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ABSTRACT 

A p u r i n i c endonuclease a c t i v i t y in human f i b r o b l a s t s had been 

p r e v i o u s l y r e s o l v e d i n t o af low-through and a h i g h - s a l t e l u a t e spe­

c i e s by phosphocellulose chromatography (Kuhnlein, U. e t a l . , Nucl. 

A c i d . Res. 5: 951-960, 1978). Enzyme a c t i v i t y in the flow-through 

s p e c i e s amounted t o 20-30% t h a t of the h i g h - s a l t e l u a t e s p e c i e s . 

The flow—through enzyme species was not found i n - e e l I l i n e s of 

xeroderma pigmentosum complementation group D. 

In t h i s t h e s i s , a p u r i n i c endonuclease a c t i v i t y was analysed in 

Hela c e f l l s . S p e c i f i c enzyme a c t i v i t y in crude e x t r a c t s "of Hela c e l l s 

was i n the range of 400-800 units/mg p r o t e i n , s i m i l a r t o t h a t of , 

human f i b r o b l a s t s which was between 380-680 units/mg p r o t e i n . Three 

sp e c i e s of endonuclease a c t i v i t y f o r a p u r i n i c DNA were resolve d by 

phosphocellulose chromatography. They were designated as Peak I, 

Peak I f , and Peak I I I . Peak I d i d not adsorb t o the phosphoceIIuIose 

column at' 10 mM KP0 4 (pH 7.4) (flow-through a c t i v i t y ) , Peak II e l u t e d 

from t h e column a t about 210 mM KP0 4 (pH 7.4) and Peak I I I a t 260 mM 

KPO^ (pH 7.4). Based on t h e i r a f f i n i t y t o phosphoceI IuIose, we pre­

sumed Peak I and Peak III corresponded t o the flow-through and high-

s a l t e l u a t e s p e c i e s in human f i b r o b l a s t s r e s p e c t i v e l y . Under our ex­

perimental c o n d i t i o n s , the flow-through enzyme a c t i v i t y in both Hela 

c e l l s and normaS human f i b r o b l a s t s was only 2-4% of the a c t i v i t y of 

h i g h - s a l t e l u a t e s p e c i e s . We suspect t h a t t i s s u e c u l t u r e c o n d i t i o n s 

may a f f e c t the c e l l u l a r l e v e l of the flow-through species of a p u r i n i c 

endonuclease. 

Peaks l - l I f were o p t i m a l l y a c t i v e a t pH 7.5-8.0 and 5-10 mM MgCI, 
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They were 'inhibited by i n c r e a s i n g concentrations of KCI and NaCI 

except Peak III which was s l i g h t l y s t i m u l a t e d by 20-40 mM KCI. 

The three species were d i s t i n g u i s h e d by t h e i r t h e r m o s e n s i t i v i t i e s 

in a 50 mM KPO. b u f f e r . Peak I was s t a b l e at 45°C. Peak III was 

h e a t - l a b i l e , having a h a l f - l i f e of 2-3 min at 45°C. Peak II 

seemed to contain two components, one with a ha I f - l i f e of 2-3 min 

at 45°C, and the other with a h a l f - l i f e of 25 min. In human f i b r o ­

b l a s t s , both the flow-through and h i g h - s a l t e l u a t e species of apu-

r i n i c endonuclease were reported t o be s t i m u l a t e d t o 2.5-fold by 

10 mM KCI. They had a ha I f - l i f e of 6 min at 45°C in a 230 mM KP0 4 

(pH 7.4) b u f f e r . Thus, Peaks I - l I I and enzyme species from human 
2+ 

f i b r o b l a s t s had a s i m i l a r pH optimum, and Mg requirement, but 

they d i f f e r e d in t h e i r t h e r m o s e n s i t i v i t i e s and i n h i b i t i o n by higher 

s a l t c o n c e n t r a t i o n . We do not know as yet whether these d i f f e r e n c e s 

r e f l e c t the n e o p l a s t i c nature of Hela c e l l s o r the d i f f e r e n t t i s s u e 

o r i g i n s of Hela c e l l s and human f i b r o b l a s t s . 

When e i t h e r Peak I o r Peak I I I was rechromatographed on the 

phosphoceI Iulose column, a c t i v i t y was recovered in both the flow-

through and h i g h - s a l t e l u a t e f r a c t i o n s . The r e s u l t suggested an 

i n t e r c o n v e r s i o n phenomenon between the flow-through and h i g h - s a l t 

e l u a t e species of a p u r i n i c endonuclease, This was f u r t h e r supported 

by molecular weight determinations of the a p u r i n i c endonucI eases In 

Peaks l - l I I. A p u r i n i c endonuclease a c t i v i t y in Peak III and Peak II 

had a molecular weight of 35,000-40,000 and 22,000-25,000 respective­

l y . Peak I had two components with molecular weights s i m i l a r t o 

those of Peak II and Peak I I I . An understanding of the conversion 
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between the d i f f e r e n t a p u r i n i c endonuclease species may help in 

e l u c i d a t i n g the molecular defects of xeroderma pigmentosum comple­

mentation group D. 

A p u r i n i c endonuclease a c t i v i t y in Peaks l - l I I was found to be 

a s s o c i a t e d with a high molecular weight complex. The complex could 

be d i s s o c i a t e d by high s a l t treatment. The p o s s i b l e b i o l o g i c a l 

s i g n i f i c a n c e of the high mo I ecu Iar weight complex Is discussed. 

We a l s o found t h a t a p u r i n i c endonuclease could adsorb to the 

Sephadex g e l . The adsorption would lead t o an aberrant e s t i m a t i o n 

of molecular weight of the p r o t e i n . The problem was solved with an 

e l u t i o n b u f f e r of high i o n i c s t r e n g t h . 
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1. 

INTRODUCTION 

T. A p u r i n i c / a p y r i m i d i n i c sites.-as common DNA le s i o n s : 

Perhaps one of the most common forms of DNA'damage i s the 

loss o f pu r i n e and pyrimidine bases from the DNA. These processes, 

d e p u r l n a t i o n and de p y r i m i d i n a t i o n , involve breakage of the g l y c o -

s f d i c band between the purine o r pyrimidine bases and the deoxy-

r i b o s e m o i e t i e s of the DNA. 

Purine and py r i m i d i n e bases have been demonstrated t o be re­

leased Err d e t e c t a b l e q u a n t i t i e s from DNA at neutral pH and 70°C 

(1) . The i n i t i a l rate constant of depurination i s 2.4 x 10 ^sec \ 

Depyrfmidination i s about 10-20 times slower than depurination 

(2) . At p h y s i o l o g i c a l c o n d i t i o n s of 37°C and pH 7.4, the in v i v o 

rate constant of depurination has been estimated t o be in the o r -
- 9 - 1 der o f 2 x 10 min 

DMA modifi e d by some chemical or ph y s i c a l agents has a much 

higher dlepurination/depyrimidination rate ( 3 ) . An example i s a l ­

k y l a t e d DNA. A l k y l a t i o n of DNA r e s u l t s in the formation of purine 

and pyrrtttidine d e r i v a t i v e s with l a b i l e g l y c o s i d i c bonds (4,5). Some 

mod i f i e d bases, such as 3-methyIadenine and 0^-methyIguanine can 

a l s o be removed by s p e c i f i c DNA-gIycosidases (6,7). The in v i v o 

d e p u r i n a t i o n r a t e constants of 7-methyIguanine and 3-methyIadenine 
-4 -1 -3 -1 are o f the o r d e r of 1 x 10 min and 4 x 10 min r e s p e c t i v e l y 

(8). 

F i n a l l y , a p y r i m i d i n i c s i t e s are formed during the process of 

removal of u r a c i l residues from the DNA. U r a c i l residues are 
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introduced i n t o the DNA as a r e s u l t of deamination of c y t o s i n e 

residues (9,10). U r a c i l can a l s o be incorporated i n t o DNA 

in ptaee of thymine during rep Ii c a t i o n • ' (11,12). The enzyme t h a t i s 

thought to be involved in the removal of u r a c i l residues in DNA 

has been p u r i f i e d from e x t r a c t s of E_. col i and human f i b r o b l a s t s . 

I t i s c a l l e d u r a c i l g l y c o s i d a s e (13,14). 

It can be concluded from the above argument t h a t d e p u r i n a t i o n / 

depyrimidination of DNA occurs to a s i g n i f i c a n t extent in v i v o . 

Considering spontaneous depurination alone, a growing mammalian 

c e l l may loose 2,000-10,000 purines and a few hundred p y r i m i d i n e 

residues from i t s DNA during a c e l l generation time of 20 hours (1). 

2. P o s s i b l e c e l l u l a r e f f e c t s of a p u r i n i c / a p y r i m i d i n i c s i t e s : 

Besides a d i r e c t loss of g e n e t i c information, the presence of 

a p u r i n i c / a p y r i m i d i n i c s i t e s on the DNA has several other conse­

quences. During r e p l i c a t i o n , the p o s i t i o n opposite to the a p u r i n i c / 

a p y r i m i d i n i c s i t e s in the newly formed complementary stran d may be 

f i l l e d at random. Or, the r e p l i c a t i o n mechanism may simply s k i p 

the l e s i o n s and d e l e t i o n s res u11. In v i t ro, the f i d e l i t y of DNA 

s y n t h e s i s by AMV DNA polymerase was found t o decrease with a depu-

r i n a t e d poly d(A-T) template (15). A p u r i n i c / a p y r i m i d i n i c s i t e s 

a l s o lead to chain.breakages (16), i n t e r s t r a n d c r o s s l i n k formation 

(17) in the DNA, and a d e s t a b i I i z a t i o n of the DNA double h e l i x (18). 

In T7 c o l i p h a g e , one out of seven t o e i g h t depurination events was 

reported t o be an i n a c t i v a t i o n h i t (19,20). 

One can t h e r e f o r e envisage t h a t a p u r i n i c / a p y r i m i d i n i c s i t e s , i f 
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•unrepaired, w i l l impose mutagenic and t o x i c e f f e c t s on a c e l l . 

DNA r e p a i r mechanisms must have evolved t o safeguard the c e l l 

from depurination and depyrimi di n a t i o n . ;. 

3. DNA r e p a i r mechanisms : 

Several DNA r e p a i r mechanisms have been proposed t o f u n c t i o n 

in both procaryotes and eucaryotes f o r the r e p a i r of various DNA 

l e s i o n s (21-22). They are summarised in Figures 1 and 2. Most 

of the pathways i l l u s t r a t e d are e x a m p l i f i e d by the r e p a i r of p y r i ­

midine dimers, from which our present concepts of t h e : v a r i o u s DNA 

r e p a i r mechanisms are l a r g e l y derived. The formation of t h i s DNA 

l e s i o n i n v o l v e s a covalent l i n k i n g of adjacent pyrimidines in a 

DNA strand and i s induced by u l t r a v i o l e t l i g h t . 

The s i m p l e s t mode of DNA r e p a i r i s a d i r e c t r e v e r s i o n of the 

damaged DNA back t o the undamaged form. To date, the only well 

e s t a b l i s h e d example i s the enzymatic p h o t o r e a c t i v a t ion of p y r i m i ­

dine dimers. In t h i s process, an enzyme c a l l e d photolyase o r 

p h o t o r e a c t i v a t i n g enzyme i s able t o monomerize the UV-induced p y r i ­

midine dimers in the presence of l i g h t with a wavelength of 320-

370 nm. Recently, i t was suggested t h a t 0^-methyIguanine of a l k y ­

lated DNA could a l s o be reverted back d i r e c t l y t o the undamaged 

form v i a an enzyme-mediated deaIky I at ion process. Thus, a s p e c i f i c 

enzyme c a l l e d demethylase was i s o l a t e d from r a t l i v e r which removed 

the 0^-methyl group from the a l t e r e d guanine base (23). In the 

case of a p u r i n i c / a p y r i m i d i n i c DNA, r e p a i r can be accomplished by 

i n s e r t a s e a c t i v i t i e s which simply place c o r r e c t bases back i n t o 
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Figure 1. Schematic representation of the p r i n c i p l e mechanisms f o r 

the r e p a i r of i n t r a s t r a n d p y r imidine dimers in DNA. 

For d e t a i l s , see references c i t e d in t e x t . 
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Figure 2. Base e x c i s i o n DNA r e p a i r mechanism f o r the 

r e p a i r of p a r t l y deaminated DNA. 

The r e p a i r process takes place on double 

stranded DNA, but the complementary strand 

has been omitted f o r s i m p l i c i t y . 
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the l e s i o n , s i t e s . Insertase a c t i v i t y for a p u r i n i c DNA has been • 

found in human f i b r o b l a s t s (24,25). 

Another mode of DNA r e p a i r i nvo I ves -:the e x c i s i o n of the dama­

ged bases o r n u c l e o t i d e s from the DNA and i s thus termed e x c i ­

sion r e p a i r . As shown in Figure 1, r e p a i r of pyrimidine dimer i s 

i n i t i a t e d by a s o - c a l l e d UV-endonuclease which i n c i s e s the DNA ad­

j a c e n t t o the l e s i o n . The damaged nuc l e o t i d e s and adjacent nucleo­

t i d e s are then excised by an exonuclease a c t i v i t y . F i n a l l y , the gap 

created during the e x c i s i o n step i s f i l led and sealed by the conj- •• 

c e r t e d a c t i o n of DNA polymerase and Tigase.- This• i s . c a l j e d " c I a s s -

i c a l n u c l e o t i d e e x c i s i o n r e p a i r " . A simi l a r mechanism i s thought 

t o operate f o r the r e p a i r of a p u r i n i c / a p y r i m i d i n i c s i t e s . A s p e c i f i c 

endonuclease f o r these DNA l e s i o n s has been p u r i f i e d and characte­

r i s e d from sources as divergent as E_. co I i (26,27), c a l f thymus 

(28), c a l f l i v e r (29), human placenta (30) and p l a n t embryo of 

Phaseolus m u l t i f l o r u s (31). The enzyme i s g e n e r a l l y known as apu­

r i n i c endonuclease. So f a r , no separate endonuclease a c t i v i t i e s have 

been found f o r a p u r i n i c or a p y r i m i d i n i c s i t e s . In v i t r o , r e p a i r of 

a p u r i n i c s i t e s has been demonstrated by incubating depurinated DNA 

with a p u r i n i c endonuclease, DNA polymerase i , the four deoxyribo-

nucleoside t r i p h o s p h a t e s , p o l y n u c l e o t i d e Iigase and i t s coenzyme 

(32). The r e p a i r r o l e of a p u r i n i c endonuclease i s f u r t h e r supported 

by mutants of JE. c o l ? d e f e c t i v e in t h i s enzyme a c t i v i t y . . These' 

.mutants are more s e n s i t i v e t o methyl methanesuIphonate (an a l k y l a t i n g 

agent) than the w i l d type (33,34). 

Recently, a base e x c i s i o n r e p a i r mode has been proposed. In t h i s 
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p r o c e s s , the f i r s t step i s the removal of the damaged base by an 

•N-gIycosfdase w h i l e the backbone of the DNA strand remains i n t a c t . 

The r e s u l t i n g a p u r i n i c or a p y r i m i d i n i c s i t e i s then removed as de­

s c r i b e d e a r l i e r . T h i s kind of DNA r e p a i r i s b e l i e v e d to' be respon­

s i b l e f a r the removal of u r a c i l o r a l k y l a t e d bases from the DNA 

molecule (35,36) ( F i g . 2). 

The remaining DNA r e p a i r pathways can be grouped together in 

a c l a s s termed daughter strand r e p a i r (25). With t h i s mode of DNA 

r e p a i r the l e s i o n s - a r e not- removed from- the DNA, but are merely 

d i l u t e d out as a r e s u l t of DNA r e p l i c a t i o n . These r e p a i r mechanisms 

are by f a r the l e a s t understood in term of the enzymes o r p r o t e i n s i n ­

volved. In the process of p o s t r e p I i c a t ion recombination, the normal 

r e p l i c a t i o n mechanism apparently bypasses the damage and leaves a 

gap i n the daughter stra n d opposite the damaged region. This 

gap i s then f i l l e d v i a a recombination event with the undamaged 

parental! DNA as i l l u s t r a t e d in Figure 1. This r e p a i r process i s 

error-prone. Another error-prone r e p a i r model c a l l e d bypass re­

p l i c a t i o n has been proposed a few years ago (37). According t o 

t h i s model, the p o s i t i o n opposite the l e s i o n in the newly 

formed complementary strand i s f i l l e d at random. There i s a l s o an 

e r r o r - f r e e bypass r e p l i c a t i o n (38). This process involves a 

branch m i g r a t i o n in which the two daughter strands anneal t o one 

another. Then the gap corresponding t o the l e s i o n s i t e in one 

daughter s t r a n d fs f i l l e d by using the other daughter stra n d as 

a template. 
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4. A p u r i n i c endonuclease in human c e l l l i n e s : 

Several' human g e n e t i c diseases are a s s o c i a t e d with a DNA re­

p a i r d e f i c i e n c y (39-41). A p u r i n i c endonuclease a c t i v i t y has been 

analysed in crude e x t r a c t s of f i b r o b l a s t s derived from p a t i e n t s 

with these diseases, and i s w i t h i n the normal range in the cases 

of a t a x i a t e l a n g i e c t a s i a , Fanconi's anemia, Bloom's syndrome, 

Cockayne's syndrome and pro g e r i a (42,43). However, in some c e l l 

l i n e s of xeroderma pigmentosum, a p u r i n i c endonuclease a c t i v i t y 

was shown t o be d e f e c t i v e (44,45). 

5. Inherited DNA r e p a i r defects in xeroderma pigmentosum : 

Xeroderma pigmentosum (XP) i s an autosomal r e c e s s i v e d i s e a s e , 

p a t i e n t s are extremely s e n s i t i v e t o s u n l i g h t and have a high 

incidence of s k i n cancer. When XP c e l l s were t r e a t e d with UV 

l i g h t o r chemicals such as 4 - n i t r o q u i n o l i n e - 1 - o x i d e , bromobenz(a)-

anthracene o r acetyI aminoffuorene, it-was found t h a t e x c i s i o n 

r e p a i r was d e f i c i e n t in most XP c e l l l i n e s , but normal in 

others (46-48). The l a t t e r group of XP c e l l s i s c a l l e d XP v a r i a n t s . 

Using Sendai v i r u s , f i b r o b l a s t s from d i f f e r e n t XP c e l l l i n e s can 

be fused. The r e s u l t i n g heterokaryons may or may not have a normal 

le v e l of DNA r e p a i r s y n t h e s i s to UV damage. These experiments 

led t o the assignment of various e x c i s i o n r e p a i r - d e f i c i e n t XP c e l l 

l i n e s i n t o f i v e compIementation groups: They are designated as 

groups A, B, C, D, E (49). Recently, the p o s s i b l e e x i s t e n c e of three 

more complementation groups has been suggested (47). XP v a r i a n t s wiI 

complement with a l l other c e l l s t r a i n s . • •-



I t i s . g e n e r a l l y agreed t h a t XP group A-E c e l l s have a defect 

in the i n o i s i o n step of the n u c l e o t i d e e x c i s i o n r e p a i r pathway 

f o r p y r imidine dimers (46,47), and c e l l s of XP v a r i a n t s are defec­

t i v e i n postrep I i c a t i o n r e p a i r (50). Recent data i n d i c a t e they 

may be d e f e c t i v e in other modes of DNA r e p a i r as w e l l . Thus, XP c e l 

were found t o have a lower leve l of p h o t o r e a c t i v a t i n g enzyme than 

normal c e l l s (51,52). A p a r t i a l defect in p o s t r e p I i c a t i o n re­

p a i r was a l s o observed in XP group A-D c e l l s (53). 

Kuhnlein et aj_. (44) reported t h a t f i b r o b l a s t s from XP group 

D c e l l l i n e s had about one - s i x t h of the normal a p u r i n i c endonu-? 

clease a c t i v i t y . The apparent Michael i s constants (K^) of the 

a p u r i n i c endonuclease a c t i v i t y in e x t r a c t s from XP group A and D 

c e l l s were higher than those of normal c e l l s . I n t e r e s t i n g l y , only 

p a t i e n t s of XP group A and D show n e u r o l o g i c a l complications (54). 

Whether abnormal a p u r i n i c endonuclease a c t i v i t y has any e t i o l o g i c a l 

r o l e in the n e u r o l o g i c a l symptoms in the XP p a t i e n t s remains a 

question. A p u r i n i c endonuclease a c t i v i t y in the crude e x t r a c t s 

of normal human f i b r o b l a s t s was resolved by phosphoceI IuIose co­

lumn chromatography i n t o two species : an a c t i v i t y (flow-through 

a c t i v i t y ) t h a t d i d not adsorb t o the column at 10 mM KPO^ concen­

t r a t i o n and another a c t i v i t y ( h i g h - s a l t e l u a t e ) t h a t e l u t e d from 

the column at about 240 mM KPO^ c o n c e n t r a t i o n . The flow-through 

a c t i v i t y had a higher sedimentation c o e f f i c i e n t of 3.3 S and an 

apparent of 5 nM a p u r i n i c s i t e s , w h i l e the corresponding values 

f o r h i g h - s a l t e l u a t e a c t i v i t y were 2.8 S and 44 nM r e s p e c t i v e l y (45) 
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Flow-through a c t i v i t y was not detected i n f i b r o b l a s t e x t r a c t s from 

XP-D c e l l l i n e s . In f i b r o b l a s t s of XP v a r i a n t s , the level of u r a c i l • 

DNA N-glycosidase a c t i v i t y was claimed t o be roughly h a l f of t h a t 

of normal f i b r o b l a s t s (55). No abnormality was revealed in other 

XP c e l l s . These observations suggest the base e x c i s i o n r e p a i r me­

chanism i s d e f e c t i v e i n at l e a s t some XP c e l l s . Thus, when c e l l s 

from an XP group A c e l l l i n e were exposed t o an alkylating./agent, such 

as e t h y l n i t r o s o u r e a , the frequency of s i s t e r chromatid exchanges was 

s e v e r a l f o l d higher than t h a t of normal c e l l s s i m i l a r l y t r e a t e d (56). 

A slower removal ra t e f o r 0^-aIkyIguanine was a l s o reported in 

t h i s XP group A c e l l l i n e (57). 
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6. O b j e c t i v e s : 

From the above d i s c u s s i o n , one can i n f e r t h a t whatever the 

primary biochemical defect in XP c e l l s i s , i t has a p l e i o t r o p i c 

e f f e c t on d i f f e r e n t DNA r e p a i r mechanisms. One p o s s i b i I i f y t o ex­

p l a i n t he g e n e t i c heterogeneity and m u l t i p l e enzymatic d e f i c i e n c i e s 

of XP i s t h a t the d i f f e r e n t r e p a i r enzymes share common regulatory 

components. One o r more of these components may be d e f e c t i v e or pro­

duced i n reduced l e v e l s in XP c e l l s . There i s as yet no documen-

t a t e d evidence f o r the e x i s t e n c e of r e p a i r enzyme complexes except 

perhaps the c o n t r o v e r s i a l endonuclease II a c t i v i t y f rom E. ICQ I i ( 6 ) . 

This enzyme co n t a i n s a p u r i n i c endonuclease a c t i v i t y and i s a l s o 

capable of r e l e a s i n g O^-mefhyIguanine and 3-methyIadenine from me­

t h y l a t e d DNA. Endonuclease II may thus be a preparation c o n t a i n i n g 

s e v e r a l d i f f e r e n t enzymes (6,1, 26, 34, 35). A s t a b l e dimer 

of "endonuclease I I " a n d a p u r i n i c endonuclease can a l s o be formed 

(58). 

An i n t e r e s t i n g phenomenon was revealed when flow-through 

a p u r i n i c endonuclease a c t i v i t y from human f i b r o b l a s t s was re­

a p p l i e d t o the phosphoceI Iulose column. The column was e l u t e d 

f i r s t with a 10 BM and then a 0.3 M KP0 4 b u f f e r . I t was r e ­

ported t h a t about 80$ of the recovered a c t i v i t y was again found 

in the fiow-through f r a c t i o n s w h i le the remaining a c t i v i t y now 

only e l u t e d w i t h 0.3 M KPO^ b u f f e r . This r e s u l t suggests a pos­

s i b l e c o n v e r s i o n o f the flow-through enzyme species t o the high-

s a l t e l u a t e form. As discussed e a r l i e r , the flow-through enzyme 

species has a lower and p o s s i b l y a higher molecular weight 

than the h i g h - s a ! t e l u a t e s p e c i e s . An accessory molecule may 
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complex with the h i g h - s a l t e l u a t e a p u r i n i c endonuclease t o form 

the flow-through s p e c i e s . To pursue t h i s problem f u r t h e r , a large 

amount of c e l I e x t r a c t i s needed. An a l t e r n a t i v e source of mate­

r i a l t h e r e f o r e seems more p r e f e r a b l e than human f i b r o b l a s t s . A 

p o s s i b l e candidate i s a human c e l l l i n e c a l l e d Hela c e l l s , c e l l s 

of which can grow in suspension c u l t u r e . Before going i n t o any 

large s c a l e study, i t i s necessary t o e s t a b l i s h i f Hela c e l l s have 

a l s o a flow-through and a h i g h - s a l t e l u a t e species of a p u r i n i c 

endonuclease as human f i b r o b l a s t s . In t h i s t h e s i s , I s h a l l r e p o r t 

the p a r t i a l p u r i f i c a t i o n and c h a r a c t e r i s a t i o n of a p u r i n i c endonucl-

eases from Hela c e l l s . The p u r i f i c a t i o n method was according t o 

Kuhn l e i n et aj_. (45). 

The a n a l y s i s of a p u r i n i c endonuclease a c t i v i t y from Hela c e l l s 

in i t s e l f i s i n t e r e s t i n g s i n c e t h i s c e l l l i n e i s n e o p l a s t i c in 

o r i g i n (59). Research in the past decade has i n d i c a t e d a r e l a t i o n ­

s h i p between p r o f i c i e n c y of DNA r e p a i r mechanism and s u s c e p t i b i l i t y 

of an i n d i v i d u a l t o cancer (39,60). Crude e x t r a c t from Hela c e l l s 

was reported to have a higher endonuclease a c t i v i t y f o r U V - i r r a -

d i a t e d DNA (61), yet i t s a p u r i n i c endonuclease a c t i v i t y was 

s i m i l a r t o those of normal human f i b r o b l a s t s (42). I t was pointed 

out t h a t in v i t r o measurement of composite a c t i v i t y of m u l t i p l e 

endonucleases fn crude e x t r a c t might not.reveal a d e f i c i e n c y of the 

act u a l r e p a i r enzyme.' An example was the f i n d i n g t h a t i n Fi. c o l i 

UV endonuclease a c t i v i t y was the same i n crude e x t r a c t s of w i l d 

type and UV-dimer e x c i s i o n - d e f i c i e n t mutants. The paradox was re­

solved by the demonstration of two UV endonucleases, one of which 
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was absent in the mutants (62). 

Therefore, one of my o b j e c t i v e s was t o see i f I could show any 

d i f f e r e n c e in a p u r i n i c endonuclease a c t i v i t y between Hela c e l l s 

and human f i b r o b l a s t s . The d i f f e r e n t species of a p u r i n i c endonuclease 

from Hela c e l l s were c h a r a c t e r i s e d with respect t o t h e i r optimal 

requirements f o r MgCI 2 > pH optimums, heat s e n s i t i v i t i e s , s a l t con­

c e n t r a t i o n dependences and molecular weights. To provide f u r t h e r 

evidence f o r a conversion of the flow-through species t o the h i g h - s a l t 

e l u a t e species of a p u r i n i c endonuclease, the p r e l i m i n a r y experiment of 

of phosphocelIulose column rechromatography as.described e a r l i e r in 

t h i s s e c t i o n , was repeated in more d e t a i l s . A l i n e a r g r a d i e n t of 

KP0 4 s o l u t i o n was used as e l u t i o n b u f f e r in place of 300 mM KP0 4 

s o l u t i o n . The o b j e c t i v e was to show t h a t enzyme a c t i v i t y derived 

from the flow-through species of a p u r i n i c endonuclease was a l s o e l u t e d 

from the phosphocelIulose column at around 240 mM KPO. c o n c e n t r a t i o n . 
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MATERIALS AND METHODS 

1. Tissue c u l t u r e : i 

^ Ce I I Ii nes : Hela c e l l s were a g i f t from Dr. J.B. Hudson of Micro­

biology Department, U n i v e r s i t y of B r i t i s h Columbia. Peggy c e l l s , were 

human f i b r o b l a s t s grown from a s k i n punch biopsy from a normal Cau­

casian female. 

(b) C u l t u r e media : Dulbecco's modified Eagle's medium (Gibco) was 

r o u t i n e l y supplemented with 10$ of f e t a l c a l f serum (Gibco) and 

the f o l l o w i n g a n t i b i o t i c s : P e n i c i l l i n (80 u n i t s / m l , f i n a l concen­

t r a t i o n ) , streptomycin sulphate (23.7 pg/ml), Kanamycin UOOyg/ml) 

and Fungizone (2.5 ug/ml). The a n t i b i o t i c s were a l l purchased from 

Gibco. The medium was adjusted t o pH 7.0-7.5 with 7.5$ sodium 

bicarbonate s o l u t i o n . The c u l t u r e medium was s t e r i l i z e d by f i l t e r i n g 

through a S a r t o r i u s membrane paper with a pore s i z e of 0.2 ym. 

^ CeI I growth : C e l l s were grown in 32 ounce p r e s c r i p t i o n b o t t l e s 

(Brockway Glass Co. Inc.) with 50 ml of cu I t u r e media. Incubation 

was a t 37°C ;n a humidified incubator with 5% C 0 2 and 95$ a i r . 

Confluent c e l l s were s p l i t 1:4 a f t e r treatment with t r y p s i n s o l u ­

t i o n (Gibco). 

(d) CelI h a r v e s t i ng : C e l l s were harvested in batches of 6-12 bot­

t l e s when they were near confluency. The c e l l c u l t u r e media were 

poured o f f . C e l l s were washed twice with 10 ml of phosphate-

buffered s a l i n e (25 mM KP0 4 ( pH 7.0V0.15 M NaC!/0.015M sodium 

c i t r a t e ) and suspended in 40 ml of phosphate b u f f e r s a l i n e by sc r a ­

ping, from the b o t t l e s u r f a c e . A l t e r n a t i v e l y , the c e l l s were r e -
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leased from the b o t t l e s urface a f t e r incubation w i t h 5 ml of t r y p s i n ' 

a t 37°C f o r 10 min. The c e l l s were then washed twice in phosphate ! 

b u f f e r s a l i n e b y c e n t r i f u g a t i o n and resuspension. C e l l p e l l e t s w e r e h 

s t o r e d e i t h e r d i r e c t l y i n l i q u i d n i t r o g e n o r they were f i r s t resuspend 

in 2 mi of 50 mM Tris-HCl(pH 7,5) before storage. 

2. P r e p a r a t i o n of PM2 phage DNA : 

Methods f o r the c u l t u r i n g s of Pseudomonas Bal~31 b a c t e r i a and 

PM2 phage were modified from those of Espejo and Cane Io (63). 

(a) B a i - b r o t h : I I , of s t e r i I i zed s o l u t i o n contai ned 10 mM T r i s -

HCl (pH 7.5), 12 gm of magnesium sulphate (MgS0 4.7H20, Sigma), 26 gm 

of sodium c h l o r i d e ( F i s h e r ) , 8 gm of b a c t o n u t r i e n t broth ( D i f c o ) , 

0.01 M of calcium c h l o r i d e , 3.5 ml of 20% potassium c h l o r i d e . 

(b) Bal-top agar : 5 gm of bacto~agar ( d i f c o ) was d i s s o l v e d in I I . 

of B a l - b r o t h and s t e r l i z e d by a u t o c l a v i n g . I t was l i q u i f i e d by 

heating in a water bath a t 50°C before use. 

(c) Bal-pI ate : 23 gm of bacto-agar (Difco) was d i s s o l v e d in 1 1 . 

of B a l - b r o t h and s t e r l i z e d by a u t o c l a v i n g , The agar s o l u t i o n 

was d e l i v e r e d i n a l i q u o t s on p l a s t i c dishes (87.5 mm x 15 mm 

Can l a b ) , and allowed t o s o l i d i f y at room temperature. 

(d) Plaque assay f o r phage t i t e r : Pseudomonas BaI-31 b a c t e r i a 

were grown in an aerated t e s t tube with about 10 ml Bal-broth a t 

28°C ov e r n i g h t . For phage assay, 3 ml of Bal-top agar was added 

t o 0.1 ml of overnight b a c t e r i a c u l t u r e with 0.1 ml of phage 

a l i q u o t . The s o l u t i o n was mixed and poured on the B a I - p l a t e s 

and incubated o v e r n i g h t a t room temperature. The phage t i t e r was 
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estimated by counting the number of plaques appeared. 

' (e) P r e p a r a t i o n of phage stock : Pseudomonas BaI-31 b a c t e r i a were 

grown tn 200 t o 500 ml of Bal- b r o t h a t ,28°C t o a density of 2 x 

10^/ml and i n f e c t e d with PM2 phage a t an MOI of 10"? phage per bact­

erium. The c u l t u r e was incubated overnight. The b a c t e r i a and c e l l 

d e b r i s were p e l l e t e d by c e n t r i f u g a t i o n a t 10,000 rpm f o r 15 min 

with a Beckman Type 21 r o t o r . The suspernatant was used as the 

phage stock and u s u a l l y had a t i t e r of 5 x 10^/ml. 

( f ) P r e p a r a t i o n of 3 H - l a b e l l e d PM2 DNA : B a c t e r i a Pseudomonas B a l -

31 were grown i n a 1.5 I. Bal-broth in a 3 I. erlenemeyer f l a s k a t 

28 WC. Aerat ion was created by s t i r r i n g the c u l t u r e v i g o r o u s l y with 

8 

a magnetic s t i r r e r . When the b a c t e r i a reached a density of 3 x 10 

/ml ( t t t e r e d w i t h a Petroff-Houser b a c t e r i a counter), 0.15 gm of 

deoxyadenine (Sigma) was added t o the medium. Five min l a t e r , the 
12 

c e i l s were i n f e c t e d w i t h 1^2 x 10 PM2 v i r u s . A f t e r 5 min, 1.5 mCi 

of methyi-^H thymidine ( s p e c i f i c a c t i v i t y 50 Ci/mmole, New England 

Nuclear) was added and the c u l t u r e was incubated overnight. Bac­

t e r i a and c e l l d e b r i s were removed by c e n t r i f u g a t i o n f o r 15 min-at 

10,000 rpm w i t h a Beckman Type 21 r o t o r . The supernatant was 

c e n t r i f u g e d f o r 3 hours at 20,000 rpm with the same r o t o r . The 

p e l l e t which contained the phage p a r t i c l e s was resuspended i n 

about 15 ml of RB b u f f e r c o n t a i n i n g 20 mM Tri s - H C l (pH 8.0)/1 M 

NaCl and c e n t r i f u g e d f o r 10,000rpm f o r 15 min in a Beckman Type 50 

Ti r o t o r . The p e l l e t was discarded, the supernatant was c e n t r i ­

fuged f o r 50 min.at 50,000 rpm in the same r o t o r . The pelletvwas 

resuspended in 15 ml of RB b u f f e r and c e n t r i f u g e d f o r another 
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10,000 rpm f o r 15 min. The f i n a l supernatant was made t o have a 

•density of about 1.28 gm/cc with C s C l . The phage p a r t i c l e s were i. 

banded by c e n t r i f u g a t i o n in a polyallomer tube with a Beckman Type ;. 

50 T i r o t o r a t 40,000 rpm f o r 24 hours at 20°C. 

A f t e r the CsCl density g r a d i e n t c e n t r i f u g a t i o n , one major 

band of phage p a r t i c l e s was evident in the middle of the polyallomer 

tube ( F i g . 3 ) . A minor band of m a t e r i a l was a l s o evident below 

the major band. The ma t e r i a l in t h i s minor band was not analysed 

and was discarded. The m a t e r i a l in the major band was c o l l e c t e d 

and d i a l y s e d against 1 I. of 0.02 M Tri s - H C l (pH 7.5)/0.1 M NaCI/ 

1 mM EDTA f o r 3 hours or more. The phage was lysed by 10$ SDS 

added dropwise u n t i l the s o l u t i o n was c l e a r e d . The phage DNA was 

e x t r a c t e d in the aqueous phase by phenol e x t r a c t i o n as described 

by Espejo et aj_. (64). The PM2 DNA was then d i a l y s e d e x t e n s i v e l y 

against 0.01 M T r i s (pH 7.5). 

PM2 DNA concentration was determined by measuring the absor-
TM 

bance at 260 nm. The molar e x t i n c t i o n c o e f f i c i e n t E. 260 nm of 
1 cm 

PM2 DNA was assumed t o be 6.5 x 10 3. A t y p i c a l r e s u l t where the 

PM2 DNA had been d i l u t e d 10-fold and gave an °-D-260nm o f 0 , 3 2 

-was as shown in Figure 4. The co n c e n t r a t i o n of the DNA was c a l c u l a t e d 

as 0.49 mM. Typical y i e l d s f o r a 1.5 I. c u l t u r e were 10-15 umoles 

n u c l e o t i d e of DNA with a r a d i o a c t i v i t y of 6,000-8,000 cpm/nmole. 

3. Enzyme p u r i f i c a t i o n : 

A l l p u r i f i c a t i o n procedures were c a r r i e d out at 2°C. 

(a) P r e p a r a t i o n of c e l l e x t r a c t : Frozen c e l l s were thawed and resus-
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Figure 3. I s o l a t i o n of PM2 phage p a r t i c l e s by cesium c h l o r i d e 

d e n s i t y - g r a d i e n t e q u i l i b r i u m c e n t r i f u g a t i o n . 

The upper w h i t i s h band contained the phage p a r t i c l e s 

(arrowed). 
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Figure 4. U l t r a v i o l e t absorption spectrum of p u r i f i e d PM2 

phage DNA in 10 mM T r i s - H C l (pH 7.5) 

PM2 DNA 

10 mM T r i s - H C l (pH 7.5) 
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pended in 2 ml of 50 mM Tris - H C l (pH 7.5)70.1 mM DTT. The c e l l s 

were disrupted with sonic i r r a d i a t i o n 6 times f o r 15 sec each. 

The s o n i c a t e was c e n t r i f u g e d f o r 50 min at 50,000 rpm in a Beck­

man Type 50 Ti r o t o r and the p e l l e t discarded. The supernatant 

f l u i d (high speed supernatant) was subjected t o f u r t h e r p u r i f i c a ­

t i o n . 10 b o t t l e s normally y i e l d e d 8-10 mg of s o l u b l e p r o t e i n . 

(b) DEAE-celIulose chromatography : A column of Whatman DE-22 DEAE-

cel I ulose (5 mm x 35 mm) was prepared and e q u i l i b r a t e d with b u f f e r 

A (50mmM Tris-HCl (pH 7.5)/0.4 M NaCI/10$ g l y c e r o l / 0 . 1 mM DTT). 

The high speed supernatant was adjusted.to have the s a m e b u f f e r content 

as b u f f e r A and loaded onto the column at a flow r a t e of 0.125 ml/min. 

The column was then washed with b u f f e r A at the same flow r a t e . 

F r a c t i o n s of 1 ml were c o l l e c t e d , u s u a l l y the f i r s t four f r a c t i o n s 

c o n t a i n i n g most of the a c t i v i t y were pooled and d i a l y s e d overnight 

against two 400 ml a l i q u o t s of b u f f e r B c o n t a i n i n g 10 mM KP0 4(pH 7.4)/ 

10$ g l y c e r o l / 0 . 1 mM DTT. The f i n a l d i a l y s a t e (DEAE pool) was re­

t a i n e d . 

(c) PhosphoceI Iulose chromatography : A column of Whatman P-11 

phosphoceI IuIose (1.1 cm x 3.5 cm) was prepared and e q u i l i b r a t e d 

by washing with b u f f e r B. The DEAE pool was a p p l i e d t o the column 

at a flow rate of 0.04 ml/min. The column was then e l u t e d with 

7-to 9 ml of b u f f e r B, then 5-to 5 ml of 50 mM KP0 4(pH 7.4)/10$ 

glyce r o l / 0 . 1 mM DTT and a 46 ml l i n e a r g r a d i e n t of 50 t o 400 mM 

„KP0 4(pH 7.4)/10$.glycerol/0.1 mM DTT. F r a c t i o n s of 1 ml were c o l ­

l e c t e d in p l a s t i c tubes. 10 uI of 10 mg/ml a c e t y l a t e d BSA was added 

t o each f r a c t i o n t o s t a b i l i z e the enzyme a c t i v i t y . The f r a c t i o n s 
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with most enzyme a c t i v i t y were made t o 35$ g l y c e r o l and s t o r e d at 

/ -20°C. 

(4) PM2 DNA depurination : 

Depurination b u f f e r was made up of 1 M NaCI, 0.1 M sodium c i ­

t r a t e and adjusted to pH 4.0 with HCI. The depurination b u f f e r was 

then d i l u t e d 10-fold with PM2 DNA which was in 10 mM Tris-HCl (pH 

7.5). Thus, depurination was c a r r i e d out at 70°C f o r 15 min with 

0.5 mM DNA in 9 mM T r i s - H C l , 0.1 M NaCI, and 0.01 M sodium c i t r a t e . 

The f i n a l pH of the s o l u t i o n was 4.6. 

(5) F i l t e r - b i n d i n g assay : 

0.15 ml of 0.01$ SDS/0.25 mM EDTA (pH 7.0) was added t o the 

DNA r e a c t i o n mixture followed by 0.2 ml of 0.3 M K 2HP0 4*K0H (pH 

12.4). A f t e r 2 min at room temperature, the s o l u t i o n was n e u t r a l i z e d 

with 0.1 ml of 1 M KH 2P0 4-HCI (pH 4.0). This treatment was found 

t o denature nicked PM2 DNA, but not c o v a l e n t l y closed molecules. 

However, when the pH of the 0.3 M K 2HP0 4-K0H added was above pH 12.8, 

unnicked PM2 DNA a l s o became denatured ( F i g . 5). 0.2 ml of 5 M 

NaCI and 5 ml 50 mM Tri s - H C l (pH 8.01/1 M NaCI were then added 

s u c c e s s i v e l y . The s o l u t i o n was f i l t e r e d through a n i t r o c e l l u l o s e 

membrane f i l t e r paper ( S c h l e i c h e r and Schnell type BA 85, 0.45 ym 

pore s i z e ) which s e l e c t i v e l y r e tained denatured DNA (65). The f i l ­

t e r was washed with 5 ml of 0.3 M NaCI/0.03 M sodium c i t r a t e , d r i e d 

and counted in a l i q u i d s c i n t i l l a t i o n c o u n t e r . ( S e a r l e , D e l t a i 3 0 0 , 

l i q u i d s c i n t i I I at ion system) with 5 ml of s c i n t i I I at ion f l u i d . 
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Figure 5. S t a n d a r d i z a t i o n of f i l t e r - b i n d i n g assay. 

The f i l t e r - b i n d i n g assay was c a r r i e d out as described 

in M a t e r i a l s and Methods, except the 0.3 M K 2HP0 4-K0H 

added was of various pHs as i n d i c a t e d . Untreated DNA 

was used in t h i s experiment. I t contained less than 

0.2 nicks/mo I e c u l e . 



23. 

S c i n t i l l a t i o n f l u i d was made up of 3.8 I. s c i n t i l l a t i o n grade 

toluene ( F i s h e r ) with 15.2 gm PPO (Syndel Lab. Ltd.) and 0.38..gm f 

of POPOP (Syndel Lab. L t d . ) . 

T o t a l DNA presented in a r e a c t i o n mixture was estimated by 

measuring the r a d i o a c t i v i t y of an a l i q u o t spotted on a blank f i l ­

t e r-paper. The pro p o r t i o n of nicked PM2 DNA (X) ret a i n e d on the 

f i l t e r paper was then c a l c u l a t e d . The average number of nicks/, 

molecule in the DNA (tu) was obtained from the equation a> * - I n ( l - X ) . 

The equation was derived by assuming a Poisson d i s t r i b u t i o n of the 

t a r g e t s i t e s among the DNA.mo I ecu Ies (44). Assuming the PM2 DNA had 

18,000 n u c l e o t i d e s , the amount of PM2 c i r c l e s in a 50 u l r e a c t i o n 

c o n t a i n i n g 0.05 mM PM2 DNA nu c l e o t i d e was 138.8 fmoles. Thus, the 

t o t a l n i c k s in a r e a c t i o n mixture was estimated. 

6. A p u r i n i c endonuclease assay : 

Endonuclease a c t i v i t y was assayed by monitoring the conversion 

of s u p e r h e l i c a l PM2 DNA t o nicked c i r c l e s . Unless otherwise s t a t e d , 

a standard r e a c t i o n mixture (0.05 ml) contained 0.05 mM depurinated 

PM2 3H-DNA n u c l e o t i d e , 50 mM Tris - H C l (pH 8.0), 10 mM MgCI 2, 10 mM 

KCI, 10 mg/ml of a c e t y l a t e d BSA, a 100-fold d i l u t i o n of the depurin-

a t i o n b u f f e r introduced with the depurinated DNA and an appr o p r i a t e 

amount o f enzyme. A f t e r an incubation f o r 10 min at 37°C, the r e a c t i o n s 

were c h i l l e d and the f i l t e r - b i n d i n g assay c a r r i e d out as described ear­

l i e r . Assays were c o r r e c t e d f o r nicks occuring in the DNA prep a r a t i o n 

and during d e p u r i n a t i o n . The blank was.0.2-0.4 nicks/molecules. 

A u n i t of endonuclease a c t i v i t y c a t a l y s e d the production of 
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1 pmole of nicks per min. Under our c o n d i t i o n s , the assay gave a 

l i n e a r response with enzyme added up t o a level which produced app­

roximately one i n c i s i o n per molecule. The lowest level of n i c k i n g 

we used t o c a l c u l a t e enzyme a c t i v i t y was at least 10$ g r e a t e r than 

the blank. 

7. Sephadex G-100 column chromatography : 

A column (0.9 cm x 27.5 cm) of Sephadex G-100 ( p a r t i c l e s i z e 

40-120 um,Sigma) was prepared and e q u i l i b r a t e d with two d i f f e r e n t 

b u f f e r s : b u f f e r X of 50 mM Tri s - H C l (pH 7.5)/50 mM KCI/0.1 mM DTT/ 

10$ g l y c e r o l and b u f f e r Y of (50 mM Tri s - H C l (pH 7.55/1 M KCI/0.1 mM 

DTT/10$ g l y c e r o l . 

To avoid s t i r r i n g up of the gel during sample loading, a piece 

of Whatman no.1 f i l t e r paper was placed over the gel s u r f a c e , and a 

layer of e l u t i o n b u f f e r was put on top of the column. The sample (0.5 

ml) was made t o 35$ g l y c e r o l and layered onto the column c a r e f u l l y 

with a: pasteur p i p e t t e . The column was e l u t e d with b u f f e r A o r B 

at a rate of 0.056 ml/min. F r a c t i o n s of 0.5 ml were c o l l e c t e d . 

The f o l l o w i n g standard p r o t e i n s were used f o r c a I i b r a t i o n and were 

purchased from Sigma : BSA, ovalbumin (egg w h i t e ) , 8-lactoglobuI in 

A and B ( m i l k ) , myoglobin (whale s k e l e t a l muscle, Type I I ) , c y t o ­

chrome C (horse heart, Type V I ) . The molecular weights of these 

p r o t e i n s are 64,000, 45,000, 35,000, 18,000, 12,384,respectively. 

The void volume (Vo) of the column was measured with blue dextran 

(average molecular weight 2,000,000, Sigma), the t o t a l volume (Vt) was 

determined with bromocresol purple (molecular weight 540.2, Sigma). 



The absorbance at 660 nm was determined f o r each column f r a c t i o n . 

The e l u t i o n volume (Ve) f o r each standard p r o t e i n was determined 

by the absorbance at 280 nm. The e l u t i o n constant (Kav) was c a l ­

c u l a t e d by the equation Kav = (Ve-Vo)/(Vt-Vo). 

8. Sucrose g r a d i e n t c e n t r i f u g a t i o n : 

4.4 ml of a l i n e a r g r a d i e n t of sucrose (5-20$) was layered 

above a 0.25 ml cushion of 60$ sucrose in a polyallomer tube (Beck­

man). The sucrose s o l u t i o n s used t o form the gr a d i e n t contained 

50 mM T r i s - H C l (pH 7.5)/0.1 mM DTT and f o r some experiments, 1 M KCI 

a l s o . The enzyme sample t o be analysed was f i r s t d i a l y s e d o v e r n i g h t 

against two changes of 500 ml of 50 mM Tris-HC! (pH 7.5). To minimize 

disturbance of the g r a d i e n t , 0.25 ml of the enzyme sample was l a ­

yered on top of the grad i e n t from a microp.ipette attached t o a \ 

ml s y r i n g e . C e n t r i f u g a t i o n was f o r 27 hours a t 50,000. rpm in a 

Beckman SW 50.1 r o t o r at 2°C. F r a c t i o n s of 0.2 ml were c o l l e c t e d 

f o r enzyme assays. BSA (4.25 S ) , 8-lactogIobuIin (2.85 S ) , myoglo­

bin (2.0 S) were used as marker p r o t e i n s . 

9. S a l t treatment of enzyme a l i q u o t s : 

The enzyme a l i q u o t s were made t o 2 M KCI or 2 M NaCl and i n ­

cubated on i c e f o r an hour. They were then subjected t o a n a l y s i s 

by e i t h e r Sephadex column chromatography o r sucrose g r a d i e n t 

c e n t r i f u g a t i o n . In some experiment, the a l i q u o t s were-centrifuged 

in a t a b l e - t o p Eppendorf t a b l e c e n t r i f u g e f o r 5 min. No d i f f e r ­

ence was observed between the experiments with o r without the 
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c e n t r i f u g a t i o n step. : 

10. Preparation of a c e t y l a t e d BSA : 

1 gm of BSA (Sigma) was d i s s o l v e d in 25 ml of satura t e d sodium 

a c e t a t e and 25 ml of 0.2 N sodium phosphate ( d i b a s i c ) and cooled t o 

0°C on i c e . While s t i r r i n g on i c e , 50 pi of a c t e t i c anhydride was 

added t o the BSA s o l u t i o n every 30 min f o r a t o t a l of s i x a d d i t i o n s . 

The s o l u t i o n was s t i r r e d f o r a f u r t h e r 45 min and then d i a l y s e d 

e x t e n s i v e l y a g a i n s t d i s t i l l e d water. The s o l u t i o n was n e u t r a l i z e d 

to pH 7 with 5 N NaOH, and stored at -20°C. This treatment sho Id 

destroy various contaminating enzyme a c t i v i t i e s as well as g r e a t l y 

reduce the a f f i n i t y of BSA f o r various small molecules. 

11. P r o t e i n determinations : 

P r o t e i n concentration was measured by the method of Lowry et  

a I. (66) using BSA as a standard. 
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RESULTS 

1. Q u a n t i f i c a t i o n of'number of a p u r i n i c / a p y r i m i d i n i c s i t e s in de- 

pur inated DNA : 

A p u r i n i c s i t e s i n the DNA are s u s c e p t i b l e t o a l k a l i h y d r o l y s i s . 

The number of a I k a I i - I a b i I e s i t e s in the depurinated DNA i s in good 

agreement with the number of s i t e s s u s c e p t i b l e t o the a p u r i n i c 

endonuclease a c t i v i t y (16,45). To achieve a I k a I i h y d r o l y s i s , the 

f i l t e r - b i n d i n g assay was modified by leaving the r e a c t i o n mixture 

in a l k a l i c o n d i t i o n f o r a prolonged period of time a t 37°C. A l k a l i 

h y d r o l y s i s of depurinated DNA was found t o be complete in 40-60 min 

at 37°C ( F i g . 6). The number of a p u r i n i c s i t e s in the depurinated 

DNA f o r our enzyme assays was thus estimated t o be about 3.1 n i c k s / 

molecule ( F i g . 7). 

2. P u r i f i c a t i o n of a p u r i n i c endonuclease a c t i v i t y from Hela c e l l s : 

The r e s u l t s of a t y p i c a l , p u r i f i c a t i o n are summarised in Table 

I. 

(a) High-speed c e n t r i f u g a t i o n : This p u r i f i c a t i o n step i s necessary 

t o remove a n o n - s p e c i f i c endonuclease a c t i v i t y (enzyme a c t i v i t y 

t h a t n i c k s n a t i v e DNA) from the c e l l l y s a t e . This a c t i v i t y was de­

t e c t e d in the flow-through f r a c t i o n s ( e l u t e d from the column at 

10 mM KPO^ concentration) from the phosphocelIulose column when 

the c e n t r i f u g a t i o n step was done at a lower speed of 10,000 rpm. 

The presence of t h i s n o n s p e c i f i c n i c k i n g a c t i v i t y would mask the 

d e t e c t i o n of an a p u r i n i c endonuclease s p e c i e s . 
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Figure 6. Time course of a l k a l i h y d r o l y s i s of a p u r i n i c PM2 DNA. 

PM2 DNA was depurinated f o r 0 min ( o ) , 3 min (•) and 

6 min (•). The DNA was then subjected t o the normal 

f i l t e r - b i n d i n g assay except t h a t the DNA was l e f t i n the 

a l k a l i c o n d i t i o n f o r various times a t 37°C. 
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Figure 7. Time course of depurination of FM2 DNA at 70°C. 

DNA was depurinated f o r various time as i n d i c a t e d 

and subjected t o the f i l t e r - b i n d i n g assay as 

described in Figure 6. The DNA was incubated in 

a l k a l i c o n d i t i o n f o r 45 min a t 37°C before 

n e u t r a l i z a t i o n . 
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Table I. P u r i f i c a t i o n of a p u r i n i c endonuclease a c t i v i t y from Hela 

ce I 1S 

F r a c t i o n Volume P r o t e i n A c t i v i t y S p e c i f i c a c t i v i t y % y i e l d 
( m l ) (mg) ( u n i t s ) (units/mg) 

High speed 
supernatant 1.7 10.2 8460 830 

DEAE pool 3.8 

Phospho- I 3 
c e l I u l o s e ,. 

II 4 
III 6 

6.84 

3.3 
0.124 
0.18 

6700 

30 
80 

1650 

980 

8.2 
630 

9200 

80 

0.4 
1.0 

19.5 
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(b) DEAE-ce1 Iulose chromatography : This^column was used t o remove 

n u c l e i c a c i d s from the eel I e x t r a c t (67); About 80-90$ of a p u r i n i c -

endonuclease a c t i v i t y and 70-80$ of the t o t a l p r o t e i n was reco­

vered from the DEAE-celIulose column. 

(c) PhosphoceI Iulose chromatography : Three peaks of a p u r i n i c endo­

nuclease a c t i v i t y were obtained from the phosphoceI IuIose column. 

F r a c t i o n s with the most a c t i v i t y were pooled ( F i g . 8) and used in 

subsequent a n a l y s i s . They are hereby designated as enzyme species 

Peaks I, II and I I I . Peak I d i d not adsorb t o the phosphocelIuIose 

column at 10 mM KPO^, Peak II came out from the column a t about 210 

mM KP0,, and Peak I II a t 260 mM KPO.. Based on t h e i r a f f i n i t y t o 4 4 ' . 

phosphoceI IuIose, Peak I and Peak III presumably correspond t o the 

flow-through and the h i g h - s a l t e l u a t e a p u r i n i c endonuclease a c t i ­

v i t y of human f i b r o b l a s t s , r e s p e c t i v e l y (45). Peak III was the ma­

j o r species of a p u r i n i c endonuclease a c t i v i t y in Hela c e l l s . Peak 

I and Peak II were r e l a t i v e l y minor s p e c i e s , each amounted t o only 

2-5$ the a c t i v i t y of Peak I I I . Peaks I and II did not seem t o be 

a r t i f a c t s ' r e s u l t i n g from overloading of the column. We obtained 

s i m i l a r d i s t r i b u t i o n of the three enzyme a c t i v i t i e s in sev e r a l ex­

periments where the amount of p r o t e i n put on the phosphoceI IuIose 

column ranged from 0.47 mg t o 8 mg. 

Recovery of a p u r i n i c endonuclease a c t i v i t y from the phosphoceI Iu-

lose column was g e n e r a l l y about 30$ of the t o t a l a c t i v i t y put onto 

the column. 

With the assay c o n d i t i o n s f o r a p u r i n i c endonuclease (see Methods 

and M a t e r i a l s ) , no s i g n i f i c a n t amount of n o n s p e c i f i c endonuclease 



32. 

F R A C T I O N N O . 

Figure 8. PhosphocelIulose chromatography of a p u r i n i c endonuclease 

a c t i v i t y from a Hela c e l l s e x t r a c t . 

The i n s e r t e d diagram shows the flow-through a c t i v i t y in 

a l a r g e r s c a l e . 

a p u r i n i c DNA 

O O n a t i v e untreated DNA 
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a c t i v i t y ( a c t i v i t y t h a t n i c k s n a t i v e PM2 DNA) was found in the e l u ­

ate of the phosphoceI IuIose column except in the flow-through f r a c t - f 

ions. However, when the enzyme assay was performed in a c o n d i t i o n of;' 

10 mM T r i s - H C l (pH 7.5), two more peaks of n o n s p e c i f i c endonuclease 

a c t i v i t y were detected : One e l u t e d from the column a t about 180 mM 

KPO^ and another a t about 300 mM KPO^. We are now in the progress 

of determining whether they have any preference f o r other DNA l e ­

s i o n s . Endonucleases t h a t i n c i s e d n a t i v e DNA were a l s o found in E_. 

c o I i . Some were shown t o be more a c t i v e on DNA t r e a t e d w i t h UV 

l i g h t and osmium t e t r o x i d e . One of the endonucleases, endonuclease 

V, was h i g h l y a c t i v e on u r a c i l - c o n t a i n i n g DNA. This suggested a 

nu c l e o t i d e e x c i s i o n r e p a i r mechanism f o r removal of u r a c i l residues 

from the DNA besides a base e x c i s i o n r e p a i r mode u l t i l i z i n g u r a c i I -

DNA N-glycosidase (69). 

Table I a l s o i n d i c a t e s t h a t a t t h i s stage of p u r i f i c a t i o n , Peaks 

I — tI 1 were s t i l l i n a very crude s t a t e . This was p a r t i c u l a r l y t r u e 

f o r Peak I, s i n c e the bulk of the p r o t e i n a l s o e l u t e d in the flow-

through f r a c t i o n s . The maximum p u r i f i c a t i o n f a c t o r achieved ( c a l ­

c u l a t e d r e l a t i v e t o the high speed supernatant) was about 10 f o r 

Peak III. 

3. PhosphocelIulose rechromatography of apurinEc endonuclease  

a c t i v i t y of Hela c e l l s : 

Peak I and Peak i l l pools were each d i a l y s e d a g a i n s t two chan­

ges of 500 ml of a s o l u t i o n of 10 mM KPO^ (pH 7.4) overnig h t and 

subjected t o phosphocelIulose chromatography again. 
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When Peak I was rechromatographed, 50-60$ of the recovered 

a c t i v i t y again e l u t e d in the flow-through f r a c t i o n s . A peak of 

a c t i v i t y a t around 260 mM KPO^ was a l s o evident. The r e s t of 

the a c t i v i t y e l u t e d between 170-210 mM KP0 4 ( F i g . 9 ) . In the case 

of Peak I I I , about 96$ of the recovered a c t i v i t y e l u t e d from the 

column at 260 mM KP0 4 < However, 4$ of the recovered a c t i v i t y was 

now recovered i n the flow-through f r a c t i o n s ( F i g . 10). The r e s u l t 

suggested t h a t f o r a yet undetermined reason, there i s an i n t e r -

conversion between the flow-through and the h i g h - s a l t e l u a t e species 

of a p u r i n i c endonuclease o f Hela c e l l s . To provide f u r t h e r evidence 

f o r t h i s phenomenon, i t would be of i n t e r e s t t o rechromatograph the 

flow-through a c t i v i t y f o r a second time on the phosphoceI IuIose 

column, and t o see i f there w i l l be again a 50 : 50 d i s t r i b u t i o n of 

enzyme a c t i v i t y in the flow-through and the h i g h - s a l t e l u a t e f r a c ­

t i o n s . A l a r g e r amount of enzyme e x t r a c t would:be needed for. such 

experiments. 

4. General p r o p e r t i e s of a p u r i n i c endonuclease. a c t i v i t y in Hela c e l l s 

(a) Requirement of magnesium ions : A l l three enzymes species had 

some r e s i d u a l a c t i v i t i e s in the absence of d i v a l e n t c a t i o n , and were 

s t r o n g l y s t i m u l a t e d by the presence of MgC^- They were o p t i m a l l y 

a c t i v e a t around 5-10mM.MgCl2 ( F i g . 11). MgC^ co n c e n t r a t i o n s 

above 15 mM were i n h i b i t o r y . 

(b) pH optimum : Peak I and Peak II had a pH optimum around 8 ( F i g . 

12) . In both cases approximately 60 to 70$ of the a c t i v i t y a t op­

ti m a l pH was manifested a t pH 7.3 and 8.6. Peak III had an optimum 
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FRACTION N O 

F i g u r e 10. P h o s p h o c e I I u I o s e 

r e c h r o m a t o g r a p h y o f P e a k I 

• • a p u r i n i c DNA 

A - A n a t i v e DNA 
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(c) 

Figure 1 1 . E f f e c t of MgC^ on a p u r i n i c endonuclease a c t i v i t y of 

He I a ceI Is. 

(a) Peak I, (b) Peak II and (c) Peak III. 

Enzyme assays were performed as described in M a t e r i a l s and 

Methods with the concentrations of MgC^ i n d i c a t e d . 

A • A a p u r i n i c DNA, A A n a t i v e DNA. 
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Figure 12. E f f e c t of pH on a p u r i n i c endonuclease a c t i v i t y of Hela 
c e l l s , (a) Peak ' I , (b) Peak II and (c) Peak I I I . 
The f i n a l pH of the standard r e a c t i o n mixture was 
v a r i e d between 6.1 and 8.6. 
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at around pH 7.5. No s i g n i f i c a n t n o n s p e c i f i c endonuclease a c t i v i t y > 
i 

was detected in Peaks II and III over the range of pH t e s t e d . How-
l ­

ever, n o n s p e c i f i c endonuclease a c t i v i t y in Peak I was g r e a t l y stimu-

lated at pH below 7 (Fi.g. 12a). A s i m i l a r f i n d i n g was a l s o reported 

with the human lymphoblastic c e l l l i n e CCRF-CEM (71). 

(c) E f f e c t s of NaCI and KCI concentration : Increasing c o n c e n t r a t ­

ions of NaCI seemed t o have an i n h i b i t o r y e f f e c t on a l l three en­

zyme species. At 40 mM NaCI, a l l three enzyme a c t i v i t i e s were i n ­

h i b i t e d t o about 70$ of. the a c t i v i t i e s in the absence of NaCI ( T i g . 13). 

Peaks I and I I .were a l s o i n h i b i t e d by i n c r e a s i n g concentrations of 

KCI, while the enzyme a c t i v i t y of Peak III was s l i g h t l y s t i m u l a t e d by 

the presence of 20-40 mM KCI and was not i n h i b i t e d by KCI concen­

t r a t i o n s up t o 100 mMCFig. 14). 

(d) Heat i n a c t i v a t i o n : A l i q u o t s of Peaks l - l I I were made 50 mM KPO^ 

(pH 7.4)/10$ glycerol/0.0.1 mM DTT/0.1 mg/m I acety I ated. BSA and heated 

a t 45°C f o r various time. The r e s u l t s are summarised in Figure 15.. 

Peak I was q u i t e s t a b l e t o prolonged heating at 45°C, wh i l e the 

other two species were h e a t - l a b i l e . Peak III was most h e a t - l a b i l e , 

i t had a h a l f - l i f e of 2 t o 3 min. Enzyme a c t i v i t y in Peak II was 

i n a c t i v a t e d i n i t i a l I y with a ha If-1 i f e of 2 t o 3 min as Peak IN", 

the remaining 40-45$ enzyme a c t i v i t y was more heat-st a b l e with a 

ha I f - l i f e of about 25 min. The r e s u l t suggested the presence of 

two forms of a p u r i n i c endonuclease in Peak II with markedly d i f ­

f e r e n t heat s e n s i t i v i t i e s . 

5. Molecular weight determinations of Peaks l - l I I : 
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Figure 13. R e l a t i v e a c t i v i t y of (a) Peak I, (b) Peak II and (c) Peak 

III a t d i f f e r e n t NaCl co n c e n t r a t i o n s . 

The c o n c e n t r a t i o n of NaCl in the r e a c t i o n mixture was 

v a r i e d between 0 and 0.1 M. A c t i v i t y at 0-M NaCl was 

taken as 100$. 



( a ) 

_! I 1 ! 1 
40 80 

mM KCI 

14. R e l a t i v e a c t i v i t y of (a) Peak I, (b) Peak II and (c) Peak 

III at d i f f e r e n t KCI con c e n t r a t i o n s . 

The c o n c e n t r a t i o n of KCI i n the r e a c t i o n mixture was 

v a r i e d between 0 and 0.1 M. A c t i v i t y a t 0 M KCI was 

taken as. .100$. 
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h e a t i n g t i m e C m i . n . 3 

Figure 15. Heat i n a c t i v a t i o n curve of a p u r i n i c endonuclease 

a c t i v i t y in Peaks l - l I I. 

A l i q u o t s of Peaks l-lI I were made 50 mM KP0 4 (pH 7.4) 

by adding 1 M KPO^ in the case of Peak I or by d i l u t i n g 

with d e s t i l l e d water in the cases of Peaks II and I I I . 

The a l i q u o t s were heated at 45°C f o r 0-25 min. The 

r e s i d u a l a p u r i n i c endonuclease a c t i v i t y was determined as 

described in M a t e r i a l s and Methods. The r e s u l t s , as 

percentages of i n i t i a l a c t i v i t i e s , were p l o t t e d on a 

semi-logarithmic s c a l e . 
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A Sephadex G-100 column was used t o 'analyse the molecular 

weights of the three forms of a p u r i n i c endonuclease a c t i v i t y . I n i ­

t i a l l y , Sephadex b u f f e r X was used t o e l u t e the enzyme. However, 

when Peak I of a p a r t i c u l a r experiment was run on the Sephadex G-100 

column, most of the recovered a p u r i n i c endonuclease a c t i v i t y e l u t e d 

in the e x c l u s i o n volume of the Sephadex G-100 column ( F i g . 16). 

This would imply t h a t the a p u r i n i c endonuclease a c t i v i t y was ass­

o c i a t e d with a complex o f . a molecular weight g r e a t e r than 100,000. 

The remaining a c t i v i t y was d i s t r i b u t e d in the f r a c t i o n s correspond­

ing t o molecular weights of 60,000-25,000. S i m i l a r r e s u l t s were 

obtained with Peaks II and I I I . But in a d d i t i o n , another peak of 

enzyme a c t i v i t y was obtained in the f r a c t i o n s corresponding t o a 

molecular weight of 8,000-6,000 ( F i g . 17). When a DEAE pool of Hela 

c e l l s e x t r a c t was run on the column, the d i s t r i b u t i o n of a p u r i n i c 

endonuclease a c t i v i t y resembled t h a t of a run of Peak I. These f i n d ­

ings suggest the "low molecular weight" form of a p u r i n i c endonuclease 

a c t i v i t y d i s s o c i a t e d from the high molecular weight complex due t o 

the r e l a t i v e high i o n i c strength (1.2-1.56) of the 200 mM t o 260 mM 

KP0 4 in the pools of Peaks I I and I I I . 

We then experimented-with the c o n d i t i o n s t o d i s s o c i a t e a p u r i n i c 

endonuclease from the high molecular weight complex. For these ex­

periments, DEAE pools of Hela eel Is e x t r a c t s were used. I t was found 

t h a t the high molecular weight complexes d i s s o c i a t e d with i n c r e a s i n g 

s a l t c o n c e n t r a t i o n s . Incubation of the DEAE pool f o r an hour at 0°C 

.in 2 M NaCl o r KCI was s u f f i c i e n t to d i s s o c i a t e most of the high 

molecular weight complex. The a p u r i n i c endonuclease a c t i v i t y would 
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Figure 16. Sephadex G-100 chromatography of Peak I. 

The column was e l u t e d as described in M a t e r i a l s and 

Methods with Sephadex e I u t i o n b u f f e r X c o n t a i n i n g 

50 mM Tri s - H C l (pH7.5)/50 mM KCI/0.1 mM DTT/10$ g l y c e r o l . 

B pjapurinic DNA 

• • n a t i v e DNA 
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Figure 17. Sephadex G-100 chromatography of Peak I I I . 

The column was el u t e d with Sephadex b u f f e r X. 



45. 

then appear as having a low molecular weight of 6,000-8,000 ( F i g . 18). 

Since a p u r i n i c endonucleases from otherrsources were reported t o have 

a monomeric molecular weight of 40,000-28,000 (26-31, 45), our r e s u l t s 

were unexpected. To check i f these r e s u l t s were p e c u l i a r p r o p e r t i e s of 

Hela c e l l s o r a r t i f a c t s of the Sephadex column chromatography, the f o l ­

lowing experiments were devised. 

We repeated the above experiments with flow-through a c t i v i t y ob­

t a i n e d from normal human f i b r o b l a s t s of Peggy c e l l s . A p u r i n i c endo­

nuclease was a l s o found t o a s s o c i a t e with a high molecular weight com­

plex ( F i g . 19), and a "low molecular weight" form of a p u r i n i c endonu­

c l e a s e appeared when the enzyme pool was treated, with 2 M KGI or NaCI. 

A pool of the "low molecular weight 11 form of Hela a p u r i n i c endonu­

clease was then rechromatographed on the Sephadex G-100 column. 

A smear of a p u r i n i c endonuclease a c t i v i t y was obtained a l l along the 

column. Recovery of enzyme a c t i v i t y was about 1-2$. But i f the pool 

was f i r s t incubated with 2 M KCI before the rechromatography, a peak 

of "low molecular weight" a p u r i n i c endonuclease a c t i v i t y would again 

be detected ( F i g . 20). The r e s u l t could be explained i f the "low 

molecular weight species of a p u r i n i c endonuclease had a tendency t o 

aggregate. A l t e r n a t i v e l y , a p u r i n i c endonuclease could adsorb t o the 

Sephadex G-100 column and only e l u t e d from the column In the pre­

sence of higher KCI c o n c e n t r a t i o n s . 

When a DEAE pool of Hela c e l l e x t r a c t was analysed by sucrose 

g r a d i e n t c e n t r i f u g a t i o n , most of the a p u r i n i c endonuclease a c t i v i t y 

sedimented in the bottom of the c e n t r i f u g e tube; with an S value 

much bigger than BSA (4.25 S) ( F i g . 21). This agreed with the r e s u l t 

of the Sephadex G-100 column chromatography. However in an experiment 
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Figure 18. Sephadex G-100 chromatography of a Hela DEAE pool. 

The DEAE pool was made t o 2 M NaCl and 35% g l y c e r o l . 

I t was then incubated a t 0°C f o r 1 hour before put 

onto the column. The column was e l u t e d w i t h Sephadex 

b u f f e r X. 

The markers A-E were dextran b l u e , BSA, 8-IactoglobuI 

cytochrome C and bromocresol p u r p l e , r e s p e c t i v e l y . 
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03f-

f r a c t i o n n o . 

Figure 19.. Sephadex G-100. chromatography, of flow-through a p u r i n i c 

endonuclease a c t i v i t y p u r i f i e d from Peggy c e l l s . 

The column was e l u t e d with b u f f e r X. The enzyme pool 

was a p p l i e d onto the column without s a l t - t r e a t m e n t . 

A A apuri n i c DNA 

A A n a t i v e DNA 
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F R A C T I O N N O . 

Figure 20. Sephadex G-100 chromatography of "low molecular 

weight" form of Hela a p u r i n i c endonuclease. 

A peak of "low molecular weight" a p u r i n i c endo­

nuclease a c t i v i t y was obtained from Sephadex G-100 

chromatography of a Hela DEAE pool as shown i n 

Figure 18. The f r a c t i o n s comprising t h i s peak were 

pooled and subjected t o Sephadex G-100 chromatography 

again e i t h e r d i r e c t l y (•* •) o r a f t e r incubation 

wit h 2.M KCI (• •) f o r an.hour a t 0°C. 
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Figure 21. Sucrose g r a d i e n t c e n t r i f u g a t i o n of a Hela DEAE pool. 

The DEAE pool was not s a I t — t r e a t e d . The sucrose 

gradient. • contained 50 mM Tri s - H C l . (pH.7.5)/0.1 mM DTT. 
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where the DEAE pool was s a l t - t r e a t e d with 2 M KCI p r i o r t o c e n t r i -

. f u g a t i o n , - a p u r i n i c endonuclease„activity sedimented in region 

corresponding t o a molecular weight of 45,000-35,000 ( F i g . 22). No i 

low molecular weight species was detected. In t h i s experiment, in 

order t o prevent any reaggregration, the sucrose g r a d i e n t was made 

1 M KCI. The peak a c t i v i t y ( f r a c t i o n s number 10-13) from t h i s g r a d i e n t 

run was pooled and chromatographed on the Sephadex G-100 column a f t e r 

a 2 M KCI s a l t - t r e a t m e n t . Half of the recovered a p u r i n i c endonuclease 

a c t i v i t y was again e l u t e d in the low molecular weight f r a c t i o n s ( F i g . 

23). I t was t h e r e f o r e concluded the "low molecular weight" species 

of a p u r i n i c endonuclease was an a r t i f a c t due t o adsorption of the en­

zyme t o Sephadex. We found t h a t t h i s adsorption could be e l i m i n a t e d 

by an e l u t i o n b u f f e r with a high i o n i c s trenght. Thus, e l u t i o n bu­

f f e r Y c o n t a i n i n g 1 M KCI was used in subsequent experiments. Ljung-

q u i s t and Lindahl (72) had a l s o used an e l u t i o n b u f f e r with a high 

i o n i c strength (1 M NaCI) t o determine the molecular weight of a p u r i n i c 

endonuclease from jE. c o I i by Sephadex G-75 column chromatography. 

A c a l i b r a t i o n of the Sephadex G-100 column e l u t e d with b u f f e r Y was 

shown in Figure 24. 

To determine the molecular weight of a p u r i n i c endonuclease a c t ­

i v i t y f r eed from the complex, Peaks l - l I I were s a l t - t r e a t e d with 2 M 

KCI. They were then put onto a Sephadex G-100 column which was e l u t e d 

with b u f f e r Y. B - l a c t o g l o b u l i n (2.5 mg) was a l s o added t o each of the 

three enzyme pools and served as an i n t e r n a l marker. I t did not have 

any s i g n i f i c a n t e f f e c t on the endonuclease assay. The r e s u l t of a run 

of Peak 111 was shown in - F i g u r e 25. The major peak of a p u r i n i c endo-
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Figure 22. Sucrose g r a d i e n t c e n t r i f u g a t i o n of a Hela DEAE pool 

which had been s a l t - t r e a t e d with 2 M KCI before c e n t r i ­

f u g a t i o n . 

The sucrose g r a d i e n t contained. 50 mM T-ris-HGI (pH'7.5) 

/I.M KCI/0.1 mM DTT. 

Markers A, B and C were BSA, 6-IactogIobuIin and myoglobin, 

r e s p e c t i v e l y . 
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23. Sephadex G-100 chromatography of the peak f r a c t i o n s of 

a p u r i n i c endonuclease a c t i v i t y obtained in the ex­

periment described in Figure 22. The peak f r a c t i o n s 

(number 110-20) of the sucrose gr a d i e n t a n a l y s i s 

depicted in Figure 22 were pooled and chromatographed 

on the Sephadex G-100 column a f t e r incubation in 

2 M KCI f o r an hour at 0°C. The column was e l u t e d 

with b u f f e r X. 
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Figure 24. C a l i b r a t i o n of Sephadex G-100 column. 

The column was e l u t e d with b u f f e r Y c o n t a i n i n g .50 

mM Tris-HCl (pH 7.5)/1 M KCI/0.1 mM DTT/10$ g l y c e r o l . 

Markers A-E were BSA, ovalbumin, g - I a c t o g l o b u I i n , 

myoglobin and cytochrome C, r e s p e c t i v e l y . 
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p-lactoglobulin 

25 
f r a c t i o n no. 

35 

F igure 25. Sephadex G-100 chromatography of s a l t - t r e a t e d Peak III 

w i th e l u t i o n b u f f e r Y. 

Peak III was incubated f o r 1 hour w i th 2 M KCI on i c e 

p r i o r t o chromatography. The column was e l u t e d w i th 

b u f f e r Y. g -Ia c t o g l o b uI i n was chromatographed toge the r 

w i th the enzyme pool and served as an i n t e r n a l s i z e 

marker. 
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nuclease a c t i v i t y was found t o e l u t e s l i g h t l y before 8 - l a c t o g l o - •• 

b u l i n . A molecular weight of 35,000-40,000 was estimated f o r t h i s ;j 

species assuming the enzyme was a g l o b u l a r p r o t e i n . Two other minor 

peaks of a c t i v i t y were a l s o detected. One e l u t e d at f r a c t i o n s c o r ­

responding t o a molecular weight of 70,000-75,000, p o s s i b l y a dimer 

of a p u r i n i c endonuclease or an enzyme complex of o t h e r e n t i t y . An­

other a c t i v i t y e l u t e d in the v i c i n i t y of cytochrome C. I n t e r e s t i n g l y , 

UV endonucleases of M. luteus were reported t o have a molecular 

weight of 10,000-15,000 (67). 

For Peak I I , most of the a p u r i n i c endonuclease a c t i v i t y recover­

ed e l u t e d a t t r a c t i o n s corresponding t o a molecular weightvof 22,-

000-25,000 ( F i g . 26). 

In the case of Peak I, the presence of KCI In the column f r a c t i o n s 

created a problem. Because of the low level of enzyme a c t i v i t y in 

t h i s p o o l , 5-10 uI of a l i q u o t s of each column f r a c t i o n was needed f o r 

the endonuclease assay. 5 pi of a column f r a c t i o n would introduce 

100 mM KCI i n t o the assay mixture with a f i n a l volume of 50 u l . As 

discussed e a r l i e r , high concentrations of KCI were i n h i b i t o r y - t o the 

a p u r i n i c endonuclease a c t i v i t y in Peak I. Thus, the column f r a c t i o n s 

were f i r s t d i a l y s e d in 1 I. of 50 mM T r i s - H C l (pH 7.5)/0.1 mM DTT/ 

10 % g l y c e r o l f o r 2-3 hours before they were used f o r enzyme assays. 

With t h i s m o d i f i c a t i o n , a p u r i n i c .endonuclease a c t i v i t y from Peak I was 

found t o e l u t e as a broad peak ( F i g . 27). I t was i n f e r r e d a p u r i n i c 

endonuclease with a molecular weight of 45,000-50,000 was e l u t e d in 

the f i r s t h a l f of the broad peak. The other h a l f of the broad peak 

was composed of enzyme species w i t h a molecular weight s i m i l a r t o 
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Figure 26. Sephadex G-100 chromatography of s a l t - t r e a t e d 

Peak II with e l u t i o n b u f f e r Y.-

Peak I I was prepared and chromatographed as 

Peak III in Figure 25. 
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Figure 27. Sephadex G-100 chromatography of s a l t - t r e a t e d 

Peak I with e l u t i o n b u f f e r Y. 

Peak I was prepared and chromatographed as 

Peak III in Figure 25. 
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those of Peak I I . The experiment provided f u r t h e r evidence f o r a 

p o s s i b l e conversion of Peak I t o Peak II and Peak III upon phophos-

c e l l u l o s e rechromatography. 
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DISCUSSION 

1. Comparison of a p u r i n i c endonuclease a c t i v i t y in Hela c e l l s and 

human f i b r o b l a s t s : 

(a) General p r o p e r t i e s : In agreement with another report (42), 

we found t h a t a c t i v i t y of a p u r i n i c endonuclease in crude e x t r a c t s 

(high-speed supernatant) of Hela c e l l s was s i m i l a r t o t h a t of nor­

mal human f i b r o b l a s t s . The s p e c i f i c a c t i v i t y of a p u r i n i c endonu­

cle a s e in crude e x t r a c t s of Hela c e l l s was in the range of 400-

800 units/ug of p r o t e i n . The value reported f o r normal human f i ­

b r o b l a s t s was between 380-670 units/ug p r o t e i n s (44). 

The a p u r i n i c endonuclease a c t i v i t y in Hela c e l l s was then r e ­

solved i n t o three peaks of a c t i v i t y by phosphoceI IuIose column chro­

matography. They were designated as Peaks I, I I , I I I . They had a 
2+ 

s i m i l a r pH optimum and Mg requirement as the enzyme species of hu­

man f i b r o b l a s t s . 

The enzyme species of human f i b r o b l a s t s were f u r t h e r reported 

to be stimulated t o 2.5-fold by 10 mM KCI. They had a ha I f - l i f e 

of 6 min at 45°C in 230 mM KP0 4 (pH 7.4). But in Hela c e l l s , a l l 

three enzyme species were i n h i b i t e d by i n c r e a s i n g concentrations of 

KCI and NaCl, except Peak i l l which was only s l i g h t l y s t i m u l a t e d by 

20-40 mM KCI ( f i g . 1 5 ) . Peaks l - l I I of Hela c e l l s were d i f f e r e n t in 

t h e i r t h e r m o s e n s i t i v i t i e s . Peak III was most h e a t - l a b i l e , i t s h a l f -

l i f e ( t ' 1 / 2 ) a t 45°C i n 50 mM KP0 4 (pH 7.4) was only 2 t o 3 min. 

L i t t l e loss of enzyme a c t i v i t y was observed f o r Peak I under these 

c o n d i t i o n s . P r e l i m i n a r y experiments i n d i c a t e d t h a t both species were 
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more h e a t - s e n s i t i v e in 250 mM KP0 4 (pH 7.'4); at 45°C, t h e i r ha I f -

l i v e s were less than 1.5 min. In E_. co I i , a minor species of apu­

r i n i c endonuclease, endonuclease IV, was found t o be s t a b l e a t 

45°C (27). Endonuclease IV however had no Mg 2 + requirement and was 

f u l l y a c t i v e in the presence of EDTA. Peak II of Hela c e l l s seemed 

to c o n s i s t of a h e a t - l a b i l e ( + i / 2 = ^ m ' n ) a n ^ a m o r e h e a t - s t a b l e 

( t ^ 2 = 25 min) components. 

Thus, a p u r i n i c endonuclease a c t i v i t y of human f i b r o b l a s t s and 

Hela c e l l s d i f f e r in t h e i r t h e r m o s e n s i t i v i t i e s and i n h i b i t i o n by i n ­

cr e a s i n g s a l t c o n c e n t r a t i o n s . Whether these d i f f e r e n c e s in p r o p e r t i e 

r e f l e c t the n e o p l a s t i c nature of Hela c e l l s remains a q u e s t i o n . I t 

i s however not uncommon t h a t isoenzymes p u r i f i e d from d i f f e r e n t t i s ­

sues o r organs have d i f f e r e n t p r o p e r t i e s . For example, while the ap­

u r i n i c endonuclease in c a l f - l i v e r has a pH optimum of 9.5 and an op-

2t 

timal Mg concentration of 0.01-0.05 mM, the corresponding values 

f o r the caIf-thymus enzymes are 8.5 and 0.5-3 mM r e s p e c t i v e l y . Fur­

thermore, the a c t i v i t y of the calf-thymus enzyme i s s t i m u l a t e d by 

0.04 M NaCI and t h a t of c a l f - l i v e r i s i n h i b i t e d t o 50% by 0.025 M 

NaCI (29). This i s a l s o evident when a p u r i n i c endonuclease i s o ­

lated from human f i b r o b l a s t s and placenta are compared. For exam­

p l e , the p l a c e n t a l enzymes are o p t i m a l l y a c t i v e at around 3 mM MgCI 2 

and those of human f i b r o b l a s t s have an optimum of 10 mM MgC^-

(b) R e l a t i v e p r o p o r t i o n of flow-through and h i g h - s a l t e l u a t e species  

of a p u r i n i c endonuclease a c t i v i t y : In normal human f i b r o b l a s t s , 

a c t i v i t y of the flow-through species was about 20-30$ t h a t of 

h i g h - s a l t e l u a t e species. In Hela c e l l s , a c t i v i t y of Peak I ( f l o w -
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through a c t i v i t y of Hela c e l l s ) was only 2-4$ the a c t i v i t y of Peak 

• III ( h i g h - s a l t e l u a t e a c t i v i t y of He I a ceI I s ) . To see i f t h i s re­

presented a p e c u l i a r c o n d i t i o n of Hela c e l l s , we had p u r i f i e d ap- -

u r i n i c ednonuclease a c t i v i t y from a supposedly normal c e l l l i n e of 

human f i b r o b l a s t (Peggy c e l l ) . The r e l a t i v e p r o p o r t i o n of flow-

through and h i g h - s a l t e l u a t e a c t i v i t i e s was s i m i l a r t o t h a t in Hela 

eel Is. We do not know the reason f o r t h i s discrepancy. Perhaps the 

flow-through a c t i v i t y i s subjected t o c e l l u l a r metabolic r e g u l a t i o n 

which may be a f f e c t e d by t i s s u e c u l t u r e c o n d i t i o n s . The c e l l u l a r 

l e v e l of another DNA r e p a i r enzyme, p h o t o r e a c t i v a t i n g enzyme, was 

claimed t o be a f f e c t e d by composition of the t i s s u e c u l t u r e medium (73). 

I t was found t h a t human f i b r o b l a s t s grown in Eagle's minimal, es­

s e n t i a l medium contained very low l e v e l s of p h o t o r e a c t i v a t i n g enzyme 

compared t o eel Is grown in Dulbecco's modified Eagle's minimal me­

dium. We had r o u t i n e l y supplemented our t i s s u e c u l t u r e medium 

with several a n t i b i o t i c s while such was not a p r a c t i c e in the e a r l i e r 

s t u d i e s with human f i b r o b l a s t s (44,45). 

2. Interconversion of flow-through and h i g h - s a l t e l u a t e species of  

a p u r i n i c endonuclease from Hela c e l l s : 

The r e s u l t of the phosphoceI IuIose rechromatography experiment 

suggested t h a t the flow-through and the h i g h - s a l t e l u a t e species of 

a p u r i n i c endonuclease in Hela c e l l s are i n t e r c o n v e r t i b l e . I t w i l l be 

of i n t e r e s t t o i d e n t i f y the f a c t o r s governing such i n t e r c o n v e r s i o n . 

The study may u l t i m a t e l y lead t o an understanding of the r e p a i r de­

f e c t in XP-D c e l l s , s i n c e they are d e f i c i e n t in the flow-through 
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s p e c i e s o f a p u r i n i c e n d o n u c l e a s e . One can p o s t u l a t e t h a t a d s o r p t i o n 

of h i g h - s a l t e l u a t e a c t i v i t y t o t h e phosphoceI I u I o s e column i s i n ­

h i b i t e d by ; a f a c t o r E. F l o w - t h r o u g h a c t i v i t y t h e r e f o r e i s a com­

p l e x of E and t h e h i g h - s a l t e l u a t e s p e c i e s o f a p u r i n i c e n d o n u c l e a s e . 

T h i s complex w i l l d i s s o c i a t e upon p h o s p h o c e l I u l o s e chromatography. 

An a n a l o g y i s t h e sigma f a c t o r (a) i n E_. coj_i_ w h i c h u s u a l l y forms a 

complex w i t h RNA po l y m e r a s e . I t i s r e q u i r e d f o r t h e i n i t i a t i o n o f 

RNA s y n t h e s i s . The sigma f a c t o r can be s e p a r a t e d from t h e enzyme 

by chromatography on phosphoceI I u l o s e (74,75). 

Once f a c t o r E i s i s o l a t e d from human f i b r o b l a s t s , we s h a l l t e s t 

w h e t h e r a d d i t i o n o f t h i s f a c t o r t o t h e h i g h - s a l t e l u a t e a p u r i n i c en­

d o n u c l e a s e a c t i v i t y from XP-D c e l l s w i l l r e s u l t i n t h e f o r m a t i o n o f 

any f l o w - t h r o u g h a c t i v i t y . T h i s k i n d o f e x p e r i m e n t w i l l d e t e r m i n e 

whether i n XP-D c e l l s t h e r e i s a d e f e c t i n f a c t o r E o r i n i t s p r o d -

d u c t i o n , o r whether t h e r e Is a d e f e c t i n a p u r i n i c e n d o n u c l e a s e w h i c h 

p r e v e n t s t h e a s s o c i a t i o n o f t h e enzyme w i t h f a c t o r E. 

3. M o l e c u l a r w e i q h t d e t e r m i n a t i o n s o f Peaks l - l I I .: 

When Peaks l - M I were a n a l y s e d by Sephadex G-100 column c h r o ­

matography, a major p a r t o f each o f t h e t h r e e enzyme a c t i v i t i e s was 

foun d t o be a s s o c i a t e d w i t h a h i g h m o l e c u l a r w e i g h t c o m p l e x . T h i s 

r e s u l t was c o n f i r m e d i n d e p e n d e n t l y by t h e s u c r o s e g r a d i e n t sediment­

a t i o n a n a l y s i s . P r e l i m i n a r y e x p e r i m e n t s w i t h Sephadex G-200 column 

chromatography i n d i c a t e d t h a t t h e complexes a r e l e s s t h a n T50,000 i n 

l e c u l a r w e i g h t . T h i s a g a i n does n o t seem t o be a p e c u l i a r p r o p e r t y 

o f H e l a c e l l s . We o b t a i n e d s i m i l a r r e s u l t from f i b r o b l a s t s o f a 
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normal human c e l l l i n e , Peggy c e l l s . A l s o , during the e a r l i e r 

stages of enzyme p u r i f i c a t i o n from the human lymphoblastic c e l l 

l i n e CCRF-CEM (76) and E. c o l i (26), a p u r i n i c endonuclease 

a c t i v i t y was reported t o be associated with high molecular weight 

complexes. However, with the same p u r i f i c a t i o n procedures as ours, 

Kuhn l e i n et aj_. (45) reported t h a t flow-through a p u r i n i c endonuclease 

a c t i v i t y had a S value of 3.3, s l i g h t l y l a r g e r than the h i g h - s a l t 

e l u a t e species which had a S value of 2.8. The two S values cor­

respond t o a molecular weight of around 40,000 and 35,000 r e s p e c t i ­

v e l y , i f one assumes, t h a t a p u r i n i c endonuclease i s a g l o b u l a r p r o t e i n . 

No high molecular weight complex was detected. In these experiments, 

the two enzyme species were st o r e d f o r a period of more than 1-2 

months before a n a l y s i s (U. Kuhnlein, personal communication). Pre­

sumably, over t h i s length of time, the a p u r i n i c endonucleases had 

d i s s o c i a t e d from the high molecular weight complexes. 

Subsequently, we found t h a t a p u r i n i c endonuclease a c t i v i t y could 

be d i s s o c i a t e d from the high molecular weight complex by making the en­

zyme s o l u t i o n 2 M KCI o r 2 M NaCl. The major a p u r i n i c endonuclease i n 

Peak III had a molecular weight of 35,000-40,000. Those of Peak II were 

s m a l l e r with a molecular weight of 22,000-25,000. Peak I seemed t o 

contain 2 kinds of a p u r i n i c endonuclease, one with a molecular weight 

of 45,000-50,000 and the other with a molecular weight s i m i l a r t o 

those of Peak I I . Limited by the r e s o l u t i o n of the Sephadex G-100 column, 

we could not conclude whether the enzyme species in Peak I were l a r g e r 

than the corresponding h i g h - s a l t e l u a t e species. 

Another question which remained unanswered i s whether the assoc-
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i a t i o n of a p u r i n i c endonuclease with a high molecular weight complex • 

has any b i o l o g i c a l s i g n i f i c a n c e o r i s merely a d v e n t i t i o u s . In t h i s re­

gard, i t i s of i n t e r e s t t o note t h a t a p u r i n i c endonuclease p u r i f i e d from 

the p l a n t embryo Phased us m u l t i f l o r u s i s a nonhistone p r o t e i n of 

chromatin (31). The a s s o c i a t i o n of a p u r i n i c endonuclease with other 

accessory p r o t e i n s may be important f o r i t s in v i v o f u n c t i o n . The 

high molecular weight complex may be par t of a r e p a i r machinery o r 

represent a storage form of a p u r i n i c endonuclease in the cytoplasm. 

4. Conclusion : 

Three species of a p u r i n i c endonuclease a c t i v i t y were found in 

Hela c e l l s , i n c l u d i n g a flow-through s p e c i e s . For some yet uniden­

t i f i e d reason, we got very l i t t l e flow-through a p u r i n i c endonuclease 

a c t i v i t y from e i t h e r Hela c e l l s o r normal human f i b r o b l a s t s . Ap­

u r i n i c endonuclease a c t i v i t i e s from Hela c e l l s d i f f e r e d in some 

r e s p e c t s , such as t h e r m o s e n s i t i v i t i e s , from those of human f i b r o ­

b l a s t s . Aside from these d i f f e r e n c e s , we t h i n k Hela c e l l s w i l l 

provide enough enzyme material f o r f u r t h e r s t u d i e s of the f o l l o w i n g 

problems: (1) the i n t e r - r e l a t i o n s h i p s between the d i f f e r e n t species 

of a p u r i n i c endonucleases, (2) the b i o l o g i c a l s i g n i f i c a n c e f o r the 

a s s o c i a t i o n of a p u r i n i c endonuclease with a high molecular weight 

compI ex. 



65. 

BIBLIOGRAPHY 

1. L i n d a h l , T. and Nyberg, B. (1972) Rate of depurination of n a t i v e 
deoxyribonucleic a c i d . Biochem. 3610-3617. 

2. L i n d a h l , T. and Karlstrom, 0. (1972) Heat-induced d e p y r i m i d i -
nation of deox y r i b o n u c l e i c a c i d in natural s o l u t i o n . Biochem. 
12: 5151-5154. 

3. Kuhnlein, U., Tsang, S.S. and Edwards, J . (1978) C h a r a c t e r i s a ­
t i o n of DNA damages by f i l t r a t i o n through n i t r o c e l l u l o s e f i l ­
t e r s : A simple probe f o r DNA modifying agents ( i n p r e s s ) . s 

4. Lawley, P.D. and Brookes, P. (1963) Further s t u d i e s on the a l ­
k y l a t i o n of n u c l e i c a c i d s and t h e i r c o n s t i t u e n t n u c l e o t i d e s . 
Biochem. J . 89: 127-138. 

2 4 
5. Singer, B., Kroger, M. and Carrano, M. (1978) 0 - and 0 - a l k y l 

p yrimidine nucleosides: S t a b i l i t y of the g l y c o s y l bond and of 
the a l k y l group as a f u n c t i o n of pH. Biochem. _T7: 1246-1250. 

6. K i r t i k a r , D.M. and Goldthwait, D.A. (1974) The enzymatic r e ­
lease of 0 -methyIguanine and 3-methyIadenine from DNA reacted 
with the carcinogen N-methyI-N-nitrosourea. Proc. Nat. Acad. 
S c i . U.S.A. 7J_: 2022=2026. 

7. Riazuddin, S. and L i n d a h l , T. (1978) P r o p e r t i e s of 3-methyla-
denine-DNA g l y c o s i d a s e from E s c h e r i c h i a c o l i . Biochem. 17: 
2110-2118. 

8. Margison, G.P. and O'Connor, P.J. (1973) B i o l o g i c a l i m p l i c a t i o n 
of the s t a b i l i t y of the N - g l y c o s i d i e bond of 3-methyIadenosine 
in DNA. Biochim. Biophys. Acta. 33]_: 349-356. 

9; Shapiro, R. and K l e i n , R.S. (1966) The deamination o f . c y t i d i n e 
and c y t o s i n e by a c i d i c b u f f e r s o l u t i o n s . Mutagenic I m p l i c a t i o n s . 
Biochem. 5: 2358-2362. 

10. L i n d a h l , T. and Nyberg, B. (1974) Heat-induced deamination of 
cy t o s i n e residues in deo x y r i b o n u c l e i c a c i d . Biochem. J_3: 3405-
3410. 

11. Tye, B.K., Nyman, P.O., Lehman, I.R., Hochhauser, S. and Weiss, 
B. (1977) T r a n s i e n t accumulation of Okazaki fragments as a r e s u l t 
of u r a c i l i n c o r p o r a t i o n i n t o nascent DNA. Proc. Nat. Acad. S c i . 
U.S.A. 74: 154-157. 

12. Tye, B.K., Chien J . , Lehman, I.R., Duncan, B.K., Warner, H.R. 
(1978) U r a c i l i n c o r p o r a t i o n : A source of pu I s e - I a b e l l e d DNA 



66. 

fragments in the r e p l i c a t i o n of E s c h e r i c h i a c o l i chromosome. 
Proc. Nat. Acad. S c i . U.S.A. 15\ 233-237. 

13. Kuhnlein, U., Lee, B.,and Linn , S. (.1978) Human u r a c i l DNA N-
gl y c o s i d a s e : Studies in normal and r e p a i r d e f e c t i v e c u l t u r e d 
f i b r o b l a s t s . Nucl. A c i d . Res. 5: 117-125. 

14. L i n d a h l , T. (1977) DNA N-gIycosidases: P r o p e r t i e s of u r a c i I -
DNA g l y c o s i d a s e from E s c h e r i c h i a c o l i . J . B i o l . Chem. 252; 
3286-3294. 

15. Shearman, CW. and Lawrence, A.L. (1977) Depurination decreases 
f i d e l i t y of DNA sy n t h e s i s in v i t r o . Nature 270: 537-538. 

16. L i n d a h l , T. and Anderson, A. (1972) Rate of chain breakage a t 
a p u r i n i c s i t e s in double stranded d e o x y r i b o n u c l e i c a c i d . B i o ­
chem. n_: 3618-3623. 

17. Burnotte, J . and V e r l y , W.G. (1972) Cross I inking of methylated 
DNA by moderate heating at neutral pH. Biochim. Biophys. Acta. 
262: 449-452. 

18. UlIman, J.S. and McCarthy, B.J. (1973) The r e l a t i o n s h i p between 
mismatched base-pairs and the thermal s t a b i l i t y of DNA duplexes 
I. E f f e c t s of depurination and chain s c i s s o n . Biochim. Biophys. 
Acta 294: 405-415. 

19. Lawley, P.D., Letherbridge, J.H., Edward, P.A. and Shooter, K. 
V. (1969) I n a c t i v a t i o n of bacteriophage T7 by mono- and d i f u n c ­
t i o n a l sulphur mustards in r e l a t i o n to c r o s s l i n k i n g and depu­
r i n a t i o n of bacteriophage DNA. J.'Mol. B i o l . 39: 181-198. 

20. B r a k i e r , L. and V e r l y , W.G. (1970) The l e t h a l a c t i o n of et h y l 
methanesuIphonate, nitrogen mustard and myleran of the T7 c o l i -
phage. Biochim. Biophys. Acta 213: 296-311. 

21. Grossman, L., Braun, A., Feldberg, R. and Mahler, I. (1975) 
Enzymatic r e p a i r . o f DNA. Ann. Rev. Biochem. 44; 19-43. 

22. Hanawalt, P.C. (1977) DNA r e p a i r processes: An overview. In 
"DNA Repair Processes" e d i t , by W.W. Nichols and D.C. Murphy., 
p.1-19, Symposia S p e c i a l i s t s , Miami, F l o r i d a . 

23. Pegg, A.E. and Hui, G. (1978) Biochem. J . ( i n p r e s s ) . 

24. Lin n , S., Kuhnlein, U. and Deutsch, W.A. (1978) Enzymes from 
human f i b r o b l a s t s f o r the r e p a i r of AP DNA ( i n p r e s s ) . 

25. P a i n t e r , R.B. (1978) DNA r e p a i r mechanism. Nature 273: 708-709. 

26. V e r l y , W.G. and Rassert, E. (1975) P u r i f i c a t i o n of E s c h e r i c h i a 



67, 

c o I i gndonucI ease s p e c i f i c f o r a p u r i n i c s i t e s in DNA. J . B i o l . ) 
Chem. 250: 8214-8219. 

27. Ljungquist, S. (1977) A new endonuclease. from E s c h e r i c h i a col? 
a c t i n g at a p u r i n i c s i t e s in DNA. B i o l . Chem. 252: 2808-2814. :-

28. Ljungquist, S. and L i n d a h l , T. (1974) A mammalian endonuclease 
s p e c i f i c f o r a p u r i n i c s i t e s in double-stranded d e o x y r i b o n u c l e i c 
a c i d I. P u r i f i c a t i o n and general p r o p e r t i e s . J , B i o l . Chem, 
249; 1530-1535. 

29. Kubler, J.P. and Goldthwait, D.A. (J977) An endonuclease from 
c a l f l i v e r s p e c i f i c f o r a p u r i n i c s i t e s in DNA. Biochem. 16; 
1370-1377. 

30. L i n s l e y , W.S., Penhoet, E.E. and Linn, S, C1977) Human endonu­
cle a s e s p e c i f i c f o r a p u r i n i c / a p y r i m i d i n i c s i t e s in DNA, J . B i o l . 
Chem. 252: 1235-1242. 

31. Thibodeau, L. and V e r l y , W.G. (1977) P u r i f i c a t i o n and proper­
t i e s of a p l a n t endonuclease s p e c i f i c f o r a p u r i n i c s i t e s . J . 
B i o l . Chem. 252: 3304-3309. 

32. V e r l y , W.G., Grossard, F. and C r i n e , F. (1974) In v i t r o repai r 
of a p u r i n i c s i t e s in DNA. Proc. Nat. Acad. S c i . U.S.A. 71: 
2273-2275. 

33. Ljungquist, S., L i n d a h l , T. and Howard-Flanders, .P. -(1976) ' 
Methyl methane su Iphonate-sensiti ve mutant of Es.cher i ch i a 
c o l i def i c i e n t in an endonuclease s p e c i f i c f o r a p u r i n i c s i t e s 
in d e o x y r i b o n u c l e i c acid'. J . B a c t e r i c . 126: 646-653. 

34. Yajko, D.M. and Weiss, B. (1975) Mutation simultaneously a f ­
f e c t i n g endonuclease II and exonuclease III in E s c h e r i c h i a  
c o l i . Proc. Nat. Acad. S c i . U.S.A. 72: 688-692. ; 

35. L i n d a h l . T. (1976) New c l a s s of enzymes a c t i n g on damaged DNA. 
Nature 259: 64-66. 

36. L a v a l , J . (1977) Two enzymes are required f o r strand i n c i s i o n 
in r e p a i r of a l k y l a t e d DNA. Nature 269: 829-832. 

37. W i t k i n , E.M. (1976) U l t r a v i o l e t mutagenesis and i n d u c i b l e DNA 
r e p a i r in Escheri ch i a c o I i . B a c t e r i o . Rev. 40: 869-907. 

38. H i g g i n s , N.P., Kato, K. and Stra u s s , B. (1976) A model f o r r e ­
p l i c a t i o n r e p a i r in mammalian c e l l s . J . Moi. B i o l . 101: 417-
425. 

39. Setlow, R.B. (1978) Repair d e f i c i e n t human di s o r d e r s and cancer. 
Nature 271.: 713-717. 



68. 

40. Lambert, B. and Ringborg, U. (1976)? DNA r e p a i r and human disease.' 
Acta Med. Scand. 200: 433-439. 

41. Cleaver, J.E. (1977) Human diseases' and in v i t r o m a n ifestations 
of a l t e r e d r e p a i r and r e p l i c a t i o n of -DNA. In "Genetics of Human ± 
Cancer" e d i t , by J . J . M u l v e h i l l , R.W. M i l l e r , J.F. Fraumeni, 
J r . et aj_., C hapt.32, p.355-363., Raven Press, N.Y. 

42. Teebor, G.W. and Duker, N.J. (1975) Human endonuclease a c t i v i ­
ty f o r DNA a p u r i n i c s i t e s . Nature 258; 544-547. 

43. Moses, R.E. and Beaudet, A.L. (1978) A p u r i n i c DNA endonuclease 
a c t i v i t i e s in r e p a i r - d e f i c i e n t human c e l l l i n e s . Nucl. A c i d . 
Res. 5: 463-473. 

44. Kuhnlein, U., Penhoet, E. and Li n n , S. CJ976) An a l t e r e d apu-
r i n i c DNA endonuclease a c t i v i t y in group A and groupD of 
xeroderma pigmentosum f i b r o b l a s t s . Proc. Nat. Acad. S c i . U.S.A. 
73: 1169-1173. 

45. Kuhnlein, U., Lee, B., Penhoet, E. and Linn, S. (J978) Xero­
derma pigmentosum f i b r o b l a s t s of the D group lack an a p u r i n i c 
DNA endonuclease species with alow apparent IC. Nucl. A c i d . 
Res. 5: 951-960. 

46. Cleaver, J.E. and Bootsma, D. U975) Xeroderma pigmentosum: 
Biochemical and g e n e t i c c h a r a c t e r i s t i c s . Ann. Rev. Genet. 9_: 
19-38. 

47. Friedberg, E.C. (-1978) Xeroderma pigmentosum: Recent s t u d i e s 
on the DNA r e p a i r d e f e c t s . Arch. P a t h o l . Lab. Med. 102: 3-7. 

48. S t i c h , H.F. (1975) Response of homozygous and heterozygous xe­
roderma pigmentosum c e l l s t o several chemical and v i r a l c a r c i ­
nogens. In "Molecular Mechanisms f o r Repair of DNA, Pa r t B" 
e d i t , by P.C. Hanawalt and R.B. Setlow, p.773-784, Plenum 
P u b l i s h i n g Corp., New York. 

49. Kraemer, K.H., de Weerd-Kastelein,.E.A., Robbins, J.H., K e i j z e r , 
W., B a r r e t t , S.F., Pa t i n g a , R.A. and Bootsma, D. (1975) Five 
complementation groups in xeroderma pigmentosum. Mut. Res. 33: 
327-340. 

50. Lehmann, A.R., K i r k - B e l l , S., A r l e t t , C.F., Paterson, M.C, 
Lohman, P.H.M., de weerd-Kastelein, E.A. and Bootsma, D. Cj975) 
Xeroderma pigmentosum c e l l s with normal l e v e l s of e x c i s i o n 
r e p a i r have a defect in DNA synth e s i s a f t e r U V - i r r a d i a t i o n . 
Proc. Nat. Acad. S c i . U.S.A. 72: 219-223. 

51. Sutherland, B.M., Rice , M. and Wagner, E.K. (1975) Xeroderma 
pigmentosum c e l l s contain low l e v e l s of p h o t o r e a c t i v a t i n g 



69. 

enzyme. Proc. Nat. Acad. S c i . U.S.A. 72j 103-107. 

/ 52. Sutherland, B.M. and O l i v e r , R. (1975) Low l e v e l s of photore-
a c t i v a t i n g enzyme in xeroderma pigmentosum v a r i a n t s . Nature 
257: 132-134. 

53. Lehmann, A.R., K i r k - B e l l , S., A r l e t t , C.F. e t a_L Cl977) Repair 
of UV l i g h t damage in a v a r i e t y of human f i b r o b l a s t c e l l s t r a i n s . • 
Can. Res. 37: 904-910. 

54. Andrews, A.D., B a r r e t t , S.F..and Robbins, J.H. (1978) Xeroderma 
pigmentosum n e u r o l o g i c a l a b n o r m a l i t i e s c o r r e l a t e with colony 
forming a b i l i t y a f t e r u l t r a v i o l e t r a d i a t i o n . Proc. Nat. Acad. 
S c i . U.S.A. 75: 1984-1988. 

55. Kuhnlein, U., Lee, B. and Lin n , S. (1978) Human u r a c i l DNA-N-
gl y c o s i d a s e : Studies in normal and r e p a i r d e f e c t i v e c u l t u r e d 
f i b r o b l a s t s . Nucl. A c i d . Res. 5_: . 117-125. 

56. Wolff, S., Rodin, B. and Cleaver, J.E. (1977) S i s t e r chromatid 
exchanges induced by mutagenic carcinogens in normal and xero­
derma pigmentosum c e l l s . Nature 265: 347-349. 

57. Goth-Goldstein, R. (1977) Repair of DNA damaged by a l k y l a t i n g 
carcinogens i s d e f e c t i v e in xeroderma pigmentosum-derived f i ­
b r o b l a s t s . Nature 267: 80-81. 

58. K i r t i k a r , D.M., Kuebler, J.P., Dipple, A. and Goldthwait, D.A. 
(1976) Enzymes involved in r e p a i r of DNA damaged by chemical 
carcinogens and y ~ i r r a d i a t i o n . In "Cancer Enzymology" e d i t , byyy 
J . S c h u l t z and F. Ahmad, p. 139-158., Academic Press, New York. 

59. Gey, G.O., Coffman, W.D. and Kubicek, M.T. (1952) Tissue c u l ­
ture, s t u d i e s of the p r o l i f e r a t i v e c a p a c i t y of c e r v i c a l c a r ­
cinoma and normal e p i t h e l i u m . Can. Res. 12: 264-265. 

60. Marx, J.L. (1978) DNA r e p a i r : New clues t o c a r c i n o g e n e s i s . 
Science 200: 518-521. 

61. Duker, N.J. and Teebor, G.W. (1975) D i f f e r e n t u l t r a v i o l e t DNA 
endonuclease a c t i v i t y in human c e l l s . Nature 255: 82-84. 

62. Braun, A. and Grossman, L. (1974) An endonuclease from E s c h e r i ­ 
c h i a c o I i t h a t acts p r e f e r e n t i a l l y on U V - i r r a d i a t e d DNA and i s 
absent from uvrA and uvrB mutants. Proc. Nat. Acad. S c i . U.S.A. 
71_: 1838-1842. 

63. Espejo, R.T. and Canelo, E.S. (1968) P r o p e r t i e s of b a c t e r i o ­
phage PM2: A I i p i d - c o n t a i n i n g b a c t e r i a l v i r u s . V i r o l o g y 34; 
738-747. 

64. Espejo, R.T., Canelo, E.S. and Sinsheimer, R.L. (1969) DNA of 
bacteriophage PM2: A closed c i r c u l a r double-stranded molecule. 



Proc. Nat. Acad. S c i . U.S.A. 63: 1164-1168. 

65. Center, M.S. and Richardson, C.C. (1970) An endonuclease indu­
ced a f t e r i n f e c t i o n of E s c h e r i c h i a c o l i w i t h bacteriophage T7: 
P u r i f i c a t i o n and p r o p e r t i e s of the enzyme. J . B i o l . Chem. 245: 
6285-6291. 

66. Lowry, O.H., Rosebrough, N.J., F a r r , A.L. and R a n d a l l , R.J. 
(1951) P r o t e i n measurement with the f o l i n phenol reagent. 
J.Biol.Chem. 193:265-275. 

67. Riazuddin, S. and Grossman, L. (1977) Micrococcus luteus cor-
rendonucleases..I. Resoultion and p u r i f i c a t i o n of two endonucle­
ases' s p e c i f i c f o r DNA c o n t a i n i n g pyrimidine dimers. J . B i o l . 
Chem. 252: 6280-6286. 

68. Blackmore, R.V. and Linn , S. (1974) P a r t i a l p u r i f i c a t i o n and 
c h a r a c t e r i s a t i o n of four endodeoxyribonucI ease a c t i v i t i e s from 
E s c h e r i c h i a c o l i K-12. NUcl. A c i d . Res. Jk 1-17. 

69. Gates, F.T, and Li n n , S. (1977) Endonuclease V of E s c h e r i c h i a  
c o l i . J . B i o l . Chem. 252:1647-1653. 

70, Gates, F.T. and Linn , S. (1977) Endonuclease from E s c h e r i c h i a a a 
c o l i t h a t acts s p e c i f i c a l l y upon duplex DNA damage by u l t r a ­
v i o l e t l i g h t , osmium t e t r o x i d e , a c i d , o r X-rays. J . B i o l . Chem. 
252: 2802-2807. 

71. Brent, T.P. (1976) P u r i f i c a t i o n and c h a r a c t e r i s a t i o n of human 
endonuclease s p e c i f i c f o r damaged DNA: A n a l y s i s of l e s i o n s 
induced by u l t r a v i o l e t or X - r a d i a t i o n . Biochim. Biophys. Acta. 
454: 172-183. 

72. Ljungquist, S. and L i n d a h l , T. (1977) R e l a t i o n between Esche- 
rAcbia c o I i endonuclease s p e c i f i c f o r a p u r i n i c s i t e s in DNA 
and exonuclease I I I . Nucl. A c i d . Res. 4_: 2871-2879. 

73. Sutherland, B.M. and O l i v e r , R. (1976) C u l t u r e c o n d i t i o n s a f ­
f e c t i n g p h o t o r e a c t i v a t i n g enzyme l e v e l s - i n human f i b r o b l a s t s . 
Biochim. Biophys. Acta. 442: 358-367. 

74. Burgess, R.R. and Tr a v e r s , A.A. (1969) Factor s t i m u l a t i n g 
t r a n s c r i p t i o n by RNA polymerase. Nature 221: 43-46. 

75. Travers, A.A. and Burgess, R.R. (1969) C y c l i c re-use of the 
RNA polymerase sigma f a c t o r . Nature 222: 537-540. 

76. Brent, T.P. (1975) P a r t i a l p u r i f i c a t i o n of endonuclease a c t i ­
v i t y from human IymphobIasts: Separation of a c t i v i t i e s f o r de-
purin a t a t e d DNA and DNA i r r a d i a t e d with u l t r a v i o l e t l i g h t . 
Biochim. Biophys. Acta. 407: 191-199. 


