (5) is

A

I
He~1 =

(6)

Total right }
;

[1-8.]x1 > P, + Py + P3 + thand side of - surplus - equity
1 ! ' balance sheet

Thus the general formulation of the CC-type model may be stated as

n
max TocLx.
X'ZO U=] J J
J
n
s.t 'Z Sti%5 ~ S¢
j=1
P q [w - a . X
it - ittt X ;K Us + oK X5
n 3
Z] []'Btj] X5 2 izl Py * Ly
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where i=1,2,3; t=1,00,Ts k=T,°°,K; Cj is the net present return on asset j;
X is the amount of the ith financial instrument; St is the per dollar flow of
funds for financial instrument i in period t: Stlis the - external flow of funds
in period t, T is the number of time periods; atkj is the initial, policys or
terminal technological coefficient type k in period t for instrument j; btk
is the resource available for policy or terminal constraint type k in period t;
and K is the number of initial, policy, and terminal constraints.

The input necessary for the above formulation is an initial port-
folio and an economic scenario of the future. The linear program yields an-
optimal course of action that is presented by a series of (T) balance sheets.
However, only the immediate changes in the portfolio are of consequence.to
the decision-maker since more information will be available at the next
decision point. Before implementing the portfolio generated by the solution,
the Tinear programming technique can be used to test the sensitivity of the
optimal solution to policy changes and changes in the expectations of the
economic environment.

The dual variables and the reduced costs have important economic
implications for asset and liability management. The binding constraints
can be identified thrOuQH the (nonzero) dual variables. The value of the
dual is interpreted as the incremental improvement (worsening) of the objec-
tive function by.releasing one unit of resource. This is of practical
importance since costs can be attached to the procurement of additional

resources. For instance, in their case study, Cohen and Hammer [20] found

the duals of the capital adequacy constraints to be high, which suggested
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that additional capital (assuming the marginal cost of procuring funds is
less than the dual), would result in greater profitability for the firm.
In the same manner, the opportunity costs of bank policies can also be
determined from the dual variables.
Reduced costs also provide useful information to the decision-
maker., If a portfolio manager wanted to purchase an asset, not currently
in the optimal solution, then the reduced cost is interpreted as the per
unit profitability forgone in diverting funds from the optimal portfolio
to this new portfolio.
There are two other important uses of the linear programming model.
The first is to observe the effects of any policy change by the bank on
the optimal portfolio. This is accomplished by inserting additional con-
straints in the linear programming formulation. The second is to observe
the effects of any changes in the bank's expectations of the economic environ-
ment on the optimal portfolio. This is accomplished by changing the returns
and costs of financial instruments and the resources available. Thus the
changing expectations are reflected in the new optimal solution generated.
Despite the fact that the literature contains many examples of
successful applications [20, 50,53] of the CC model, criticism continues to
be Tevelled at the model: (see for example [7,21,34]). The major source
of the disenchantment is the omission of uncertainty in the model. " Prob-
ability distributions can be obtained fbr different economic scenarios and a
lTinear programming formulation can be applied to each scenario in order to gen-
erate optimal solutions. However,.this will_not generate an optimal solution
to the total problem but rather act as a deterministic simulation to observe

portfolio behaviour under various economic conditions. Another criticism
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of the model is its use of the Federal Reserve Board's capital adequacy
formula which is 1likely to be too conservative and could lead to portfolios

that are too 'safe' and thus not profitable enough.

2.3 Stochastic Models

The major weakness of tﬁe CC modelling approach to asset and
Tiability management, as perceived by most researchers, is the inability of
the model to cope with the inherent uncertainty in the problem. The majority
of the models discussed in this section are concerned with the above short-
coming and thus are more occupied with technique than with capturing the
essence of a realistic asset and 1iability management.

One of the initial attempts to incorporate uncertainty -utilized
chance-constrained programming. Charnes and Thore [16] and Charnes and
Littlechild [15] were the pioneers in this area. The capital adequacy formula
was replaced by chance-constraints on meeting withdrawal claims. Future
deposits and loan repayments were expressed as joint normally distributed
random variables. Though both papers enabled the decision-maker to
explicitly incorporate uncertainty in a manner that was computationally
tractable, the chance-constrained procedure does not have the facility to
handle a differential penalty for either varying magnitudes of constraint
vio]atioﬁs or different types of constraints. Also in a multi-period model,
there are conceptual difficu]ties, as yet unresolved in the Titerature dealing

with the treatment of infeasibility in periods 2,+++,n [32].] In other

?See the appendix at the end of Chapter 3 for additional
clarification.
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words, the principal weakness of chance-constrained programming is that the
economic consequences of violating a constraint are considered only
indirectly.

A second approach was dynamic programming. This technique solves
the problem of asset and liability management only for very limited numbers
of financial instruments. Eppen and Fama [34,35,36] modelled two and three
asset problems, and their work was extended by Daellenbach and Archer [28]
to include one liability. The virtues of these models are that they are
dynamic and that they take into account the inherent uncertainty of the
problem. However, albeit these are useful tools in practice, their applic--
ability is limited by the small number of financial instruments that can be
analyzed simultaneously.

A third alternative, proposed by Wolf [98] for approaching the
problem, is a sequential decision theoretic approach. The essential notion
of his model is to employ sequential decision analysis to find an optimal
solution through the use of implicit enumeration. The flaw with this tech-
nique is that it does not find an explicit optimal solution to problems with a
time horizon beyond one period, because it would be necessary to enumerate
all possible portfolio strategies for periods preceding the present decision
point in order to guarantee optimality. In an effort to explain away this
drawback, Wolf makes the dubious assertion that the solution to a one period
model would be equivalent to a solution provided by solving an n period model.
(He thus avoids the problem of synchronizing the maturities of assets and
Tiabilities.)

A fourth approach, suggested by Cohen and Thore [21] and Crane [24],
is stochastic Tinear programming with simple recourse [SLPR]. Although

relatively efficient solution algorithms existed for solvinag SLPRs [91,92].
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both models were solved by using ‘extensive representation.'1 This technique
explicitly characterizes each realization of the random variables in the
model formulation by a constraint. So large (realistic) problems were
computationally infeasible. This handicapped the modellers greatly, in fact
Cohen and Thore viewed their model more as a tool for sensitivity analysis
(in the aggregate) rather than a normative decision tool. Thus the computa-
tional dntractability and the perceptions of the formulation preciuded con-
sideration of probiems other than those which were 1imited both in terms

of time periods (Cohen and Thore used one and Crane used two), and in the
number of variables and realizations. There was an attempt to apply this
formulation by Booth [4]. He limited both the number of possible realiza-
tions and the number of variables considered in order to incorporate two
Atime periods.

In this dissertation a comprehensive and systematic asset and
liability management model will be developed using SLPR and the most efficient
algorithm [ 95] available will be used to solve it.

| The final stochastic approach was proposed by Bradley and Crane
(B-C) [5, 6, 7 J. This model has many of the desirable features essential
to a bank portfolio model. The model has as its conceptual origins the
Wolf [98] formulation. Recall that Wolf's model became computationally
intractable as the number of time periods increased. In order to overcome
this shortcoming, they reformulated the asset and liability problem and
developed a general linear programming decomposition algorithm that alleviates

the computational difficulties.

]See appendix at the end of Chapter 3 for further comments.
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The B-C model depends upon the development of economic scenarios.
These economic scenarios are considered to include the set of all possible
outcomes. The economic scenarios can be thought of as a tree diagram where
each element (economic conditions) in each path has a set of cash flows
(varying amounts of deposits) and a set of interest rates. The problem is
then formulated as a linear program. The objective function is the maximiza-
tion of the expected terminal wealth of the firm. There are four types of
constraints: 1) cash flow constraints, which do not allow the firm to
purchase more assets than it has funds available; 2) inventory balancing
constraints, which ensure that the firm cannot sell and/or hold more of an‘
asset at the end of a period than it held at the beginning of a period;
3) capital loss constraints, which do not allow the net realized capital
. losses in a period to exceed some pre-specified upper bound; and 4) class
composition constraints, which Timit the holding of a particular asset.

Their formulation is

K (N-1 ok - .
max J pley) z{z [y§<em)+vr‘;,N(eN)Jhr'jm(eN3+

e cE k=1‘m=0

N™"N
k k k
[YN(eN) * VNN(eN)}N(eN)}

s.t.
Cash Flows
K K |n-2
k k k k k
1) kzl b (en) B kzl[;zo ym(em)hm,n—l(en-1) ¥ yn-1(en-1)bn—1(en-1i]



26

2) Inventory Balance

- h;,n—1(en—1) + sg’n(en) + h;,n(en) =0, form= 0, ,n-2,
- bﬁ_](en_]) + SE-],n(en) + hg-l,n(en) =0,
g o(2g) = hg»
3) Capital Losses
LT et <o

4) Category Limits
L o |

5) Nonnegativity

where e, € En; n=1,s++,N; k=],---,K; e is a set of economic condition from
period 1 to n having probability _p(en); En is the set of possible economic
conditions from period 1 to n; K is the number of assets; N is the number of
time periods; yg(en) is the income yield per dollar of purchase price (period
m) of asset k (conditional on em); VE,N(eN) is the expected terminal value

per dollar of purchase price (period m) of asset k and held at horizon (period

N) conditional on ey’ bﬁ(en) is the dollar amount of asset k purchased in
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period n conditional on e,s h; n(en) is the dollar amount of asset k pur-

chased in period m.and still held in period n conditional on ey’ sg n(en)
is the dollar amount of asset k purchased in period m and 501d in period n,
conditional on e ; g% n(en) is the capital gain (loss) per dollar of purchase

(e ) is the incremental

price (period m) of asset k sold in period n; fn-'n

increase (decrease) of funds available for period n; Ln(en) is the dollar
amount of maximum allowable net realized capital losses in period n; and»;;
CE(en) is the upper (Tower) bound in dollars on the amount of funds 1hVeéted
in asset type i in period n.

The B-C formulation is dynamic in nature. The first decision
(immediate revision, h%l(el), bk(el), s%l(el)) has as its feasible set the
intersection of all possible realizations (that is the current solution
must be feasible for the set EN). This decision is conditional on the reali-
zation of economic events in the first period. The feasible set for the
second decision is the intersection of all possible realizations from the
second decision point to the horizon of the model. In other words, the final
solution generated has decisions at each point in time conditional on the
states of nature that have occurred up to the current decision point.

There are a number of advantageous features to this model including
its dynamic nature and computational tractability However, the B-C formula-
tion has a number of features that detract from its practicability. The
capital loss and category 1imit constraints have as upper (or lower) bounds
amounts (resources) generated arbitrarily by portfolio managers rather than
through a systematic procedure. For example, no consideration is given to

the portfolio mix in the development of bounds (except in the sense that

upper (or lower) bounds are placed on asset categories). At some point in
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time, this may imply that the bank has invested a disproportionate amount

of its available funds in Tong-term bonds when compared to the amount of
short-term 1iabilities held. Also the formulation does not utilize either
the Federal Reserve Board's recommended capital adequacy formula or any

other statistically generated systematic procedure in the development of
bounds for the constraints. Since the capital loss and category limit
constraints actually determine the composition of the solution, the arbitrary
nature of the choice may unsystematically bias the solution.

Another shortcoming of the model is that the solution to the
immediate revision problem has to satisfy all future economic events. 1In
the B-C formulation some constraints may have a very small probability of
occurring; these constraints may turn out to be binding and this would
unduly constrain the prob]em.] Thus the net effect is to restrict the
feasible region for the immediate revision problem to the most pessimistic
possible set of economic events. These two shortcomings may be corrected
by replacing the capital Toss and category limit constraints with others
that are systematic in nature.

However, it may not be possible to correct another shortcoming
of the B-C formulation - computational intractability for large problems.
B-C state [7; p. 112]

Unfortunately, taking uncertainty explicitly into account

will make an asset and liability management model for the

entire bank computationally intractable, unless it is an

extremely aggregated model. The complexities of the

general dynamic balance sheet management problem are such

that the number of constraints and variables needed to
accurately model the environment would be very large.

]See Chapter 5 for evidence of this undue constraint.
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In an effort to gain computational tractability they consider
only bonds in their model. However, even limiting their model to these
assets, the B-C model still has computational problems. Consider the
following four asset and liability management problems: 1) eight assets,
three time periods and three possible realizations per period; 2) thirty
assets, five classes of assets, three time periods and three possible realiza-
tions per period; 3) thirty assets, five classes of assets, three time
periods and five possible realizations per period; and 4) thirty assets,
five classes of assets, five time periods and five possible realizations per
period. The number of constraints and decision variables necessary to solve
each problem using the B-C formulation is: 319 constraints and 656 variables
for (1); 1141 constraints and 2460 variables for (2); 2827 constraints and
6120 variables for (3); and 116,827 constraints and 246,120 variables for
(4). These numbers were calculated in the following manner: the number
of variables is (4 + 5D + 7D2 + e + (2n+])Dn'1), the number of constraints

is equal to.the sum of the cash flow constraints (1 + D + D% + eee + Dn'1)

n-])

the capital Toss constraints (1 + D + D* 4 eee + D , the category limit

constraints (I)(1 + D + D + «+s + D" 1)

, the inventory balance constraints
(KY(L + 2D + 3D2 + oeee + nDn']), and the initial conditions K. D is the
number of possible realizations per period, n is the number of time periods,
I is the number of asset classes:. and K is the number of assets.

Bradley and Crane state that (1) has a running time of 68 seconds
on an IBM 360/65 [5]. A model, of the same size as (1), would not be of
much benefit to a decision-maker in the selection of an'actua1 portfolio,

one reason being that the aggregation of investment opportunities into

eight categories would not allow for the selection of the best opportunities
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within a group of assets. Another potential problem is the inadeguate
number of time periods to match maturities (of assets and liabilities).

In fact the exclusion of liabilities makes any matching of assets and
liabilities impossible. Another shortcoming is the Timited number of
possible realizations. Despite the fact that uncertainty is incorporated
in the model, the probability distribution of economic events is crude and
thus does not allow the model to exploit much of tho inherent uncertainty
of the model. These deficiencies would be diminished if a modej_of thé
size of problem four were utilized. However, the size of (4) (116,827 x
246,120) would make its use difficult as a decision-making tool. The B-C
formulation can be decomposed [5]; but even by decomposing (4) the basis
of the master has dimension 5467. When this is compared to (1).withrar
master basis of dimension 39 and needing 68 seconds of running time, the
computational difficulties of solving (4) are evident. Also (1) has in the
order of 2200 nonzero elements and (4) has in the order of 850,000 nonzero
elements. The computational and data handling difficulties of (2) and (3)
may be less striking but nevertheless, they remain formidab]e.

Although initially the B-C formulation may appear to be a sound
abproach to asset and liability management, computational tractability and
problem formulation seem to possess undesirable features. In Chapter 5
closer analysis will be made of the inherent problems in the B-C formulation.

In conclusion, the stochastic models presented thus far in the
literature are not satisfactory for decision-making purposes. The proposed
models Tack computational tractability for large problems and in addition

in certain cases the formulation has been developed to fit the technique



rather than reflect the actual asset and liability management problem

faced by the bank.
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Chapter 3

FORMAL DESCRIPTIOH OF THE ASSET ARD
LIABILITY MAHAGEMENT (ALM) MODEL

3.1 Introduction

The size and structure of an asset portfolio that a bank can
acquire is constrained by the uncertainty of its cash f]éws. In particular,
deposit withdrawals must be satisfied on demand. It is usually disadvan-
tagous and sometimes impossible for banks to Tiquidate earning assets in
order to meet unexpected shortages in cash requirements. Thus a bank must
hold a sufficient portion of its assets in cash and 1iquid assets to meet
unanticipated cash drains as they arise. It is in this environment that
a bank must function. This involves a trade-off between the opportunity
cost of holding lower yielding liquid assets and the potential loss incurred
in selling assets prior to matukity.

To insure an 'optimal' synchronization of the maturities of assets
and liabilities and an 'optimal' return.on investment, certain features must
be included in,én asset and liability management model. The first feature
is mu]ti—periodfcity in order to capture the shifting yield spreads across
time, to incorporate the transaction. costs associated with calling and
selling assets prior to maturity and to incorporate a smoothing of net

cash flows across time by matching the maturﬁty of assets with anticipated

32
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cash outf]bws. The second feature is environmental uncertainty in order to
include the uncertainty of cash flows (deposits) and interest rates. The
third.feature is the simultaneous consideration of assets and liabilities

in order to satisfy basic accounting principles and to match the liquidity
qualities of the assets with those of the liabilities. The final feature

is that transaction costs should be included in order to incorporate brokerage
fees and other expenses associated with the purchase and sale of financial
instruments.

The approach taken in this dissertation to the asset and liability
management problem has as its motivation the Chambers and Charnes formulation
[1T1]. However, there are certain inherent weaknesses in their formulation.
For example, the exclusion of uncertainty [7, 15, 21, 28], the exclusion of
liabilities as decision variables [7, 201, the use of conservative Tiquidity
constraints (as prescribed by the Federal Reserve Board [27]) [20], the
availability of funds for investment purposes only at the end of a period
[20], the holding of investments to maturity and the omission of differen-
tiating between the costs of various types of deposits, have been well
documeﬁted in the Titerature. Nevertheless, the model has served as a
starting point for many applications to actual problems. However, as the
literature survey in Chapter 2 demonstrated, no existing model handles
these problems well.

The incorporation of uncertainty in an efficient manner was the
main difficu]ty of researchers attempting to extend the CC model. Many
stochastic optimization methods were unsuccessfully used to approach the

1

problem. Computational tractability was the obstacle that could not be

overcome.

]For a review of stochastic programming see the appendix at the
end of this chapter.
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As was already noted, the Wets algorithm 1951 (see appendik) will
be used as the solution technique to solve the asset and liability manage-
ment model (ALM) presented in the next section. The ALM model will allow
a bank to address the question of uncertainty of its cash flows in a
systematic manner. All of the features necessary for a comprehensive asset
and liability management model enumerated earlier will be incorporated in
the model. Techniques to overcome the other shortcomings of the CC model

will also be included in the ALM model.

3.2 Formulation-of The ALM Model

The asset and 1iability management- (ALM) model 9s an
intertemporal decision-making optimization tool to determine a portfolio
of assets and liabilities of a bank, given deterministic rates of returns
and costs (interest rates), and random cash flows (deposits). Although the
ALM problem is essentially a continuous decision problem as portfolios are.
constantly being revised over time, the computations and analysis involved
with a continuous time process are infeasible for a normative tool. There-
fore, the ALM model is developed as a multi-period decision probiem in
which portfolios are determined at consecutive discrete points in time
(for example, the end of each accounting period).

The ALM model is developed in a mathematical programming frame-
work. The general formulation can be stated as:

1. Objective function

maximize the net present profits of a
bank minus the expected penalty costs
for infeasibility.
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2. Constraints

a. legal, which are a function of the
bank's jurisdiction,

b. budget, which are the initial condi-
tions and the sources and uses of funds,

c. liquidity and leverage, to satisfy
deposit withdrawals on demand, (the FRB's
capital adequacy formula form the basis
of these constraints),

d, policy and termination, which consist of
constraints unique to the bank and condi-
tions to ensure the bank's continuing
existence after the termination of the
model, and

e. deposit flows.

Constraints (a) and (b) are deterministic, (c) consists of both deterministic
and stochastic constraints, (d) can consist of either deterministic or
stochastic constraints, and (e) contains only stochastic constraints.

Chambers and Charnes [11]fand>Cohen and Hammer [20] have justified
the use of 1ine§r functions to model a bank's asset and 1iability manage-
ment problem. Thus from the point of view of linearity, the appropriate-
ness of using LPUU] is established. The uncertainty aspect of LPUU is
justified with the following argument. In the banking business, constraint
violations do not imply that the intermediary is put into receivership.
Rather the bank is allowed to restructure its portfolio of aséets to regain
feasibility at some cost (penalties). The ALM problem fits well as a stb—
chastic linear program with simple recourse .model. |

As was stated previously, the formulation is a multiperiod model.

However, the model is a zero order decision rule model in that decisions

]Linear programming under uncertainty.
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for period 1,+<+,n are made as an instant revision in period 1 in such a
way that total profits minué expected penalty costs in period 1,«++,n is
maximized. It should be noted that the decision-maker is essentially
interested in the immediate revision of the bank's assets and Tiabilities.
The ALM model incorporates immediate revision by setting times 0 and 1 an
arbitrarily small time period apart. The point 0, in time, refers to the
bank's initial position and the point 1 refers to the bank's position
immediately after running the model. In practice the model should be 'rolled
over' continuously. Also to partially overcome the drawbacks of a static
model, the decision variables are defined in such a manner that a security can
be purchased in one time period and sold in one or more subsequent periods.
In addition, the recourse aspect of the model gives it a dynamic
flavour. The model being two-stage, means that initially the decision
variables are chosen. Next the stochastic variables are observed. This
determines the recourse variables (in order to recover feasibility) and
their corresponding penalties. The penalty is a function of both the con-
straint violated and the magnitude of violation. The recourse cost has
the effect of restraining 'aggressive' choices of decision variables if the
costs involved with regaining feasibility outweigh the benefits. Thus,
the 'rolling over' of the ALM model, defining the variables so as to give
them flexibility and the recourse aspect of SLPR, are the dynamic features
of the ALM model.

The ALM model can now be presented (see pages 39, 40, 41, 42).



Notation for ALM Model

asset k purchased in period i sold in period j; k=1, ..., K;
i=0, ...,n=-13 j=i+l, ...,n,

initial holdings of security k,

security purchased in period i and to be held beyond the horizon
of the model,

new deposits of type d in period i; d=1,-+-,D,
initial holdings of deposit type d,

funds borrowed in period i,

shortage in period j of stochastic constraint type s,
surplus in period j of stochastic constraint type s,

+

proportional penalty cost associated with st’

proportional penalty cost associated with y}s,

parameter for shrinkage, under-normal economic conditions, in:period
j of asset type k purchased in period i,

parameter for shrinkage, under severe economic conditions, in period
J of asset type k purchased in period i,

proportional transaction cost on asset k, which is either purchased
or sold in period 1, ‘

return on asset k purchased in period i,
tax rate on capital gains (losses) in period j,
marginal tax rate on income in period j,

proportional capital gain (loss) of security k purchased in period
i and sold in period j,
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Yy the ant1c1pated fraction of deposits of type d withdrawn under
adverse economic conditions,
d . .
c; - rate paid on deposits of type d,
P, - discount rate from period i to period o,
K!' - set of current assets as specified by the British Columbia Credit
Union Act,
K, - set of primary and secondary assets as defined in the Capital
Adequacy Formula, -
Ko - set of minimum risk assets as defined in the Capital Adequacy
Formula,
Ki - set of intermediate r1sk assets as defined in the Capital Adequacy
Formula,
Q; - penalty rate for the potential withdrawal of funds, which are not
covered by assets in K; U eee U Ki’
Pi - Tiquidity reserves for the potential withdrawal of funds not covered
' by assets in KV ...‘JKi,
kmi - mith mortgage, and
- discrete random variable in period j of stochastic constraint

£.
IS type s where s ¢ S.
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The ALM Model
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(b) Budget constraints

(i) Initial holdings
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(c) Liquidity constraints
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(d) Policy constraints
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The objective function consists of five expressions. The first
expression is the discounted returns (net of taxes) and capital gains and
Tosses (net of taxes) on assets. The second expression refers to the net dis-
counted costs of deposits. The third and fourth expressions refer to the
cost of direct borrowing either from other banks or from a central bank.
The final expression is the sum of the expected penalties for violating
the stochastic constraints.

There are no discount factors incorporated into the constraints
since each constraint refers to conditions in only one period. The ALM
model treats the first two types of constraints, legal and budget, strictly
as deterministic. The legal constraint shown states that the current
assets cannot be less than 10% of the total Tiabilities less reserves,

1

surplus and equity. The legal constraints are, of course, peculiar to

the locale of the institution being studied. The budget constraints include
the initial conditions and a statement of the accounting identity - uses
of funds are equal to sources of funds.

The liquidity constraints, as developed in Chapter 2, follow
from the Federal Reserve Board's capital adequacy formula. The require-
ment that the market value of a bank's assets is adequate to meet depositors'
withdrawal claims during adverse economic conditions is. the principal
constraint in the capital adequacy formula. In order to develop this
constraint, liquidity reserves (for adverse economic conditions) are

first defined.2 The first three Tiquidity constraints in the ALM model are

"As defined by the British Columbia Credit Union Act [8].

2The same notation is used as in Chapter 2, Section 2.2,
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P. > qi{w -

. - k], i=1,2,3.

keKlu---UKi

The principal constraint of the capital adequacy formula is

K 3 total right hand
) [1 - Bi]xi > Y P. + ¢4side of balance - surplus - equity
1 i=1 sheet

The constraint states that the market value of the bank's assets
should be equal or greater than the liquidity reserves for disintermediation
under severe economic conditions plus all liabilities. This constraint is
in fact the last liquidity constraint in the ALM model. Although thié con-
straint is not stochastic in nature, a bank portfolio manager may violate
it because the capital adequacy formula as set forth by the FRB is a
suggested guideline for 'sound' bank management rather than a strict .
regulation. The penalty for a violation of this constraint is ‘i q;

(as prescribed by the FRB). This 'psuedo-stochastic' treatment|:; the FRB's
regulation allows the constraint to be violated when the benefits of
violation exceed the costs. In this manner, the criticism, levelled at
modellers using FRB's conservative constraints, can be resolved in a
systematic manner.

The fourth set of constraints is also psuedo-stochastic.

These constraints are introduced to capture the internal operational policy
of the institution modelled. In reality minor constraint violations of
"bank policies are usually tolerable while more severe violations are
increasingly less tolerable. The introduction of a piece-wise linear

convex penalty function (via additional constraints) can capture the

dependency between the penalty costs and the extent of the policy violations.
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This is accomplished by the addition of supplementary constraints to

reflect the increased seriousness in the magnitude of constraint violations.
The final set of constraints, deposit flows, are stochastic. Since

deposit flows are continually turned over and bear various rates of interest

(term deposits), the model has to reflect the actual (and not net) flows during

an accounting period. This property of .the problem was incorporated in the

" model by having a probortiona] outflow-(y)] of 'old funds' during each period.
The three types of liability expressions in the ALM formulation

will now be deve]oped. First, consider the deposit flow constraints. These

constraints represent the total amount of new deposits in the jth period.

The total amount of new deposits of type d generated in period j is

-1 j-i
d _ d ) J d X
Yy =By - L yi[] ] Yd}

or

i-1 j-i

d d . d
b4 1 - = BsY .

Y izo yT{ Yd] BS

where y? is the total amount of new type d deposits j, Yy is the annual
rate of withdrawal of type d deposits, and BS? is the discrete random
variable representing balance sheet figure of type d deposits at the end
of the jth period.
The second type of liability expression represents the total amount

of deposits outstandiﬁg during a period. Since the model is discrete, an

approximation to the continuous flows is made by assuming that half of a

]Statistically calculated by the FRB and corroborated for use in
British Columbia in [25].
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period's net flows arrive at the beginning of the period and the other
half arrive at the beginning of the next period. Thus during the first

period, the funds available are equal to

d - d
Yo ¥ [] - YdIyO L
7 2

for period j

j-i-1 }j-i d
= [1 - Y] yi t [1 S YL Y X Yy
o 2 2
or
. - d
=ty Y4} J-i-1 vy
-4 - 1
LAl-Zl- e

The above expression is used in the objective function, legal
constraint and liquidity constraints. The third 1iability expression is
the incremental increase (decrease) of deposits from one period to the next.
‘This incremental difference is used in the sources and uses constraint.

For period j the incremental difference is

T . d : . d
izt oy Yq) J-i-1 vy, iz g4 Yd) J-i-2 vy,
Y - SR T 23-1
;Zo Yi [] 2 [1 Yd} ' 2 iZQ yi [] 2 J [] Yd] ' 2

. 1.d d

iz 4 J-i-2 Yq) (1 - Yd]y~ Y

- - i -4 =1 4,73
izo y1[1 Yd] Yd{] 2] ¥ 2 t 2
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3.3 Use of the ALM Model

Before implementing the ALM model, various inputs to the model

have to be determined. The data required by the model include:

1) the identification of the assets in which the
bank can potentially invest (or at least a
representative group of assets),

2) the point estimates of the returns on these assets,

3) the point estimates of capital gains (losses) as
a function of the time the bank holds the assets,

L) the identification of the liabilities which the
bank can potentially sell,

5) the point estimates of the costs of these liabilities,
6) the rate at which deposits are withdrawn,

7) an estimated weighted cost of funds to determine
the discount rate,

8). the pertinent legal constraints,

9) the‘parameters used in the development of the
liquidity constraints,

10) the policy constraints used by the bank,

11) the estimates of the marginal distributions of the
stochastic resources, and

12) the unit penalties incurred for having a shortage
or a surplus in the stochastic constraints.

Remarks, are in order, about the characteristics of certain of
the above inputs.

Since the SLPR model has a separable objective only the marginal
distributions of the components of the resource vector are needed to find

the optimal solution. This characteristic of SLPR is most important since
in most problems the correlations of the ‘components of the;random vector

would have to be incorporated in the solution techniqué

1 . . . .
“ See thie appendix at the end ofFf ¢he chiapter 1TUr ¢ tarcior drscussion .
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The shortage (y+) and surplus (y ) variables have very specific

meanings in the ALM formulation. Consider a realization g?s’ of the random
., d

deposit gjs' If

i=1

d -1 g
. yi[] - Yd} < &5

j-
yj + iz
then this would imply that y' > 0 and y~ = 0,if p* + p~ > 0. y* would be
interpreted as the amount of funds that could have been used for investment
purposes in the ALM. Since the cost of deposits is usually Tower than
the returns-on assets; the bank would want to utilize all
available funds. A penalty p+ > 0 for the oppdrtunity cost can be determined
by assuming that the funds not used can .be invested in-earning assets. The
y+ dollars would be available at some rate c and could then be invested in
some asset at a rate r. The penalty, p+, would be equal to (r - c) dis-
counted to point O plus the net discounted returns on y+(r - ¢) to the
hbrizon of the model (that is the profits that could. have been generated).

On the other hand, if |

j=1

d d J-1 g
. yi[] - YdJ > s

j-
‘yj + iz
then this would imply that y > 0 and y+ = 0, that is that a surplus would
occur. In this case, the bank would have to divest itself of some earning
assets. The cost, p , of this action would be equal to (r - c) discounted
to point 0 plus the net discounted returns on y (r - c) to the horizon of
the model (that is, the proffts.thai.wou]d-have been generated with unavail-

able funds).
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One point to notice is that in the above case, both p+ and p~
are greater than 0. In other words, profit is forfeited if either not enough
or too much is jnvested. A key issue is what r and ¢ should be used to
determine the penalties. This point will be addressed in Chapter 4, where
a case study of the ALM formulation will be presented.

The Federal Reserve Board's parameters used in its capital
adequacy examinations of a bank's portfolio of assets and liabilities are
well known, see for example [27]. Before utilizing their figures in the
ALM formulation, estimates of these parameters should be made in order to
test their applicability to the problem at hand.

When using the Wets' algorithm to solve an actual problem, two
additional numbers are required for each stochastic constraint, o and B+
The realizations are ordered gi] < 512 < ese < Eiki' The o and B are
chosen such that a; < g11 and Bi > Eiki’ Also the o and B8 are chosen so
that optimality is in this regioh.

The Wets' algorithm solves a special type of linear program.

So at any point in time the dua]s generated correspond to the duals of a
deterministic linear program. The dual of a stochastic constraint, at
optimality, may be negative. This implies that an increase in the value

of the right hand side would result in a decrease in the value of the solu-
tion (benefit). However, the reason that the stochastic resource component
does not increase is that the marginal penalty cost exceeds the benefits

accrued from the increase.
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3.4 Appendix 1

A most important aspect of asset and 1iability management optimi-
zation models is the inclusion of uncertainty. There have been a number
of techniques developed to solve stochastic-optimization models. This
appendix serves to highlight the major stochastic linear programming solu-
tion approaches (stochastic with respect to right hand sides). Also, since
the ALM formulation presented in this dissertation uses the stochastic linear
programming with simple recourse (SLPR) approach, particular emphasis is
placed on SLPR, its characteristics and the Wets' algorithm used to so]vé it.

Let (%,F,n) be a probability space. Let £ be a random variable
defined from © to a finite subset of R". The distribution function of 123

is denoted by F,
F(z) = u({w: g(w) < z}) = P{g < 2}

where z ¢ R™ and P is the induced measure on R".

The model to be considered in this appendix assumes & is a
discrete random variable with possible realizations g],---,gL <o, A
general abstract formulation is {mig Eg[f(x,g)]lg(Ax -g) > 6} where A
ismxn, xeR" is3the decision é%riab]e, f: R%a > R and q: Rm 5 rK.
Four basic approaches have been suggested in the mathematical literature

to solve this model.
1. The Fat Formulation [55].
This procedure is to solve

min ¢'x
x>0

s.t. Ax = &' q=1,eee,L,
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the feasible set is

K = {x: x>0, xe h {x: Ax = gi}} .

’ i=1
- where K is the intersection of the feasible sets for each realization (that
is the safest region). One advantage of the fat»formu]ation is that it is
deterministic. A*major,disadvahtaqe is that K may be empty or unduly .
restricted. "The:fat -formulation .leads to*verv large deterministic equiv="
alents. Since the Brad]eyiand'Cfane [5, 6, 71._model's solution to:-the
immediate revision problem has to satisfy the constraints for every

possible realization, it is a fat formulation.

2. Chance-Constrained Programming {12, 13].

This technique defines x to be feasible if it satisfies the
constraints, Ax 2z &, with a certain prespecified probability. There are

several types of chance-constraints which may be formulated. The follow-

ing discussion focuses on two types of constraints:
1) marginal chance-constraints:

P{A_i.X z gi} 2 G,_i 9 'i=-]’ooo’m,

th th

where Ai- is the i row of A, gi is the i*" component of &, and a; €

[0,1] are given, and

2) joint chance-constraints:

m
P{x: xe N {x: Ai- X 2 Ei}} >0,

i=1

where a ¢ [0,11.



The deterministic equivalent of the marginal joint constraints
P.{A' X 2 E]} z OL-i
is

A, x>F for i=1,+++,m

where Fai is inf{y: y ¢ Yi.where Yi = {y: Fi(y) > ai}}, the smallest
a;-fractile of F (where F. denotes the marginal distribution of gi)‘
See [67] for a discussion of deterministic equivalents for joint chance-
constraints. |

The shortcomings of this approach include the difficulty in
specifying the probabilities o and o in a systematic method. Secondly,
there is no differential penalty for: 1) small versus large infractions of
constraints, or 2) the type of constraint violated. Also the treatment of
a multistage problem has not been adequately conceptualized. The problem
of handling constraint violations from period n to period n+l, has not
been resolved. Eisner, Kaplan and Soden [32] have discussed three alterna-
tive approaches to this problem: 1) total chance-constrained, 2) safety-
first, and 3) conditional-go. and have provided some preliminary results

on this difficult problem.

3. Stochastic Linear Programming [787].

Generally stated, this technique studies the distribution of the
objective function, by solving a linear program for each realization of

the resource vector. For each i=1, ...,L the.following linear program is

solved.
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z, = min ¢'x
X
i
s.t. Ax = &
x>0

This sequence of Tlinear programs generates the distribution of z based

on the distribution of &. Clearly this approach has little application as
a normative tool.for static problems. However, since recourse models con-
tain distribution problems as subproblems their use in recourse models is

quite important [78].

4. Stochastic Linear Programming with Simple

Recourse [3,29,103]M

A SLPR can be expressed as

min {c'x + E [ inf [§+|y+ + q_lgj]}
sz £

y+,y'30

s.t. Ax = b

X+ Iy - Iy

i}
Y

n . n . .. ,
where ¢ € R is the cost vector, x ¢ R is the decision vector, & is a
— . m my . '
random variable defined on R"2, b € R} is the known resource vector,

v, vy € R™ are the recourse variables, g7, 9" ¢ R™ are the unit penalty
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costs, A is a 'm;y x n known matrix, T is @ m, x n known matrix, and I is a
m, x m, identity matrix.

Usually y+ is the 'shortage' variable and y  is the 'surplus®
variable. The objective is to minimize the sum of c¢'x and the expected
linear penalty cost. This problem may be viewed as a two-stage problem.

In stage one an x is determined.: Then in the second stage the recourse vari-
able y-+ and y~ are determined in such a manner as to retrieve feasibility with
“the given Tx. The fecoUrse oroblem is always feasible and bounded from
below if q° + g~ > 0. Parikh“[ei] shows that if q; t g = 0, row i can
be eliminated. Clearly if.q* + q7 < 0 the problem is unboundéd.
In this dissertation, & is restricted to be discrete. This allows

(P1) to be expressed as a linear program.

. L +' +q - Li
(P2) min {C'X + 1 Pi[q y +4qy J}
X:{‘y+]3.y_‘1}20 I,=]
s.t. Ax = b
TX + Iy’+1 _ Iy'1 - g-l -i:_-'l,oo-,L

where Pi F,Pr (E-=~£j), i=1,f..,L.

This form, (P2), 1%'knOWn»as the "“extensive represéntation' of
the discrete form of (P1). Couhault [23] uses this formulation directly,
but it is clear that for reasonably sized problems, the number of constraints
quickly becomes unmanageable. E]-Agizy [33] uses this representation to
reduce (decompose) the problem to a smaller separable convex program.

However, the most satisfying treatment of this problem is aiven by Nets.[QS].

In this papner, he modifies techniques similar to those developed for
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generalized upper bounding (notably the working basis concept [30,31])
to reduce the problem to one that is tractably comparable to a linear
program with m; + my rows and n variables. |

Consider the second stage problem

. i+ + N
Q(x,&) = min qQ y +q vy
+ -
y »y >0
s.t. Iy - Iy" =€ -y,

where X = Tx. It follows that

Q(x.8) = .Z Ee Q; (x;5€5)

1

- min gt v.t + gt v vt oV = L -y,
where Qi(xi,ii) {qi Y; 97 Y; Iyi \Z g5 x1},

+ -
Yi s¥i 20
i=1,...,L. Hence the recourse problem is separable. _Thus only the mar-

ginal distributions are of importance.

To illustrate the Wets algorithm [95] write (P2) as the

separable convex program

mo : My
(P3) min ¢'x + ) E {Q.(Xi,i.)} =min ¢'x + ) Q.(x.)
x>0 =1 & T =1 1
s.t. Ax =b,
TX = .

The/Qi(xi) have the useful representation [95]:
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i .

Q. (x:) = qH(E. - a.) + min{ -
L. 2=-1 R==1 !

Yig

Vi

1S 0, 0 < yi,ki+1 and 0 < Yig < diz for 2;0,5---,k1},
here P. = -q' + q.F 920, ...okis(q. = qF + q3)(F. = Pr(
where P.o = -q; * q;F4, > 2 oeeesKinlay =gy T Q)R = Prig,

P =P d

i,-1 7 %400 Piker T Pi,ki’ dig = &i,041 7 Gig» 450 7 Ejp 7 o 4y =

B; - gi,ki and a; < 51] < giz < eee < Ei,ki <:B;» and where ki is the number
of possible values of gi and gi is the mean of Ei‘

This representation is useful because it greatly simplifies
the solution of the recourse problem. Increase each of type Yiq to its
upper bound or until the sum of the Yig reaches (Xi - ai) since the PM
are increasing in 2. The algorithm needs to record the value of only the
first Yig (in each row) which is not at its upper bound, say Yim: (Since
Yig for £ < m is at its upper bound and Yig for & > m is zero). This
resembles the usual modified simplex algorithm for upper bounded variables.
Note that the Yig do not explicitly appear in the (working) basis, again
this means that the working basis is of dimension m; + m,, the same size as
if £ were replaced by its mean, &.

The pivoting rules can be thought of as examining the values
of the reduced costs and the duals (adjusted for penalties) and the select-
ing the 'largest' marginal value. If it is a reduced cost, then the usual
simplex pivot is performed. On the other hand, if it is a dual, then the
right hand side is brought to its upper bound. Appendix 2 contains the
flow chart, éomputer code and details of the implementation of the code.

Since chance-constrained programming (CCP) has been the most

widely used stochastic programming technique in the literature, a comparison
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of the solutions generated by CCP and SLPR is in order. Recall that a

CCP is of the form.

(CCP1) min c'x
. x>0 .
s.t. Pr[Aix > 851 > oy, i=1,eve,m,

and the certainty equivalent of (CCP1) is

min ¢'x
(ccp2) x>0
s.t. A.x >F i=1,e,m.
i7 - o

It_has been shown [67] that if x* is an optimal solution to

(CCP2) and II* is the corresponding dual solution to (CCP2), then with

I i
9 7T T, and q; = 0,

x* is an optimal solution to the corresponding SLPR.

Suppose x* is an optimal solution to (P2), the SLPR formulation,

and that for all 1, Fj is strictly increasing at x? then x* solves (CCP2)

and (CCP1) with a cost vector

: *
and q; - Hi
T 1=1,..., m,
1

*
where II is the dual from the SLPR solution.
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3.5 Appendix Two

This appendix consists of three parts: 1) a flowchart of the
algorithm to solve SLPR, 2) a FORTRAN-IV code for the algorithm, and 3) a
user's guide for the code. The first page of the flowchart gives an overall
view of the algorithm. The following pages explain in detail each part.
The computer code was originally written by Collins [23} and modified by

Kallberg and Kusy [49].



A.
Input
data

B.
Phase 1:
initialization

Y

C.
Find minimum reduced
cost (incorporates usual
simplex reduced cost)

D.
Is
the problem
infeasible

F.
Phase 2:
initialization

Y

G.
Do revised
simplex pivots
tillc >0

v
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E.
Find pivot row,
do simplex (revised)
pivot

H.
Do pivots (revised and upper

bounding) till ¢ > 0

Stop
'optimal'

Stop
"infeasible'




Read in:

tolerance (&)

n, My, My

(a(i),8(1,1),=2,8(1,k(i)),

A and T matrix

(h(1),===,h(m

B(i))]

1.=-|,.".,m2
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1)
\/

)

Initialize:

: { 1if h(i) > 0
(i) = -
-1 if h(i) <0

0 ifi#j
w(i,j) =
(i) if i=j

OO

AR O O
—e ady e e —de s
— e e A e
3
it none= i
N
[N el en] "
Q
—

i=], 000

=], 00

oo’m

oo’ml + M, = m

sM




Call
clmpvt
(c,s,1)

yes

Call
smxpvt
(c,s,u)

. No
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P

(13k(j)+ ]) 1=], ceey My

{c(iw(a‘)) if iw(i)< n

g

y(jw(j)—h) otherwise

(')*W(°aj)

} j:],ono’m
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Call
—> clmpvt
(c,s,1)
N\
no
S(1
Sl L SNt
(Cosom) | =
VY
Loop for

=1,  ,m
| and iw(j) > n:

Stop 'unbounded

v = iw(j) - n
2(v) =1
sum d(v,+) until, y = ‘fl d(v,i) > h(j)
x = p(v,9) - plv,k(v) +1)
§(v) = d(v,¢)

H(i) = H(i) + W(j,i)*X i=l,eee,m

end loop.
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CLMPVT (c,s,mau)

c= =min (c(j) - I(*)*A(+,3))
j:]’.-.’n

s = j corresponding to
the minimum

Return

c= min  {[y(3) + m(3+m,)], ¢}
j:],...,m;

2 -

update s (if necessary)
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H.
Call
> clmpvt
A (c,s,0)
j=1, ..., m
g(3)=w(j,)*A(+,s) Loop for i=1, ..., m,
call uprpvt no yes and 2(1) # 1
(c,s-n,2)
Y
kk = my + i

ves c = I(kk)
+ p(i,K(i))
no
g(2e) = w(28,kk)
1//<: for 22 =1, ..., m
call uprpvt (c,i,1)
\\4
g(ee) = w(2e,kk)
P =1, ..., m
<

call uprpvt
(c,i,0)

(Stop 'optima]')




SMXPVT(C, s, 1)

es

no

66

g(28) = w(28,*)*A(.,s)

g(j) = -w(j,s-n-m
j:],o-.’m
Y
<

\]
Call rwpvt
(tor,u)

iw(r) = s

call pivot (c,r)




RWPVT (t,r,u)

Y
t ¢« + =
\'%
h(j) .
& if  g(j) >0
t = min o
J=leeesm h(j) - 6(1w(12 - n) if g(J) <0
' g(J iw(j) >n
r = j corresponding to min
u=0
po=
Ino \'%

67



PIVOT (c,r)

gs = 1/9(r)
w(r,d) = w(r,j)*gs j=1,+,m
h(r) = gs*h(r)
Toop for i=T,+++,m (ifr)
w(i,3) = w(i,j) - gs*w(r,j) j=1,---.m
h(i) - gs*h(r)

m(i) + ciw(r,i)

p g
—
—.
~—
1l

=
—
—
~—
I

end loop

zy = zo - cxh(r)

Return
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UPRPVT (c,i,kik)

Call rwpvt(t,r,i)
kk = m; + i
a=20
F = false
W

Let o be the sum of d(i,K(i) - j+1) over
j=T,ee,K(i) until

(if kik = 0) p(i,K(i) - j+1) < -I(kk)
(if kik = 1) p(i,K(i) - j+1) > -I(kk)
- or -
t < a,
then g2s = last value of j ((-j) if kik = 0)
F = true

(if neither condition holds go to A)

2

h(j) = h(3) - a*xg(j) (j=1,+-+,m)
K(i) = K(i) + gs

) <{p(ul<(1)+ ) + m(kk)  if kik

o p(i,K(1)) + m(kk) if kik

(1)+1)

)
)

H Il
o —

(llliiiiiilllli’

no
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OBOGDAM KUZY [ INPUT,AUTAUT,TADE5=INPUT,TAPER=0OUTPUT)
”0”" FOF 20CER WITS AY WIOMAN COLLINS

QIFICATIONS 2Y g, KALLSIPG & .M, KUSY
wAYIw'u ViLUES 898 w2701 wiz220-n2 N=350% (1175 .

THMPLICTT ®EAL (A=H,0-7}

TINTEGER SeFE,CHT, MARTY

SEAL TP(73+10) sT0 (70410

REAL PU7Cy18), 070,100, 80372,2651,H(130),C(262)

STAL W(LC03,100),6(100),DELTA(70Y,GAMMA(T70Y,PTI(130)
MENMSICON THWILEC0) JKAPRA{TE) L {73 ,,K(73)

AL QC(701,09M(70) .

SHAON NoMyML M2 4P 0y A4 WeCoHa Gy DELTA,GAMMA,B T, IW, KAPPAL L, EPS,
S KgQP 4O%, 20 MARKER

CO4MQN /EPINTS/ TP, TH

GTICT THAT IN THE DOCUMENTATION THAT P+AND D USE 3-0RIGIN INDEXING.
M OTHI FORTRAN GODE ALL -SUCH INDEXIS HAVZ BEITN INCRIMENTED BY 1.
READ(5,022) =05 :
Q22 TOAMAT(FAD.H)
WRITE (&, 17€) FP3
176 FORMAT(4H1 T10,"TOLERANGCS IS SET AT *“.,F8,5)

C=>N
C=>7

T=»READ OIN NeMI.M2, KI,
READ (S+3GLYN, ML M2
100 SORMAT (2IS)
WRITE (641331 NaM1,M2
13Q FORMAT(///,T10,"# OF VARTIABLIS= ",I4,/,T15,"# OF DETERMINISTIC =,
c CCONSTRATMYS= 416/, T30, 4 OF STOCHASTIC CONSTRAINTS= *,I&)

Mzi1+M2
2EAD IN AND WRITE QUT THE XT-VRL_UES(POSSIBLE VALUESY AND ALPHA AND AETA
(LOWE® ANT UPPER BOUNDS) INTO D
: WRITE (6,11 i
110 FOIMATLMLM,T204,36 (%) ,/,720,"POSSIALE VALUES OF RIGHT HAND SIDE',
* /4 T20 4340 %") 4 /)

=>
C=>

DO 32 LZ=14M2 .
BEAD(5,R50) K(LZ) D (LZ42) 4 P(L742)
TOULZ V1) =P (LT, 2) '

TNLZ +1)=DLZ,42)

ITIK(LZ) JLE,1)60T037

KP=K (L7}

an 31 LEz=2,Ke

READ(5,801 ) NULZ +LA41) ,PILZLLE+LY
TOMLZLAY=DL 4L 841
TR(L7LAY=P(LZ.LA+L)

2 READAS5,832) TELZ 1) 4D(LZ4MILZY+2)
READ(5,:529) A2(L7),AM (L7}

Nl
N

P

COMAT(I3F1042+4F0, 1)
OQ‘AT(C".ZgrQ (]
FORMLT{Z2T:0.2)
FC?“ﬁszclunw’

KI=K (L2} +1

LX=Me +1 7

3= B}
ProSEaS I I g =)
L}

DD
N

WRITE (54182) LY (DIL7,JY4J=2.K])
FAORMEATATE (20W 413, T15,4(F14.2,6X) 4/,

iy
fon]
Ny
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1 LIF14,246Y))
2 HLZ7+M1) =N (LT, 1)

NOTZ TUAT THE &1 OHA(T) PEAOME THT GHT HANT TEEMS
n FOS THZ STHOCHASTIC CONSTRAITINTS

C=>wRITE CUT THF LOWZR AND UPPER RJUNDS AND CALCULATE
WRITElR: 112
FORMATU/ /74720, 62 (%), /,T20,"LOWER AND UPPER BQUNDS
10" YAPTABLEIS™ /s T20442("%"), /)

DR 35 T=1,M2

THE

7 VALUES."

0F RANDOM™,

KTz (I)+1
LY=M1+]
MPTITE(B,102)
nn 85 J=i4,+T
DUILJI=NHUT,J¢1¥=0(1,1)
READN IN ANN WEITE QUY THE

LYy DIL o293 300T,KI 412

INITIAL P-YALYESS CALCULATE

THE ACCUMULATED

=VALUES AND HRITE THEM 0QUT.
WPITE(6,1C8)
B FOAMAT(//4T2343
* /9 T2C0.3G("*™Y,7)
N0 20 I=1,.M2
=K(T)+14

ELSO WRITE QUT -0=-PLUS AND

Gty ./, T20,"PROBAJIILITIES OF RANDOM

Q-MINUS,

EVENTS*™,

LY=M4+1

WRITE (2, 102)

HERITE (B 40 W)

cO?‘M"(// T20 933 (%) /4 T20,""SHORTAGE
* /3 T20,33(%%™, /)

ng QZ I=14M2

LY, (PII,U14J22,K1)

PENALTY

SURPL

US PERALTY™,

Ux=H1+1
N2TTE (5,

(1,8v==-n210)
AC,-J.

A= {I)+OM (I}

D0 34 U= 2.KT
AGS=ACC+P (T, )
(T, J}==N2(I)+C*ACC
CONTINUE

AD IN A AND M,

2y

n
L2 AR
| AN

sy
=

SORMETIIFAC,4)
DO 178 Ji=i4M
BO 175 Je=1.N
173 4131,J2) =0

“Ue
HOTE THAT TWIS IS AND
CaODe

FROM THE
TO ENTER

DRIGINAL
ZACH P0OW OF

DI O

WHTICH WOULD 9’”,
THD MATOIY IN 8F1C.4 F
THE ACKRZEIDN EMTRTCS, SO
(I2) FCOLLOWED RY THE £
INTER 8 NULL LINE.
BG KUSY=L .M

20W INSUT
Gab)e WHEN

THE

[ 2% Rie]

W A LARGE MATRIX WHICH
COLUMN NO.
8 204 IS COMPLETE

N« E0.8Y GOTD 4893

Do
ZAD(5,312RY IND,TEMP
FoI

(KUSY, TNDI=TZMD



~fOTO 187
COMTTNUE
If¢1,E0.0) 50 70O 273

73

PTAD(GL 101 HIT) ,I=1,M1)

CAXTINUE

WRTTE (64 10EY

FOPMAT(//aT234 30 4% /4 T26C,"
/9 T23,3007%0 /)

CORMAT(TIZ,F1I. 4

A - MATRIX®™,

NUMB=N/1C+1 :
TFIMOO(N,1{)Y SN TINUMB=NUMB=L
NQ 224 J=1,NUME

Li=1+10* (J=-11

L2=MING (Q+L1,N)

WRITE(6,227)

224
222
223

WRITE (64 228)
A0 224 KG=1,4
WRITE (6,4222)

(I, I=L1,L2)

W3y (ACKG,KEY 4KR=L1,L2)

OONTINUE

FOP2MAT(/ POW "y I3,3Xs10(2XsF15e4))

TORMAT(///A0Y ¥ #4F AR AR RA KNS KX X KR LA F BN PR IP XX ERIX RIS RSANNL )

227

228

FORMAT(//.710Y
FORMAT (™ COLUMNS®,10112)
WRITZ (64103}

RIGHT HAND SIDE VECTOR™,

C=>INTTTIALTZE L.M.IWLDELTA, ANMD

GAMML S
pn s¢ T

CALCULATE

109 FORAMATH//74T20 432G € %)/, T20,"INITIAL
/.T20,3D(""‘")',/)
NG 22 I=1,1
22 WOTITE (6, 102) T H(IY
N=>TINITIALIZE PT ANO W,
DO 43 T=3.M
fRLI=1,0
2T (I)=SICNIDBLE, H(I))
00 41 J=3.M
41 WIT,J)=0.,
CoLg W(I,I)=PT(1) . :
W IS 7ERPC EXYCTEPT FOR PT CN THE DIAGONALS

H AND Z0.

JY
L)

KAPPA(TY =0
In=5.

DD 51 I=t,M
TA(T =1

[

52

IF (R{I).CGE.3.) GOTO 51
HITY==H(I)

Z0=70-H (I}

00 52 I=1.H

Ce1y=0,

£2>1311114112412314122441441144333934924313%

f=>PRASE T

25

0

CALL CLMPYTICRAR,S,1)

BEGIN COLUMN PIVOTING WITH MAU=1,


http://iuj.jLiiii.xii

TEICRARLLT.-E9%) GO TO 202
IF(70.GE.~E0S)RITO 203
N=>TRAPLGI.0 AND 7H.LT.Q

74

WEITE (A, 207)

207 TNIMAT (" INFEASTIRLE)

caLL nuMP
C=>CRARLGE D AND 704G .0,
2C2 00 204 J=1,™

IF (IW()«LTeO) GO TO 233

204 CONTINUE
N TN 292
£ URITZ (.22
08 FO2MAT (/7 BHASI I NZGENERQACY'™)
sati npuMe
$28R<3,

~

]
2 CALL SMXPVYTICBAR,S, MU
G0 TD 290
C=>2HAST IT* READ TN C-VECTOR:
260 OEAD (541191 (C(IVyI=1,N)
118 FOIMAT(3F1044)
WRITE (6,4 85)

[S= 301

2

RG FORMAT(//5T23430 (¥*),/,T20," . CoST
he 7+ T23430(%") 7))
00 7039 Ji=1.N
709 WRITEZ (6,710} J1.CHI1)

VECTOR™,

710 FORMAT(™ COST (I3 4™)="sFli.l)
G=>SET GAMMA,
DO 321 I=1,42
201 GOMMA(TY =P (T4K(I)+1)

C=>SET G
00 302 J=1.™
IF (IM(JYLLELNY GO TO 333
GUI)=GAMMATIW(J) =N)

' GO TC 302
3L3 GEN=CLIHWI)
302 CONTINUE

DO 304 J=1.M

3tL STLIN=PIA(TI+G L) * WIS, I
N=>2222222222222222222222222222222222222
C=>REGCTH COLUMN FIVOTING WITH MAU=i,
wll CRLL CLMDYT(CRAZ,5,1)
TS (CRAP G -2FSY G0 T0 SCC
o]
I

2L SMYFYT(CRBAR, S, MU)
IMUGMEL2Y GO TO 430

Loz EOMAT (/7 UNBOUNDED™)
CLLL NUMe

C=>CrAR>=J.¢ SET DT LTﬁ,dAMMA.
50¢C DO 501 I=1.M2



NELTA(II=N(T41)
01 GEM4A(I)=P(T,11
=>S57 L KAEPL ZH.GAMMA,PT,

75

00 502 J=1.M :

IF (TW(J) LS, GO TO 832
NU=TW )Y =N

L(NU)Y =1

Y=3. :

PuT=1

KI=w (NtY) ¢4

D0 583 KK=1,KT

PHTI=KK ' .

TF IY+D(NUJKKY*#ZPS,GT.H(U)Y 50 TO S04
YzV+D(HU 4 K¢

Y=2(NU,OHT)~C (NUKINUY +1)

JE a1
omt v 3
& A

DELTA(NUY=DINULPHT)
HO sHIIY =Y
GAMMA (NUY =D (NU4PHI).
KAPDA (NUY=PHT -1

B0 SC5 TI=1.™
ST(IN=PT (II+X*H(J,1)

Nl

CONTINUE
3’37?’?’7777?333373333333‘?7??3’3333
q GIN COLUMN PIVOTING AGAIN WITW MAU=1,

CALL CLMPYTIC3AR,S, M)
. IF (CRARLGE.-EPSY GO TD 500
7G1 N0 7802 J=1.M

~N O DA
e e
VV"\"

[~

G(J1=0.
06 703 I=1.M
733 GUIN=GTIII+WII, TI*8(T,S)
GALL UPPOVYT (CEASZ,S=N,2)
f 70 700
EGIN _UPPER BCUND PIVOTING.

=>
G0 00 601 1=1.42
I€ (L(I).€0.1) GO TO 601
KK=M1+7T o
C=>TESTL.
COAR=GAMNMA (T) +FT (KK)
_1f (CPAD . GF.=5P3) &0 10 &§2

DO B0F Li=i.M
833 GULLI=z=W (LL %K}

CALL UPRPVT (G388,1,1)

6o Tn 7og
C=>TEST2,
R02 _TF (wEPOA(T)LEG,3) 60 TO 6D:

C34R=PI(KKY+D (T, KAPPA(I}}
TE (CRARGLE,ZPT) G0 TC 501

00 606 Li=i.H

564 GILL Y =W il %K)
CALL UPRPYT (TBAR,I,0)
GO T0 70%8
a0 CONTINUE

[

C=>NH:N THE LOQP TS SATISFIED, WRITE QUT THE OPTIMAL SOLUTION AND

SToP



HRITE (e 7020
T2 CORMAT(MATGT20,30("* )/ T20,"
* £aT20,33(0*"Y,/)

OPTIMAL SOLUTION

‘

CALL PRINT
gTAn

EHTY

76



SUARZUTINT PIVOT (CRAR,R)

TMELICIT oRaL (A=H,0=7)

IMTTGED SeP,PHILMARPTY :

RTAL PET7C,12Y,NU73,12)A01°0,263),4(1320),C0269)
REAL W(102,120) G153 DELTAL7D),GAMMA(T7D) ,PI(100)
DTMENSION IW(L1G3) KAPPA(TG) L (73),K(7D)

3
C=>CAL

2ol QP73 ,OM(70)

COMMON N oMeMLeM2Z 4Py Ny By3WyaCaHeGHyDELTALWGAMMALPT IW,KAPPALL ,EPS,
CULATE PIVOTAL 20W, H(2)

GS=1.2/G(R)

09 16 _J=1.M

10

nz>0Ty

HERy JI=W (R, J)*GS

H{ =G3*HIIR)

0T ON OTHER 20MS,

00 11 I=1,¥ :

IF (T.EQ.%) G0 TO 11
GS=64(1)

12

14
C=>CAL

DO 12 J=1sM .
MIT,J)=W (T JV=GS*W (R, J)
HOT) =H(I)=GS*H ()
CONTINUE

CULATE PT aND 70,

DO 13 Jz1.M

13

are

PICY) =PI (JI+CRAR*W(R, S
ZO=Z0-CBARYH{R)

PETURN

IND
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SHIRDUTINE RUOVT (T, RyM)
I42LICTT 2480 (A=H,0=7)

TMTEGER SeB,PHT, MARTY

REAL - PI7N,16),DI70,13),2117042600,H1105),C1(26%)

2EaL W160,100),6 (100, DELTA(7S) yGAMMAL(TO) ,PI(200)
DIMENSTION TW(1G0) JKAPPALT YL (VI 4K(70) ’

DEAL QE(TD) AMU(TH)

COMMON NoMaMLoM2 4Py Dy Ay WeCyHy Gy L TANGAMMALPT,yTH, KAPPALL 4EPS,

% KNP 4OMs ZO+MARKER
T=127¢
IND MIN PATIC HOD ZG(JS WHERE G (JY>T. .
IND MIN PATIO (HUI=DELTA(TIWIIY =N /6L ST K0t G(J)<D.
30 11 J=1.™ .
IF _(G(J) 4L E.=Z2°S) GO Y0 10

IF(GENY LLT . EPS) GO TO 11
fz>IF GUJ)>C.

PATIO=HLN /G D)

IF(RATIONG.GT.TY GO TO 14

T=2ATIQ

EER
LASER] ..
60 TN 11
0=»I¢ G{J)<D,
1l CKK=TIW (J) =N

IF (XKKJLE.G) GO TO 11
PATIN=(H(J)=-DELTAIKKY ) /G L)

TF (RATIOLGT,T) GO TO 11
7224710
CEN)
Mit=g
SONTINUE
>IF NO_J FOUND My=2.

P
s

IF (T.GEWLIE7DY  MU=2
Q7f RITYRN
ENDY



SURRDUTINE CLMEVT(CHAR,S, AL
IMOLTICTIT DFA( (A=H,0=7)

INTIGER S§,8,24T,MARTY

ozal DAL LGy (70 10)4A04354260)4H(1353),C(200)

REAL WELTIV1GEY oG (LAY NELTACTE) o GAMMA(TY) W PTI(100)
DIMTHNSTON TWH(LZ0) KAPPA(TEYZL (T75) K (70

PEAL DEL70Y,MML(TD)Y

COMMON NoMyM1LoM2,Pe Dy By Wy CoHeG,DFLTA,GAMMAL DT, IW,KAPPA,L L ERS,

2 KGO ,LZOM,Z0,MARKER
C3AR=1F7 20
S=1]
C=>FINGg MIN(C-PI*LY=CRAR
Bo 10 J=1,.8
¥=0(J}

N0 11 TI=4i.M

11 X=X=PI(I}*A(I,H
IF (X.GE.CR242«E25)y GO TN i
£RAG=X
S=J

10 CONTTINUE

IF (MAULER.D)  RETURAN
C=>FIND MIN(CRAR, GAMMA(¥)+PTI(®+M1)Y ) = (C3AR
DO 12 I=1,M2
XY=GAMMACTIY ¢ PI(TI+M1)
IF (X,GE.CRA2=-£P3) GO0 TN 42
cl4a2=Y

S=T+N
12 CONTINUE
a75 RETURN
b}

79



SURAQUTINE 11020y T (CRAR, I,KIK)

TMPLICIT FEAL (A=H,0~7)

TE~THIS IS VIRSION 2 0OF UPRAVT,
INTEGER SaR,OHT
PEAL  PH704191, D70, 100,40

REAL WEL100,120),60135),0%2

AIMZNSION TW(130),KAPPALTD)
REAL D875y, 04 (78)

139,260),H(130),0(260)
LYA(70) +GAMMAC(TO) WPT(LED)
WL (701 4K (70,

GOM“O"J NIMQMIQMZQDQDQA.NVC?
s K QP ,NMe 20 MARKER
LOGICAL FLAG

CALL RWPYT(T,R,vU)

KK=m1+T

FLAG=.FALSE.

H,G,DELTA,GAMMA,OT,IW,KAPPALL 4EPS,

ALPHA=0.
TF (KIKWNELGY GO TO 20

AzsKIx=9 FIND THE LARGEST LS=1,2+s0.¢KAPPA(TY SeT.

5=>0(T,KAPPA(T =LY 4PI (KK)Y > Lo
KI=KAPPALT)
N0 10 LL=1.K]

AND T>= SUM OF B(I.KAPPA(II=S)? S=1,eesoll

BLOHA=ALPHASD (T, KAPPA(T)=LL+1}
TE {P(T4KAPPALIY -LL+1)+PT(KK) JLELEPS  OR." T,LT. ALPHA-EPS)GOTC 30

LsS=LtL
AS=ALDHA
0 FLAG=  TRUE,

60 T2 30

G=>KIK=1,. FIMD THE LARGEST LS=Cels eeer X(TI=KAPPAL(T) ST,
C=>D (T KAFDPA(TI4LLI<E AND T>=SUYM OF D(I+KAPPA(I)=-5): S=0saeeslle

2¢ I (KIK.NE,1) GO TO 42
KI=K (1) +1=KADBACT)
00 21 LL=1.KT

A DHA=LL PHASN (T, KAPPA (TY+L L)

IF (DKI,KADDA(I)*LL)+°I(<K!.ZE.-”PS JOR., T.LT,ALPHA-EPSY GO TO 30

LS=LtL
. AS=ALPHA
21 FLAG=,.TRUE,
£=>SE8 IF SOME LS. FOUND. (IF NOT 2IVOT AND RETURN)
*E IF (LNOT.FLAGY GO T 4
n=>S0ME LS FOUMP
TF {KIK,ENQ)  LS==LS
DY 71 Jd=1.™
T4 H{Jr=HJSY=-LS"G (U

KAPPA(T)=KAPPAL(T)4LS

C7F IMIK,FN,1) CRAR=P(I,KAPPA(T)+1) +OCT(KK)

TF (KIK.EGLD) CRAR=P(IKA4PPA (1)) 42T (KK)

GAMMA(T ) =P(T.KAPDPALT) +1)
NELTALI) =D(TILXAPRA(TI) +1)

T=T=15

TF (KIKeCNal oAND, P(I,KAPPACTII+1} +PIIKK) LT+ ~EPS

i 0P, KTK. EQ.1  (ANN, P(I,KAPPA(T)+1)+PT(KK) GTFPS
$ LCR. T.LT.~EPS) GO TO 33

C=>0THERWISE GO PIVOT AND RETURN



81

SHRRQUTTI KT SUXPYT(CBLR,S. MUY
IMOLICTT PEAL (8=H,0=71

NTZGEF SeT,HT, MARTY :
PU70+420Ye D70, 1) 8010042500 ,H(139),C (283
WOLGE 4400 +G (10 NELTA(7() W GAMMA(T) ,PT (100
MSION TW(100) KADPPA(TO),LI73),4K{70).
£ 0PA(7)) DM (70 : .
COMMON NoMoeML M2 4Py Dy AsWe Sy Hy G DELTAGAMMA,OT,TW,KAPPA,L ,EPS,

=
> -4
il
7

[l 52 O el o

410N

L

e
™M

[V b Bt e I (TS
N

A

K0P 4 NMe TOWMARKER
I (S+GT.NY GO TO 18
N, : A
D0 11 LL=1.M
5(LL) =0
D3 11 J=i.M

11

C=>3S>N

10

GILLY=GILLI+W LL 2 JY *A (JsS)
GO Tn 20 )
KK=3=N+M1

00 12 J=1.M

12 5O = =W J L ¥KY
$=>IN EITYER GASE,
2C CALL. PHPVTIT, R MUY |
TF (MULEN.2) GO TG 99
IN(RY =S
CALL PIVOTICRLD,Q)
29 T TURN

ZND



SURRQUTINE PRTNT
IMOLTOTT REALL (A=H,0=-7)

INTEGER S.R,9PHTI, MAPTY

SEAL CHTIS(70)

REAL L TOUT0LL10)L,TOD(70,1D)

REAL P(7L.13)40(70,10),A0102,2600,H(1503Y,C(263)
REAL WOLGL 123, G(L00) . DELTACTD) yGAMMA(TD) ,PTI(LCD)
DIMENSIOM TW(IG0) ,KAPPA(7 Y.L (70),K(70) :

REAL QP70 Y(358),0M(7 1Y

COMMON N ZMyM1,M2,P, D, Ay”va”éGqDELTAvGA”ﬂQQ PIsIW,KAPPA,L +EPS,

2 K0P OMG 70 WMARKER

COMMON /PRINTP/ TP, TD

WRITE (6, 100 . .
105 FORMAT(//4T30."RASIS INDEV DUAL VARTABLES"s// 430 (===})

N0 10 J=1,M
G WPITE(R,101) TW(DY,PI (L)
1 FORMAT(T26,13,T22,F14 4}
ALCULATE Z0.

ZS3=0.

00 2C J=1,.,¥

27 IF (TWCJYLLELNY  ZSO=7ZSO+CH{IWCI) I *H ()
C N0 21 I=1,M2
[t KI=KADPA(TY
p TF (KT.EQ.G) GO TO 21
o N5 22 KK=1,KI
7S0=7S04B(TLKKI*D (T (KK)

22
G 231 CONYTHNUE
1

08 FORMAT(///T20,"0PTIMAL ORJUECTIVE VALUE(WITHOUT PfNALTIES)="sT65'71

$4 k)

C=>FINN THE Y=VRLUES FROM IWN & H,
A% 31 I=1,m

21 X(IV=0,

DO 32 I=1,M
32 IF (TWLTYLLEWZNY  XOIW(D) Y =H(T)"
C=>HRITE JUT ¥ S,
WRITE (6,4 25)
A5 FORMATU//4T23430 (%'} 4/, T20,"0PTIMAL SOLUTION VECTOR',

b - F9Y20430¢*" 4/}
0 33 T=i4N
33 WRITE (6,102 I, Y(I)
162 FORMAT (* Y (™, T3.")=",F15.4)

=>CALSULATE THE ALOHA®S AND CHT'S,
WRITE (B4 ZI8)
IA FORMAT(/ /7,720, L2 (%%} ,/,T20,"RIGHT HAND SIDE FQOR STQCHASTIC

-~

9]
Q

¥ NS TRAINTS™ 71 T2C 242 (%) 47)
N0 36 T=i.42
ALPHA== (O {T 2} +PTIMI+TII/ (PLTI WK{I)+1)=P{T, 1))
cuI=g, “
NN & J=1,N
24 CHI=CHT+L (T+M1 J) "X (J)

CHIS(II=CHI
IT=T+ML



20 MRITE(Re109) TI,CHT
133 FORMATITE ¢ =RPOW (", I3,™)="3%,"14,4)
DCy=0,
WRITZ (24 43)
43 FOPMATU(/ /4 T20 420 ("**) 3/, T20y"INDIVIDUAL PENALTIES",
. /e T20430(* "1, /)
M7=M1+3
NN 381 KAz=q1,M2
PEM1=0,
KI=K(KE)

DN 382 X9=1,KI
IF(CHIS(KA) LT TD(KL,KB)) PENI=PEN1+(TO(KA,KR)=-CHIS(KA)) *QP(KA)
o *TP{KA,KB)
IF(CHIS (KA ST W TD(KA,KR)) PENLI=PENLI+(CHIS(KA) =TD(KA,K3)) *QM (KA)
i STPIKALKB)

PEN=PEN+FEN]
KR=KA+M1
W2ITE (64 2B2) KB, PENY

IBT FORMAT(TE,* BINALTY FOR PON(",I3,")=",F15,5)
281 CONTINUE

WRTTE (6, 38L) PEN
384 FOOMAT(////// 4720, TOTAL PENALTY=",T62,F18,5)

WRITE (By2128) 75D
RETUBN
NN
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f=>zcss=s==-Ss-- === =S=CCC=o=-TXTTT=-TIUTCTITERTTTISRITISIZITIISTITSSSTITT=IBIZITTES
SURROUTTRE DUMe
IMPLICYITY o°cet (A=-H,N=7)
INTIGER S4F,94I, MARTY .
REAL PTG 10 D784 10), A (1020,260),H(130),.C(2607
RELL WO1C0, 1000 4G (100 NDELTA(70) ,GAMMA(T70) ,PI(100)
AIMENSTON TWILG0 ) JKAPPA(T7 ) (L (70),K(70)
REAL COLTIY 4 AM (70
COMMON NaMML, M2,Py Dy Ay Wy CoHaCyDELTAZGAMMALP T, TH, KAPPALL EPS,
% KeQP3QMe ZO W MAPKER
WeITZ (64100}
132 FORMAT (//* T1-0HMEGA= Y= 4 PI= ! W=
¢ e
< VARE B - X )
NO_10 J=1.M
10 WRITE(54101) IWI2)HID) T (N

101 FORMATLY = T10, s Fil ol "1, Fiaal, (TLO," 1", 5F14,4))
WRITE(E4102) (G(I)oI=1,M) .

133 FORRLT(/ ™ G=*,(6F15,5))
WRTITT (e, 108) (L(I),T=1,M2)

105 FOSMBTC * (=", (12110))

WRITE (6, 10€) (DILTAL(I),I=1,M2)
106 0 FORMATC ™ DELTA=",(€£15.5%1
WRITE(B, 167) (CGAMMAL(IY ,I=1,M2)
1407 FORMAT( " GAMMA=z",(HF15,5))
WRITE (B, 1iGY 70
118 - FOIMAT {  70="y515.5]

WRTITE (6.114) (KAPPA(TIY T=0.M2)
114 FOAMAT € KADPA=e, ( 12T10M)
RETUEN

END
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BROGRAM HAPPY(TAPIS,JUTPIHT,TARPZ5=0UTOUT)
IMPLICIT PELAL (A-H,0-2)

v A”TD 7\1‘1
p(7L'v13)9’](7u'l.))vA(lJQOZDU)vH(;jU)vC(ZBJ)
LAl W‘iCG.lbL),G(luJ)'D:LTA(7O)voAﬂMA(7u),PI(lJO)
DIMENSTION IW{15J)4XKAPPA(T3Y,L(73),K(70)
REAL QR78),0M(75)
_NIMENSION X(158) . . .
OMMON NoMeML o M2 4Py Dy A s Wy Dy Hy Gy OTLTA,GAMMA,P T I, KAPPA,L,EPS,
% KlQP L OMy 7D, 4ARKER
COMMON /PRINTR/ TP, TD
COMMON ZA7 X
Cl-l¥¥-'¥‘¥~'~¥$&¥l\ GENERﬂTE C-AS"‘ FLDN RN ERPRGEREL N
D0 1234 KK=1,2 )
X133=1C4C0C.
¥1=33 322
¥19=33333,
X61=23334,
DN 1233 KLL=1,2
CALL XKUZY(X123+4%X1,%X19,¥61)
RIWIND 5
WRITE (6,102}
FORMAT (1 H1Y
T OWRITE(S.101) KK,KLL
FORMAT(L12Y,,44HSIMULATION °dVvIb,7x.6H°F~IOD,;6)
AY2=¥1(2)
X(21=X%(4)
X (4)=4X2
AX23=¥(20Y
AX21=X(21)
AY22=X(22)
X(20)=X(12)+X£13)+X(14)
X(24Y=X(9)+X{1{) +X(11)
X(22) =Y (8) o
X(52)=X123)+X (24) +X (25)
Y{H63)=AX20+40X214+AX22
X{p4)=X(19)
X(1331=y (29
Y=RANF({)
YY=230CG0*Y
IVY=YY=-410039
R1=X(103)+1IYY
NQITV(E.lﬂk) R4
”O‘M”|{ G¥.1uHCASH FLOW(R1Y=,F15.4)
D(JUMMY)
921=.5*°Q1+.0397
TFIIYYeGTela NN, PRILLE«si7E) PRLIzPR1I+4uD5
TF(IYYe LT o 0aAND PRL«GZ4au85) PRI=PR1I~,(05
TR1=PRI+RTR(DUMMY)
TOi=PRI+CTH(IYNMY)
=PR1+ M INUMMY )
ALC1= 7% (PRL+RLC (DUMMY))

[
©<.
ny

(%Y
©
[y

F9N
AP
I




WATTE (641500 THL
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183 FOAMAT(LIX,134TREASURY BTLL A8TI=,2%,F16,.56)
WRITEB,151) T0L . .. : )
151 FORIMAT (10X,19H TERM DIPISIT RATE=,2%X,F106.6)
: WIITE(R,152) 4M1
152 FNRMAT(11X.13H MORTAGE RATE=,2X,F16.6)
WRITE(6,153) ALT1
153 FOMAT(LEY,19H LIABILITY 24TZ=,42X,516.0)

Vi=X(2) 4+ X(23) #X(62)+X{3) X (21) ¢X(H3) +,G05*X (4}

T 4, TL*Y(22V+,DE¥X(HL) .

7224 GIS¥ XLy 4+ CL*N(22) +. 567X 54)
SARM=Z2 )

IF(Y1.LT.R4) X (2)=X(2)+RL~Y1
TF(Y1.LT.R1) GO TO 78

X2=X(2)= (Yi-R11* (2)

TF(X2 .67 eeb) Z2=22+(X(2)-X21%(.305)
IF(Y2.LE o) 72=Z24(X(2V)*(.005)
X(2)=x2 ‘

X20=0 o0

TF(X(2).GE..Q) 30 7O 77

X=X (3)+Y(2)

X(2¥=3.0.

TFIX3GE s D) 22272+ (X (3)=-X2I* (L D03)
TFIX3 LT .aD)Z222Z24(X(30)*(,035)
X(3)=X3

IF(X(3VeGZuedY G0 YO 77

X23==X%X(3)

7

7

X(3)=0.0

CONTINUE

X201=X(28)=X20~(Y1=-R1)* (. 4}
IF(X251e5TeeR) 722224 (X (20 =X251)%(.0W)
TFIX2C1 4L E4ed)Z2=7224(X (201 V% C04)
X{(291=x201

X52=0.0 .

IF(X{20) «GE.,3) GO TO 78
X21=X(21)Y+X(20)

X{(201=0.6C
IFIX21.6E..0012Z2=72+ (X (28)=X2L)* (. 04)
IF(X244LTe49)72=722+X(24)% (0%}

-~

x

Y(21)y=x21

IF(X(21Y .GEZ..0) GO TO 78
X62=-%X{21)

X(21)=043

CONTINUE
X621=X(62)=XH2=(Y1=R3 ) *¥{. 4}

TE(XB 21 TaaB) 722254 (X 162V =X521) % (4 26)
TF(X621eLTeel) 22272+ (X (521)% (405}
X(52)=X6 21

IE(X(62) +65asl) GO TO 79
X53=X (631 +X(62)

Y (52) =08

TF(X63,GE. 00 272-22+ (X (631 <X63)1 % (s 06)
IF(XE3.LT..00Z2272+ (X (63)) % (.06}



¥(53)=X63
IF(X(D3YGE2Y GO T3 79
STaP _1¢9
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73

CONTINUE
71=TR1I%X A2V +TNL*X(20) +AML¥X (5 2)
3+ 05L1%¥X(I)+,0827¥X(21)+.,0832%%X (B 3)
22=71=72-R1*4LC1

WRITE(B41G8) KLLLZ2

158 FOIMAT(IGY,17HPROFIT FOR 2291 0N,2X,113,1H=,F15.4)
X(L1=X(2)+X (1)
X(19) =X (204X (21)
X(5L1) =X {(H2) +X(63)
¥ (132)=R1
X133=X(107)
X1=X (1)
X19=¥(19)
X6L=X(61)
WRITE (b4 267) X1,X19,X61,X103
207 FOMAT(LOXW2HY=,LF16.4)
WRITE (6, 160)
16,‘1 F.'Op_MAT(lgx,gsp{!*-‘l#!**l—‘l#*-‘l ¥¥lll¥¥l!¥!$¥l‘3'4‘44‘4!!4*#0‘!‘)
WRITE (B, 16%)
1581 FORMAT(LG¥,294S T A T I S T1I C S
SB21=S821+73
SBIS=SRZS+(I3) **2
WRITE (64 163) 71.
163 FOIMATLLI(X.* GRASS IFEVENUES =*,F1606)
WRITE (64 168) 4PM ,
168  FOIMATLLOY,* COST OF SALES = ¥ Fi6406)
WRITE(64165) Z2 _
165 FORMAT(1CX.* COST OF SALZIS 4ND FORCED SALES=*,Flb.0)
ARMIN=RL1*ALCY '
WRITE(6y18k) ARMIN e
165  FORMATI{LCY,* COST OF FUNIS= . *,F16,6)
WRITE (64 167) S8Z1 .
167  FORMAT(LOX,* CUMMULATIVZ PROFITS = *,F1546)
WRITE (6,169) S8IS
163 FORMAT(1ZX.* CUMMULATIVE 2ROFITS SQUARED *4F20.3)
1233 CONTINUE ——
1234 CONTINUE

ZND
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The purpose of the code is to solve in-core a stochastic Tinear

programs with simple recourse. The problem to be solved is of the type

e M2 4o+ - -
min{ ¥ c.x, + E_ {min Y- (p.y: + pry:)}
x.|i=1 JJ €1 + - =1 11 [ | ‘
J i
J YiY¥;
subject to
n
jzl a5 5% = b, for i = 1,+++,m
n + _
jzl tigXs +¥i - Y T g for i = 1,¢c¢,m,
X\].EO for‘j:]’co.,n
y+1>_ 0 for i = 1,¢¢°,m,
y; >0 for i = 1,0¢¢,m,
where: cj - is the jth element of the given cost vector
Xj - is the jth element of the decision vector X
a5 " is the (i,j)th element of the given technological matrix
A . - AT
ij " is the (i,j)th element of the given technological matrix
T A
bi - is the ith element of the given resource vector b
£. - 1s the ith element of the random resource vector &

yi - is the ith element of the surplus vector y~
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0, . '
y; - 1s the ith element of the shortage vector y+

p: - 1s the ith element of the penalty vector p (for shortage)

p; - is the ith element of the penalty vector p~ (for surplus)

also define

E(j) - to be the jth smallest possible realization (j=1,--?,J1)
of the ith element of £

1'

pgj) - is the p {&;

J .
i (3)
and L' p;
j=1

1. for i = 1,00e,m,



The input data are:

CARD NUMBER CONTENTS

90

FORMAT
1. tolerance (F8.5)
2. naml9m2 (315)
3. Jl,Eg]),Pg]) (I3,F10.2,F6.4)
3. g2, ,(2) (F10.2,F6.4)
2+d, gl 00 ey 2 6.0
2+J,+1 a1, B (2F10.2)
2+0,+2 pry P (2F10.4)
24,+3 3,680 081 (13,F10.2,F6.4)
24J,+J,+4 pry P (2F10.4)
L] + -
2+(J1+J2+---Jm2)+2m2 P, > P, (2F10.4)
2+(J,+d 4 e e +dmy )+2m,+] Js a]j (I3,F10.4)
2+(J +d 40 oo+ )+2matk, 000000. .. (I113)
: mo -
my+mop
2+ (J1+dgte s o kdmy ) +2my+ ) ki 000000. .. (113)
i=1 -
. mi+mo
2+(J1+J2+---+Jm2)+2m2+izl ks bi, b2, bs (3F10.4)
. mi+mo - « 2
> stHeee i * 4 ) X
2+(Ji+dgteserdy Jeam +_Z] k,+[m, /3] byi_psbp 1Py, (3F10.4)
: m1+r%1-2_
2+(J1+J2+"‘+Jm)2m2+ Z k1+[m1/3]+] Cys Co, .C3 (3F]0.4)
L] i=]
: mi+mo -
2+(J1+J2+---+Jm2)+2m2+ N k1+[m1/3j+[n/3] Ch-22 €_1° p (3F10.4)

~ i=1

*
.[gfl is the minimum of all integers not less than %%-.
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Card 1

The user may provide his own tolerance level,

Card 2

n - The number of variables (not including surplus and
shortage variables).

m; - The number of deterministic constraints.

m, - The number of stochastic constraints.

Card 3 (first stochastic constraint)

J; - The number of realizations of RHS of the first stochastic
constraint (with positive probability).

g, ' - Smallest possible realization of RHS of Tst stochastic
constraint.
pf]) - Probability of ES]) occurring.
Card J; + 3

a; - A real number equal or Tess than gf])

(i.e. a Tower bound on the realizations).

B1 - A real number equal or greater than gfdl)

(i.e. an upper bound on the realizations).

Card 2 + J; + 2

pt - A per unit penalty, for a shortage on the left hand side
of the first stochastic constraint.

pI - A per unit penalty, for a surplus on the left hand side
of the first stochastic constraint.

Card [2+J,+3] to [2+(,J1+J2+---+JT +2m5 ]
i

- Sequentially repeats process of cards 3 to 2+J;+2 for
each constraint.
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Cards 2+(Jy+ee+J  )+2mp+1

L

- Now starting to input the technological coefficients --
rows are Tisted in order and separated by a string of 0's
or blanks (at least 13) -- all the deterministic con-
straints must precede the stochastic constraints --
assume kj-1 nonzero coefficients in row i -- (unspecified
coefficients default to 0).

j - Column number,
a]j - Coefficient for first row and jth to]umn.
my+my

Card 2+(J 4 *eeetd  J42mpt ) k.+1
Mz .=]-‘1—'

b; - Right hand side of first deterministic constraint.

bo - Right hand side of second deterministic constraint.
bs - Right hand side of third deterministic constraint.

m1+m2

Card 2+(J;+dpt - +J)+2mot ) _ks+[my/3]+1

i=1

c; - Cost coefficient of first variable.

c, - CGost coefficient of second variable.

c; - Cost coefficient of third variable.

Additional notes on input data and restrictions.

1. ATl constraints must be equalities, so slacks must be
added or subtracted (sign of RHS is not important).

2. The number of deterministic constraints m; < 150 + (70 - m,).
3. The number of stochastic constraints m, < 70.

4. The number of possible realizations for &, is Ji < 8.



Chapter 4

IMPLEMENTATION OF THE ALM MODEL

4.1 Introduction

This chapter is concerned with results of an application
of the ALM model to the asset and 1iability portfolio problem of
Vancouver City Savings Credit Union (VCS). In addition to these results,
some of the procedural aspects of implementing the model for this and
related problems are discussed. ‘This thesis, in fact, was prompted by
the real Tife problem continuously facing this particular credit union -
a liquidity problem.

Some of the salient characteristics of VCS during the ffve
year planning period studied, 1970 to 1974, are: 1) the firm's assets
grew at a compound rate of 57% from $26 mi]]ioh-to $160 million, and
2) the firm adopted an aggressive policy of investing in high yielding
assets (predominantly mortgages). In 1974, VCS realized that the com-
bination of their aggressive investment policy and changing market
conditions was creating serious liquidity problems. Investors were
~ trading their low yielding term deposits for higher yielding deposits.
At the same time the outstanding mortgage loans of VCS were St111
rearning returns on the basis of the lower interest rate structdke. It

was at this moment that the first version of this study was initiated.

93
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The approach first taken was to construct a five year linear
programming planning model based upon the Chambers and Charnes formu-
‘1ation [11]. The objective of the VCS formulation was to maximize net
discounted returns which are given by the total discounted returns minus
the total discounted costs. There were four types of constraints:

1) the legal constraints "as prescribed by the Credit Unions Act of
British Columbia [8]; 2) the liquidity constraints which are .similar
to inequalities (4) and (5) in chapter 2, 3) the budget constraints
that include the initial conditions and a statement of the accounting
identity - the uses of funds are equal to the sources of funds, and

4) the policy constraints which include the internal operating policies
of VCS and the terminal conditions to insure that the'structure of the
final portfolio of assets and Tiabilities maintains continuity of
operations.

The basic shortcoming of the above formulation is that it
does not incorporate the inherent uncertainty of unknown cash flows and
interest rates. As an initial attempt to overcome this drawback, a
decision theoretic approach was taken. The procedure was. to first make
point estimates of future interest rate structures and potential growth
rates of VCS's assets. Then, for each possible combination of interest
rate structure and growth rate, the linear program was executed. This
would then yield a set of solutions. The steps necesséry to find the
'best'’ so]utfon can be summarized: 1) finding the optimal so]utﬁoﬁ

vector for each state of nature, 2) computing the resulting net
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present values for each optimal solution from step 1) for each of the
remaining states of nature, (This can be accomplished by forcing the
solution to be the same as in step 1) for each state of nature. If
infeasibility is reached then the debt constraints are relaxed to
attain feasibility), 3) using subjective probabilities for the likeli-
hood of each state of nature, an expected value for each decision in
step 1) was computed, and 4) from step 3) selecting that action which
has the highest expected net present value. Mathematically, steps 3)
and 4) are represented by

m n

E = PV.. Ple..
(NPV, ) 121 jzl NPV 5 Ployy)

and choosing k* such that E(NPVk*) Z_E(NPVk) for all k. Where'eij is
the stafe of nature with the ith interest rate structure and the jth
growth rate and i = 1,...,mand j = 1,...,n3 P(ejj) is the probability
of 8,. occurring; NPVijk is the net preseht value of choosing strategy

1]
k when eij occurs for k = 1,...,(n x m); and k* is the optimal stra-
tegy.
" Alternative criteria such as minimax can be used to find a
'best’ solution instead of steps 3) and 4). However, in general, this
approach is not very appealing for the following reasons: 1) the k*
chosen is in no way optimal, for there may exist a solution k which is

not optimal for any particular state of nature, but has a higher expected

net present value; and 2) the model does not incorporate any means of
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evaluating the economic consequences of infeasibility, for example
there may be a particularly disastrous realization that results in
insolvency.

As described in Chapter 2, a number of other anproaches have
been proposed to model the problem, but, at best these models have only
Timited applicability. Hence a different approach to the problem was
necessary. This 1ed'to the ALM formulation. The ALM model does incor-
porate uncertainty while maintaining computational tractability for
large problems.

As already stated the purpose of this chapter is to demon-
strate the applicability of tHe ALM model. Specifica]]y, there are
three major domains where it can be demonstrated: 1) the usefulness of
the model in terms of the results to be used by management, increased
profitability and superiority of the equivalent deterministic problem,
2) the ease of application, and 3) that this model does in fact have
the features attributed to it, before comparing it to the 'best' alter-
native solution technique - the Bradley and Crane model. Hence the
remainder of this chapter is concerned with the 1mp1émentation and

results of the ALM model to VCS for the planning period 1970-74.
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4.2 Model Details

The aim of this section is to describe the input ' necessary
for the implementation of the ALM model to Vancouver City Savings Credit
Union. It will include the method of data collection, the choice of
decision variables, and the actual constraints and objective function
used in the application. The purpose is to indicate the effort required
to implement fhe ALM model rather than to demonstrate the very diffi-
cult problems of estimation. The actual data used are given in Appendix
1 at the end of this chpater. Since presenting the data in matrix form
would be rather cumbersome (the matrix is 92 by 257), they are presented
in input form (as described in Chapter 3, Appendix 2).

The ALM model being a SLPR model implies that there are first
and second stage decision variables. The first stage variables are
divided into assets, X$J
Chapter 3). Eleven types of assets are considered in this application.

» and liabilities, y? and bi (as defined in

They are: 1) cash, 2) British Columbia Credit Union shares,

3) federal government bonds maturing in i years (i = 1,...,4),

4) federal government bonds maturing in five to ten years, 5) pro-
vincial government bonds maturing in more than ten years, 6) first
and second mortgages with a three year term, and 7) personal loans.
Six types of liabilities are considered. They include: 1) demand
deposits, 2) share capital of VCS, 3) borrowing from banks, and

4) term deposits maturing in i years (i = 1,3,5). Specifically, if a
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four year federal government bond is purchased at the beginning of the
third time period, this will generate decision variables Xg4, ng and
Xgoo , where Xg4 and,Xg5 are the portions of the initial investment to
be sold in periods four and five, respectively andxxgoo is the portion
to be held at the horizon of the model. The eleven types of assets
generate 136 variables (including the initial positions) and the six
types of liabilities generate an additional 36 variables (including
the initial positions) for the five year planning period. The choice
of these assets and liabilities was based on VCS's historical port-
folios of assets and liabilities [85]. The reason for such a choice
was to maintain a basis of comparison between the actual portfolios
and the portfolios yie]ded by the ALM formulation.

Before detailing the specifics of the model, it is important
to note that although the cash flows are continuous over time, the
model assumes that all transactions occur at the beginning of periods.
Cash flows during any period are treated assuming that half the cash
flows occur at the beginning of the present period and the other ha]f
at the beginning of the next period. The constraints will now be

described.



99

a. Legal Constraints
The source for the legal constraints is the Credit Union Act
of British Columbia [8]. This act places three operational restric-
tions on the composition of the portfolio of assets and liabilities.

The first constraint is that credit unions maintain at least 10% of

the total assets, } Kips In highly Tiquid assets, 1oX that is

. it?
iegl 1eIL

boXep > 1) X
el it jer 1%

The second requirement is that credit unions maintain at

Teast 1% of their total debt, § Yit’ in cash and term deposits, X]t
ieD
and X2t’ respectively,

Xip * Xpp 2 201 Yoy

1t ieD

2t

The final constraint restricts the credit union's borrowing,

L Ypt to one half of the total 1iabilities,
beB

Y.
j

L Ypt < -5 Z £

beB ieD

Since the planning horizon is for five periods, the legal

requirements account for fifteen constraints in the formulation.
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b. Budget Constraints

Of the twenty-two constraints in this set, the first seven-
teen establish the initial positions of the eleven types of assets and
six types of liabilities, while the other five constraints require the
sources of funds to be equal to the uses of funds in each period.
These constraints were constructed directly from the budget constraints
in the ALM formulation, as in Chapter 3. The way in which the actual
numbers utilized in these equations were determined, will be part of

the discussion on the objective function.

c. Liquidity Constraints

The function of the Tiquidity constraints is to ensure that
the firm has sufficient capital reserves to meet severe withdrawal
claims under adverse economic conditions. The constraints follow from
the Federal Reserve Board's capital adequacy formula [27]. The appli-
cation of the FRB's capital adequacy formula to British Columbia's
credit unions is justified in a study published by the Credit Union
Reserve Board [25].

The first three constraints establish capital reserves based

upon the structure of the portfolio of assets and 11abi]ities.]

P> g (W - ] oy k) i=1,2,3 (1)

1 The same notation is used as in Chapter 3, Section 2.
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where W is the dollar value of the expected withdrawal.claims under
adverse economic conditions, W = .g Yi¥io where Y; measures the con-
traction of Tiability Y; under ad;else economic conditions. The yi's
used were .47 for demand deposits, .36 for term deposits and 1.0 for
borrowing. The parameters are justified in [25]. The o in (1) is a
parameter that measures the realizable portion in the value of asset k
if the asset is to be liquidated quickly under adverse economic condi-
tions. The q; measures the reserves required for potential withdrawal
claims that exceed the realizable portion of the assets contained in
K]LI...LLKi. Pi is the required reserve necessary to.meet the excess
withdrawal claims.

Finally, the principal constraint in the capital adequacy

formula can be stated as,

K 3 {total right hand - equity - surplus:
] (1-8.)x; = ] Pi+ {side of balance
i=1 i=1 sheet

where B is a parameter to measure the shrinkage of asset i, when the
asset is to be liquidated quickly. The actual numbers used for aps Gis
and B; are the same as those prescribed by the FRB [27]. Since the
purpose here is not to develop an operational model for VCS, but rather
to demonstrate the applicability of the ALM model, the numbers used for
the above parameters - provide an adequate proxy. However, in the devel-
opment of an operational model it would be necessary to estimate the

parameters.
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Since these constraints have to hold for all five periods, it

is implied that there are twenty liquidity constraints.

d. Policy Constraints
Two types of policy constraints are included: 1) personal
loans made in period t (XtL) should be equal to or less than .2 of the
first mortgage loans made in period t (Xtm)’ XtL-i 'thm’ and 2) second

mortgages made in period t (X_ ) should be equal or less than .125 of

ts

first mortgages, X _ < .125X

ts tm’

The rationale for such investment policies is that the returns
on the first mortgages are less risky (smaller deviations), compared to
second mortgages or personal Toans even though the Tatter may yield a
better return. This is consistent with management's preference may be
violated without any legal implications. These features are readily
incorporated by treating the constraints as though they were stochastic.
Since the objective here is merely to dembnstrate the applicability of
the ALM model, in this application (p+,p—) is (0,1.0), which suggests

that the constraints will not be violated. For the five periods, the

above two policy conditions generate ten constraints.

e. Deposit Flows
The variable y? represents the new deposits of type d

(d =1,...,5) generated in period j (j = 1,...,5) and gjd is a discrete
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random variable representing the balance sheet figure of deposit type d
at the end of the jth period. The amount of y? generated is established

in the deposit flow constraint as follows:

v+ jZ; A Th *id°
The y's used were 1.0 for demand deposits and .36 for term deposits.
The y's are included to reflect the actual (and not net) flow of deposit
funds. The distribution of Ejd was estimated by using the actual balance
sheet figures of VCS for 1970-74 as the mode of the distribution and
constructing a distribution of values around this mode. gjd had diffe-
rent probabiiity distribution assumptions for varying runs of the VCS
application. The first distribution used is shown in Appendix 1.

The penalties for shortages associated with these constraints
are: 1). for demand deposits and share capital, p+ is‘the total dis-
counted returns on a one year term deposit minus the discounted cost of
the funds calculated to the horizon of the model, 2) for term deposits
maturing in one or three years, p+ is the total discounted returns on a
five year term deposit minus the discounted cost of the funds calculated
to the horizon of the model, and 3) for term deposits maturing in five
years, p+ is the total discounted returns on a ten year provincial
government bond minus the discounted cost of the funds calculated to the

horizon of the model. The penalties p~, for surpluses associated with
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the deposit flow constraints are the total discounted returns on first
‘mortgages minus the discounted costs of funds calculated to the horizon
of the model. The p+ and p~ attempt to reflect a conservative strategy,
on the part of management, as to what policy decisions to make:. 1) with
the surplus funds available when realized sources exceed uses, and

2) with the shortage of funds when uses exceed realized sources, respec-

tively.

f. Objective Function

The objective is to maximize the expected total discounted
revenues minus the expected total discounted costs and minus the expected
penalty costs. The data were gathered from a number of sources. The
source for the returns on the federal and provincial government bonds
was [10]. The source for the returns on BCCU shares, mortgégés and
personal loans and the cost of the term deposits, demand deposits and-
share capital was [85].

The discount rate used was the time value of money. To obtain
it, the risk free rate (the average yield on three month treasury bills)

was used. These rates are as follows flO]:

1970 1971 1972 1973 1974

Average yearly .0599 .0356 .0356 .0547 .0782
yield

discount factor 1 9435 U911 .8797 .8341

1.0599 1.0356 1.0356 1.0547 1.0782
= 9435 = 911 = .8797 = .8341 = .7736
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The returns on the assets are as follows [10,85]:

Returns on Asset in Year

1969 1970 1971 1972 1973 1974
Type of Asset
1 year federal
government bond
(fgb) .0725 .0620 .0450 .0510 .0610 .0800
2 year fgb .0749 .0657 .0490 .0550 .0654 .0803
3 year fgb .0758 .0684 .0525 .0590 .0680 .0807
4 year fgb .0767 .0710 .0555 .0626 .0698 .0810
5 year fgb .0776 .0758 .0615 .0674 0717 .0827
10 year provin- .0840 .0904 .0803 .0813 .0836 .0991
cial government
bond
first mortgage .0938 .1040 .0943 .0921 .0959 1124
second mortgage .1050 .1220 .1108 .1083 .1123 .1321
personal Tloans .1040 L1170 .1075 .1050 .1075 .1275
B.C.C.U. shares .0600 .0600 .0600 .0600 .0700 .0700

If one were to purchase a five year federal government bond in

7 7 7 7
12> %130 %14 Xy5» and XZw would be gene-

rated. The returns would be calculated as follows:

1970, the decision variables X X
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Decision
Variable 7
ij Return rij
x{z (.0758) (.9435) = .0720
X{ 5 (.0758) (.9435 + .9110) = .1410
x¥4 (.0758) (.9435 + .9110 + .8797) = .2070
x{5 (.0758) (.9435 + .9110 + .8797 + .8341) = .2700
x{ (.0758) (.9435 + .9110 + .8797 + .8341 + .7736) = .3290

The return is the interest earned every year discounted back
to the beginning of the planning horizon. The returns on all assets
were determined similarly.

The costs of the liabilities are as follows [85]:

Type of
Liability Cost of Liability in Year
1969 1970 1971 1972 1973 1974

1 year term .0712 .0780 .0720 .0680 .0780 .0990
deposit ‘

3 year term 0712 .0820 .0760 .0690 .0820 .0980
deposit

5 year term .0785 .0850 .0800 .0800 .0850 .0975
deposit

demand deposit .0400 .0460 .0410 .0420 .0560 .0770
share capital .0500 .050 .050 .055 .0575 .0800

The cost of a five year term deposit (y%) sold during 1970 would

be determined as follows:
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Year i Cost Incurred in Year i

1970 (.5) (.0850) (.9435) = .0401

1971 ~ (.82) (.0850) (.9110) = .0635

1972 (.82) (.64) (.0850) (.8797) = .0392

1973 (.82) (.64)% (.0850) (.8341) = .0238
1974 (.82) (.64)> (.0850) (.7736) = .0141

The total discounted cost of y? is .1807.

In an actua] implementation further refinements would be requiréd.
First1y, although the tfme value of money was utilized as the discount rate,
a risk adjusted discount rate should be used to reflect varying degrees of
riskiness of investments, see for example [84]. Secondly, liability manage-
ment, for example "controlling" the deposit flows, cannot be directly
included in the framework of fhe ALM model. In contrast to the linear
treatment of asset management, 1iability managementrmight typically involve
alternative interest rate structures inducing alternative distributions of
deposit flows. Finally, most asset and liability management models do not
include any systematic approach to liquidity constraints, but rather make
use of the judgement of bank managers in prescribing maximum levels for
either capital losses or 1imits on the amount of investment in assets. It
is desirable to maintain some Tevel of consistency in matching thé liqui-
dity characteristics of assets and liabilities across banks. Thus although
the parameters utilized by the Federal Reserve Board may not be valid, the
general structure of these constraints are, and these would have to be

more carefully estimated.
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4.3 Results of The Vancouver City Savings Credit Union Application

It will be recalled that there are two purposes of this appli-
cation: 1) to demonstrate the applicability of the ALM model, and
2) to teét the sensitivity of the solution generated. To accomplish
these goals, the model was run initially with the data given in Appendix
I (basic model), secondly by replacing all raﬁdom variables with their
expected values (deterministic equivalent), and finally with variants
of the basic model (with respect both to.the penalty costs and the
probability distributions).

Before presenting the detailed results of'the_application,
several general statements can be made concerning the ALM model in
particular and SLPR models in general: 1) the initial portfolio held
by VCS violates the 1iquidity constraints (a situation which was known
to management), 2) the stochastic models yielded solutions that were

superior to the deterministic equiva]ent,]

and 3) the nature of the
probability distributions and the penalty costs markedly affects the
optimal solution.

The basic model has symmetric three point probability distri-
butions (.2, .6, .2) for all the deposit flow constraints and degene-

rate probability distributions for the liquidity and policy constraints.

The penalties for all stochastic constraints are asymmetric. The optimal

]’Madansky in [56] has shown that the 'deterministic equivalent' provides
a Tower bound on the optimal value of a SLPR.
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vaiue of the basic model is $2,520,316.01 ($8,288,941.53 in expected
profits minus $5,768,625.52 in expected penalties). The deterministic
equivalent model has an optimal value of $2,278,187 ($8,565,068 in
expected profits minus $6,286,885 in expected penalties). Thus the
bound provided by the deterministic equivalent is 10.6% below the
optimal value of the basic model. The structure of the two portfolios
is similar in the initial period. However, the investment patterns
differ beyond the first time period. The basic model did not invest as
heavily in the less liquid assets (namely mortgages).

The deterministic equivalent model also had an empty feasible
set when it was first run. The reason was.that VCS's initial portfolio
did not satisfy the liquidity constraints. In order to secure feasi-
bility, variables were added to each of the liquidity constraints. The
objective coefficients of these variables were the same as the penalties
associated with violating the stochastic liquidity constraints in the
basic model. As a further insight into the operations of VCS, the .
penalties could be set arbitrarily high so that the model would violate
the liquidity constraints only to attain feasibility. The amount by
which the constraints are violated will be the amount of liquid reserves
that the firm needs to meet the FRB's liquidity requirements.

Variants of the basic model were run in order to ascertain the
effects of different probability distributions, various penalty cost

and parameter changes. The initial change instituted in the basic model
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was the alteration of the first legal constraint from the requirement
that current assets be equal to or greater than 10% of the Tiabilities
to equal or greater than 1% of the liabilities. The effect of this
change was to increase the optimal value to $2,906,773.53 ($8,657,619.24
in expected profits minus $5,750,845.71 in expected penalties). For
the initial two periods, the investment pattern deviated substantially
from that of the basic model in that more of the incremental funds were
allocated to longer term assets. After the first two periods there did
not seem to be any generalized behavior in the investment patterns of
the two models. However, there was a larger total amount invested in
longer term assets in the modified formulation.

The basic que] was then further altered to include a change
in the probability distribution (.05, .50, .45) of the cash flows. The
increase in the optimal value was much more dramatic in this case. The
optimal value jumped to $3,256,500.65 ($8,872,911.53 in expected profits
minus $5,661,410.80 in expected penalties). The expected net profit
rose with respect to both the basic mode1‘and the model with the para-
meter change while at the same time the expectedApena1ty costs decreased
with respect to both models. This is explained by: 1) all the vio-
lations of stochastic constraints are now infeasible only with a proba-
bility .05 instead of .2 (that is the penalties decreased) and 2) con-
straints which were not previously violated because of excessive

penalties are now violated by 15% (implying more profits). This demon-
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strates the need for accurate estimates around the values on the left
hand side of a stochastic constraint.

Although it is not possible to make definitive generaliza-
tions from the runs of the ALM model described above, some general
conclusions may be inferred. First, the asymmetry of the probability
distributions may have a substantial effect on the optimal solutions
and values. Also an important point to note is the sensitivity of the
estimate of the probability distribution around the value on the left
hand side of the stochastic constraints. Second, the solutions are
sensitive to changing penalty costs. Third, the various stochastic
models have substantially different solutions than the equivalent
deterministic models. This indicates that reliance on the deterministic
models as normative tools can lead to erroneous solutions. Fourth, the
implementation 6f this model is not more difficult than the implemen-
tation of a similar deterministic model. Finally, the computations
necessary to solve the ALM formulation are of the same order as the
computations necessary for an equivalent deterministic problem. A1l
the runs were computed on the University of British Columbia's IBM 370/
168. It will be recalled, that the ALM formulation is 92 by 257 with
40 stochastic constraints. Using the SLPR code, the solution of the
ALM model took about 37 seconds of CPU time. To solve an equivalent
sized deterministic problem using the SLPR code took about 30 seconds

of CPU time. The same deterministic linear program was also solved on
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a standard L.P. code, UBC LIP which took 17 seconds of CPU time. These
and a number of other runs indicate that CPU times for stochastic
models are generally about double that of equiva]ent deterministic

models.



113

4.4 Appendix One

The following is the input data for the basic model.
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Chapter 5

A COMPARISOI OF STOCHASTIC DYRAMIC PROGRAMMING
AND STOCHASTIC LINEAR PROGRAMMING WITH
SIMPLE RECOURSE ‘MODELS AS DECISICN TOOLS

5.1 Introduction

The asset and liability management problem is a continuous
decision problem in which actions can be taken at any point in time. At
any ‘decision point, the bank has a portfolio of assets and liabilities on
hand. Based on forecasts of future interest rates and cash flows, the
bank must decide which assets to hold in its portfolio, which assets to.
sell from its portfolio and which assets to buy for its portfolio. These
decisions are made subject to such constraints as cash flows and 11qujq1ty.
This decision-making process is performed repeatedly. The process is dynamic
in that the optimal solution to the immediate problem is dependent on the
actions that will be taken at each future decision point (and dependent on
the realizations of the random variables).

The best approach to solving the asset and 1liability management
oroblem would probably be a continuous time stochastic dynamic optimization
formulation. Decisions could be made at each point in time conditional
on the entire history of events up to and including the present. Such a
technique would be able to utilize a greater amount of information than can
be summarized in a discrete-time model.

However, computational tractability inhibits the development of
an operational model of the continuous type. On the other hand,some opera-
tional models have been-developed where the time parameter and the probability
distribution have been discretized to approximate the more general case. The

Bradley and Crane model [5,6,7] described in Chaoter 2 is one example.
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The B-C model captures many of the essential features of the
asset and liability management problem and achieves a certain amount of
computational tractability. However, as was shown in Chapter 2, the B-C
model encounters significant computational difficulty as the size of the
model is enlarged. Another shortcoming of the B-C model is the inherent
problem in the formulation.

To attain an operational.model, B-C discrétize a continuous prob-
ability distribution. So rather than obtaining optimality 6n the entire
support of the random variable, one generates optimality only for a finite
set of points in the support. That is, the decision variable must satisfy
the constraint set constructed from the representative points. For reali-
zations different from the repreéentative points, the B-C model does not
consider the profit foregone or the cost incurred in adjusting the port-
folio. Also since the first period feasibility is achieved by the simul-
taneous satisfaction of the constraints generated from the discrete number
of scenarios, the formulation is typical of the fat formu]ation] for the
discrete number of realizations of the random variable.

For example, consider a two-period problem in which an investor
faces the following situation: 1) he has $100 in period one to
invest in either asset x;: with a return r;; = .1 and maturing after one
period or x,, with a return r.;> = .2 per period and maturing after two
periods; 2) in. the second period the investor either receives an additional
$50 to invest with probability .9 or he must return $50 with probabi]ity .13

3) in _the second period, the investor also.has the opportunity-to invest in

a one-period asset xz1 with a return rz; = .1 or to sell a part of his holdings

]See Appendix‘l in Chébter 3.
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in x12 at a 20% discount; and 4) the investor stipulates that his realized
capital losses cannot exceed 10% of fhe-outstanding exogenous funds‘in any
period.

The 1inear-programming'formu]ationvof the -above problem in the
B-C- framework is given in Table 5.1. The optimal solution to this problem

is

bi(%,) = 11.11

2

bl(ll) = 88,89
ba(%,,) = 80.00 hi(2,,) = 0
h2,(2,1) = 88.89  h3(%12) = 63.89
s1o(2o1) = 11.11 s12(222) = 11.11
s12(%21) = 0 s2,(02) = 25.00

and the optimal value is $42.87.

The final constraint in the model, (which is a bound on realized
capital losses), is binding. If the right hand side was increased to'7.5
(maximal loss of 15%), then the optimal solution would be to purchase $100
of asset x;. (and sell $37.50 of x;, at the end of period 1, if the investor
has to repay $50). The optimal value to this problem is $44.11. Thus,
because of fhe fat formulation used by the B-C model, with respect to the
representative points in the support of the random variable, decision
flexibility is reduced. This is a result of considering constraints corre-
sponding to rea]izations_with a small probability of occurrence. For
example, it is clear from the above problem that in the B-C formulation a
number of constraints (such as the capital loss constraints) are not weighted

with respect to their profitability.



Table 5.1

b1(2:)  bi(21)  bi(Ray)  hia(R21)  sia(f21)  s1a(Ran)  ba(f22)  hiz(R2p)  sia(f25)  s3a(R22)
Objecti : :
solective 2 (L9)(.1) (L9)(.2) (.9)(-.2) (.11 (1)(.2) (.1)(-.2)
Cash :
Flow 2. 1 1 = 100
Q,p_l 1 -.2 -1.1 -1.0 = 50
222 1 -.2 -1.1 -1 = =50
Inventory
Balance %5: 1 -1 =0
1 -1 -1 -0
22 1 | - -0
1 -1 -1 =0
Capital
Loss %21 <2 =15
22 .2 <5 X
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On the other hand, consider the simple recourse formulation
described in this dissertation.. In the recourse formulation, the right hand
sides are not binding on the decision variables. Recourse is allowed and
the penalties for the recourse decision compensate for decision infeasi-
bility. Thus there is more first period decision flexibility in the
recourse model than in any fat formulation.

The use of representative sample points and the fact that the
first period decision is constrained by all future economic events may
cast doubt on the value of the B-C formulation. In this chapfer, in order

to uphold the above contentions, a simulation will be performed on a

small asset manacement problem. Therefore, counled with the .
computational superiority of the recourse model, the ALM model presented
in this dissertation should theh be - considered better operationally than
the B-C model.

The simulation utilizes twoe asset.and liability manage-
menf models. In one model, a stochastic dynamic programming formula-
tion will be used - the same approach B-C use. In the second model, a
stochastic linear program with simple recourse formulation will be used.
The simulation can be flowcharted as in Exhibit 5.1.

This process is repeated for both formulations. After each
reconciliation the profit_(]oss) for the period is generated and stored.
To eva]uéte the simulation a statistical comparison will be made of the

profits generated by the'two approaches.



Exhibit 5.1

START

Set T =1

\/

Set I =1

'

Initialize

\V

Model

\J

Generate First
Period Solution

/

Obtain (randomly)
an Economic
Scenario

Y

Reconﬁi]e Generated Portfolio and

Random Events, Generating a
New Initial Position

/

Calculate Profits
for Period

N\

Retrieve
Initial
Portfolio
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5.2 Scenario for the Simulation

The question addressed in this simulation is which formulation
technique, SLPR or SDP, can be said to be better in some operational sense?
This question must be answered from two points of view. First, which is better
from a computational standpoint? And second, which technique is better from a
normative standpoint? When one considers the difference in the size of the
models for similar prob]ems,] the answer to the first question is self-
evident. The answer to the second question is not as clear. Although
theoretically SDP should provide a better normative solution, the restric-
tions inherent in the formulation - few representative sample points and
the restrictive constraint set - may reduce the effectiveness of SDP. It
is this question of normative effectiveness that the simulation addresses.

To answer the above question, an asset and Tiability management
scenario is created in which the problem will be solved by the two
techniques.

Essentially the problem is to determine the optimal portfolio
of assets and liabilities, given random future rates of return, costs and
cash flows. To maintain computational feasibi]ity for the SDP approach,
only 3 planning periods, 3 assets and 1 liability are considered.

The assets considered are: 1) a one period treasury bill, 2) a
term deposit maturing beyond the horizon of the model, and 3) a long-term
mortgage. The Tiability used is a demand deposit. The returns and costs
of these financial instruments were generated from 26 consecutive observations

using data from Central Mortgage and Housing Corporation [10]. To get a

]See chapters 2 and 4 for comparisons.
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reasonable correlation of interest rates, the returns and costs were made a

function of the prime rate. The distribution of the prime rate (R) is

r Pr(R=r)
.06 6/26
.065 3/26
.0675 1/26
.075 2/26
.0775 1/26
.08 2/26
.085 4/26
.09 2/26
.095 2/26
RN 2/26
115 1/26

Distributions were then derived for the difference between
the prime rate and the rate of return of each of the four financial instru-

ments. These distributions are

m P (MSm) d P(Dd) t P(T<t) L P(Ls2)
.0037 0.0 -.0104 0.0 -.0388 0.0 -.0275 0.0
. 00838 0.2 -.0072 0.2 -.0306 0.2 -.025 0.2
.0198 0.42 +.0008 0.44 -.0253 0.5 -.0225 0.31

-.0225 0.77 -0.2 0.92

.0235  0.62 +.004 0.5

.0297 0.81 +.0118 0.78 .0174 0.81 -.0175 1.00

.0051 1.00

.0338 1.00 +.0195 1.00

Here the random variables M, D, T and L are defined to be the

difference between the prime rate and each of the following: the mortgage

rate, term deposit rate, treasury bill rate and the Tiability rate, respectively.



176

At the initial point, the investor has $100,000 in demand deposits
which is equally invested in the three types of assets. The demand deposits
will be assumed to increase (decrease) from one period to the next uni-
formly in the interval [-20,000, 20,000]. If the demand deposits decrease
so that assets have to be liquidated, then the FRB's parameters for quick
11quidatfon are used. The discounts for treasury bills is .5%, for term
deposits 4%, and for mortgages 6%.

The constraint set used will be of the B-C type. The constraints
on the investor include: 1) cash flows, 2) capital losses, 3) class com-.
position and 4) terminal conditions. The capital loss constraints assume
that the investor does not want to realize net losses of more than 3% of
the outstanding demand‘deposits in periods 1 and 2, and 4% in period 3.

The class composition constraints restrain the investor from having more
than $50,000 in total investments in any asset in periods 1 and 2, and
$60,000 in period 3. The terminal constraints include a discount on the
assets in the current portfolio so that all funds are not simply invested
in the highest yielding assets. and held to the horizon of the model.

These discounts are one-half of the normal discounts. The objective of the

model is to maximize the net expected returns.

5.3 Formulation of the Stochastic Dynamic Programming Model

To formulate the problem posed in Section 5.2 as a stochastic
dynamic program, it is necessary to first establish an economic scenario
over the three period horizon. This will include obtaining a representa-
tive distribution for the cash flows and the rate of return of each of the

four financial instruments. As already stated, the use of stochastic
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dynamic programming implies crude approximations of probability distribu-
tions, otherwise the computations become unwieldly. So, for the purposes
of the simulation the number of possible realizations of the random
variables dﬁring each time period will be limited to two.

As before, the demand deposits are currently $100,000. At the
end of the period the incremental difference will lie in the interval
[-20,000, 20,000]. The two point representative distribution used in
the formulation will be $90,000 with probability .5 and $110,000 with
probability .5. Using this distribution the mean of the underlying dis-
tribution is maintained although the variance is smaller (1.33 x 10°
versus 1.0 x 10°). However,the approximation is reasonable as it divides
the distribution symmetrically. For the third decision point the distribu~

tion will be constructed similarly. Thus the cash flows have the distribution

100000
(W.p. 1)




178

Using the same approach as above, the first period rate of return
for a particular financial instrument (assume mortgage rate) is taken to
be the median prime rate (R) plus the median of the difference between the
prime rate and the rate of return of the mortgages (M). The two point
estimate in the second period is R plus m,where P(M < m) = .75 and R
minus m,where P{M < m) = .25. The four rates of return in the third period
are: 1) R plus m,where P(M <m) = .875, 2) R plus m,where P(M <m) = .625,
3) R plus m,where P(M < m) = .375, and 4) R plus m,where P(M <m) = .125.
The actual distributions of the rates of return used in the

simulation are:

1) mortgage rate

2) term deposit rate

.0827
(w.p. 1)
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3) treasury bill rate

and 4) nonchequing rate

.0577

For purposes of the simulation, 70% of the nonchequing rate was
used as the demand deposit rate since the nonchequing rate dominates the
treasury bill rate. (This would have precluded investment in treasury
bills a priori,) This ad hoc derivation of the demand deposit rate does not
impinge on the usefulness of the Simu]ation because the objective is to
demonstrate that one solution technique may be operationally better than
another.

The decision variables for the B-C model will be the same as de-
fined in Chapter 2. Since treasury bills mature after one period, eighteen
variables completely define all potential investment opportunities. Since

the term deposits and mortgages mature beyond the horizon of the model,
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42 variables are required to describe all investment opportunities in each
of these categories. The variables necessary . to define.the demand deposits
include: the initial position, the demand deposit flows in period one,
the two demand deposit flows in period two, and the four demand deposit
flows in period three. 1In all, 110 variables define the investment oppor-
tunities in the problem.

There are four types of constraints. Constra%nts 1 to 7 are the
cash flow requirements for each period under each economic scenario; namely
the uses of funds are equal to the sources of funds. Constraints 8 to 14
require realized capital losses to be less than 3% of the outstanding
demand deposits in period one and two, and 4% in period three. Constraints
15 to 35 1imit the amount of funds invested in each of the asﬁets as pre-
scribed in the problem. Constraints 36 to 89 (inventory balancing) consist
of the initial holdings of each of the four financial instruments and
records the transactions in each economic scenario.

The demand deposit flow constraint for period 1. places an upper
bound on the funds potentially available for investment. Also the capital
loss and the composition constraints add another 28 slack variables to the
formulation. Therefore, the total size of the B-C formulation is 89 con-
straints with 139 variables.

The objective is to maximize the expected value of the net returns
from the portfolio over the horizon of the model. That is, the coefficient
of each. variable is the product of the net return and the probability of

its occurrence.
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5.4 Formulation of the SLPR Model

The SLPR model uses the same information as the B-C formulation.
Also the constraints are of the same type, but the total number of con-
straints is fewer than in the B-C model; this being the result of the
manner in which uncertainty is incorporated in the SLPR model. In contrast
to the B-C model, only the mean rate of ‘interest is used for each of the
financial instruments rather than the possible realizations. Also, the
SLPR model allows for violations of the constraints by incorporating
penalties for recourse in the objective function. The decision variables
for the SLPR model will be defined in a manner similar to the variables
in the SLM model. The investment opportunities for treasury bills, term
deposits, mortgages and demand deposits are defined by six, eleven, eleven
and four variables, respectively.

The constraints in the SLPR model are comprised of: 1) three
constraints to balance the initial holding of an asset with the future
buying and selling of the aéset, 2) three constraints to equate the cash
flows for the three periods, 3) three constraints for each of the three
assets for composition requirements, 4) four constraints to describe fhe
initial position of the three assets and one liability, 5) three capital
loss constraints of which one (the first period) is deterministic as 1)
to 4) above, and the others being stochastic, and 6) three stochastic con-
straints which describe the flow of demand deposits. In short, there are
25 constraints in total of which five are stochastic. Adding nine slack

variables for the class composition constraints and one for the deterministic
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capital loss constraint, the SLPR formulation has 25 constraints and 42
variables.

The right hand sides of the stochastic demand deposit constraints
are representative points from the uniform distribution used in the B-C
model. However, because of the ability of the Wets' algorithm to handle
many realizations without creating computational difficulties, the number
of points chosen is larger than in the B-C model. The penalty for viola-
tions of any of these constraints is the net return to the horizon of the
model, generated by a portfolio consisting of 50% mortgages and 50% term
deposits, since their portfolio is considered, a priori, to be potentially

the highest yielding portfolio. This penalty is calculated as

SO+ )Y 1w L+ R )Y T - [ ) -
where n = 1,2.3.is the period; rp 1S the median return on mortgages; ri
is the median return on term deposits; and ;d is the median cost of demand
deposits.

The right hand sides of the stochastic capital loss constraints
are the representative points used in the B-C formulation. The penalty
for violations of these constraints is a loss percentage because these are
policy constraints rather than physically or legally restrictive constraints
as those in the preceding paragraph. In this particular formulation, a
penalty of 4.1% is used.

The objective is to maximize the net returns minus the expected
penalties for constraint violations. The coefficient of each variable is
the net return for the f{rst stage variables and the penalty for the

second stage variables.
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5.5 Results of the Simulation

In most normative financial planning models, the objective is
to determine what portfolio changes should be effected immediately. The
multi-perodicity characteristic gf financial models is ﬁo compensate for the
shifting economic scenarios across time. However, the purpose of the model
is to determine the changes to be implemented immediately. The simulation
analyzed in this section determines which teChnique (SDP or SLPR) yields the
superior first pefiodoso1ution.

In reality, decisions may be made at any point in a period, however,
using a discrete time model one aggregates so as to consider all decisions
to be made at the start of each period - facing random rates of return.
Again, the incremental cash flows are aggregated so that one-half is avail-
able at the beginning of the current period. In both formulations the same
initial security holdings are given and the cash flows for the next period
are random.

A detailed flowchart for the simulation is in an appendix at the
end of the chapter. Essentially the process starts with an initial port-
folio. Both the SDP and SLPR models determine an optimal solution for the
first period. A random cash flow is then generated. If the amount of
funds spent during the first period exceeds the random cash flow, then
an amount equal to the excess spending must be divested from the present
portfolio (.45 of mortgages, .45 term deposits and..1 treasury bills).

On the other hand, if the random cash flows exceed spending during the first
period, then the incremental amount‘is invested in treasury bills. After
this reconcilliation, the realization of the random returns are determined.

The revenues are the sum of the (known) returns of the assets held since



184

the start of the period and the (random) returns on the assets bought
at the start of the period. The costs are the sum of the (random) cost
of demand deposits and the discount for selling securities prior to
maturity. The reconciled portfolio serves as the new initial port-
folio which is then used to generate the new solutions for both the
SDP and SLPR models. This cycle is repeated for a total of eight times.
This whole process is repeated fifty times for a total of four hundred
iterations.

The simulation results for the SDP and SLPR formulations are
used to test two hypotheses. The first hypothesis,

H > 0,

0° “d ~ “spp T MSLPR Z
is used to test whether or not the initial period profit for SLPR is
superior to that for SDP.

The first hypothesis is tested by examining the .paired diffe-
rences of the profjts for the 1nitfa1 run of the 50 cycles for SLPR and
SDP. The specific information used to test the first hypothesis is:
(1) the mean of the paired differences ($251.37 in favour of SLPR),
(2) the standard deviation of the paired differences ($150.43), and
(3) the correlation between the SDP and SLPR profits (0.958). Given
the large sample, the significance of the paired differences is tested

using the following test statistic:

-251.37
150.43//50

= -11.81.
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Since the test statistic is significant at the 0.001 level,
the null hypothesis is rejected. Thus, the SLPR formulation yields
a statistically significant better initial solution than the SDP
formulation.

The second hypothesis,

H 0

0° Md T ¥spp T MsLPR 7
is used to test whether or not the mean profit for SLPR is superior to
that for SDP. |

This hypothesis is tested by examining the paired differences
-of the mean profits of the eight runs of the fifty cycles for SLPR and
SDP. The specific information used to test this hypothesis is: |
1) the mean of the paired differences ($297.26 in favour of SLPR),
2) the standard deviation of the paired differences ($308.74), and
3) the correlation between the SDP and SLPR mean profits (.785). Again,
given the sample size, the significance of the paired differences is

tested using the following test statistic:

-297.26

— T2l - _6.8].
308.74//50

Since this is significant at the .001 Tevel, the null hypo-
thesisvis rejected. Thus, the SLPR formulation yields a statistiﬁa]]y
significant better solution than the SDP formulation. |

To test the stability of the above summary statistics, a second

simulation using SLPR was run. The results of this simulation are
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analyzed as above: 1) a test of the initial solution of the fifty
cycles, and 2) a test of the mean profits for the 8 runs of the fifty
.cycles. The information necessary to test the first hypothesis is:

1) the mean profits for the first and second SLPR runs ($4645.85 and
$4672.23 respectively), and 2) the standard deviations for the two
runs ($421.11 and $482.15 respectiVe]y). The hypothesis that both

samples have the same mean,

H

0° "SLPR, ~ “SLPR

1 2

is tested first.
The standard deviation used for the test statistic is the

root of the pooled variance. The test statistic is

4672.23 - 4645.85

50753 = .291.

Since the test statistic is not significant at the .1 Tlevel,
there is no reason to believe that the mean is not stable.
The test statistic for the second hypothesis is established

in a similar manner and is

4783.13 - 4720.15 _

86.84 73,

Since the test statistic is not significant at the .1 level,

there is again no reason to believe that the mean is not stable.
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A CDC 6400 was used to perform the above computations. The
total CPU time to perform the 400 iterations for the SLPR formulation
was .240 hours and for the SDP formulations was 6.385 hours. This
explains why only a Timited number of financial instruments, time.

periods and realizations were used in the simulation. It also further

highlights the gap in tractability between the SLPR and SDP techniques.
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5.6 Appendix 1

This appendix consists of: 1) a flowchart for the simulation
performed in Chapter 5, and 2) a computer code for executing the simu-
Tation. | |

First, the following variab]es are defined: 1) X1(X19, X61)
is the amount invested in treasury bills (term deposits, mortgages) in
the initial portfolio; 2) X(?) (X(20), x(62)) is the amount allocated
to purchasing new treasury bills (term deposits, mortgages) in period 1
as generated by the optimal solution to the B-C (SLPR) formu]atfon;

3) X(3) (X(21), X(63)) is the amount of initial period treasury bills
(term deposits, mortgages) still held in period 1; 4) X(4) (X(22),

X(64)) is the amount of treasury bills (term deposits, mortgages) sold
in period 1; and 5) X103 is the amount of demand deposits outstanding

in the initial portfolio.



Set T =1

/

Initialize portfolio
X1 33333
X19 33333

\'

X61 33334
X103 = 100000

\'

Set I =1

V

Formulate problem

Y

(B-C or SLPR)

Y

Call Kuzy (X1, X19, X61,
X103) to generate first
period solution

Generate:

1) exogenous cash flow 1YY € [-10000, 10000]
and set R1 = X103 + 1YY

) prime rate PRI

) treasury bill rate TB1(PR1)

) term deposit rate TD(PR1)

) mortgage rate AMI(PR1)

) demand deposit rate ALCI(PR1)

S U W N
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72 = .005%X(4) + .04*X(22) + .06%X(64)
Y1 = X(2) + X(3) + X(20) + X(21) + X(62) + X(63) + 72
ARM = 72
X2 = X(2) - .2%(Y1 - R1)
72 = 72 + (X(2) - X2)*.005 if X2 > 0
72 = 72 + X(2).005 if X2 <0
X(2) = X2
X20 = 0.0
S yes
X3 = Y
X(2) .
72 = 72 + (X(3) - X3)%.005 if X3 >0
72 = 72 + X(3)«.005 if X3 <0

X3

@
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A\

<:::::§§i§§:::::>> -
XZO

(3) =

5
9

X201 = X(20) - X20 - (Y1 - R1)x.4

2 = 12 + ( (20) - X201)*.04 if X201 > 0
72 = 72 + (X(20))%.04 if X201 < 0
X(20) = X201

X62 = 0.0

yes
>

X21 = X(21) + X(20)

X(20) = 0.0

2 = 72 + (X(21) - X21)*.04 if X21 > 0

72 = 72 + (X(21))*.04 if X21 < 0

X(21) = X21




yes
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<:::::%§E§§:::::>
X(21)
?

>0

no
X62 = -X(21)
X(21) = 0.0

<@ @<

X621 = X(62) - X62 - (Y1 - R1)*.4

72 = 72 + (X(62) - X621).06 if X621 > 0
72 = 72 + (X(62))*.06 if X621 < 0
X(62) = X621
yes

>,
X63 = X(63) + X(62)
X(62) = 0.0 |
72 = 72 + (X(63) = X63)x.06 if X63 > 0
72 = 72 + (X(63))*.06 if X63 < 0

X(63) = X63
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yes

STOP
'problem ,
infeasible’

Z1

TB1*X(2) + TDI1*X(20)+ AM1%X(62)
.0541*X(3) + .0827+X(21) + .0992xX(63)
Z1 - 72 - R1*ALCI

X(2) + X(3)

X19 = X(20) + X(21)

X61 = X(62) + X(63)

X103 = Rl

+

Z3
X1

no > @

es

STOP
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PRNGPAM HAPDY (THPES,JUTPIT,TARIA=0UTPUT)
IMILICIT REaL (A=H,0-7"
INTEGES S.5,247,MARTY

REAL Te(73,10),T0(73,
REAL PUZCel3),NU70413),£(130,260)4H(190),C(250
REAL WILCO4 130 oG (100, DILTA(TIY»GAMMALTS)Y ,PT(20)
JIMENSTION TW(L10J),,KAPPAI7TY,L (7]),K(70)

2zaL Q70781 ,0M(70)

ATMENSTION Y15

CQ'

COMMON HyMaM1 4 M2 4P Dy Ay Wiy HvaDELTA»GAMMA.PI'IN,KAPPQ;L.EDSv
k3 KaQP . OMy Z0MARKER '
COMMON /PRINTR/ TP, TD
COMMON /A7 X
FARNABERER XY GENERATE CASH FLIW ERERERNSEREEN

00 1234 KxX=1,42

X103=46G30L8C.
X1=32332.
X19=23333,
X61=3323 4.,

DO 1233 KLL=1,23
CALL XUZY(X133+X1,X13,X61)

>
(=)

REWIND 5
WRITE (64 172)

2 FORMAT (LKD) .
WRITE(6.101) KKLKLL
1 FORMAT(10Y,14HSIMULATION RUN,I5,2X,6HPERION.IE)

AX2=¥(2)

X (23 =X{4)

XKLLy =AX2

AX20=Y{(20)

AX21=X(22})

Ax22=X(22)

X231 =X (123 +X(13)+X (14Y

Y(21) =X (9 «X{15) +X(11)

¥ (22) =X (2} . o , , : .
X521 =X 122V X (241 +X (25)

(53 =AX2G+AX21+2X22

X(Bb4)=7119)

X(193)=¥ (29)

Y=RANF(T)

YY=20CGO*Y

IVY=YY-10C00
Q‘-X(1L3,+-VY

WRITE(E,104) P2
t"‘":‘ﬂ.“g\f 1LHCASH FLOM(E1

1257 1+—~(nuwﬁv3
1= ,7% (PR1+RLE (DUMMY))

-



WRITE (6, 150) TRL
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163 TORMAT(L3¥,134TREASURY BILL 28TIz,2X,F15.5)
MRITE (54151 101 . '
151 FORMAT (10X 13H TERM DEPISIT RATE=,2X%,F16.5)
WOITE(B,172) &MY
152 FORIMAT(L LY 448K MORTAEGE RATEZz,42%,F16.6)
WEITE(6,153) ALT1
153 FORMAT(LCY,194 LTIARILITY ATZ=42X4F16.0)

YI=X(2)4X(20) X (621 +X L2V ¢ X (21) +X(H3) +.505%X (L)

T o+ LTY(22V4,00%X (B4 .
22=0 GOS* X (LY 44 EL*X(22) 44302 X (5060
ARM=Z2 ' .
IF(Y1.,LT.24) X(2)=X(2)+RL1-¥1"
IF(Y1.LT.R1) GO 70O 79
X2=X(2) = (Y1=21)* (,2)

IF(X2,GT4el) 22222+ (X(2)-X21%(,305)
IFIY2.LE e G) 72522+(X(2V)%(,305)
X(2y=X2 .

X28=0,¢

IF(X(2).GELe0) 530 TO 77
X3=X{(3)+X(2)

X(21=9.0

IFIX34GE e Z2=Z72+4 (X (3)=X2)P (,303)
TFAY3 LT 402222224 (X(31)*(,325)
X(3)=X%X3

IFIX(3Y.GE.sB) GO TG 77

¥23==%(3)

77

X(31=0.0

CONTINUE

X231=X(25)=-X20-(Y1-R1)I* (. &)
IFIX231e06T4e0) 722224 {X(20)=X201) (.04
IFIX201elE0edY72=22+4(Y(20))% (.04}
X(23)=x201 )

X¥562=0 .0 '

IF(X(20) «GE..0) GO TO 78
X21=X(21Y+X(20)

X(201=0,0
IF(X21,GF..01Z2=72+¢ (X (21)=-X2L)* (.G
IF(X24eLTeal)72=22+X(21)" (404}

78

X({21)=x21

IF(X(21) .GE..Q) GO TO 78
X62=-X1(21)

X(24)=043

CONTINUE
X621=X(62)-¥52-{VY1=R1V1*(, 4}

TF (Y21 6T 8V 72572+ (X(821=X5211 % (L 3 6)
IE(X6214LTaa2) 22272+ (X (B2))%(,05)
X (521 =X621

IF(X (82} GZe.0Y 6O TO 73

X63=X (£3)+X(52)

X1521 =00

TE(XE3.GE. 000222724 (X(E3) =X63)%(.05)
IFIX63.LTeal)22=2724(X(563))*(.,06}
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3)=X6
((563) 6Ly GO TQ 78
[t

T1=TRL*X {2V +TNLXX(20) +AML*X(52)
B+ IBLIEXLII+,LB27XX(24)4.0932%X(B2)
73=71-722-R1%ALC1 :
WRITE(R,108) KLL,Z2
168 FORMAT(LGY,17HPROFIT FOR PERTNNN2X,T113,1H=,F15.4)

X{1)=X{2)+Y(2)

X {131 =X (204X (21)
X(B1}=X(E2)+X(H3)
X(133)=R1
X133¥=X(107™)

X1=X (1}

X13=X(19)
X61=X (61!
WRITE (642671 X1,X18,X61,¥103
207 FOIMAT(LCX42HX=,45F16.4)
- WRITE(6.160)

160 FDRMAT(1_0Y,_L;&H!!"—l¥;t;i4#4‘¥¢¢!¥5’6#!4!ll‘lt#t&l‘-!&!&’&.!l&)

WRITE (B4 161)
181 FORMAT(1{Y,20HS T 4 T I S TI C S
SBZ1=5B71+72
SBZS=SBZS+(Z3)**2
WRITE (B4 163y 71

163 FQIMATLICOX,* GROSS ITVENUES =¥ F15.5)
WRITE (6. 168) APM )
168 FORMAT(L1GYX,* COST OF SALES = *Fib6.6

WRITE(B.1E5) Z2
165 FORMAT(L(X,* COST OF SALZIS AHD FORCED SALEIS=*,F1646)
ARMIN=R1*ALCL
WRITE(6,166H) ARMIN

166 FORMAT(1(Y,.* COST OF FUNJIS= #,F15,6)
WRITE (£, 167) S8Z1 o

167 FORMAT(10X.* CUMMULATIVE PROFITS = *,F15.6)
WPITE(E4159) S2ZS

169 FORMAT(15%* CUMMULATIVE 2ROFITS SQUARED  *,F20.3)

1232 _CONTINUE

1234 CONTINUE
END
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FUNCTION PP(D)
Y=RANF (D)
IF{Y4lE.a231) ©CR= S

IF(Y 6T, 4221, AND, 2=, 065
IF(YeCTa s 3LTLANDG Y LZ.,335)293=,3675
IF(Y 0T« o 2R5,AND WY L2 ut521P2=2,575

IFLY . GTa s B2.ANDYWLZ,,5) PR=,0775

IFIY.GTas5.ANO.YLELe577) P2=,(8

T (Y e lTea577 4 AND Y, LE,.732)PR=,0385

IF(Y o GTe 731 0AND Y LE..878)22=,00
IF(Y.GT. 808, 8ND4YoLZ4,.835)P23=,095
IC(YaGTe o PBSLAND Y LE..3523PR=,11
WRITE (B,101) PR
FORMAT(LLX 4 11HPRIME
RETURN

ATE= 42Xy F1548)

A

END

197 .



A1=-,028%

FUNCTION =Ta(n)
Y=RANF(D)

42=-,0206
43=-,9253
A4==,022C
85=-,0174
86==, 3051

+2) TR=A34(Y/2)* (82-41)

TE(Y 6T, 2. 8ND Y LE,. 6 T8282¢ ( (Y=, 2) /231 ¥ (A3=A3)

IFIY . GTe s SdlND Y LEL . 77)
IF(Y.GT o 77.0ND Y LE, . 81)
IF(YeCGTeoBLleAND YoLE,14)

2Ta=Tq

RETUBN

TB=A34({Y=u5)/,27) % (AL=A3Y
TR2AG¢ (LY =771 7.04) % (45=04)
TB=A5+((¥Y=~481)/,19) % (A5~-A5)

END

198
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TE(YolE e 2)TDSA1+(Y/.2) % (82=01)

IF (Y eGT e s2e AND Y eLEw o tl)TO=A24((Y=02)/(425)) % (A3-42)
IF(Yo0Ta s bba AND, Y LEWeB) TOSRI+((Y~0bt) /4 06) ¥ (AU=A3)
CIFUY o GT e a5 eANNY o LEeo78) TD=A64+({Y=45)/4,28) ¥ (A5=44)
IF(YeGT e e73sANDYLELLe) TO=AS+((Y=-,78)7,22) *(AG=-A5)
2T3=71D
RETURN

END

199;
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FUNGTION RM(D)
Y=RANF (D)
41,8037

42=,0088
AZ=,0198
A4=,0235
A5=,02487
t6=,N0238
TF(Yelfse?) AMzAL+(Y/.2)* (A2=41)

IF(Y . GTe a2 ANDYLE cak2) AMSA240(Y=-,2)/ (422 )% (AZ-A2?
TFUYaGT e eltZeANDe Yol Sse02Y AMzAZ#((Y=,42)/e2)* (A4=A3)
IF(Y oGT o o024 AND Y LEe o 81) BM= 4+ ((Y=0a52)7,13) *(A5~-44)
IF(YeGTe «B81¢ANDs Yol Eele) AM=A54+((Y=-,81)/.13)* (AH=-AB}
RM=AM .

RETURN

END
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FUNGCTION RLC(DY
Y=RANF(D)Y

3275

. eLZee132)2.C==.52
F YelGTee192. N3 Y LZ 4328 UL==45
CAUYelOT e s 20R,AND WY eLZ44923) 2LC==43
FUY.5Tev9230aND Y LZele) RLI==,017
ETURN '
ND

«GTea115.4 .

100 20 vt =t = b




SURRCUTIME KUZYIX153,X1yX19,¥51)

C=> MONIFICATIONS B8Y J. KALLBIRG & 4. KUSY
_DE2MAXIMYM CVALUZS ART= MR=73% Miz224-M2 Nz353t  KII)=3 et e e e
(e-ceceeceeccemmecsesm-ceccc-eeemereemcccc e s e m oo e

IMPLICIT REAL | (A=R,0=7)
INTZGER S,RePHI,MARTY
REAL TD(YUolu),TD(7d.‘H
SEAL PATG15),0(7 d,lﬂ).A(lJuo-nul9”(‘Jd)qC(26ﬂ)
___ﬁ_‘_ AL __»\ﬂ__(_;g.l_u..LEu).G(iJ.,).D LTA(?U)v:A“MA(TU)OpL(LUD) e e e
DIMENSION TW(L00),KAPPAL(T )L (70).K(70)
REAL GOI78) . AM(7D)
AIMENSION Y (15Q)
COMMON /L7 X
COMMON MeMaML,M2,P, Dy sy CoHy53,IZLTALGAMMA, PloxquADPA'L.EDS.
S Ke.QP.OM,70,MARKER _
COMMON /PRINTR/ TP, TD
C=>NOTICS THAT TN THE DOCUMENTATION THAT P &ND D USE 5-ORIGIN INDEXING.
C=>IN THE FOPTOAN CODNS ALL SUCH INJEXIS HAVE BIEN INCRIMENTED B8Y L. '
READ(5,932) =PS
22 FORMATIF10.6)
176 FORMAT(AHL,T10,"TOLERANCE IS SET AT __",F8,.5)
=>2FEAD IN HN,M1.M2, KI.
PEAD (541003 NyMLyM2
130 FOIMAT (315 .
139 FOQMAT(///+T104"# OF VARIABLIS= " 4Ib44/,TL10,# OF DETIRMINISTIC
o “CONSTRAINTS= ", I4+/+T40,"# OF STOCHASTIC CONSTRAINTS= “,I&)
MzM1+M2 —
C=>BEAD IN AND WRITE OUT THI XI-VALUES(POSSIBLE VALUESY AND ALPHA AND BETE
C=>(LOWER AND UPPER ROUNDS) INTO 2.
110 FORMAT(™1°,T20 34 (™*"y,/,T25,"PISSIBLE VALUEZS OF RIGHT HAND SIDE™,
* 'T2h93"0("""v/)
DO 32 .L7=1,42
READ(54990) KILZ) 4D (L7521 4P (L 27,2)
TP(LZy1) =P(LZ+2)
TOLZ,1) =0(LZ+2)
’F(K(L7).L:.1)GDT037
KP=K (LZ)
00 31 LA=2.KP
PIAD(5,804) D(LZ LA+2) 4P(LZ,LA+1)
TO(LZ LAY=DILZ,LA®LY
TPILUZ,LAYZC(LZ LA+
QEAD(S548G2) DULZ 1) 4 D(LZKILZY+2)
DEAD(5,429) APILZ)AMILD)
FORMATIIZ,F1l.2,Fbab)
TOAMATAE 15,2, F 6, 0L)
FOIMATI251G.2)
TOAMATI2F 40 4)
RI=K(LZ) +1
LX=Mi+L2Z
132 FORMATITE,"20M " ,I3,T1i5:4(Fi%.2,8X) 47/,
. 1 LIFAL,2,6X) )
12 H{LZ+Mi)=0(LZ41)
6 NOTS THAT THE ALPHA(I) RECOME THE 2L GHT HAND TERMS

NN

~

A
«

[ AN B
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STOCHASTIC CONSTRATINTS

c FA2 THE
fE>WRITE OUT THE LOWER AND UPPED® BJUNDS AND CALCULATE THE O VALUES.
112 FOR WAT(//.T?L.LZ("‘"V.».TZU<"L3NL? AMD UPPER POJHDS OF RAMDOM®.
o 1 G ARTATLES Y W/ G T20 s k2 (X, /)
00 35 I=1,M2
KI=K ({141
LXx=M1+1
D0 35 Jzi.I
35 D1Teg)=Df1,J%1)-0(1,J) - . e
TE=>RELD IN AND WSITE JUT TuMZ  IMITIAL P-VALUSS: CALCULATE T4 ACTUMULATED
C=>P-VALUSS “AND WRITZ THZ nu.. AL30 WRITE QUT N=PLUS AND 2-MINUS.
108 FOMAT(//4T20430 (") ,/,720,*PROBASBILITIES OF PRAKDOM EVENTS™,
« /s TZUq3u("*")./)
DO 30 I=1,M2
KI=K(TV41
. X=M1+]
35 GONTIMUE

1’# FORMAT(//74T204 33 0%y /4 T25,° SHORTAGE
/T2 Do3o("““

00 42 I=1.M2
LX=M1+]1

INALTY
7}

SURPLUS PENALTY"™,

[

2

CONTINUE

00 33 I=1.M2
KI=(I)+1
PLI,y1)==02 (1)
LCG=0.,
Q=QP (1) +0OM(T)

3

L

&4

33

:>Q»

00 34 J=2,X1
ACC=ACC+P(I.J)
P{I,J'==QP(T)+0*ACC
COMTINUGL
470 IN 4 AND H,
FORMATI(IF1C.4)

N0 179 Ji=1.M

DO 179 J2=1.N

AlJi,J2) =0
N3TE THAT THIS:
COGE
THE MATRPIX 1IN

7S ANOTHER
WHICH WOULD REAUIRE
3F10.4

DIPARTURE

FORMAT,

FRCHM THz ORIGINAL
THE USER TO ENTER

EACH ROW OF

WITH & LARGE MATRIX WHICH

OO OO0

=4

[
[=~]

THE NONZZROQ

(1)
ENTYZP A NULL LIhuo

30 183 KUSY=1,M

RTAD (5,41 838) TND, TEMP

IF (INDLEN.0Y €ITG 1813

ENTRIES.
FOLLOWED 8Y TuHE

S0 FOR

ZNTY (FiQ.4),

e
N

L(KUSY,IHD)=TEIM?
0T0. 187
CONTINUE
IF{ML1.tQ.0)
READ(G,1025(H(T
CONTINUE

T0 &7
Y eIzt

]
¥

ZACH ROW INPUT THE COLUMN NG
WHEN A& WKW IS

COMPLETE

M)

H{19y=X31C2
H(ib)=X1

203



20’4

H(171=X19
H(13)=X61

106 FORMBT (/ /412375 (0%") 4/ YZL, A = MATRIXY,
he /4 T234300%™) 4 /)

198 FORMATHIIWF13. &)
NUMB=N/L1 0+t
T-(MOD(W.-_).EO.H)WU4“ NUMAeq
222 FORMAT(/* ROW "3 I3,3X,10(2%X,710.4))
223 FORIMAT(///30%, "‘**"**"t"*"t:““"“‘*““’*"‘*""""‘"l
227 FQAMAT(/7,710)
228 FORMAT(™ COLUMNS™,10I12)
WRITE (64Q01)
g1 FOIMAT (L HL)
WRITE (6,1C9)
159 FOIMAT(//,T20430 (%) ,/,T20,"INITIAL RIGH [ HaND SIDE _VECTOR™,
* /aT20430 (%™ 4 /)
00 22 I=1+M
2 WRITE(R,102) I,H(I)
=>INITIALIZE PI ANT W,
00 40 I=1.%
NeLE=1.0
OI(I)=STIGHIN3LE,H(IY)
no 41 J=1.M
L W(IyJ)=0.
4.6 WII,I)=PI(T)
c W IS ZERQ EXCEPT FOR 21 ON THI DIAGONALS
C=>INITIALIZE L'K'IW.DELT&. AND GAYMMAt  CALCULATE H AND. ZO0.
DO 5¢ I=1.M2
FAﬂMA(;l—u.
DELTA(TI) =1ETY

L{IV=3
50 KAPPA(TY =0
e 720=0.,
DO 51 TI=4,M
IW(Ir=-1 :
I (H(T)-G’-Q-) GOTO S1
Hilt==H{I}
51 20=Z20-H {1}
00 52 1=
s2 CtIry=38.

=>{111111431131242144112433114411121131111
Cz=>PHASE It REGIN COLUMN PIVOTING WITH MAU=1,
243 CALL CLMPVTI(CBRAR,S5,1)
IF(CRAR, LT.-EPS)Y GO TO 232
Tr(’C GE s -E°°!G"T0 233

N?IlE(& 2 7)
297 FORMAT (* INFEASIBLE™)
CALL DUME
C=>CRARHE. D AND Z04GE oo
203 DO 224 J=1.M

IF (IN{JY.LT.EY GO TO 205
204 CONTINUE



¥ 205"

50 TO 300
265 WRITE (B, 26R)
208  FORMAT (/% PuASE 1 NZGENIRATY™)
CALL OUM?
C=>CBAR<),
252  CALL SMXPVT{CRAR,S,HMU)
GO TO 288
S=>9HASE IT: RTAND IN S-VICTOR!:
300 2TAD (5,119 (G(I)aI=1,N)
119 FORMATI3F1G.4)
A5 FORMATL(/ /. T25, 23 (“*™) 4/, T20," CO3T VICTOR™,

* 7eT2043C0"%) /)
30 7C9 Ji=1,N
709 TONTINUE
710 FORMAT(™ COST ("9 I3 )="" 4"l bk}

=>SET GAMMA,
DO 301 I=1.M2
301 GAMMA(I) =P (I,.K(I)+1)
C=>SZT G.
DO 362 J=1.M
IF (IW(J).LELNY GO 7O 333

GUIY=GAMMALIW(J) =N)
GO Y0 202

3¢2 GEH=CI{IHLIY)

302 CONTINUE

=>SET PILZ0

Z0=0.,
D0 304 T=1,.M
PI(IY=C.

00 304 J=1,M
25k PI(II=PT(IV+G (D) *W(J, 1)
C=>22222222222222222222222222222272222222
C=>BEGIN COLUMN PIVOTING WITH 4AU=L,

4ot CALL CLMOVT(CBAR,.S.1)
IF (CBAR.GE.-EP3) GO TO 530
CALL SMXPVT(CBAR,S,MU)
IF(MULNEL2) GO TO 400
WRITE(E4402)

32 FOIMAT (/™ UNSOUNDED')

CALL DUME .
C=>L8A=>=0.3% SET DELTA,GAMMA,
56U DO 501 I=1.M2
DELTA(IN=D(T,1)
01 GAMMA (1) =P (I,1)
:)

5
{\ SET L. KAD_DA H, GAMMA WPI.

DR 552 J=i4M
IF (YN(J\.LE.N) G0 T0 532
U=zIWtay =

LNy =

Y=3J.

BHT=1

KI=K (NU) +1
D0 503 KK=1,KI



PHI=KK -
T (Y+D(NUKKY+ZPS,GT.H(J) I G0 TO 504
63 ¥Y=Y4D (MU KK)

z
50k Y=D (MU,PETY=C(HY K (NYT +1)
OELTA(NUYZD(NUL.PHT)

Y(JY=H{JI =Y

GAMMA (NU) =P (NU.PHT)

KADBA (NU)=PHI~1

D0 555 I=1.M

" 206

505 PI(IN=PT (I +X*N{J,T)

512 CONTINUE

£6=>3333333333323333333333233333333333333

G=>REGIN COLUMN PIVOTING AGAIN WIT4 MAU=0.

766 . CALL CLMPYTI(C3AR,S,H) i
If (CBAR.GE.-EPS) _GO T3 600

701 D0 703 J=1,M

GltJr=0.
D0 703 T=41,M

7C3 G =G +W{I, DI *¥A(TI.S)
CALL UPRPYT (CBAR,S=N,.2)
50 70 708

=»3EGIN UPPER BCUND PIVOTING,
608 ‘DG 601 I=1.M2
IF (L(I).EG.1Y GO TO 601
KK=M1+1 . .
C=>TESTL,
CRAR=GAMMA (1) +PT (KK) .

IF (CRAR.GE.=-EPS) GO T0 502
0C 633 Li=1.4
532 GILLY == {LL.XK)
CALL UP2PVT (CBAR,I,1}
GJ 70 700
TEST2.

=> :

5c2 IF (KAPPA(I),EQ.0) GO TO 601
CBAR=DT (KKY4+P (I, KAPPA(I})
IF (CRARLE.EPS) GO TO 501
D0 604 LL=1.M

AGL GILLY =W { LL KK}

CALL _UPROVT (CRAR,I,J)

G50 TD 76¢
501 CONTINUE :
G=>WHIN THE LGOP IS SATISFIZED, WPITZ JUT THIZ
702 FORMATI™A*,T20,30 %) 4/,720+"
* 74aT2038 (%) 4 /)

0PTiMAL

SOLUTION AND STO®
DPTIMAL SOLUTION ™

.,
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IMPLICIT REAL (A=H, 0=}

INTEGER SeRe2HI,MADTY'

REAL PUTCe13)sD(?3513)8(133:260)4HI1G0Y4C (26D
2EAL W(100,1380).G(100):DELTA(TO0) »GAMMALTOY PIL1GL?
NIMENSION TN(1! KAPPALT O L (73),X (7D

)
2EaL Qe(76) ,GM (7)) .
COMMON NoMaML M2, POy Aeky CoHa G IELTAVGAMMA,PI,IW, KAPPA,LLEPS,
$ KyOP 4 OMyZO4MARKER :
C=>CALCULATE PIVOTAL ROW, HI(R)
GS=1.0/G(R) ..
DO_10_J=i.M

it WIReyJI=W (R, JY*GS
H(R)=GS*H(F)
C=>PIVOT ON OTHER ROWS,
Do 11 I=1.M
IF (I.EQ.RY GO TO 11

5S=6(1)
Ng 12 J=1.M .

12 WITyJI=W (T,J1=GS*W(R,J)
HII)=H(Ti=GS*H(R)

11 CONTINUE

C=>CALCULATE PI BAND 20,
DO 13 J=1,M

132 PTI(J) =PI (JI+CBAR*W (R, J)
Z0=70=-C8AR*H(R)
976 RETURN
END



SURRDUTINE QUWIAVT (T, R, MU)
IM2LTICIT RT4&L (A=H,yD=7)

INTEGER SsRePHIyMARTY
RTAL PA70410)V4D(75,10Y0AC1530,260)4H{100),C(20D)

2EAL W(L1G39200) 96109y NELTALT D) 4, GAMMA(TD) 4PT (1

DIMENSION THE1Gd) (KAPPALT I, L (73} K(70)
REAL  QOUTEY,Q4(7{)
COMMON NoMaMLoM2 40,0y AsWaCyHy 5, 0ELTA,GAMMA, DT, TH,

300

KAPPLALL 4E2S,

T

KyGP s0M, 20 4 MARKER
T=1E70 '

C=>FIND MIN RATTIO H(J)/G{J) WHIRZ 5(J1>0,
C=>FIND MIN RATIC (H(S)=-DELTA(TIW(D =NII/G (I ST K>Gs

00 11 J=14.M
IF (G(J)Y . LE.=-ZPS) G370 190

G(J) <D,

IF(G(J)LTLEPSY GO TO 11
G(JI)>C, .
RATIO=H(J) /G ()
IF(RATIOLGT.T)Y GO TO 11
T=AT 1IN

R=J

N=>1F
1¢

MU=(

GO YO 11

G4 <O,

KK=IW (JY=N

IF (KKel EW2) GO TO 11
RATIO=S (M (D =DELTA(KKYIY/G(J)

[

>IF

IF (RATIOLGT.T) GO TO 11
T=RATIO

R=J

MU=1

CONTINUE

NGO J FOQUND My=2.

ars

TF (T.GEL1E70) MU=2
RETURN '
IND



"SURBROUTINE CLMEVYT(CBAR,S,MAWD
e IMOLINIT OFAL . (A=H, D7) . I
THTEGER SeFR,2HI, MARTY
RTAL D U7 10 D(73,19)+A(130,280)4H{153),C(260)
RTAL WIL00e40G) +GLL30) s DELTA(TE) 3 GAMMA(TY) ,RP1(LCD)
DIMINSION TW(L100) ,KARPPA(T UYL (731 K(7)
ozaL QFITD) ,0M (7D
COMMOMN NyMyMLaM2 4Py 0y Ay WD aHy 5D TLTA,GAMMALOT  TW, KAPPA, L9528,y . ..
3 KoQP 4OMy Z0 W MARKER
CRAR=LE7 :
S=10
C=>FIND MIN(C~2I*2)=CBAR
N0 L3 J=1aN
X=C(J)? - [T
DO 11 I=1.M :
11 X=X=PT(I¥*8(I, N
IF (X .GE.CBAR=EPS) GO 10 10
CRAR=X
S=J
a0 CONTINUE .
IF (MAULEQ.D) RETURN
C=>FIND MIN(CRA®, GAMMA(*)+PI(*+M1)) = C3AR
D0 12 I=1.M2
X=GAMMA (I} & PI(I+M1)
IF (X.GE .CBAR~EPS) GO T) 12 o
€3ar=X : N
- S=1+N
i2 CONT INUVE
Q76 RETURN
END




SUIROUTINE UPRBYT (C34%,1.KI)
IMPLICIT SEAL  (A=H,0=2)

0=>THIS IS VERSION 2 OF UPRPVT.
INTEGZR S.R,PHI
REAL PA7G1C0), D (75,30 8(1304200),H(L33),C10260)
RIAL WI100s1C3) 4G (132)DELTALT7EY ,GAMMA(TE)ZPTI(LST)
DIMENSION TW(1GD) 4KAPDA(T7 Uy (73D oK (7D
REAL QP(7BY OM(70)

COMMON N yMyM1.M2,2,0,4,W, CoH, GyJELTAWGAMMA,PI,IW,KAPPA,L ,EPS,
3 K4QP OM, 20 ,MARKER )

LOGICAL FLAG

CALL RWPVT(T,R,4U)

KK=M1+1

FLAG=.FALSE.

ALPHA=0.
IF (KIX.NE.0) GO TO 290
C=>KIK=0 FIND THE LARGEST (S=142+s 4.9 KAPPA(I}) S.T.
C=»>P(I,KAPPACTI)=LL) +PI(KK) > §. AND T>= SUM OF D{I,.KAPPA(II=S)3 S=iseesnll
KI=KAPPA(TY =
N9 10 LL=1,KTI

ALOHA=ALPHA+D (I KAPPA(I)=-LL+1) .
TF (P(I<KAPPA (I -LL#1?+PI{KK) «LE+Z2S +ORs T.LT.ALPHA-EPSIGOTO 30
LS=LL : .
) 4S=AL PHA
16 FLAG=,TRUZ,
50 T0_20

>O(I,KAPPA(TIY+LLY<C AND  T>=SuUM OF D(I,K4PPA(I)=S): =Jveseslloe
IF (KIKWNELLY GO TO 40

KI=K (I} +1-KAPPA(T?

DD 21 LL=1,KI

ALPHA=ALPHA+D(T, KAPPA (T)+LL)

>KIK=1, FIND THE LARGIST LS=541seeesKII}-KAPPA(I) S,.7T
S

OO
[= 2N

TF (P(I,XEFRPA(II#LL)+PI(KKYS5E4-EPS LOR. T.LT.,ALPHA=-EPS) GO TO 33
LS=LL
AS=ALPHA

21 FLag=.TRUE.

C=>3£¢ IF SOME LS FOUND, (IF §OT PIVOT. AND RETURN)

20 IF (LNOT.FLAGY GO TO 4@

C=>SOME LS FOUND
IF (KIK,EQ.8) LS=-LS
DD 21 J=14M

33 HOJY=HIJ) =ASRG L)
KAODA (I) =KAPPA(II4LS

IF (KIK.EQ.1)  CRAR=P (I,KAPPA(I)+1) +PT(KK)

T IKIK. EN.3%  CBASZE (T.XAPPA (1)) +PI (KK}
GAMMA (T) =P (I ,KAPPA(T} +4)
DELTA(I) =N{1.¥APPA(T) +1)

TET-AS

IF (KIK+Z0 W0 «ONDo P{ILKAPPALI} #1)+PI({KK) L T+~EPS
3 LOR. KIK.ED.1 «ANDs P(I,KAPPA{TI}+1)+PI (KK} .GTLEPS _
3 LOR. T.LT.-EPS) GO TO 99

C=>QTHEIRWISE GC PIVOT AND RETURN
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G=>PIVOT AND RETURN

ug

CALL PIVOT(CRAR,R)

o

L1

TF (KIK,NELG) GO 16 42
KADPA (I) =KAPOA(I) =1
DIELTA(I) =0(T4KAPPALIY +1)
GAMMA (TY =P (I,KAPPA(T) +1}
DO 41 J=1.M
W(R,Ji==HIR,J)
H{2) = =H(F)

D0 4L J=1,M

PI(JI =PI (JI+2,*0RAR¥W(R,))

D0 43 J=14M

H(J) =H(JY=W(Jy, T+M1) *D (I, KAPPA(TY+1)
NU=TW (R}

IW(RI=N+]T

IF (1.6T.0) L(I)Y=1

IF (NU.LE.N) GO TO 39
NU=NU=N

L (NU) =0

IF (MU.ZQ.0) GJ3 TO 39
Tv=M1+NU

39

DO 51 J=1.M . i
HIJY=H(JY+W{J, IVI*DELTAINY)
KAPPA (NUY=KAPPA(NUY+1
DELTA(NUIY=DINU ,KAPPA(NUI+1Y
GAMMA (NUY=P(NU,,CAPPA(NU)+1}
RETURN

END



REAL PUT76410V4D(7C,10),8{130+260),H01035Y4C0(263)
RTAL WOLCU91C3)Y oG (L3I DTLTALTOY ,GAMMA(TSY ,PI (10D

COMMON No™MaML1oM2 4Py Dy AyHe CoHy GaNELTA,GAMMA,PT, I8, KAPPA,L EPS,

SURRQUTIND SMXSYTIC3AR,S, MU
IMPLICTY PFAL (A=H,0=7)
INTZGER S+RePHILMARTY
DIMINSION IWCL130KAPPA(Z DI LL (7Y .K(7D)
REZAL QF(73),0M (70
% KyQP +OMyZ04MARKER
IF (S.GT.N) GO TO 13
L=>S<=N, .
D0 11 LL=1.M
G(LL) =C
00 11 J=1.M
11 GILLY=GILLY+WILL ,J) *A (U S)
GO T0 28
C=>S>N, :
1Q KK=S=N+M1
00 12 J=1M
i2 GlJY==W(Js KK}
C=>IN ZITHER CASE.
20 CALL RWPVTI({T.R,MU)

39

IF (MU,EQ.2) GO TO 89
IW(RY=S .

CALL PIVCT(C3AR,R)
RETURN

ZND



SU3ROUTINE PRINT

IMPLICIT REAL_ _ (AzH,0=7)
INTEGEF SaFsOHI,MARTY
REAL  CHIS(70)

REAL TPUT70510) . TOU(78410)

REAL  PUTC,1001,0(706,18) 42 (13042600 4H(10G)4C(260)

REAL WU1§0,1339,G(1C0),DELTALTOY ,GAMMA(TG) ,PI(120)

1ZNSION TW(100) 4 KAPPALZ Y, (73] K70 B

REAL QP(78) s XU150) +OM(7 D)

COMMON NogMaM14M2,P Dy AsWyCoHy GoDELTA,GAMMA,PT, IW,KAPPA,L,E?S,
% KyGP 4QMy Z0 4 MARKER

COMMON /PRINTRY TP, TO . R .
COMMON /ZA7 ¥ ’

100 FORMAT(/ /. TlO'"BﬁSL§_jNDEX OUAL VARIASLES™s//330{===""))
00 1G JU=1,.M .

12 CONTINUE

101 FORIMAT(T164I3,T224F14 k)

=>CALCULATE Z0.

ZS0={,

DQ_22 J=1.M . . : e

IF (ITH(JYLLEJNY ZSO=7S0eC{IN (I H ()

00 21 I=1,M2

KI=KAPPA(T)

IF (KILEQ.) GO TO 21

DD 22 KK=1,%I .

250=2S04+P (T vKK)‘D(I KK) _ : .

~n
3

DO

22
21 CONTINUE
1038 FORMAT(///72Q,"0PTIMAL CG3JECTIVI VALUZ(WITHOUT PcNALTIES)=",TE5,F1
o)
C=>FIND THE X=VALUZS FROM IW & H,
00 31 I=1.N
21 X(I) =G, : [

DO 32 I=1.M
32 IF (IW(I).LE.N) XCIW(INY=H(T)
=>WRITE QUT X*S.
WRITE (641237}
1237 FORMAT(1HY)
WRITE (£,.25) i .

35 FORMATI(//.T23, 3("*"),/ T23,*0PTIMAL SOLUTION VICTOR"™,
* 7eT23,30 ("% , /)
Do 33 1y}
2 WRITE
¢2 SORMAT
C=>GALCULATE THT A : 1>Se . . - _ »
it 034AT(//-T2JvA7 ZGu'QISHT HAN“ SIDZ FOR STOCHASTYIC CO*
* CNSTRAINTS™ ./, T20,42("%"),7 »
. N0 33 I=i.M2
DLJHA=—(P(],ll+D'(%1+T))/( (T KTy +1d=P{T,1%
CHT Dl
00 34 _Jzi.N

L?H (8]

M CHI=CHI+A(T+M1,0)2%X(J)
CHIS(IV=CHI



IT=1I+M1

3 CONTINUS

2147

2
139 TOAMATITG, 2083 T3,") = 5%, 1tk)

PIN=G .,

43 FORMAT(//74T20+30 (%) 47,726, INDJIVIJUAL PENALTIZS,

* FaT20,30 (%)

MZ=M1+1
00 381 KA=1,M2
PIN1=(.

KI=K (KA
03 382 KA=1.KT

TF{CHIS(KAYLT.TD(KA,KB)) P541=°EN1#(fD(KA‘KB)-CHIS(KA))‘QP(KA)

2

*TP(KA.KB)

382 IF(CHISIKA).GT.TD(KA,KD)) PEN1=PENL+ (CHIS(KA)Y=TN(KA,KB)) *QM(KAD

x*

*T2(KA,KE)

PEN=PEN+PENL
KR=KA +111

333 FORMATITS,™ PINALTY FOR 20W(",I3,")1="yF15.5}

284 CONTINUE

334 FORMAT(//7/7774T20,"TOTAL PEMALTY=",T52,F18.5)

RETURN

END



C:)::::::::::— T 3 S X R IR I I XXX 4+ E 23 NI S A PR SIS S S E S T S s R
SUSROUTINE DUMF
IMPLICIT REAL (f=Hy0=2) L
INTEGER SeRePHILMARTY
RzaL PU70+131+eD(73,13)48(133,250),H1G30Y,0(2563)
REAL WIL1C04150) 4G (1000 NELTA(7G) 4 GAMMA(TE) »PT (130
DIMINSION INCL.3),KAPPA(TO) L (73),K(70)
REAL QPLTY) L OBM(70) '
COMMON NoMoMLgM2 4P Dy AsWaCaHe GoDELTAVGAMMALPT IW, KAPPAWLSEPS,y .
T . KeQP ,QMyZ0,MARKER
WRITE (64100 : ]
1580 FORMAT (/7 T-O0MEGA= ! H= 1 o01= M W=
i3 "y :
¥ VAR R N G *))
A0 13 J=1,M - ——
10 WRITE (6, 401) IW(J) 4H(J) 42T ()

101 FORMAT(™ oTa0 " 1y Fiheb ™ty Flhob,y (T4H,, 1", 5F14.4))
WRITE(64103) (G(I)yI=1,M)
163 FORMAT(/ ™ G=", (6F15,5}))
WRITE(6410%) (L(IV,I=1,M2)
10% FORMAT( ™ L=, (12113})

WRITZ (60106) (DILTALIY,I=1,M2)
135 FORMAT( ** DELTA=",(6E15.51}))
WRITE (65, 107) (CAMMA(I) ,I=1,M2)
107 FORMAT ( ** GAMMA=*,(6F15,5))
WRITE(6,110) 70 :
116 - FOIMAT (™ Z0="4yF15,.5)

WRITE (H.111) (KAPPA(I},T=1,M2}
111 FORMAT ( * kKAPPRA="", ( 12I18))

RETURN

IND
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Chapter 6

SUMMARY ., MAJOR FIRNDINGS ARND
DIRECTIONS FOR FURTHER RESEARCH

6.1 Introduction

In this chapter a summary of the dissertation (6.2), major
findings of the dissertation (6.3), and directions for further research

(6.4) are presented.

6.2 Summary

In the Titerature the study of asset and liability management
of banks has been approached from two points of view. The first is based
upon a mean-variance approach to portfolio selection. The second approach
is based on an objective of maximizing net expected returns.

In Chapter 1, by using Myers' criteria {61], it was shown that
the appropriate criterion for a financial institution is the maximization
of expected net rethrns. In Chapter 2, deterministic and stochastic models
which assumed this criterion were surveyed. In the most comporehensive of
these models, Bradley and Crane [5] attempted to overcome the crucial
obstacle (to asset and liability management) of incorporating uncertainty
while maintaining computational tractability for large problems. Unfor-
tunately, their formulation is not appealing for decision-making because
it not only has severe computational limitations but also possesses such
undesirable features as arbitrary constraints on capital losses, an
absence of portfolio mix constraints and an immediate revision that must

satisfy all possible forecasted economic scenarios.
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Given thgse deficiencies, the purpose of this dissertation was to
present an asset and liability management model that is both computationally
tractable and realistic for large problems. In Chaptér 3; the ALM formula-
tion was developed as an alternative approach to asset and 1iability manage-
ment. This model incorporates the inherent uncertainty in asset and liability
management, while maintaining computational tkactabiTity. In Chapter 4, the
ALM formulation was applied to VCS in order to demonstrate the effort
necessary to execute the model. The results of this anplication indicate
that: 1) fhe ALM model is superior to equivalent deterministic models, and
2) the results improve as the information incorporated into model increases.
In Chapter 5, by using a simulation to reflect a real (uncertain) environment,
the flexibility of SLPR and SDP formulations was compared. The results of
the simulation indicate that the SLPR formulation leads to better initial
period decisions. This is due to the restrictive nature of having first
period portfolios, in the SDP formulation, feasible for all possible

forecasted economic scenarios.

6.3 Major Findings

The objectives of this dissertation, first, to obtain a computa-
tionally tractable asset and 1iability management model, and, second, to
develop a formulation that captures the essence of the asset and‘liability

management problem, are successfully achieved.

More specifically, the computational tractability of the ALM
model was found to be superior for a number of reasons. First, the CPU

time used to solve a SLPR was approximately twice that used to solve



218

an equivalent size* linear program. Second, the CPU time used for 500
iterations of the simulation of the stochastic dynamic formu]dtion‘(B—C

type model) was much larger than.that needed for 400 iterations for the

SLPR formulation (6.39 to 0.24 hours). ‘Third, when additional time periods
and/or realizations are added, the growth in the size of the stochastic
dynamic formulation is approximately exponential while the growth of the
SLPR is approximately linear. Clearly these facts demonstrate the superiority
of the ALM formulation in terms of computations when compared to the B-C
formulation. Fourth, the ALM formulation is easy to operationalize and is
equivalent to implementing a linear program while providing superior results.
In fact to apply the ALM model, the followina information must be determined:
1) an estimate of deposft flows, 2) an estimate of the term structure of
interest rates, 3) an estimate of withdrawal rates of deposits under various
economic conditions, 4) legal constraints governing the behaviour of the
financial institution, 5) policy constraints, 6) the Federal Reserve Board's
recommended reserves for maintaining a liquid position, and 7) the initial
position of the firm. This is the same information that is necessary to
implement an equivalent deterministic model. Clearly, these four points
indicate that computational tractability is not a constrainina factor in

the ALM model. |

| With regard to problem formulation, the ALM model, Tike the
Chambers and Charnes 1inear.programm1ng model, incorporates most of the
essential characteristics of the asset and liability management problem.
However, unlike the Chambers and Charnes.formu1ation, the ALM formulation
overcomes two important drawbacks: '15‘the inherent uncertainty of the

problem and 2) the conservative nature of the Chambers and Charnes
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formulation. The first drawback has already been discussed. By using
stochastic 1iquidity constraints the second drawback is dealt with effec-
tively. Furthermore, when the ALM formulation is compared to the Bradley
and Crane formulation, it has been demonstrated in a simulation that the

ALM model 1is mbre flexible and thus provides superior results.

6.4 Directions for Further Reésearch

Two areas for future research are discussed below.

One shortcoming of the ALM model is that it is not a dynamic
formulation due to the lack of efficient éTgorithms to solve such problems.
As Bradley and Crane have shown for a dynamic model, as the number of time
periods and possible rea]izations.of the random variables increases the
formulation "blows up" in size. Therefore, the development of an efficient
stochastic dynamic programming algorithm would be useful for this problem
and for optimization problems in general.

Another area that has not been dealt with in the dissertation,
is the problem of forecasting. Deposit flows, interest rates and withdrawal
rates were taken as given. The problem of forecasting has been the subject
of numerous research projects and is viewed as being beyond the scope of
this dissertation. However, in order to properly implement the ALM model,
one would have to estimate the deposit flows, interest rates and withdrawal
rates using the available forecasting techniques.

Given the existing state of knowledge in the areas pertaining to
asset and 1iability management, the ALM model formulated in this dissertation

appears to be superior to existing models as a normative tool.
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