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ABSTRACT

This thesis presents the results of an investiqgation of a
continuous-tine two product inventory model in which the stock
level of two divisible commodities 1is represented by a two
dimensipnal diffusion process. Two classes of replenishment
policies are considered. Omne is a tvo dimensional analog of the
stationary one diménsional (s,S) policy; i.e., when either the
inventory of product one declines to s, or when the inventory of
product two declines to s,, both stocks are instantaneously
replenished, product one up to S,, and product two up to S,.
This is referred to as the (s{¢S, +5,,5,) policy.. Thelinventory
is then allowed to decline again ahd is replenished. These
cycles continue indefinitely. There are costs associated with
the replenishment of stock énd maintaining a given inventory.
The objective is to choose values for (S ¢S, #S,+5,) to minimize
the long=run average cost of op@rating such a systen. The
appropriate theory of diffusion processes is heuristically
developed and then applied to evaluate this cost. In general,
analytic solutions cannot bev obtained.,, Classical numerical
anpalysis methods are used to obtaim the average costs for given
(sl,sz,sl,sz) values and to select the best such values. One
dimensional diffusion models are a special case of the present
model and Puterman®s [21] results are used to verify the results
obtained. The other policy examined differs from the two
dimensional (s;,s,,S,,S,) policy in that the lower 1levels, s,
and s,, of the stock 1levels are coupled in the form of an

elliptic arc. WHNumerical solution of this policy can be obtained

and comparisons of the two policies are made. .
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1. Introduction And- Summary-

In this thesis a  continuous~-time stochastic model of a
storage system for two divisible commodities is studied. The
stock level of the two commodities is represented by a two
dimensional diffusion process (Markov process with continuous
sample path), with a negative drift  vector.. The continuous
sample paths naturally suggests facilities storing liquids -such
as gas, oil, petroleug products, but the modél may also be used
to approximate non-divisible guaﬁtities such as automobiles,
televisions,}books, or pens, especially if the numbers are
large. , |

The stock level of the system is observed continuously
through time and two stationary operating policies are
considered.l One 1is the two dimensional ‘analog, (S, +S, 95,45 ),
of ‘the one dimensional (s,S) policy; i.e., when the stock 1level
of cqmmoditj i falls to s,, both commodities are instantaneously
replenished to the level (S ,S,).. The process is then allowed
to drift again with the switching repeated indefinitely.. There
are costs associated with re-ordering as well as maintaining a
given inventory.  The other policy examined ‘differs from the
(s,rs,,S, ,S,) policy in that the lowver levels s, and s, of the
re-order curve (In two dimensions it is refered to as the Te-
order curve rather than the re-order poipt)~are coupled in the
form of an elliptic arc. , This is refered to as the modified
policy.. Our objective is to characterize the long-rum average
cost, determine the values of (s,,s,,S, ,S,) that minimize this
cost, examine the properties of the solution and note the

difference between the two classes of operating policies..



This thesis is erganized as follows., 1In Section 2 the-
;elated literature 1is surveyed., In Section 3 relevant results
from the theory of multi-dimensional diffusion processes are
reviewed. ., In Section 4 the model 1is formulated and the
underlying renewal structure described., The appropriate theory
of - diffusion  processes is heuristically developed in Section 5
to obtain partial differential eguations which characterize the
expected values‘ 6f -the random functions used in the evaluation
of the long-run average cost, ; Sufficient conditions for : these
'expeéted values to be finite are. also given,. Sectioﬁ 6
discusses the methods available to solve these - partial
differential eguations and shows that in general solutions
cannot be obtained in closed form.. In Section 7 the properties
of the (s,,s,,5 ,S,) policy is studied.. Classical numerical
analysis methods are used to obtain the average cost for given
 (S;+5, 45, ,5,) ~ values and to select the best values.,6 Puterman's
t21),resu1ts for the one-dimensional problem are used to  verify
the results obtained., Qualitative features of the numerical
solution are also presented.,, In Section 8 the modified policy
.is examined and comparisons between the two policies are made. .

Some possible future research areas are discussed in Section 9. .



2. Literature Survey-

In this thesis ve study generalizations of the one-
dimensional {(s,S) inventory model.., HMuch of the relavent
literature on (s,S) policies are surveyed extensively in [271].

The diffusion process model for 1inventory systems was
introduced by Bather { 3] and further studied by Gimon [14] and
Puterman [{21], similiar results for a related model have been
obtained by Constantinides and Richard {6]. .

The literature of nulti-product inventory systems is more
scarce and less extensive than the one product literature. . Some
of ‘the recent works are that of Goswick and Sivazlian [15], and
Ignall [17]. .

Ignall [17] investigated a two prodict continucusly
revievwed inventory system where demand of the two goods  conme
from -tvo independent Poisson ' processes.. The cost structure
consists of shortage and holding costs and a variable cost of
reordering.. A (s,c,S) policy was considered; if -the stock of
any product drops to its re-order point, s, all the- products
withhstock“less than its can-order point, c, are re-ordered back
to its ofder-to point, S.. Ignall showed that the (s,c,S) policy
is not always optimal, in certain cases the optimal policy has
the characteristic that the guantity ordered of the product that
triggeted the re-order depends on the inventory of the other
product. . |

Goswick and Sivazlian [15] also examined a model with
variable re~order cost., The model studied is a twvo-product
periodic review nmodel with ﬁniform demand di8tribution. . The

steady state behaviour of the systenm vas analyzed and



comparisons between mixed re-ordering, individual re-ordering
and joint re-ordering are made., It was shown that each of the
three policy was optimal in some situations and not in others. .
The two policies examined in this thesis belong to the
class of joint replenishment policies, i.e., when an -order is
placed, both products are replenished.. This thesis can be
considered as an extension of Puterman®s [21] results to higher

dimensions. .,



3. Diffusion Processes-

Diffusion processes are special cases of strong Markov
processes with almost certainly continuous sample paths. .  The
simplest example is the motion of very small particles suspended
in a fluid, the so-called Brownian motion. The study of systems
with white noise and continuous models for random-walk problenms
also lead to diffusion processes. Much of +the material
presented below are treated 1in great detail in Arnold{ 2] and
Dynkin[9].

Let I denote an nonempty index set and {0,V P) a

probability space. A family { D, 5 teI} of R* valued random

variables is a stochastic process-with index set I - and state

space R" . Let T be an interval of the extended real line and
{ D¢ 5 €I} a stochastic process, then D, (e)is, for every
fixzed teI, an R valued random variable whereas, for every fixed

® o Di{») is an R" valued function defined on I. It is called
a sapple path of the stochastic process.

Let B be an open connected differential manifold in R" with
boundary oB and Xx=(X, ,..+,X,) a n-vector in B.. To uniquely
define a diffusion process we must specify its behaviour on B
and G3B. Pirst ve discuss B.. A n-dimensional Markov process
with probability transition function p{(s,x,t,3)  ({p{s,x,t,d) is
the conditional probability of DA given that D,=x, i.e.,
p{s,x,t,A) = p( D,cA Tl D,=x)) on B is a diffusion if it
satisfies the following conditions;

1). For any >0, t20, x B,

lim  — Pct.x, t+8,4dY) = o

§40
[Y-x{ > &



2)  There exists V(g,t) and L (x,t) ‘such fhat for any ¢>0, t20

"XeB,
b~ j(Yf’(J‘)?(ﬁ,S,tJrJ,JJ_’) S TN D) je Ao
)
sy xi<e
l'(m B(Y X)(Y ?()P(‘t 't-f&,JZ) = 6:,) (x,t) .‘-'J:J-,"'J'VL,
Sho Y -x1
the . n-vector V(g,t) with components ng,t) the darift

coefficients, is the drift vector.. The nxn matrix / (x,t) of

elements O, (X,t) the diffusion coefficients, is the diffusion-

ggggiz., The correlation between the i-th and the j-th component

is defined by

Corresponding to each diffusion, there  @exists an

-infinitesimal operator- on the <class of twice continuously

differentiable functions of ‘the forn

n
+ g, ﬁ;qx)

e

3 o



The infinitesimal operator has the following interpretation.
Let f(¢) be a function defined on the sample paths of the
diffusion. Then Af(e) can be thought of as the expected time
rate of change of f(e). The drift coefficients and the
diffusion coefficients have the following‘interpretation., If D,
= X, then for small §>0, D,,; ~ X is distributed according to
the n-dimensional normal distribution N{ H(g,t)s, L(X,t)8) .
Conditions (4)-(5) are imposed on the drift and diffusion
coefficients to ensure the existence of a diffusion
corresponding to 3){9% p.1621. ([ 13,p.32) give analogous

existence conditions which are more restrictive). .

(1) ng,t),' . {x,t) (i,3=1,...,n) are bounded and satisfy a

Hélder comdition on B, t>0. .

{5) there exists a positive constant 3 such that, for all x-

€B, t20 and all n-tuples (A ,es+s2r,) of real numbers,

[

b n 2z
Lo Gz, e) Mh 2 3 RN .
Ler 90 J iz

If an infinitesimal operator, A, satisfies conditiomns (5) at x,t
« then it is a non-degenerate operator at x,t. Otherwise it 1is
a degenerate operator., For instance condition (5) ‘is violated
if FJYLt) =+1,, If A is degénérate for all x in B and teI,
then some component (s) of the diffusion process are

deterministic functions of the other components. Thus the

diffusion process can be represented by another diffusion



process of lover dimension. For example, if D, is a degenerate
diffusion érocess in ®*, then knowledge of one component of D,
.completély specifies the other component,  Thus D,, a diffusion
process in R* , can be represented by another diffusion process
in R ..

We now discuss the behaviour of diffusion processes on 4B.
io treat this topic properly 3B éhould be a sufficiently smooth
surface so that the notions introduced below mnake sense.. The
behaviour of- diffusion process may be modified by imposing
boundary conditions on 9B., Wentzell [23]) has shown that the
possible behaviours near"thé boundaries are terminatiqn,
reflection, adhésion, jump and any suitable combination of these
behaviour., #ith each type of bdnndary behaviour, :there is a
corresponding condition on the diffusion ' process.,_  This
correspondes to restricting the domain of the infinitesimal
operator (3).,6 Por instance, if in addition to requiring that
the  domain include all twice continuously | differeniiable
functions f on B, ‘wé require that f(x) = 0 on &B, then the
process will terminate upon reaching the boundary.., If we
require that the normal derivative of f£(x) = 0 on B, the
process will be reflected at the point of contact on 38B.. These

twvo conditions are of considerable importance in our study. .



4. . Model Description-And Renewal Structure
We now restrict our attention to R* . Let
{ D;, t 20, 1i2 1} be a sequence of i.i.d.  {(independent and

identically distributed) <two-dimensional diffusion processes
vith a negative drift vector. K The process D; is allowed to take
values in B ¢ R*, Assume that the process is time homogeneous,
i.e., the transition: probabilities ‘are  stationary in time.
Mathematically this- means p{s,x,t,A) = p({t-s,x,3),

PZet) = p(R)H] and 2 AX.t) = | r{xyl . Let Di, the initial
position of the i-th process, be S = (S,,8,) for all i 2 1. The
process Di represent the stock level during the i-th cycle. A
stopping criterion is imposed on D; that when satisfied,
terminates Di. In the inventory context, this correspondes to
placing an order to replenish the stock on hand. The set of
points that satisfies the stopping criterion is the stopping
curve, In the inventory context it is also refered to as the

re=order curve. Let a sequence of fandon variables

s e D i ot S -

{T ,i2 1) be defined by

T = inf{ t

L

v
)
.
<

. € stopping curve }, i 2 1

where T, equals zero. T, is a stopping time for Dé.” Additional
assumptions will be made in Section 5 to ensure that ET, < o , .
Define the process Y. by

Y. =D, , T 6 <€t<T.

L)

Y represents the stock level at time t. The parameters of the

t
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two dimensional diffusion process can be interpreted as follows,
The drift ‘vector represents the net demand rTate of the two
products, the diagonal elements of the diffusion matrix

repreSents the demand variation per unit time of each product,

and ‘p“(n T = SHEY 55357533- is the correlation between
9
the mean demand rate of the two products.. Diffusion processes

allow positive increments even though the drift is negative,
i.e., the net demand in small time intervals may be positive
even though the average demand is ﬁegative. 'However, for large
intervals such reversals are very improbable. .

The economic parameters of the system are as follows. .
There is a fixed cost K > 0 of re-ordering and a variable'cost
g{+s) that depends on the quantities re-ordered. There.also'is a
cost c(X) per unit time the stock level is - x.. In Section 5
conditions on c(x) and g(x) are presented to ensure that the
expected shortage and holding costs per cycle and the expected
variable cost per cycle will be finite. .

Note thﬁt the sequence (T, 121} constitute
reggneration points for the process (Y., t 2 0-}. Thus the
process Y, can be viewved as a sequence of i,i.d. cycles, Where
each cycle consists of a sojourn from S, the initial position,
‘to the stopping curve., Thinking of the problem this way ailows
results from the theory of regenerative processes to be applied}
c.f., Ross[22].. As a  consegquence, the long-run average cost can
be evaluated by dividing the expected cost per regeneration
~cycle by the expected length of the regeneration cycle. -

Let the Fandom function c), the cost incurred in [0,t],

be defined by



1

t diy N
K
C(t) = J e( Yu) du t g} J(ZST;) + Kho

-]

vhere N(t) is the number of replenishments in [0,t], T, is the
stbppipg time of the i-th Sojonrn,»and'gn ¢ stopping curve is
the terminating position of Y, on the i-th sojourn..

The following theorem follows from proposition 5.9 of

Ross[22,p.987. .

- Theoren 1

T
T <o , B, [&(Y,) du < o,

o

and Eg g(x;) < ,

then
-

li ) Es jC(\/u)tJu + Es 8(1(7,)-1- K.
im 2 J

(1)
T t ES .

with probability ome, ,

Cee)

replaces "y e

The result is also valid if E%ﬂ

Here Es; denotes the expectation with respect to a process
starting at S, i.e., ¥, = (S,,5,)« The limiting probability of
being in a set (0 not on the boundary can also be obtained by
using the indicator of Q0 as the stock level cost fanction and
setting K and the variable cost equal to zero. -

Let +the limit in (7) be denoted by 6 . © depends on the
stopping curve implicitely through the the random variablé Ty W .

He will study tvwo classes of operating policies. One is the

twvo-dimensional ‘analog of ‘the (s,S) policy - the (S,¢5,+5, ,S,)
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policy. . A typical control region of the (s,,s,,5 ,5,) policy is
shown in FPig. 1., The jagged line indicates the evolution of ‘the
stock level over time until it is necessary to re-order.. Its
starting position is (S,,S,) and it terminated when the supply
of the goods reached (xn,yi);, One of ‘the objectives will be to
find the values of s,, s,, S, and s, that minimize € ., The

modified policy differs from the (s,,s,,S, ,S,)  policy in that

the lover levels, s, and s,, are coupled via an elliptic arc.. A
typical control regiom is shown in Pig.2. .

There - ekists\ an important difference between one
dimensional ‘and two dimensional processes, . In one ‘dimension the
variable cost of a (s,S) policy is not a random function because
the re~order point is a singleton set, i.e., ¥, = s. However,

in tvo dimensions Y; is stochastic thus the variable cost is a

random function._  This difference arises because the point at

o

vhich the process reaches the boundary is not determined in

advance. .
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(aq, S,)

g V)
(A, Ra) (S, 22)

Fig. 1. . A Control Region Of Thé (S;+S, ¢S5, ,5,) Policy‘

(5,,5.)

Fig.2. A Control Region Of The Modified Policy
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-5, - Evaluation 0f :The Long-run Average Cost-

Let the function c(x,y) mapping B ¢ R* to R be the
shortage and holding cost rate function._ K Define V(x,y,s) for

(x,Y) ¢ B and s<{0,x) by

¢(Dy) du D= (9 }

Pl

Vi{x,y,s) = E{

. This is the expected shortage and holding cost from time s
onward given that D, = x- = (x,Y). We formally show that
V(Xx,Y,S) satisfies a nonhomogeneous Kolmogorov backward equation
on the interibr of B.. A tigorous proof of this result is an
easy consequence of Theorem 5.1 of Dynkin [9,p.132]. The proof
here is in the spirit of Chernoff [5] and gives insight into the
meaning of the model parameters., Let the process drift for an
infinitesimal time &, a cost c(x,y)§ is incurred, and the

process drifts to D, ..

Thus

\/(’Xjﬁ—) = cp bt E{ Ve DM&'MS)'\'DA=(%‘J)}

Assuming V(x,y,s) 1is sufficiently differentiable to apply

Taylor's theoren,

- T
\/(/X"J'A) = Cexp § ’:{ \/(DA,A'”” + V\/(DA,,”;) [ Da+s ~DA]

T .
+ 'Z [ Dvs -] HV®a, o) [ Datg- D] + ol

| Du=emy |
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where V. B denotes the gradient and the Hessiam operators

respectively and superscript T denote transpose.. Hence

\/(’)b‘j,/.)) - C(/x,aj) $ -+ E{ \/<D,a, a+8)y ‘ 'DA = (/7(,\3)3

+ E{ VV(”D,_\,LHS)‘ [ Dors - Dal ! DA:(“’ﬂ>}

+ E {é[?a+5‘@]7 HV (s, ats) [DMS‘ Pa ) t Dﬂ:(""?’.}

t o($)

Rearranging terms dividimg both sides by ¢ and applying (2)

\
yields

\/cfx;tg,/l) - \/(/x,'j, pts)
§

' v
= C(’K;ﬂ) -+ H]tlxa'j;/l) "a;('x)j)/ﬂ‘é')

2
PR
] LY (y,8t§)
t palxy,R) ig(“‘ﬂ)ﬂ*s) + g Sulwaend 5ozt ™I

2
. P (x4, /g—-\l—(% ,at8)
+ 6,72(’7‘1'11;&) 5;(‘55(”("3/0-*55 + G Y,A> 232 9
+ o(S)
S

Taking limit as ¢ approaches 0,
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- v _ oV av
- 5;(0(,3,;1) = Cux,'j) -+ V,(fx)g,,a) arx(x,\j,a) -+ ,Al(%lj,A) 'aﬁ(q’ﬂ"l)
t 2%V Oz (74,9, 2> EN (%4, 0)
+ 7 Gy, (%4, nD .é.’;(o(,'j,n) “+ 2 (.Y, e - Y.,
(8)
+ L6, g 2V o
> 2 a.jz

provided the derivatives are right-continuous with respect to s..
This is the backward equation because the time derivative is
vith respect to s, the initial +time. The analogous forward
equation is derived similarly, see [12]s, Since the process is
time homogeneous, (the drift vector and the diffusion matrix are
independent of time), f(x,y,s) is constant in- s and the 1left
hand side of (8) 4is =zero., Letting V(x,y) be V(x,y,0), this

yields the following equation

(ﬁ) ' A\/ (,x,.,:p = - ¢ C’K)‘j)

this is shorthand for the partial differential equation

‘7, Gy <xy) %;!1(%37 + S 5%\;—3""’3) + 5 Camyp %(mj)
3\/( “+ tx.Y) 9—\1(% 3 - - ¢
-+ P‘ (’()‘)) "5‘“" 7‘1‘3) }Az ’j a& 3 el 4 ’X,‘3)

which together with the following boundary conditions determines
the expected cost.. The: diffusion process 1is required to
terminate on réaching the stopping curve, therefore (10) is

imposed on the diffusion
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)y V() =0 for x ¢ stopping curve.,

this condition is intuitively satisfying since if the stock
.level starts out on tﬂe stopping curve T, = 0 and no cost will
be_incurred during the cycle.. Additional boundary condition are
needed at infinity to auniguely determine solutions to (9)..

Below are two dimensional analogs of the result of Puterman

{211}. .
X
i L%4)
lim { { St o = V - vy
e Tx ) 70
X~ &
(1)
¢
(%)
lim { '2 G (%9 493 J
e ?_\L(,x).,)) = (o) V’X
Yo Z ’

These conditions say that the growth of V({x,y) is exponentially
bounded.,. (11) 1is also the condition on V(x,y) if reflecting
boundaries if placed near infinity, c.f.[8].. If ‘the cost rate,

c{(x), is set equal to one, then

T1 :
\/(”‘)'j) = E'x"j J 1 At = b“!‘j !l

We denote this expected sojourn length by T(x,y)., The expected
variable cost incurred in one c¢y€le given that D, = (x,¥),
denoted bY Z(x,y), 1is the solution of the following partial

differential equation

|
o}

A Z (Y)

1

(12) susTecT To Eexyy = dloy) Ay € B

AND (11)  APPLIED TO £y .
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Thus all the expectations that are needed to calculate the long-
run average cost rate can be computed by solving the following

partial differential equationms. .

EaY

L Sptmyy 2V ¢,
’Izo—n(”‘l‘j) %2_’:(/.1.(%5) -+ ()_,7_(«,5) 9’7@‘3(%3) -+ Z 22 (%, Y) l(fx 5)

Zv
29

-t }A,(’X,U) 59/;_/(«;3) -+ I.A,_(/x,rj) —g—:\j/—(or,j) = — e (7y)
SUBJECT To (o) 1)

g
ooy s E«»a{J C(Pm):lu.} |

2

T o1 ., 1 FT
- '12 TREED ’5_5(%3) + Crponyd 2700 oY)+ g Gy oy o (x4
ST Sl _
SURTECT  To (20)- , (11)  APPLIED TO  “Tlayy
_T(%j) s E/x,g )1-
L6 oy 2E + GCrzxy) QZ‘Z(’X y + & Gy 2L, )
2 | ’X;‘3 0 ’j) U awa:j "j 2 ajl )j
+ (7%:4) gz(w )y  + %>4) 32&(«;3) = o
puemy ZRoees paeny) 25

suBJE<T o (11)  ApPLIED To  Zwuy)

AND
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Zonyy = J x> (%,9) & 9B

Foxy 1S Ery Jixp

To apply Theorem 1 wve need sufficient conditions to ensure
that the solutions of ‘the above partial differential eguations
are finite, . If’.the solutions of the partial differential
egquations are indeed finite (by obtaining and examining the
solutions), then the expected values of shortage and holding
cost per sojourn, sojourn length, and variable cost incurred per
sojourn are finite. £ The following conditions give analytic
conditions to ensure that the solutions of (13) are finite, Let

G1, G2 denote

3 4 2
9 33
3 2., &
x> %2 ay*
respectively. . Assume Gp, G624, GI!R, 6G2R exist and are

continuous where R is the square root of .. Let c{e) have ¢two

continuous derivatives and

L
¢ (I+lxlb

7

,.

i
.
I3l

(1), IG'RL + l&@uy £ &

(15) 1Gle] ¢ &GPy Csa

where at!', aZ, bt, b2, 2, 2, @, and pz are constants. . Then by
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Theorem 5.5 of Priedman {11,p.122), V(x,v) has two continuous
_derivatives and therefore it is also continuous. Thus for any
finite (x,¥), V(x,y) 1is finite., - . ... . From partial
differential equation theorj [8), the maximum attained actually
occurs on the boundary. ., The function c(x,y) = 1 satisfies (15)
trivially. Therefore, T(x,y7) is finite for finite (x,y) if the
diffusion - process satisfies (18).. Since the variable cost
g{x,¥Y) is incurred only from reordering, if g(e) is finite for

finite (x,y), then Z(x,y) is finite.
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- 6, - Bethods Of Solution-

The problem we study is that of solving’the three partial
differential equations in (13).. Each partial differential
equation is a boundary value problem and is elliptic if the
correlation of -the two diffusions is not t1 {non-degenerate) and
is parabolic 'if the correlation is equal to 1 (dégenerate).

. There  are four main techniques availablé for solving
partial differemtial eguations., They are transform methods,
eigenfunction methéds, Green's function methods, and numerical
methods. PBach method will be considered in terms of its
applicability to the problen. .

The classical Fourier and Laplace transforms methods are
generally used in solving problems involving infinite or semi-
infinite regiops, c.f.[8), [20)., Typically one assumes that the
function values and the derivatives at infinity are equal ¢to
zero.. However, due the presence of the first order derivative
(the drift term), the transforms of the partial differential
equations in (13) all - ‘involve the function value at infinity. .
Since V(x,y), T(X,Y), and Z(x,y)are the expected shortage and
holding cost during one sojourn, sojourn length, and variable
reordering cost per sojourn, we cannot set the fnnctioh value at
infinity to zero.. In fact we expect it‘to be infinite., Thus
transformn methods does not seem to be appropriate.

The method of eigenfunctions usually Aarises when the
partial differential equation is separable in a suitable
coordinate system in a finite domain, i.e., by seeking solutions
of the form F1 (o) F2 () whére Fil (e), P2(») are functions of the

tvo coordinates only, the partial differential equation can be



22

reduced to separate ordinary differential equatioms, c.f.{8]..
Por the.(sl,sZ,Sl,Sz)wpolicy, the region is rectangular thus the
Cartesian coordinate system is the natural coordinate systen. .
However, the partial differential equation 'is not separable in
the :Cartesian coordinate system unless the covariance of the
diffusion ' process is zero ( independent -diffusions ).. Given

that the covariance is zero, the control region may be pmade

finite by replacing (11) -with (16)

Vv ,
— (S, = o (S,,v) €& B
ox Y K

(16)
%(«,Sz) = o (%x.S,) &€ B

this correspondes to placing barriers at x=S;, and y=S,..
However, (10), (16) are not suitable because there does not exist
-any rectanqular harmonics ( eigenfunctions ) relative to then. .
Rectangular harmonics of (13) involve trigonometric functions in
one - coordinate and hypertrigonometric functions in the other. .
The trigonometric functions can be made to fit (10),(16), but
the hypertrigonometric functions cannot. , Therefore,
eigenfunction ﬁethods do not yield solutions.

A Green's function is an ‘apparatus to solve gemneral partial
differential equations, c¢.f.{8], [20). Replacing the non-
homogeneous right hand side of the partial differential equation
with a delta or source function, the solution is the Green's
function of the partial differential equation., The solution to

the original egquation is obtained by integrating the non-
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homogeneous term with the Green's function over “the region, .
Green's functions are known for standard partial differential
equations with nice boundary conditions. However, to obtain the
Green's function for (13) with boundary conditions (10),(11) or
(10), (16) - may be Jjust as difficult as the original ﬁroblem if
not more, and one obtains only an integral representation of the
solution which may not be integrable in closed form, Thus
although Green's function method will yield a *solution', it is
not easily obtainable and does not help us in solving the
problen. .

Vheré classical analysis methods fail, numerical -analysis
come in.. There are two main types of techniques used in solving
partial differential equations. They are finite difference and
finite element ( collocation- ).. They both require finite
regioné. Thus boundary conditions (10),(16) are used.  The
method of finite element works as follows. First, the region is-
partitioned into a number of cells.. Then a solution basis
usually consisting of Hermite polynomials is chosen in each cell
to represent the solution.,'The'partial differential operator is
then applied to each cell wvhich yields a system " of algebréic
equations that determines the coefficients of the solution basis
in each cell,  One" also has to impose conditions on the
boundaries of the cells to ensure the continuity of the
solution,_and/or the derivatives.  Once the coefficients in each
cell is know, the solution in the whole region is known, Finite
difference, unlike finite element, only considers' the funétion
value ét discrete poiﬁts in the region.,' It approximates the

derivatives by suitable *finite' differences, c.£.01), [16]..
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This results in an algebraic system which when solved, 'yields
the. approximate:  function values at the discrete points
considered. .

Oone of the advantages of numerical methods is that
approxinate ‘solutions can be obtained when the region is
irreqularly shaped and/or when the problem is analytically
untractable.,, The method of finite difference is used to solve
the partial differential eguations‘im'(13) subject to (10), (16). .
As mentioned previously, diffusion - processes allow positive
increments even though the drift is negative, however; for large
time intervals such reversals are very ‘improbable.  Thus
replacing'(11) by.(16) and changing from a semi-infinite region
to a finite region may not be a bad approximation.. Also if the
ratid of drift tO’variance'isvlarge, i.e., the system does not
have great variations, the probability of such reversals for any

given time interval is exceedingly small.
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7. The (S,.S,45:.5,)-Relicy

In- this section, the (s,,s,,S,;,S,) policy ‘is examined. VWe
will restrict ourselves to the class of spatially-homogeneous
diffnsionf-processes in our computations, i.e., the drift and
diffusion coefficients are scalar constants and the

infinitesikal 6peFator is given by

] 2° 2* Id o* + 2 + 2
A=z 5605 6—'25«33 T T ey Praox™ Foy

- Recall from Section 3 that the drift - vector, ( w,ch. is
negative.. We will also assume that g{x,y) = 0 for ease of
computation. .  Our objective is to obtain © for a set of given
system parameters : H' I\ . S ¢ S, S . Sz' c{x,vy), K, and
: study the effects of different parameter valueé on O .,

A code was developed which, utilizing the method of finite
difference, calculates the optimal long-run average cost rate of
a specified diffusion and cost structure for a specified
stopping curve, i.e., it determines an optimal reorder point S ,

S for a fixed boundary x = s,, Y = S;.. Boundary conditioas

Z 1

(10), (16) are used in the computation, (16) has an additional
side benefit of being one of the necessary conditions of

~optimality. The code works as follows. .

The program has as its input "o L. 9o S » S,s CUX,Y), K, and

trial values of 5, S, ..
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(1) V(x,Y), the expected shortage and holding cost per sojourn
given that D, = (x,y), and T{x,y); the expected sojourn length
given that D, = (x,y) ‘are calculated by solving the following

differential equations,

2 2 ] ’)\/
125” 93_;%1,3)1_ 6_;7_—3%3(""37 + 26-27.——507(/3) + f/h;-(fx,ﬁ) + {\12,-5‘(«,13)

- - C('X)lj)

SURJECT To (to) , 16) .

(1)
. > T - T
2‘(5“ 2977;(7()3) + 6(2 Qxaj(g()ﬂ) ~t 6-22’ (7,3) -+ /A’ (7)3)
+ fAz —35%( 4) = - 1
SuBIecT  To Ctod , (16)

APPLIED To T[Ty

These partial differential equations are solved by the method of
finite difference.,_ 6 A grid is chosen for the new control region
bounded by the stopping curve, x = s,, Y ® S,, and the
reflecting,boundaries x=S, , yY=5, on which approximate values of

V{(x,y) and T(x,y) are calculated at the grid points.. See the
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appendix for details of ‘the calculation. .

(2) . The 1long run average cost rate given that D, = (x,¥), e .,

is calculated by

Vi) + 1K

Sy Tony)
]

{(3) - The minimum © on the grid is found by searching the " grid

sequentially. .

. (4) If this optimal © is positioned on the boundary, the
binding boundary(s) is relaxed by increasing S, and/or S, and

steps (1), (2) and (3) are repeated.

‘Step (4) is repeated until the optimum is found to be strictly

in the interior._. Step (5) is then‘perfOtmed.g

{(5)  The grid is shrunk by reducing S, and/or S, to place the
reflecting boundaries at this optimum position and steps (1),

(2), :(3) are repeated.;

This éhrinking process continues - until the position of the
optinmun .remained stationary, i.e., the position of the optimal
did not change from one iteration of step (1), (2), (3) to the
next. This value is taken to be the optimal long-run average

" cost rate for a fixed stopping curve, It is denoted by
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6(s,,s,) and the optimal S ,S, are denoted by §,,S, (the
dependence of é(si,sL) on Pr < 4 c{x,y) and K and the
dependence of §., §1 on s, ,s, are suppressed in the‘notation).?
The global optimal values of s ,s,,S ,5, and © are denoted by

§l,§z,§L,Sz and 6 and are found by iteratively repeating the
above : process with different s,, s, values. . - Table 1
demonstrates  the search of a global optimal (si,sz,sl,sz) the
finite difference scheme ‘used to approximate solutions of (17)
is presented in the appendix along with a discussion of the
errors involved., . A sample output is shown in Fig.3.. 1In order
to verify the code, we consider the special case of symmetric

diffusion , i.e., W=, 6y =062, and a correlation of +1.  The

airx v
infinitesiﬁal generator, A, 1is degenerate and because the two
. dimensional diffusion is symmetric, it «collapses to an one-
dimensional diffusion._ 6K Puterman [21] has investigated the one-
dimensional model “in detail, and for the case of ‘quadratic cost
rate, analytic results were obtained in closed form.. This was
usedvto»verify the code. . It was observed that on the average,
the numerical solution, © , agrees with the theoretical result
to 0.08%. . The following summarizes our main findings..

The diffusion parameters used to obtain the results below
were chosen for numerical efficiency and to represent moderate

variation. . They are as follows. .
Drift coefficients : W= pe = -2

diffusion coefficiemts : O, = Oun=1, f)6['1’1]
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the fixed re-ordering cost used is 125/12.

For (1)-(5) the cost structure used is c(x,y) = ax2+by2, where a
=b = 1/2.,, This separable cost strusture allows comparisons with
the one-dimensional results., Recall that { is the correlation

betveen the tvo mean demand rates and is defined by

Cin
P = Gu - O

The following gualitative results summarize the numerical

computations for the above data.,

. @(sl,sl) is convex with respeét to ({s,,s,) for p € -1.13..
This is demonstrated in Piqg.84,. Puterman has shown that
O(s ¢S ) is convex with respect to s,S for quadratic holding
cost in one dimension. This property carries over to‘two
dimensions, ¥We expect the convexity property to carry over

to higher dimensions as well. .

2):‘63(5‘,51) increases as p decreases from 1 to -1 for a fixed
stopping curve., . This is demonstrated in Pig.5. This result
is expected because as the correlation decreases from +1 to
-1, the diffusiom sample pétbs become more erratic , the
variation of ihe system generally increases thus increasing

the cost of operating the systen. .
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As K increases, sS,, S,, the optimal values of s,, s,

)
decrease. . This is because when computing the optimal policy,
we try to balance the shortage and holding costs against the
re~-order cost. . As the re-order cost increases it is better
to re-order 1less frequently thus Sz-si; i=1,2 increases
lowering s, ,s, and increasing S,,5,.., Since the process can
have positive imereménts, it is expected that s, and s,
decrease more tham S, and S, increase. Alternatively if
c({x,y) increases we expect the opposite to occur. The

important gquantity is the ratio of K to c(x,y). This is

analogous to the one-dimensional result.

As p decreases from 1 to -1, §; and 5, decreases as well.
This is also demonstrated in Figqg.4.. This is expected from
the intuition that in general the system tries to counteract

more variation by lovering 5 ,S§,. .

For (s, ,s,) > {5, +S,), §,,§L is symmetric, i.e.,‘g\ = §L, if

the diffusion is symmetric, LT L . .. Por
(s,,s,) < (S, .,S,), it is possible that §. # §Z. This results
in 'splitting?, i.e., the optimal values are no longer on the
main diagonal, but on the minor diagonals. This is depicted
in Fig.6. Once splitting has ocurred, moving (s,,s,) further
away from (S ,S5,) Tresults in the optimal minor diagonals

moving further away from the main diagonal. .

— —— — -— ~ -
As (s, ,s,) > (5 ,8§)) decrease toward (S, ,S,), Ss, increases..

This trend continues after (s,,s,) pass through (s ,S,).
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9)
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2 .
S-s increases as p decreases from +1 to -1,

He were nnable to predict the effect of unequal variances for.
a fixed stopping curve., This is shown in Fig.7., Por some
correlations fu.mnincreased as one of the variances decreased
and yet for other correlations the opposite is true..
However, Fig.] again demonstrates that as the correlation

decreased, 8. . incréases. .

For ~the case of unequal variances, #) -also holds amnd § ,§,
are relatively insensitive to changes in one of the

variances. ,

Results 10)-11) are obtained using c(x,Yy) (5ifby)2, where

I

= b = 1/2.. This cost structure is not separable and the

system exhibits some quite different behaviour from the previous

cost structure,

10) The splitting effect is sharp., Por (s,,s,) < (5, +5,)

splitting always occur, this 1is not the case with the
previous cost structure., The difference may stem from the"
fact that the iso-cost contours of :the present cost structure
is open while the iso-cost contours of the previous cost

structure is closed. .

11) As (s,,s,) move away from (S, ,S,) :in either direction, S-s

decreases. . This is opposite to 6).,
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Table 1 demonstrates a search for a global optimal (sl,sz,sl,sz)

policy.

Izl



A search of a global optimal (s, »S,.5S, ,Sz) ‘policy

SYSTEM PARAMETERS

b= e s -2
0|| = 6;.1. = 1 F: o
cenmy = LAt Lyt K= 125/12

PAY
2 Oca,, ny)
- 2.45 7. 24
- 2.7% T.02
- 3.05 6.88
. - 3.35 684
; v
- 3.65 6.86
- 395 £a
- 4.2as 716
|
- &. 00 7.906
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8. ; The Modified -Policy-

This policy is described by six parameters: S,, S,, (x9,y9)

the center of the ellipse, and {x,,v,) the length of the axis..

Note that if x0, yo s

1¢ S, and x_ =y = 0 this reduces the
vmodified policy  to the (S,+5,+5,,5,) policy considered in the
previous section._ As with the (S,+5,45,,5,) policy, we have a
computer code which: évalnate the long run average coét'for a
given policy.. The program has as 1its input the following
parameters: T . + c(xv7), K, x% y° x,, V.. S .+ S,.
Reflecting boundaries again are imposed at x = S.¢» Y= S,. This
code has been observed to have accuracy of the order of 0.3%. A
sample output is shown in Fig.8.  The following summarizes our
findings. Results 1)-5) are obtained using c(x,y) = ax2+by2

with a = b = 1/2, .

1)  © is convex with respect to (X, 07,) for f)é[-1,1].p This is

demonstrated in Pig.9 for ths case of p='0..

2) - S increases as P decreases from 1 to -1 for a fixed policy.,
This is demonstrated in Pig.10.. This is consistent with
results from the (si,sz,sl,sz)>policy.$

- ~ AN -
3) As K increases, X .Y, increases.

. 4) The modified policy is at least as cheap as the'(si,sz,si,sa)

policy if not cheaper. .

5) The modified policy seems to be less sensitive to changes to
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P..

Results 6)-7) are obtained using c{x,y) = (ax+by)2 with a=>b =

1/2. .

6) - As F decreased from +1 to -1, the modified policy does
progressively better fhan the'(sl,sz,sl,sz) policy.. For - the
data used, at p=0, it is at least 3.7% better, and at

p= -1, it is at least 5.7% better..

7) - © is quite insemsitive to the correlation.

The results show that the modified policy is better - than
tﬁe ‘(s?,sz,g_,sz) poliéy, especially if the products are
substitutable. The  implementation of this policy is not
-difficult, . The  user merely checks the inventory on hand and
compares it to a charﬁ vhich specifies the optimal stopping
curve, . If the inventory is lower - than as specified on the
-chart, -an order is placed to bring the stock up to (5,.,5,)..

-The  numerical Tresults obtained depends on the cost
structure hsed.f For c(x,y) = ax2 + by?, the isocost contours
are closed ellipses, vhile the isocost contours  of
c{X,y) = (ax+by)2 are  straight linpes, . We suspect this
difference lead to observation {11) of the previous section,
hovever - the dependence of e on this difference is still

unresolved. .
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Effects of correlation on the modified policy
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9. Recommendations For Future Research-

The case of a fixed length lagged delivery can be
accomodated easily in the present model. Let L > 0 be the time
lag betveen the time a re-order is decided and the time the
actual replenishment occurs. . In the inventory context, this may
be thought of as the delivery time or the production setup time. .
The cupulative demand in the time interval (t,t+L] is Yoo = Yo7,
which by the stationarity of the diffusion process, has the same
conditional distribution as Y, - Y, .., Furthermore, if the
demand is spatially homogeneous, then Y, can be set to =zero..
'Defining C(e) ' by c(y) = c(y*Y,_ ), this is the expected cost L
time units in the future., To obtain results for this ﬁodel, one
simply replace c(e) by S(e) in (2)..

The terminating ‘distribution of the diffusion path on the

stopping curve can be obtained by solving the following partial

differential egquation:

AP (xvy = O
SUBTECT  To Pemoyy = 1 () € lq
C
’P(_’x,lj) = o (’K:j) e 3B N IQ

wvhere I, is the indicator of the set Q which is part of the
boundary., P(x,y) is the probability that Dﬂ.e I, given that D,
= {x,7).. RKnowledge of this terminating distribution should
reveal great insight to the behaviour of the diffusion paths, .
Through the backward equation we were able to characterize
the long-run average. cost rate of operating the inventory

system, and calculate the expected variable re-ordering cost. .
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Programs have -been developed which can calculate the: expected
variable cost, 2Z(x,y), and the terminafingAdistribution of the
diffusion paths, P(x,y). . Other problems such as different cost
structures can and should be investigated further to reveal the
underlying dynamics of multi-dimensional diffusion processes. . A
very important and still ‘unansvered question is what is the form
of the optimal policy.. In this research it was assumed that the
order to point, S, is independent ‘of the terminating4position of
‘the sojourns on the stopping énrve.J In fact, the optimal policy
may be to order to a point that depends on the terminating
position of the sojourms., ‘An important problem from the
application point of view is +that of the estimation of the
diffusion parameters, this problem has not yef been

investigated., K This myriad of questions remain to be answered. .
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APPENDIX
The purpose"of this appendix is to present the
computational scheme used to solve (9) subject to (10) ; (16)., The
method used is the method of finite difference.. The main idea
is to replace the derivatives by small finite differences which
approximate the derivatives on a mesh obtained by discretizing
the region of interest., Given a partial differential equation

of the form
AU, *BUxy *C“w 0DUX0£UYéFU = g(x,y)

consider the following nine-point star approximation- of

derivatives. .

Fig.11, . The Nine-point Star Approximation Of Derivatives
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The points are numbered 0 to 8 with the distances as shown in
Fig.11. These distances were chosen to allow for irregular grid
points (points with unegual distances to its neighbour points)

vhich occurs near the stopping curve of the modified policy. .
Let the  function values at the nine points be DO,..,,08,
Constants ko,,,,,k8 are'to‘be’determineﬂ such that

S

1 . R
Lk U = AU, +BU,, ¢CU, +DU, +EU +FU = g(x,y) (18)

Taylor expanding U0', §=1,...,8 about- 00, and collecting the
terms yields the following system- of 6 equations with 9

unknowns, .

KO+k1+k2+k3+ks+kS+k6+k7+k8 = P
h1k1-h3k3+hS1kS-h61k6-h71k7¢h81k8 = ]

h2k2-heke+hS2kS+h62Kk6-h 72k 7~ 82ks

‘B
(h1) 2k1+ (h3) 2k3¢ (hS1) 2kS+ (h61) k6+ (h71) 2k?+ (h81)2k8 = 23

(h2?) 2k2+ (h*) 2k4¢ (hS4) 2kS+ (h64)k6+ (h7 %) 2k 7+ (h8%) 2k®

i

2C

hS1hS52KkS-h61h62Kk64h 71 R 72k7-p81482k8 = B

This system as it stands is indeterminate, therefore 3 more

independent equations are added. .

KS+k6+k74k8 = 0

hS1KkS-h61k6-h71k7+h81k8 =

|
(=]

hS2kS+h62k6-h72x7-h82k8

"
o
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These equations serve to eliminate the contributations of points'
5, 6, 7, 8 to the coefficients of the finite difference ternm

vhich represent the first order derivatives. . Let

hS2/hs1

i

h72/h71

ri

h62/h61 = L82/p81

r2

The solution to this system is

U]

ko P-k1-k2-k3-ke
kt = [2A+Dh3-K1]/[ht (h1+h3) ]
k2 = [2C+Eh*-K2]/[ h2 (h2+h*) ]
k3 = [2A-Dh1-K1]/[ h3 (h1+h3) )

k* = [2C~Eh2~K2J/[ h¢ (h2+h¢) ]

. kS = B/{IhS!‘h?lrl{»hGlhaer](10]151/1171)}
k6 = -B/[[hst.h7lrl+h61'h81r23(1#1161/],81)}
k7 = B/{[hsxhrxra;hs:haxrz](1;571/h51)}
k® = -B/{[hS1h71rt+h61hs1r2](1+¢h81 /h61)}
whére

K1

ft

(hS1)2KS4+ (h61) 2k 64 (h71) 2k7+ (h31) 2k8

K2

i

(h52) 2kS+ (h62) 2k6+4 (h72) 2k 7+ (h82) 2k8

Substituting these .coefficients into (18) reduces the
‘problem to an algebraic system by requiring this formula to hold
for all U0 in the interior of B'. This algebraic system is most
conveniently solved by the method of successive over-relaxation,

c.f., [15)., The system can be writtem as
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vhere A is a banded matrix and b is g(x,y) at the:  grid points..
" Using the coefficients derived above and successive - over-
relaxation, approximate solutions to the partial differential
equations of (13) can be obtained, .
This approximation has a truncation error of the order
o(h3) from the finite Taylor expansion.. This error can be
reduced by taking h small., Greenspan provides conditions on the
coefficients, k°,...,,k®, that dquarantees the algebraic éystem
¥ill converge and satisfy the weak ~ max-min property that the

analytic solution posses, c.f.[15]. .



