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ABSTRACT. 

Problems in the theory of economic dynamics are tackled both by 

theoretical arguments and by use of specific examples. The work 

is divided into three essays. The f i r s t treats optimal control 

theory from an economic point of view, giving an exposition of the 

mathematical theory in terms of economic concepts. The idea of 

the marginal worth of time i s introduced and found to be useful in 

a variety of problems. An interpretation i s given of the phase 

planes of optimal control problems as demand-and-supply diagrams. 

The second essay makes use of the techniques developed in the f i r s t 

to solve the problem of when and how a firm faced with adverse 

economic circumstances w i l l choose to go out of business i f i t s 

operations depend on a stock of some fixed asset that depreciates 

over time. A straightforward catalogue i s presented of different 

possible outcomes. The third essay deals with a model of urban 

housing. It contains two main sections. In the f i r s t , an equi

librium state i s described i n which demand by tenants for housing 

is met by supply from landlords who act as p r o f i t maximisers over 

the whole period of time that their property exists. The rent paid 

for any particular dwelling i s assumed to depend on i t s state of 

upkeep, which in turn depends on how much i s spent by a landlord 

on maintenance. The equilibrium i s found by a procedure analogous 

to that regularly used in general equilibrium theory, namely by 

finding a fixed point of a mapping in a (here infinite-dimensional) 
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vector space. In the second section of the essay, i t i s assumed 

that some externality arises which adversely affects urban l i f e 

and which provokes people to move out to suburbs. The consequences 

of this are studied and two different kinds of dynamical evolution 

can be distinguished. One, in which house construction i n the 

suburbs i s slow enough to make i t necessary for new construction 

to continue in the cit y , tends not to be disastrous for the city; 

the other, in which a l l urban construction stops when the externality 

arises, usually leads to complete decay of the city. Throughout 

the thesis there i s an emphasis on the differences i n approach 

between static or quasistatic problems and dynamic ones. 
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INTRODUCTION. 

The common theme of the three essays of this thesis i s , as the t i t l e 

would suggest, economic dynamics. A desire to see into the future, with 

especial regard for one's own fortunes and well-being, has been implanted 

in mankind from the beginning. Necromancy and augury are among the time-

honoured techniques for accomplishing this desire - they have a much 

longer history than s c i e n t i f i c , or even pseudo-scientific, analysis, and 

numerology and astrology are their spiritual children. The study of 

economics i s often grouped with the above practices, not necessarily to 

the distress of i t s professional advocates, but very much to the denigration 

of i t s avowed means and ends. Imputations of wizardry can be hard to deny 

although they can be ignored by practitioners of mature sciences. Ignoring 

i s perhaps the wrong response, for i t provides no corrective to super

st i t i o n when needed. Thus the natural philosophers following Galileo and 

Newton were content that they had escaped from the mental chains of 

medieval thought and alchemy, but did not always understand that their 

achievementsVwere taken by many as just somewhat better magic than what was 

fashionable i n earlier times. So i t was that their spells were seized upon 

by lesser men as panaceas for a l l earthly disorders, and even by some great 

men struggling with matters less tractable than the inanimate physical 

universe. 

For Marx had his incantation quite correct. The "laws of motion of 

capitalism" i s a phrase that has called up a s p i r i t by no means exorcised 
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i n our times. The great d i f f i c u l t y with such sp i r i t s i s that no one knows 

i f they can ultimately be taught the catechism and made to s i t with a l l 

proper appurtenances and apparel i n the halls of true science and knowledge, 

or i f they are of the other kind of s p i r i t , demons, which do nothing but 

torment our minds with vain longings that can never be satisfied. 

I have sported with this s p i r i t , then, i n these essays. My leaning 

i s towards the hall of science, and my effort i s directed towards developing 

a l i t t l e piece of economic theory that w i l l help the understanding of what 

sorts of questions about economic dynamics can reasonably be treated by use 

of the wits and intuition that the human race has succeeded in getting for 

i t s e l f at the present time. 

Discovering the most sensible questions to investigate i s one of the 

d i f f i c u l t things about the study of comparative dynamics. It i s for this 

reason that I do not start off, in decent fashion, by defining what I mean 

or what i s generally meant by comparative dynamics. Comparative statics i s 

nowadays an established discipline, i t s rules laid out as formulae to be 

applied mechanically. In a sense, i t would be good i f comparative dynamics 

were in the same case, so that there i s in this thesis a good deal of laying 

down of rules and procedures. But to define i s to lim i t , and since no one 

knows where i t might be best to set the limits of comparative dynamics, i t 

i s foolish to define with any precision. An alternative way to go forward 

i s to look at specific problems that involve dynamical considerations, and 

that i s the way chosen here. It points up the conclusion that comparative 

dynamics has a quite different flavour from comparative statics. It i s 

not just that the well-known techniques of total differentiation followed 
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by attempts at signing bordered Hessians no longer seem so immediately 

applicable, but also that the economic matters that are to be taken into 

account have no analogue in static problems - they are not just extensions 

of static concepts with time thrown i n as an extra variable. 

The tone of the three essays that comprise the thesis varies somewhat 

from one to another. This i s due to the variety of tasks undertaken. In 

the f i r s t essay, the aim i s to consolidate as a standard box-of-tricks for 

economists' use the mathematical theory of optimal control. There are 

numerous economic studies that make use of this theory, often very expertly. 

Consequently my emphasis has been on expounding, on demystifying as i t were, 

and the resulting tone i s allusive and sometimes chatty, my hope being that 

i t i s also evocative and illuminating. The second essay arose from attempts 

to solve two seemingly unconnected problems. The f i r s t one, which in my 

mind has attached to i t the name of "the bankrupt railroad", was suggested 

to me by Professor Archibald and deals with the response of a firm which 

possesses substantial fixed assets when i t runs into d i f f i c u l t i e s . The 

second problem was posed to the Economics Department at large by Professor 

Nagatani and i s , essentially, the one ex p l i c i t l y treated here. The two 

problems are the same on a suitable level of abstraction, both contain a 

basic and typical question i n economic dynamics, and both are solved by the 

same device, the explication of which forms the content of the essay. The 

use of mathematics i n the last essay of the thesis i s much heavier than i n 

the other two, and the effect of this i s - to my regret - to make the tone 

much heavier too. But i t i s unavoidable at present - instances are very rare 

of a new sort of investigation being presented for the f i r s t time i n i t s most 

perspicuous form. I hope that the gain in understanding i s worth the cost. 
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Optimal control theory is what makes comparative dynamics possible, 

at least in a practical sense. F.P. Ramsey's pioneering article 

(Ramsey (1928)) makes no use of i t because i t wasn't invented then, but 

i t i s quite fascinating for someone who knows the modern theory to see 

how much of i t appears there i n only a slightly different form. His formal 

tool i s of course the calculus of variations, and i t can now be seen that, 

i f one works hard enough at i t , (Hadley and Kemp (1971)) optimal control 

theory can be devvoed from the calculus of variations. But the insights 

gained by physical scientists as well as economists from the twin notions 

of the principle of optimality (Bellman (1961)) and the maximum principle 

(Pontryagin et al (1962)) are much more numerous than those that the 

classical approach can provide. It i s striking that Ramsey supplements his 

calculus of variations argument with an economic line o'f reasoning that he 

ascribes to Keynes and that has much of the s p i r i t of the two principles 

which underlie optimal control theory. The f i r s t essay, then, is i n the 

tradition of Ramsey-cum-Keynes and Bellman, and away from the work of 

Hadley and Kemp. 

Growth models have been at the centre of economic dynamics at least 

since Ricardo, and certainly with Marx, although i t was not exactly growth 

in the modern sense that Marx was concerned with. Modern interest i n 

growth theory began with Harrod (1939) and Domar (1946), but no one at that 

time conceived of economic dynamics as other than a descriptive discipline 

that could, to be sure, warn against some kinds of danger. (Ramsey's 

arti c l e stands outside this discussion - i t was really much ahead of i t s 

time.) Rates of capital accumulation were derived from purely ad hoc 
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descriptions of saving behaviour, and the social benefits arising from 

different specifications of behaviour compared. It would be wrong to deny 

the name of comparative dynamics to these exercises, but there was precious 

l i t t l e economising going on i n the models used. That i s , there were no 

economic agents exercising rational choice over their behaviour. This was 

true also of the celebrated von Neumann growth model (von Neumann (1945)) , 

and even of the subtle model proposed by Solow (1956) with i t s exogenous 

savings ratio. Phelps (1961), i n his critique of Solow1s model, returned 

in s p i r i t to Ramsey, and the word "optimal" reappears i n the growth 

literature, just at the time when by a fortunate coincidence U.S. and 

U.S.S.R. military needs caused Bellman and Pontryagin respectively to 

produce what i s now called optimal control theory. 

By the time of writing of articles by Kurz (1968) and Hahn (1968), 

this theory was taken for granted by growthmen, and a l l sorts of problems 

to do with s t a b i l i t y and so forth were being encountered. These problems 

have led sophisticated mathematical economists l i k e Brock (1976), 

Brock and Burmeister (1976), Brock and Scheinkman (1975) (see also other 

articles l i s t e d by these authors in the cited works and the "Symposium on 

Hamiltonian Dynamics in Economics" published as the Feb. 1976 issue of the 

Journal of Economic Theory) to study intently the sta b i l i t y of dynamical 

systems and to propose the resurrection of Samuelson's suggestion that the 

assumption of st a b i l i t y can yield meaningful theorems in economics. (I 

cannot resist citing Hatta (1977) as a beautiful example of an article 

that uses this suggestion with great effect i n comparative statics.) 
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Of more immediate relevance, i t seems to me, than this very technical 

work i s the systematic use of optimal control theory i n microeconcmic 

studies as opposed to the macroeconomics of growth. The principal example 

of this that I have i n mind i s Mortensen's article on wage and employment 

dynamics (Mortensen (1970)), which has been followed by various articles on 

job search by employees and labour hiring by employers written from an 

ex p l i c i t l y dynamical point of view. In this literature the optimising 

behaviour of economic agents comes to the fore. It i s certainly premature 

to claim that economic theory contains a worthy set of "micro-foundations" 

for macroeconomic phenomena, but i t i s hard to doubt that such foundations 

w i l l be necessary for a decent understanding of them. It i s my hope, then, 

that applications of optimal control theory w i l l ultimately provide enough 

insight into comparative dynamics in microeconomics that one w i l l be able 

to return to growth theory and actually succeed in predicting a l i t t l e b i t 

of the future of our fortunes. 



CHAPTER I 

AN ECONOMIC INTERPRETATION OF OPTIMAL CONTROL THEORY 

In this essay, optimal control theory, the cornerstone of comparative 

dynamics in i t s present state of development, i s discussed from an economic 

point of view. Much of the subject matter w i l l seem routine to those who 

regularly use optimal control methods, but although there are many economists 

among these people, I have the feeling that most of them share my view that 

the theory has not yet been f u l l y " c i v i l i s e d " , that i s , translated out of 

the language of engineering physics, the discipline responsible for i t s 

creation in i t s modern form, into a language of prices, margins, demands and 

so on easily comprehensible to economists and such as to make the optimal con

t r o l equations satisfying to economic intuition. A stylised problem is treated 

at f u l l length in the remainder of this essay, and i t is my hope that the 

treatment, which is throughout presented in economic language, w i l l act as 

a sort of translation of the theory. 

In section 1, the well-known optimal control algorithm is derived 

from f i r s t principles. A form of argument much used in duality theory is 

found useful i n deriving the equation of motion for the co-state variable. 

Then, in section 2, comes the main effort of "translation". The algorithm i s 

picked apart and a l l of i t s variables, functions, and equations discussed as 

economic entities. After this work, i t becomes possible in section 3 to 

discuss the matter of transversality conditions as a series of stories in 

economics, by use of no more than the everyday arguments of economic reasoning. 

In section 4, I have discussed the notion of time as a factor of production 
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and the r e l a t e d concept of i t s marginal worth. I t turns out to be possible 

to define t h i s concept quite p r e c i s e l y , and to use. i t e f f e c t i v e l y i n the 

treatment of autonomous problems and problems with discounting — these 

problems are worked out as examples. F i n a l l y , i n section 5, i t i s shown 

that, i n many cases, the phase-plane, with i t s saddlepoint equilibrium 

^ and catenary-like motion i n the v i c i n i t y , can be seen as a s t r a i g h t 

forward supply-and-demand diagram with adjustment mechanisms around 

equilibrium included: j u s t what i s required by Samuelson's correspondence 

p r i n c i p l e i n f a c t (Samuelson [1947], p. 253 et seq., p. 350). 

I have tried to keep a l l the discussion of t h i s chapter uncomplicated 

as possible as regards the mathematical equipment used. Much greater 

ge n e r a l i t y i s e a s i l y a ccessible with l i t t l e extra e f f o r t , but i t was not at 

a l l my aim to i n d i c a t e the richness of optimal control theory or i t s 

applications — that i s done i n (probably) hundreds of e a s i l y a vailable 

references. (For example, Bryson and Ho [1969] , Bellman [1967], Lee and 

Markus [1967]). My aim, on the contrary, was to demonstrate that the 

theory could j u s t as well have been developed by economists, using t h e i r 

own t o o l s , techniques and language, as by engineers, i f only t h e i r r e 

search needs i n the l a t e f i f t i e s and e a r l y s i x t i e s had been so clamant 

and t h e i r work so heavily funded. 

Such a demonstration could well be quite p o i n t l e s s , but i t does 

seem to me that the concepts developed here are both u s e f u l , and i n some 

cases, novel. So f a r as I know, no one, not even Arrow [1968], has yet 

pointed out i n the economics l i t e r a t u r e that the marginal worth of time 

i s constant along optimal paths; and the i n t e r p r e t a t i o n of the phase-plane 

as a supply-and-demand diagram i s c e r t a i n l y new. 
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1. Dynamic Programming and Optimal Control 

The problem to be considered in this section is that of maximising 

the functional 

J[c] = f F(k,Ct) dt (1) 

where c, the argument of J, i s a function of time t, defined on the inter

val t Q t <_ t^, and the function k, defined on the same interval, is 

given as the solution of the ordinary differential equation 

k(= = f(k,c,t) (2) dt 

with boundary condition 

k(t Q) = k Q (3a) 

We r e s t r i c t the domain of functions c over which maximisation takes place 

by imposing another boundary condition 

k(t f) = k f (3b) 

The problem is controllable i f there exist functions c which allow equation 

(3b) to be satisfied. Thus k i s completely specified once c is given. In 

the expressions F(k,:c,t) and f (k,c, t) , what is meant'is that both F and f 

are functions of three variables, and that each is evaluated at the point 

(k(t), c(t) , t) . But for simplicity the arguments of k and c w i l l be 

omitted unless confusion is l i k e l y . 

The variable names, k and c, are meant to be suggestive. One 

may think of k as a capital stock and of c as a rate of consumption. 

Then the differential equation (2) w i l l express the rate of capital accu

mulation (investment) as a function of the existing capital stock, k (let 

the labour supply be fixed, for example), and the rate at which output is 
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consumed. A common form that eguation (2) might take is 

k = g(k) - Sk - c 

where g is a production function and 6 a depreciation rate. The equation 

t e l l s us that consumption plus net investment, c + k, equals total output 

g(k) less the amount of output, 6k, needed to offset depreciation. The 

function F(k,c,t) may perhaps measure the u t i l i t y of consumption, or the 

p r o f i t a b i l i t y of producing consumption goods, or in general the worth 

of some benefits. The fact that J[c] is given as an integral means that 

these benefits accrue addi-tively over time. If F is interpreted as a 

u t i l i t y function, then this form of J[c] implies additive u t i l i t y in the 

intertemporal sense; that i s , no intertemporal complementarity. Since 

this notion is a r t i f i c i a l , i t is probably better to construe F as a 

measure of p r o f i t . I shall try to refer to i t consistently as the "bene

f i t " . 

The equations (1) and (2) define a standard optimal problem, and 

i t i s as well to introduce the standard terminology now. The function c, 

which determines, both directly via i t s appearance in the benefit func

tion F, and indirectly via k, the value of "total benefit" J, i s called 

the control Variable. We can assume that c can be chosen quite arbitrarily, 

or, i f i t is preferable, we can restr i c t i t in some way. The two cases 

are equally easy to handle, conceptually at least. It is important to 

understand that the control variable c, and only c, is at our disposal. 

Within the confines of whatever restrictions are imposed, i t is to be 

chosen so as to maximise benefits, that i s , J. The other variable, k, is 
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not at our disposal, except indirectly. Once c i s chosen, k i s determined 

by equation (2) and one of the boundary conditions (3) . Consequently, k 

i s called the state variable. i t affects benefits (by appearing as an 

argument in F) and so has to do with the state of. affairs. 
i 

In order to find the controller (as i t is often called), c*, which 

gives a maximum of J[c], we shall use the approach of dynamic programming. 

This approach rests on a very general principle, the Principle of Optimality 

(see Bellman [1961]). According to this, whenever there exists an optimal 

way of achieving some end or of carrying out some activity which proceeds 

by a sequence of steps, each step contributing additively to a "performance 

criterion" (for our purposes, -the criterion i s J[c]), then i f one breaks 

in on the sequence part of the way through, the s t e e p s from that point of 

break-in u n t i l the end of the sequence must be optimal for the problem 

defined over those stages alone. For our problem/ this means that i f c* 

is the optimal controller for the problem of equations (1) and (2) with 

boundary conditions (3), then the same function c*, is the optimal con

t r o l l e r for the problem: 

t 
max J[c] = I f F(k,c,t) dt 

1 

with k = f(k,c,t) and boundary conditions (4) 

k(t 1) = k*(.t ) 

k(t f) = k f 

where by k*(t^) we mean the value of k arrived at by time t^ i f the 

path defined by c* has been followed from time t with k(t ) = k . 



The Principle of Optimality is both general and t r i v i a l . Its 

truth follows from a short veduotio ad absurdum argument: If another 

function, c**, say, defined for «t <_ t f gave a larger value of J[c] 

than c*, then the function defined by 

c*(t) t < t < t, rc*(t) t Q < t < t l 

3 (t) = < 
(c**(t) t <_ t<<_ t f 

would yield a larger value of J[c] over tn <_ t <_ t than would c*. But 

this contradicts the definition of c* as the optimal controller. This 

kind of argument is precisely the one used in a l l stepwise optimisation 

procedures. 

Back to the problem at hand. Let us define another functional 

closely related to J[c]: 

t 
J(k , t, C ( T ) ) E / f F(k (T) , C ( T ) , T ) dx 

t<x<t * 

where k is defined by 

k = f(k,c,t) 

k(t) = k ; k(t f) = k . 

This then i s a functional of the function c, defined on t <_ x <_ t^, with 

extra dependence on the numbers k and t. This new J is just the perform

ance criterion to be maximised for'a problem like the old one in a l l 

aspects except i t s time horizon and i t s i n i t i a l value of the state va r i 

able. Now l e t us imagine that the maximisation has been performed. Then 

we w i l l write: 

J*(k ,t) = max J(k , t , t c ( x ) ) 
T • C ( T ) ^ f t f 
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The star indicates that.the maximisation has been done. There w i l l be 

a certain function, c*, say, which causes J to take on i t s optimum value 

J*. That i s : 

J*(k ,t) = J(k , t, C*(T)) 
t<T<t 

Now 

fcf 
J(k. , t, C * ( T ) ) = / F(k * ( T ) , C * ( T ) . t )dT 

t<T<t f
 t 

[k* is the solution of the defining differential equation with c = c*]. 

The integral can be s p l i t up: 

J(k , t c * ( x ) ) = / ^ + 6 t FdT + f * . FdT 
t ' t<T<t f

 t t + 6 t 

t 

Now for the Principle of Optimality: the second term here F 

must be the optimised value for the problem beginning at t+St with boundary 

condition k(t+ 6 t ) = k*(t+St). This means in fact: 

J(k , t, C*(T)) = J*(k ,t) 
t<x<t 

= / ^ + < S t F ( k * ( T ) , C*(T) , x )dx 

+ J*(k*(t+ 6 t ), t + 6 t ) . (5) 

It should be noticed here that J* i s simply an ordinary function of the 

two variables k̂_ and t, once the maximisation has been done. If we may 

cheerfully assume a l l the continuity and diffe r e n t i a b i l i t y that we need, 
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then J * can be expanded i n a Taylor series about ( k t , t ) . (It i s not the 

i n t e n t i o n here to worry about t e c h n i c a l d e t a i l s , and such "nice" properties 

w i l l always be taken f o r granted. There are e n t i r e l y reasonable s u f f i c i e n t 

conditions for these properties to hold. For statement and proof of 

Taylor's theorem, see Hardy. (1952), p. 286.) Thus we may write: 

J * ( k * ( t + 6 t ) , t + 6 t ) 

= j*(k*(t) , t) + J*(k*(t) , t ) 6 k + J*(k*(t) , t ) 6 t + o ( 6 t ) . 

* * 

The notation i n t h i s eguation i s as follows: and are the two par

t i a l d e r i vatives of J * ; 

6k = k*(t+<5t) - k*(t) 

= k*(t + 6 t ) - k by the boundary condition; 

the expression o ( 6 t ) denotes any quantity, X, say, such that lim. — = 0 . 
6t->0 

In the equation above, o ( 6 t ) s i g n i f i e s terms proportional .to higher powers 

of 6 t than the f i r s t (for more d e t a i l s , see Hardy [1952], p. ,183) . 

I t follows at once from the d i f f e r e n t i a l equation (2), which the 

function k* must s a t i s f y that: 

* 
dk 5k = — — fit + o(St) dt 

= f(k » c * ( t ) , t ) S t + o ( 6 t ) . 

Therefore equation (5) becomes: 

t + 6 t 
•J*(k » t) = / F ( k * ( x ) , c * ( x ) , T)dT 

+ j*(k , t) + [ j * ( k . , t ) f ( k . f c * ( t ) , t) ';; 
t 1 t t 

+ J*2(k , t ) ] 6 t - ' + 0 ( 6 t ) . 
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The integral of course can be written: 

/ £ + 6 T F ( K * ( T ) , c * ( x ) , T)dx = F(k , c*(t) t)6t + o'(St); 

so that 

J*(k t, t) = [F(k t,c*(t), t) + J*(k t,t) f ( k t , c*(t), t) 

+ j*(k ,t)]6t + J*(k t,t) + o(5t) 

There are now only two terms which involve the control variable ex p l i c i t l y , 

and in these only i t s value at time t appears. The optimality for other 

times is b u i l t into the definition of J*. For time t, i t can be made 

quite explicit: 

J*(k t,t) = J*(k f c,t) + J * ( k t , t ) 6 t 

+ max [F(k t,c(t),t) + J*(k f c,t) f ( k t , c ( t ) , t ) ] 6 t 
c(t) 

+ o(6t) . 

This i s true because c* (t) is the optimal controller. If we let <5t-*0, 

we obtain, recalling the definition of o(6t): 

J*(k ,t) + max [F(k ,c(t),t) 
1 c(t) 

+ J*(k t,t) f (k f c,c(t) ,t)] =0 (.6) 

where the value of c(t) which yields the maximum i s c*(t). This last 

equation i s called the Hamilton-J'acobi equation, by analogy with an 
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equation known for some time in classical mechanics. Because of i t s 

newly-discovered use in dynamic programming, i t i s also called the 

Hamilton-Jacobi-Bellman equation (see Bellman [1967], chapter 5). 

Equation (6) already contains the whole of the optimal control 

algorithm for our problem. A l l that remains for us to do i s to dig out 

of i t the well-known form of the algorithm. The content of the equation 

can be expressed particularly simply i f we make the following definition: 

H(k,c,X%t) = F(k,c,t) + Xf (k,c,t) (7) 

This function of the four variables k, c, X, t, is called the Hamiltonian 

of the problem. In classical mechanics, the Hamiltonian i s identified 

with the energy of a system: i t is the function which determines the 

evolution of a mechanical system through time. In economics, the mean

ing of the Hamiltonian i s somewhat similar, but i t i s susceptible, a l l 

the same, to an intuitively appealing and purely economic interpretation. 

By use of equation (7), equation (6) can be written: 

* it 

J 2(k f c,t) + max H(k ,c(t), J (k ,t),t) = 0 
c (t) 

* 

with the Hamiltonian function evaluated at X = J^( k t , t ) . From the defini

tion of c*(t), we have: 

max -H(k ,c(t) , J^k^t) ,t) = H(k t,c*(t), J (k jt^t) 
c (t) 

This i s the f i r s t part of the optimal control algorithm: the optimal con

t r o l l e r c* maximises, at each point in time, the value of the Hamiltonian. 
* 

The Hamiltonian as we are using i t , however, depends on J1 (k^,t). But let 
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us simply treat this quantity as an unknown (as yet) function of time X(t), 

and then pin down i t s behaviour by a differential equation. To do this, 

i t i s necessary to recall that k = k* (t) . The function X(t) i s then de-

fined: 

X(t) = J*(k*(t) ,t) , (8) 

so that 

* dk* * * * J l l IT +
 J12 = J l l + J 1 2 ( 9 ) 

This last quantity can be obtained directly by differentiating equation (6) 

with respect to k̂ _. But perhaps the most illuminating way to proceed, 

because of the similarity of the technique to one used constantly (see 

Gorman[1968]) in duality theory, i s to note that equation (6) says: 

* 
max {J (k*(t),t) + F(k*(t),c,t) 
c 

+ J*(k*(t),t) f (k*(t) ,c,tj}= 0. 

Therefore, for any k ? k* (t) , J 2(k,t) + F(k,c*(t),t) + j * ( j ^ t l f (k,c* (t) , t) <0 

because c*(t) i s the optimal controller i f k = k*(t), but not i f k ̂  k*(t). 

Equality occurs in this expression only i f k = k*(t), which i s thus a max

imum point of the expression. So then the derivative with respect to k 

is zero for k = k*(t): 

J^ 2(k*(t),t) +F (k*(t), c*(t),t) 

+ J* 1(k*(t) ,t) f(k*(t), c*(t),t) 

+ J*(k*(t),t) f x ( k * ( t ) , c*(t),t) =0. 
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But from equations (8) and (9), 

* * 
A = J f(k*,c*,t) + j 

= -F 1(k*,c*,t) - * f (k*,c*,t) 

5H(k*,c*,A,t) -
9 k ( ' 

And this i s indeed the second equation of the optimal control algorithm. 
* 

We have therefore ju s t i f i e d the use of J^(k*(t),t) as A (t) , the co-state 

variable. 

Now we-have a l l that we need. The equations (2), (10), and 

(3) give 

k = f(k,c,t) = | Y (k,c,X,t) (11) 

A = - — (k,c,A,t) (12) 

k(t Q) = k Q; k(t f) = k f (13) 

to be satisfied by the optimal paths of the variables k, c, A, and further 

we know (p.*17) that 

H(k*,c*,A*,t) = max H(k*,c,A*,t) (14) 
c 

This i s a l l of the optimal control algorithm. It is enough to determine 

the optimal path completely, since (14) gives c* as a function of k* and 

A* which can be substituted into equations (11) and (12), two first-order 

differential equations, with two boundary conditions, eguation (13), and 

thus quite determinate. 
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Sometimes the algorithm i s quoted with a Hamiltonian, H*(k,A,t) 

which i s the result of the maximisation of equation (14). The differential 

equations are given simply as 

k = ||1 (k,A,t) 

3H* 
A = - — — (k,A,t) (boundary conditions as before) ok 

This i s no different from the algorithm as we have quoted i t , since, for 

instance, 

(k,A,t) = |S- (k,c*,A,t) + |S- (k,c*,A,t) 1̂  

3H but -— = 0 for c = c* by the maximality relation (14) . [When the maximum 3c 
of equation (14) is not an interior one, but i s on the boundary of the 

admissible set of c's, then the argument must be modified in a way familiar 

enough i f one knows the Kuhn-Tucker equations. The result is unchanged]. 

2. Discussion of the Algorithm 

The derivation of the optimal control algorithm of the preceding 

section has been rather mathematical, and i t was based on the Principle of 

Optimality, which i s a very general principle. It i s possible to give much 

more economic insight into the workings, now that we have seen a l l the 

relevant mathematical relations. The whole problem can be thought of as 

being the finding of an expression for derived demand. The economic 

notion behind derived demand for anything, be i t labour, capital or any

thing else which yields benefit not only (or not at all) directly but also 
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by being used in some way, is that, i f efficiency of use is guaranteed 

somehow (as, for instance, by competition for resources in a state of 

perfect information) then the worth of a stock of the thing i s given 

by the value of the maximum benefit the stock can yield (that i s , i f 

i t i s used optimally) and the derived demand is the worth at the margin. 

When the problem of eguations (1), (2), (3) is posed then, what the 

answer, J * ( k 0 , t Q ) t e l l s us is the worth of a stock k Q which can be used 

between the times t and t^ with the constraint, equation (2). If an 

economic agent is given the choice of having the stock k^ under those 

conditions or not, i t follows at once that J*(k ,t ) is the demand 

price (assuming that the agent is rational) that he is willing to pay 
3J* to have the stock. If k is divisible.on the other hand, then is 0 ^ 8k Q 

the demand price of another unit of stock — the marginal worth of the 

stock. These remarks apply just as well at any time t ( t <t<t^) to 

J*(k(t),t). 

A l l of the above is just an elaborate statement of the definition 

of the maximum benefit a stock can yield, and consequently the derived 

demand for i t . But i t enables us to interpret the various parts of the 

optimal control algorithm. From equation (6), i t is seen that c*(t) is 

the value of the control variable at time t which maximises 

F(k(t) ,c(t)t) + J* (k(t) ,t) f (k(t) ,c(t) ,t) (15) 

Now F(k,c,t) i s the integrand of the objective functional J, and so i t 

measures the rate at which (at time t) benefits are accruing. We may 
* 

c a l l i t the current rate of satisfaction. J (k(t),t) has just been 
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identified as the marginal worth of stock — the derived demand for 

another unit of i t . But f(k,c,t)-is just k, the rate of accumulation 

of stock. So the second term in the expression (15) measures the rate 

of accumulation of benefits to be reaped in the future. Thus the whole 

expression (15) measures the total rate of acquisition of benefits, 

both current and expected and i t i s not hard to see why c*(t) i s chosen 

to maximise i t . The optimal c*(t) gives that particular trade-off be

tween current satisfaction, F(.k,c,t), and future satisfaction which maxi-
* 

mises total benefit. Since, once X(t) is substituted for in expression 

(15), we have just the Hamiltonian, i t follows that the Hamiltonian is 

the rate of acquisition of benefits — or, i n other words, the benefits 

that derive from the duration of one unit of time. This latter interpre

tation w i l l be much expanded later. 

In the language of economic dynamics, the requirement that c*(t) 

should maximise expression (15) i s the requirement of equilibrium at each 

moment, l e t us say of "current equilibrium". That i s , i t expresses an 

equilibrium between current needs as expressed through direct demand for 

current satisfaction and future needs as expressed through the derived 

demand for stock, X(t), as usual for Lagrangian multipliers in economics, 

is the equilibrating price, i f , as has been implicit throughout this 
* 

discussion, "benefit" i s taken as numeraire. (For X = = marginal 

worth (i.e., benefit) of stock). With this in mind, i t is not surpris

ing that equations (11) and (12) provide the rest of the economic dyna

mics, that i s the link between successive current equilibria. Equation 

(11) i s our physical restraint, given to us exogenously, and can be 
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thought of, as in the example given in the last section, as a production 

function. So much is very easy. But now i t is clear that eguation (12) 

i s a price adjustment mechanism reflecting the changes over time in the 

marginal valuation of stock. 

What is the sense of this price equation? One remark here as a 

b i t of a digression. Now that A i s identified as a (shadow) price, or mar

ginal evaluation of something, i t is plain why equation (12) emerged (see 

p. 17) through an argument borrowed from duality theory. Duality theory 

reflects various symmetries between quantities and prices, and i t s tech

niques l e t us go from conclusions about one set of these variables [eq. 

(6)] to conclusions about the other [eq. (12)]. Let us write out equation 

(12) more explicitly: 

A' = - — = - F k(k,c,t) - Af k(k,c,t) , 

whence 

T + f, (k,c,t) + r F, (k,c,t) = 0 (16) 
A k A k 

The f i r s t term is the rate of accrual of capital gains to holders of stock 

(A is i t s price). f (k,c,t) is the own rate of return on stock, since i t i s 
JC 

the increment to the rate of accumulation k arising from one unit more of 

stock. F^(k,c,t) is the increment to the current rate of satisfaction from 

one unit more of stock, and since -̂ is the price of satisfaction in terms 

of stock, the third term in equation (16) is the revenue to a stock holder 

from providing this increment of satisfaction. Equation (16), then, i s a 

zero net-profit condition, and i t consequently confirms the identification 

of A with a shadow price. It says that the total rate of return on the 
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marginal unit of stock is zero: in one unit of time, and for this marginal 

unit, the increase (in stock units) of i t s value ( A / A ) plus the produced 

increase in stock (f^) plus the value (in stock units) of the increased 

current satisfaction (rr F, ) add up to zero. 
A k 

A point of possible confusion: What about "normal" profits? 

Surely the rate of return should equal the rate of interest, not zero? The 

answer is easy: A is a price quoted at time tg, since J* is measured always 

in the same way. That i s , J*(k(t),t) i s defined as 

fcf 
max / F(k(x), C ( T ) , T) dr 

which is the value, as seen from t^, of the part of the programme from t to 

t^. Consequently, i f there is a rate of interest, A / A is the rate of capital 

gains (in the usual sense) minus the rate of interest: for example, what 

one usually calls "no capital gains" corresponds to present-value prices de

clining into the future at the interest rate, i.e., ̂ - = - r . A f u l l e r treat-

ment of this matter w i l l be given later. 

3. Transversality 

The problem considered so far, as defined by eguations (1), (2), (3) 

has been that of maximising the functional J[c] for a fixed range of time t 

to t f , and with a requirement that, at time t f , the stock or state variable 

k should take on the value k^. It is frequently the case in problems in 

economics that neither t^ nor k^ is specified, but that both can be chosen 

optimally. There is conceptually no d i f f i c u l t y whatever to this. The 

function J*(k ,t ) is worked out for a range of accessible values of t 
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and k^, a l l that i s needed is to find out the point where the appropriate 

f i r s t derivatives vanish. It is convenient now to include as arguments 

of J* the terminal quantities t^ and k^ (dropping the bar for clarity) 

and to suppress kg and t^, i t being understood that these are given and 

fixed. Thus we define: 

t 
J ( t f , k f ) = / F ( k * , c * , T ) dx 

where k*(x,t^,k^) and c * ( r , t f , k ^ ) satisfy the optimal control equations for 

the problem with the boundary conditions: 

k(t Q) = k , k(t f) = k f . 

The name of s e n s i t i v i t y analysis (see Hadley & Kemp [1971]) is given 

to the problem of computing the first-order partial derivatives of J. We 

proceed directly: 

-rr— (t ,k ) = / dx{F — — + F — — } •3kf f f t Q k o k f c 3k f 

Now we may use the optimal control equations to note that: 

and 

Then 

F + Xf =0 (maximum principle: H is maximized by c*) c c 

X = - M = - F - Xf . 
Sk k k 

=-!X^{w-t^%i (i7» 
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where ' by T T - i s meant t h e t o t a l d e r i v a t i v e o f f ( k * ( T , t f , k f ) , c * ( x , t f , k f ) ,t) 
•F t 

f 9k* 
7ith r e s p e c t t o k f . The term .dx X -^r— can be i n t e g r a t e d by p a r t s t o W3 

— T" I „ , . 

0 f 
y i e l d : 

9k*. t fcf ^ r
f c f , . 9k* 

- X ( t J + A dx X (18) f t Q d k f 

The l a s t s t e p f o l l o w s f o r t h e s e r e a s o n s : The v a l u e o f k * ( t f , t f , k f ) i s k f by 

9k* 
d e f i n i t i o n , and t h e v a l u e o f k * ( t , t ,k ) i s k . Hence — (t=t ) = 1; '0"-f f' 0" 3k f 

(t=t ) = 0. Then the o p t i m a l p a t h k* s a t i s f i e s k*(x) = f ( k * , c * , x ) , so 9k* 

3 k f ' ~ "0 

3k* 
t h a t — — i s j u s t t h e d e r i v a t i v e w i t h r e s p e c t t o k o f f ( k * ( x , t ,k ) , 

d iC _ i x. 
c * ( x , t _ , k _ ) T T ) , t h a t i s , — — as d e f i n e d above. T h u s , . f i n a l l y : 

f f d k f . 

| £ - ( t . k j = - X ( t . ) (19) 3k,. f , f f 

T h i s r e s u l t i s h a r d l y s u r p r i s i n g . S i n c e X(t) was d e f i n e d t o be 

3J* 
— — ( k ,t) f o r any time t between t n and t _ , i t was i n t e r p r e t e d as the ok t u r t 

m a r g i n a l worth o f s t o c k a t time t . What e q u a t i o n (19) says i s t h a t i f 

t h e t e r m i n a l c o n s t r a i n t k^ i s i n c r e a s e d by one u n i t , t h e n the v a l u e , J , 

o f t h e o p t i m a l programme i s d e c r e a s e d by th e m a r g i n a l worth o f s t o c k a t 

t h e t e r m i n a l t i m e , t f . I t c o u l d h a r d l y have been o t h e r w i s e : i f one 

r e l a x e s t h e t e r m i n a l c o n s t r a i n t k^, the b e n e f i t from t h e r e l a x a t i o n (at 

t h e margin) must be j u s t t h e m a r g i n a l b e n e f i t o f s t o c k a t time t ^ . 
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Now the economic i n t e r p r e t a t i o n o f t h e o t h e r p a r t i a l d e r i v a t i v e 

3 J 
9 t , 
3 J 

o f J , Viz. -rr—, i s c l e a r . I t w i l l t u r n o u t t o be t h e m a r g i n a l worth o f 
"f 

time a t t h e e n d p o i n t o f t h e programme. The transversality conditions, 

which a r e d e f i n e d t o be the r e q u i r e m e n t s which must be f u l f i l l e d by the 

o p t i m a l c h o i c e s o f k^ and t ^ w i l l thus be n o t h i n g o t h e r than t h e r e q u i r e 

ments t h a t t h e m a r g i n a l worth o f s t o c k a t t h e end o f the programme and the 

m a r g i n a l worth o f time a t t h e end o f the programme s h o u l d b o t h be z e r o : 

a v e r y i n t u i t i v e l y s a t i s f y i n g economic r e q u i r e m e n t . 

What the n i s t h e m a r g i n a l worth o f time a t t h e end o f the 

8 J programme? I t i s ( t ' , k ) which from the d e f i n i t i o n o f J i s j u s t : ot^ t f 

9 J 

BtT^f'V = F(k*(Wk
f) f c * ( t f , t f ,k f) , t f ) 

»^f , r 3k* 8c*-, 
+ ••I.I d T t F . - r — + F -—} . t k 8 t f c 8 t f 

By an e x a c t l y s i m i l a r argument t o t h a t which l e d t o e q u a t i o n (18), one 

o b t a i n s : 

g - ( t f , k f ) = F ( t . ) - [X ^-]tf 

8 t f f f f 8 t f t Q 

. f n d f , d f . 

where F ( t ^ ) i s i n t e r p r e t e d o b v i o u s l y , as the v a l u e o f F a t time t ^ a l o n g 

8k* 

the o p t i m a l p a t h . C l e a r l y ( t = t Q ) = 0. S i n c e k * ( t f , t f , k f ) = k f by 

d e f i n i t i o n , i t f o l l o w s t h a t 

k 1 ( t f , t f , k f ) + k 2 ( t f , t f , k f ) = 0 
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where k. denotes the partial derivative of k* with respect to i t s 1st, 
it * it 3 k* 2nd argument. But k = k = f (k*,c*,t) , so that T — ( t = t ^ ) , which i s just 

* r 

k 2 ( t f , t f , k f ) , equals - f ( k * ( t f ) , c * ( t f ) , t f ) (where some arguments of k* and 

c* have been omitted). Thus: 

|^-(t f,k f) = F(t f) + X ( t f ) f ( t f ) 

(in obvious notation) 

= H(t f) (20) 

In other words, the marginal worth of time at time t^ i s just the Hamiltonian 

at time t^. The two transversality conditions to be satisfied by an optimal 

choice of t^ and k f are 

X(t f) = 0; H(t f) = 0 (21) 

two equations for two unknowns. 

It can happen frequently that k^ and t^ are neither completely 

specified nor completely free to be chosen. It may be that some relation 

must be satisfied by them, say S(t^,k^) = 0. This modification i s easily 

handled. The problem has become: 

maximise J(t^,k^) subject to S(t^,k^) = 0. 

The Lagrangian i s : 

L = J ( t f , k f ) - p s(t ,k ) 

and the first-order conditions for a maximum are therefore 

3J 3S , , 3S 
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3kf 9k £ 

S ( t f , k f) - 0. 

That's a l l ! But i t i s perhaps worthwhile to clear up a common miscon

ception of what i s meant by the transversality conditions. 

Figure 1 depicts an optimal path, k*(t), ending at the optimal 

point (tf, kf) of the curve whose equation is S(tf, kf) = 0. 

/> 
k* ^ 

S ( t f , k f) - 0 

: J 
t 

Fig 1. 

As drawn,, the path k*(t) does not intersect the curve S at right angles, 

and i n general there i s no reason for i t to do so (in physics sometimes 

there i s - hence the confusion). But at each point on the path, a l i t t l e 

arrow i s drawn, and this points in.the direction of the vector (H(t),„-\(t)). 

The directions are as drawn i f both H and X are positive, as w i l l often be 

the case in applications. This vector i s indeed at right angles (trans

verse) to the curve S. Why so? This i s just the content of eq (22), 

which t e l l s us that the vectors (H,-X) and (S t,S k) are par a l l e l at ( t f r k f ) . 

(Partial derivative notation). But (St,S. ) i s the gradient vector of the 
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function S (VS as i t i s frequently written), and the gradient vector i s the 

normal to the line of constant S, i.e., the curve S(tf, kf) = 0. 

This kind of reasoning i s perfectly familiar to engineers and 

physicists, but perhaps less so to economists. They would more lik e l y 

reason as follows: the function J ( t f , kf) i s just the maximum worth 

Cderived u t i l i t y perhaps) from a programme ending at ( t f , k f ) . We are 

interested i n maximising i t subject to a constraint, Vis. S(tf, k^) = 0. 

Thus usual procedure ca l l s for us to draw indifference curves, that i s , 

l o c i of points yielding the same u t i l i t y J, and then to find where an 

indifference curve i s tangent to the line of constraint. This i s shown 

in Figure 2. 

indifference curves 

> 

Fig 2. 
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At the tangency point, the gradients of J(t^,k^) and S(t^,k^) coincide, 

i.e., VJ = VS, or more expl i c i t l y : 

3J 8S 9J 8S 
dtl = P 9tT ? 9kT = P Bk7 S = ° f f f f 

These are just the transversality conditions (22). Maybe i f economists had 

created optimal control theory, they would be called the tangency conditions. 

A few more remarks. The usual notions of quasiconcavity (convexity) 

can obviously be brought into play here so as to obtain sufficient conditions 

for a maximum. The requirement i s easy to impose on S, but a b i t trick i e r on 

J. Often the constraint S takes the form of fixing t^ or k^ while leaving 

the other variable open to choice. Then S w i l l be something like k^ - k^ = 0, 

say. The transversality conditions becomes simply (for this example) 

H(t f) = 0, k f = k f. 

(The other equation, -A(t^) = p has no content, since p, too, is unknown). 

There is s t i l l enough to determine the problem f u l l y : one equation (H=0) for 

one unknown (t^). 

4. The Marginal Worth of Time 

The nature of time i s a considerable mystery even to physical scien

t i s t s . The shift from statics to dynamics in economic analysis involves 

d i f f i c u l t i e s whose source is precisely the nature of time. This essay cer

tainly does not claim to solve a l l these d i f f i c u l t i e s . But I think i t is 

f a i r to say that certain economic insights can be had from the considerations 

of optimal control theory, which are helpful precisely in the search for 

better understanding of intertemporal economic problems. 
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It was pointed out as unsurprising that the co-state variable X 

should, as a Lagrange multiplier, be interpreted as a price and a marginal 

worth — of stock, that i s , the state variable. But sensitivity analysis 

revealed that the worth of time at the end of an optimal programme was the 

Hamiltonian, and that i s not so unsurprising. Again (p. 21) <• i t was seen 

that the Hamiltonian was also the rate of acquisition of benefits — the 

benefits accruing during one unit of time. This interpretation i s not 

exactly the same as calling the Hamiltonian the marginal worth of time, but 

i t is close. Moreover, i t holds for a l l times between t and t^, not just 

at t^. Yet again, the Hamilton-Jacobi-Bellman equation [eq. (16)] can be 

interpreted in this vein. Because of equation (14), 'equation (6) can be 

written as 

J*(k ,t) = -H(k ,c ,X ,t) (23) 

in obvious notation. Now J* is not quite the same as J, being a function of 

different arguments. To clear this matter up, let us now include a l l the 

arguments of the maximised functional, and write 

t 
J*(t,k. , t _ , k j = max / dxF (k (x) ,c (x) ,x) t r t t c 

subject to 

k = f (k,c,t) 

k(t) = k ; ' k(t f) = k f 

Then equation (23) can be written 
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and i t i s clear that this result, too, is saying something about the Hamil

tonian and the marginal worth of time. But what exactly? 

It says that i f , at time t in the course of an optimal programme, 

one skips a unit of time, without anything else changing — k stays the 

same, as well as t^ and k^ — and then proceeds optimally after this skip, 

then the toss of total benefit i s H, evaluated at time t. In this precise 

sense, then, H is the marginal worth of time, at time t. 

If an intertemporal maximisation is being carried out, and i t may be 

a much more general one than that specified by equations (1), (2), (3), time 

i s an input, or factor of benefit, more or less like any other. I must say 

"more or less", because i t i s only in some regards that i t is like any other. 

It has a marginal worth, or price, certainly, and H, the Hamiltonian, comes 

close to measuring i t . But in what circumstance does i t measure what an 

economic agent would be willing to pay for a unit of time? Each instant of 

time is unique, with i t s own p r o p e r t i e s — i t is a heterogeneous input, and 

plainly at some times one would pay much for a few golden moments like the 

ones just experienced (excuse the language, but time i s a mystery and there

fore liable to provoke mystical talk). The d i f f i c u l t y , a l l too well known, 

is that moments of time, in their f u l l individuality, cannot be either 

skipped or replicated, and so in no conceivable market could anyone receive, 

in exchange for whatever payment, an extra unit of time, at time t, valued 

to be sure at just H(t). 

The physical world is not like this. The laws of motion are im

mutable, and what can happen at time t can happen at time t 1 , for a l l t and 

t \ (This principle, the homogeneity of time, was stated in a clear, and 

false, form by Newton, and once i t was corrected and cast into a better 
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form by Einstein became a major ingredient of the Principle of Relativity). 

The physical world deals with inanimate objects, drab, dull and neither 

(pace Samuelson) pro f i t maximising nor a l t r u i s t i c . Thus, for a l l these 

reasons the Hamiltonian, as defined by physicists for physical purposes, 

is quite exactly the marginal worth of time — or as they would say, the 

infinitesimal generator of time translations, when these are taken as ele

ments of the Poincare group. 

In economics, i t is sometimes reasonable to maximise one's bene

f i t s as i f time were homogeneous, and the distant future as v i t a l as the 

present. Ramsay [1928], after a l l , told us i t was immovat to discount. 

When this i s so, the Hamiltonian is the marginal worth of time, as w i l l be 

seen in a moment. 

What an economic agent can perfectly well buy in an appropriate mar

ket i s an extra unit of time in which to complete his programme. A student 

may bribe an invigilator for an extra few minutes to finish writing an exam; 

a big firm w i l l bribe the government for more time to comply with anti

pollution laws; options can quite legally be written into contracts to allow 

a contracting party more time, at a price, to carry out his obligations; most 

familiar of a l l , payment of interest w i l l buy time to repay a debt. Where 

does a l l this sound economic sense appear in optimal control theory? The 
8J* , 

answer xs easy: as — — (t,k ,t .k-). This is•the worth of an extra unit of 

dtf t f r 

time tacked on at the end of the programme. That unit i s what i t i s , and 

may be quite different from any preceding or subsequent unit, but i t is a 

definite, unmystical unit, and i t s worth i s easily determined, as 9J*/8t^. 

At this point, economic science gives us a very large bonus. We 

a l l have the feeling that when a number of inputs contribute to output or 
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u t i l i t y or whatever — benefit in general — then the optimal result is 

achieved when the quantities of the inputs are chosen so that the extra 

worth deriving from a unit of further expenditure on any one of the inputs 

i s the same as that from any other. Time is only one input, but a hetero

geneous one, and so each instant is like a separate input. The result which 

corresponds to the above familiar one i s this: i t does not matter at what 

time t an economic agent purchases an extra unit of time to be tacked on at 

the end; the extra, or marginal, worth i t provides w i l l always be the same, 

along an optimal path. 

This result i s not exactly the same as the usual one about inputs, 

but i t i s just as useful, and i t is proved in the same way. For, because J* 

i s defined as an integral, we can write, 

J * ( t Q , k 0 , t f , k f ) = J*(t 0,k Q,t,k*) + J*(t,k*,t f,k f) 

* 
where k^ i s the value, k* (t) of k along the optimal path from t Q to t f , at 

time t. Now consider a slightly longer programme, lasting t i l l t^ + dt. If 
* 

one were constrained to pass through the point (t,k^) on the new trajectory, 

the (constrained) maximum worth to be had would be 

J*(t 0,k Q,t rk*) + J*(t,k*,t f + dt,k f) 

9 J * * 
= J * ( t 0 , k Q , t f , k f ) + — ( t , k t , t f , k f ) d t + o(dt) 

But this must be less than the unconstrained maximum, which is 

9 J * 
J * ( t 0 , k Q , t f + dt,k f) = J ^ W W + 3 ^ - ( t o ' k o ' t f ' k f ) d t + o ( d t ) 

9 J * * 9 J * Therefore - r — (t,k , t _ , k j < T — (t„,k .t_,k ) . If one considers a shorter 
ot,. t f f — dt-. 0 0 f f 

f ' f 
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programme, of length t^-dt, i t i s plain that: 

8J* * 
J * ( t 0 , k 0 , t f , k f ) - ̂ - ( t , k t , t f , k f ) d t < J * ( V k o , t f , k f ) 

" I r 7 ( t0' k
0' tf kf ) d t 

whence 

| ^ ( t , k ; , t f , k f ) > | ^ . ( t o , k o , t f , k f ) 

But the two results show that 

f ^ ( t ' V V V = | ( t o ' V V V ( 2 4 ) 

for a l l t. And this i s the desired result. The extra worth from purchasing 

an extra unit of time, at time t [left-hand side of equation (24)] i s the same 

for a l l times t between t Q and t^. 

The argument i s just as easy in words. The gain in worth from being 

given an extra unit of time at t cannot be more than that from being given i t 
* 

at t^, or else the path from t to t^ through k̂_ could not be optimal. De

layed information (i.e., greater length of time available) cannot be more 

valuable than the same information provided earlier. On the other hand, the 

loss from being deprived of a unit of time at time t must be at least as 

great as that of being deprived of i t at t^ for exactly the same reason: delay 

of bad news cannot make things any better. But at the margin, the gain from 

a unit of time i s the same as the loss from being deprived of i t , and so both 

are equal to the gain from the extra unit purchased at t^, and therefore con

stant along the optimal path. This result, like the familiar one about i n 

puts, characterises optimal paths, and i s proved by exploiting optimality. 

I said above that this result was a large bonus. I shall now 

give two examples which w i l l , I trust, vindicate that statement. The f i r s t 
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is the example of autonomous systems, that i s , those drab, dull ones like 

physical systems or Ramsay's moral ones, where one instant of time is 

exactly like any other. What this means i s that the functions F and f of 

equations (1) and (2) cannot depend expli c i t l y on t. Consequently, neither 

does H, which i s nothing but F + Af. In fact, since 

J*(t,k,t f,k f) 

= max/t
f F(k(x) ,c(x) )dx 

[subject to k = f(k,c) and k(t) = k,k(t f) = k f] 

t +t' 

= m a x / ^ F(k(i) , c ( T ) ) d t (25) 

[subject to k = f(k,c) and k(t+t') = k,k(t +t') = k ], 

we have J*(t+f,k,t^+t',k^) = J*(t,k,t^,k^) or else, more simply, J*(t,k,t^,k^) 

is a function of k^, k^ and t ^ - t alone. (That i s , time is homogeneous, and 

only time differences matter: equation (25) says that i f both t and t^ are 

translated an equal amount, then J* is not changed). But then, the result 
3J* we have obtained, namely that is constant along the optimal path, means at 3J* also that - , i.e., H(t), is constant along the optimal path, since, i f 

o t 
3 J * 

J*(t,t_) = P(t - t ) , say, suppressing k - dependences, i t is immediate that 
9 t 

3J* £ 

f 3 t x 

We have shown in this case that H(t) is indeed the marginal worth of 3t 

time. Now, on p. (19) , i t was pointed out that once the maximum principle, 

equation (14), was used, equations (11) and (12) were two first-order 

differential equations for k and X. Knowledge that H = constant is the same 

as knowledge of a f i r s t integral of these equations. In other words, i f one 

substitutes c* = c*(k,A) from equation (14) into H(k,c*,A) = constant, one 
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obtains the equation of the trajectories generated in the phase plane 

[k,A)-space] by the equations (11) and (12). These are usually called the 

optimal t r a j e c t o r i e s . If one decides to look at one of them, that is i f one 

fixes the value of H, then one may solve H(k,c*(k,A),A) = H for either k or 

A, substitute the solution into equation (11) or equation (12) and get a single 

differential equation with just one unknown function of time. For example, 

one may obtain k = h(k), say. This equation can always be solved by inte

grating T-T-. , as follows: 

(The solution has been reduced to quadrature, as the old books on applied 

mathematics say). This very pleasing result i s quite general i f there i s 

only one state variable, k. It i s not so useful in the case of several 

state variables (a vector k of state variables) each with a corresponding 

co-state variable, but i t is not entirely worthless either. 

The second example i s the case where the heterogeneity of time enters 

only because of Ramsay immorality, that i s , discounting of future benefits. 

Here, 9J*/9t^ turns out to be an interesting quantity although i t i s no 

longer H. The Hamiltonian can be written as: 

H(k,c,A,t) = e F(k,c) + Af(k,c), 

so that the optimal control equations are as follows: 

9H 
9c e _ < 5 tF (k,c) + Af (k,c) = 0 

A 

k 9H 
9A = f(k,c). (26) . 



38 

— fit 

If now one puts A = pe , the resulting system of equations in k and p (and 

c) i s autonomous: 
F (k,c) + p f (k,c) = 0 c c 

P - Sp = - F k - p f k 

k = f(k,c) (27) 

As in the ful l y autonomous case, i f a f i r s t integral of this system can be 

found, the problem i s essentially solved. But H i s not a f i r s t integral. 

Before deriving what the f i r s t integral i s , i t i s worthwhile to 

spend just a few moments more on H. It i s not constant, and i t s total time 

derivative can be calculated: 

• d-H „ • 3H 3H 3H ' 3H 
h^'c'x't] = 3t: + 3 k k + 3c" c + 

3H 
= -— + Xk - kX, by equations (26) dt 

3H/3t. 

All the time dependence of H is the explicit part, everything else cancels 

out along an optimal path. This calculation provides an alternative proof 

of the constancy of H in autonomous systems. 

The real constant i s 3J*/3t^. We may observe that 

J*(t+dt,k ,t f,k f) 

= / f_.e~ 6 TF(k*(T) , c * ( T ) ) d T (28) t+dt 

where k * ( x ) and c * ( x ) define the optimal path and where in particular 

k * ( t + d t ) = k and k*(t f) = k f. 
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The integral of equation (28) can also be written, after changing the dummy 

variable of integration x to x' + dt, as 

t — c i t 
e ~ 6 ( d t ) / t

f e" 6 TF(k*(x'+dt),c*(x'+dt))dx' 

Similarly, 

t -dt , 
J*(t,k t,t f-dt,k f) = / e" TF(k(x),c(x))dx 

where k and c define the optimal path with boundary conditions 

k(t) = k , k(t f-dt) = k 

But k(x) must equal k*(x+dt) and similarly c(x) must equal c*(x+dt), since 

the hatted and starred pairs of functions are defined by the same autonomous 

system, equation (27), with the same boundary conditions once the translation 

by dt has been attended to for k* and c*. 

Hence 

J*(t+dt,k t,t f ,kf) = e - < S ( d t ) j * ( t , k t , t f - d t , k f ) . 

This yields 

J*(t,k t,t f,k f) + dt -|^= e " 6 ( d t ) [J*(t,k t,t f,k f) - dt 

+ o(dt) 

8 J * 
= J*(t,k t,t f,k f) - d t [ — + &J*] + o(dt) 

and thus 

8 J * 8 J * 

= H - SJ*. [Equation (23)] 
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So that the constant along an optimal trajectory, and also the marginal worth 

of time, is H - 6 j * . This result i s useful in a quite different way from 

the autonomous system result. There H = constant gave the equation of the 

optimal trajectories, but here, since J* is what is to be found by solving 

the optimal control problem rather than being a known function, H - 6J* = 

constant is of no help in finding the equation of the trajectories. But these 

after a l l are given by the autonomous system (27), which may yield a f i r s t 

integral by direct methods. Then, i f that is so, the trajectories are known, 

and consequently H can be calculated along them directly. At the end of any 

trajectory, J* = 0 by definition, and so the constant appropriate to that 

trajectory i s known. In particular, i f the end of the trajectory i s charac

terised by the transversality condition H = 0, the constant is zero. This 

means that J* i t s e l f , the worth of the optimal programme, can be obtained 

at any point on a trajectory, without f u l l y solving the problem and carry

ing out the integration of equation (1). This information can be very 

valuable. The case of the H = 0 transversality condition is especially 

interesting. For then we get the very agreeable economic result that, for an 

optimal programme for which time is not a constraint — and so is chosen 

optimally — the remaining value of the programme, at any point in i t s course, 

i s obtained simply by solving 

H - 6J* = 0, i.e., J* = 7 H ; 

0 

in other words simply by taking the capitalised value of the Hamiltonian 

at the given rate of discount, 6. The remaining worth, J*, is equivalent 

to a perpetual benefit stream of size H, at interest rate 6. 

These last results w i l l be of great use in the other two essays 

of this thesis. 
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5. The Phase Plane 

In this f i n a l section, l e t us re s t r i c t our attention to problems 

which are either autonomous or time-dependent only through an exponential 
—61 

discounting factor e . Equation (27) gives the autonomous optimal control 

equations for k and the "current-value" shadow price p: 
F (k,c) + pf (k,c) = 0 c c 

| = " Fk " P fk + 6 P 

k = f(k,c) (27) 

Let the solution of the f i r s t of these equations (the maximum principle) 

be written as 

(28) 
c = c(k, p) 

This may now be substituted into the remaining two equations to yield a 

closed system. The phase plane of the problem i s constructed by taking k 

as abscissa,P as ordinate, plotting the two lines p=0, k=0, and drawing 

the trajectories of the solutions k(t), p(t) of equations (27) for varying 

i n i t i a l conditions. Frequently the result w i l l resemble Figure 3. 
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P 

r 

fc - 0 

p rt 0 

k 
Pig 3. 

The lines k = 0 and p • 0 can be best interpreted by imagining a 

static world. F i r s t of a l l , i f an economic agent could perceive only a 

spot price., p, of stock, and further presumed that this price would last 

for ever, he would wish to purchase an amount, k, of the stock such that 

i t s marginal worth equalled p *- that i s , such that the marginal unit y i e l d 

ed zero net p r o f i t . How much benefit does a stock k, costing pk, yield? 

In a short space of time, At say, i f our agent chooses a value c of the 

control variable, the direct benefit i s F(k, c)At. The stock has changed 

by an amount kAt, that is f(k, c)At, which, since the price stays fixed at 

p ^ i s worth pf(k, c)At. The original stock i s s t i l l worth i t s cost pk, but 

interest has been forgone on this sum to the value of 6pkAt. The net 

benefit i s thus (F(k f c) + pf (k, c) - 6pk)At. 

The first-order conditions for maximising this are just 

F c
 + P f

c " 0 ; *k + p f k " 5 p = °< 
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and i t is immediate from equations (27) that this yields the p=0 line in the 

phase plane. Thus this line can be interpreted as the static (derived) 

demand curve for stock. 

Next, one can imagine a holder of stock, rather than a purchaser. 

If his holding i s k, what would i t cost for him to produce an extra unit of 

stock? The cost w i l l be the difference in benefit received over a short 

time At in the following two sets of circumstances; 

(a) the stock k is maintained unchanged during At, 

(b) the stock k i s increased by one unit during At. 

For (a), the control variable c must be chosen so that k =0, that is f(k,c) 

= 0. Let the solution to this equation be c = c(k). Benefit received is 

thus F(k,c(k))At. For (b) the control variable must be chosen as c(k) + Ac, 

say, where kAt = 1, that is f(k,c(k) + Ac)At = 1. Since f(k,c(k)) = 0, this 

means that 

AcAt = l/f c(k,c(k)) (29) 

The benefit received is then F(k,c(k) + Ac)At = F(k,c(k))At + F (k,c(k))AcAt. 
c 

The benefit forgone in producing one unit of stock i s , therefore, from equa

tion (29) : 

F (k,c(k)) 
-Fc.(k,c(k))AcAt = - f

C
( k f C ( k ) ) 

c 
It i s reasonable to c a l l this quantity the supply price of stock, p, say . 

s 
Then the variables p ,k and c(k) satisfy the pair of equations 

s 

F (k,c) + p f (k,c) = 0 c c c 

f(k,c) = 0 , and from eqs (27). this gives pre

cisely the k = 0 line i n the phase plane. This line can then be 
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interpreted as the static supply curve for stock. 

These arguments show that, whert the phase plane looks like Fig. 3, 

i t can indeed be understood as an ordinary demand-and-supply diagram, with 

adjustment mechanisms provided. These mechanisms are the key to comparative 

dynamics, as w i l l become clear in the examples of the remaining two essays 

of the thesis. 

To conclude this essay, some comments are in order on the limitations 

of the analysis presented. Throughout, only one state variable, k, has been 

considered. Problems can of course easily arise in which two or more are 

needed — natural resource models are the most obvious example; see, for 

example, the bibliography in Clark [1974]. Such problems,where naturally a 

two-dimensional phase plane is no longer sufficient, are harder to treat 

than the problem of this essay in the same measure as multi-product general-

equilibrium models are harder than one-product partial equilibrium ones. On 

the other hand, where there i s only one state variable, more than one control 

variable can be handled as easily as can one — the model of the following 

essay is an example of such a case. The development and analysis of the opti

mal control algorithm, as well as of the transversality conditions, i s appli-. 

cable to a problem with a vector of state variables with virtually no modifi

cations. It i s the subsequent analysis, both mathematical and economic, that 

is d i f f i c u l t . 

The technical limitations of the presentation of this chapter are 

manifest. It i s enough to work through the book of Hadley and Kemp [1971] to 

become aware of the great variety of subtle mathematical points which can arise 

in optimal control questions. But Hadley andKemp state their aim as being to 

write a mathematical textbook with examples drawn from economics: mine has 

been the obverse — to simplify the mathematics so as to c l a r i f y the economics. 
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CHAPTER II 

A STOCK ADJUSTMENT MODEL AND THE PROBLEM OF OPTIMAL EXIT 

This essay builds on the work of the preceding one. A specific model i s 

treated which allows the economic interpretation of optimal control theory 

to be used for working out comparative dynamics. The results are not 

particularly d i f f i c u l t . This fact may seem surprising to anyone who has 

studied the work of Oniki (1973) and i t may be worthwhile to ask why. Oniki 

has successfully (I believe) followed Samuelson's instructions for comparative 

statics i n the case of comparative dynamics. That i s , he has computed 

expressions for the (infinitesimal) changes induced at each instant i n a l l the 

endogenous variables in an optimal control problem by changes in any of the 

exogenous variables. It i s not surprising that these expressions are compli

cated in their general forms and, besides, usually impossible to sign. But 

often the interesting economic consequences of a change in exogenous variables 

are restricted to a small number of those calculated by Oniki. Again, as w i l l 

become clear in this essay and the next, i t can be the effects of a finite 

change in an economic environment which are of real interest rather than a 

tendency, expressed by some derivatives, produced by infinitesimal change. 

These remarks are i n no way meant as a slight on Oniki's extremely valuable 

work (for he has a real compendium of results i n very general form), but 

instead are intended to point out the substantial difference between his 

approach and mine. There are questions - of detail rather than of essence -

that can quite legitimately be called questions in comparative dynamics 



which I shall not consider at a l l in what follows, because I think i t i s 

more f r u i t f u l at the moment to concentrate on matters which are distinc

tively related to dynamics and time. Perhaps fortunately, perhaps be

cause of my choice of models, these matters lend themselves to a reason-

ably simple treatment. The detailed questions l e f t unanswered can, after 

a l l , be approached by Oniki's methods, which are chiefly an extension of 

those of comparative statics. The main point that I want to emphasize 

is that I shall be concerned with non-infinitesimat changes in exogenous 

variables. 

In Section 1, the model of stock adjustment to be considered i s 

specified. It can be thought of as providing an elementary paradigm for 

comparative dynamics, as I wish to look at i t in this thesis. The optimal 

control equations are written down, and the phase plane drawn. Then in 

Section 2, a (finite) change is made in the cost structure for production 

of the stock. The dynamic adjustments made as a result are analysed, with 

special emphasis being given to the possibility of exit from business. The 

methods of Chapter 1 are used extensively in this section. 

1. Specification of the Model 

The question considered in this section is the following: i f a 

firm keeps an inventory of finished goods out of which to meet demand for 

i t s product, what w i l l be the effect, short-run and long-run,' on the size 

of this inventory of an increase in production costs? We may observe at 

once that i f only long-run effects are to be considered, the traditional 

comparative statics methods for long-run equilibria are sufficient to 
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answer the q u e s t i o n . The model which i s s e t up a l l o w s a d e f i n i t e q u a l i t a 

t i v e answer t o t h a t s t a t i c q u e s t i o n and the n t h e p a t h t h e f i r m f o l l o w s i n 

g o i n g from i t s o r i g i n a l s i t u a t i o n t o i t s f i n a l one i s examined. 

F i r s t , a l t h o u g h o p t i m a l c o n t r o l t h e o r y a l l o w s t r e a t m e n t o f 

s i t u a t i o n s where t h e f i r m i s not i n e q u i l i b r i u m b e f o r e i t s c o s t s rise, there 

a r e t o o many k i n d s o f d i s e q u i l i b r i u m f o r an i n v e s t i g a t i o n o f a l l o f them t o 

be u s e f u l . C o n s e q u e n t l y we s h a l l assume t h a t the f i r m s t a r t s i n a p o s i t i o n 

o f l o n g - r u n e q u i l i b r u m . (Comparative statics c e r t a i n l y r e q u i r e s t h i s ) . 

The model: t h e f i r m ' s o b j e c t i v e i s t a k e n t o be the m a x i m i s a t i o n 

o f t h e d i s c o u n t e d sum o f i t s p r o f i t s i n t o the i n d e f i n i t e f u t u r e . L e t the 

f l o w r a t e o f s a l e s be s, and l e t t h e f l o w o f revenue from t h i s s a l e s volume 

be R ( s ) . L e t t h e f l o w r a t e o f p r o d u c t i o n be y, and t h e f l o w o f c o s t from 

t h i s be C ( y ) . The f u n c t i o n s R and C w i l l be assumed t o have t h e u s u a l 

c o n v e n i e n t p r o p e r t i e s o f d i f f e r e n t i a b i l i t y and d i m i n i s h i n g r e t u r n s . L e t 

the i n v e n t o r y s t o c k be denoted by k, and l e t c o s t s o f h o l d i n g t h i s s t o c k 

be d i r e c t l y p r o p o r t i o n a l t o k, 0k, say. Then t h e d i s c o u n t e d sum o f p r o 

f i t s i s ( d i s c o u n t r a t e = r) : 

OO — y t" 

J = / e 1 [R(s) - 0k - C ( y ) ] d t . 

Output goes i n t o i n v e n t o r y u n t i l s o l d , so t h a t 

k = y - s. 

I t i s n e c e s s a r y t h a t k >_ 0, y>_0, s >_ 0. In o r d e r t h a t t h e r e s h o u l d be a 

purpose f o r h o l d i n g i n v e n t o r y , t h e assumption i s made t h a t the s a l e s f l o w 

cannot exceed some f r a c t i o n o f i n v e n t o r y : 
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s •••<_ qk. (1) 

This last constraint can be thought of as a crude model of the 

technology of distribution. If i t takes a certain time for goods to be 

shipped from a factory to points of sale, then only a limited quantity 

determined by the size of inventory, can be used to restock shelves when 

their previous contents have been sold. The precise form of inequality 

(1) is in any case not c r i t i c a l to the results to follow. A l l that matters 

is that there should be some constraint on sales volume related to inventory 

size. Similarly i t w i l l become apparent in the analysis below that the 

direct cost, 0k, of holding inventory need not have that particular form, 

and in fact may be zero without affecting qualitative results, so long as 

the discount rate, r, i s positive, since a carrying cost (forgone interest) 

is thereby introduced. 

The. Hamiltonian can now be formed. Following the rules of Chapter 

I, we obtain: 

H(k,p,s,y,t) 

= e" r t[R(s) - 0k - C(y) + p(y-s)] 

where k is the state variable, p the (current value) co-state variable, s 

and y control variables. The maximum principle requires that we maximise 

H with respect to s and y for any admissible k and p over the feasible 

set of s and y: 

0 <_ s <_ qk 

y >_ 0. 
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The optimal values s* and y* are as follows: 

s*= 

y* = 

0 i f P >_ R' (<>.} 

s'jpl i f R' (01 ^p >_ R1 (qk) 

qk i f p £ R' (qk) 

0 i f P <_ C'(0) 

y(p) i f p >. C (0) 

where the functions s and y are the inverse functions of R' and C' and there

fore s a t i s f y the following i d e n t i t i e s : 

R' (s (p) ) = p 

C (y(p)) = P 

The d e r i v a t i v e s , R' and C , are presumed to be monotonic functions: R', the 

marginal revenue, decreasing, and C , the marginal cost, increasing. The 

maximised Hamiltonian i s now: 

M(k,p,t) = e~ r t(R(s*) - Ok - c(y*) + P ( y ^ - s * ) ) , (2) 

and from t h i s one may obtain the shadow-price equation: 

p = rp - e r tM k [eq(I-27)] 

Five d i f f e r e n t regions of the phase plane can be distinguished and the forms of 

the shadow-price equation as well as of the stock equation k = y-s are l i s t e d 

below i n the table, while the regions of the phase plane are depicted i n 

F i g . 4. 
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TABLE 1 

STOCK AND SHADOW-PRICE EQUATIONS 

k = y - s p = rp - M̂ e r t 

I. p>,R'(0) y(p) y(p) rp + 9 

P .< R* (0) 
II. p >_ R* (qk) 

p> C (0) 
y(p) s(p) y(p) - s(p) rp + © 

III. p < C'(0) 
p >" R' (qk) 

s(p) -s(p) rp + 0 

IV. p <_ C (0) 
p < R« (qk) 

qk -qk rp + 0 + q(p-R'(qk)) 

V. p > C*(0) 
p <_ R' (qk) 

y(p) qk y(p) ~ qk rp + 0 + q(p-R'(qk)) 

Fig 4. 
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(Unless R' (0) > C*(0), production w i l l never be profitable). 

With this information, i t i s now possible to draw the p =» 0 (static demand) 

line and the k = 0 (static supply) lin e . The result i s i n Fig 5, along 

with the senses of the optimal paths in the several parts of the phase plane. 

p f 

Fig 5. 



The equation of the p = 0 line is 

, = qR' (qk) 9_ 
p r+o . ~ r+q 

which plainly must l i e beneath the line p = R'(qk), as drawn. The k = 0 

line i s just the p-axis in region IV: in region V, i t has equation p = C(qk) 

in Region II, i t is the line p = p, where p satisfies y(p) = s(p). It i s 

evident that p i s the value of p where the curves p = R* (qk) and p = C (qk) 

intersect. 

It is possible to verify directly for this model that the p = 0 

and k = 0 lines are respectively the static demand and supply curves. To 

do so i t is convenient to imagine the firm divided into three departments, 

production, inventory and sales. Then the demand curve<gives the prices (in 

static situations) that the sales manager i s willing to pay the inventory 

manager for the latter's maintaining an inventory of a given size. The 

supply curve gives the prices that the production manager requires to be 

paid to supply goods sufficient to maintain inventories of given sizes. 

The analysis of Chapter 1, Section 5, makes i t clear that the above 

statements are true but i t may be illuminating to check them explicitly. 

F i r s t , the supply curve (attention w i l l be restricted to Region V : " 

nothing of extra interest appears in the other regions.) In a static s i t 

uation inventory is constant, and so;in Region V, s = y = qk, a l l constants. 

We wish to know the marginal cost of a unit of stock in an inventory of size 

k. Such an inventory calls for a production rate, y, equal to qk. If one 

extra unit of stock i s to be produced in one unit of time, then this calls 

for a production rate of y+1 for this unit of time and a marginal cost of 



C (y) = C (qk). It should be noted that this i s the cost of the last unit 

of stock taken from the flow of production. 

Next, the demand curve. This gives the net revenue achieved 

by the inventory manager from the sale of the last unit of stock to the 

sales manager. Let this revenue be denoted by p. Since sales volume i s 

s = qk, the revenue obtained by the sales manager from one more unit sold 

i s R'(qk), and this then i s what w i l l be paid to the inventory manager for 

i t ^gainst this, there are some charges to be borne by the inventory depart

ment. To provide one more unit (over unit time, say, although this condition 

does not affect the result) the inventory level must be raised by — units 

because of the turnover constraint s 4 qk. The cost of this increase for 

one unit of time is rp/q + 0/q: interest cost plus holding cost. Thus net 

revenue = p = R'(qk) - rp/q - 0/q, whence p = qR'(qk)/r+q - 0/r+q. This 

agrees with the equation of the p = 0 line. 

The point (k,p) in Fig. 5 is the saddlepoint of the optimal paths 

in the phase plane. It should now be clear that i t i s indeed just the long-

run equilibrium maintained by the inventory manager in our f i c t i t i o u s decen

tralised scheme of the firm. It i s then the point that we assume the firm 

occupies when an exogenous cost increase takes place. The neighbourhood 

of this point i s shown in Fig. 6, along with the stable and unstable arms 

leading to and from i t , and the sense of the adjustment paths. 
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2. Comparative Dynamics 

Now that the optimal control problem has been worked out, we 

shall see that some comparative dynamics questions are not very d i f f i c u l t . 

There is assumed to take place a change in the cost function C(y). It is 

not the function C i t s e l f but i t s derivative C , the marginal cost func

tion, which defines the k = 0 line i n the phase plane (see Fig 6 ) and 

an increase in C(y) for a l l y.does not necessarilyCmean anT.increase (shift up̂ > 

wards) in C (y) — an increase in fixed costs alone, for example, leaves 

c\y) unchanged. But C (y) w i l l increase i f the cost change i s , for example, 

a specific tax on output produced or inputs used in production. Besides 

this i s the usual state of affairs meant when one speaks of a supply curve 

being shifted up because of increased costs. Let us begin with this case. 

The long-run effect i s no more d i f f i c u l t than the most elementary demand-

and-supply analysis. The new long-run equilibrium (saddlepoint) li e s on the 

p = 0 line further up than the old (k,p). 

The next question i s : Does the firm wish to adjust towards the new 

saddlepoint or go out of business? Let us.for the moment assume that posi

tive profits were being made at (k,p) (i.e., our firm was intramarginal in i t s 

industry), so that i f the cost change is small enough, i t is s t i l l worthwhile 

to stay in business. Now the stock k is not instantaneously adjustable, but 

i t s shadow price may well change discontinuously with the cost increase (since 

we are considering a finite change in costs). Since the firm's optimum policy 

is to move to the new saddlepoint, we can t e l l in fact that i t must move along 

a stable arm to get there. Thus immediately after the change, i t goes to the 
— g 

point (k,p ) as shown in Fig. 7. 
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P 

k=0 before 

stable arm 
(new costs) 

p=0 

k k 

Fig 7. 

The "impact effect" of the change can thus be read off at once: shadow 

price increases from p to p s; stock decreases moriotonically from k to new 

equilibrium value; sales ( =» qk) behave like k; production ( = y(p)) drops 

suddenly, but increases as new equilibrium i s reached. In this case, then, 

the long-run comparative statics result that stock w i l l decline i s of the 

same sign as the impact effect, and indeed the effect at a l l intermediate 

times. 

What i f profits are completely eroded and the firm wishes to leave the 

industry? It may s t i l l do so optimally. The transversality conditions 

(see eq (1-21)) for an optimal exit path are that at the endpoint 

M(k f ? p£, t f ) = 0 and Pfkf =0. It i s plain from Fig 5 that such endpoints, 

i f one begins from an i n i t i a l stock holding of k, can be found only i n 
""•271 

Region IV, where M =^R(qk) 0k C(0) - pqkl e . c(0) of course i s just 

fixed cost. Further, since i n Region V the equation for the state variable 

k i s k = *-qk, i t follows that k w i l l never f a l l to zero i n a f i n i t e time, 
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so that the endpoint must l i e on the k-axis. The endpoint, or point of 

exit,, i s then given by p f = 0̂  R(qkf) = Gkf + C(0). It i s s t i l l not clear 

that there is any trajectory starting from a point on the line k « k 

that ends at (k-, 0). 

case 2: 
no optimal exit path 

P»R'(qk) 

Fig 8. 
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I t can be seen from F i g . 8 that whether or not there i s one depends on 

where the unstable arm reaching i n t o Region IV h i t s the k-axis. The c r i 

t i c a l state of a f f a i r s i s when the unstable arm ar r i v e s at the k-axis j u s t 

at the point k f. I f i t i s to the l e f t [Case 1] we see that an exit'.- path 

does e x i s t , i f to the r i g h t [case 2] then not. 

Case 1 i s quite easy to understand. There does e x i s t a path at 

the end of which, i . e . , at the point (k^,0),the t r a n s v e r s a l i t y conditions 

f o r optimal p r o f i t are s a t i s f i e d . For a fir m which does not intend to stay 

i n business, there i s no doubt that t h i s i s the path that i t i s best to 

follow. But i n Case 2, although there are paths that end up on the k-axis, 

fo r a l l of them the Hamiltonian there i s p o s i t i v e , which implies, according 

to the discussion of Chapter I, that a path l a s t i n g a longer time would be 

more p r o f i t a b l e . I t i s a f a m i l i a r r e s u l t of "turnpike" theory (see, f o r 

example, Dorfman, Samuelson and Solow [1958] and Radner [1961]) that the 

clo s e r an optimal path passes to the saddlepoint, or "turnpike", the longer 

i t l a s t s . Thus the most p r o f i t a b l e of a l l the motions s t a r t i n g on the k = k 

l i n e i s , i n Case 2, the stable arm. 

Now i t may be permissible f o r the firm to shut down at once with

out cost, or at some f i x e d cost. I t w i l l of course prefer t h i s course i f the 

best p r o f i t a v a i l a b l e by staying i n business e i t h e r f o r a f i n i t e or for an 

i n f i n i t e time i s s u f f i c i e n t l y negative. 

In Case 1, then, the firm has three options: to stay i n business 

along the stable arm, to e x i t optimally, and to shut down i n s t a n t l y , at cost 

S, say. In Case 2, there are only two options: the stable arm or instant 

shutdown. We s h a l l f i r s t of a l l see that i n Case 1, optimal e x i t i s always 

preferred to the stable arm. 
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The Hamiltonian for this problem involves the time only through 
- r t 

an exponential discounting factor, e , and so we know that the marginal 

worth of time, constant along a l l optimal paths, is M - r J * , where J* is 

the worth of pursuing the path. The stable arm ends, at time i n f i n i t y , at 
- r t 

the saddlepoint. Because M is multiplied by the factor e , i t is plain 
that M - r J * = 0 at the saddlepoint at time i n f i n i t y . Therefore, for the 

— s 

stable-arm path, starting at (k,p ) at time 0, the worth is 

J* = i M(k,pS,0) 

= ^ (R(qk) - Ok - C(y(p S)) + p S(y(p S) - qk)) 

[see equation (2)]. At the end of the exit path, J* = 0 by definition and 

M = 0 by the transversality condition. Along this path, too, then, the mar

ginal worth of time is zero. The worth of the path is 

J* = - M(ic,pe,0) e r 

— Q 

where (k,p ) is the beginning of the exit path. But now we observe that 

J > J . This follows because p S < p S, and in Regions IV and V anywhere e s 
below the k. = 0 line — = ke ? t < °- Thus we confirm that i f an optimal exit 

' y p • - -

path is available, i t is preferred to the stable arm. 

Possible shapes for optimal exit paths are depicted in Fig. 9. 

A l l four shapes can be realised in appropriate circumstances. In a l l cases, 

stock and sales decline monotOnically, but the shadow price may.first increased 

and i t may give rise to continued production for a time, with or without an 

interruption immediately following the cost change. 



I possible k _'s k 
Fig 9. 

Case 1 i s now f u l l y analysed. Optimal exit by a path shown i n Fig 6 

i s chosen i f 

j * a i M(ic, p e, 0) > -S e r 

and instant shutdown i s preferred otherwise. Case 2 i s just as easy: the 

stable arm i s followed i f 

J* = - M(k, p s, 0) > -S, s r 
and otherwise there is instant shutdown. 

The "perverse'1 case of Cty) becoming greater for a l l y but C'(y) 

becoming less i s no doubt more l i k e l y to lead to exit than the usual case 

discussed above. Most of the possible outcomes are shown in Fig 10 with 

no further comment. 
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The intermediate case i s where the cost increase i s confined to 

fixed costs, without change in marginal cost. Then the phase plane does 

not change, and the firm may remain at the saddlepoint with reduced p r o f i t 

i f the unstable arm ends to the right of the point (k f, 0) defined by 

H(k f, 0) = 0, or exit along the path leading to (kf, 0) i n the other case, 

or f i n a l l y shut down at once i f that i s cheapest. 

This model, i n i t s "usual" rather than "perverse" form, i s one where 
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q u a l i t a t i v e comparative s t a t i c s gives an unambiguous answer f o r the d i r e c t i o n 

of change of k because of a conjugate p a i r (Samuelson [1947a] i n the equations 

that define the l o c a t i o n of the saddlepoint. The impact e f f e c t i n compara

t i v e dynamics i s of the same sign as the long-run e f f e c t , as are e f f e c t s at 

intermediate times (even i f e x i t i t a k e s p l a c e ) . One i s tempted to believe 
that the presence of conjugate p a i r s i n equations de f i n i n g saddlepoints may 

have stronger ( i . e . , dynamic) consequences than j u s t the well-known s t a t i c 

ones. Against t h i s i s the warning conveyed by F i g . 10. This whole matter 

of impact and long-run e f f e c t s i s discussed at some length by Nagatani [1976], 

who also draws att e n t i o n to the extreme d i f f i c u l t i e s of signing impact e f f e c t s 

i n problems with more than one state v a r i a b l e . The subject i s f a s c i n a t i n g , 

and much remains to be done to elucidate i t . The work of Epstein [1977]., 

which treats the Le C h a t e l i e r p r i n c i p l e i n a dynamic context, seems to me 

to i n d i c a t e how progress can be made. 

In expounding the model used i n t h i s essay, I have been precise 

i n s p e c i f y i n g the economic meaning of a l l the v a r i a b l e s . I hope that i t 

i s c l e a r even so that the same mathematics w i l l describe other problems i n 

other branches of the "theory of the firm." Of p a r t i c u l a r note i s the 

micro-theory of investment. In t h i s context Lucas [1967] and Gould [1968] 

have constructed models of intertemporal p r o f i t maximisation where adjustment 

costs a r i s e when a change i s made i n c a p i t a l stock, or number of workers em

ployed, or even i n rate of investment. Lucas, i n p a r t i c u l a r , has pointed out 

the need to consider e x p l i c i t l y the matter of entry and e x i t of firms i n an 

industry when one seeks to explain aggregate investment. For t h i s purpose, 

as well as f o r others r e l a t i n g to inventory cycles and the l i k e , the model of 
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this chapter should be exp l i c i t ly relevant. But there is a capital-theoretic 

element involved in almost a l l of a firm's decisions. The formal s imilar i ty 

of maximising models with stocks of productive capital , inventory, and labour 

should mean that a l l of them can be somewhat better understood by means of 

the techniques used in this essay. In the sense of these remarks, then, the 

model presented in the next essay is an example which shows how, in one 

case at least, matters of aggregation and general equilibrium can be handled 

when entry and exit :are taken as endogenous. 
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CHAPTER IIIA 

A MODEL OF URBAN HOUSING. 

This chapter and the next make up the last essay of the thesis. Another 

model of intertemporal maximisation i s set up, but this time in a general 

equilibrium context, with both sides of the market ex p l i c i t l y modelled. I t 

was the claim of Chapter II that interesting comparative dynamics results are 

li k e l y to be obtainable only i f the i n i t i a l state, on which a perturbing 

influence i s supposed to act, i s one of equilibrium. Consequently the 

present chapter w i l l be devoted to determining the long-run equilibrium of 

the model, and then in Chapter IIIB a disturbance w i l l be made and i t s results 

analysed. 

Although the discussion of this chapter cannot s t r i c t l y be called 

comparative dynamics, i t i s , I trust, s t i l l of substantial interest in i t s 

own right. In order to determine the equilibrium i n the model between the 

forces of demand and supply, even i n a steady state, i t i s necessary to take 

into account the details of an intertemporal pro f i t maximisation. It w i l l 

turn out f i n a l l y that solving the equilibrium equations means locating a 

fixed point of a mapping, just as i n standard general equilibrium theory (see 

for example Arrow and Hahn (1971)), but here the mapping acts on a function 

space: i t i s a highly non-linear integro-differential operator. Extensions 

of Brouwer's fixed-point theorem apply to function spaces of i n f i n i t e 

dimensionality just as well as to the finite-dimensional spaces most commonly 

used i n economic theory however, and so no great new technical d i f f i c u l t y i s 

encountered. The proofs of Brouwer's theorem and i t s extensions proceed by 

contradiction and are not constructive, and so these theorems give no help i n 



finding e x p l i c i t solutions of equilibrium equations. Another general 

principle, the contraction mapping principle, i s constructive on the other 

hand, and the possibility of using i t i s explained at the end of this chapter. 

In fact, i n Chapter IIIB an explicit solution w i l l indeed be found for a 

rather simplified version of the model of this chapter - the simplification 

being necessary to make the discussion of dynamics at a l l tractable. Here, 

then, the aim i s to characterise the equilibrium state by (complicated) 

equations and to show how existence and uniqueness may be demonstrated in 

some circumstances. 

The model i s one of a city inhabited by utility-maximising tenants who 

live in dwelling-places provided for them by absentee landlords who 

maximise profits. There are no owner-occupiers. Uncertainty, i s abstracted 

from completely, and perhaps a word of justification for this i s called for. 

The overall aim of this thesis i s elucidation of some topics i n comparative 

dynamics. Although the effects of uncertainty are, very properly, the object 

of much study at present, even the comparative statics of a stochastic 

equilibrium i s not yet a solidly-based technique. Consequently, to make any 

progress in comparative dynamics, I found i t impossible to give any attention 

to uncertainty. I lament this drawback, and hope that economic theory w i l l 

soon be able to do better. This hope i s not motivated only by intellectual 

curiosity, for central to any assumption that makes an economic agent into 

an intertemporal maximiser i s that he should have well-defined (even i f 

stochastic) expectations about the future over which he i s maximising. But 

the future i s always uncertain, even in the presence of futures markets. 

Throughout this essay, a presumption i s made of rational expectations a la 

Muth (1961). This means simply that economic agents are endowed with perfect 

foresight of what the model predicts.on the assumption that they do have 
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perfect foresight. If i t i s accepted that uncertainty i s to be ignored, 

then I feel that a rational expectations hypothesis i s the next most honest 

thing. Besides, i t leads to a much cleaner and more self-contained theory 

than would an alternative hypothesis involving an expectations-generating 

mechanism leading to frustration and constant planning revision. (See 

however Goldman (1968) on this subject: such a hypothesis could be made 

manageable by his kind of scheme.) 

Section 1 contains the model of the landlords' behaviour. They have an 

optimal control problem to solve which i s not very different from that of 

Chapter II. Then i n section 2 comes the model of the tenants. Their 

behaviour i s taken to be governed by instantaneous u t i l i t y maximisation, and 

the assumption that they can move from one dwelling-place to another 

costlessly. This scheme, however unrealistic, i s usual enough i n demand 

analysis - a consumer's intertemporal considerations are only beginning to 

be noticed, and would certainly be an unwanted complication here (see 

Diewert (1974)). i n section 3 the long-run equilibrium between landlords 

and tenants i s worked out i n the sense discussed above. 

(1) The Landlord's Profit 

A city of any age contains buildings of widely differing dates of 

construction. Most often, the older buildings, however solid their structure, 

are not kept up very well, and provide the not very comfortable, run-down 

housing of the poor. New buildings on the other hand are regularly f i t t e d out 

with furnishings of great luxury, and are expected to be inhabited by high-

income people. In the model to be discussed i n this section, each dwelling 

w i l l be assumed to be characterised by two properties only: the age of the 

structure, v, and the level of upkeep, or "comfort", k. This variable, k, i s 



a stock of upkeep, not a flow. Dwellings are owned by absentee landlords, 

who invest in upkeep so as to maximise the discounted stream of expected 

rents they receive. Gity dwellers are distributed over a spectrum of 

incomes, according to which, as well as to their tastes, they choose, by 

maximising their u t i l i t y , a level of upkeep from the selection offered by 

the landlords. The term "city dweller" should be understood to mean an 

entire household rather than an individual, although only one u t i l i t y 

function w i l l be allowed to each household. The income of any household 

w i l l be assumed to be constant over time. City dwellers are presumed to be 

quite lindifferent to the age of the buildings they inhabit - only.upkeep i s 

a characteristic entering their u t i l i t y functions. The municipal authority, 

on the other hand, cares only about the age of a building. After i t has 

existed for some time, T, i t must be torn down to make room for new 

construction, i f new construction i s i n fact profitable. 

If landlords are in a state of perfect competition, each one w i l l per

ceive a profile of rents available or expected to be available at any time t 

in return for a level of upkeep k: l e t this be denoted by the function 

R(k,t). Any level of upkeep w i l l depreciate unless maintained by investment, 

and so, i f I i s the level of investment, one may imagine that upkeep changes 

over time according to the equation k = I - 6k, where 6 i s the depreciation 

rate. Let the cost per unit time of level I of investment be C(I). Then 

each landlord w i l l wish to maximise 

J 5 / e ~ P t ( R(k,t) - C(I) ) dt o 

subject to k • I - 6k, I 5t 0, k i 0. p i s the discount rate, v the age of 

the building. Following as usual the rules of Chapter I, we may form the 
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Hamiltonian with a current-valued shadow price p: 

H = e-Pfc( R(k,t) - C(I) + p(I - 6k)) . 

The control variable i s I, and H i s to be maximised with respect to i t . 

The optimal value, I*, i s given by: 

I(p) i f p>C'(0) 
I* - { 

0 i f p < <r<0) (1) 
where i(p) satisfies the identity 

C'(l(p)) - p. 

The marginal cost function, C, i s assumed, as usual, to be positive and 

increasing. Further, the function C i s taken to be independent of time, 

which means that technological progress i s ignored. In fact this r e s t r i c 

tion i s not very important to the analysis that follows, and could be 

relaxed at the cost only of complication. The maximised Hamiltonian i s 

M(k,p,t) - e" p t(R(k,t) - C(I*) + p(I* - 6k)) 

and so the price equation i s 

p = pp - R'(k,t) + 6p (2) 

where the dash denotes a derivative with respect to k. 

The stock equation i s of course just 

k = I* - 6k (3) 

and so the phase plane i s as shown in Fig i i . 

The equation of the p = 0 l i n e , the demand curve, i s 

p - _ J L _ R'(k,t) 
p + 6 

and that of the K = 0 l i n e , the supply curve, i s 

p = C'(6k). 

Above the line p = C(0), the stock equation i s k = I(p) - 6k, and below, 
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"" Fig 1 2 . 



i t i s just k = -6k. 

Because R i s an explicit function of t i n general, the phase plane 

i s not static. The k = 0 line does not move, and so the saddlepoint 

must always be on i t , but the p => 0 line w i l l s h i f t about. This fact 

introduces no real conceptual d i f f i c u l t i e s , but i t makes the analysis 

harder. The present chapter, though, i s concerned only with a state 

of long-run equilibrium, i n which the time-dependence of R disappears. 

Long-run equilibrium w i l l mean zero economic p r o f i t for landlords. 

That i s , the worth of optimally exploiting a newly constructed dwelling 
11' 

w i l l be equal to the construction costs. These w i l l be composed of two 
parts: the building cost, assumed fixed and constant, and the cost of the 

> i _ 
i n i t i a l state of comfort, k, say. Since the line p •= C'(6k) i s the supply 

curve (marginal cost curve) for comfort levels i n an already constructed 

building, i t i s reasonable to suppose that costs are lower on the 

construction site than when tenants are around to object to inconvenience. 

The marginal cost curve for k w i l l thus be supposed to l i e beneath, the 

k = 0 l i n e , as shown i n Fig 1 2 . The i n i t i a l point, (Jc, p), on the 

optimal trajectory must, by the usual transversality argument, l i e on 

this curve. Similarly, the f i n a l point must have zero shadow price for 

optimality: the optimal trajectory must end on the k-axis. The actual 

trajectory i s then uniquely defined by the total lifetime of the build

ing, T. Paths which go closer to the saddlepoint take longer: the 

standard turnpike result. The optimal path also defines the f i n a l state 

of upkeep, k, say. Because the time-dependence i s now restricted to the 

discount factor, the worth of the building can be computed by noting that 

M - pj* i s constant along the path: the result i s : 

1) To avoid any d i f f i c u l t i e s to do with rent of the land that dwellings are on, 
i t i s easiest to assume that land i s so abundant that i t i s a free good. 
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J* = — (M(k, p, 0) - M(k, 0, T)) . (4) 
P 

2. The City Dweller's Choice of a Home. 

Each cit y dweller i s endowed with a u t i l i t y function, D, the 

arguments of which for our purposes are k, the comfort level of his dwell

ing, and X, a Hicksian composite of everything else he buys. The price 

index for the composite i s denoted by P. He i s assumed to have an un

changing income y: later y w i l l be used to index the inhabitants of the 

c i t y , and so i t w i l l be possible to l e t different people have different 

tastes by allowing U to depend on y. We may write then: 

U - U(k, X} y). 

The problem of maximising U i s slightly different from the usual one, as 

k does not measure so much a quantity as a quaivty of dwelling. Each 

inhabitant i s presumed to have a completely inelastic demand for exactly 

one dwelling. Then his budget constraint i s : 

R(k) + PX » y. (5) 

The first-order conditions for a u t i l i t y maximum are: 

U, - XR-(k) k 
u x = XP 

along with equation (5). (X i s a Lagrange multiplier = marginal u t i l i t y 

of income.) If P i s constant - as i t must be i n long-run equilibrium -

there i s no loss of generality in setting i t equal to unity. Then the 

first-order condition may be written thus: 

R'(k) - fi(k, R(k) , y) (6) 

where fi i s a marginal rate of substitution: 

fl(k, R(k), y) = ux(k, y - R 0«>' y) 



For further analysis a l l we shall need i s this function ft, at least for 

this chapter. It should be noted here that, although the u t i l i t y function 

depends e x p l i c i t l y on y and thus can in principle accommodate any sort of 

preferences for each c i t y dweller, i t w i l l i n the next section be assumed 

that, for any reasonable rents prof i l e R(k), a higher income y w i l l lead 

to a choice of a higher k according to eq (6). This assumption, probably 

quite reasonable, i s needed to avoid technical complications. 

3. Equilibrium between Landlords and Tenants. 

Let us assume that there are N inhabitants of the c i t y , and so i n 

equilibrium N dwellings. Let the income distribution of these tenants 

be described by a cumulative distribution function F, so that there are 

NF(y) people with income less than or equal to y. Let y_ fie the lowest 

income, y the greatest, so that F(y_) =0 and F(y) =1. Now i n the short 

run} the supply of dwellings i n a given state of upkeep i s completely 

inelastic. In fact, l e t the distribution of states of upkeep be represent

ed by a function G, such that the number of dwellings with a comfort level 

less than or equal to k i s NG(k). It i s convenient to abstract from a l l 

market imperfections and assume that at each moment demand and short-run 

supply are i n instantaneous equilibrium. (In long-run equilibrium, G does 

not change over time, and this instantaneous equilibrium i s identical to 

the f u l l one.) Once G i s given, then R(k), the rents p r o f i l e , should be 

completely determined by demand, that i s by eq (6). 

Each tenant, faced with the p r o f i l e R(k) and given his income y, can 

solve eq (6) to determine the comfort l e v e l , k, that he w i l l purchase. 

The result, withithe assumption stated at the end of the preceding section, 

w i l l be a one-to-one increasing relation between y and k - l e t us write i t 

as 



y = y(k) K H 

with y a function of k rather than Viae versa. 

If the function R i s specified, then y(k) i s determined by eq (6). 

Contrariwise, i f the function y i s specified, the rents profile R(k) can be 

recovered from eq (6), which i s now simply an ordinary di f f e r e n t i a l equa

tion for R, i f a boundary condition i s available. The desired boundary 

condition i s obtained from the zero-profit condition of long-run equilibrium, 

which equates the expression in eq (4) with total construction costs. 

Although i t i s a long-run condition, i t i s a legitimate determinant of 

instantaneous equilibrium because, i f new construction i s to take place at 

each moment (and i t must since demolition goes on continuously), then the 

expected rents prof i l e at a l l times during the l i f e of a dwelling must 

guarantee zero pr o f i t at each instant. 

The short-run instantaneous equilibrium, determined purely by demand 

in the presence of an inelastic supply G(k), can now be written down. 

Since the number of tenants occupying dwellings of comfort level less than 

k i s NG(k)1, and this number, by the assumption of the monotonicity of y(k), 

i s just the number of tenants with incomes less than y(k), that i s , NF(y(k)), 

i t follows that 

y(k) = F _ 1(G(k)) (8) 

The inverse function F" 1 i s always well-defined because F i s a cumulative 

probability distribution. Now i n the short run, the functions F and G are 

both exogenously given, and so therefore i s y by eq (8). The rents 

profi l e R(k) can now be obtained as discussed above. Eq (8), with our 

assumption of instantaneous tatonnement, holds good also i n dynamic 

situations. 



In the long run, I t Is of course the supply of comfort which must 

adjust f u l l y to obtainable rents. In fact, since the discussion of the 

landlords' profits shows exactly what time-path upkeep levels w i l l take 

given a rents p r o f i l e R(k), we can now compute the supply spectrum G(k), 

given R(k) i n a long-run situation. The result of this computation, along 

with the short-run one giving R from G, w i l l simultaneously determine both 

functions and complete our general equilibrium analysis. 

We are dealing with a steady state i n which a l l buildings last for a 

time T and i n which the distribution of building ages i s rectangular. 

Thus the number of these which have an age, v, greater than some age t < T, 

i s N(l - t/T). For each age t , there i s a unique optimal upkeep, k(t), 

say, given by the optimal path shown i n Fig 12. (Unique because k declines 

monotonically along the path.) The function k(t) satisfies the optimal 

equations (2) and (3). The number of dwellings of upkeep level less than 

k(t) i s therefore also N(l - t/T), that i s : 

To proceed, then, we must solve eqs £'(2) and (3) for the function 

k(t). The solution w i l l be i n terms of the rents profile R(k). Each of 

the optimal equations for the variables k(t) and p(t) can be solved for 

one variable i n terms of the other. From eq (2) we obtain 

G(k(t)) - 1 - t/T. (9) 

d -(p+6)t, -(p+6)t 
dt (pe e (P - (p + 6)p) 

e-(p+«)t R'(k) 
whence 

T -(p+fi)(t'-t) p(t) - / dt' e R'(k(t')), (10) 
t 

since p(T) =0 by the terminal transversality condition. 

Similarly from eq (3) we obtain : 
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k(t) = k e 6 ( T " t ) - / dt' e 6 ( t _ t> I(p(t')), (11) 

t 

where k (see Fig 121 i s the upkeep level at the moment of demolition, and 

where the function I(p) must be taken as having the value zero for 

p <_ C'(0) (eq (1)) . As can be seen from Fig 12, there i s an age of build

ing, t Q say, past which no further maintenance i s done, since p <̂  C(0) . 

Therefore eq (11) can be rewritten as: 

k(t) = k e 6 ( T _ t ) - / ° d f e 4 ( t ' " t ) K p ( f ) ) for t < t Q (12) 

t 

k(t) = ke**1"*) for t >_ t 0 (13) 

Now eqs (10) and (11) can be combined to yie l d : 

kct) = - / t o dt' .«(t'-t) i ( \ d t - .-(P+«(t--t*) 
t t' 

xR'(k(t"))) (14) 
for t < t 

— o 

F i r s t of a l l we observe that eqs (14) and (13) i n effect provide the 

answer to the long-run supply problem i n the face of an (exogenous) rents 

profile R(k). This i s so, since i f we invert the function k(t), given by 

eqs (14) and (13) i n terms of R(k) and other exogenous functions, we 

obtain the supply spectrum G(k) from eq (9) : 

G(k) - 1 - lLk_L 
T 

where by definition t(k) and k(t) are inverse functions one of the other: 

t(k(t)) • t and k(t(k)) = k. 

The time t Q , which has so far been defined only in words, i s given by the 

equation 

C'(0) - / T dt' e - ( p + 6 ) ( t ' " l o ) R-(ta«<*-t*>|J (15) 
to 

(see eqs (10) and (13)). 

The boundary value k i s perhaps best kept as an exogenous parameter at 
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this point, since i t s value depends on the construction-site marginal cost 

schedule for k (Fig 12). For our present purposes, i t contains a l l we 

need to know about this schedule, since the point (k, p), which l i e s on i t , 

i s just the point (k(0), p(0)) given by eqs (10) and (12) i n terms only of 

k and other known quantities. 

The next step, then, i s to combine eqs (6), (8), (9), (13) and (14), 

which express the short-run equilibrium and the long-run equilibrium, so as 

to determine simultaneously both R(k) and G(k). This step i s the 

"general equilibrium" step, and i t may be worthwhile to point out the 

similarities between our equations and the usual general equilibrium ones. 

It has already been remarked that the short-run equilibrium i s character

ised by the forces of demand. The distribution function G(k), describing 

as i t were the "quantities" of upkeep available, corresponds to a vector 

of quantities in a conventional general equilibrium economy. The R(k) 

which, for a given G(k), i s derived from eqs (6) and (8), then can be seen 

as a function corresponding to a vector of market-clearing prices. The 

long-run equations determine supply; that i s , the G(k) derived from eqs 

(9), (13) and (14) for a given R(k) gives the upkeep levels called forth 

by the rents R(k). Thus this part of the calculation corresponds to 

writing down a set of supply functions - a vector of quantities supplied i n 

response to a vector of prices. It can thus be seen that our model i s 

indeed formally analogous to a general equilibrium one, with vectors 

(finite-dimensional usually) of quantities and dual price vectors replaced 

by functions i n a space of cumulative probability distributions and dual 

functions in some suitable dual space. 

The calculations involved i n this general equilibrium step proceed 

as follows. From eq 1(14), which i s the solution of the optimal control 

equations, some changes of variable lead us to an equivalent equation, (17), 
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for the inverse function t(k). Then the demand equation, (6), i s solved 

formally for the rents function R(k) i n terms of t(k). This allows the 

equation for t(k), eq (17), to be written i n terms of t(k) alone; this 

w i l l be eq (20). The question of the existence and uniqueness of a 

solution for this equation i s then taken up. F i r s t , a series of technical 

manipulations gives eq (26), which i s just eq (20) much simplified. Then 

a fixed-point theorem i s invoked to conclude the analysis. 

It Is convenient to begin with some manipulations of eq (14). The 

function t(k) inverse to k(t) i s defined, via eq (14), by: 

6(T-t(k)) f
T 6(t'-t(k)) k =» ke - J dt e 
t(k) 

, , T -(p+6) ( t " - f ) . xi( / dt"-*e R'(k(t"))J (16) 
t * 

where, to save writing two equations at each step, we make the 

convention I(p) =0 for p G"(0). Eq (13) i s now therefore subsumed 

in eq (14). A change of variable can be performed i n each of the 

integrals i n eq (16), from a time-variable to a state-variable. 

Thus, l e t f = t(k'); t" = t(k"). Tnen i t i s easy to see that 

/« « . . - « » « > «t'"t*» R'<kCt»» 

- / * ' « . ( . - £ « • > } . - ' » • « " « * • > - ' * ' » 

since t(k) = T, t(k') - t ' and k(t(k")) •» k" by definition. Similarly 

the integral / dt' e 6 ( t ~ t ( k ) ) f ( t ' ) , for any function ¥ of t', can 
t(k) 

be expressed as: k 6(t(k')-t(k)) 
/ dk'(-3£(k')) e Y(t(k'))-
k a k 

6t (k) 
Thus eq (16) becomes, on multiplication by e : 
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ke 6t(k) = ke tdk' (-^(k')) 

k dk 

6t(k') 
i f / dk" (-££.(k")) e 

(P+6) (t(k")-t(k')) 
R'(k"J.) . (17) 

The above eguation holds for a l l k between k and R. 

The demand eguation (6) can be written as follows: 

R'(k) = ft(k, R(k), y(k)) 

where the function y(k), as in eq (7), gives the income of the tenant who 

chooses comfort level k. But from eqs (8) and (9) we know tliat y(k) can be 

expressed as: 

y(k) = F" 1(G(k)) 

T ' 

with the same function t(k) as i n eq (17). Therefore we obtain the 

following ordinary di f f e r e n t i a l equation for R(k): 

For a unique solution, a boundary condition i s needed. We shall simply 

take R(k) as R, and f i n a l l y pin down R by the zero-profit condition. 

Meanwhile R w i l l be treated as another parameter of the model. In fact, 

just as a knowledge of k was enough information about the construction-site 

marginal cost schedule for present purposes, so i s R enough information 

about fixed construction costs. If R i s given, then we may infer, by 

reasoning backwards, what the cost of constructing a new dwelling must be. 

It i s as legitimate to regard R as truly exogenous as i t would be to introduce 

a constant C, say, as the cost of a new dwelling with b u i l t - i n comfort level 

k, and then solving for R - and i t i s very much simpler. 

(18) 



A standard Lipschitz condition (see, as a convenient i f not very com

plete reference, Bryson and Ho (1969a)) i s then enough to guarantee the 

existence and uniqueness of the solution to eq (18). The assumption that 

such a condition i s satisfied i s not at a l l stringent, and i s hereby made. 

The solution can then be formally written as: 

R(k) - A(t(k) ; R) (19) 

where A(...; R) i s some, i n general non-linear^operator acting on the 

space of continuous functions t from the interval (k, k) into the non-neg

ative real l i n e . (Or, i f we wish to be more precise, although i t would 

seem to be of l i t t l e benefit, functions such that t(k) =» T, t(k) « 0.) 

Let A'(t(k); R) denote the function of k which i s the derivative 

with respect to k of A(t(k); R). Then eq (17) becomes: 

k e
f i t ( k ) = j^ST _ j k

 d k . ( _ d t ( ] 0 ) e6t(k') 
k dk 

x !( ^ dk» (^t(k»)) e - ( P + 6 H t ( k " ) - t ( k ' , ) A ' ( t ( k " ) ; R)) 
k dk 

(20) 

This i s now a non-linear integro-differential equation for the function 

t(k) written i n terms of exogenously given quantities only. Once we are 

satisfied that i t possesses a unique sensible solution, our problem i s 

solved, since G (k) i s just 1 - t ( k> , and R(R)s i s just A (t (k); R) . A l l that 
T ' ~ 

remains to be shown, then, i s this matter of existence and uniqueness. 

Let us make the definition: 

T(k) S e 6 t ( k > . (21) 

Then x ** (k) - the dash denotes the derivative - i s equal to sf^-(k) e 6 t ^ ) , 
dk 

and eq (20) can be written i n terms of T(k) as follows: 



k 
kxlk) - k e 6 T - U dk' (^x'(k')) 

p+6 k' p+26 
x l({tlk')} « - / dk" (-x'(k")) {T(k")}-^S r ( T ( k " ) ; R ) ) 

(22) 

where r(x(k"); R) = A'( — log x(k"); R) and i s just another nonlinear 
6 

operator. 
k d 

Now kr(k) - ke 6* = / — ( k ' x ( k ' ) ) dk' (since x(k) - e 6 T) 
k dk 

k 
= / (x(k ) + k'x'(k')) dk'. 

k 

It follows that eq (22) can be written 

k 
/ dk' fr(k') + x'(k') fk' - ~ T(x(k') ; R ) ) } - 0 (23) 
k 6 

with the non-linear operator T defined by: 

T(x(k') ; Rl -

p+6 k' _p+26 
l({t(k')}®"-/ dk" (-x'(k")) {x(k"))}"^~ r(x(k"}; R ) ) . 

6 * 
(24) 

The integral sign i n eq (23) i s plainly unnecessary: 
_ x'(k) = i  

X(k) k - i T(x(k) ; R) 
6 

This equation w i l l be re-integrated i n a moment. Meanwhile l e t us take 

note of some restrictions that we wish to place on admissible functions 
6T 

x(k). In addition to the boundary condition x(k) » e , we require that 

x(k) i s always greater than unity and decreasing, because of the physical 

interpretation of t(k). Again, since l(p) = 0 for p £C'(0), it.*is 

necessary that, for k less than some k Q, we have simply: 



T(k) - (k/k> e O A , i.e., t(k) = T - - log ( k A ) . 
6 

Whatever the behaviour of x(k) for k > k Q, i t follows from eq (18) and i t s 

solution eq (19) that, for k <̂  k Q , 

r(x(k); R) = A'(t(k); R) - A'(T - i - log (k/k); R) . 

If this last result i s substituted into eq (24), KQ i s determined as the 

greatest k for which T(x(k); R) i s zero - that i s , k Q i s determined com

pletely by the exogenous quantities, as are also x(k 0) and t ( k Q ) . 

Bearing in mind the definition of x(k), eq (21), we may now inte

grate eq (25) from k Q to k. The result i s : 

k ! 
t(k) - t(k ) - / dk' (26) 

k Q 6k' - T(t(k'); R) 

with the operator T now redefined in an obvious manner to act on t(k) 

instead of x(k). 

Eq (26) i s a rather straightforward looking non-linear equation, 

and we may ask directly about the existence and uniqueness of i t s solution. 

A solution i s plainly a fixed point of the operator 

k 
A(t(k)) = t(k Q) - / dk' ~ 

k Q 6k' - Tit(k'); R) 

It should be pointed out here that k, the starting-value of the state 

variable on the optimal trajectory that we are looking for, i s s t i l l 

endogenous. I t is determined by the equation t(k) = 0. But we shall 

never be interested i n values of t(k) for k > k, and so eq (26) could be 

rewritten as: 

t(k) = max (A(t(k)), 0). 



Let us t r i v i a l l y redefine the operator A to be the right-hand side of this 

equation. Then i t follows that the denominator 6k' - T(t(k'); R) , which 

i s positive ( => 6k Q ) at k' = k Q , must always be positive for k' < k, 

for otherwise i t would vanish and make t(k) equal to minus i n f i n i t y . We 

conclude then that A maps positive decreasing functions t(k) (k Q <_ k < ») 

into positive decreasing functions. The boundary value t(k Q) i s preserved, 

and the operator i s clearly bounded. 

The contraction mapping principle (see Krasnosel'skii (1964) and 

Kleider et al. (1968)) can be invoked i n cases such as the present to 

prove existence and uniqueness of a fixed point. Bounded continuous 

functions defined on 5(k0, ») form a Banach space with norm defined by: 

| t 1 - sup | t(k) | (27) 
k 0<k«» 

The contraction mapping principle says that i f A maps a bounded region 

of this space (such as positive decreasing functions with || t || £ t d ^ ) ) 

into i t s e l f , and i f , for any two functions tjjk) and t£(k) belonging to 

this region, the Lipschitz condition 

11 At! - At 2|| < o|| t ! - t 2 || (28) 

holds with a < 1, then there exists a unique fixed point of the operator 

A i n the region, which can be calculated from any starting function t Q(k) 

by iterations: 

t n(k) = At n_!(k). 

We need only ask, then, under what conditions the inequality (28) i s sat

i s f i e d . The iterations can of course be thought of as steps i n some 

tatonnement process. In fact, many cases i n which Brouwer's theorem i s 

used can be so interpreted, and often the contraction mapping principle 

would be applicable to these cases. If so, because of i t s constructive 



nature, i t i s greatly to be preferred. One instance of the use of the 

contraction mapping principle i n economic theory can be found i n Brock 

(1972), where i t i s used i n connection with equilibrium forecasting. 

It i s clear from eq (26) that A i s a continuous operator when the 

norm of eq (27) i s used. I have not succeeded in demonstrating that the 

inequality (28) i s always satisfied for any exogenous functions 0, P and I, 

but this i s not, I fee l , a very urgent matter. The contraction mapping 

principle i s a very stringent sufficient condition for existence and 

uniqueness, and when i t s requirements are not satisfied, there i s often 

no d i f f i c u l t y i n proving at least existence by other fixed-point theorems, 

many of which are presented i n Krasnosel•skii*s book. One may quite 

easily s i t down and find out i f inequality (28) i s or i s not satisfied 

i f Si, P and I are given. When, i n the next chapter, specific choices of 

these functions are made, this w i l l be done, and the solution w i l l i n fact 

be e x p l i c i t l y derived. 

The specification of the long-run equilibrium i s now finished. 

Because i t i s necessarily a steady atate, the solution functions G(k) and 

R(k) do not depend on time. This means that the equilibrium i s rather 

insensitive to the expectations-generating mechanism postulated for the 

landlords. As well as the rational expectations assumed at the beginning 

of this chapter, expectations of rents remaining as they are at any mom

ent would give the same result. In the dynamic analysis of Chapter IIIB 

however, expectations become more important, and whatever results are 

found depend on how they are generated. The conditions for "entry and 

exit", too, are simple because of the steady-state nature of the solution. 

Again, these conditions assume greater interest i n a dynamic context. 
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CHAPTER IIIB. 

A MODEL OF URBAN DECAY. 

The long-run equilibrium treated i n Chapter IIIA i s the starting 

point for this chapter. Into the steady state of that equilibrium w i l l 

come a disturbance. Specifically, i t w i l l be imagined that a consumption 

externality arises, adversely affecting housing, but without other effects. 

This i s readily modelled by replacing the u t i l i t y function of the tenants 

by 

U(u(k, a), X; y) (29) 

where U i s the same u t i l i t y function as before, but where the worth to a 

tenant of a level of comfort k i s no longer simply k but i s measured by 

the function u(k, a). The parameter a measures the externality: we assume 

that u(k, 1) = k, and that uffl > 0. The separability of k and a from the 

other variables in the argument of U expresses the assumption that the 

externality affects only housing. The specification that u(k, 1) = k 

means that the value of unity for a corresponds to the absence of any 

externality: i f , as we suppose, the externality that arises i s adverse, 

i t must, since u a > 0, correspond to a value of a less than unity. For 
l 

example, i f pollution of some kind, from a smoky factory chimney for 

instance, i s the source of the externality, then clean air means that 

a - l , and a can be thought of as the inverse of some measure of concen

tration i n the a i r of noxious fumes. 

The s p i r i t of comparative statics would have us now consider the 

derivatives with respect to a , evaluated at a = 1, of a l l the endogenous 



variables of the model. We shall not do so, but rather look at the 

results of a sudden discrete change from a - 1 to a value of a less than 1 . 

Again, comparative statics would focus attention on the functions R(k) and 

G(k) that measure rents and supply of comfort, and would take account 

only implicitly of the po s s i b i l i t i e s of entry and exit from the landlord 

business (by taking a zero-profit condition on new construction as one of 

the equilibrium equations). But here, entry and exit are considered quite 

ex p l i c i t l y , and windfall gains or losses become a feature of our model. 

These disequilibrium phenomena i n fact give the distinctive colour to the 

economic tale to be told. 

For, once the externality has arisen, the bright idea w i l l no doubt 

occur to someone that the nuisance of building a house i n the suburbs and 

commuting daily i s outweighed by the advantage of escaping the externality, 

and so he moves out of the city. It w i l l presumably be the richest per

son who moves, since his desired standard of comfort, k, has become effect

ively unobtainable. But his departure lowers the demand for housing, 

and therefore also the revenue p r o f i l e , R(k), perceived by landlords. If, 

as i t i s reasonable to suppose, the marginal revenue p r o f i l e , R' (k), i s 

also lowered, i t can be seen from Fig 12 that the landlords w i l l respond 

by spending less on upkeep. This further lowers-the available standards 

of comfort, and so, in a cumulative process, more and more city-dwellers 

are pushed to the margin where i t i s more advantageous to move to the 

suburbs. Suburban housing w i l l no doubt take time to build, and w i l l be 

subject to increasing costs. If so, ultimately a cut-off point may be 

reached where poor people are l e f t i n the city, trapped there in decaying 

slums ho longer kept up by the landlords, but without enough income to 



afford the now expensive suburban housing. 

The above discussion provides a possible scenario of events. If i t 

i s to be modelled, then i t i s clear at once that the conditions for entry 

of a firm into the suburban housing business and for exit from (and poss

ible re-entry into) the urban construction and renting business must be 

ex p l i c i t l y l a i d down. 

In section 1, then, a model of the suburbs i s appended to our exist

ing model of the ci t y , and entry and exit are discussed. Then i n section 

2, the assumption i s made of a horizontal marginal cost schedule for up

keep in the city. This permits a great simplification of the urban model 

and the exp l i c i t form of the long-run equilibrium i s worked out. Other 

specific functional forms for exogenous quantities are chosen here and 

in later sections so as to make i t possible to write down explicit express 

ions for some of the endogenous functions. In section 3, i t w i l l be seen 

that two distinct states of affairs can arise i n the coupled city/suburb 

model, according to whether or not the rate of new suburban construction 

i s fast enough to leave unoccupied dwellings standing in the city. The 

case in which i t i s i s analysed i n section 3, and the case in which i t i s 

not in section 4. After this, i t i s possible i n section 5 to catalogue 

the various modes of urban decay that can be generated by the present 

model. 

1. The Flight to the Suburbs. 

The model proposed here for suburban affairs i s simpler than the 

ci t y model. In particular, intertemporal considerations for suburban 

landlords, tenants and/or owner-occupiers w i l l be abstracted from. We 

shall i n fact lose, interest i n a person more or less at the moment he or 

she moves to the suburbs. The only quantities of interest w i l l be the 
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rental price (for one unit of time) that must be paid for a suburban -:r-.:-'-. 

dwelling of comfort K at a time when M dwellings exist i n the suburbs, 

and the cost (expressed as a rental price) of constructing such a dwelling. 

This information i s enough to allow calculation of the margin between c i t y 

and suburb, and, provided only that suburbanites stay i n the suburbs once 

they get there, knowledge of affairs at the margin i s a l l that we shall 

need. 

A very elementary sort of geography i s implied i n a l l t h i s . Both the 

c i t y and the suburb are treated as points, or as completely undifferent

iated areas. People may make only a binary choice of where to l i v e -

notions of better or worse neighbourhoods are ignored. 

Our programme for this section i s as follows. F i r s t we shall 

specify the response by the construction firms that build suburban hous

ing to any given state of demand. In particular entry and exit of these 

firms w i l l be discussed. Then demand considerations w i l l be taken up, 

and i t w i l l be seen that demand for suburban dwellings i s determined by 

the margin of indifference between city and suburban l i v i n g , this margin 

being determined by conditions i n the city. Lastly the two sides of the 

market w i l l be brought together to give the dynamics of suburban construct

ion. 

Let us then write S ( K , M) for the rent of a suburban dwelling of 

comfort level < at the time when exactly M suburban dwellings exist, and 

H ( K , M) for the cost of constructing i t , expressed as a rental charge. 

The p r o f i t obtained by a suburban construction firm for putting up this 

dwelling i s thus S ( K , M) - 5(K, M) per unit time, or, more sensibly, 

the capitalised sum :L(S(K, M) - S ( K , M)), where p i s the discount rate. 
P 
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Next, we must enquire how many firms are engaged at any time in suburban 

construction, how fast they can put up a dwelling, and what state of 

competition prevails among them. For simplicity, we may assume that each 

firm can put up exactly one dwelling per unit time, regardless of i t s 

comfort level, K . The construction rate at any moment i s then just m(t), 

where the function m(t) gives the number of firms i n the business at time 

t. These "firms" are to be thought of as entrepreneurial units in comp

etiti o n , and so i t seems reasonable to require that the profit that each 

makes per unit time should be the same across firms at each moment. Why, 

in a state of competition, should there be any pr o f i t at a l l ? After a l l , 

i n the city, a zero-profit assumption was used to characterise equilibrium. 

Various answers can be given: adjustment costs of one kind or another, 

rezoning costs, or, i n general, costs of entry. I f , for instance, there 

are many potential entrants into the suburban construction business, and 

each perceives a barrier to entry (in dollar terms) of a different size, 

then, the more firms are i n existence, the higher profits must be - here 

"profit" means earnings over and above the prime cost of a l l used-up 

factors of production. At a l l events, p r o f i t may certainly exist i n a 

competitive industry where entry and exit are not instantaneous adjust

ment processes, even i f no dollar cost i s involved. But once firms do 

exist and are in competition, i t i s a reasonable assumption that the firms 

w i l l so bid for business that every dwelling under construction at a 

given moment, noismatter what i t s comfort level K , w i l l yield the same 

prof i t . Otherwise, low-profit firms would constantly have an incentive 

to underbid high-profit firms. 
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If the above reasoning i s accepted, then we may assume that, i f 

exit of a firm i s costless, or rather, i f , whatever exit costs may be, each 

firm can be imagined to exit after each dwelling that i t i s building i s 

completed and subsequently to re-enter i f the pro f i t rate i s satisfactory, 

then, the number of firms, m(t), i s an increasing function of the p r o f i t 

per dwelling alone, that i s : 

m(t) - f(n(t)), ( f > 0) (30) 

where Tr(t) = S (K , M) - E ( K , M) (31) 

i s the pr o f i t . Our assumptions mean that S (K , M) - E ( K , M) must be V 

independent of < over the existing spectrum of comfort levels K , so that 

ir(t) i s well defined. 

The cost function E ( t c , M) i s of course exogenously given, and we 

shall assume that E K > 0, E M > 0, the second of these conditions expressing 

increasing costs in suburban construction as more dwellings are put up. A 

justification of this i s no more than an invoking of the law of diminish

ing returns with some factor (available drained land or some such) fixed. 

The state of affairs i n the suburbs i s determined by M(t), the number 

of finished dwellings, and we have by definition that: 

M(t) - m(t) - f(ir(t)) (32) 

Since M(0) = Q (the externality begins at time zero), eq (32) gives the 

dynamics of the suburb once ir(t) has been f u l l y expressed i n terms of the 

exogenous variables. This means that we must now pin down S(K, M), 

presumably by the forces of demand. Potential suburbanites have the alter

native of l i v i n g i n the c i t y , and so we may begin our demand analysis there. 

A city-dweller of income y has, by eq (29) , u t i l i t y : 

U - U(u(k, a), y - R(k); y). 



(R(k) i s , as usual, the rents prof i l e i n the city at some moment - tenants 

have no intertemporal considerations;) The first-order condition for 

maximising this u t i l i t y i s 

vu(k, o)U (u(k, a), y-R(k); y) 
R'OO = _ * 

t|x(u(k, a), y-R(k); y) 

- u^k, a)fl(u(k, a), R(k) , y) ( 3 3 ) 

where Q i s the marginal rate of substitution introduced i n eq ( 6 ) . 

Let the solution, k, of this first-order condition be written k = k(y). 

In general there i s some disadvantage associated with l i v i n g i n the 

suburbs rather than i n the city (else why was there no suburb before the 

externality?) and i t i s convenient to model this fact by assuming that a 

standard of comfort i n the suburbs K enters u t i l i t y functions as 

U ( K , o_) for some <x_ satisfying 1 > a_ > a. This number a_ does not of 
s s s s 

course correspond to an externality, but rather an in t r i n s i c disadvantage 

of suburban l i f e . Then, analogously to eq ( 3 3 ) , we obtain for the suburbs 

S ' ( K ) = u K ( K , a s ) f i ( u ( K , a g) , S ( K ) , y) ( 3 4 ) 

Let the solution of this equation be K = K(y). (Time-dependence, as 

expressed v i a either t or M, i s suppressed for the moment for the sake of 

clearer notation.) 

Then, for a person of income y to be at the margin of indifference 

between city and suburb, we must have that: 

U(u(k(y), a), y~R(k(y)); y) - U(u(ic(y), a ), y-S(ic(y)); y). ( 3 5 ) 
s 

From this equation and eq ( 3 4 ) we can now determine ir (t). From 

eq ( 3 1 ) i t follows that S ' ( K , M) - E ' ( K , M) (dashes here denote different

iation with respect to K ) , so that eq ( 3 4 ) becomes: 



E ' ( K , M) - u]c(<, O g j f i t u d c , ct g), ir(t) + S ( K , M) , y). (36) 

Now, i f at time t, there are M dwellings in the suburbs, then there are 

also M people in the suburbs, out of a total of N people altogether, and 

so the income of the person at the margin, y(M) say, must satisfy the 

equation 

N(l-F(y(M))) - M, i.e. y(M) - F" 1 f*t*I) . (37) 
v N ' 

S t r i c t l y speaking, for this to be true we must make an assumption like 

that of section 2 of Chapter IIIA that people leave the city i n descending 

order of income. For any specific choices of the exogenous functions, this 

i s a matter to be verified, not assumed. But for the moment, the 

assumption i s a l l that i s necessary. If, then, F *(^jffi i s substituted 

for y into eq (36), the value of K which satisfies the equation, 

K(M, ir(t)), say, (time-dependence i s explic i t again) i s the level of 

suburban comfort chosen by the person at the margin. Consequently we may 

use eq (35) to obtain: 
U(u(k(y(M)), a), y(M) - R ( k ( y ( M ) ) , t) ,- y ( M ) ) 

- U ( U ( K ( M , IT(t)) , a ), y(M) - ir(t) - S ( K ( M , i r(t)), M) ; y ( M ) ) (38) 
s 

The left-hand side of this equation involves, i n addition to M and t , only 

the exogenous functions and quantities, U , u, a, y(M) (via F), and the 

functions k(y) and R(k, t) which depend only on the state of affairs i n the 

ci t y . For the purposes of the model of the suburbs, these last are taken 

as given, and so the left-hand side can be regarded as a known function of 

M and t. But, on the right-hand side, U, u, y ( M ) , a g, E and the function 

K (M, ir(t)) are a l l exogenous or derived directly from exogenous quantities. 

The result i s eq(38) i s an equation which can be solved for ir(t) as a 

function of M and t alone. When this solution i s substituted into 

eq (32), the dynamics of the suburban model have been f u l l y specified. 



2. A Particular Case of the Model of the City. 

In this section, the marginal cost function C ( I ) for invest

ment i n upkeep in ci t y dwellings w i l l be assumed to be a constant, c, for 

values of I between zero and 6k, and for higher values of I i n f i n i t e . The 

aim of this assumption i s to make especially simple the optimal upkeep 

path that city landlords w i l l follow. That i t does so can be seen by 

observing that the function I(p) of eq (1) becomes equal to the constant 

6k i f p > c, 0 i f p < c, and indeterminate between these values for p = c. 

This i s in fact an instance of a "bang-bang" control (see Bryson and Ho 

(1969b)). The result i s that i f the state variable k has the value k, i t 

w i l l remain unchanged at that value for as long as p > c. If the further 

assumption i s made that the construction-site marginal cost schedule i s 

given by the scene function C'(6k) as gives the k = 0 line, then, so long 

as a dwelling lasts long enough to receive some positive amount of main

tenance, i t w i l l be put up originally with comfort level k and maintained 

there u n t i l , at the end of i t s l i f e , i t decays according to the equation 

k = -5k. 

In Fig 13, the phase plane, analogous to that of Fig 12, i s drawn for 

this case. The exact location of the p = 0 li n e , with equation 

p = _ _ i — R'(k, t) 
p + 6 

(dash denotes differentiation with respect to k), affects only the details 

of the "exit path", so long as (l/(p + 6))R-*(k, t) ̂  c for a l l t (39) 

As usual, i f specific choices of the exogenous functions and quantities 

of the model are made, i t i s necessary to verify that this inequality i s 

satisfied. 

To proceed, then, we shall f i r s t compute, for the steady state as 



described in Chapter IIIA, the supply function G(k) and then the rents 

function R(k). On the way, some specific choices w i l l be made for some 

of the exogenous functions. Then various checks willbe made to ensure 

the consistency of the solution with the various assumptions that have 

been made. In the course of these checks, i t w i l l turn out that the 

model can be understood rather more generally than has been stated so far, 

and this w i l l be explained. Finally we shall see that eq (26) of 

Chapter IIIA gives the same solution as the one obtained here. 

We begin by observing that, i n a steady state with a rectangular 

distribution of building ages, the comfort supply function G(k), i s given 

by: G(k(t)) = 1 - (t/T) (eq (9)) 

while _ 
k (t <̂  t*) 

k ( t ) = { - • *rt t .y 

k e-6(t-t«), (t>_t*) (40) 

where t* i s the (still-to-be-determined) building age at which maintenance 

stops. Thus: 
G(k) - 1 - - (t* + k log ) for k < ic 

T * Jk } (41) 

and G(k) = 1. 

We may notice further that 

k = ke-«(T-t*) (42) 

(k, as usual, denotes the upkeep level at the time of demolition.) 

With the help of eq (41) we may deduce from eq (8) the function y(k) to 

be used i n eq (6) in order to determine R(k). We have: y(k) - F~x(G(k)) - F-Ml - Mt* + i- log (kA))> (k < k) (43) 
T 6 

^ ( G t k ) ) - F _ 1 ( l - i ( t * + i 
T 6 

and y(k) is now the set of a l l incomes above F _ 1 ( l - (t*/T)). 



Fig 14. 



In what way can this transformation of the function y(k) into a corr

espondence be justified? Since i t i s impossible, because of the i n f i n i t e 

marginal cost, for a comfort level exceeding k to exist, we may write 

symbolically R(k) = 0 0 for k > k. The budget set of a tenant of income y, 

given by points (k, X) satisfying the inequality R(k) + X <^y, i s then 

truncated by a vertical line at k = k (see Fig 14, in which for c l a r i t y 

the budget lines of different households have been rescaled so as to 

coincide.) Tenants whose income i s less than F _ 1 ( l - (t*/T)) w i l l be on 

indifference curves l i k e 1^ tangent i n the usual way to the boundary of the 

budget set (cross-hatched). Tenants whose income exceeds F~l(1 - (t*/T)) 

w i l l be on indifference curves like I3, with no tangency at the corner 

of the budget set. The person whose income i s exactly F ~ * ( l - (t*/T)) 

w i l l be on indifference curve I 2 / tangent to the non-vertical part of the 

boundary of the budget set just at the corner. A l l this means that eq (6) 

gives R(k) just as before for k £ k ^ k~ i f y (k) i s interpreted simply as 

F _ 1 ( l - (t*/T)). 

This i s an appropriate time to introduce some more specific choices 

of exogenous functions. We shall be able, after doing so, to perform 

a l l the verifications necessary to ensure that the model makes sense. 

Accordingly, l e t us set: 

F _ 1(x) - y_+bx (0<yx<_l) (44) 

U(k, X; y) = k aX. <a,b > 0) (45) 

(Later, k w i l l be replaced by u(k, a) i n eq (45) .) 

Eq (44) gives us a rectangular distribution of incomes as i n Fig 15 , and 

eq (45) i s just a Cobb-Douglas u t i l i t y indicator. From eq (45) we obtain 

the marginal rate of substitution fi, as follows: 
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U k(k, y - R(k); y) 
ft(k, R(k), y) = 

U x(k, y - R(k); y) 

a(y - R(k)) (46) 
k 

With these simplifications we get from eq (43): 

y(k) - y + b f l - - ( t * + i . log (k/k))) for all k < k < k, 
— T S _ 

and eq (6) becomes: 

-W*(k) = y + b f l - i ( t * + ^ l o g (k/k ) ) ) i - R(k) a T 6 

This i s a linear differential equation for R, and i t i s solved as follows: 

f r (kaR(k)) = ak3""1 ( ~R'(k) + R(k)) dk v a ' 

= a k a _ 1 ( y + b ( l - ~ ( t * + ^ log (k/k))) by the equation. 
T O 

Both sides of this last equation can now readily be integrated between 

k and k: 
k _ 

kaR(k) - kaR(k) = a/ dk' ( k ' ) a _ 1 ( y + b ( l - i.(t* + =- log ( k A ) ) ) ) 
— — k

 v — T O % 
(47) 

a-l 

Here we must notice that an indefinite integral of k log k is the funct

ion (l/a^)k a(a log k - 1 ) . (This can be checked by differentiation.) 

Making use of this result, and recalling eq (42), we obtain: 
k*R(k) - k^tk) - (k a - k a) (y - — (log k + h) 

— — — 6T — a 

+ —• (k a log k - k a log k) , 
OT — — 



whence: 

R(k) = ( k A ) * ^ ) + (y - JL ) (1 - ( k A ) a ) + ~ - log (kA) 
a«T — 6T — 

This, then, i s the f i r s t of our unknown functions (for long-run 

equilibrium) and we may now directly check i t s properties. Different

iation gives: 

R'(k) = i - {a(kA) a(y_ " R(k) - ~ - ) + — } k - aST ST 

= ~ {a(kA) a(Y ~ RW) + -~ (1 - ( k A ) a ) ) (48) k — " ~ ST — 

It i s clear at once that R'(k) i s always positive and monotonically 

decreasing, as one would wish. ( y - R(k) i s positive because i t i s the 

X chosen by the lowest-income person - the part of his income not spent on 

housing in fact.) Next we can examine condition (39). We have that 

R'UO « j _ _b j e-a6(T-t*) + } 

k v *~ ~ oT * oT 

This i s expressed i n terms of t * , and for condition (39), either*: t* must be 

put i n terms of c or Vice Versa. From eq (15) the link i s found: 

c = e - ( 0 + 6 ) t ' R - ( 4 9 ) 

. 0 

It w i l l be i n order then, to use. t* as the exogenous parameter that must 

satisfy conditions which w i l l allow condition (39) to hold. By use of 

eq (38), eq (49) can be evaluated, and the result i s : 

, ^ * i e V if , v r ^ w b) -a6(T-t*) (p + 6)c = Ha(y_ - R(k)) - e 

x l±l ( e < a 6 -P> W-t*) _ 1 } + J l { 1 + 6, ( 1 _ e - p ( T - t * ) ) } 

a6 -p 6T p 
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Plainly a sufficient condition for inequality (39) to hold i s that 

p + 6 
a6 - p 

(a6-p)(T-t*) 
-1) < 1 

and (1 + *)(1 - e - P < 1 
P 

Sufficiently small T - t * (which i s equivalent to sufficiently small c) 

allows both of these inequalities to be satisfied. A l i t t l e manipula

tion shows that a condition which approximates both inequalities i s 

(p + 6) (T - t*) < 1 

It i s of some interest to investigate the consequences of a choice 

of exogenous quantities such that condition (39) i s not satisfied. If the 

marginal revenue function R' i s used as calculated i n eq (48) and the phase 

plane drawn, the result w i l l look like Fig 16. But there i s of course no 

reason for this not to be quite correct. Furthermore, none of the above 

analysis needs to be changed, except to replace k by k , the saddlepoint 
s 

value of k. This follows because the i n i t i a l point of the optimal upkeep 

path must s t i l l l i e on the k = 0 line, and the only feasible path ending at 

k i s one which consists of staying at the saddlepoint un t i l age t* (possible 

since 1(c) i s indeterminate and may be set equal to <5kg.) and then exiting 

along the unstable arm, reaching the k-axis at age T. Another point 

emerges clearly from this discussion. It was stated in Chapter IIIA that 

treating k as exogenous was tantamount to writing down an exogenous con

struction-site marginal cost schedule. But here, once c and k (the point 

at which the schedule goes to infinity) are given, our assumption has been 

that the schedule was known. Consequently, k should no longer be a para

meter free to be chosen, and we can see i n fact how i t i s to be determined. 
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Fig 16 shows that k must be at the end of the unstable arm, and i t i s this 

fact that pins k down. Eq (49) gives, for exogenous c, the quantity t* 

as a function of k, since the function R'(k), given by eq (48), involves 

only k and other exogenous parameters. (R(k) i s exogenous.) But for k to 

l i e on the unstable arm, that i s , the path leading out from the saddlepoint, 

we require that k e ^ T - t * ' , which i s the value of the variable k at time t* 

on the path ending at k at time T, should equal k s, the saddlepoint k 

given by the equation c(p + 6) ** R'(kg) . We require i n fact that 

c(p + 6) = R'(ke6<T-**(k>)). (50) 

This i s an equation for k in terms only of exogenous parameters. 

We may now classify the cases that can arise by the use of eq (50). 

Let the solution of eq (50) be written as k = Mc) , and l e t k g = k g(c) 

be just ke 6 (T-t*(k(c))) ̂  i f k g ( c ) >̂  k f w e g e t t h e c a s e i n i t i a l l y 

proposed, shown schematically in Fig 17(a) . The intermediate case 

k g(c) = k i s shown i n Fig 17(b) , and the case k g(c) <̂ k i s shown i n 

Fig 16 . One case remains, and i t i s distinguished from the others not 

so much by the value of c as that of T. I t could i n principle happen 

(we shall not be much interested i n this possibility) that T i s so short 

that calculation gives a negative value for t*(k(c)). In this case, the 

optimal path starts at p = c as usual, but at a lower value of k than k s -

as shown in Fig 17 (c) . We notice that i n a l l cases no dwellings exist 

with a k greater than max(ks, k);, either because.of technological imposs

i b i l i t y or because of insufficient demand. 

After this demonstration that our i n i t i a l analysis w i l l work i n a l l 

cases with k redefined as max(k3, k), we shall nonetheless stick with our 



101 

Fig 17. 



interpretation of k as technologically imposed - for reasons of dynamics. 

Once the steady state i s l e f t , and demand becomes time-dependent, k (c) 
s 

w i l l also be variable. It i s much easier to deal with a technologically 

fixed k. The last matter to be attended to i n this section i s to see 

that direct use of eq (26) gives the same result as the one we have 

obtained. This i s now quite t r i v i a l . The operator T that appears i n 

eq (26) i s now equal simply to 6k for k = k, and zero for k < k. The 

(unique) solution such that t(k) = T i s immediate: 

k 
t(k) = t* + J dk' — - = t* + - log (k/k) for k < k. 

k «*' 6 

This i s in accord with eq (40). For k = k the right-hand side of eq (26) 

i s not defined, as we require to make sense of the result that k(t) - k 

for a l l t such that 0 <. t <_ t*. 

3. The Case of Rapid Suburban Construction. 

This section presents the f i r s t part of the discussion of the 

dynamics of the coupled model of city and suburb. The suburb i s model

led as i n section 1 and the ci t y as i n section 2. Specifications of 

some more exogenous functions are made, and the meaning of the t i t l e of 

this section, "rapid suburban construction", i s given. Then, the rents 

function R(k, t ) , now a function of time as wellr.as of comfort, i s 

obtained i n terms of the supply function G(k, t) v i a the demand d i f f e r 

ential equation. The supply function G(k, t) is next determined by 

consideration of the ci t y landlords* optimal control problem. A partic

ular case of the dynamical evolution, that i n which a l l urban maintenance 

stops immediately after the externality appears, i s treated f i r s t . The 

function G i s then easily written down, and consequently also the rents 



function, R. A series of checks has then to be undertaken to determine 

when the particular case applies - these checks are concerned with the 

dynamics both of the city and of the city-suburban margin. Other 

possible regimes of dynamical evolution are discussed following the checks. 

Lastly, i t i s verified that the evolution of the model i s stable, in the 

sense that i t i s indeed the richer city-dwellers who f i r s t become dissat

i s f i e d and move out to the suburbs. 

F i r s t then, l e t us specify in a particularly simple form the function 

f which appears in eq (30) and which links the rate of construction i n the 

suburbs, m(t) , to the pro f i t per dwelling, ir(t). Let 

m i f ir > 0 
f(ir) - { 

0 i f ir < 0 (51) 

and f(0) i s indeterminate between zero and m. This means (eq (32)) that 

the number of dwellings in the suburbs at time t i s M(t) = mt for so long 

as positive profits exist over an unbroken time interval. What eq (51) 

says i s just that there i s a perfectly inelastic response of entry by 

exactly m firms for any positive p r o f i t whatever, and instant exit of a l l 

of them i n the face of loss. At the margin of exactly zero p r o f i t , there 

may be any number between zero and m. This choice of the function f 

makes our calculations much simpler than would any other choice, and does 

not obscure the dynamical questions in which we are principally interested. 

The rate at which demolition goes on i n the city i s , at least for time 

T after the imposition of the externality, given by N/T. (Long-run 

equilibrium, with a rectangular distribution of building ages, prevails 

befpre this time.) For this section, we consider only the case m > N/T, 

that i s , the case i n which positive profits i n suburban construction cause 

more dwellings to be b u i l t there than are simultaneously being demolished 

in the c i t y . The result i s , of course, more dwellings than people, and so 



there are unoccupied dwellings in the city. We may now specify the form 

of the function u(k, a), which expresses how a comfort level enters a 

tenant's u t i l i t y function i n the presence of the externality a. A 

particularly easy form i s 

u(k, a) = ak. (52) 

For this choice of u, then, and with the marginal rate of substitution 

given by eq (46), the demand equation i n the city, eq (33) , becomes: 

R'(k, t) = ( 5 3 ) k 

just as before. The demand equation i s not unchanged in general - that 

i s just a felicitous result of eq (52) . Time dependence has been made 

exp l i c i t , and dashes denote differentiation with respect to the upkeep 

variable. 

The fact of unoccupied dwellings means that the rent charged on the 

least comfortable inhabited dwelling i s zero - dwellings any less comfort

able have become free goods. This observation provides the boundary 

condition to accompany eq (53). The zero-profit condition no longer 

applies of course, since we assume that the externality arrives unexpect

edly. Let the lowest upkeep level of any inhabited dwelling at time t 

be k Q U t ( t ) . Then R ( k o u t ( t ) , t) = 0 and so eq (53) gives: 

k 
R(k, t) - ak" a / dk' ( k ' ) a _ 1 y(k', t) 

W W 

where y(k, t) i s , as usual, the income of the person inhabiting a dwelling 

of upkeep level k at time t. 

Next, l e t us define the upkeep supply function G(k, t) as follows: 

NG(k, t) = number of dwellings in existence (not necessarily inhabited) 

at time t of upkeep level ^ k . We may express k t ( t ) in terms of G. 
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Since the number of uninhabited dwellings at time t i s just (m - (N/T)), 

we have NG(k Q U t(t), t) = (m - (N/T))t. (54) 

Similarly, equating .numbers of dwellings to numbers of people, one 

obtains for y(k, t) the equation: 

NF(y(k, t)) + (m - (N/T) )t = NG(k, t) , 

so that y(k, t) = F - 1{G(k, t) - ((m/N) - dA))t}, 

k 
whence R(k, t) = ak" a / dk' ( k ' ) a _ 1 {y + b(c(k', t) 

'•out^ 
" (* - b t ) } (55) N T ' 

by use of eq (44). 

We have now reached the stage where, i f we can find G(k, t ) , the 

problem i s done. To find G(k, t ) , we must, as always, consider our 

optimal control problem for landlords. F i r s t , since at time zero (the 

moment of imposition of the externality) G(k, 0) i s just the long-run 

equilibrium function given by eq (41), we may see from eq (55) that R(k, 0) 

i s less than the equilibrium R(k) by just k_aR(k)/ka
r a quantity which i s 

always positive, (see eq (47).) On the other hand, a decrease i n R(k, 0) 

means, because of eq (53), an increase in R'(k, 0), so that the impact 

effect of the externality i s "perverse", i n the sense of Chapter II, in 

that the total revenue schedule f a l l s , but the marginal revenue schedule 

rises. There i s nothing perverse economically of course: the lower 

rents leave more money for other things, and the marginal rate of substit

ution shifts in favour of housing. The impact effect i s not, of course, 

the whole story. If i t were, then landlords would tend to maintain 

dwellings to a greater age than i n equilibrium - eq (49) shows that larger 

R" means a shorter time interval T - t*. 

There are in fact circumstances in which the landlords optimal 
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response i s to cease a l l maintenance, and we shall now consider this case. 

Any dwelling of age v less than T - t * (t* w i l l throughout denote the 

equilibrium t* given by eq (49)) i s at time t = 0 i n state k. It w i l l 

r'inish i t s l i f e at time T - v, at which time the shadow price of upkeep, 

p(t), w i l l be zero. At time t = 0, then, we get from eq (10) that 

T-v 
p(0) = / dt e _ ' P + 6 ) t R'(k(t), t) 

0 

where k(t) i s the upkeep at time t. If no maintenance i s done for t > 0, 

then k(t) = ke" 6 t, and so 

p(0) = / T " V d t e"< p + 5 ) t R'(kV 5 t, t) (56) 
0 

But no dwelling can reach age T and s t i l l be receiving a positive rent. 

Further, there i s always a positive time interval during which no rent i s 

received and for which therefore R" — 0, since R(k, t) = 0 for a l l 

k < k Q u t ( t ) . The upper limit on the integral i n eq (56) can thus be 

extended to », and i t i s clear at once that p(0) i s the same for a l l dwell

ings of age less than T - t * . If, then, p(0) as given by eq (56) i s 

less than c, there w i l l indeed be no maintenance after t*=P0. 

Let us now complete the analysis of this case. It i s immediate that 

NG(k, t) = NG(ke 5 t, 0) - Nt/T for k < ke~5t 

and NGlke~ 6 t, 0) = NGlk, 0) - Nt/T-

From eq (41) we obtain: 

G(k, t) = 1 - ~ ( t * + - log (k/ke 6 t)) - -T o T 

= 1 - i ( t * + i . log (k/k)) for k < ke~ 5 t, just as before 
T 6" 

- -St ( 5 7 ) 

and G(ke ,0) = 1 - t A . 



The function k Q u t ( t ) comes from eq (54) and i s : 

*aut<« - ke-^ T- t*- t< ( m T/ N ,- 1J>. (58) 

, ,. _ fit 

Of course this makes sense only i f k Q u t ( t ) < ke" , since the right-hand 

side here i s , at time t, the greatest existing upkeep level. This means 

that T - t* - mTt/N > 0, i . e . that t < _E (T - t * ) . Once t = — (t - t * ) , 
raT mT 

the free-good upkeep level coincides with the greatest upkeep level, and 

a l l c i t y housing i s free. A simple, but tedious, calculation of eq (55) 

gives R(k, t ) . The result i s : 

R(k, t) = ( y - J P - J f l - ( k o u f c ( t ) A ) a ) + ^ | l o 3 (kAout(t)) (59) 

From this one can calculate eq (56). The upper limit of the integral i s 

the time t for which ke - 1 ^ = k Q U t ( t ) , which means that 

t = (N/mT) (T - t * ) . (60) 

The answer i s : 

x ( e ((a«mT/N) -p) N (T-t*) /mT _ ^ 

+ _ b _ ( l - e-pN(T-t*)/mT) ( 6 1 ) 

p6Tk 

Thus, f i n a l l y , i f this quantity i s less than c, there w i l l indeed?be no 

maintenance after t== 0, and eqs (57):, (58) and (59) provide the solution 

to the problem. After time t = N(T - t*)/mT, no more rent can be collect

ed i n the city, and property continues to deteriorate exponentially. 

For this fearsome tale to proceed to the end, that i s , complete 

desertion of the city, i t i s necessary that profits remain non-negative 

i n the suburbs. The continued lack of maintenance in the ci t y means that 
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the maximum u t i l i t y to be had there steadily declines. Therefore, for 

as long as anyone l e f t in the city can afford i t , there w i l l be a steadily 

growing incentive to move to the suburbs. Even i f , after some time, 

profits there f a l l to zero, a rate of construction less than m can be 

maintained. 

Let us now choose a specific form for the suburban construction 

cost function H ( K , M) : 

5(K, M) = C(l + hM) * IK. (h,U, C > 0) 

This comprises a fixed building cost C(l + hM) which grows with M, the 

number of already existing suburban buildings, and a linear variable cost 

IK, dependent on the b u i l t - i n standard of comfort. Eq (36) can be 

solved with this choice of the function H and the other choices made 

previously. Eq (36) becomes: 

I = i-faaty - ir - C(l + hM) - l<)) 
K S 

with solution K = a (y - ir - C(l + hM)) . 
Ma + 1) 

From this we may calculate the u t i l i t y obtainable i n the suburbs by a 

person of income y, when the p r o f i t there i s it and there are M dwellings 

in existence. We obtain (eq (45)): 

Usub = TifhF < y - * - c < 1 + h M » 2 <62> 

where i t i s necessary that y > TT + C(l + hM) i n order that the rent paid 

does not exceed total income. For a city-dweller of income y who at time 

t avails himself of the highest obtainable standard of comfort, u t i l i t y 

attained i s : 

U c i t y = o k e " 6 t t y " Rtke" 5*, t ) ) . (63) 



From eqs (58) and (59) one has: 

R(ke- 5 t, t) - (y - J L . ) ( l - B-*6W-*-W*») 
a6T 

+ k(T - t* - *£?_) (64) T N 

Now, while the pr o f i t ir i s positive, we know that M = mt. The income of 

the person at the margin of indifference between cit y and suburban liv i n g 

is then (eq (37) and eq (44)): 

F ^ d - (mt/N)) = y + b ( l - (mt/N)) • 

Therefore the marginal condition, eq (38), which gives ir, can be written 

down by equating the right-hand sides of eqs (62) and (63). The result 

i s , at time t : 

JSs {y + b ( l - (mt/N)) - ir - C(l + hmt) }2 (65) 
JUa + l ) 2 

= a k e - f i t {(y - J U e-a6(T-t*-(mtT/N)) + + _± } 

— aST T as , 

whence 
ir (t) = y_ + b (1 - (mt/N)) - C (1 + mht) 

-St 
(a + 1) ( &«ke { _ _b_ , e~a5 (T-t*-(ntT/M)) 

a<xs 
aST 

+ kit* + _ i )})** (66) 
T aS 

This i s clearly a decreasing function of t. In those cases, then, where 

the c i t y does not simply empty directly, a time, t 0 , say, w i l l be reached 

when ir becomes zero. This time t Q i s calculated by setting the right-hand 

side of eq (66) equal to zero. 

After this, i t i s the fact that ir = 0 i f any more suburban construction 

occurs that determines the dynamics. Let us, for the sake of simplicity, 



assume that t Q > ¥ (t i s the time when rents in the city go to zero - 1 1 0 

eq (60)). If not, the following analysis w i l l be more complicated, but 

s t i l l feasible. With t > t, the marginal condition, eq (38), when ir = 0, 

reads: 

a c ts •fy + b ( l - M/N) - C(l + hM) }2 

I T a + 1) ̂  

- c£e^ t {y. + b { 1 ~ ( 6 7> 
and this can be solved directly for M as a function of t. We must notice 

that since .the right hand side of this equation i s always positive, M can 

never exceed the value, M, say, which makes the left-hand side zero: 

_ N(y + b - C) 
M =u—== 

b + hNC 

If M < N, there i s a fraction of the city population which can never 

afford suburban housing, and i s l e f t trapped i n the decaying city, albeit 

with free housing. Eventually, demolition w i l l catch up with these 

people, and housing w i l l no longer be free. Our present model does not 

say what w i l l happen then, but i t must certainly be something breaking the 

pattern of preceding events. (Government subsidies, changed municipal 

rules, r i o t s , i l l e g a l squatting are a l l possibilities.) 

There i s one more matter to be checked before this section i s con

cluded. It has been assumed a l l along that the margin between city and 

suburban l i v i n g was such that people with incomes greater than the marginal 

one preferred the suburb, people with lower incomes the city. This 

assumption must be verified. At time t , a person with income e less than 

the marginal one w i l l attain a u t i l i t y less than that of the marginal 
_ -St 

person by ^ ^ ^ ^ ake e (compare eq (63)). 

or by 2aa sc sub " ~ ~ (y - ir - C(l + hM)). (compare eq (62)) 
A(a + l ) 2 



I l l 

We require then that 

(y — IT — C(l + hM)) > otke~fit. 

Ka + l ) 2 

If in this inequality, ake - 6^ i s replaced by the expression for i t 

obtained from the marginal condition i t s e l f , eq (65), the requirement 

becomes: 

2(y - R(ke~ 5 t, t)) > y - ir - C(l +hM) , 

i.e. y + it + C(l +hM) > 2R(ke - < 5 t, t ) . 

For times t > t, this is t r i v i a l l y satisfied. Inspection of eq (64) shows 

that 2R(ke _ , 5 t, t) decreases faster with t than does ChM, and so the cond

i t i o n w i l l certainly be satisfied for a l l t i f i t i s at t = 0. A s u f f i c 

ient condition i s then 

y + C > 2R(k, 0), 

which w i l l always be satisfied i n normal circumstances. The richest person 

would otherwise be spending well over half his income on rent after the 

externality - a most unlikely state of a f f a i r s . We may conclude then that 

the course of events is as described. 

4. The Case of Slow Suburban Construction. 

In the last section, we considered some of the possible outcomes 

in the event that there were unoccupied dwellings i n the city. The state 

of affairs i s quite different i f there are not. The reason for this i s 

simple: i f one excludes the knife-edge case i n which the rate of suburban 

construction exactly equals the rate of urban demolition, the former must 

be less than the latt e r i f no unoccupied dwellings exist, and so, i f every

one i s to be housed somewhere, urban construction must s t i l l be going on 

and must be profitable. We may assume that the p r o f i t for urban construe-
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ion i s exactly zero - this implies competition and no barriers to entry. 

F i r s t , the effects of continued urban construction can be taken into 

account so as to provide the distribution of dwelling ages (as opposed 

to that of upkeep levels) at any time. The distribution of upkeep levels 

can then be deduced by introducing a function s ( t ) , which gives the time 

at which maintenance on a dwelling constructed at time t comes to an end. 

As usual the rents function R(k, t) follows from the demand differential 

equation. The next step in the analysis i s to obtain an equation for 

s(t) from the landlords' optimal control problem. This equation i s 

unfortunately rather involved, and i t i s not possible to provide an expli

c i t solution. However an iterative scheme i s described by which i t may 

be computed. Lastly, i t i s pointed out that a much simpler result can 

be obtained i f the s t r i c t rational expectations hypothesis i s relaxed. 

We assume in this section, that m < N/T. Now the urban demand 

equation, (53), i s the same as before, but i t s boundary condition i s no 

longer that R ( k Q u t ( t ) , t) = 0, but rather the zero-profit condition. 

It should be recalled that we have assumed that urban landlords have 

perfect foresight, and that their p r o f i t i s then to be calculated with 

the rent function R(k, t) predicted by the model. At time t = 0 we 

shall have suburban p r o f i t tr > 0, i f any move to the suburbs i s to take 

place at a l l . Presumably after some time ir w i l l f a l l to zero, and tnen, 

since urban construction i s continuing and housing of upkeep level k i s 

s t i l l available, suburban construction w i l l permanently cease. The only 

thing that would make i t start up again would (other than another 

exogenous adverse externality) be an increase i n city rents. Since there 

are never unoccupied dwellings, the zero-profit condition applies to every 

building put up after t = 0, and thus R(k, t) w i l l be bounded above and 



below - only buildings i n existence at t = 0 can incur windfall gains or 

losses. With our assumption that people who move to the suburbs never 

move back to the city, the state of affairs where the richest person l e f t 

i n the city i s just indifferent to moving to the suburbs when R(k, t) i s 

at i t s highest point i s stable: no more new suburban construction w i l l ^ 

ever take place (except for replacement of course - we have abstracted 

from such considerations). 

It may seem that there i s no reason for R(k, t) to change at a l l from 

i t s t < 0 value. Indeed there i s no reason for i t to change by very much, 

but there w i l l be small fluctuations, as we shall now see. While ir > 0, 

the rate of urban construction f a l l s from N/T to (N/T) - m. This means 

that the distribution of building ages i s no longer rectangular, in fact, 

for time t, the distribution w i l l be as i n Fig 18(a). If, as we may for 

simplicity assume?, once ir reaches zero suburban construction stops for 

good, urban construction rises again to a rate N/T, and afterwards the 

age distribution w i l l be as in Fig 18(b) . Let us denote the function 

graphed in Fig 18 by w(v, t ) , and then w(v, t) dv i s the number of 

dwellings which at time t have an age between v and v + dv. After sub

urban construction ceases, at time t'f- say, we have 

w(v, t) = w(v + t 1" - t + nT, t + ) (68) 

where n i s an integer chosen so that O ^ v + t ^ - t + nT T. 
4. 

It i s as though the function w(v, t ) were/reproduced in each interval of 

length T as a periodic function, and then propagated i t s e l f forwards like 

a wave. If there ar f i n a l l y M buildings in the suburbs, construction 

proceeds so as to keep N - M buildings i n the city: construction rate 

after t = t^ always equals demolition rate. 

Whether the function w(v, t) takes on only the values N/T and 



w(v) 

N . 
m 

T 

(b) 

Fig 18. 

age 



(N/T) - m as shown in Fig 18 or has some intermediate values attained 

while R(k, t) rises to i t s highest point, l e t us now make the definition: 

V(v, t) = number of buildings with age > v at time t. 

The function V i s of course calculated directly from the function w, but 

i t i s more convenient to work with V i n the analysis to follow. 

It can now be seen why the maximum city rent, R(k, t ) , fluctuates. 

There w i l l be periods when older housing i s scarcer than at others. 

Consequently the upkeep supply function, G(k, t ) , w i l l at times increase 

more slowly with k than at others. This means that the whole rents 

p r o f i l e , R(k, t ) , w i l l assume different shapes at different times, and 

since the value of a building put up at time t depends on rents from time 

t to time t + T i n such a way that, with unchanging construction costs, 

exactly zero profit i s realised, i t follows that R(k, t) cannot always 

have the same value. It i s reasonable to suppose that i t s fluctuations 

w i l l be minor - they are certainly bounded - and, clearly, i f a long-run 

equilibrium with a rectangular distribution i s ever to be achieved, 

fr i c t i o n a l forces of some kind must operate so as to damp out both the 

fluctuations of R(k, t) and those of V(v, t ) . 

We may now finish the present analysis. Let the time at which 

a building constructed at time t ceases to be maintained at upkeep level 

k be denoted by s ( t ) . This time i s then determined by the time-depend

ent analogue of eq (15): 

t+T 
c - / dt' e - ( e + 6 ) ( t ' - s ( t ) ) R'(&-« t') (69! 

s(t) 

( c i s the marginal cost of upkeep - this equation the the condition that 

p(s(t)) = c, p(t + T) =0, where p i s the shadow price of upkeep.) The 

differential equation for the rent function R(k, t) i s eq (53), and i t s 



solution may be written as follows: 

k 
R(k, t) - (k/k) a R(k, t) - ^ j dk' ( k ' ) 3 " 1 y(k', t) (70) 

k a k 

where y(k, t) i s as usual the income of the person choosing comfort level 

k at time t. The function y(k, t) can be expressed i n terms of V(v, t) 

and s ( t ) . A building constructed at time t', i s , at time t > s ( t ' ) , i n 

a state of upkeep ke . The number of buildings i n a less 

good state of upkeep i s V(t - t', t) - that i s , the number of buildings 

of age greater than t - t", at time t. Equating numbers of people and 

dwellings as usual, we obtain: 

-6(t-s(t')) . . _ -,-1 f l y ( k - e - 6 ( t - s ( t ) ) f t ) = p - l ^ y ( t _ t f fc)) 

= y + k V ( t - t', t) 
- N 

by eq (44). Therefore: 

y(k, t) = y + b-vft - s _ 1 ( t - k log (k/k)), t) (71) N 5 

where s - ^ i s the function inverse to s. When this i s substituted into 

eq (70), the function R(k, t) is expressed i n terms of s(t) and V(v, t ) . 

But V(v, t) can be regarded as known, since i t can be calculated directly 

from the marginal condition of indifference between city and suburb. 

Finally then, to complete the set of dynamical equations, there i s the 

zero-profit condition. If B denotes the unchanging cost of a new build

ing in state k, then this condition i s : 

s(t) _ 
e" p t B = / dt e " p t (R(k, t') - cSk)) + J ( t ) , (72) 

t 

where J(t) i s the value to be obtained from the building once maintenance 



stops, that i s : 

t+T , , 
J(t) = / dt' e ~ p t R(ke- 6 ( t " s ( t ) ) , t') . (73) 

s(t) 

Since R(k, t) i s already expressed i n terms of s ( t ) , so then i s J(t) by 

eq (73) and so therefore i s the whole of eq (72). Eq (72) i s then an 

equation of a very involved kind for the function s ( t ) . 

It would be exceedingly d i f f i c u l t and probably pointless to try to 

obtain an explicit expression for s ( t ) , even with the many simplifying 

assumptions so far made. But, as was pointed out before, the fluctuations 

in R(k, t) are small i n any normal circumstances. An iterative scheme 

for solving eqs (72) and (69) may therefore be suggested, suitable of 

course only for numerical computation. A reasonable f i r s t guess for the 

function s(t) i s s(t) = t + (T - t * ) , 

where t * i s the long-run equilibrium parameter given by eq (49). The c i t y -

suburb marginal condition i s just 

a5s + b ( l - (mt/N)) - ir - C(l + hmt)) 
£(a + l ) 2 

= ak (y_+ b ( l - (mt/N)) - R(ic, t)) (74) 

byanalogy with eq (65) , and i f one sets R(k, t) equal to R(k), the pre-

externality equilibrium value, and sets ir = 0, an estimate i s obtained for 

the time t at which suburban construction stops. From this the function 

V(v, t) i s calculated using eq (68). Then the function y(k, t) follows 

from eq (71), and hence R(k, t) from eq (70). The quantity J(t) can then 

be obtained from eq (73) and then eq (72) i s an integral equation for 

R(k, t ) . It can be solved by differentiating with respect to t: 
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-pe~ p tB » e " p s ( t ) (R(k, s(t)) - cok ) 

- e~ p t (R(k, t) - cfik ) + J'(t) . 

This can be solved for R(k, t) in terms of R(k, s ( t ) ) . One may then 

iterate and write R(k, s(t)) i n terms of R(k, s(s(t))) and so forth; 

the exponential factors ensure convergence. With the solution R(k, t) 

in hand, a new expression for R(k, t) comes from eq (70). This can be 

substituted into eq (69) so as to obtain a second-round estimate of s ( t ) . 

The whole procedure may be started again, and w i l l in a l l likelihood 

converge very rapidly. 

The extreme complication of this result i s due to our rational 

expectations hypothesis. If landlords are endowed with a l i t t l e less 

foresight, then things became much simpler. Let us imagine, for instance, 

that landlords cannot be persuaded to invest in new construction unless 

the construction cost, B, i s covered by the return 

t+T _ _ 
/ dt' e ~ p ( t _ t ) (R(k, t') - cfik ) 
t 

which would be obtained i f f u l l maintenance continued to the time of 

demolition. This return of course must be less than that really obtain

able, since i t i s feasible but not optimal. Then eq (72) becomes just 

t+T _ _ 
B « / dt' e~P ( t ~ t ) (R(k, tD -.cfik}) , 

t 

and this equation i s satisfied by a constant value of R(k, t ) , R(k, t) = R, 

say. The city-suburb marginal condition , eq (74), i s then satisfied 

by a unique t = t^ at which TT = 0, and no further suburban construction 

at a l l occurs for t > t^. The age distribution, V(v, t ) , i s then known 

completely. The function s ( t ) , which gives the time at which a building 

constructed at time t i s in fact l e f t to decay has s t i l l to be calculated 



with some d i f f i c u l t y from eqs (69), (70) and (71), but of course i t i s no 

longer of much interest. 

The behaviour of s(t) i n a general way may be seen by inspection. 

When older buildings are scarce, that i s , when buildings put up i n times 

of urban construction rate (N/T) - m are nearing the end of their lives, 

then for any v, V(v, t) i s smaller than usual. From eq (71) i t follows 

that y(k, t) i s smaller than usual for any k, and therefore by eq (70) 

that R(k, t) i s greater. From eq (53) , R'(k, t) i s smaller, and so from 

eq (69) s(t) i s nearer to t and further from t + T than usual. In other 

words, the equations operate so as to mitigate the scarcity of older 

buildings by causing maintenance to come to an end sooner. 

This concludes our formal analysis of the city-suburb dynamics. 

It remains in the next section to summarise the numerous conclusions 

of this section and the preceding one, and to gather a few loose ends. 

5. Summary and Conclusions. 

It was not the aim in sections 3 and 4 to provide an exhaustive 

catalogue of everything that might happen i n the two cases m > N/T and 

m < N/T. Rather, certain sequences of events were shown to be possible, 

and some details analysed. There were two reasons for this: the different 

cases that may arise for various choices of the model parameters are 

exceedingly numerous, so that an exhaustive catalogue would also be 

exhausting; and some of these cases, while very similar to each other, 

can be distinguished by large differences i n complication or ease of 

analysis. 

It i s probably worthwhile, then, to supply here a verbal, rather 



than mathematical, discussion of the information that can be obtained 

from our exercise i n comparative dynamics. 

In the rapid suburban construction case, m > N/T, i t i s not necess

ary that a l l c i t y maintenance come to an end at t = 0. There i s a 

condition for th i s , namely that the quantity p(0) given i n eq (61) should 

be less than c. What happens i f this condition i s not met? It was 

pointed out that eq (61) gives p(0) for every building in state k at 

t = 0 and so i t remains true that there i s only one optimal maintenance 

path for a l l of them. Some time must pass, then, before general decay 

starts, and continuity requires that some buildings which had at t = 0 

begun their decay should again be maintained for a time. 

The time t , given by eq (60) , at which city housing becomes free, 

i s not affected by maintenance after t = 0.. It i s determined only by 

the difference in the suburban construction rate and the urban demolition 

rate: i t i s the time when a l l the dwellings of age more than t* at t = 0 

have become unoccupied. Consequently i t makes l i t t l e difference to 

events after t = t whether or not p(0) as given by eq (61) i s less than c 

If there were no limit to the rate of suburban construction, the 

number of people in the suburbs, M(t), would be given simply by the 

marginal condition with zero p r o f i t , eq (67). There would be an instant 

departure of a positive fraction of the population - M(0) i s not zero i n 

general. (If a formal solution of eq (67) yields a negative value of 

M(0), this means that suburban housing i s too dear, and the urban exter

nality, a, not severe enough relative to the suburban one, a g, for any

one to wish to move out.) In any event, M(t) as given by eq (67) 

specifies the greatest possible number of people in the suburbs at time t 

so that i n general this number w i l l be min (mt, M(t)). The time t Q i s 
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defined by mt Q => M(t Q), i.e. by T r(t 0) = 0. 

It may happen that M(t) f a l l s below mt very quickly, so quickly 

in fact that after a time t, say, there are no more unoccupied dwellings 

in the cit y . The time t would be defined by M(t) = Nt/T. This equation 

says that the number of suburban dwellings at time t equals the number 

of city dwellings demolished between t = 0 and t = t. But i n this case 

urban construction would have to start again. The dire consequences 

mentioned i n section 3, riots and so forth, need not take place i f t i s 

small enough. For once urban construction starts, we are in the situation 

described in section 4, and the analysis presented there w i l l go through 

in some cases. 

At this point, we may see that a solution to the system of equations 

(72) and (69) may not exist. This w i l l be so i f the incomes of the people 

l e f t in the city are not large enough for the rents obtainable from new 

buildings over their lifetime to cover costs. An extreme instance of 

this would be a state of affairs in which the highest income l e f t i n the 

city once suburban construction has ceased, y_ + bM/N, i s less than the 

rent R(k) which would i n a steady state be necessary for eq?.(72) to be 

satisfied. Now c i t y construction w i l l of course f a i l to be profitable 

in much wider circumstances than this. It i s then a state of affairs 

where no new city construction can be profitable that leads to the "dire 

consequences" of section 3. 

Even in the case m < N/T i t can turn out that eqs (72) and (67) 

have no solution. If suburban housing i s cheap enough, and the exter

nality a severe enough, the marginal condition given by eq (74) can, when 

TT i s set equal to zero, lead to a value of mt sufficiently great that too 

few people are l e f t in the ci t y for new construction there to be profitable. 
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Again there w i l l be dire consequences. 

The model presented in this essay i s not of course intended to 

provide a contribution to r e a l i s t i c urban economics. Por this reason, 

I shall not attempt to make policy prescriptions for city managers or 

governments faced with population loss due to migration to suburbs, 

although, were the model r e a l i s t i c , many such prescriptions would be 

implicit in the analysis I have presented. On the other hand, I do hope 

that economic theory i s i n some small measure advanced by this essay. 

It has been shown how a general equilibrium model can be solved in an 

intertemporal context; the problems of entry into and exit from business 

have been e x p l i c i t l y incorporated into the analysis; some indication 

has been given of the richness of detail that comparative dynamics can 

provide when f i n i t e rather than infinitesimal changes in exogenous 

quantities are considered. 

In the postscript that follows this collection of essays, there w i l l 

be discussion of some of the many outstanding problems i n comparative 

dynamics, and what one might do to try to solve them. 
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POSTSCRIPT. 

Seeing into the future i s an occupation fraught with hazards. It i s 

ironic^that a world more laden with s t a t i s t i c s and projections, facts and 

figures than ever i t was in the past i s the one i n which economic theorists 

are at last trying to come to grips with the effects of uncertainty and 

lack of foresight. It i s a world, though, where much s c i e n t i f i c research 

has s t i l l not told us enough about the life-cycles of f i s h or even of trees 

for poor economists to be able to take into account the facts of physical 

and biological evolution that are needed for anything that could be called 

optimal exploitation of renewable resources. It i s a world where the 

estimates of what remains for us to use of non-renewable resources like o i l 

and coal are as volatile as the stock market quotations. . 

It would be wrong of me to i n s i s t on how great a defect i t i s that 

this thesis does not worry about uncertainty. It i s a defect, but one 

which can be cured with a b i t of effort. Since von Neumann and Morgenstern 

(1944) and more especially Arrow's (1971) essays on risk-bearing, economists 

have made some progress i n the matter. It may even be f a i r to say that the 

business of making any given economic model into a stochastic one i s just 

technical. At a l l events, one knows how to tackle the problem. There are 

some other perhaps less obvious defects i n the theory used i n the thesis, 

and i t i s time to discuss them. 

One such defect i s that optimal control theory allows us to maximise 

only those objective functionals that are integrals. This i s not really a 
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matter of too great concern when one is considering the theory of the 

firm, in which a discounted stream of profits provides economic incentive, 

for this i s indeed an integral. But as soon as one looks at the other side 

of the market, one i s aware that consumers are not i n general l i k e l y to be 

maximising discounted streams of u t i l i t y . Rather, i t i s usual to suppose 

that enjoyment today and enjoyment tomorrow are strongly complementary for 

most people. Theories of job choice, attempts to explain age-earnings 

profiles and the like must take f u l l account of this fact. No doubt the 

mathematics of maximising general functionals w i l l be shortly worked out 

well enough for economists to use i t , but i n the meantime the best way out 

seems to be to give up a description of events i n continuous time and 

concentrate instead on objective functions that depend on a large, but 

f i n i t e , number of discrete variables. An inspiring example of this i s to 

be found i n a paper by Iwai (1972) i n which a programme of optimal capital 

accumulation i s worked out for a quite general benefit function i n a model 

with a discrete time variable. 

In this thesis, continuous mathematics has been used throughout, not 

only for time, but even for households and buildings, which must i n the 

nature of things come i n integral amounts. Approximations are involved in 

such a procedure as this, and i t can be d i f f i c u l t to know when the 

graininess or lumpiness of people and things can make a crucial difference 

i n an economic story. Non-convexities, like uncertainty, provoke a good 

deal of new economic theory these days. I am inclined to think that the 

models treated i n the present work are not too much impaired by continuous 

approximations, but i t i s certainly reasonable to hope that intertemporal 
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models w i l l be developed with discrete households, firms, and so forth, 

even i f continuous time i s (very properly!) retained. 

There i s no reason to imagine that aggregation over firms and 

households, in the sense of bringing them together in a general-equilibrium 

economy, i s any more d i f f i c u l t a task with discrete variables than with 

continuous ones. In fact, i t may well be that the individuality of people 

and managements can be captured better i n a discrete model. Assumptions 

of perfect competition among identical agents are probably grating on the 

consciences of most economists nowadays, and i t i s certain that, i f entry 

and exit of firms are to be objects of inquiry, one must have i n mind a 

hierarchy of them in order of efficiency or some such attribute. An idea 

like this one i s behind the modelling of suburban construction activity i n 

Chapter IIIA. 

It i s interesting to wonder i f one might construct a general-

equilibrium model, with many goods and services, i n which a l l the economic 

actors had intertemporally defined objectives. The correspondence 

discovered i n Chapter I between lines of constant state or co-state 

variables and static supply or demand curves may well be subject to 

considerable generalisation. It i s tantalising to imagine that the notions 

already i n use for demand analysis i n a static framework - Hicks 

aggregation, gross subs t i tut a b i l i t y , and so forth r- might have dynamic 

counterparts that could help to cut a way through the d i f f i c u l t i e s of 

many-stock optimal control problems. 

I should lik e to end this thesis by lamenting the fact that our 

understanding of intertemporal economic processes;;has not at a l l -
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contributed to a credible theory of speculation. Well-behaved, 

responsible firms perhaps, but crass speculators no. They might just 

as well be necromancers or augurers for a l l we understand them - and 

some are indeed very successful. The glamorous mathematical theory of 

catastrophes (see, for a serious account of the theory, Brocker (1975)) 

may provide what i s needed here - i t does discuss motions described by 

systems of differential equations and the quirks or singularities 

associated with such motions. I have the uneasy feeling, though, that 

there i s s t i l l some distance to go before the economics of speculation i s 

understood. 
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