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ABSTRACT

This dissertation applies policy improvement and suc-
cessive approximation or value iteration to a general class of
Markov decision processes with discounted costs. In particular,
a class of Markov decision processes, called piecewise-linear,
is studied. Piecewise-linear processes are characterized by
the property that the value function of a process observed for
one period and then terminated is piecewise-linear if the
terminal reward function is piecewise-linear. Partially
observable Markov decisionvprocesses have this property.

It is shown that there are e-optimal piecewise-linear
value functions and piecewise-constant policies which are
simple. Simple means that there are only finitely many pieces,
each of which is defined on a convex polyhedral set. Algorithms
based on policy improvement and successive appreximation are’
developed to compute simple approximations to an optimal

policy and the optimal value function.
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Chapter I

INTRODUCTION

The combined theories of dynamic programming'and Markov
decision processes have been applied to many areas including
inventory, queuing, and machine maintenance problems.

This thesis develops a theory for a general class of
dynamic programming models as well as algorithms which yield
policies that are both "simple" and €-optimal. The approach
taken is to consider a dynamic programming problem for an arbi-
trary state Markov decision processes over an infinite horizon.
At present there are no computational algorithms for models in
which the state space is a continuum. However, algorithms for
some partially observable Markov models and finite (at most
countable) state Markov decision processes have been developed.
The formulation of our general model is motivated by consi-
deration of the special structure which the partially observable
models possess.

The partially observable Markov process, introduced by

Dynkin [17], consists of two stochastic processes, the core

process {Zn, n=1,2,...}, which cannot directly be observed,
and the signal process’{sn, n=1,2,...} which becomes known at
each decision epoch n = 1,2,... . The core process is a Markov

chain and the signal process is probabilistically related to

the core proceés by the conditional probability Yig of 6bserving



a signal 6 given that the core process is in state i. Dynkin
shows that the state occupancy probability represents a suffi-
cient statistic for the complete past history. Astrom [3] also
considered a similar model with finite states and finite actions
over'a finite horizon, using the method of successive approxi-
mation to find €-optimal cost vectors, however, it is only
applicable to problems in two dimensions. Smallwood and Sondik
[60] have independently obtained similar results. Later, sondik
[61] extended this model to the infinite-horizon and introduced
the class of finitely transient policies. The cost functions
of these policies which”are used to appreximate‘the»cost.func—'
tions of arbitrary stationa;y.policies are piecewise linear with
respect to the sufficient sfatistic._ Wwhite [67] has considered
a partially observable semi-Markov process with a finite
horizon where the controller knows the times of the core process
transition. Aocki [1l] also studies the partially observable
control problem with finite states, finite action sets and
finite horizon, but does not include an operational algorithm.
Since in partially observable models with finite state
space the states of dynamic programming are probability vectors

N

in R° (the N-dimensional real space), it follows after some

modification that if the state space (complete separable metric
space) of our model is replaced by RN, the model then immediately
is reduced to a partially observable Markov decision model.

The state space of the system will later be assumed to be a



non-empty bounded subset @ of a separable complete metric space
X so as to ensure that this thesis includes partially observable
Markov processes as a special case.

In this thesis the concepts of simple partitions, simple
policies and piecewise linear functionals on the arbitrary
state space are introduced to establish an algorithm for deter-
mining an "efoptimal simple stationary policy". The idea is
based on the "linearity" of partially observable Markov processes.
In addition to these three concepts, assumptions on the immediate
costs and on the contraction operators-Ua are introduced. . Two
algorithms are discussed. The first of these is the method of
successive approximation which is used for approximating the
optimal cost V* and for finding policies whose cost functions
approximate V*. The second is based on the method of policy
improvement.

In Chapter II a formulation of a dynamic programming
problem with ‘an abstract state space and finite action .space
will be considered. Chapter III is a study of operators used
in the algorithms. In Chapter IV the methods of successive
approximation and of policy improvement will be studied.

Chapter V explicitly develops the algorithms for the two methods

in a more concrete setting.



Chapter 'IT

MODEL FORMULATION AND ASSUMPTIONS

In this chapter we shall formulate an optimal control
problem with discounted costs and with complete observation
over an infinite horizon under the setting of Blackwell [7].

Also, we introduce some definitions and assumptions. A Markov

(i) the state space Q is a non-empty Borel subset of a

separable Banach space X;

(ii) the action set A is finite and a is an element of A;

(iii) for each pair (x,a) € @ x A, g(*|x,a) is the one step

transition probability of thewsystem on the Borel

subsets of Q;

(iv) the immediate COSt.C(X,a) is a bounded Borel measur-

able function on { x A.

When the system is in state x and action a is chosen,
then we incur a cost c(x,a). We define a policy to be a
sequence {Sn, n=1,2,...}, where Gn tells us what action to
choose at the n-th period as a Borel measurable function of the
history H = (xl,al,...,xn) of the system up to period n. . Let
A be a family of policies . A policy § =.(5§,68,...) which is

independent of time n is called stationary. Our expected

discounted total cost Vé(x) at an initial state x under a



policy § is written as

(o]

: $ _ n-1 _
(II.1) Vo (x) = E{nZlB c(X ,6 (X))[X, = x}
where {Xn: n=1,2,...} is a Markov chain with probability
transition function g(*]x, Sn(x)). The discount factor is
denoted by B8 and 0 < 8 < 1. The function V(S is called the cost
of policy §.

Define the optimal cost function V* by

(IT.2) V*(x) = inf V6(x) for all x e Q.
SeA .

Then, the following is true (see Blackwell [7]).

Theorem II.1l. There exists an optimal stationary policy 6* with

§* . .
v = V¥, Also, V* satisfies

(IT.3) V¥ (x) = min{c(x,a) + BIQV*(X')q(dx'|x;a)} for all x e Q.
achA

An eg-optimal cost function V is one satisfying

(IT.4) vy = vl = sup|V*(x) - V(x)]| < e.
Xef

A policy § such that V==Va_satisfying (IT.4) is an e-optimal policy.

Let B(f2) be the set of all bounded Borel measurable functions on

Q with the sup norm I+l as above. Then, B(Q) -is a Banach space



(see Lusternik and Sobolev [38, p. 18]).
For finding an e-optimal policy and its cost function we
define simple partitions, simple policies and piecewise (abbre-

viated, hereafter, by p.w.) linear functions.

Definition II.1l. A partition'{Ei}I;Ll of  C X is called simple
if each Ei is a convex polyhedral set, where a convex polyhedral

set is the solution set of a finite system of linear inequalities,

i.e.,
E, = {x € Q: Kij(x) < (or i)dj, j = l,2,...,ni},

i=11,2,...,m,

where each Kij defined on X is a linear functional and dj is a

real number. Note that we always take linear functional to be

bounded.
Examples.
(1) Let Ei = Q. Take any linear functional 21 on X and a real
number dl' Then E2 = {Ei, Eg} is a simple partition where
2 —'. - . 2 - -
E] = {x e Q: g, (x) < dl} and Ej = {x e Q: 2, (x) > dl}.
Furthermore, take another linear functional 22 # 21 and a
3 _ 3 3 3 3, .
real number d2 # d,. Then, E~ = {El, Ey, E3, E4} is a
simple partition where Ei = {x £ Q: ll(x) <dl, Qz(x)<<d2},
3 _ . . 3 _ . |
By = {x € Q: 2, (x) <d;, Q(x) > 3d,}, Ej = {x e Q:
. 3
2, (x) > dy, L, (x) < d2} and E; = {x € Q: 2, (x) >dq,



22(x) > d2}, and so on.

(2) Let Q@ = RN (the N-dimensional real space). In definition

II.1, let %..(x) = 2..x where &%,. ¢ RN and 2..xX is the
ij 1] i] i]
inner product of zij and x. Then'{Ei} is a simple parti-

tion in RN.

Lemma II.1. Let P, = {Ei} and P, = {Fj} be two simple partitions
of . Then, the product partition Pl - Py = {Ei N Fj} is again

simple.
Proof: Here we omit E, n Fj if B; 0 Fj = ¢. The sets E, @ F
are disjoint and are convex polyhedral sets. Hence Pl * P, is

simple.

Definition II.2. A stationary policy § isisimple with respect

to a simple partition'{Ei; i'=1,2,...,m} if §(x) = a, for all

X € Ei’ i=1,2,...,m.

Definition II.3. A vector valued function V on £ C X is called

p.w. linear if there exists a simple partition {Ei} of @ such

that V(x) = Vi(x) for all x ¢ Ei’ i=1,2,...,m, and each Vi
is the restriction to Ei of a linear function on X.
“Given a policy 6, define the operator Ug from B(R) into

B(2) by

(II.5) (UgV) (x) = c(x,8(x)) + B[ v(x")g(dx'|x,8(x)).



If §(x) = a for each x € @, then we write Ua = UG'

Define the operator U, from B(Q) into B(Q) by

(II.6) (U4V) (x) = min (UaV)(x) for V € B(Q).
a
Although V* is not necessarily p.w. linear and &* is not
necessarily simple, we will show for a class of Markov decision
processes having the structure described in the following
assumption that there are e€-optimal cost functions and simple

policies.

Assumption I (A.T.). (UaV)(x) is p.w. linear on Q for each a,

provided that V is p.w. linear on Q.

Examples.
Model 1. Let X = RN and @ be a convex polyhedral set in RN such

that g(+|x,a) is a probability measure on Q for each (x,a) € i xXA.

The following two assumptions (A.II) and (A.III) imply (A.I).

Assumption II (A.II.). For each a £ A, the immediate cost

function c(+,a) is the restriction to Q@ of a linear: functional

. a
on X. Hence for each a, there is a vector ¢ such that

c(x,a) = ca e x° for x g Q.

Assumption IIT (A.III.). For each convex polyhedral set B C {

and each action a € A,



qa(B,x) = fo'q(dx'[x,a)

is p.w. linear in x with respect to a simple partition
P (B) = (Ej(a,B), j = 1,2,...,m, gl

We will show in Model 2 that partially observable Markov
processes are a special case of Model 1.

We next check that (A.I.) is satisfied. Let a € A be
arbitrary but fixed and suppose that V is p.w. linear with
respect to a simple partition'{Ei, i=1,2,...,m}. Let
P2 = ? Pa(Ei) ='{§?; j=1,2,...,r}, the product partition,

i=1
which is again simple from Lemma II.l.

c? . x'+—BfQV(x')q(dx'lx,a)

(U_V) (x)

a m
=c” * x+ B )
i=

Vix?q(dx'lx,a)

/
1 El

m
a a
c X + B_Z Viq (Ei,x)

1i=1
a o a g
= [c® + 8 ) ViA5,l x - for x e E:
i=1 t * ’ ]
where K?z'x = qa(Ei,x) for x ¢ Eg(a,Ei) and the index % depends
on i for each‘a & A. u_v is. linear on each E?. Hence U_V is

pP.W. linéar_with respect to the simple partition pd = {E?,
j'= 1,2,...,r}, which satisfies (A.I.). This model 1 is really

the basic model studied in the theory.
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Model 2. A partially observable Markov Decision Process (Dynkin
[17], Smallwood and Sondik [601]).

Consider a Markov decision process (called the core
process) with state space {1,2,...,N}, with action set A, with
probability transition matrices {P?, a ¢ A}, and with immediate
cost vectors'{ha, a € A}. Let Zn be the state at the n-th
transition. Assume that the process {Zn, n=20,1,2,...} cannot
be observed, but at each transition a signal is transmitted to
to the decision maker. The set of possible signals‘C) is
assumed to be finite. For each n, given that Zn = j and that
action a is to be implemented, the signal Gn is independent of
the history of the signals and actions {eo;ao, l’al""’en—l’an—l}
prior to the n-th transition and has conditional probability

a _ _a o
denoted by Yje— P[en = 6|Zn = j, al.

N
Let X = RN and Q = {x = (Xl'XZ""'XN):.XlXi =1, X, > 0,
. i=
¥i}. Define the i-th component of X to be
Plz = ileo,ao,el,...,en_l,an_l,en], i=1,2,...,N.

It can be shown (see Dynkin [17]) that

P[Z 0 5]

ne1 = 310grage0yseeen8psan, 0 g =PIZ =310 8, X ]

Thus Xn represents a sufficient statistic for the complete past
history {eo,ao,...,a 6 }. It follows that'an: n=20,1,2,...}

n-1'"n

is a Markov decision process (see Sondik [61]), called the
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observed process. Its immediate cost is c(x,a) = n? .« x. Its
action set is A. Its probability transition function is deter-
mined by the follewing calculation. For each measurable subset

BCQ, xe{, and a € A,

q(B|x,a) = P[X +l€B[Xn = x, a, = al
= gP[Xn+l€Blen+l=e’ X =x, a =al "P[6 L, =0[X
= x, an=a]
= gp[xn+leB|en+l-6, X =x, a =al -%P[en+l =
elZn+l=j, X_ =x,al -P[Zn+l=jlxn‘=x, a =al
- gP[Xn+l€B|6n+l=6, X =x, a =al° %Y?egp[znﬂ—
j|zn=1, X, =%, a =a]P[Zn=1an=x, an=a]
= gP[xn+léBIGﬁ+l:=e’ X, =X, an==a]§Y§e§P?jxi
- gp[xn+leB|6n+l=6, X =x, a =allp?(8)x
where 1 = (1,1,...,1) anvaa(e) = [P?j Y?Q]T. Define the vector

T(x|6,a) by
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a
r(xl0,2) = 29X
1P7 (9)x
Note that T(ane,a) = X 417 and that
1 if T(x|6,a) €B
Pmm&ewaﬂ=e,xn=& al] =
o 4if T(x|6,a) ¢B
(See Sondik [61l]). So,
a
a(Blx,a) = ) 1 PT(8)x
es@a(B,x)

where 9% (B,x) = {6: T(x|6,a) €Bl}.

Finally, we show that the observed process {Xn} is a
special case of Model 1; i.e., g (B,x) = fo'q(dx'lx,a) is
p.w. linear in x for each convex polyhedral set B € & and

action a € A. Using the previously computed g(B]x,a) we have

q% (B, x) fo'q(dx'Ix,a)v

7 _Tix|8,a] 1 p?(0)x
6e0? (B, x)

a
_ 2 P (0)x 1 Pa(e)x

6e0® (B,x) 1P%(8)x

= 3 % (9) x.
eeéa(B,x)



Thus it is sufficient to verify that the set valued function
0% (B,+): Q ~ 2<> is p.w. constant on Q where 2C> is the power

set of (). To do this we need the following lemma.

Lemma II.2. For each signal 6, action a, and set B C 2, define

B

Eg

'8 = {x € Q: T(x|8,a) eB}.

Then for any subset of signals ¢ C C), we have

93 (B,x) = ¥ if and only if x € N Eg’® N N é(Eg'a)C.
Bey Oey
Proof. Note that E5’? = {x: 6 ¢ ¢¥(B,x)}. Thus if x ¢ Ej'?
for 6 € ¥, then 6 é @a(B,x). Consequently, ¥ C @a(B,x). On the
other hand, if x ¢ (E]g”a)c for 6 ¢ S, then © ¢ 6% (B,x). Conse-
quently, v¢ ¢ (0% (B,x))S. It follows that ¥ = 0% (B,x).
Conversely, suppose that 8*(B,%) = V. Then % ¢ Eg’a for

each 0 € ¥ and % ¢ (Eg’a)c

for each 0 ¢ wc, which completes'the
proof.

Let E;(W) = {x: % (B,x) = y}. The above lemma gives an
explicit represehtation of Eg(w) and qa(B,x) is p.w. linear
with respect to the partition {EE(W): Y o€ 2<)]-where it is
assumed that qa(B,x) = 0 if E;(w) = ¢ (empty) for all y. Although

this partition is not simple, it can easily be refined to a

simple partition as in the next paragraph.
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Suppose that B € @ is a convex polyhedral set. Since for
x € @ = {x: in =1, X >0 ¥i} an inequality #x < b can be
rewritten as %x - b = (£ - bl)x < 0, we can without loss of

generality assume that B has the representation

B={xeQ: Kz <0, Lx <0}

for some matrices K and L where 0 = (0,0,...,0)T. With this
representation of B,
Eg’a = {x & Q: T(xle,a) € B}
a a
={x€Q:K—P—-aie)—X-<_Q_,LP—a(e—)—§-_<__0_}
1P~ (8)x 1P (0)x

= {x e 2: kP%(8)x < 0, LP?(8)x < 0}

= {x e Q: K¥(@)x <0, L¥(®)x < 0}
where K2(8) = KP?(8) and 12(8) = LP?(8). So each Eg’® is a

B,a)c

convex polyhedral set. Each'(Ee

can be.represented as a
union of disjoint convex polyhedral sets. It follows that
Eg(w) is a union of diéjoint polyhedral sets, say

Eg(w) = U {Ej(w)}, Thus g% (B,x) is p.w. linear with respect

S . e 2®
to the simple partition {Ej(w): j = l,2,...,n¢, Y oe 2~ ).



Model 3. Information acquisition in partially observable models.

Consider a partially observable Markov chain in model 2.
Define an information structure as a mapping from the set of
states (unobservable) of the core process to the set of distinc-
tive signals 8. The decision maker chooses an information
structure from the set of available structures and decides upon
an action for the system.

Let a = (al, a2) be the pair of actions, a; for the

system control and a, for information acquis$ition. More precisely,

we have
a 21 _a,
plj(e) = Pij Pje
and
N N 4.% a
— 1 v..92, (s =
(I1.7) c(x,a) = Z X, zlPijezleeh(l,],G,al,az)

i=1 15

where h(i,j,e,al,a2) is the immediate cost of the core process
when a state of the core process moves from i to j and a signal 6

observed under actions a, for the system and a, for the infor-

1 2

mation structure, and x = (xl,...,xN) is the probability vector

with an interpretation that X is the probability that the

core process is in state i. Note that c(x,a) is linear in x.
Consider a machine maintenance and repair model (e.g.,

Smallwood and Sondik [60]) as an application of partially

observable models. But this model is a modification of Smallwood



Sondik's. The machine consists of two internal components.
The states of the core process Zn =1i, i =1,2,3, have the
following interpretation. If i = 1, then both components are
" broken down, if i = 2 either one is broken down and if i = 3
both of them are working. Assume that the machine produces

M finished products at each peribd and the machine cannot be
inspected. The actions al for the machine control are to
repair and not to repair the machine. The actions a2 for
information acquisition are the numbers of a sample to choose
out of the M finished products. The signals © are the number
of defective products in the sample, which forms the signal
process {en, n=1,2,...}. The core process {Zn, n=1,2,...}

is the unknown states of the components of the machine. Let

X, = P{Zn =i}, i=1,2,3 and put x = (xl,xz,x3). Then, the
process {<zn,en), n=1,2,...} becomes a partially observable
machine maintenance and repair model with actions a = (al)az)

and immediate cost c(x,a) defined by (II.7).

Model 4. A partially observable semi-Markov model (White {671).
Let'{Zt, t > 0} be a semi-Markov chain with the finite

set of states and let tn be the time the transition occurred.

Let Tn = tn’_ tn—l’ n=1,2,..., with t0 = 0. Then
{(Zt ,Tn), n=1,2,...} is a Markov chain (Ross [54]). Let
n
Y = (Zt ,Tn) denote the partially ohservable core-process.
n
Let {Gt , n=1,2,...} be the signal process where each signal
n

is observed at the time of the core process transition. The



controller knows the times of the core process transition which
take only finitely many integer values, i.e., Tn =1,2,...,M,
for each n. Then the core process'{Yn, n=1,2,...} is a finite
state, discrete time Markov chain and the pair of two stochastic
processes {(Yn,Gn), n=1,2,...} becomes the same partially
observable Markov chain as in model 2, provided that the
immediate cost'ha represents the expected cost with respect to
the Th and the set of actions, a £ A, is finite. This model

differs from White [67] in that he allows Tn to be countable.

Model 5. A classical linear economic model (Walras [66])
Let x be a price vector of N commodities (or N securities)
in the market and assume that a new price vector x' can be

written as

where Pg is an N x N matrix depending on the present economic
situation 6 and on an economic alternative a. Let P[6|x,a] be
the conditional probability of 6 forecasted, given x and a.

Assume that there exists a simple partition {Ei} of the set of

price vectors x such that

P[6|x,a] = P>

61 for x € Ei’

which is p.w. constant with respect to {Ei}.' Therefore, the
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model belongs to the class of model 1, provided (A.II.) is

satisfied.



Chapter III

PROPERTIES OF Ug AND Us

This chapter is a study of the properties of UG and U,.
Most of these properties will be used later in the development
of algorithms to find e-optimal approximations to V* and d*.

The following properties are well-known and proofs may

be found in Blackwell [7], Denardo [10], and Ross [54].

Lemma IITI.l.

(1) U. and U, are contraction mappings on B({) with contraction
S *
coefficient B < 1.
(ii) UG’ U, are monotone; i.e., if £, g € B(Q) with £ < g,

then Uyf < Ucg and U.f < U,g.
8

(iii) V = V is the unique solution of the operator equation
U(SV = V. .

(iv) V* = V is the unigue solution of the operator equation
U,V = V.

The following theorem shows how the structure in Assumption
I implies that U, and Us preserve the p.w. linearity of value

functions and the simplicity of policies.

Theorem III.l. Suppose that (A.I.) holds and that V is p.w.

linear. Then



(1) UV is p.w. linear whenever § is simple;

(ii) U,V is p.w. linear; and

(iii) there exists a simple policy ¢§ such that USV = U,V.

Proof.

(1) Suppose that § is simple with respect to a simple parti-
tion {Ei}. Let E. be an arbitrary but fixed cell from
the partition and suppose that §(x) = a for x € E,. Then

(UgV) (%) = (U, V) (%) for x € E;.
From (A.I.), Uav is p.w. linear for each a € A. Hence
USV is p.w. linear on each cell Ei’ and is consequently
p.w. linear on Q.

(ii &. The functions Uanare each p.w. linear by (A.I.). Suppose

iii) that UaV is p.w. linear with respective to the simple
partition P2, Let P = 1 P®, Then P is finer than each

. ach
Pa, and so each UaV is p.w. linear with respect to P.
For each F ¢ P and a € A, there is some Iinéar functional
u; such that
(U_V) (x) = aa(x) for x ¢ F
a X = Op )
For each F ¢ P, define the sets G?, bea=1{1,2,...,p}, by
b ’ A
Gg = {x: qu<ia;x, a=1,2,...,b-1 and a?x:ia;x,.a==b+l,...,P}.



Then {G;: a €A} = PF is a partition of F and p= 1 pF
FeP
is a partition of Q with the property that
(U,V) (x) = a;(x) if x ¢ G; e P.
The policy § defined by §(x) = a for x € Gg e P satisfies
UgV = U,V.

@orollary. Suppose that (A.I.) hoias and that v° e B(f) is
p.w. linear.

(U6Vn_l)(X), n
_l)

1,2,...

(i) Define VT (x)

(X)I n=1,2,.$. -

(ii) Define VM (x) = (U, V"

Then V' is p.w. linear and the stationary policy, dn,

defined by Ug vl - U*Vn_l is simple.
n

Remark III.1l. Part (i) of the Theorem can be generalized as

follows: if & is simple with respect to a simple partition
P(S and g(+,a) is p.w. linear with respect to P? for each a € A,
then g(*,8(*)) is p.w. linear with respect to the partition

p=17". 1 P2,
achA

Remark III.2. Suppose that instead of Assumption I, we assume

that @ is convex and that for each a € A, U,V is concave
whenever V'is concave and non-negative. Then UsV and U,V are

non-negative and concave whenever V is. Although this structure



will not be developed further in this thesis, we note that it

is somewhat analogous to the p.w. linear structure in (A.I.).
We next consider the effects of iterating montone

contraction mappings such as U, and Usr citing some results of

Denardo [10].

Lemma III.2. Suppose that U is a contraction mapping on B(Q)

with contraction coefficient B < 1. Let ve ¢ B(Q) be given and

define the functions Vn, n=1,2,... by
Vi = v (%),
Then
(i) {v?} converges in norm to the fixed point ¥ of U;

~

i.e., UV = V.

Now assume that U is also montone.

(ii) If vl < v®, then {V"} is monotonically decreasing to V.
(iii) If vl > v®, then {v"} is monotonically increasing to V.

Remark III.3. The fixed point V need not be p.w. linear since

the cells in the limiting partition are not necessarily finite
in number nor polyhedral.

In the remainder of this chapter, U will be a contraction
mapping with contraction coefficient B < 1 -and fixed point V.
The function V° ¢ B(Q) is assumed to have been given and the

Vn-l

functions V" for n = 1,2,... are defined by vt =y . By the
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previous lemma, {V"} converges to V. The following results
concern the rate of convergence of {V'} to V and efror bounds
on Iv" - ¥I.

The following two lemmas imply that {Vn} converges to v

linearly (due to Denardo [101]).

Lemma III.3.

Iv® - 1 < piv™TL - G
Proof.
Iv® - §1 o= gyt - ol
< giv™t -,
Lemma III.4.
N R N N

Proof.
- uv™ o+ lgv® - uvl

vt - v < v

Iv® - vl o+ giv® - VI,

I A



The result is obtained by a rearranging the last expression.

Lemma III.5. Let V e B(Q). If Iv - uvl < (1-8)e, then

IV - vl < e.

Proof.
IV - vl < Iuy - uvl + luv - Vi
< BIv - vl + lgv - vl
Therefore Iv - vl < lgv - vl/(1 - B) < e.

Theorem III.2. If 87IVve - uvPl < (1 - B)e, then

v - v < e
Proof. v - oy o= 1oyl - gyl
< 8MIVe - uv®l < (1 - B)e.

Applying Lemma III.5. immediately gives us the result.



Chapter IV

THE ALGORITHMS

Section IV.1. The Method of Successive Approximation

The method of successive approximation is a well known and
popular method for solving equations. 1In the context of a
solution techhique for solving stationary Markov.decision
processes it appears in Blackwell [7]. The method is to start
with a cost function VO, and to iterate U,, constructing a
sequende of cost functions Vn = U*Vn—l, n=1,2,... . By
Lemma III.1l, U, is a contraction mapping with fixed point V* and
by Lemma III.2, {v"} converges to V*. By Theorem III.2, n can
be chosen sufficiently large, so that v? is an ge-optimal cost
function. In fact by taking logarithms of the expression in
Theorem III.Z2,

n > iog Pil:gLiﬂ/log R
1ve-vli
"is adequate.

' The next theorem provides a means of constructing an
e-optimal policy from an €'-optimal cost fﬁnction and specifies
the relationship between € and €'. The algorithm ,will first
construct an e'-optimal cost function. From this cost function,

an t-optimal policy is constructed.
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Theorem IV.1l. Let VO e B(Q) be p.w. linear, define Vn = U*Vn_l,
_ . . . n-1 _ n-1
n=1,2,..., and let Gn be a policy satisfying U_nV = U,V .
e S

£ lyx - vo 11 « 280 hen
28 ,
§
v - v ol < g,
Proof. By Lemma III.1 UG for any stationary policy § is a
contraction mapping and the fixed point is VG, i.e., V6 = USVG.
Consider
§ _ $
lv* - vl = "Ud v-n - gy, v+l
n
< Iy VSn - U. V¥l + lu, V¥ = U vn_lH
— § $ § §
n n n n
+ 1o, g v
< Bﬂvan - v*l + gly* - vn_lﬂ + Bﬂvn_l..v*ﬂ
. n-1 _ n-1 .
where we used the equality U,V = U6 A% . Arranging the
n

above inequality, we obtain

(1 - B)Hvﬁn - vxl < 2pglv* - v < (1 - Bye,

which completes the proof.



If the state space X is uncountable, or even countably
infinite, then this procedure is difficult to implement on a
computer. However, if the Markov decision process has the
structure of (A.I.) and v° is p.w. linear, then each vt is pP.w.
linear and each §" constructed as in the previous theorem is
simple (by Theorem III.l.). In this case, the cost functions
and policies can be specified by a finite number of items - the
inequalities describing each cell of a simple partition and the

corresponding action or linear function.

Algorithm to find an €-optimal simple policy.

(i) Start with any p.w. linear function ve.

- 1 o)
(ii) Compute V&= = U, V™.

(iii) Choose an integer n such that

gPIv° - v < 1 - B)er,
where €' = (1 - B8)e/28. I.e., choose fi larger than
2
log [il——gl—%fq/log B.
28V =v=l
(iv)  Compute V' = U,,CVn—l successively until n = n.
(v) Consequently, we obtain v? such that

A
fve — vi < g,



(vi) Construct a policy ¢ satisfying

Then § is e-optimal.

Remark IV.1l. The algorithm can be started with ve = o.

Remark IV.2. The termination criterion, n = n, in the algorithm

has the advantage that Iv° - vil is computed only once. However,
it has the disadvantage that n will probably be larger than
necessary, causing unnecessary iterations.

=1y 4t each

An alternative would be to compute IV? - Vv
iteration and stop whenever Iv" - vi~ 1y < (1 - B)e'/B. Theorem
ITI.2 guarantees that v? is an g'=-optimal cost function.

However, the computations of Iy - oLy will, in general, be

expensive.

The best procedure is undoubtedly to check Iv" - v L
at some, but not all, iterations. For example, ﬁ might be
computed based on Iv° - vil. Then at some iteration n near % '

n-l"

recompute n based on IV" - v This is the procedure

suggested in the next chapter.



Section IV.2. The Method of Policy Improvement

Another commonly proposed method for solving Markov
decision problems is policy improvement (Howard [26]). Policy
improvement is actually Newton's method applied to the convex
operator equation (I - U,)V = 0 to find the solution V*. Newton's
method converges super-linearly in many situations, and this
property is.maintained when applied to some Markov decision
problems (Brumelle & Puterman [8], Puterman & Brumelle [49]).
Sincé the successive approximation method converges only linearly
(Lemma III.3.)., it is desirable to adapt the policy improvement
method to our model. Our version of policy improvement includes
the successive approximation method as a special case.

Given a policy ¢ with cost VG, an iteration of policy
improvement consists of finding a policy §' such that US.V6==U*V6,
and then solving the linear equation V = US'V for VG'.

One method of solving the operator equation V = UGV for
V6 is the method of successive approximation, i.e., by iterating
Us- More explicitly, start with a cost function V? and iterate

n-1

UG’ constructing a sequence of cost functions vt = UGV '

n=1,2,... . By Lemma III.l, U6 is a contraction mapping with
a fixed pointvva, and by Lemma IIT.Z, (v} converges to VG. By
Theorem III.2, for any given € > 0, n-can be chosen sufficiently

large so that Iv? - VGH

< €. However, we will show that it is
not necessary to approximate V6 at all closely in the policy'
improvement algorithm.

In the remainder of this section, we discuss the algorithm
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in general terms and then discuss the specific points of starting
the algorithm, choosing the parameters'{kn} which specify the
degree of approximation of V6 in the n-th iteration, terminating
the algorithm, and a proof that the algorithm converges. Since
c(x,a) 'is bounded, there exists a constant M such that c(x,a)<M

¥x,a. Let ¢(x,a) = c(x,a) = M < 0 and define

Us(x) = gL [ 677Tex,,60x)) |% = x].
n=1
Then Qa(x) = Vé(x) - M/ (1-8). Hence a minimization of Gd is
equivalent to a minimization of VG over 6 € A. It is, therefore,
easy to find a p.w. linear function ¥V such that UGG < G. For
instant, put ¥ = 0 which is p.w. linear and satisfies UGQ < \

Algorithm for finding an €-optimal policy under (A.I.).

Start with a simple policy ¢° and a p.w. linear function

v° € B(Q) satisfying yo > U\oyo.'
-8
An iteration of the algorithm is described as follows:
n-=0,1,2,... . At the start of the n-th iteration, we have

a simple policy §" and a p.w. linear function yn € B($) satis-
fying y” >0 y".

= .
(i) Compute Usgyn where the integer kn is the number of itera-

tions of U n which are to. be performed.

§
k
1 Uaﬁyn and:find a policy 6n+l such that

’ n+1l n+l
U5n+ly = U*y .

n+l"

(ii) Set y"

(iii) If Hyn -y < (1 - B)e, then stop with yn g-optimal and

. §
én g-optimal. Moreover, V* <V n < yn+l
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(iv) If Iy" - ¢t

< (1 - B)e, then increment n by 1 and
perform another iteration.

To start, the algorithm needs a simple policy § and a p.w.
linear function y satisfying y > Uay. There is no difficulty in
finding a simple policy; for example, §(x) = a for all x € Q is
satisfactory. Finding a satisfactory y is more difficult unless
the model is specified further. For example, on page 12 in
a)TX

Model 2, qa(r,x) = (p . So if §(x) = a for all x e Q, then

~lx for all x € Q. Setting y = V6 provides

8 a T
vo(x) = c?[1 - 8(p™)"]
a starting vector.

If yn is a p.w. linear function and s is simple, it

follows from Theorem III.l. and (A.I.) that yn+l

is p.w. linear
and that 6n+l is simple. Theorem III.l also implies that each
of the intermediate iterates Ugnyn, j = l,2,...,kn are p.w.
linear. Consequently, the algorithm can start and the iterations
are well defined.

The question of how best to establish the appropriate
values of the parameters'{kn} in the algorithm has not been
resolved. If each kn = 0, then the algorithm reduces to that of

successive approximation described in the last section and which

is known to converge linearly. However, the effort per iteration

is small. If each kn = «, then the method is known to converge
super-linearly in many situations ([8], [49]). However, in this
case the effort per iteration is large. 1In general, it seems

appropriate to take kn small, perhaps even 0, in the early

iterations. However, once the..néjghborhood of V* is reached,
_ k S

kn should be large enough so that U6gyn approximates V @ in

order to take advantage of the super-linear convergence.



Theorem IV.l. For each iteration, n = 0,1,2,..., in the policy

improvement algorithm,

Yn > Uanyn > Uinyn > > U:ﬁyn _ yn+l.
Proof. First, it is true for n = 0. Since yO > U Oyo and since
by Theorem III.1l 6 0 is monotone, it follows that °
y0 > UGOYO > Uzoyoéi e > Uigyo ='yl > U 0yl. By definition
61 satisfies-U:lyl = U*yl. However, U*ylai USOYl < yl, and so
not only is the Theorem established for n = 0, but we have also

shown that U lyl < yl.
S

Now suppose U nyn < yn. The same argument as in the first
5 =

paragraph establishes the Theorem for n and also that

+1 n+1l

U6n+lyn <y Hence the proof is completed by induction.

Corollary. yn > v*¥* forn-=1,2,... .

Proof. For an arbitrary n, y© > U nyn > U*yn. Since U, is
monotone (Lemma III.1), yn > UZyn fqr each j. By
Lemma III.Z2, Uzyn decreases monotonically and converges
to V* as j » . Consequently, yn > V* and the proof
is complete.

We next show that if the algorithm terminates then it will

provide an e-optimal cost function and an €-optimal policy.
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n+l Il

Theorem IV.2. If Mly" -y < (1L - B)e, then Iy™ - v*l < ¢,

. n . . . .
i.e., y 1is e-optimal. Moreover, Sn is also e-optimal and

Proof. Note that U nyn = U*yn and that by the previous corollary

§
yo 2 V.
Iy™ = vl < Iy™ - U™l o+ Iy, y™ - U, vl

< llyr1 - Uanynll + Bllyn - y*l

< Iy™ - U?nyn“ + Bly™ —v*l for m=1,2,...,
because yn > Usnyn > UI;nyn form=1,2,... . (Theorem IV.1)
Thus (1-B) Iy™ - v*l < "yn—UI;‘nyn“ = 1y? oy < a-)e,
and so Iy™ - vl < €.

The last statement in the Theorem follows by Theorem IV.1l.

The following theorem has been shown by Doshi [16] for
continuous timé Markov processes. But our proof is different
from and simpler than his.

" Theorem IV.3. Let V6 be the cost of any stationary policy §.

Let 8' be a policy defined by UG'V = U,V
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L
(i) If UG,V6 = VS, then Vé = VG, and ¢' and ¢ are optimal.
1)
(ii) VS' < Vé. Furthermore, if for some xOE:Q(UG,VGX(xo) <

8
v (xo), then

VS'(xo) < Vaixo).

Proof.

(i) From the definition of §' we have

Since the optimal cost V* is the unique solution of U,,

. § . § §

Va = V*, By induction on n, Ug.v6 = V since UG,V =V .
But

n .6 S

Ug/V. >V as n > ©. by Lemma ITI.2.

§! § s . . .
Hence V = V because V is the unique fixed point of
Ué" (Lemma ITII.1.)

(ii) By definition of ¢' and VG = U(SV(S (Lemma III.1.)

8 $ 8

By induction on n



Suppose

Lemma IV.1l.
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(U5,V6)(x0) < Va(xo) for some x, € Q.
8! 8!
\Y (xO) = (US'V )(xo) (From Lemma III.1.)
< w vV xy  0 < v
§ .
<V (xo) (the assumption).

Let {y"} be a sequence generafed by the policy

improvement algorithm. . If yn converges pointwise to y, then

Proof.

U*yn converges to U,y.

wise topology.

By the monotone convergence theorem,

In this proof all limits are with respect to the point-

n n
= Uay and z, = Uay for each a, n=1,2,...
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zim(zg) (x) _SL'im(Uayn) (%)
n n

= fim{c(x,a) + Bfﬂyn(X')q(dX'lx,a)F
n

= ¢c(x,a) + B[QQim yn(x')q(dx'lx,a)
n

= c(x,a) + Bfﬂy(X')q(dX'lx,a)

(Uay)(X)

I

(za)(x) for each a ¢ A, X € Q.
To show U*yn v\ U,y is equivalent to showing that

min(zg)(x) vV (min za)(x) for all x € Q.
a - a T

Since A is finite,

(pin zz)(xf ='min(zg (x)) and (min_ia)(x)= mih(za(x)).
a a a | a

Let x €  be arbitrary but fixed, and define

n _ .n _
a, = za(x) and a, = za(x)

which are just numbers. Since (zg)(x) ¥ (za)(x) pointwise, then



ua for each a ¢ A.

It remains- to show that min ag ¥V min aa. It is clear that
ach a
min ag is monotone decreasing. Since ag \ o it follows that
a

. . n
min aa < min o for n=1,2,... .
a a

Hence

. . . n
min o < 2im min a .
a — a
ach n a

To show the other way suppose that a is the action such that

min o_ = da .
acA
Then
. . n . . n
min oo = 00— = £im o= > 2im min o
a a -
atcA n n a
Therefore
. . n .
£im min o = min o
a a
n a a

which completes the proof.

Theorem IV.4. Suppose that'{yn} is a sequence of costs generated




by the policy improvement algorithm.
(i) yn converges pointwise to y € B(Q).
(ii) y = U,y, i.e., y is optimal.

In other words, the policy improvement algorithm converges.

Proof.
(1) First of all we shall show that {y"'} is bounded below.

By Theorem IV.1l we have yn>z Umnyn for each m=1,2,... .

8
By Theorem III.2 Umnyn > V as m ~ ©, Therefore

n §
n > Va . Since the cost c(x,a) is bounded below, i.e.,

st M n -M
lc(x,a) | < M for all x, a, lvo | < 1-8" Hence y (x) > =g

for all x. From Theorem IV.1 yn is a decreasing sequence.
n s
Hence y converges polntwise.

(ii) By a choice of yo and Theorem IV.1l we know that
(IV.1) y >U y >U,y .
" To show the other way we have
(IV.2) yo = U6 LY (By definition of y")
<U 1Y (U?y < Uy, ¥y.e B(R))
n-1 n-1

= Ugy (By definition of § ).

Then, from (IV.1.), and (IV.2), we obtain



U y? < v < Uyt

From the statement (i) yn V' v and then, from Lemma IV.1.

U*yn +~ U,y.. Therefore, we must have

Uy = Yy

which completes the proof.
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Chapter V

IMPLEMENTATION OF THE ALGORITHMS FOR MODEL 1

Section 1. Introduction

In this chapter we shall consider in a more concrete
setting the methods of successive approximation and of policy
improvement.

To show how each method is actually handled, we assume
in this chapter that X is the N-dimensional real space (i.e.,

X = RN) and that Q is a bounded convex polyhedral set of RN.

a

Let c(x,a) = ¢ +* x, which is the inner product of two vectors
ca, X € RN, so that (A.II.) holds. Let A = {1,2,...,p}. We
repeat (A.III.) a bit more explicitly than in Chapter 2.
Assumption III (A.III.) For each convex polyhedral set B CARN

and each action a & A, the function qa(B,x) defined by

3¢

g”(B,x) = [x'g(dx'|x,a)
B

is.p.w. linear in x with respect to a simple partition

P? (B) = {Ej(a,B): § = 1,2,...,m, 5}

a,B

We write qa(B,x) = q?(B) * X when x € Ej(a,B).
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Remarks V.1l. Note that (A.III.) places us in the context of

model 1 in Chapter II. Recall from the discussion there and in
model 2 that under (A.III.), UaV is p.w. linear whenever V is,
and that partially observable models satisfy (A.III.).

Suppose that f is a p.w. 1iﬁear function, linear on the
cells of the partition {E,, i = 1,2,...,n}, that £(x) = £, + x
on Ei’ and that Ei = {x: Kix < bi; Lix < di}, i=1,2,...,n.
Each bi and di is an N-dimensional vector and each Ki and Li is

a matrix with N-dimensional rows. This situation will be denoted

by
£ {(fi} Ki, bi; Li, di): i=1,2,...,n}
and
B, ~ (xk5,b"; 1t,ab).
If § is a simple policy with respect to the partition
{Ei, i=1,2,...,n}, §ay §(x) = a; for x ¢ E,, then we will,

represent ¢ by
Y: i =1,2,...,n}.
Define a operator o by

(K,b; L,d) o (K',b'; L',d") = ((i.),(b.); <g.>,<g.>].



If A and B are matrices each having the same number of columns
then (g) is the matrix whose first rows are those of A and whose
latter rows are those of B. This operator forms the intersection
of the convex polyhedral sets characterized by (K,b; L,d) and
(K',b'; L',d").. This representation of p.w. linear functions
simple policies, and convex polyhedral sets is convenient for
machine storage.

We will normally use the same symbol for the p.w. linear
function (convex polyhedral set,isimple policy, respectively)
and the array which represents.it. The only aspect of this
abuse of notation which is likely to cause any confusion
concerns convex polyhedral sets. Let E ~ (K,b; L,d) be a convex
polyhedral set. The set E is empty if {x: Kx < b; Lx < d} = ¢.
The array E is empty if there are no entfies in therarray, as
when thgﬁarray is initialized.

The user of either of these methods must specify the
values qa(B,x) for each convex polyhedral set B and each x & Q.
We assume that this specification is provided by a subroutine,
called Q, which has as its arguments an action a, matrices K
and L, and vectors b and d. The arrays K, L, b and d specify
the convex polvhedral set B = {x: Kx < b, Lx < d}. The sub-

routine Q has as its output an array
RECNY: k),p9; n9,a%): 5 = 1,2,...,m}

which charactérizes the p.w. linear function qa(B,-). The sub-



routine Q appropriate for model 2 is described in detail in
section 6.

Sections 2 and 3 describe subroutines UDELTA and USTAR
which respectively compute UsV for a given § and V, and compute
U,V for a given V.

Sections 4 and 5 describe implementations of the methods

of successive approximation and of policy improvement.



Section 2. ' Subroutine UDELTA (§,V,UV)

The inputs to this subroutine are a simple policy § which

takes the value §(x) = a; for x € Ei; i=1,2,...,n, and a p.w.
linear function V which takes the values V(x) = Vj- x for
xe¢F., j=1,2,...,m. Let P(S ='{Ei: i=1,2,...,n} and

J
p.={F.: § =1,2,...,m}. We let

Il

B, v {7, b, t, ey, 3 =1,2,...,n;}

and

F ~ {(RIK, BIK, IR, 33Ky, k= 1,2,...,m.0.
We also assume that the vectors ¢, a=1,2,...,p, and

the discount factor B are available in common.
The subroutine outputs the p.w. linear function USV and

is based on the following computation.

(UsV) (%) = c(x,8(x)) + BIQV(X')q(dX'Ix,G(X))
m )
S A v,/ x'gq(dx'|x,8(x))
j=1 I'F, ,
J
m a : A
= cé(x) - x + B.E quwﬁ(Fj,x) fOr.xrg Er’

=1

Then, using the notation of (A.III.),
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(UgV) (x) = I X vy x - x

j=1 50!

for x € Er N G, where G, is the %-th cell of the partition
Pér(Fj). Note that the index % depends on j.

’ Set I = 0. I will count the number of cells in the
partition for UGV‘ For j =1,2,...,n call Q(Fj’ai)’ which

will return with an array characterizing the p.w. linear

. ar
function g (Fj,°), say

JL

JSZ'; b-"; le,d

a, : 3
2 =1,2,...,t}.
Then for j =1,2,...,mand £ = 1,2,...,t do the following. For

r = l,2,...,nformEr N G where G n (sz,bjz; sz,djg). Iif

Er N G is empty, then do the next r. If E N G # ¢ then

increment I by 1 and store EI;ﬂG as Ei. Compute c(a ) + 8 z VJA%
j=1
and store as aI.
The subroutine is now completed and (UGV)(X) =’ai * x for

X € Ei, i=1,2,...,I. It returns with the array

UV LT, (a;; E!), i =1,2,...,I} as output.
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P| CALL Q(Fij/ Gé(f=1r77""ti)' tj), )\/{
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Section 3. ' Subroutine USTAR (V,U,V,§)

Suppose that V is p.w. linear with respect to a simple
partition‘{Ei, i=1,2,...,n}. The subroutine USTAR computes

U,V and finds a simple policy § such that U _V = U,V.

§
The argument of USTAR is a p.w. linear function
Vo {(v,, E.;): i =1,2,...,n}.
An array describing the convex polyhedral set (, the
discount facfor B and the vectors ca, a=1,2,...,p should be

available in common.

The subroutine outputs I and the array (U,V,S§) v

{(ai, Ei, ai): i=1,2,...,I}. The function U,V is obtained by
(U,V) (x) = a; ¢ X for x ¢ Ei. The policy § defined by §(x) = a;
for x ¢ Ei, i=1,2,...,I, satisfies USV = U,V.

The paragraph summarizes the procedure in USTAR. The
subroutine first computes UaV for a ¢ A using UDELTA. Let pa
be the simple partition for UaV. USTAR next forms the product
partition P = 1 P®. fThen P is finer than each P?, and so
each v is p.z?Alinear with respect to P.. For each F ¢ P and
a € A, there is some vector a2 such that

F

— a °
(UaV)(x) = op * X for X g F.

For each F ¢ P, define the sets Gg, b e A, by

b _ . b Ca _ : _ ' b a _

Gp = {x: an<<an,.a-—l,2,...,b 1 and apx <agx, a-—b+l,...,p}.
Then fG;: acdl="7 isa partition of F and P = 1 PFlis a

FeP
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partition of § with the property that

A

a . a
(U,V) (x) = Op * X if X € Gp € P.
The policy § defined by 6(x) = a for x € G?fﬁ;ﬁj satisfies

UsV = U,V.
We now consider the subroutine in more detail. For each
a € A, call UDELTA with the arguments V % {(Vi,Ei): i=1,2,...,n}

and § {(a,)}. This generates the arrays {(a?, Da(j)),

j = l,2q...,ma}. Recall that each of the convex polyhedral sets
Ei’ Da(j), and  are themselves arrays of the form
((x*, p*; Y, a%): i =1,2,...,m}. The index I will count the

cells in the partition for U,V. Set I = 0.
Let R be the set of all p-dimension vectors with the
i-th component,“ri, between 1 and m, for i = 1,2,...; P-.

Systematically construct each r € R in turn. Compute the set

F~Vv o Da(ra). The set F is a cell of the product partition
a=1,2,...,p :
P -y

P = 1 PY. 1IfF is empty, then construct the next r € R.
a=1l '

Otherwise, for each b € A construct the set

where K is a (b-1l) x N matrix with rows ag - 0. ,a=1,2,...,b-1

and L is a (p-b) x N matrix with rows ag - o , a=>b+tl,...,p.
- b a .

If Gg is empty, then construct the set G for the next b € A.
b

If GF # ¢, then increméent I by 1 and store ap = a . Ei = G



and a; = b. When each r £ R has been considered, the subroutine

returns.
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-4

a =]

v

CALL UDELTA (a, 2,1,V n, 1, (4, Eg, k=1,241)

.

Mg =T

i a
0(4} = dk}kﬂ,zf“l
De =Exk

- Ry =/t

P n, =lgt]!




The user of the routine must supply a discount factor B8,
an optimality tolerance € > 0, a specification of the bounded
convéx polyhedral set {, the cost vectors ca, and the subroutine
Q. If the user does not supply an initial p.w. linear value
function VO, then the routine starts with v v {(0,0)1}.

As described in Remark IV.2, if the method of successive

approximation iterates U, until "UEV0 - U2_1V0" < (1 - B)e'/8B

where €' = (1L - B)e/(2B) then the policy & such that U(SVn = U*Vn
is e-optimal. Let V" = UQVO. To determine "U*Vn - V'l requires
a fair amount of computation. However, this norm only needs to

be computed once by Theorem III.2., since &'-optimality of the
cost function must be achieved with no more than 1 + INT(E)
iterations, where & = log(ii%glél)/log B. However, it is likely
that e-optimality will be aZhlZved in fewer than 1 + INT ()
iterations. So we compromi .e with the following procedure which
checks for e'-optimality at about half of the maximum number of
iterations. Compute Ivl - vol. Let J = 1 + INT(E/2). Then
check for 8'—optimélity at iteration J + 1. If, at that point,
e'-optimality has not been achieved, recompute J using 1vItL — i

in place of 1vl - v%1. cCheck e'-optimality next after J iterations

and continue with this procedure.
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RAad €, 5 0= V‘o ": { = cemy ; .
€ B \/g,n-é( é; E/); Lr=1,2, n )) (lf Jalpf)/,ed)

¥

If Ve is not supplied, then set (/O:f(O,,Q)j,

Set J=1,K=0

v

CALL USTARCV? Y, S) K=K+1

Solve the |inear programmes

W= max (X -1, yx 5.t XELENF)
ond c.}_=max(rj—o(i);(s.t.znﬂ(E;nFj)
where cf means closure .

Let w=max(w, [T, w])




T+ Kr1r INT[LOG(1-8)% €, )/2 % LG (B) ]

Vo:: v]
Call USTARCVS V', S)

Remarks V.2. To check that a convex polyhedral set B is non-

empty, minimize a Phase I cost function on ¢l B. Range the
right-hand side of those inequalities defining B which are
strict.

This check provides a feasible solution to each of the
two linear programmes which'follow.,

Also note that as we increment I for fixed J, the previous
solution to the linear programmes (including the Phase T
programme) remains feasible for these inequalities corresponding

to F_.. Usually, F_ will have more inequalities than E

J J J°



Section 5. Policy Improvement

The user of this routine must specify a discount factor
B, an optimality tolerance €, a specification of the bounded
convex polyhedral set , the cost vectors ca, the subroutine Q,
a simple policy §, and a p.w. linear function V such that

V < U.V.

S

The n-th iteration of this routine starts with a simple

policy 6n and a p.w. linear function yn, where § § and Yo = V.

0=
The operator U6 is iterated some number of times, say kn times,
. n k
using the subroutine UDELTA. This provides yn+l = Usnyn. The
; n+1 n+1 n
policy 6n+l is obtained from U6 Yy = U,y using the
n+l

subroutine USTAR.
The method of choosing kn has not been satisfactorily
resolved. Recall that the larger kn is, the larger is the step
§
1

. The maximum step size is yn - Uz yo o= yn - v
n

size yn - yn+
Thus one trades off larger step size vs. fewer calls of UDELTA.

In general, it seems desirable to have kn small initially and

larger as yn converges. The following procedure has this
1 0
- Ny -y~ |l
property. Set kn Max INTH;EIT:;HH , 1.

We compute Hyn+l - y? lleach iteration and use Theorem IV.2.

to check e-optimality; i.e., 6n is an e-optimal policy whenever
n+1
Iy - y%f< (1~ B)e and
én n+l
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l
READ 5‘,77,{‘(@[{; ), (=12, -, nf
READ i ACV, F}), j=12om)]
. J :
ICALL UDELTA (§,n, V, m, T), {(Ap Ep), k=12, [} I
| ‘ | |
j/(‘:I ,
¥ ‘
| I i 2 A - %‘i('z)[
v

/ZI NO S 4 = 4+

5 =y (T @

es

CALL USTAR ]
| {(M{Q’Ek); /{:Irz)‘”,[JS .
b

LWRITE UeV, §

@
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| CCALL USTAR ({(tg.Ex) k=12 - |
f v, Ex), k=1, 2 z;,%_

o

es V/z = 0(&

m =

. ]

| CALL L/DELT/?(J,H,f(‘xk,f/())k:;,z,,..,lj
1, UgV)

| T——
R

kp = nmkf(_if_;.)) 1} | |

<

R es g-ls-_({;ﬁ)g No
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Section 6. Subroutine Q(B, a, V) for Model 2.

The inputs to this subroutine are an action a € A and a
convex polyhedral set B € § represented by the array
B = {K, b; L, 4}, where (X,b) has m rows and (L,d) has r rows.

The subroutine has available as its data, the arrays

'{y§e: j=1,2,...,N; 6 =1,2,...,9; a =1,2,...,p} and
{P?j; i=1,2,...,N; 3 =1,2,...,N, and a = 1,2,...,p}. The
array V = {I, (XJ; L],b]; K],dj), j=1,2,...,1} is the sub-

routine output. The array V characterizes the p.w. linear
vector-valued function qa(B,') by qa(B,x) = AJ + x for x satis-
fying Llx < b? and KIx < d’. Note that AJ is a matrix.

The subroutine is based on Lemma II.2., and the compu-

tation preceding the Lemma showing that

a(B,x) = ) P2 (8) + x .
0ed? (B, x)

In this subroutine, the equation convention for describing convex
polyhedral sets will be modified slightly. Each convex polyhedral

set E consideredwill always be a subset of {, and hence x € E
N
will always satisfy Xxi = 1. This equality will always be

implicit in any description of a convex polyhedral set, even if
it is not explicitly included in the list of inequalities. With

this convention‘the set B is represented by the array'{ﬁ,g; ﬁ;g}

where R = K.. -b, and L,. = L,. - d, for each i and J.
ij i ij ij i

The first time the subroutine is called the matrices

K..
ij

Pa(e), a=1,2,...,p, © =1,2,...,q9, must be computed. Recall

from Section 3 that P?j(e) = P?iY?e. Although the matrices P2 (9)
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could be input directly, the guantities P?j and Y?e are more

natural from the user's point of view. "

Next compute K(6)= ﬁPa(e) and L(6) = ﬁPa(e) for each
© EACD and set Ee = {K(6),0; L(8),0}. The array Ee charac-
terizes the set Ega in Lemma IX.2. The index I will count the

cells in the partition of V. Set I = 0.
Let J step from 1 through 29, Let Ji be the i-th digit
of J in its binary representation, i.e., J= % JiZl, Jie:{O,l}.
i=1

Each J represents a subset y of C) by 6 ¢ ¢y if and only if

Je = 1. PForm the array F = 0 E.. If F is empty, then look
. _ i
{1:Ji—1} q = )
at the next J. Otherwise calculate the matrix R= ZQPa(i) - J;-
i=1
The array F corresponds to the set N Eg’a in Lemma ITI.2. The
V] 987,()
set N c(Ega)c is a union of convex polyhedral sets, which we
Dey
now find. Let the vectors ki, t=1,2,...,m and zi, t=1,2,...,r

be the rows of R(8) and £(e), respectively. Define

(x: 20350, 1.x<0, 3=1,2,...,t-1)  lcter
B,a_
Eg,t

{x: L(6)x<0, ktxio, and k§x<0, j=1,2,...,t-r-1} r<t<r+n.

Ba, c tn Ba : Ba
Then (Ee )" = U E and {E_C: t =1,2,...,r+n} = P_ is a partition

eop OF ot 0
of-Egé; Let P = 1 Pi'
{i:Ji=O}

For each G ¢ P such that F N G # ¢, increment I by 1. Let
Ei = {LI,O,KI,d} be the array representing F o G. The matrix

(KI,d) should also explicitly include the rows (1,1) and (=1,-1),
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unless the equality 1lx = 1 is redundant. Set AI = R. Continue

until each G € P has been considered and then proceed to the

next J.
Calculate the matrices
a
F(@), a:l,‘?,---,fand 9:1,2,“‘,3,
Set FT:I
I-= L-fi

N A
K(6)1J=CZ‘1(K(B)M- bi)P ()¢, 7

I=m > I=0

"

I=1I+1, .
L@y = 2, (LO) ,~d )P (B)e, T

No. I1=7 es

Eo 2 (K®,0;L®),0)




R
Chwon
O O

w oW

o & ~.
{

Yes

the set repre>
Sented b

F=FoE;

—
t=t+1

Fooo=(-2.,0; (ﬁ,J 1,2, t-1),0)|

-t +1 ; '
Euw, ¢ =(K;,j=1.2,--5t-1) 0 $L(i),0)°(7’,¢5-—l«@'— No

Comment

Whether or not the set F = ¢ is determined by solving a Phase I
linear programme. Since when i is incremented the onlychange in
the linear programmes is to add constraints, the L.P. should be
started from the previous optimal tableau and the dual simplex

algorithm used. Similar arguments apply to the following loop
where G = ¢ is tested.
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. Fooa
(O—{%2 1
| 1} |

Ja)=J@z = o).

YEs

. C“l:),’ﬂ/')‘fc" "’-t'
- - .

i/Vou/ the m%?z/ f(/)) e, J(w) i
used to depcte which cell
\Gf P is beiny fermed .

the set which G
re/ore;(’r/fS

emlof/ ?

IO N Ve

~{ 7=+

L
W
C

1o o

= GoFo(% ¢; (i ); (4 )>

)

\!
l
|
|
{

'
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