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.ABSTRACT

Since vonNeumann and Morgenstern made their contributions,
the expected utility criterion (EUC) has been the most accepted
criterioh in decision theory. Following their axiomatic
approach justifying EUC, several other studies have been made
suggesting the same criterion but under slightly different
axiomatic systems. However, critics Have found several simple
decision problems (called paradoxes) which seem to contradict
the conclusions of EUC; that is, the paradoxes contradict one
or more of the axioms made to support EUC. The criticisms are
based on empirical studies made in regard to the paradoxes. It
is not always obvious, however, which axiom(s) is not accepted,
since each approach to EUC gives a set of sufficient rather
.than necessary assumptions for EUC to hold.

In Part I of the thesis a set of axioms which are necess-
ary for EUC to hold is specified. Each of these axioms contains
a basic assumption of a decision maker's behaviour. Therefore
by considering the paradoxes in terms of these axioms, a better
understanding is obtained with regard to which properties of
EUC seem to be contradicted by the paradoxes.

The conclusion of this study shows that most people con-
tradict EUC because it does not differéntiate between a "known"
risk and an "unknown" risk. In Knight's terminology, there is
a distinction between decision making under risk and uncertain-
ty. Most empirical studies show that these differences are of
such substantial proportions that there is a dquestionable
justification for using the expected utility criterion for

decision making under uncertainty. Although many alternatives
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to EUC for decision making under uncertéinty exist, there are
very few criteria for decision problems which fall between
risk and uﬁcertainty,fthat is, partial risk problems. Those
existing are of an ad hoc nature. As a normatiQe theory the
EUC is far superior to any of these criteria in spite of its
lack of distinction between risk and uncertainty.

In the second part of the thesis an alternative normative
criterion is suggested for decision making under partial risk
and unéertainty; As an'extension of EUC, this criterion dis-
tinguishes between risk and uncertainty. This theory expands
on Ellsberg's suggestion-that "ambiguity" influences one's
preference among a set of alternatives. 1In this extension a
more precise definition of "ambiguity" is needed and one is
suggested here as a relation on the inner and outer measure of
an event. The extension of EUC is then obtained by considering
a more general set function, termed P-measure, which would
depend on a set's ambiguity rather than a probability measure
on the sets of réwards, It is concluded by an axiomatic
developﬁent that the P-measure must be a non-negative mono-
tonic set function which is not necessarily additive. It is
also shown that the standard paradoxes related to paradoxes
based on "known" versus "unknown" probabilities may be explained
by this method and would therefore suggest an alternative to EUC

for decision making under partial risk and uncertainty.
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INTRODUCTION

The problem of how to make the fbesﬁ choice among some
alternatives has interested philosophers, statisticians,
politicians, and mathematicians for a long time mainly because
everyone is faced constantly with this problem. Even by
refusing to choose a choice is made. The theory or science of
studying "how to choose” or "what to choose" is called the
"Theory of Decision Making".

There exist, of course, subdivisions of the Theory of
Decision Making, and the first assumptions we shall make are
the following:

i) the set of possible choices is known. We shall
denote this set by A, and call it an action set.

ii) the set of consequences of our choices is known.
The exact consequences which will occur may not be known for
any given alternative. This set will be denoted by R, and
called a reward set.

In the first part of the thesis, we shall also make the
following assumption:

iii) there exist a set of probabilities (II) such that
for a given action a (belonging to A), we may receive the
rewards Tyreeert with probabilities Pyre--rPy where
pl+...+pn = 1.

It is assumed that an ordering exists on A; that is, we
can specify a preference among the alternatives which belong
to A.

The theory of decision making under uncertainty is con-

cerned in part with what properties the ordering on A ought to



have. For example if we are asked to state our preference
ordering for alternatives a, b and c, is it reasonable to have
the preference a to b and b to ¢ but ¢ to é? If our prefer-
ences were in the order a, b, c, theﬁ if alternative ¢ were not
offered would it be reasonable to assume that b is preferred

to a?

In nearly all Theories of Decision Making it is assumed
that the ordering on A can also be specified by a real-valued
function f on A. We shall call this function an evaluation
function. That is, if alternative a is preferred to alter-
native b then f(a) is larger than f(b). Therefore the ques-
tions "How to choose" and "What to choose" are equivalent to
specifying the properties f is assumed té have.

One such function is specified by the expected utility
criterion. This criterion specifies two conditions on the
ordering on A. Firstly, if a and b are two altérnatives be-
longing to A such that a results in outcome ry for certain and
b results in outcome rs for certain, then there exists a real
valued function U on R whose numerical values have the same
ordering as the preference ordering on A. The fupction U will
be éalled a utility function. Secondly, if it is assumed that
alternative c gives the rewards LyreeesX with probabilities
pl,...,pn‘respectively, then the function f on A is defined by

the expected value of the utility function, that is

f(c) = pU(ry) + poU(r,) +...+ pU(r, ).



There exist at least two concepts of the meaning of a
"utility function" in the economic literature. The first one
starts by assuming an ordering on the reward set where the
reward set is usually defined as the real line, and the order-
ing is defined by the natural ordering on the real line. Any
increasing function on the real line is, therefpre, order
preserving.' If action a gives riée to the probabiiity measure
P(-,a) on the real line, and similarly action b the probability

measure P(-,b), an assumption is then made that there exists

an order-preserving function U such that a is preferred to b if

./b(r)dP(r,a) > ./ﬁ(r)dP(r,b).

As early as 1738 Bernoulli suggested that U(r). = log r.

Another example that has some appeal is the following:

[
[a]

\%
Q

U(r) =

where o is any real number. Then, a is preferred to b if
P(r > o,a) » P(r » a,b).

That is, action a is preferred to action b if the probability
of receiving at least o is greater for action a than for
action b. ‘

Other examples assume that U is a differentiable function

such that



g—g>o,g;g<o.

The first dondition assumes that the utility increases
with wealth, and the,second condition assumes that for a fixed
increase in wealth our utility decreases as our wealth is
increased. For example, log r satisfies these conditions. For
an ahalysis of some of the more specialized utility functions,
see Pratt (1964).

This method assumed, therefore, an ordering on R and
extended it to A by expected utility, by directly assuming
the existenée of the utility function.

The second approach to expected utility theory was sug-
~gested independently by Ramsey (1926) and vonNeumann-
Morgenstern (1947) by showing that the expected utility criter-
ion can be justified on the basis of a set ofvrelatively simple
assumptions or axioms on the decision maker's ordering on A.
That is, if each one of the.axioms is accepted as reasonable,
then they jointly imply that the ordering must satisfy the
expected utility criterion. The reason for considering a set
of axioms implying the expected utility criterion is that
hopefully the axioms are simple enough for the decision maker
to realize all their implicatibns. He can, therefore, deter-
mine whether his preference ordering c¢an be specified by the
expected utility criterion.

"In this case, ﬁowever, the utility function is derived

for each decision maker, and additional assumptions on the



utility.function can usually not be made. For example, if a
utility function is derived based on Savage's (1954) set of

axioms, it is impossible fqriU:thalsolbsatisfy

since U must be bounded. The difficulties with this approach
are that in most cases it is impossible to realize all the
implications of any one axiom. 'Many other authors have

since developed their own sets of axioms implying the expected
utility criterion in the hope that their set of axioms might-
be more convincing.

In contrast, the critics of the expected utility criter-
ion have suggested relatively simple decision problems for
which many individuals' preferences contradict the criterion.
Because of this apparent contradiction these problems. are
usually called "paradoxes". From some of the "paradoxes" it is
not obvious whether expected utility as a criterion is being
rejected, or simply one of the suggested axioms. That is, the
axioms suggested are sufficient rather than necessary for the
expected utility criterion to hold: Clearly the set of possible
axioms one can specify assufficient.for the expected utility
criterion to hold is very large and we must therefore assess
the merit of one set over another.

In Part I of the thesis the main concern will be: what
does the expected utility criterion imply of our preference

among the alternatives, or, in mathematical terms, we shall



consider " necessary rather than - . sufficient conditions. In
‘addition we shall specify a set of axioms on our preference
among the alternatives which are both necessary and sufficient
for the expected utility criterion to hold. The relationship
to other approaches will then be considered.

For the expected utility criterion to hold one of the
assumptions is that the probabilities of the consequences for
each choice is known or, at least, the preference among our
choices is consistent with the existence of probabilities for
which the expected utility may be calculated. Critics of the
expected utility criterion have suggested that a knowlédge of
the probabilities of the consequences occurring in addition to
their specific values, ought to influence the preference of
the ordering. As is, the expected utility criterion does not
hold for alternatives where probabilities are not known. This
case, therefore, includes nearly all practical decision situ-
ations.

A second difficulty arising from the assumption is that
probabilities may not exist for receiving certain rewards for
some of the actions. Clearly the expected utility criterion
can not then be used. Other alternatives must be used. In

Part II of the thesis we shall consider one such alternative.



1.0 Introduction to Part I

In Part I of the thesis we are concerned with conditions
that must be made on the ordering so that the expected utility
criterion holds.

Various sets of assumptions can be postulated from which
an expected utility criterion can be concluded. We shall con-
sider five of the most prominent approaches here, including
those of vonNeumann-Morgenstern (1947) and ~ Savage (1954).

The differences among the approaches are due to particu-
lar assumptions made about the probability space and about the
space on which preference is defined. All these approaches
are concerned with sufficient conditions on the ordering
rather than necessary conditions. For example, the Savage
approach implies that the utility function under consideration
must be bounded. This is clearly not a necessary condition.

Throughout the thesis we shall make the following dis-
tinction: If an assumption is made with regard to the
preference ordering on A, indirectly or directly, the assump-
tion will be called an axiom.

The set of axioms we shall consider can be stated in a

simplified form as follows:

Axiom I. There exists a real-valued function f on the
action set A that preéerves the ordering on A. That
is, if a is preferred to b, then f(a) > f£(b), and if
we are indifferent between a and b, then f(a) = f(b).
We shall discuss this axiom with its implications in

detail in section 3.



Axiom II. The function f can be decomposed over the
set of events into a sum of functions h, each of whic£
depends only on the pay-off on that particular event.
For example, if a results in one of the pay-offs

r,,+...,r_ for the events B ..,B_ then
1 n n

1’

We shall discuss this axiom in greater detail in

section 4.

Axiom III. The function h can also be decomposed into
the product of two functions, W on B and U on R. That

is, Axjiom III assumes

h(r,B) = U(r) -W(B)
where W(B) 2> 0 for all-Bve’B.
One of the impliéations of this axiom is that if a and
b are two actions whose payoffs are r and s respectively for

all states of nature then

f(a) -~ £(b) = h(r,Q) - h(s,Q)
= U(E)W() - U(s)W(D)
= (U(r) - U(s))W(Q).
Therefore  f(a) > £(b) .  if and only if U(r) is

larger than U(s). Hence an ordering may be specified on R



such that - - f(a) > £(b). . if and only if r is preferred to

s (i.e., if U(r) > U(s)). In more general terms,
h(r,B) > h(s,B)

if and only if r is preferred to s.

Therefore if f(a) is thought of as our evaluatidn of
alternative a on 2, h(:,B) can be thought of as our evaluation
of the alternatives on the set B. Similarly, consider the

difference
h(r,B) - h(r,C) = U(r) (W(B) - W(CQ))

and assume that the reward r is such that U(r) > 0. Then
h(r,B) > h(r,c) if and only if W(B) > W(c). Consider, for
example,'that if r = $100 and B and C are some arbitrary

events, then

h(r,B) = "our evaluation of receiving $100 if event B
occurs"
and
h(r,C) = "our evaluation of receiving $100 if event C
occurs".

- Then our evaluation of the first is greater (or preferred) to

the second if W(B) > W(C). Clearly this would be the case if



the likelihood of B occurring is greater than the
of C occurring. Therefore, it seems necessary to

to the probability of B. Axiom IV specifies this

B

Axiom IV. W(B) = u(B).

In section 7 we shall show that these axioms

necessary and sufficient for the ordering on A to

with the ordering induced by the expected utility.

10

likelihood
relate W(B)

relation.

are both

correspond

To summarize, the objective in the first part of the

thesis is:

1) To specify a necessary set of axioms for the expected

utility criterion to hold;

2) To indicate the implications of these axioms in terms of

the standard decision problems where the choice by many

would contradict the expected utility criterion, and to

provide a short summary of empirical studies with regard

to the acceptance level of each axiom;
3) To relate, when practical, this set of axioms

made by others.

to those
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2.0 Assumptions and Notations

In section 2.1 we shall summarize the notation terminology
and assumptions used throughout Part I of the thesié. The
same notations are also used in Part II of the thesis although
the assumptions are modified. In section 2.2 we shall specify
some of the most common approaches to the expected utility

theory.

2.1 Basic notations and assumptions

We shall first assume that there exists a reward set R,

whoselélemenfs will be‘denoted by r,s,t,v, etc. R is not

necessarily a set of monetary rewards nor are the rewards

necessarily desirable. We do, however, assume that R ié a
well-defined set, i.e., that the elements are definite and
distinct. |

We also assume the existence of a state space Q consisting

of ’élements“wy called states.This set represents what may
possibly happen in the futufe, and can not be controlled or
influenced. There is, in addition, a reward function X(-,a)
from ¢ to R, by which we mean reward X(w,a) is obtained if
state w occurs and action a is choéen. Let T denote all
functions from @ to R being considered, i.e., the elements
of T are X(-,a), X(°*,b), etc. The set {a,b,...} is denoted

byIA and is called an action set; that is, ' = {X(-,a):a ¢ A}.

The existence of these sets makes up the basic ingredients
in decision theory. There are also some additional basic
mathematical assumptions which must be made. We shall

summarize these jointly in Assumption 1. (For a definition of
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the terminology, see Appendix II.)

Assumption 1. There exist:

i) a probability space (2,0,u), where Q is the set of
states,
ii) a measurable space (R,¥), where R is the set of

rewards or outcomes,

iii) an index set A, called an action space, such that

for each a € A there exists a reward function

X(-,a) from Q to R,

iv) a o-algebra B8 of Q such that © € B and for each
a € A, the function X(-,a), » . is B-measurable,
and
. A
V) a relation € on A.

Because of the importance of relations and orderings in
expected utility theory, we have summarized the definitions and
properties of the more common ones in Appendix I. We shall

A
also use the relation <, which we define as:

A A A
a < b if and only if a ¢ b and not b € a.

The relations é and 2 are interpreted as preferences
among the actions. That is, if action a is preferred to
action b, we simply write b é a or b 2 a. Preferences exist
without knowing exactly what state will occur.

With this assumption, expected utility theory is concerned
with the conditions and additional assumptions under which

there exists a measure W on B, such that W(B) = u(B) if B ¢ 0;
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and further, given a preference on A (that is a relation
A
< on A) under what conditions and assumptions there exists a

A
real valued function U on R such that a < b implies

/U(X(w,a))du s]U(X(w,b))du-

Variations of this problem occur when 0 = B, or when
the ordering is defined on T or II rather than on A, where
I = {X(-,a):a € A} and I = {all probability measures
induced on R, by the functions in T}.

The assumptions necessary for the expected utility cri-
terion to hold are of two types. The first specifies the
mathematical assumptions. For example, how large can B
be, or what actions can be included in A? Those of the
second type are far more important in that they specify the
decision maker's behaviour. That is, the extent to which his
preference in one situation also specifies his preference in
another. We are most interested in the latter type of
aséumption. Both sets of assumptions are, of course, inter-
related and cannot in general be separated. However, for
each assumption we shall consider our main concentration to

be on the implications of the ordering.

2.2 Approaches to the axioms of expected utility theory
Various sets of assumptions or axioms can be postulated
from which an eXpected utility criterion can be concluded. We
shall consider five of the most prominent approaches here:
l. vonNeumann-Morgenstern (1947)

2. Marschak (1950)
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3. Savage (1954)

4. Arrow (1971)

5. Luce and Krantz (1971)

The axioms are given in Appendix III and we shall merely
summarize the basic differences here. These differences are
due to particular assumptions being made about the probability
space and about the space on which a preference is defined.
Each approach represents a different assumption about the
space of preference orderings.

vonNeumann-Morgenstern Axioms. The vonNeumann-Morgenstern

(1947) approach does not make any assumptions directly on the
underlying probability space (Q,0,u), or on I'. Instead it
assumes that II, the set of probability measures induced on R
'by members of I', is equal to the set of all discrete prob-
ability measures on R and that the probabilities on all
states are known, that is, © = B. It assumes an ordering on
R, which is then extended to 1. |

Marschak Axioms. Marschak (1950) was the first to adopt

an approach'which establishes an ordering on the probability
measures. Samuelson (1952), Herstein and Milnor (1954) and
other-authors have also adopted this formulation. The axioms
considered in the appendix are essentially the same as
Jensen's (1967) axioms, and he has shown them to imply
Marschak's axioms.

In this approach, we also ignore the underlying probabil-
ity space since all assumptions are based on the induced
probability measure. Therefore, this approach also assumes that

the probabilities of all states of nature are known.
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Savage Axioms. Savage (1954) starts with a measurable

space (Q,B). .In his approach an ordering is assumed on T such
that a probability measure can be derived on B. Further, it
is assumed that using this probability measure the ordering
satisfies the expected utility criterion. In this case,

© = {Q,¢}. That is, probabilities are only known for the
universal set and the empty set. |

Arrow Axioms. Arrow (1971) basically uses the Savage

axioms; however, Arrow specifies the ordering on A rather than
on I.

Luce and Krantz Axioms. One argument criticizing the

Savage Axioms has been that all the random variables have been
defined on the same state space. For example, the set O of
states of the world appropriate for considering betting on
heads in a coin flip is quite different from the set ¢ appro-
priate for considering investing in a particular stock. Luce
and Krantz (1971) developed an axiomatic system to- handle this
case by considering the ordering on the set FB = {PB|B € B}
where FB contains the functions in T with thei; domains
restricted to B. We denote these functions by XB(',a), a e A.
Some general relations exist between the different
approaches. For example, Marschak and vonNeumann-Morgenstern
both assume that a numerical probability is given, while thé
‘others do not make this assumption. However, this is not a
fundamental difference since by adding some axioms we can
always derive a probability based on preference. This will be
discussed in greater detail in section 6.3.. The other

approaches have already included the axioms needed to derive



the probability.

Arrow's and Savage's axioms are nearly identical except
for the space in which they are defined, though one readily
translates into the bther by the real valued function which
is assumed to exist between A and I'. The main difference is
that the Savage akioms do not necessarily imply that the
probability measure is c-additive. This will be discussed in
éection 6.3 and is also considered in Part II.

There is very little difference between the Luce and
Krantz axioms and Savage's. First, Savage assumed that all
reward functions have the same domain. Second, he assumed
that a decision does not affect the probabilities of the states
of nature. The insignificance from a theoretical viewpoint
of these differences in our framework is illustrated as follows:

- Suppose, for example, that a,b € A are the actions such
that their réspective reward functioﬁs are defined by
1 heads occurs when a coin is flipped
X(w,a) =
0 otherwise

and
1 if 3 occurs when a die is rolled

X(w,b)
0 otherwise.

In the Luce and Krantz approach we would only need to
consider the state space {heads occurring,'heads not occurring}
for a, and for b we consider the state space {3 océurring, 3
not occurring}.

In Savage's approach we can not do this. We would have to
consider all possible states (heads, 1), (heads, 2),...,

(heads, 6) and (tails, 1), (tails, 2),...,(tails, 6) for each

16
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action. It is, perhaps, more difficult to evaluate the
probabilities in the Savage case since we would have more sets.
The difference is only a question of how’to dérive the subject-
ive probabilities. There would only be a fundamental
difference between Savage's and Luce and Krantz's axioms if
there existed a set of functions defined on a subset of Q for
which we can not construct a function defined on all of © with
the same distribution on Rﬁ*k - Since this can always be done,
the difference can be ignored.

We shall consider other similarities between the specific
axioms from the different approaches, as we relate them to

the axioms presented here.



3.0 Ordering axiom

In this section we shall consider the first of the four
axioms necessary for the expected utility criterion to hold.
In section 3.1 we shall state the axiom, in section 3.2 some
of the implications of the axiom are studied, in 3.3 its
relationship to the five sets of suﬁficient axioms is examined,

and finally in section 3.4 alternative related axioms are

explored.

3.1 Statement of Axiom I
In the axioms given in the introduction, we have chosen
to define the ordering on the action set A which is the most

general set we can choose for this purpose.

Axiom I. Existence axiom
There exists a real-valued function f on A such that

for any a,b ¢ A,

A
if a ¢ b then f(a) ¢ f£(b), and

A
if a < b then f(a) < f(b).

The function f shall be called the evaluation function.

Several theorems can be found which specify the necessary
conditions for the existence of f; see, for example, Debreu
(1954) andrPeleg (1970) . We give a short summary of them in
Appendix I. The conditions for f to exist. can be divided into
two types: (i) conditions on the relation é and (ii) top-

o0logical conditions.

18



For example, if our preferences are as follows: b é a
and also c é b then by assuming the existence of f, this
implies that c can not be preferred to a. That is, the rela-
tion on A "inherits" certain properties of the natural
ordering of real numbers thrdugh f.

For most practical purposes, an individual utility func-
tion must be derived by some method. We shall not go into
details as to how this is generally done. However, there are
some implications on the ordering which we need to consider.
In deriving a utility function a set of relatively easily made
choices of some alternatives is determined in such a way that
a utility function may be specified. This function may not be
the same as the utility function (if it exists) when we con-
sider the alternatives in A. This creates difficulties from
a practical viewpoint, i.e., an individual utility function
may depend on the élternative which is being considered. To
avoid this, we shall assume that A always contains those
actions needed for deriving a utility function, and secondly
that the evaluation function is always the same for a given
action. This implies that we evaluate an action on its own
merits without considering its relations to other actions.

In mathematicai terms this is equivalent to considering only
the ordering on subsets of A which have beeniinduced by 2.
That is, if Ao¢: A then the only ordering we shall consider on

AO is defined by

19
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or, if Al:D A then we only consider orderings on Ay such that.

Ny
>

= <l(\A, X A.

Orderings induced in this way we shall call hereditary

orderings.

The topological implications are concerned with what is
meant by a sequence of actions approaching a given action.
This is considered in Appendix'I. Another topological pro-
perty on A is the cardinality of the set of indifference
classes. If A1 is the subset of A such that we are never in-

different between any two of the alternatives in A then the

1’
cardinality of A-l must be less than or equal to the cardinal-
ity of the real numbers, otherwise f clearly does not exist.
This condition we shall assume always holds in section 4.2.
From our point of view we are most interested in whether
Axiom I is a reasonable assuﬁption for an individﬁal to make.

Therefore we are mainly interested in the implications on

the ordering.

. A
3.2 Implications of some assumptions concerning g

In this section we shall consider the implications of the
ordering from a decision maker's point of vieQ. Hence the
question we shall consider is whether it is "reasonable" to
expect the decision maker to have a transitive preference or
a complete or a partial ordering or, for that matter, if it is
acceptable to assume that the ordering is hereditary. We shall

consider these issues in turn.
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Transitivity. 1In Appendix I transitivity is defined as a

binary relation such that if the property holds between a and
b and between b and ¢, it must also hold between a and c.
Rather than discuss whether this is a reasonable or unreason-
able assumption to make we shall consider a few examples where
transitivity holds and a few where it does not. We shall
start with some trivial examples, and then discuss some
related to some decision problems. In doing so, we hope for a
better understanding of the implications of Axiom I. Note that
Axiom I does not quite imply transitivity; that is, if there
exist preferences between a and b, b and ¢ and also between a
and c, the preferences must be transitive.

Some of the most common examples of transitive relations
are the physical properties such as 'heavier than', 'smaller
than', 'longer than' and so on. An example of a non-transitive
relation is 'father of'. Less trivial examples of the non-
transitivity in decision theory can be categorized into either
of the following two cases. The first case of non-transitive
ordering occurs when the reWard set R is formed by a Cartesian
product and the ordering is induced on R by an ordering on
each component in the Cartesian product separately. The
second case of non-transitive ordering occurs when the ordéring
is induced by a probability measure. We shall illustrate both
these approaches below.

To consider the first case, suppose that the reward set is
equal to the product of three sets, R x S x T. The reward

for action a can then be written as the triple (ra,sa,ta)
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where r_ ¢ R, s, € S and t, € T. If  individual orderings

are first defined separately on R, S and T, the following

preference may occur for actions a, b and c:

R . R R
Ta b rb < rc Ty < e
S S S
s, < Sy So < Sy, s, < s,
P t T t z t
tb < ta b < tc c < a

Hence action b is preferred in two of three consequences over
a, similarly c over b, and a over c. Therefore if an overall
ordering is defined on the actions by assuming that an arbitrary
action c¢ is preferred to another if the first action is pre-
ferred on at least two of three rewards, then the induced
ordering on the overall reward set is not trénsitive as oﬁr
example illustrated.since b is preferred to a, ¢ to b but a is
preferred to c.

An illustration of this type of intransitivity is as
follows: Let our actions be a choice between apple pie, blue-
berry pie and cherry pie, and let the selection be based on
taste, fréshness and size. It is easy to see how this may
give the contradiction by letting r, stand for the taste of
the apple pie, Sy for its freshness, and t, for its size;
similarly define Ipr Sp and tb for the blueberry pie and Tor
s, and teo for the cherry pie and use the ordering given above.

A §ariation of this would be to consider three teams, A,

B, and C, each team having three players which must play against
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each player on another team. The players are ranked from 1 to
9 (9 is the best and 1 the worst). Hence if the players on
the teams A, B and C are ranked (8;1,6), (3,5,7) and (4,9,2)
respéctively and if each player meets every other player on
the opposing team, we ndte that A defeats B (winning 5 games
out of 9), B defeats C but C defeats A.

A second class of ordering that contradicts transitivity
occurs when the ordering is based on probabilities. As an
example consider the ordering specified by the relation
a é b if and only if u{X(.,a) > X(*,b)} > 1/2. The question
of transitivity arising here is the following:. If u(X > Y)
> 1/2 and p(Y > Z) > 1/2, is it also true that u(X > 7) > 1/27?

The answer is no as the following illustration shows: Let

X{wpa) =1 w & Q
5 w e B
Y(w,b) = .
0 w e B
-1 weD
Z(wlb) = 2 w e B
4 w €& B-D
where D Cxﬁ. If we assume that p(B) = 1/2 - ¢ and (D) = 2¢g,
where 0 < € < 1/4, then p(X > ¥) = u(B) = 1/2 + ¢, and
w(Y > 2) = p(B) + u(D) = 1/2 + g, but u(X > z) = 2e < 1/2.

A A A .
Hence b < a and ¢ < b but a < c.
Another illustration is the following game. Two of the
four dice shown in Fig. 3 are rolled and the die with the

higher number wins (Gardner, 1974).
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Fig. 3.1

A non—-transitive set of dice

Note that die a will win over die b with the probability 2/3;
and similarly b wins over é, and ¢ wins over d. However, d
wins over a with the probability 2/3.

For an interesting study of transitivity, see May (1954).
He considered several examples of non-transitive relations,
e.g., the case of a pilot faced with the choice of flames or
red-hot metal, red-hot metal or falling, or falling or flames.

In the examples above there exists no order preserving,
real-valued function on the set A of ;lternatives. There is
a strong argument for aceepting transitivity which is des-
cribed in Raiffa (1961). The existence - 'of
the evaluation-function is a means by which we can determine a
value for each alternative. In most practical cases we assume
this is a function of some mbnetary value, i.e., we would be
willing to pay more for the choice of a particular given
alternative rather than another one. Raiffa used this argu-
ment to support the proposition that transitivity is a reason-
able assumption. For example, suppose preferences are non-

transitive, i.e.,

- 24
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a is preferred to b
b is preferred to c
and c is preferred to a,

Raiffa then argues that if the individual is given alternative
a, he would be willing to pay a small amount to switch to c¢
since c is preferred to a. Onée c is obtained, Raiffa again
assumes for the same reason that one would be willing to pay
a small amount to switch to b, from b to c, and so on, with a
small amount being paid for each switch. . Since it is obvious
that one would not be willing to continue paying a small
.amount for each switch, Raiffa concludes that transitivity
must bé satisfied by the ordering. However, assuming that all
alternatives can be compared on a monetary scale is tantamount
to aséuming the exiétence of an evaluation function. Therefore
Raiffa assumes the ordering is transitive if a real-valued
function exists.

Partial ordering vs. complete ordering. QOne theorem’ in

Appendix I Wwhich used a partial ordering rather than a complete
ordering is -due to Peleg (1970). However, the idea behind a
partial ordering is due to Aumann (1962) who first proved an
expected utility theorem.without using a complete ordering,

but since Peleg's theorem is a little more genéral we quoted
his. The question Aumann raised was: "Does rationality

demand that an individual make definite preference comparisons
between all ?ossible actions?" As an example he gives his
preferences: "I prefer a cup of cocoa to a 75-25 lottery of
coffee and tea, but reverse ﬁy preference if the ratio is

25-75." However, can a break-even point be determined between
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a lottery and the cocoa?

For our purpose this is irrelevant‘since with &the assump-
tion of the-exiStence of f, a complete ordering may be induced
on A which corresponds to any partial ordering for those elements
which can be compared. Therefore, the cdnditions on f are

identical in both cases.

Hereditary ordering. With all hereditary orderings we
assumed that an alternative may be removed without affecting
the relative ordering of the remaining alternatives. 1If,
for example, A = {a,b,c} and a is preferred to b, then if
alternative ¢ is not possible, i.e., A = {a,b} then a ought to
be still preferred to b. In some criteria in decision making
under uncertainty this is not the case.

Consider, for example, Savage's regret criterion in the
following example. We are given a choice between actions a, b

and c with the payoffs as in the following payoff matrix.

Event
Action Space B B
a 3 6
b 0 10
c 6 0

Thé regret matrix is formed by subtracting each entry in each
column from the largest entry in the column and hence would

give the matrix:
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N

Event
Action Space . .. B .B
a 3 4
b 6 0

The maximum regret for actions a, b and ¢ would be 4, 6 and 10
respectively and we order the actions by choosing the minimum

of the maximum regrets, hence the ordering becomes q:é b éem.

However if action ¢ is not included the regret matrix would |

change such that our ordering would be a é b.

Another example has been suggested by Luce and Raiffa
(1957) which contradicts the hereditary ordering.

"A gentleman wandering in a strange city at dinner time
chances upon a modest restaurant which he enters uncertainly.
The waiter informs him that there is no menu, but that this
evening he may have either broiled salmon at $2.50 or steak
at $4.00. 1In a first-rate restaurant his choice would have
been steak, but considering his unknown surroundings and the
different prices he selects the salmon. Soon after the waiter
returns from the kitchen, apologizes profusely, blaming the
uncommunicative chef for omitting to tell him that fried
snails and frog's legs are also on the bill of fare at $4.50
each. It so happens that our hero detests them both and would

always select salmon in preference to either, yet his response

is, "Splendid, I'll change my order to steak."
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A justification for the gentleman changing his order can
.be giVen,as.fo1lows; He enters an unknown restaurant without
knowing the quality of food he expected to be served. He
played it safe and decided bad salmon is better than steak for
the price specified. Once he found out that the restaurant
also has frogs' legs (i.e., is a better class restaurant), he
decided this restaurant would not serve a bad steak or a bad
salmon. Hence his choice becomes a good steak or a good
salmon for the specified prices, and therefore his choice
changes. Hence, he'obtains more information by the addition of
the new action. In gefieral when we speak of hereditary ordering
we assume no additional information is given by adding another
action. |

Another common example stated is the voting paradox. Let
1/3 of all Votgrs have the preference of the three candidates

Y N

a, b and c¢c as ¢ < b-< g, another third of thg voters the
preference % <.c < b, and the final third b.<.a~<,o; Hence
2/3 of the voters prefer b to ¢, and 2/3 prefer c to a, and
2/3 prefer a to b. This interesting result is perhaps in

relation to the hereditary assumption. If a did not run, b

would win; if b did not run, c would win; and if c¢ did not run,

a would win.

3.3 Ordering properties in the different approaches

We have étated how each of the different approaches we
consider here ‘implies “the expected utility theory but uses
different axiom systems to prove an expected utility theorem.

Here we shall compare the different approaches to Axiom I.



We first note that:
1) vonNeumann-Morgenstern define preference orderings
on the set R,
2) Mgrscbak defines preference orderings on thé set of all
- discrete probability measures on R,
3) Savage defines préference orderings on the set of all
possible functions from Q to R,
4) Arfow defines preference orderings on the set of
actions A,
5) Luce and Krantz define preference orderings on an
arbitrary set of functions Té.
Each of these axiom systems assumes a complete ordering.
The’most general of these assumptions is Arrow's. For
example, a and b may be two actions belonging to A such that
X(w,a) = X(w,b) for all w € Q where f(a) # f(b) but clearly
X(-,a) = X(-,b). sSimilarly two functions X(°,a) and X(*,b)
may have the property X(w,a) # X(w,b) for all w e Q but
P(C,a) = P(C,b) for all C ¢ ¥, i.e., the functions X(-,a) and
X(+-,b) induce the same probability measure on the rewards but
X(-,a) # X(+,b). Therefore, some decision makers would find
it easier to accept an ordering on the reward set R rather that
on the action set A, for example. The reason for this is
obvious: the cardinality of the set for the most general
cases are as follows:

C(R) ¢ C(II) .C(T) < C(T,) < C(n),

where C(R) denotes the cardinality of R, and similarly for

29 |
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c(Il), C(T'), and so on. That is, if we assume an ordering on
A, we can induce an ordering on T with a subset of A, and

similarly, if we assume an ordering on a probability distri-
bution on R, we can induce an ordering on R with a subset of
I. Therefore, the general assumption of an ordering on A is

a stronger assumption than an ordering on R.

There also exist additional assumptions on the cardinality.

For example, vonNeumann-Morgenstern assume that between every

R
two rewards there exists another, i.e., if ryrry € R, ry < Iy,
R R
there exist ro £ R such that rl < r, < ry. Marschak assumes

that all probability measures on R belong to II. Savage assumes
that all functions from © to R belong to I'. All these assump-
tions are not necessary. It is sufficient to assume that the

function f exists on A, and the ordering may be represented by

the numerical value of the function.

3.4 Alternatives to Axiom I

Most normafive theories of decision-making accept Axiom
I; that is, the existence of a real-valued evaluation function.
Minimax, maximax and expected values, for example, all satisfy
Axiom I. Similarly many of the criteria in finance such as
the pay—back method, the net-present value, and the internal
rate of return all assume Axiom I. As a matter of fact, very
few alternatives to Axiom I can be presented. Two different
approaches are discussed below.

Stochastic utility theory. Some empirical studies have

shown that many people are not consistent in repeated choice

situations. That is, sometimes they prefer a to b and some-
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times the opposite. This has led to what is called the
"stochastic utility theory". 1In this theory; the axioms are
stated in terms of probabilities of choice. For instance,
Debreu's axioms (1958) are as follows, where a, b, c and d

are arbitrary actions:

Axiom 1: S is a set; p is a function from S x S to
(0,1) such that p(a,b) + p(b,a) = 1.

Axiom 2: (p(a,b) < p(c,d)) implies (p(a,c) < p(b,d)).

Axiom 3: If p(b,a) < g < p(c,a) where q is any real
number, then there is a,d € S such that

p(d,a) = q.

The interpretation of p(a,b) is that a is preferred to
b, a proportion p{(a,b) of the time. Debreu proves that these
axioms imply that there exists a real-valued function V on S

such that
p(a,b) < p(c,d) if and only if V(a) - V(b) < V(ec) - v(d).

Clearly the function V can not be considered as an evaluation
function of actions since this implies that if V(a) > V(b)
then p(a,b) = 1, and hence p must be a function to {O{l}.
From our discussion on ordering induced by probability,
it follows that if p(a,b) > 1/2 and p(b,c) > 1/2 it is’not
necessary that p(a,c) > 1/2, i.e., if action a is preferred
more often to action b, and if b is preferred more often to

action c, it does not follow that a is preferred more often

to action c.



Multivariant evaluation functions. Another alternative

to Axiom I is to assume f as a function from A to E" (the
n-dimension Euclidian space). in mapping into E" more vari-
ations can be defined on the ordering than on E as we do not
need to satisfy transitivity. Consider, for example, the
relation < on E2 defined by (a,B) < (y,8) if and only if

B?y? < a?8%. For this relation a real-valued function satis-
. fying Axiom I does not exist.

As an example to show that n-dimension Euclidian space

is sometimes appropriate, one might consider a group of

individuals where each one satisfies Axiom I on the action set.

An evaluation function f can then be defined as f(a) =

th individual's

(fl(a),fz(a),...,fn(a)) where fi(a) is the i
evaluation function. Sometimes this function is then reduced

to El by

A n n
1) a<bif J f.(a) < £, (b).
i=1* i=1*t

(Hence this is reduced to Axiom I and is used in finance for
net-present value.)

D

2) a < b if f(a) L f(b)
where L is the relation "lexiographically larger". This

approach is used in social choices.
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4.0 Additivity Axiom

In this section we shall discuss Axiom II, starting by
stating the axiom in section 4.1. The axiom has some very
strong implications and in section 4.2 we shall consider some
"paradoxes" that have been proposed in relation to it. In
section 4.3 we shall summarize some empirical studies asso-
ciated with some df these paradoxes, and in section 4.4 we
consider the relationship to other axiom systems. Finally, in

section 4.5 some alternatives to Axiom II are stated.

4.1 Statement of Axiom II

Let us assume that a given action a € A results in one of
the following possiblé rewards: Lyreeert if the event
Bl""’Bn occurs respectively. Axiom II as stated in the
introduction asserts the existence of a real—valuedvfunction h,

satisfying the identity
f(a) = h(rl,Bl) +...4 h(rn,Bn).

As a generalization of this axiom, we shall allow for the
reward function X(-,a) to result in any of an uncountable
number of rewards on any set B € B. Note that the ordering we
defined on A could have been aefined on I', if there is a
one-to-one function between A and 'y i.e., we could have
written £(X(-,a)) for f(a). The reason for not doing so was
both to emphasize the fact that we chose an action a, which
gave us the reward function X(-,a) and also the simplicity of

notation. However, a further understanding can be achieved by
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considering the axioms in terms of random variables. Consider
the set PB’ i.e., the set of all functions XB(',a), a e A where
XB(',a) is the restriction of X(-,a) to B. Axiom I assumes
that a relation exists on I', or at least that an ordering may
be induced. A natural extension of this assumption would be
to assume that there also exists an ordering on FB for any
B ¢ B, as Luce and Krantz did, and a real-valued order pre-
serving function on PB. Axiom II makes this assumption in
terms of actiors rather than reward functions.

Axiom II therefore assumes first the existence of a
uniquely defined real—valued function h(B,a) on B x A, where

h(B,a) may be regarded as the evaluation function of the

reward function XB(-,a). It also specifies the relation
between f(a) and h(B,a). If, for example, a,b ¢ A, and

h(B,a) = h(B,b), that is, we are indifferent between action a
and action b if event B occurs, and if h(ﬁ,a) > h(B,b), that
is we prefer action a to action b if event B occurs, Axiom II
concludés that action a is preferred to action b; |

It is clearly not necessary to assume that an ordering
exists on FB. However, since h(B,a) is assumed to exist, it
is perhaps easiest to consider h(B,+) as the evaluation

function of an ordering on FB.
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Axiom II. Additivity axiom

There exists a real valued function h on 8 x A such that
a) f(a) = h(Q,a)

b) for {Bi} i=1,... such that Bi e B for all i and

g for i#j, then h(\)Bi,a) = 2 h(Bi,a) for
i=1

Bif\ Bj
all a e A

¢c) for any B € B, and for any a,b € A such that

Il

X ('la)

B XB(-,b), then h(B,a) = h(B,b).

The necessity of part b) of this axiom follows from the
fact that the integral is c-additive, that is, if we assume
{Bi} is a partition of Q such that Bi € 0 and if we assume for

the time being (as we shall prove in later sections) that

h(Bi,a) = /UX(w,a)du,

B.
1

then clearly if f(a) is equal to the expected utility of

X(-,a) we have the following identities:

EUX (- ,a) =./r UX(w,a)dy

f(a) =
= 2 UX (w,a)du
i=1
By
= h(B. ,a).
i=1 7t

Part ¢ of the axiom specifies in terms of integral that

if two functions are equal they must have the same integral



value.

In the normal approach to integration h(B,a) is defined
for functions which are constant on B. An extension is then
made to functions which only take finitely many values.

Finally, extensions are made to functions which take uncount-
ably many values. Here we have chosen to reverse this approach
since we have assumed f(a) already exists before we evaluate it.

Some comments on Axiom II. Several questions arise from

Axiom II of a rather technical nature in regard to'ELhXBi,a).
The reason for this is that h is not necessarily a non-negative
function and it may, therefore, be important in what order
the Bi's are selected. For example, assume that Bl’BZ"" is
a partition of B such that the sequence

h(Bl,a) + h(B2,a) + h(B3,a)... is equal to
1 -1/2 +1/3 - 1/4 + ... .

Then by changing the order of the Bi's, we could have the

sequence
1+1/3 -1/2 + 1/5 + 1/7 - 1/4 +
and although both sequences converge, they do not converge to

the same value.

Therefore by assuming that

h(B,,a) =) h(B,,a)

36
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we assume that the summation is a constant value not only
for any ?artition of B, but also for any rearrangementvof a
given partition. This assumption is equivalent to assuming
that the sequence EE:h(Bi,a) converges absolutely (see, for
example, W. Rudin TI%GQ), pPp.68-69):
Theorem. a) 1If Zian converges for all rearréngements,
then they all converge to the same sum.

b) ZLan converges for all rearrangements if

and only if 2:§n converges absolutely.

4.2 Implications of Axiom II

'There are several important implications of this axiom.
For example, it implies the existence of a utility function, if
some regularity‘conditions are assumed. Other implications are
of equal importance in that they specify very strong conditions
on the preference ordering on A. We shall first specify these
mathematical implications and secondly illustrate the "para-

doxes" which contradict the axiom.

Lemma 4.2.1. h@,a) =0

Proof. Let Bl = b”'Bi’ i=2,3,... be a sedquence of sets

such that B, N Bj = @ i#j, then

h( UBila) = h(gla) + Z-h(Bila)

i=1 i=2

and since B = U
i=

_ Js,

B,
2 1 i=1 *

h(UB ra) = Z-h(B ra)
1 i=2 1



hence since |h( U Bi,a)[ < o then
i=1

h(¢,a) = 0.

Lemma 4.2.2. h(-,a) is finitely additive.

Proof. This follows directly since h(¢,a) = 0.

Lemma 4.2.3. h is continuous from below.

If Dic: Di+1 and Di e B for i=1,2,... then

L) ,a) = lim h(D a).

1—)-00

Proof. (This follows from standard measure theoretical

résults.)
i-1
Define Bi = (Dl LJ D ) where Bl = Dl'
n
Hence LJ B, = JD. for all n, and also Bi(\IB. =g, i#j.
i=1 i=1 * J :
[s 0] oo
Therefore h(LJD.,a) =h(\.)B.,a) = Z_h(B
. i . i
i=1 i=1 i=1
n n
Since h(UD ,a) = h(UBi,a) Z_h(B ,a),
i=1 i=1 i=1
n
we have 1lim h(UD a) = lim 'z'_h(B ,a) =
i > 1i=1 n—)oo i= ]_

'Zh(B ,a) = h(\JB ,a) =
i=1 i=1
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The properties we have discussed so far are based on the
second part of the axiom. There is also one property based
on the third part which is important to the theory.

To proVe this, however, an additional assumption is

needed, that is, that all constant functions belong to T.

r for all w ¢ Q@ and for any

Assumption 2. If Y (w)

r € R, then there exists an a ¢ A such that X(w,a) = Y(w).

This assumption is not necessary for the expected utility
criterion to hold and we shall not assume that it holds in
general. One implication of this assumption is that there
exists a real-valued function U on R, as we shall show in
Lemma 4.2:4. If assumption 2 is not made, however, we must

assume that the function U exists on R, which we do in axiom IITI.

Lemma 4.2.4 If assumption 2 holds, the evaluation function

f induces a utility function U on R.

Proof. Assume X(w,a) = r and X(w,b) = r for all w &
and a,b € A. Part c in Axiom II implies h(Q,a) = h(Q,b)
or f(a) = f(b). Therefore, the function U(r) = f(a) is

a uniquely defined function on R.

Although many other results can be proved these are

sufficient for our development here.
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" Implications from a decision maker's: viewpoint. Lemma 4.2.1
implies that the number of subsets of 9 that are considered
when an action is evaluated is immaterial, that is, we

ought to obtain the same value of f(a) independently of what
events are considered as long as they jointly include all
possibilities. An example of a criterion which does not satis-
fy this assumption is the Principle of‘Insufficient Reason.

The criterion was first formulated by La Place. approximately
two hundred ' ' years ago, and can be paraphrased as:

"If no evidence exists that one of the events in a

partition is more likely to occur than the others,

then the events should be considered equally likely

to occur."

This principle is not -always accepted because of apparent con-
tradictions such as the following: suppose we flip a coin
twice, then four states can occur (#,H), (H,T), (T,H), or
(T,T), hence the probability of fH,H) must be 1/4 by the
Principle of Insufficient Reason. On the other hand, we can
divide the sample space into (H,H) (not (H,H)), and then the
prokhability of (H,H) must be 1/2 or we must have evidence

that these events are not equally likely.

Of course, most decision makers would accept the proba-
bility of (ﬁ,H) béing 1/4 as in this case all states can be
listed and there is no reason to assume one is more likely to
occur than another. 1In more general situations the question
arises as to which partition ought to be made.

Another implication arises from the additivity assumption

of h which is related to what is called the Sure-Thing
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Principle by Savage (1954) or what is called the Strong Indepen-
dence Axiom by Samuelson (1952). Several paradoxes are based
on the additivity assumption and stem from the following ob-
servation: Let a and b be two actions such that XB(-,a)

XB(°,b) for some B ¢ B. _Since (B,B) form a partition of Q we

have from Axiom II that

f(a) = h(B,a) + h(B,a)
f(b) = h(B,b) + h(B,b),
and also h(B,a) = h(B,b). Thus, f(a).> f(b) if and only if

h(B,a) > h(B,b), that is when two actions are compared we
need only evaluate them on the sets on which they obtain
different rewards. The decision problem which gives rise to
é contradiction in the alternatives is then designed so that
most people make a choice such that f(a) > f(b) but h(B,b) +
a constant > h(B,a) + a constant. The paradoxes that best
illustrate this point are Ellsberg's Paradox II, Allais'
paradox, and MacCrimmon's paradox, each of which is described
below. |

Ellsberg's Paradox II. D. Ellsberg (1961) described the

following decision problem. Consider an urn containing 90
balls, of which 30 are known to be red, and the remaining 60
are an unknown mixture of black and yellow balls. One ball-
is to be drawn at random from the urn, and wé are asked to
state our preference between a and b, and also between ¢ and
d where a, b, ¢ and d are defined as follows:

a: Receive $1,000 if a red ball is drawn

Receive $0 otherwise
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b: Receive $1,000 if a black ball is drawn

Receive $0 otherwise

c: Receive $1,000 if a red or yellow ball is drawn

Receive $0 otherwise

d: Receive $1,000 if a black or yellow ball is drawn

Receive $0 otherwise
The paradox can most easily be considered by illustrating the

problem in the form of a decision matrix.

. 60 Balls
30 Red balls : Black balls Yellow balls
a 1,000 -0 0
b ' 0 1,000 0
~c 1,000 0 1,000
d 0 . 1,000 1,000

Note that the last event "yellow balls" does not discriminate
between the.alternatives a and b nor between the alternatives
c and d and hence can be ignored. 1Ignoring this event, We.
know that a is then identical to ¢ and b is identical to d;
hence a choice of a over b would require a choice of ¢ over 4.
This intuitive argument is the basis of Axiom II which implies
its conclusion. 1In terms of Axiom II, let us denote the event
that a red ball is drawn by R, the event that a black_ball'is
drawn by B, and the event that a yellow ball is drawn by Y.

Therefore we can express f by Axiom II, part a, as:

f(a) h(R,a) + h(B,a) + h(Y,a)

f (b)

h(R,b) + h(B,b) + h(Y,b)

Il

f(c) h(R,c) + h(B,c) + h(Y,c)
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- £(d) = h(R,d) + h(B,d) + h(¥,d)

By Axiom II, part b, the following identities must hold:

h(R,a) + h(B,a) h(R,c) + h(B,c)

h(R,b) + h(B,b)

h(R,d) + h(B,d)

h(¥,a) = h(Y,b)

h(y,c)

h(y,d)

Therefore if f(a) > f(b) this implies

h(Bl,a) + h(Bz,a) > h(Bl,b) + h(B,,b)

therefore

h(Bl,c) + h(B2,c) > h(Bl,d) + h(Bz,d)

and hence

h(Bl’c) + h(Bz,c) + h(B3,c) > h(Bl,d) + h(Bz,d) + h(B3,d)

or equivalently

f(c) > £(a).

Of course an even stronger result is implied since

f(a) - £(b) = £(c) — £(d), rather than just the inequalities.

This implies that if we change the amount we receive if a
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black ball is drawn until we are indifferent between b and c,
then the amount we receive if a black ball is drawn from
alternative d must be changed exactly the same to make us
indifferent between alternatives c and d. The paradox arises
if someone chooses a over b and then d over -c. Ellsberg
(1961) suggested that this is a likely preference ordering
since a known probability of winning is préferred to an
unknown change if there is no reason to believe the unknown
change has a higher probability of winning.

Allais Paradox. This problem was first proposed by Allais

(1953) . Again we have to choose between a and b and also
between ¢ and 4, where
a: $1 million with a probability of 1.00

b: §5 million with a probability of 0.10
$1 million with a probability of 0.89
$0 with a probability of 0.01

c: $1 million with a probability of 0.11
$0 with a probability of 0.89

d: $5 million with a probability of 0.10
$0 with a probability of 0.90.

So far in our assumptions we have not considered probabilities
but only events. Therefore, we shall rewrite the Allais PLO= i
blem in the form of 100 lottery tickets numbers 1-100 with

prizes as given in the payoff matrix below:



..Ticket #1 . . - .. Tickets. #2-11 ... ... Tickets #12-100
a $1 million "$1 million "$1 million
b 0 . §5 million $1 million
c $1 million $1 million 0
d 0 $5 million 0

The event of drawing a ticket with any of the numbers 12-100
therefore does not discriminate between a and b nor between
c and d.

Therefore by the same arguments used with the Ellsberqg

paradox we have the relation
f(a) = £(b) = £(c) - £(4).

To be consistent with Axiom II, a preference of a to b, it
must therefore imply a preference of ¢ to d. Of course, it
may be argued that since we modified the problem it is not
necessarily identical to the original one. This is true since
the assumptions we have made cdo not imply that they are equal.
We shall discuss this point in section 4.6.

Allais (1953) suggested that when one alternétive_gives
a certainty (or near certainty) of obtaining a very desirable
consequence, one should select it even if it entails passing
up a larger amount having a lower probability. When, however,
the chances of winning are small and close together, one

should take the option that provides the larger payoff. Hence

45
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in the above alternative he assumes that we ought to choose

a to b but d to ¢, which contradicts Axiom IT.

MacCrimmon's Paradox I. Although both the Ellsberg and

Allais paradoxes can be used to illustrate some of the diffi-
culties of Axiom II, the Ellsberg paradox also illustrates
the difficulties of assigning a subjective probability to the
event B, defined as {a black ball is drawn}. In other words,
we can argue that the event B ¢ B-0. We shall study this
aspect of the Ellsberg paradox in more detail in section 6.2
and in the second part of the thesis. MacCrimmon (MacCrimmon
and Larsson, 1975) has designed a paradox which attempts to
capture both Allais' and Ellsberg's arguments into one pro-
blem. That is, it has the property of unknown versus known
probabilities and also nearly sure as well as very small -
chances of winning.

Consider aﬁ urn containing 100 balls, 20 of which are
red; the other 80 are either black or yellow. The number of
black balls is between 1 and 5 inclusive. One ball will be
drawn from the urn and its colour will determine the payoff
received.

Again, choices are to be made between alternatives a and
b, and between alternatives c¢ and 4.

a: $100,000 if a red ball is drawn
$1,000,000 if a yellow ball is drawn
$0 if a black ball is drawn

b: $0 if a red ball is drawn
$1,000,000 if a yellow ball is drawn
$1,000,000 if a black ball is drawn



c; $100,000 if a red ball is drawn
$0 if a yellow ball is drawn
' $0 if a black ball is drawn

d: $0 if a red ball is drawn

$0 if a yellow ball is drawn
$1,000,000 if a black ball is drawn

The problems can be set up in a payoff matrix as follows:

.. .. 80 Black or Yellow Balls .

1-5 75-79
. 20 Red balls .. = Black balls ... . Yellow balls
a $100,000 0 $1,000,000
b 0 $1,000,000 $1,000,000
c $100,000 ' 0. 0
a 0 $1,000,000 0

Again, we can show that

f(a) - £(b) = f(c) - £(4).

A A
Therefore the preference a > b must also imply c > d.

4.3 Empirical studies of Axiom II

Most of the empirical studies related to Axiom II have been
made in the form of the paradoxes stated in section 4.2. It is
not intended to make an extensive survey of these studies bu£
rather to give some indication as to how readily Axiom II has
. been accepted. Ellsberg's paradox also contradicts Axiom IV,

and therefore we postpone the discussion to section 6.3.



. The particular probabilities and payoff in the Allais
paradok have been carefully deSigned in both monetary values
and probabilities to elicit violations of the utility axiom.
The model based on the Allais paradox can be represented by

the payoff matrix:

Event
Action By By Bs
a: s u t
b r v t
C: [ u w
d r v w

We showed in section 4.2 that f(a) > f(b) implies f(c) > f(4).

Studies of the common consequence, that is, the reward is
the same on a subset of © for both actions, have been made by
MacCrimmon (1965), Moskowitz (1974), Slovic and Tversky (1975)
and MacCrimmon and Larsson (1975). Most of these authors. use
the Allais problem by having two pairs of choiceswith s = u = t,
r = w, and with the probability Yalues u(Bl) = 0.01, u(B2) =
0.10, and u(B3) = 0.89. MacCrimmon and Larsson varied the
probabilities to determine if thié would influence the decision
maker.

MacCrimmon (1965) study. MacCrimmon uses three common

consequence problems. bThe rewards of all these problems are
specified in terms of the occurrence of events rather than in

terms of probabilities. In two of the problems, the events are
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based on standard urns, and from the events most people infer

‘ the'Same'probabilities} In the other problem;_the'occurrence
of events was described only.verballyv(e;g.;,"very unlikely" or
"likely"); the subjects were senior business eXecutives; the
problems appeared in the context of investments for a hypo-
thetical business; and the rewards were percent return on the

investment. The parameters of the problems may be summarized

as:
Problem 1. v = 500% returns on the capital,
S = u =1t = 5% returns on the capital,
r = w = bankruptcy.
Problem 2. Same as Problem 1 except for the
probabilities which were only qualitative.
Problem 3. v = 75% returns on the capital,

S = u =1t = 35% returns on the capital,

r =w % returns on the capital.

In all three problems a significant number of the 36
subjects chose an answer contradicting Axiom II (14, 15, and 13
respectively), and hence confirmed the claim made by Allais.
Only nine subjects conformed to the expected utility axioms in
all three problems (15 had one deviation, nine had two, and
three had three). 1In addition to their own choices, the sub-
jects were presented with responses supposedly from subjects in
a previous session and were asked tocriticize them. These
results are even more compelling since 29 of the subjects (on
problem 1) agreed with the Allais-type answer; only seven

agreed with.the Axiom II-type answer. - .. However, the

hypothesis that incriticizing these responses, subjects tended



to pick the answer that most closely corresponded to their own
answer, accounts for 32 of the cases.

" Moskowitz (1974) study. Moskowitz presented each of 134

students with three problems where the rewards set was
defined as the set of possible grades in a course. For the
first two problems, Moskowitz does not specify the numerical
grades he used in the problems; in the third problem the
grades were letter grades. The parameters of his problem
three were: v = A grade, s = u =t = B+ grade, r =w = F
grade, u(Bl) = 0.01, u(Bz) = 0.10, u(B3) = 0.89. Moskowitz
- presented these problems in three different formats: word,
tree, and matrix, as suggested in MacCrimmon (1967). He
allowed some subjects to discuss the problems in a group while
others had to proceed individually. In addition to presenting
the problem, he presented pro and con argﬁments and afterward
had the subjects choose again.

Overall, Moskowitz found a rate of violation of about 30%.
The tree representation was the most difficult with a violation
rate ranging from 20% to-50% (across the other conditions). 1In
the word format, the violation rate was 17% to 40% and in the
matrix format the violation rate was 21% to 42%. There were
only slight differences in problem types with problem 1 having
a violation range of 17% to 46%; problem 2 having a violation
range of 17% to 40%; and problem 3 having a violation range of
17% to 45%. There was a significantly greater increase in
consistency for discussion groups versus non-discussion groups,
but both groups' answers were more consistent on the second

presentation.



‘SloviCZandiTVerSky'(lQ?S)fstﬁd¥. Slovic and Tversky use
. the standard AllaiStproblem; Of their 29 college student
subjects, 17 chose the Allaisjresponsei and 12 chose consis-
tently with Axiom II, oQn a reconsideration, after reading
arguments in favour of each position, 19 subjects chose the
Allais response and 10 chose consistently with the axiom?
Over the two presentations, 16 made the Allais-type choices,
while nine made the axiom-based choices. In a second experi-

ment with 49 student subjects. the subjects first read and

rated arguments for and against the axioms, then they made their

~own choices. With this format, consistency increased. 1In
their actual cheoices, only 17 subjects made Allais-type
choices, but 30 éubjects made axiom-based choices. In rating
their arguments for the.axioms, 25 subjects rated the Allais
argument higher while 21 subjects rated the axiom argument
higher. |
Across these studies, we see that Axiom IT is violated

at a significant rate. The rate of violation ranges around

27% to 42% except for the high level in Slovic and Tverskyts: e

first experiment. However, there seems to be a considerable
variation across the studies, and even within a single study.

MacCrimmon and Larsson (1975) study. MacCrimmon and

Larsson made a study where the reward set was money, which was
varied to determine if a bound exists for which the Allais
paradox is not violated. In their study they considered the

following variation of the paradox:
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......... 1 2 3 4
a S S S 0
b 58 0 S 0
o] S S 0 0

In this study s took on the values $1,000,000, $100,000),
$10,000, and $1,000 and u(Bl) + u(Bz) + u(B3) took on the
values 1.00, 0.99, 0.50, and 0.11. Eleven different combin-
~ations of these parameters were represented plus two check
points as a measure of the random component of the choices.
For simplicity we shall denote u(Bl) + u(Bz) + u(B3) = P for
the choice between a and b, and P, = Py~ u(Bé) for the choice
between c and 4.

From these Oone can form 12 different sets of two pairs of
binary lotteries.

Figures 4.1 provide a summary of the results for the 19
subjects. The tables list the number of subjects making the
a and c.choice in the higher p set and the b and d choice in
the lower p set. For exampie, in Figure 4.1 (i) there were six
subjects choosing a and b in the set s = $1,000,000, p, = 1.66,
and ¢ and d in the set s = $1,000,000, P, = 0.11 -~ this is the
standard Allais problem. Hence the rate of violation is 33%
which is about the same as the preceeding studies. Not sur-
prisingly, the highest rate of violation occurs for extreme

probability-payoff values. There is not a higher rate of



53

= $1,Q00,000
Py P, 1.00 0,99 0.50 0.11
1.00 1l 4 4 6
0.99 5 3
0.50 Z 6
0.11 . 0

Figure 4.1(1i)

= $100,000 s = $10,000
P }p2 0.99 0.11 Py '.p2 0.99 0.11
1.00 2 4 1.00 4 4
0.99 2 0.99 6

Figure 4.1(ii) ' Figure 4.1 (iii)

Figure 4.1. Number of subjects inconsistent with utlllty

axioms for various levels of monetary rewards and probabilities.
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~violation than the standard Allais prohlem, but two other
combinations, s =g$1,qoo;qoo,,pl =jo;5o;_p2 = 0.11, and

s =,$10;000;,pl = 0.99, P,y = 0.11 also have six violations.
It should be noted however that these violations are for
significantly changed parameter values from the standard
problem. They found a significant violation at the $10,000

payoff level and (separately) at the 0.50 probability level.

4.4 Relations to other axiom systems

This axiom is by far the most important axiom in the sense
that empirical evidence shows that it is the one most often
violated, and also that the majority of the paradoxes are
based on it. Therefore we shall consider the relationship to
other axiom systems in some detail.

| Considered from alternative approaches, most of the

axioms do ﬁot show that f(-:) may be expressed as a summation
of the evaluation function on a subset of Q. However, they
clearly indicate the independence evaluation on a different
subset of Q.

Let ué first consider Arrow's approach.

Arrow's Axiom A2 states that if B is ah-anitrary event
belonging to B8, then if two actions have the same rewards on
B they must be indifferent given B. This is close to Axiom IIb,
the difference being that he does not assume the existence of
the function h; however, if h does exist, it must have the
properties of Axiom IIb.

Similarly, A4 is related to the first part of Axiom II,

although it is not as strong as Axiom II. 1In this case
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Axiom A4 states that if we consider any sequence {Bi} of sets
in 8 and if an action a is preferred to an action b on each
of these sets (that is if we assume h exists, then h(Bi,a) >
h(Bi,b) for all i) then f(a) > f(b). This doesAnot imply
that h is additive, of course. However, it does imply that
the preference on one event does not influence the preference

on another event in B.

P

vonNeumann-Morgenstern's approach. In Appendix I, Axiom

NM2 is given as
R _ ) R
r, > r, implies r, > F(a,rl,rz) and
R
F(a;rl,rz) > r, for all o ¢ (0,1).
Intuitively F(u,rl,rz) can be considered as receiving ry

with the probability o and r, with the probebility (l-a). Let

us now consider how this axiom is related to Axiom II.

rl and

X(+,b) = r, for all w € 2. Then for any B ¢ B, Axiom II states

Consider two reward functions defined by X(-,a)

that if action a is preferred to action b then

U(ry) = f(a) = h(B,a) + h(B,a) »

> U(r,) = £(b) = h(B,b) + h(B,b).
This clearly implies that at least one of the inequalities
h(B,a) > h(B,b) or h(B,a) > h(B,b) must hold. If we make the

assumption that both inequalities hold (Axiom III implies that



both must hold), then this implies Axiom NM2. To see this,

we shall define a reward function c by

r, we B
X(w,0) =¢ *© B
r, w e B.
Then if ¢ ¢ A
f(c) = h(B,c) + h(B,c).
By Axiom IIb h(B,c) = h(B,a) and h(B,c) = h(B,b) which

implies
h(B,a) + h(B,a) 2 h(B,c) + h(B,c) » h(B,b) + h(B,b).

Savage approach. In this approach there are several

related axioms. We shall consider two of these.

Axiom S2: If xB(-,a) = xB(-,b), xB(-,c) = xB(',d),
XE(-,a) = X’B-(',C), Xﬁ('rb) = XE(.rd)r
T
and X(*,a) » X(°,b),
T
then X(+,c) 2 X(-,d).

Again if we assume that a real-valued function h on
© x A exists such that h(B,a) indicates an evaluation of alter-

native a on the event B, then Savage's Axiom S2 implies that
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if Xp(-,c) = X,(-,d) then h(B,c) = h(B,d). This follows
directly from Axiom S2. However, it is not necessary that

f(a) = h(B,a) + h(B,a) holds for Axiom S2 to hold. For example
f(a) = h(B,a) x h(B,a) would also satisfy Axiom S2.

Axiom S3 is also related to Axiom II, where S3 is given by:

Axiom S3: Let X(-+,a) = r, and X(-,b) = ry.
If
XB(.IC) = XB(.’a)’ XB(‘,d) = XB(.,b) and
Xz(+,c) = Xﬁ(-,d),

r
then X(-,a) s X(-,b) if and only if
T
X(-,c) ¢ X(+,d) for all B¢ 9

such that B is not null.

Axiom S3 is related to Axiom II in the Same way as NM2.

To see this we shall relate S3 to NM2. Let X§(~,c) = r

R Il
Then S3 may be stated as ry < r, if and only if ry <

{receiving ry if B occurs or receiving r, if B occurs}.

1°

R
Similarly if X§(=,d) =r, then ry < r, if and only if

— I
{receiving ry if B occurs or receiving r, if B occurs} < r

¢
Therefore the relation we have stated between NM2 and
Axiom II also holds for S3 and Axiom II.

Marschak approach. In Marschak's approach, Axiom II is

the axiom most closely related to Axiom M2. To show this we
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can not start with an arbitrary probability space. A special
case will be constructed but since this does not relate to the
axiom on preference, we feel free to do so.

Let (Q,0,u) be an arbitrary probability space where 0 is
large enough to induce all probability measures in Marschak's
approach. Let the probability measures P(-,a), P(-,b) and
P(-,c) be induced by X(-,a), X(-,b) and X(-,c) respectively.
Let ([0,1],B8,2) be the probability space with 8 the Borell
sets and A the Lebesque measure, and let {[0,1] x Q, B8x0O,

U x A} denote the product space. We now define two random

variables as follows:

X(wl,a) wy € [0,0)
x((wlrwz)ld) = .
. X(wl'b) wy € [a,1]
X(w, ,c) w, € [0,a)
X ((uys0,) se) ! 2
X(wl,b) Wy € fa,1]
This implies f£(d) - f(e) = f(a) - f(c) by‘Axiom II since

A . ]
XQx[a,l]("d) = XQx[a'l](',e) and hence d > e if and only if

a 2 c. Rewriting this into probability measures we have

P(-,d) = aP(+,a) + (1-a)P(*,b)

P(.Ie) aP('lc) + (l"a)P('lb)
aP(-,a) + (1-a)P(-,b) > aP(-,c) + (1-a)P(-,b)
if and only if P(-,a) E P(-,e).
]

Hence in this sense the axioms are equivalent.

Hagen (1965) criticized this construction in the case of



the Allais paradox. 1In that case our construction would be

as follows: Assume actions e,f and g are defined as

SO w € B
X(w,e) = X(+,f) = 81 x 106

5 x 10° o ¢ B
X('lg) = $0

and u(B) = 10/11. Let o = 11/100, and define action a, b, c,

and d by

X(wl/f) w2 e [0,11/100)

X((wl,wz),a) =
X(wl,f) w, € (11/100,1]
X(wlre) wy € [0,11/100]

X((wl,w2),b) =
X(w, ,£) . w, ¢ (11/100,1]

1 2

X(wl,f) w, € [0,11/100]

X((wl,wz) ,C) =
X(wllg) wy € (11/100,11
X(wl,e) w, € [0,11/100]

. X((wlrwz),d) =
X (wy,9) w, € (11/100,1]

Hence we note that actions a, b, ¢, and 4 induce the same pro-
bability measure on the reward set as in the Allais paradox

and clearly

X = Xox10,11/100] 7S

ax[0,11/100] ("r®)

and therefore



h(ex[0,11/100],a)

h(ex[0,11/100],c).

Similarly

h(ex[0,11/100],b) h(ex[{0,11/100],4)

h(ex(11/100,1],a) h(ex(11/100,1]1,b), and

h(ex(11/100,11,c) h(ex(11/100,11,4).

Hence by additivity

f(a) - £(b)

f(c) - £(4).

If we rewrite this result in terms of probability distri-

butions we have

"P(-,a) = 11/100 P(-,f) + 89/100 P(-,f)
P(-,b) = 11/100 P(-,e) + 89/100 P(‘,f)'
P(-;c) = 11/100 P(-,£f) + 89/100 P(-,q)
P(-,d) = 11/100 P(-,e) + 89/100 P(-,q).

Hence f(a) > f(b) if and only if f(c) > f(d) implies

11/100 P(-,£f) + 89/100 P(:,£f) > 11/100 P(-,e) + 89/100 P(-,£f)
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if and only if

11/100 P(-,£f) + 89/100 P(-,g) > 11/100 P(-,e) + 89/100 P(-,q)

which is a special case of the strong independence axiom.

Hagen's criticism of this construction -- as we could
likewise have defined X(+,b) -- was:
X(w, , ) w, ¢ [0,89/100)
- vy 1 2
X((wlrwzw,b)— ‘ .
X(wl,e) w, € [89/100,1)

and in this case the induced probability distribution would
have been the same; however, Axiom II can not be used to
determine a preference between a and b.

Hence we are not stating an exact equivalence between
Axiom II and the strong independence axiom. However, we do
state that there always exists a probability space and a set
of functions defined such that if the strong independence
axiom is‘not found to be acceptable, then neither is Axiom II
acceptable. On the other hand, if Axiom II is not acceptable
for some functions, then neither can the strong independence
axiom be acceptable for the induced probability measure of
those functions.

Luce and Krantz approach. In their approach they assume

a preference exists on XB(-,a) for all B ¢ B, a ¢ A. Clearly
then Axiom IIb must hold (if h exists). Similar to the

Savage approach, Axiom LK4 speéifies that if XD(°,a) S XD(-,b)
that is, action a is preferred to action b on the set D, then

if DAB # g and XB(-,a) = XB(°,b) then
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p .
. N . . C .

XDu B( s Q) XDu B( /b). This also indicates an independence

of evaluating an alternative on different subsets of 8. 1In

terms of the function h, we have that h(D,a) » h(D,b) and

h(B,a) = h(B,b) implies that
h(DVU B,a) > h(D VU B,b) if BAD =g

As before, however, it does not imply that h is additive.

4.5 Alternatives to Axiom II

There are two basic alternatives to this axiom; either
restricting the set of events for which the function h is
additive, or increasing this set. The alternatives are then
based on the cardinality of set B.

In view of Axioms IiI and IV, it is implied that there
must exist a measure W which is extended from p on ©. Hence
this would restrict B from a mathematical point of view since
the extension may not exist. Hence if we assume for example
that 8 is the set of all subsets of 9 the assumption that a
measure exists on g must be relaxed in ﬁhe same way.

In Savage's (1954) approach he assumed that g8 is equiv-
alent to all subsets and also that the extended measure is
only finitely additive rather than c-additive.

The other alternative would be to reduce the set for
which h is additive, that is there exists a strict subset of
B for which h is additive. This would imply that the exten-
sion may not be a measure on B. This approach will be dis-

cussed in Part II of the thesis.
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If we assume for the moment that 0 = {Q,¢}, then there
exist several alternatives to Axiom II. We shall consider a
few of these. All of them assume a function on R called a
utility function and then f is specified by the following rules:

The maximax criterion (Hurwitz, 1951). The evaluation

function is specified by taking the maximum utility for each
action.

The maximin criterion (Wald, 1950). The evaluation function

is specified by taking the minimum utility for each consequence.

The Hurwitz a-criterion (Hurwitz, 1951). The evalvation

function is specified by a linear combination of the maximum
and minimum utility for each action.
There also exist addltlonal alternatives which will be

discussed in the 1ntroduct10n to Part II of the thesis.
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5.0 Separability axiom

In this section we shall discuss Axiom III. The axiom is
formally stated in section 5.1 and its implications are given
in section 5.2. Empirical studies are described in section
5.3, its relation to other axiom systems is shown in section
5.4, and finally, the‘alternatives to it are discussed in

section 5.5.

5.1 Statement of Axiom IIT

In the introduction we stated this axiom as the existence
of functions W and U such that h(r,p) = U(r)W(p). The major
assertion underlying Axiom III, therefore, is that we can
separate the utility of a reward from the probability of
receiving the reward. This separability concept was called
ethical neutrality by Ramsey (1926}, although it was stated
slightly differently.

We noted in section 4.2 that if all constant functions
from o to R belong to A, a utility function may be defined
on R. However, if Assumption 2 does not hold, the existence
of the function U on R must be assumed. The first part of
Axiom III will state the existence of such a function, in
addition to a real-valued function W on B. Axiom III then
relates the function h(B,a) to the functions U and W.

Before the axiom can be stated, however, we shall need
some additional notations and definitions. Informally, a simple
function from @ to the real line E: (see:Appendixi IT. for. defini-
tion) is a function which only aséigns finitely many »values-.

For example: if Bl""’Bn are disjoint sets belonging to B whose
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union is @, then Y(-) defined by
0y w € Bl
Y(w) =9. .
o w e B
n n

i$ a simple function.
Let Z be the index set of all simple functions from

to E. Then, consistent with our previous notation, we shall

let Y(.,2) denote the simple function corresponding to z € Z.
k

For each function Y(-,z) and for any B = {J B, we shall define
i=1

a number h(B,z) by
k
h(B,z) = 2_ a,W(B.),
‘ i i
i=1
where W is a set function defined in Axiom III.

This notation may, of course, create some confusion since
in Axiom II another function h(B,a) was assumed to exist.
However, as we shall show, if UX(-,a) is a simple function
where a ¢ A the two functions are identical.

We also note that if Assumption 2 holds, a complete
ordering may be induced on R in the following way:

r r, if and only if U(rl) > U(r2) and

1

vad vad

ry r, if and only if U(rl) > U(r2).

Again, if Assumption 2 is not assumed, an ordering on R
can still be specified if U is assumed to exist. Therefore,
after we assume the existence of U (Axiom IIIa), whenever we
refervto an ordering on R, we mean the induced ordering on

R by U.



Axiom III. Separability Axiom

a) There exists a non-negative real-valued oc-additive
function W on B and a real-valued measurable function U
on R such that for any a ¢ A, B¢ B and r ¢ R, 1if

xB(-;a) = r, then
h(B,a) = W(B)U(r).

b) Let r, be any fixed reward in R, and let

X(*,b) be any reward function such that XB(w,b) 5 r,
for all w € B, for B 8‘8. If Z, is the set of all
simple functions z such that YB(-,z) svﬁié(-,b), then
h(B,b) satisfies

h(B,b) = sup h(B,z)
zeZo

¢) Similarly for any reward function X(:,c) such that

R
T, 3 XB(w,c) for all w € B if Z, is the set of all

1
simple functions z such thattYB(-,z) > UXB(-,c), then
h(B,c) satisfies

h(B,é) = inf h (B, z)

zeZl

The first part of the axiom specifies h(B,a) for reward
functions which are constant on a set B in B. Since Axiom II
implies that h is an additive functibn, Axiom IIIa also
specifies h(B,a) for reward functions which are simple '
functions. Axiom IIIb and IIIc extend the definition of

h(B,a) to an arbitréry reward function belonging to A.



5.2 Implications of Axiom III

First we shall show that if there exists a constant
reward function such that UX(-,a) £ 0 then it is not necessary
to assume that W is c-additive since this is implied.

To see this, let X(-,a) = r, and Bi’ i=1,2,..., be any
partition of B, such that Bi € B for all i. We have by

Axiom II

h(B,a) = Z h.(,Bi,a)
i=1
and by Axiom III,
W(B)U (r) = J_ W(B;)U(r).
i=1

This implies that if U(r) # 0, then
[e0]
W(B) = 2 W(B;).
i=1

Hence if a constant function UX(-,a) = U(r) # 0 exists such
" that a € A then W must be c-additive.

For simple functions, Axioms II and IIIa specify the
evaluation function f. Let the values of X(-,a) be equal to
ry+Yys...,r  and define By = {w:X(w,a) = ro,we Q2}. Then

{Bi} is a partition of @, and Bi € B for all i. Hence

f (a)

i

:E h(Bi,a) (by Axiom II)
i

EE W(Bi)U(ri) {by Axiom III).
i
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Hence in this case we have an expected utility theorem if
W(Bi) ='u(Bi); that is, the evaluation function f is
specified by the expected utility of the reward function
X(:,a).

We ;shall also consider some questions of consistency
between Axiom II and Axiom IIlas we must show that the two
axioms do not contradict each other. A question arises from
the additivity and separability axioms as to whether or not
f is uniquely defined. For example if r, =r; in our previous
example, would f have the same value independently of whether
we consider the partition B',...,B;l_l (by considering
Bi = Bl\J Bn’ and B; = Bi for i=2,...,n-1), or the partition
Bl""’Bn' It is obvious that f would take the same value
if and only if W is an additive set function. By considering
a countable partition of any of the sets Bi’ the same argu-
ment would imply that W must be oc-additive.

In the case where X(@,a) » Tg for all w ¢ @ but i; not
necessarily a simple reward function, we must also show that
if {Bi} is any arbitfary partition of a set B then Axiom
IITI does not contradict the additivity assumption in Axiom

IT, that is
h(B,b) =Z h(B,,b).
l .

We shall show this by first considering the case when the

partition only contains two disjoint sets B, and B,.

68
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If ¥ (-,ac) (for a definition, see Appendix III)
B, U B,

is a simple function less than UXB J B (*,b) then YB (+,a)

2 1
is a simple function less than UXB (-,b) and YB (-,c) 1is a
1 2
simple function less than UXB (-,b). Similarly, if
: 2
YB (-,a) and YB (-,c) are simple functions less than
1 2
UXBl(-,b) and UXBZ(-,b) respectively, then YBl\J B2(.,ac) is

a simple function less than UXB J B (-,b). Hence the first
assertion implies sup h(Bl\J Bz,ac) § sup h(Bl,a) + sup h(B2,c)
and the second implies sup‘h(BlLJ B,,ac) 2 sup h(Bl,a) +

sup h(B2,c),

Therefore
h(B; U B,,b) = h(B;,b) + h(B,,b).
By induction the following equality must be satisfied:
n n
h(UB,,b) = Z h(B,,b).
i=1 i=1

To show the general case, we must show that this may be

extended to a countable number of sets, that is

[0
11(\JIB ,b) ZE_h(B for any partition'iBi} of B
i=1 i=1

holds for an arbitrary action b.

To show this, we note that
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k
[h(B,b) - 2. h(B.,b)| < [h(B,b) - h(B,2z)| +
i=1
k k k
|h(B,z) - 27 h(B,,2)| + |h(\J B;sz) - h(U B,,b)|
i=1 i=1 i=1

by triangle inequality.

Let h(B,z) be the value associated with a simple function

such that
|h(B,b) - h(B,z)]| < e/3
and
kK k
[h(U B;,2) - h(UB,,b)| < /3.
' i=1 i=1 :
k
Since |h(B,z) - T h(B;,z)| decreases as k increases, then
i=1

for k large enough

k
Ih(B,z) - 7 h(B;,2)| < &/3
i=1
hence

k
|h(B,b) - 3 h(B,,b)| < ¢
i=1

for k sufficiently large, therefore
h(B,b) = E;ih(Bi,b).

What we have shown so far is that Axiom II and Axiom III are
consistent with each other; that is, that the definition of
h(B,a) does not contradict the additivity assumption in

Axiom II for X(-,a) > ry- Similarly, the same result holds

if X(-,a) < r,-

We also have to show that the number h(B,b) iﬁ-ﬁarf p‘is

independent of the choice of Lo i.e., if any other reward r is
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chosen rather than ro,h(B,d) is uniquely defined. To do so;

R
let Ty be any other reward in R, say ry < rg. Then

h(BMN (X(-,4) > ry),a)
= h(BA (X(+,d) > r),a) +hBN (; < X(-,d) < r_),a).
Similarly
h(B M (X(A-(d) < ro) fa) =

= h(B M (X(,d)

A

ry),a) + h(BMN frl S X(+,d) < r.),a).
Hence

h(B N (X(+,d)

Y,

r.),a) + h(BN\ (X(-,d) < r ),a) =

1

h(B/N (X(-,d) > rj),a) - A(BN (r,

N

X(-,d) < ro),a)

+

+ h(B M (X(+,d) < ry),a) + h(BN (r;

N

X(+,d) < ro),a) =

<+

h(B M (X(-,d) < ry),a).

A\

h(BA (X(+,d) > r;),a)
This implies then that any reward r & R may be chosen
in Axiom III, parts b and c.
So far we have only shown that Axiom III does not violate
the previous axioms. We shall now consider the implication of

Axiom III by considering some simple decision problems, which
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have been suggested as "paradoxes" in expected utility theory.

In doing so, W is considered a probability, as in section 6.1.

" MacCrimmon paradox IT (MacCrimmon and Larsson, 1975).

"Two friends on their way to a restaurant decide to order the
chef's special of the day although neither knows what it is.

On the way in, Tom makes Harry the following offer: Harry is
to guess if it will be meat or fish - if he is right, Tom will
treat them to a bottle of the best white wine. Harry guesses
fish. The wine steward overhears them talking about the wine
and tells them that it is out of stock but the best red wine is
in stock. Tom then changes the prize to a bottle of red wine.
Harry changes his guess to meat."

At first glance, this seems to be a contradiction to
Axiom III in the following way: Let B = {(meat), (fish),®,¢}
where (meat) ‘= (the event that meat is the chef's special) and
similarly for (fish). Harry guessing fish implies
U(white wine)W{ (fish)} > U(thte wine)W{ (meat)}. If U > 0 then

W{ (fish)} > W{ (meat)} and therefore
U(red wine)W{ (fish)} > U(red wine)W [ (meat)].

Hence by revising his guess this would indicate that he thought
meat was more likely. That is W{ (meat)} > W {(fish)} contradicts
our previous conclusion. Harry's behaviour may be perfectly
rational, however, in that we may be defining the rewafd set
incorrectly. Harry does not contradict Axiom III if our

definition of the reward set is equal to (white wine with fish),



(white wine with meat), (red wine with fish), (red wine with
" meat).

Since Tom offered white wine either (1) the natural
association would be fish so Harry said that; or (2) since Tom
offered white wine this implied that he expected fish so Harry
guessed : accordingly, or he changed to meat because he
thought it unlikely the chef would put on a fish special when
he was out of white wine.

Another paradox apparently contradicting the separability

part of the axiom is called the Newcombe paradox.

Newcombe paradox - Nozick (1969). Consider the following

situation: Two closed boxes A and B are on the table in front
of you. Box A contains $1,000. Box B contains either nothing
or $1,000,000. You do not know which. You have a choice
between two actions:

(1) Take what is.in both boxes,

(ii) Take only what is in box B.
At some time before this opportunity, a superior being made a
prediction about what you will decide. The being is "almost
certainly" correct. If the being expecfs you to take action
(i) , he will leave box B empty. If he expects you tc take
action (ii), he wiii leave $1,000,000 in box B. If he expects
you to randomize your choice, for example by flipping a coin,
he will leave box B empty. In all cases, box A contains $1,000.

Which action would you choose? Consider the following
arguments: (i) Either the money is in box B or it is not. If
the money is in box B and I take both boxes, I will have $1,000

more than if I had only taken Box B. Alternatively, if the
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money is not in hox B, and I take both hoxes, at least I will
~get $1,000. Hence, taking alternative (i), i.e., selecting
bothjbokes;_is the'bettervstrategy. (ii) If the beiﬁg can
~guess with "almost certainty" then I would only take box B,
since if I were to take both,>he would almost surely guess
‘correctly and hence leave box B empty.

This problem, and its associated arguments, was first pub-
lished by Nozick (1969) and is called the "Newcombe paradox”.
The Newcombe problem differs from others in several ways. Per-
haps most importantly, it presumes to set one of the axioms in
opposition to the expected utility criterion, rather than to
attack one of the axioms with a counter-axiom. Argument (i) is
based on the dominance axioms, that is, if aiternative (i) is
always befter than alternative (ii) independently of what state
of nature occurs, choose (i). 1In symbols we have that if
X(w,a) < X(w,b) for all w € Q© then a < b. The argument for
alternative (ii) is based on an expected utility formulation.
Presumably we cannot have both.

It is useful to analyse more directly how the dominance and
expected utility formulations apparently contradict each other.
Let us look first at dominance, as expressed most directly in
Arrow's Axiom A4. Dominance is almost universally accepted as
a reasonable axiom to use when it applies, and so it would be
hard to choose in contradiction to it. Consider the following

way of formulating the problem in a payoff matrix:
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$1,000,000 Nothing

in box B in box B
(i) i Take both boxes $1,001,000 $1,000
(ii)  Take only box B $1,000,000 S0

If we accept this formulation of the ?roblem, it would be
difficult not to take alternative (i) because it dominates
alternative (ii).

However, this formulation may be questionable because it
fails to take into account the predictive ability of the'
superior being. Consider, instead, the following payoff

matrix formulation:

Being predicts Being does not
correctly predict correctly
(i) Take both boxes $1,000 $1,001,000
(ii) Take only box B $1,000,000 $0

Obviously in this formulation dominance does not apply and one

would take alternative (ii) if P (being correct) = p, and
pU($1,000,000+(1-p)U(S$S0) > pU(S$S1,000)+(1l-p)U(S$1,001,000),

For any reasonable utility function, and assuming that p is
close to 1 as implieg in the problem, alternative (ii) would
have the higher expected utility. Thus, if it were not for the
different. formulations, :one would have the paradoxical situation

in which dominance implies one action while the maximization of



of the expected utility implies another action.

The major difference, then, between this challenge to.
the axioms and those considered earlier, is that the "Newcombe
paradox" is based on the way the problem is formulated, rather
than in the choices offered in a specific formulation. Expec-
ted utility theory requires an independence between the events
and the actions. In the "dominance formulation" of the pro-
blém, the probability of either event occurring is not indepen-
dent of our choice of actions and is therefore inappropriate.
While this diffigulty does not hold for the second formulation
above, the Seéond formulation does not take into accouﬁt the
amount in the boxes and hence may seem incomplete. In order
to get both uncertain elements into the problem, we need to

form the compound events:

Being predicts Being predicts
correctly and put: incorrectly and put:
$1,000,000 $0 $1,000,000 $O
in box B in box B in box B in box B
(i) Take both
boxes - $1,000 $1,001,000 -
(ii) Take only
box B $1,000,000 - - $0

The crossed out cells represent impossible combinations and an
examination of the whole table shows that dominance cannot be
applied. Hence one can choose only box B and act'in‘accor-
dance with expected utility without violating dominance. 1If
there aré very large, non-monetary satisfactions of exhibiting

the "free-will" of taking both boxes or of beating the being
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out of $1,001,000 and showing him up in the process, as
asserted by Asimov (Gardner, 1974, p.123), then you might
choose action (i). You would, however, be choosing it on an
expected utility basis rather than on the basis of dominance.

Allais paradox II (Allais, 1953). There exists a simple

generalization of the Allais paradox I. Consider, for example,

two functions defined as XB(-,a) = r, and XD(°,b) = g5 where
h(B,a) = h(D,b). This implies
U(s)W(D) = U(r)W(B)

or equivalently

_ W(B) .
U(s) = WD) U(r), if W(D) # 0.
Then, for any other functions XE(-,c) = r and XF(-,d) = s
WD) _ W(B) ., .. s . ‘ _
such that WEY © W) it 1is implied that h(E,c) = h(F,d).

This gives rise to the paradox of common ratio. With Axiom IV
we shall see that W(B) = u(B) for all B ¢ 0, and we will use
this assumption here to illustrate the common ratio paradox.
If we assume that the reward set is the real line and that
U(0) = 0, then the paradox of common ratio of probabilities
implies that:

A preference of a to b implies a preference of ¢ to d
where a, b, c, and d are defined as follows:

a: $1 million with a probability of 1.0

$0 otherwise
b: $5 million with a probability of 0.8

$0 otherwise
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c: $1 million with a probability of 0.05

$0 otherwise

d: $5 million with a probability of 0.04

$0 otherwise
Since 0.8/1 = 0.04/0.05, the ratio of probabilities is common.
This therefore implies thet if f£(a) > f£(b) then f(c) >
f(d). Empirical studies show that this is not.always so, in

that people commonly select a and d.

5.3 Empirical studies on Allais' paradox II

In the two paradoxes considered in'the preceding section
(i.e., MacCrimmon and Newcombe), the issue revolved around a
definition of the problem rather than an empirical implication
of the axiom. Thus empirical studies of these problems would
not give any further support for or against the axiom. Hence
we shall only consider empirical studies of the common ratio
problem. The paradox is usually written in the following
form. Let the reward space be the real line, and let o and B
be two real numbers.

A choice is to be made between alternatives a and'b:
a: receiving r with a probability of p
b: receiving ar with a probability of B8p.

The same preference must then hold for all values of p.
Let us therefore choose two values of p, P, and P, and for
simplicity we shall call the first choice in the above pro-
blem al or bl’ and the secohd choice a, or b2, and hence a
preference a; é bl must imply a, é b2.

Hagen's (1971) study. Hagen obtained some evidence from

Norwegian teachers when he used the problem with the following
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parameter values: r =1. million Norwegian kroner, o = 5,

P = .99, P, = .11, and B8 = 10/11. Because subjects were
asked for choices in only one of the sets, Hagen could compare
only the aggregate number of a vs. b choices in the two sets:
he could not compare each individual subject's choices across
both sets. Hagén found that in the first set, 37 subjects out
of 52 selected a; while in the second set 37 subjects of 52
selected b2. Hence there was a preference for the a; alter-
native in the first set but the b2 alternative in the second
set. Thus, we can infer that if subjects had been presented
with both sets, the majority would probably have violated the
expected utility hypothesis. 1In a second experiment, Hagen
used the parameter values: r = 10,000 Norwegian kroner,

a = 2, Py = 1.00, P, = 0.02, and B = 1/2. 1In the first set
of choices, 47 of the 52 subjects selected a; wﬁile in the
second set 23 of the 52 subjects selected b2. Even though

the a, alternative was the more favoured one in the second
set, this pattern of choices again suggested some violation

of Axiom III.

MacCrimmon and Larsson (1975). MacCrimmon and Larsson

attempted to study the effect of varying some of the parameter
values concentrating on the effect of using different payoff
and probability levels (i.e., values of r and p) . They used
two experiments. In the first they used positive payoffs; in
the second they used negative_payoffs (losses) to determine
whether negative payoffs resulted in major differences in
behaviour. The payoffs were all hypothetical but the subject

was asked to act as if each would actually be realised and to
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treat each set independently of the others. The parameter
values used were thé following:

On the positive éxpected value sets: o =5, B = 4/5,

r took on the values $1,000,000; $100,000; $10,000;

$1,000; $100; $10; and $1, while p took on the values

1.00, 0.75, 0.50, 0.25, 0.10, and 0.05. On the nega-

,tive expected value sets: a =5, 8 =3/4, r took on

the values -$1,000; -$100; -$10; and -$1, while p took

on the values 1.00, 0.80, 0.20, and 0.04.

Twenty-one different positive expected value sets were
presented, with four sets repeated to check for consistency.
Eight different negative expected value sets were presented
with two sets repeated to check for consistency. Not all com-
binations were presented since a pilot study had ascertained
that some combinations (e.g., a low positive payoff and a low
probability level) led to almost all subjects choosing the
same alternative. (This is interesting in itself, bﬁt is not
the best use of limited time for an experiment.) The 25
positive payoff sets and 10 negative payoff sets were presented
in random order.

The particular combinations inen can be seen from the
graph of the results in Figure 5.1. The numbers show for each
payoff-probability combination how many of the 19 subjects
chose the higher probability (a) alternative. So, for example,
with the combination of payoffs and pfobabilities used in
section 5.2 above, 15 subjects chose a in set 1 while only two
chose a, in set 2. Not surprisingly, the highest level of a

choices, for positive amounts, occurs when there is a sure
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* One subject chose a, on one presentation of this set, and
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bl on the other presé&ntation.
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Fig. 5.1. The number of subjects, out of 19, selecting the
~contradictory preferences to expected utility cri-
terion in the problem of Common Ratio of Probabilities



chance of getting avlarge amount of money. As the graph shows,
when the probability levels decrease, or when the money payoff
levels decrease, then there is a reduced tendency to pick the
a alternative (i;e., the one giving the lower payoff with the
higher probability). When the probability leveis decrease the
rationale is one of viewing the probability difference as in-
significant and thus "going for broke" on the larger payoff.
When the payoff levels decrease, the rationale is one of
"going fbr broke" since the amount you get for sure does not
mean that much té you in terms of lifetime security, etc. The
majority of the subjects would only select the a alternative
when there was a certainty of getting a very large payoff
(i.e., either $1,000,000 or $100,000). Even though each of
our subjects made 25 (positive payoff) choices, they seemed
to be quite alert to the changes in payoff and probability and
hence chose differentially. It is clear, then, that the parti-
cular parameter values play a major role in whether one violates
the utility independence conditions. Since almost all subjects
can be expected to prefer the b alternative for payoff-
probability combinations to the left and below the dashed line,
then there would be no violation of the expected utility cri-
terion, if ‘any of these combinations were compared to each
other. Since in real choices the subjects would rarely have
alternatives with payoffs such that they would be to the right
of the line, we may question}whether'the possible violations
in very unlikely cases have much relevance for utility theory.
Some counterVailing evidence, though, is found by

examining the negative payoffs. In this case there is more
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Fig. 5.2 Number of subjects is consistent
with Axiom III for different
values of a-p in variations of Allais paradox II.

p 1.00 75 .50 .25 .10 .05

1.00 1* 6 9 11 11 12
.75 7 5 5 6
.50 2 2 3
.25 0 1
.10 1
.05 1*

(1)

a = $1,000 a = -$1,000

p 1.00 .75 .50 p 80 20 .04

1.00 2% 6 4 1.00 1 1 3
75 4 .80 1* 2 4
<50 1% .20 4

(ii) (iii)

*These subjects were inconsistent on the repeat of the same set,
hence they were omitted from the tabulation of the remainder of
the table. So the inconsistencies in Table (i) are out of 17
subjects, in Table (ii) out of 16 subjects, and in Table (iii)

out of 18 subjects.
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ambivalence in switching from a to b as the probability level
or size of the loss decreases since the loss levels were chosen
to be ones that would be realistic for the subjects. The
choices that subjects made across two sets are shown for various
combinations in Figure 5.2. The value 12 in the upper-right
cofner of Figure 5.2(i) tells us, for example, that when the
choices of a subject for the probability level 1.00 are com-
pared to his choices at the 0.05 level, 12 of the subjects
chose a in oné of the sets and b in the other, hence violating
Axipm ITI. Note that those direct comparisons confirm what

we observed in Figure 5.1, that large payoff and probability
levels lead to a higher propensity for violating Axiom III.
Note though that the negative payoff results indicate a

relatively low level of violation.

5.4 Relation to other axioﬁ systems

In Axiom III we state two properties, first, the separa-
bility between the rewards, and second, the method of evalu-
ating h(B,a). 1In comparing these concepts to other previously
mentioned systems we encounter some difficulties since nearly
all these axioms are needed to evaluate h(B,a). However the
first property of separability is easier in some cases to com-
pare and we shall do so here.

In Axiom IIb we assumed that if XB(',a) = XB(°,b) then
h(B,a) = h(B,b). That is, if the two functions are identical on an
event,. then the-evaluation for the actions on that event must -
be the same. The separability assumptions extend this idea to

the case where if X(-,a) is a constant function on the event
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B ¢ B, and X(+,b) has the same constant value on C ¢ 8 then

h(B,a) = h(C,b) if and only if

W(B) = W(C).

Similarly if XB(-,a) = r, and XB(',k» = r, are constant reward

1

functions on B

h(B,a) h(B,b) if and only if

U(rl) = U(rz).

In each of the approaches of vonNeumann & Morgenstern,
Marschak, and Arrow it is assumed that the probabilities are
given and we ignore the events given to these probabilities,
i.e., this implies that h(B,a) is of the form h(u(B),a).

This is clearly a separation between the event and its reward,
since we are only evaluating u(B), and would be indifferent to
any other event D with the same reward for which u (D) = u(B).
However this does not necessarily imply that the probability

and the reward may be separated. In their approaches they imply
that h(B,a) = h(C,b) if and only if W(B).= W(C). To see this
consider the case where XB(°,a) = r, Be B, and W(B) = o, then

Axiom III implies that

h(B,a) = aU(r).
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If y is any number between (0,1), then
vyh(B,a) = ayU(r)

or equivalently yvh(B,a) must equal the evaluation of any

action ¢ for which XD(-,c) = r where W(D) = ay. This in turn

implies that if XB(-,a) =r, Xg(*,c) = r, B,E ¢ 8, BN\ E = g,

W(B) = o, W(E) = y. Then . . (1-8)h(B,a) + Sh(E,c) ,must be
equivalent to an actioﬁ d defined by XD(-,d) = r and W(D) =

(l—§)u + dy. In more general terms this implies that if
P(-,a), P(-,b) and P(*,c) are three probability measures
belonging to I such that the mathematical identity

sP(-,a) + (1-8)P(",b) = P(-,c)
holds we must also have the preference

de(.la) + (l—S)P('rb) P(.Ic)°

i

This preference is expressed in béth Marschak's and vonNeumann
& Morgenstern's approaches.

There have béen some criticisms against this for the
following reason. Suppose we are offered a prize if a red ball
is drawn from either urn I or urn II, of our choice. Urn I
contains 50 black and 50 red balls. Urn II has been drawn at
random from a collection of 101 urns, one of which had 0 red and
100 black balls, another had 1 red and 99 black balls and so on

up to one having 100 red and 0 black balls. If we assume that
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the probability of a red ball being drawn from any urn is equal
- to the number of red balls divided by the total number of balls
in the urn, we must be indifferent as to the choice of urns

since
l/lOI-O/lOO+l/lOl-1/100+l/101-2/100+...+l/101~100/100 =1/2.

However once the second urn has been chosen, there is
clearly a fixed number of red balls in that urn, and the
preference may not be exactly the same since the chances in
urn II are not exactly known. For example, if urn II were
chosen at random from two urns, one with 100 red balls and
one with 0 red balls, ought this to be equivalent to an urn with
50 red and 50 black balls when we know that urn II in front of
us can only have either 0 or 100 red balls? The argument that
urn II contains 50 red balls on the average can clearly not be
used since this implies that we have'the choice repeatedly rather
than once.

In Arrow's approach he assumes that if two probability
distributions are equal they must have the same preference.

Hence this is equivalent to saying that if
aP(-,a) + (1-a)P(-,b) = P(-,c)

the preference must also be the same which we have already
discussed.
In Savage's approach the separability implications are

made by changing the reward on the set. Recall Savage's Axiom
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S4:

Axiom S4: If B,C<é,9 and r, e R for i=l,2,3,4,rl Y
ry > r, then for actions a,b,c,d ¢ A, defined by the

reward functions

XB(°,a) =r XE(-,a) =r, XC(-,b) =r XE(-,b) =1,

XB('IC) = r3 X§(°IC) = r4 XC('ld) = r3 XE('rd) = r4
T T

and if X(-,a) < X(-,b), then X(-,c) < X(-,d).

Assume that r, = r,, then h(B,a) = h(B,c) and h(C,b) =

h(C,d). 1If

h(B,a) + h(E,a) < h(C,b) + h(E,b)
for a given U(rl) > U(r2) then the same equality must be true

for r ¢ R such that U(r3) > U(r2). This implies that
h(B,c) < h(c,d) + const

if U(r3) > U(r2) where XB(-,c) = XC(~,d) = ry. That is, the
preference can be determined by comparing if the reward is

above a fixed reward.

5.5 Alternative to Axiom ITI
Axiom II assumes W(B) is a real-valued function on 8

which implies that if two reward functions are defined by
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XB(-,a) =1 and XB(-,b) = r,

then

h(B,a) > h(B,b) if and only if U(rl) > U(r2).

For example, say that we are invited to dinner where we
know that either chicken, beef or fish is to be served, and
we decide to bring a bottle of wine, either red, white, or

rosé. We also assume the following utility of the reward:

Chicken Beef Fish

a 1 -1 1
b 0 1 -1
c 0.5 0 -1

where-action a is to bring a bottle of white wine, action b is
to bring a bottle of red wine, and action c is to bring a
bottle of rosé wine.

Therefore if B is the event beef is served we have

h(B,a) = -1W(B)
h(B,b) = 1W(B)
h(B,c) = O0W(B)

and hence the'preference may be determined by comparing -1, 1,
and 0. The assumption here is that W(B) is independent of our
action. That is if we construct a matrix indicating the values

©of W(B) for each action we would have



Actions
a b c
- Chicken W(C) W(C) W(C)
Beef | W(B) W (B) W(B)
Fish W(F) W(F) W(F)

The value f(a) can then be found by multiplying the row

a of the reward matrix by column a in event matrix, i.e.,

f(a) = h(C,a) + h(B,a) + h(F,a)

weE) + (-1)w(B) + 1W(F),

and similarly for f(b)iand f(c).

This example is taken from R. C. Jeffrey's book "The
logic of decision" (1965) where he develops a theory by
arguing that the evaluation of W(B) ought to be a function

from B8 x A rather than only 8. Hence the event matrix can

take the form

a b o]

Chicken kl k2 k3
£

Beef 11 12 l3

Fish ml m2 m3

where ki’ 1. and mi i=1,2,3 are non-negative real-numbers such

that

k.,+l.,+m, =1 i=1,2,3.
i 7i i
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It is easy to see that the Newcomb paradox falls into this type

of decision problem. The reward matrix would be as before,

Being does

Being predicts correctly not predict correctly
a . U(s$1,000) U($1,001,000)
b U($1,000,000) U(s0)

and the event matrix would be

a b
Béing predicts correctly Pa Pb
Being does not prédict (l—Pa) (i—Pb)

correctly

where Pa = probability that the being predicts correctly given
action a is chosen.

Hence

f(a)

U($1,000)P_ + U($1,00i,000)(1—pa)

f(b) U($l,00Q,000)Pb + U($0)(1—Pb);

and therefore the preference would depend on Pa and Pb‘
There is some behavioural support for the concept that
W(B) also depends on the action. For example, when bétting
during a game of roulette, some people would argue that they
are always unlucky and will therefore lose, while others are
always lucky and will win. That is, the prcbability of

winning does not only depend on the ivory ball and the rou-

lette wheel but also on who does the betting.



6.0 Probability axiom

First, we shall state the axiom in section 6.1. In
section 6.2 we shall consider the implications of the axiom
and in section 6.3 we shall explore some of fhe empirical
‘evidence regarding the paradoxes related to this axiom. 1In
section 6.4 we shall compare this axiom to other systems, and
finally in section 6.5 we deal with some alternatives to this

axiom.

6.1 Statement of Axiom IV

In the introduction Axiom IV was stated.as W(B) = u(B).
In section 5, W-was specified as a measure on a o-algebra
B containing ©. Since u is only defined on 0, W may be
thought of as an extension of the measure H on O to a
measure W on R.

The previous axiom is sufficient to specify the evaluation

£ (a) =/UX(w,a)dW.

Hence the evaluation function is specified as the expected

function as

utility. However, for f£(-) to have some meaning for the

decision maker, W must in some way be connected to the proba-
bility of the different states occurring. It is easily seen
that if W(B) is defined by W(B) = au(B) a > 0, W would still

be a o-additive measure and the expected utility calculated
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by using W would give the same ordering for all positive values
of a. For simplicity rather than necessity, we shall assume

that a = 1.
Axiom IV. For any B ¢ 09, W(B) = u(B).

" Axiom III assumes the existence of the set function W on
B. However, Axiom III does not give us a method of determining
the values of W(B). Axiém IV specifies those values for all.
B e 0, and it also gives the required condition:of specifying
W for all B in B; How this is done, we shall discuss in
section 6.2.

Very few empirical studies have been made to verify the
fact that people act as though u(B) = W(B). Of course, the
axiom can not be tested directly, and it is rather the people's
ability to estimate W(B) for different values of u(B) which is
tested, or to see if W is a measure. We shall discuss how
this is done in more detail in section 6.3. 1In general,
those studies which have been made indicate that W(B) is
overestimated if u(B) is "small" and underestimated if 1y (B)

is "large".

6.2 Implications of Axiom IV

There have been some suggestions that Axiom IV »shéuld-not
always be satisfied. One of these critics, Menger (1950),
has suggested that sets with "small probabilities" are to be
regarded as impossible. This suggestion creates as many
difficulties as it solves. The main difficulty which arises

is the meaning of "small probabilities" although some
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definitions exist. In statistics a decision criterion is often
used which ignores probabilities up to 0.05. Similarly in
chance-constrained programming we are often willing to ignore
small probabilities, usually 0.05 or less. Menger's sugges-
tions have some validity, based on empirical studies. Consider
for example, the decision problem in section 5.2. where the
alternatives were considered as follows:

a: $1 million with a probability of 1.0
$0 otherwise

b: $5 million with a probability of 0.80

$0 otherwise.
Thué, the difference of winning between the alternatives
is a probability of 0.20. However, when we compare alternatives
¢ and d where

c: $1 million with a probability of 0.05

S0 otherwise

d: $5 million with a probability of 0.04

$0 otherwise

that the difference is only.0.0l1. One argument which has been
suggested for choosing d rather than c is that the difference
in the probabilities of winning is "small" enough to ignore
especially since the probabilities of winning are very small.
In the case of a vs. b the difference in the probabilities of
winning is 0.20, too "large" to ignore, and hence we may
choose a. This would imply that W is not a linear function of
u, (or equivalently W is not additive) and hence this prefer-
ence doeé not support the expected utility criterion.

The most important aspect of Axiom IV is its usefulness

in deriving the values for W(B) where B ¢ 8- 6. The method
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typically used 'is as follows:

If two actions a,b € A are defined according to the

X(w,a) = _ X(w,b) =
' S w € B ) s w € D

where U(r) > U(s), then

U(r)wW(B) + U(s) (1-W(B))

f(a)

f(b) U(r)W(D) + U(s) (1-W(D))

or equivalently

Hh
W
I
Hh
()
I

v [We) - wm] - vis) we - wo)

v - U(s)]. [we _ w(D)] .

Since by assumption U(r) > U(s), it follows that f(a) > f(b)
if and only if W(B) > W(D). If it is assumed that for every
real number y € (0,1) there exists a D € 0 such that
u(D) = v, then it is easily seen that W(B) can then be
estimated as closely as we wish if A contains sufficiently
many comparable actions, in the following manner:

Action a is compared to action b:

l) if a b Y > W(B)

Vv

2) 1if b a W(B) 2 v.



If case 1 holds a smaller y can be selected, and a new
comparison ié made. Similarly for case 2, the process is
repeated until W(D) has been estimated to the degree of
accuracy desired.

Some difficulties arise, however, as we attempt to extend
u to B. We shall discuss some of them below. The first is
strictly.mathematical and is concerned with the existence of
the extension of u. For example, if B is all subsets of @,
there may not exist a measure on B8 which is equivalent to u
on 0. Hence we must make the additional assumption that this
extension can always be made. This implies that we must
restrict the set B or equivalently restrict the number of
actions in A.

For practical purposes this can usually be done, since
B can in general be generated by 0 and a finite number of
sets and in this case the‘extensions always exist (see section
8 in Part II).

A second difficulty arises in the attempt to determine
the value of W(B). One_reaéon is due to the assumptions of
separability between the probabilities of receiving a reward
and the reward. This can be best illustrated by an example
in DeGroot's (1970) book.

Consider actions a and b where:

a: Receiving $100 if you will be exterminated by a

nuclear war within the next ten years, or $0 otherwise

b: Receiving $100 if you become the president of the
United States within the next ten years, or $0

otherwise.

96



97

It is not surprising that most people would prefer b to
a and also believe that the event {extermination by a nuclear
war} is more likely to occur than the event {becoming the
president of the United States within the next ten years } .
The problem arises because the rewards are not precisely
defined or exactly specified. If rewards are not receiving:
$100 but rather "receiving $100 and being exterminated" and
"reéeiving $100 and being president" the éontradiction will
not occur. In this case an obvious relation exists between the
rewards and the events yielding them. In some cases, however,
it may be possible to determine if such a relation exists.

Another difficulty arises when we attempt to determine
the value of W(B). Assume that W(D) has been determined to
equal y. This value may not then satisfy the additivity pro-
perty of a measure.

Let us illustrate this using the Ellsberg paradox I.

Ellsberg paradox I. Consider the following two urns:

Urn I contains 100 bails, either red or black though the number
of each colour is not known. Urn II contains 50 red balls and
50 black balls. We are asked to state a preference between a
and b and a preference between c and d.

a: Win $1,000 if a red ball is drawn from Urn I

b: Win $1,000 if a red ball is drawn from Urn II

c: Win $1,000 if a black ball is drawn from Urn I

d: Win $1,000 if a black ball is drawn from Urn II.

Let us denote the event (drawing a red ball from Urn I)

by {RI} and similarly for {RII}, {BI} and {B__}. Hence if

IT
someone strictly prefers b to a we can conclude that
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A
W(RII) > W(RI). Similarly, if our preference is d > c, we
A A
must have W(BII) > W(BI). If both preferences b > a and 4 > ¢
are made, a contradiction occurs, i.e.,
1 =u(Q) = W(RII) + W(RII) > W(RI) + W(BI) = p(e) = 1.

Thus, the additivity of W must be rejected and hence if our

A
preference is b > a then we must also have the preference

c é d.

fhis problem can also be illustrated by our attempt at
specifying W(RI). Assume that the only events that belong to
0 are Q,@,(RII); and (BII), and also that if there is a pro-
portion p of red balls in Urn II, the probability of drawing a
red ball is p. W(R) can now be determined by comparing the
actions:

a: Receiving $1,000 if a red ball is drawn from Urn I,

c: Receiving $1,000 if a red ball is drawn from an urn

with the proportion p of red balls.
When the decision maker becomes indifferent between a

and b we let W(RI) =p If we repeat our experiment for black

1
balls we shall find W(BI) = Py Unfortunately most empiricél
studies indicate that Py + P, #1l. It is not easy to deter-
mine if_pl or p, or both should change.

A fourth difficulty arises if o does not contain a
sufficient number of events such that W(B) (B é B - 0) can be
estimated with sufficient accuracy by the method suggested.

An alternative approach exists if g8 contains a sufficient

number. of sets. Consider again the two actions a, b ¢ A,
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defined by
r w € B r w e D
X(w,a) = _ X(w,b) = _
s w e B S w € D
i
where U(r) > U(s). An ordering can then be defined on the

sets in B8 in the following way:

A B
If a ¢ b then B D.

<
If the ordering g\satisfies a given set of assumptions,
it can be proved that there exists a real-valued function P
on B, which satisfies the axioms of a probability measure.
(For proof see, for example, De Finetti, (1964) or Savage
(1954)) . |

We shall summarize the conditions on the ordering g
for the existence of P below:

The relation ("is not more probable than") on events

must satisfy the following axioms:

Axiom of ordering.

1. IfC ¢ B, B ¢ B, then either C E B or B 2 C;

2. For any set B ¢ B, B E B.

3. IfD 2 B and B g C, then D 2 C.

4. ¢ E Q@ and for any event B, ¢ 2 B E 2.
We define E ("is strictly less probable than") in the usual
way by:
B8
<

B B
C B implies C ¢ B and not B g C.

Axiom of monotonicity.

: ] B
1. 1If Blf\ B, = #, C; § B, and C, < B,, then

1 2
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B B
2. If Bl(\ B, = &, C; € B, and C, <.B,, then

B
clg_)c2 < BlQ By

The relation 2 satisfying the above axioms is called a
qualitative probability on the algebra B.v Savage's axioms
1-5 imply these axioms and in his assumptions the algebra B8
contains all subsets of Q. However, these axioms are not
sufficient to guarantee o-additivity of the corresponding
probability measure. For oc-additivity we need the following

axioms:

Axiom of monotone sequence. For every monotone sequence

of events Cn 7 C and an event B such that

B B
Cn < B, for all n, then C g B.

As Kraft, Pratt and Seidenberg (1959) showed, these axioms
are still not sufficient to guarantee a probability measure; -
we need an additional axiom such as the following one in

regard to the partitioning of events:

Axiom of partitioning of an event. Evéry event can be

partitioned into two equally probable events.

Villegas (1964) showed under certain assumptions that this

is equivalent to an axiom that there are no atoms, for example,
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‘Savage's axiom 6 is of this form.

Another approach to deriving the probabilities on B has
been suggested by Anscombe and Aumann (1964). Their approach
is closely related to the assumption that © contains a suffic-
ient number of sets to extend the measure to 8. We shall not

consider this method here.-

6.3 Empirical studies based on Axiom IV.

In this section we shall give the results of some
empirical studies which are related to Axiom IV. First we
present studies relating to the Ellsberg Paradoxes I and II
which may contradict either Axiom II or Axiom IV though
Paradox I at least seems to contradict Axiom IV rather than
IT.

Empirical results of the type of Ellsberg Paradox I. Most

empirical studies have used real numbers as rewards (amounts
of money which can be won) and the actions considered have

reward functions of the following form:

oY w € B or w € B
X(w,a) = _ X(w,c) =

0 w e B 0 w e B

r w e D r w e D
X(w,b) = _ X(w,d) =

0 w e D 0 w e D

where D ¢ 0 but B ¢ 8 - 0, and o any real number. If o =1
A A
an "Ellsberg-type violation" is the choice b > a and d > c.

MacCrimmon (1965) study. In a study with 38 business

executives, MacCrimmon used a series of this type of problem

where a mixture of "known" probabilities versus "unknown"



probabilities was used to determine if biases exist. The first

problem considered was

B = {the stock price of Pierce Industries is increasing}
D = {a red card is drawn from a standard deck}
r = $1,000 o = 1.

In this type.of problem the contradiction will only occur
if the probébility of the event B is close to 1/2. For
example, if the economy is on the upswing and nearly all
stocks have increased in recent days, it is not very likely
that an "Ellsberg-type violation" will be obtained. The
second type of problem was similar. In this case the events
B and D were defined by {U.S. GNP increases next year} and
{a coin landing heads} respectively. |

In the first problem, 27 subjects were consistent with
the axioms. That is, if they preferred action a over action
b in the first set, then they preferred the action d over the
action ¢ in the second set. Seven subjects had violations of
the event complement condition; five of these subjects had
Ellsberg-type violations (i.e., they preferred the "known" card
bet both times), while the other two preferred the stock bet
both times. Hence the rate of violétion was 21%. In the
second problem there were 24 consistent subjects and 7 sub-
jects who had Ellsberg-type violations. (The remaining 7
subjects had some degree of indifference.) Hence the rate of
violation was 23%.

When the stakes were changed to yield $10 more on the
"unknown" event (i.e., o = 1.01), the proportion of Ellsberg-

type violations dropped to 12% (4 out of 34) on the first
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problem and 17% (6 out of 35) on the second problem. Note
here, though, that the choice of the "unknown" stock bet in
both sets cannot be called a Violétion with these payoffs
since they pay more and would be the logical choice if the
"known" and "unknown" events were deemed equally likely.

For the first problem, the subjects were also presented
with reasons supporting consistent (i.e., axiom-based) responses
and with reasons supporting Ellsberg-type violations. Nineteen
subjects judged the consistent argument the more reasonable,
while 12 subjects preferred the violating argument.  Thus
overall, there was a rate of 39% accepting the Ellsberg-type
violation. Among those subjects who had consistent answers
themselves, the rate of acceptance of the Ellsberg-type
answer was 22% (6 out of 27), while among those who had an
inconsistent answer themselves, the acceptance rate was 57%

(4 out of 7).

MacCrimmon and Larsson (1975) study. In their study,

19 subjects were presented with two séts of 11 alternative
wagers and were asked to rank the wagers in each set in order
of their preference. The sets differed in terms of payoffs;
in the first set r = $1,000, o« = 1; in the second set,
r = §1,000, o« = 1.01. We sﬁall only consider the part of
their study which concerns the Ellsberg Paradox I.

R

I

RII = {a red ball drawn from Urn II}.

Il

{a red hall drawn from Urn I}

Fifteen of the 19 subjects had an Ellsberg-type violation.
Another subject ranked three of the actions equal, with the

fourth one less. Two subjects ranked all four actions equal,
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while the remaining subject ranked one of the actions highest
and the other lowest with thé known probabilities and the
other ranked between them. Hence, only three of the 19 subjects
behaved consistently with the utility axioms; there were 16
subjects with Ellsberg-type violations. This is a very high
violation rate of 84%? Looking at it another way, 16 subjects
preferred b to a, and three subjects were indifferent. Of
these 16 subjects, only one preferred c to d (i.e., the bets
on the complements were in the right order). They conclude’
from these results that bets on an urn with a specified com-
position seem to be preferable to bets on an urn with an un-
known composition.

Empirical studies of Ellsberg Paradox II. In Ellsberg's

paradox II we are concerned with three events, say Bl’ B2, and
B3, such that Bin Bj = g i#j and BlU B2 UB2 = Q. We also
assume that Bl e 0 but B2,B3 B - 0, and as in Ellsberg

paradox I the rewards are "amounts of money which can be won".

For simplicity we shall dehote u(Bl) by p. The actions which

will be considered have reward functions defined by:

r w € Bl r w € B2

0 w € Bl 0 w € B2

r w € §2' r w € §l
X(w,c) = X(w,d) =

0 w e B 0 w € Bl

We are then asked our preference bétween a and b and also
between ¢ and d. An Ellsberg-type violation would then be

A
a > b and d > c.



The Ellsberg problem can be described as: p = 0.33,
Bl = the event that (a red ball is drawn), B2 = the event that
(a black ball is drawn), B3 = the event that (a yellow ball is

drawn), and r = $1,000. Since the number of balls in the urn

may influence the decision we shall also denote this by n.

Slovic and Tversky (1975) study. They used the original

Ellsberg problem (p = 1/3, B, = {red ball}, B, =.{black ball},

1
B3 = {yellow ball}, n = 90, and r = $1000. Of their 29 college
students, 19 made Ellsberg-type violations when the problem was
first presented to them. On a second presentation of the same
problem, there were 21 Ellsberg-type violations. 1In a seéond
group of 49 subjects who were presented with arguments before
making their choices, 38 subjects agreed with an Ellsberg-

type of argument and 39 made an Ellsberg-type violation in

their choices.

MacCrimmon and Larsson's study (1975). In their study,
they varied the parameters p in the problem. This reflects

the "known" chances of winning with event B, and correspond-

1
ingly, there is a 1l-p chance of winning with event "B2 or B3".
They considered the following values of p: 0.20, 0.25, 0.30,
0.33, 0.34, 0.40, and 0.50. One would expect the highest
tendency to make Ellsberg-type violations around p = 1/3. To
obtain some information on payoff levels they used r = $1,000
and r = $1,000,000. They used n = 100 balls in all cases
except one presentation of the original Ellsberg problem with
n = 90 balls (and p = 1/3) for direct comparison purposés.

In the original Ellsberg problem, 11 of the 19 subjects

made the Ellsberg-type violation (i.e., a,d). Only five
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individuals made choices conforming to the axioms (i.e., a,c

or b,d). Hence there does seem to be a high rate of violation
of the notion that probabilities can be assigned to "uncertain"
events. 1In the form of the problem we used (with n = 100 balls),
the rate of violation tended to be even higher. For p = 0.33,

or 0.34, 70% of the subjects made Ellsberg-type violations.

So there was considerable violation for these particular
pararémeters.

In an urn with 100 balls with proportion p of red balls,
we would expect thatvwhen p is close to 0, a choice of b,d
and when p is close to 1, would expect a choice of a and c.
However, when p is around 1/3, individuals may be somewhat
indifferent about the choices and may then choose on the basis
of how well the chances are known. Since the chances for
alternatives a and d are specified, we would expect a much
higher proportion of such violations around this value of p.

As p deviates from 1/3, then although the chances are still
specified with alternatives a and b, one is accepting a rather
low chance'of winning by taking a when p is small or d when p
is large.

Regardless of whether this is the rationale for the choices,
they definitely observed this kind of behaviour. It was ob-
served that 70% of the choices for p = 0.33 or 0.34 are incon-
sistent with the axioms, but for p = 0.20, this percentage
drops to 14% and for p = 0.50 it drops to 0%.

Another study directly related to Axiom IV was made by
E. M. Shuford (1959) who designed and constructed a set of

20 x 20 matrices of small lines which would either be in a
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vertical or horizontal position. The subjects studied these
matrices for a short period of time and were then asked what
percentage of lines were vertical. Here the exact number of
vertical lines was known to the experimentér, and therefore a
study of how accurate the subjects were in determining the
fraction of vertical lines could be determined. Shuford found
that small percentages were nearly always overestimated and
larger percentages underestimated which would suggest the

following graphical representation between W and y.

W(B)
1O0pm———— - —

u(B)

Fig. 6.3. Relation between u(B) and W(B)
".. . by experiment of E. M. Shuford

This does not suggest that W ought not to be a non-linear
function 6ffu. It only illustrates the difficulties of

obtaining correct probabilities.

6.4 Relation to other axiom systems

Marschak's, vonNeumann & Morgenstern's and Arrow's
approaches assume a probability measure as we have given for
all sets in 8. Their approaches to the expected utility theory

would therefore have little interest to section 6. Savage's
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and Luce & Krantz's approaches are slightly different. In
their approaches an ordering is induced on all possible events
in such a way that a probability measure may be specified on
those events. That is, the ordering induced on the events

must satisfy the conditions specified in section 6.2. Savage's
approach does not satisfy the axiom of monotone sequence, and

can, therefore, only specify a finite additive measure.

6.5 Alternative to Axiom IV
An alternative approach would be to remove the condition

that W behave strictly as a measure. For example, Fellner
(1961) found that in some cases when he tried to derive sub-
jective probabilities that W(B) + W(B) = y where y # 1. If
W(B) = ku(B) (u > 0) it would not be difficult to derive a
theory similar to the expected utility theory. However, he
also found that k is not a constant but is a function of B.
Hence Axiom II would also be contradicted. 'We shall discuss

his approach in addition to a new approach in Part II.
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7.0 Summary of Part I

In this section we shall show that the axioms we have
considered here are both necessary and sufficient for the‘
expected utility criterion to hold. Before doing so, however,
we shall summarize the basic assumptions and axioms made.

Summary of the assumptions

In Assumption 1 we assumed X(-,a) was a measurable
function with respect to .. Axiom III assumes the existenge
of a measurable function U on R, and hence we may now consider
the composite function UX(-:,a) for all a. The most important
assumption concerning measurability is that UX(-,a) is a
measurable function with regard to the Borel sets on the real
line and B. This follows from the fact that if U and X are
both measurable then UX is measurable (Halmos, 1950, Theorem B,

pp.162).

Assuﬁption 1. There exist:

i) a probability space (Q,0,u), where @ is the set of
states,
ii) a measurable space (R,¥), where R is the set of

rewards or outcomes,

iii) an index.set A, called an action space, such that
for each a ¢ A there exists a reward function
X(-,a) from Q to R,

iv) a o-algebra B of @ such that 6 € B8 and each
function X(-,a) .7 " is B-measurable, and

A
V) a relation ¢ on A.

The following axioms were also made with respect to the
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decision maker's behaviour.

Axiom I. Existence Axiom

There exists a real-valued function £ on A such that

~for any a,b ¢ A,
A
if a € b then f(a) ¢ f(a), and
A
if a < b then f(a) < f£(b).

From a practical viewpoint this axiom suggests that
there exists a monetary amount which we would be willing to
pay or receive in order to obtain or sell each alternative.
It does not suggest the amount we are willing to pay but only
the existence of an amount. If there are alternatives which
are "above rubies", or impossible to specify in monetary
rewards, this axiom would not haQe a meaning and would not

be acceptable.

Axiom ITI. Additivity Axiom
There exists a real-valued function h on B x A such that
a) f(a) = h(Q,a)
b) for {Bi} i=l,... such that B, ¢ B for all i and
B.MN B, = g for i#j then h(UB.,a) = 2 h(B.,a)
i J o i ia i
for all a € A

c) for any B € B, and for any a,b & A such that

XB(-,a) XB(~,b), then h(B,a) = h(B,b).

Axiom II implies that the events are independent of each
other. However, we do not mean a statistical independence,
but that the evaluation of an action by considering the

reward for a given event is not affected by the possible
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rewards on the complement of that event. Therefore, we can
not argue that we are willing to take a small chance on

a given event because we have a relatively conservative
reward elsewhere.

Recall that in Axiom IIIb and ¢ we use the notation

k

h(B,z) defined by 2_ W(B;)oa; where z identifies the simple
i=1 ‘ k

function Y(w,z)=:ui,w € Bi for i=1l,...,n and \J Bi = B (see

i=1
section 5.1).
Axiom III. Separability Axiom
a) There exists a non-negative real valued o-additive
function W on B and a real valued measurable function U
on R such that for any a ¢ A, B ¢ B and ¥ ¢ R, if

XB(°,a) = r, then
h(B,a) = W(B)U(r).

b) Let ry be any fixed reward in R, and let X (-,b)

R
be any reward function such that XB(w,b) > T for all
w € B, for B € B. 1If ZO is the set of all simple

functions z such that YB(-,z) < UXB(-,b), then h(B,b)

satisfies
h(B,b) = sup h(B,z)
ze2
o
c) Similarly for any reward function X(-:,c) such that

R
r > XB(w,c) for all w ¢ B, if %

o is the set of all

1

simple functions z such that YB(-,z) > UXB(-,c), then

!
h(B,c) satisfies
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h(B,C) = inf h(B,z)
zeZl
Axiom IV. For any B ¢ 0, W(B) = u(B).

Axioms III and IV specify an independence between the
reward and the probability of receiving this reward. This
implies that we have equal satisfaction from winning $1,000
on the stock exchange or from winning a lottery ticket. This
may not always be true, of course, since in the first case we
may feel a given satisfaction because receiving $1,000 from
buying and selling stock involves skill, but with a lottery
ticket, only luck would determine the winner. Of course, in
this case the reward set may be modified so as to include more
than a monetary ‘reward. 1In this case, however, it becomes
very difficult to determine any utility function.

These axioms and assumptions are necessary and sufficient

for the existence of a function V on R such that

b implies ‘/;X(-,a)dw z.erX(o,b)dW,
and
a > b implies /VX(-,a)dW >/VX(_-,b)dW.

To show this it is sufficient by Axiom I to show that

f(a) = J/.VX(-,a)dW.
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Theorem 7.1 'If Axioms I, II, III and IV hold then there

exists a real-valued measurable function V on R such that
f(a) =fVX(w,a)dW

Proof. By Axiom III there exists a real-valued function

U on R, so define V(r) = U(rx).

If a € A and X(w,a) = r for all we® then by Axioms II,

ITT and IV respectively

f(a)

h(Q,a) = W(Q)U(r) = U(xr) = V(r)
and

f(a)

fUX(w,a)dW =fVX(w,a)dW.

Therefore, the theorem holds for constant functions.
Suppose instead that a € A and X(-,a) is a simple function,
that is, there exists a partition Bl,ig;,Bn of Q@ such

that XB (-,a) = r, i=1,...,n. Then Axioms IIa, III
i

and the definition of the integral imply

n
f(a) =2 h(B,,a)
i=1

W(Bi) U (ri)

. I
e
Dk

jUX(w,av) aw

f&lx(w,a)dw.

Lastly, consider a € A for an arbitrary reward function
X(-,a). Let ry be any fixed reward in R. Axioms IIa,

IITb and IIIc respectively guarantee that
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f (a) h({x(-,a) > ro},a) + h({x(-,a) < ro},a)

sup h({xX(-,z) > ro},z) + inf h({X(-,2) <»ro}(z)
zeZ ze% -

where Zo is the set of all simple functions that

¥(w,z) § UX(w,a) for all w e {X(-,a) » ro} and Z, is
is the set of all simple functions such that

¥(w,2z) ﬁ‘UX(w,a) for all w & {X(-,a) < ro}.

Hence h({x(-,a) > ro},a) is equal to the supremum of
the integral of all simple functions less than UX(.,a),
similarly for h({xX(.,a) < ro},a). This is the definition

of the integral‘j’UX(-,a)dW and completes the proof.

What is also true is, of course, that if f is to be

expressed as the expected utility, the axioms must also hold.

Theorem 7.2. Given the objects in Assumption 1, suppose

that there exists a measure v on B such that v(B) = u(B)
for all B € ' 0, and a real-valued measurable function V

on R such that if a > b then

jVX(w,a) dv > fVX(w,b) dv
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and if a > b then

/Vx(w,a)c"i"\)' > fvx(u'),b)dvf

Then Axioms I, II, III, and IV are satisfied with

3

‘W =V, U() =V() and

£(-) = d/ax(w,-)dw.

Proof. Define f(a) = J[ VX(w,a)dW, for all a ¢ A. v

Then Axiom I is obviously satisfied.

Let Bi i=1,2,... form a partition of Q such that Bi e R

for all i, then for any a € A
£ (a) =/me,a)d»7.=z [VX(w,a)dv'.
i
B.
i

Define h(Bi,a) = J/hvx(w,a)'dv, then clearly f(a) = Z:;h(Bi,a).
i

B,
1

Hence Axiom ITa must hold.
If Xg(-,a) = X (+,b) then VX(-,a) = VX(-,b) for all

w € B. Hence

J/;X(w,a)dv = J/&X(w,b)dv or h(B,a) = h(B,b).
B B

Hence Axiom IIb must hold.

If for any B £ B, XB(-,a) = r for some a € A then
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,\ h(B,a) /jzx(w,a)d'b o
B

= V(r)v(B)
Define U (r) = V(r) and Vv(B) = W(B) then AxiomJIIIa is satisfied.
Axioms IIIb . ° "and III¢ then follow from the-definition of
the integral.
Axiom IV follows from the assumption that ﬁ(B) = v(B) = W%B)’

A

‘for © - B e 0.

We have, therefore, shown that the axioms specified are
both necessary and sufficient for the expected utility theory
‘"to hold. Thus, the theory of maximization of the expected
utilit§ can only be accepted if we agree with each of the
axioms specified here, and their implications. Hopefully, we
have illustrated the main difficulties involved with each of
the axioms, giving a greater understanding for their accep-
tance or rejection.

The two most difficult axioms to accept are Axiom II and
Axiom IV. We have, therefore, spent the most time on them to
illustrate their implications and relations to other axioms --
at least for Axiom II. Axiom IV will be considered in much
more detail in Part II of the thesis. We shall also consider
Axiom II there, and suggest an alternative to the additivity

axiom.



1.0 Introduction to Part II

Decision making under partial risk

Classical decision making is usually categorized in
accordance with the decision maker's knowledge of the conse-
quences (rewards) of his alternatives (actions). Specifically,
decision problems are classified as being under certainty,
risk aqd upcertainty (Knight, 1921). Certainty meahS‘ﬁhat;One
*feward>;>i§;e specified for each of the decision maker's alter-
natives. In the case of risk, the probability of the conse-
quences is known for all consequences and for all actions.
Uncertainty means that only the set of.possible consequences 1is

known.

Evaluation of the decision maker's alternatives

We shall assume as before that there exists an evaluation
function on the set of actions; that is, a real-valued func-
tion £(-) exists on A such that if one action is preferred to
another, the numerical value associated with the first action
is greater than that of the second. It is also assumed that
there exists a .complete - ordering on the ,ffewards - which
can be represented by a real-valued order-preserving function.
We shall éall this function a utility function.

The utility function is easier to deterﬁine than the
evaluation function since the relationship between actions and
consequences implies that the total number of possible utility
functions is a subset of the total number of possible evalu-

ation functions.

In decision theory under certainty, each action gives only
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one possible reward and we assume that the evaluation function
on an action takes the same value as the utility function for
the corresponding reward. In this case the specification of

a utility function is equivalent to the specification of the
evaluation function.

In decision making under either risk or uncertainty it is
often assumed that the utility function can easily be specified
(or derived by somé rule(s)) and the evaluation function is
then specified in termsvof the utility function.

For example, in decision making under risk several
evaluation functions have been suggested, aithough the most
accepted is the expected value of the utility function
(Bernoulli, 1738). 1In Part I we considered the evaluation
function defined by expected utility in some detail. Under
uncertainty there has not been an evaiuation function speci-
fied which has been uniformly accepted. Five functions are
frequently suggested (although more exist). We shall briefly
state them here. They all assume the existence of a utility
function, and the evaluation function is specified in terms of

this utility function.

The maximax criterion (Hurwitz, 1951). The evaluation

function for each action is specified by taking the maximum
utility over all possible rewards of that action.

The maximin criterion (Wald, 1950). The evaluation

function for each action is specified by taking the minimum
utility of all possible rewards for each consequence of that

action.
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\The'Hurwitzraecriterion'xﬁurwitzqglssl). . The evaluation

function is specified by a linear combination of the maximum
and minimum utility for each action.

" The pr'i‘n‘c‘ip‘l'e‘ of insufficient reason (,B'er'n'o'u‘l'l‘i',' 1738) B

The evaluation function is specified as the average utility for
each action.

The expected utility criterion (Savage, 1954). A proba-

bility distribution is "derived" on the consequences. The
evaluation function is then equal to the expécted utility for

each alternative.

For a critical review of each of these evaluation func-

tions, see Milnor (1954).

Partial Risk Problems

A fourth category of decision problems can be specified
as falling between risk and uncertainty; that is, some know-
ledge of the probabilities of rewards are known, but a pro-
bability distribution can not be completely specified. This
category has been recognized by decision theorists for some
time and is commented on in standard textbooks in the area.
For example,

"A common criticism of such criteria as the maximin
utility, minimax regret, Hurwitz-o, and that based
on the principle of insufficient reason is that they
are rationalized on some notion of complete ignorance.
In practice, however, the decision maker usually has
some vague partial information concerning the true
state. No matter how vague it is, he may not wish to
endorse any characterization of complete ignorance,
and so the heart is cut out of criteria based on this
notion."

(Luce and Raiffa, 1957, p.299)
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Knight also asserts that such overall judgments may influence
decision:

"The action which follows upon an opinion depends as

much upon the amount of confidence in that opinion as

it does upon the favorableness of the opinion itself

...Fidelity to the actual psychology of the situation

requires we must insist recognition of these two

separate exercises of judgment, the formation of an

estimate and the estimation of its value."

(Knight, 1921, p.227)

Decision problems which fall into this category are
called partial risk problems (other common names are decision
making under partial ignorance, or partial uncertainty).
‘A partial risk problem may therefore be very close to a risk
problem if the probability distribution can nearly be specified
and similarly it may be very close to an uncertdinty problem
if very little can be specified of the probability distribu-
tion. We can therefore consider risk and uncertainty as
extreme cases of partial risk. It is not surprising therefore
to find that the existing methods for specifying an evaluation

function for a partial risk problem fall between those used

in evaluation the risk and uncertainty problems.

Evaluation of partial risk problems

There are basically three methods used in describing the
evaluation function on alternatives. They can be classified as
follows:

1) Translating the.problem into a risk problem. That is,
assuming the existence of a probability distribution over the.

reward the evaluation function is then specified as ‘in the case

of decision making under uncertainty.



2) Combining the evaluation functions used for risk and
uncertainty.

3) Deriving a "prgference function" on the uncertain
rather than a probability measure.

We briefly discuss each method here to illustrate the .
differences from the approach we shall discuss in this thesis.

Evaluation Method 1. ..  The exact probability dis-

‘tribution is assumed to exist but is not necessarily known.

A probability measure has been specified in two related meth-
ods. The first of these is a derivation of subjective pro-
babilities. A probability distribution is defived from the
preference among alternatives..'This method has been used by
Ramsey (1926), De Finetti (1937), and Savage (1954). The sub-
jective probability measure usually has the sémé properties as
Kolmogorov'svprobability axiém (1933), except that sometimes
finite additivity is assumed rather than c-additivity.

The second method used to derive a probability is to
assume a set of weights on the set of possible probability
distributions and to use the combined probability measure to
calculate the expected utility. This method is sometimes used
in statistics (see, for example, Good, 1965).

Once the érobabiliﬁy measure is specified the problem
has been reduced to a decision problem under risk. Hence any
evaluation function used for decision makihg under risk can
also be used in these cases. The most common evaluation
function is the expected value of the utility function. This

approach, therefore, does not differentiate between risk and

uncertainty. Savage recognized that this approach ﬁight create
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difficulties:

*...there seem to be some probability relations about
which we feel relatively "sure" as compared with
others...The notion of "sure" and "unsure" introduced
here is vague, and my complaint is precisely that
neither the theory of personal probability, as it is
developed in this book, nor any other device known

to me renders the notion less vague..."

(savage, 1954, pp.57-58,59)

Evaluation method 2. The second evaluation method combines_

the evaluation functions used for risk and uncertainty.
There are also two basic approaches for this method. Both of
these approaches assume that a set of possible probability
distributions can be specified on the consequences. The
first (see Good, 1965) assigns a set of weights on the possible
probability distributions and the expected value is calculated
using the combined probability distribution. The evaluation
function is specified.as a linear combination of any of the
criterion under uncertainty and the expected utility. There
has only been one suggested so far and that is a linear com-
bination with weights greater than zero, and sum to one between
expected utility and the maximin (see Ellsberg, 1961). It is
obvious that his approach could also have been used for any of
the other evaluation functions for decision making under
uncertainty. The coefficient of the linear combination would
depend on how "close" the problem would be to a decision pro-
blem under risk versus uncertainty. We shall discuss this
method in greater detail in section 6.1.

The second approach has been to combine maximin with the
expected utility theory in thelfollowing way. For each

action a set of possible distributionson the rewards is
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determined, then the evaluation function is specified as the
minimum of all possible expected values for a given action.
This approach has been the most common (see, for example,
Menges, 1966; Blum and Rosenblatt, 1968; Randles and Hollander,
1971) . |

Evaluation method 3. The last of the three methods of evalu-

ation is similar to Savage's in the sense that a function is
derived on the reward space indicating in some way the likeli-
hood of receiving the rewards. In this case, however, this
function may not-be a probability measure. The justification
for this would be that it is easier to determine a probability
distribution of rewards for some‘actions than for others. This
is therefore an extension of the Savage approach in the sense
that this method recognizes the differences between "sure" and
"unsure" events. This function will be called a preference
function rather than a probability measure.

Once the preference function has been specified, a diffi-
culty arises from how to use this to specify the evaluation
function. Fellner (1961) suggested one method of doing this.
He assumed that the preference function must have the proper-
ties that a probability measure on the rewards can be derived
from it. The expected utility was then calculated using the
derived probability measure. However, in his approach, the
utility function is different from the utility function under
risk since the utility under partial risk contains an element
of gambling.

In Part II of the thesis we shall suggest an alternative
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method of evaluation partial risk problems. Of those methods
so far described this new method is closest to Fellner's
approach. There are some fundamental differences, howéver.
Following Fellner, a preference function is first derived on

. the possible rewards for each action. Here, however, we do
not assume this preference can be transformed into a probabil-
ity measure on the sets. We also specify a set of axioms
which we believe the decision maker ought to follow from which
an evaluation function may be specified.

In section 2 we shall specify the underlying assumption
axioms and notation we shall use. We shall also specify the
problem in more méthematical terms.

In the theory developed here we shall assume three basic
axioms for problems under partial risk. These are stated and
discussed in section 3, 4 and 5 respectively. 1In section 6
we shall summarize all the axioms and assumptions for easy
reference, and also show that ah evaluation function is com-
pletely specified given these axioms and assumptions.

In section 7 we shall state an additional-axiom that
simplifies the practical aspects of partial risk prdblems but
which is not necessary for the theory. We shall also suggest
some other simplificétions. In section 8 we shall consider the
preference functions we have derived as a probability measure.
In section 9 we shall give some support for the theory from
some empirical studies which have been made, and finally in

section 10 we shall summarize the results.
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2.0 The basic assumptions

In this section we shall specify the notation and some of
the basic assumptions needed for the model developed here.
Most of the notation follows'that used in Part I. We shall
assume that there exists a probability space (§,0,u), a reward

space (R,¥) and an action set, A, with a complete ordering

A

> on A. For the time being we shall let A be an arbitrary set
A .

and > an arbitrary complete ordering and restrict the set A

A
and the ordering > as needed in subsequent sections. For a

given action a € A, the reward function is a function from Q
to R, and is denoted by X(-,a). The set of all O-measurable
reward functions in A will be indexed by the subset Ao of A,
that is if a ¢ Ao then X(-,a) is measurable (we shall modify.
this definition of AO presently). The smallest o-algebra
of subsets of @, such that all functions X(-,a), a € A, are
measurable will be denoted by B. Necessarily, then, 0 C B.
(The case of 0 = B will not be considered.)
With this notation we can summarize the standard cate-
gories of decision making as follows:
A given action a € A, is a decision under
1) certainty, if a € A and there exists a B € O such that
Xé(w,a) = r and p(B) = 1,
2) risk, if a ¢ Ao,

3) uncertainty, if a € A, and if for any set B Q such that

B#@, B# Q and B = {w:X(w,a) € C for some C ¢ ¥}, then
B ¢ @,'

4) partial risk, if a is any alternative in A.

In these definitions the categories 1), 2), and 3) are
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all included in 4). This classification is, therefore, redun-
dant-if an acceptable criterion may be found for partial risk
problems. Our aim is to specify a criterion for partial risk
problems. The same criterion may also, therefore, be used for
uncertainty, risk, or certainty problems.

In section 2:1 we shall state three fundamental axioms
which are the basis for our development, and in section 2.2
we shall illustrate the difference between B and 0, from a

practiéal decision making approach.

2.1 Statement of the axioms

In this section we shall specify three axioms and two
assumptions which jointly guarantee the existence of a utility
function U on R, and also specify the expected utility cri-
terion for actions belonging to Ao.

The first axiom we shall state here is similar to Axiom I
in Part I. That is, it assumes the existence of a function

on A, which preserves the ordering on A.

Axiom I. There exists a real-valued function f(-) on A

such that A
a » b if and only if f(a) > f(b)

The objections and alternatives to this axiom were dis-
cussed in Part I, and will, therefore not be discussed .here.
Other axioms which we shall assume impose conditions on the

A .
ordering > on A and the membership of A, or equivalently, they
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specify properties of £he function f£.

If for all r € R there exists an a ¢ AO such that
X(w,a) = r for all w € Q, then, in general, a function U may
be defined on R by U(r) = f(a). A difficulty arises if there
also exists a b ¢ Ao such that X(w,b) = X{(w,a) for all w € ©
but £(b) # f(a). 1In this case U is not uniquely defined.
Therefore, for U to be a uniquely defined function we need both
the existence of all constant functions (Assumption 1) and
also the assumption that if two constant reward functions are

equal they have the same preference (Axiom IIi).

Assumption 1. For each r e R, there exists an a ¢ AO

such that X(w,a) = r for all w & Q.

Jointly Axiom IIi and Assumption 1 also imply that an
ordering may be induced on R, since this is a weaker condition
than the existence of U. The ordering we shall consider on R

is defined as follows:

If X(w,a) = s and X(w,b) =r for all w & © then
R
r > s if f(a) » £(b),

or equivalently

v A

s if U(r) » U(s).
. ‘ ) R )
For any ordering > on R, dominance can be defined among
the reward functions in the usual way: the reward function
X(-,a) dominates the reward function X(-,b) with respect to

R
> if
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. R
X{w,a) 2 X(w,b) for alllw e Q

(or reWard function X(-,b) is dominated by feward funcﬁion
X(-,a)). That is, we prefer the reward of X(w,a) to the reward
of X(w, b) for all p0551ble outcomes. It seems reasonable to
assume that if X(-,a) dominates X(+,b), a,b € A and the
ordering on R has been induced by the constant reward functions,
then £(a) > £(b). |

In the further development we shall assume fhat when we

discuss an ordering on R or dominafice among réward functions
we shall assume that the ordering has been induced by the con-
stant functions. We are now ready to state Axiom II com-

pletely.

Axiom‘II. i) If'fof any r ¢« R there exists a,b ¢ A
such that X(w,a) = r and X(w,b) = r for all w € 9, then
f(a) = f£(b).

: A
ii) If X(-,a) dominates ¥(-,b) then a 2 b.

A natural extension of Axiom IIi would beito assume that
if X(w,a) = X(w,b) for all w ¢ Q then f(a) = £(b). This fol-
lows, however, directly from part ii of the Axiom as follows:

If X(.,a) = X(.,b) then X(w,a) > X(u,b) for all v e o
and hence X(°,a) dominates X(-,b) by Akiom ITii |
f(a) » £(b). sSimilarly X(-,b) dominates X(-,a) and hgnce
£(r) > f£(a) and therefore f(a) = £(b).

If a ¢ Ao and X(;,a) is a constant reward function then U

is defined by the eguality UX(-,a) = f£(a). The function U will
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: R
X(w,a) » X(w,b) for all w ¢ Q

(or reward function X(-,b) is dominated by reward function
X(+,a)). That is, we prefer the reward of X(w,a) to the reward
of X(w,b) for all possible outcomes. It seems reasonable to
assume that if X(-,a) dominates X(-,b), a,b ¢ A and the
ordering on R has been induced by the constant reward functions,
then f(a) » f£(b).

In the further development we shall assume fhat when we
discuss an ordering on R or dominance among reward functions
we shall assume that the ordering has been induced by the con-

stant functions. We are now ready to state Axiom II com-

pletely.
Axiom II. i) If for any r ¢ R there exists a,b ¢ A
such that X(w,a) = r and X(w,b) = r for all v ¢ Q, then
f(a) = £(b).

A
ii) If X(-,a) dominates ¥(-,b) then a 3 b.

A natural extension of Axiom IIi would be to assume that
if X(w,a) = X(w,b) for all w € Q then f(a) = f(b). This fol-
lows, however, directly from part ii of the Axiom as follows:

If X(.;a) = X(»,b) then X(w,a) 5 X(w,b) for all w e @
and hence X(-,a) dominates X(-,b) by Axiom IIii
f(a) » £(b). Similarly X(-,b) dominates X(-,a) and hence
f(b) » f(a) and therefore f(a) = f(b).

If a ¢ AO and X(-,a) is a constant reward function then U

is defined by the eguality UX(-,a) = f(a). The function U will
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and is made for convenience. Since the integral always exists
for bounded measurable functions J/bx(w,a)du must exist for all
ace Ao'

We shall use the notation

EUX(-,a) for.erX(m,a)du.
Q

Axiom III. If b ¢ Ao then £(b) = EUX(-,b).

To summarize, Assumption l, Axiom I and Axiom IIi guaran-
tee the existence of a utility function U on R, and also an
ordering ? on R. Assumption 2 implies that JfUX(-,a)du is
well defined for all a ¢ AO and Axiom III that the expected
utility criterion is the accepted criterion for decision
making under risk. The axioms which folldw in sections 3-6

will extend this evaluation function from A, to A.

2.2 Comments on the assumptions

We have assumed the existence of a probability space
(Q,e,u);vthat is, there exist events (members of 0) for which
the probabilities are known or at least the decision makers
are willing to accept certain events for which they believe
fhey know the probabilities. Consider, for example, the
foilowing events:

B1 = {heads occurs when a coin is tossed}

w
V)
!

= {a five occurs when a die is rolled}

4]
[t

3 {Dow-Jones will close higher tomorrow than today}

{the temperature tomorrow will reach a maximum

o
N
]
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value of 10°C}.

Some of these may be classified as belonging to 0 and
others as belonging to 8. Many people would be willing to
accept u(Bl) = 1/2 and u(Bz) = 1/6. The probabilities for the
events B3 and B4 are such that we may be less willing to spec-
ify them exactly. (The assumptions do not prevent us from
doing so of course. For example a meteorologist may feel
confident abdut specifying an exact probability for event B4.)
The idea that some probabilities can be "accurately" specified
and others not, has been suggested by Anscombe and Aumann
(1963). They coined the phrase "horse lottery" for those
events for which probabilities may not be completely specified.
Those events where a probability can be specified they called
roulette lotteries. Fellner (1961l) also separated events for
which the probability may be stated with some accuracy and
those for which this is not possible. He suggested that sets
which belong to © are those for which the subjective probab-
ility may be supported by frequency probabilities as, for
example, the drawing of cards from a deck of guaranteed com-
position.

Savage (1954) included all subsets of @ in 6. Hence he
would hold.that all probabilities can be specified exactly.
Good (1965) disagrees that the probabilities can be exactly
determined. He writes

My own view, following Keynes and Koopman, is
that judgments of probability inequalities are
possible but not judgments of exact probabili-
ties; therefore a Bayesian should have upper

and lower betting probabilities.

(Good, 1965; pp 5)
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In the approach developed here we agree with Anscombe and
Aumann (1963) that there exist both "horse lotteries" and
"roulette lotteries”. We also accept in part Good's argument
that probabilities may not necessarily be exactly determined,
although we allow it to be specified as precisely és one
chooses by making a judgment of a sufficient number of pro-

bability inequalities.



3.0 The P-measure axiom

In section 2 the expected utility criterion was suggested
for actions belonging to Aof. In extending this criterion in
the usual mathematical fashion to all of A, two difficulties
arise which are interrelated. One difficulty is that the
required extension of the measure y to the o-algebra B may
not exist. A property such as c-additivity of the measure
must often be sacrificed. However, when such.a property is
not sétisfied by the measure it is difficult to define
expected value.

In this section we shall assume the existence of a set
function on B which is an extension of the measure u. The
existence of such a function will depend on what properties
it is assumed to have. The properties we shall specify in
the following section, however, will not put any restriction
on B.

Iﬁ section 3.1 we shall specify the first property of
the extended measure. In section 3.2 we shall discuss some
of the more important implications of this property and also
give an example illustrating‘the assumptions so far made.
Finally, in section 3.3 additional assumptions will be made
to enable us to determine the values of the function for.each

B £ B.

133
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3.1 Statement of the axiom
The concept of Axiom IV can be illustrated by the fol-

lowing example. Consider two reward functions defined by

X(w,a) = and X(w,b) =

where B,D ¢ 0, and U(r) > U(s).

From Axiom III it follows that:
£(a) = U(r)u(B) + U(s)u(B) and £(b) = U(r)u(D) + U(L) (D)
and hence
£(a) - £(b) = [U(r) - U(s)][u(B) —u(D)].
Therefore,

f(a) » £(b) if and only if u(B) » u(D),

WV

so that the preference between a and b can be determined by
* comparing the probabilities u(B) to ﬁ(D). Thus, for alter-
natives with the same two possible rewards the alternative
with the largest probability of receiving the higher of the
two rewards is chosen.

If P is the extended set function of y to B, it seems
reasonable to assume that P has the same property. Therefore

if P is assumed to be a probability measure the assumption
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is clearly consistent with the expected utility criterion.

This assumption is formalized in Axiom IV..

Since the exten-

sion may not satisfy the requirement of what is generally

called a probability measure (see definition in Appendix II,

page 235), we shall call the extension a preference measure,

or simply a P-measure.

We shall first assume that all reward functions with only

two rewards belong to A.

Assumption 3.

exists " b € A such that

X(w,b) =

Axiom IV. There exists a set
such that
a) if B e O then P(B) =

b) for any r,s € R such
any B,D € B, let a,b

the reward functions

X(w,a)

{ r w e B
s w e B

For any D ¢ B and for any r,s £ R there

function P defined on B

u(B),

that U(r) > U(s), and for
be elements of A for which
are

: r weD
and X(w,b) =

ol

S  w e

A B
Then a » b if and only if P(B) ».P(D).

We showed one implication of the expected utility criterion

to be that if two reward functions

are given by
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X(w,c) = and X{(w,d) =

with B,D. ¢ 0, then 4 é c, when a é b. This follows since

a é b implies the probability of B is greater than the pro-
bability of D, so that the probability of D must be greater
than the probability of B (since u(B) + nu(B) = 1 if B € 0)
and hence d é c.

'If, however, the probabilities are not known, then the
preference a é b does not imply that the probability of B is
greater than the probability of D, it only implies for some
reason that we prefer alternative a to alternative b. For
example, alternative a may seem less risky in the sense that
we have some infofmaﬁion of the likelihood of B occurring,
and no information of ﬁhe likelihood of D occurring. That is,
we may differentiate between "known" versus "unknown" pro-
babilities.

Axiom IV gives us a method to determine a partial
ordering for all actions which would result in one of two

A .
rewards. If a > b, with a reward function as given in Axiom

IV, then for actions e and f with reward functions

v w e B v w e D
X(w,e) = _ and X(w,f) = _
t w e B t w e D
A . . .
the preference e > £ is implied if U(v) > U(t). However, we

can not state a preference between a and e based on our
development so far and therefore only a partial ordering can

be determined. It seems intuitively clear, however, that if
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U(v) > U(r) and U(t) > U(s) then e > a. This point will be
considered later in section 5.0, so for the time being it is

sufficient to consider the axiom as stated.

3.2 Implications of Axiom IV
Axiom IV, together with the previous axioms, requires
the P-measure to have several properties. In this section we

shall specify those which are used in subsequent sections.

Lemma 3.2.1., The P-measure is monotone on 8, i.e., if

D C B then P(D) < P(B).

Proof. By Assumption 3 there exists a,b € A such that

for any reward r,s € R with U(r) > U(s)

r w € B - r w € D
X(w,a) = _ X(w,b) = .
s w e B S w € D
A

By Axiom IIii, a > b, and this implies by Axiom IV that

P(B) » P(D).

Lemma 3.2.2. . The P-measure is bounded by the inner and

outer measure induced by u, i.e., for any D £ B,

1, (D) < P(D) < 1" (D)

*
where py, and u are inner and outer measures respectively

(see Appendix II for definition, p. 235).
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Proof. Let C C D < E be sets such that D ¢ 8 and
C,E ¢ 0. Since P—measure.is monotone on 8,

P(C) ¢ P(D) ¢ P(E). Thus, since C,E ¢ 0, we have
u(C) < P(D) < u(E), and the definition of outer and

inner measures implies that
*
U (D) < P(D) £ u (D).

Lemma 3.2.3. The P-measure agrees with the largest

unique extension of ¥ such that the extension is a

measure, i.e., P(D) u(D) if D ¢ S where . -

> 8§ =.{D & Qlug(p) = ut(D)}-

Proof. This follows directly from the previous lemma.

Lemma 3.2.4. The P-measure is "nearly additive";
that is, for any C ¢ B, D € ©, such that DN C = g

1) IP(DUC) - P(D) - P(C)| <¥ (C) - p,(C)

and for any C € B and D & o,

2) IP(CAD) + P(CAD) - P(C)] < 1 (C)=u, (C) .

By . "nearly additive" we mean, therefore, that given two
disjoint sets, C and D such that C ¢ 8, and D ¢ 6 then the

sum P(C) + P(D) can not differ from P(D (J C) by more than the
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difference of the outer and inner measure of C. Therefore,
if the outer and inner measures are equal for the set C,
then P(D) + P(C) = P(DU C) for all seﬁs D € 0 such that
DNC=4g.
Proof. Two properties of inner and outer measures are
(Appendix II, p. 235): i

IfCNAD=g and C ¢ B, D ¢ 0,

* *
then : u (D) + p (C)

*
u (DU Q)
and He (D) + 1, (C) = u, (D C).

8

By lemma 3.2.2,
1 (DY C) s P(DUC) < (DU C),

or, using the above,
ux (D) + 31, (C)

ok L%
¢ P(DUC) ¢ 4 (D) + 4 (O).

. *
Since D € © which also implies that Uge (D) = u (D) = P(D)

subtraction yields
*
u,(C) €« P(DUC) - P(D) € u (C).

Combining this inequélity with the following (from

lemma "3.2.2,
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g (C) £ P(C) < u (C),
now yiélds
[P(DUC) - P(D) - P(C)] € u (C) - u,(C).

Thus, P must be "nearly additive" for sets such that

DNC =g and D ¢ 0. Therefore P must be additive -

on S. ; , . I AP

Similarly, the inner and outer measures also

‘satisfy the equalities
1k (C) =y, (CA D) + y, (CA D)
and

*
p (C)

u*(c'n‘ D) +u (CAD.
By lemma 3.2.2 we have
1, (CAD) < P(CAD) < 1 (CAD),
1 (CAD) < 2END <" cn D),
and hence

1, (CNAD) + 4, (cADI¢ P(CAD) + P(CABI< u" (cAD)+u" (cAD) .
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Thus, with the equalities above, we have
w(C) < BCAD) +P(CADc 1 (C)
and, as before,
[P(CAD) +PEND) - 2(C)] < u (C) = ue(C);

i.e., P(C) must be "nearly" equal to P(CN D) + P(CN D).

Savage's axioms imply Axiom IV. Of those approaches considered

in Part I of the thesis, we recall that in the Savage approach
a probability measure was derived on the subsets of 8. The
method used was substantially different, however, and it is
not obvious that the P-measure specified here is consistent
with that approach. Recall that Savage defines an ordering on
all subsets of Q (i.e., 8 = 2%) by

C]
B » D if and only if a

Vv
o

r and

whenever U(r) > U(s), Xp(+,a) = XD(°,b)
¥g(-,a) = Xg(+,b) = s.
Savage then proves that there exists a real valued

function P on 6 such that
S}
P(C) > P(D) if and only if B 3 D.

A
That is P(C) > P(D) if and only if a » b, which implies
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Axiom IV.

3.3 Comparison of different approaches using Ellsberg's

paradox

Let us illustrate some properties of the evaluation
function f which are stated in the first four axioms. It is
appropriate to use the Ellsberg paradox II (Ellsberg, 1961)
for this purpose, since empirical studies using this paradox
have shown that most people differentiate between risk and
uncertainty. (This point is discussed further in section 8.)

Suppose we are given an urn containing 30 red balls out
of 90 balls, and the remaining 60 are an unknown mixture of
yellow and black. We shall assume for simplicity that the
probability of a ball of a given colour being drawn is equal
to the proportional number of balls of that colour to the
total number of balls.

Let A contain the following alternatives:

a) receiving $100 if a red ball is drawn (event R)

receiving $0 otherwise

b) receiving $100 if a yellow ball is drawn (event Y)

receiving $0 otherwise

c) receiving $100 if a red or a black ball is drawn (event
BUR)

receiving $0 otherwise

d) receiving $100 if a yellow or black ball is drawn (event
YVUB)

receiving $0 otherwise

e) receiving $100 if a black ball is drawn (event B)

receiving $0 otherwise

'g) receiving $0
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Therefore by the statement of the problem we have the

following:
A ={a,b,C,d!e,g} AO ={aldlg}
o = {#,2,{R},{BUY}}

8 = {#,9,{R},{¥},{B},{RUY}, {RUB}, {BUY}}.

u(g) =0
() = l.
u(R) = 1/3

u(BQY) = 2/3.

Let X(+,i) denote the reward function corresponding to
alternative i for any i € A. By Axiom III the preference
ordering on Ao (for any strictly increasing function U) must

A A
be d >© a >° g since

EUX(w,d) > EUX(w,a) > EUX(w,q)
and f(d) = EUX(w,d), f(a) = EUX(w,a) and f(g) = EU(w,g). All

approaches suggested in the introduction agree with these

values of f. BRefore we consider the properties f must have
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according to the axioms specified so far let us illustrate
how the different approaches which were identified in the

introduction extend the evaluation function f to A.

1) savage approach

If we now consider the extension of ;1 on 0 to P on B8
such that P is a probability (as done by Savage, 1954, or
Good, 1965) then P must be in the following form: P(g) = 0,
P(Q) =1, P(R) = 1/3, P(Y) = p, P(B) = 2/3-p. This would
then imply that if a é b then c é d. In practice many
decision makers would differentiate between risk and uncer-
tainty and have the preference a é b and d e c. This approach
therefore implies; a preference which is often contradicted
by empirical studies.
2) Combination of evaluation function for uncertainty and

risk

Consider the second method described in the introduction,
i.e., a variation of the maximin.

Let I denote the set of all possible combinations of
black and yellow balls. Since the smallest possible number

of yellow balls in the urn is zero, we have

min EUX(w,b) = U(O).
I
Since U(X(s,f)) = U(0), this would imply that we are indiffer-

ent "~ between alternatives b and £, which all suggest must

contradict most decision makers' preference.
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3) Ellsberg approach
This method considers the most "likely" probability of
a yellow ball being drawn. Ellsberg does not make it clear

how this can be determined, but assumes for simplicity this

means P(Y) = P(B) = 1/3.
The evaluation function would be (assuming U(0) = 0)
f(a) = (1/3)u(100)
£(b) = (1-py) (1/3)U(100)
f(c) = (l—p2)(l/3)U(100) + (1/3)U(100)
f£(d) = (2/3)uU(100)
f(e) = (1-p3) (1/3)U(100)
f(g) =0

where Py 0 g P; € l, i=1,2,3, is the "ambiguity" factor.
Hence Ellsberg postulates that it is impossible to have a
preference of b é a. In Ellsberg's approach, it would there-
fore be impossible to prefer uncertainty to risk. Although

this is probably true in most cases, Ellsberg himself has

suggested a decision problem where he predicts that uncer-

lCconsider: Urn I has 1,000 balls in it, each ball identified
by a number, and each number from 1 to 1,000 represented. The
probability of a random draw yielding a ball with a given num-
ber is 1/1,000. Urn II has 1,000 balls each identified by a
number from 1 to 1,000. Thus, in the first urn all numbers
from 1 to 1,000 are represented and in the second urn any num-
ber may appear zero, one or more times. The decision-maker is
told that the number of occurrences of any given number is
constrained only by the limits of 0 and 1,000 and by the fact
that the total number of balls is 1,000. The decision-maker
must decide which urn he prefers to draw from, given that he
will win if any of n specified numbers is drawn and will lose
nothing if a number not in the set of n is drawn. The subset
of n numbers must come from the set of numbers from 1 to 1,000.
Ellsberg suggests that, if n is very small, the decision maker
will prefer Urn II where there may be as many as 1,000 balls
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4) Fellner's approach

Fellner argues that actions in A, can not be compared
to acf?ons in A — Ao. Hence we may compare b to e and
a,d and ¢ to each other, but b or d can not be compared.
Fellner assumes the expected utility criterion can be used
to order the alternatives in Ao, i.e., Fellner assumes
Axiom III. For b,d an axiom similar to Axiom IV is used to
determine a "P-measure" from which a probability measure is
derived, and alternatives b and d are ordered by the expected
utility of the derived probability. waever, Fellner does
not describe in his paper how alternatives such as c are
handled where a mixture of known and unknown probabilities
exist.
5) P-measure approach

In the theory developed here we have by Axiom III that if
A .
a » b then P(R) » P(Y) and if
A
d > ¢ then P(BUY) » P(B U R).
In the theory developed here we do not find this prefer-

ence contradictory. However, this indicates that P (BVUY) may

not equal P(B) + P(Y), or P(BUR) may not equal P(B) + P(Y) or

from the winning set, while Urn I has exactly n w1nn1ng balls.
Here ambiguity is considered to be favorable. As n increases,
Ellsberg suggests that a point will be reached where the am-
biguity associated with the action "draw from Urn II" is con-
sidered to be unfavorable.

(Becker and Brownson, 1964)
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both. . The set function P therefore may not be additive and
hence not a measure.

This example shows therefore some of the difficulties
of the methods proposed for the partial risk problem. It also
shows that the P-measure is less restricted than the other
approaches. There are, of course, some difficulties with the
P-nmeasure. For example, it may even be impossible to determine
P(Y).if we do not assume a - second urn (UII) wiéh a known pro-
portion y of red balls and with the appropriate extension of
the oc-algebra 6. The quantity P(Y) may be estimated by com-
paring alternative b with the following alternative:

h) receiving $100 if a red ball is drawn from UII

receiving $0 otherwise

If b is preferred to'h then P(Y) > y and similarly if h is
preferred to b then P(Y) < vy by Axiém IIT. By the transitivity
assuﬁption there exists a unique y such that y = P(Y). To
determine P(Y) by this method, we need the existence of UII
which we shall formalize as an assumption in section 3.3.

In Axiom III we assumed that f(a) =.JrUX(-,a)dﬁ for all
a e A. This definition uniquely defines the evaluation
function f£(-), primarily because u is a measure. One can not
directly extend the evaluation function f(-) to all actions in
A, by simply replacing the measure py by the P-measure P in the
integral definition since it may not be uniquely defined. 1In
order to.specify a proper integral representation of f(-)
additional assumptions regarding the P-measure must be made.
This may present problems in that the desirable properties of

P, e.g., non-additivity for some events, are to be retained.
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For example, if we assume that h ¢ Ajr Y < 1/3 and U(Q) = 0

. then by replacing ﬂ by P in thé'inteﬁral.definition we obtain
f(h) = yU($100) and
f(e) = P(B)U($100).

Hence the decision maker acts as though his probability
of obtaining $100 is equal to P(B), and the probability of
obtaining $0 is equal to 1-P(B). So for the extensién of the
expected value using a P-measure is valid. However, if we
extend the number of rewards to three in alternative k) we
have
k) recgiving $100 if a black ball is drawn from UI

receiving $100 + ¢ if a yellow ball is drawn from UI

receiving $0 otherwise.
. A
Assume for simplicity that P(Y) = P(B), and also that a > b.
By Axiom II, partii, k > d. Calculating the "expected

value" with P as a measure yields
U(100)-2/3 < U(100)P(B) + U(1l00 + e)P(Y).

This implies

- 20(100)°

P(B) > 375100 + 0(100 ¥ &))

Taking the limits as ¢ tends to zero, we obtain P(B) »1/3,

A .
which would in turn imply b 2 a, contradicting our assumption.
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It is ohvious therefore that P can not be used to calculate

the expected utility as if it were a measure.

3.4 Evaluation of P-measures

So far, we have only assumed the existence of the
P-measure. There is no obvious method of determining what
P(D) is equal to for an arbitrary D ¢ B. For example, if ©
only contains a finite number of sets, as in Ellsberg's
paradox II, then if action a is preferred to action b,
0 < P(Y) < 1/3. However P(Y) can nof be specified completely
since events for which the probability of occurrence is
between 0 and 1/3 do not exist in this problem. Therefore to
be able to specify the P-measure for any event we need to
assume the existence of Urn II or that if o is a real number
between zero and one, then there exists an event C ¢ 0 such .

that u(C) = o, and also that if a reward function is defined

by
r w e C
X(w,a) = _
s w e C

then a ¢ A .
fo)
Therefore, for any D ¢ B - 0, the P-measures of D can

easily be determined by comparing actions a to b where
X(w,b) =

Thus, by varying o until we become indifferent between a and b,

we will determine a specific o such that P(D) = a.
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A second difficulty arises in the development of the
theory because the reward set R is defined as being an arbi-
trary set; that is, we have not specified its cardinality.

It may be finite, countable or even uncountable. We shall
assume that the reward set R is not finite; that is, it may be
countable or uncountable. In that way we do not restrict the
action set A in any way. These assumptions do not indicate
any ordering preference among the actions in A - Ao, that is,
it only specifies some conditions on decision problems under
risk and therefore ought not to influence our preference under

partial risk problems.

Assumption 4. i) If Y(-) is any function from @ to R
such that UY(.) is Borel measufable with respect to 0,
then there exists a € A such that X(-,a) = Y(-).
ii) There exists an action a ¢ AO such
that | :
y-U(r,)

p(UX(w,a) < y) =

(@]
U(r )—U(ro)

for each vy e[u(r,),u(")] .

Part i) of the assumption implies that if Y is a function
from @ to R for which EUY is defined then there exists a ¢ Ao
such that Y(-) = X(-,a). Part ii) is more general than the
assumption discussed previously, that is, for every o between
zero and one there exists an event C & © such that u(C) = a.
The assumption that there exists an action a which has a

uniform distribution on [U(ro),U(roX] implies that if o is any
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number between (0,1) and C = {w:UX(w,a) < Yy} where
— o -—
Y = a[U(r ) U(roﬂ + U(ro)
then P(C) = a. However, the converse does not necessarily

hold. That is, if we assume for any o ¢ (0,1) there exists
ra C € 0 such that p(C) = o, then this does not imply that
there exists a reward function with uniform distribution.
Part ii) of the assumption also implies that the rewards are

at least countable, not finite.



4.0 Sequences of reward functions

In section 3 we showed that the P-measure is monotone
which is, of course, also one of the properties of a measure.
In this section we shall make the additional assumption that
P-measure is continuous from below, that is, if Bl’BZ"'°

is an increasing sequence of sets in 8, then

llmP(Bi) = P(llmBi).

This holds as a propertyvof a measure also. (See, for example,

Halmos, 1950, Theorem E, pp 38.)

Actually, we shall make the assumption slightly stronger
in terms of reward functions rather than in terms of the mea-
sure. For most practical purposes this axiom is not needed
since it is usually sufficient to consider only a finite
number of states of nature, or at most finitely many sets in
B. It is needed, however, for a consistent mathematical
development. 1In section 4.1 we shall state the axiom, and in

section 4.2 we shall consider some of its implications.

4.1 Statement of the axiom

Before stating the axiom, we shall need an additional
definition of what is meant by "convergence of a sequence of
reward functions" or "convergence of a sequence of actions".
The normal way would be to define topologies on A and R, and
describe convergence in terms of these topologies. For our

purposes it is sufficient to use the following:

152



153

Definition. If a, is a sequence of actions in A, then
we shall say a, 6 converges to a (or a seguence of reward
functions X(-,an) converges to a reward function X(-,a))

S if

limU(X(w,an)) = U(X(w,a)) for all w ¢ Q.
n
In mathematical terms we have induced a topology on A by
the function U(X(-,a)) from the natural topology on the real
line. 1If a_  converges to a, we shall denote this by
1imar1 =aora - a. Similarly the convergence of X(-,an) to

X(-,a) is denoted by

lgmx(-,an) = X(-,a) or X(-,an) + X(-,a).

Let x(°,an) be a sequence of reward functions, such that

UX(-,an) converges to a function Y(-.). If aner\for'allun then
¥u-) "isy as @Tmeasurable function. However, there may not
exist an a ¢ AO such that Y(+-) = UX(-,a). For example if

B e ©, R is the open interval (0,1) and U(x) = x then the

sequence of functions defined by

1-1/n w e B
X(w,an) = _
1/n w e B
converges to the function

Y(w)



It is clear that there does not exist an a ¢ Ao such that
Y(+) = X(-,a). This will lead to some difficulties in

section 5. We shall therefore make the following assumption:

Assumption 5. If a, is a sequence in Ao such that

a —~- a then a ¢ A .
n o)

Assumption 5 therefore s?ates,that in alcertain“topology-
that AO is a closed set. - .:Equivalent assumption would be to
assume R to be a closed set, and state the assumption in terms
of a reward function.

| If a sequence of actions a, therefore convergeé to a, the
reward X(w,an) becomes closer to the reward X(w,a) for all
w e £, as n tends to iﬁfinity and the two reward functions
become indistinguishable. It seems intuitively obvious then
that f(an) should become closer to f(a) as n increases.

Axiom V formalizes this intuition.
S

Axiom V. If X(-,an) n=1,2,... is a sequence of reward
_ A, A .
functions such that b > ah%l;>“§ﬂ for n=1,2,... and
limx(w,an) = X(w,b) for all w € ©, then for any action
A

. A
¢ for which b >c - there exists an N such that a, > c_ for

all n > N.

. As an example of the implication of Axiom V consider the
following example: Let o be an arbitrary number from the
interval [0,1]. We shall say that the event Bn occurred if
the number chosen belongs to the interval [0,3/4-1/n) where

n > 2, Similarly we say the event B occurred if the number

chosen belongs to the interval [0,3/4). Consider the following
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alternatives:

an) receiving $100 if Bn occurs

receiving $0 otherwise

b) receiving $100 if B occurs

receiving $0 otherwise
As n increases, the set Bn becomes closer to the set B and,

therefore
limX(°,an) = X(*,b).

Therefore if n is very large, Axiom V assumes that we
would be "nearly" indifferent between a, and b. That is, let
an additional alternative c be defined by:

c) receiving $100 if C occurs

receiving $0 otherwise.

If b é c in the strict sense (that is, P(B) > P(C)) ang
if a_ is "nearly" indifferent to b, Axiom V asserts that a, is
also preferred to ¢, i.e., a, é c.

4.2 TImplications of the‘axiom

The implications of this axiom together with previous
assumptions are very strong from a mathematical viewpoint.
We shall prove two of these implications here. The first

implies that the P-measure is continuous, that is,

1imP(Bi) = P(limBi) for any increasing sequence of sets in B.
_‘é
4h+1 7 8

for all n, then f(an) + f(a). This implies therefore that if

The second implication is that if a, > a where a >

a € A and a ¢ A _, that
n o o)

155



156

JrUX(w,a)du =3J[1imUX(w,an)du = limJ[UX(w,an)du.

We shall also show that in Savage's approach this axiom
is not satisfied.

Several implications are now verified.

Lemma 4.2.1. If B is a sequence "~ of increasing sets

in B such that limBn = B, then'limP(Bn) = P(B).

Proof. For any r,s € R such that U(r) > U(s), consider

the reward functions

r w € Bn r w e B
X(w,a_) = and X(w,b) =
n - —
S w e B s w e B
n
A, A A A
for each n=1,2,... . Then b.> ... > a, > azzal by

Axiom II, and by Axiom IV(b) this implies that
P(By) € P(B,) < P(B3)... € P(B).

That is, P(Bn) is an increasing sequence with an upper
bound. This implies that limP(Bi) = d exists. 1If

o < P(B) then by Assumption 4, there exists acCeo
such that a < P(C) < P(B), and also there exists an

action c ¢ AO such that

X(w,c) =

: A A
Since. p > ¢ and ¢ > a, for all n by Axiom IV and a, > b by

definition which contradicts Axiom V. Hence 1imP(Bi) = P(B).



" Lemma: 4.2,2, .If X(r,ah).n=l,2,,.. is a sequence of

. . . A A -
reward functions such that.a;>*ah+l_2an for n=1,2,...
and ﬂ)_;gnxdﬁ’;a~,xiﬂ;ﬂ; then f(an) - f(a).

Proof. Assume 1in1f(an) = o < f(a) then by Assumption 3

there exists c ¢ AO defined by the reward function

r w € B
X(w,c) = _
,ro w &£ B
where
f(a)+ao
—sz - U(ro)
u(B) u(%)-u(r,) -
Hence
f(a)+a
— o ‘2.“.,.U(ro)
f(c) = U(ro) + [U(r”) - U(ro)]

o
U(r )-U(ro).‘

f(a)+a

A A, =
S e o>

Therefore, a lim a- contradicting Axiom V.
n

Savage approach does not satisfy Axiom V. Although

Savage did not explicitly argue against this axiom, his axioms
contradict it. To see this, let us assume that we start with
a given measure space (Q,0,u) where y is an additive measure.
Using the first six axioms in his approach, Savage proved that

there exists a function U from R to the real line such that
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for any simple function (see Appendix II for definition)
n
f(a) = EUX(-,a) = ¥, UXy (-,a)u (B;)
i=1 i

where UXg (-,a) is a constant for each i=1l,...n.
i

Since Savage defines 0 as all subsets of Q, there does
not exist, in general, a c-additive set function u on 0.
Savage does not restrict @ or 0 in his approach, but rather
assumes that u is only finitely additive. We shall show that
9
if Axiom V were accepted then the measure p must be c-additive
and hence the general assumption of Q@ and © can hot be made.

If Bi i=l,... is a sequence of disjoint sets, we are

required to have
Y u(B,) = u(B) where UB, = B.
i=1 1 ' 1

Since in Savage's approach there always exist rewards
such that U(r) = 1 and U(s) = 0, the following reward
functions may be considered:

n
1 w e B 1w€.ZBi
i=1

UX(w,a) = _ and UX(w,an) =

0 we B 0 otherwise

Then, a 2 a, for all n by Axjom II, and

limX(-,an) = X(-,a).
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It is also clear that X(*,a) and X(~,an) n=1,2,... belong

to AO.

The expected value of X(+,a) is equal to p(B), and the

n n

expected value of %(-,an) 1s equal to U(fgiBi) = ;gf(Bi),
by finite additivity.

If Axiom V holds,

. n
u(B) = limu(z u(Bi)) = i u(Bi),
i=1 i=1

and hence u is o-additive.

Therefore if we assume that a sequence of reward func-
tions satisfies Axiom V, we must also have c-additivity of
the measure if finite additivity is assumed. This implies,
therefore, that the set of the states of nature, i.e., the
set @, must be sufficiently small so that all subsets may be
made measurable if Savage accepts Axiom V. Since Savage does
not restrict Q, or A for that matter, and assumes finite

additivity, we can only conclude that Savage rejects Axiom V.
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5.0 Stochasﬁic dominance axiom

In previous sections of Part II we have discussed the
properties of the evaluation function f(-) for actions which
result in only two rewards. So far the axioms give only a
partial ordering on the set of actions. In this section we
shall specify one additional axiom which will allow f£(-:) to be
specified completely. In section 5.1 we shall state the axiom

and in section 5.2 we shall consider some of its implications.

5.1 ©Statement of the axiom

Axiom VI can be considered as a generalization of
Axiom IVb and will, in fact, replace it. Recall that Axiom
IVb stétes that if the actions a,b ¢ A are defined by the

reward functions
X(w,a) = X(w,b) =

where U(r) > U(s), then

A
P

a b if and only if P(B) > P(D).

If we now consider the case where a,b ¢ A are defined by

) .
r Bl r Dl
X(w,a) ={s . B, X(w,b) = { s D,
t B t D
X 3 \ 3
for Bif\ Bj = fg, Di(\ Dj = @ i#j, then in some cases the

previous axioms would be sufficient to specify the preference
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between a and b. For example, if D; € By, Dy J D, < Bld B,
and U(r) > U(s) > U(t), then the dominance axiom (Axiom ITI)
would specify the preference a 2 b. Axiom IVc generalized
Axiom II by not requiring that D¢ B, but only that
P(B) » P(D). In the same way we shall generalize Axiom VI,
using Axiom IIb which, in this case, requires that a é b if
and only if P(B;) » P(D;) and P(B; U B,) > P(D; U D,).
Analogously, in terms of two arbitrary actions a,b ¢ A, this
would require that a ?kb if and only if P(X(w,a) > r) >
P(X(w,b) > r) for all r ¢ R.

However, it is more convenient to consider
P(UX(w,a) > o) rather than P(X(w,a) > r), since the function
F(a,a) = 1-P(UX(w,a) > o) defines a probability distribution
on the real line,'as we shall show in lemma 5.2.1. Hence,
the desired prbperty can be restated more simply as a % b if
and only if F(a,a) ¢ F(a,b) for all real numbers a. This
concept is not new in the theory of expected utility théory.
However in most cases R is considered to be the real line,
and in this case the distribution function F(o,a) of the

reward function X(-,a) is defined in the normal way, that is
F(a,a) = P(X(-,a) £ a).

In this case the following theorem can be stated:

Theorem. (L. Tesfatsion, 1974) . A necessary and
sufficient condition for EUX(-,a) > EUX(-,b), where

U is any nondecreasing bounded utility function is



162

that F(o,a) < F(a,b) for every real number o.

In terms of the ordering on Ao this states therefore that
A .
a3 b if . " F(a,a) € F(a,b). Axiom VI extends this

property to all actions in A.

Axiom VI. If P(UX(w,a) > a) > P(UX(w,b) > a) for all
A
real numbers o then a > b and if P(UX(w,a) > o) >

A
P(UX(w,b) > o) for some o then a > b.

5.2 Implications of Axion VI

In this section we shall prove two lemmas which give the
foundation for specifying f(-) completely. The most important
implication of the assumptions so far is that the P-measure

induces a distribution function on the real line.

Lemma 5.2.1. If F(a,a) = 1-P(w:UX(w,a) > o) then

F(o,a) is a distribution function.

Proof. We must show that F(-,a) satisfies

i) Non-negativity, i.e., F(-,a) » 0.

ii) Continuity from above, i.e., if oy is a decreaéing
sequence of real numbers converging to Oy then
F(ai,a) converges to F(ao,a).

iii) If oy is a decreasing sequence of real numbers,
uj -~ — o then F(aj,a) > 0.

iv) If uj is an increasing sequence of real numbers
aj + + « then F(aj,a) - 1.

V) If o) < oy thgn F(a;,2) € F(a,,a).

Since the P-measure is always bounded between 0 and 1

(by Axiom IVa and Axiom II) this implies that F(a,a) is always
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greater than or equal to zero. To show ii), let oy be a

decreasing sequence of real numbers converging to o Define

o°
Bn = (w:U(X(w,a)) = un) then Bn is an increasing sequence of
sets in R, such that limBn =B = {w:U(X(w,a) > ao}. By

lemma 4.2.1 section 4.2 (i.e., by Axiom V) therefore

limP (B ) = P(B)

or limF(an,a) 1-1imP(w:U (X (w,a)) > un)

1-P(w:U(X(w,a)) > qo)

F(do,a).

Properties (iii) and (iv) now follow directly since
U(r)) < U(X(w,a)) < U(r"); that is, if o < U(r ) then
P(w:U(X(w,a)) > a) =1 and if a > U(x°), P(0:U(X(w,a)) > a)=0,
(v) follows ‘directly -from lemma 3.2.1.

Avstandard result in probability theory is that
J/;dF(u,a) = EUX(*,a) (see, for example, Theorem 1.6.12 in
Ash (1972)). This implies, therefore, that the ordering on

A  must satisfy the numerical ordering of JodF(a,a) for all

a € AO. We shall state this result as a lemma.

Ao
Lemma 5.2.2. Let a,b ¢ AO. If a > b, then

'_/ng(a;a) > JodF(a,b).

Our objective now is to show that the ordering on A

A A ‘
must also satisfy a >-bp implies )f&dF(a,a) >JradF(u,b).
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We shall do this in two steps.
First, we shall show that if F(o,b) is any distribution
with b € A, there exists an a ¢ Ao such that F(a,b) = F(a,a).

This is stated in Theorem 5.2.3.

Theorem 5.2.3. Let F(o,a) be the distribution function

induced by X(-,a) for any a € A—AO. Then there exists a

b e AO such that F(a,a) = F(a,b) for all real numbers a.

Proof. To prove this we shall construct a sequence of
measurable functions which converge to a reward function
with the required distribution function.

Let 8 = {yo,...,ym} be a strictly increasing set of

numbers . in the interval [U(ro),U(ro)] such that

B B o
Yo = U(ro), Yo = U(r ) and

- : 1 .4
F(y i+l,a) - F(yi,a) < Y for i=1,...,m-1
where F(y ,a) = lim F(a).
a<y
a>yY

Since F is right-continuous such a ;séduence_must always

exist.
Let T denote the set of all discontinuity points

of F(-,a) such that if y ¢ Tn then
- 1
F(YIa) - F(Y ra) > H-
It is obvious then that T, C S,-

The next step in the proof is to define a measurable

reward function with a distribution function which
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approximates F(d,a). To do so, we must refer back to
Assumption 4. This assumption specifies the existence of
a reward function UX(-,c) with a uniform distribution.

Define the sets

B, = {w:UX(w,c) $\F(yl_,a)[U(ro) - U(rof} +U(r )}

B, = {w:?(yi,a) U(®) - Ulr,) + U(r]) < UX(w,c) <
<F(O ;40 [uE) - o)) +ue))
for all Yy E.Sn - Tﬁ, 'i=1,2,...,m-l.

c; = {Q:F(yi,a)[_p(ro) - U(ro>] + U(r,) < UX(w,c) < -
< riy e fue? - U(ro)) + U(r,)}
for all Y; € T i=0,1,2,...,m.

Then the set Bo’B and C,,... are all pairwise disjoint,

l,..- l

and if Y; € Sn and i » 1 then

F(Y_ila) - F (Yi_l-)a

u(Bi)

and also if Y; € Tn then

n(c;) F(y;) - Fly ;).

1

Assumption 3 also implies that there exists w, € 2 such



166

that
UX(w;,c) e [Yi,yi+LhQ{][yi,yi+i} for i=0,...,m-1
and also w, € 2 such that
UX(wpee) e (v =1/n,y )l OV (vp_gov] -

Define a reward function

t

Ux(wi,u) w € B, i=0,1,...,m-1

UX(w,bn)

Y. w e C. i=1l,2,00.,m

Then bn £ AO by Assumption 4i since UX(-,bn) is a measurable

function. Then for any o ¢ [U(ro),U(ro)] we have:

Case 1. o e T
_— n

P(UX(-,bn) < a) = F(o,a).

Case 2. o £ Tn’ then there exists an interval [Yi+l’Yi)

or (Ym—l'Ym] to which o belongs, say [Yi+l’Yi)' Then
F(y;,a) € P(UX(-,b ) < a) < Fly; ,,a)

and therefore

B

|P(UX(-,b ) < a) - Fla,a)| < Fly;, ,,2) - Fly;,a) <
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Since Vg is strictly increasing UX(w,bn) converges as n
increases and by Assumption 4 there exists yxb e Ay such
that bn converges to b. This completes the proof.

/
This theorem therefore completes the basic idea behind

Part II of the thesis. Our arguments are as follows: Suppose
we are interested in comparing actions a; énd b1 where al’bl
€ A—AO. By theorem 5.2.3 there exists an a,b ¢ AO such that
F(a,al) and F(u,bl) have the same distribution as F(a,a) and
F(a,b). Axiom VI then specifies that ay é a and bl 2 b.
Therefore the preference between a; and bl can be determined
by the preference between a and b, which can easily be dbne

since these satisfy the expected utility criterion. In section

6 we shall formalize this argument.
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6.0 Summary of assumptions and axioms and the basic results

In this section we shall summarize the assumptions and
the axioms so far made and we shall also show in theorem
6.0.1 that they are sufficient to specify the evaluation
function £(+) for all a € A. The only difference between the
axioms here and in previous sections is in Axiom IV, part b,
which has been replaced by Axiom VI.

The following five assumptions were made:

Assumption 1. For each r ¢ R, there exists an a ¢ AO

such that X(w,a) = r for all w £ Q.

Assumption 2. 1) There exist r, and r° in R, such

that for each r ¢ R

H
Vv b
R
Vv W
H

ii) The function UX(-,a), a ¢ Ao is a
Borel measurable function with réspect to ©. The function
UX(+,a), a € A is a Borel measurable function with respect

to B.

Assumption 3. For any D € B8 and for any r,s € R there

exists .» b € A such that

X(w,b) = ¢ .

Assumption 4. i) If --¥(-) 1is any function from @ to R

such that U¥(*) , is Borel measurable with respect to 0O,

then there_exists a € A such that X(.,a) = Y(+).
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ii) 'There exists an action a ¢ AO such

that

Y-U(ro)

v (UX(w,a) < v) = S
U(r )—U(ro)

for each ¥y e[U(ro), U(roﬂ.

Assumption 5. . If a, is a sequence in Ao such that

a, > a then a ¢ AO.
The following six axioms were made:
Axiom I. There exists a real-valued function f(.)

on A such that

‘A
a > b if and only if f(a) » £(b),

Axjom II. 1) If for any r € R there exists a,b € A
such that X(w,a) = r and X(w,b) = r for all w £ § then
f(a) = £(b).

A
ii) If X(-,a) dominates X(-,b) then a » b.
Axiom III. If b ¢ AO then f£(b) = EUX(-,b).

Axiom IV. There exists a set function P defined on B

such that if B € 0 then P(B) = u(B).

Axiom V. If X(-,an) n=1,2,... is a sequence of reward

functions such that b égamu.d;,a' for n=1,2,... and
n+l n



170

limX(w,an) = X(w,b) for all w € 2 then for any actionu
A A
¢ for which ¢ < b there exists an N such that ¢ < a, for

all n > N.

Axiom VI. If P(UX(w,a) > &) » P(UX(w,b) > a) for all
A
real numbers o then a > b, if in addition P(UX(-,a) > a) >
A
P(UX(-,b) > a) for some a then o > b.

Theorem 6.0.1 extends lemma 5.2.2 in which we showed that
f(a) = \/&dF(a,a) for all a ¢ Ao

where F(x,a) = 1 - P{w:UX(w,a) > x}. Here it will be shown

that this is the case for all a e A.

Theorem 6.0.1. If the Axioms I-VI and the Assumptions 1-5

stated above hold, then f (a) i/;dF(u,a) for all a & A.

Proof. It is sufficient to show that this holds for
a e A—AO. If a ¢ A—AO then by Theorem 5.2.3 there exists
b ¢ AO such that F(oa,a) = F(a,b) for all real numbers o.

This implies that

P(w:U(X(w,a) > a) » Pw:U(X(w,b)) > a)
for all real numbers o, so by Axiom VI a > b.
Similarly,

P(w:U(X(w,b) > a) » P(w:U(X(w,a)) > a),

A
for all real numbers o, hence b » a. Therefore a

ny

b
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or f(a) = £(b). Since £ (b) =-/rxdF(x,b) =J/deF(~,a) =

. £(a) the proof is completed.

To summarize the results, we have shown that for a
given utility function U, and for any actions a,b € A such

that

a ) ;
azb then./[udF(a,a) > J[adF(a,b).

One of the properties of expected utility is that any
affine transformation of the utility function would satisfy
the same ordering on Ay that is, it is immaterial if we use
U(X) or aU(X)+y for any o > 0. 1In the development here we
have made use of a specific utility function and fér the
theory to be reasonably useful we must show that for ény
éffine utility function the same ordering will be obtained.

Therefore we must show that U/;dF(z,a) > d/“zdF(z,b)
where F(z,i) = 1-P{weU(X(+,i)) > z i=a,b implies that
d[zdF'(z,a) > J[zdF'(z,b) where F'(z,i) = 1-P(w:aU(X(-,1))
+ v > z) for a > 0 and y any real number. Since F'(z,i) =

F((z-v)/a,i) i=a,b the following identity holds:

J/;dF' = %jrzdF + v.

We have thatvif.j[zdF(z,a) >J/’zdF(z,b), then

aJ[zdF(zLa) + v > aJ/;dF(a,b) + v
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or

/;dF'(z,a) >fzdF'(z,a)

for any a > 0 and any Y.
Therefore the same transformation of U would preserve

the ordering on A.

6.1 Relation of the P-measure approach to alternative
approaches

In the introduction we specified several approaches to
the partial risk problem. We shall consider some of these in
relation to the approach developed here. The P-measure as a
probability will be considered in section 8.0.

In two of the approaches, a set I of possible probability
measures on B must be specified. Hence existence of the pro-
bability measure is taken forvgranted. This is not an obvious
assumption for a theoretical development, but for practical
problems this is not a serious drawback.

One of the criteria is then specified by choosing the
_alternative a € A for which minEU(X(-,a)) is maximum. This
approach therefore ignores thg possibility that one of the
distributions in 1 ﬁay be more likely than another. For
‘example,'in Ellsberg's paradox, we may be told that there is
more than a .50 chance that there ére more black than yelldw
balls. This type of information can not be used in this
approach. '

In order to relate this to Ellsberg's paradox II again,

consider the following alternatives:



a)- receiving $100 if a black ball is drawn

receiving $0 otherwise

Then, since there may be zero black balls

minEU(X(-,a) = U(0).
I

This is equivalent to setting the P-measure equal to

ux{black ball is drawn}, the inner measure of the event in

question.

In the more general case, if U(rl)-> U(rz) > ...

and alternative b is defined by

b) receiving ry if By

receiving r, if B, occurs

occurs

receiving r if B occurs
where Bif\ Bj = @, i#j.

Then the P-measures would be defined as

P(By) = 1, (By)
P(Bz) = U*(Bz)
‘n-1
P(B)) =1~ Z P(B,).
- i=1

> U(rn)

Hence the approach which uses minEU(X(-,b)) as a decision

It

criterion is a special case of the P-measure. However, it

seems unlikely that anyone would have such an extreme

P-measure.

173.
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In Ellsberg's approach we must determine the "most likely"
linear combinations of distributions in II. This combination is
denoted by P and it is not obvious how it can be determined.
Let us assume that this can be determined and then the evalu-

ation function is specified by

£(a) = ;JUX(-,a)df» + (1-p)minEUX(-,a)
I
where p is an "ambiguity factor". It iSYObvious that p must be
a function of the "ambiguity" of receiving certain rewards,
rather than a function of ambiguity of the probabilities of
certain eVents.

The "ambiguity factor" thus becomes a function on the
actions, i.e., each action may have a different "ambiguity
factor" specified by the decision maker. Therefore this method
is no different from the Hurwicz oa-criterion, where a is the

"ambiguity factor", which simply defines for each action
f£(a) = %U(r)+ (1-a)U(r?)

where o depends on the action. Although this evaluation func-
tion can certainly be used to specify an ordering on A given
Axiom I and Assumption 1, it gives little understanding of how
to make decisions.

In order for Ellsberg's criterion to be useful, some
method has to be found to determine the "ambiguity factor" p,
independently of the action. Becker and Brownson (1964) did

this for a variation on the Ellsberg paradox II. They con-
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sidered problems in the form of Ellsberg's paradox II with

the additional information that there are at least x yellow
balls and at least y black balls. Hence the outer and inner
measure of the event {a yellow ball drawn}, {a black ball
drawn} were varied. Therefore if u*(D) > 1, (D) they suggested

that

*
U (D) - ux(D)

P(D) = 5

and the "ambiguity factor" is a function of the magnitude of
the difference u*(D) - U, (D).

It is not obvious how this result can be generalized.
For example, assume that there exists an urn with the following
contents: 90 ballé are a mixture of yellow, black, and
orange balls, 50 balls are a mixture of orange and green
balls. We are also told that there are exactly 40 orange and
yvellow bélls. There is no obvious way to determine the "most
likely" number of orange balls (event (0)) and neither is the

estimate

an onious conclusion.

Fellnér's (1961) approach is similar to the approach
developed here in the sense that the P-measure may not
necessarily be additive. Thus, the difficulty arises as to

how P-measure can be used to define an expected value. Fellner



did not specify any properties he would expect the P-measure to
have except fhat it must be transformable into a probability
measure.

For example, if Pl and P2 are the P-measures of events

B and B, we form the corrected probabilities

Pl = Pl/(Pl + P2) and P, = P2/(P1 + P2).

~

Hence Pl and P2 are additive for the events B and B. However

let C € © such that u(C) = Pl(B), and consider the alter-
natives:
$100 w e B $100 we C
X(w,a) = X(w,b) =
50 w e B S0 w e C
If U($0) = 0 then
Uu(loo)u(cy = U(lOO)Pl(B).

A

Now if we use the Pl’ we must modify the utility function so

that
u(lo0)u(c) = U2(100)Pl

that is, U,(100) = U(lOO)Pl/Pl.

Fellner therefore argues that U,(:) contains not only the
amount of money we may receive but also our "dislike" or "like"
for the "ambiguity" of the event B. In this approach therefore

we must first derive the P-measures such that they can be

176
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transformed to probabilities and secondly we must derive a
utility function for each action. Therefore rather than
having an "ambiguity factor" depending on the action as in
Ellsberg's case, Fellner suggested a different utility

function for each action.



7.0 Derivation of P-measure

In section 6 we summarized our set of assumptions  and
axioms for a theory of decision making under partial risk.
Although those conditions are sufficient for the "expected
utility” (Theorem 6.0.1) to hold, some difficulties arise
when we attempt to derive the P-measure for arbitrary sets
in B, unless additional assumptions are made. This is in
contrast to Savage's approach. For example, if we derive the
subjective probabilities using Axiom IV (or Savage Axiom S4)

for a class of pairwise disjoint sets B .,Bn then we know

17"
the subjective probability of all sets which can be formed by
taking unions, intersections or complements of the sets
Bl,...,Bn. However, since the P-measure is not necessarily
additive, that is, P(B, U Bz) may not equal P(Bl) + 'P(Bz) ,
these probabilities are generally not known. Hence to derive
the P-measure for all possible events, we must consider every
possible combination of union, intersection and complement.
This would be very time consuming if not impossible when the
number of events is very large. However, if there exist some
events for which the P-measure would have the standard pro-
perties of a measure, i.e., additivity, the derivation would
be simplified substantially.

In section 7.1 we shall suggest those sets for which it
seems most likely that the P-measure is additive. In section
7.2 we shall show that there always exists a P-measure having
the properties we assumed. Finally, in section 7.3 we shall

~give some possible P-measures when g contains only finitely

many sets.
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7.1 Additivity of the P-measure

Before stating the axiom, we shall consider some of the
differences between decision making under partial risk and
risk. Ellsberg (1961) reported a variety of choices among
hypothetical lotteries, implying that "ambiguity" associated
with the probabilities of some events influences the choices.
By "ambiguity” he meant that the probabilities were not speci-
fied precisely, defining it as

"...a quality depending on the amount, type, reliability

and 'unanimity' of information and giving rise to one's

degree of 'confidence' in an estimate of relative

likelihood". (p.657)

Becker and Brownson (1964) modified this definition to

state

"...ambiguity is defined by any distribution of pro-
babilities other than point estimates”. (p.64)

Implicit in both definitions is the existence of a
"second order" probability distribution. However, if it were
reasonable to assume a given second order probability distri-
bution, then Marschak's Axiom M2 (see Appendix I) ought to be
used to calculate the expected utility. In our development
the existence of a probability measure is not necessary.
Neither of these definitions is, therefore, appropriate here.
Note, however, that in both definitions we may speak of the
"ambiguity of the event C" if the probabiiity of C is not pre-
cisely specified or derivable in the sense that the outér

measure of C is strictly greater than the inner measure, i.e.,

* -
p (C) > u,(C).

179
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Also, it seems obvious that some events may have "more"
ambiguity than others. For example, if we know that an urn
éontains 100 balls which are'a‘mikture of red and black, then
the event of drawing a red ball has "more" ambiguity in this
case than if we knew that there were between 49 and 51 red
balls in the urn. We can, therefore, also speak of -the
"degree of ambiguity". We shall formalize both of these ideas

in the following definition.

Definition 7.1.1. The degree of ambiguity of an event

C is defined to be the difference between its outer and

inner measures, i.e.,
. .
p (C) - u,(C).

We speak, therefore, only of "the ambiguity of a set C" if
its "degree of ambiguity" is strictly greater than zero.

This definition has several implications concerning the
degree of ambiguity of the events. We shall summarize some
of these here. We shall state these implications as lemmas
altﬁough the proofs are trivial and follow directly from the
properties of inner and outer measure.

The first property is that an event and its complement

must have the same degree of ambiguity.

Lemma 7.1.1. For any C

Ho(C) = u,(C) = u (C) - u, (C).

" Proof. From Appendix II we have
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“

u*(C) =>1%p*(6) for any event C.

Therefore

[1-u+ (D] - [1-1* @]

¥ (C) - ux(C)

¥ (@) - ux (D).

The other properties we shall consider are concerned with
"the degree of ambiguity" of union of events.

If D is any event for which the probability is known, and
C is any event disjoint with D, then it seems reasonable that
the event D U C has the same degree of ambiguity as C. This

property is the next lemma.

Lemma 7.1.2. If De 6, Ce B and DNC = @ then

u*(C) - ux(C) = u*(D\J C) - ux(DJ C).

Proof. By the properties of inner and outer measure

we have

W cUD) =@ + utD)

ux (CUD) = ux(C) + ux(D).

Hence

p¥*(Duwe) - ux(dUC) =

{
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* % ‘ N
=3 (D) + 1 (C) = 1D = u,(C)
Cw
= u (C) - u,(C)
.. .
since v (D) = p*(D).

The second additivity property is concerned with the
occasion when both sets have a degree of ambiguity. Consider,
for example, the union of an event C'and its complement. In
this case the degree of ambiguity must cancel out since the
event C V C must have the dégree of ambiguity of zefo. In
general nothing can be said of the union of events where each

has a positive degree of ambiguity.

Lemma 7.1.3. If C,D ¢ B and there exist two sets

E,F ¢ 0 such that CC E, DCF and EMNF = g then

B (CUD) = u, (CUD) = (u (C) - u,(C)) + (u (D) - u,(D)).
Proof. The two sets E and F give the condition

for the degree of ambiguity of the two sets C and D

to be separated and in this case the proof follows
directly from the equations

* * ok
p (CUD) =u (C) +u (D)

and 1, (CUD) = 1, (C) + u, (D).
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Here we shall assume that the P-measure is dependent on
the degree of ambiguity. We shall illustrate what we mean by
this in the following examples. First we consider some of
the additivity properties using Ellsberg's paradox II, and a
modification thereof. Consider the alternatives:

b) receiving $100 is a yellow ball is drawn

receiving $0 otherwise

c) receiving $100 is a red or a black ball is drawn

receiving $0 otherwise.

If we assume the decision maker has indicated his beliefs
are such that P(B) = P(Y) then it is implied that he believes
the best estimator for the probability of drawing a black ball
is equal to 1/3. Due to the degree of ambiguity, however, he
"discounts" that probability to P(Y) (where P(Y) may actually
be greater than 1/3).

The amount that he discounts the event is equal to
1/3 - P(B).  Therefore, since the event R\ B of alternative c
must have the same degree of ambiguity by lemma 7.1.2, he

would "discount" the event by the same amount. That is,

P(R \U B)

2/3 - (1/3 - P(Y))

1/3 + P(Y)

1/3 + P(B).

This implies therefore that the P-measure is additive for
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the event R U B, This wquld also imply that if P(R) 3 P(Y),
P(Y) = P(B) then P(R \JB) s P(Y\) B) which would explain
'Ellsberg's Paradox II. We shall also consider the case where
neither the sets C or D belong to 0; this decision problem is

a variation of Ellsberg's paradox.

Modified Ellsberg's paradox II. Consider an urn which contains

100 balls, 50 of which are a mixture of red and yellow balls
and 50 of which are a mixture of green and orange balls. Let
us assume that the event {RWU Y} = {a red or yellow ball drawn}
has a probability of 1/2 of occurring. Similarly the pro-
bability of the event {G U 0} = {a green or an orange ball
drawn} is 1/2. The "degree of ambiguity" for the event

{R} = {a red ball is drawn}is, therefore, equal to 1/2 since
u*{a red ball is drawn} = 1/2 and u,{a red ball is drawn} = 0.
Similarly the degree of ambiguity for the event {G} = {a green
ball is drawn} is equal to 1/2. If we now consider the event
{R UG} = {a red or a green ball is drawn}, we note that the
degree of ambiguity is equal to 1, i.e., the sum of the
"degree of ambiguity" of the events. Therefore if P(R) = P(Y)
and P(G) = P(0) that is, the event {R} has been "discounted"
by 1/4 - P(Y), and similarly {0} has been "discounted” by

1/4 - P(G). Since the degree of ambiguity for the event

{R U 0} is the sum of the degrees of ambiguity of both events,
it seems reasonable to subtract the discount factors from both
of these.

That is,
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P(R U 0)

1/2 - (1/4 - P(R)) - (1/4 - P(0))

i

P(R) + P(O).

Hence the probability for the event {R\g O} is additive for the

event {R} and {0}. We summarize these ideas now as Axiom VII.

Axiom VII. For each C ¢ B and D ¢ © we have

P(C) = P(CMN D) + P(CN D).

If in Ellsberg's paradox II we let C = (R U B) and (D) (R)

then Axiom VII implies that
P(R{YB) = P(R) + P(B) if RN B = ¢

which we illustrated in the beginning of this section. Simi-

larly, if in the modification we let C = (RUJ 0) and D (RUY)

then

P(RU 0) = P(R) + P(O),

as.illustrated in the last example. Axiom VII therefore specifies

the sets for which the P-measure ought to be additive.

7.2 Existence of P-measure

In section 3.2 we noted the P-measure was "nearly" addi-
tive for certain sets; in Axiom VII we assumed additivity for
exactly those sets. Hence at least we are consistent in the

formulations of the axioms.
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One of the difficulties which arises when specifying a set
of axioms we believe the decision maker ought‘to have, is that
there may not exist a P-measure with those properties. For |
example, we have shown that the Savage axioms contradict
Axiom V. In section 8 we shall see that if we require the
P—measure to be a probability, additional restrictions must
be imposed on 8. That is, B can not be an arbitrary set of
events and hence A can not be an arbitrary set of actions.

The question now arises as to whether the axioms we have

assumed would restrict B in any way. If we translate the axioms
into properties the P-measure must satisfy, then we can summ- |
arize the problem as follows:

Given an arbitrary probability space (Q,0,u) and an arbi-
trary o-algebra B containing 0, does there exist a set function
P such that

1) P(C) is defined for all C e B

2) P(C) = u(C) for all C £ ©

3j P(C) < P(D) for all CC D and C,D ¢ B

4) 1If Bi‘: Bi+l and Bi g€ B for all i, and limBi = B,

then limP(Bi) = P(B)

5) P(C) =P(CND) + P(CND) for all C ¢ B and D ¢ 0.

Fortunately this probiem-is easily solved since u* has
these properties. However 4) is not always true for an arbi-
trary outer measure, but only a regular outer measure (see
Appendix ITI). This does not concern our development here,
however, since the outer measure we are considering is always

- induced by the measure p and hence therefore always regular.
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7.3 Some possible P-measures

In this section we shall consider some plausible P-meas-
" ures when B contains only a finite number of sets; Therefore
we are only interested in P-measures which satisfy properties
1,2,3 and 5 in section 6.2.

For simplicity we shall assume that there exist finitely
many disjoint subsets of Q& denoted by Dl,...,bn which generate
the c-algebra 6. Let C be any set such that C £ 0,
and let B be the o-algebra generated by C,Dl,...;Dn.

We also assume that a measure u is defined on ©. Our
object is then to define a P on 8.

We note that both P(.) = u*(-) or P(.) = u,(.) satisfy all
properties 1 to 5, in this case. If we accept u* as our

P-measure then, from a decision maker's point of view this

would imply that in the Ellsberg paradox, P(B) = 2/3 and
P(Y) = 2/3. If we accept u, as our P-measure, P(B) = 0 and
P(Y) = 0. Both seem very unlikely to be accepted and empiri-

cal studies indicate that they are not accepted.
A more likely candidate would be a weighted average of p*
and p,, i.e., Pl(C) = au*(C) + (1-a) u ,(C) for all C ¢ B,
where o ¢ (0,1). It is obvious that Pl satisfies the first of
the properties on p.181.and similarly the second follows since
u*(C) = 1, (C) =_u(C) for all C ¢ 0.  The third property
follows since g*'and u;:are”monétone.w’Thé'féurth.féllows‘obw
viously, and, hence we need only show that the fifth property holds.
Let D be an arbitrary set belonging to 6 and C ¢ B. Then

we have
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~

% ok * -
u (C) =u (CND)Y +1u (CND
and 1,(C) = 1, (CAD) + 1, (CNAD) (see Appendix II)
Therefore
Cw
PL(C) = an (C) + (1l-a)u,(C)

* - * —_
o[y (CAD) +u (CNAD] +

+ (l-a) [u,(CNAD) + u,(CNDI

lau (C A D) + (l-a)yu,(C AD)] +

+ low (CAD) + (1-a)u,(C AD)]

P, (C N D) + P, (C N D),

and hence the fifth property is satisfied by Pl(-).

In terms of the Ellsberg paradox II, this would imply
that P(B) = P(Y) and may be any number between d and 2/3
inclusive and P(B)+P(Y)= P(BU Y) if and only if P(B) = 1/3.
Therefore, using this measure, Ellsberg's paradox is easily
explained. A preference of a bet on {R} over {B} indicates

P(R) = 1/3 > P(B) and since Pl(B) = Pl(Y) we have

P,(BUY) = 2/3
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P, (RO Y) =P, (R} +P;(Y) by Axiom VII
=1/3 + Pl(Y)
< 2/3 since Pl(Y) < 1/3.

Therefore a preference of a bet on {R} over {B} implies
a preference of a bet on {B U Y} over {R \JY}. Similarly a
preference of {B} over {R} would imply a preference of
{RVU Y} over {B\U Y}, and indifference between {R} and {B}
would indicate an indifference between {B U Y} and {RU Y}.

This definition of P-measure can be generalized to the
case where B contains a finite collection of non-measurable
sets. That is we assume that there exists a collection of

disjoint subsets of ¢, denoted by D Dm and let © be the

1,...’
c-algebra generated by the sets Di,i=l,...,m. Let Cl""’cn

be subsets of @ such that Ci £ 0 i=1l,...,n, and let 8 be the
c—-algebra generated by Cl""’cn’ Dl""’Dm and again we
assume that a measure p is defined on 0.

As before we shall extend v to B. One way of doing so
would be to define Eij = Dif\ c., i=1,...,m, j=1,...,n, and
i

let Eij # B, J € Tl,‘ E = f§, otherwise. That. is,. T

ij
is an index set for which the set Eij is not equal to g for a
fixed i.-
* 1]
Define P2(Eij) = o, (Eij) + (l—a%u*(Eij) where oy 1is
a real-valued function on the cardinality of T! to the inter-

val [0,1]. ©First consider the1nnionukdf?ij? where S CZTi
jes .



DPefine

_ i
P2 (Di) T C S
Pz(kg Eij) =
Z: PZ(Eij) otherwise.
| jes

Finally, if F is an arbitrary set in B8 let G be the

largest subset of F, such that G € 0, we define

‘ m
Py(F) = Py(G) + Z2_ P, (D, N\ (F-G)).
i=1
Clearly, the first four properties hold for the same
reason as for Pl' To show that the fifth property holds,

let F and B be arbitrary sets belonging to B and 0 respec-

tively. Then we are required to show that
P2(F) = P2(Fn B) + PZ(FF\B).

Let G be the largest subset of F such that G € 0, and then,
clearly, B N\ G must be the largest subset of F A B such that
BN G e 0. Similarly, B N G must be the largest subset of

F O B.

: m
P,(F) = P,(G) + iZ_lPZ(Di‘/\ (F-G))

190

‘m
P,(GNB) + P,(GMNB) + i};le(Di(\(F—/G) ).
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Since D, either is contained in B or B,
P,(D; M (F-G)) = P,(D; N\ ((FNB) - (G \B)) +
Po(D; N ((FNB) - (GNAB)).

Hence by recombining terms
P,(F) = P,(FMNB) + P,(FNB).

Applying this P-measure to the Ellsberg paradox II, we
would obtain exactly the same measure as discussed before.
However, for the modified paradox we would have P2(G UW) =
P,(GU 0) = P,(WUO) = Py(G) + Py(W) = P,(G) + P,y(0) =
P2(W) + P2(O) and no relation would necessarily hold between
P,(B) to P,(G). The preferences between {B} and {G} may be
either way without contradicting the theory.

Note that the way we cbnstructed the last P-measure
works for the case where B is finite. That is, first define
P for the "smallest" unit Eij' next define the P-measure for

sets \J Eij C Di’ and finally impose the additivity condition,

P(F) = P(G) +Z P(D; M (F-G)).
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In doing so, we would always satisfy the five properties on
p. 186.
The P-measure for an arbitrary set Eij can probably be
approximated in general as

. K, (0 (E..) = uy(E..))
P(E; )=(ogn (Bj ) + (1=a)uy (E;4))e * +J +J

ij i
where a, = 1/cardinality of Ti and ki any real number.

To explain this formula we note that for the Ellsberg
paradox II aiu*(Eij) + (l—ai)u*(Eij) for the event {B} and
{Y} would be 1/2(2/3) + 1/2(0) = 1/3.

For the modified paradox and for the event {B} and {Y},
we would have 1/2(1/3) + 1/2(0) = 1/6 and for the event
{G}, {w}, and {0} we would have 1/3(1/2) + 1/3(0) = 1/6.

Hence if ki = 0, we would have the P-measure as a measure
(i.e., additive). 1If ki < 0, this implies we would discount
this measure based on the difference between the outer and
inner measure. If ki > 0, this would indicate a preference of
uncertainty which increases as the difference between outer
and inner measures increases.

None of the P-measures mentioned here are, of course,
necessary for the theory to hqld. We have suggested some of
these as they seem to have empirical support, and would explain
the difficulties in the paradoxes concerning uncertainty vs.
risk. The advantage of approximating the P-measure is, of
course, that we only need to derive one constant ki and from

this we can derive the P-measure for all sets.
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8.0 The P-measure as a probability measure
In decision theory one frequently comes in contact with
other names used for a probability measure. The most common

ones, in alphabetic order, are:

Degree of confirmation Mathematical probability
Degree of conviction Objective probability
Degree of rational belief Personal probability
Empirical probability Physical probability
Geometric probability Psychological probability
Impersonal probability Random chance

Inductive probability Relative frequency
Intuitive probability Statistical probability
Judgment probability Subjective probability

Logical probability
(Fishburn, 1964, pp.132)

In Bayesian statistics we also have the additional terms
of prior probability and posterior probability. Most of these
satisfy Kolmogorov's axiom (see Appendix II); others differ
only by assuming finite additi#ity rather than oc-additivity.
For our purpose we shall divide them into two categories. The
first category assumes oc-additivity, and will be called
mathematical probabilities; the second category assumes only
finite additivity and will be called Savage probabilities.

We are concerned only with the properties of probabilities.
Specifically, our interest is in the implications of assuming
the P-measure to be finitely additive or equivalently :
c-additive. 1In section 2.0 we assumed that there exists a pro-
bability space (2,0,u). We also assumed that the reward
functions X(<,a), a ¢ A are not all measurable, that is 0 is
too small. We had therefore to extend the measure p to the
smallest o-algebra for which all functions X(-:,a) are measur-
able. It would, therefore, be of interest to determine the

largest o-algebra for which ﬁ can be extended as a probability



measure. In section 8,1, we shall cqnsider these arguments
for Savage's probabilities. In section 8.2 we shall consider
the P—-measure as a o~additive measure and diséuss the possible
extension of ﬁ. In section 8.3 we shall consider an alter-
native to decision making under partial risk. The reason for
doing so here is that this alternative also induces a pro-

bability measure.

8.1 Savage extensions
It is well known, and proven in most basic textbooks on
measure theory, that if (Q,O,ﬁ) is defined such that @ is the
real line, © all Borel sets, and u the Lesbeque measure; it
is impossiple to extend p to all subsets of the real-line if
it is also required that u be o-additive. It is also well
known that if we only require a finitely additive measure the
extension exists (see Roydén, 1968, p.53). Most mathematicians
today assume c-additivity of the measure although some
research is still taking place concerning finitely additive
measures. From a decision maker's viewpoint the implication
of the measure not being defined on all subsets can be illus-
trated by the following simple situation. There exists a set
D ¢ @ such that if we are offered a lottery ticket defined by
$100 w e D
X(w,a) = _
$0 w e D
it would be impossible to determine its equivalent value, i.e.,

how much it is worth.

Savage, for one, disliked this implication, and was there-
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fore forced to assume only additive measures. In the Savage
approach a preference ordering was determined on the subsets
of 9. This can be done by a variation of Axiom III. One
method determines a preference ordering on ZQ by letting

Bc¢c 9, Dc @, U(r) > U(s) and

r w e B r w e D
X(w’a) = _ X(U),b) = _
S w e B s w ¢ D.

29

Then a 2 b implies B 3 D.

Several authors (De Finetti, 1937; Savage, 1954) have
studied the problem of determining conditions on the ordering
on ZQ under which there exists a real-valued order preserving
function P on 2% that can be interpreted as an additive pro-
bability measure; The extension to o—additivity was made by
Kraft, Pratt and Seidenberg (1959). In section 6.2 of Part I
we listed the conditions on this preference ordering for the
existence of a probability measure such that if A SQB then
P(A) ¢ P(B). Although a P-measure is not necessarily a pro-
bability measure, it would be of interest to determine what
conditions on the preference ordering we satisfied using our
P-measure.

We shall repeat for easy reference, the axiom stated in

section 6.2 of Part 1I.

Axiom of ordering

. 28 28
1. IfC e 6, B e 0, then either C ¢ Bor B s C.
248
2. For any set C ¢ 0, C ¢ C.
28 20 20
3. IfC ¢« B and B ¢ D then C ¢ D.
28 20 20

4. @ < 9 and for any event C,f s C € Q.
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All these axioms can easily be derived from Axioms I and II.

29 2%
1. 1If Blr\ B, = ¢,,€1 < Bl and C2 < By
20
then ClkJ C2 g Bl\J B2‘
20 28
2. If Blr\ B2 = {, Cl £ Bl and C2 < B2,

29
then clu c2 < Bl\.) B,.

The axioms of monotonicity may not be satisfied by the

P-measure. Consider, for example, Ellsberg's paradox II.

Q
il

{a yellow ball drawn}

1
Bl = {a red ball drawn}
C, = {a black ball drawn}
B, = {a yellow ball drawn}
28 24
Then we might have the preference Blfﬂ B2 =g, Cl < Bl' C2 < B2

Q
2
clu Cy > Bl\)BZ.

Axiom of monotone sequence

For every monotone sequence increasing events such that’

C, #:C and ian event B such that

28
Cn ¢ B, for all n, then C ¢ B.

This axiom follows from Axiom V and Axiom III.
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To see this, define a sequence of reward functions as

follows:
] r w e Cn
X(w‘,an) = .
s w e C
n
where U(r) >:..:U{s) and Cn € B. By Assumption 3,an g A for

all n. Since Cn is a sequence of increasing sets converging

to C, a, converges to a € A where a is defined by the reward

function

X(w,b) =
where B € B. By lemma 3.2.1
P(Cl) < P(Cz) < P(C3) < ...

and limP(Cn) = P(C). Therefore if P(Cn) £ P(B) for all n,

then P(C) < P(B) also.

Axiom of partition of event

Every evént can be partitionéd into two equally probable
events. This assumption is needed to specify the probability
measuré. Villegas (1964) showed that this axiom, unaer cer-
tain assumptions, is equivalent to the existence of a random

variable with uniform distribution (Assumption 3). Therefore,



198

the only axiom which may not hold in the P-measure approach

is the axiom of monotonicity.

8.2 Mathematical probabilities
In this section we shall also.assume there exists a pro-
bébility space (2,0,u). Our aim is to study the possible
extension of O to a o-algebra containing ©. The Savage pro-
bability satisfies:
| 1) w(C) exists for all Ccc Q.
2) u(C) = u(E) C e O.

3) IfC -+C are disjoint sets then

17"

.
u( c.)
i=1 *t

™My

ﬁ(c ) .
1

In this seétion we shall replace 1) by:
1) u(C) exists for all C € B where B is a very special
o-algebra, |
and replace 3) by:

3) If Ci i=1,... is a disjoint sequence Ci £ B, then

U = 20T
i=1 i=

Htﬂ

The first extension result we shall state is the standard
textbook case which can be justified in the foilowing way.
Assume that for a given set B we know the probability of
occurrence is equal to one-half. Let D be a subset of B which
does not belong to ©. If we wish to 1nclude D in the o-algebra
the difficulty is to determine whlch measure to assign D such

that we do not contradict any of the axioms of the measure.
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There is one case, however, when this problem does not arise;
that is, if p(B) = 0. Then, for eny subset the only possible
measure we could assign would be zero. When this is done for
all subsets of the measure zero, it is called the completion

of the probability Space.

Definition. A measure U on a o-algebra B is said to be
complete if and only if whenever D € B and u(B) = O,

B ¢ O then D & R.

The cempletion of a probability space (2,0,u) is defined
as follows. Let B be the o-algebra generated by the set
{G UD} where G ¢ 0 and DC B where u(B) = 0 for some B ¢ 0.
We extend p to U by M(G U D) = u(G). The implication is that
if a decision maker refuses to pay anything for a lottery
ticket which wins any amount if B occurs, he would also refuse
to pay anything for a lottery ticket which wins the same amount
if any subset of B occurs. This is an obvious result from a
decision maker's point of view and hence we can always assume
that the probability space we are working with is complete.

There also exists a second case when this problem is
easily solved. If we again assume D € B, then by monotonicity
of the measure we know that 1 (D) must be less than u(B). If
we also know that there exists a set N contained in D(N C D)
such that N € © and p(N) = u(B), thenclearlypu(D) = u(B).
This method was used by.Lebesque (1901) in defining a measurable
set for which the inner and outer ﬁeasures are equal.

It is also knownthat the 0-algebra generated by all sets

such that inner and outer measures are equal is the largest
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g-algebra for which p can be extended uniquely, we shall denote
this o-algebra by S. The outer measure will be denoted as
before by u* and the inner measure as before by ﬁ*.

If we now remove the condition that yu be uniquely
extended, can we still extend S? Let Z be any set such that
Z ¢ S, then we denote the smalleét og-algebra generated by the
collection of sets Z and all sets in S by (S,Z). We shall

next state how u.can be extended to this c-algebra.

Theorem 8.2.1. Los and Marczewski (1949)

Let Y be a probability on a c-algebra S on © and 7z < Q.

Define p and u for each set E ¢ (S,2) by

L (ENZ) + 1 (B N7

R(E) =
— * —_
UW(E) = u (E NZ) + U, (EN Z)
Then p and U are extensions of p to (5,%) and u(z) = u,(2)

_ %
and u(z) = u (2).

Corollary 8.2.2. The function

m(E) = (1- o )U(E) + ap(E) a e (0,1)

is also an extension of u to (S,Z).

. -
We note that if y (Z) = u,(2) then u(E) = u(E) for all

— *
E € (S,Z) so the only interesting case is if uy (Z) > U, (2).

We also note that for any set E ¢ (§,Z) we have



1, (B) < u(B) < 1 (B)
S *

Ug (B) < w(E) € u (E)
*

U, (B) < m(E) < u (E).

We can obviously repeat this process by considering the
inner and outer measure generated by y, ﬂ or m, and hence we
can extend to the larger G-algébravgenerated by adding a
finite number of éets. Los and Marczewski (1949) showed,
however, that we may not be able to add a countable number
of sets. That is, there may still exist sets which afe
still not measurable, and therefore, we still have the
difficulty of explaining the existence of a simple decision

problem in section 8.2.
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8.3 Probability measures on Fuzzy sets

The theory of decision making in a fuzzy environment (see
Zadeh (1965), (1968), (1969)) is related to the decision
making under partial risk; The difference however is that
events in the fuzzy environment are not clearly defined.
Examples of fuzzy sets are: "X is approximately equal to 5";
or "In fwenty tosses of a coin there are several mdre heads
than tails". Because of the vagueness of the description of
events difficulties in specifying the probabilities for these
events can be anticipated, as with decision making under
partial risk. 1In this section we shall summarize how this
problem is handled for fuzzy sets, and relate the idea to
decision making under partial risk. To do so we must define

fuzzy sets in more mathematical terms.

Definition. (Zadeh, 1965). Let Q = {w} be a collection

of objects (states). A fuzzy set B in § is a set of

order pairs
B = (w,JB(w)) w e Q

where JB(w) is a real valued function from Q to
M= [0,1].

If M = {0,1} then this is equivalent to.the normal

definition of a subset of Q.

The function Jz(w) can be thought of as "the degree of

confidence" we have of w belonging to B. The function is equal
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to 1 if we are certain of w,belqngingvto B and 0 if we are
certain that this is not the case.

To illustrate the function JB(w), let @ be a set of 60
balls, numbered from 1 to 60. All the balls are either
yellow or black and we know for certain that the first 10
balls are yellow and the last 10 are black. Somewhere between
11 and 51 there exiéts a number y such that all numbers below
including y are yellow, and those above are black. The func-
tion JB(W) where B is the number of black balls caﬁ be illus-

trated graphically as in Fig. 7.4.

1.0
Degree
of - Jg(w)
confid-
ence

0.5

!

10 15 50 No. of ,black balls w °

Fig. 7.4. Illustrating the degree of
confidence in relation to the possible
number of black balls in an urn with
e partial knowledge.

For example the graph illustrates that we are 50% confi-
dent that there are at least 15 black balls.

All standard set operations can be defined for fuzzy sets
as follows:

The intersection of two sets C and B is denoted by C N B

and defined by the membership function

JC r\B(°) = min(JC(-),JB(-)).
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The complement C of the set C is defined by the membership

function

¢y
1
|

= 1-J, ().

The union C U B, of the set C and B is defined as

I ()

cuU-s max(JC,JB).

For example the complement states that if we are 50% confident
that there are at least 15 black balls we are also 50% confi-
dent there are at most 45 yellow balls.

In defining probabilities on fuzzy sets we assuﬁe first
there exists a probability space (Q,0,u) where 0 does not
contain fuzzy sets.

Hence

p(B) = erB(w)du

where JB(w) is the indicator function for the set B. Let B
denote the o-algebra of fuzzy sets - . then if C € B the

probability of C is defined by

w(C) =jJC(W)du.

It can be shown that . satisfies the standard properties of a
probability measure. Hence this approach is not different

from any other approach which develops probabilities on the
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set 8.

It is very likely this approach may be used to develop
similar results as Pﬂmeasures; However, in this case the
standard definition of intersection, union and complement

would have to be re-defined.
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9.0 Empirical studies related to P-measure

The reason for considering a theory which differentiates
- between risk and uncertainty is that this seems to be a com-
monly made distinction. 1In this section we shall substantiate
this claim by summarizing some empirical studies made concern-
ing this point. We shall also shoW that these studies indicate
a correspondence between the degree of ambiguity and P-measure.

Our first objective will be to show that if Axiom IVh is
accepted, the P-measure defined thereby is not necessarily a
probability measure. This can be done by using Ellsberg's
paradOX'i. Recall that in Ellsberg's paradox I we considered
two urns, one with 50 red and 50 black balls, and‘the second
where the composition of red énd black balls was unknown.
Alternatives a and c referred to actions defined on balls
drawn from the urn with the known composition and alterhatives
b and d on the other. If the P-measure P is a probability
then a preference of a over b im?lies d must be preferred to
c. Similarly if b is preferred to a, then c must be preferred
to d. For a detailed study of the Ellsberg paradox I, see
section 6.4, Part I, and references to other related studies.

Let us now summafize some results concerning this para-
dox from the study by MacCrimmon and Larsson (1975). Fifteen
out of 19 subjects chose a P-measure which is not a probabil-
ity measure. Another subject ranked three of the bets equally
with alternative b lower. Two subjects ranked all four choices
equally and the remaining subject ranked the choices in

accordance with a probability measure.



Hence 15 out of 19 did not choose alternatives as though
the P-measure were a probability measure and only three did
choose as though it were. Although other studies have not
shown such a large rejection of P-measure as a probability,
the percentage of rejection has been substantial. This indi-
cates, therefore, that it is reasonable to assume that there
are differences between risk and unéertainty.

A study made by Eecker and Brownson (1964) shows support
for Axiom VII and shows that ambiguity can be measured as the
difference between the outer and inner measure. Their study
also indicates that the P-measure is not always a probability
measure. Their study was based on a variation of Ellsberg
paradox I. They considered five urns with the maximum and

minimum number of red and black balls as shown below:

‘Red Balls l Black Balls

"Minimum Maximum Minimum Maximum

Number Number Number Number
Urn I 0 100 0 100
Urn ITI 50 50 50 50
Urn III 15 85 15 85
Urn IV 25 75 25 75
Urn V 40 60 40 60

The object of their study was to find support for the fol-
lowing hypotheses:
Hypothesis I.- Individuals are willing to pay money to

avoid actions involving ambiguity.
The experiment sought to verify Ellsberg's flndlngs
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under actual payoff situations. (Evidence supporting
. this hypothesis does no more than confirm that a third
- variable appears to be affecting decision behavior of
some people; it does not lend differential support to
any particular definition of the third variable.)

" Hypothesis II.- Some people behave as if they associate
ambiguity with the distribution on each probability.

(Becker and Brownsép, p.65)
The result of their study was specified in two sets.
First, it was determined whether the subjects had a preference
as Ellsberg predicted by Ellsberg paradox I. The result was

as follows:

Responses to Ellsberg questions Number of Subjects
50 - 50 preferred 16
0 - 100 preferred 1
Indifferent 5
Color preference 12

Total 34

Hence they found a large percentage having a colour preference
as well as.a high percentage rejecting the P-measure as a
probability measure. Fifteen out of the sixteen.(one was
omitted due to oversight on the part of the experimenter)
were selected for further study.

Note that the inner measure of drawing a red ball is
equal to the minimum number of red balls and the outer mea-
sure equal to the maximum number of red balls, and similarly

for black balls. Therefore, for example, the degree of



ambiguity is greater for the event of drawing a red hall from

Urn I than for the event of drawing a red ball from Urn III,.
In the second study the subjects were asked the amount

they were willing to pay to have the ball drawn from their

choice of urn for any two combinations if their winnings were

$1. Actual money was used for this experiment. For the exact

findings of their results, we refer to Table 3 and Table 5 in

their paper. However, their study clearly indicates that

their subjects prefer the alternative with a smaller degree of

-ambiguity and they conclude that:

"Evidence presented in Tables 3 and 5 confirms the first
hypothesis that some people will pay to avoid an
-ambiguous course of action when that action has an

expected value equal to an alternative unambiguous course

of action. Fourteen of the fifteen subjects, all of
whom indicated under non-payoff conditions that they had
an aversion to ambiguity, were willing to pay a sum of
money to have the opportunity to select their preferred
course of action. When choosing between the 50-50 urn

and the 0-100 urn, the subjects offered to pay an average

of $0.36 (the average of the amounts in the first column
of Tables .3 and 5) in order to avoid an ambiguous course
of action whose expected value was $0.50. (One must
wonder whether these subjects, in retrospect, would
consider the discomfort avoided worth the price they
paid.)

The second hypothesis, that ambiguity is associated
with the distribution on each probability, is also
supported by the data. In all cases the preferred urn,
for which the subject would pay a premium, was that urn
which had the smaller range around E(?&)."

(Becker and Brownson, p.70)
Their study was of course only designed for Ellsberg
paradox I and does not in general indicate that most people
prefer actions with no ambiguity, only in this very special
example. Also note that in their statement

"...an ambiguous course of action when that action has

2 11
course of action...". (Becker and Brownson, p.70)
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They imply there exists a second order distribution but this
may not be the case;

The studies so far indicate that there are those which do
differentiate between risk and‘uncertainty'and.that the degree
of ambiguity may be one factor which determines the P-measure.
However this does not imply that they accept the expected

utility criterion being accepted in the first place, that is,
the rejection may be by those who reject the expected utility
criterion.-

A study made by Yates and Zukowski (1975) indicates that
many subjects who are consistent with the expected utility
criterion for decision making under risk also differentiate
between risk and uncertainty. They considered the following
alternatives:

Alternative a.

Step 1: Designation of "valuable" chip. A color of poker
chips, red or blue, is designated by the player
as "valuable". ,

Step 2: Bookbag composition. Five valuable and five non-
valuable chips are placed in a bookbag by the player.

Step 3: Drawing. The player draws one chip at random from
the bookbag.

Step 4: Payoff. The player becomes entitled to receive $l1.
if a valuable chip is drawn in Step 3 or nothing if
a non-valuable chip is drawn.

Alternative b.

Step 1: Designation of‘"valuable"'chip.' A color of poker
chips, red or blue, is designated by the player as
"valuable".

Step 2: First bookbag composition. Eleven white chips,
marked 0 through 10, are placed by the player in the
first of two bookbags.

Step 3: ' First drawing. The player draws one chip at random
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from the first bookbag.

Step 4: ' Second bookbag composition. The number of valuable
chips corresponding to the number drawn in Step 3
are placed by the player in the second bookbag. Non-
valuable chips are added to make a total of 10 val-
uable and non-valuable chips in the second bookbag.
The chips are then mixed well.

Step 5: Second drawing. The player draws one chip at random
from the second bookbag.

Step 6: Payoff. The player becomes entitled to receive $1.
if a valuable chip is drawn in Step 5 or nothing if a
non-valuable chip is drawn.

Alternative c.

Step 1: Bookbag composition. The player is informed that
there are ten poker chips in a bookbag. Each poker
chip is either red or blue. The number of chips of
either color can be any number from zero through 10,
with the total number of chips being 10. (The player
is not informed of the number of chips of each color.)

Step 2: Designation of "valuable" chips. A color of poker
chlps, red or blue, is designated by the player as-
"valuable".

Step 3: Drawing. The player draws one chip at random from the
bookbag.

Step 4: Payoff. The player becomes entitled to receive $1. if
a valuable chip is drawn in Step 3 or nothing if a
non-valuable chip is drawn.

We note that alternatives a and b are decision making
under risk, and.alternative c decision making under partial
risk.

In Ellsberg's paradox I, it has sometimes been suggested
that if the subject is asked from which urn he wants the red
ball drawn, he may believe that the uncertainty alternative has
been "rigged" against him, and therefore he may choose the one
‘with given probabilities. Yates and Zukowski (1975) have

eliminated this factor in. their experiment by letting the

player choose the colour. If the subjects do not have a colour
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preference then alternatives a and b.qught.tq have the same
preference if the expected utility criterion is used.

In their study they used 108 students and each student
was classified in one of the following classes: a-b (20);
b-a (14); a-c (19); c-a (12); b-c (16); c-b (27); i.e., 20
students had the choice between alternative a or alternative b
(indifference not permitted) where altérnative a was listed
first; 14 students also had the choice between alternative a
or alternative b, but in this case alternative b was listed
first.

Actual payoff was used. Each student was required to
choose which alternative he preferred in the class to which he

belonged. Indifference was not permitted. Their result was as

follows:

Alternative
Alternative a b c
a - 16 7
b 18 - 14

c 24 29 -

" where the column alternative was chosen over the row alternative.
Their study therefore shows that little difference exists
between alternative a or alternative b, but alternative c¢ is
definitely not preferred to either.a cr b.
For the expected utility criterion to hold the expected

frequency would be:
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Alternative

. Alternative ’ o o S a . . b . Cc .
a ' - 17 21 1/2
b 17 - 15 1/2

c 15 1/2 21 1/2 -

Their result then indicates a substantial difference
between alternatives ¢ and a and also, to a smaller extent,
between ¢ and b. This indicates a distinction between risk
and uncertainty.

These results can, therefore, be summarized as- follows:
1) The P-measure derived based on Axiom IV may not be a pro-
bability. For Ellsberg's paradoxes there is a substantial
percentage of rejection of the P-measure as a probability.

2) Ambiguity can be measured in terms of the difference
between outer and inner measure.

3) Even if the expected utility criterion is accepted for
decision making under risk, there is a large peréentage of peo-

ple who differentiate between risk and uncertainty.



10.0 Summary of Part II

In the second part of the thesis, we have suggested a
criterion for decision making under partial risk. The defini-
tion of partial risk includes both decision making under risk
and decision making under uncertainty. Therefore any criterion
suggested for partial risk problems must also be accepted for
risk and uncertainty problems. Here we assumed that the
expected utility criterion is accepted for risk problems.
Technically, therefore we have extended the expected utility
criterion to decision making under partial risk. The idea of
this extension is not new; both Savage (1954) and Fellner
(1961) did similar extensions. We differ from Savage since
his approach does not differentiate between risk and uncertain-
ty. We also differ from Fellner's since his approach assumes
a different utility function for each action.‘

What we have in common with each of these approaches is
that for any extension of the expected utility criterion a
probability measure must be derived on the set of possible
rewards. It is sufficient that a monotonic continuous non-
negative set function (called P-measure) is specified on the
states-of nature. Since every probability measure is a
monotonic, continuous and non-negative set function, additional
assumptions on the P-measure must be made for the P-measure to
be a probability measure. Therefore, decision theorists who
believe that the expected utility criterion ought to be used
for decision making under uncertainty would also accept
the approach developed here. They would perhaps insist that

additional assumptions be made on the P-measure, forcing it to
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be additive.

We do not expect all decision theorists to support the
assumptions developed here. We do, however, believe that if
Axiom II is accepted, i.e., the expected utility criterion
for decision making under risk, then the additional assumptidns
made here follow in the spirit of Axiom II and would be
generally accepted.

In considering the axioms in more detail we expect to find
that the most controversial axiom in Part II is Axiom V, which
is where the sequence of reward functions is discussed. Here
we have chosen to describe the axiom in terms of increasing
reward functions. An equivalent result would be to describe
the axiom in terms of decreasing reward functions. However
if we state the axiom in terms of an arbitrary convergent
sequence of reward functioné, the existence of P-measure is
not obvious (and has not yet been proven as far as we know).

In terms of measure theory, Part II can be described as a mix-—
ture of standard measure theory and Savage's approach. One of
the objectives of measure theory can be summarized by the
following quote:

"The length 1(I) of an interval I is defined, as usual,

to be the difference of the endpoints of the interval

«...In the case of length the domain is the collection

of all intervals. We should like to extend the notion

of length to more complicated sets than intervals....

we would like to construct a set function m which assigns

to each set E in some collection ¢ of sets of real

numbers a nonnegative extended real number mE called

the measure of E. Ideally, we should like m to have the
following properties:

i. mE is defined for each set E of real numbers;
~ that is, & = T(R); :
ii. for an interval I, mI = 1(I);
iii. 1if E_ is a sequence of disjoint sets (for
which m is defined), m({JE ) = :E_m(E )
: n U .n n
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iv. m is translation invariant; that is, if E is
a set for which m is defined and if E + y is
the set {x + y:x € E}, obtained by replacing
each point x in E by the point x + y, then

m(E + y) = mE.

Unfortunately, it is impossible to construct a set
function having all four of these properties, and it is
not known whether there is a set function satisfying the
first three properties. Consequently, one of these
properties must be weakened..."

({Royden, pp.52-53)

It is not obvious which one should be weakened. Mathe-
maticians decided on the first of these, and restricted the
total number of sets. The implication for decision theory is
that there exists a subset D of Q@ such that no price can be
set on the lottery ticket which gives

$100 w e D
X(w,a) = .
40 w € D
I.e., there exist simple decision problems for which the
expected utility criterion can not be used. This is an
undesirable conclusion.

Savage (1954) rejected the third alternative, but only for
a countable number of sets and as a consequence, he rejected
Axiom V of Part II. We believe this to be an equally undesir-
able conclusion, and we also reject the third alternative,
although we were more selective in determining on which sets
the measure might be additive. This would, of course, give the

desirable flexibility of distinguishing between risk and un-

certainty.
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Summary

In Part I of the thesis we discussed a set of axioms
necessary for the expected utility‘criteribn to hold., Empiri-
cal studies showed that by far the most controversial axiom
was the additivity axiom (Axiom II, Part I) which specified
the existence of a real-valued function h, such that if Bi
i=1l,... is a disjoint sequence of subsets of 9, and each one
belongs to B then f(a) = z:hKBi,a).

This assumption obviéusly mﬁst be specified since the
integral is c-additive over disjoint sets. It also partly
implies the existence of a measure ‘Won B which reflects the
decision maker's belief of the likelihood of a given event’
occurring. That is, if it is believed that B is more likely
to occur than C, then W(B) > W(C).

A second axiom which gives rise to some concern is
Axiom IV. In this case a o-algebra B containing 0 was
assumed to exist. A probability measure u was defined on 0,
and Axiom IV specified the relation between u and W;

Several of the paradoxes discussed were shown to contra-
dict either (or both) of these. That is a measure W on B8 v
could not be defined such that Axiom II would also be
satisfied.

In Allais' paradox it was shown by MacCrimmon and
Larsson (1975) that this contradiction to the axiom only
occurred when the amount of reward money was substantially
above what most people are used to handling. Hence, Allais'
paradox does not contradict Axiom II when it pertains to

decisions concerning amounts of money which most people are



218

accustomed to handling. The same argument is not true, however,
for Ellsberg's paradox, since in that situation contradictions
occurred for even small amounts of money. Although both
Ellsberg's paradox and Allais' paradox contradict Axiom II, it
seems reasonable, however, to assume that Ellsberg's paradox
differentiates between known versus unknown probabiiities,
rather than violating the additivity assumptions. These
assumptions are, of course, not mutually exclusive since a
rejection of the existence of probabilities on unknown events

" would also lead to the rejection of the additivity assumption.

In Part IT of the thesis, we attempted to differentiate
between unknown and known probabilities in an alternative
manner. This was done by defining a less restricted set
function on all events such that the set function is equal to
the probability of known events but does not necessarily
satisfy all the laws of probability for unknown events.

That is, the set function is less structured in the latter
case.

Althdugh other approaches exist which differentiate
between partial risk problems and risk or uncertainty problems,
their major emphasis has not focussed on the unknown events
themselves. Rather, a form of correction factor is assumed
to apply after the expected utility criterion has been cal-
culated according to probability laws. In all other
approaches therefore the existence of probabilities for all
events has been'taken for granted.

The method used in Part II was to specify a set of

axioms which a decision maker would be willing to follow if



he accepts the expected utility criterion for decision problems
under risk.

Most of the axioﬁs are properties of the expected utility
criterion. The axioms in Part II, therefore, reduce to the
expected utility criterion if additional assumptions are made
on the P-measure. However, many of the advantages of éon—

sidering the more general set function would be lost.
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Appendix I

Some of the main theorems which guarantee the existence
of the evaluation function f are summarized in this appendix.
As was stated in section 3, the conditions for the existence
of £ are of two types -- one set of conditions on the order
relation and the second on the topology on A. Because of
their importance we shall give a brief summary of the types

of relations to be considered.

Definition. Let S be a set. A binary relation Y on S

is a subset of the Cartesian product S x S. Symbolically,

YC S x S.

By this definition the empty set g is a relation. This
is the "smallest" relation since it is a subset of all other
relations. Similarly, we have the "largest" relation L = SxS
which contains all relations on S x S. Other relations
which occur often enough to deserve mention are the diagonal
relation, V, of a set S, defined by V = {(x,y) ¢ sxS|x = vy},

and the dual relation Y' of a relation Y, defined by Y' =

{(x,y)] (y,x) € Y}. The dual is, therefore, the mirror image

across the diagonal. The complement relation, Y of a relation

Y, is the complement of the set Y, i.e., Y = L-Y, the usual
complement used in set theory.

Multiplication of two relations can also be defined.
Let C and D be two relations on the same set S. The product

denoted by C o D, is defined by

c e D= {(x,y)](x,2) ¢ C,(z,y) € D, for some z e S}.
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We shall not discuss the properties of this product, but we
shall use it in some definitions. Some relations have pro-
perties occurring so often that names have been given to these
properties. We shall summarize these here and use the de-

finitions by Chipman (1960) for the more common ones.

Definition. Letting M be any relation on a set S we

define the terms:

1. Transitive: M e M c M

2. Negative Transitive: M e« M C M
3. Reflexive: VC M

4. Irreflexive: Vg M

5. Comparability: LC MU M

6. Symmetric: M'C M

7. Asymmetric: M'gC M

8. Antisymmetric: M NAM' CV

Definition. A relation M is a partial ordering on a set

S provided M is relfexive, antisymmetric and transitive.

S S
Tt is common to write x € y (or y » x) rather than (x,Yy)

¢ M. We shall adopt the same notation here. As a rule we
shall denote any ordering by § (or >) if it is obvious on
which set the ordering is defined. Where doubt may occur we
indicate the set along with the ordering, i.e., 2 is an orderxr
relation on A.

S
Associated with any partial ordering § we can define a

S S S S
relation < by: x < y if and only if x ¢ y and not y £ X.

S
Clearly < is transitive and irreflexive, and is sometimes used

as a definition of a partial ordering. Here we will call it
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S
a strict partial order. We can also define a relation = by:

S . . S S
x = y if and only if x ¢ y and y & X.

The second type of ordering we shall consider is a weak

ordering.

S
Definition. A relation < is a weak ordering provided <

is asymmetric and negative transitive.

Since an asymmetric and negative transitive binary

relation is irreflexive and transitive a strict partial

ordering is contained in a weak ordering. If M is either a

strict partial ordering or a weak ordering, then we define

M

= by:
M M M M

x =y if not x < y and not y < x and define £ by:

M M M
x {y if x <y or x = Y.

In doing so, we gain the comparability property, i.e.,
M M
given any X,y € M then either x £ y or y £ X. Thus, we have

reached the ordering that real numbers satisfy except for

perhaps the antisymmetry property.

M
Definition. A relation § is a complete ordering if it

is comparable and transitive.

It will, therefore, not come as a surprise if the ordering

we need for the existence of f is either a weak ordering or a

partial ordering.
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Topological necessities. If we only assume that the

ordering given is either a weak ordering or a strict partial
ordering on a set A, then it is not sufficient to specify an
order preserving real-valued function. We have to make

additional assumptions on the cardinality of the set A.

A
Theorem 1. If < is a weak ordering on A and the
cardinality of A is countable then there is a real-

valued function f on A such that
A [ 0
a < b implies f(a) < f(b) for all a,b e A.

The result would still hold if we replaced the weak ordering
by a strict partial ordering. We shall not prove this theorem
here as the proof is easy and can be found in most books on
utility theory. It was first proved in this form by Debreu
(1954). It is not difficult however to see that the cardin-
ality assumption in Theorem 1 could be weakened. We would
only need to have the set of equivalence classes induced by
the weak ordering to be countable. In this case, we induce an
ordering on the equivalence classes by the ordering %.

If we now remove the condition that A must be countable
(or that the set of equivalence classes must be countable), we
must still keep some control over the cardinality of A. The
condition required is the existence of a countable, dense
subset of A. This was used by Fishburn (1970). Peleg (1970)

called this condition a separability condition. Here, we shall

use Fishburn's terminology since separability as used in



topology means something quite different.

A
Definition. Let § be a binary relation on A, and let Z

be a subset of A. Then Z is order-dense in A if and only

A
if whenever a < b there is a z ¢ Z such that a < z and

A
z £ b.

Let A be the set of all real numbers and Z the set of all
rational numbers, and let the ordering defined by the natural
ordering of numbers on both A and Z. Then Z is order—-dense
since between every two distinct numbers there exists a
rational number.

This condition controls the cardinality of the set A if
the cardinality of 2 is specified and is sufficient for

proving the second theorem (Fishburn, 1970, p.27).

Theorem 2. If A is weakly ordered and there is a
countable subset Z ¢ A which is order-dense in A, then
there is a real-valued function f on A such that

A
a < b implies f(a) < f(b) for all a,b € A.

We would now like to relate the concept of order-dense
sets to more intuitive concepts in topology. To do so we
must introduce some of the ideas in topology. One of the
fundamental concepts of topology is that of "nearness". One
natural way of defining what we mean by "action a is near
action b" for some a,b € A, is by inducing a distance measure

on A. Let us first assume that there exists a real-valued
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function f on A. A weak topology may then be defined on A,

be assuming that for any open set of real numbers N containing
f(a), the set {b ¢ A|f(b) € N} is defined to be open for all

a € A.

In doing so, f would always be continuous and the concept
of "nearness" is inherited from "nearness" on the real line.
This definition is equivalent to saying that the sets
{z € A|f(z) < £(a)} and {z € Alf(a) < £(z)} are open for all
a e A. It also implies that if ai,i=l,2,... is a sequence

of actions, {ai} converges to a if and only if

lim f(ai) = f(a).

1 oo

If the function f is not given, but a weak ordering
exists on A such that a,b ¢ A implies either a é b or b é a,
then a topology T may be defined on A by letting the sets
{z ¢ Ala 2 z}and {z ¢ A|z 2 al for all a ¢ A form a subbase
for the topology T. We shall denote the closure of the set
{z € Ala 2 z} by {z € Ala 2 z}. We now show how this can be
related back to order dense sets. The condition necessary
for this is: if A is separable and connected (in a
topological sense), then there exists a countable subset
7 of A which is order dense in A.

To see this, let a 2 b. Then the sets {z ¢ Alz 2 a}l and

A
{z ¢ Alb < z} are disjoint, closed and non-empty and therefore:

A A
{z ¢ Alz < b} N\ {z € Ala < z}
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is open and non-empty. Since A is separable it must contain
a countable dense subset Z such that there exists a z € Z
satisfying a < z and z < b.

Therefore if A is weakly ordered, and is separable and
connected, this implies that there exists a countable subset
7Z € A which is order dense in A. Also note that the
existence of such a set Z is all that is needed for the exis-

tence of a real-valued function £ on A such that
A . .
a < b implies f(a) < f£(b) for all a,b € A

by Theorem 2. This gives us the following theorem (Debreu,

1954).

Theorem 3. If A is weakly-ordered, separable and
connected, with the natural topology T, then there
exists a real-valued function £ on A, such that:

A
if a < b then f(a) < f£(b) for all a,b £ A.

Similarly, Peleg (1970) has proved the same theorem for

strict partial ordering:

Theorem 4. If A is a strict partial ordering on a
connected, separable set A with the natural topology T,
then there exists a real-valued function f on A such

A
that: 1f a < b then f(a) < £(b) for all a,b € A.

A summary of conditions necessary for the existence of
f now follows:

1) Ordering assumption, i.e., transitivity, partial, weak
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or complete.
2) Topology assumption, i.e., the cardinality assumption
on A.
From a decision maker's point of view we would therefore
be most interested in the transitivity and completeness, since
the topological assumption does not affect preferences among

alternatives.



234

Appendix II

The purpose of this appendix is to summarize some of the
basic definitions and results concerning measure and function
theory.

1. Measures and the extension theorem

The class © of subsets of @ which has the following

properties:
a) @ e ©
b) if B e O then B € 0, where B = Q - B
c) 1if BysBys... then iraBie 0

is called a o-field or c-algebra.

A measurable space is a set §, and a oc-algebra O of

subsets of Q. A measure on a o-field © is a non-negative,
extended real-valued function u such that whenever Bl;Bz,...
form a finite or countably infinite collection of disjoint

sets in O we have

wlUe ) =2 uk ).
n

n

If u(Q) = 1, u is called a probability measure.

A measure space is a triple (,0,u) where Q is a set,

© is a c-algebra of subsets of Q, and u is a measure on 0.
If yu is a probability measure (Q,0,u) is called a probability
space.

The definition of a probability measure implies the
following consequences where all sets are members of O.

1. u(¢) = 0.

2. u(E) 1 - u(E).



3. W(EUF) + u(ENF) = p(E) + u(F).
4. E C F implies that p(E) = u(F) - (F-E) < u(F).

5. Monotone property. If E is an increasing segquence

of set or a decreasing sequence of set converging to

E, then u(En) > u(E).

6. Boole's inequality. u(LJ Ei) < ZE.U(Ei)-
i i

On each subset D of 2, we can define an outer measure by

*
p (D) = inf u (M) Me O
MaD
and an inner measure by
U, (D) = sup u(M) Me 0
McD

The following properties of the inner and outer measure
are easily verified (or can be found in Halmos, 1950,
Lebesque, 1901, or Royden, 1968).
i)  p,(D) < u (D) for all D ¢ Q
ii) 1fCUD e 0, CAD= g then 1,(C) + 1 (D) = u(CUD)
iii) if CA D = @, then 1, (CU D) < 1,(C) + 1 (D) ¢
su*(CU D)
iv) U, (D) = u*(D) = u(D) if D e O.

For De O and DN C = @ the following six properties hold:

* * *
V) L (D C) ¢ (D) + u (C)

vi) 1 (D C) = u, (D) + 1, (C)
* * * —_—
vii) u (C) = u (CUD) +u (CUJD)

viii) pg(C) = p,(CU D) + u,(CU D)

ix)  w (C) =1 = p,(C)
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x) if DCF and CC E where FNE = @ and F,E ¢ O then

il

L (CcU D) =@ + u (D)

U, (C\J D) U, (C) + u,(D).

*
A more general definition of an outer measure u is
sometimes used. It is an extended real-valued set function

defined on all subsets of a space © and having the following

properties:
*
i) u (@) =0
* *
ii) if AC B then u (A) & u (B)

< * = %
iii) if E€¢ U E; then v (B) < 2 v (E)).
i=1 i=1

The second property is called monotonicity and the third
countable subadditivity. In view of (i) finite subadditivity
follows from (iii).

From an outer measure a new measure y; can be defined.
In this case the difficulty arises in making sure from which
sets in O the additivity properties hold. This is usually
done by specifying a class of measurable sets in the following

*
way: A set E is measurable with respect to u if for every

set A we have
* * * —
u (A) =u (AME) +u (ANE).
» *l . 0 .
This guarantees that u is additive out of this class of sets,

and also that the class of measurable sets is a o-algebra

(Royden, 1968, Theorem 1, p.251).
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*
Theorem AI: The class ¥ of §1 -measurable sets is a

o-algebra.

*
If we start with an outer measure u , and define a measure My

* —
from the y , and then induce an outer measure Wy from Mq s and

* — *
if it so happens that y = W, we say u is a regular outer

measure.

*
A regular outer measure u has the property that if Bi

is a sequence of increasing sets such that \)Bi = B then

. * *
limp (B;) = u (B).
i
This is the property needed in Axiom V (Part II of the thesis).
2. Measurable functions
Given two spaces 2, R, and a mapping X(w):2 -+ R, the
inverse image of a set BC R is defined as

x 1B = {w e Q;X(w) e B}.

Denote this by {X ¢ B}. The taking of inverse images preserves

all set operations; that is

{(x eJ B} = UilX e B},
A A
{x e (\ B} = (VX e By,
A A
(x e B} = {xeB}.



Given two measurable spaces (2,0), (R,¥), a function

X:Q -~ R is called measurable if the inverse of every set in V¥
is in 0. Therefore if a measure is defined on ©, an induced

measure P may be defined on V¥ by the measurable mapping X as

follows:

P(B) = u(X e B) for all B ¢ V.

By the properties of the inverse image P is guaranteed to
be a measure.

If a sequence of measurable functions converges to
a function, then this function is also measurable (Royden,

1968, Theorem 6, p.223).

Theorem AII. The class of O6-measurable functions is

closed under pointwise convergence. That is, if
Xn(-) are O-measurable for each n, and liman(w)
exists for every w, then X(w) = liman(w) is

O-measurable.

3. Integrations
Let X(+) be a function from Q to R, then X(*) is a

simple function if there exists a finite number of subsets

of @, denoted by B Bn such that

l,--o,
B, \B. = § for i#j, ac \UB,
i j 7 1
and XB () = r. for all i=1l,...,n.
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To define the integral we first define the integral for
simple functions, then non-negative functions and lastly for
arbitrary functions.

The integral. Take (2,0,u) to be a measure space, and
let R be the real line, then J/Xdu of the non-negative
measurable simple function is defined by 2? riu(Bi). Let
X(w) > 0 be a non-negative O-measurable fégition. To define
the integral of X let Xn > 0 be simple functions such that
Xn increases to X.

For Xn increasing to X, it is easy to show that
jxn_l_ldu > /Xndu > 0.

Define ‘fXdu as 1ian(Xndu. Furthermore, the value of
this limit is the same for all sequences of non-negative

simple functions converging up to X (Halmos, p.101).

1f j]xidu < », define

/Xdu = /X+du —/X_du;

where X(-)+ = max{X(-,0)}and X(-) = max{ -X(*),0}.
The elementary properties of the integral are: If the

integrals of X and Y exist,

i) X » Y implies J[kdu 2 ijdu,

ii) j(ocX + BY)du oc/Xdu + B/Ydu,

g implies ’[Xdu = J/%du + J/%du.

AUB A B

iii) aA,B e 6,ANB

Some nonelementary properties are:

Monotone Convergence Theorem ATTT. (Halmos, 1950,

Theorem B, p.1l12). For Xn > 0 non-negative increasing
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© -measurable functions, which converge to X, then

lim _/Xndu =/Xdu.

Theorem AIV. (Halmos, 1950, Theorem I, p.98). Let

X(+) be a Borel measurable function such that ‘/leu exists.

If B, is a set of disjoint subsets of Q@ then

J/%du = ;i Xdu.
i

0 B;

This summarizes the basic definitions and results needed

in Part I and Part II of the thesis.
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Appendix IIX

In this appendix we shall summarize some of the different
approaches to the expected utility theory. Before stating the
axiom we shall summarize the notations used concerning the

reward functions.

For each a ¢ A, a function X(-,a) from © to R is called

a reward function.

If Y(+) is a function from B to R where B <& Q, then Y

is called a restriction of X(-,a) if X(+,a) = ¥Y(+) for all
w € B. The function Y(-) will, in this case, be denoted by
XB(°,a).

Let X_(*,a) and X

B (+,c) be two restrictions of the

C

reward functions X(-,a) and X(+,c) if there exists a

function Y(-) from B J C to R such that Y(:) = XB(-,a)
and Y(-) = XC(-,c). It will be convenient at some cases
to denote the function Y(*) by X (-,ac), especially so

BULC
in the Luce and Krantz approach.

Approaches to expected utility theory.

The different approaches we have considered were
developed by:

1) vonNeumann-Morganstern (1947)

2) Marschak (1959)

3) Savage (1954)

4) Arrow (1971)

5) Luce and Krantz (1971)
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We shall summarize the axioms assumed by each of these.

vonNeumann-Morgenstern Axioms. The vonNeumann-Morgenstern

(1947) approach does not directly make any assumptions on the
underlying probability space (£,0,r) or on I'. It does

assume that 1, the set of all induced probability measures on
R, is equal to the set of all discrete probability measures
on R. They induce an ordering on I from an ordering on R. To
present their approach, we need some new definitions. Let

m" = (0,1) x R x R, and let F be a function from I" to R.

The set II" can be thought of as the set of those induced pro-
bability measures on R which are non-zero for exactly two
elements of R. The value F(a,rl,rz) = r, can be thcught of
as the reward ry € R which would make us indifferent between
the gambles.

1. receiving r, with the probability o

receiving r, with the probability 1l-a
2. receiving r, with the probability 1
In what follows, it is assumed that rl,rz,r3 ¢ R and that o, B

and Y are real numbers on (0,1).
L] R ] . .
Axiom NMl: < is a complete, hereditary ordering.

R
Axiom NM2: r, < r

1 implies r

R
< F(url,rz) and

2 1

R
F(a,rl,rz) < r, for all o ¢ (0,1)

R R

Axiom NM3: r; < ry < ry implie=z the existence of an

R
a e (0,1) and a vy ¢ (0,1) with F(a,rl,rz) < Iy and
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R
r3 < F(erllrz) .

R
Axiom NM4: F(a,rl,rz) = F(l—a,rz,rl) and

R
F(a,F(y,rl,r2),r2) = F(ay,rl,rz) for all o,y ¢ (0,1).

These assumptions are sufficient to prove that a real valued

function U exists such that

R
r, < r, implies U(rl) < U(rz)

1
and

U(Ra,rl,rz)) = Ol.U(rl) + (l—OL)U(rz).

Marschak Axioms. Marschak (1950) was the first to adopt

an approach of establishing an ordering on the probability
measures. Samuelson (1952), Herstein and Milnor (1953) and
other authcrs have also adopted this formulation. The axioms
we shall give here are essentially the same as Jensen's (1964)
axioms, and he has shown them to imply Marschak's axioms.

In this approach also, we ignore the underlying probabil-
ity space since all assumptions are based on the induced
probability measures. R is assumed to be a finite set. We
denote T, as before, to be the set of all probability measures

on R.

il
Axiom Ml: < is a complete, hereditary ordering.

it
Axiom M2: If Pl’PZ’P3 e T and Pl < Py, then for any

real number o ¢ (0,1),



1
aPl + (l—-cx)P3 < aPZ + (l—u)P3

I I
Axiom M3: If P. < P. < P, then there exists real

1 2 3
I
numbers a,B € (0,1) such that aPl + (l—a)P3 < P2 and

il
P2 <SPl + (1—8)P3.

These three assumptions are sufficient to derive a utility

function.

Savage Axioms. Savage (1954) starts with an underlying

probability space (2,0,u). The theory does not hold, however,
for an arbitrary probability space. There are restrictions
on the cardinality of A (Axiom S6) and 0 must contain all
subsets of Q. The probability u is not explicitly defined

but is derived from preference relations on subsets of Q.

T
Axiom Sl: < is a complete hereditary ordering.

Let B,B ¢ g and ri+/fy e R and a,b,c,d ¢ A.

Axiom S2: If XB(-,a) = xB(~,b), XB(-,c) = XB(-,d),

XB('ra) = Xg('lc)l XE('rb) = X'B_('rd)

N —

and X(-,a) X(-+,b)

A

then X(-,cC) X(-,d).
Axiom S3: Let X(-,a) = ry and X(*,b) = r,
If XB(',c) = XB(°,a), XB(-,d) = XB(-,b)
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and Xg(-,c) = XE(',d)

T
then X(*,a) s X(+,b) if and only if
T .
X(-,c) € X(-,d) for all B such that B is not null?.

Axiom S4: If B,C € @ and r; e R i=l,2,3,4,rl > Ty Xy > Xy

a,b,c,d e A, and

Xp(+sa) = ry Xg(-,a) =1,
XC('rb) = rl XE('rb) = ]’.'2
Xpl-yc) = r, Xg(-,C) =T,
XC('Id) = r3 XE’('ld) = r4
T
and X(-,a) g X(+,b)
T
then X(-+,c) & X(-,4).
Axiom S5: There is at least one pair of rewards

rl,r2 ¢ R such that if a,b ¢ A are defined by X(-,a) = ry

and X(+,b) = r then

2!

T
X(-,a) = r, < X(+,b) = ry.
T
Axiom S6: If X(+,a) < X(+,b) and r is any reward in R,

then there exists a partition P of @, such that for

any B ¢ P

2N set B ¢ 0 is nullrif u(B) = 0, or in Savage terminology, B
is null if XB(-,a) = XB(-,c) for all a,c ¢ A.



XB(‘,C) =r, X§(°,c) = XE(-,a) implies
T
X(+,c) < X(+,b) and

XB(',d) =r, XE(-,d) = Xg(-,b) implies

T
X('la) < X(’rd)-
T
Axiom 87: If XB(w,a) < X{w,b) for all w ¢ B, then

XB(-,a) E XB(-,b).

The first six axioms are sufficient to guarantee a prob-
ability u and a function U such that the expected utility
preserves the ordering when the reward set is finite. To
extend the result to an infinite reward set, Axiom S7 is also
needed.

Arrow's Axioms. Arrow (1971) does not make the res-

trictions on the probability space (2,0,un) that Savage does

but his overall approach is similar to Savage's.
3 A . . .
Axiom Al: < is a complete, hereditary ordering.

A
Axiom A2: Given a,b ¢ A where b < a, a reward r ¢ R,

and {E'} a sequence of sets in © such that El+%: E*

with f\ Ei = . Define actions al ¢ A, bt ¢ A by

i) = X=.(*,a), X -('lai) = C.

Xgy (-2 Ei Ei

Ei

XEi('lbl) = Xﬁi(.lb)l XFi('rbl) = C.

W
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Then for all i sufficinetly large

A i i A
b < al and bl < a.

A
Axiom A3: For any given event E, < satisfies Axiom A2

such that any two actions a,b € A where XE(',a) = XE(-,b)
will be indifferent given

E
a

This is denoted as a = b|E. Weak preference is

A A
denoted as a < b|E and strict preference as a < b|E.

Axiom A4: Let P be a partition. Given two actions
a,b ¢ A, if for every E € P, b é aIE, then b é a. If
in addition, there is a collection P' of events in P,
whose union is non-null, such that b % alE, E ¢ P',

A
then b < a.

Axiom AS5: If a,b,c,d € A and

X (w a) = X(wz,b), X(wlrc) = X(wzld)r

1

A _ _ A

c < alwl implies d < bluw,.

Axiom A6: The probability distribution of states of the
world is atomless. If the probability distribution of
consequences is the same for two actions, they are

indifferent.

This set of axioms is also sufficient to prove the existence
of a real-valued utility function U on R such that the ordering

on A satisfies the expected utility criterion.
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Luce and Krantz Axioms. One argument criticizing Savage's

axioms has been that all the random variables have been
defined on the same state space. For example, in betting

that heads will occur when a coin is flipped, or when consid-
ering investing in a particular stock, clearly the state of
the world is quite different. Luce and Krantz (1971)
developed an axiom system to handle this case, as follows:

Let ¢ denote a set of functions from non-null events and 0 a
given algebra and 1 the null events in ©. Using this notation
their axioms can be stated as:

Assume that C,B ¢ 0.

Axiom LKl: i) If DA B = g then X (-,ac) e @

DV B
ii) If BC D, XD(-,a) ¢ & implies

XB(',a) e &.

®
Axiom LK2: » is a weak ordering.

o
Axiom LK3: If DM B = @ and XD(-,a) = XB(-,b) then

0]
XDL)B(-,ab) = XD(-,a).

Axiom LK4: If DAB = @ then

®
X (+,a) » X

D D(-,b) if and only if

®
X (-,ac) » X

DV B (+,bc) .

DUJUB



0]
Axiom LK5: If DN B =4, XD(-,i) = XB(-,i) i=a,b,c,d

o]
XDUB(-,ag) = XDuB(°,bh) and
¢
@ . L]
XDL)B(°,cg) > XD;JB("dh) if and only if
¢
XDUB(°'kC) > XDUB(-,ld).

Axiom LK6: If DA B = @, and for any sequence of action

i e M,

0]
XB(-,ai) # XN(°,a2) and

o
X (-,a.a =

DV B 131) = Xpouglrajygay) for all i,

then either M is finite or {XD(-,ai)Ii e M} is unbounded.

Axiom LK7: 1) IfFB e " and D€ B, then D ¢ ¥.
ii) B ¢ 71 if and only if for all

4]
X («-,ab) ¢ ¢, X (-,ab) = XD(°,a).

DVB DUJB

Axiom LK8: © - 1 contains at least three pairwise dis-

joint elements. ¢ contains at least two actions such that

o]
XD(.Ia) # XB(‘lb) .
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Axiom LK9: i) 1If C and XB(-,a) are given then there

. : )
exists XC(',d) e ® for which XB(-,a) = XC(',d).

ii) IfF DAB = g and XDUB(',ac) P XDUB("d)
> XDL)B(.’bc)’ then there exists XD(°,e) such that

¢
XDUBP’m =XDUB(uem.

This completes the different axioms for the different

approaches considered here.



