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ABSTRACT

Perhaps the most important task of any economic analysis of
agricultural policy is to estimate the effects of policy on various ecoﬁomic
measures such as income and output. Thi§ is usually done by combining
economic theory with data. However, the economic theory seldom is
fully descriptivé of the situation and the empirical knowledge generally is
far from complete. Thus, even aside from difficulties in aggrggating
gains and losses over individuals, economic analyses of policies are often
unsatisfactory. .

The major purpose of this thesis is to extenc{economic theory
and methods so as to be more descriptive of various agricultural policy
situations and to make more appropriate use of available empirical knowledge.
This leads us to relax some assumptions in the standafd theory of the firm
that often seem inappropriate, and to propose a pétentiall'y more effective
method of incorporating available empirical knowledge of farm structure
in.to economic analysis of policy. In addition, we also attempt to verify
the appfopriateness of other theoretical constructs of fundamental
importance.

First, the static theory of the firm is extended to the éase of
variable‘ factor prices, i.e., factor prices endogenous to the firm. Under
these more general conditions, we establish (among other things) (1) the
relation between measures of surplus in factor markets and of consumer

plus producer surplus, and



(2) relations between the slope of a firm's derived demands schedule and
various properties of its production function. It is shown that (2) provides
additional support for the well-known fact that traditional qualitative com-
parative static methods can seldom be useful in economic policy-making.

Second, we introduce a method of "quantitative comparative statics"
that in principle overcomes this defect of established comparative static
analysis. This methodology incorporates the available degree of empirical-
knowledge of the firm's structure without imposing further specification
of structure (in contrast to, e.g., the traditional linear and nonlinear
programming models of the firm, where a full structure must be specified).
This degree of knowledge and its relations to comparative static effects of
interest can be expressed as a set of quadratic equalities and inequalities.
Then the range of quantitative as well as qualitative effects of policy that
are consistent with our degree of knowledge of farm structure and the
assumption of static optimizing behavior can in principle be calculated by
nonlinear programming methods. |

Third, we consider the issue of the appropriateness of construcfs
of static optimizing behavior in predicting farm response to policy. We
demonstrate that, by estimating an equilibrium shadow price for an input
rather than (e.g.) supply response, one can reduce the significance of
many of the problems associated with studieé of supply response via
repreﬁentative farm models and investigate this issue more clearly. In
this manner, we derive empirical support for the use of the construct of

static optimizing behavior in predicting the effects of agricultural policy.
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Thus, by extending economic analysis marginally in the direction
of more appropriate theory and more appropriate use of empirical
knowledge, we hope to contribute towards the improvement in methodology
for evaluating agricultural development programs. Towards this end,
the extensions in theory and methods are related to a particular policy

situation (evaluation of government funded community pasture programs in

British Columbia).
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CHAPTER 1

INTRODUCTION

1.1 Overview

Perhaps the most important task of any economic analysis of
agricultural policy is to esfimate the effects of policy on various economic
measures such as income and output. This is usually done by combining
economic theory with data. However, the economic theory seldom is
fully descriptive of the situation and the empirical knowledge generally
is far from complete. Thus, even aside from difficulties in aggregating
gains and losses over individuals, economic analyses of policies are often
unsatisfactory.

The major purpose of this thesis is to extend economic theory and
methods so as to be more descriptive of various agricultural policy
situations and to make more appropriate use of available empirical knowledge.
This leads us to relax some assumptions in the microeconomic théory of
the firm that often seem inappropriate, and to propose a potentially more
effective method of incorporating available empirical knowledge of farm
structure into economic‘ analysis of policy. In addition, we also attempt
to verify the appropriateness of other theoretical constructs of fundamental
importance.

Thus, by extending economic analysis marginally in the direction

of more appropriate theory and more appropriate use of empirical knowledge,



we hope to contribute towards the improvement in methodology for evalua-
ting agricultural development programs. Towards this end, extensions in
theory and methods are related to a particular policy situation (evaluation

of government funded community pasture programs in British Columbia).

1.2 The Problem

The problems to which this thesis is addressed are essentially

" three-fold:

1. endogenous factor prices apparently are realistic in many cases
but have not been introduced (correctly) into the theory of the firm,
2. comparative static methods that a‘re presently available generally
make inadequate use of the degree of knowledge about particular policy
situations (at least at the firm level), and
3. the usefulness of the construct of static, optimizing behavior in
estimating farm response via representative farm models apparently

remains a matter of some controversy.
These problems can be elaborated upon as follows.

First, the theory of the firm has been formulated under the assumptions
of exogenous factor prices.1 On the other hand, there appear to be many

situations where factor prices are endogenous at the firm level. For example,

lEarIier studies by Ferguson (1969, Chapter 8) and Maurice and
Ferguson (1971) have tried to analyze the theory of the firm in the case of
variable factor prices. However, a series of fundamental errors in these
studies will be pointed out in Chapter 2.



situations characterized by a single employer, collusive monopoly, imperfec-
tions in information or in mobility, or internal labor market structuring all
imply a positive slope to the labor supply schedule faced by the individual
firm.2 The most common cause of endogenous labor supply prices within
U.S. and Canadian Industry may be due to the idiosyncratic nature of
many skilled and semi-skilled jobs, which seem to require a degree of on-
the-job training and investment by the firm. Since the probability of
quitting is inversely related to salary, in effect the supply price of such
labor is endogenous to the firm, i.e., the expected length of the period of
return on investment in such human capital increases with the level of
earnings offered by the firm.3 In addition, it has been estimated that on
average a firm in Canadian agriculture is either employing its own labor
off-farm or hiring non-family labor during only 1/6 of the year.u Since
the marginal utility of leisure presumably varies with the level of leisure,
and leisure in one time period will not substitute perfectly for leisure

in a different period (when, e.g., labor is bought or sold by the farm),

it follows that the supply price of labor to the farm typically is (to at least

some extent) endogenous to the farm.

2See Addison and Siebert (1979, Chapter 5) for a summary of the
literature concerning endogenous supply prices for labor at the firm level.

3
See Stoikov and Raimon (1968), Parsons (1972) and Williamson
et al . (1975).

uSee Statistics Canada (1976), chapter on Multiple Job Holdings).
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Such labor in "developed" countries seems far from the only input
that is typically endogenous at the firm level. Endogenous prices at the
firm level may well be the rule in most "underdeveloped” countries® or
wherever markets are weakly developed.6

Second; methods of comparative static analysis for the firm that are
presently available often appear to make poor use of the degree of knowledge
about a particular policy situation. It is well known that qualitative
comparative static methods, as embodied in Samuelson (1947) and more
recent dual and primél-dual approaches, have led to relatively few determin-
istic results (signed comparative static effects) under reasonable assumptions.7
Indeed, it seems to be difficult to incorporate many empirically-based
quantitative restrictions on production functions into such methods. Thus,
in the absence of such restrictions, relatively few predictions of firm
response or testable predictions of firm behavior can be obtained.

Unfortunately, the only alternative methods of comparative static

analysis that are presently available are essentially dependent upon

complete knowledge of the structure of the problem. For example, in

L]

,sThis view was implicit in the address by Nerlove at the AJAE meet-

ings (1979). '

6ln the Peace River region there is a (sparse) market for rented hay-
land, and hay and pasture appear to be close substitutes. However, observations
of farm behavior suggested that the supply price of pasture is endogenous
to the typical user of community pasture in the region. Moreover, in the other
region studied for the B.C. ARDA community pastures evaluation (Prince
George), the supply price of pasture is clearly endogenous at the farm level
due to the absence of any (market-clearing) rental markets for pasture or
any close substitutes. See Barichello (1978).

7This point is elaborated upon in Sections 3.2.1 and 3.3.2 of
Chapter 3.



order to obtain a solution to a static linear or nonlinear programming model
of a firm, the entire structure of the production function must be specified;
in fact, our knowledge of the production function is generally far from
complete. Usually this problem cannot be handled adequately, at least at
the firm level. This can be seén most clearly by thinking in terms of

local comparative statics: if a twice differentiable objective function

m(x ;a) for the firm has a maximum at x* > 0 (the equilibrium level of inputs),
then the comparative static change in x* due to the effect (1Ta) of an

infinitesimal change in a policy parameter o can be calculated as

o = Il
{Nx1) (NxN) (Nx1)

where [Trij(x*)]_1 denotes the inverse of the Hessian of 7{x) at x*.

Since the majority of the w

individual elements of [ﬂij(x*)] are
usually largely unknown (in the case of a firm's production function) and
the relation between —g—;i and [Trij(x*)] is complex, a sensitivity analysis
that depends on direct user alteration of structure ['nij(x*)] or analogous
forms is seldom adequate.

Third, there is debate as to the utility of sucﬁ concerns about
comparative static theorems aﬁd methods. In particular, lists of possible
causes of the apparent failure of representative farm studies of supply
response typically have included the static, bptimizing nature of these
models. Indeed, at least some observers have stated that the decision
to model static, optimizing behavior rather than dynamic non-optimizing

behavior was the major cause of failure for these studies.8

8See Chapter 4,



On the other hand, theory suggests that, given our present state
of knowledge, farm response generally can be estimated more effectively
from static, optimizing models than from dynamic or non-optimizing models.
The essential arguments are that comparative dynamic effects can be
differentiated from comparative static effects only on the basis of essentially
unavailable knowledge of adjustment cost functions, and that static models
are internally consistent and (unlike dynamic models) relatively simple in
structure .9 Given this contrast between 6pinion and theory and th'e
importance of the issue, there appears to be a need to test the relat.ive
utility of the construct of static, optimizing behavior in estimating farm

response via representative farm models.

1.3 Statement of Purpose

The purpose of this thesis is essentially three fold.

1. Extension of the traditional qualitative comparative statics of derived
demand at the firm level to the case of endogenous factor prices. |
This will involve the development of theorems concerning: properties
of derived demand schedules and comparative static effects of a shift
in a factor supply schedule for an individual firm facing variable

factor prices.

2. Extension of comparative static methods of analysis at the firm level

so as to incorporate more fully our empirical knowledge about

9See Appendix 1.



parameters without specifying more than this knowledge, i.e., to

develop a method of analyéis that provides a useful "middle ground"
between the (generally underdeterminate) traditional qualitative
methods as embodied in Samuelson (1947) eti. and the (generally
overdeterminate) quantitative methodé as embodied in (e.g.) static
linear and nonlinear programming models of the firm. This will
involve the development of a method of local comparative static
analysis that in principle incorporates additional restrictions on
potentially observable parameters of the firm's maximization problem,
i.é., restrictions that have not been incorporated into traditional
methods of local comparative static analysis, and that leaves the

degree of specification of structure as optional to the user.

Examining the appropriateness (in a particular case) of constructs
of static, optimizing behavior in the estimation of farm response.

This will involve the use of a static linear programming model of a
"representative" farm for a particular community pasture in British

Columbia.

Since these extensions are in the direction of making theory more

relevant to practice, it is hoped that they will not be "empty" theoretical

exercises with zero practical implications. Towards this end, and in

addition to (3), an attempt is also made to relate the more theoretical

parts (1) and (2) to the problem of predicting farm response to ARDA

community pasture programs in British Columbia. However, the major

task of obtaining computational and practical experience with the



"intermediate" method of comparative statics (part 2 above) will be post-

poned to a future study.

1.

Research Procedure

The manner in which these objectives are met can be summarized

as follows:

1.

The theory of derived demand with variable factor prices is
investigated by making explicit use in formal analysis of the
following equivalence: a firm's derived demand schedule is
equivalent to a schedule of shadow prices for the input. This
is simply the "intuitively obvious" equivalence leading to the
textbook statement that factor market equilibrium occurs at an
intersection of factor demand and supply schedules. Never-
theless, this equivalence has not been incorporated previouély
into formal analysis of derived demand, and in effect this
equivalence was even labelled as incorrect by a paper in a
prominent journal.10 Implications of this theory for the evalua-

tion of ARDA community pasture programs are pointed out.

The traditional methodology of local comparative statics for the
maximizing firm (e.g., Samuelson, 1947) is generalized by

expressing the comparative static implications of the maximiza-

10See Schmalensee (1971).
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tion hypothesis and of many potentially observable parameters

of the firm's maximization problem as a set of nonlinear con-
straints. These constraints define the comparative static. effect
-g—g in terms of potentially observable parameters p of the firm's
maximization problem. Then reasonable restrictions corresponding

to our degree of knowledge about the structure of the problem are

specified for p. By solving for the maximum and minimum value

o0a 90

defined by all of these constraints, we can calculate the range on

of a scalar-valued function z[ 9 x )of 39X over a feasible set

the comparative static effects z [-g—%] that are consistent with
the maximization hypothesis plus the specified restrictions on .
Partial solutions to the major computational difficulties of this

method are developed.

A static linear programming model of a "representative" multi-
product farm using the Sunset Prairie community pasture is
presented. Data for the model circa 1976 has been gathered from
inter\)iews with local farmers and B.C. Ministry of Agriculture
personnel. The resulting estimates of the static equilibrium price
of pasture in the region circa 1976 are compared with estimates

of the rental price of hayland gathered by Barich'ello” and with
results obtained by other models. This comparison provides a

rough test of the hypothesis that constructs of static, optimizing

”See Barichello (1978).
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behavior are appropriate in estimating farm response via

representative farm models.

1.6 Organization of the Study

Chapter 1 includes a brief statement of the problems, the objectives
and the basic methodology to be followed.

Chapter 2 presents a theoretical study of properties of derived
demand schedules and comparative static effects for an individual firm
facing variable factor prices, and points out the implications of the theory
for a methodology of evaluating community pasture programs.

Chapter 3 presents a method for calculating the comparative static
effects of a shift in a firm's factor supply schedule. This method in
principle incorporates verifiable restrictions excluded from traditional
comparative static methods without at the same time specifying essentially
unknown aspects of structure. Simple (two and three input) illustrative
models are constructed.

Chapter 4 examines the appropriateness of the construct of static,
optimizing behavior in the context of estimating farm response via represen-
tative farm models, and summarizes the structure of a static linear pro-
gramming model of a "representative" beef ran;:h.

| Chapter 5 summarizes the study and provides basic conclusions.

Technical material related to Chapters 1-4 (primarily proofs and

details of the method of comparative static analysis and the linear pro-

gramming model) is presented in the appendices.



CHAPTER 2

QUALITATIVE COMPARATIVE STATICS AND DERIVED

DEMAND: AN EXTENSION
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"CHAPTER 2

QUALITATIVE COMPARATIVE STATICS AND DERIVED
DEMAND: AN EXTENSION

2.1 Introduction

In the previous chapter, we pointed out that variable factor prices
are not uncommon at the firm level. Indeed, we noted that the supply
price of land and (during most of the year) of labor should generally be
endogenous to the firm in agriculture. This was confirmed by observation
in the case of pasture in the Peace- River and Prince George regions of
British Columbia.

Suppose that the construct of static, optimizing behavior is of value
in the applied economics of agriculture — this assumption_w-ill be verified
in Chapter 4. ‘_Then it follows that extending the theory of
the firm to the case of variable factor prices should be a small positive
. addition to the tools of the profession. Since the received theory of the
firm is embodied in a set of formal propositions aﬁd proofs, extensions
to thi% theory also should be made in a rigorous manner.

| In this chapter, we s_hall extend the static theory of the firm to
the case of variable factor prices and we shall point out implications for
the methodolog.y‘of evaluating community pas;cure programs. As we shall
see, the farm value of community pasture. depends solely on the farm's

demand and supply schedules for pésture, and the related comparative
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static output effect1 can be decomposed as the product of the related com-
parative static change in total pasture and the comparative static output

- effect of an exogenous cHange in the quantity of total pasture employed by
the far'm.2 For these reasons, we shall concentrate on extending the
theory of derived demand, i.e., price-quantity relations in input markets,
to the case of variable factor prices.

The theory of derived demand with variable factor prices is
investigated here by making explicit use in formal analysis of the following
equivalence: a firm's derived demand schedule is equivalent to a schedule
of shadow prices for the input. This relation is the "intuitively obvious"
principle that underlies the textbook statement that factor market
equilibrium occurs at an intersection of factor demand and supply
schedules; but this principle has not previously been incorporated into
formal analysis of the theory of derived demand. This equivalence implies
that the area under any section of the firm's derived demand schedule is
equal to the general equilibrium benefits to the firm (gross of supply costs
of the input) of employing the corresponding levels of that input, i.e.,
the gross value to the firm of those levels of input. This in turn implies

that the user value of programs shifting factor supply schedules {and,

TFor simplicity, we shall usually refer to "the" comparative static
change in beef output. In fact, we can define "short run," "long run,"
etc. comparative static changes by making appropriate assumptions about
the structure of the "stationary state" and the actual underlying adjust-
ment cost function (Rothschild, 1971).

2These two statements seem "obviously" true, but the first
statement has in effect been the subject of some controversy.
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in the absence of market "distortions," etc., the associated change in
consumer plus producer surplus) can be determined directly from knowledge
of the appropriate factor market.3 These results support the approach
to evaluation of community pasture programs adopted by Barichello
(1978): (in the absence of a commercial market for pasture) the farm value
of the program is estimated from observations of a commeréial market for
an alternative use of improved land (plus a correction for any distortions).
In addition, relations between the slope of the derived demand
schedule and several properties of the firm's maximization problem are
readily established from this equivalence. For example, the derived
demand schedule for pasture is necessarily positively inclined given
increasing returns to scale and fixed prices for all other inputs, and the
schedule can be positively inclined over large areas of its domain given
decreasing returns-to scale and non-convex isoquants. Moreover, non-
convexity of isoquants and increasing returns to scale cannot be ruled
out a priori in the case of variable factor prices, and the possibility of
non-convexity of isoquants cannot readily be verified or rejected by
empirical observation. Therefore, we cannot readily deduce an upper
bound on the slope of the derived demand schedule for pasture from

this theory of the firm plus empirical observation (except in terms of

3This relation between surpluses in factor and product markets had
at one time been declared incorrect (Schmalensee, 1971), and has been the
subject of additional papers that have proved the relation under various
special conditions (Panzar and Willig (1978) provide the most general
treatment). Here we shall prove the relation under general conditions
and by methods that are quite different from those employed in previous
studies. ,
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the supply schedule for this input). This in turn implies that we cannot
readily deduce in this manner an upper bound on the comparative static change
in total pasture employed by the farm or on the comparative static change in
beef output due to the community pasture programs.

Thus the usual qualitative comparative statics methods, employed
in this chapter, permit us to conclude that the farm value of the community
pasture program can be estimated directly from knowledge of the market
for pasture or of the market for an alternative use of improved land;
but these methods plus empirical observation can seldom lead to an
édequate.measure of the comparative static change in pasture input or
beef output. In the next chapter- we shall present a "quantitative"
method of comparative static analysis that, in principle, incorporates
restrictions on many empirically observable parameters of the firm's

maximization problem.

2.2 Results of Previous Studies

In this section we summarize the results of two classes of previous
studies: studies concerning the relation between surpluses in product
and factor markets, and studies concerning the relation between the slope
of the individual firm's derived demand schedule and properties of the
firm's maximization problem.

The following notation will be used. Define the firm's static
(primal) maximization problem as

N .y

maximize 7(x) = R(x) - I w'x
i=1

.(P)



17

where R(x) denotes total revenue as a function of input levels x, and
wi = wi(xi; oci) if wi is endogenous to the firm. Let x* be a solution to
problem P. The firm's derived demand schedule for input i is obtained
by varying the exogenous variable wi or G.i and recording the relation
between xi* and the marginal factor cost. For simplicity, denote the

firm's derived demand schedule for input i as x'(w') if the supply price

w'is exogenous to the firm.,

2.2.1 Relation between Surpluses in Factor and Product Markets

The relation between surpluses under derived demand schedules
and consumer's surplus appear to have been considered too obvious for
commentu until Schmalensee (1971) argued that the change in surplus
between a derived demand and supply schedule for an input, generated by
a shift in the supply schedule for that factor, generally exceeds the
related change in consumer's surplus. Then a short series of papers
verified the equivalence between measures of surplu5 in product and
5,6

factor markets under special conditions.

This literature has established the following:

uFor example, see Prest and Turvey (1965), p. 691,

5See Wisecarver (1974), Anderson (1976), Schmalensee (1976)
and Panzar and Willig (1978).

6lt should be noted that the controversy has concerned fundamental
properties of derived demand schedules rather than difficulties in aggrega-
ting over firms. By assuming that prices are exogenous to the industry,
Schmalensee (1971) in effect denied that surpluses in factor and product
“markets were equivalent even in the case of a shift in a factor supply schedule
of a single firm. Likewise, later papers on this relation typically simplified
the problem by ignoring firm interactions (the one partial exception is
Wisecarver, who outlines an argument that assumes constant elasticity of
aggregate factor supply).
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1. given perfectly elastic or perfectly inelastic supply schedules
of inputs at the firm and industry level, the welfare changes
resulting from input price changes can be measured as changes

in the surplus under the industry factor demand curve; and

2. given that a change in factor price leads to a change in pro-
ducer's surplus in that market, the weifare changes (change
in consumer plus producer surplus) of course cannot be
measured simply in terms of changes in consumer surplus in

output markets. 7.8

2.2.2 Slope of the Firm's Derived Demand Schedule

Suppose that the equilibrium supply price w'is exogenous to the
firm, x* is an interior solution for problem P, 7n(x) is twice differentiable

at x*, and the Hessian matrix ['nij(x*)] is always negative definite. Then
i

B_Xi <0, i.e., the derived demand schedule for input i is always

Iw

negatively inclined. If instead [Trij(x*)] is negative semi-definite, then

axi*

dwl 9

positively inclined.

£ 0, i.e., the derived demand schedule for input i is never

Ferguson (1969) and Maurice and Ferguson (1971) attempt to

extend the analysis of Samuelson and others to the case of variable factor

7See Panzar and Willig (1978).

8This second point favors the measurement of effects of community
pasture programs in the pasture market rather than in product markets.
Measurement of these effects via product market calculations generally re-
quires considerably more .information than does measurement via the pasture
market (Carlton, 1978).

For example, see Samuelson (1947) or, for a simpler approach using
duality, see McKenzie (1956-7), pp. 188-9 and Karlin (1959), p. 273.
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prices; but their manner of doing this is fundamentally incorrect. Their

major errors can be summarized as follows:

1. totally differentiating the first order conditions with
respect to the endogenous variable wi rather than with
respect to ozi (Ferguson, 19(59);10

2. defining the firm's derived demar_\d schedule in terms of
equilibrium supply price rather than equilibrium marginal
factor cost (Ferguson, 1969 and Maurice and Ferguson,’

1971).

Given this definition of a derived demand schedule, they conclude that
"unique factbr demand functions do not exist when factor prices are

variable to the firm." (Maurice and Ferguson, 1971, p. 133). On the
other hand, suppose that the firm's derived demand schedule xi(oci) is

defined in terms of equilibrium marginal factor cost. Then the statement

quoted above is incorrect provided that w' = w'(x'; oc') rather than

i_ i i, 11 . . .
w Zwix;a). Moreover, even overlooking this uniqueness problem,

the concept of a derived demand schedule is a much more useful analy tical

tool when it is defined in terms of equilibrium marginal factor cost.12

10Silberberg (1974b), p. 738 has criticized Ferguson and Saving
(1969) for a similar error.

”See Section 2.4.2.

12See Sections 2.4.3 - 2.4.5.
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2.3 Difficulties in Extending Results via Usual Methods

The theorems summarized in Section 2.2.2 for the case where wi
is exogenous to the firm can be derived in a straight-forward manner
from this restriction. Thus it is not surprising that the slope of the
derived demand schedule becomes ambiguous when this restriction is
relaxed. Nor should it be surprising that the methods commonly used to
sign the slope given fixed factor prices are not appropriate for signing
the slope under certain quite different restrictions, e.g., various
restrictions on the production function. In Section 2.4.5 we shall employ
a slightly different method for this purpose.

Here we shall point out that the methods commonly employed in
comparative static analysis of the firm — primal, dual and primal-dual
methods — are at best clumsy in signing the slope of the derived demand

schedule given various restrictions on the firm's production function.

2.3.1 Primal Methods

The usual restrictions

N j*

z 'ni.(x*) 8xi - w ,x'* =0

j=1 J Ja

N j* .

I om (x*) "’xi = 0 all  k #i
j=1 ) da

[Trij(x*)] negative definite

w'(-x'; oc'), exhaust the implications

for the primal problem P, where w'
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*
for -ali— of the maximization hypothesis,13 and it can easily be shown

el
that the slope of the derived demand schedule for input i is unsigned by
these restrictions. Nevertheless the primal approach becomes messy

and complex when restrictions such as increasing or decreasing returns to

scale and convexity /non-convexity of isoquants are introduced.m
2.3.2 Dual and Primal-Dual Methods
For the primal problem
- N i i
maximize m(x;p,a) = pF(x) - I aw(x)x , . .. o (P)

i=1

where 7(x; p,a) is linear homogeneous in (p,a), define the dual profit

function

mp,0) = {all (maxx{ﬂ(x;p,a):p,aepo}

where PO denotes the domain of (p,a). As in the competitive case,
n(p, o) is convex and linear homogeneous in (p,a).

It appears that in general a second order approximation (in x)
of m(x;p,a) at any solution x*(p,a)} to p can be constructed from

'n(p,a)15 as in the competitive case.16

This suggests that, in principle,
restrictions on F(x) can be incorporated into a dual approach to compara-

tive statics when factor prices are endogenous to the firm.

See Section 2.1 of Appendix 3.

For some idea of the complexity of primal methods in such cases,
and of the ease with which serious analytical errors can be introduced lnto
such approaches see Ferguson (1969), Chapter 8.

See Epstein (1978).

16See Blackorby and Diewert (1979), and Section 1 of Appendix 4
for an alternative proof.
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However, the dual approach may lose its simplicity even if it
is possible to incorporate restrictions on F(x)} into our analysis. For
example, consider the staﬁdard assumption that F(x) is concave (which is
not necessarily true when w:i(xi; a) > 0). The additional restrictions
placed on the dual by this assumption are not obvious — convexity and
linear homogeneity of n(p,a) hold irrespective of F(x) concave. Thus the
dual approach to comparative statics is cumbersome even though such
restrictions on F(x) apparently can be incorporated into the analysis.

Similar problems arise with the primal-dual method of comparative

statics suggested by Silberberg (1974a). For any problem of the form
maximizex m(x; o) . . . . . (PY)

define the "primal-dual” problem

minimize oLL(x,oc) = mx*(a), ) - wx,q) . . . .(P-D)

X,

where x*(a) denotes the solution to P' as a function of a. The second order
condition for an interior solution to problem P-D is positive semi-definiteness

of the Hessian matrix

where L* is evaluated at a solution (x*,a*) for P-D. Silberberg shows
that many standard comparative static theorems can be immediately

*
deduced from the positive semi-definiteness of the submatrix L* =T X7
- oo ooa *

However, F(x) concave implies simple restrictions only on Fxx’ which appears
in .submatrices other than L&a‘ Thus, for our purposes, methods based

solely on L&a positive semi-definite also seem unsatisfactory.
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2.3.3 Use of Aggregate (Industry) Relations

Hicks-type formulas for the industry elasticity of derived demand19
are consistent with the assumption of variable faétor prices at the industry
level; But these formulas are not appropriate for the investigation of
relations between elasticity of derived demand and other parameters at the
firm level even under the assumption of fixed prices for the product and
all other inputs. These formulas are derived fndependently of the
second order conditions for a solution to a firm's maximization problem;
whereas, the slope of a firm's derived demand schedule for input i depends
entirely upon the Hessian for TT(X)- + wixi.20 Thus relations calculated
from these formulas can be more ambiguous than the relations implied by
the static maximization hypothesis. This criticism can be verified later

by comparing Theorem 2 and a formula due to Andrieu (1974) .21' 22

19ln particular, see Hicks (1966), pp. 241-46 and Andrieu
(1974). :

2OThe Hicks-Andrieu formulas express the industry elasticity of
derived demand as a-function of parameters that (or course) do imply
restrictions on the Hessian of m(x) + wix!; but these restrictions will
satisfy the second order conditions for a maximum only by coincidence.

21See Appendix 2. The example (where firm and industry analyses
?ye elqui\ialent) shows that the criticism applies at the industry as well as
irm level.

22Diewert (1978) includes an analysis of industry derived demand in
terms of duality theory. Since the assumptions employed there essentially
imply integrability (Epstein, 1978), the analysis can be "collapsed" to the
firm level without encountering the criticism levelled here against interpre-
ting Hicks-type formulas at the firm level. However, it has already been
noted that a dual approach seems inappropriate for analyzing the
implications of restrictions on the production function F(x) in the case of
variable factor prices (see Section 2.3.2 ),
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Extensions to the Theory of Derived Demand

Here we present extensions to the theory of derived demand that

was summarized in Section 2.2. These extensions, which relax the

assumption of fixed factor prices, are developed from the equivalence

between a derived demand schedule and a schedule of shadow prices for

the input. This equivalence is obviously true and underlies the textbook

statement that factor market equilibrium occurs at an intersection of factor

demand and supply schedules. Nevertheless this principle does not

appear to have been incorporated previously into formal analysis of the

theory of derived demand.

The main points that are established here can be summarized as

follows:

1.

A derived demand schedule for a firm and a construction relating the
exogenous quantity and corresponding shadow price for an input are
equivalent under very general conditions (viz., under essentially all
conditions where a derived demand schedulve can be defined).

(Using 1) in the absence of "distortions" in the economy and the presence

of a shift in the supply schedule of factor i for a firm or group of firms,

~the change in surplus in the firm or industry’s market for input i is

always identical to the corresponding change in producer plus consumer
surplus;

(Using 1) the firm's derived demand schedule for input i always inter-
sects the firm's harginal factor cost schedule for input i "from above" at

a (generally unique) equilibrium level of input i; and

(Using 1 and 3) the firm's derived demand schedule for input i can be

positively inclined over some {x'} even given decreasing returns to scale

(provided that some isoquants are not convex), and is positively inclined
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iy . . .
over all {x } given increasing returns to scale.

Statements 2-3 are "intuitively obvious" appiications of statement 1.
Nevertheless, statement 3 has not been proved previously and statement 2
has even been the subject of some cohtroversy in the literature. Statement 2
is slightly more general\ than a theorem presented in Panzar and Willig
(1978). 23

The méin implications of these theorems for a methodology of
evaluating community pasture programs can be summarized as follows.

First, by statements 1-2, the farm value of the community pastures
program and — in the absence of market "distortions" — the related change
in consumer plus producer surplus can be measured directly in the factor
market for pasture.zu Second, by statements 3-4, in the absence of
knowledge about the firm's production function we can only infer that the
community pasture program does not lead to a comparative static decrease
in the level of pasture employed by the firm, i.e., we cannot infer a

finite upper bound for the pasture. Thus, even assuming that the ratio
of pasture to beef output does not decrease, we cannot infer a finite upper

bound for the comparative static change in beef output.

2.4.1 Notation and Definitions

The following notation, definitions and conditions are used in

the theorems presented here.

23See Section 2.2.1.

2this statement assumes that community pasture provides the same
services as other types of pasture. In fact, a community pasture typically
-employs a rider to move and watch over cattle. This difference is incorpor-
ated into the model that is summarized in Chapter 4 and the related appendix.
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2.4.1.1 A Definition of Derived Demand

In most analyses of derived demand, where the factor supply price
schedule to be varied is defined as a price exogenous to the firm, there
is no need to distinguish between factor supply price and marginal factor
cost in defining a derived demand relation. However, an endogenous
SUpply price implies that factor price and marginal factor cost are not
necessarily equal. Since the possibility of a divergence between factor
supply price and marginal factor cost is to be incorporated into our
modelling, we must distinguish between the two in defining a derived
demand felation. A firm's derived demand schedule for an input is
defined here as the set of pairs of equilibrium quantity and marginal
factor cost (for the input) which are obtained by varying the total cost
schedule of the input in an otherwise unchanged producer maximization
problem.

To be more precise, let

x = Nx1 vector of activity levels for the N inputs
of a firm
ci (x) = total cost schedule to the firm for its i'th input25
c1(x;on) = total cost schedule to the firm for its input 1,
as a function of x and a parameter o
y = Mx1 vector of activity levels for the M outputs of the

firm

25If c'(x) is function only of the level of employment of input i
by the firm, then c'(x) can have the following forms: wix! (supply price
“exogenous), s!(x')x! (supply price endogenous, and, in general, supply
price does not equal marginal factor cost), and g'sl(x')dx' (supply price
endogenous, and supply price of ith unit equals® marginal factor cost).



27

y = f(x) = production function (vector-valued for M>1) for the
| firm
b(y) = total benefits schedule to the firm as a (scalar-valued)
function of its M outputs
R(x) = b(f(x)), i.e., total benefits schedule to the firm as a
(scalar-valued) function of its N inputs
x* = vector of the N input levels employed by the firm at a

solution to a maximization problem

Then a firm's static maximization problem can be defined as
follows.
Definition 1. A producer problem P is defined as

1 N
maximize m(x) = R(x) -c (x;a) - & c(x) . .. .(P)
i=2
for a particular value of the exogenous variable o, and the solution set to
. . *p 26

this problem is denoted as {x (o) }.

Given this definition of a firm's static maximization problem, the

firm's derived demand schedule for any input 1 can be defined as

follows.

Definition 2.  The firm's derived demand schedule for input 1 is defined

as

*
(x""P(wy, MFc'(@) foran o} = D
1 ac' (x P(a);0)
where MFC "(a) = 3 . . Denote the relation defined by the
19X

pairs in DP as p1 = p1(x1).

26lt can be shown that this model of a firm's static maximization
problem formally applies to both single-enterprise and multi-enterprise
models (e.g., see footnote to Theorem 1).
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The derived demand schedule is expressed in the form of the relation p1 =
pl(xl), which is the inverse of the usual form, for the following two
reasons: in this manner the derived demand relation is defined as a function
rather than as correspondence,27 and this form of the relation emphasizes

the shadow price interpretation of a derived demand schedule.28

2.4.1.2 A Shadow Price Relation Similar to Derived Demand

Let

Ax1 = an exogenously determined level of input 1 employed by the

firm.

In the following problem, a quantity constraint rather than a price constraint
is associated with input 1. This device will be useful later in developing

properties of derived demand schedules (Definition 2).

Definition 3. A producer problem Q is defined as

Q N
maximize m(x)~ = R(x) - I c(x)
i=2
.' . '(Q)

subject to x] = x1

for a particular value of the exogenous variable x1, and the
n —
solution set to this problem is denoted as {x Q(x1) 1.

Then the following relation can be formulated.

27See Corollary 2.

28See Theorem 1.
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Definition 4. The firm's shadow price schedule for input 1 is
defined as
— *Q, 1,.Q —
(xl, 8 m(x _(_x)) } for all xls:X1 = DQ
ax?t
where
*
x! = {x1 P(oc) for all oc} .
am(x )@
The derivative = is simply the change in the solution value of the
9x '

objective function for a problem Q that results from a small change in the
exogenous parameter x1.
In addition, we can define "corresponding" problems P and Q as

follows.

Definition 5. Any particular problem P
N

maximize R(x) - c‘(x;a) - I ci(x)
i=2

is said to "correspond" with a problem of the form Q

N .
maximize R(x) - I c'(x)

i=2

—_—
subject to x] = x1 P ,

*
where x1 P is an element of a solution for the problem P.
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2.4,1.3 List of Major Assumptions

The following assumptions will be made at various times in the

theorems to be presented in this chapter.

HEd
Condition 1. For any solution x* to a problem P: x' >0,

i=1,--,N.

Condition 2. In the neighborhood of any solution to a problem P:

R(x) and all c!(x) are twice differentiable.

Condition 3. ¢ = c’(xl; a), i.e., the total cost of input 1 to the firm

is independent of the levels of inputs 1,+++,N employed

by the 1"irm.29
Bzci(x)
Condition 4. — K 20 forallk x and i,j,k =1,+-¢,N,
ax) ax
i.e., factor supply prices are non-decreasing in x.
Condition 5. BR(?) 20 forall x and i=1,¢¢,N,
ax

i.e., inputs are "freely disposable."

Condition 6. If the set of attainable TT(X)Q for a problem Q is bounded

from above, then the set is also closed from above.

29For our purposes Condition 3 is the most important of these
assumptions and it is "generally" correct. Examples where Condition 3
is likely to be violated include (a) the firm in question is a monopsonist in
markets for input 1 and another input, which are supplied by a single
industry, and (b) input 1 is an intermediate product of the firm (so that
the cost of producing input 1 depends on the level of all inputs employed
in producing input 1).
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Condition 6 simply rules out the unlikely possibility that maximum TT(X)Q+ K
(a real number), i.e., the set of attainable TT(X)Q for a problem Q is bounded

but not closed from above.

2.4.2 Derived Demand as a Schedule of Shadow Prices

Given that c1 = cl(x1;oc), i.e., that the total cost of input 1 to
the firm is independent of the levels of inputs 2,++-,N employed by the
firm, the firm's derived demand schedule DP and schedule of shadow
prices DQ for input 1 are équivalent. ‘ On the other hand given that
c1 = c1(x; o), i.e., that the total cost of input 1 to the firm is not
independent of the levels of inputs 2,++¢,N employed by the firm,in
general pP and DQ for input 1 are not equivalent.

These relations between derived demand schedules and shadow price
schedules are stated more precisely as Theorem 1 and Corollary 1, respect-
ively. Theorem 1-A is obviously true, and Theorem 1-B follows from 1-A
plus the envelope theorem.30

The properties of a derived demand schedule listed in Corollary 2
are deduced from Theorem 1. Note that p1 = pI(x1) is a function rather
than a correspondence (Corollary 2-B). In addition, the domain of

1

p = pl(x1) is a convex set, and pl(xl) is continuous and differentiable

within its domain.>!

30The essential points of the proof can be summarized as follows.

cl = cl(x1; cx)(Condltlon 3) implies that input 1 can be fixed at the equmbrlum
level(s) x1*P and this factor supply schedule can be removed from the maximiz-
ation problem P without affecting the solution(s) x P, which establishes
Theorem 1-A. Then, by the envelope theorem (i.e., given an infinitesimal
change in an exo genous variable, the change in the value of the objective
function when all endogenous variables vary optimally is equal to the change
when all endogenous variables remain fixed), Theorem 1-B is established.

31Theor'em 1 and Corollary 2 will be useful in proving the remaining
. theorem and corollaries in this chapter. :
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Theorem 1 and Corollary 1 provide the following rationale for
employing Condition 3, i.e., c1 = c1(x1;a), in any study of the properties
of derived demand schedules. Since the shadow price schedule DQ is by
definition invariant to changes in the supply schedule for input 1,
Theorem 1 implies that the derived demand schedule DP is invariant to
changes in the supply schedule of input 1 given only that c1 = cl(x; a).
Since there is no economy in defining a derived demand schedule DP for
each possible specification of the supply schedule for the input, we shall
restrict our study of derived demand schedules to cases where

c1 = c1(x1;a).

Theorem 1. Suppose that conditions 1-3 are satisfied. Then

* * *
(A) x T} <= ix Ax""Pa))} foran a,
i.e., any problem P and the corresponding problem(s) Q

have identical solution sets; and

) {(x""P(a), MEC (@) for all a} <= {(x' P(a),
Q" P

1

9 m(x

for all o},

9 X

i.e., DF <= pQ 32

32Formally Theorem 1 only applies to the case where input 1 is
employed in a single enterprise, since the cost schedule for input 1 is
defined as a function of only one input. However, Theorem 1 generalizes
to the firm that employs input 1 in M enterprises. In this case, we can
M _

! c‘( z x”;oc) and the quantity constraint in a corresponding

M i 1 i g
problem Q as - I x J = x . It is easily shown that, with these modifications,
. j=1 .
Theorem 1 applies to the multi-enterprise firm as well as to the single
enterprise firm.

define ¢



Corollary 1.  Suppose that conditions 1-2 are satisfied, and that for

all a: ¢

8c1(x*P(oc);a) £ 0

Bx1

for at least one i # 1, Then

(A) {x*P(OL)} N {x*Q(x1*P(oc))} = null set for all a

i.e., any problem P and any corresponding problem Q

do not have any solutions in common; and

- ) 1*pP 1 Q .
(B) for any a: {(x (a), MFC (0))} N D # null set if and
only if . A
* H * * H *
oR(x ) _ N aclxT) | 3R Y 3 ackx™Y
x| i=2 ax 3x 1=2 ax !

. *P *P
for all (or, equivalently, any) x e {x (o)}

x'Q e x"UxP(a))1.33

Corollary 2. Suppose that conditions 1-3 and 5-6 are satisfied, and

denote the domain of p1 = pl(xl) as XD. Then

(A) if x1B is included in a solution to at least one problem P,

then all x1A such that 0 < xIA < x1B are in XD:

(B) p1 is a function of x1, i.e., p1 = pl(xl) associates one

and only one p1 with any particular x1 in XD; amd

33Corollary 1-B also assumes that conditions 5-6 are satisfied.

33
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(C) p'(x') is differentiable for all x' "within" X2, i.e., for

all x1 such that 0 < x1 < xIA and x1A

D

is an element of

X

2.4.3 Relation Between Surpluses in Factor and Product Markets

As was stated in Section 2.2.1, previous literature has established
under special conditions the equivalence of measures of surplus in a factor
market and measures of prbducer plus consumer surplus. These analyses
have assumed that factor supply schedules at both the firm and industry
level are either perfectly elastic or perfectly inelastic.

We shall establish this equivalence under general conditions by
direct application of Theorem 1. The analysis has the following implications
for a methodology of evaluating various programs that directly shift factor
supply schedules: under quite general conditions, the user value and (in
the absence of distortions in other markets) change in consumer plus
producer surplus can be measured in commercial rﬁarkets for the
input. |

Since distortions are common and commercial markets for pasture
are uncommon in British Columbia, the preceding comments do not apply
to thé,evalua.tion of community pasture programs. Nevertheless, the
results presented here support the approach adopted by Barichello
(1978) : estimating the farm value of the program by collecting data from
the commercial market for an alternative use of improved land, and
arriving at a measure of the change in consumer plus producer surplus

by attempting to correct this value for distortions.
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We shall now show that the usual conception of the relation
between changes in surpluses measured in factor and product markets is
correct — provided simply that each firm's total cost schedule for the
input in question is independent of the levels of other inputs employed
by the firm (conditioh 3). For the case where the shift in a factor
supply schedule is limited to a single firm,3" this will involve demonstrating
that the change in surplus calculated in the firm's input market represents
the general equilibrium benefits to the firm resulting from the shift in the
factor supply schedulé (given condition 3), and then noting the conditions
under which these private benefits correspond to social benefits (in the
sense of consumer plus producef surplus). For the case where the
shift in a factor supply schedule is gxperienced by all firms in a group
(e.g., an industry) we need only note (in addition to the above) that an
industry demand schedule for an input is a collection of price and quantity

combinations for derived demand schedules of individual firms.

2.4, 3.1 Shift in Factor Supply Schedule of Single Firm

Given Theorem 1, it seems intuitively obvious that the change
in surplus between a firm's derived demand and supply schedule for an
input, due to a shift in the sup}aly schedule of that input, is equal to
the associated change in equilibrium net benefits for the firm. Likewise,

we can prove Corollary 3 directly from Theorem 1.

34As was stated in Section 2.2.1, this is essentially the case con-
sidered by previous studies. In other words, by ignoring all interactions
between firms and by assuming the existence of an aggregate production
-function, the "industry" analyses in previous studies were equivalent to
analyses of a single firm.



Corollary 3. Suppose that conditions 1-3 and 5-6 are satisfied.

' *
(A) for any solution x A to a problem P where o = OLA,

1*A
X
1x ™y = mx*(0))2 +J plxdx! - cTx A o)
0
where
eronQ = N 1
m(x*(0)) = max{R(x) - % c(x) :x =0}
i=2
ol(0) = puix*(0)Y, *®*  and

8x1

: * *
(B) for a solution x A and a solution x B to two problems

of the form P that differ only in terms of a = OLA and

_ B .
a = o , respectively,

1*B
* *A *B B

x
1. _1*A A
X ;0

-c'(

) .

: X
m(x B) -mx ") = J 1*A pl(x1)dx1.-~c1(x1 ;07)

Then
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Suppose that there are no "distortions" in the economy, i.e., that

(a) marginal factor cost is always equal to factor supply

price for each firm,

(b) marginal revenue is always equal to product demand price

for each firm, and

(c) government taxes and subsidies are non-existent.
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In addition suppose that
(d) the marginal utility of income is constant for

all consumers;

so that consumer's surplus can be defined in terms of ordinary (non-
compensated) product demand schedules.

This correspondence between changes in surplus in a firm's factor
market and changes in comsumer plus producer surplus can be

deduced from Theorem 1 and Corollary 3 as follows. By Theorem 1,

Slix1A) - Moabiy) ayPocred®y N adloerx ™y 30
h=1 ayh axl i=2 axl « e e .(1)
1 1A, acl (x'"Aa)
By (1) and assumptions (a)-(d), p (x ") - ——1—'-&- equals the differ-
: 3Ix

ence between the dollar-equivalent benefits received by consumers from

the production associated with the marginal unit of input 1 minus the
supply costs incurred during this production. Since these costs are

. equal to the surplus foregone by employing these resources in this

A) _ 8c1(x1A;oc)

Bx]

particular manner (given assumptions (a)-(d)), p1(x1 is

equal to the change in consumer plus producer surplus resulting from the

production associated with the marginal unit of input 1, irrespective of

35The notation x*(xlA) simply implies that x*(x]A) is a solution x*
to the problem Q defined by the constraint x1 = xTA, or to a corresponding
problem P.

36, : Lo f(x e ax ) - f(x )

Any right hand side derivative lim for
Ax1+0 ax1

3F(x 1) l+
E)x1

Ax'>0 s represented here as
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the number of outputs and inputs involved in production. Likewise, by
Corollary 3,

1B 1B -
X 1.1, X M h, sl
J [pl(x1) _ 3¢ (xl,oc)] dx ! J [z Bb(K) dy (x*(x)
A 3 x VA h=1 3y ox?

i I
8 OXFlx D)y gy, e
1 ox1?

nm~mZ

i
By (2) and assumptions (a)-(d), the surplus over the interval (x1A, xlB)
in the firm's market for input 1 is equal to the change in consumer plus
producer surplus resulting from the associated production. Therefore,
any change in surplus generated in the firm's market for an input corresponds
exactly to the resulting change in consumer plus producer surplus given

assumptions (a)-(d) (and condition 3).

2.4.3.2 Shift in Industry Factor Supply Schedule

The above analysis can be generalized as follows to the industry
case, where shifts in c1(x1) for all J firms in the industry typically lead
to shifts in other factor supply schedules and product demand schedules
faced by the individual firm. Suppose that firms always face identical
supply schedules for input 1. Then the set of static general equilibria
across the J firms {x*1, .o -,x*") } can be express.ed as a corresponsence
of a single parameter o rather than of J parameters (on‘, -",aJ)v. If we
make the further assumption that a single static general equilibrium exists

for each o, then the industry factor demand schedule can be expressed as
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(x"(@), P'(a) : all a} C e (3
where
1 ST
X'() = £ x' ()
j=1
Pl(ot) = maximum p1 in {p1(x1*(o¢)j)j sj=1,000,0}

MM

Tx MM

p (x

i

Thus the change in surplus in the industry market for input 1 resulting

from Aa = ocB - aA can be expressed as
B . M J . B
AS = JO‘ plx (M da - T elix (BB
A j=1 ‘
o
I 1 A A
+ Zc (x (a);a7). N )]

j=1

Statement (4) implies that the argument presented in the previous paragraph
can be applied to the case of a surplus generated in a factor market by a
number of interacting firms. Therefore, statement (4) implies that,

given the assumptions of no "distortions" in the economy and of a constant
marginal utility of income for all consumers, the change in surplus between
the indu_sfry's demand and supply schedules for any input 1, ‘re‘sulting

from a shift in cl(x1) for all firms in the industry, is exactly equal to the

. . 37
associated change in consumer plus producer surplus over all markets.

37\ firms do not face identical supply schedules for input 1, then
statement (3) does not necessarily define the industry demand. schedule for

input 1. = However, the industry demand schedule will still be a collection of
price and quantity combinations from the derived demand schedules of individ-

ual firms; so a change in surplus (correctly measured) in the factor market due
to shifts in the factor supply schedules for each firm will still correspond to
the associated change in consumer's surplus.
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2.4.4 Slope of the Firm's Derived Demand Schedule

Here we present a corollary and a theorem concerning the slope
of a derived demand schedule, and effects of a finite shift in a factor
supply schedule, that are independent of any assumption of a fixed price
for the input. These statements imply the following: in general, an
upper bound for the comparative static increase in the quantity of total
pasture employed by a single recipient of community pasture cannot be
deduced without incorporating empirical knowledge of the firm's production
function into the analysis. The reason for this negative result is that
the firm's derived demand schedule can be positively inclined under
conditions that are reasonable a pr:ior'i. Thus, even‘if we assume that
the community pasture program does not increa;e the ratio of beef out-
put to the quantity of pasture employed by the user, we cannot deduce
an upper bound for the comparative static change in beef output with-
out incorporating empirical knowledge of the firm's production function

into the analysis

2.4.4.1 Relation Between Slopes of Derived Demand and Factor

Supply Schedules at Equilibrium

Textbook diagrams typically show that a firm's derived demand
schedule intersects the supply schedule for the input 'from above' at an
equilibrium in the factor market, and the analogue of this condition in

the product market was proved long ago.38 Nevertheless, this statement

38For example, see Samuelson (1947), pp. 76-77.
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apparently has not been proved in the past. Given the fundamental
nature of this proposition and the controversy that eventually arose over
the "obvious" relation between surpluses in factor and product markets,

a proof of this statement appears desirable.
Given Theorem 1 and conditions 1-3, it seems intuitively obvious

that the following condition

1,1
p](xl) intersects QC_(X_#&) from above at xlA, or pl(xl)
ax
. acl(xl ;o) 1A 1
coincides with ——=-"— at x '~ and some level x in the

2)x1

neighborhood of xIA is necessary for activity level xIA to

be included in a global solution to the firm's maximization problem P and
(almost) sufficient for xlA to be included in a local solution to P. Like-

wise, Corollary 4 can be proved frdm Theorem 1.

Corollary 4. Suppose that conditions 1-3 are satisfied for a problem P.

(A) If xA is included in a local solution to P, then

1, 1A,
p‘(xlA) _ 9¢ (x 1 ;o)
ax
apl(xlA) ) 32 (x"A. o)
Bx1 Bx1 2
1, 1A
(B) pr‘(xlA) _ 9c¢ (x 1,oc)
9X
3p1(x1A) g Bzcl(x]A;oc)
1 1.2 ’
d X dX

then x1A is included in a local “solution to P.
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2,4.4,2 Relation Between Slope of Derived Demand Schedule and

Various Properties of the Production Function

The relations between slopes of derived demand schedules and
certain additional properties of the firm's maximization problem
(especially returns to scale in production, and convexity or non-convex-
ity of isoquants) can be developed essentially from Theorem 1 and
Corollary 4.39 These relations are summarized as Theorem 2. By
statements A and B of the theorem, “the firm's derived demand schedule
for inpuf 1 is never positively inclined when R(x) is concave, irrespective
of the slope of c1(x1) . By statement D, the firml's derived demand
schedule is perfectly elastic when R(x) shows constant returns to scale
and the price for each input (other than 1) is exogenous to the firm,
irréspective of substitution possibilities (shape of isoquants) and the

slope of c1(x1).

3";’By means of Corollary 4, we are able to equate the comparative
static problem of determining the direction of change in equilibrium level
of input 1, resulting from a change in the factor cost schedule cl(x1), to
a problem of determining the existence of an equilibrium for particular
specifications of cT(x1). Since set-theoretic concepts, such as quasi-
concavity and returns to scale, are readily incorporated into analyses of
the existence of equilibrium, we are able to relate the direction of slope
of an individual firm's derived demand schedule to such properties by
these methods. An overview of the method of proof for Theorem 2 (as
well as the proof itself) is presented in Appendix 2.
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Theorem 2. Suppose that conditions 1-6 are satisfied. Denote the

domain of pl(xI) as XD, and denote a wage or rental rate that

is exogenous to the firm as w'. Then the slope of the firm's
derived demand schedule is related to certain properties of

R(x) and ci(x) (i=2,+++,N) as follows:

1,1
(A) If R(x) is strictly concave,uo then M £ 0 and
X

1

pl(xl) > p1(x1 +e) for all (xl,x +e} in XD, where

e >0.

1,1
(B) If R(x) is concave, then QP—(’]‘—) <0 for all x' in XP.
X

(C) If R(Ax) £ AR(x) forall A>1 and x 2 0 but R(x) is

not concave, then:

1,1
(y L& o, always for at least some x| in XP but

Bx1

N . 1, 1
(2) for some R(x) and I c'(x) : QL()](—)— >0 for some
1 D i=2 9 X
X in X7,

T .

(D) If R(Ax) = AR(x) = AR(x) for all (x,)) 20 and ci = wix!

1,1
for i = 2, ++-.N, then M =0 forall x'inxP.
9X

i i
X

—_
w

(E) If R(Ax) > AR(x) forall A>1 and x >0 and c' =

1.1 :
fori=2,+-+,N, then ap—();-—)zo and pl(x1) < p1(x1+e) forait
ax

(x],xl +e) in XD, where e > 0.41,42 (on following page)

uoThe firm's total benefits function R(x), which is simply a total .
revenue function if the firm maximizes profits, is strictly.concave if and only
if (1) R(Ax) < AR(x) for all X > 1and x >0, and (2) all isoquants of B(x)
are strictly convex for x 2 0. Likewise, R(x) is concave if and only if
(1) R{(Ax) € AR(x) for all A > 1and x >0, and (2) all isoquants of R(x) are
convex for x 2 0.
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However, a derived demand schedule may be positively inclined
under many possible conditions. By statement C, a derived demand
schedule may be positively inclined at some points even if R(x) shows
decreasing returns to scale, provided that at least some isoquants are not
convex. By statement E, a derived demand schedule is positively inclined
over the entire domain when R(x) shows increasing returns to scale and
the prices of all other inputs are exogenous, irrespective of substitution
possibilities for the firm.

Theorem 2 has important implications for the evaluation of community
pasture programs. By Theorem 2: a positively inclined derived demand
schedule is consistent with the notion of equilibrium for the firm, provided

that R(x) shows increasing returns to scale or non-convex isoquants.

l”Overlooking mathematical details (concerning inflection points)
that are of no economic significance, conditions in A and E imply that
1,1 1,1
dp (x) . and AE_(L]_)_ > 0

E)x1 9 X

’

respectively.
42 1,1, > 1.1
Note the asymmetry between statements C and E: p (x') < p (x" +e)
for decreasing returns to scale and fixed factor prices (i#1) whereas,

pl(x1) < p'1(x1 +e) for increasing returns to scale and fixed factor prices
(i#1), where e > 0.
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Neither of these conditions can be ruled ouf a pr'ior'i.u3 Therefore, even
if we assume that the firm is at long run equilibrium before and after the
introduction of the community pasture programs, we cannot rule out
a priori the possibility than an inframarginal shift, of magnitude x©P units,
in the firm's supply sch.edule of pasture leads to an increase in the level
of pasture 4employed by the firm that is greater than x“P (see Figure 1).
In addition, we can demonstrate that, for a downward shift in a
firm's factor supply schedule'c‘(xl),

1* *
dx > dR(x )
1*

< -
X R(x )

depending on properties of the particular maximization problem.lm In other
words, under reasonable assumptions the percentage change in (farm value of)
output can be either more or less than the percentage change in total pasture
that is due to the community pasture program. This defines a second source
of difficulty in calculating a finite upper bound for the comparative static
change in beef output associated with community pasture programs (in
addition to problems in calculating a finite upper bound for the change in

total pasture).

u3lf the supply schedule for any input is positively inclined, then
R(x) may show increasing returns to scale and/or non-convexity of iso-
quants in the neighborhood of an interior long run equilibrium, i.e.,
these conditions are consistent with the maximization hypothesis. Moreover,
increasing returns to scale and non-convexity of isoquants cannot be ruled
out g priori as "unreasonable" properties of a production process relevant
to comparative static modelling. The argument can be summarized as follows
Divisibility of the production process would imply decreasing or constant
returns to scale, and additivity and divisibility together would imply con-
vexity of isoquants (and also constant returns to scale) (see Malinvaud, 1972,
pp. 51-3 for definitions). However, divisibility may be unrealistic, and
additivity is reasonable only for models of change in long run equilibrium
~(in any "short run," certain changes in input levels are likely to be, in
effect, infeasible due to high adjustment costs).

uu(on the following page)
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s(xp)

ch < Axp; S(Xp)l
p(xP)
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xcp Axp

quantity of pasture services

number of units of community pasture alloted to the firm

change in the number of units of pasture employed by
the firm (due to the community pasture program)

the firm's derived demand schedule for pasture

the firm's supply schedule for pasture, prior to the
community pasture program

the firm's supply schedule for pasture, as a result of the
community pasture program

Given a Positively-inclined Derived Demand Schedule for
Pasture, the (inframarginal) Allotment of Community Pasture
is Less than the Resulting Change in the Level of Pasture.
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2.5 Summary of Implications for the Evaluation of Community Pasture

Programs

In this section, we summarize the major implications of the theory
presented in this chapter for evaluations of community pastures programs.
The restrictions on comparative static effects of community pastures programs
that are implied by this theory have beeﬁ shown to be extremely weak. Indeed,
these restrictions may be considerably weaker than the reader had previously
considered possible, or at least reasonable. Thus, the discussion here
.should help us to avoid errors in our a priori theorizing about "likely"
comparative static effects of community pastures programs, and underscores
the importance of incorporating into our analyses greater knowledge of the

producer problem(s) faced by users of community pasture.

2.5.1 Relation Between Surpluses in Factor and Product Markets

The analysis of the relation between surpluses in factor and
product markets (Sections 2.2.1 and 2.4.3) implies that, for various

programs shifting factor supply schedules, the user value and (overlooking

| 1* *
“silberberg (1974b) shows that B > RO g5 firmg that
x R(x )

‘minimize average cost (as in long run competitive equilibrium). Assuming

that the number of inputs equals 2 and that c2 = wzxz, we can also show
1% .
that d)l(* > dR(x*) if R(xI,xz) is homogenous of degree less than 1 and
X R(x*) 3

'I* *
dx < dR(x )

T* if R(xl..,xz) is homogeneous
X R{x*)

all isoquants are convex, and that

of degree greater than 1.
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distortions in other markets) change in consumer plus producer surplus
could be measured directly in commercial markets for the input (see
Figure 2). This analysis, plus the presence of market distortions and
absence of commercial markets for pasture in British Columbia, suggests
the following approach to the evaluat.ion of community pasture programs.
The farm value of the program is estimated from data concerning the
commercial market for an alternative use of improved land (e.g., as hay
land), and the related change in consumer plus producer surplus is

estimated as this farm value plus or minus corrections for distor‘tions.u5

2.5.2 Slope of Derived Demand Schedule and the Measurement of

Distortions

However, the theory presented in this chapter does not provide
any useful restrictions concerning the comparative static effects of
community pasture programs on distorted markets. In particular, the
theory presented in this chapter does not provide any useful restrictions
concerning the comparative static change in beef output for the
representative farm. Indeed, this theory does not determine an upper
bound for the change in total pasture employed by the farm, which in
itself precludes the calculation of an upper bound for the change in
beef output for the farm. Tﬁis last statement can be elaborated upon

as follows.

$3see Barichello (1978).
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—— uantity of pasture services
cp "‘“5""’)( S q Y P _

number of units of community pasture alloted to the farm

xP =
pcp = rental price of community pasture
p(xp) = firm's derived demand schedule for pasture
s(xp) = firm's supply schedule for pasture, prior to community
pasture program
s(xP)' = firm's supply schedule for pasture, as a result of community
pasture program
Po = equilibrium price of pasture, p’rior to community pasture
program
Pq = equilibrium price of pasture, as a result of community

pasture program

/4

net user benefits associated with the increase in employment
of pasture

net user benefits associated with the land freed from use as
pasture

AN\

Figure 2 Estimating the User Value of Community Pasture Programs
: ‘in a Market for Pasture, 6

%This diagram is discussed in Barichello (1978), pp. 28-32.
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2.5.2.1 General Case

As shown in Theorem 2, derived demand schedules can be pos-
itively inclined under reasonable conditions. In the absence of considerable
knowledge of the farm's production function, we can only infer than the
derived demand schedule for pasture cuts the supply schedule for pasture
"from above" (Corollary 4). However, this condition seldom places any
useful restrictions on the changé in total pasture employed by the farm.

Assume, for simplicity, that the aggregate cost schedule of

1

pasture to the farm can be written as ¢ = c1(x1;a), where x1 denotes

the total quantity of pasture employed by the farm. The community pasture
can be represented as a small change in the parameter o that leads to a

. . 1 .
decrease in the marginal cost of pasture for some levels of x ', i.e.,

21, 1 21, 1.
LC_(_X;CX) < 0 for some X andm =
1 1
9X 00 ‘ Ix da

this cost schedule is continuous at the farm's pre-community pasture

0 for all otherx‘. If

equilibrium x* and the farm employs pasture at this equilibrium, then

the following condition is satisfied:

*
1 1*) _ E)cl(x1 ; o)

p (x 3 =0 . ... . (5)
X

Totally differentiating (5) with respect to o for the change in the level of

total pasture employed by the farm:

‘l*

- 82c1(x ;0)
1% 1
9X X da
= T F L . . . .(86)
da ¢ (x ;a) _ ap (x" )
' 1 2 1
oX 3 X
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2.1, 1% _
Therefore, given (6) and - 8 ¢ (); ;o) z 0, the condition
aX dQ '
1,_1% 2.1, 1% :
9p (x1 ) < 3¢ (>1( 2’0‘) simply implies the restriction
ax ax
1*
053X ¢ e e D
90

which is not helpful. By Theorem 2, a restriction stronger than (7) cannot

be obtained without knowledge of the farm's production function.

2.5.2.2 Special Cases

Nevertheless, note that we could obtain meaningful results if the
community pasture program did not affect the marginal cost of pasture at
equilibrium:

* 2.1, 1%
= 0 given 3 ¢ (x 'a)=0.
1
X da

'c}x1
3o

This case is accurate when the farm can rent additional pasture or hay land
at a constant price at equilibria both before and after introduction of the
community pastures program.

However, commercial rental of pasture does not appear to occur
in the Peace River and Prince George regions, and appears to be accurate
for only a minority of beef ranches in other areas. Moreover, rental of
hay land seems uncommon in Prince George, and the rental price of hay

land seems essentially endogenous to the firm in the Peace River.
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Allowing for discontinuities in the aggregate supply schedule of
pasture to the farm implies only one modification of the above conclusions.
If the supply curve is vertical at the equilibria established both before
and after introduction of the community pastures program, then the
resulting change in total pasture is identical to the quantity of community
pasture rationed to the farm by the program. Such a supply schedule
may be accurate for some short run producer problems P.

However, farms using community pasture in the Peace River
and Prince George regions typically allocated own land to both pasture
and hay (and often grain as well) prior to and after introduction of the
pastures program. This suggests that the assumption of a vertical supply

schedule is inappropriate even in the short run for these evaluations.

2.5.3 Further Research

In sum, we have shown that we cannot obtain useful restrictions
on the comparative static changes in pasture (and in beef output) in the
absence of knowledge about the pfoduction function of a farm. However,
our knowledge of such production functions is uncertain. Moreover, this
knowledge isvlargely expressed in terms of parameters (e.g., a set of
"reasonable" values for a facfor substitution effect) that have not been
directly incorporated into the traditional methods of qualitative comparative
statics.

In the next chapter, we shall develop a technique for incorporating
such knowledge into comparative static analysis. In principle, this method
-will enable us to place many restrictions on the structure of a producer
problem P without at the same time specifying the entire structure of the

problem.
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CHAPTER 3

QUANTITATIVE COMPARATIVE STATICS AND DERIVED

DEMAND: A PROPOSED METHODOLOGY

3.1 Introduction

In this chapter, we shall introduce a method of "quantitative" com-
parative statics that is designed to incorporate many empirically-based
restrictions into the theory of the firm without specifying essentially unknown
parameters. A detailed presentation of the method necessarily includes
many eqUations, and computational experience to date has been minor.

" For these reaﬁons, details of structure and means of reducing computational
pf'oblems have been relegated to appehdices.

It has been the author's conviction that, in the initial stage,
research related to this method of quantitative comparative statics should
emphasize clarification of logical structure and means of facilitating compu-
tation rather than the collection of numerical results. The theory and
methods to pe presented in this chapter and related appendices suggest
that this methodology will be useful in predicting farm or firm response
in various policy situations. Likewise, this methodology may well be

useful in generating testable hypotheses of farm or firm behavior.
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3.1.1 The Problem

In the previous chapter, we stated that the traditional methods
of comparative static analysis, as embodied in Samuelson (1947) and more
recent dual and primal-dual approaches, cannot readily incorporate many
quantitative restrictions on production functions. We were able to
incorporate various properties of production functions into our analysis of
derived demand, but the results largely served to emphasize the valqe of
including many empirically based restrictions on production functions in
comparative static analysis. These results showed that, in the case of
endogenous factor prices, not even the slope of the individual firm's
derived demand schedule can be si.gned unless the analysis incorporates
empirically based restrictions that ére sufficient to determine convexity
or non-convexity of isoquants and decreasing or increasing returns to
scale. These latter properties are not easily observed directly.

In addition, we saw that the usual qualitative analysis (supplemented
by empirical observation) is seldom able to place any meaningful restrictions
on the comparative stétic effects of community pasture programs. In
particular, such an analysis plué empirical observation of the factor
supply schedule can seldom lead to a finite upper bound on a comparative
static change in beef output (or even pasture) due to a community pasture
program. V

These results serve to complement previous observations on the
difficulties of obtaining many useful results (signed effects) from tra-

ditional methods of comparative static analysis. It is well known that
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relatively few comparative static effects can be signed from the maximiz-
ation hypothesis plus qualitative knowledge of the elements of the firm's
Hessian [Tr,ij(x*)] . Although signed results could be obtained by incorpor-
ating duantitative restrictions on the elements of [Trij(x*)], there does not
appear to be any empirical basis for placing such restrictive conditions
directly on the elements of the Hessian [Trij(x*)] . Thus such restrictions
would have to be derived indirectly from other (more empirically based)
restrictions. In the absence of such restrictions, relatively few
predictions of farm response or testable predictions of farm behavior
can be obtained.

Given our assumption that constructs of static, optimizing behavior
have utility in the applied economics of agriculture (an assumption |
to be verified in the next chapter), alternative methods of
comparative static analysis at the firm level seem desirable. The commonly
employed alternative has been to specify exactly the structure of the
individual firm's problem "maximize m(x)," to compare the solutions x*
and x** for two different values of the exogenous variable o, and to
perform a sensitivity analysis by repeating this procedure for alternative
structures m(x). However, this second approach also has serious draw-
backs in the absence of fairly complete knowledge of the correct structure

for m(x). Since the number of possible structures is infinite and the

Ax*
Ao

to be complex, any procedure that relies on specifying exactly alternative

relation between structure and comparative static effects is likely

structures m(x) can bound the set of "reasonable" comparative static
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effects only if the set of "reasonable" structures n(x) is quite
small.1

In general, there appears to be considerably more knowledge of
the structure of m(x) than has been incorporated into qualitative com-
parative static methods; but knowledge of 7n(x) is far from complete. Thus
there is need for a method that incorporates many restrictions on the
structure of the firm's maximization problem into comparative static analysis
without specifying an exact structure ‘for m(x).  Moreover, in order to
be most useful as a tool in applied economics, this method should be
capable of placing quantitative as well as qualitative bounds on comparative

static effects of interest.

3.1.2 A Proposed Methodology

In this chapter, we shall introduce a method for incorporating
empirically based quantitative restrictions on m(x) into the traditional
qualitative comparative static analysis of the firm. Quantitative as well
as qualitative bounds on comparative static effects can be calculated by
this method. Thus this method can, in principle, calculate a "reasonable"
finite upper bound ona comparative static change in beef output from
empirically based restrictions on a beef ranch's production function and
price schedules.

A detailed discussion of the method and of partial solutions to

the important computational problems are presented in accompanying

'See Section 1.2 of Chapter 1.
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appendices. In addition, a simple illustrative model for community
pasture programs is presented in this chapter. The major task of
accumulating _computationai and ;;':ractical experience with the method has
essentially been postponed to a further study.

We shall expfess our quantitative restrictions, and the usual
restrictions implied by the maximization hypothesis,vas (a) a set of

equations relating the comparative static change in the firm's activity levels

g—z to potentially observable properties p of the firm's maximization

problem, and (b) a set of empirically derived restrictions on p. By

axI

JQ

function z(g—’&)) over this feasible set (a and b above), the range of
i

oX 3X: . . .

T (or z(g—&—)) that is consistent with the

maximization hypothesis and the specified restrictions on p can be

calculating the maximum and minimum values of (or of a scalar

comparative static effects

determined. These upper and lower values of z(g—)oi) can in principle
be calculafed as solutions to corresponding (non-linear) programming
problems. |

The set of variables p largely consists of various factor sub—
stitution and séale effects defined for various subsets of fixed inputs.
The rationale for emphasizing such variables p in a comparative static
model is essentially as follows: our knowledge (from direct and
econometric observation of firm behavior and physical processes)
typically is in a form more closely related to such parameters p than to

the elements of the Hessian [TTij] .
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This method of quantitative comparative statics is not without its
drawbacks. In particular, a local solution to the above nonlinear
programming problems is not necessarily a giobal solution, and the number
of equations in the set of constraints increases exponentially with the
number of inputs incl.uded in the firm's maximization problem . However,
there appear to be somewhat adequate methods of coping with both

problems.

3.2 Previous Methods of Comparative Static Analysis

Methods of comparétive static analysis can be classified as either
"qualitative" or "quantitative": qualitative methods incorporate restrictions
primarily on- the sign of parameters, whereas, quantitative methods
incorporate many restrictions on magnitudes as well as signs of parameters.
Thus qualitative method§ can only lead to qualitativc_e restrictions on com-
parative static effects, whereas, methods classified as quantitative can
lead to either quantitative or simply qualitative restrictions on comparative
static effects. Qualitative methods have been developed for uses of both
minimal and exhaustive restrictions on the signs of parameters; but
quantitative methods have been applied essentially only in cases where
the structure of the maximization problem (or equilibrium system) is

completely specified.
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3.2.1 Qualitative Methods

3.2.1.1 Minimal Restrictions

Primal, dual and primal-dual methods of comparative static
analysis2 have been épplied to models of the firm or group of firms where
only the maximization hypothesis, i.e., the existence of an iqterior static
equilibrium where 7(x) is twice differentiable, and competitive conditions

i
are assumed.3 However, any comparative static effect gx__ for a primal

dd
problem

maximize m(x; o)

is signed unambiguously by the maximization hypothesis if and only if

2, - ,
3——?(—)(—.—) is signed and (x', o) are "conjugate pairs," i.e.,
ax's o |
3 2n(x*) o'
T = 0 for all k #i. This condition for signing —= is not
3x"3d 50

altered by the assumption of perfect competition.u Similar comments must
apply to dual and primal-dual methods based solely on the maximization

hypothesis and competitive conditions.

2See Sections 2.3.1 and 2.3.2.

3The assumption [mj;] negative definite at x* actually imposes
quantitative as well as qualigative restrictions on [m;]; but comparative
statics based solely on the maximization hypothesis has nevertheless
been defined as a "qualitative" method. '

uSee Samuelson (1947), pp. 30-33 and Archibald (1965).
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3.2.1.2 A Calculus of Qualitative Relations

The relation between the signs of the comparative static effect
and the signs of the elements of the primal structure [Tl'ij] has also been

investigated. The model considered by this literature can be expressed

( N

1
C

9X - Ta 5

as

O e e O

in the case of a shift in the supply schedule of input 1 for a single firm,

or more generally as
[Aldx = Db

The problem posed by this literature can be expresséd as follows: when
can the signs of the elements of g—’é (or dx) be deduced from knowledge
of the signs of the elements of [Trij] and c:a (or [A]l and b)? Thus the
central problem considered in this literature is the deducation of the signs

of elements of [ﬂij]_‘l (or [A]—l) from knowledge of the signs of elements of

[ﬂij] (or [A]).

5In this chapter, partial derivatives will usually be specified in sub-

script for m with arguments omitted. For example, '
TN 2 ' 21,1

3—;1(35)]— = and oc(xta) o c11a

ax 9X 8x1 Ja
In addition, the structure of the firm's objective function will be specified as
7(x) or equivalently n(x;a), and the total cost schedule for input 1 will be
specified as c1(x1;0) (when « is clearly a scalar)or equivalently c1(x1;a).
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Sameulson (1947, pp. 23-29) pointed out that the sign of an element
of ['rrij]_1 can be deduced solely from qualitati\)e knowledge of the elements
of ['rrii] only under unusual conditions, and these conditions have been
formulated more precisely by 'others.ﬁ Moreover, combining the maximization
hypothesis with such qualitative knowledge does not significantly reduce
this indeterminacy of comparative static effects. 7

In addition, Lancaster (1965, 1966) developed a computational

procedure for determining the qualitative solution of such systems. Given

a system of equations expressed in the form
[Bly = 0

and knowledge of the signs of the elements of [B], the sign pattern of the
vector y (where an element is either +, - or indeterminate) can be

calculated by a method presented in Lancaster (1966).

3.2.2 Quantitative Methods

Quantitative comparative statics has been employed only in the case

where the structure of the primal problem

maximize m(x; a)

or of the equilibrium system is completely specified. Lancaster (1965) has

pointed out that his general approach can incorporate partial quantitative

6See Lancaster (1962) (1964), Gorman (1964) and Bassett et al .
(1968). ) )

7See Quirk and Ruppert (1968).
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information about [TTij]; but his method does not provide an adequate
basis for a quantitative comparative statics of microeconomic units (see

Section 3.3.2.2).

3.3 Limitations of Previous Methods of Comparative Static Analysis

In general, there appears to be considerably more knowledge of
the individual firm's structure 'n(_x) (or, equivalently, [”lj]) than has
been incorporated into qualitative comparative static methods. In
particular, there is often considerable knowledge of m(x) thaf is quantita-
- tive in nature and difficult to incorporate into established methods of
qualitative comparative statics. Moreover, incorporation of quantitative
restrictions on m(x) into comparative static analysis may permit the
calculation of quantitative restrictions on comparative static effects as
well as lead to greater qualitative determination of comparativ.e static
effects.

On the other haﬁd, knowledge of m(x) is far from complete and
the relation between structure and comparative static effects is likely
to be complex. Thus the established quantitative comparative static
methods, which rely on specifying the entire structure of n(x), cannot
readily bound the set of comparative static effects that is consistent

with the set of "reasonable" structures for m(x).
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3.3.1 The Qualitative Relation Between Comparative Static and

Comparative Dynamic Effects

Lancaster (1962, p. 100) presents essentially the following argument
for calculating only qualitative properties of comparative static effects:8
the comparative dynamic effects over time of a unidirectional change in a
parameter almost always have the same sign as the corresponding compara-
tive static effect (whereas, the effects obviously have different magnitudes) .9
It is often asserted that this last statement about dynamics follows from the
static Le Chatelier principle.

However, this argument is incorrect: comparative dynamic effects
of a unidirectional change over time in a parameter can easily vary in sign
as well as in magnitude over time. For example, if capital stocks adjusi
somewhat in the short run, then the short run (impact) effects may differ

10 The short run

in sign from the long run (comparative static) effects.
and long run effects necessarily have the same sign only if (in the short
run) one set of inputs remains fixed at the initial equilibrium levels and all

other inputs adjust so as to attain a new full equilibrium given the levels

8Lancaster also states that incorporation of quantitative restric-
tions greatly complicates the analysis. However, in Section 3.4 we shall out-
line a comparative static method that can (at least in principle) incorporate
quantitative restrictions on m(x) at a reasonable cost.

9To be more specific, Lancaster states that the signs of the impact
(short run) effect and (assuming stability) long run effect of a change in a
parameter can always be calculated correctly by comparative static methods,
and that intermediate run effects of a (unidirectional) change in.a parameter
can generally be signed by comparative static methods.

10See Nagatani (1976) and Yver (1971).
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of the fixed inputs, i.e., these effects necessarily have the same sign only
if the short run and long run correspond exactly to the static models con-
sidered in the Le Chatelier principle.

Thus comparative statics can in general be employed correctly only
in the estimation of long run effects or of essentially static sHort run or
intermediate run effects, which in turn implies that qualitative properties
of comparative static effects are only as valid as the quantitative properties

of comparative static effects.”

3.3.2 Qualitative Methods

Qualitative comparative static analysis is known to be unsatisfactory:
i .
8_:’_ is signed by the maximization hypothesis only if (x', o) are conjugate
9 i '
pairs, and al— is signed by qualitative knowledge of the elements of
)

[TTii(X*)] only under unusual cir‘cumstances.12 Moreover, the elements of
[nij(x*)] are not generally observable; so there is seldom an empirical
basis for expressing quantitative restrictions directly on the elements of

[Trij(x*)] and incorporating these into the analysis.13

”If the restrictions employed in a qualitative analysis are a subset
of the restrictions employed in a quantitative analysis, then of course the
set of results obtained by the qualitative method are more (or at least not
less) ambiguous — and therefore more likely to include measures of compara-
tive dynamic effects within its range — than are quantitative (or qualitative)
results obtained by the quantitative method. However, these qualitative
results are "superior" to the quantitative results only in this trivial sense,
i.e., only in the sense that an arbitrary marginal relaxation of quantitative
restrictions necessarily leads to "superior" (more ambiguous) results.

12See Section 3.2.1.

13Note that, if the comparative static problem is [A] dx =b where [A]
is (e.g.) a matrix of first derivatives of net aggregate supply schedules, then
quantitative information about the elements of [A] may be directly available.
However, such information is unlikely to be available if [A] dx =b describes
microeconomic units.
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3.3.2.1 Primal, Dual and Primal-Dual Methods

However, quantitative restrictions are not readily incorporated
into available methods of qualitative comparative statics that utilize the
maximization (or cost minimization) hypothesis. Traditional primal methods
are known to be quite messy in the case of such restrictions, and dual and
primal-dual methods cannot readily incorporate the restriction of concavity

for F(x) in the presence of variable factor prices.w

3.3.2.2 A Computational Method of Lancaster

The computational approaches of Lancaster (1965 , 1966) also fail
to provide a satisfactory means of incorporating quantitative restrictions
on microeconomic units into comparative static methods. His first
method (1965) calculates whether or not all elements of a vector y are

qualitatively determined by a system of equations

[Bly = 0 e .o W)

and particular convex cones as feasible sets for the columns of [B] .15

These convex cones can in principle incorporate quantitative as well

as qualitative restrictions. Given the system of equations

1

X la

[m] 55 (2)

O e 0 0N

1uSee Sections 2.3.1 and 2.3.2 of Chapter 2.

‘ 15Convexvcones are the class of convex sets such that Ax is included
in the set for all X 2 0. if x is included in the set.
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and particular convex cones as feasible sets for the columns of [ﬂij],
Lancaster's method can in principle be used to calculate the sign pattern
of g—z. His second method (1966) is more general in that it directly
signs all elements of Y(+, - or indeterminate} from (1); but knowledge of
[B] is generally restricted to signs on elements of [B].

However, it appears that Lancaster's approaches cannot incorporate
many empirically-based quantitative restrictions at the firm level. The
argument for this statement can be skeﬁhed as follows. First, we shall
later argue that most of our relevant quantitative knowledge is not
directly expressed in terms of the elements of [Tri.] . For example, there

may be considerable knowledge about the elements of a matrix K that is

related to [TTij] by the system of equations

4 l 9
[n1, c
Nt S
_________ K = 1 . . . -(3)
ciT | 0
\ i I J
*
pYe (x1 ;o 9c (x " )NT
where c; = —_— " TN and | = an identity matrix.
’ 93X 9 X

Second, Equations (2)-(3) cannot be expressed in the form of (1) where y

includes all elements of —g% and excludes all elements of [TTij] . Thus

Lancaster's approaches are inappropriate as a method for quantitative

comparative statics at the firm Ievel.16

6Likewise, empirically-based quantitative knowledge of the elements
of a matrix B seem unavailable for other microeconomic units. In addition,
Lancaster's approaches are not intended to incorporate second order con-
ditions implied by the maximization hypothesis.
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3.3.3 Quantitative Methods

The established quantitative approach is to specify m(x) precisely

and to calculate solutions (x*, x**) to the problem ,
maximize m(x; o)

for two different values of a, and to perform a "sensitivity analysis" by
repeating this procedure for a limited number of alternative specifications
of m(x) .

However, knowledge of m(x) is far from complete and the relation
between structure and comparative static effects is likely to be complex;'
so an adequate sensitiviiy analysis seems improbable or at least very costly.
Thus this quantitative approach cannot readily bound the set of comparative
static effects that is consistent with the set of "reasonable" structures of
m(x).

In principle, the above procedure can be modified by replac‘ing
the fully specified structure m(x) with a flexible functional form TT(X)f
whose structure is not entirely specified.” However, this approach also

appears unsatisfactory.

Such an approach of directly calculating x*(o) and x**(a+Aq),
.if successful, would have the following advantages over the traditional
approach of dlrectly calculating 3x* : the social effects of many programs
da
may depend on the Ievels x*(a) and x*(a + Ao) rather than simply on the

*
difference gl;— . and some of the parameters of n(x) at x* may depend

critically on the Ievel x* (as in the case of a constant elasticity of factor
substitution).



For example, suppose that the procedure is to solve a pair of

problems of the form

maximize 7(x; o_L)f minimize m(x; oc)f

subject to E(x,p) = 0 subject to E(x,p) = 0
L U L U
P =psp p <p <o

for one value of o, and then for a second value of a. The equations
E(x,p) = 0 express restrictions on the structure of TT(X)f in terms of a

vector p of observable parameters, and the inequalities pL £p s pU

specify "reasonable" restrictions on p. However, this approach to

quantitative comparative statics has the following serious defects:

(a) the solution values for p in any two problems with different
values for o will almost always be different, whereas, p is

(by definition) to be unchanged by changes in «; and

(b) even overlooking (a), this approach cannot bound any
comparative static effects other than the change in 1r(x*)f

or in variables that are in fixed proportion to TT(X*)f.

3.4 A Proposed Methodology for Quantitative Comparative Statics

Users of qualitative comparative statics methods have sought to
supplement the meagre content of the maximization hypothesis largely

by attempting to calculate the signs of elements of [Trii]_1 from restrictions

placed directly on the elements of the Hessian matrix ['ﬂ'ij] .18 However,

18See Section 3.2.1.
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this approach has not been successful in the modelling of the firm or
other microeconomic units: such qualitative knowledge of [ﬂij] is seldom
sufficient to determine the signs of elements ['lTij]_], and direct
knowledge of the magnitudes of elements of [Tl'ii] is in general unavailable
since these elements are essentially unobservable. Moreover, these
methods of qualitative comparative statics cannot readily incorporate
additional quantitative restrictions, and established methods of quantitative
comparative statics cannot readily incorporate anything less than a full
specification of the structure m(x) .19
Thus, there is need for an additional method of comparative statics
analysis that incorporates quantita-tive restrictions on many potentially
observable parameters of the firm's static maximization problem(s) without
specifying an exact structure for w(x). Since qualitative comparative
statics is onlly as valid as quantitative comparative statics, results obtained
with such a method would in principle have the same status as results
obtained with methods of'qualitative comparative static analysis.20
Here we sha.ll propose such a method of comparative static
analysis and shall illustrate how this method can be applied in principle
to the evaluation of community pasture programs. In contrast to the

usual comparative static approaches, which attempt to deduce knowledge

19See Section 3.3.2.

20See Section 3.3.1.
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of ['rrij]_1 from restrictions placed directly on [Trij], we shall place restric-
tions directly on the inverse of matrices that are essentially submatrices
of ['nij].

In this manner we shall arrive at a system of equations and in-
equalities which incorporate the restrictions on the comparative static

3 X

effect T that are implied by

(a) the maximization hypothesis, plus
(b) "reasonable" restrictions on potentially observable parameters

o) of the structure of [Trij] .

Given an interior solution to the producer's static optimization problem
"maximize m(x; a)," the restrictions implied by the maximization hypothesis

are the total differential of the first order conditions, i.e.,

g X 21
[Trij] e jia *

9
(NxN) (Nx1) (Nx1)

plus the second order condition

[ 'ITij] negative definite.
(NxN) "

Thus the range of comparative static effects z = z(%) that is

20See Section 3.3.1.

21In order to make the discussion less abstract, we shall assume that
the exogenous change experienced by the firm is a shift in its supply schedule

for input 1 ¢’ = c‘(x‘l;a), i.e.,

2.1, 1*
1g .
where c1 : 9 ¢ (x ;0

la Bx1 oa

.
10

Des ©
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consistent with (a) and (b) can in principle be calculated from the two

programming problems

maximize z {—g%] minimize z [%]
subject to [T.] 2% = - bject to [m.] 2X =
J ij' 3o - Mo subj ° Tij* Ta T " Tia
['rri].] negative definite [Tfij] negative definite
G([ﬂij],p) =0 G([Wij],p) =0
pLéoépU pLépépU

where G([nij], p) =.0 denotes the relations between the Hessian ['nij] and
the more directly observable parameters p, the variables (%—’é—, [Trij],p) are
endogenous to the problems, and (Tri , pL, pU) are exogenous to the

problems.22 The restrictions pL £p < pU denote our degree of empirical

o

knowledge about parameters p of the structure of [nij] . In the case of
community pasture progréms, the scalar-valued function z = z(%—’é) may (e;g.)
define the comparative static change in producer plus consumer surplus as
a function of the comparative static changé in the firm's input levels that
is induced by a community pasture program.

Note that these two programming problems are essentially analytic
rather than simply behavioral in nature. The behavioral implications of

- the maximization hypothesis are defined there by the relations

22The most important types of equations and inequalities for such
problems are summarized in Figure 3.
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‘ oX _ ‘ .
[Trii] 7o - " Tio ['lTij] negative definite
where g—’é— and [Tril.] are treated as endogenous variables. These equations,

plus the restrictions

IA
©

IA
pol

G(lml.0) = 0 o

where p is an additional set of endogenous variables, define the analytical
relations between the variables ( g—z , [Tl'ij], p) that are consistent
(feasible)with the behavioral assumptions and the degree of empirical
knowledge pL Spsp . Thus, solving the two programming problems
above is a purely analytical proced'ure for obtaining the extreme values of

the set of values for z = z(g—g-) that are consistent with the maximization
]

IA
IA

hypothesis and the degree of empirical knowledge pL

p=p

The vector of parameters p typically includes measures of the

following types of properties of [Trij]:

(a) possibilities of factor substitution within any subset of
inputs, and

(b) scale effects (changes in input Ievéls and "profits") for
a given change in output when any subset of inputs is
held constant and all other inputs \)ary opfimally in the

static sense.

In these cases, the relations G([nij],p) = 0 in effect decompose the
Hessian matrix ['nij] into a set of more directly observable parameters p.

A priori knowledge of a range of "reasonable" values for some of these
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parameters presumably is available in most cases, in contrast to the
essentially unobservable elements of [TTij] per se.23 This knowledge would
be derived from observation of physical processes, from econometric esti-
mation of physical processes and "short run" behavior, and from observation
of firm behavior that approximates various "short run" comparative static
effects.

By formulating these restrictions on p as confidence intervals or
as Bayes intervals, the corresponding feasible set for g—g

also be interpreted as a confidence-Bayes interval. Thus the values of

and z (-g-%) can

z(g—g—) at the solutions to the two programming problems presented above
define the confidence-Bayes interval for z(g—)(-;) that is implied by the
maximization hypothesis and the empirically-based restrictions (confidence-
Bayes intervals) pL £p g pU in the model.

This method of comparative static analysis is not without its
drawbacks. In particular, a local solution to either of the above
programming problems is'ﬁot necessarily a global solution, and the number
of equations in these models increases exponentially with the dimension of
the input vector x. 'However, there appear to be somewhat adequate
methods of coping with the local-global difficulty and of aggregating inputs

and enterprises.zu Further research on these matters seems

desirable.

23Mor‘eover', since the elements of [7..] as well as of p are included
as endogenous variables in the above progran'ﬁning problems, any direct
qualitative or quantitative knowledge of the elements of [1r, 1 can easily be
incorporated into our model as restrictions of the form

L U = LR X J
L T R

2uSee Appendix 5.
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3.4.1 Restrictions Implied by the Maximization Hypothesis

It can be shown that the assumption of maximizing behavior is
essentially as realistic as the results of comparative static analysis, and that
comparative static methods usually are more appropriate than comparative'
dynamic techniques for the evaluation of community pasture pr‘ograms.25
Thus it is important to incorporate the restrictions implied by the
maximization hypothesis, i.e., by the existence of an interior static
maximum, into our methodology. However, in order to avoid placing
arbitrary restrictions on the structure 7n(x), we should model in this
manner only those restrictions that correspond exactly to the comparative
static implications of the maximization hypothesis.

The task of determining the precise comparative static implications
of the maximization hypothesis has been labelled the "integrability problem"”
in comparative statics (Silberberg, 1974a), and has been largely solved
in the case of the dual approach to comparative statics (Epstein,
| 1978).

It can also be shown ti\‘at, for problem P

- ’ 1,1 N G i
maximize m(x;a) = R(x) -c (x ;a) - i§2c (x) ., .« o . (P)

the usual set of primal restrictions

1
la

X =

e O 0

25See Appendix 1 and Chapter 4.
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[nij] symmetric and negative definite

corresponds exactly to the implications of the maximization hypothesis for

primal comparative statics in the case of a shift in a single firm's supply
26

schedule c1 = c‘(xl;on) for input 1. Thus the "integrability problem"‘
is solved in this special case. In addition, the restriction [ﬂii] negative
definite can be expressed in a form that is more appropriate for our

(pr'imal) quantitative comparative statics model:

Theorem. A real symmetric matrix A is negative definite if and only if
there exists a real lower triangular matrix H with positive

diagonal elements such that A = - HHT.

3.4.2 Major Additional Restrictions

Here we shall outline how the Hessian matrix ['rrij] at a solution x*
to the producer's static optimization problem "maximize m(x;a)" can be
decomposed into more readily observable factor substitution effects and
scale effects within any subset of inputs.27 These and other relations
were denoted in the two programming problems above as G([Trii] ,p) = 0.
In contrast to the usual comparative static methods which place restric-
tions directly on the elements of [Trij(x*)], these relations shall place'
restrictions on the inverse of matrices that are essentially submatrices of

[w“(X*)].

26Our'quantitative comparative statics analysis could be extended
easily to the case of a shift in the firm's product demand schedule (see the
related section of Appendix 4).

27The relations between [7..(x*)] and the more readily observable
properties presented here are fairl)) obvious, and are detailed within
- Section 3.1 of Appendix 3.
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3.4.2.1 Model with Output Exogenous

Given the firm's static maximization problem
N i
maximize m(x; a) = R(x) - I c(x;a) .+ . o(P)
i=1
with solution x*,  we can arbitrarily define the related problem where output

is treated as exogenous to the firm

N oL
R(x) - £ c'tx':ah)
i=1

maximize 7n(x; a)
.(4)
subject to R(x) = R(x¥)

This problem (4) will enable us to decompose [nii(x*)] for the producer's
_static optimization problem P into substitution and scale effects with all

inputs variable. Problem (4) can be expressed in Lagrange form as
‘maximize m(x;a) - A(R(x) - R(x*)) .« . .(5)

where the endogenous variables are (x, A) and the exogenous variables are

(o,R).
Suppose that the differentials of the interior first order conditions
for (5) with respect to each of (o,R) yield a unique solution for all

comparative static effects

ax** 3  Jx** 3 28

aa 3o’ BR’BR

28It can be shown that this assumption of uniqueness is correct
whenever any such comparative static effects exist for a problem (5).
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This assumption is equivalent to the restriction that this system of differen-

tials can be expressed in the form
[A] [K] = 1 . . . .(6)

where the matrices [A], [K] and | are as defined in Theorem 3 of Appendix 3.

[A] is the Hessian matrix [Trij(x*)] bordered by marginal factor costs

H * *
c = (c‘(x1 ,onl), oo, cN(xN ;ocN))T . 29
i 1 N
I
[Trij]] c
(Al = | —————]| ., (D)
Tlo '
S
30
* % * %
[K] is a matrix of all the comparative static effects 9X , B—A, 2‘-—, 32
, 00 90 3§ _R

for problem (5), and | is an identity matrix.

Nevertheless, in many situations knowledge of the comparative static

yx** Bx**J

substitution and scale effects when all inputs are variable {_W’ —
oR

29The symbol "T" denotes the transpose of a (column) vector.

i**
30The "revenue effect" ox is related to the corresponding out-
5 jR*x 3R 5 j*x* 5 jR* .
put effect x_ simply as follows: X — = x_ . AR(y?) (by the
' ’ oF oR Y

chain .rule where y = F(x) and R(y) = R(F(x)). Likewise,

am(x*) _ am(x*) , 9R(y*)
oF 3R dy
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may be almost as scarce as knowledge about the comparative static total
*
effect 3L1 i'(self.31 Considerably more knowledge about substitution and
aa
scale effects may be available for cases where subsets of inputs are fixed for

the firm,

3.4.2.2 Model with Output and a Subset of Inputs Exogenous

(3x**  gx**

aa =
( oF
weak, a narrower range of "reasonable" values for substitution and scale

For many situations where knowledge about

}is quite |

effects when some inputs are fixed may be readily available. Such
information could be obtained (e.g.) from engineering or field studies of
physical processes or econometric estimation of "short run" equilibrium

models of the fir'm.32 Moreover, this knowledge of substitution and scale

(Footnote 30 continued)
3%m(x*) _ 3(37/3F) 3R(y*)
dF 3R 3y

(o4

and so , which yields —= —

A ax.'{aR(y*)}z
F OR

Q

31A potentially important exception to this statement occurs when
the econometric estimation of cost minimizing via the dual approach is more
appropriate than the estimation of maximizing behavior. (On the advantages
of estimating production functions by a dual approach, which involves the
estimation of maximizing or cost minimizing factor demand functions, see Varian,
1978, Chapter 4 for an introduction, and Fuss and McFadden, 1979). Even if
adjustment costs of varying inputs per se are low, observed activities may not
correspond to maximizing behavior due to adjustment costs of searching for an
optimum (see Appendix 1). Since cost minimization is a weaker condition
(involving less search) than maximization and also defines conditional factor
demand functions, this assumption is often preferred to maximization.
Moreover, to the extent that production approximates constant returns to
scale, estimation errors due to endogeneity of output (e.g., when output is
adjusted in the short run but not too long run equilibrium levels) can be
avoided by estimating conditional factor demand in terms of unit output:

. . S +1 N
xl(alles+ll .‘.IXN) = F * xl(alll §"——l...l x_)'
F F ‘
32A subset of inputs (S+1, -+ +,N) may be relatively fixed in the short
run due to: concavity of adjustment cost functions (Rothschild, 1971), im-
perfect rental and used capital markets, and indivisibilities. In this case,
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effects when various subsets of inputs are fixed may imply strong restric-
*

tions on the comparative static effect oX for problem P. This statement

oa

can be elaborated upon as follows.
Given the firm's problem P, we can arbitrarily define the related

"short run" static maximization problem

N ., . .
maximize m(x;a) = R(x) - Zc'(x';a')
i=1

. (8)

subject to R(x) = R(x*)
j =S+1,¢+¢,N

xj=x

where output and an arbitrary subset of inputs are "exogenous" to the firm at

the equilibrium levels for P. This problem can be expressed in Lagrange

form as
N - . ?*
maximize m(x;a) - A(R(x) -R{x¥*) - I y’(xl—x’ ) )
j=S+1
where the endogenous variables are (x1, oo -,xs, )\,YSH, ---,YN) and the
exogenous variables are (oc,ﬁ,xs”, . --,xN) .

Suppose that the differentials of the interior first order conditions

~for (9) with respect to each of (o,R) yield a unique solution for the com-
ax S xS xS 3x>) 33
parative static effects [ YR , —, — .
& 3R 3R

(Footnote 32 continued)

This assumption

there is at least a theoretical argument for statistically estimating maximizing
or cost-minimizing factor demand functions with inputs (S+1, -++,N) treated

as predetermined. Then, in the absence of specification errors, the structure
of problems of the form (8) and (12) is being estimated.

33

S
—3—] is uniquely defined for a given problem (9).
oR

{a **s 5 S 5 **Q
e g . cel s . X Y X
There is no loss in generality in assuming that 5 50 R
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is equivalent to the restriction that this system of differentials can be

expressed in the form
[A,,] [L] = | N T

where the matrices [.X\”], [L] and | are as defined in Corollary 5 of

A

Appendix 3. [Z\”] consists of (a) the principal submatrix [TTij ] of

[ﬂij(x*)] that is formed by deleting rows and columns (S+1, «++,N) from

: * * T

[Trij(x*)] and (b) the subvector c;A = (c}(x1 ;al),---,cg(xs ;OLS)) on the
borders of [TrijA], i.e.,

]

A, (A
. [my 10
[A..] = |-m—mmmbmeee| . N Y
1 AT
¢ 0
i

* % * %
(5 S 55 ax 3 53S
{

3o Y] 9R oR

and | is an identity matrix.
By (10)-(11), knowledge of the elements of [L] and c;A places

restrictions on ['rrij(x*)] . Thus knowledge of the comparative static effects

**S **S S .
l&x , Bx_ ’ 2 A_ ]for problem (9) and of equilibrium marginal factor
da 3R dR

ax*

dal

costs places restrictions on the "long run" comparative static effect

for problem P. 3t

34 **S 1 S
Since [L] is symmetric and knowledge of 9x , C. 31,°°°,C
- . = 1o S
R
S )\s

presumably is greater than knowledge of % per se, restrictions on ga

seldom would be specified (see Corollary 5-A).
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x -
Moreover, the comparative static effect BLI for problem P can

sa
almost always be defined precisely in terms of a set of comparative static

] **k k%
9X S 9 X S

3OL'.

effects J for an appropriate set of problems (9), and

3R
these relations are implicit in our standard quanti tative comparative com-
parative statics model. The comparative static effects included in this set
will differ in terms of the partition into fixed and variable inputs and the

H *
choice of shift parameter o'. This important relation between ox

and .
sa’
**s **s
. 3 X dX . . .
various sets [ —, — ] is demonstrated in Appendix 3.
dal 3R ‘

* % * %
In sum, restrictions on [ax _S 3x S axs

5d AR 8d

] for various problems

(9) and {d!} plus the relations (10) may imply considerable restrictions on

ax*
Bal

be defined primarily in terms of problems (9) with various subsets of fixed

for problem P. Since knowledge of substitution and scale effects will
inputs, these restrictions derived from a model with output and a subset of
inputs exogenous are a very important aspect of our quantitative comparative

statics model.

3.4.2.3 Model With a Subset of Inputs Exogenous

In addition, direct knowledge about the total effects of da' when

certain subsets of inputs are fixed may be available. Such knowledge

*S
can be specified as restrictions on comparative static effects [93(—.—] for
Jo

various "short run" static problems of the form
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|\
R(x) - Z c'(x';a')
i=1

maximize w(x;a)
.(12)

i |
x j=S+1,e0¢,N.

subject to x)

These restrictions plus the following relations can be incorporated into our

quantitative comparative statics model:
A
["ij 1Pl = |

where ['Tl'ijA] is the principal submatrix of [nii(x*)] obtained by deleting the

rows and columns (S+1,++¢,N) from [nij(x*)], [P] is symmetric and

i*S .
i = axui _ C;o:j . In this manner, knowledge about a "reasonable" range
a .
*S
of values for ox — corresponding to any problem (12) places restrictions on
IX* ga!
— for problem P.

R

3.4.3 Minor Additional Restrictions

Other forms of knowledge about the structure of the firm's static

maximization problem P may be available and useful in defining "reasonable"

*
limits on the comparative static effect 3_X1_ for problem P. These additional
: da '

forms of knowledge are of at least two types. First, there may be knowledge
of the comparative static effect of a change in the demand schedule for the
firm's output or in the firm's production function. Including the correspond- -

ing restrictions in our standard quantitative comparative statics model seems

ax* .
T

da

If such comparative static effects and its "short run" variations with fixed

likely to lead to a small reduction in the range of feasible values for

inputs are included in our model, then our model incorporates knowledge of
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FIGURE 3 Summary of Major Constraints for the Quantitative Comparative Statics Model39

3 :
The mark " — " is placed above any symbol that refers to a constant rather than an endogenous
variable in the model.

39

For definitions of the symbols used here, see Theorem 3 and Corollary 5. Ry = Bl;; ) where
y = F(x) and R(y) = R(F(x)).
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(D} (continued)

y (i,j =5+1) 2(s+1)2  bounds

non -decompositions (output exogenous), given fixed inputs (see Corollary 6); for each

(E)
non-decomposition with N-S fixed inputs:

['ni‘.A] [P] = 1 } w independent quadratic equations

(SxS) (SxS}

i*S —_— —
x — . plced e cr U G,j=1,0+2,8)
3 ij jod ij ij ! o
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(N+2) (N+1) N(N+1)
+ t N quadratic equations

2 2

(N+2)(N+1)
N(N +1) + + 2N + 1 variables
2

(5+2)(S+1)
————— additional quadratic equations and variables for each decomposition or

2 non-decomposition (C,D,E) with N-S fixed inputs

FIGURE 3 Summary of Major Constraints for the Quantitative Comparative Statics Model 39

(Footnotes 38 and 39 are the same as the previous page)



86

all types of comparative static effects that can occur realistically at the
level of the single firm.35
Second, there may be specific knowledge about the functional form of
the firm's static maximization problem P. The following examples are con-
sidered in Appendix 3: separability of n(x;a) in x, linear homogeneity of
m(x;a) in o, fixed factor proportions for R(x), and homotheticity of
m{x;0) in x. The first two properties, and presumably many other special
properties of m(x;a), are easily incorporated into our quantitative compara-
tive statics model. Such restrictions will be useful when (a) observation
and/or theory suggesfs that such a property is closely approximated, or
(b) sensitivity of comparative static results to such properties is an
important issue.36 In these circumstances, the imposition of such proper-

ties or of limits on the "degree of deviation" from such properties can be

useful in our quantitative comparative statics models.

3.4.4 Major Difficulties and Partial Solutions

The two major difficulties with the proposed method of quantitative
comparative statics concern the identification of a global solution and the
incorporation of a reasonable number of inputs and outputs into the model.

Partial solutions for these oveflapping problems are suggested hereA.37 First,

335ee Section 6 of Appendix 3.

36For example, calculating the sensitivity of comparative static results
to the property of separability may provide a rough estimate of errors due to
inappropriate aggregation of inputs in a quantitative comparative statics model
(see Sections 3.2 of Appendix 3 and 3.1 of Appendix 5).

37See Appendix 5 for details of these partial solutions.
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given an algorithm that is reasonably effective in finding local solutions
for a quantitative comparative statics model, we can tentatively conclude

that are outside

that there are "relatively few" feasible values for z (8—x1)

Ja
of the observed range. This observed range forms an (X-Y) percent

confidence-Bayes interval for z (a—xl) when the constraints
oa

L U
p

IA
©
IA

P

form an X percent confidence—Ba‘yes interval for the observable parameters
p, and it becomes approximately an X percent confidence-Bayes interval
for z (8—x1) as the search for feasible solutions becomes sufficiently
detailez(.x More precise estimates of confidence-Bayes intervals for
observed ranges of feasible z(—all) depend largely upon the ability to
approximate random sampling oafathe feasible set.

Second, computational difficulties increase exponentially with the
number of inputs included explicitly in a quantitative comparative
statics model; so procedures for aggregating such models within and
across enterprises are presented here. These aggregation procedures
generally lead to some error iﬁ characterizing the disaggregate model:
correct aggregation of inputs within an enterprise depends on satisfaction
of appropriate Leontief separability conditions or fixed factor proportions
within the disaggregate enterprise, and correct aggregation across
enterprises depends essentially on exogenous marginal factor costs for
each enterprise. The aggregation procedures suggested here are shown
to have certain optimum properties. In addition, aggregation errors can

be crudely estimated by observing the effects of aggregation errors in small

models.
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3.5 An lllustration of a Quantitative Comparative Statics Model:

Initial Models for Estimating Welfare Effects of Community

Pasture Programs

In order to illustrate the structure of a quantitative comparative
_statics model and the potential relevance of this approach to the evaluation
of community pasture programs, we shall present a very simple model of
the comparative static welfare effects of supplying community pasture to a
single farm. First, an objective function denoting the comparative static
change in producer plus consumer surplus is derived for this situation.
Then the structure ?f the constraints is illustrated in the case of 2 and‘3

input models of the farm. For simplicity, procedures for aggregating

over inputs and enterprises are not illustrated here.

3.5.1 Objective Function

Since the change in consumer plus producer surplus due to an
input subsidy can be measured correctly in either input or output
mar‘kets,uo our analysis can be restricted to the market for pasture and
to corrections for "distortions" in other markets. Considerably more
information would be required for estimation of the change in surplus
directly in output markets.

To a first approximation, the change in producer plus consumer
surplus due to the employment of dA units of community pasture by a
‘given farm during a given time period can be expressed in the fo.l,lowing

form:

H0gee Section 2.4.3 of Chapter 2.
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dsw = p' - dA + msB® . 2B . g4a

5 .(13)

or equivalently

A= P +*MSB® - — . ... .(14)

Here p1 farm demand price for an additional unit of community pasture,

QJlQ)
>lw
m

comparative static change in the output of the beef enter-

prises (measured as total revenue of beef sales), and

MSB = marginal social value of beef output minus the marginal value

to the farmer of beef output.l”’u2

By the definition of 3B, and assuming an interior solution where the
9A
farmer's objective function 7{x; o) is differentiable,

i E)xi
P SA e o . o(15)

3B 1

1
X
7 W7
i

2

I~ Z

In addition, suppose that the community pasture program simply

shifts the farm's pasture supply schedule to the right, as shown in

Figure 4. Then

l”The costs of supplying dA units of community pasture are not
considered in (13), since these costs are essentially exogenous to the farms
utilizing the pasture. Farm response to these pasture programs is essen-

tially independent of these costs, which are largely borne by the public
rather than by the users.

uzMSBB >0 due to market "distortions" resulting from import and

export taxes or subsidies. Other "distortions" related to the B.C. commun-

ity pasture programs appear to be minor. In this case, MSBB = .13 circa 1975.
S.ee Barichello (1978).
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c,(x ;a’)
C:(xl;oc1 +da)
k:: 1dCXl
“ 1.1
Cc p (x)
1
X
X
1* R . .
X = farm's equilibrium quantity of pasture prior to
community pasture program
p1(xl) = farm's derived demand schedule for pasture
c}(x‘;a ) = supply (marginal factor cost) schedule for pasture
prior to community pasture program
c:(x1;oc1+da1) = supply (marginal factor cost) schedule for pasture
during community pasture program
c.p.

P price at which dA units of community pasture are

offered to the farm

Figure 4 Hypothesized Effect of the Community Pastures Program on the
Supply Schedule of Pasture to the Parm
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1 1* 1, _ ¢
c”(x ;o) = % .(16)
*
dA/x = |c1m1(x1 ;cx1)doclllc . .. L(17)

By (16)-(17),

*
]c}ml(x1 ;o)) -da! |

1 T 1
11(x ;00)

dA =

. .(18)
c

Moreover, a shift dA > 0 is equivalent (in terms of comparative static

*
effect) to a shift c:ml(x1 ;oc‘) -do¢1 < 0, and our convention is to inter-

43

pret dA and do’ as +1. Thus, from (18),

vl = )
;al) c”(x

*
! ;OL]) given dA = 1, dal =1 .uu . .(19)

c1 (x
10}
In sum, the comparative static change in consumer plus producer
surplus due to supplying the farm with one unit of community pasture can

be written as

aSW 1

— = p +MSBB(p1 . c. — .« . .(20)

by (14)-(15) and (18)-(19).

*
43Since the shift dA is equivalent to a shift c: 1(x1 ;0L1) -dcxl,
which is a product of two terms that are independent of the structure of
the farm's static maximization problem, the conventions dA = 1 and
da® = 1 are consistent.

uuFrom (18), it is obvious that the comparative static effects dx*
are linear homogeneous in dA just as dx* is linear homogeneous in
*
c1 1(x1
o 1 1
static effects for a given ['rrii(x*;a)]. In other words, le(x ;o) =

. 1 1* 1 . - 1 _
-2c”(x ;o) given dA = 2, do = 1,

;a‘)- doc1. Thus dA = 1 would lead to a doubling of comparative
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Thus the quantitative comparative statics model will have a linear

objective function (20} in i-x—l if p1 and all marginal factor costs c; (i#1)

are also treated as exogenoﬁg. Presumably, fairly tight bounds on many
equilibrium marginal factor costs can often be derived from observation.
In addition, the marginal value of community pasture p1 prior to the
pasture program seems to be well estimated by the methods to be described
in Chapter 4. Thus, if the quantitative comparative statics model is
employed in conjunction with a model similar to the linear programming model
to be presented in Chapter 4, the objective function (20) can often be

9 X

treated as linear in the endogenous variables —.

oa

3.5.2 Constraints (N = 2,3)

Suppose for simplicity that we can construct an "extreme short
run" static model with two variable inputs, one enterprise (cow-caif) and
a one month time frame (a summer month when pasture is grazed). Of

course, such a model is very unrealistic. Let

x = animal unit months of pasture employed by the
farm during the month
2 ... oa(21)
x~ = hours of labor supplied to the cow-calf enterprise

during the month.

The comparative static implications of the maximization hypothesis for this

: *

model are specified in Parts A and B of Figure 5. Here C:al(x1 ;all =
* . . u

—c}l(x] .;OL]), i.e., it is assumed without loss of generality that dA =1. >

#5gee the discussion of (19) in the previous section.
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3 X ax~ _ 1
L R S P Bu S b
o0 90
. 8x1 g axz -0
1240 22,54
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(B) -my = hy Mg = ohyyhy My = hyy*+hy,
hy, 2 0.01 hy, 2 0.01
1 _ 1 _
€ MKy + MKy *P Ky =1 MKy ¥ MKy +PKy3 =0
T, K + T..K +c2K = 1
12012 T2 22 F 0 a3

2 _
MKy * MK g3 +€5Ko3 = 0
1 2
o] K13+c2K23 = 1

(0 ssp's10, oscl sos  2scisu 100 SR 120

—24§K”§0 -80§K22§0 0_K12é32
9 _
< < < < < <
0.9=RyK13_1.1 0.5_RyK23_2 0=RyK33~2
Figure 5 Comparative Static Constraints for Community Pasture Model

(N =2)
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The one decomposition (output exogenous) is specified in Part C. These 6

"upper triangular" equations of the 9 equation matrix system AK =1

46

.completely describe the comparative static content of this system. Also,

p‘ rather than c: is specified in Part C in order to emphasize the difficulty

in obtaining direct market observations of the equilibrium marginal factor

cost of pasture.

1 1 2

A set of constraints pL £p < pU on p,c R. and [K]

11 €20 Ry
are presented in Part D of Figure 5. Given that these constraints form

an X percent confidence-Bayes interval for p, the feasible set defines (at

least) an X percent confidence-Bayes interval for giw .47 The constraints
on pl, C:I' cg and Ry have been derived as follows. First, the

analysis to be presented in Chapter 4 strongly suggests that the farm value
of pasture for the Peace River region circa 1975 typically was between $5

to $10 per animal unit moﬁth at equilibrium. This estimate defines the
bounds on p1 in the quantitative comparative statics model. Second,

suppose that the (inverse) elasticity of factor supply for pasture

1
dc1 dx1 _ x1 1 29
N A T C1q R 7))
C.I x C.|

1% . 1,.1% 1

is between 0 and 2 and x ~ 4o, cl(x ;) £10. Then the bounds on

the slope of the pasture supply schedule at equilibrium (C:I) can be

specified as 0 and 0.5. Third, interviews with ranchers in the region'

uGSee Section 7 of Appendix 3.

“See Section 5 of Appendix 3.
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suggested that the opportunity cost of supplying labor to the farm (in
terms of foregone leisure or off-farm employment in the case of own labor,
or wages for hired labor) typically varied between $2 and $4 per hour
circa 1975. These are the bounds on cg. Fourih, the total revenue per
calf sold by users of British Columbia community pasture circa 1975
typically varied between $100 and $120. These define the constraints

on R
Y

The constraints on the elements of [K] are related to the

static problem

N . . .
maximize R(y) F(x) - I c'(x';d) - A(F(x) - F(x%)) coe. .(23)
i=1
where x* solves the related problem "maxirﬁize m(x;a)." Denote the com-

parative static effects for (22) as

% % * % * %
Z)x1 ! 8x2 ) ax_ ) _8_% and ) - 8>\2 .
da 3 a 9F oF dnn 90
Then (for N = 2)
5 1%% : 5 1% % ) N 1%% 3
X X X
/| ¢, 1=K,," /c, »=K [ R =K
aocl 1a 1 80L2 20 12 sE ¢ Y 13
2** 2** 2**
9X 1 dX 2 ax
/lc, 1 =K [ c. 2 =K /| R =K
aocl 1o 21 aaz 2a 22 S E y 23 Loo(am
3 A 1 A 2 A 2
— / ¢, ¥ =K / ¢, 2 =K — | R = -K
30(.1 la 31 3 02 20 32 Nz Y 33)

and (by the maximization hypothesis) [K] is symmetric.

hg

See Theorem 3 of Appendix 3.
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Thus the direct constraints on [K] are defined by "reasonable"

restrictions on comparative static effects for problem (23) and the

9

assumption of symmetry for [K].Li These constraints have been derived

as follows. First, suppose that the own price elasticity of factor sub-
stitution for input 1
1 dc1 c1 *%

dx / 1 1 1 .axl

x| ! x! ¢l 1 dalt

. (25)

is between -3 and 0 (over a year or, equivalently, over a "typical" one

*
month period). Then, for x] = 40 and c: >5,

-24 < K11

IN
(=]

for a one month model. Likewise, if the own price elasticity of factor
- *
substitution for input 2 is between -1 and 0, x2 = 160 and cg 2 2,

then

-80 < K22 £ 0

In addition, if the other price elasticity for input 1 is between 0 and 2,

and for input 2 is between 0 and 1, then

IN

<
K21 s 32,

o
IA

K12 £ B0 0

However, K]2 = K21 by the maximization hypothesis. Thus assuming

that 0 < K12 £40 and 0 < K21 £ 32 define X percent confidence-Bayes

dA A

u-gKnowledge about — + —3 seems essentially redundant and is

oo’ Ja
therefore ignored.  See Section 3.4.2.1.
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intervals for these parameters and that the maximization hypothesis is

correct, the range

(=
172

<
K12 < 32

also defines an X percent confidence-Bayes interval for K ...
1** 2** 12
Second, suppose that ox and oX , which denote the change

oF oF

in level of inputs 1 and 2 for the month that would be associated with an

exogenous increase of one calf of output for the year, 50 are between 0.9

and 1.1, and 0.5 and 2, respectively. Then

0.9 sR_-K £1.1 - 0.55sR_ K

. £2.
y 13 y 23

9 2m(x*) — 9
3F2  SF

"profits" w(x*;a) for the month with respect to an exogenous increase of

Likewise, if . which denotes the second derivative of maximum

one calf of output for the year, is between -2 and 0, then

o
A
A
A
IA
N

Y 33

Alternatively, suppose that we can construct a static model with

three variable inputs that is similar to the above two input model, where

x3 = expenditures on capital services supplied to

1 « . . .(26)

the enterprise during the month.5

50Since Ry has been defined as the revenue received from the sale of
jx* j*%
one calf at the end of the year and ax_ = ax_ - R (see Section 3.4.2.1),
axi** oF oR
— is to be measured as the change in level of input i for the month that
oF
is associated with an exogenous increase of one calf of output for the year.

(Footnote 51 on the following page).
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Such a simple model is very unrealistic. Constraints for the three input
model are presented in Figure 6, and are constructed in essentially the

. - 52
same manner as are constraints in Figure 5. Knowledge of

5 i** .
X j _ ..

/ e+ = K. iz, 00,3
30 jod ij Gij )

often may be relatively scarce; so these restrictions are excluded from
Figure 6 in order to emphasize this point.

In addition, note that Figure 6 incorporates

(a) knowledge of comparative static effects for a "short run"
decomposition (D), with output and capital fixed, that is

equivalent to the decomposition AK = | in Figure 5, and

(b) knowledge of comparative static effects for a "short run"

decomposition (E), with capital fixed.53

Short run decompositions with pasture and/or labor fixed are excluded from

the model in order to emphasize the following: comparative static behavior

51, 3. . .. . . .
nput x~ is implicitly defined as an aggregate of various capital
inputs. This aggregate model can be derived from knowledge of a more
disaggregate comparative static model by aggregation procedures presented
within Appendix 5.

’ 52The restrictions presented here correspond to the "major" restric-
tions on comparative static effects (see Section 3.4.2). For a sample of
"minor" restrictions that could be included in the model, see Section 3.2 of
Appendix 3.

* *
53 S S

9X 9X
1 E)oc2

The comparative static effects in Part E of Figure 6

aa
refer to a "short run" problem
maximize w(x;a)

subject to x3 = x3* .
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FIGURE 6 Comparative Static Constraints for Community Pastures Model (N = 3)

5“This symmetry condition follows from the maximization hypothesis (see footnote to Theorem 3
in Appendix 3).
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is least likely to be observed for decompositions with relatively non-durable

inputs defined as fixed_.ss' >6

3.6 Summary and Suggestions for Further Research

In this chapter, we have introduced a method of comparative static
analysis that is intermediate between traditional qualitative and quantitative
methods in terms of the_ degree of structure imposed on the firm's static
maximization problem. Traditional qualitative comparative static mefhods
have incorporated the implications of the maximization hypoihesis, signs on
elements of [’ITij(X*)], and additional elementary restrictions such as fixed
factor prices. The method presented here can incorporate these and many
other restrictions. We have emphasized restrictions corresponding to
various "short run" (fixed input) comparative static effects, especially
factor substitution and scale effects. These restrictions can be derived
from (e.g.) engineering or field data on physical processes, and from
econometric estimation of production processes or of comparative static
effects. Since this information can be incorporated into the model in the
form of confidence-Bayes intervals, this method avoids the major drawback

of traditional quantitative comparative static methods: results obtained by

55Also note that labor can be viewed as a capital asset (rather than
as an input whose level can be adjusted quickly without incurring signifi-
cant adjustment costs) if costs of initial training are borne by the firm;
but such costs appear to be minimal for most of the labor employed in a
cow-calf enterprise.

56Never'theless, there may be significant knowledge of physical pro-
cesses that corresponds to comparative static effects for decompositions
with pasture or labor fixed. .
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these determinate methods are dependent upon essentially arbitrary
specification of many aspects of the firm‘s static maximization problem.
The manner in which this method can be applied to the estimation of
comparative static effects for community pasturé programs is illustrated
in terms of two simple models. |

To the extent that this chapter has been successful in laying the
main theoretical foundations for such an intermediate method of
comparative static analysis, future research should explore the computa-
tional problems and practical significance of this methodology. Computation
problems are considered in Appen;:lix 5 of this thesis, and concern
difficulties in solving nonlinear prbgramming models that are associated
with this method. | The material presented there appears to solve these
problems in part; but further research along these lines is needed. In
particular, the problem of approximating random sampling procedures for
obtaining feasible solutions to the nonlinear programming models must be
considered more carefully,' and experience in solving such models should
be accumulated. As a byproduct, such experience should provide
some measure of the practical importance of the methodology, i.e., of
the extent to which "reasonable" knowledge can define the comparative
static effects of interest. [t is expected that the degree of success will
vary with the comparative static effect of interest and also across
"reasonable" degrees of knowledge of the structure of various firms.

Thus, as has been noted previously,57 this intermediate method and

traditional methods of quantitative comparative statics to some extent

57See Section 3.5.
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complement each other. Traditional quantitative methods are useful in
estimating comparative static effects that depend primarily upon aspects of
structure that are known with considerable precision or in estimating
comparative static effects that can be compared with alternative measures

of the effect. In the next chapter, we shall illustrate both of these points
by means of a static (deterministic) linear programming model of a beef
ranch. In the process, we shall also gather support for the hypothesis
that the comparative static paradigrﬁ is useful in the evaluation of community
pasture programs. These results will suggest that the essentially
theoretical exercises of the last two chapters can make a positive contribu-

tion to the applied economics of ag}'iculture.
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CHAPTER 4

A STATIC LINEAR PROGRAMMING MODEL OF A

REPRESENTATIVE BEEF RANCH

4.1 Introduction

The purpose of this chépter and the accompanying Appendix 6 is
threefold. First, we shall present a static linear programming model of a
"representative" beef ranch for users of community pasture in the Peace
River region of British Columbia circa 1975. Such deterministic models
can often be useful complements or even substitutes for the method of
comparative static analysis that was developed in the previous chapter.
In particular, knowledge of the equilibrium shadow price of pasture for the
farm is extremely important in the evaluation of community pasture programs,
and this equilibrium shadow price depends primarily upon knowledge of
parameters that can be specified with some degree of confidence.
Moreover, other microeconomic models that have been adapted to the study
of derived demand for pasture in Western Canada appear to have been
either non-optimizing or partial equilibrium in nature; whereas, the
model presented here is explicitly static general equilibrium and
optimizing in natur'e.1

Second, solutions to this model are consistent with the assumption

that constructs of static, optimizing behavior are

]See Department of Regional Economic Expansion (1976) and
Graham (1977), which are mentioned in Section 4.4, 2,
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often appropriate for microeconomic models designed to estimate farm
response. Estimation of aggregate farm supply response via construction
and solution of linear programming models of representative farms was a
major area of research in the profession in the late 1950's and the 1960's.
Unrealistic assumptions of static optimizing behavior have been included
on the list of possible explanations for the apparent failure of these studies,
and at least some observers have speculated that these have been the
primary reasons for failure. However, by attempting to estimate an
equilibrium shadow price for an input rather than response, we are able
to reduce the significance of many of the problems associated with studies
of supply response and focus more.clearly on the appropriateness of con-
structs of static, optimizing behavior,

By comparing solutions to the static optimizing model to be
presented here with calculations based on direct observations of hayland
rental markets and beef ranch activities, we derive empirical support for
the major assumption underlying this thesis: the comparative static paradigm
and maximization hypothesis are often useful constructs, and often more
useful than alternative constructs, in the empirical estimation of micro-
economic behavior. These results are consistent with the theoretical
discussion of static, optimizing behavior versus dynamic, nonoptimizing
behavior that was summarized earlier in this thesis (Appendix 1).

Third, in this process we demonstrate that the comparative

static models and methods of this thesis should be relevant to the
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problem of predicting farm response to community pasture programs. Thus
the theoretical content of this thesis should have constructive (i.e., real

world) uses.

4.2 Representative Farm Approaches to Estimating Farm Response

4.2.1 Studies of Supply Response

In the late 1950's and the 1960's, there were many studies attempt-
ing to estimate aggregate short run or long run supply response by
aggregating estimates of supply response for "representative" farm models.
Apparently these studies are considered in large part to have been un-
successful.2 Lists of potential causes of this failure have emphasized the

following:

(a) use of the unrealistic assumptions of (short run or long

run) static equilibrium and optimizing behavior‘,3

(b) poor knowledge of the relevant structure of an individual
farm,

(c) poor knowledge of differences in structure among farms,
and

(d) poor knowledge of correct procedures for aggregating response

over farms, i.e., for modelling interactions of farms,

2 For discussion of these studies, see Nerlove and Bachman (1960), L,
Day (1963), Carter (1963), Barker and Stanton (1963), and Sharples (1969).

Indeed, the stronger assumptions of static and profit-maximizing
behavior were generally employed.
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Furthermore, it has been speculated by at least some observers that the
primary reason for failure in these studies was the common assumption

of static, optimizing behavior.u

4.2.2 A Means of Evaluating Constructs of Static Optimizing

Behavior

Here we shall formulate'a means of inVestigating the appropriate-
ness of constructs of static, otpimizing behavior in thve estimation of farm
response via representative farm models. Results will be presented in
Section 4.4,

In the previous section, it was pointed out that the apparent
failure of microeconomic supply response studies has occasionally been
attributed to erroneous assumptions of static and maximizing behavior. On
the other hand, theory summarized earlier in this thesis suggests that
static optimizing models will often provide the most effecti\;e means of
estimating supply response. This is primarily because the difference
between static and dynamic response presumably depends critically upon
essentially unknown parameters of the firm's adjustment cost functions,
and static models at least have the virtues of internal consistency and
relative simplicity of structure.5 Thus it seems reasonable to suppose
that dynamic and/or non-optimizing representative farm models are even

less effective than static, optimizing models in predicting farm response.

uSee Carter (1963) especially pp. 1455-64, White (1969) and, in
the same spirit, Smith and Martin (1972).

5See Appendix 1 for details.
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Given this contrast between theory and th.e opinions of at least
some observers on this fundamental issue, it seems desirable to consider
empirically the effectiveness of constructs of statié, optimizing
behavior in predicting farm response. However, an oBvious problem
here is to separate the effects of such constructs from other potential
sources of error in estimating response.

In order to obtain a clearer picture of the effects of _such
constructs of siétic optimizing behavior, we shall focus on the
equilibrium shadow price of pasture in representative farm models rather
than 6n measures of the change in levels of input (output) for a given
change in input (output) price schedules. . In this manner, we can
significantly reduce the effects of other potential sources of error in .the
estimation of farm response.

The effects of poor knowledge of the individual farm's static
structure m(x;a), of the individual farm's adjustment cost functions,
of differences in structure among farms, and of interactions of farms all
appear to be less important in estimating shadow prices for inputs
than in estimating other types of farm response. These points can be
elaborated upon as follows. First, the equilibrium shadow price or value
of input (e.g., pasture) is more dependent than most other measures of
farm response on relatively observable aspects of the structure of an
individual farm. For example, in the case of a differentiable function
R(x) and a static problem

N

maximize m(x;a) = R(x) - Z ci(xi;oci) e oo (1)
: i=1
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% 6
with a known interior solution x , the shadow price (demand price for an

additional unit) of pasture at equilibrium is defined by

1, 1% * .
P(x)=R1(x) e e . (2
whereas
r 1 N
1ot
* -
2 = o™ o , C 3
20 .
(0

Since knowledge of the first derivatives of R(x) at x* is likely to exceed the
- knowledge of the second derivatives of n(x;a) at x*, the shadow price

*
for pasture p1(x1 ) can be estimated with more confidence than can

*
effects such as X . This statement remains true but in a slightly
da :
weaker form when x* is unknown; to the extent that x* is estimated with

1*)

error as xE and R‘(x*) # Rl(xE), the accuracy of the estimate for pl(x

depends on second (and higher) derivatives of R(XE) and the degree of

*

knowledge of Rl(xE); whereas, the accuracy of the estimate for g)&
depends on third (and higher) derivatives of TT(XE;OL) and the degree
of knowledge of [Trij(xE)]. However, unless x* is estimated with very

larger error or second derivatives of m(x) are roughly comparable in

magnitude to first derivatives, the equilibrium shadow price can still

ax*

1
da
In addition, the analysis is essentially unchanged in the case

be estimated with more confidence than can effects such as

where the model utilized for estimation exhibits a non-differentiable

‘ ox .
6x* is defined as an interior solution if x' >0, i=1,¢+,N,
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production function. For example, in the linear programming case, the
equilibrium price of pasture is calculated from

Q .
plix'™) = M- . 3ROy ity 2w

ax] x| i=2 3x

N . i*

*
rather than from (2) per se, where 9X
X

at x*, Given that the "true" model is differentiable (or approximately differ-

defines the fixed factor proportions

entiable), we should construct the programming model so that the parameters
3R , o9x_ , c:.i (i=1,«++,N) vary in a piecewise manner over x in rough

ax!  ax! :

accordance with our estimates of R.1 and [nij] over x. Thus the analysis

~ presented above for a differentiable model carries over directly to the non-
differentiable case.

Second, the equilibrium shadow price is less dependent than most
aspect of farm response on the largely unknown structure of the adjustment
cost functions of the individual farm. This follows essentially from
Equation (2). By definition, Rl(x#) is independent of the ease in
adjusting various inputs.‘ On the other hand, observed changes in input
levels resulting from shifts in price schedules are very dependent upon
the particular adjustment cost functions for the farm. The argument
generalizes to the case of non-differentiable R(x) in roughly the same
manner as above. ‘ -

Third, equilibrium shadow prices of pasture presumably are more

uniform across farms than are most measures of response. Suppose that

transportation costs of incorporating off-farm improved land into the farm
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enterprise are negligible, that (equilibrium) rental prices are equal across
farms, and that equilibrium exists in the available rental markets for
improved land. Then the equilibrium shadow price of pasture will¢ be
identical across all farms that trade in these markets and employ improved
land as pasture. Although these assumptions may not be realistic, the
argument does suggest that market forces tend to reduce the variation in
equilibrium shadow price of pasture across farms in the Peace River region
of British Columbia. On the other hand, market forces presumably do
not tend to reduce the differences between farms in "highe;' structure"
that is analogous to ['rrij(x*)] and adjustment cost functions. Moreover,
differences in such structure appa}‘ently have significant effects on most
aspects of farm response.Gl Thus market forces tend to reduce the
differences between p1(x1*) across farms without influencing the
variation in response of input and output levels to shifts in price
schedules.

Fourth, the farm value of pasture is influenced less by farm
inter-relations than are most aspects of farm response. This is because
any particular unit of paéture is generally employed only by-a single

farm, whereas, an exogenous shift in a factor supply or product demand

!

6This seems obvious from Equations (3) above. In addition, see
Day (1963) and Paris and Rausser (1973) for studies that are formulated
specifically in the context of linear programming. On the other hand, Day
(1969) has also noted that many farmers may tend to imitate the response
of managers who are recognized as relatively effective decision-makers.

If farm response happens to consist primarily of such behavior, the variation
in structure across farms is unlikely to lead to large differences in either
shadow prices or other aspects of response within a region dominated by a
single manager with recognized decision-making skills. However, results
to be presented in Section 4.4 support the hypothesis that such imitation,
which is not static and optimizing behavior, is relatively unimportant.
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schedule is generally experienced simultaneously by a large number of farms.
Thus shifts in factor supply and product demand schedules of farm A due

to activities of other farms have less influence on farm A's shadow price

for pasture than on farm A's response to an exogenous shift in a price
schedule that is also experienced by many other farms.

In sum, there is reason to investigate the assumption that
constructs of static, optimizing behavior are relatively useful in farm
response studies, and the effects of alternative sources of error (b)-(d)
can be controlled more effectively by focussing on equilibrium shadow
prices of pasture than on most other types of farm response. Moreover,
» the marginal value of pasture can elso be estimated in the Peace River
region from observed rental prices for hay land, given the substitution
relationship between hay and pasture observed on farms in the region.
Since these estimates are derived from real world data without imposing
any significant assumptions about static, optimizing behavior, they
provide a criterion for evaluating the appropriateness of constructs of
static, optimizing behavior in estimating equilibrium shadow prices
for pasture.

In addition, the results of such .an examination of
shadow prices also provides some information about the appropriateness
of the constructs in estimating other types of farm response that are
long run or intermediate run in nature. For example, in the case‘
where alternative models have identical differentiable production

(revenue) functions R(x), the likelihood of accurately predicting
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R1(x*(a0)) within a given model presumably increases with thé likelihood
of accurately predicting x*(ao). In addition, the likelihood of predicting
.the farm responses x*(oa]) —x*(ao) presumably increases with the ability
to predict x*('oco) and x*(ocl) . Since any actual equilibrium activities
x*(a) are a composite of adjustments over time, it follows that the same
model tends to be most appropriate in predicting R1(x*) and long run and

intermediate run farm response.

4.3 A Static Linear Programming Model of a Representative Beef Ranch

The purpose of this section and the accompanying Appendix 6 is

- to detail and to explain farm programming models developed for an economic
evaluation of British Columbia ARDA community pasture programs in

the Peace River region.7 These models were developed as an alternative
to the available non-static or partial equilibrium beef ranch models for

~

Western Canada.

4.3.1 Methodological Problems

Here we outline issues that were considered to be particularly
important in choosing a structure for the farm model. In sum, the model (1) |
specifies static, optimizing behavior rather than dynamic, non-optimizing

behavior; (2) generally defines the levels and ratios of various capital

7The material presented in this section and Appendix 6 overlaps
considerably with Coyle and Barichello (1978).
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stock activities (number of cows on farm and disposition of calveé) and
enterprise and feeding combinations as endogenous rather than as fixed;
and (3) disaggregates labor requirements and supplies over the model

year.

4.3.1.1 Static Optimizing Behavior versus Dynamic, Non-optimizing

Behavior

First, a model can be static and optimizing or dynamic and/or non-
optimizing in nature. In Appendix 1, it has been argued on theoretical
grounds that static, optimizing models should be preferable for estimating
- farm response. In summary, deviptions from static, optimizing behavior
are due essentially to the existence of "adjustment costs," and our present
knowledge of adjustment costs enables us to estimate comparative dynamic
and non-optimizing effects only as a series of comparative static and
optimizing effects. In addition, static equilibrium models are internally
consistent (unlike most dyhamic models) and can more easily accommodate a
complex structure of production within the unit time period. Thus it was
decided that a static programming model was most appropriate. "Short run"

and "long run" equilibrium versions were constructed.®

8The choice of a one year static model is satisfactory for the
purpose of estimating long run equilibrium and response, which are our
main concerns. '~ Given the 2.5 year lag in buildup of the beef herd, a
static model with a three year time period would be most appropriate for
estimating "short run" comparative static effects.
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4.3.1.2 Endogenous versus Exogenous Specification of Activities

and Combinations of Activities?

Second, livestock capital activities, enterprise combinations, etc.
can be specified either as endogenous or as exogenous (fixed) in the
static model. In the presence of uncertainty about "true" farm structure,
i.e., errors in specifying the production function or price schedules, an
endogenous specification is not necessarily appropriate. For example,
let all such activities be subsumed in the vector x of all farm activities,
and let Xg denote any sub-vector of x that may be treated as exogenous to

the farm model (all other activities x, will always be treated as endogenous

A
to the model). Then, in the diffe'rentiable case, the problem is to choose:

between the following estimates of the true equilibrium shadow price

Ry(x*(yg)ivg):
E E
* .
Ry(x*(yg+A7Y); yg+A7Y) . . . .(5)
E E E ..
R1(xK(Y0+A y);xé(y0)+A xB,yo+A Y) e o .« .(6)

where the true parameters Yo (of price schedules and the production
function) and true equilibrium levels xé(yo) are estimated with error
AEY and AExB, respectively, and xz(yo +'AEy) is the equilibrium when

Y =Yg * AEY and Xg is fixed at its true level xé(yo) . The appropriate
choice between (5) and (6) depends essentially on the derivatives m_,

Tpr (and also RY' RXB) over the relevant region and the prior

: 9This section is the most technical part of this chapter, and can be
omitted by the reader without seriously affecting his comprehension of the
remainder of this chapter.
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distributions of the errors AEY and AExB. Thus an endogenous specifi-
cation of capital activities, etc. is not necessarily appropriate for
estimating the shadow price of pasture in the presence of errors
2B, 10, 11

An endogenous specification of livestock capital activities, enter-
prise combinations and feeding combinations was selected for the model
essentially on the basis of the following extremely crude argument.12
Suppose that the errors AEY are "small" relative to the errors AExB.
.Then, in the absence of further information, the expected error in
estimating R1(x*(_y0); YO) is less for method (5) than for method (6). More-
over, the parameters seem reasonably specified for the purpose of
estimating shadow prices, 13 and current activities x may be quite differ-
ent from static equilibrium (especially "long run equilibrium") levels. In

this case, x should be specified as endogenous.w’ 15

IOSimiIar statements hold when R(x) is non-differentiable and the
shadow price is estimated for a discrete change in the level of pasture.

”Whether or not an endogenous specification of Xg tends . to stabilize

equilibrium 7 (and hence the equilibrium shadow price) in the presence of
errors AEY depends on the (essentially unknown) direction of the errors:

AEY > 0 implies that an endogenous specification is destabilizing essentially

*
due to convexity of n(x (y);y) in y. For example, if v is the output
price for enterprise j, then the firm will maximize the increase in equilibrium
T in response to (AEy)l > 0. Thus, if there are no other errors

m(x*(vg)ivg) < TT(XA*(YO‘fAEY);XB*(YO)‘, Y0+AEY) < W(X*(Y0+AEY);Y0+AEY)-

12lnterviews with farm and B.C.D.A. staff suggested that possibil-
ities for factor substitution could be estimated with at least some accuracy
across enterprises and feeding possibilities, but could not be estimated with
any. accuracy within any particular combination of enterprise and manner of
feeding. Thus factor ratios within each of the various enterprises are gen-
erally specified as fixed at the observed levels.
( Footnotes 13, 14, 15 on
the following page)
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4.3.1.3 The Degree of Aggregation and Endogeneity of Labor Demand
and Supply

Third, and related to the second issue, labor requirements and
supplies can be specified at various levels of disaggregation and endogeneity
in the model. It had been suggested that community pasture programs
could have various labor-saving effects of considerable value to users,
and reasonable point estimates of labor requirements for the various enter-
prises over the year were obtained. Thus, by the argument for treating
capital levels, etc. as endogenous, labor requirements for each enterprise
are disaggregated over the model year, and point estimates of the labor-

~output ratio within each enterprise are specified. Likewise, the supply

13See Section 4.2.2 above.

mEven though given errors AEY have a greater effect on estimates
*
of other aspects of farm response such as §_x_:_, an endogenous specifi-
dal *
cation of Xg also seems preferable for estimating Bxi . By the Le
da

Chatelier Principle,

ax(x*(0); a)

9 OLi

BX(xA*(a);xB*(oc), a)

Ja
where o is a subset of y. Thus fixing xg at xB* leads to errors in estimating
ox*
2o E,i

in estimating xA*(yo) in the presence of any error (A "Yy) . However, this

when AEY = 0, and on the other hand fixing xg at xB*” reduces the error

advantage of (correctly) specifying the level of Xp in the model should be less

*
important in estimating the difference §_x_ in equilibrium levels.
’ ddl
15H: should also be noted that the "best" estimates of y for the model
are not the expected values of y. Since m(x*(y);y) is a convex function
of y provided only that 'rrY does not change sign over (x*(y),Y) (e.g.,

(Footnote 15 continued on the
following page) :
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schedules of family and hired labor to the farm are disaggregated over time
and exogenous supply prices are specified.16 As noted in Chapter 1, the
equilibrium supply price of labor appears to be endogenous to the farm
during many periods of the year. Nevertheless, the directions of bias

on changes in labor use and value of community pasture due to this mis-
specification are readily determined in this model, and the magnitudes of
errors can be estimated simply by varying the supply price of labor in

the appropriate directions.” Attempts at direct modelling of endogenous
supply prices for labor have been avoided here precisely because neither

evaluation of direction of bias nor sensitivity analysis could then be done

so easily.

4.3.2 Summary of Model Structure

Here we summarize the basic single year linear programming médel
of a "representative" farm using community pasture in the Peace River
region of British Columbia. "Long run" and "short run" variations of
the model were constructed. The structure of both versions and sources

of data for the models are detailed in Appendix 6.

(Footnote 15 continued)

McFadden,1978), y should generally be defined in the model at less than its
expected value in order to obtain unbiased estimates of equilibrium w before _
and after a shift in the supply schedule of pasture. However, we shall ignore
this problem on the grounds that the estimated difference in these equilibrium
levels of 7 should be less sensitive to such difficulties.

, 16The exception to this statement is that upper bounds are placed
on the supply of family labor available in each time period.

7see Section 1.7 of Appendix 6.
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The structure of each model can be disaggregated into the following
groups of constraints and activities: (1) land, (2) cattle numbers,

(3) cattle feeding, (4) labor, (5) income assurance, and (6} income.
Each model has the same objective function. The relations between these
groups of constraints and activities are summarized in matrix form in
Figure 7. In addition, a flow diagram of the model is presented in
Figure 8.

Each model farm has 350 acres of improved land that can be used
as pasture, or in production (and establishment) of hay, barley or oats,
and 150 acres of unimproved land that can only be used as range. Each
farm can rent up to 300, 50 and 75 animal unit months of range in summer
periods June 1 to September 1, September 1 to September 15 and September
15 to October 7, respectively. Each farm can also rent up to 180, 30 and
45 animal unit months of community pasture in the same summer periods.18
In addition, a farm can rent up to 50 acres each of hay, barley and oat land
during the year. Three-quarters of ownacres in hay and in grain are
in production during the year. Otherwise, quantities of on-farm and
off-farm land in fhe various uses are free to vary, subject to the supply
constraints mentioned above.

However, the structure of the cattle numbers subsection of fhe

models depends on the variant of the model. In a "short run equilibrium"

18In the models, one animal unit month (AUM) is equal to one
yearling month of grazing as well as one cow (plus calf) month of grazing.
Although one yearling presumably requires less grazing than does one cow
(plus calf), it had been suggested that a yearling exhausts about the same
quantity of pasture as does a cow plus calf (due to greater trampling of
grass by yearlings). In fact cows and yearlings were charged at the same
rate on the observed community pastures.
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model, the farm number of cows is defined as greater than or equal to

40, which is approximately the average number of cows on sampled farms.
In a "long run equilibrium"vmodel, bounds are never placed on the number
of cows. However, both short run and long run models are generally
specified such. that net investment in cows and calves over the year must
be equal to zero. Gross investment in cows then consists solely of
replacing cows lost during the year through culling (10% of the opening
stock) or through death (2% of the opening stock). Cow replacements must
come from the on-farm herd, i.e., cannot be purchased. Likewise, gross
investment in calves consists solely of accumulating a stock of calves at the
end of the year that is equal to the stock of calves held at the beginning
of the year (and sold as yearlings towards the end of the year). In
contrast to the level of cows, the opening and closing stock of calves

is unbounded in short run as well as in long run models, and the calf
replacements (closing stock of calves) can be purchased as well as

raised on-farm during the year.19

For feeding purposes, the year is divided into six periods, as

shown in Table 1.20 During the first two periods, November 1-June 1,

19Notice that none of the constraints discussed here fixes the levels
or ratios of (a) calves sold at the end of the year, (b) calves held over
for sale as yearlings in the following year, and (c) calves purchased at the
beginning of the year for sale as yearlings towards the end of the year.
The levels and ratios of these activities are endogenous to all programming
models. A lower bound on cow numbers is generally included in short
run models because of their apparent short run fixity (see Section 1.2
of Appendix 6).

2OThe year is defined within the model as beginning and ending
November 1. The selection of a starting and terminal date is simply a
matter of convenience, provided that the short run or long run equilibrium
assumptions on which the model is based are realistic.
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all cows and yearlings must be fed hay (produced on-farm or purchased)
at a fixed rate; yearlings also receive barley. During the next two periods
(June 1-September 15), cows and yearlings must be grazed, either on
own pasture, range or community pasture. Weight gains for calves
and yearlings are specified as being lower on range than on pasture by
15 pounds per cow (with calf) AUM on range and 21 pounds per yearling
AUM on range (in the standard case). Grazing supplies of rented range
and pasture cannot be substituted between periods. However, grazing
capacities per own acre in pasture or range are defined as fixed aggregates
over these two periods, i.e., it is assumed that the total quantity of
grazing available on an acre of own pasture or range is invariant with
respect to the grazing schedule over these two periods. In the fifth
period (September 15-October 7), all cows must be grazed, either on own
pasture, range, community pasture, or hay aftermath. Yearlings must be
grazed or zero-grazed (fed hay), and also require barley. Weight gains
on range are lower than gains on pasture and hay aftermath by 30 pounds
per cow (with calf) AUM on range and 42 pounds per yearling AUMbon
range (in the standard case). Grazing capacity in the fifth period is
not transferable to or from other periods. During the sixth feeding
period, cows and calves require grazing on hay aftermath, and yearlings
must be grazed on hay aftermath or iero grazed (and require barley).

For purposes of labor accounting, the year is divided into nine
periods, as also shown in Table 1. A schedule of on-farm labor supply
has been estimated (for a work force of one operator, wife, and two

school children), and it is assumed that additional labor can be hired at
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any time at a constant wage rate. During the winter (November 1-May 10) up
to 30 hours of an on-farm labor supply of seventy-five hours per week
can be allocated to off-farm employment or custom work.

Cows and yearlings require labor at fixed rates within winter and
spring periods. In the three labor periods during which community
pasture is available (June 1-October 7) cattle demands on farm labor vary
with method of feeding (lowest on community pasture) and time of roundup
from community pasture and rented range. In the first of these three
periods (June 1—Juiy 1), labor also is required for cultivation of hay and
grain land. Harvesting of hay can occur within any of the three labor
periods from July 1 to September 15, on "appropriate" days (60% of days
within the period determined by the vagaries of weather). Thus approxi-
mately 60% of the Iabor'available from the farm family in a particular
period can be utilized for harvesting. This is the labor constraint on
harvesting in the models. Grain can be harvested on appropriate days
within the two labor periods from September 1 to October 7. Labor
requirements per acre harvested do not vary with the period of harvest;
but the yield of hay per acre and grain per acre decreases with the delay
in harvesting. The resulting hay and grain can be either sold or fed
to animals during the year. In the final period (October 7-November 1),

cows, weaned calves and yearlings require labor at fixed rates.21

21That component of leisure which is the unemployed surplus of
on-farm labo.r supply is valued in the models. Values are highest during
the two week calving period in April and days appropriate for harvesting.
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Several Income assurance-related constraints and activities are
included in income assurance versions of the "short run" model.22 This
subsection determines the number of beef pounds from calf and yearling
sales that.qualify for income assurance subsidies to the farm and also
determines the level of subsidy. There is an upper bound to the number
of qualifying pounds.

Farm income is 'specified simply as the total revenue for the year
from sales of calves, yearlings, hay and grain, plus revenue earned by
farm family labor in off-farm or custom work, mi.nus the sum of purchase
costs of farm inputs, depreciation and interest costs of capital
(excluding land) for‘the year. In some short run models, costs of
maintaining the Stock of cows and/or capital in hay and grain enterprises
are not specified, i.e., negative net investment is permitted

occasionally.

4.3.3 Limitations of the Model

These models of a "representative” farm have many limitations.
The most important of these appear to be (1) errors in specifying
production functions and extreme difficulties in performing an adequate
sensitivity analysis; (2) er-'r'ors in simulating the effects of adjustment
costs (except in long run equilibrium models); (3) errors in specifying

expected prices for beef; and (4) failure to incorporate risk into the

22The B.C. Farm Income Assurance program subsidizes ranchers
in terms of their beef output. '
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model. The first two points appear to be the most serious weaknesses of
these models and of many other models that are designed for estimating

farm response.

4.3.3.1 Lack of Knowledge of the Production Function and the Extreme

Difficulty in Obtaining an Adequate Sensitivity Analysis

The most serious problem with the model from the viewpoint of
estimating "long run" comparative static effects appears to be the diffi-
culty in accurately specifying the farm's production function and in
performing an adequate sensitivity analysis for the effects of this uncertainty.
Long interviews witH farmers and éonsultations with district agriculturalists
led to a rough consensus on current (circa 1975) input-output ratios in
various enterprises for the "average" user of community pasture in the
Peace River region of British Columbia. However, reliable estimates of
possibilities of factor substitution within an enterprise or of returns to
scale were not obtained. Moreover, estimates of equilibrium shadow

prices should be somewhat sensitive to such uncertainty, and estimates

*
of other comparative static effects of the form Ax should be particularly
: Ao
sensitive to mis-specifications of possibilities for factor substitution.and

of returns to scale.23

Since there is considerable uncertainty about the appropriate

structure of the production function and the relation between structure

23See Section 4.2.2.
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and comparative static effects is generally complex, there should be con-
siderable difficulty in performing an adequate sensitivity analysis for the
effects of such uncertainty. This can be seen most clearly in the case of

local comparative statics and a twice differentiable production function.

Then
r h
X * -1 “1al
T = [Tri.(x*)] 0 NN )|
da J .
\O J
i*
i.e., any comparative static effect GRS depends on the values of
.o

N(N +1)
all —

elements (assuming symmetry) of the Hessian [TTij(X*)]. For
any reasonable number of inputs N and a realistic degree of uncertainty
about the structure of the production function, Equations (7) virtually
preclude the possibility of doing an adequate sensitivity analysis by vary-
ing directly the values of elements of ['rrij(x*)]. Moreover, a linear
programming model cannot even incorporate many reasonable conditions

on the production function (increasing returns to scale and non-convex
isoquants) and also has difficulties in handling many other reasonable

properties (decreasing returns to scale and smooth strictly convex

isoquants).

4.3.3.2 Errors in Simulating Adjustment Costs

For the purpose of estimating "short run" comparative static

effects, the most serious problem with this model or perhaps any other
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farm model may be the difficulty in accurately simulating the effects of
adjustment costs. As has been noted previously,24 our'poor knowledge
of adjustment costs generally implies that comparative static analysi’s is

our most effective means of estimating real response, i.e., real comparative
dynamic effects. Nevertheless, even if a static model with a 'three year
time period had been constructed, errors in simulating the effects of

adjustment costs presumably would lead to considerable errors in
*
-

estimating "short run” response of the form o X
a0

4.3.3.3 Errors in Specifying Expected Beef Prices

All comparative static effects, including the shadow price of
community pasture, will be sensitive to errors in estimating ranchers'
expected beef prices. Si?ce there is considerablé variation in calf and
yearling prices over the ten to eleven year beef cycle and the process of
expectations formation for these ranchers has not been quantified, these
errors are likely to be significant. On the other hand, a sensitivity
analysis for expected calf and yearling prices (two parameters in a one
year model), for a given production function, is much more manageable
than a sensitivity analysis for the elements of the equilibrium Hessian
[Rij(x*)] of the production function. Thus, in terms of formulating

appropriate confidence intervals for comparative static effects, lack

2uSee Appendix 1.
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of knowledge about expected prices poses less of a problem than lack of

knowledge about second order properties of the production function.

4.3.3.4 The Exclusion of Measures of Risk

Although risk is consistent with the use of static, optimizing models
and incorporation of risk would lead to more realistic modelling of behavior,
farmer's uncertainty about prices, etc. has not been incorporated directly
into the model. The main reason for this is that—in a sensitivity analysis —
the effects of risk can be incorporated in terms of variations in expected

input and output prices.

4.4 Results and Implications

The equilibrium farm value of community pasture has been estimated
under various conditions for the above static linear programming models,
and these results shall be summarized here. These results will also be
compared with estimates of equilibrium shadow prices for pasture that
have been obtained by other methods. Of most importance, the results
obtained here are similar to estimates of the marginal value of pasture that
were obtained by Barichello (1978) from actual hay market data under
essentially independént assumptions. On the other hand, other farm models
simulating n'oﬁ;optimizinwg -or partial equilibrium behavior led to quite
different results. The conclusion is that the results of these studies

are consistent with the argument .of Appendix I: assumptions of static,
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optimizing behavior are more appropriate than alternative constructs in
the estimation of supply response or other response via representative

farm models.

4.4.1 Results

Solutions obtained from various specifications of the linear pro-
gramming model strongly suggest that static equilibrium values of pasture
in the Peace River region of British Columbia under 1975 conditions
typically would be between $5 and $10 per AUM. Some of the results
supporting this conclusion are presented in Tables 2 to 4. In addition,
results presented in Table 5 sugge.st that (as expected) significantly higher
shadow prices for pasture are implied by static equilibrium and extremely
high (circa 1979) expected real beef prices.

The results presented in Tables 2-5 illustrate the variation in
equilibrium farm value of pasture with respect to expected beef prices,
bounds on cow numbers and the possibility of backgrounding (purchase

5

of calves for subsequent sale as yearlings) .2 Best estimates for other

parameters of a linear model of a "representative" user of community

25Community pasture differs from on-farm pasture in the following
respects: cattle on community pasture are tended by a rider employed
by the grazing association, and cattie must be moved to and from the
community pasture within specified periods. Model results suggested that
the net effect of these differences on income and the dollar-equivalent
value of leisure is negligible. Thus we can assume that the marginal
products of community pasture and on-farm pasture are equivalent.
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pasture in the Peace River region of British Columbia circa 1975 have been
employed in obtaining these particular results.26 These estimates of
representative parameters circa 1975 were gathered from interviews
with farmers and B.C. Ministry of Agriculture personnel.27

Table 2 shows the variation in equilibrium farm value of pasture
and several aspects of model solutions with respect to (a) three important
combinations of expected beef prices, (b) a lower bound of 40 cows, and
(c) the possibility of backgrounding. The following combinations of beef
prices are employed: the 1975 market prices of $30 and $36 pér cwt. for
calves and yearlings; the 1975 market plus Farm Income Assurance sub-
sidy prices of $56 and $50 per cwt. for calves and yearlings; and the
average real prices over the previous beef cycle of $50 and $45 per cwt.
for calves and yearlings. Since 1975 market prices represent the bottom
of the beef cycle and the anticipated subsidies for 1975 were presumably
less than the subsidies that were subsequently legislated, the calf and
yearling prices for 1975 that were most commonly expected at the beginning

of the year should be bounded by the first two combinations.

26The effects of alternative "reasonable" values for some
additional parameters (e.g., variable cost and yields of the hay enter-
prise, hayland rental rates, difference in calf and yearling weight gains
on pasture and range, dollar-equivalent value of leisure) have also been
considered. These variations do not alter the basic conclusions
presented here.

27See Section 4 of Appendix 6 for details. In addition, it
should be noted that the Income Assurance section of the model is not
employed here, and that the expected price for cull cows is varied pro-
portionately with the expected price of calves. For simplicity, these
two prices (per cwt.) are equated here (other results show that this
assumption does not affect our conclusions).



TABLE

Farm Value of Community Pasture and Selected Mode! Activities: 1975 Market Prices, 1975 Market Prices

Plus Subsidies, and Long Run Prices for Calves and Yearlings

calf Yearling | Cow [Backgrounding CATTLE HAY Aum{2® s Beef 3.90 3.90 +29)
Price Price Bound Bound cows calf [yearfing own rented tons sold (+) community pounds A income A OBJ
($/cwt.) ($/cwt.) | (lower) (equality) sale | sale acres acres purchased (-) pasture per AUM per AUM per AUM
30 36 - - 0 0 123 0 0 -230 - - - -
~ - 0 0 181 0 0 -339 255 85.8 9.05 7.9
40 - 50 0 98 43 50 -224 - - - -
40 - 40 0 122 157 0 -216 255 32.4 7.27 6.21
- 0 0 0 0 189 0 +177 - - - -
- 0 0 0 0 189 0 +177 0 - - -
40 0 40 0 28 154 0 -48 - - - -
40 0 40 0 28 154 0 -48 1" 19.6 5.99 6.26
56 50 - - 0 0 112 0 0 -209 - - - -
- - 0 0 170 0 0 -318 255 85.8 8.17 7.03
40 - 40 [ 98 43 50 -232 - - - -
ao - 40 0 120 43 50 ~-267 255 37.5 7.22 6.93
- 0 35 0 24 135 0 -42 - - ~ -
- 0 51 0 35 189 0 -66 208 43.0 6.70 4.7
40 0 40 0 28 m 0 -93 - - - -
40 0 51 0 35 189 0 -66 208 29.6 6.85 4.79
50 45 - - 0 0 42 67 0 -9 - - - -
- - ] 0 42 67 0 -9 0 - - -
40 - 40 27 1 189 0 +31 - - - -
40 - 40 2 26 189 0 -11 90 104.4 5.13 4.30
- 0 20 1] 14 77 0 -24 -
- 1] 20 0 14 77 0 -24 0 - - -
40 0 40 10 19 139 0 -46 -
40 0 40 0 28 154 0 -48 68 52.8 5.79 4,64
Averag G0 6.91 5.86

stither 0 (") or 255 AUM's of community pasture are supplied to the farm at $3.90 per AUM,

2908] = income plus dollar-equivalent value of leisure at solution.

30 . . . R . -
These are simple averages of values over all situations where community pasture is utilized.

€€
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For our purposes, the most important point to notice about
Table 2 is the stability of the equilibrium farm value of pasture (as measured
in either of the last two columns) relative to (e.g.) the number of yearlings
sold, acres employed in hay, or comparative static change in beef pounds
produced on-farm per AUM of community pasture. For these combinations
of beef prices, bounds on cow numbers and backgrounding options, the
estimated change in farm income (farm income plus dollar-equivalent value
of leisure) varies from $5.13 to $9.05 ($4.30 to $7.91) per AUM of community
pasture for farms using community pasture, and has a s.imple mean value
of $6.91 ($5.86) per AUM of community pasture. Thus, to the extent
that the shadow price of pasture depends on absolute beef prices rather
than relative calf and yearling prices, these values should bound the most
common equilibrium shadow prices of pasture in the region circa 1975.

Table 3 illustrates the relation between the equilibrium farm value of
pasture and calf and yearling prices intermediate between $30-$36 per
cwt. and $56-$50 per cwt., in the absence of bounds on cow numbers or
possibilities for backgrounding. These results, together with the
results presented in Table 4 (where backgrounding is excluded from
solution), suggest that the equilibrium farm value of pasture is highly
sensitive to relative calf and yearling prices if and only if backgrounding
is defined as feasible in the model. Since backgrounding was observed
to be less common than cow-calf or cow-yearling enterprises in the Peace
River circa 1975, it seems reasonable to suppose that high prices for
yearlings relative to calves were not commonly expected for 1975. In

this case, the most common static equilibirum values of pasture in the
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TABLE III -

Farm Value of Community Pasture: Selected Calf and Yearling Prices
Intermediate Between 1975 Market Prices and 1975
‘Market Prices Plus Subsidies 31

(32)
Calf ~ Yearling 3.90 + 3.90 +
. Price Price A Income A OBJ
($/cwt.) ($/cwt.) per AUM per AUM
35 35 - -
35 4o 8.82 9.05
éo 40 : 6.60 4.96
40 45 12.02 11.32
us 40 ' - -
45 bs 8§.03 6.87
45 50 16.21 1550
50 40 - -
50 50 | 10.52 10 74
55 | 40 6.90 | 4.00
55 4s 6.90 4.00
Average( 33 ' 9.50 8.30

31For all results reported here, cow numbers and numbers. of calves
purchased for backgrounding were endogenous to the model, i.e., not
bounded.

32084 = income plus dollar-equivalent value of leisure at solution.

33These are simple averages of values over all situations where community
pasture is utilized.
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Farm Value of Community Pasture: Selected Calf and Yearling Prices

Intermediate Between 1975 Market Prices and 1975
Market Prices Plus Subsidies 34
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Calf Yearling 3.90 + 3.90 +(35)
Price Price A Income A OBJ
($/cwt.) ($/cwt.) per AUM per AUM

uo 45 - -

us 50 6.99 4.63

50 50 6.26 4,24
Average(ss) 6.63 4. uy

34

For the results reported here, cow numbers are endogenous (ranging
but the number of calves purchased for back grounding

between 0 and 49);

is defined as 0.

35OBJ = income plus dollar-equivalent value of leisure at solution.

36
These are simple averages of values over all situations where community
pasture is utilized.
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Peace River region of British Columbia under 1975 conditions should not
differ greatly from the averages for Tables 2-3. In sum, static equilibrium
values of pasture under 1>975 conditions (among users of community pasture
in the region) should be between $5 and $10 per AUM.

Finally, results presented in Table 5 show that High equilibrium
values of pasture can arise from high beef prices irrespective of the
relative levels of calf and yearling prices. However, such high expected
prices, which are realistic assumptions circa 1979, would have been very

unrealistic in 1975 at the low point of the beef cycle.

4.4.2 Results of Related Studies'

Here we summarize the results of some other studies that have been
designed to calculate the farm value of pasture in British Columbia and
other western provinces. For our purposeé, the most important of these
is a study by Barichello that is based on observations of hayland rental
prices. 37 Eleven observations on cash rent paid for hayland were
obtained for the Peace River region of British Columbia during 1975-1976.
These observations ranged from $13.50 to $8.00 per acre with a mean value
of $11.39 and a variance of $2.77. Moreover, land suitable for the
production of hay also was commonly employed as pasture. Thus, given
negligible costs of transacting rental agreements and a static equilibrium

(with improved land receiving equal rents at the margin in its alternative

37see Barichello (1978) for details, especially pp. 30-33. The
linear programming model presented here and the study of hayland rental
prices were designed as complements in the evaluation of British Columbia
ARDA community pasture programs.
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TABLE V

Férm Value of Community Pasture for Extremely H.igh

Calf and Yearling Pr'ices?’s'39

Calf - Yearling Backgrounding 3.90 + 3.90 +(40)

Price Price Bound A Income A OBJ
($/cwt.) ($/cwt.) (equality) per AUM per AUM

70 60 - 8.07 9.17

0 8.24 8. 51

80 60 - 9.94 10. 27

0 9.94 10,27

80 70 - 17.18 16.48

0 12,23 12.19

90 70 - 14,81 14,72

0 14.82 14,72

90" 80 - 25.55 24.85

0 17.85 13,91

Average(u”. 13.86 13.51

38These beef prices, in 1975 dollars, correspond to considerably higher
prices in 1979 dollars. '

39For' results reported here, cow numbers are endogenous (ranging
between 24 and 140).

4OOBJ = income plus dollar-equivalent value of leisure at solution.

L”These are simple averages of all situations where community pasture
is utilized.
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uses as pasture and hayland), the marginal value of pasture on a "represen-
tative'farm in the Peace River region during 1975-1976 can be estimated
as

0.71 x $11.39 = $8.09 per Aum .*?

An earlier set of calculations based directly on observation also
yields estimates of the farm value of pasture that are consistent with
our static equilibrium beef ranch model. Wiens (1975) calculated a partial
budget for a "typical" beef ranch in the Saskatchewan parkland region
circa 1975. Given a "typical" set of farm activity levels and observation
of a corresponding level of gross farm receipts and all non-grazing costs
related to a cow-yearling operation, the value of pasture was estimated as
a residual of $8 per AUM of grazing.

On the other hand, a non-optimizing simulation model that was
developed for the evaluation of ARDA community pasture programs in
the parkland region of Saskatchewan led to quite different results.u3

First a large non-optimizing simulation model was adapted to conditions

uzAccordihg to the best information obtained from farmers and
B.C.D.A. extension staff, three acres of "average" quality pasture are
required to summer one animal unit (cow with calf) over the typical
grazing season of June 1 to October 7 (4.25 months), i.e. one AUM of
grazing capacity corresponds to 0.71 acres of pasture.

u3See Department of Regional! Economic Expansion (1977).
This evaluation of Prairie community pasture programs was undertaken
simultaneously with the evaluation of British Columbia programs that
is reported in Barichello (1978).
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in the parkland area of Saskatchewan. Then three sets of farm behavior
(resource alloéations) in the presence and absence of community pasture
were specified for a "representative" farm, and the associated cash flows
were generated from the technical coefficients included in the simulation
model. For these three sets of base simulations in the absence of
community basture and farm responses to community pasture, the farm
value of community pasture (excluding its supply price) varied from $12
to $30 per AUM with a reported "weighted" average of $23 per AUM.

However, when the most important of the data gathered for the
Saskatchewan simulation model was incorporated into the British Columbia
optimizing model with the assistanée of the person responsible for the
data, the estimated farm marginal value of community pasture was less
than the corresponding values calculated with British Columbia data (see
previous section). This result is not too surprising: pasture appears
to be a scarcer resource in British Columbja than in Saskatchewan, and
one would expect (ceterus paribus) a higher marginal value for pasture in
the region where pasture is relatively scarce.

In addition, studies by Graham (1977) and Harrington (1976)
have presented estimates of the farm marginal value of pasture within
sections of Western Canada. In a preliminary study with a beef farm
linear programming model that in effect specifies beef capital activities
and many enterprise combinations as exogenous to the model (i.e., as
fixed), Graham (1977) obtained estimates of the shadow price of
pasture for three British Columbia farms. These estimates varied

‘between $26.00 and $0.62 per AUM for calf-yearling prices between
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$40-543 and $30-$33 per cwt. (backgrounding was excluded.uq’usln contrast
to the above studies, highly aggregated provincial data related to

forage, including both pasture and range resources, was included in a
large programming model of the Western Canada beéf economy by the
Economics Branch of Agriculture Canada. The average estimated value

of an AUM of forage throughout British Columbia, as reported in

Harrington (1976), was between $10 and $11.

4.4.3 lmelications

Here we note that the results reported in the previous two
sections are consistent with the hypothesis that constructs of static,
optimizing behavior are most appropriate in estimating farm response. The
close similarity between the value of community pasture for the static
linear programming beef ranch model and the results of the hay market
study (Barichello, 1978) and the partial budget analysis (Wiens, 1975)
suggests that these constructs would be somewhat realistic in the absence
of adjustment costs. Since farm adjustment cost functions are essentially
unknown at present, it follows that these results lend support to the
hypothesis that static, optimizing models are most appropriate in

estimating farm response.

uuThis wide variation in shadow prices presumably can be
interpreted in part as empirical support for our decision to specify
various capital activities and enterprise combinations as endogenous
to the Peace River beef ranch model (see Section 4.3.1.2).

usAdditional prices were also considered by Graham (1977).
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As has been noted previously, the hay market study for the Peace
River region of British Columbia and the partial budget analysis for the
Saskatchewan parkland both estimated the value of pasture circa 1975 as $8 per
AUM. Since there was evidence of substitution between hay and pasture
use of land in the Peace River and the variation in market rental prices for
hayland was rélatively small,u(i the estimates of the hay market study may
well be realistic. In addition, given a "typical" set of farm activity levels
and observation of corresponding réceipts and costs, the estimate of the
partial budget analysis would be realistic.
This "realistic" estimate of $8 per AUM for the shadow price of
pasture circa 1975 in the Peace River also approximétes a "most likely" value
in the reasonable range of $5 to $10 per AUM for the static equilibrium beef
ranch programming model. Moreover, the results of the linear programming
model are essentially independent of the calculations in the hay market
study. This independence is demonstrated in Table 6: a $1.00 change in
the variable cost of hay production on own-land and rented land always
leads to considerably less than the corresponding $0.71 change in the shadow
price of community pasture.ll7 The endogeneity of the equilibrium shadow
price reflects the resource constraints and substitution possibilities that
are incorporated into the model.’48
Thus the close similarity between our linear programming results

and calculations based directly on observations strongly suggests that

485ee Barichello (1978), Chapter 4.
47See footnote 42 earlier in this chapter.

usSee Appendix 6.



Sensitivity of Shadow Prices for Community Pasture With Respect to

TABLE VI

Profitability of Hay Enterprises 49

Variable Rental

Calf | Yearling Cost Price Acres Own Hay Acres Rented Hay . 3.90 + 3.90 +°0
Price Price Own Hayland | Hayland | Without With Without With A income per | A OBJ per
($/cwt)| ($/cwt) ($/acre) ($/acre) |Com.Pas.{Com.Pas.| Com.Pas. | Com.Pas. AUM c.p. AUM c.p.

30 36 21.25 B1.5 304 350 50 50 9.10 8.38

26.25 46.5 95 122 50 50 9.35 8.00

31.25 51.5 0 0 0 0 9.05 7.91

36.25 56.5 0 0 0 0 9.05 7.90

41,25 61.5 0 0 2 2 9.05 7.91

56 50 21.25 41.5 122 136 50 50 9.01 8.31

26,25 46.5 75 122 50 50 8.96 7.44

31.25 51.5 0 0 0 0 8.17 7.03

36.25 56.5 0 0 2 2 8.23 7.07

h1.25 61.5 0 0 2 2 8.23 7.06

50 45 21.25 1.5 350 350 0 0 7.93 6.57

26.25 46.5 189 189 0 0 6.73 5.53

31.25 51.5 67 67 0 0 - -

36.25 56.5 3 3 0 0 6.08 4.63

41.25 61.5 0 0 0 2 6.08 .63

ugCows and calves purchased for backgrounding are unbounded here.

0By -

income plus dollar-equivalent value of leisure at solution.

ehl
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(a) models of static, optimizing behavior are appropriate for the estimation
of equilibrium shadow prices, and (b) the particular structure of the
Peace River linear programming model is adequate for this purpose.

These results also imply that models of statié:, optimizing behavior
are most appropriate in estimating farm supply response given our present
state of knowledge of farm adjustment cost functions. As has been noted
in Section 4.2.2, adjustment costs (and many other factors) are less
important in determining equilibrium shadow prices than in determining
supply response. Other aspects of dynamics (price expectations and
biologically-determined time lags in beef production) presumably play
an important role in determining shadow prices as well as supply response.
Since an ability to estimate equilibrium shadow prices with accuracy also suggests
an ability to estimate supply response in the absence of significant adjus"cment
costs,51 our empirical resqlts are consistent with the hypothesis that errors
in using constructs of static, optimizing behavior in the estimation of various
types of farm response arise essentially from the importance of adjustment
costs., Likewise, since farm adjustment cost functions are essentially unknown,
our empirical results are consistent with the hypothesis that has been derived
from the theory in Appendix 1: constructs of static, optimizing behavior are
most appropriate in estimating farm supply response given our present state
of knowledge of farm adjustment cost functions.52 In addition, our results

also suggest that, in some respects (e.g., estimation of shadow prices), these

seemingly most appropriate constructs can closely approximate real behavior.

51See the last paragraph in Section 4.2.2.

52For a first attempt to estimate adjustment cost functions statistic-
ally, see Berndt et al. (1979).
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4.5 Summary

In this chapter we have (a) outlined a static linear programming
model of a "representative" beef ranch for users of community pasture
in the Peace River region of British Columbia, (b) formulated a means
of examining the appropriateness of constructs of static optimizing behavior
in the estimation of farm response, and (c) observed that solutions (farm
value of community pasture) to the linear programming model are consistent
with these constructs. Thus we have (a) provided an example (estima-
tion of the farm value of community pasture) where such deterministic
models are adequate and most appropriate, and (b) in thé process gathered
empirical support for the hypothesis that the major abstractions from reality .
that are employed in this thesis, i.e., the assumptions of static, maximiz-
ing behavior, are at present most appropriate for the estimation of farm

response at the microeconomic level,
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Summarx

The main purpose of this thesis has been to extend comparative
static theory and methods of.the firm so as to be more useful in agricultural
policy analysis. The traditional static theory and methods of the firm,
which remains largely embodied in Samuelson (1947), has the following

defects from the vieWpoint of application in agriéulture. '

1. Ehdogenous factor prices, i.e., factor prices that are
variable to the individual firm, apparently are realistic
in many cases but have not been introduced (correctly)

into the theory of the firm,

2. Comparative static methods that are presently available
generally make inadequate use of the degree of knowledge
about particular policy situations. Traditional qualitative
methods (e.g., as in Samuelson, 1947) cannot readily in-
corporate our full degree of knowledge about a firm's
production function. In part for this reason, these
qualitative methods have led to relatively few useful results.
On the other hand, traditional quantitative methods (e.g.,

use of programming models with a fully specified farm
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structure) are usually too restrictive', i.e., they typically
derive results that are dependent in unknown ways on a
large number of essentially arbitrary assumptions that can

only be partially accommodated in a sensitivity analysis.

The assumptions of static optimizing behavior that underlie

the traditional theory of the firm may not be appropriate.

Thus the main purpose of this thesis has been more specifically

three-fold:

3.

To extend the traditional qualitative comparative statics of
derived demand at the firm level to the case of endogenous

factor prices;

to extend comparative static methods of analysis at the firm

level so as to incorporate more fully our empirical knowledge
about parameters without specifying more than this knowledge,
i.e., to introduce a method of analysis that provides a useful
"middie ground" between the (generally under-determinate)
traditional qualitétive methods as embodied in Samuelson (1947)
et al. and the (generally overdeterminate) quantitative methods
as embodied in (e.g.) static linear and nonlinear programming

models of the firm; and

to examine the appropiateness of constructs of static, optimizing

behavior in the estimation of farm response.
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These objectives have been pursued in Chapters 2-4, respectively, and in
related appendices. In order to make the discussion more concrete and

the applications more obvious, the material in each chapter was related to the
problem of predicting response to government funded (ARDA) community
pasture programs in British Columbia.

In Chapter 2, the theory of derived demand with variable factor
prices was investigated by making explicit use of the following "intuitively
obvious" equivalence: a firm's derived demand schedule is equivalent
(under very general conditions) to a schedule of shadow prices for the input.
In Chapter 2 we demonstrated that a failure to recognize the implications
of this equivalence has been responsible for a coniroversy in the American

Economic Review during the last ten years concerning the relation between

measures of consumer's surplus in product and factor markets, and also

in part responsible for the serious errors committed in the previous attempts
to incorporate variable factor prices into the theory of the firm (Ferguson,
1969, and Maurice and Ferguson, 1971). Utilizing this equivalence between
derived demand and shadow prices, the following statements (among others)

were established for the first time.

1. In the absence of market "distortions," the welfare changes
(changes in consumer plus producer surplus) of agricultural
policy affecting factor supply schedules can always be
measured correctly in the related factor market.

2, The derived demand schedule for an input is necessarily
positively inclined given increasing returns to scale and
fixed prices for all other inputs, and the schedule can be
positively inclined over large areas of its domain given

decreasing returns to scale and non-convex isoquants.
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It was demonstrated that (2) implies that comparative static effects of
policies influencing factor supply schedules can seldom be predicted by
traditional methods.

In Chapter 3 and accompanying appendices, we introduced a
method that in principle overcomes this defect of established comparative
static methods by incorporating empirically based quantitative restric-
tions into the traditional qualitative comparative static analysis of the firm
(e.g., Samuelson, 1947). This methodology incorporates the available
degree of knowledge of the firm's structure (production function and price
schedules) without imposing further specification on the firm's structure
(in contrast to, e.g., the traditional linear and nonlinear programming
models of the firm, where a full structure must be specified). Then
the range of quantitative as well as qualitative predictions of comparative
static effects of policy that are consistent with our degree of knowledge
can in principle be calculated.

This methodology of "quantitative comparative statics" consists
essentially of two nonlinear programming problems each characterized by
an identical system of equations and inequalities which incorporate the

implications of

(a) the standard assumption that the firm is at a static

optimum, plus

(b) '"reasonable" restrictions on the firm's production function

and price schedules.
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The comparative static effects, and the potentially observable parameters
of the firm's production function and price schedules on which we have
placed "reasonable" restrictions (upper and lower bounds), are all treated
as endogenou§ variables in these two problems. These problems also have
the same objective function, which is the comparative static effect of
interest, and differ only in the sense that one is a maximization problem
and the other is a minimization problem. Thus the solution values of the
objective function for these two problems define the range of values for the
comparative static effect of interest that are consistent with (é) the as.sumpt—
ion of a static optimum and (b) the "reasonable" restrictions on the firm's
production function and price schedules.]

The empirical knowledge embodied in the restrictions (b) typically
would be derived from observation and/or econometric estimation of physical
processes and behavior, and would be expressed in the form of confidence-
Bayes intervals for these potentially observable parameters of the firm's
production function and price schedules. In this case, the range of com-
parative static effects defined by the solution values to these two problems
can also be interpreted as a confidence-Bayes interval for the comparative
static effect of interest.

In Chapter 4, we (a) outlined a static linear programming model of
a "representative" beef ranch for users of community pasture in the Peace

River region of British Columbia, (b) formulated a means of examining the

1A simple schematic model of the methodology of quantitative com-
parative statics was presented on pages 69-74 in Section 3.4 of
Chapter 3.
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appropriateness of constructs of static, optimizing behavior in the estimi-
ation of farm response, and (c) observed that solutions (farm value of
community pasture) to the linear programming model are consistent with these
constructs. We demonstrated that, by estimating an equilibrium shadow
price for an input rather than other aspects of farm response, one can
reduce the significance of many of the problems associated with studies of
supply response (e.g., the effects of poor knowledge of the individual
farm's production function) and fucus more clearly on the appropriateness
of constructs of static optimizing behavior. By comparing solutions to the
static optimizing Peace River model with calculations based on direct
ob_servation of hayland rental mark_'ets and beef ranch activities, we derived
empirical support for the major assumption underlying the theoretical work
in Ch'apters 2 and 3: models of static optimizing behavior are often the

most useful constructs in the prediction of microeconomic behavior;.' In
addition, these results showéd that models of microeconomic behavior with a
fully specified structure, such as the static Peace River programming model,
can be useful in estimating some aspects of farm response that are of
importance to policy (e.g., farm value of community pasture programs)
although they generally seem to be unreliable in estimating changes in

input and output levels.

5.2 General Conclusions

The specific conclusions summarized in the previous section support

~the following broad statements:
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1. Assumptions of static optimizing behavior are at present generally
more appropriate than alternative constructs in predicting farm

response to agricultural policy (Chapter 4 and Appendix 1).

2. Traditional qualitative methods of comparative statics lead to rel-
atively few predictions that are useful in formulating agricultural

policy (Chapter 2}.

In addition, we have noted that there generally are extreme difficulties
in reliably estimating comparative static effects from models of farm
behavior with a fully specified structure, e.g., traditional linear and
non-linear models of the firm (Section 1.2 of Chapter 1).

The above statements imply that an "intermediate" method of
comparative static analysis making full use of our degree of knowledge of
structure without being dependent on the specification of more than this
degree of knowledge would be very useful in the evaluation of agricultural
development programs. Thus the most important conclusions of this

study are as follows:

3. Traditional qualitative methods of comparative statics (as in
Samuelson, 1947) can be extended to incorporate our degree
of knowledge of farm structure (production function and price
schedules) without becoming dependent on a specification of
more than this degree of knowledge (Chapter 3 and

Appendix 3}.
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4. This method of "quantitative comparative statics" may well be
at least somewhat operational now for "small" (or highly

aggregated) models of the farm (Chapter 3 and Appendix 5).

Given' the promise of this method of quantitative comparative statics, the
initial work reported here in Chapter 3 and accompanying appendices

should be followed by further studies.

5.3 Suggestions for Further Research

Here we shall hoint out some areas of future research that are
suggested by this study. Since the most important and most experi-
mental part of this thesis concerns the proposed methodology of
quantitative comparative statics, we shall limit our comments to that
section of the study.

First,'there are major unresolved computational difficulties with
this proposed method of comparative static analysis. In particular, due
to the presence of quadratic equality constraints in the underlying
programming models, local solutions are not necessarily global solutions
for these models. Thus we cannot estbimate with any accuracy the
confidence-Bayes interval corresponding to the observed range of local

solutions for the maximization and minimization problems unless

(a) there is a procedure for identifying a finite set of points

that contains the global solutions to the maximization and
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minimization problems (so that the global solutions can

be calculated from a comparison of these points), or

(b) there is a procedure for obtaining an approximately
random sample of the feasible set of the programming problems
(so that confidence-Bayes intervals can be estimated for the

observed range of comparative static effects).

Thus the first priority for research related to this study should
be to reduce computational problems associated with this method by
developing somewhat adequate procedures of the form (a) or (b) above.
The author speculates that this will be possible in the immediate future

for small models involving a few inputs.zr3

2For a very preliminary discussion of approaches other than (a)
for estimating confidence-Bayes intervals of the observed range of
solutions for comparative static effects, see Section 2.2 of
Appendix 5.

3 . . crae

For an optimal procedure of aggregating large quantitative
comparative static models into smaller models when the restrictions on
the firm's production function imply that there exists an approximately
correct aggregation procedure, see Section 3 of Appendix 5. Unfor-
tunately the conditions for correct aggregation of large quantitative
comparative static models to a more manageable size presumably introduces
errors into the calculation of the global solutions and feasible set for the
comparative static effect of interest. For a procedure that may become
somewhat useful in estimating such aggregation biases for particular
models, see the end of Section 3.1 of Appendix 5.



156

Given that these computational problems are handled somewhat
adequately, there appear to be many applications in policy research
and other empirical work for such a method of quantitative comparative
statics. Here we shall simply point out several examples in order
to illustrate the diversity of potential applications. First, the
methodology could be employed to estimate the range of comparative static
effects of community pasture programs that is consistent with our degree
of knowledge about the structure of farms receiving this pasture. For
example, we could construct quantitative comparative static models
roughly similar in type to those presented in Section 3.5 of Chapter 3.
Then we could obtain estimates of the range of "reasonable" comparative
static changes in producer plus consumer surplus, i.e., of the
confidence-Bayes interval for this effect that corresponds to the specified
degree of knowledge of farm structure. " For the reasons that have been
specified, these results would be superior to those obtained by
traditional methods of qualitative and quantitative comparative

statics.
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Second, this method of quantitative comparative comparative statics
could be used to investigate the relation between the slop_t-e of a firm's
derived demand schedule and properties of the firm's production function
and price schedules in more detail than was possible with the qualitative
methods employed in Chapter 2. Purely qualitative methods do not
generally lead to empirically based restrictions on the slopes of derived
demand schedules (that are independent of the slope of the factor supply
schedule), and knowledge of this slope can be important for policy (see
Chapter 2).

Third, it appears that interactions between firms can be incorporated
into this methodology. In this case we would obtain a synthesis of maximiz-
ing behavior, firm interactions and empirical knowledge for the theory of
the firm. With such an extended methodology, we might well be able to
predict the effects of, e.qg., national or provincial price support programs
on farm output and other activities more effectively than in the past.u'5
Fourth, this method of quantitative comparative statics may well

lead to more effective testing of various theories of firm behavior. Since

traditional qualitative and quantitative methods have led to relatively few

uThe literature on integrating maximizing behavior and firm inter-
actions seems to be summarized entirely in Silberberg (1974b). Since incorpor-
ation of interactions actually increases the ambiguity of results obtained by
qualitative methods, there is an even greater need to incorporate empirical
information into comparative static methodology for this case than for the
standard (no firm interactions) qualitative theory of the firm.

5As pointed out previously (Section 2.3.3 of Chapter 2), the
standard (Hicks-type) methods of industry analysis, which do not incorpor-
ate the implications of the maximization hypothesis, can easily lead to even
qualitative errors in predicting comparative static effects.
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reliable predictions of comparative static effects, these methods have also
led to relatively few reliable tests of hypotheses concerning firm

4

behavior. On the other hand, the method of quantitative comparative
statics introduced here in principle makes more effective use of the available
degree of empirical knowledge than do these traditional methods. Thus
this methodology should lead to a greater number of testable hypotheses
than do traditional methods of qualitative comparative statics, and these
hypotheses should discriminate between various theories of behavior more
effectively than hypotheses derived from traditional quantitative methods.

In sum, there is a wide array of potential applications in policy
research or other applied work for -such a method of quaﬁtitat_ive comparative
statics. In turn, the potential value of such a methodology in the formula-

tion of agricultural policy justifies further research to make it operational

for a wide variety of problems.

GFor example, the comparative static predictions of two theories
X and Y will generally vary with the structure of the firm's production
function. This implies that qualitative methods generally will lead to
relatively few predictions that discriminate between the two theories, and
that traditional quantitative methods (by erring in their many essentially
arbitrary specifications of aspects of the production function) may lead to
a rejection of theory X for Y when in fact the reverse is true.

’See Archibald (1971) for a discussion of the difficulty in testing
Chamberlin's theory of monopolistic competition when empirical knowledge
is not incorporated into comparative statics.
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APPENDIX |

WHY COMPARATIVE STATICS AND THE MAXIMIZATION HYPOTHESIS?

1.1 Static vs. Dynamic Models

The purpose of this section is to point out the difﬁculties in modelling
stock adjustments to a change in policy, and to argue that the comparative
dynamic effect of the community pastures programs apparenﬂy can be
estimated as accurately by the use of static models as by the use of dynamic
models. o

An example of a static model is the linear programming model of
a beef ranch that will be presented in Chapter 4: this model has a time
horizor'x of one year, and the endogenous opening and closing stocks are
restricted to be equal. Therefore, by comparing _model solutions in the
absence and in the presence of community pasture (ceterus paribus), we
can calculate a "comparative static effect" for the community pasture program.
By defining an appropriate structure for the model, this effect can be
"short-run," "long-run," or whatever,

However, such comparative static calculations can be, at best,
only a very rough guide to the comparative dynamic effect of the pastures
program. This is because a truly dynamic response primarily results

from an effective cost of stock adjustment cc‘mstraint,1 and is a function

»

1In the absence of effective cost of stock adjustment constraints
and overlooking the inherent lags in the production process, a comparative
dynamic effect is simply a series of instantaneous adjustments to changing
conditions, i.e., a series of comparative static effects. This series of
comparative static effects is defined by the change in the supply schedule

(Footnote 1 continued on following page)
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of
(1a) the non-stationary environment (e.g., the different
product prices expected over time) perceived by the
firm;
(1b) the initial stocks held by the firm; and
(1c) the cost of stock adjustment schedule Ct = C(It) faced by the
firm where lt is the level of net investment by the firm at
time t.

(1d) inherent lags in production.

Given an effective cost of stock adjustment constraint Ct = C“t)’ none of
these influences (1a)-(1d) on a comparative dynamic effect can be modelled
correctly by a series of comparative static calculations.

In spite of these weaknesses of comparative static methods, dynamic
models do not seem to be much more helpful (and may often be less helpful)
than static models in estimating real-world dynamic response of firms to
changes in the supply schedule of community pasture, or to changes in
exogenous variables in many other situations. This is due to the

~ following:

(Footnote 1 continued)

of community pasture and by changes in the firm's environment over
time. In the absence of adjustment costs, the effects of inherent lags
in production can be roughly accommodated in static models. For
example, given the 2.5 year lag between the change in the beef herd
and. the resulting production of beef, and overlooking adjustment costs,
farm response presumably could be simulated with reasonable accuracy
by constructing a static model with a time period of three years. Stocks
would be freely variable over the period subject to the constraint of
equality at the beginning and end of the three year period.
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(2a) the magnitudes of C“t) and C'(lt) for users of
community pasture (and in general) seem essentially
unknown;

(2b) estimates of initial stocks, by themselves, generally
provide little knowledge of comparative dynamic effects;
and

(2¢) errors in the valuation of the terminal stock occur in
non-static models, and lead to errors in the
estimation of response.

These points will be elaborated upon in the aboveorder.

The significance of and argumeﬁts for statement (2a) are as
follows. The difference between the comparative dynamic effect of a change
in the supply schedule of pasture and a related series of comparative static
effects depends critically upon the cost of adjustment function

_ 2,3
C,=CU.

2The following generalizations seem correct (Rothschild, 1971).
For a highly non-stationary environment, the "average" length of delay
in response to pasture depends primarily upon the magnitude of
C(1{) (>0) and the sign and magnitude of C'(l{), and the degree of
fluctuation about this average depends upon the sign and magnitude of
C"(I{). On the other hand, for a highly stationary environment, the
average length of delay depends primarily upon the sign and magnitude
of C"(14) (<0 implies an extremely rapid, non-periodic response).

3lt should be noted that adjustment costs should also play a role
in comparative static calculations: adjustment costs should be incorporated
into first and second order conditions for an equilibrium, whether dynamic
or static (see Treadway, 1970). However, adjustment costs presumably
have considerably more influence on the dynamics of response than on
the change in static equilibrium. In this thesis we shall follow the usual
procedure of deleting adjustment costs from comparative static
calculations.
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Hence, any claim for superiority of dynamic mbdels over static models, as
predictors of real-world comparative dynamic effects, presumably depends
largely upon an ability to estimate the function Ct = C“‘t) with some
accuracy. However, an ability to predict the magnitudes of C(It) and
C'(It) seldom seems to exist at present. Ct = C(It) appears to be in large
part a complex, and so far unidentified, function of such variables as
education, elasticities of product and factor supply and demand,u and the
particular exogenous change. Thus, it is not surprising that we seem to
have very little knowledge of these magnitudes for the adjustment-
constraining components of Ct = C(It), and this in itself suggests that
dynamic models seldom will be a significant improvement over static models

as estimators of real-world comparative dynamic effects.s'6

“See Petzel (1976).

Presumably some components of Cy = C(I{) are more easily quanti-
fied than is indicated here. Perhaps the most obvious example concerns
the effect of the firm's debt-equity ratio on its marginal cost of borrowing:
MCB; = M(D/E), using obvious notation, and D/Et = D(K¢), i.e., in the
short run the debt-equity ratio increases with the firm's capital stock.
However, if the investments being considered by the firm involve only minor
changes in techniques and provide relatively quick payoffs, then the firm
is likely to face a constant marginal cost of borrowing schedule (M' = 0) and
cash and credit costs of adjustment C(l;) = M'D' will be zero. This appears
to be largely the case for users of B.C. ARDA community pastures. More
generally, adjustment will be affected significantly by cash and credit
costs C(It) presumably only if the firm would be expanding its enterprise
in the absence of such costs and C(It)' = M"D" > 0.

GFor a first attempt at the statistical estimation of adjustment cost
functions (in manufacturing), see Berndt et al. (1979).
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Statement (2b) can be explained briefly as follows. We are
interested in the comparative dynamic effect of the pasture progvram, i.e.,
the difference between the time paths in the presence and in the absence
of community pasture. This difference presumably is considerably less
dependent on the level of initial stocks, and more dependent on the spec-
ified adjustment costs, than are these two time paths. Moreover, time
paths are known to be highly sensitive to errors in specifying initial
conditions.7 Hence, even though initial conditions can be incorporated
more correctly into dynamic models than into one period models, in general
this does not appear to provide dynamic modéls with a significant advantage
over static models as predictors of comparative dynamic effects.

The argument for and significanée of statement (2c) is as
follows. In dynamic models, capital accumulated at the horizon must be
assigned an exogenously-determined per unit value in the objective
function, which represents an estimate of the capital's discounted net
value in production beyond the horizon. Since the farm value of used
capital is in fact endogenous to the farm plan,8 this procedure inevitably

leads to errors in specifying the terminal value of capital. Given such a

7The sensitivity of time paths to initial conditions is documented
in growth theory literature, and has been confirmed by simulations with
multi-period farm planning models (Boussard, 1971, pp. 475-7).

8Due to serious imperfections in markets for used capital (except
for the regularly-traded fully depreciated capital, such as cull cows),
the farm value of capital at the end of the model year seldom corresponds to
the market price. Moreover, even if capital markets accurately reflect
current farm value of capital, we would still not be able to compute the
farm value of capital that would be consistent with a particular altern-
ative set of expected prices, etc.
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mispecification, the time horizon of the dynamic model must be considerably
longer than the average life of capital even if the sole intent is to obtain
reasonably accurate estimates of activities in the initial time period. Since
cows have a productive life of approximately eight years, a dynamic

model intended for use in estimating effects of community pasture programs
would in general have to be unwieldy, or else extremely simplified within
most years,9 in order to re.duce the effects of such a mispecification to
insignificant levels. Corresponding probleins never occur with static
models.10 Thus, .in the presence of very limited knowledge of the magni—
tude of C“t) and C'(It) for the firm's cost of stock adjustment function

Ct = C“t)' the solutions of variou.s static models may well provide more
information about the comparative dynamic effects of the community

pasture programs than will the solutions of dynamic models.11

gBy defining a highly simplified structure for all but the first
year in a dynamic model with a long time horizon (and estimating a dynamic
response as the series of first year solutions obtained from recursive runs
of the model), we will in general simply be exchanging errors due to a
mispecified terminal value of capital for errors due to excessive
aggregation.

10This statement is justified simply as follows. If the firm's environ-
ment and actions in the one year time period of a_static model are in effect
repeated in all other one year time periods, then the actions that maximize
the value of the objective function (flow of farm benefits) in the one year
model will also maximize the discounted sum of flows of farm benefits
over time.

}

Nsince the "flexibility constraint" approach to dynamics (Sahi
and Craddock, 1974) incorporates historically observed measures of
response over time rather than adjustment cost functions per se, it is
not a satisfactory approach to dynamics. In other words, the dynamics of
response is not specified as endogenous to the farm in the flexibility
approach.
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In sum, apparently the best that we can do in estimating the real
world responses to community pasture programs is to calculate various
comparative static effects for the programs. For simplicity (and also in
part due to a lack of confidence in any estimates of the rate of change in
the rate of change of the firm's environment at any particular time), these
calculations can be limited to "short run" and "long run" comparative
static effects. Then the estimated comparative dynamic effect would
simply be the straight line connecting the "short run" and "long run"

comparative static effects. 12

1.2 Optimizing vs. Non-Optimizing Models

It is sometimes stated that non-optimizing simulation models are
superior to optimizing (or, equivalently, maximizing) models as predictors
of farm behavior because "farmers do not optimize." However, we will

now argue that this conclusion is incorrect.13

12Even this procedure of calculating "short run" and "long run"
comparative static effects often may be based on inappropriate assumptions.
In particular, a comparative dynamic change at time t, will be similar to a
comparative static effect only under certain conditions, e.g., certain
properties of adjustment cost functions (Rothschild, 1971), indivisibil-
ities and imperfect capital markets. If these conditions are not sufficiently
realistic, then the comparative dynamic change at t, may even have opposite
signs from a "short run" comparative static effect calculated for t., and the
comparative dynamic change over time may bear no resemblance to the
time path calculated from the "short run" and "long run" comparative
static effects (Nagatani, 1976).

13It is known that purposive behavior of microeconomic units can
in principle be described by optimization techniques when the decision-
making unit's preferences are "consistent," and that inconsistency of
preferences can arise when behavior is governed by rules-of-thumb (or is
determined collectively). See, e.g., Samuelson (1950). Here we note that
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It is a tautology to state that an individual decision-maker always
obtains a constrained maximum defined by his preferences, resources and
the external environment. In other words, the assumption of purposive
behavior implies the existence of a constrained maximum, properly defined.
Therefore, such farm behavior can always be described analytically in
terms of an appropriate optimization model, and "non-optimal" aspects of
such behavior (use of rules-of-thumb in decisibn—making rather than a
"global" search procedure) can always be interpreted as reflections of
various types of human capital adjustment costs. However, adjustment
costs are by definition zero in a stationary state model, and the influence
of human capital adjustment costs on behavior in a non-stationary model
cannot at present be predicted with any accuracy.m

Therefore,

1. the "non-optimal" aspects of behavior cannot be predicted
at present with any degree of accuracy by farm planning

models, and

2. actual behavior can be "approximated" by use of a static
equilibrium optimization model, with the extent of the
approximation depending upon the relevant adjustmeht cost

functions and the rate of change in the firm's environment.

Footnote 13 continued

(a) rules-of-thumb can in principle be incorporated into optimization models
as adjustment costs, and (b) static equilibrium optimization models are in
practice often superior to static or dynamic non-optimization models as pre-
dictors of microeconomic behavior.

1uSee the previous section of this appendix.
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Thus there appears to be no point in attempting to incorporate
"'non—optimal" behavior into models désigned to predict farm response to
changes in policy. Moreover, non-optimizing models appear to be in
principle inferior to optimizing models as predictors of such response
precisely because the "optimizing" central tendency of behavior, in contrast
to the "non-optimizing" aspects of behavior, can on occasion be modelled
with some accuracy.

A comparison of the marginal value of community pasture obtained
by the static linear programming model to be presented in Chapter 4 (and
Appendix 6) and by other means supports these theoretical arguments,
and also suggests that this particular static optimizing model provides
reasonably accurate measures of this value. In order to carry out an
evaluation of ARDA community pasture programs in Saskatchewan, a large
non-optimizing simulation model was adapted to conditions there.15 This
study led to considerably different (generally hig'her) estimates of the
farm marginal value of community pasture than did the BritishrColumbia
study to be 'reported in Chapter 4. However, when the most important
of the data gather"ed for the simulation model was incorporated into the
British Columbia optimizing model, the estimated farm marginal value of
community pasture was less than the value caiculated with British Columbia
data. Since pasture appears to be a more scarce resource in British
Columbia than in Saskatchewan, one would expect (ceteris paribus) a

higher marginal value for pasture in British Columbia than in Saskatchewan.

15See Department of Regional Economic Expansion (1977).

°
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Moreover, the marginal value of community pasture estimated by using
British Columbia data in the optimizing model was consistent with an

essentially independent measure derived from data in the hay market.
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APPENDIX 11

QUALITATIVE COMPARATIVE STATICS AND

DERIVED DEMAND: PROOFS

1. Preliminaries

Let

x = Nx1 vector of activity levels for the inputs of a firm

ci(x) =  total cost schedule to the firm for its ith input (i#1)
cl(x;oa) = total cost schedule to the firm for its input 1, as a
" function of x and a parameter o
y = Mx1 vector of activity levels for the M outputs of a firm
y= f(x) = production function (vector-valued for M >1) for the
firm
b(y) = total benefits schedule to the firm as a (scalar-valued)
function of its M outputs
R(x) = b(f(x))
x* = Nx1 vector of the input levels employed by the firm at
a solution to a particular maximization problem
;(—f = an exogenously determined level of input 1 employed by

the firm
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" Definition 1. A producer problem P is defined as

p 1 N
maximize m(x) = R(x)-c'(x;0)- I c (x) . . . . (P)
i=2

for a particular value of the exogenous variable o, and the

*
solution set to this problem is denoted as {x P(OL) 1.

Definition 2. The firm's derived demand schedule for input 1 is defined

as
(x""Pa), MFc (W) forall o} = DY
where
1 Bcl(x*P(oc)'oc)
MFC (o)} = ’

E)x1

Denote the relation defined by the pairs in DP as p1 = pl(x1) .
Definition 3. A producer problem Q is defined as

maximize TT(X)Q = R(x) - I ci(x)
i=2
.. . (Q)

subject to X =X

for a particular value of the exogenous variable xl’ and the

solution set to this problem is denoted as

{x*Q(j)} .
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Definition 4. The firm's shadow price schedule for input 1 is defined

as
 —
— 3 m{x Q(XI])Q = 1 Q
(x , — for all x eX) = D
1
X
where
X1 = {XI*P(OL) for all o}

Definition 5. Any problem P

N .
maximize R(x) - c1(x;d) -3 ')
i=2

is said to "correspond" with the series of problems of the form Q

N . .
maximize R(x) = £ c'(x) maximize R(x) - £ ¢'(x)
=2 i=2
T1%FA ‘ %5
SUbjeCt tO X1 = xl| A ’ ®essssce subiect to x1 = )(.I Z

where

* * *
{x! A, oo, xV23 = (x7"P} for the problem P.

Denote the union of solution sets for.this series of problems of the

Qe

*
form Q as {x
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HE S
Condition 1. For any solution x* to a problem P: x> 0,i=1,--<,N.

Condition 2. . In the neighbourhood of any solution to a problem P:

R(x) and all c'(x) are twice differentiable.

Condition 3. c1(x;a) <=> c1(x1;oc), i.e., the total cost of input 1 is

independent of the levels of inputs 2, ++<,N.

- 3 2¢'(x) - i .
Condition 4. —l——k- 2 0 forall x and i,j ,k =1,+-+,N, i.e., factor
Iax’'ax

’

supply prices are non-decreasing in x.

Condition 5. z2 0 for all x and i=1,°°+N, i.e., input are

"freely disposable."

Condition 6. If the set of feasible 1T(X)Q for a problem Q is bounded from
above, then the set is also closed from above.
2., Lemma 1

Lemma 1. Suppose that conditions 1-2 are satisfied for a problem Q.

Then

* * H
3 m(x Q)Q . OR(x) _ r; ac' (x*)
axt ax’ i=2  ax?

for any

Q|

*
x* g {x
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Proof 1.2.  Construct the problem Q

N

maximize ﬂ(x)Q = R(x)- I c'(x)
i=2
.(a)
subject to x1 = x1
By conditions 1-2,
* N i *
Rj(x)—ch(x)=0 for all j #1 .+ . .(b)
i=2

which are first order conditions for a solution. By definition 3,

Q
*
El(—_’-‘:!— for this problem Q can be calculated as
ax?
aﬂ(x*)Q axj* i
—___——= R](x*) + Z R'(x*) - Z c-l (x*)
ax1 j#1 ! XTI i#1

. j*
A
i#1 j#1 ) X1

.{c)

. j* .
=Ry (x*) - I ¢)(x*)+ = 9% [R.(x)- I c(x*)]

i#1 j#1 axT i=1 )
. (d)
by rearrénging (c). Substituting (b) into (d),
Q ; ,
aTT(X*) - R](x*) - 7 C{](x*). P .(e)

ax?T i#1
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3m(x*)Q 3 m(x*)Q

exists by (e) and {x*2} not null, and

ox? oy

is unique for Q by Definition 3; so (e) holds for any x*‘e{x*Q}. O

Lemma 1 can be deduced almost directly from the Viner-Wong envelope
theorem of Samuelson, which states that the first order change in the
value of the objective function 7(x;a) as x varies optimally (from an
initial interior solution) in response to a change in an exogenous

variable o is equal to the change in m(x*;0) for dx = 0, i.e.,

dm(x*(a),q) o m(x¥%, )
aa o
where
Ix*
=0 (Samuelson, 1947, p. 34).
3o .

In proofs, partial derivatives will generally be denoted by subscripts.

For example,

3R(x) 5ct(x)

1

|
.y
—t
X
m
3
o
m
—.o—
X
Nmane?

ax



188

3. Theorem 1
Theorem 1. Suppose that conditions 1-3 are satisfied. Then
*p *Q, 1*P c
(A) {x " (o)} <= {x (x (oc))} for all o

i.e., any problem P and the corresponding problem (s)Q

have identical solution sets; and

(B) .{(x1*P(a), MFC1(C)L)) for all a} <=> {(x1*P(0c),

Q
Bﬂ{x*o(x1*P(a))}

[

: ). for all cx} i.e., Dp <=> DQ.’1

X
- s *P o, . /
Proof. By condition 1 and definitions 1-2, x  is a solution to the
problem
. P o1 N
maximize m(x) = R(x)-c (x ;0)- I c(x) . . . . .(a)
i=2

Construct the related series of problems

maximize 'n(x)P maximize 1T(X)P

.(b)

* *
subject to x' = x' A, .eeeeees, subject to x' =x'

1Formally Theorem 1 only applies to the case where input 1 is employed
in a single enterprise, since the cost schedule for input 1 is defined as a function
of only one input. However, Theorem 1 readily
generalizes to the firm that employs mput 1 in M enterprises. In this case, we
can define 1 1 M 1i and the quantity constraint in a corresponding

c = c(I x ’;a)
=1 Moy 3
Producer Problem Q as I x )= x . It is easily shown that, with these
j=1

obvious modifications, Theorem 1 applies to the multi- enterprlse firm as well as
to the single enterprise firm.,
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* * *
where (x1 A, ---,x1 z) = {x1 PA} for problem (a), and problems

(b) and problem (a) have identical objective functions. By (a)

and (b),
{x*P} = {{;*}} N (3

where

*
{{x }} = the set of solutions for series (b).
Since (b) implies that

-~ *
{{x1 }} is exogenous to problems (b), and therefore

~ 1%
{{cl(x1 ;a) }} is exogenous to problems (b),

~%
{{x }} is independent of the specification of

.(d)
C1(X1;(X) in problems (b),
which includes the specification cl(xl;oc) =0 for all xl. By (c) and
(d), for any o
* *
x T = tx 3 C )

where

x"Q°

the set of solutions for the series of problem Q's

corresponding to problem (a) (see Definition 5), which is statement A of
the Theorem. By conditions 1-2 and (***), Lemma 1 can be used to

calculate
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aﬂ(x*P)Q *p
= Ry(x ") -

i
c,(x ') S €))
E)x1 i !

2

N
z

* .
at any solution x P for any problem Q corresponding to problem (a). By
conditions 1-2,

N p

;a)-»zcil(x ) = 0 N )
i=2

*
R, (x Py - c:(x

1*P

which is a first order condition for an interior solution to problem (a).

By (e)-(f),
BW(X*P)Q 1 1*p .
— = c1(x ) ... W (9)
ox?

which is statement B of the Theorem.D

q, Corollarx 1

Corollary 1. Suppose that conditions 1-2 are satisfied, and that for

all a:
*
8c1(x P(a);oc)

4 0 for at leastonei # 1.
E)xI
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Then
(A) {x*P(oc)} n {x*Q(x1*P(oc))}c = null set for all o,

i.e., any problem P and any corresponding problem Q do not

have any solutions in common; and

(B) for any a: {(xl*P(a), MFC1(a))} n DQ + null set

if and only if
* i * * H *
BR(x 1) _ N 2e'(x’P) | aR(x QY N oadi
ax! =2 ax! 3x i=2  ax!
for all (or, equivalently, any)
)
* *
x P e {x P(cx)}
* * * 2
x' Qe ix APl .
- *p . : _
Proof. By conditions 1-2, x ~ is any solution to the problem
N
maximize 7(x)P = R(x) - £ c'(x) ... .(a)

i=1

where

2
Corollary 1-B also assumes that conditions 5-6 are satisfied.
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X > 0 i=1,e<,N . . . .(b)

(x ') =0 j=1,++N. ... .()

By assumption, c1(x;a) has input 1 and at least one other input

(e.g., N) as its arguments, where

*p

c,L(x cq) £ 0 . C ()

Construct the problem Q

N .
maximize R(x) - £ c'(x)
i=2
.(e)
*
subject to x1 = x1 P
By (b),
*P . .
X is a solution to problem (e) only if.
N . : R 6
* *
R(xF)- 2c(xF) =0 j=2, 000N, ‘
J j=2 J '
By (c) and (d),
N .
*p i _*P
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*
for any P where c:(x P;a) # 0 for some i # 1

.(***)
* * *
and all x P, {x P} n {x Q}c = null set,
which is statement A of the Theorem. By (c),
sp. NG wp 1,_*P
R1(x ) - I cl(x ) = c1(x ;o) « « . .(h)
i=2 o
for problem (a). By Lemma 1,
* Q * N . *
Amx )~ - Rix - 1 'Y C (D)
ax T i=2 :

for problem (e). By statement (f) in the proof of Corollary 2,

*Q
amx )~ is single-valued for a given problem (e).3. <. L)
3 X
By (h)-(j),
* *
for a given (x1 P, c}(x P;a)) on DP and a related solution
*p

X to a P, there exists an identical

[xl*Q, BTr(x*)Q

- ] on DQ if and only if

9 X

N . N .
R1(x*P) ) c'](x*P) - R1(x*Q)— 5 c'1(x*°)

i=2 i=2

3Statement (f) in the proof of'CoroIlary 1 depends on conditions
2, 5 and 6 but not on Theorem 1,
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*
for all (or, equivalently, any) solutions x Q to the corres-

ponding Q's. O

5. Corollarx 2

‘Corollary 2. Suppose that conditions 1-3 and 5-6 are satisfied,

and denote the domain of p1 = p1(x1) as XD. Then

(A) if xIB is included in a solution to at least one problem

P, then all x1A such that 0 < x]A < X B are in XD,

(B) p1 is a function of x'1, i.e., p1(x1) associates one

and only one p1 with any particular x1 in XD,

(C) p1(x1) is differentiable for all x1 "within" XD,
i.e., for all x1 such that 0 < x1 < x1A and x1A is
D

an element of X .

Proof. By condition (5),

max TT(X1A)Q < max TT(XIB)Q if x1A < x'IB .. . .(a)

where max 'rr(xl)Q is the maximum attainable value of the

objective function R(x) - I c'(x) for the problem Q defined
i#1

by the constraint x! = x By (a),
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if Q with the constraint x1 = x1B is bounded,

.(b)
then Q with x1 = x1A, where x1A < x1B ,
is also bounded
where Q is defined as bounded for x1 if and only if
max 1T(X1)Q = k or max TT(XI)Q + k ,
for a real number k. By condition (6) and (b),
. . . 1 __1B .
if Q with the constraint x = x has a solution,
then Q with x1 = xlA, where x1A < x1B ) e . . ()
also has a solution.
By condition (2) and (c),
. . . 1__1B e
if Q with the constraint x = x has a solution,
o x TIA
then aﬂ(x_(f ) is defined for ‘all e .o . o (d)
ax1
x1A< XIB

By (d) and Theorem 1,
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if x1B is included in a solution to at least one P,

then all x1A such that 0 < x1A < x1B are in the L(FxX)
domain XD of p1(x1)
which is statement A of the Corollary. By Definition 3,
— e
max 17(x1)Q = w(x (x‘))Q exists and is single-
-3 *
valued for each x1 where a solution x exists ... .(€)
for the Q.
By (d), (e) and statement A(***),
* T 1 Q —
amlx (x)) is single-valued for each xlA = x1
ax?
.(f)
such that 0 < x1A < x1B and Q has a solution
for x1 = x1B
i.e., for each x1A = x| an element of XD. By (f) and
Theorem 1,
1,01, . . 1 D xk
p (x ) is a single-valued for all x an element of X~ . . .(**¥)
which is statement B in the Corollary. By (f), condition (2)
and Lemma 1,
* "T Q
amlx (x)) is a differentiable function of
axl . :
x! = x1 for all x1 N ()
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such that 0 < x1 < x1A and x1A is an element
D (g continued)
of X ,

i.e., for all x! within X°. By (g) and Theorem 1,

p'(x") is differentiable for all x| within XP (R

which is statement ¢ of the Corollary. U

6. Corollary 3

Corollary 3. Suppose that conditions 1-3 and 5-6 are satisfied.
Then

* .
(A) for any solution x A to a problem P where o = aA,

* *
rx"MP = nx(09)@
x1*A
*
+ I p1(x1)dx1 - clix! A; OLA)
0
where
x - Q N 1
m(x (0)) = max{R(x) - & c(x):x =0},
i=2 :
* Q 4
pleoy = 2mx (O -
ax? +
4 lim f(x1 + Ax1)- f(x1)
Any right hand side derivative
Axt >0 Ax?
1
for Ax® > 0 is represented here as 3f(x]) .
' axt I+
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and L

* *
‘(B) for a solution x A and a solution x B. to two problem P's

that differ only in terms of o = aA and a = aB, respectively,

x1*B
*B,P *AP
mMx ) - wx ) = J p1(x])dx1—c1(x]*B;aB)
' 1*A
X
*
+ c1(x1 A; 0LA).
*A . .
Proof. Let x be a solution to a P. By conditions 1-2 and
Theorem 1-A,
. ‘ .
X A is a solution to the corresponding Q (x1 = XI*A), . .. .(a)
By (a), Theorem 1-B, Corollary 2-A and 2-C,
* 1 Q »
am(x (x)) is defined and continuous for all
ax?
- *
0<x1§x1A. . v« o(b)
By (a), and by (c) in the proof of Corollary 2,
* Q .
m({x (0)) exists, .(c)
By (b)-(c),
* Q
Mx__i__% exists e o . o (d)

ax? +



199

where
ar (N | L im wx*(ax )9 - n(x*(0))@
SRR = p—
ox t AxP >0 Ax?
for all Ax' > 0
By (b)-(d) and the definition of
3r(x (x )2
IxT ’
1*A —
X * 1,,Q —
nx M = gk on@ +J omlx (x N = g T (e)
. 0 ax?
where
antx to)? = anx"(0))9 By (f), Definition
Ix?! ax 1 _
+
1 and 3,
X 1*A *x — 1
ﬂ(x*A)P _ ﬂ(x*(o))Q +J 3 m(x (_)f )) dx1
0 ax?
- c1(x1*A;\aA) . . e e e W ()
By (f),
1*B —
- X * 1 Q —
“(X*B)P _ n(x*A)P - [ 3T\’(Xﬁ )) " 4]
1*A ox?!
X
ST B By T x A )
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By (f), (g), condition 3 and Theorem 1,

1*A
* * X , *
ix MP = w0« J plixax! - Tix A0
0
xl*B
* * *
1 B)P - ax"AP - J p1(x1)dx1 _cMix'B. B
1*A
X
1%
+ c1(x A: aA)
which are statements A and B of the Corollary. [J
7. Corollary 4
Corollary 4. Suppose that conditions 1-3 are satisfied for a problem P.

1A

(A) If x is included in a local solution to P, then
1, 1A,
pl( 1A) _ 3¢ (x1 ) R
dX
3p1(x1A) _ 3‘2:c1(x1A;on) < 0
x| ax1t?2
1, 1A
(B) If pl(xlA) _ dc¢ (x1 ;o) _ 0
9 X
ap1(x1A) ) Bzcl(x1A;a)

<0 ,

x| ax?t 2

then x1A is included in a local solution to P.
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By conditions 1-2 and Definition 2,
xA included in a local solution to P =
p' ") -l = o C .. (@)
A,P . . ..
[Trij(x ) ] negative semi-definite, and
p'(x") - clx®; o) = 0 and ['rrij(xA))] negative definite
A .(b)
=> X a local solution to P
* J
z 'ni.(x )P Chas =0 fori=2¢+--,N ,
. j 20
j=1
N N * i* j* N 1% j*
P 5x ox’  _ *P 3x o9x
§ § Trij(x) da d0o ".E: Tu”(x) da Ja
i=1 j=1 j=1
* HES *
_ N x P ax! ox) ax!
=z Tﬁj( ) 90 —3 da
j=1 ax?
. ()

by condition 3 and Theorem 1-A. By (c) and Theorem 1-B,

N N * P ax axl 1, 1% 1
2z i§1"ij(x) 5o o - (Py(x ) meyyx

]*;a))

*
axl 2

5o . coe . (d)
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By (a)-(b) and (d),

Corollary 4-A and 4-B are established. []

8. Lemma 2

Lemma 2. Consider a problem Q

maximize 'H'(X)Q

. .(a)
subject to x1 = x1

where

'n(x)Q is twice differentiable in the neighbourhood of an interior
*
solution x (not necessarily unique). Also construct the related

problems

maximize TT(X)Q

. . .(b)
. 1 _ .1 1
subject to x = x + Ax
and
2 *1,Q 2 *Z.Q
maximize A—ﬂ(—x——)—-— maximize -4—'”—(-5——)—
(Ax1)? (ax1)? ()
. 1 _ 1 . 1 1
subject to Ax = Ax , eeceeceees subject to Ax = AXx
where
N N . .
* *
A %m(x )Q = X 'ni.(x )Q Ax' axJ,
i=1 j=1
*1 *Z.. . 2 N
{x ,+++,x " }is the solution set to problem (a), and (Ax",**<,AX )
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is the vector of endogenous variables for problems (c}.

Then
*b *a *c
(A) {u—}-* {Ax } as Ax! - 0
Ax? Ax?
*
where x 2 = a solution to problem (a)
*
X b - a solution to problem (b)
*
Ax © = a solution to a problem (c), and

*
(B) (even if x for problem (a) is not unique)

*
9 2m(x )Q
ax?! 2

for problem (a) is equal to the maximum

A 2Tr(x*)Q
(axh)?

for any problem (c) (Ax'# 0).

Proof. Construct the problem Q

maximize 'n(x)Q

— I ) )

subject to x1 = x

*
which is assumed to have an interior solution x . (not necessar-

ily unique). Construct the related problem Q
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maximize 'rr(x)Q

.(b)

subject to x1g= x1 + tAx1

where t is a given scalar. Problem (b) can be expressed equivalently
as

. . * Q
maximize m({x + tAx)

subject to Ax' = Ax1

.(c)

where (sz, ---,AxN) are the endogenous variables. Given that Tr(x)Q
* *
is twice differentiable in a neighbourhood of x which contains x +tAx,

*
we can express m(x +tAx)Q as a second order Taylor expansion

*
about x :

N .
Tr(x* +tAx)Q = 'TT(X*)Q +t I 'ni(x*)Q Ax'
i=1

2

2 N
2

z 'n..(§)Q Axiij A € )]
1j=1 Y

N~ Z

where x is some point between x* and x* + tAx. Substituting the

interior first order conditions 'rri(x*)Q =0 (i =2,+++,N) for (a) into (d),

mix +tax)Q = mx )9+ tnl(x*)QAx1

2

N
LB
2

5o axiax) . ... . (e)
PR |
i1=1 j=1

tMmZ

Construct the related problem
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NN
maximize - I I m.(x)" Ax Ax!

i=1 j=1 e e o (f)

subject to Ax1 = Ax1

where (sz, ---,AxN) again are the endogenous variables. By (e),

problems (c) and (f) have the same set of

(primal) solutions. ... a(g)

By the definition of x and the assumption that w(x) is twice

*
differentiable at x ,

ﬂij(;E)Q > 'ITij(X*)Q (i, j,=1,***,N)ast~+ 0, .. .(h)
By (h),

as t + 0, the limiting (asymptotic) form of problem

(f) is problem A:
N N £Q i
maximize I I TTij(X) Ax Ax N 0
i=1 j=1

subject to Ax1 = Ax1

Construct the related problem
N N * L
- maximize I I wij(x )Q Ax'ax) (Ax1)2
i=1 j=1

- (j)

subject to Ax1 = Ax
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Since Ax1 is exogenous to problems A and (j),

problems A and (j) have the same set of

(primal) solutions. .« . (k)

By (g), (i) and (k),

2% N*
as t - 0, {( tax REEN tAx )} for all (c)
tax? tAx T

defined by {x*} for (a)

2* N*
N {( ax ..., Ax )} for all (j)

Axt . Ax?

. ( ***)

*
defined by {x } for (a)

which is statement A of the Lemma. In addition,
. N N * . N N
—]—2— r I 'ni.(x )Q Ax'ax) = ——1—2— Tz
(AxY)* i=1 j=1 Y (Aax1)“ =1 j=1

, 1Tij(x*)Q (AAxi)()\ij)
for all (X\,Ax) . N )

By (1),

the solution value of the objective function for problem (j)

————

is invariant with respect to the constraint Ax?® = Ax! (#£0).

.{(m)
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Assuming that a solution or solutions exist for problem (a),

.(n)

2% Q
§__T_r_(;xl_)2_ is uniquely defined for problem (a).
3 x
2. .5 Q
By (***), (m)-(n) and the definition of aﬂ—fi;— .
dx?
2. % Q
M_Z‘__lz_ for problem (a) is equal to the solution value
ox1 '

of the objective function for any problem (j) (Ax1 # 0)
*
defined by {x } for problem (a)

which is statement B of the. Lemma. (O

9, Lemma 3

Lemma 3. Suppose that conditions 1-3 are satisfied. Then, for

any x1A in the domain of p1(x1) and the related OLA and any

. *A
global solution x ",

2 2
_apl(xlA) _ 3 T x;aM - maximum %)
i 1 2 x1
9 X d X :

N N . ..
5oz omx MP axiaxd

i=1 j=1 Y

for all Ax such that Ax1 #0.
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Proof. Construct the problem P

. P 1,1, N
maximize 7(x) = R{x) -c(x) -2 c(x) .« . J(a)
' i=2

(for a given o) satisfying conditions 1-2 in the neighbourhood
of each global solution x* (not necessarily unique). Construct
the corresponding problem Q
- Q . N
maximize m(x) = R(x) - ifz c (x)

—_ . . . .(b)

subject to x1 = xIA

where x1A is included in-a global solution to problem (a). By

(a)-(b) and Lemma 2-B,

*A.Q 2N N
oamlx ") 1 1A . 1 *AP
- €.,(x ") = maximum (—1) z Im(x ")
3% T 2 11 Ax i=1 j=2 Ij
for all Ax such that Ax1 £0
(c)
*
where x A = (x1A, --o,xNA) is a global solution to both problems
(a) and (b). By Theorem 1 and Corollary 1-B and 1-C,
. +7.Q
* 2
1, 1A, _ 32m(x A)Q _ . = 87mlx )
p1(x ) = ———————__2 = seesses = - « o » -(d)
ox? ax?
where
* *
{x AI...Ix Z}
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denotes the solution set to problem (b). By (c) and (d),

N N .
1?2 )ND) ’lTi.(X )
Axt” =1 j=1 Y

1A 1 1A P

11 (%

p:(x ) - cC } = maximum(

for all Ax such that Ax' # 0 for any global solution

*

X A to problem (b). O

10. Theorem 2

Since the proof of Theorem 2 consists of several parts correspond-
ing to the statements (A-E) to be proved, it may be useful to precede
the proof by a brief statement of the methodology that is common to
these parts. As mentioned in Section 2.4.4.2 of Chapter 2, essentially
Corollary 4 can be used to transform the comparative statics problem

of determining the direction of change in equilibrium level of input 1,

fesulting from a change in the factor cost schedule c1(x1), to a problem of

determining the existence of an equilibrium for particular specifications

of cl(xj). This statement can be elaborated upon as follows.
From Corollary 4 (or, to be exact, Lemmas 2-3) we can deduce
- the following:

A 1, 1A
(a) -a—T—T(—)-(—.-)—P:O, for all i,is equivalent to gc (x ). p1(x1

oxt ax?

Ay,

(b) TT(X)P concave in the neighbourhood of xA is



equivalent to

3 2c1(x1) s aEl(xl)
ax1 2 ax?t
1A

in the neighbourhood of x *°, where the left hand
statements in the equivalences a and b are the

necessary and sufficient conditions for an interior

local solution to the problem P at xA. Therefore,

. 1,1, = 1.1 .71
sincea c (x') =w x (w exogenous) can always

1. pl(XIA), the slope of

be constructed such that
the derived demand schedule can be deduced from
the answer to the follovﬁng question: given particular
properties of R(x)} and ci(x) for i # 1, and
c1(x1) = Fx‘ such that F = p1(x1A) is it

(a') always,

(b') sometimes, or

(c') never

true that 'rr(x)P is concave in the neighbourhood of xA?

Depending on whether a', b' or c¢' is correct,

1, 1A 1, 1A
BE(X)go ap (x ") 2 o
Bx1 Bx1
or
3 1(xm)
spix J 5 respectively.

1 - !

210
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Theorem 2. Suppose that conditions 1-6 are satisfied. Denote the
the domain of p1(x1) as XD, and denote a wage or rental

rate that is exogenous to the firm as w'. Then the slope

of the firm's derived demand schedule is related to certain

properties of R(x) and c'(x) (i = 2,+++,N) as follows.
5 8p1(x1)
(A) If R(x) is strictly concave, then ———]——-§ 0 and
3x

'pl(xl) > p1(x1 +e) for all (x1,x1 +e) in X, where
e > 0.
] 1(xl) 1
(B) If R(x) is concave, then —LI <0 for all x
D 3 X
in X°.
(C) If R(Ax) £ AR(x) for all X > 1 and x 2 0 but R(x)

is not concave, then
1

1
(1) M’;—)— < 0 always for at least some x1 in XD
dxX
but 11
N . op (x)
(2) for some R(x) and I c'(x) : 8x1 > 0 for
i=2
some x1 in XD.
(D) If R(Ax) = AR(x) for all {x,)) 2 0 and c¢' = w'x' for
1,1
i=2,++,N, then M = 0 for all x1 in XD.

E)x1

(E) If R(Ax) > AR(x) for all A >1 and x >0 and

. —_— 1.1
c' = w'x' for i=2,-+-,N, then MZOand
1.1 1,1 9 1
p(x’) <p(x +e) for all (x ,x +e) in

'XD, where e > 0.6'

Footnotes on the following page (5,6).
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Proof. Part A (Introduction)

Construct the problem P

N .
R(x) —c1(x1)A - I c'(x). . . W(a-Nn
i=2

PA : maximize n(x)A

Given that p1(x1) is constructed from the above R(x) and
N .
X c'(x) and various c1(x1) (Definition 2),
i=2

1A EXD),

then there exists a c1(x1)A such that PA has . . . (a-2)

a solution xA = (xl-A,--',xNA).

if p1(x]) is defined for x’A (i.e., x

Construct the corresponding problem Q

Q N .
maximize w{x) = R(x) - I c'(x)

i=2 .(a-3)

subject to x1 = x1A

By (a-2)-(a-3) and Theorem 1-A,

xA is a global solution to problem (a-3) e o . J(a-8)

>The firm's total benefits function R(x), which is simply a total
revenue function if the firm maximizes profits, is strictly concave if and
only if (1) R(Ax) < AR(x) for all A > 1 and x > 0, and (2) all isoquants
of R(x) are strictly convex for x 2 0. Likewise, R(x) is concave if
and only if (1) R(Ax) £ AR(x) for all A > 1 and x > 0, and (2} all
isoquants of R(x) are convex for x 2 0.

6Note the asymmetry between statements C and E: p (x zP (x +e)
for decreasmg returns to scale and fixed factor prices (i # 1), whereas
(x ) <p T(x! +e) for increasing returns to scale and fixed factor prices
(| # 1), where e > 0.



Replace c1(x1)A in PA with a c1(x1)B such that

c:(x1A)B + c:(xlA)A

X )B = 0 for all x1

which results in the problem

N

PB: maximize Tr(x)B = R(x) - c1(x1)B —igzci(x)...

By (a-1)-(a-3), (a-5) and conditions 1-2,
ﬂi(xA)B = 0 i =1,-,N.

Given conditions 1-2,

any x is a local solution to a P if and only if
r®F = 0 (i=1,N) and 70"

is concave at x

and
P . A . P, . .
m(x) is concave at x (1) if ['nij ] is negative
definite at X, and (2) if and only if [ﬂijP] is

negative semi-definite in the neighbourhood of ;27

’See Karlin (1959), p. 406.
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.{a-5)

(a-6)

.(a-7)

.(a-8)

.(a-9)

.(a-10)
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where ['nijp] denotes the Hessian matrix of
N .
nx)f = Rx) - I c(x)
i=1

at x.

Part B (proof of Statements A and B)

Since the negative of a convex function is concave, and the sum
of a (strictly) concave function and a concave function is (strictly)

concave,8 condition 4 (c;K 2 0 for all i, j, K and x) implies that

m(x) is (strictly) concave if R(x) is (strictly) (b-1)
concave, I )

Given that m(x) has a maximum over the convex feasible set of all x 2 0,

nm(x) attains a unique local maximum over all x 2 0

.(b-2)
if m(x) is strictly concave
n(x) attains either a unique local maximum or a
convex set of local maxima (hence every local
.(b-3)
maximum is a global maximum) over all x 2 0 if
m(x) is concave.
By (a-10) and (b-1),
. ; IN N P i,
R(x) concave => maximum 12 - m.(x) Ax Ax) 0. . .(b-4)
ax! # g Axi=1 j=1 :

for all x.

8Footnote on following page. (8)
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By (b-4) and Lemma 3,
1,1 1 D
R(x) concave => p1(x) < 0 for all x eX coee W (*FH)

which is statement B of the Theorem. By (***) and Corollary 2-A and

2-C,
. 1,1, _ 1,1
if p(x') =p (x +e) for R(x) concave, then
1.1 1.1 . .(b-5)
p(x) =pi(x + Xxe) forall 0 <X £1.
By Theorem 1-B,
. 1,1 1.1 1.
if p(x') =p (x + Ae) for all 0 < XA £ 1 where x is
included in a solution to a problem PB (a-5 to a-7),
.(b-6)
then x1 + e for all 0 £ A £ 1 is included in a local
solution to PB.
By (b-3) and (b-5)-(b-6),
. 1,1 1,1
m{x) strictly concave =>p (x') # p (x + e) for any
11 D . «(b-7)
(x ,x +e) e X .
By (***}, (b-7) and Corollary 2-B,
R(x) strictly concave => p}(xI) < 0 and
.(***)

pl(x1) # p1(x1 + e) for all (x‘,x1 +e) EXD

which is statement A of the Theorem.9

8 See Lancaster (1968) for a summary of most of the properties of
concave functions and sets that are used here.

9 Corollary 2-B (p‘(xI) is single-valued for each x1 e:XD) implies
that the result obtained by statement1B f"El (b-7); i.e., statement A, is
independent of the assumption that‘(h(x )° = 0 for all x!.
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Part C (proof of statement C)

N .
For a given R(x) - I c'(x) and {x} = a particular subset
i=2 -
2 XN
of x that defines all possible factor proportions ( X, e, _T)' we can
X X
construct a problem
(o c 1,.1,c N i
P~ : maximize m(x) = R(x)-c(x) - Zc(x) ... .(c1)
i=2
where
c:l(x1)c = 0 for all x! -(e=2)
mx)¢ < o for all x ¢ {x} . R ()
Assume that
R(Ax) £ AR(x) for all A >1 and all x 2 0. R ()
By (c-3) and condition 4,
(c-4) = (a) n(yx)c £0 for all ¥y 21 and all
x € {x} (c-5)
(b) mox)€ 2 m(x)€ for all 0 <o <1
and all x 2z 0.
By (c-5),
(c-4) = fall x | n(x)€ 20 and x 2 0}

. .(c-86)
is closed and bounded. .
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Given that {all x ]Tr(x)c 20 and x 2 0} is non-empty: (c-6) and

Weierstrass's Theorem imply that
(c-4) = problem P (c-1) has a solution. e o v W (cm7)

Given that this solution is interior: (c-2), (c-7), Corollary 4-A and

Corollary 2-B imply that

R(Ax) £ AR(x)} for all XA >1and x 2 0 = p:(xl) <0
D

.(***)
for some x1 e X

which is part 1 of statement C of the Theorem. Given that an interior

point xA = (x1A,---,xNA) solves problem PA (a-1) for an appropriate

'xhA,
X e X e o« o(c-8)
by Definition 2, and

'IT(X)A is concave at xA e« . o(c-9)

by (a-9)-(a-10). Since the sum of non-concave function and concave

functions is not necessarily concave,

Tr(x)A concave at xA +> 'n(x)B concave at xA s e . W (c-10)

By the definitions of T\'(X)A and TT(X)B (a-1) and (@-7),
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N N . . N N . .
oI ni.(xA)AAx'Ax‘ = I 3 Tri.(xA)BAxlej
i=1 j=1 " =1 jo1 U
. .(c-11)
for all Ax such that Ax] =0.
By (a-10) and (c-11),
N
for some R(x) and I c'(x) satisfying (c-4) and
i=2
condition 4:
N N AB i, j
maximum I I 'ni.(x )7 Ax Ax’ = maximum e v o o(c-12)
Ax+Ax=1 i=1j=1 Y Ax-axs1, Ax 140
N N . .
oz om(x™B ax'ax) >0 .
. . l]
i=1 j=1
By (a-3)-(a-4) and Lemma 2-B,
A.Q 2N N
2 . .
.QL(’L%__ = maximum [-1—] r I 'ni.(xA)Q Ax' Ax) . e . W (c-13)
ax 1 Ax1#0 LaxtJi=t1 j=1 Y

By (a-3)-(a-4), (c-8), (c-12)-(c-13) and Theorem 1-B,

N .
for some R(x) and I c'(x) satisfying (c-4) and
' i=2
condition 4: e o« o(c-14)

p}(x1) >0 for some x1 € XD

which is part 2 of statement C of the Theorem.



Part D (proof of statement D)

Suppose that, for problem PA (a-1),

R(.)\x) = AR(x) forall XA >0 and x 20
dix) = wx i=1,,N

TT()\)/Z)A = 0 for at least one x#0, all A >0
7r(§)A <0 for all § # any AX .10

By (d-3) and (d-4),

all Ax are global solutions to a problem PA

satisfying (d-1)-(d-4) .1

By (d-5), Lemma 3 and Corollary 2-B,

if R(Ax) = AR(x) for all » >0 and x 2 0 and

ctx) = w' x' forall i #1, then pl(x") = 0

for all x1 € XD

which is statement D of the Theorem.

10Given (d-1) and (d-2), (d-3) and (d-4) are necessary
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.(d-1)
.(d-2)
. (d-3)

. .(d-4)

. .(d-5)

. . (***)

for the satisfaction of condition 1 (hence are implied by the satisfaction

.of condition (1). If (d-3) or (d-#4) is not satisfied, then either
x* = 0 or the problem is unbounded.

”Statement (d-5) is in effect Samuelson's substitution theorem

" (Samuelson, 1951).
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Part E (proof of statement E)
Suppose that

R(Ax) > AR(x) ¢ (Wx) = Ac'(x) i =2,++2,N
.(e-1)
for all A >0, x >0.

By the definition of n(x)E (a-7),

(e-1) = 1(Ax)B > An(x)® forall A >1andall x . . . .(e-2)
By (e-2),

(e-1) = TT(X)B is not concave at any x. . o . .(e-3)
By (a-10), (c-9), (c-11) and (e-3),

2 NN

(e-1) => maximum 1 r I 1r..(xA)Q Axiij 20 .. . .. (e-4)
S ER R

By (c-8), (c-13), (e-4) and Theorem 1-B ,

(e-1) = pl(x") 20 forall x'exP. ... .(e-5)

By (e-5) and Corollary 2-A,

given (e-1}): if p1(x1) = pl(x1 +e) for a

1

(x1,x +e)€XD, then p1(x1) = p1(x1'+ re) e« . .(e-6)

for all 0 £ A £ 1.
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By the definition of TT(X)B (a-7) and Theorem 1-B,

p1(x1) = p1(x1 + Xe) for an (x‘,e) and
.(e~7)

all 0 A1 = Tr(x)B has a local solution

A

which is presumably interior. By (a-8)-(a-9), (e-3) and (e-6)-(e-7),

(e-1) = p1(x1) # p1(x1 +e) for any_(x1,x1+ e)z~:XD . .(e-8)
By (e-5) and (e-8),
R(Ax) > AR(x) for all X > 1 and x > 0 and
ci(x) = w'xi for i = 2,+¢+,N = p:(xl] 2 0 and R Gl

p‘(x’) # p1(x1+e) for all (x1,x1 +e) eXD

which is statement E of fhe Theorem. [

11. On the Hicks-Andrieu Formula for the Elasticity

of Derived Demand 12

Given statement E of Theorem 2, we can easily demonstrate
that a solution to the formula for elasticity of industry derived demand
developed by Hicks (1963, pp. 241-6) and generalized by Andrieu
(1974) is not necessarily consistent with the static maximization
hypothesis. From the first order conditions for an interior maximum

for competitive firms and assuming an industry production function

12This section of the Appendix supplements section 2.3.3 of

Chapter 2.
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13

F(xl,xz) homogeneous of degree p, ~ Andrieu develops the following

formula for the industry elasticity of derived demand for input 1:

1 w1 e2k1 + Oyn - 2012(1—k1)e2

T L 12 C e ()
aw X
(1—k1) - Z(e2 + k1o12)
where
1,.2 d(F,/F.)
0yp = dix_/x ) / F2/F1 (industry elasticity of factor
x Ix 21 substitution)
- 5 Y (industry elasticity of product
P - demand)
2, 2 2
e, = 95 (wz ) w2 (industry elasticity of supply
d(w?) X for input 2)
w x1
k1 = (factor share for input 1)
Py
Z = (p-1)-p/n
(formula 15, p. 413). For p = 1, equation 1 reduces to the formula
of Hicks. If n » +o and e, » +», then the numerator and denominator

2
of equation 1 approach [k1 - 2012 (1—k1)]e2 and —Zez, respectively, and

Z~»p-1>0for p>1. So

13For p # 1, these conditions are compatible in the presence
of external economies or diseconomies of scale for the individual firm.
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. o ~ _ >
sign ()\1) = sign [2012(1 k1) k1] 0
forn++oo,e2++oo,p>1 N 3

given only Z > 0, Oyp > 0 (convex isoquants for F)} and 0 < k] <1.

Given perfectly elastic product demand schedules and supply
schedules for input 2 at both the industry and firm level (so that changes
in the level of 'output produced or input 2 employed do not lead to
shifts in price schedules faced by individual firms, the industry derived
demand schedule for input 1 would be equivalent_ to the derived demand
schedule for an individual firm facing the production function F(x1,x2)
and identical price constraints. Therefore, the contrast between

statement E of Theorem 2 (p} 2 0) and the more ambiguous statement

2 above implies that

(a) a subset of the solutions '{(x1, Oypr M €y kl’ p)}
to formula 1 is inconsistent with the static maximiz-

ation hypothesis, and

(b) various qualitative relations calculated by means of
formula 1 will be more ambiguous than is warranted

by the static maximization hypothesis.lu

wOn the other hand, various qualitative relations implied by
the static maximization hypothesis happen to be represented correctly
by formula 1. By formula 1: A, =0for p=1, n > +o, ey > +x
(Hicks, 1963, pp. 373-4), which is equivalent to statement D of Theorem &,
By formula 1: Ay > 0 for p < 1, Oyp > 0, n'» +», ey > +o and )y z 0
for p <1, 012 €0, n > +®, ey > +x

‘ ~ which is in accordance with statements B and C,

respectively, of Theorem 2.
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These conclusions are not surprising, since Hicks and Andrieu could
not incorporate second order conditions for a producer problem P

maximum into their formulas.
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Appendix TII. Quantitative Comparative Statics and Derived Demand: 226
Details of the Model

1 Introduction

In this Appendix we shall present a more detailed discussion of
the methodology for quantitative comparative statics that was intro-.
duced in Chapter 3, Proofs and a discussion of partial scolutions to
major computational problems will be presented in the next two
appendices. ' '

The method of quantitative comparative statics can be schematized

as obtaining globzal solutions to two nonlinear programming problems

.. A .. 2x
maximize z2(3a) maximize z(53)
subject to [?ﬁ]%§="mﬁa subject to Cwuj%ﬁ"qﬁa
[T,] negative definite ' [™;] negative definite
G(LTm;3,@)=0 G(LM5,Q)=0
ehs e ¢ @Y : phi o Q¥

where (%ﬁ,fﬁwj ,Q) are endogenous variables and the scalar valued
function z=z(§§) is the comparative static effect of interest. The
restrictions
Cq*gt]%f': LIt [7ﬁ3] negative definite
are the restrictions implied by the assumption of an interior solution
to the firm's static maximization problem "maximize W(x;d)" (T(x;a)
is twice differentiable), the equations
G(\["n’;s],@_)‘-‘o
denote the relaitions between the Hessian matrix [7ﬁ#x*f] and a set
of more readily observable parameters Q, and the restrictions
e- <o QY |
denote the empirically derived restrictions (confidence-Bayes inter=
vals) for the parameters Q.
Here we shall discuss primarily
a) the comparative static implications of the maximization hypothesis,
b) various equations G([“ﬁi,@)=0 relating [Wﬁ(x*)] to more readily
observable parameters Q; and .
¢) the interpretation of the solution values for z(%ﬁ) in the above
problems when the restrictions @Lf @t QU are formulated as

confidence-Bayes intervals,
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I+ can be shown that the assumption of maximizing behavior is essentially
as reallstic as the results of compéraflve static analysis, and that compéra-
+ive static methods usually are more appropriate than comparative dynamic
techniques for the evaluation of community pasture programs.l Thus it is
Important to incorporate the restrictions implied by the maximization hypothesis,
l.e. by the existence of an interior static maximum, into our methodology.
However, in order to avoid placing arbitrary restrictions on the structure
m(x), we should model in this manner only those restrictions that correspond
exactly to the comparative static implications of the maximization hypothesis.

The task of determining the precise comparative static implications of
the maximization hypothesis has been labelled the "integrability problem'" in
comparative statics (Silberberg, 19742), and has been largely solved in the
case of the dua! approach to comparative statics (Epstein, 1978). In addi-
tion, necessary and sufficlient conditions for consistency between the compet-
itive firm's factor demand schedules and the maximization hypothesis have been
known since Hotelling (1932). Nevertheless, the exact implications of the
maximization hypothesis for prima! comparative statics apparenfii has not been
demonstrated previously (even in the competitive case) for the problem

maximize m(x;a) = R(x) - c'(x);a) - g tixhy. P

i=2
In this section we shall show that, for problem P, the usual set of primal

restrictions

N

{"1j] symmetric and negative definite
corresponds exactly to the implications of the maximization hypothesis for

primal comparative statics. Thus the "integrability problem" is solved in this

1. See Appendix 1 and Chapter 4.
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special case.2 In addition, the restriction [nij] negative definite is ex-

pressed in a form that is more appropriate for our (primal) quantitative com-
parative statics model.

3.1 Comparative Static Implications of the Maximization Hypothesis

Given that the primal problem P has an interior global solution x* where

7(x) is twice differentiable, the first order conditions for a maximum imply

that
N j
z ﬂij(x*)ax * o ! (x%;0) = 0
j=1 oa . ¢
(1)
N .
I wij(x*wa* =0 i =2,.00., N

i=1 sa
for an infinitesimal change da affecting the cost schedule ct(x!) for input 1,

and the second order conditions imply that

H™mMZ

nij(x*)dxlde <0 for all dx. (2)
1 .

i=1]
Statement 2 is satisfied if and only if the Hessian matrix ["ij] at x* is elther
negative definite (implying that the strict inequality relation in 2 holds for
all dx # 0) or negative semi-definite only (implying that the sum on the left
hand side of 2 is equal to 0 for some dx # 0). {n addition, Young's theorem
implies that

[ﬂij(x*)] Is symmetric. (%)

Statements (2) and (3) obviously exhaust the restrictions placed on [niJ(x*)]

by the assumptions of an interior maximum and twice differentiability of m(x).

2. The "integrability problem" in comparative statics has been described
as a "major gap in the theory of comparative statics of maximization models"
(Silberberg, 1974a, p. 171); but it is easily solved for the general problem

maximize w(x;a)

subject to Gix;a) = 0
in the context of primal methods of comparative statics in essentlally the
same manner as for the special case

maximize m(x;a)

For these reasons, a general discussion of the "integrability problem" in
primal comparative statics Is included in Appendix 4.
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For emphasis, the relation between statements I -3 and the restrictions

on ax* 1implied by the maximization hypothesis for problem P are presented here
3

as Proposition 1. Parts A and B of the Proposition are well known, and follow
directly from the fact that a negative definite matrix has full rank and a
matrix that is only negative semi-definite does not have full rank. Thus,
given that [nij(x*)] (symmetric) is negative definite and that at least one

comparative static effect 9x* exists for problem P, statement 1 and knowledge
3a

of ["lj

(x*)] and cia(x’*;a) are sufficient to define 3x* (which is unique).
Ja

Given that [n‘j(x*)] (symmetric) Is only negative semi~definite, statement 1

has multiple solutions {3x} for a particuiar [nij(x*)] and cia(x’*;a). However,
3a

by Part C of Proposition 1, 3x* is in fact undefined by primal comparative
LT

static methods when [ﬂ‘J(x*)] Is only negative semi-definite and da defines
a shift in the firm's cost schedule for an inpu+.3

The intuitive meaning of Proposition | may be clarified somewhat by the
following argument. Givenvfhaf'[nij(x*)] is only negative semi-definite, It
can be shown that the derived demand schedule p’(x!) and the marginal cost
“schedule c:(xl;a) for any input 1 have identical slopes at x'¥. Thus, for the
purpose of determining the comparative static effect of an infini#ésimal

change da (which depends only on the first and second order derivatives of

m(x) at x*), the situations shown in Figures 9~A and 9-B are equivalent fto the

3 . Proposition 1-C can be proved essentially as follows (an alternative
proof is presented in Appendix #). The first order condition in the product
market for an interior solution to problem P can be denoted as

MR(y) = MC(y;a) =0 (a)
using obvious notation. The total differential of (a) yields
(MRy - MCy)%% - MCa =0 ; (b) |
but [ni.(x*)] only negative semi-definite implies (by definition) that.
MR J- M = 0 (c)
Since {b) an8 (c) are consistent only if MC_ = 0, local (primal) comparative

statics is meaningless when [n;(x*)] is on?y negative semi-definite.
1J
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Proposition 1. Suppose that conditions 1-3 are satisfied for a problem

N .
R(x) = c¢l(x};a) = £ ¢ (x) (P)
i=2

maximize w(x)

and that this problem has a unique global solution x*.‘4 Denote the set of

comparative static effects of da for this problem as {Qg*}, and denote the
da

system of total differentials of the first order conditions for a solution to

this probliem as

1
C
[n; Jax = |o'® (1
J 3a o]

where [nij] is defined as the Hessian matrix for m(x) at x*, and cia denotes the

exogenous shift in ci(x’;a) at x'*. Assume that [n;:] is negative semi-definite

J
and symmetric. Then

(A) if [nij] is negative definite: equations (1) have a unique solution

ax¥*
sa

(B if [nij] is not negative definite: equations (1) may have multiple

solutions {3x}; but
Ja

(C) if [ﬂij] is not negative definite: 23x* is undefined ({3x*} is
Jda 3a

empty), 1.e.

apt(x!*) ax!* - 32cl(x'¥*;a) ax!* - 3%cl(x!*;a) = O
ax’ 3a ax’ * 0 ax’'a3a

by the first equation in (1) ;

pl(x'*) - 3%ct(x'*:a) = 0
ax' ox* ¢

by equations 2,...., N in (1), [n‘j] negative semi-definite (and not

4. Assuming other global solutions in the neighborhood of x* rules out
the possibility that [n,  (x¥)] is negative definite and does not alter state-
ments B and C. HJ
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so 9x'* is undefined for 3%c!(x'*.a) # O.
oa ax‘3a
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Figure @. A Discrete Analogue to [ﬂij(x*)]

Only Negative Semi-definite

A. ["ij(x*)] only negative semi-definite and x!* unique

A
pl cl P
'™
cl(x!)
|
I
{ 1(x1)
0 ! Y
XX*A x7l

B. [n,.(x*)] only negative semi-definite and x'* not unique

ij
T
P’,c:
: etxt)
1
| :\
| |
j ! pt(x"):
{ \
0 L—v—-} 4
{x**B} x!

C. A discrete analogue to [n‘j(x*)] only negative semi-definite

p!,c! 1T
1oly = nliy!d 1
] T T cl(x ) = pi(x") for all x
poob
¢
L
1 3
0 LHA ?
{x!*B}
c:(x‘) £ the firm's marginal factor cost schedule for input 1
pl(x}) = the firm's derived demand schedule for input 1

x'#A = the firm's solution set for input 1 in case A

x1#B

the firm's solution set for input 1 in case B
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in Figure 9-C, the solution set would be undefined after any downward shift in

LY
the schedule.c:(x’) for all x! 7; so 3x'* is undefined when [ﬂij(x*)] is only

[ [¢]
negative semi-definite and do defines a change in c:(x') at xI*, ©
In sum, Preposition 1 implies that the set of comparative static effects

{3x*} corresponds to the unique solution for (1) when the given [n'j(x*)] is
Ja

negative definite, and that {3x*} Is empty when [n'J(x*)] is only negative
Ja

semi-definite and c:a(x‘*;a) # 0. Therefore, statement 1 plus the restrictions
that ["ij(x*)] is negative definite and symmetric correspond exactly to the

restrictions placed on {3x*} for problem P by the maximization hypothesis. 7

2.2 . Restrictions corresponding to [n,.] Negative Definite
. 3

in specifying a system of equations that restricts [n‘j] to be negative
definite, we utilize the following theorem:
Theorem. A real symmetric matrix A is positive definite If and only if there

exists a real lower triangular matrix H with positive diagonal

5. 1f this relation in Figure 9 -C extended throughout the negative
orthant for x!, as is in effect the case in local comparative statics, then the
solution set {Ax!} also would be undefined for an upward shift in the schedule

Aa

ct(x!) for all xl,

& . This intuitive explanation of Proposition 1-C suggests that the un-
defined nature of {3x*} for [ﬂ,j(x*)] only negative semi-definite is fundamental
da ' '
to local comparative static methods rather than a peculiarity of primal methods.
In other words, {3x*} (for probiem P) Is undefined by any method whenever re-
da
strictions empioyed in the method imply that [nlj(x*)] is only negative semi-
definite.

7.. For the genera! problem
: maximize w{x;a)
sub ject to G(x;a) = 0 ,
the exact implications of the maximization hypothesis for primal comparative
statics are analogous to the above restrictions. See the discussion of
"integrability" in Appendix #.
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elements such that A = HHW |

Since a negative definite matrix is simply the negative of a positive definite
matrix, the following restrictions specify that the NXN real symmetric matrix

[n,.) is negative definite:
N]

-, = h, eh,  +h; sh., o+ ...... +h, . *h, . all (i,j)
HJ i1 Jol 2 3,2 tad Jad such fhif
j<i (4)
h, . > =1, ...
i >0 =1,...,N

where all hi j are also restricted to be real numbers. Restrictions (#) com-

prise N(N + 1) quadratic equalities and N bounds.

2
3  Restrictions implied by Additional Properties of [ngx(x*)]
Given the maximization hypothesis, the comparative static effect ax* for
: da
the firm's static problem
N .
maximize T(x;a) = RO = clixl;a) - T < (xh P)
i=2

Is defined by knowledge of the Hessian matrix [nlj(x*)] (negative definite and
symmetric) and the exogenous shift c:u(x‘*;a) in the marginal factor cost

o :
schedule of Input 1. However, qualitative knowledge of the elements of

["ij(x*)] and c:a(x‘*;a) seldom determines 3x* qualitatively, and direct quan-
90, ’

titative knowledge of the elements of ["ij(x*)] is in general very weak.H

'®. This theorem can be inferred from Forsyth and Moler (1967), pp. 27-29
and 114-115 plus Murdoch (1970), p. 232.

Q. For & more general problem N oy
maximize n(x;a) = R(x) = c*{x’;a) = I c (x)
i=2

subject to g(x) = 0,
the implications of the maximization hypothesis are not as easily incorporated
into our quantitative comparative static methods. However, exclusion of such
problems does not seem to limit our analysis significantly (see the discussion
of constrained maximization in Appendix 4).

10, See Proposition 1 in the previous section.

1. See section 3.2.1. of Chapter 3.
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Thus, even for the purpose of calculating qualitative restrictions on 3x¥,
1o

there is need for a method of comparative statics that incorporates additional
quantitative restrictions on [nij(x*)].

In this section, we shali show how [nij(x*)] Is related to various poten-
tially observable and quantifiable properties p of the structure m(x) of the
firm's static maximization problem P. In contrast to fﬁe usual comparative sta-
tic approaches, which attempt To deduce knowledge of [nu(x*)]'l (and hence

ax*) from restrictions placed directiy on [ﬂij(x*)],J2 we shall place restric~
Ja

tions directly on the inverse of matrices that are essentially submatrices of
[n‘J(x*)].

The vector of parameters p typically includes measures of the following
types of properties of [nij(x*)]: |

(a) possibilities of factor substitution within any subset of inputs,

(b) refurﬁs to an exogenous change in output when any subset of inputs is
held constant and all other inputs vary optimally Iin the static sense, and

(c) changes in input levels corresponding to an exogenous change in output
when any subset of inputs is held constant and all other inputs vary optimally
in the static sense.
A priori knowledge of a range of "reasonable" values for some of these paramet-
ers presumably is available in most cases. This knowledge would be derived
from observation of physical processes, observation of firm behavior that ap-
proximates verious short run comparative static effects, and from econometric
estimation of physical processes and short run comparative static effects. By
formulating these restrictions as cénfidencé intervals or as Bayes infervals,

the corresponding feasible set for 3x* can also be interpreted as a confidence-
. oa

Bayes,inferval.(3

12, See section 3.3.2. of Chapter 3.

13, See section 5.
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However, the following elementary point should be emphasized: although we
can easily formulate conditions that exhaust the comparative static implications
of the maximization hypo‘l’hesis,“+ we cannot formulate conditions that exhaust
the relations between [nij(x*)] and potentially observable data about the struc-

ture of the firm's problem P. Thus the relations between [n,, (x*)] and data

N
that are presented here should be viewed only as a subset of all useful rela~
tions between comparative static effects and observable structure of the firm's

maximization problem.

3.1 Major Restrictions

The restrictions on [n‘j(x*)] that are most Important in our method of
quantitative comparative statics for a shift in a firm's factor supply schedule
concern | |

(a) possibilities of factor substitution within a particular subset of
inputs,

“(b) refurns to an exogenous change in output when a particular subset of
inputs is held constant and all other inputs vary optimally in the static
sense, and

(c) changes in input levels corresponding fo an exogenous change in out-
put when a particular subset of inputsis held constant and all other inputs
vary optimally in the static sense.

The relations between [nij(x*)] and these potentially Qbservable properties of
the firm's static maximization problem are detailed In Theorem 3 and Corollary

15, 16
5. °

" Here we shall explain and elaborate upon these relations between [nlj(x*)]

I4. See Proposition 1.

15, Theorem 3 and Corollary 5 owe much to Mundiak (1966, 1968), and in
turn to Mosak (1938), '

fe., Our quantitative comparative statics analysis could be extended
easily to the case of a shift in the firm's product demand schedule (see the re-
lated section of Appendix #). '



237

and properties (a)=(c) of the firm's static maximization problem. In contrast
to the usual comparative static methods which place restrictions directiy on
the elements of [n'J(x*)], these relations shall place restrictions on the in-
verse of matrices that are essentially submatrices of [n‘j(x*)].

3.1.1 Model with Output Exogenous

Given the firm's static maximization problem

maximize TOxGa) = R(x) = I ¢ (xi:al) P)
i=1

with solution x*, define the related problem where output is treated as exogen-

ous to the firm

maximize m(x;a) = R(x) - g c'(x‘;a')
L I=1 5
sub ject to R(x) = R(x*)
Problem (5) can be expressed in Lagrange form as
maximize m(x;a) - A(R(x) = R(x*)) (&)

where the endogenous variables are (x,A) and the exogenous variables are (a, R).
Suppose that the differentials of the interior first order conditions for
(6) with respect to each of (a, R) yield a unique solution for all comparative

static effects (ax**, 3A, ax*¥, 33).‘7 This assumption is equivalent to the
3o 9a 9R OoR

restriction that this system of differentials can be exbressed in the form

[A] (K] =1 | (7)

{7. Since Proposition 1 can be generalized to the problem
maximize (x;a)
sub ject to G(x;a) = 0
(see the discussion of integrability in Appendix 4), there is no loss In
generality in assuming that 3x*¥*, 3A, 9ax**, 9A) Is uniquely defined for a given

da da oR OR
problem (&). In other words, (3x*¥*, 3x**) is uniquely defined if [nij(x*)]
J0 3R

is negative definite subject to constraint and is undefined if [n, .(x*)] is only

negative semi-definite subject to constraint, and (3}, gé) is also”uniquely de-
' da 3

fined or undefined (since a maximum or supremum is either uniquely defined or

undefined for a given problem).
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where the matrices [A], [K] and | are as defined in Theorem 3. [A] Is the
Hessian matrix [ﬂij(x*)] bordered by marginal factor costs c; = (ci(x‘*,a‘),

RN cN(xN*;aN))T,
N
(%)

[K] is a matrix of all the comparative static effects (3x¥**, 3A, Ix*¥, 25)~l8
%2 da oR dR
for problem (&), and | is an identity matrix. 7

"1%9. The "revenue effect" ax'** is related to the corréspohding output

i 2 1 i
effect 9x ** simply as follows: 3x ** = 3x ** - 3R(y*) (by the chain rule)
oF oF oR 9y

where y = F(x) and R(y) = R(F(x)). .Likewise, 3m(x¥*) = 3n(x*) « 3R(y*) and so
. _ F)a oR , XY
3cm(x*) 9(om/3f) 9R(y*), which yields 3A = 3\ + (3R(y*))°.
af 3R 3y 3F R By

19, Knowledge of comparative static effects in the presence of a con- _
straint on expenditure for a particular subset of inputs could be easily incor-
porated into this approach. For example, consider the problem

N
maximize w(x;a) = R(x) - L ci i
S i=1
subject to L c'(x‘;ui) =C
i=1

167 ;ai)

or equivalently

S ,
maximize m(x;a) = A(C L c'(x‘;a') - 0.
1=1
Then it can be easily shown that the comparative static effects (axE, QAE, 8xE,
£ da  da aC
3)-) for this problem are related to [K] as follows:
aC
lE: . - j . = =
gx éiqj Kij =g Kin s i=1,..,N j=1,..,8
axiE=ci . = x| ** i=1,..,N J=S 4 1,..,N
say_  Joy “agl
ax'E = = ax! *x T=1,..,N
T Nt . 3R
E = - j o . + J [} -
2, S ML T IS T IV J=teens
nE = -cd . = A =S + 1,..,N
W JaJ KN+ 1,j -ﬂa J
-g-% TR N+ : -g%



239

Theorem 3. Sdppose that conditions 1-2 are satisfied for a problem P
N .
maximize m(x;a) = R(x) = I chixd 5ah n
i=1

&0

and assume.fhaf this problem has a unique global solution x* where
the Hessian matrix for m(x) is negative definite. Construct the
related problem

maximize w(x;a)

subject to R(x) = R(x¥)
which can be expressed in Lagrange form as

maximize m(x;a) = A(R(x) = R(x*)). (2)

Construct the symmetric matrix

[
B "ij ! ci
(N x N) ) (Nx 1)} -
~——r—ﬂ —————— = [A]
c I o (N+ 1) x (N+ 1)
|
(1 x DM x 1)
L | -
where Moo denotes the Hessian matrix for m(x;a) at x*, and
J
- (N xX“N)
ci = (3ctix}*;a’),.unnns, acN oMo, [A] necessarily has futl
' X’ x|
rank, | and denote its inverse as [K]:
(A" = (K] always exists.
(N+ 1) x (N+ 1)
Then,

(A) the comparative static effects for problem 2 are uniquely de-

fined as follows:

ax! ** = 32dd (xJ%;ad) - K 1,5 = 1yeeneees N
N, 33 300 byl
i** = =
axa LA I = 1,0eeenn, N

20, This theorem is easily generalized to the case c‘ = ci(x;a!) (i=1,
...,N), but theequations in the generalized theorem are somewhat more de-
tailed than here, and the generalized theorem will not be employed here.
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M = 32cd (xJ*;ad) - i = e, N
3003 FPAERY) AERN
%% = KN+ N+
where K. . = element (1,j) of matrix (K], and K = KJ o iy o=

1o, N+ 121

and

(B) (a) The comparative static effects (3x*) for problem 1 are
oa

unique, and

(b) given that § ¥ K - acd (x*;0d) # -1,73

i=1 jap N )

Ix* for problem 1 is uniquely defined in +erms of

0
Bzcj(xj*;qﬁ) and the elements of [K] corresponding to
oxJ 3a
Ix** and 9x** for problem 2, as follows:
300 aR
axl® = 92 d%;od) < K 4 K CARGA) 1,J = b,eeaenn,
ey axJ 30 BN TR
3R<x*) = g acl (x1*:00) « ax!* T2 0 eennns,
i=1 ox' oa’

21, Thus 9x|** =( 32cd (x1*;qd) // 3%cl(x!*:al) )BxJ** and
oo 9xJ da) ox' da

A= _3%c(xJ*;al) - axIxx (1,] = 1,euevee, N

da axJ oo oR

N N
22. A sufficient condition for I L K N+ 9cd (xJ¥*:al) # -1 (a)
=1 j=1 axd
is that K >0 (i=1,....., N), which is equivalent to ruling out the
posslbili*? of lnferlor inputs (9x!** >0 <=> K N+ 2 > 0). Condition (a)
oaR
would be violated only for a relatively few "appropriate" degrees of inferior-
{ty; so condition (a) is not a serious restriction.
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Thus equations (7) plus restrictions on the comparative static effects for

problem () and on equilibrium marginal factor costs imply restrictions on the
elements of the matrix [ni-(x*)] for problem P. These relations that are ex-

o

pressed in equations (9) can be summarized as follows:

N
k K
(a) I m,, oxi* - cfax =¢
jo1 K RERT kR kak
N ) .
I om, 3x'¥* _clax =0 all j#k k=1,...., N
k - » »
i=1 ' Taah J 30"
N
(b) I c"ax‘** =0
i= Bak
N - 3
(c) I =, oxI** -l ax=0 atl j.
i=1 TR J 3R
N
(d) I c; Ox ! ¥% =
i=1 P)ed

where all partial derivatives are evaluated at (x*,a).
Given knowledge of equilibrium marginal factor costs and of N-1 elements

of 3x¥* and N-1 elements of 3x**, all elements of 9x** and ax** are known (see
3a aR 3a” aR

(b) and (d)). In this case, the comparative static effect ax* for problem P
3%

could be calculated directly from the retations

axi® = oxl®x 4 3xT** o JR(x¥*) i= 1,0..., N3 (2)
30 ?a” aR o
N i
dR(x*) = 5 c; * 39X * (10)
3K =1 | T8N

A4
except under unusual circumstances.

23. Statement (9.) is essentially Theorem 7-1 of Sakai (1973) (Theorem 7-1
has an obvious typing error).

24. As can be seen from (F)-(18), 3x/* is not a simple weighted sum of

3ok
the pure substitution effect 3x! ** and scale effect 3x! ** in contrast to the
£l aR

Slutsky equation in consumer theory. For the unusual circumstances under
which 3x* cannot be calculated from ( 9)-(1e), see Theovem 3-B.
Ja
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N

In addition, when knowledge of (c!,.,c., 3x**, 3x**) is not exact, the re-
1N o SR

strictions on axr are presumably increased by Incorporating restrictions on
3a

Iax** as well as on 3x** into the quantitative comparative statics model. In
3o e

this more general case, the quanfifafive comparative statics model includes the
conditions implied by the maximization hypofhests,as the equations [A] [K] = |
and restrictions on elements of [K]. These restrictions correspond to the

"reasonable" range of values for (3x**, 3x**, c!

cN ) and also for
5" Sr 1’ Thel

I = 3%mix*) < 0,227

3R~ oR%

Nevertheless, in many situations knowledge of the comparative static sub-

stitution and scale effects when all inputs are variable (3x*¥*, 3x**) may be
3a R

almost as scarce as knowledge about the comparative static total effect 3Ix*
3t

itself. Considerably more knowledge about substitution and scale effects may
be avaliable for cases where subsets of inputs are fixed for the firm.

3,1.2  Model with Qutput and a Subset of Inputs Exogenous

For many situations where knowledge about (3x**, 3ax**) is quite weak, a
aa 3

narrower range of ''reasonable" values for substitution and scale effects when

some Inputs are fixed may be readily available. Moreover, this knowledge of

25, See Proposition 1.

26, See Theorem 3-A. Since [K] is symmetric and knowledge of (3x*¥,
' 3R
cial,.., C:aN) is presumably greater than knowledge of 3A per se, restrictions
' ) da
on 3\ seidom would be specified.
da

Q7. 3A = 3*m(x*) < 0 for [“ij(x*)] negative definite (since 3m(x¥*) = 0
R )
by envelope theorem, and An(x*) < 0 for a finite AR by [ﬂ|J(x*)] negative
AR
definite).
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substitution and scale effects when various subsets of inputs are fixed may

imply strong restrictions on the comparative static effect 3x* for problem P.
aa

This statement can be elaborated upon as follows.,
Given the firm's problem P, define the related '"short run" static maximiz-

ation problem

N .
maximize w(x;a) = R(x) - I chixt;ald
i=1
—_— (th
sub ject to R(x) = R(x*)
x = XI¥ j=S + 1,...., N

where output and an arbitrary subset of Inputs are exogenous to the firm at the

equilibrium levels for P. This pfoblem can be expressed In Lagrange form as

. N .
maximize m(x;a) = A{R(x) - R{(x*)) - z YJ(xj - X% (1)
j=s + 1

S

where the endogenous variables are (x’,.., x>, A, YS +

ye oy YN) and the exogen-
ous variables are (a,.E,.;gf:_T,.., ;W).

Suppose fﬁa* the differentials of the interior first order conditions for
(12) with respect to each of (a, R) yileld a unique solution for the comparative

sfafic.effecfs (ax**s, axs, axf:i, axs).l% This assumption is equivalent to the
30 oo oR  9R

restriction that this system of differentials can be expressed in the form
(R ] (L] =1 (13)
11
where the matrices [Axx]'[L] and | are as defined in Corollary 5. [Rll] consists
of (a) the principal submatrix ["IJA] of [n'j(x*)] that is formed by deleting
rows and columns (S + 1,.., N) from [n‘J(x*)] and (b) the subvector

c:A = (ci(x?*;a‘),.., cg(xs*;as))T on the borders of [nle], i.e.

2%. There is no loss In generality in assuming that (ax**s, 3{5, ax**s,
s 3a 1) R
3)”) is uniquely defined for a given problem (12) (see first footnote in sec-
oR
'f"Oﬂ 3."‘.')4
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Coroltary 5. Construct the problems 1 and 2, and the (N + 1) x (N + 1) ma-

trices [A] and [K], as in Theorem 3. Partition the Hessian matrix

i and marginal factor cost vector c; of [A] as follows:
(N x"N)
- A | B
[n..]) = n [ P . :
(Nx'N) sk syt sk T ¢ = leficlB)
|

t
n[.C ] ni.D (IxN)  (1xS) (1xT)
(T TEm

where S + T = N, Construct the following symmetric matrix

A 1 AT
FTTIJ : Ci
(S xS) ; (S x 1)
L“—.A“-n————— = (A,,] .
c; f o (S+ 1) x(S+ 1)
(1x$ | (1xD

[A,;] necessarily has full rank, and denote its inverse as [L]:
[A,,]7! = [L] always exists.

Construct the problem

: N

maximize m(x;a) = R(x) - I c'(xi;a')
i=1 (3)

sub ject to xl = xJ* j=S + 1,...., N
where x* is the unique global solution to problem 1.
Construct the related problem

maximize w(x;o)

R{x*)

subject to R(x)

s = xJ¥ J=S 4 1,eeuun, N

which can be expressed in Lagrange form as

maximize T(x;a) = A(R(X) = Rx¥)) = T Wod = 3. (4
j=s+1
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Then

(A) the comparative static effects for problem 4 are uniquely defined as
fol lows:

axi**s = ach(xJ*,aJ) . L i’j=1,.oo-oo. S

daJ axJ 3o P
TxxS - -
ax Lis s P=1,00eeee, S
S 2 j j
) = _3%c)(x*;ad) ¢ L J51,eeneee, S
o 5xJ30] S+ h]
S = ==
-ga- =l 1,5 + 1
where Ll j = element (i,]) of [L], and Li,j = LJ (0=, S+ 1)

and
(B) (a) the comparative static effects Ix*> for probiem 3 are unique, and

o
s S Co. 49
(b) given that I I L, « 3 (xI*iad) # -1, 7

i=1 jep S 1 %)

Ix*> for problem 3 is uniquely defined in terms of

]
azcj(xj*;aj) and the elements of [L] corresponding to
axJ 3al
Ix**S and Ix**> for problem 4, as follows:
3o R
ax'*S = a2l xi*ial) L L+ L g, gt RS iLjel,.al., S
da” IxJ 3o o S+ 30
S_ 2 L T iw i xS
AR(x*)> = T 3c (x'¥*;a') o Jx!'* J=h,eeeee., S
Yoy =1 ax’ 3a’
S S R
29. Assuming that I I L, « 3cd (xd*;ad) # -1 has implications
. ,S + 1 "“";j"“'
i=1 j=1 ) -
o T N N ]
analogous to those of assuming that ¥ I K.\, 4 ° ac (xJ?-aJ) # -1 (see
i=1 j=1 ' 3 -

footnote to Theorem 3).



246

(1= 9 1] (1)
T

ciAT I

i

[L] is a matrix of the comparative static effects (Bx**s, BAS, ax**s, 3x5) and
30 80  dR oR

(o]

I is an identity matrix.
By (13)-(14), knowledge of the elements of [L] and C:A‘places restrictions

of [nlj(x*)]. Thus knowledge of the comparative static effects (3x**s, Bx**s,
3a aR

s

) for problem (12) and of equilibrium marginal factor costs places restric-
oR '

. O
tions on the "long run" comparative static effect 3x* for problem P.3

90

Moreover, the comparative static effect 3ax* for problem P can almost al=-
aa?

ways be defined precisely in terms of a set of comparative static effects

{(ax**s, 3x**¥S)} for an appropriate set of problems (14), and these relations
°a 3R

are implicit in our standard quantitative comparative statics model. The com-
parative static effects included In this set will differ in terms of the parti-
tion into fixed and variable inputs and the choice of shift parameter al. This

important relation between 3x* and various sets { (9x*¥S, 3x**3)} can be demon-
3’ da F)

strated as follows. Consider a comparative static effect Ix*S for the probliem

°a
N T b i
maximize m{x;a) = R{x) - I c'(x ;a)
i=1 (15
subject to ><~I = x]* Jj=s + 1,.., N,

ax*S |s almost always uniquely defined by the relations analogous to (19¥)-(14)
3ok '

30. Since (L] is symmetric and knowledge of (ax**S C:di"" cgas) presum-

9
ably- Is greater than knowledge of axs per se, restrictions on )5 seldom would
3a da

be specified (see Corollary 5-A).



247

I #S = gy l#xS 4 gy fux o AR(x*)° i=1,.., S (16)
30K 3ok ToR 30k

S
R(x)S = T ol axi*S S an

TBa% . i=1 73K

plus a given comparative static effect (3x**S Bx**s) for the corresponding
oa 3R

problem f14).3‘ In addition, the following re[afions are satisfied for probleﬁ
(15):

["ijA] (P] =1 (%)
where [n]JA] is the principal submatrix of [n 1 (x*)] obtained by deleting the

rows and columns (S + 1,.., N) from [n; -(x*)] [P] is symme#ric and

P, = x| 5 j .32 Thus any principal submatrix of [ﬂ ¥ (x*)] can be

tJ ——j_ JJ
uniquely defined by (1§) and a suitable partitioning of x into variable and
tixed Inputs, a suitable choice of shift parameters {aj}, and the corresponding

glven {ax*s}.33 By repeating this procedure, [n (x*)] and 3Ix* can be deter-
T30d ol

mined. In sum, 3x* can almost always be defined precisely in terms of
3a’

(ax**s, x**3)  for an appropriate set of problems (14). Moreover, the
o R

restrictions

[ i

ST
(x¥)] 3x = |o!® |, [n,.(x*)] negative definite

J 3n

(19
(x 1 (L] =
11
(a) uniquely define the comparative static effects for problem P and a series
of problems (14) for a given [n‘j(x*)] and a given series of partitionings into

variable and fixed inputs, and (b) define 3x* in terms of [n'.(x*)] and a

e J
31, See Corollary 5-B.
32. See Corolliary 6.
S
33, The symmetry of [P], i.e. ax! #° cJ = axJ* for all i,]j=
> e sy y , - jad // o J
1,.. S, implies several degrees of freedom in selecfing a {o'}), {(Bx**s, Ix*¥5 )}

1o 3

in order to define a given [n i Ay.
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(ax**s, x**¥S) in terms of a subset of elements of Iﬂ (x*)] and (c! Xy cN).
30 3R N

Thus the relation between Sx* and a {(ag**s Qg**s)} Is implicit in (19),
3ar el

In addition, dx* for problem P apparently can be uniquely defined in
30T

terms of QAS = 3%w(x*)S for some problems (12) plus a subset of {( x**s,
- S .. ]

a;**s)} specified above. In other words, knowledge of a 3AS for a problem (12)
3R oR

can "substitute" for some knowledge of {(Bx*fs, 3x**5)} In the determination
- oo oR
34
of 9x* for a problem P,
3a!

In sum, restrictions on {(ax**s, ax**s, Sy} for various problems (13)

3o aR  oad
and {a } plus the relations (19) may imply considerable restrictions on ax*
Er
for problem P. Since knowledge of substitution and scale effects will be de-

fined primarily in terms of problems (12) with various subsets of fixed inputs,
these restrictions derived from a mode! with output and a subset of inputs exo-
genous are a very important aspect of our quantitative comparative statics
model.

3,1.3 .. Mode!l with a Subset of Inputs Exogenous

In addition, direct knowledge about the total effects of dai when certain

34, Knowledge of a 325 can "substitute" for some knowledge of {(3x**S,
“9R el
ax**s)} in the determination of 35; ifp, 1(x'*) is a function of (among other
3R 3a
things 9X°. Since 9AS = am(x*)° for a problem (12) and pl(x'*) = 32m(x*)? for a
3R oR aR? axT 7
problem Q corresponding to problem P, this relation between pl(x!*) and g%r_
)
seems somewhat reasonable. Differentiating the first order condition p‘-p} =0
with respecf to a! ynelds
plixi®) 3x* - ¢l ax!* - ¢! 4= 0;
9a’ dat 1a
so BAS influences 3x'* and hence must "substitute" for some knowledge of
R S S aa’s
{(3x**”, ax**>)} if 31> Influences P L(x1*),
300 3R ):
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subsets of inputs are fixed may be available. Such knowledge can be specified

as restrictions on comparative static effects {Bx*?} for various "short run"

Ja
static probiems of the form (15)
N
maximjze m(x;a) = R(x) = I c'(x';a")
i=1
subject to xJ = xI*¥ J=S + 1,.., N.

These restrictions plus the following relations (/%) can be incorporated into
our quantitative comparative statics model:
A =
[y A1 [P =

where [n‘JA] is the principal submatrix of ["ij(x*)] obtained by deleting the

rows and columns (S + 1,.., N) from [nij(x*)], {P] is symmetric and P
ax #5 o .35

i

In this manner, knowledge about a '"reasonable" range of values

aaj jo!

for g:*s corresponding to any problem (15) places restrictions on g;* for prob-
lem P.

3.2 .. Minor Restrictions

Other forms of knowledge about the structure of the firm's static maximi-
zation problem P may be available and useful in defining '"reasonable" limits on

the comparative static effect 9x* for problem P. These additional forms of
3’

knowledge are of at least two types. First, there may be knowledge of the com-
parative static effect of a change in the demand schedule for the firm's output
or in the firmm's production funcflonh including the corresponding resfric+ions
in our standard quantitative comparative statics modelgéhseems likely to lead

to a sma!l reduction in the range of feasible values for 3x*. |f such compara-
' 3o

tive static effects and its "short run" variations with fixed inputs are in~

cluded in our model, then our model incorporates knowledge of all types of

35. See Corollary 6.

36.. On the standard mode!, see Proposition 1-A, Theorem 3 and Corol laries
5=6.
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Corollary 6. Construct problems 1 and 3 as above, and partition the (negative

definite) Hessian matrix "ij as above. Then the comparative
(N x'N)

static effects for problem 3 are uniquely defined as follows:

ax! ¥S = 32cd (%) - P, P,5% 1, eeeeee, S
300 axJ aad ’J
where P. . = element (i,j) of [ni."‘]'l (which always exists), and
+J (s'k s)
P =P, (i,]=1,c0euu., S).

i,J Jol
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comparative static effects that can occur realistically at the level of the

single firm..37
Second, there may be specific knowledge about the functional form of the
firm's static maximization problem P, The following examples are considered
here: separability of m(x;a) in x, |inear homogeneity of m(x;a) in a, fixed
factor proportions for R(x), and homotheticity of m{x;a) in x. The first two
properties, and presumably many other special properties of m(x;a), are easily
incorporated into our quantitative comparative statics model. Such restric-
tions will be useful when‘(a) observation and/or theory suggests that such a
property isclosely approximated, or (b) sensitivity of comparative static
results to such properties is an important lssue.38 In these clircumstances, the
imposition of such properties or of limits on the "degree of deviation'" from

such properties can be useful in our quantitative comparative statics models.

3.2.1  ° Knowledge of the Comparative Static Effects of a Change in R(x)

Knowledge of the cohparafive static effects of a shift in the firm's reven-
ve or benefits function also places restrictions on [nlj]' Define the firm's
static maximization problem P as

N
maximize m(x:a) = R(x;a’) - 151 cixtial) (P)

i.e. allow for the possibility of shift parameters Iin the firm's revenue or

benefits function as well as in the firm's factor cost schedules.3q Total - -

v

37, See section G.

38. For example, calculating the sensitivity of comparative static results
to the property of separability may provide a rough estimate of errors due to
inappropriate aggregation of inputs in a quantitative comparative statics
mode! (see section 3.2. 24 of thisAppendix and section 3.1 o€ Appendix 5).

- BQ} Here we are only interested in knowledge of 3x* as a means of obtain-
3’
ing knowledge about 3x*. For several brief remarks on the quantitative compar-
3’
ative statics of a shift in a firm's revenue or benefits schedule, i.e. on the
case where our ultimate interest Is knowledge of 3dx* rather than 3x* (i#0), see
oa’ oo
Appendix 4.
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differentiating the interior first order conditions for problem P with respect

to a® yields

[ ] ox* = [R
M lo

fNa?

where Ri o = 9%R(x*;0%). 40 Thys restrictions on ax* and R o (i=1,.., N)

-—-—ﬁ——ﬂr-
ax' 3 e ‘e
imply restrictions on [n.J x¥)]. 4
However, restrictions on ax* and its decomposi*lons seem considerably less

3’
important for our purposes than are the restrictions specified by Proposition
1-A, Theorem 3 and Corollaries 5-6, This statement can be elaborated upon as

follows. Prior knowledge of 3x* per se generally appears to be quite weak.
3a’

Moreover, the decomposition relating 3x* for problem P to (3x**, 3x**) for the
- 3a’ ar 3a’

problem

N .
Rix;a®) = £ cl(xi:al)
i=1 (20)

maximize w(x;a)

F(x*)

subject to F(x)
only leads to some of the restrictions on [ﬂ i (x*)] already specified by the

relations presented in Proposition 1-A and Theorem 3. 0dx*¥* Is simply the scale

of
effect already defined in Theorem 3, and 3x** = 0 is already implied by the
o
restrictions [A] [K] = | specified in Theorem 3.%a On the other hand,

40, Given that the firm produces a single output y according to the pro-
duction funcfion y = F(x) and that o’ does not enter F(x), Rb 0= (R;a /R )c!
where R(x;a®) = R(F(x) a®). 1f we further assume fha+ R(y o ? = P(y o )yz

then Ry = P(y*;a%) + P (y*,c )y* and Rya° = Pu0(y*;a%) + P o(y*,a Yy*.

41, 1In addition, this implies that Bx* is uniquely defined in terms of

3’
([ni ], Rig%sees a°) given that [n; 4(x*)] is negative definite. Of course,
{x*)] is not uniquely defined in Terms of (3x*, R .,.., RNa°)'
=T 1

3o

42. Note also that exact knowledge of (3x**, 3x*¥*) plus the restriction
9 3’
[n J(x*)] negative definite can only define 3x* up fo a positive scalar multiple
3a’
(see Theorem 4-C and the related discussion in Appendix 4).
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knowledge of the comparative static effect ax*s where various inputs are fixed
oa

may not be as weak as knowledge of 3x*, and may place additional restrictions
30’

on [nij(x*)].tkg Therefore, knowledge of the comparative static effect of a
shift in the firm's revenue or beneflits function and of such "short run"
decompositions may help somewhat in determining "reasonable" upper and lower

bounds on 9x*.
5ot

3,2.2 - Several Special Properties of m{x;a)

The following properties of the func?iona} form of the firm's static maxi-
mization problem P are considered here: separability of mwi(x;a) in x, linear
homogeneity of wi(x;a) in a, fixed factor proportions for R{(x), and homofheficify
of m(x;a) in x. The first two properties are easily incorporated into our
quantitative comparative statics model. |In addition, limits on the "degree of
deviation" from these properties are easily included in our mode!. However, it
appears that the last two properties (especially homotheticity) cannot be in-
corporated into our model.

A twice differentiable: function R(x) (with non-zero first derivatives
" everywhere) is defined as '"weakly separable" wlth respect to the subset
{1,.., m} of the firm's N inputs when

R(x) = f(y,x" + 1,.., xN) for some (scalar-valued) functions f and

yix!,.., M.
This is equivalent to the "Leontief conditions"

ai '(Ri/RJ) =0 foralli,jed{t,.., m}andke{m+1,.., N} over
44,45

all x. 20

43. See Coroliary 7-A in Appendix &.

44, See Leontief (1947). In addition, R(x) = f(y(x',.., ¥, 201,
.., X)) is equivalent to (21) plus _3_ (R;/R;) = 0 for all i,j e {m+ 1,.., N}
and k ¢ {1,.., m} over all x. 27)

45, For discussions of separability and aggregation, see Biackorby et al
(1978) and Diewert (1977).
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Thus (21) plus the assumption ¢l = c‘(xi;a) (i = 1,.., N) are equivalent to the
condition
N .
mixza) = fly(xd,.., s, ™V N ccix!, .., Ma) - I oelixi;a)
_ f=m+1
m .
Cix',.., x™a) = I c'(x';a)

i=1
which implies that inputs (1,.., m) can be correctly aggregated in specifying
the firm's objective function m(x;a) as well as its revenue function R(x).
moreover, given cf = c'(x';a) (it =1,.., N), Inputs (1,.., m) can be correctly
aggregated in specifying n(x;a) only if inputs (1,.., m) can be correctly aggre-
~gated in specifying R(x). Therefore, at an interior solution to the problem
| N
maximize m(x;a) = R(x) = ]§1 c{(x‘;a),
inputs (1,.., m) and associated comparative static effects can be treated cor-
rectly as an aggregate if and only if the following restrictions are satisfied
ﬂ;kcj - "jkcz =0 forall i,je{t,.., mlandke{m+ 1,.., N. (22)
Moreover, limits on the "degree of deviation" from the possibility of correct
aggregation can be specified roughly in our model by restrictions of the form

1, 2 J_ i 2, (~Jy2
P (cg) f-"ikcj “jkc[ <P (cj)

k=

|A

p! < (23)

7 He.47

o H

<p? <

©

In addition, on occasion we can reasonably assume that (in the neighbor-

hood of equilibrium)

#&. Under reasonable conditions, approximation to Leontief conditions is
equivalent to approximately correct aggregation (Fisher, 1969). This also seems
to imply that R(x) approximates Leontief conditions when it approximates flixed
factor proportions and is twice differentiable.

47. |f Leontlef conditions are to be incorporated directly into the com-
parative static model (as opposed to being used simply as a "justification" for
the construction of a model that includes aggregate inputs), then approxima-
tions of the form (23) rather than (22) apparently should be used. This state-
ment can be explained as follows: exact separability for a matrix ["lj(x*)]
implies that [n;;(x*)] is negative semi-definite only (see Proposition 2 in
Appendix 5) and ?ocal comparative statics is undefined in this case (by Propos-
ition 1).
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mix;a) = a®Rix) - I alel(xl) (24
i=1

i.e. R(x;a®) is linear homogeneous in a° and cl(x!:al) 1s tinear homogeneous

inal (i =1,.., X% Then
N i .
I oax*eal=0 i=1,.., N (25)
j=0 ~3ad
where
a® = R'(x*;a°5 / R, o{x*;a%)
o (26)
i Vel sondy 7 of 1%l #4
a = c‘(x *¥.al) / Cia'(x *.al) I=1,.., N

Limits on the "degree of deviation" from linear homogeneity in a (25) can be
incorporated into our model in a manner $imilar to (23),

However, the special property of fixed factor proportions for R(x) is not
yet Incorporated satisfactorily into our comparative static model for the un-
constrained problem "maximize w(x;a)." As can be seen from (9 ), fixed propor-

tions between all factors is equivalent to the following:

Bx;** = 0 and ax'**/ axJ** = x;: 1,d=1,.., N. (a7)
a X

The second statement in (27) is equivalent to the condition that the "iso-
profit lines" of m(x) for different levels of R have identical shapes in a
neighborhood of x*. This condition can be designated as "homotheticity of
m(x)" at x*. However, imposing such homotheticity on our model : inay . re-
quire either exact knowledge of x* or exact knowledge of the third order
partial derivatives of m(x) at x*, Nevertheless, we can at least specify the

fol lowing consequence of homotheticity of w(x):

4%, Note that the effect of the community pasture programs on the firm's
pasture supply schedule can be described more accurately as a paralle! shift in
the schedule rather than as an equiproportional change In the marginal factor
cost of pasture at various activity levels (see section 3.5 % Chapter 23. Thus the local
effect of the community pasture programs cannot be described accurately In
terms of (24),

49, The proof of this statement is quite simple. Condition (2%4) implies
that factor demands are homogeneous of degree zero in a, i.e. x*(a) = x*(la)
for all scalar A > 0. Then (25) follows directly from Euler s theorem. Equa-

tions (2¢) follow directly from the restrictions R(x;a’) = a’R(x) and
ctixt;aly = aletxhy  i=1,.., N,
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N .
TR = T o enaxker =1, NSO 29)
1 ik W k=1 JkK b))

ne~x

k
Thus, the following restrictions in our mode! are implied (but not equivalent

to) the special property of fixed factor proportions of w(x) at x*:

. N N
IxI*% = 0 and I W, (x¥)axXX = T @ (x*)axKx (29)
3o k=1 1K R k=1 JK 3R
. 5.1
i,j=1,...., N,
4 A Minor Difficulty in Translating between Local and Observed

Comparative Static Effects

Here we note that there can be difficulties in incorporating a!l knowledge
of the form presented In section. 3 of this Appendix . into a local comparative
statics model, but these difficulfiéS'will seldom pose serious probliems in the
use of our quantitative comparaf%ve statics model.

The ambiguity relates to the problem of transiating between local and
global comparative static prﬁperfies of mix;a). The comparative static effects
Included in the mode! presented here are formally defined in terms of local
properties of m(x;a) and shift parameters (c:al,‘efc.); whereas the counterparts
of these effects that are "observed in reality" depend on more global proper-
ties of m(x;a). Moreover, local comparative static effects are !inear homogen-

eous in the shift parameters. For example,

[ 5¢. Homotheticity of m(x) is equivalent to the sfa?emenf that T (Ax) =
Y Jn4(kx) for all x and all scalar A > 0, and a scalar y'J for each (1,j); so
homotheticity and ﬂi(x*) = m.(x*) = 0 imply that 3m; (x*) = 3m.(x*), which is
J aR 3R
statement (28). Since (29) can be satisfied by a 3x** that does not preserve
' aR
initial factor proportions, (28) does not imply homotheticity of m(x) at x*.

51, The aésumpfion of fixed factor proportions "contradicts" the assump-
tion that m(x) is continuous at x*, However, this "contradiction" is trivial:
the statement 9x *¥ = g, where € is arbitrarily small, does not contradict the

aa.
assumption that n(x) is twice differentiable.
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1

ax*
3t

i.e. 3x*¥ is linear homogeneous in c' , for a given [n. . (x*)]. Thus difficult-
St 10 1J

ies arise in translating between local and observed comparative static effects
If and only 1f observed comparative static effects are not |linear homogeneous
in the (parallel) shift of factor supply schedules, etc. Since linear homo-
geneity will be a special case for observed comparative static effects, there
can in principle be difficuities in incorporating all knowledge relevant to
estimating comparative static effects into our quantitative comparative statics
model .

However, in practice this local comparative statics model should be able to
assimilate most of our empirical knéwledge concerning comparative static effects.

In other words, one can seldom make sharp distinctions between (e.g.) Ax! *x

Aw
for different ("reasonable") levels of shift in an exogenous wage wJ.‘53753
5 Restrictions as Confidence Intervals or Bayes Intervals

Here we note that the set of constraints
ptl <ol <oV i=1,.., M (20)

on the potentially observable parameters p in our model can be interpreted
elther as confidence intervals or as Bayes intervals. Thus the corresponding

feasible set for the matrix [n'j(x*)] and the vector of comparative static

52, The linear homogeneity property of local comparative statics will
generalize to more global comparative statics if the local structure of m(x;a)
is invariant in a sultable subset of x (the equilibrium path). Thus the asser-
tion that one cannot significantly improve upon linear homogeneity in practice
is essentially equivalent to the following: there Is considerably more know-
ledge about the "average" [n;;] within this subset than of the differences
between [“Ij] over this subse#.

£3. Note that linear homogeneity of comparative static effects does rule
out a constant elasticity of comparative static effects. However, the assump-
tion of constant elasticity is commonly employed in order to obtain unit-free
measures and for other conveniences, and this does not seem to reflect a belief
that variations between neighboring [“lj] can In effect be measured more accur-
ately than their average.
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effects ax* can be interpreted in a similar manner, and the addition of
Er

constraints to (30) leads to a reduction in the size of the confidence~Bayes
interval for ox*,
oa ! ]
Knowledge of the parameters p typically should be expressed in terms of
frequency distributions rather than as point estimates. Such distributions can
arise in at least four ways. First, the vector p may vary significantly across

a group of firms, and we may wish to estimate the range In individual reshonse

ax* across these firms. Second, p may vary significantly across time for an
3a
individual firm, and we may wish to estimate the range of comparative static

effects ax* that could be associated with such a range in p. Third, p may be
ar :

observed with error, and this error_will generally be stochastic. 54-Fourfh,
p may not be directly observed (with or without error); but there will be a
prior distribution summarizing our subjective degree of belief about the un-
known values of the elements of p.

Knowledge of distributions of the first three types implies particular con-
fidence intervals for p. In other words, from a particular set of observations
{p!} and from assumptions about ‘the distribution of pi and of errors in observa-
tion, we could construct on X% Eonfidence interval

PLi :.pi 5_QUI
| f the assumptions about the distributions of p' and of errors in observation
are correct, then there is an X% probability that a random observation of the
population of (true) pl will be contained in this interval. Likewise, if pi is
not observed, an X% Bayes interval

ot <ol <

54. There will be errors in observing p in a truly static situation and
errors in inferring values for p from observations of dynamic situations. Pre-
sumably fhe latter type of error would be more common and more serious

: " and would be systematic (hence not normally distributed with
a mean of zero).
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55’Assuming that

can be constructed from our prior distribution for pi.
(p},.., pM) are independently distributed, X% confidence-Bayes intervals for
these individual parameters together form an X% joint confidence-Bayes interval
for p (30).°¢

The feasible set {(p,[nij])} for our model is defined by (30) plus the
maximization hypothesis (["ij] negative definite and symmetric) and the equiva-
lence relations between p and ["ij]

(A} (K] = 1, [X“] (L) =1,.. (31)

57 Since any vec-

where all matrices are symmetric (by the symmetry of [nij])'
tors p that are contradictory or inconsistent with the maximization hypothesis
cannot belong to the true population of vectors p, the feasible set {o} for our
modef and the relations (30) must define identical confidence-Bayes levels for
the true population of vectors p.58_ Thus the feasible set {(P'["ij])} for our
mode| forms an X% confidence~Bayes level for the true joint population of
(p’[“ij]) and for the true non-joint populations of p and ["Ij]'

Since the set of feasible ["ij] defines an X% confidence interval and the

value of z(9x ) Is determined for a given [n ], It follows that the feasible
oa’

set of z(3x ) defines X% of the probabi!ity distribution of the *rue populaflon
3a!

of 2(3x. ). Thus the range of feasible z(ax ) defines at least an X% confidence-
90" Jar

55, In practice, these constraints on pi
bination of observations and subjective belief.

often may be derived from a com

56. This assumption of Independence, which Is implicit in (30), can be
relaxed by defining consfr?Infs . that yirecflz llmi? more_than one element of
p at a time, e.qg. 9 iJ <p'+ pJ < 9 or o ij < p . ol < QU'J. Moreover,
vectors p that satisfy (30) but are logically inconsistent (by placing contrad-
ictory restrictions on [n;:]) will be excluded from the feasible set of our
mode! by restrictions of ;*e form (31).

57. Since the inverse of a matrix is unique, (31) defines a one-to-one
correspondence between feasible p and ["iJ]'

5%. The one minor exception to this statement is that {[n :] negative semi~
definite only} is excluded from the mode! although this set is c$nsls*enf with
the existence of a maximum; but it can be: shown . that comparative
statics Is undefined for this set (see Proposition (), o
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Bayes interval for the true population of z(3dx ).5q’b0

Ja
Furthermore, we have now justified the following argument for incorporating
as many restrictions of the form (30) into our comparative statics model as is
possible: as the number of restrictions of the form (30) that define a given
X% confidence-Bayes interval is increased, the size of the corresponding

confidence-Bayes interval for z(3x*) is decreased (or at least does not in-

dat
crease).
© The Possibility of Additional Restrictions

Earlier we formulated conditions that exhaust the comparative static im-
plications of the maximization hypofhesis.b' On the other hand, the structure
["ij

unlimited) number of overlapping parameters and properties. In addition,

(x*)] can be described in many ways, i.e, in terms of a large (and perhaps

incorporating observations of additional parameters and properties of [n‘j(x*)]
into our analysis will lead to a reduction in the size of confidence-Bayes

Iintervals for ax*.62 Thus the restrictions described in the two previous sec~
3a’

tions are only a subset of all potentially useful relations between comparative

549. Whereas p and [nij] are uniquely related by (31), z and ["ij] are re-

lated by c:a,
e
z

o

z(3x ).
3o

Thus feasible values for z may be duplicated by elements of the true population
of [n,.] that are infeasible for our model, i.e. the range of feasible z(39x )

H 3ok
defines at least an X% confidence-Bayes level. For simplicity, and as a first
approximation when X is large, we shall generally assume that this range forms
an X§ confidence-Bayes level.

©0. Note that our arguments do not imply that the probability distribution
of (p, [n' ], z) within this X% interval of the true population and within its
correspond*ng feasible set are equivalent. Indeed, the probability content of
the true population of (p, ["I ], -z) seems likely to be much more concentrated
around its mean than is the uanorme distributed population of feasible
(p, ["ij]’ z) that 1s implicit in the model.

Gl. See “Pro position |,

G3. See the previous section.
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static effects and observable structure of the firm's maximization problem.

Here we attempt to assess the Importance of the restrictions described in
sections QA and 3 ' relative to the entire set of relations between
comparative static effects and observable sfruéfure. We conclude that the most
important of the generally applicable relations may well have been specified
In these sections. The discussion is highly speculative.

First, consider the set of al! special prﬁperfles that can be imposed
directly on w(x;a) and incorporated into our comparative static analysis, e.q.
properties such as separability. Such properties can be useful in particular
cases. However, these properties typically are observed either to hold or not
to hold for a particular firm. Thus the specification of limits on the "deg}ee
of deviation" from these properties tends to be arbitrary rather than based on
observafion;ba In other words, any particular special property Is not génerally
appropriate for our quantitative comparative statics model.

In addition, the set of properties that are always true for the individual
firm may be large, f.e. the set of parameters that can be correctly specified
as varying numerically over all firms may be large. Nevertheless, the only
properties of this type that have come to mind concern comparative static
ef fects.

In the remainder of this section, we note the following: (a) all types
of changes in exogenous variables that are observable at the leve! of the
individual firm have been incorporated into our analysis, and (b) all types
of comparative static effects that can be derived by the usual methods (primal,
primal-dual,vdual) for these changes in exogenous variables havevbeen Incorpor-
ated into our analysis. Consider the followling problems

- N | N
maximize R(x;a°) - I ci(x‘;a') minimize I c¢

i=1 I=1 _
subject to R(x) = R

Hix!sal)

3. This is true even when an "average" of firms is to be modelled. For
example, it is not clear how to average one firm where m(x;a) is separable and
_another firm where w(x;a) is observed to be non-separable.
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maximize R(x;a®) - & cl(x!;ah) 262
i=1

subject to I ci(x';aj) = C
i=1

with exogenous variables (a,.., aN), (a?,.., uN, R) and (a°,.., oY, O respec-
tively. An arbitrary subset of inputs can also be considered fixed for these
problems. These problems appear to accommodate all types of changes in exogen-
ous variables that are observable at the leve! of the individual firm, and
relations defining [nij(x*)] in terms of comparative static effects of isolated
changes In these variables have been incorporated into our model.~eﬂ36§5

The form of these relations between ["ij(x*)] and comparative static ef-
fects of isolated changes in exogenous variables for the above problems has
been derived by primal! methods rather than by primal-dual or dua! methods.
Further relations involving comparative static changes in equilibrium x and A
cannot be derived by primal mefhods;.buf it is not immediately obvious that
relations between [n'J(x*)] and equivalent comparative static effects ex-
pressed in a different and more observable form cannot be derived by primal-dual
or dual methods. Nevertheless, It appears . that primal-dual and dual

methods do not lead to any additional comparative static properties that can

be associated with [n‘j(x*)].bb

< . Summary of Major Quantitative Restrictions

In this section, we summarize the most important of the previously estab-
ltshed relations between (a) knowledge of various parameters of the producer

problem

N
maximize m(x;a) = R(x;a®) - I c‘(x';u‘)
i=1

4. See section 3.

5. A simultaneous change in two or more exogenous variables would be
realistic if (e.g.) the factor supply or product demand schedules (or produc-
tion function) faced by one farm receiving community pasture are significantly
affected by the activities of other farms receiving community pasture. The
effects of simultaneous changes in exogenous variables can in principle be
incorporated easily Into our approach; but such modifications do not appear
appropriate for the community pasture programs studied and in general will not
be easy to quantify. -

L&. See the discussion of primal-dua! and dual methods that is included
in Appendix 4.
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(b) the maximization hypothesis, and (c) the comparative static effect 3x* for
dat

this problem. These relations are presented in Figure 3.

First, note that the (N + 1)2 equations in the system [A] [K] = | can be

reduced to (N + 2)(N + 1) equations without any loss of content, and the (S + 1)?
2

equations In a system [i“] [L] = | can be reduced to (S + 2)(S + 1) equations
2,

without any loss in content. For example, the restrictions iﬁblled by the

(N + 1)? equations

i [}

, i
["IJ] : ci
L

in our model are expressed exactly by the (N + 2)(N + 1) right hand upper tri-

[K] = [M] =1

2
angular equations of the system (M] = l:
(6~J = [5~] or equivalently M, j= I j for all (i,j) such that i = 1,..,
M | ' ’
N+ 1andj>i. ' (32)

The argument for this statement can be sketched as follows. The matrix

[, ] | |
I3 2 e I
¢, | o (N+1)x(N+1)
has full rank by the restriction that [n‘j] Is negative deflnife;67 Thus the
equations M; j= Il j (i =1,.., N+ 1) determine (K1 Jreee KN +1, J) for all
H4 » »

j=1,.., N+ 1 and any feasible ["ij]' Therefore, the equations M; \ , ¢ =
’

model, and (given the value for K, 4 1 = KN +1 N) the equations M' N =
14 » ?

1 (i =1,.., N) determine (K veos Ky N, efc.ég' Thus the relations
, N ’

i, N 1

between any feasible matrix [A] and any symmetric matrix [K] that are implied

&7. See Theorem 3, :

©%. The reader can verify that, in contrast to the case of right hand
upper triangular equations, necessary and sufficient conditions for determining
[K] are not automatically satisfied in the cases of left hand upper triangular
equations and of left or right hand lower triangular equations.
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by the restriction [A] [K] = | can be incorporated into our model as the

(N + 2)(N + 1) equations (32). Likewise, the restrictions implied by the
2

(S + 1)2 equations
t
Ayl oA

in our mode! are expressed exactly as the (S + 2)(S + 1) right hand upper tri-
2

angular equations of the system [N] = |:

N;’j = 'i,j for all (i,]J) such that i = 1,.., S+ 1and j>I. (332)

As can be seen from Figure 3, the total number of equations and variables
in the set of constralnts increases exponentially with the number of inputs N
and also with the number of decompositions. For N = 3, 37 quadratic equations
and 45 variables are defined when each of the three possible decompositions,
given one fixed input, is Included in the system. For N = 4, relations A-C
involve 29 quadratic equations and 44 variables, and the set of all possible
decomposiflons, glven i to 2 fixed inputs, adds 76 quadratic equations and 76
variables to the system. For N = 5, relations A-C define 36 quadratic equa-
tions and 62 variables, and the set of all possible decompositions with 1 to
3 fixed inputs adds 235 quadratic equations and 235 variables to the system.

Thus the size of the system of constraints is particularly sensitive fo
the number of decompositions that are included in the system. For N> 3, it is
quite tedious to Incorporate all such decompositions into the mode!. However,

in general knowledge of the structure of the firm's static maximizatlion problem

will relate only (or primarily) to a subset of decompositions.
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(First page of Figure 3)

(A} first order conditions for a maximum

3
c1
1at
[ni.] ax 0 N quadratic equations
T .
0

(B) second order conditions for a maximum

-[ni‘.] = [H} [H].r NN+ 1 quadratic equations

Hi j > 0 (j=1,+--,N) N bounds

{C) long run decomposition (see Theorem 3)

[ﬂij] ! Ci
_______ P [K] = (N+2)(N+1) independent quadratic
C!T I 0 (N4+1) x {N+1) 2 equations
I
{ I .
c!L S c s c_!U (i=1,+--,N)
i j i
R S T
X Crsc - K 5K, i,j=1,+0,N
PN B B TV A B T (=1,
3 i L [§] {(i=1 N : 2
x__ . . . =y 2(N+1)° bounds
o N F Ry K E K and j = N+1)
2.k Fer?.k sk U (i,j = N+1)
a? I} Y 1) 1)
R L s R, s RU 2 bounds
Y Y Yy

(D} decompositions, given fixed inputs (see Corollary 5): for each decomposition with N-S fixed inputs:

["ii ! IS &Z(SH) independent
------------- (L] =1
c;AT [ o} (S+1} x (S+1) quadratic equations
"k*s —_ —_
ax' . L s
30 i f Sd TN f b Grj=1,eem8)
2(S+1)2 bounds
i**s —— .
X .t <R -L.sLUY (i=1,-+,Nandj = 5+1)
5F 1) Y ) L]

(0]
FIGURE 3 Summary of Major Constraints for the Quantitative Comparative Statics Model 7

(o"LI. .
he mark " — " is placed above any symbol that refers to a constant rather than an endogenous
variable in the model.

7QFor definitons of the symbols used here, see Theorem 3 and Corollary 5. Ry = a’;; ) where
y = F(x) and R(y)} = R(F(x)).
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(Second page of Figure 3)

(D) (continued)

s —— ——
S b r?2oL LU (i,j = 5+1) 1 25+1}°  bounds
aif 1) Y 1) i}

(E} non -decompositions (output exogenous), given fixed inputs {see Corollary 6); for each
non-decomposition with N-5 fixed inputs:

[nijA] [Py = i } !s—+2)2—(5+—” independent quadratic equations

(SxS) (5x5)

i*S —_— B —_
3x L V] .
P.” ¢ <P < R i,j=1,¢+,8
Y i.j jod T T (i )
totals:
(N+2) (N+1) N(N+1)
+ * N quadratic equations
2 2
(N+2)(N+1)
N(N +1) + —————— 4+ 2N +1 variables
2

(S+2)(S+1)
———— additional quadratic equations and variables for each decomposition or
2 non-decomposition (C,D,E) with N-S fixed inputs

FIGURE 3 Summary of Major Constraints for the Quantitative Comparative Statics Model7q

(Footnotes 69 and 70 are the same as the previous page)
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APPENDIX IV
QUANTITATIVE COMPARATIVE STATICS AND

DERIVED DEMAND: PROOFS

1. On Integrability in Comparative Statics

The problem of determining the precise conditions corresponding
to the comparative static implications of the maximization hypothesis has
been called one of the major remaining challenges in the theory of compara-
tive statics (Silberberg, 1974a), and has been largely solved in the
context of generalized duality theory (Epstein, 1978). Here we shall
sketch a solution to this integrability problem in terms of primal methods
of comparative statics and point out relations between the primal and dual
approaches.

Consider the general primal problem

maximize m(x ;o) . . W (P)

subject to g(x;a) = 0.

with an interior solution x*(a) > 0. The only conditions that are placed
on the Hessian [Trij(x*)] by the assumption of an interior solution and
twice differentiability are negative semi-definiteness subject to constraint
and symmetry. However, it is well known that the comparative static

9

effect 8—:;— is determined uniquely by [wij(x*)] and gx(x*) whenever
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[Trij(x*)] is negative definite subject to constraint. Moreover, it can be
shown that the condition [ﬂij(x*)] only negative semi-definite subject
to constraint contradicts the notion of local comparative statics, i.e., the
equations of the total differential are consistent with the implications of
this condition only in the meaningless case where Triu(x*) - )\gia(x*) =0
for all i.1 Thus the conditions of symmetry and negative definiteness
subject to constraint for ['nij(x*)] correspond exactly to the comparative
static implications of the maximization hypothesis, i.e., are necessary and
3 X

sufficient conditions for a solution o to the total differential of first

order conditions for P to be consistent with the existence of a maximum at
x*(a) when n(x:a) is twice differe.ntiable.")"3

Thus we have the following conditions for economic integrability :

(a) given a primal n(x ;o) that is twice differentiable, integrability
occurs if and only if [Tri’.(x*)] is negative definite subject to
constraint, and

(b) given a dual m(a) that is twice differentiable, integrability occurs

if [m ] is positive definite (when m(x;a) = R(x) - L oig(x)).
i

N ...
1For the unconstrained case where m(x:a) = R(x)- I c'(x';oc'),

see the proof of Proposition 1-C. Proposition 1-C is easily g'érlmeralized
to problem P,

2The importance of negative definiteness for integrability in the
primal does not seem-to have been noticed. In his survey article, Hurwicz
(1971) states that semi-definiteness and symmetry of "indirect" (primal) as
well as "direct" (dual) demand functions implies economic integrability.

3Wher'eas iprimal methods appear to attain integrability in the general
problem P, dual methods appear to be unsatisfactory for the general case
where o enters the constraint function g as well as 7 (Epstein, 1978).
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These two conditions can be related roughly as follows. First,

[Trij(x*)] exists and only negative semi-definite

.(c)

subject to constraint => x*(0) undefined;u

so the dual 7n(a) also is undefined. Second, the implications for the primal
of the assumption [ﬂaa] only positive semi-definite can easily be established

in the competitive case

N ..
maximize m(x;w) = R(x) - I w'x! .

i=1
The total differentials of the first order conditions can be expressed in

matrix notation as

* ax ]
[ﬂij(x )] W o e .. W(d)
(N xN) (N xN)
so by Hotelling's Lemma

['nij(x*)] [Tl'ww] = -1 . .. . (e)

only assuming that [Trij(x*)] and [TTww] are defined. Thus, by (d) and

(e),

['nww] only positive semi-definite =

[nij(x*)] is undefined, i.e., R(x) is not twice differentiable.5

For example, a competitive equilibrium is indeterminate under
constant returns to scale.

5(On the fdllowing page).
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Footnote 5

" Thus knowledge of [Trww(p,w)] can be used to define [wij(x*(p,w))],

or vice versa, 'if and only if m(x;p,w) is strictly concave at x*(p,w) or
(equivalently) [TTww(p,W)]_] exists. Analogous simple approaches also
lead directly to the relation between second-order approximations for the
production function/cost function and direct utility /indirect utility cases,
except that here the implications of linear homogeneity in prices are avoided
by considering the matrix system of comparative static equations that is
defined by variations in the exogenous prices plus the exogenous output

or income.
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2. Lemma 4

Lemma 4. Suppose that conditions 1-3 are satisfied for a problem P

. p 1, 1 N
maximize T(x) = R(x) -c(x ;a)-% c(x)
i=2

* ’ 4
and that this problem has a unique global solution x .1'2 Denote

the set of comparative static effects of d a for this problem as

9 X

9 o

and denote the set of comparative static effects of dx1 for the

corresponding problem Q

Q N .
maximize m(x) = R(x) - % c'(x)
i=2

. 1 _ _TF
subject to x = x

*
as {Bx_r } (these sets are not necessarily non-empty). Then
X"~ .

is the set of solutions for the problem

N N 5521r(x*)Q P
maximize I I — dx'dx’
i=1j=1  ax'ax/

Footnotes 1" & 2 on following page.
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subject to dx1 = 1 ; and
ax A ax! AT
(B) { }— {dx . , v°° ,dx * 3 } ,
da 9a @
1*
where Bx is uniquely defined by the equation
* * * *
8p1(x1 ) . 3x! _ 32 (x'7; o) . x ]
3x 3o axt 2 30
*
32¢'(x!; a = o
3x 150

. 39X
(assuming that { o

} is non-empty, and

2 1, 1%
aelx oy o)
9X J0

’

*
]Assuming other global solutions in the neighbourhood of x
does not change our results substantively.

’

2The analysis is essentially unaffected by relaxing condition 3,
i.e., by assuming c! = cl(x;0). ‘Statement A still holds for any
problem Q. Given

52 ¢ (x;a)
i =0
ax da
for all i # 1 or equivalently c‘(x;a) = cJA(x) + c1B(x1;o¢), statement B
holds for the problem Q "maximize w(x)Q = R(x)
N . — 1%
—c1A(x) - 1 c'x) subject to x1 = x1 " where gx Is uniquely
i=2
0 * ) * * *
defined by 2’n(x99 | ax'" 3B | ax!T_ a%™ix'w
| ax 1 2 30 ax* 2 30 ax! 30
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Proof. Define the problem P
P 1,1 N
maximize m(x) = R(x) -c(x;2) - £ c(x) ... .(a)
i=2
where by assumption
*
problem (a)} has a unique solution x . N (3

Denote the corresponding problem Q as

N
R(x) - I c (x)
i=2

maximize 'rr(x)Q

.{c)
. 1 _ 1%
subject to x ' = x

By Theorem 1-A x* is also a unique solution for (c); so by Lemma 2

* *
each 8—-2(—___ for problem (c), and only these ax , is a

ax?t axt
solution to the problem ' (*%%)
N N i j
maximize I I Tri.(x*)Q BL__B—X—
i=1 j=1 axt axT
1*
where 9X = 1, which is statement A of the Lemma. ' By
oxT

Corollary 4,

p1(x1*) - c:(xl*; q) = 0 . .« o . o (d)

Assuming that conditions 1-3 hold at the solution(s) to a P both

before and after do,



275

1% 1%
1, 1% 1, 1% *
pl(x1 )SZ——CH(X ;OL)%-—C::OL(XI ;a) =0 ... o(e)
by total differentiating (d). By Corollary 2-B,

*
p:(x1 ) is uniquely defined. N

By assumption

* *
c111(x1 ;a)  and c}oL(x1 ;2) are uniquely defined .. . .(g)
By (f)-(g),
1*

23)2 is uniquely defined by (e) for problem (a). .+ o .(h)

By Theorem 1-A,

1*

if dx1 = gz for problems (c) and (a), respectively,
e ik . C )
then {2X.ax'} = (2_.2X 3 -(2X 3,
ax ax! Ja
By (h)-(i),
X 1 _ X .3 ax "
X X X X . :
51 = {aF }»where o~ is uniquely determined

by the equation

1% 1%
1, 1% 1, 1% 1, 1%
P, (x )%'cn(x ;O‘)g_)o(T—'c (x* ;o) =0

which Is statement B of the Lemma (m]
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3. Proposition 1

Proposition 1. Suppose that conditions 1-3 are satisfied for a problem P

N .
maximize 1T(x)p = R(x)—cl(x1;oc)— Zc'(x)
i=2

’

*
and that this problem has a unique global solution x 3 Denote

the set of comparative static effects of dua for this problem as

3x
do

order conditions for a solution to this problem as

1
1a

(1)

O e« s 0 0O

where [Tl'ijP] is defined as the Hessian matrix for 1T(x)P at x .

Assume that [TTijP] is negative semi-definite.

(A) If ['rr ] is negative definite, then equations (1) have a

*
. X
unique solution %E .

(B) If [nijp] is not negative definite, then equations (1) may

have multiple solutions {g_a} .

Assuming other global solutions in the nelghbourhood of x rules
out the possibility that m(x)P is negative definite at x*, and does not alter
statements B and C.



*
X

(C) However, if {Trijp] is not negative definite, then T is
*

undefined ({%—2—} is empty):

* * * * *
8p1(x1 ) ax! _dc(x ;0) 9x O

3% | 9a ax12 Ix13a

by the first equation in (1);

* 1%
3P1(x1 ) 3% ix'"; )
x| 3x V2

= 0

by equations 2, +++,N in (1), ['rrijp' ] negative semi-definite

1*
(and not negative definite) and Lemma 3; so g§ is un-
defined for
2.1, 1% ‘e
93°c (x ,;a) 4 0'1:,5

Ix'3a

*

s

uIn ordfr to obtain local comparative Etatics results {a%- } for da
(where x~ + dx is in the neighbourhood of x"), we must assume that
2.1, 1% 2.1, 1%
8elx sa)yqg, gf (X i0) - pyt
Ixlda 3x13a

d 2C1(x1 ; o) 1 1%
—————— # 0 for some x #x leads to a change in global
3x*da

* *
solution Ax , then Ax is finite and our methods no longer apply: (in
general) equations 1 (and Lemma 4) are correct only for an infinitesimal
change in global solution dx .

’

i.e., by assuming

c1 = cl(x;oa).

277

> These results are essentially unaffected by relaxing condition 3,
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By definition,

[Tl'ijP] negative definite <=> x’[TrijP] X < 0 forallx #0 . . .(a)

where [ﬂijp] = N x N Hessian matrix for 1T(X)P at a unique solution

*
x for a problem P. By (a),
P . - P
['rrij ] negative definite = [TTij 1 x#0 forany x #£0 . o . .(b)
i.e., [’ITijP] has full rank N. Since a square matrix [A] has an

inverse if and only if [A] has full rank, (b) implies that

1

c
1a
P . S P, ax _
[nij 1 negative definite = [Trij ] T 0
0 o e J(*FF)
3 *
. . X
has a unique solution S
which is statement A of the Proposition. By definition,
-1 0 o _
[A] = 0 -1 0 [ is negative semi-definite only.6 N (3
0o 0 O
By (c),
1 1
X —-X
[A] [0 | = |0 | is satisfied by all (x|, x3). . ()
3
X 0

6|A~)\I| = (-1-A)2(-A\) = 0 has roots A =-1, -1, 0, which implies

that [A] is negative semi-definite and is not negative definite.
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By (c)-(d),

[TTijP] negative semi-definite only +
1
PN €}

*
X

o

1a 3
has no solution o)

Q@

x —_
[TT” ]—CX =

O e O

We can show that

given that [A] is an N x N matrix and C, X are N x 1
*
vectors: [A]X = C has a unique solution x N 3

if and only if [A] has rank N,7

[A] negative semi-definite only

8 .{g)
=> [A]X = 0 for at least one X # 0.
By (e)-(g),
if ['ITijP] is negative semi-definite only, the system
(1 )
“1a L (F%%)
*
P,ox _ 0 . . ax
['ITij ]-B-E = |, may have multiple solutions {aa }
Lo

which is statement B of the Proposition. By definition,

7See Murdoch (1970), p. 112.

8[A] negative semi-definite only implies that there exists a scalar
A* = 0 and a vector x* # 0 such that [A] x" = A x* {see Madley, 1961,
p. 256); so [A]x* =0 foran x*#0.
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[Trijp] negative semi-definite only => x'[TrijP]x =0

for some x £ 0

.(h)
1
X [Trij Ix 20
for all x.
By (h) and Lemma 4,
*t *
[TT..P] negative semi-definite only = ax ['rr..P] 8x 0.9. . (i)
ij S0 ij “da
Assuming that conditions 1-3 hold before and after da
N j*
x P 3x 1, 1% _ .
j§1 TF”(X ) o —cm(x ;a) =0 (j)
N j*
* P 9x _ o e
) 1Ti.(x ) 5o =0 i=2, N . .. Wk)

By (i) and (k),

N j*
[ ij ] negative semi-definite only => I 7{1 (x )sz =0. ...

j=

*
9By (h), maX|mum z [TT ]z 0 where z is N x 1, and {z1 } includes z

*
Therefore, given n(x) = 'rr(x) ~ctx! ;0), the {z*:2° =1} is the solution

set for the problem "maximize z [nJQ]z subject to z' = 1"; so maximum

*
z ['lT Q]z -ch( 1 ;0) given z' = 1. Thus, by Lemma 4-A,

ax 1

*, *,
*
— [ = c”(x] ;0); so 9x [ F.] BL— 0 by Lemma 4-B

xl ax?! ' da "ij da

QJ

Q

and bvy TT(X)P = TT(X)Q - cl(x1;a).

LER R



*
which contradicts (j) for c:cx(x1 ;a) # 0. By Theorem 1-A and

TT(X)P = TT(X)Q - cl(x1;a),

N x P oaxl” +Qaxd ax® 1 1 ax'”
z .(X ) = -(x ) p— - C ( ’ )
j:1ﬂ1] Ja j:.lT[U 5% J0a 11 o0Q
By Lemma 1,
HES *
r; *Q ax) 3 Bzﬂ(x )Q
my;(x == T T3
j=1 } Bxl 1
9 X
By Theorem 1-B,
2_,.*Q
3 m(x ) _ 1, 1%
——:1—2—— = p1(x )
9X

By (j) and (1)-(0),

*
if [nijp] is negative semi-definite only and c:OL(x1 ;o) #0,

*

o X

1*
. " 1
S is undefined: pl(x

1%
1*.9x 1 1* [9x

then )s-a———c”(x ;CX)-B—OL——

1 1* _
‘cux(x ;0) =0

* 1*

by (j), whereas p:(x1 ) - c:1(x ;a) = 0 by the assumptions
[TTijP] negative semi-definite only, (k) and Lemma 3

which is statement C of the Proposition. O
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.(m)

.(n)

.(o)
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4, Comments on Constrained Maximization

The problem P considered in our comparative static model is of the

form "maximize n(x;a)" rather than of the form

maximize w(x; o)

) . .(1)
subject to g'(x;oc) = 0 i=1,°,M

which is the general classical problem. Here we shall point out that it seems
difficult to extend our method of comparative statics to such a problem. How-
ever, we shall also note that this does not appear to be a serious limitation of
our approach. -

The main (or at least serious) difficulties in incorporating problem 1
into our approach stem from the following: the second order conditions for
a solution to 1 do not require that a matrix relating (-g—gi, -g—a)-‘-) to shift

* H *
parameters na(x ;0) and g'a(x ;a) be negative definite or semi-definite.
Problem 1 can be expressed in Lagrange form as
M

m(x;0) - I Ajgj(x;a) . e . W (2)
‘ j=1

maximize L(x, X;a)

Total differentiating the first order conditions for 2 yields

N j* £ %
L L ilx A o) dX Sl (X LA )
. ' x T 3a xlag'™ 7!
j=1
M j *
+ I -a-—>‘.—--g](x ;a) i=1,+-N
j=1 3¢ i
.(3)
N . 4 j* .
l ax e I * = LR )
z g.(x ;a) o - ga(x ;) i=1, N.
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- Equations 3 can be expressed in matrix form as

( A 3 ( 3

o | ¢ RN G
| X 64 o
(M xM) | (M xN) (Mx1) (Mx1)
"""" et I et e B R 1))
c. | ox L
X | XX a xXa
L(N xM) | (NxN)| |(Nx1) (N ><1)J
(M+N) x (M +N) {(M+N) x1 (M+N) x1

using obvious notation. Denote the (M + N) x (M + N) matrix in 4 as [L].
This matrix cannot be negative definite (due to the M xM submatrix of 0's).
In addition, [L] has full rank by the usual second order conditions for a

. . 10
constrained maximum;

so [L] cannot be negative semi-definite only.

Thus we cannot specify [L] as negative definite, and instead must
specify the more clumsy conditions that the determinant of [L] has the sign
of (—1)N, the largest principal minor of [L] has a sign opposite to this,
and successively smaller principal minors alternate in sign, down to the
principal minor of order M + 1.

However, apparently we can ignore problems P of the general
classical form (1) without restricting our comparative static method in any

* *
serious way. The solution set x = x (a) for a problem 1 can also be

obtained as the solution set for a suitably defined unconstrained problem

maximize w(x;a)' : .« « . .(5)

1OSee Intrilligator (1971), pp. 496-7.
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* *
where 7(x (a);a)' = m(x (o);a) for all on.” The form of

m(x;®)" implied by the particular problem 1 may not be obvious.
However, we shall be interested only in specifying the
restrictions on %’;—* that are implied by a subset of possible
forms w(x;a) and G(x;‘a) = 0 for problem 1, and many of these
restrit*:tions can be incorporated into a set of equations

12

G(%—, p) =0 In this case, defining quantitative com-

parative statics in terms of an unconstrained maximization

problem does not lead to a serious loss in generality.

*
nAssuming that n(x (o),0) > 0 for all o, we can "simply" construct
* *
m(x;a)' such that m(x (a),a)' = n{x (a);a) for all aand n(x;a)' = 0 for all

* *
combinations (x,a) that do not satisfy the relation x =x (o).

1zln some respects, the comparative static effects of fixed factor
proportions can be modelled more accurately in terms of (1) than in terms of
an unconstrained maximization problem. We can incorporate some — but not
all — of the comparative static implications of fixed factor proportions into
a set of equations G(%—E:, p) = 0 (see Chapter 3). On the other hand, any
particular example — but not the general case — of fixed factor proportions

can easily be expressed as-G(x) =0 (e.g., x1 - 2x2 = 0).
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5. Theorem 3

o

Theorem 3. Suppose that conditions 1-2 are satisfied for a problem P
N
maximize m(x) = R(x) - I c(x ;o) e W(n
i=1
*
~and assume that this problem has a unique global solution x
where the Hessian matrix for m(x) is negative definite.
Construct the related problem
maximize m(x)
*
subject to R(x) = R(x )-
which can be expressed in Lagrange form as
*
maximize m(x) - A(R(x) - R(x )). ... . (2)

Construct the symmetric matrix

f i
.. L ot
ij [ i
(N xN) e xN)
i e = [A]
c; Lo (N+1) x (Nx 1)
I
(Nx1) (1><1))
*
where TTij denotes the Hessian matrix for n(x) at x ,
(N'xN)

13This theorem is easily generalized to the case ¢ = c'(x;oc')
(i =1,+++,N); but the equations in the generalized theorem are somewhat
more detailed than here, and the generalized theorem will not be employed
in our research.
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(N x1)

C. (ac1(x1

*
;a1)

ax}

BCN(x

N* N
;O

’

3XN

1
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[A] necessarily has full rank, and denote its inverse as [K]:

1

[A] ' = [K] always exists.

(N+1)x(N+1)
Then

(A) the comparative static effects for problem 2 are uniquely

defined as follows:

'** . o* .
?LI__=M.K i,j=1,++,N
3o ax) 50! ") ‘ ’ '
axi**
— = K. i = 1,0--,N
3R i,N+1 .
D x s
o _afdedhd N
3o) axj 'aocj N+1.j J o
A = Kya,na
oR
where
Ki . = element (i,j) of matrix [K], and Ki j = Kj i(i,j=|,---,N+1);and
’ * ’ 7
(B) (a) the comparative static effects ( gz ) for problem 1 are unique,
and
N N oo d®.
(b) given that ¥ I K. -a—c—(i(——.—i)—#% ,15
s . i, N+1 j
i=1 j=1 9 X
o 738 P L N S PR L jrx
wThus 2 = (8 ¢ (x. '9‘)/ 3 c'(xi ’OL)) Bxi and
30 oxlaal  2x'ad 30
cex s -
or __afdedhd) ey
50 ax) 50/ 3R
N N e d®. )
154 sufficient condition for L Ki N1 M #-1 (a)
i=1j=1 '” ax/
is that K. 20 (i =1,+++,N), which is equivalent to ruling out the possibility

i, N+1
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*

90X for problem 1 is uniquely defined in terms of
3
20d%. -
c !X .’uj) and the elements of [K] corresponding to
ax!9al
* % * %
9X __ and 3)_( for problem 2, as follows:
o) oR
- . *
ax’ B Bzc (x oJ) + K 3R(x ) R
— = . . o ———— i,j=1,+,N
5ol axlaa’ "J LN+ 3ol
* N i o i* i i*
dR(x ) _ 5 Bc(xi ;o) , 93X j=1,--,N.
5 al i=1 X 3ol

*
Proof. Suppose that x is a unique interior global solution for the problem P

N ... .
R(x) - I c'(x';oa') . I £-
i=1

maximize m(x)

Construct the related problem

maximize m(x)

A — . . . .(b)
subject to R(x) = R(x )

which can be expressed in Lagrange form as

. S
maximize w(x) - A(R(x) - R(x }) . . . . .(c)

Footnote 15 (continueq)

I**
of inferior inputs (33(_ >0, i =1,++,N). Condition (a) would be violated only
oR
for a relatively few "appropriate" degrees of mferlorlty, so condition (a) is not a
serious restriction.
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By (a)-(b),
x* is the solution set to probiem (c). ... e (d)
By (C)_(d)l
* *
Tri(x )—)\Ri(x ) =0 i=1,++°,N

. .(e)
R(x } = R(x)

which are the first order conditions for a solution to problem (c).

Total differentiating (e),

N * ] | i* | *

r om.(x Ydx' -c. i (x-;a)- R.(x )dAx

i=1 ij ia i
N . ,

- A I Ri(x) dx! = o i=1,ee,N ... ()

=1 Y

N * i — ,

ZRi(x)dx-—dR=0 .o . . (9)

i=1

given (a). By (c),

*
y = amx )
3R
N, i
= I omix) 2 =0 c ()
i=1 3R

by (d) and conditions 1-2. By (h), (f) reduces to

N N i i L
£ m.(x )dx-R.(x )dA - c; ;(x ;a) =0 i=1,e<,N. . . .(i)
j=1 1 i ial’
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By (a) and conditions 1-2, (g) can be rewritten as
N

TN .
X ci(x ;a)dx -dR = 0 . c .. )
i=1

Construct the symmetric matrix

( | i )
i C.
ij | i
(NxN) | (1xN)
------ R e = [A]
) i . o . (k)
i i (N+1)x(N+1)
c; | 0
(Nx1) | (1x1)
where
1rij = Hessian matrix for m(x) at x*
(NxN)
(1)
i
‘i " s Ny T
(1xN) = (c:(x1 sal), e, c:(xN ;aN)) .

By definition, [A] has less than full rank if and only if

there exists a vector v # 0 such that

but this statement implies that
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N N -
there exists a vector v £ 0 such that T I .. v'vl = 0

i=1 j=1 Y

which contradicts the assumption that [ﬂ;;]] is negative definite.

Thus
['nij] negative definite => [A] has full rank. e e . J(FFF)
By (i)-(1),
[A] X = C e v o o(m)
(Nx1) (Nx1)
where
X = (dx', -+, dxN,-d\) 7 for problem (c)
(Nx1) .(n)
o1 1% 1 N  N* N N =
cC = @ml(x ;o )da '...'CN(X,N(X ;a)da,dR) .
(Nx1)
By assumption,
[A]_1 exists, and [A]_1 = [K] is symmetric . . . .(0)
by the symmetry of [A]. By (o),
X = [K]C . . .oo.p)

By (n)-(p), for problem (c)
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(J) .K . i,j ]"ooo'N

= lcxJ(X

- I(i,N+1 ! =1"'_,"N

|

W(x ") ~KN+1’j j=1,%N N G

where Kij = element (i,j) of [K], which is statement A of the Theorem.
By Proposition1-A and the assumption that the Hessian matrix for

*
TT(X)([TTij]) is negative definite at x ,

*

{ 8x‘ } for problem (a) contains only one
0

(q)

*
X, j=1,°°9,N.
(o4

[e34

vector

|

QO
—

*
By the implicit function theorem and [Tl'ij] negative definite at x ,
*
we can solve the first order conditions of problem (a) for x as

a function of o:

i* i* .
x =x (o) i=1,e-+,N for problem (a). N L
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Given R= R(x ), x
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is also the solution set for problem (c);

*
so we can also solve (e) of problem (c) for x as a function

of (a,R):
i* i** —_ . . — *
P = x (o,R) i=1,---,N given R= R(x )
.(s)
for problem (c).
Substituting (r) into (s),
HE 1% * *
x = x ..[on,R.(x1 (on),-u.,xN ())) i=1,°+¢,N. .(t)
By (t) and the rule for the differential of a composite function,
i* i** i** *
ax_ _ & Bx_ dR(x ) i,j=1,°+<,N, ... .()
5 90 3R 5
where
* N . i*
m.x_). = % R|(x ) ax. j = ,o..’N . . .(V)
90’ i=1 o)
By (u) and (***),
5 i* . i* BR(x*)
x = j H M Ll P ———— i H - LR
j ‘Cjod (x ,oc') Ki,j +Ki,N+1 ; i,j=1, NL L (w)

oa

By (v) and conditions 1-2,

90
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BR(x*) N i, i* i, 9 P
SRIX T o p i d) 25 j=1,¢¢¢,N . c e (X)
j i ‘
da i=1 - Xod
By (w)-(x),
[ | K 1 (ax! ] (k. ]
I |,N+1 & ],]
(NxN) (Nx1) 3 L e
________ fommm - . :c}aj(xl ;o) .
i _ *
¢ I axN KN,j
(Nx1) | (1x1) o) : ce . y)
| * ¢ 0 )
9R(x )
| | J {ad]
(N+1) x (N+1) (N+1) x 1 j=1,°+,N

where | = identity matrix and Ki N+1
(NxN) (N,X'I)

= N+1'st column of [K].
Denote the (N+1) x (N+1) matrix in (y) as [L]. By (y) and the
definition of a determinant,

N N

L
l [L] . =1- I j§1Ki:N+‘ -c}(x] ) . c e ()

Since (y) has a unique solution

* %
[ Bx_ 3R(>§ )

T j ] (j arbitrary) if and only if [L]_1 exists
9 3a

or equivalently |[L]]|+#0, (gq) and (y)-(z) imply that
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*
(a) is unique for problem (a) (j =1,++-,N)
3 alo
N N csd® gy £ -
(b) given that I I K, cj(x ) #-1
e oa_a 01,N+1
i=1 j=1
*
axj for problem (a) is uniquely defined in terms of
d o :

. cx
c;aj(x] ;oal) and the elements of [K] corresponding to

* *

Bx. and af for problem (¢) (j=1,+-+,N),

3a 5R

as follows:
5 i* . ik s IR( *) .
X - ],, l . . Y x_ i ._: LI
T Sl K e g R
' * N cx i*
M = I (::(xl ,al) .3 - j=1,¢++,N
3ol i=1 3a) .

which is statement B of the Theorem.D

6. Corollarx 5

Corollary 5.  Construct the problems 1 and 2, and the (N+1)x(N+1)

matrices [A] and [K], as in Theorem 9. Partition the Hessian

matrix ['ITi.] and marginal factor cost vector c: of [A] as
(NxN) (1xN)
follows: 1 A, B
., P,
1) : 1j
(SxS) | (SxT)| Al B
[r.] = |- B c! = [c' ! c! ]
ij c ! D i i
D * . (1o o - I
(NxN) | T 1 T | (xN) (1xS) (1xT)
(TXS) | (TxT),
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where S+T = N. Construct the following symmetric matrix

(A A
.. | C.
1j \ !
CTTAT T = [An]
c: 0 (S+1)x(S+1)
L(1><S) : (1><1)‘J

[A”] necessarily has full rank, and denote its inverse as [L]:

~ -1

11] = [L] always exists.

Construct the problem

N . . .
maximize 7(x) = R(x)- I c'(x';d)
i=1
.(3)
. .
subject to x) = x/ j =S+1,+++,N
. :
where x is the unique global solution to problem 1.
Construct the related problem
maximize 7(x)
—_
subject to R(x) = R(x )
. _o?
xl=x] j=S+1,.'.,N
which can be expressed in Lagrange form as
mi RO - T od-d
maximize m(x) - A(R{x)-R(x ))- I vy (x'-x'). N )

j:s+1
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(A) the comparative static effects for problem 4 are uniquely

defined as follows:

- C s
ax' S _ azcj(x] ;oc')

= — L i,j =1,+°,S
3o ax}sd ‘)
i**S
X
= L, I = 1[ ooo’s
3§ |,S+1
C e s
"”‘S :_a_z_(i()(J—mj).L j=1,9+4,8
30 3x)5 S+
Ms_ = - L
Bﬁ S+1,S+1
where Li . = element (i,j) of [L], and L, j = Lj i(i,j =1,+°+,S+1);
and
*S
(B) (a) the comparative static effects 9x for problem 3 are
Jda
unique, and
S S PO 16
(b) given that I 3 L. L ial) 4y,
o007, S+ j
i=1 j=1 X
S S Jed . )
16Assuming that 2 I L, g, §_c_(_x__._,_9cj_)_# -1 has implications
- i=1j=1 " 3% o
N N oI
analogous to those of assuming that ¥ I K. s /=t ¢ -1
i=1 j=1 N 5x)

(see footnote to Theorem 3).
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*S
90X for problem 3 is uniquely defined in terms of
50
2 (. o |
?—ii-)—(——o—cl—l and the elements of [L] corresponding to
axlad
ax**s x**s
- and — for problem 4, as follows:
3 3R
. s s *
9x' S - azc](xl ;o) CL 4L . 9R(x )s
30l 3x)5 o bi o TS g
i,j=1,°-,8
V* - -* . '*
dR(x )S _ ? sc'(x' ;d) . ax > j=1,--,8
9o i=1 ax' 5ol
*
Proof. Suppose that x is a unique interior solution for the problem P
N
maximize w(x) = R(x) - £ c(x ;o) . . . . .(a)
i=1
Construct the related problems
maximize m(x) (b)
subject to x’ = x j =S+1,+¢¢,N
maximize m(x)
i .
subject to x’ = X j =

S+1,+--,N AN (9

— %
R(x) = R(x )
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Problem (c) can be expressed in Lagrange form as

__; N - . —.*_
maximize m(x) - A(R(x)-R(x ))- £ Y].(xj—x] ). .. .o (d)
j=S+1 :

By (a)-(c),

*
x is the solution set for both problems (b) and (d) . . . .(e)

By (d)-(e),
* *
ﬂi(x)—)\Ri(x)zo i=1,¢+,S
.(f)
* x
R(x ) = R(x )
J = x0* j=S+1,-0,N .. ..(0)

which are the first order conditions for a solution to (d). By argu-

ments identical to (f)-(n) inithe proof of Theorem 3,

S S

[AH] X = C given (g) . « . .(h)
(S+1)x(S+1) (Sx1) (Sx1)
where A i iA
.. } C.
ij \ i
~ i
(A1 =[S G
A f
(S+1)x(S+1) ¢ | O
(1xS) 1 (1x1)
TTijA = submatrix for inputs i =1, ++¢,S of the Hessian
- (5xS) for n(x) at x - ..()

(G) continued on following page)
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A . T
ci = (C1(x1 ;a]),"',cs(xs*;as))
i 1 S
(Sx1)
-
x> = (dx',eee,dxS - dR) ()
(S+1)x1

S
c

(S +1) x1

1 1% 1, 1 S _.8* S .S =T
(e, p(x" sa)dar, =eecq S(xT ;a7 )da”,dR) .

By definition, [A”] has less than full rank if and only if there

s . .
exists a vector v # 0 such that ¥ v/ ﬂij - c: = 0 i=1,¢¢°,S
j=1

n o~

vl
=t !
but this statement implies that

S S

there exists a vector v # 0 such that ©* I 'rrij vivl = 0
i=1j=1

which contradicts the assumption that [Trij] (hence [TTijA]) is

negative definite. Thus

[m;] negative definite => [A,,] has full rank. ()
Then
[:7\11]_1 = [L] is symmetric e ()

(S+1)x(S+1)
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x> = L1 c® (k)
By (i)-(k), for problem (d)
**S S **S S
the comparative static effects a’ga s gé‘L , 3)_( s 33
3R
are uniquely defined as follows:
i**S . ks
9% = oy i,j=1,+%-,5S
’ j 2
i**S
af = Li S+1 i:.l,"',s
oR ’
. . (***)
S . cx .
8)\ _ j ]* , l = 11 .oo,S
—— = -ci(x ;o) -L .
5o jo S+1,j
.a__.&i = -1
BR S+1,S+1
where Li j = element (i,j) of [L], and Li i " Lj i(i,j:1,-°-,S+1)

which is statement A of the Corollary.

*
TTi(X) = 0 i=1,+°,8

j =S+1,++¢,N

By (b) and (e),
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which are the first order conditions for an interior solution to
problem (b). By (i) and (1), differentiating the first S first

order conditions with respect to o (j =1,¢+,S) yields

0
0
A *S . c .
[m ] 90X = -c!od'(xj ;o) o = al,---,ons A (1))
ij 5o J
(SxS)  (Sx1) 0
\ 0 J
ax*s .axl*s - Bxs*s T [Tri']
where —— = - . v, : . Since )" negative
3a 3 5o (NxN)
(n. A1
definite implies that " ij is negative definite,
(SxS)

*S
{Bx. } for problem (b) contains one and only one vector
oa '

) *S
X‘ (j_—_"l'.otls).
da)

N 1))

by (m), ['rrij] negative definite and Proposition 1-A. By arguments
(NxN)
identical to (v)-(z) in the proof of Theorem 3,

: : S S ¢ ik e
given that- Z I L, -cl.(xl ;ocl) $# -1,
T, S+ j
i=1 j=1
ax >
);j for problem (b) is uniquely defined in terms of
d

\

.n .* - .
c}ui(x’ ;,ot') and the elements of [L] corresponding to ... L *EX)

( (***) continued on the following page)



302

**S **s
Bx- and af for problem (d) (j =1,++-,S), as
3o 3R
i*S . e : * S
follows: ax. = !o:j(xj ;oJ) -Li .+Li S+1 M oo W(*xF)
Y AT >
i,j=1,°-,S
xS S . .. i*S
BR(Z 3 cixioly 2% j =108,
3a) i=1 3a) ‘

Statements (n) and (l11) are equivalent to statement B of the

Corollary. O

7. Coroliarx 6

Corollary 6. Construct problems 1 and 3 as above, and partition the

(negative definite) Hessian matrix [Tfii] as above. Then the
- (NxN)

comparativé static effects for problem 3 are uniquely defined as

follows:
i*S 2 g,.0%.
ax. = a C.(x.lal) .Pi . i'j =1,..',S
a ax}3 o -l
_ [ A]-1
where Pi . = element (i,j) of " ij (which always exists),
& (SxS)

and Pi,j = Pi:i (i,j =1,°+-,5).
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Construct the problems

N . . .
maximize m(x) = R(x) - I c'(x';cx') . . . .(3)
i=1
N G
maximize m(x) = R(x) - £ c(x;:a)
i=1 .(b)
. —
subject to x} = x) j =S+1,++¢,N

*
where x is a unique global solution to problem (a). Partition the

*
Hessian matrix of m(x) at x as follows:

[ A B )
ij o)
(SxS) 1 (SxT)
[r,.] = | —mmommgmmmms . N (9]
1 c ., _D
(NxN) i
(TxS) (TxT)
\

[m.]
By the assumptions that (NXN) is negative definite and symmetric,
-1 | A-1 . :
[TTij] and [TTij ] exist and are symmetric. ... (d)
(NxN)
By (a)_(b)l
*
x is the solution set to (b) as well as (a). ... ()

By conditions 1-2, the first order conditions for a solution to

(b) are
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'rri(x) = 0 i=1,++¢,S e e W)

S+1,¢+¢,N . e . . .(g)

—
H

By (c)-(e) and (g), total differentiating (f) yields

dx1
: A -1
. = [ﬂij ] - C . . . (h)
\ dst
(Sx1) (SxS) (Sx1)

‘ : T
o1 1% 101 S S* S S
where C = (cm](.x ;o )do, 'cSozS(x ;00)da”) . By (d)

and (h), for (b)

S
X =c () - P, i,j=1,+--,5
aaj jod i,

. where Pi j = element (i,j) of [vrijA]_1, and Pi j= Pj i (i,j=1,+++,5)

14

which is the Corollary. [J
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8. A Theorem on the Quantitative Comparative Statics of a Shift in a

Firm's Product Demand Schedule

Relations between various potentially observable properties of a

problem
. } o, N i
maximize m({x;a) = R(x;a ) - £ c(x;a) . . . . (P)
i=1
and
*
on , when duo implies a shift in the product demand schedule
20 ’

faced by the firm, are presented in Theorem 4 and Cor'ollar'y7.17 These
relations differ from those specified in Theorem 3 and Corollaries 5-6 in one
particularly important respect, which can be explained as follows.

When oco is a parameter in the product demand schedule,

*

axo can be decomposed as
Ja
i* i** F *
ox_ - 32X .2 (x ) i=1,c0,N C (1)
da oF 9o
**
where af is the comparative static effect of dF for the problem
3F
maximize m(x) = P(F(x);OLO)F(X) - zc'x';a)
i
NEEN
subject to F(x) = F(x )

17The proof of Corollary 7 is not presented here (Corollary 7 can
be established in an abvious manner by the methods used in other proofs).
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(y = F(x) denotes the firm's production function). In addition,

3F(x) o N oS dd) e
———0——=(1/R)Z : . 0 e e o(2)
da Yi=1  ax da
* %
where ﬁ(F(x);oco) = R(x;ao) for all (x,ao). For a given vector 9x ,

oF

equations 1-2 constitute a homogeneous system of N+1 equations in N+1

* *
unknowns ( axo , BF((); ) ). Thus, equations 1-2 can determine the

3 e

*
unique on only up to a scalar multiple, i.e., only ratios

o0

* 1% * HE3
ax'  ax L, x| ax!
3a®  5dd 500 3]

can be uniquely defined by 1-2. A similar statement holds. for the de-
*

composition of on ' (when o is a parameter in the product demand
oa
%% **S
schedule). Therefore, knowledge of 2X—or {2X_} defined by all

3F oF
possible partitions of x into fixed and variable inputs (and knowledge of
*

R 1, 1* N, N*.,. . . . . . X
, cl(x ), ---,cN(x )) is insufficient to define the unique T

The
Y 20

additional resfrictions due to the second order conditions for a maximum
*
only imply that the unique on is determined up to a positwe scalar
Lo
multiple. '8

’

18The proof of this statement can be sketched as follows. The first

order conditions imply that the "correct" Hessian [TTij*] and comparative static
*
effect —BLO satisfy a system of equations of the form

oa
[ *] 3"; = K] . .. @)
J 7 5348 Nx1

~

e L ox** 1
Exact knowledge of (——, R ,c1(x
oF Y

1* N, N*, . . .
), ---,cN(x )) implies only the following

relation:
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Thus restrictions must be placed on other parameters in order to

*
obtain both upper and lower bounds on on by our methods. In particular,
da
*
knowledge of E—xl— (i # 0) and its various decompositions seems quite important
3o

in the quantitative comparative statics of changes in the firm's revenue

*
or benefits schedule (whereas, prior knowledge of ix—o and its decompositions

20
is relatively unimportant in the quantitative comparative statics of changes

in factor supply schedules).
Theorem 4. Suppose that conditions 1-3 are satisfied for a problem P

maximize m(x) = R(y;oco),— z ci(xi] e e W)
i=1

where y = F(x) is a scalar function, and assume that problem 1
.] is

i
(NxN)

has a unique global solution x* where the Hessian ['rri

negative deﬁnite.19 Construct the related problem

(18 continued)

*
(L@ m 00y - 225
Y 1 3a
where v is an arbitrary scalar. Given that [Trij*] is negative definite:

[K] . . ..(b)

-1\—( (%) [TTij*] is negative definite if and only if y > 0. Thus, relation (b) plus

the second order conditions has the solution set [y - Ix* |

'aoco

vy >0}

*
19The comparative static effect axo is undefined when [nij] is

aa
only negative semi-definite (see Proposition 1).
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0 N
maximize m(x) = R{(y;a) = &
i=1

cixh
.(2)

subject to y = F(x¥*)

Let R = R( % o)

oy
_ 82R(x*;a0)
Ryoco = 5
dyon
20

2 0 .
- 0°R(F(x*);a’) _ i, _i*
= = (RyaO/Ry) ci(x ).

‘ax'aao

1

Construct matrix [A] as in _Theorem 3, so that [A] @ = [K] always

exists. Then

*
(A) {_a_x_o} for problem 1 corresponds to the single solution to
90
the system
X  _ _
(gl 20 = 7 Rigd
(NxN) (Nx1)
20

If R(y;ao) = P(y;ao).y, then Ry = P(y*;ao)+Py(y*;a0)y* and
R, 0 = Pao(y*;ao)+Pyao(y*;u0)y*. For the more general case where the firm

Yy
sells all y units at an identical price and also receives non-pecuniary benefits

B(t) from the t'th unit of y, R(y;o’) = P(y;a))y + ¥ B(t)dt.
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= " een T .
where R; o = (R, 0, LVIN ) R
(Nx1)

(B) the comparative static effects for problem 2 are defined in

terms of [A] as follows:

a i**
x - L ]
3|_= - Ry Ki,N"’]
i**
K] = [A] V=23X__ - ¢ 21,00, N
30L0
BA - _ 2 . P = seo e
o F - Ry KN+1,N+1 b=1,000N
_ -1 9 A
K] = [A = = R
[K] = [A] + o0 yao

where K, i = element (i,j) of [A]"!, and K, P * Kj ;

(i,j =1,¢¢,N+1);

and

"N N i
C iven that £ I c! - K, -1,
e j=1i=1 LN

*

on is determined up to a scalar multiple by Ry' c; and
3 a

x**

the elements of [A]_1 corresponding to 3_ , i.e., the

oF

*
following system has as solution the {all y(axo , BF(XO) ) }
JQ Ja

(y an arbitrary scalar):



= R - K. i= 1,°+°,N
aoco y i, N+1 80LO
N . i*
8F - (R 1 ¢ - X
d0 Y izt 3o
Proof. Construct the problem
maximize m(x) = R(y;a)y - X c'(x")

i=1

where y = F(x), or equivalently

N

maximize m(x) = ﬁ(x;on)— T Ci(xi)
i=1
where
R(x;0) = R(F(x);a)

Total differentiating the first order conditions for an interior

solution to (b),

K
Bx'

oa

m.(x*)
1 Y

nmo™mzZ

A *
; +Ri0L(x ;a) =0 i=1,+-,N.

Since a negative definite matrix has an inverse (see a-b in the

proof of Proposition 1),

[TTij] negative definite = equations (d) has a unique

(NxN) ax*

solution
o

310

.(a)

.(b)

.(c)

.(d)

.(***)
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which is statement A of the Theorem. Construct the probiem

) N . .
R(y;)- £ c(x")
: i=1

maximize (x)

.(e)
subject to y = F(x¥%)

where x* is the unique global solution to problem (b). Problem (e)
can be expressed in Lagrange form as

N ..
maximize R(y;a) - I c'(x") - AMF(x)- F(x9). (f)
i=1
By (b) and (e),
x* is the solution set to problem (f) as well as (b). .(g)
By the manner in which a enters into the objective function for
problem (f),
dx** :
=0 for problem (f) .« + .(h)
3o
ﬂi(x*) - )\Fi(x*) =0 i=1,°--,N
. (i)
F(x) - F(x¥® =0

Total differentiating these first order conditions (i),
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N A
 m.(x*) dx' +R. (x*;0)}do - F.(x*)dXx = 0
i=1 ij io i
b=1,00N ()
N | = =0
z Fi(x*) dx - dF -

i=1
since A = 0 (see h in the proof of Theorem 3). By conditions 1-2,

R, (y*50) Filx*) - cj(x) = 0 =1 N L (KD

where (x*, y*) solves problem (a). By (c),

ﬁia(x*;a) = R (Y o) Fi(x*) P=1, e N. . ...
By (j)-(k),
[A] X = C .. .(m)
where
{ . i
i : (1/Ry)cl l
(NxN) 1 (1xN) R
e = [A]
(1/Ry)c:}I 0 (N+1) x(N+1)
(N () .(n)
X = (dx!, -, dxN, -dnT
(N+1) x1
A~ n ~ =T
¢ = (_Rlocdoc’""_*\ocdu'd':)

(N+1) x1
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|H| = A|G| if every element of a row or column of a matrix G is

multiplied by a scalar X to give a new matrix H, and G—1

= (adjoint

By these facts and the definitions of [/A\]’ (n) and [A],

= [K] exists if and only if [//i]_1 = [R] exists

of G)/|G].

(A}
K.. =R2K..
ij -y ij
K. =R _K..
ij ij

K. =

if i =N=+1, j =N+

=
]

N+l or j=N+1,i #]j

=y
1

= 1’¢¢0'Nl

j = 1’000'N .

.(0)

By (h), (m)-(o), the existence of [A]—1 (see Theorem 3) and the

symmetry of [A]_1 (by the symmetry of [A]), for problem (f)

Q>
>

Q
Q

i
Y

|
™
Py

X

*

g
~

"

A *
Rjoc(x ;) KN+1,j

S i
where (by k-I) Ria = (Rya/Ry)ci and Ki'

)

(i,j =1,°-+,N+1).

By the definitions of [A] and [K],

'l’ooo'N

IIOQQ’N

= K..
ji

-(p)



N .
AK =1 = 1 K. =0
j=1 1
N
151 Cj Kj,N+1 =1
By (p)-(q),
8 i**
x p—
3? - Ry Ki,N+1
i**
AK =1 — X = 0
90
A _ o 2
aF Y N
AK =1 =>§._>.\_. = R
9a yo

which is statement B of the Theorem.

(r)-(s) in the proof of Theorem 3,

314
1,+++,N

-(q)

1

1'...'N

NELL))

By arguments analogous to

i* i ** i* Fix.
gz g:‘ + Bf goc(x ) i=1,N . ...
where
* N i*
oPIx ) = 3 R(xn X v ooels)
i=1 aa

By (h}) and (r),
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i=1,¢¢¢,N. e W (1)

( : - 3 ( 1% 3
| :RyKLN+1 22
AN (. :3) B B
| . = 0 e e o(u)
*
(1R e -1 ax
(1xN) | (1x1) o
dF(x*)
\ ) 3 )
(N+1) x (N+1) (N+1)x1
where | = identity matrix and ;(i N+l = N + 1'st column of [A]_l.

Denote the (N+1)x{(N+1) matrix in (u) as [I:]. By (u) and the

definition of a determinant,

L] = -1- ¢

i=1 j=1

N N
E i, N+i

K. -cli(xi*) . C W)

Since [L]”! exists if and only if I[E]I #+0, (w) implies that

N
given that I
i=1j

Ki,N+1'

nm™mZ

Jdid™y #-1
, j

. . '(***)

the solution (—g—:T, %) to the linear homogeneous

system (u) is unique except for a scalar multiple

which is statement C of the Theorem. O
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Corollary 7. Construct problems 1 and 2 as above, and partition the

(negative definite) Hessian matrix [ﬂij] and margina! factor

(NxN)
cost vector c: at x* as follows:
(1xN)
(a8
ij | ]
(SxS) | (SxT) i A
[m.] = |-~y == c. = [c C. 1
ij c | D i i i
(NxN) Tij | Tij (1xN)  (1xS) (1xT)
(TxS) | (T><T)J

where S+T = N and x* is the solution to problem 1. Construct
the matrix [A”] as in Corollary 2, and denote its inverse as

' [L]:[Z\”]-1E [L] always exists.

Construct the problem

maximize 7w(x) = R(y;oco) y- Z Ci(Xi)
: i=1
.(3)

H * .
subject to x} = j =S+, ¢, N,

Construct the related problem

maximize m(x)

' —%
subject toy = F(x )

o™
x =x j=S+1,++¢,N
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which can be expressed in Lagrange form as

’ N I
maximize m(x) - A(F(x) - F(x¥)) - = Y’(x’—xl*). N L))
j=S+1

Then
*S

(A) the comparative static effects 0% for problem 3 are

3o
uniquely defined as follows:

), J*S s
= (R O/R )z
500 YOrUY o ax

J(od* N
cx’) | p . i=1,¢+9,S
) 1]

where ﬁi j = element (i,j) of [TTijA]_] (which always exists),

’

and P. . = ﬁj :(i,j=1,-+-,5), and

3

(B) the comparative static effects for problem 4 are uniquely

defined as follows:

i**S
————x = .. i = ¢ o0
5F Ry " Lis+ PR Teeens
N B j**g
[L] = [A]]] 1 =>a_)_(_0_—.— = 0 i = ,"’,S.
3o
3 A a2
SE R»y “Lsi,541
S
_ ~ -1 A
[L] = [A,y] = = R, 0
11 Bao Yo
- . ~ -1 _
where Lij = element (i,j) of [A”] , and Li,j = Lj,i
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(i,j =1,+++,S+1); and

*

S S acj(xj )
(C) giventhat £ ¥ ——— L, £#-1 ,
e ) i,S+1
=1 i=1 ax
*S .
on is determined up to a scalar multiple by Ry, c; and
da
**S
the elements of [L] corresponding to Bx_ , i.e., the
oF
following system has as solution
*'S
{all v (axo , aF(xo) )} (y an arbitrary scalar):
o da
’axi aré
— - L. ® —— i = 1, ...’s
80LO i,S+1 Bao
C s .
oF S ac'(x') . 9x’

— = (1/R) Z
da Y =1 Bxl aa°
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9. On Primal-Dual and Dual Methods of

Quantitative Comparative Statics

The quantitative comparative statics method presented in Chapter 3
is developed directly from the primal problem

maximizex m(x;a) = R(x) —cl(xl;oc) - @ c(x). .. . (P)

i=2

In Chapter 2, we noted that "primal-dual" and "dual" problems can be
formulated from P and that many standard comparative static theorems can
be derived more easily from these problems than from P per se. Here we
shall consider the possibility of using primal-dual and dual methods as
substitutes or complements to our primal approach to quantitative comparative
statics.

. *P
Our primal approach exhausts the restrictions placed on g’;
by the maximization hypothesis21 but does not exhaust the relations between

1 ,_1*P
10 ;o))

and other potentially observable data. Thus the possible advantages of

*
the parameters relevant to comparative statics ([ﬂij(x P;OL)], c

alternative or supplemenbtary approaches to quantitative comparative statics
are ease of computation and elucidation of the relations between these

restrictions and any a priori knowledge about the structure of P. However,
we shall argue that a primal-dual or dual approach to quantitative compara-

tive statics can seldom substitute for a primal approach and can seldom
*

suggest important relations between gz
that are not already incorporated into our primal approach. Indeed, a

*
BxP

30

potentially observable data that are not already incorporated into our

and potentially observable data

and

primal-dual approach can never suggest relations between

primal approach.

2 See Proposition 1.
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The primal-dual problem corresponding to P can be formulated as

minimizexluL(x,u) = TT(X*(OL),OL) - m(x,0) . . . .(PD)
where x*(a) expresses the solution to P as a function of its exogenous
variable oc.zz The solution set to PD is {all (x*(a),a) }. Since all variables
(x,a) in P are defined as endogenous in PD, we cannot totally differentiate
the first order conditions for a solution to PD. Thus we cannot derive
precise quantitative comparative static relations from problem PD, i.e,, there
does not exist a set of equations that defiqes the comparative static effect
—g—%:—* in terms of the structure of problem PD.
In order to obtain a quantitative comparative statics model related
to the primal-dual approach, we can construct the following "modified

primal-dual" problem

minimizex Y L(x,v;a) = m(x*(y,a), v;a) - m({x,v;q) . . . .(PD")
where (v, a) is the set of K+1 variables exogenous to problem P and x*(y,a)
expresses the solution to P as a function of (y,a). The first order conditions

for an interior solution to PD' are

L. = - xi(x’f,y*;u) = 0 i

Xi 1,*+,N . . . .(3)

N * [~k * axj*
§1nxi(x (y*,a),v*;0)

. i
)= C

L

"
o
t

yi 1,ee, K ... .(b)

and the (necessary) second order conditions are

22See Silberberg (1974a).
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Lxx ny

[L] = positive semi-definite at (x*,vy*;0q) . .. .(29)
L__ L
XYy Yy

where
bxixi = 7 Tixj i,j=1,---N
inYj =7 iy i=1,-«-,Nand j=1,+++,K
N N axK* axl* N axK*
L.i j = Lz 'rerxl : —+ I m K j : i,j=1,,K.
Y K=11=1 3y 5y K=1 Yooy

Total differentiating (a)-(b) with respect to the variable a exogenous to PD'

yields
N j* K j*
dx A = =1, eee
.51 Txixj 5a  * ji Txivyi 3o Meig = 0 P=1,N. (c)
N __i* N i* N j* N K L2
0 X , ., 0X . 0Y . J "X
z (Z i j————‘f‘ E T i -+ T i )+Z1Ti(z —_—
i=1 BYK =1 x'x} 3a i=1 X o o X% jop X i=1 aYKaY]
i* 5 i X . o .a(d)
A L3 X ) =0 k=1,eenK.

Ja 3Y 3

Since (b) is implied by (a), and (d) is implied by (a) and (c), the comparative
static content of PD' is contained entirely in (c) plus (2°). Combining
(c) with the total differential of the first order conditions for the primal only

implies that
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N j*
.. 9X . = =1 ees
jzl i o + Mg = 0 i =1, N . . . .(e)
K . ayi* .
E TTXIYJ T = 0 1 = 1,"',N . e . .(f)

where (e) denotes the total differential of the first order conditions

o Q

PD' for each a), (f) cannot place any restrictions on the structure

*
for the primal. Since 3y is either undefined or zero (all y solves

of PD' or comparative static effects. Thus (a)-(d) plus the total

~differential of primal first order conditions (e) only implies (e), i.e.

r

the first order conditions for PD' plus their total differentials

are redundant given the total differential of primal first order

ax*
9

(a)-(d) can be obtained more readily from the primal approach.

conditions. In sum, any restrictions on that are derived from

In addition, second order conditions for a primal-dual problem
do not add to the set of relations between [TTij] and potentially
observable data that are already formulated in our primal approach.
This statement can be elaborated upon as follows. It can be seen

from (2°) that the second order conditions for the primal-dual

problem
inimi = * -
minimize, Lix,yv,a) = m(x*(y,0),v,0) - w(x,y,a)
* *
lace restrictions on [7..] in terms of ([n.__ ], = [_B_X_] 0 x ).
P ij Xy " 'xa’ "3y "’ da

However, if (y,0) are defined solely as shift parameters for factor

supply scihedule*s, then the relations between [TTij] and (['nx 1,

Y
m . '[%], iX—) are defined exactly by a primal approach incorpor-

X0 aa
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ating Proposition 1 and Theorem 3. If some element of vy is a shift
parameter for the firm's revenue or benefits schedule R(x), then
the relations between [Wij] and the above set of variables are defined
exactly by a primal approach incorporating Proposition 1 and
Theorems 3-4. Since the relations between ['nij] and the above
variables are defined exactly in these cases by our primal approach,
and all of the restrictions and relations implied by t:\e maximization
hypothesis on the set of parameters ([Trij], c:a, %%L—) directly
relevant to comparative statics are incorporated into our primal
approach (by Proposition 1), the primal-dual second order condition
for any particular y must already be included in some version of our
model.Thus inclusion of the primal-dual second order cond.itions in
our quantitative comparative statics model does not appear to be
useful.

In order to formulate a meaningful dual approach we need to impose
some regularity conditions on P, e.g., we can define the primal problem
maximizeX m(x;a)' = aoﬁ(x) - i)_:1ocici(xi) . . . . (PY)
The structure of P'indicates the possibility of non-competitive behaviour in
the firm's produtt and factor markets and also assigns a ‘special role to the
parameters o similar to that of (p,w), i.e., a change in oci leads to an equi-
proportional change in revenue over all activity levels (i=0) or to an equi-

proportional change in the cost of factor i over all activity levels (i # 0).

The dual profit function for P' can be defined as

ma) = {all (maxx{ﬂ(x;a)'};oc): aE Po}

0 N+1

where o is defined over a subset P~ of R for problem P'. Then m(a) has
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the same properties as in the competitive case: m(o) is linear homogeneous
and convex in a, non-decreasing in cxo, non-increasing in oc'(i £0), and

continuous in o. Linear homogeneity and convexity imply relations between
*

comparative static effects g:‘

However, we shall show that these relations already are incorporated into

and potentially observable data for P'.

our primal approach.

First, we shall consider the comparative static implications of linear
homogeneity given appropriate assumptions about differentiability. By
Euler's theorem, m(a) linear homogeneous in o implies that

N i

ma) = I i (o) «a . . .. a(g)
i=0

Since (g) is true for all a,

N .
= .. .o . i = coe
Tl = iEO Ty gila) = o +m;(a) j=0,<+,N
or equivalently
N i
iioﬂaiod-(oc) ca =0 j=0,*<,N . . .(h)

By P' and the generalized Hotelling's Iemma,23 (h) is equivalent to

23By P' and Samuelson's envelope theorem,

m0(e) = R(x*) and m(a) = Jid%y (¢ 0.

This can be called a generalized form of Hotelling's lemma.
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N N j* X

T R.(Z é—"—%oﬂ) =0

j=1 Jiz0 3«

*

. N i .
c! (Z _BL_TL_G')_G‘I) = 0 j: ’oo-'N .
Jiz0 sa

which is already incorporated into our primal approach for a problem P'.
For practical purposes, condition (i) exhausts the comparative static
implications of linear homogeneity for ( a).zu

Second, we can easily show that the comparative static implications
of convexity of m(a) also are already incorporated into our primal approach.

Convexity of m(a) is equivalent to the restriction

Mo = [TTOLi oJ] positive semi-definite N 5 )

where, by P' and the generalized Hotelling's lemma,

i*

X .
m0j = Z R.(x*) - j=0,°+¢,N
R S 3
(k)
TR i*
i i X . .
'ITi.' = C»'(x ) - |:1,°",N ]=0,'°°,N
a'ol i 5o
24 . . . . K. .
Differentiating (i) with respect to o yields
j* N .2_j* .
aXK(OL) + 3 ix f(a) al - 0 i=1'...'N K:O"..'N.
da i=0 3a da
: 2 *
Unless we wish to incorporate relations between a——.x—(—.a—) and potentially
aad

observable data into our model, these conditions are irrelevant.
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C s
and T =T i j, ocOR.(x*) = a'c'(x' ). Since the relations between the
aal ala i

variables included in (j)-(k) are defined exactly by our general primal

apprbach, these implications of convexity of n(a) already are incorporated

into our model.
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APPENDIX V

PARTIAL SOLUTIONS FOR THE MAJOR DIFFICULTIES WITH
THE PROPOSED METHOD OF QUANTITATIVE
COMPARATIVE STATICS

1. Introduction

The two major difficulties with the proposed method of quantitative
comparative statics concern the identification of a global solution and the
incorporation of a reasonable number of inputs and outputs into the model.
Partial solutions for these overlapping problems are suggested here.1
First, given an algorithm that is reasonably effective in finding local
solutions for a quantitative comparative statics model, we can-tentatively
conclude that there are "relatively few" feasible values for z(§i1) that
are outside of the observed range. This observed range forleng an

(X-Y) % confidence-Bayes interval for 2(2(—) when the constraints
dalt

L U
P

IA
©
IN

P

form an X% confidence-Bayes interval for the observable parameters p,
and it becomes approximately an X% confidence-Bayes interval for

z(é-)—(—) as the search for feasible solutions becomes sufficiently detailed.
dal
More precise estimates of confidence-Bayes intervals for observed ranges

of feasible z(-E-)—x—) depend largely upon the ability to approximate random
dal
sampling of the feasible set.

: The content of this appendix was briefly alluded to in Section
3.4.4 of Chapter 3.
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Second, computational difficulties increase exponentially with
the number of inputs included explicitly in a quantitative comparative
statics model; so procedures for aggregating such models within and
across enterprises are presented here. These aggregation procedures
generally lead to some error in characterizing the disaggregate model :
correct aggregation of inputs within an enterprise depends on
satisfaction of appropriate Leontief separability conditions or fixed
factor proportions within the disaggregate enterprise, and correct
aggregation across enterprises depends essentially on exogenous
marginal factor costs for each enterprise. The aggregation procedures
suggested here are shown to have certain optimum properties. In addition,
aggregation errors can be crudely estimated by observing the effects

of aggregation errors in small models.

2. Local versus Global Solutions for the Model

The feasible set for our quantitative comparative statics models

(a) maximize Z(B_X) (b) minimize z(a—x-)
dalt dalt
subject to G(BL, p) =0 subject to G(E-)-(—),p) =0 . ..(1)
dal 3ol
pLépépu .DL§p§DU

is not convex due to the nonlinear (quadratic) equality constraints

G(a—)f-l, p) = 0. Therefore there may not be a guaranteed procedure
aa
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for ob_taining a feasible solution to either of these problems, and many
local solutions may not be global solutions to these problems. Moreover,
these problems (1) apparently cannot be transformed into concave and
convex problems (respectively) .2

However, this inability to identify global solutions is not in
itself a serious pr:oblem for our model: the stochastic nature of the

constraints on p implies that the range of feasible z does not in general
3 X

dal
following procedures, if properly implemented,can lead to results that

span the entire population of "true" values for z( Thus the
are almost as satisfactory as globa}l solutions: (a) calculation of a large
number of local solutions by means of an algorithm that is reésonably
effective in finding feasible solutions, and (b) estimation of the confidence-
Bayes level for the observed range of feasible values of z(a—xi). These
problems in computational methods and statistical inferenceaaoi'e
considered briefly in the following two sections.

We shall see that (a) and to a lesser extent (b) can presumably
be accomplished somewhat satisfactorily at present. First, many local

solutions can probably be calculated at reasonable cost for models

specifying only a few inputs.3 Second, an upper bound can easily be

A 2See a discussion of geometric programming and related methods
(Avriel, 1976).

3 As will be discussed in Section 3, large multi-input comparative
static models can be aggregated into models with a small number of
inputs.
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placed on the confidence-Bayes level of the observed range of feasible

z(iﬁi . and it can be stated that the confidence-Bayes level approaches
thiasaupper bound as the number of observed feasible solutions increases.
However, more accurate estimation of this level seems to require further

development of procedures for approximating a random sample of the

feasible set for (1).

2.1 Algorithms for Calculating Solutions to the Model

In attempting to solve an optimization problem that is subject
to constraints, the original problem can either be re-cast as an uncon-
stfained optimization problem (by incorporating constraints into the
objective function as penalty functions)u.or handled directly as a con-
strained problem. Examples of these two methods are the exact penalty
function routine of Fletcher (1973a,b) and the generalized reduced-
gradient algorithm of Abadie and Carpentier (1969), respectively. The
generalized reduced-gradient method was found by Colville (1970) to be
the most effective of the methods tested in handling nonlinear equality
constraints, and the more recent exact penalty function approaches seem

likely to be more effective than reduced gradient methods.5

uFor example, from the problem "maximize g(x) subject to
h(x) = 0" we can construct the unconstrained problem "maximize
g(x) - wh(x) " where w is a positive constant. For an appropriate choice
of w, these two problems have identical solution sets.

5See Avriel (1976), Chapter 12.4-6.



332

In order to obtain some idea of the ability of these methods to
analyze optimization problems of the type formulated here, a generalized
reduced-gradient algor'ithm6 was applied to two and three input models

of the firm.7 The results indicated the following:

(a) as expected, the reduced-gradient algorithm was at times
unable to locate a feasible solution and in general would
not locate a global solution in a small number of runs,
and

(b} nevertheless, a large sample of local solutions can be
obtained for these simple problems by making a signifi-
cantly larger number of runs with different starting

points. 8

2.2 Approximations to Confidence-Bayes Levels for the Observed
Range of Feasible z(_a_x__)

dal

The main points of this section can be summarized as

(a) the X$ confidence-Bayes level of the constraints on p is
an upper bound on the confidence-Bayes level for the

observed range of feasible z,

6See Wales (1977).
7These are similar to models that were presented in Section 3.5
of Chapter 3.

8These runs can differ in terms of either the specified starting
value of endogenous variables and / or an auxiliary constraint

9 X IX ¥ C e
z(—) 2 z(—) +¢ (for a maximization problem 1a), where
d3at . 3al

*
z(é—)-(—) is the largest of the feasible solutions previously observed
dal (e> 0).



) 333

(b) a Chebyshev lower bound on the confidence-Bayes level
for the observed range of feasible z(a—x) can be estimated
dal
from the sample mean and variance,
(c) this confidence-Bayes level can be estimated with consider-

able accuracy from a random sample of the feasible set for (1),

and

(d) random sampling of the feasible set for (1) in a subspace of

{(p, [Trij],z)} can often be very crudely approximated, but
further research towards devising closer approximations is

advisable.

Statements (a)-(d) can be elaborated upon as follows.

As the sample of local solutions for z(iii) increases, the confidence-
Bayes level of the observed range for z(a—xl) o approximates more closely
the X% level of the constraints for proble?noé (1).9 Thus an upper bound
of X% can be placed on the confidence-Bayes level of the observed range for
z(-a—x-i), and this upper bound is approached more closely as the size of
thz 0stample of local solutions for problems (1a) and (1b) increases.

In addition, given either a random sample or a sufficiently large
sample from the feasible set for (1), a likely lower bound on this confidence-

Bayes level can be calculated from the Chebyshev inequality :Chebyshev

Inequality. If X is a (univariate) random variable with mean UX and

9See Section 5 of Appendix 3.
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standard deviation Ox’ then

P(|X-u | <ko) 21-L1

k2
where

P( [X—uxl 2 kox) can be restated as "the probability that a random
observation of X will be within k standard deviations from the mean."
This use of the Chebyshev inequality can be elaborated upon as follows.
An unbiased and consistent estimator of the Chebyshev lower bound on
the probability distribution of the observed range of z(—a—x—l) within the
feasible set {(p,[ﬂij],z)} for (1) ?an easily be obtained Bfl?'tom a random
sample of this feasible set. In the case of non-random sampling, this
estimator is consistent but biased.10 Finally, the probability content
of the true population of (p,[ﬂij],z) seems likely to be much more con-
centrated around its mean than is the uniformly distributed population

of feasible (p,[nij],z) that is implicit in (1); so it seems reasonable to

assume that

.(2)

105ince E( |X-0, |- ko,) = |X-u,|-ka,, where E denotes the
expectations operator and u,, o, denote the usual estimators of u_ and
o, which are unbiased under random sampling, the corresponding
eStimator of the Chebyshev lower bound is unbiased given random sampling.
Since a function of consistent estimators is also consistent, and the usual
estimators of uy and oy are consistent even for non-random sampling
(Goldberger, 1964, pp. 118-19, 128-30 and 142-46), this estimator of the
Chebyshev bound is always consistent.
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where T and M designate statistics of the true and model populations,
respectively. In sum, given either a random sample or a sufficiently
large sample from the feasible set for (1), we can easily use the
Chebyshev inequality to calculate a number that can be interpreted with

considerable confidence as a lower bound on the confidence-Bayes level
of the observed range of feasible z(a—x) .
dal
However, in general we cannot determine a sample size yielding
an interval of z(é-x—-l) with a confidence-Bayes level that is likely to
approximate the Engper bound of X%. Moreover, the Chebyshev lower
bound may considerably underestimate the corresponding confidence-
Bayes level, and this lower bound does not in general approach the true
level as the sample size increases. Thus knowledge of the upper bound of X%

and of Chebyshev lower bounds is unlikely to define the confidence-Bayes

level of the observed range of feasible z(a—x—l) with much precision.
ga

On the other hand, considerably stronger results can be obtained
from a random sample of the feasible set for problem (1). First, suppose
that knowledge of only the ranks of observations of z(ix—l) within the
samplle is used in estimating confidence regions. Denc?tz the cumulative
probability distribution for z that is implicit in the model (1) as F(x)™,
and denote the "true" cumulative probability distribution as F(z)t. Then
the probability that the observation zL in a random sample of n obser-

vations exceeds the smallest 95% of the model's probability content for z

can be calculated simply as follows:
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P(E(zH™ > .95") = 1- .95"

where .95" is the probability that all n observations are in the smallest

95% of the probability content. More generally,

P(F(zH)™ > q) = 1-q"
. .(3)
S,m _ n
P(F(z2)™ < 1-q)= 1-q

where z'S is the smallest observation in the sample. In addition,
PFEH™ > g, F)™ < 1-q) = 1-2q"-2n(1-q)q"™ ' . . .(4)

where n(l—q)qn—1 is the probability that exactly n-1 observations are in

the smallest (largest) 95% of the probability content.”

The true population of (p,[nij],z) is more likely to be bunched
about its mean than is the uniformly distributed population of (p,[ﬂij],z)
implicit in the model; so Equations (3)-(4) provide estimates of lower

bounds on the "true" confidence-Bayes levels for zL and zS.

To be more
precise,

P(F(zH)Y > g-

Y4

(1-g™

P(F(2)! < 1-q+a) > (1-qM)
.(5)

P(F(zD)Y > q-a, F(zs)t < 1-g+a) 2 1—2qn—2n(1—q)qn_1

q is "large" (e.g., §<q < 1)

‘ ”For further discussion of the use of the binomial distribution in
calculating confidence limits for ranks in a random sample, see Bradley

(1968), pp. 186-91.
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when the constraints DL £p £ DU define a 100(1-a) % confidence-Bayes
interval.

Thus random sampling of the feasible set for (1) is the critical
assumption in estimating (with any precisio'n) confidence-Bayes levels
for the observed range of feasible z(a—x1 . Unfortunately, such random
sampling cannot be done directly, ang O;here doe; not appear to be any
method of testing an algorithm for such properties unless the feasible
set of the particular problem is known a priori. These two statements
can be explained as follows. First, direct random sampling of any
subinterval of elements (p,[nij],z? of the feasible set for (1) would
involve random sampling of the set {(p,[ﬂij],z]} enclosed in the correspond-
ing subspace (of feasible and non-feasible points) and calculating the
subset of feasible points in this sample. However, the number of
feasible points usually will be an infinitesimal fraction of the elements
in the subspace, i.e., a feasible point is unlikely to be found by such a
non-directed search procedure. Second, random sampling of the
population of z(—al) that is implied by the feasible set for a problem (1)

dal
consists specifically of

(a) independent draws of the feasible set, where

3_)_(_] being drawn such that
dal

a <z £<b is equal to the frequency of occurrence of

(b) the probability of a z(

this range of z in the feasible set.

Only condition (a) can be tested in the absence of knowledge of the feasible

set for the particular problem (1); but it is property (b) of random



338

sampling that is of direct interest in the analysis of a problem (1).
Nevertheless, we can at least devise a method for rejecting the
hypothesis (b) and also a crude means of more closely approximating
condition (b}. First, randomly select starting .points for the algorithm
and test for condition (a). If an independent sample of starting points
does not lead to an independent sample of feasible values for z(a—x—1 .
then the algorithm is in some sense "biased" in its selection of e?eaments
from the feasible set. In this manner, condition (b) can be rejected
along with condition (a) .12 On the other hand, random sampling of
starting points plus independent draws from the feasible set is
insufficient to establish condition (b). Condition (b) generally requires
thatn the set of starting points and the set of feasible points be dis-
tributed over the subspace in roughly the same manner. However,
several procedures can be suggested for improving upon a random sample

of starting points. For example, feasible solutions to (1) would generally

be obtained by calculating global solutions (G? = 0) to the problem

M .
) g'#. o]z ... .(6)
isp 00

subject topL S p s

tH

minimize G?2

and the number of non-global local solutions to (6) (G2 > 0) that are
obtained prior to a global solution should be loosely related to the

frequency of feasible solutions to (1) in the vicinity of the starting

12Methods of testing for independence in sampling of the feasible
set, viz., means of rejecting condition (b), are discussed elsewhere. For
a relatively powerful class of tests, see Blum et a/. (1961). For simpler but
less powerful tests, see Bradley (1968), pp. 73-76, 83-84, 87, 91-96.
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point. Thus a more appropriate set of starting points may well be
obtained by dividing the subspace into various regions and selecting the
number of starting points within each region in accordance with the ease
of obtaining feasible solutions from various randomly selected starting

points.

3. Aggregation Procedures for Quantitative Comparative Static Models

The discussion in Section 2 suggests that there are not any serious
computational problems with our quantitative comparative statics model if
a reasonably large and approximaiely random sample of feasible solutions
can be identified. However, the size of the model increases exponentially
with the specified number of inputs and outputs, and current algorithms
apparently cannot obtain feasible solutions at low cost for models with
many nonlinear equalities.

In this section, it is shown that the size of comparative static
models can often be reduced most effectively by the application of
Leontief and Hicks-type aggregation procedures. We present a method
for aggregating models (1) over inputs that has certain optimal properties
and we suggest a means of crudely estimating the errors that arise from
this method. In addition, it is shown that similar procedures can be

applied to multiple enterprise models.
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3.1 Aggregation of Inputs

Here we outline a procedure for using small models (1) in order
to estimate comparative static effects fér larger models of a single enter-
prise firm employing many inputs. This will be the optimal aggregation
procedure whenever the firm's disaggregate objective function n(x;a) can
be exactly or approximately described in separable fqrm. Otherwise,
errors in estimating comparative static effects from aggregate models may
be significant. Nevertheless, a rough idea of the biases associated with
such aggregation procedures presumably can be obtained by comparing
comparative static results for disaggregafe and aggregate small
models.

The essential problems in aggregation of inputs for comparative
static models (1) can be illustrated as follows. Suppose that our
knowledge bf the structure of a firm's static maximization problem and of

related comparative static effects enables us to formulate the constraints

1a
D
[TT..D] dx_ . 0
V7 aal :
0
D . ..
[Trij 1 negative definite e .. o (7)
APkP =1, APLP -0, ...

LD ~UD
o £ p Sop

IA
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for a large disaggregated model (1). If sampling of the feasible set

for (7) is very expensive, then it may be wise to transform (7) into a

more aggregated set of constraints

1
clal
A BxA
[m. '] = 0
L .
0

['nijA] negative definite

.(8)
A A _ A A _
AK" =1, A”.L11 = b, ee
LA A
P sp sV
‘and to calculate feasible solutions for (8) rather than for (7). From the
structure of (7) and (8), it can be seen that aggregation of inputs
implies
(a) aggregation of elements in
D D 3D
([TTU ]I A ’ A-l-l.l"') -(9)
into matrices
(I, Al AR, AR L) . .(10)

and

(b) aggregation of elements in
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K™, Lo, .0 ,p ) e (1)

into matrices and vectors

KA, LA, .. oA, LUA)

Thus the central problem in aggregating a comparative statics
model (7) is to find methods for calculating (10) from (9) and (12) from
(11) that lead to minimum error when comparative static results are
obtained from the corresponding aggregate model (8) rather than from
the "true" disaggregate model (7)'. Since possible "true" structures
TT(X,'OL)D and aggregation procedures are both infinite in number, this
is an impossible task.

However, the prbblem becomes manageable if we assume that a
reasonably effective aggregation procedure exists, i.e., if we restrict
our attention to the case of "true" structures 7 (x;oc)D that can be
expressed approximately in separable form by an appropriate choice
of aggretation procedure. In particular, suppose that we identify
conditions under which (7) can be exactly or approximately described
in a form (9), and suppose that these conditions define (10) from (9)

and (12) from (11) in such a way that (10) and (12) are consistent.13

13Since KAA characterizes AA just as K'D characterizes AD, etc.,
the aggregation procedures (a) and (b) must define identical sets of
aggregate inputs.

.(12)
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Then an aggregation procedure with the corresponding optimal property
has been identified: these conditions minimize or approximately minimize
errors in aggregating a given model (7) when there exists an aggregation
procedure leading to zero errors or relatively small errors. Here we
shall develop such a procedure.

In order to transform the disaggregated matrices (9) into (10},
each of various subsets of inputs can be aggregated into a "conditional
revenue" function, and these revenue functions plus any remaining

o1t will

disaggregate inputs can be treated as the set of inputs in (8) .l
be shown that this procedure is exactly or approximately correct when

TT(X;OL)D can be exactly or approﬁcimately specified in separable for'm.|5

1uAlternatively, expenditure functions ZC'(x';cx') could be used

as aggregators. Neither approach appears to have a significant advantage
over the other. Conditional revenue functions are employed here in order
to facilitate discussion of the critical assumption in aggregation:
separability of R(x).

51¢ R(x) is non-differentiable and exhibits fixed factor propor-
tions within various subsets of inputs, then each of these subsets can be
correctly treated as an aggregate input. The corresponding aggregator
functions can be defined as "conditional revenue" functions in the manner
discussed below, or each can be defined more simply as the activity level
of any one input in the particular subset.
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The matrices (9) directly describe properties of the firm's objective
function m(x;a) in the neighbourhood of X*, i.e., these matrices are
combinations of elements of the Hessian matrix [Trii(x*)] and of the
associated marginal factor costs. Therefore (9) can be correctly
transformed into (10) only if n(x;a) satisfies appropriate conditions for
all x in a neighbourhood of x*. These conditions can be developed as
follows. First, it has already been noted that, given twice differen-
tiability of R(x), there exist functions f and g such that |

+1 N

R(x) = f(g(x?, +=+,x9),x9%", «ee, x™) . .. .(13)

*
for all x in a neighbourhood of x

if and only if
R.(x*)
5| —— |/ axK = o0 ...
R.(x*)
J for all i,je{1,+-+,g} and
k e{g+1,++-,N}
where
R.(x*) # 0 (i=1,++,N). 16

In addition, given twice differentiability of R(x), (13) will be
closely approximated if and only if {14) is closely approximated.17 Thus

R(x) is approximately separable if and only if the appropriate Leontief

16See Section 3.2.2 of Appendix 3. .

17This statement is established, with minor qualifications, in
Fisher (1969).
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conditions are approximately satisfied. Moreover, this aggregator
function can be defined as the following "conditional revenue" function

' * *
g = R(x2, «++, x9; x9* ) ---,xN ) . .. .(15)

without loss of generality.18 Thus, denoting (x?!, +++,x%) = X9 and
(xgH, oee, xN) = Xh , given twice differentiability of m(x;0a), there exist
functions f, g, Cand g such that

h;on) . . . .(16)

nx;a) = f(g(x9), x™M - cgx9, x
for all x in a neighbourhood of x* if and only if (14) is satisfied, where g
satisfies (15) and a = g without loss of generality.lg Likewise, (16) is
closely appr(;ximated if and only if (14) is closely approximated where g
satisfies. (15) and g = §

Given these necessary and sufficient conditions (14) for correct
or approximately correct aggregation of (9), we can derive the structure
of the matrices (10) and the relation between maximization conditions in

the two models. First, elements of (10) are related to (9) as follows:

18See the proof of Theorem 1 in Leontief (1947).

19The statement "§ = g in a neighbourhood of x* without loss of
generality" can be justified as follows.

N i
C = ) cl(x;a)
i=1
implies that there ﬁlways exist functions a and g sych that

(a) C = &J(x9),X";a) for all x.  Since (€, (g(x97), xh*,0)1 can be
constructed from (a), there always exists a C such that g can be defined

as g in a neighbourhood of x*.
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(b)

(c)

(d)

where

%
R = R(x1,--',xg; x9*1 ,re X )
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RRA = TTijD /c:D . c;D for all i, je{1,+-,9}
A _ D, iD .
Ter = 'rrll /ci for all i {1, ,g} and
j e{g+1,-+<,N}
_ A .. .17
ijA = ﬂijD for all i,j é{g+1, eee, N}
RA
R - 1
A _ P for all i € {g+1,+++,N}

N*. 20,21

If direct constraints on elements in [TrijD] that correspond to the aggregated

inputs (1, +++,g) are excluded from the disaggregate model (7), then con-

straints of the form (17a-b) would have to be included directly in the

Relations(17 a-c) are derived in the proof of Proposition 2, and

(17d) follows from ch = fg in (10) and fg =1 given (13) and (15).

™ T Bxl c‘I *
{11 1R ] oal | _ [ 10(.1] 3R _ aR(xz*,---,xN ; x1¥%)
™R "RR’ 3R o ) a3l 5ol

. . . N
in the case where a single conditional revenue function R = R(x?2,s¢¢,x ;x*

A, 09X B 10}
. ]

1) 3 0.1

1Given (17), the aggregate relations

A c1

0 are to be interpreted as, e.g.,
0

La ol

1x

is defined.

)
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aggregate model (8). On the other hand, in the absence of such con-
straints on [ﬂiiD], aggregate elements of the matrices (10) need not be
defined directly in the model in terms of their subaggregates in (9).
Several aggregators of the form R(Xg;Xh*) probably should be employed
in transforming (7) to (8). In general, the subaégregates X9 of these
aggregators should not over'lap.22

Second, including the restriction ['rrijA] negative definite in (8)
rather than the corresponding disaggregate c_ondition does not lead to
any relaxation of the comparative static restrictions implied by the maximi-
zation hypothesis, provided that ['rrijD] also satisfies the appropriate
separability conditions. This matter is stated more precisely in Pf'oposition
2 (see the following page). Since local comparative statics is undefined
for a Hessian that is negative semi-definite only,23 this proposition implies

that the restriction [TfijA] negative definite is equivalent to the

22Overlap in the sets of aggregated inputs X91, ng, places con-
' ‘ A, .. po1,y91.,h1*
1: if R (X7 ;X ),

) denote aggregators for an aggregate function

siderable réstrictions on the structure of [..
r2(x92,xN?*), r3(x93,x"3* '
rRLRZLR3, XM 0)? where xM = x9'ux92ux93, then X9'NX92 # null set
R1R1A = nRszA, TrleA = TrszA for all j ¢ X91UX92, and

x9' N x93 # null set => moaps™ = 1o g o™, moa A w5 A for al | £x9Myx93,
If two disaggregate matrices 'A'”D, Z\VZZD-t"reat injputs x9;1,x92, respectively,

=>T

as fixed and XgIé'ng, then these matrices can be a‘ggregated without
imposing the above restrictions by employing the following aggregators:

* *
R' = R(x9'. xP1), R? = R(x93; x"3%) where x93 = x9%2 nx9'.

235ee Section 2.1 0of App.endix 3.
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implications of the maximization hypothesis for the disaggregate

model in the case where [TTijD] satisfies the intended Leontief
conditions.

In sum, the above analysis has demonstrated the following:
aggregate matrices (['rrijA], AA, 'K”A:.,.)(IO) can be correctly defined or
approximated (as above) —and [TTijA] negative définite is equivalent to or
approximates concavity of T'r(x;cx)D at x* —if and only if T\'(X;OL)D approxi-
mates Leontief conditions for separability. Next we shall show that

correct aggregation of the matrices and vectors (KD, L”D, vee, OLD p'UD)

(11) is always possible, and we shall present such an aggregation procedure.

Proposition 2. Suppose that n(k;oc)D = ﬂ(g(Xg), Xh;cx)A in a neighbour-
hood of an interior maximum x *(o) for some functions n(g,Xh;a)A
and g, and that TT(X,OL)D is twice differentiable. Then
(A) [Trij(x*(cx);oc)D] is negative semi-definite only, i.e.,

N N D, i S
Iz [Trii(x*(oc);oc) ldx'dx’ £ 0 for all dx and = 0 for a

i=1j=1 dx # 0,24‘ and

(B) [Trij(x*(oc);a)D] negative semi-definite only

* *
'<=>['rrij(g(Xg ), Xh ;a)A] negative semi-definite.

2uStatement A of the proposition implies that local comparative
statics is undefined at x* for a disaggregate n(x;a)D that exactly

satisfies Leontief conditions for separability at x* (see Section 2.1 of
Appendix 3},
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Outline of Proof.

Differentiating (16) with respect to all N inputs under the
N L.
conditions (14), g= g and C = & ci(x';oc') yields
i=1

nx;0® = fR(x9;xM),xP) - c(r(x9;xP),xM; )
P = (fou-Cun)R.R. + (fu-Cyo) R i je{l, e.q)
ij RR™ “RR’ Ri%j ¥ YRTERI Ry At
= T\’A ci cj since R =ci and f, = C, at x*
RR i €] i =S R~ CR
P = (fy, - Co) R, i €1, --+,g), jedg+l, oo N}
ij R Ri i ’ ,g I] g 7 I3
A
= TRj S
nl = g A i,jelg+1, -, N}

which in turn yields (17a-c). For simplicity let N = 3 and (without loss
2 3 1%

of generality) define g = R(x",x7;x ). Then
3 3
(a) SD = I I TT..DV.V. < 0 for all (v1, Vo v3)

i=1j=1 V')

at an interior solution x*, By (17a-b},

D A 2 A
TT.” v1 +2’IT1R

1

2 3 A, 2 3
v,+Cov. )+ (c2v2+c3v3)

(b) S 2°2 "3°3 'RR

vl(c

at x*.
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Thus SD = 0 for some v = (0,v2,v3) £0, i.e. [nij(x*)D] is negative semi-
definite only (Part A of Propbsition 2). By (a)-(b) and (u1,u2) =

2 3
(vq, cyv, +e3va)

+ 27 u.u u

A 2 A . A 2
T11 Y 1R %Y2 " TRR Y2

<0 for all (u1,u2) at x*

which is equivalent to ['TTijA] negative semi-definite at x*. Thus [Trij(x*)D]
negative semi-definite only <= [nij(x*)A] negative semi-definite (Part B

of Proposition 2).[]

Since the aggregate matrices (KA,L”A, «++) are to be used in

D

Jeee)

specifying restrictions on (AA,Aﬂ, ee+) in the same manner as (KD,L11
DL D
A

be employed in defining (KA,L11

,***), the same aggregator functions must
A
]

specifies restrictions on (A

A ) AA, A”A'.“).

, ***) as in defining ([1Tij
Thus (11) must be aggregated into (12) in terms of the conditional
revenue functions employed in aggregating (9). However, for the purposes
of aggregation there is one significant difference between (9) and (11):
the former matrices directly concern the properties of R(x) and
ci(xi;oci)(i =], +++,N) for all x in the immediate neighbourhood of x*(ao),
whereas, the latter matrices directly concern only changes in equilibrium
x* in the immediate neighbourhood of x*(ao) .

The comparative static effects specified in (11) can always be
correctly aggregated in a manner that is consistent with (10}, i.e.,
irrespective of any special conditions (such as separability) on the

disaggregate structure ‘I_T(X;OL)D. This statement follows from the Hicks-

type aggregation theorems summarized in Proposition 3 (on following page) :
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Proposition 3 shows that ﬂ(x; a)D can always be aggregated in terms of
a conditional revenue function R(Xg;Xh*(ao) over equilibria in the
"immediate" neighborhood of x*(oco) provided that the factor cost
schedules ci(xi;ai)(i = 1, +++,g) do not shift or shift equiproportionally.
Thus (KD,L?I, --~,pLD,.pUD) (11) can be aggreéated without error by

weighting the corresponding comparative static effects such that factor

cost schedules within any sub-aggregate shift equiproportionally.

Proposition 3. Suppose that o = (oal, ---,ocg,OLg+1 (B), "*,ocN( B)),

¢l = o'éT(xY) (i =ge1,++5h), and

i . j .
d i .90 . . .
_Bg [ o = 5B / Ocj(l,j = g+1,+++,h). Define
a'G E ((X]I...Id'g)l

G 9 i b s N
mx;a ,B) = R(x) - Zcix;a)- I a(Blc(x)- I cix;alB).
i=1 i=g+1 i=h+1

Denote the maximum of n(x;ac, B) as X* =x*(a),

= 10-0 N g: 1.;0 g h-_— g+1 se e h
ag = (og, cr0 (B, XZ =[x, ee0,xT), X7 = (xT T, eeex),

h+1

n ,---,xN) . Then

X = (x

(A) Tr(x*(ag,B); ag, B) has the asymptotic distribution

h

* ’ . G
f(Rg,R ,Xn (OL(C);,B); ag,B) in B for B Bo and OLG fixed at G
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where
h*

o)
«Q
|

RX9 (09,80 X" (e, X" (ap)

R(xM (©

P
11

,B) Xg*(ao), Xn*(uo)), and

(B) TT(X*(OLG, Bo); onG, 80) has the asymptotic distribution

~ *
f (Rh,Rn,Xg (ocG,BO);ocG,BO) in ocG - a% and B fixed at Bo

where

n _ G

25
R" = ROXV(e%,8), x%(e)), X" (ap).

o .

Outline of Proof.

Part A. The cost minimizing x subject to fixed levels of output and
various inputs is unaffected by equiproportional shifts in the factor
supply schedules for all variable inputs. Thus the set x*(a) for any
B(ocG fixed at ocg') is exactly determined by knowledge of R(x*(qa),
XN*(oc) and of the schedules’ R(x), ci(xi;oc:)) (i=1,¢+¢,N) provided
that AB leads to equiproportional shifts in supply schedules for inputs

(1,+++,h). Thus

25Statements A and B generalize in an obvious manner to the cases
where {x‘, eee,x9} and {xg”, ---,xh} are partitioned into subsets so as to
define multiple aggregators (Rgl,Rgz, -u,Rhl,ha) : f = f( Rgl,Rgz,---,XN*
(O‘S,B), Otg,B) in Aandf = ?(Rhl,ha, °--,Xg* (aG,Bo), XN*(OLG.BO);OLG,B

in B.

o)
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~ * ~
(a) Tm(x*(a)) = M(R(x*(a)), XN (a); o) for some 7 over such AB.26
srR . N g G ..h
Since Fro z Ri 58 in the limit the effects of AX ™, AX and

AXN on R(x) can be separated from each other. Thus (a) can be
disaggregated to yield Statement A of the proposition.
Part B. Statement B can be established in a similat; manner. 0O

The manner of aggregating (11) can be illustrated in terms of

the matrix KA corresponding to an aggregate matrix AA of the simple

form
[ . S
11 1RC 1
TIRC TRERC 1 ... .(18)
1
<, 1 0

c _ 2 N 1% . . A, . -
where R~ = R(x", ¢+, x :X (oco)). Given that [Trij }is negative definite
as well as symmetric, KA exists and is symmetric. Moreover, the form of

(18) implies that

26See Pollak (1969) for a similar treatment of the Hicks Aggregation
Theorem.
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{ 1** 1** 1** W
X /ey X/ mrch 3%
3 38 - 3R
C** c** C**
KAz | =1 e °R__ MFCE oR (19)
oa 58 IR
1**
C**
OR aﬁ 3§
) J
where
x** = x**(g,R) and
c** N . jr*
(a) 8R1 = 3 c; 3"1
3o i=2 da
c** N . jr*
(b) oR = 1 o X . .(20)
Bﬁ i=2 i aﬁ
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a 1** R N a 1** N
X — 1 X 1
(€) 35— /MFCg = I Cigar—/ Cid
Cx ‘ N N ..
3R R _ i jox i 27

The constraints in p'LA Sp < pUA pertaining to elements of KA are con-

structed from disaggregate constraints on elements of KD in the manner

implied by (19)-(20). For example, if

pL pS c! < pU i=1,-+<N
i i i
L ax u
Pos S = S Pgui i=1,ee,N
dat
in the disaggregate model, then
N c** N
L vp:_ "plg+i s 2 = 2 pl.iwi p‘g+i
i=2 dal i=2
constrains element K';\z in the aggregate model. Note that dao! and dR

do not influence the factor supply schedules c(x';d)(i=2,+++,N) and
Y

that we arbitrarily assumed

. i o
ioda b _ . 23d ij=1,000N ... (21

Cid 38 ' Si job 3B j

27Equations (20c-d) can be derived as follows. Since the total
cost of the aggregate input RS(xA;xB) is I ci(xi;d), MFCR(marginal
icA
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in deriving equations (20c-d). Thus, by Proposition 3, defining KA
by (19)-(20) does not lead to any errors in aggregation under any
circumstances.

Finally, it should be re—emphasizéd that special conditions on the

structure 'n(x;oc)D are required for correct aggregation of ([ﬂijD],AD,K11D..)

allbeit not for correct aggregation of (KD,L”D, *»). To the extent that

appropriate Leontief conditions are not implied by the structure of the dis-
aggregate constraints (7) and factor proportions are not fixed, aggregation
of inputs will unduly restrict the confidence-Bayes intervals for comparative
static effects. For example, suppose that AD is incorrectly aggregated

into the form (8). Since we have shown that the set of feasible comparative

static effects

HES
i Bx|

1* c*
9 x SRS _ i
dal

’ =

dal dalt j=2

N
z

are identical in the aggregate and disaggregate models when the disaggregate
model satisfies appropriate Leontief conditions, adding the implied Leontief
conditions to the disaggregate model is equivalent to the incorrect
aggregation procedufe. By the assumption of incorrect aggregation,

these Leontief restrictions would not be redundant additions to the dis-

aggregate model. Thus the feasible set of comparative static effects

27(continued)

ik
factor cost of RS) is )3 c; 8’: (a,ﬁ,xB) = 1 and
icA aR
. i R . :
MECE = 1 ol 352X = s mFcR  where
icA " 3R b
(a) C:ai 2% c; = C]'o:j 3¢ ;e = s for all i,jeA.

38 1% 38
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C*

’

1*
3 X 2R
dalt dal

for the aggregate constraints (8) is more restricted than is implied by the

disaggregate constraints (7). These aggregation errors, albeit less

than the errors obtained by any other procedure for aggregating these

inputs when appropriate Leontief conditions or fixed factor proportions

are reasonably approximated, may be significant: adding the implied Leontief

conditions to the disaggregate model may significantly restrict the feasible

set. Unfortunately, it seems difficult to estimate directly the degree of

approximation to Leontief conditions for separability. 28
However, useful estimates of such aggregation biases for large

models presumably can be obtained from judicious use of small models.

For example, the definition

c* N . i*
z

can be added to a small disaggregate model (7), and a smaller aggregate

1*) .

model (8) can be defined for the aggregator function R® = Rc(xz,- --,xN;x

27 (concluded)

Thus (b) MFC'; = s . Statement (20c) follows from
j* j** i
ﬁ_g_og@_) = I L -g% for all j ¢ B and from (a)-(b). Statement
icA 2da!
c, A* ._B . j* j
(20d) follows from OR"(x” (o(B))ix ") = I X c; ax. -?i and from
| 9B icAjeA 'ad 9B

(a)-(b).

285ee Denny and Fuss (1977).
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The difference between the range of feasible

r

K3 . *
3% ! 3RE
dol 5ol

for these two models defines the bias on the X% confidence-Bayes interval

for

* *
{ax‘ 3RE ]

dal dalt

that is implicit in the aggregation of inputs 2, -;-,N into a single input.
By applying such procedures to carefully selected small models, one can
presumably obtain crude estimates of the biases in comparative static
effects that are implicit in our procedure for aggregating a particular

large model (7) down to a model with a small number of inputs.zg’30

3.2 Aggregation of Enterprises

Thus far our quantitative comparative statics method has been
presented in the context of a single enterprise firm (with one output).
However, many firms consist of multiple enterprises, and comparative
static changes in various outputs méy be of interest. For example, many

users of community pasture in British Columbia have various beef, hay

29The extent to which separability conditions are consistent with
a particular model will vary greatly with the model. Thus the aggregation
bias observed for one model or a series of models can be used only with
great caution as a guide to the effects of aggregating a different model.

30Note that the aggregation bias cannot be estimated by imposing
Leontief restrictions directly on disaggregate models (the modelled Hessian
[mP] would not be negative definite in this case). Moreover, imposing
approximations to Leontief conditions on a disaggregate model would under-
estimate the bias in aggregation: aggregation of (9) to (10) implicitly assumes
exact separability.
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and grain enterprises, and the estimation of comparative static changes
in the number of beef pounds sold is an important part of evaluating
community pasture programs.

The procedures presented in the last section for aggregating inputs
within an enterprise can be generalized to the mﬁlti—enterprise firm with
only minor modifications. For this reason, these methods will not be
detailed here. However, there is one major difference between aggregating
inputs within an enterprise and aggregating over enterprises: whereas,
correct aggregation within an enterprise typically depends on Leontief
conditions for separability that are not easily observed or tested, separation
of multi-enterprise models into sinéle—enterprise models depends essen-
tially on exogenous product and factor prices .

The static objective function for a firm employing N inputs over J

enterprises can be written as

m(x; OL)D = R(x) - Cx; a) ... o (22)
where
— 11 N1 12 NJ
X = (x PR ¢ X PP )
and
N i N i i
(X" ). - ... .(23)

Cix;a) = Z

i=1 j=l

Note that, if the prices of inputs (I, *++,m) are exogenous to the firm,

then C is weakly separable in inputs (x”, ---,xm1,x12, ---,mmk) for any

enterprises (1, +++,k).
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Suppose that

Y Ni) .. (2w

R(x) = é Ri(x ,° 0, X
i.e., that enterprises do not supply other enterprises in the firm. This
implies that R is weakly separable in inputs (x‘j, -‘--,xNj) for any
enterprise j. Thus, given (24), fixed prices for inputs (1,+++,m) and
weak separability of Ri in (xlj\,---,xmj) for j=(1,%++,k), ’lT(X;OL)D is
weakly separable with respect to inputs (1, -+, m) ovér enterprises
(1,+++,k), i.e., with respect to inputs (x”, ---,xmj) for j = (1,-o;,k).

Then the corresponding aggregatdr functions can be defined in the

"immediate" neighbourhood of x* as conditional revenue functions

mj xm+1,j*' Nj*

Rj(x‘lj'...'x ; cee, X ) (]: ]’-..'k)
Thus the aggregation procedures of the previous section can be used to
simplify the multi-enterprise comparative static model.

Moreover, suppose that the supply price of each input (1, «++,N)
is exogenous to the firm and R(x) satisfies (24). Then the multi-enterprise
model can be correctly reduced to J single enterprise comparative static
models.

On the other hand, one or more enterprises may supply other

enterprises in a multi-enterprise firm. Consider the following model:
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R(x) = R1(y1A) + RZ(y2) . R3(y3A)

y1A . le _ y1(X1, y3B)
. ... (25)
y2 - y2(X2,y1B,y3c)
y3A + y3B N y3c - y3(X3)
where
ylA z calf pounds sold
le = calf pounds transferred to yearling enterprise
y2 = yearling pounds sold
y3A = tons of hay sold
y3’B = tons of hay transferred to cow-calf enterprise
y3C = tons of hay transferred to yearling enterprise
Xj =

vector of levels of inputs (1, +++,N) employed in

enterprise j.

The constraints for the corresponding quantitative comparative statics

model can be outlined as follows:

D, o9x _
(@) [Mj 1 5ot = P
3N x3N 3N % 1 3N x 1

where

= 0 for i#k,j#2

1 for i=1, 1+J,1+2)
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1 2 2A

(b) Rip = Rop " VYip
3 _ o1 1A _ o2 . 2A
R3a = Rja "Y3g = Roa " VY3

(c) total differential of (b) with respect to a!

.D] negative definite

(d) [Tri]

( )
1 1 1
Yij Yi,3B Yi
(NxN) (NxT1) {(Nx1)

1 1 1
(ey | Yi.38 Y3B,38 Y3B

(1xN) (1x1) (1x1)

[K] =1, ¢~ e« .« . .(26)

1 1
Yi Y3B 0

(1xN) (1x1) (1x1)

\ 7/

Constraints (26) can be reduced by procedures suggested above
for the multi-enterprise structure (24). lnvparticular, if all enterprises
supplying other enterprises also sell some of their product at an
exogenously-determined price, then the multi-enterprise model (25) is
formally equivalent to (24). In other words, if the opportunity cost of
employing inputs in other enterprises is exogenous to the firm, then a -

firm with structure (25) in effect solves a problem with structure (24).
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1 Model Structure - Peace River Income Assurance Model

The “"standard case" version of the Peace River Income Assurance model
(a short run equilibrium model circa 1975) will be discussed here equation
by equation. A flow diagram of the mdoel is presented in Figure 1, and
the matrix is outlined in Figure 2. In the text, discussion will be
followed by presentation of the corresponding row(s) from Figure,2, by
definition of any activities in that row not defined previously, and by
derivation of any matrix coefficients that are not basic data assumptions
for the model.

1.1 Land Constraints and Activities

Own improved land can be allocated to pasture for grazing, or to
production (plus establishment) of hay, oats or barley.

1) IMLAND1O:
1(OWNPAS10) + T(OWNHAY10) + 1(OWNBAR1O) + 1(OWNOAT10) _ 350 acres
OWNPAS10 - acres of own improved land allocated to grazing for the year
OWNHAY10 - acres of own improved land allocated to hay for the year.
OWNBAR10 - acres of own improved land allocated to barley for the year
OWNOAT10 - acres of own imrpoved land allocated to oats for the year

The best improved land gives the highest yield of oats and barley.

2) BESIMP10:
1(BESOAT10) + 1(BESBAR10) _ 150 acres
BESBARIO - acres of "best" own improved land allocated to barley for
the year
BESOAT10 - acres of "best" own improved land allocated to oats for the
year.

]The one exception to this statement is that activities appearing solely
in the section that calculates labour used in rounding up cattle from
rented range and pasture before the end of the grazing season (Tabour
constraints 18-37 are not explicitly defined here. All activities are
defined in Section3.

2Later equations (land constraint 19, hay and grain constraints 1, 2 and 3)
specify equilibrium distributions of acres in production and acres in
establishment or summerfallow. This is accruate in the long run but not
in the short run. In particular, all home pasture that is reallocated to
hay (due to, e.g. increased access to community pasture) can immediately
enter production, i.e. establishment is not immediately necessary on any
of the new hay land. Since a dollar today is preferred to a dollar tomorrow
(due to possibilities for investment and to a positive marginal rate of
time preference for consumption), this error tends to create a (presumably
slight) overestimation of the benefits of community pasture.
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Leaf 366 is a blank because "366"

was missed in page numbering.



feeding Perlod

Feeding Perlod No.

Manner of Feeding

Labour Perlod

Labour Pertod No.

Labour Supply
{exctuding hired labour)
hrs. /wk.

Labour Use

Table 1,

A, FEEDING CONSTRAINTS

Feeding and Labor Constraints

May 10 J
Nov. } v une | Sept. ) Sept. 15 Oct. 7
1. 2, 3. LN 5. 6.
Ory fed Greazed on pesture Grazed on Grazed on [Grazed on
Dry fed 14 or range pasture pasture, range,[hay aftermath
or range hay aftermath Jor zero-
or zero- grazed
grazed
B. LABOR CONSTRAINTS
Mav. 1 Apr. 7 .21 :
Ap May 10 er ] July 1 Aug. 1 Sept. 1 Sept, 15 Oct. 7 Nov
1. 2. 1. 3. 4, 5. 6, 1. 8. 9.
5 150 75 85 8s 120 120 85 85 85
Cattte feeding [Cattle feeding | Cattle foeding | Cattle feeding [ Cattle feeding |Cattte feeding | Cattle feeding | Cattte feeding |Cattle feedIng [Cattle feeding
and 9 ] and t,! and t,{and t| and g t,]and g .} and t,[and .| and t.jand g
of f-farm or off-farm or off-farm or hay and graln [hay harvest hay harvest hay and graln |hay and grain
custom work custom work, custom work culture harvest, harvest,
calving roundup roundup

Nov, 1|

L9t



368

Acres of "best" own improved land in oats and in barley cannot exceed
total acres of own improved land in oats and in barley.

3) BESOAT10:
1(BESOAT10) - 1(OWNOAT10) < O acres

4) BESBAR10:

1(BESBAR10) - 1(OWNBAR10) < O acres

[AY

In the third and fourth feeding periods: own pasture can be grazed
either by cows or yearlings, and grazing can be substituted between the two
periods.

5) OWNPAS10: .
1(OPASTC13) + 1(OPASTY13) + 1(OPASTC14) + 1(OPASTY14) - 1.15(0OWNPAS10)
< 0 AUM's

OPASTC13 - AUM's of own pasture grazed by cows in feeding period 3
OPASTY13 - AUM's of own pasture grazed by yearlings in feeding period 3
OPASTC14 - AUM's of own pasture grazed by cows in feeding period 4
OPASTY14 - AUM's of own pasture grazed by yearlings in feeding period 4

) _ 4 aum/3 acres tame .75(120 day season)
note: 1.15 120 day season X (third feeding period

+ =125(120 day season)7)1
fourth feeding period

, In the fifth feeding period: own pasture can be grazed by cows and
yearlings, and grazing capacity cannot be substituted to (or from) other
periods. _

6) OWNPAS15:
1(OPASTC15) + 1(OPASTY15) - .25(OWNPAST0) < O AUM's
OPASTC15 - AUM's of own pasture grazed by cows in feeding period 5
OPASTY15 - AUM's of own pasture grazed by yearlings in feeding period 5

o5 = 4 aum/3 acres tame .1875(120 day season)

note: 120 day season  * Tifth feeding period

Own unimproved land can be used only as range.

7) UNLAND1O:
1(OWNRANTO) < 150 acres _
OWNRANIO - acres of own unimproved land allocated to grazing for the year

In the third and fourth feeding periods: own range can be grazed by
cows or'year1ings, and grazing can be substituted between the two periods.

]A]1 derivations of coefficients in the model are presented as transformations
of basic data. For example, the data in this case are (1) 3 acres of pasture
(tame) are required to graze one cow (plus calf) or one yearling over 120
days, (2) the third feeding period consists of 90 days, and (3) the fourth
feeding period consists of 15 days. _
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8) OWNRAN1O:
1(ORANGC13) + 1(ORANGC14) + 1(ORANGY13) + 1(ORANGY14) - .29(OWNRAN10)
< 0 AUM's

ORANGC13 - AUM's of own range grazed by cows during feeding period 3

ORANGY13 - AUM's of own range grazed by yearlings during feeding period 3

ORANGC14 - AUM's of own range grazed by cows during feeding period 4

ORANGY14 - AUM's of own range grazed by yearlings during feeding period 4
note: .29 = 4 aum/12 acres native 75(120 day season)

120 day season X (ihird feeding period

.125(120 day season);o
fourth feeding period

In the fifth feeding period: own range can be grazed by cows and
yearlings, and grazing capacity cannot be substituted to (or from) other
periods.

9) OWNRAN14:
" 1(ORANGC15) + 1(ORANGY15) - .0625(OWNRANTO0) < O AUM's

ORANGC15 - AUM's of own range grazed by cows during feeding period 5
ORANGY15 - AUM's of own range grazed by yearlings during feeding period 5

0625 = 4 aum/12 acres tame . .1875(120 day season)
: 120 day season fifth feeding period

note:

There are upper 1imits to the quantities of range that can be rented
in feeding periods three through five, but there are no constraints on the
manner in which native range is allocated between cows and yearlings.

10) RENRAN13:
1(RENRAN13) < 300 AUM's

RENRAN13 - AUM's of range rented for feeding period 3
11) RENRANT4:

T1(RENRANT4) < 50 AUM's

RENRAN14 - AUM's of range rented for feeding period 4
12) RENRAN15:

1(RENRAN15) < 75 AUM's
RENRANT5 - AUM's of range rented for feeding period 5

13) RENRAD13:
1(RRANGC13) + T(RRANGY13) - 1(RENRAN13) < 0 AUM's

RRANGC13 - AUM's of rented range grazed by cows during feeding period 3
RRANGY13 - AUM's of rented range grazed by yearlings during feeding period 4 -

14) RENRAD14:
1(RRANGC14) + T(RRANGY14) - T1(RENRAN14) < O AUM's

RRANGC14 - AUM's of rented range grazed by cows during feeding period 4
RRANGY14 - AUM's of rented range grazed by yearlings during feeding period 4



370

15) RENRAD15:
1(RRANGC15) + T1(RRANGY15) - 1(RENRAN15) < 0 AUM's

RRANGC15 - AUM's of rented range grazed by cows during feeding period 5
RRANGY15 - AUM's of rented range grazed by yearlings during feeding period 5

There are upper 1limits to the quantities of community pasture that
can be used in feeding periods three through five, but there are no constraints
on the manner in which community pasture is allocated between cows and
yearlings.

16) RENPAS13:

1(RPASTC13) + 1(RPASTY13) < 180 AUM's

RPASTC13 - AUM's of rented pasture grazed by cows during feeding period 3

RPASTY13 - AUM's of rented pasture grazed by yearlings during feeding period 3
17) RENPAS14: |

1(RPASTC14) + 1(RPASTY14) < 30 AUM's

RPASTC14 - AUM's of rented pasture grazed by cows during feeding period 4

RRASTY14 - AUM's of rented pasture grazed by yearlings during feeding period 4
18) RENPAS15: '

1(RPASTC15) + T(RPASTY15) < 45 AUM's

RPASTC15 - AUM's of rented pasture grazed by cows during feeding period 5

RPASTY15 - AUM's of rented pasture grazed by yearlings during feeding period 5

Own and rented acres in hay production provide hay aftermath for grazing
by cows and yearlings in feeding periods five and six.

19) HAYAFT10:
1(HAYAFC15) + 1(HAYAFY15) + 1(HAYAFC16) + 1(HAYAFY16) - .75(0WNHAY10)
- T(RENHAY10) < O acres

HAYAFC15 - acres of hay aftermath grazed by cows during feeding period 5

HAYAFY15 - acres of hay aftermath grazed by yearlings during feeding period 5
HAYAFC16 - acres of hay aftermath grazed by cows during feeding period 6
HAYAFY16 - acres of hay aftermath grazed by yearlings during feeding period 6
RENHAY10 - acres of rented land producing hay during the year

note: .75 = 3 acres in hay production_

" 4 acres in hay production plus hay establishment

Up to 50 acres in production can be rented for each of hay, oats and
barley.

20) RENHAY10:
T(RENHAY10) < 50 acres

21) RENOAT10: .
1(RENOAT10) < 50 acres

RENOAT10 - acres of rented land producing oats during the year



22) RENBAR1O:
1(RENBAR10) < 50 acres 371

RENBARIO - acres of rented land producing barley during the year

1.2 Cattle Constraints and Activities

For "standard case" short run and long run models, the size of the cow herd,

the disposition of calves, and the number of calves purchased for backgrounding

are assumed to be the same in the model year as in the previous year and immediately

following year. The effects of such a static "equilibrium" on activities for the

modelled year are simulated by the following aspects of the model:

(1) only one cow numbers activity (COWSRHEF) is defined, and this activity must
be serviced during each feeding and labor period of the model year (see feeding
and labor constraints); '

(2) the proportion of calves born on-farm that are designated as replacement heifers
is fixed at a level that would maintain the cow herd over time, for the assumed
levels of culling and mortality (see cattle constraint 3); and

(3) the stock of calves, born on-farm or purchased, for the yearling enterprises
at the end of the model year must equal the stock of calves for the yearling
enterprises at the beginning of the model year (see cattle constraints 4 and 5).

Notice that none of these constraints (nor cattle constraint 1) fixes the levels

or ratios of (a) calves sold at the end of the year, (b) calves held over for sale

as yearlings in the following year, and (c) calves purchased for sale as yearlings

towards the end of the year. The levéls and ratios of these activities are endogen-

ous to all programming models.

For "standard case" short run models used in the simulation of farm behavior
circa 1975, an additional constraint is placed on cow-calf and cow-yearling enter-
prises: a lower bound is placed on the cow numbers activity (see cattle constraint
1). When binding, this constraint implies a disequilibrium between farm demand and
supply of cows, so that farm supply of cows in the model year exceeds farm demand
in the model year. In this case it may be most appropriate to permit the closing
stock of cows to be somewhat less than the opening stock for the model year (as is

occasionally done).

The rationale for including such a constraint (cattle constraint 1) in a short
run model is as follows. Markets for mature cows (except culls) appear to be sparse
(perhaps because productive capacities of cows are quite variable, and potential
sellers have more information about their cows than do potential buyers). This
implies that, in the short run, the cow herd cannot be decreased as efficiently as
it can be increased; retention rates for heifer calves can be varied more profitably .
than can death rates and culling rates for cows. For this reason, a Tower bound is
placed on the number of cows in this short run model. The "standard case" bound of
40 cows approximates the average number ?f cows on farms in the sample of community
pasture users for the region circa 1975. »2

]Since errors in predicting cattle prices and imperfections in markets for mature
cows presumably will occur in the future, a Tower bound on the cow numbers activity
is also included in some models used in simulation of ‘future behavior.

2Since cows have a productive life of approximately 8 years, and cow numbers cannot

be changed substantially from one year to the next except at considerable cost, the
levels of this capital stock over the modelled year presumably will depend on
anticipated prices for cattle in future years as well as in the modelled year. Thus
the opening and closing cow numbers for the modelled year may be in large part
exogenously determined for a one year model and may not be equal. Changes in cow
numbers within the year, and related effects, are accommodated in various "non-

standard case" (disequilibrium) short run models.
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The "standard case" short run (circa 1975) cattle constraints are as
follows. The number of cows plus "old replacement heifers" (to calve in
year 2) must be greater than or equal to 40.

1) COWSRHEF:
1(COWSRHEF) > 40 cows plus old replacement heifers

COWSRHEF - number of cows plus "old replacement heifers" (to calve in the
next year)

Just before feeding period 5 (Sept. 15) or just after feeding period 6
(Nov. 1), yearlings are sold.

2) OLDYER15:
- .98 (YEAROO11) + 1(YERSAL15) + 1(YERSAL21) < O yearlings

YEAROO11 - number of yearlings at the beginning of the year (to be sold
towards end of the year)

YERSAL15 - number of yearlings sold just before feeding period 5 ‘

YERSAL21 - number of yearlings sold just after feeding period 6

note: .98 =1 - .02

where .02 = mortality rate for yearlings (mortality is assumed to occur on

Sept. 15).

Just after feeding period six {Nov. 1): calves born in the spring are
either sold, held over to be sold as yearlings in year 2, or held over as
"new replacement heifers" (to calve in year three). For the "standard case"
presented here, the ratio of the number of calves designated as new replacement
heifers to the number of cows plus "old replacement heifers" (to calve in year
2) is exogenously determined so as to maintain the size of the cow herd over
year 1.

3) CAFDIS21:
- .64(COWSRHEF) + 1.08(CAFSAL21) + 1.08(YEROWN21) < O calves plus yearlings
CAFSAL21 - number of calves (born in the spring of the year) sold after feeding
period 6
YEROWN21 - number of calves (born in the spring of the year) held over for sale
as yearlings towards the end the following year

. _ |/# calves, _  #new repl. heif. #_cows
note: .64 = |( cow ) - cow ) (# cows + old repl. heif.)
- [0-.15-.02) - (.1+.08(.1)] (1-.1-.08(.1)) = .712(.892)
where .15 = proportion of cows, that calved prior to year one, without calf in
year one

.02 = mortality rate for cows

.10 = culling rate for cows

.08 = mortality rate for calves (including "old replacement heifers")

The number of yearlings at the end of year one must equal the number of
yearlings at the beginning of year one.
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4) YEAR0021:
T(YEAROO11) - 1(YEAR0021) < O yearlings

YEAR0021 - number of yearlings at the beginning of the next year
Yearlings at the end of year one consist of calves raised on the farm

and held over for sale in year two and calves purchased at the end of the
year.

5) NEWYER21:
- T1(YEROWN21) - T(YERPUR21) + 1(YEAR0021) < O yearlings

YERPUR21 - number of calves purchased at the end of the year (for sale-as
yearlings towards the end of the next year)

1.3 Feeding Constraints and Activities

In the first feeding period (Nov. 1 to May 10), hay is fed to cows and
replacement heifers (2.25 tons per animal over 190 days) and yearlings (1.5
* tons per yearling over 190 days).

1) HAYFED11: . :
2.25(COWSRHEF) + 1.5(YEAR0O0O11) - T(HAYFED11) < O tons '
HAYFED11 - tons of hay fed to cows and yearlings during feeding period 1

In the first feeding period, barley is fed to yearlings (7 bushels per
yearling over 190 days). .

2) BARFED11:
7(YEARO011) - 1(BARFED11) < O bushels
BARFED11 - bushels of barley fed to yearlings dur1ng feeding period 1
In the second feeding period (May 10 to June 1) hay is fed to cows and

replacement heifers (.24 tons per animal over 20 days) and yearlings (.16
tons per yearlings over 20 days).

3) HAYFED12: :
.24 (COWSRHEF) + .16(YEAR0011) - 1(HAYFED12) < O tons

HAYFED12 - tons of hay fed to cows and yearlings during feeding period 2.
In the third feed1ng period (June 1 to Sept. 1), each cow and yearling
requires 3 AUM's of grazing from own range or pasture, rented range or
community pasture.

4) COWFED13:

3(COWSRHEF) - 1(ORANGC13) - 1(OPASTC13) - 1(RRANGC13) - 1(RPASTC13) < O AUM's
5) YERFED13:
3(YEAROO11) - 1(ORANGY13) - T(OPASTY13) - 1(RRANGY13) - 1(RPASTY13) < O AUM's
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In the fourth feeding period (Sept. 1 to Sept. 15), each cow and yearling
requires .5 AUM's of grazing from own range or pasture, rented range or
community pasture,

6) COWFED14:
.5(COWSRHEF) - 1(ORANGC14) - 1(OPASTC14) - 1(RRANGC14) - 1(RPASTC14) < 0 AUM's

7) YERFED14:
.5(YEAROO11) - T1(ORANGY14) - 1(OPASTY14) - 1(RRANGY14) - 1(RPASTY14) < 0 AUM's

In the fifth feeding period (Sept. 15 to Oct. 7), each cow requires .75
AUM's of grazing from own range or pasture, rented range or community pasture
or hay aftermath.

8) COWFED15:
.75(COWSRHEF) -1(ORANGC15) - 1(OPASTC15) - 1(RRANGC15) - 1(RPASTC15)
- .63(HAYAFC15) < 0 AUM's

1.25 tons hay __, 1 ton aftermath , 1 AUM
acre 1in hay production © 6 tons hay .33 tons aftermath

note: .63 =

where it is assumed that .33 tons of hay aftermath provides the equivalent of
1 AUM.

In the fifth feeding period, each yearling requires .75 AUM's of grazing
from own range or pasture, rented range or community pasture, hay aftermath,
or must be zero- grazed.

9) YERFED15:
.75(YERSAL21) - 1(ORANGY15) - 1(OPASTY15) - 1(RRANGY15) - 1(RPASTY15)
- .63(HAYAFY15) - .75(YEARZG15) < 0 AUM's

YEARZG15 - number of yearlings zero-grazed during feeding period 5

In the fifth feeding period, each yearling also requires 1.375 bushels
of barley.

10) BARFED15:
1.375(YERSAL21) - 1(BARFED15) < O bushels

BARFED15 - bushels of barley fed to yearlings during feeding period 5

In the fifth feeding period, each yearling zero- grazed also requires .17
tons of hay.

11) HAYFED15:
.17(YEARZG15) - 1(HAYFED15) < 0 tons

HAYFED15 - tons of hay fed to yearlings during feeding period 5

In the sixth feeding period (Oct. 7 to Nov. 1), each cow requires .75 AUM's
and each (weaned) calf requires .375 AUM's of grazing on hay aftermath.
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12) COWFED16: ,
1.01(COWSRHEF) + .375(CAFSAL21) + .375(YEROWN21) - .63(HAYAFC16)

< 0 AUM's
) _ .75 AuM .375 AUM
note: 1.01 = 5% o1d rep.hfr. = calf surviving through
vear 1
(# calves surviving through year 1)(# calves born)
calf born cow
(# COWS )

# cows & old rep.hfr

.75 + .375(1-.08)(1-.15—.02)(1-.1—.08(.1))
(see cattle constraint 3)

In the sixth feeding period, each yearling requires .75 AUM's of
grazing on hay aftermath or zero-grazing, and requires 1.375 bushels
of barley. Each yearling zero-grazed requires .17 tons of hay.

13) YERFED16:
.75(YERSAL21) - .63(HAYAFY16) - .75(YEARZG16) < 0 AUM's

YEARZG16 - number of yearlings zero-grazed during feeding period 6

14) BARFED16: :
1.375(YERSAL21) - 1(BARFED16) <0 bushels

BARFED16 - bushels of barley fed to yearTings during feeding period 6

15) HAYFED16:
.17(YEARZG16) - 1(HAYFEDI6) < 0 tons

HAYFED16 - tons of hay fed to yearlings during feeding period 6

1.4 Hay and Grain Constraints and Activities

Acres in hay production can be harvested in labor periods five, six
and seven (July 1 to Sept. 15), and acres in grain production can be
harvested in labor periods seven and eight (Sept. 1 to Oct. 7).

1) HAYHARIO:
- .75(OWNHAY10) - 1(RENHAY10) + T(HAYHAR15) + 1(HAYHAR16) + 1(HAYHAR17)

< 0 acres

HAYHAR15 - acres of hay harvested during labor period 5
HAYHART16 - acres of hay harvested during labor period 6
HAYHAR17 - acres of hay harvested during labor period 7

2) OATHAR1O:
- .75(OWNOAT10) - T(RENOAT10) + 1(OATHAR17) + 1(0ATHAR18) < 0 acres

OATHAR17 - acres of oats harvested during labor period 7
OATHAR18 - acres of oats harvested during labor period 8
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3) BARHAR1O0:
- .75(0WNBAR10) - 1(RENBAR10) + 1(BARHAR17) + 1(BARHAR18) < 0 acres

BARHAR17 - acres of barley harvested during labor period 7
BARHAR18 - acres of barley harvested during labor period 8

note: 75 = 3 acres in hay or grain production

T 4 acres in hay or grain production plus establishment
Yields of hay and grain vary with the period of harvest and (in the
case of grain) with the quality of land. Hay yields are, e.g., 1.25,
1.00 and 0.75 tons per acre (in production) in labor periods five, six
and seven, respectively. Oat yields on "average" quality own improved land
are 30 and 25 bushels per acre (in production) in labor periods seven and
eight, respectively. Oat yields are 10 bushels per acre higher on "best"
own improved land and rented land. Barley yields on "average" quality
own improved land are 23 and 20 bushels per acre (in production) in labor
periods seven and eight, respectively. Barley yields are 7 bushels per
acre higher on "best" own improved land and rented land. Hay and grain
can be purchased as well as produced, and hay and grain supplies are
either sold or (in the case of hay and barley) fed to cattle.

4) HAYDOO10: : .
- 1.25(HARHAR15) - 1.00(HAYHAR16) - .75(HAYHAR17) - 1 (HAYPUR10)
+ 1(HAYSAL10) + 1(HAYFED11) + 1(HAYFED12) + 1(HAYFED15) + 1(HAYFED16)
< 0 tons

HAYPURTO - tons of hay purchased during the year
HAYSAL10 - tons of hay sold during the year

5) OATDO0010:
- 30(0ATHAR17) - 25(0ATHAR18) - 10(BESOAT10) - T0(RENOAT10) + 1(0ATSAL10)
< 0 bushels ”

OATSAL10 - bushels of oats sold during the year

6) BARDOO10:
- 23(BARHAR17) - 20(BARHAR18) - 7(BESBARI0) - 7(RENBAR10) - 1(BARPUR10)
+ 1(BARSAL10) + 1(BARFED11) + 1(BARFED15) + 1(BARFED16) < O bushels

BARPURT0 - bushels of bar]ey'purchased during the year
BARSAL10 - bushels of barley sold during the year

1.5 Labor Constraints and Activities

Labor constraints within the various labor periods are specified
on a weekly basis. Labor coefficients and right hand sides in general
are derived directly from the data on labor requirements for cattle and
crops and the data on labor supplies (presented in Section4).
Derivations that may not be obvious are presented in
this section. In particular, the equations that calculate cattle roundup
and sorting labor after feeding periods three and four are explained in
detail here.
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In the first labor period (Nov. 1 to April 7, and April 21 to May 10:
25 weeks), feeding and supervision of cows and yearlings requires a fixed
amount of labor (15 hours per week), plus .2 hours per week per cow and
per "old replacement heifer" and .15 hours per week per yearling. The
"variable" supply of family labor (75 total hours per week minus 15 hours
per week of fixed labor) can be allocated to feeding and supervision of
cattle, custom or off-farm labor, or leisure ("surplus" labor), and can be
supplemented by hired labor.]

1) LABROO11:
.2(COWSRHEF) + .15(YEAR00T1) + 1(CUSLABI1) + 1(SURLABI1) - 1(HIRLABI1)
< 60 hours per week |

CUSLAB1IT1 - hrs./wk. of custom or off-farm work during labor period 1
SURLAB11 - hrs./wk. of surplus labor ("leisure") during labor period 1
HIRLAB11 -~ hrs./wk. of hired labor during labor period 1

In the second labor period (April 7 to April 21: 2 weeks), calving of
cows also must be supervised (increasing the variable component of cow
labor requirements by 1.3 hours per week per cow), and the total quantity
of family labor per week available is twice as high as in period one (150
hours per week in period two).

2) LABROO12:
1.5(COWRHEF) + .15(YEAR0011) + 1(CUSLAB12) + 1(SURLAB12) - 1(HIRLAB12)
< 135 hours per week : ’

CUSLAB12 - hrs./wk. of custom or off-farm work during labor period 2
SURLAB12 - hrs./wk. of surplus labor ("leisure") during labor period 2
HIRLAB12 - hrs./wk. of hired labor during labor period 2

Custom or off-farm labor by the farm family cannot exceed 30 hours
per week (and is available only in winter).

3) CUSLAB11:
1(CUSLAB11) < 30 hours per week

]Cattle labor requirements have been decomposed into fixed and variable

components in order to define the marginal labor requirements as less than
the average labor requirements of cattle (and to define the marginal
requirements as approaching the average requirements as the herd size
becomes quite large). However, the specification of a fixed component
(which is subtracted from the right hand side) unfortunately implies that
the model in effect underestimates the labor saving that would occur in
the absence of cattle. This does not impart a bias in favor of cattle to
the model if the labor constraint is not binding; but in this case a dis-
tinction between marginal and average labor requirements is not worth
considering. This "tradeoff" has been accepted here due to, in effect, the
difficulty in modelling increasing returns to scale within a linear
programming framework.
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4) CUSLAB12:
1(CUSLAB12) < 30 hours per week

In the third labor period (May 10 to June 1: 2 weeks), labor require-
ments are identical to those in the first period, and the quantity of
family labor available is 10 hours per week higher than in period one.

5) LABRO013: .
.2(COWSRHEF) + .15(YEAR0011) + 1(SURLAB13) - 1(HIRLAB13) < 70 hours
per week.

SURLAB13 - hrs./wk. of surplus labor ('leisure') during labor period 3
HIRLAB13 - hrs./wk. of hired labor during Tabor périod 3

In the fourth labor period (June 1 to July 1: 4.5 weeks), cows and
yearlings must be inspected on range and pasture (.1 hours per week per
cow or yearling), except on community pasture (where inspection is
.provided by the pasture rider), and land in hay and grain must be cultured.

6) LABR0014:
.03(ORANGC13) + .03(ORANGY13) + .03(OPASTC13) + .03(0PASTY13)
+ .03(RENRAN13) + .11(OWNHAY10) + .11(RENHAY10) + .18 (OWNBAR10)
+ .18(RENBAR10) + .18(OWNOAT10) + .18(RENOATIO0) + 1(SURLAB14)
- 1(HIRLAB14) < 85 hours per week

SURLAB14 - hrs./wk. of surplus labor ('leisure') during labor period 4
HIRLAB14 - hrs./wk. of hired labor during labor period 4

.1 hours per week
cow or yearling

1 cow or yearling

note: .03 = 3 AUM's grazing in feeding period 3

X

11 = <2 _hours per acre of hay cultured
: 4.5 weeks in Tabor period 4

18 = .8 hours per acre of grain cultured
) 4.5 weeks in Tabor period 4

In the fifth labor period (July 1 to August 1: 4.5 weeks) and in the
sixth labor period (August 1 to September 1: 4.5 weeks), cows and
yearlings must be inspected on range and pasture, except on community
pasture, and hay land may be harvested.

7) LABROO15: -
.03(ORANGC13) + .03(ORANGY13) + .03(OPASTC13) + .03(OPASTY13)
+ .03(RENRAN13) + .53(HAYHAR15) + 1(SURLAB15) + 1(SURLABH5) - 1(HIRLAB15)
- 1(HIRLABH5) < 120 hours per week.l |

]In labor periods five through eightshired labor is disaggregated into labor

hired for harvesting (e.g. activity HIRLABH5) and labor hired for other

purposes (e.g. activity HIRLAB15), and surplus labor is disaggregated into
surplus for harvest constraints (e.g. activity SURLABH5) and other surplus
(e.g. activity SURLAB15). Each of these activities represents the average
weekly figure (hrs./wk.) for the entire labor period (e.g. July 1 to Aug. 1).
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SURLAB15 - hrs./wk. of own labor that is surplus ('leisure') during
non-harvesting in labor period 5

SURLABH5 - hrs./wk. of own labor that is surplus ('leisure') during
harvesting in labor period 5

HIRLAB15 - hrs./wk. of labor hired for non-harvesting activities during
“Tlabor period 5

HIRLABH5 - hrs./wk. of Tabor hired for harvesting activities during
labor period 5

note: .53 = 3 labor days 12 hours

15 acres hay harvested, etc. X Tabor day

% labor period 4
4.5 weeks

8) LABROO16:
.03(ORANGC13) + .03(ORANGY13) + .03(OPASTC13) + .03(0PASTY13)
+ .03(RENRAN13) + 53(HAYHAR16) 1(SURLAB16) + 1(SURLABH6)
1(HIRLAB]6) - 1(HIRLABH6) 120 hours per week.

SURLAB16 - hrs./wk. of own labor that is surplus ('leisure') during
non-harvesting in Tabor period 6

SURLABH6 - hrs./wk. of own Tabcr that is surplus ('leisure') during
harvesting in Tabor period 6

HIRLAB16 - hrs./wk. of labor hired for non-harvesting activities
during labor period 6

HIRLABH6 - hrs./wk. of labor hired for harvesting activities during

labor period 6

In the seventh labor period (September 1 to September 15: 2 weeks),
cows and yearlings must be inspected on range and pasture (except on
community pasture), cows and yearlings may be rounded up (and sorted)
from rented range and commun1ty pasture,] and hay and grain land may be
harvested.

: 1Labor requirements for roundup (and, or course, sorting) are considerably

less for cattle on own range or pasture than on rented range or pasture,
and time of roundup presumably is more flexible in the former case (hence
less Tikely to compete with harvesting for labor). For these reasons,
there seemed to be no point in adding the 24 rows and 32 additional
activities needed to calculate roundup requirements from own range or
pasture at the end of feeding periods three and four (see the discussion,
Tater in this section, of activities calculating roundup labor from

_ rented range or pasture at the end of these periods); so roundup require-
ments from own range and pasture are specified only for roundup at the
end of feeding period five.
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9) LABROO17: '
.2(ORANGY14) + .2(0OPASTC14) + 2(0PASTY14)

.2(ORANGC14) + .2 ‘ + .2(RENRAN14)

+ 1(LABRRC17) + 1(LABRRY17) + T1(LABRPC17) + 1(LABRPY17) + 1. 2 (HAYHAR17)

+ .44(BARHAR17) + .44(0ATHAR17) + 1(SURLAB17) + T1(SURLABH7) - 1(HIRLAB17)
< 8

- T(HIRLABH7) 5 hours per week.

"SURLAB17 - hrs./wk. of own labor that is surplus ('leisure') during non-
harvesting in labor period 7

SURLABH7 - hrs./wk.of own labor that is surplus ('leisure') during
harvesting in labor period 7

HIRLAB17 - hrs./wk. of labor hired for non-harvesting activities during
labor period 7 ’

HIRLABH7 - hrs./wk. of labor hired for harvest1ng activities during

labor period 7

note: .2 = .1 hour per week _ 1 cow or yearling

cow or yearling .5 AUM's grazing in feeding period 4
1.2 = 3 labor days X 12 hours % labor period 7
’ 15 acres hay harvested, etc. Tabour day = 2 weeks
.44 = .88 harvest hours per acre grain x labor period 7

2 weeks

In the eighth labor period (September 15 to October 7: 3 weeks), cows
and yearlings must be inspected on range and pasture (except on community
pasture) and on hay aftermath, yearlings zero-grazed must be inspected,
cows and yearlings on community pasture at September 15 may be rounded up,
cows and yearlings on rented range at September 15 and on community pasture
at October 7 must be rounded up, and grain may be harvested.

10) LABR0018: .
.17(ORANGC15) + .17(ORANGY15) + .15(0PASTC15) + .15(0PASTY15)
+ .39(RRANGC15) + .43(RRANGY15) + .11(RPASTC15) + .08(RPASTY15)
+ .1(YEARZG15) + 1(LABRRC]8) + 1(LABRRY]8) + 1(LABRPC18) + 1(LABRPY18)
+ .30(BARHAR18) + .30(0ATHAR18) + 1(SURLAB18) + 1(SURLABHS8)
—.1(HIRLABl8) - 1(HIRLABH8) < 85 hours per week.

SURLAB18 - hrs./wk. of own labor that is surplus ('leisure') during non-
harvesting in labor period 8 :

SURLABH8 - hrs./wk. of own labor that is surplus ('leisure') during harvesting
in labor period 8

HIRLAB18 - nrs./wk. of labor hired for non-harvesting activities during
Tabor period 8

HIRLABH8 - hrs./wk. of labor hired for harvesting activities during

labor period 8

.1 hour inspections/week . .083 hours round-up
cow or yearling - cow or yearling from own range

note: .17 = (

labor period 8) « 1 _cow or yearling
X 3 weeks .75 AUM's grazing in feeding per1od 5




381

- .03 hours round-up . Iy, 1
A5 = (L1 + cow or yearling from own pasture X 3)(. 5)
_ .58 hours round-up 1, 1
39 = (14 cow from rented range X3 ) 75)
_ .67 hours round-up Iy 1
43 = (1 yearling from rented range 3)(.75)
1 = .25 hours round-up ,]0( 1 )
) cow from community pasture V374,75
08 = .17 hours round-up ,10( 1 )
: yearling from community pasture Y370.75
- . labor period 8
.30 = .88 harvest hours per acre grain X 3 weeks

Labor constraints on harvesting appear to be more binding than are
labor constraints in the aggregate periods (or in an "average" week, as
modelled above), since weather typically permits harvesting during only
approximately 60 percent of the days within a labor period. Suppose that
(a) the quantity of labor available (but not necessarily used) at a
particular time during labor periods five through eight is independent
of the harvesting possibilities, i.e. is independent of the variations in
weather that typically influence harvesting possibilities, (b) time and
~duration of round-up from community pasture and rented range are independent of the
harvesting possibilities, and (c) inspection on and round-up from own range and
pasture can be scheduled at times when the weather does not permit harvesting.
Condition (b) holds if cattle typically are not removed from rented range
or community pasture before a closing date (October 7) that is rigidly
enforced. Then the labor constraints for harvesting in labor periods five
through eight can be represented as follows. Note that the quantities of
labor available for harvesting are 60% of the quantities available for
the corresponding aggregate labor constraints, and that the cattle labor
coefficients in the harvesting constraints are 60% of the round-up require-
ments for the corresponding aggregate labor constraints.

11)" LABHAR15:
.53(HAYHAR15) + 1(SURLABH5) - 1(HIRLABH5) < 75 hours per week

12) LABHAR16: .
: .53(HAYHAR16) + 1(SURLABH6) - T1(HIRLABH6) < 75 hours per week

13) LABHAR17:
.6(LABRRC17) + .6(LABRRY17) + .6(LABRPC17) + .6(LABRPY17)
+ 1.2(HAYHAR17) + .44(BARHAR17) + .44(0ATHAR17) + 1(SURLABH7)
- 1(HIRLABH7) < 51 hours per week

14) LABHAR18:
.6(LABRRC18) + .6(LABRRY18) + .6(LABRPC18) + .6(LABRPY18)
+ .02(ORANGY15) + .01(OPASTC15) + .01(0PASTY15) + .15(RRANGCI5)
+ .18(RRANGY15) + .07(RPASTC15) + .05(RPASTY15) + .30(BARHAR18)
+ .30(0OATHAR18) + 1(SURLABH8) - 1(HIRLABH8) < 51 hours per week.
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In the ninth labor period (October 7 to November 1: 35 weeks), cows and
yearlings have the same weekly labor requirements as in labor period one, but
the available quantity of farm labor is 10 hours per week higher in period
nine than in period one.

15) LABR0O19:
.2(COWRHEF) + .15(YERSAL21) + 1(SURLAB19) - 1(HIRLAB19) < 70 hours per week

SURLAB19 - hrs./wk. of surplus labor ('leisure') during labor period 9
HIRLAB19 - hrs./wk. of hired labor during labor period 9

Total hours of hired labor for the year is a weighted (by weeks per labor
period) sum of ‘hours hired per week in each of the nine labor periods.

16) HIRLAB1O: »
-1(HIRLAB10 + 25(HIRLAB11) + 2(HIRLAB12) + 3(HIRLAB13) + 4.5(HIRLAB14)
+ 4.5(HIRLAB15) + 4.5(HIRLABH5) + 4.5(HIRLAB16) + 4.5(HIRLABH6) + 2(HIRLAB17)
+ 2(HIRLABH7) + 3(HIRLAB18) + 3(HIRLABH8) + 3.5(HIRLAB19) < O hours per year.

HIRLAB10 - total hours of labor hired during the year.

An upper bound (of 1500 hours) for a total hours of hired labor is often
specified.

17) HIRLABIT:
1(HIRLAB10) < 1500 hours

Since the seasonal range use patterns on the rented range and community
pastures cannot be predicted with confidence, a number of grazing options have
been included in the model: rented range and community pasture can be grazed
in any combination of periods June 1 to September 1, September 1 to September 15,
and September 15 to October 7.1 Round-up labor at the end of a period is
required for all cattle transferred from or between rented range and community
pasture at the end of that period, and sorting labor is required for cattle
transferred from rented range or community pasture at the end of the period.

The round-up requirements for cows and yearlings on rented range and community
pasture in the first two periods have been estimated in the following manner,

1

This implies 27 grazing combinations for cows and 27 for yearlings. In each
of the three periods there are 3 options with respect to off-farm grazing
(graze on community pasture, graze _on rented range, do not graze of f-farm)
_for both cows and yearlings, and 33=27.

2The assumption that cattle transfers between rented range and community

pasture require farm labor for round-up is not quite accurate for users of

the Sunset Prairie community pasture. This community pasture is the primary
source of rented range for these ranchers, and riders hired by the grazing
association manage to transfer cattle between rented range and community pasture.
However, the services provided by the riders are not a free good; so the use of
‘riders in such a transfer does affect the welfare of members of the association
and should in fact be costed directly within the model. For users at Beatton-
Doig and W.M. community pasture, such transfers in general do appear to require
farm labor for round-up. Sorting labor is not required for such transfers on
the assumption that if any cows (yearlings) on rented range or community pasture
section A are transferred to rented range or community pasture section B at any
time, then all cows (yearlings) on A are transferred to B at this time. This
assumption seems somewhat realistic, and in any case labor requirements for
sorting are minor in comparison to Tabor requirements for round-up from rented
range (which appears to be the more common transfer). .
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Since the logic and structure of the equations calculating round-up
requirements is more complex and presumably less important than many other
aspects of the model, the reader may wish to omit the remainder of this
section on labor constraints and activities.

The approach adopted here consists of constructing four sets of five
equations to calculate the labor requirements for cows and for yearlings
at the end of feeding periods three and four. For example, consider the
problem of determining round-up (and sorting) labor requirements for cows
on rented range and community pasture towards the end of feeding period
three. The situation can be diagrammed as in Figure 3, where activities
W1 through Z2 represent the number of cow AUM's on the four types of pasture
for feeding periods three and four. Activities H1, H2, ZG1, ZG2, B and S
are included here only to illustrate the logic of the calculations in all
four sets of equations. If cows could be grazed on hay aftermath or zero-
grazed in either period, or cows could be bought or sold after feeding
period three (which is not the case), then the number of aftermath acres
grazed in period three (H1) and four (H2), and the number of cows zero-
grazed after period three (ZG1) or four (ZG2) and bought (B) or sold (S)
also should be considered. Then the system of equations for calculating
the round-up and sorting labor is as follows:

a) & [x (W) - 2(W2) +(12)] - o(T1) < 2(LABRPCT7)

b) [ (X1) - 2(x2) +()7 - 3(T2) < 2(LABRRCI7)

¢) %(W1) = 2(W2) + (T1 - T2) + (T3 - T4)

d) (X1) = 2(X2) + (T2 - T1) + (T5 - T6)

e) (T3 - T4) + (T5 - T6) = 2 [(Y2) + (z2) + .63(H2)]
+ 262 +S -+ (Y1) + (21) + .63(H1)] - Z61 - B

where (T1 - T2)

number of cows transferred from community pasture to rented
range at end of period three;

number of cows transferred from rented range to community
pasture at the end of period'three.1

(T2 - 1)

]Since benefits from feeding are in no way increased (nor costs reduced) in

the model by changes in the feeding schedules of individual animals that do
not alter aggregate feeding schedules, transfers from one source of feed to
another can be treated as equal to the corresponding net transfers. Thus
the transfer from feed source B to feed source A is the negative of the
transfer from A to B for the same feeding period. This in turn implies that
each transfer must be represented in the model as the difference between

two activities, since all activities in a linear programming model are
constrained to be greater than or equal to zero.



during feeding period three during feeding period four

#AUM's #Acres #Cows #Cows #AUM's #Acres #Cows

Source of Feed:

Community pasture Wi W2

Rented range X1 X2

Own pasture Yl Y2

Own range Z1 Z2

Hay aftermath ) HI ' H2

Zero-grazing ZG1 2G2
Purchases at end of feeding period three B
Sales at end of feeding period three S

(1-m) (# cows fed during period three)+(# cows purchased at end of period three)
= (# cows fed during period four)+(# cows sold at end of period three)
where m =mortality rate for cows between feeding periods three and four (''at end of'' three)

Note: M=0 for cows between periods three and four and between periods four and five, and for
yearlings between periods three and four.

M=.02 for yearlings between periods four and five.

Figure 10, Model of Disposal of Cows during Feeding Periods
Three and Four

hgg
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(T3 - T4) = number of cows on community pasture transferred from the
community pasture, and not placed on rented range, at
the end of period three.

(T5 - T6) = number of cows on rented range transferred from rented
range, and not to community pasture, at the end of period
three.

Note: é = labor hours round-up and sorting per cow on community pasture.

3

15
0
3%-= labor hours round-up and sorting per cow on rented range.
%—= number of cows per AUM of grazing in feeding'period three.
2 = number of cows per AUM of gfazing in feeding period four, or
(only in the case of the coefficients for LABRPC17 and LABRRC17)
number of weeks in labor -period seven. C S

Inequalities (a) and (b) state round-up hours per week (LABRPC17,
LABRRC17) as a function of the number of cows and yearlings transferred from
community pasture and rented range,- respectively, at the end of period three.
Two aspects of these two constraints may need clarification: the coefficients
of the transfer activities T1 and T2; and the use of inequalities rather than
equalities. If one cow is transferred from community pasture to rented
range at the end of feeding period three, i.e., if T1=1 and T2=0,! then that
cow requires round-up but not sorting labor; so 5/60 of one hour should be
subtracted from 15/6001/3(W1) - 2(W2)]. If one cow is transferred from
rented range to community pasture, i.e., if T1=0 and T2=1, then one more
cow is transferred from community pasture to some disposal activity other
than rented range than is indicated by the calculation 1/3(W1) - 2(W2);
so 15/60 of one hour should be added to 15/60[1/3(W1) - 2(w2_)].2 _

]Equations (c)-(e) simply constrain (T1-T2), i.e.- the difference between

the two transfer activities. So the coefficients for T1 and T2 in (a)-(b) . -

imply the following: if cows are rounded-up from either community pasture
or rented range, i.e. if either of constraints (a) and (b) is binding, then
the opportunity cost of round-up is minimized, for any (T1-T2), at T1=0

or T2=0. ' : -

If the coefficients for T1 in (a) and for T2 in (b) were -15/60 and -35/60,
respectively, as would be the case if it were realistic to assume that
riders transfer cattle between rented range and community pasture and that
riders' services are free, then a cow would be transferred from rented range
to (e.g.) own pasture by a transfer to community pasture followed immediately
by a transfer from the community pasture to own pasture. More preciselys

for these coefficients,and at solution, (T1, T2, T3, T4, T5,.T6) equals
-~ (0, 1,1, 0, 0, 0) rather than (0, 0, 0, O, 1, 0). S

2
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Second, since all activities in a linear programming model are constrained to
be greater than or equal to zero and (a) and (b) are inequalities, a transfer
of cows or yearlings to, rather than from, rented range or community pasture
(excluding transfers from one to the other) at the end of period three (leading
to a net negative value for the left hand sides of (a) or (b)) implies zero
round-up labor for that transfer.

Equations (c) and (d) require that the number of cows on community pasture
(rented range) during period three equals the number of cows on community
pasture (rented range) in period four plus cows transferred from, or minus
cows transferred to, community pasture (rented range) at the end of period
three. Equation (e) requires that the transfer from rented range and community
pasture (excluding transfers from one to the other) at the end of period three
equals (a) the number of cows fed by means other than rented range and
community pasture in period four or sold at the end of period three minus (b) the
number of cows fed by means other than rented range or community pasture in
period three or purchased at the end of period three.

The corresponding twenty equations for calculating round-up hours per week
for cows on rented range and pasture in feeding period three, yearlings on
rented range and pasture in period three, cows on rented range and pasture in

period four, a?d yearlings on rented, range and pasture in period four, respectively
are as follows'.

18) CSWIPR13:

%%—[%{RPASTC13) - 2(RPASTC14) + 1(CSWPRB13)] - E%(CSWPRA13) < 2(LABRPC17)
hours per week.

19) CSWIRPI3:
%%[ %{RRANGC13) _ 2(RRANGC14) + 1(CSWPRA13)] - B%(CSWPRBB) < 2(LABRRC17)

hours per week.

20) CSWPAS13:
%(RPASTC13) = 2(RPASTC14) + 1(CSWPRA13) - 1(CSWPRB13) + T1(CSWPOA13)

- 1(CSWPOB13) cows.

21) CSWRAN13:
%(RRANGC]3) = 2(RRANGC14) + T(CSWPRB13) - 1(CSWPRA13) + 1(CSWROA13)

- 1(CSWROB13) cows.

]By considering three states (graze on rented range, graze on community pasture,
do not graze on rented range or community pasture) for.each of the three feeding
periods, and model1ing the resulting twenty-seven combinations Q1rect1y for both
cows and yearlings, 12 rows (2 types of cattle x 2 round-up periods x 3 states

= 12) and 54 additional activities (2x33=54) would have been necessary to calcu-
late the above round-up requirements (versus 20 rows and 32 additional activities
above). As the number of feeding periods requiring round-up calculations
increases, the relative efficiency of the method used here presumably increases

greatly.
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23)

24)

25)

26)

27)

28)

29)

30)

31)
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COWSWIN3:
1(CSWPOAT3) - 1(CSWPOB13) + 1(CSWROA13) - 1(CSWROB13) = 2 [1(OPASTC14)

+ 1(ORANGC14)] - %-[1(0PASTC13) + 1(ORANGC13)]  cows.

YSWITPR13:
5

%8—[%(RPASTY]3) - 2(RPASTY14) 4 1(YSWPRB13)] - £2(YSHPRAI3)

IA

2(LABRPY17)
hours per week.

YSWIRR13:

%% P%(RRANGY13) - 2(RRANGY14) + 1(YSWPRA13)] -

hours per week.

%(YSNPRB13) 2 (LABRRY17)

A

6

YSWPAS13:
%{RPASTY13) = 2(RPASTY14) + 1(YSWPRA13) - T(YSWPRB13) + 1(YSWPOA13)

- 1(YSWPOB13) yearlings.

YSWRAN13: :
%(RRANGY13) = 2(RRANGY14) + 1(YSWPRB13) - 1(YSWPRA13) + 1(YSWROA13)

- YSWROB13) yearlings.

YERSWI13:
1(YSWPOA13) - 1(YSWPOB13) + 1(YSWROA13) - T1(YSWROB13) = 2 [1(0PASTY14)

+ 1(ORANGY14)] - %-[1(OPASTY13) + 1(ORANGY13)] yearlings.

CSWIPR14:

15 [2(RPASTCI4) - F(RPASTCI5) + 1(CSHPRB14)] - o(CSHPRATA) < 3(LABRPC18)
hours per week.

CSWINRP14:

B [2(rrance14) - T(RRANGC15) + 1(CSHPRAT4)] - —(CSHPRB14) < 3(LABRRC1S)
hours per week.

CSHPAS14:

2(RPASTC14) = S(RPASTCI5) + 1(CSHPRATA) - 1(CSHPRB14) + 1(CSHPOAT4)

- 1(CSWPOB14) cows.

CSWRAN14:
2(RRANGC14) = ﬂ(RRANGC]S) + 1(CSWPRB14) - 1(CSWPRAT4) + 1(CSWROA14)
- 1(CSWROB14) cows.

w
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32) COWSWI14: 1

1(CSWPOA14) - 1(CSWPOB14) + 1(CSWROA14) - T1(CSWROB14) = §-[1(OPASTC15)

+ 1(ORANGC15) + .63(HAYAFC15)] - 2 [1(OPASTC14) + 1(OPASTC14) ] cows.

33) YSWIPR14:

10 4 5

10.[.98(2) (RPASTY14) - Z(RPASTY15) + 1(YSWPRB14) 1 - g3(YSHPRA14)
< 3(LABRPY18) hours per week.

34)  YSWIRP14:
%%‘ [.98(2) (RRANGY14) - %{RRANGY]S) + 1(YSWPRAT4)] - g%(stpRBm)

< 3(LABNPY18) hours per week.

35) YSWPAS14:
.98(2)(RPASTY14) = %(RPASTY]S) + 1(YSWPRA14) - 1(YSWPRB14) + 1(YSWPOA14)
- 1(YSWPOB14) yearlings

36) YSWRAN14: 4

.98(2) (RRANGY14) = §(RRANGY15) + 1(YSWPRB14) - T1(YSWPRA14) + 1(CSWROA14)

- 1(CSWROB14) yearlings.

37) YERSWIl4: 4
1(YSWPOA14) - 1(YSWPOB14) + 1(YSWROA14) - T(YSWROB14) = 3 1(0PASTY15)
1

[
+ T(ORANGY15) + .63(HAYAFY15)] + 1(YEARZG15) + 1(YERSAL15) - .98(2)
[1(OPASTY14) + 1(ORANGY14)] yearlings '

14.6. Income Assurance Constraints and Activities

In the spring of 1975, B.C. beef ranchers were notified that they would
subsequently receive subsidies for "qualifying" pounds of beef sold, under
the B.C. Farm Income Assurance program. There is a yearly maximum on
qualifying pounds of beef per farm equal to the number of pounds of beef
sold from the farm in 1974 or 1975 (whichever is higher) that would have
qualified for income assurance subsidies. This is true provided that the
number of pounds that would have qualified for income assurance subsidies
does not exceed the "global 1imit" of 121,125 qualifying pounds. Typical
beef ranches in the Peace River and Prince George areas claim considerably
less than 121,125 qualifying pounds. Within this 1imit, qualifying pounds
are equal to the number of pounds sold, with one important exception: for
yearlings backgrounded, i.e. for yearlings purchased as calves rather than
raised on-farm from birth, qualifying pounds are equal to yearling selling
weight minus calf purchase weight. Thus qualifying pounds can be obtained
from four sources in the Peace River models: (1) calf pounds sold on
November 1, (2) calf pounds for yearlings raised on-farm from birth and
sold on September 15 or November 1 of the current model year, (3) yearling
pounds (yearling selling weight minus calf pounds) sold on September 15,
and (4) yearling pounds sold on November 1. This is incorporated into the
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model by the following fourtinequalities, where CSIA0021, YOWNIA21, YSIAQ0O15
and YSIA0021 represent the number of animal-equivalents for which qualifying
pounds are claimed, by source in the order listed above.

1) CSIA0021:
1(CSIA0021) - 1(CAFSAL21) <0 calves.

CSIA0021 - number of calf pounds sold at end of the year that qualify
(as calf pounds) for income assurance subsidies.

2) YOWNIA21:
1(YOWNIA21) - .98(YEROWN21) < O calves

YOWNIA21 - number of yearling pounds sold during the year that qualify
as calf pounds for income assurance subsidies.

1

1 - .02
mortality rate for yearlings.

note: .98
where .02

3) YSIAOO15:
1(YSIA0015) - 1(YERSAL15) < 0 yearlings

YSIA0015 - number of yearling pounds sold on Nov. 15 of the year that
qualify as yearling pounds for income assurance subsidies.

4) YSIA0021:
1(YSIA0021) - 1(YERSAL21) < 0 yearlings

YSIA0021 - number of yearling pounds sold at end of the year that qualify
as yearling pounds for income assurance subsidies.

In order to translate these animal-equivalents into qualifying pounds
(and also in order to determine total pounds sold), (1) yearly weight gains
per animal are specified on the assumption that animals are not grazed on
native grass during the year, and (2) weight losses per AUM of native
grazing during the year are specified for cows and for yearlings. Weight
gains per animal within any feeding period are assumed to be independent
of the nutrient source selected (with the exception of native grass), i.e.
of choices betweep community pasture, own pasture, hay aftermath grazing
and zero-grazing.¢ - The following weights are estimated to be typical for

]To the extent that the equilibrium spirit of the model is accurate for the

time period to be modelled, the number of calves held over from year one
for sale as yearlings in year two equals the number of calves that were

held over from the previous year for sale as yearlings -in year one. Under
these conditions, YOWNIA21 can be viewed as constrained by YEROWN21 in the
same manner as by the number of calves that were held over from the previous
year for sale in the current year. :

2Assuming independence of weight gains with respect to nutrient sources other
than native grazing presumably does not lead to serious errors in the
estimation of the effects of A.R.D.A. pasture programs. In the "standard
case", hay aftermath grazing and zero grazing possibilities overlap with
tame grazing possibilities for less than 20% of the summer grazing season,
i.e. for the last 3 weeks (September 15 to October 7) of the 4.25 months.
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Peace River animals never grazed on range: 450 pounds for calves on
November 1, .750 pound for yearlings on September 15, and 825 pounds for
yearlings on November 1. Estimates of weight gain differences for tame
and native grazing seem less reliable. In the "standard case", it has
been assumed that weight gains on own or rented range are less than
weight gains on own or rented pasture by the following amounts: (a) 15
pounds per AUM for calves from June 1 to September 15, (b) 30 pounds
per AUM for calves from September 15 to October 7, (c) 21 pounds per
AUM for yearlings from June 1 to September 15, and (d) 42 pounds per AUM
for yearlings from September 15 to October 7. Then the manner in which
the allowable number of qualifying pounds of beef constrains qualifying
animal-equivalents can be modelled as follows!.

5) INCASS1O0:

450(CSIA0021) + 450(YOWNIA21) + 300(YSIA0015) + 375(YSIA0021)

- 10.2(ORANGC13) - 10.2(RRANGC13) - 10.2(ORANGC14) - 10.2(RRANGC14)
20.4(ORANGC15) - 20.4(RRANGC15) - 20.6(ORANGY13) - 20.6(RRANGY13)
20.6(0ORANGY14) - 20.6(RRANGY14) - 41.2(ORANGY15) - 41.2(RRANGY15)
121, 125 qualifying pounds

10.2 = 15 pounds (# calves surviving yr. 1)
: AUM cow with calf that ‘calf born
survives to Nov. 1

A

note:

(# calves born)(# Ccows v )
cow # cows & old rep. .hef.

= 15(1 - .08)(1 - .15 - .02)(1 - .1 - .08(.1))
(see cattle constraint 3)

In addition, the pounds of beef raised on-farm through the year is
calculated for calves and for yearlings, respectively.

6) TOTPOUNC: .
1(TOTPOUNC) - 450(CAFSAL21) - 450(YEROWN21) + 10.2(0RANGC13) + 10.2
(RRANGC13) + 10.2(ORANGC14) + 10.2(RRANGC14) + 20.4(0RANGC15) +
20.4(RRANGC15) < 0 pounds
TOTPOUNC - number-of calf pounds raised on-farm through the year.

7) TOTPOUNY:
1(TOTPOUNY) - 300(YERSAL15) - 375(YERSAL21) + 20.6(ORANGY13) + 20.6(RRANGY13)
+ 20.6(0RANGY14) + 20.6(RRANGY14) + 41.2(ORANGY15) + 41.2(RRANGY15)
< 0 pounds?

]Here the right hand side has been set at the global 1imit on qualifying pounds,

but only for illustration. 1In fact, considerably more constraining limits on
qualifying pounds are derived from non-income assurance models and used in
this equation.

These two rows are included in the matrix for the sole purpose of providing
useful information about the solution, i.e. they are not intended to influence
the level of activities other than TOTPOUNC and TOTPOUNY. Note that pounds
raised on-farm per year is not equivalent to pounds sold from farm per year: the
sum of activities TOTPOUNC and TOTPOUNY excludes the weight-at-purchase of calves
for backgrounding, and includes the weight of all on-farm calves held over at

the end of the year for sale in the following year as yearlings (two percent of
which die before being marketed).

2
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1.7. Income and Value of Surplus Labor Constraints and Activities

In each model, "income" is calculated on an annual basis, and any cash
flow problems within the year are 1gnored.] The calculation of "income"
implicitly assumes that all revenues are received, and most expenses for the
year are incurred and paid, at the end of the modelled year (Nov. 1). The
only expenses not dated implicitly for the end of the year are the costs of
purchasing or holding over calves for sale as yearlings, which are discounted
forward from the beginning of the year (by the addition of one year's real
interest charges to the beginning-of-year costs of purchasing or holding over
calves). The errors resulting from such simplifications should be minor in
comparison to the uncertainty about revenues and costs: even if an expense
dated for the end of the modelled year should be dated for the first day of
the year, the resulting error is only 4% of the expense, which is the estimated
real yearly interest rate times the estimated (real) expense.

Revenue is derived from market sales of calves and yearlings, income

assurance subsidies for sale of calves and yearlings, market sales of hay
and grain, wages for non-farm employment or custom work by the farm family,
and mgrket sales of cull cows. Estimates of 1975 prices and subsidies are
used.¢ Expenses in the income equation reflect the variable costs (excluding
labor) of hay and grain enterprises, rental rates for hay and grain land,

wage rates for hired labor, grazing fees for range and pasture, market prices
" for hay and grain, market prices for calves purchased for backgrounding,
interest charges on the purchase costs of these calves and on the revenues
foregone by holding over own calves, and incidental expenses, depreciation
and interest on capital for cows and yearlings.

]As pointed out in section II-B, a dynamic model incorporating cash flow

problems and other adjustment costs apparently does not lead to more accurate
estimation of the comparative dynamic effect of the community pastures programs
than do static models. Moreover, at a static equilibrium from year to year,
the yearly costs attributable to borrowing will not exceed the real interest
charges incurred between the time of negotiating the average yearly loans and
the typical time of repayment of these loans during the year. Thus cash flow
problems are likely to be of minor influence on the comparative static effects
of community pasture programs, and any influence of these problems on compara-
tive static effects could be roughly simulated in the model by slightly
increasing the costs for activities that are relatively cash intensive.

2It should be emphasized that 1975 prices are included here only to simplify
presentation of the model. Since prices circa 1975 were unusually favorable
to grain rather than beef production and fluctuated considerably, even short
run price expectations held by farmers circa 1975 may have been considerably
different from actual 1975 prices. :
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Calves and yearlings sold receive market prices of 30¢ per pound and
36¢ per pound, respectively. In accordance with the income assurance rules,
qualifying “"calf pounds" and qualifying "yearling pounds" receive
subsidies of 27¢ per pound and 14¢ per pound, respectively. Each qualifying
calf-equivalent, or qualifying yearling-equivalent raised on-farm from birth,
provides 400 qualifying "calf pounds". Qualifying “"yearling pounds" consist
of the remaining fifty pounds for each qualifying calf-equivalent or yearling-
equivalent raised on-farm from birth, and the difference between selling
weight and 400 pounds for each qualifying yearling-equivalent. These rules
and prices are incorporated into the income constraint for each model as
foilows. First, market revenues per calf and yearling are calculated on
the assumption that the animal has never been grazed on range, and these
figures are used as coefficients for the calf and yearling sale activities
in the model. Second, income assurance ‘subsidies are calculated for an
animal-equivalent of each of the four types of qualifying pounds on the
assumption that the animal is never grazed on range, and used as coefficients
for the activities representing the number of qualifying animal-equivalents
in each type (CSIA0021, YOWNIA21, YSIA0015, YSIA0021). Third, corrections
are made for native grazing as follows. Revenue (market plus subsidy)
foregone per AUM of native grazing by cows and by yearlings in each of
feeding periods three through five is calculated, for the relative losses
in weight per native AUM specified in the "standard case" (income assurance
constraint 5). Then these revenues foregone are used as coefficients (in
the income constraint) for native grazing activities,]so that income is
reduced in relation to the quantity of native grazing .

Other calculations for the income constraint are straightforward. In
the Peace River model, hay and grain can be bought and sold at the following
prices: $40 per ton for hay, $2 per bushel for barley, and $1.30 per bushel
for oats. Farm family labor can be used for off-farm labor or custom work,
from November 1 to May 10, for $5 per hour (and up to 30 hours per week).

In the calculation of net expenses per cow, cull cows are assumed to sell
for $150 each. Variable costs for grain and hay enterprises, excluding labor

]Due to the structure of income assurance constraint 5, this manner of speci-

fying the income constraint does not overestimate the income costs of native
grazing when pounds sold exceeds qualifying pounds. This can be shown as
follows. A one unit increase in native grazing directly reduces revenue
from subsidies as well as from the market, but has the indirect effect of
leading to an offsetting increase in activities CSIA0021, YOWNIA21, YSIAQOO15,
YSIA0021, provided that income assurance constraint 5 is binding by a number
of pounds at least equivalent to this increase. Of course, the income con-
straint also tends to estimate the income costs of native grazing accurately
when pounds sold does not exceed qualifying pounds.
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costs, are set at $45 per acre of grain in production] and at $30 to $40

per acre of hay in product1on2 Rental rates for hay and grain land are

often set at $11.5 per acre and $17.5 per acre, respectively. Labor can

be hired at $4 per hour, during any season. Range and community pasture

can be rented at $0.53 per AUM and $3.90 per AUM respectively. Yearly
incidentals are estimated at $25 per cow and per yearling. Yearly depre-
ciation plus interest costs for the capital stock are estimated at approximately
$20 per cow and per yearling.

1) INCOMETO:
1(INCOME10) - 135(CAFSAL21) + 135(YERPUR21) - 270(YERSAL15) - 297(YERSAL21)
115(CSIA0021) - 115(YOWNIA21) - 42(YSIA0015) - 52.5(YSIA0021)

+ 4.5(0RANGC13) + 4.5(RRANGC13) + 4.5(0RANGC14) + 4.5(RRANGC14)

+ 9.0(ORANGC15) + 9.0(RRANGC15) + 10.3(ORANGY13) + 10.3(RRANGY13)

+ 10.3(ORANGY14) + 10.3(RRANGY14) + 20.6(0RANGY15) + 20.6(RRANGY15)
- 40(HAYSAL10) + 40(HAYPUR10) - 2.00(BARSAL10) + 2.00(BARPURTO)

- 1.30(0ATSAL10) - 125(CUSLAB11) - 10(CUSLAB12) + 27.5(0OWNHAY10)

+ 46.5(RENHAY10) + 35(0WNBAR10) + 62.5(RENBARI0) + 35(OWNOAT10)

+ 62.5(RENOAT10) + 4(HIRLAB10) + 0.53(RENRAN13) + 0.53(RENRANT4)

+ 0.53(RENRAN15) + 3.90(RPASTC13) + 3.90(RPASTC14) + 3.90(RPASTC15)
+ 3.90(RPASTY13) + 3.90(RPASTY14) + 3.90(RPASTY15) + 29.5(COWSRHEF)
+ 46.4(YEAROOT1) < 0 dollars

1Discussions with farmers and B.C.D.A. staff did not lead to estimates of non-
labor costs for grain enterprises that could be accepted with any confidence,
but did suggest that grain acreage for community pasture users would in
general be unaffected by access to community pasture (primarily due to a
sharply discontinuous supply curve of on-farm land highly suitable for grain).
Moreover, it can be argued that the allocative effects of cash and credit
constraints are minimal (see section1l). Then, provided that acres in grain
are adequately simulated, errors in estimating non-labor costs for grain
enterprises primarily influence costs that are fixed with respect to the
response to the community pasture programs, i.e. these errors lead to quite
minor errors in simulating the comparative static effect of community pasture
programs.
2The costs per acre of hay in production (excluding labor costs and interest
on land) appear to be between $30 and $40, provided that the capital stock
in the enterprise is maintained (over the modelled year) at a fixed ratio
to the number of acres in the enterprise. Occasionally in the short run
models $20 to $30 is specified as the variable cost per acre in order to
simulate roughly the effects of not maintaining the capital stock (which is
a possible farm response to the holding of an excess capital stock in the
enterprise at the beginning of the modelled year).
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market price of $0.30 _ 450 pounds

Note: 135 = pound of calf sold X calf sold on Nov. T (never on native)
270 = market price of $0.36 _ .750 pounds
pound of yearling sold " yearling sold on Sept. 15 (never on native)
og7 = Market price of $0.36 825 pounds
pound of yearling sold ~ yearling sold on Nov. 1 (never on native)
115 = 400 calf pounds sold « $0.27 subsidy
calf sold {never on native) ~ calf pound sold
50 yearling pounds sold $0.14 subsidy
calf sold (never on native © yearling pound sold
42 = $0.14 subsidy « 300 qualifying yearling pounds
qualifying yeariing pound " qualifying yearling-equivalent sold on
‘Sept. 15 (never on native)
52 5 = $0.14 subsidy % 375 qualifying yearling pounds
* qualifying yearling pound = qualifying yearling-equivalent sold
» on Nov. 1 (never on native)
4.5 = 10 2($0.30 market price , $0.14 subsidy )1
’ *“calf pound sold qualifying yearling pound sold
where 10.2 = relative loss in calf pounds sold, per AUM of native grazing by
calves in feeding periods three and four.
- $0.36 market price $0.14 subsidy
10.3 20'6(year11ng pound sold * qualifying yearling pound so]d)'
where 20.6 = relative loss in yearling pounds sold, per AUM of native grazing
by yearlings in feeding periods three and four.

- $35 variable cost $5 variable cost
27.5 = .75 x acre in hay production v 25X acre in hay (re)establishment

1

This calculation is accurate provided that (a) native grazing does not reduce
calf weights at November 1 to less than 400 pounds, and (b) calves are not
held over to be sold as yearlings. When these conditions are not satisfied
errors appear to be minor. This can be shown as follows. If every cow with
calf is grazed on range for the full 4.25 months of summer grazing (reducing
selling weights from 450 to 375 pounds per calf), and (b) is satisfied, then
the correct coefficient is

(1) 10.0 [.30 + (2/3)(.14) + (1/3)(.26)] = 4.8.

If all calves are held over to be sold as yearlings, and (a) is satisfied,
then the correct coefficient is

(2) .98(10.0)(.36 + .14) = 4.9,

Discounting of these future income costs (2) in accordance with some positive
marginal rate of time preference is inappropriate, when the equilibrium spirit
of the model rate of time preference is inappropriate, when the equilibrium
spirit of the model is realistic: equilibrium implies that equivalent income
costs occur in year one as a result of native grazing in the previous year by
cows with calves that are sold in the current year as yearlings. Finally,
note that, if every cow with calf is grazed on range for the full 4.25 months
and all are held over for sale as yearlings, the correct coefficient is still

4.9.
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46.5 = 235 variable cost $11.5 rent
' acre in hay production = acre (in hay production)
- $45 variable cost $5 variable cost
35.0 = .75 x acre in grain production * .25 acre in grain summerfallow
62,5 = 345 variable cost + $17.5 rent
: acre in grain production  acre (in grain production)
_ $25 incidentals per year $20 depreciation plus interest per year
29.5 = : +(
cow and replacement heifer cow
$150 .1 culls per year, .892 cows
- X ) (see cattle
cull cow cow cow and repl. hef. constraint 3)
_ $25 incidentals per year . $2 depreciation $0.30,,450 1bs,
46.4 yearling equiv. +’yeav'h'ng-equiv. + (L04)( 1b )(ca1f equiv.)
(1.08 calf equiv.)
yearling equiv.
where 4% = estimated real interest rate

calculation of interest on capital: see Section% , 17b
: (calculation assumes that
income assurance constraint
is binding, and yearlings
sold on Nov. 1)

In order to simulate the activities of a firm, and in order to evaluate
changes in activities, the supply curve of labor provided by the firm's
owner-operator, as well as the supply curve of hired labor, generally should
be incorporated into the model. The approach adopted here has been less
ambitious: "surplus labor" (slack activities for labor constraints) for
each period has been valued at estimates of the net marginal,costs at
equilibrium of supplying "own labor" to the farm enterprise. This approach
leads to a correct static modelling of labor-leisure decisions when the
actual farm demand curve for own labor is downward-sloping and correctly
" modelled, and the net marginal cost at equilibrium of supplying own labor to
the farm also is correctly estimated. In comparative statics applications
of the model (e.g., comparison of farm activities when the farm does and
does not have access to community pasture), errors presumably result. However,
the directions of bias on changes in labor use and value of community pasture
are readily determined by this approach, and the magnitudes of errors can be
estimated simply by varying the value of surplus labor in the appropriate

]Net marginal costs of supplying own labor to the farm enterprise are equal

to the benefits of leisure at the margin minus any non-monetary benefits
of supplying own labor to the farm at the margin. '
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directions]. Attempts at direct modelling of own labor supply curves have
been avoided here precisely because neither evaluation of direction of bias
nor sensitivity analysis could then be done so easily.

There does not appear to be any simple means of obtaining reliable
estimates of ne§ mariginal costs at equilibrium for supplying own labor to the
farm enterprise~. However, on-farm interviews strongly suggest that these
marginal costs are much higher during calving and harvesting than at other
times of the year. For this reason, surplus labor for the labor constraint
in labor period two (calving) and for the harvesting labor constraints have
been valued at $2.00 per hour, and for other labor constraints at $0.50 per
hour, in the "standard case".

2)  VALUESUR: .
1(VALUESUR) - 12.5(SURLAB11) - 4(SURLAB12) - 4(SURLAB13) - 1.5(SURLAB13)
- 2.25(SURLAB14) - 2.25(SURLAB15) - 9(SURLABH5) - 2.25(SURLAB16) -
9(SURLABH6) - T(SURLAB17) - 4(SURLABH7) - 1.5(SURLAB18) - 6(SURLABHS)
- 1.75(SURLAB19)
< 0 dollar-equivalents
VALUESUR - dollar-equivalent value of surplus farm labor ('leisure')

1Farmers presumably optimize in selecting among their possiblities for leisure,
and the set of these possibilities-diminishes as labor supplied increases and
income remains constant. This suggests that the supply curve of own labor
typically is upward-sloping, rather than perfectly elastic as in the model.
Then, if the model is otherwise accurate, directions of bias can be inferred
from model results as follows. If the model shows an increase in use of own
labor when the farm receives access to community pasture, then there is in
fact an increase in use of own labor, and the model overestimates this
increase and also overestimates the value of community pasture to the farm.

If the model shows a decrease in use of own labor, then there is in fact a
decrease in use of own labor, and the model underestimates this decrease and
also underestimates the value of the pasture. If use of own labor is unchanged,
the model results are unbiased. If the biases are thought to be significant,
then they can be corrected for by making "reasonable" (a) increases or

(b) decreases in the value of surplus labor, for the model providing the farm
with access to community pasture, when own labor use has (a) increased or

(b) decreased, respectively, with the introduction of community pasture into
an otherwise unchanged model.

ZFamily labor generally is used for off-farm as well as on-farm employment,
and labor generally is hired for harvesting. However, this does not imply
that the net marginal costs at equilibrium of supplying own labor to the
farm equal the off-farm wage rate (even when adjusted for any monetary and
non-monetary expenses incurred by working off-farm)during the winter and the
wage rate for harvest Tabor during harvesting. Apparently farmers generally
prefer more off-farm employment during winter at existing wage rates minus
additional expenses than they are able to obtain; so the net marginal benefits
of off-farm employment must be greater than the net marginal costs at
equilibrium of supplying own labor to the farm during the winter. Likewise,
own labor on harvesting days generally appears to be at the (productive)
maximum, i.e., own Tlabor could not substitute further for hired labor.
However, if it is also assumed that hired labor is as productive as own labor,
then it can at least be said that the wage rate is greater than the net marginal
cost of using own labor in harbesting.
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note: 12.5 = $0.50 25 surplus hours per year
: : surplus hour ” surplus hour in labor constraint for labor
period one

(see labor constraint 16)
etc.

1.8 Objective Function

The objective function to be maximized is essentially equal to income plus
the dollar-equivalent index of leisure for the year modelled. Income is not
corrected for taxes, nor are changes in the value of capital stock considered.
These omissions are justified as follows.

Various estimates of net marginal costs at equilibrium for supplying own
labor to the farm will be used in the model, and a "best guess" as to appro-
priate marginal costs has neither been formed nor is likely to be inferred
from model results. For these reasons, there appears to be 1little point in
correcting income for taxes.

When either the short run or long run equilibrium version of these models
is realistic, there is no need to incorporate a valuation of capital stock into
the model in order to simulate behaviour. In other words, if we can assume
that the farmers in question typically behave as if "close" to a static equili-
brium in the absence of community pasture, and as if "close" to & static
equilibrium in the presence of community pasture, then in each case the capital
stock decision (the decision that maximizes net present value of resulting
future flows of income plus leisure) will closely approximate the decision that
maximizes income plus leisure for the single year. Estimates of the maintenance
costs of all capital in cattle and crop enterprises are incorporated into
equilibrium models. Estimates of the annual opportunity cost of this capital
(excluding land) are incorporated as the annual interest cost (at a real
interest rate of 4%) for estimated values of capital stock. Land values are
excluded from the objective functions of all models on the assumption that
the 1and will remain in agriculture, and in order to avoid double counting of
benefits from the community pasture program.

Moreover, even if farmers do not in fact typically behave as if "close"

. to a static equilibrium, the comparative dynamic effect of the community
pastures programs apparently.can be estimated as well by the use of static
models as by dynamic models.' By specifying a value for terminal capital in

a one year (non-stationary) model, we would in effect be modelling part of a
dynamic process rather than a static equilibrium. Thus, there does not appear
to be any point in including a valuation of capital in the objective function
of these models.

Tsee Appendix 17 for an elaboration of this statement.

2As has been mentioned, static disequilibrium is occasionally allowed for in
variants of these models. However, this is done by specifying the dis-
equilibrium aspects as exogenous, i.e. by defining the changes in various
capital stocks over the model year rather than the terminal value of these
capital stocks.
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In addition to summing income and the dollar value of leisure, the
objective function costs purchases of calves, hay and barley (so that both
sales and purchases of such a product does not appear in solution when its
marginal value product is zero), and values total pounds of beef produced
(so that this will be calculated in the model).

1) MAXIMIZE:

1(INCOME10) + 1(VALUESWRR) - 2.31(YERPUR21) - .01(HAYPURIO) - .01(BARPUR10)

- .01(HAYAFC15) - .01(HAYAFY15) -_.01(HAYAFC16) - .01 (HAYAFY16)
+ .001(TOTPOUNC) + .001(TOTPOUNY) !

INCOMET0 - income for the farm, plus income from custom and off-farm
work during the year.

]In the model, calves can be bought and sold at the same market price.
Since 2% of calves held over to be sold as yearlings will die before
reaching market, in effect calves may receive a higher income assurance
payment if sold as calves ($115 per 450 qualifying pounds) then if sold
as yearlings ($112.7 per 441 qualifying calf pounds). Thus, in the
absence of a charge of 2.31 dollar-equivalents per calf purchased, holding
over own calves for sale as yearlings would not necessarily be preferred
to selling own calves and purchasing replacement calves to be sold as
yearlings. Observation suggests that the first of these two options is
more commonly practiced. This may reflect the fact that (contrary to
‘the model) cattle are not homogeneous and farmers do have more information
about their own calves than about other calves.
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2. Peace River Non-Income Assurance Models

In contrast to income assurance models, non-income assurance models
do not provide subsidies for sales of calves and yearlings. These models
differ from income assurance models as follows. First, activities
representing qualifying pounds are excluded from the income constraint.
Thus activities CSIA0021, YOWNIA21, YSIA0015 and YSIA0021

- - - do not enter row

INCOME10. Second, the number of beef pounds sold that would be classified
as qualifying pounds under Income Assurance regulations is calculated. A
new activity INCASSI0 is assigned a weighting of +.001 in the objective
function, and income assurance constraint 5 is reformulated as follows.

1) INCASS10:
+ T(INCASS10) - 450(CSIA0021) - .... + 41.2(RRANGY15) < 0 pounds

Non-income assurance models also differ from income assurance models
by using many different combinations of market prices for calves and
yearlings.

Non-income assurance models are used for (1) estimating the effect of
A.R.D.A. community pasture programs on the yearly maximum number of
qualifying pounds for users, and (2) estimating future benefits of the
community pasture programs (in the absence of income assurance subsidies).
Non-income assurance models designed for the first purpose usually differ
from income assurance models solely as listed above. On the other hand,
both short run and long run equilibrium models can be used for estimating
future benefits, since long run equilibrium may or may not be closely
approximated at any particular time (or set of prices) in the future. These
short run models differ from the other short run non-income assurance
models in terms of prices, and the long run equilibrium models differ
from these corresponding short run models by leaving cow numbers unbounded
(and by always specifying constant capital stocks in all enterprises over
the modelled year).
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3. Matrix Format and Column Definitions for Peace River
Income Assurance Model

In this sectien we present a description of the standard short run
Peace River Income Assurance farm model in matrix format, and provide a
list of definitions for all activities (columns) in this model. For
convenience, this model is presented in terms of various submatrices.
Elements of a submatrix that are equal to plus or minus one are indicated
as such (1, -1), while each other non-zero element is simply denoted by
its absolute value (+, -).

The reader is cautioned that this sectioh is not a substitute for
discussion in Sectior 1. The simple structure of this model and its
companions may be seriously misinterpreted if the reader is unaware of the
economic significance of the assumptions employed here.
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"Figure 11. Submatrix "A" of Peace
Model.

River Income Assurance

401



IT.

ITI.

VI.

VII.
VIII.

Figurelt.

Cows

Farm

Column

Row

COWSRHEF

YEARPDT I

12.

YEARDP21
YEROWNZ1

YERPURZ]1
YEARZGT
YEARZG]

13
14
15,
T6
17

CATTLE

COWSRHEF
OLDYER15
CAFDIS21
YEARDD21

NEWYER21 |-

—11.

FEEDING

12.

—_—
= OWOONOOUTE WN ~O0TH WN —
. . [ . . - . . ] . - L[] [ . L]

HAYFEDTT
BARFED11
HAYFED12
COWFED13
YERFED13
COWFED14
YERFED14
COWFED15
YERFED15
HAYFED15
COWFED16
YERFED16
HAYFED16

LABOR

LABRPQ11
LABR@Q12
LABRPP13
LABRPP18
LABRPP19
YERSWI14

INCOME
ASSURANCE

YOWNIA21
TOTPOUNC

INCOME

INCOMETD

OBJECTIVE
FUNCTION

MAXIMIZE

Submatrix "B" of Peace River Income Assurance
Model

ho2



ITI.

VI.

VII.
VIII.

403

Own Own Rented Rented Hay
Pasture Range Pasture Range Afterma
pEoozansengnlosensnsongon ol o0
A e e e EE LR S
R R S R R
Row |8 SRR N ERERR - NaR 8588959939852
LAND 5. JOWNPASI® |11 11
6. |OWNPAS15 1 1
8. |OWNRANTD T1T 11
9. [OWNRAN14 1 1
10. |RENRAN13 1
11. |RENRAN14 1
12. |RENRAN15 1
13. |RENRAD13 -1 1 1
14. |RENRAD14 -1 1 1
15. }RENRAD15 -1 1 1
16. |RENPAS13 1 1
17. |RENPAS14 1 1
18. | RENPAS15 1 1
19. |HAYAFT1Q 1111
FEEDING &, TCOWFEDT3 [-1 -1 1 -1
5. I YERFED13 -1 . -1 -1 -1
6. | COWFED14 -1 -1 -1 -1
7. | YERFED14 -1 -1 -1 -1
8. | COWFED15 -1 -1 -1 -1 -
9, |YERFED15 -1 -1 -1 -1 -
12. | COWFED16 -
13. [ YERFED16 -
LABOR 6. |LABRPP1I4 | + + + + +
7. | LABRPPIS | + + + + +
8. | LABRPPIG | + + + + +
9. | LABRPP17 + o+ + + +
10. | LABRPP18 + + + + + + + +
14. 1 LABHAR18 + + + + + + + +
18. | CSWIPR13 + -
19. | CSWIRP13 + -
20. | CSWPAS13 -+
21. | CSWRANI3 -+
22. | COWSHIT3 [ + - + -
23. | YSWIPR13 + -
24. | YSWIRP13 . + -
25. | YSWPAS13 -+
26. | YSURAN13 -+
27. { YERSHI13 + - + -
28. | CSWIPR14 + - -
29. | CSWIRP14 +
30. | CSWPAS14 -+ +
31. | CSWRAN14 -
32. | COWSWIl4 + - + - -
33. | YSHIPR14 + -
34, | YSHIRP14 + -
35. | YSWPAS14 -+
36. | YSWRAN14 -t
37. | YERSWI14 + - + - -
INCOME 5. J INCASSIP} |- ===~ - -="=="
ASSURANCE 6. | TOTPOUNC + 4+ st
7. | TOTPOUNY + + + ++ 4
TNCOME 1. | INCOME1D P S E R EEE R
OBJECTIVE 1. { MAXIMIZE - ==~ -

FUNCTION

Figure 15. Submatrix "C" of Peace River Income Assurance Model



ITI.

IV.

VII.
VIII.

4oy

Hay,, Oats and Barley
Fed to Purchases
Cattle Harvest and Sales
—ANODODO—OOWOONNONOOS S S S
cooobooofkocrrarde J oo
e e rolt vl == Py i
g >>>> XX b >>EFEFEXXod> >
] < < < < <€ <L < L < < < <f <f <] <C < < < <C
— ::I:::!:mmm:::::l:oocooq::::omm
o
O] o s o o s s sl e o o o o o d ¢ o s o o
Row PEENRIBREEIZTITIHYBIT B8
FEEDING 1. | HAYFED11| -1
2. | BARFED11 -1
3.| HAYFED12{ -1
10. | BARFED15 -1
11.{ HAYFED15 -]
14.| BARFED16 -1
15. ! HAYFED16 -1
HAY AND 1. | HAYHARTP T TT
GRAIN 2.| OATHARID 11
3. | BARHAR1D 11
4. | HAYDPO1D -~1- -11
5.1 OATDPRIP| 1 1 1 1 - - 1
6. | BARDPP10 111 - - 117
TABOR 7.1 LABRQQ15 +
8.| LABRPD16 +
9.| LABRPQ17 ++  +
. 10. | LABRPP18 o
11.| LABHAR15 +
12. | LABHAR16 +
13. | LABHAR17 ++ o+
14. | LABHAR]8 + 4
TNCOME 1. [ INCOME1D to -t
OBJECTIVE MAXIMIZE - -
FUNCTION

Figure 14. Submatrix "D" of Peace River Income Assurance Model



Labor Use Labor Hired
Surplus in In Non-Harvest
Custom Roundup Non-Harv, Harv _ And in Harvest
v—-(\Jl\wl\COI\COI\COv—-Nmd'mLDI\OOChLOK)I\OOnﬁu—de'LnkOI\COChmkDr\w&
st rinutalrtriatul miedogedng e e A T N
eSS e e eSS S SSSSS3SSSSSYS IS5 5555533553
% mmmmmmmmmmrxcxcﬁxxmmrxcﬁzxmmmrx_Jo:txaccxcro:ccn:mo:a:a:o:o:
OO L L L L L L LD D DD DD DDDID DD St bt = b= = b = et e e
'6 UU_I_I_I_J_.I_I__I__IU?U)(/)U')(/)U?U')(/)U)U')U')Lf)(/)>IIIIIIIIIIIIII
Cl ol Nt BB OO Al o <F LD O e 0 T O I 3 < LD O I~ 0O O O r— O LD
ROW uouol\l\:\t\t\l\r\r\r\moooooooooooooooowoommmmmmmmmmgggggg
V.| LABOR 1. |LABRPP11]| 1 1 -1
2. | LABRPP12 1 1 -1
3. | CUSLABT1} 1
4, | CUSLAB12 1
5. | LABRPP13 1 -1
6. | LABRPD14 ' 1 -1
7. {LABRPP15 1 1 -1 -1
8. | LABROD16 . 1 1 -1 -1
9. | LABRPP17 1 1 1 1 1 1 -1 -1
10. {LABRPP18 1 1 1 1 1 1 -1 -1
11. | LABHAR15 : 1 -1
. 12. | LABHAR16 1 -1
13. {LABHART7 + +  + + 1 -1
14. | LABHAR18 + + o+ o+ 1 -1
15. | LABR@P19 , 1 -1
16. |HIRLAB1@ ++++++ A+ =]
17. [HIRLABIT 1
18. |{ CSWIPR13 -
19. [CSWIRP13 -
23. | YSWIPR13 -
24. | YSWIRP13 -
28. | CSWIPR14 -
29. | CSWIRP14 -
33. | YSWIPR14 -
34. | YSWIRP14 -
VII.|[ INCOME AND VALUE 1. | INCOMEID i
OF SURPLUS LABOR 2, |VALUESWUR| | = === - --= 1--=-=--- 1
VIII.[ OBJECTIVE 1. |MAXIMIZE 1
FUNCTION

Figure 15. Submatrix "E" of Peace River Income Assurance Model
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Figure 16. Submatrix "F" of Peace River Income Assurancé Model




IT.
ITI.

VI.

VII.
VIII.

Figure 17.

Submatrix "G"

of ?eace River Income Assurance Model

Cattle Sales |23
(Total and |£ S
Subsidized) |S &jIncome
NN NN e ey
Cl o I QAR DO
El < QU— QRO Ol
SILRRESEESZIEER
Ol <C WiV O VI NIO O|=
Ol O>=>0O>> >l KF|—
fou SHANT LSS
CATTLE 2. | OLDYER15 11
3. | CAFDIS21 | +
FEEDING 9. | YERFED15 T+
10. | BARFED15 +
12. | COWFED16 | +
13. | YERFED16 +
14. | BARFED16 +
LABOR 15. | LABRPQ19 +
36. | YSWRAN14 -1
- 37. | YERSWI14 -1
| INCOME 1. | CSIApP21 |-1 1
ASSURANCE 2. | YOWNIA21 -1 1
3. 1 YSIAPP15 -1 1
4. | YSIAPP21 -1 1
5. | INCASS19 + 4+ + +
6. | TOTPOUNC | - 1
7. | TOTPOUNY - - 1
INCOME 1 INCOMEIZ | - - - - - - - 1
OBJECTIVE 1 MAXIMIZE + +|1
-FUNCTION

bo7



II.

ITI.

Iv.

ho8

Row - Right Hand Side *
LAND 1. IMLAND1® 350 acres
2. BESIMP1P 150 acres
3. BESOAT19 acres
4, BESBARIf acres
5. OWNPAS1P AUM's
6. OWNPAS15 AUM's
7. UNLAND1O 150 acres
8. OWNRAN1P AUM's
9. OWNRAN14 AUM's
10. RENRAN13 300 AUM's
11. RENRAN14 50 AUM's
12. RENRAN15 75 AUM's
13. RENRAD13 AUM's
14. RENRAD14 AUM's
15. RENRAD15 AUM's
16. RENPAS13 180 AUM's
17.- RENPAS14 30 AUM's
18. RENPAS15 45 AUM's
19. HAYAFT19 acres
20. RENHAY19 50 acres
21. RENOATI1P. 50 acres
22. RENBAR1P 50 acres
CATTLE T. COWSRHEF > 40 cows
2. OLDYER15 yearlings
3. CAFDIS21 calves plus (beginning) yearlings
4, YEARPP21 yearlings
5. NEWYER21 yearlings
FEEDING T. HAYFED11 tons
2. BARFED11 bushels
3. HAYFED12 tons
4., COWFED13 AUM's
5. YERFED13 AUM's
6. COWFED14 AUM's
7. YERFED14 AUM's
8. COWFED15 AUM's
9. YERFED15 AUM's
10. BARFED15 bushels
11. HAYFED15 tons
12. COWFEDI16 AUM's
13. YERFED16 AUM's
14. BARFED16 bushels
15. HAYFED16 tons .
HAY & GRAIN 1. HAYHART® acres
2. OATHAR1D acres
3. BARHAR1Q acres
4. HAYDOP1P tons
5. OATDP?1D bushels
6. BARDPP1D bushels

*Right hand side is < 0 unless indicated otherwise.

Figure 18. Right Hand Side of Peace River Income Assurance Model
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Row Right Hand Side *
LABOR 1.1 LABRPP11 60 hours per week
2. | LABRPP12 135 hours per week
3. | CUSLAB11 30 hours per week
4. CUSLAB12 30 hours per week
5. | LABRPP13 70 hours per week
6.| LABRPD14 75 hours per week
7.1 LABRPQ15 120 hours per week
8. | LABRPP16 120 hours per week
9.1 LABRPP17 85 hours per week
10. | LABRPP18 85 hours per week
11. | LABHAR15 75 hours per week
12. | LABHAR16 75 hours per week
13. { LABHAR17 51 hours per week
14. | LABHAR18 51 hours per week
15. | LABRPP19 70 hours per week
16. | HIRLAB19 hours per week
17.{ HIRLABIT 1500 hours
18. | CSWIPR13 hours
- 19. | CSWIRP13 hours
20. | CSWPAS13 = cows
21.| CSWRANT3 = COWS
22. | COWSWIT3 = COWS
23. 1 YSWIPR13 hours
24.1 YSWIRP13 hours
25.1 YSWPAS13 = yearlings
26. | YSWRAN13 = yearlings
27.1 YERSWI13 = yearlings
28.| CSWIPR14 hours
29. | CSWIRP14 hours
30. | CSWPAS14 = cows
31.| CSWRAN14 = COWS
32.| COWSWIT4 = cows
33.{ YSWIPR14 hours
34.| YSWIRP14 hours
35. | YSWPAS14 = yearlings
36. 1 YSWRAN14" = yearlings
37.| YERSWI14 = yearlings
INCOME 1.1 CSIAPP21 calves
ASSURANCE 2.1 YOWNIAZ21 calves
- 3. YSIAPP15 yearlings
4.1 YSIAPP21 yearlings
5.1 INCASS19 121125 qualifying pounds
6.] TOTPOUNC = pounds
7.1 TOTPOUNY pounds
INCOME AND T.] INCOMETQ doilar
VALUE OF 2.1 VALUESUR dollar equivalents

SURPLUS LABOR

* Right hand side is < 0 unless indicated otherwise.
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Table Vil. Definitions of Activities (Columns) of Peace River Income
Assurance Model

2w~

~NOoOyOon

OWNHAY19
RENHAY 10
OWNOAT1D
BESOAT1D

RENOAT1Q
OWNBAR1D
BESBAR19

RENBAR1P
OWNPAS10
OWNRANTP

COWSRHEF
YEARPD11

YEARPP21
YEROWN21

YERPURZ1

YEARZG15
YEARZG16
OPASTC13
OPASTC14
OPASTC15

OPASTY13.

OPASTY14
OPASTY15
ORANGC13
ORANGC14
ORANGC15
ORANGY13
ORANGY14
ORANGY15
RPASTC13
RPASTC14
RPASTC15
RPASTY13
RPASTY14
RPASTY15
RENRAN13

. RENRAW14

RENRANT5

of
of
of
of

acres
acres
acres
acres
year
acres of
acres of
acres of
the year
acres of
acres of
acres of
year

own improved land allocated to hay for the year
rented land producing hay in the year

own improved land allocated to oats for the year
"best" own improved land allocated to oats for the

rented Tand producing oats in the year
own improved land allocated to barley for the year
"best" own improved land allocated to barley for

rented land producing barley in the year
own improved land allocated to pasture for the year
own unimproved land allocated to grazing for the

number of cows plus’ "old" replacement heifers (to calve in
the next year) for the year

number of yearlings at the beginning of the year (to be sold
towards end of year)

number of yearlings at the beginning of the next year

number of calves (born in spring of year) held over for sale
as yearlings towards the end of the following year

number of calves purchased at end of year (for sale as
yearlings towards end of next year) _

number of yearlings zero-grazed during feeding period 5
number of yearlings zero-grazed during feeding period 6

AUM's
AUM's
AUM's
AUM's
AUM's
AUM's
AUM's
AUM's
AUM's
AUM's
AUM's
AUM's
AUM's
AUM's
AUM's
AUM's of
AUM's of
AUM's of
AUM's of
AUM's of
AUM's of

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

own
own
own
own
own
own
own
own
own
own

pasture
pasture
pasture
pasture
pasture
pasture
range

grazed
grazed
grazed
grazed
grazed
grazed
grazed

by cows in feeding period 3

by cows in feeding period 4
by cows in feeding period 5

by yearlings in feeding period 3

by yearlings in feeding period 4

by yearlings in feeding period 5

by cows in feeding period 3

range grazed by cows in feeding period 4

range grazed by cows in feeding period 5
range grazed by yearlings in feeding period 3

own range grazed by yearlings in feeding period 4

own range grazed by yearlings in feeding period 5
rented pasture grazed by cows in feeding period 3
rented pasture grazed by cows in feeding period 4
rented pasture grazed by cows in feeding period 5
rented pasture grazed by yearlings in feeding period 3
rented pasture grazed by yearlings in feeding period 4
rented pasture grazed by yearlings in feeding period 5
rented range grazed by cattle in feeding period 3
rented range grazed by cattle in feeding period 4
rented range grazed by cattle in feeding period 5

.../Cont'd.
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Table VIl (Cont'd.)

39. RRANGCI3 AUM's of rented range grazed by cows in feeding period 3

40. RRANGC14 AUM's of rented range grazed by cows in feeding period 4

41. RRANGC15 AUM's of rented range grazed by cows in feeding period 5

42. RRANGY13 AUM's of rented range grazed by yearlings in feeding period 3

43. RRANGY14 AUM's of rented range grazed by yearlings in feeding period 4

44. RRANGY15 AUM's of rented range grazed by yearlings. in feeding period 5

45. HAYAFC15 acres of hay aftermath grazed by cows in feeding period 5

46. HAYAFC16 acres of hay aftermath grazed by yearlings in feeding period 5

47. HAYAFY15 acres of hay aftermath grazed by cows in feeding period 6

48. HAYAFY16 acres of hay aftermath grazed by yearlings in feeding period 6

49. HAYFED11 tons of hay fed to cows and yearlings during feeding period 1

50. HAYFED12 tons of hay fed to cows and yearlings during feeding period 2

51. HAYFED15 tons of hay fed to cows and yearlings during feeding period 5

52. HAYFED16 tons of hay fed to cows and yearlings during feeding period 6

53. BARFED11 bushels of barley fed to yearlings during feeding period 1

54. BARFED15 bushels of barley fed to yearlings during feeding period 5

55. BARFED16 bushels of barley fed to yearlings during feeding period 6

56. HAYHAR15 acres of hay harvested during labor period 5

57. HAYHAR16 acres of hay harvested during labor period 6

58. HAYHAR17 acres of hay harvested during labor period 7

59. OATHAR17 acres of oats harvested during labor period 7

60. OATHAR18 acres of oats harvested during labor period 8

61. BARHAR17 acres of barley harvested during labor period 7

62. BARHAR18 acres of barley harvested during labor period 8

63. HAYPUR1® tons of hay purchased during the year

64. HAYSAL1® tons of hay sold during the year

65. OATSAL1@ bushels of oats sold during the year

66. BARPUR1Q bushels of barley purchased during the year

67. BARSAL1® bushels of barley sold during the year

68. CUSLAB11 hrs./wk. of custom or off-farm work during labor period 1

69. CUSLAB12 hrs./wk. of custom or off-farm work during labor period 2

70. LABRPC17 roundup hrs./wk. in labor period 7 for cows on rented pasture
in feeding period 3

71. LABRPC18 roundup hrs./wk. in labor period 8 for cows on rented pasture
in feeding period 4

72. LABRPY17 roundup hrs./wk. in labor period 7 for yearlings on rented
pasture in feeding period 3

73. LABRPY18 roundup hrs./wk. in labor period 8 for yearlings on rented
pasture in feeding period 4 '

74. LABRRC17 roundup hrs./wk. in labor period 7 for cows on rented range

' in feeding period 3 -

75. LABRRC18 roundup hrs./wk. in labor period 8 for cows on rented range
in feeding period 4 '

76. LABRRY17 roundup hrs./wk. in labor period 7 for yearlings on rented.
range in feeding period 3

77. LABRRY18 roundup hrs./wk. in labor period 8 for yearlings on rented

' range in feeding period 4 ‘ :

78. SURLAB11 hrs./wk. of own labor that is surplus (1eisure) in labor period 1

79.  SURLAB12 hrs./wk. of own labor that is surplus (1eisure) in labor period 2

80. SURLAB13 hrs./wk. of own labor that is surplus (1eisure) in labor period 3

81. SURLAB14 hrs./wk. of own labor that is surplus (leisure)in labor period 4

.../Cont'd.



Table VII
82. SURLABI15
83. SURLAB16
84. SURLAB17
85. SURLAB18
86. SURLAB19
87. SURLABH5
88. SURLABH®6
89. SURLABH7
90. SURLABHS
91. VALUESUR
92. HIRLABITI
93. HIRLABIZ
94. HIRLABI13
95. HIRLAB14
96. HIRLABI15
97. HIRLAB16
98. HRILAB17
99. HIRLAB18
100. HIRLAB19
101. HIRLABH5
102. HIRLABH6
103. HIRLABH7
104. HIRLABH8
105. HIRLAB19
106. CSWPRA13
107. CSWPRB13
108. CSWPOA13
109. "CSWPOB13
110. CSWROA13
111. CSWROB13
112. CSWPRA14
113. CSWPRB14
114, CSWPOA14
115. CSWPOB14

(Cont'd.)

hrs./wk. of own labor that
harvesting in labor period
hrs./wk. of own labor that
harvesting in labor period
hrs./wk. of own labor that
harvesting in labor period
hrs./wk. of own labor that
harvesting in labor period
hrs./wk. of own labor that

is
5
is
6
is
7
is
8
is

surplus
surplus
surplus
surplus

surplus
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(1eisure)-during non-
(leisure) during non-
(1eisure) during non-'
(Teisure) during non-

(1eisure) in labor period 9

hrs./wk.of own labor that is surplus (leisure) during harvesting

in labor
hrs./wk.
in labor
hrs./wk.
in labor
hrs./wk.
in labor

period 5
of own
period 6
of own
period 7
of own
period 8

labor that is surplus (leisure) during harvesting
Tabor that is surplus (leisure) during harvesting

labor that is surplus (leisure) during harvesting

dollar equivalent value of surplus farm labor (leisure) for the

year

hrs./wk. of l1abor hired in labor period 1

hrs./wk. of labor hired in labor period 2

hrs./wk. of labor hired in labor period 3

hrs./wk. of labor hired in Tabor period 4

hrs./wk. of labor hired for non-harvesting activities in labor
period 5

hrs./wk. of labor hired for non-harvesting activities in labor
period 6 v :

hrs./wk. of labor hired for non-harvesting activities in labor
period 7 :
hrs./wk. of labor hired for non-harvesting activities in labor
period 8 .

hrs./wk. of labor hired in labor period 9 :

hrs./wk. of labor hired for harvesting activities in labor period
hrs./wk. of labor hired for harvesting activities in labor period
hrs./wk. of labor hired for harvesting activities in labor period
hrs./wk. of labor hired for harvesting activities in labor period

total hours

pasture to rented range at end of feeding period 3

of labor hired during the year ,
}difference (A-B) equals number of cows transferred from community

}difference (A-B) equals number of cows transferred from community
pasture, but not to rented range, at end of feeding period 3
(A-B) equals number of cows transferred from rented
not to community pasture, at end of feeding period 3
(A-B) equals number of cows transferred from community
rented range at the end of feeding period 4

(A-B) equals number of cows transferred from community
pasture, but not to rented range, at end of feeding period 4

}difference
range, but
}difference
pasture to
}difference

.../Cont'd.
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Table Vil

116. CSWROA14
117. CSWROB14
118. YSWPRA13
119. YSWPRB13
120. YSWPOA13
121.  YSWPOB13
122. YSWROA13
123. YSWROB13
124. YSWPRA14
125. YSWPRB14
126. YSWPOA14
127. YSWPOB14
128. YSWROA14
129. YSWROB14
130. CAFSAL21
131. YERSAL15
132. YERSAL21
133. CSIAPP21
134. YOWNIA21
135. YSIAPQ15
136, YSIAPP21
137. TOTPOUNC
138. TOTPOUNY
139. INCOME1Q

}
}
}

}

}
}

}
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(Cont'd.)

difference (A-B) equals number of cows transferred from rented -
range, but not to community pasture, at end of feeding period 4
difference (A-B) equals number of yearlings transferred from
community pasture to rented range at end of feeding period 3
difference (A-B) equals number of yearlings transferred from
community pasture, but not to rented range,at end of feeding
period 3 : ‘

difference (A-B) equals number of yearlings transferred from
rented range, but not to community pasture,at end of feeding
period 3 .
difference (A-B) equals number of yearlings transferred from
community pasture to rented range at end of feeding period 4
difference (A-B) equals number of yearlings transferred from
community pasture, but not to rented range, at end of feeding
period 4

difference (A-B) equals number of yearlings transferred from
rented range, but not to community pasture,at end of feeding
period 4 .

number of calves born in spring of year sold after feeding
period 6

number of yearlings sold just before feeding period 5

number of yearlings sold just after feeding period 6

number of calf pounds sold at end of the year that qualify (as
calf pounds) for income assurance subsidies

number of yearling pounds sold during the year that qualify (as
calf pounds) for income assurance subsidies

number of yearling pounds sold on Nov. 15 that qualify (as
yearling pounds) for income assurance subsidies

number of yearling pounds sold at end of the year that qualify
(as yearling pounds) for income assurance subsidies

number of calf pounds raised on-farm during the year

number of yearling pounds raised on=farm during the year

.farm family income for the year
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Most of the data collected for and ultimately employed in Peace River

models is presented here. When parameters are considered relatively uncertain
and important in the evaluation of the A.R.D.A. community pastures programs,
several estimates are included in programming models in order to estimate the
sensitivity of model results to likely errors in data. In several cases, the’
range within which the "correct" value of the parameter seems likely to lie

is presented in parentheses after the "best guess".

1.

Farm land supply

a. 150 acres native grass

b. 350 acres suitable for tame grass, hay or grain

c. of these 350 acres, 150 acres are particularly suitable for grain .

d. up to 50 acres each of hay, oats, and barley land can be rented
per year

e. access to community pasture and community range or forestry range.

Tame AUM's Native AUM's

June 1 - Sept. 1 g 180 300
Sept. 1 - Sept. 15 30 50
Sept. 15 - Oct. 1 45 75

Source: B.C.D.A. staff in DaWson Creek, Fort St. John and Prince
George, farm interviews.

Farm labor supply (= labor hours typically worked by the farm family,
per week)

a. Nov. 1 - Apr. 7, Apr. 21 - May 10 (winter, excluding calving):
75 hrs./wk., including up to 30 hrs./wk. of custom or off-farm
work .

b. Apr. 7 - Apr. 21 (calving season):

150 hrs./wk. including up to 30 hrs./wk. of custom or off-farm
work

c. May 10 - July 1: 85 hrs./wk.

d. July 1 - Sept. 1 (primary harvesting season): 120 hrs./wk.

e. Sept. 1 - Nov. 1: 85 hrs./wk.

Source: B.C.D.A. staff in Dawson Creek and Fort St. John, farm inter-
views.

Note: the following estimates were used in arriving at the aggregate
farm family laber figures above (excluding calving period)

Labour hours per week supplied to the
farm (excluding custom or off-farm work
during winter)

Winter Spring May-June July-Aug. Fall

farm owner-operator 30 60 60 60 60
wife 10 15 15 20 15
polder child 5 10 10 40 10

Weather constraint on harvesting:

-weather permits harvesting on 60% of days from July 1 to Oct. 7.

Source: farm interviews, B.C.D.A. staff at Fort St. John
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Feeding requirements

a. Nov. 1 - May 10 (190 days):
2.25 t hay/cow, 1.7 t hay/yearling, 7 bu. barley/yearling
b. May 10 - June 1 (20 days):
.24 t hay/cow, .16 t hay/yearling
c. June 1 - Sept. 1 (90 days):
3 AUM grazing on pasture/cow and yearling
d. Sept. 1 - Sept. 15 (15 days):
.5 AUM grazing on pasture/cow and yearling
e. Sept. 15 - Oct. 7 (22 days):
.75 AUM grazing on pasture or hay aftermath/cow and grazed yearling,
.17 t hay/yearling zero grazed, 1.375 bu. barley/yearling
f. Oct. 7 - Nov. 1 (22 days): ‘ :
.75 AUM grazing on hay aftermath/cow and grazed yearling,
.375 AUM grazing on hay aftermath/weaned calf
.17 t hay/yearling zero-grazed, 1.375 bu. barley/yearling

Source: B.C.D.A. staff in Dawsoh Creek, Fort St. thn and Prince
George, J. Kidder.

Calf and yearling weight gain differences for pasture and range

(= increase in selling weight per AUM of tame grazing during the period
minus '

increase in selling weight per AUM of native grazing during the period)

Calves Yearlings

June 1-Sept. 15 +15 1bs./AUM grazing by cow (10to20) + 21 1bs./AUM
Sept. 15-Oct. 7 +30 1bs./AUM grazing by cow (20to45) + 42 1bs./AUM

Source: R. Beames, B.C.D.A. staff in Fort St. John, G. Kirtzinger
Animal selling and purchase dates and selling and purchase weights

a. Calves sold, and purchased (for backgrounding), on Nov. 1, at 450
1bs. if never grazed on native

b. Yearlings sold (1) on Sept. 15, at 750 1bs. if never grazed on
native (as yearlings or as calves on the farm), or (2) on Nov. 1,
at 825 1bs. if never grazed on native (as yearlings or as calves
on the farm) :

Source: B.C.D.A. staff in Dawson Creek and Fort St. John
Grazing productivity on farm

a. 3 acres pasture required for 4 summer months of grazing per cow
or yearling (3 to 4 acres)

b. 12 acres range required for 4 summer months of grazing per cow
or yearling

c. hay aftermath grazing capacity:
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1.25 t hay yield « 1 t aftermath yield
ac. in hay production ™ 6 t hay yield
X 1AM = .63 AUM per acre of hay aftermath grazed

.33 t aftermath required ~

Source: B.C.D.A. staff in Fort St. John, Prince George consensus report
on hay, J. Kidder.

8. Crop rotation: 1in any year, 3/4 of own acres in hay, in oats and in

barley are in production

Source: B.C.D.A. staff in Dawson Creek and Fort St. John
9. Crop yields per acre harvested (as a function of time of harvest)

'IaVé.l' "pOOY‘" uave.n "pOOY'"
hay oatland oatland barley barley

harvested July 1-Aug.1 1.25t/ac(1.0tol.5) -- -- - --
harvested Aug.1-Sept.1 1.00t/ac -- -- -- --
harvested Sept.1-Sept.15 .75t/ac 40bu/ac 30bu/ac  30bu/ac 23bu/ac

harvested Sept.15-0ct.7

10.

35bu/ac 25bu/ac  27bu/ac 20bu/ac

Source: B.C.D.A. staff in Fort St. John, farm interviews, Dawson Creek
Rolla concensus report on barley, etc.

"Variable costs" per acre of hay and grain (excludes cost of labor and

interest on land, includes cost of maintaining capital stock)

hay $35/ac in production (30-40) $5/ac in establishment
oats & barley $45/ac in production $5/ac in summerfallow

Source: farm interviews, B.C.D.A. staff in Dawson Creek and Fort St.
John, Dawson Creek-Rolla concensus report on barley, etc.,
Prince George concensus report on hay.

Note: 1) Data in the Prince George concensus report was used only in
the estimation of differences between short and long run variable
costs, and interest on capital is calculated for an interest
rate gf 4% (an estimate of the real interest rate for borrowing
funds). :

2) These estimates of reasonable range of variable costs per
acre of hay in production are also consistent with other data
for the Peace River model. If aftermath is grazed and own -
labor (at $2 /hr.) is used for harvesting, then a hay variable
%ost of)$40/acre.1s consistent with a rental rate of $10/acre

see 12):
TR/ac %.25t/ac x $40/t + .63AUM's aftermath/ac x $8/AUM
55/ac
$40 VC/ac + 2.5 hrs./ac x $2/hr. = $45/ac

N
nonn

TC/ac
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12.
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On the other hand, if aftermath is not grazed and hired
labor (at $4/hr.) is used for harvesting, then a hay
variable cost of $30/acre is consistent with a rental
rate of $10/acre.

Labor requirements for culture and harvest of hay and grain

Cultivation Harvesting
) _ . _ 3 labor days
hay .5 hrs/ac cultivated 2.4 hrs/ac harvested = T5 ac harvested, etc.
% 12 hrs.
Tabor day
oats &
barley .8 hrs/ac cultivated .88 hrs/ac harvested
Source: B.C.D.A. staff in Fort St. John, Dawson Creek-Rolla concensus
report on barley, etc.
Rental rates per acre hay and grain (in current production) of "average"
quality
hay: $11.5/ac (standard deviation = 1.7)
oats & barley: $17.5/ac (15-20)
Source: farm interviews, B.C.D.A. in Dawson Creek and Fort St. John.
Note: all acres are cultivated. l
Pasture grazing fees
a. community pasture: - $3.90/AUM

b. community range or forestry range: $0.53/AUM

Source: G. Kirtzinger, B.C.D.A. staff in Dawson Creek and Fort St.
John

1975 market prices (Sept.-Nov.)

a. hay: $40/ton

b. oats: $1.60/bu.

c. barley: $2.40/bu.

d. calves: (450 1bs.): 30¢/1b.

e. yearlings: (750 or 825 1bs.): 36¢/1b.

f. cull cows: $150/cow (at 1,000 1bs./cow)

Sourée: B.C.D.A. staff in Dawson Creek and Fort St. John, Canadian
Livestock and Meat Trade Report (June 1975), J. Kidder

Note:

As pointed out in the text, 1975 market prices are highly
unrepresentative of price in other years. Hence alternative

pr;c? combinations were employed in the application of the
model.
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16.

17.
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1975 B.C. Income Assurance subsidies for beef producers

a. 27¢/"qualifying calf pound"
b. 14¢/"qualifying yearling pound"

Source: B.C.D.A. staff in Prince George.
Incidental costs (vet., etc.)

a. $25/cow (including calf)
b. $25/yearling

Source: B.C.D.A. staff in Dawson Creek and Fort St. John.

Note: This estimate of $25 incidental expenses per cow is consistent
with a Tore detailed estimate provided by J. Sinclair (1975,
p. 262)':
$13.75/cow for straw, salt, minerals, vet. and medicine
$10.00/cow for breeding.

Depreciation and Interest Cosﬁs for Cattle Enterprise

a. cow-calf

depreciation (on buildings and equipment, fences) $7/cow
interest on capital excluding land, at 4%
(buildings and equipment, fences, cows) . $13/cow

b. yearling phase

depreciation (on buildings and equipment, fences) $2/yearling
interest on capital excluding land, at 4%
(buildings and equipment, fences, calves) $A/yearling
A= (revenue from sale of 450 1b. calf) x .04

x B/365

B= # days between potential sale as calf and actual
sale as yearling

Source: -article by J. Sinclair (1975)

Note: Interest on capital is calculated from Sinclair's data for an
interest rate of 4% (an estimate of the real interest rate for
borrowing funds).

Average size of cow herd (1975): 40 cows

Source: farm interviews.

]Farm Management Specialist, Manitoba Department of Agriculture, Branddh, Manitoba.
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20.
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Calving, mortality and culling rates (%)

b.

c.
d.

Calving Rate Mortality Rate Culling Rate

cows more than two
years old, j.e. cows

that have calved before 85 2 10
cows that have not

calved before 80 2 10
calves - 8 -
yearlings -- 2 --

Source: farm interviews

Labor prices

a.
b.

wage for hired labor: $4/hr. at any time during year
wage for custom work or off-farm work by the farm family: $5/hr.

Source: B.C.D.A. staff in Dawson Creek and Fort St. John, farm inter-

views.

Cattle labor requirements

a.

during summer (Junel-Oct. 7: 18.5 weeks)

1) dinspection of cows and calves by farm labor:
0 hrs./wk. on community pasture
6 hrs./wk. for 60 cows on grazing other than community
pasture :
ii) 1inspection of yearlings by farm labor:.
0 hrs./wk. on community pasture
6 hrs./wk. for 60 yearlings® on grazing other than community

pasture.
iii) roundup (and sorting) requirements (total hours for 60

animals)

com. past. rented native own tame own native

roundup of 60 cows 10 30 2 5
sorting of 60 cows 5 5 0 0
roundup of 60 yearlings 5 35 2 5
sorting of 60 yearlings 5 5 0 0

iv) inspection, roundup and sorting requirements on a given type
of pasture or range are assumed to be proportional to the
number of cows and to the number of yearlings.

rest of year, excluding calving requirements (33.5 weeks)
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i) 60 cows plus 60 yearlings: 36 hrs./wk.

i) these 36 hrs./wk. are assumed to have fixed and proportional

components: :

36 hrs. = 15 hrs. + .2 hrs./cow x 60 cows + .15 hrs./yearling
X 60 yearlings

c. calving requirements (2 weeks)

i) 60 cows: 180 hours total for 2 weeks
iji) calving requiremtns are assumed to be proportional to the
number of cows

Source: G. Kirtzinger, J. Kidder.
Note: Sum of a, b, and ¢ (hrs./yr.) equals

0 or .1 0 or .1
33.5(15) + 18.5(——EEW——)(60 cows) + 18'5(§EEFTTF§)

.03 to .58 .03 to .67
cow (60 cows) + yearling

. .2 .15
(60 yearhngs) + 33.5((:—0-"7)(60 COWS) + 33.5(m)

(60 yearlings) +

3

EEW(GO COWS)

(60 yearlings) +

- 9.7 to 12.1 5.0 to 7.5 .
= 502.5 + -———7557————(60 cows) + _y537777ﬁ5—(60 yearlings)

So 60 cows, O yearlings implies 1084.5 hrs./yr. to 1228 hrs./yr.,
and 40 cows, 0 yearlings implies 890 hrs./yr. to 986 hrs./yr.
This is relatively close to results obtained in a regression
analysis of 1971 Alberta Peace River cow-calf enterprises:

labor hrs./yr. for 60 cows 600 + (60 cows) = 960

labor hrs./yr. for 40 cows 500 + —— (40 cows) = 820.

Tirk (1972).



