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ABSTRACT

Statics and dynamics of the neutrally buoyant inflated visco-
elastic cantilevers constituting a submarine detection system is in-
vestigated. Two geometries of the thin-walled beams are considered:
uniform circular cylindrical and circular tapered. The static flexural
behaviour of the beam is studied using the three parameter viscoelastic
solid model which yields material properties for the mylar-polyethyiene- ,
mylar plastic film used. Results of a detailed experimental program
are also presented to substantiate.validity of the analytical model.
This is followed by free vibratién analyses of the inflated cantilevers
in the ocean environment accounting for the added inertia and nonlinear
hydrodynamic drag. For the uniform cylindrical beam, thin-shell
theories are employed to éccount for the inflation effects on the free
vibration characteristics. A significant feature of the analysis is
the reduction of the shell equatidns (the membrane, Flugge's, and
Herrmann-Armendkas') into a single equation which is similar in form
to that for a vibrating beam'wjth rotary inertia effects, The natural
frequencies obtained are compared with the experimental results and
- those predicted by the RayleighQRitz method in conjunction with the
Washizu and membrane shell theories. The analyses show, and experi—..
mental program confirms, that Flﬁgge's shell equation in the reduced fgrm
is capable of %?edicting free vibration behaviour quite accﬁrately.

However, the reduction technique should be applied with care, since
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in several cases it leads to misleading results (e.g. in the case of
Herrmann-Armenakas theory). For the tapered case the elementary beam
_theory is used to predict their natural frequencies. Next, the dynamical
response of the uniform and tapered cantilevers to root excitationm,

at the fundamental wave frequency and its second harmonic, is studied.
The governing nonlinear equations are analyzed by taking two terms of
the assumed Fourier series solution. Results suggest that for the
case of the simple harmonic excitafion, the nonlinear hydrodynamic
drag introducgs no superharmonic components into the response. For
low forcing frequencies typical of the ocean environment, an increase
in taper ratio ‘tends to reduce the tip amplitudes. However, for
frequencies above the fundamental, the response characteristicé

are completely reversed. The analysis provides valuable informatién
concerning the system parameters leading to éritical response and
hence should prove useful in the design of inflatable members employed

in the submarine detection system.
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1. INTRODUCTION

1.1 Preliminary Remarks

There has been considerable attention given lately to the
behaviour of thin pressure-stabilized shell structures, commonly
called inflatable shells. Besides their abilities to resist loads
efficiently by normal tensile stresses, inflatable shells have the
advantages of being lightweight, compact, and collapsible, implying
ease in transportation and erection for service. The state-of-the-
art in inflatable shell research is summarized by Leonard!, who, in
his conclusions, recommended more efforts to study: |

(i) inte;action of the shells to their embedding media;

(ii) material related problems, e.g}, determining the best
mate;ials from both the strength and the environmental
stability aspects.

Inflatable shells have already exhibited their poteﬁtial in the
design of sfructural components for aefospace and oceanogréphic
systems. Brauér2 has discussed in considerable details, which in-
clude design and performance data,.a variety of inflatable structures
having aerospace application. They include the propellent tank of
thé Atlas intercontinental ballistic missile, the gigantic U.S.
balloon satellites Echo I and II, and the experimental paragliders

as a deceleraéing device for atmospheric re-entry. On the other

hand, neutrally buoyant inflated structures have been proposed for

+



underwater applications like submarine detection, oceanographic

survey, lifting surfaces of hydrofoils, etc.

Of particular interest is the use of sonobuoys in submarine
detection systems. Sonobuoys are passive listening devices conven-
tionally housed in a cylinder about 0.9m (3 ft.) long and 12.7 to
15.3 cm (5 to 6 in.) in diameter. The containers are deposited from
an aircraft in the area of interest. Uﬁon hitting the water, a |
hydrophone attached by a cablé to the floating container is released.
All acoustic signals received at the hydrophone are relayed back to
the aircraft via a transmitter. Since the target emits signals on
an unknown time-base, at least three or four hydrophones are needed

to locate it in two or three dimensions, respectively.

The sqnobuoy has a preset lifetime after which it turns
itself off and ginks. Extensive research has established that the
efficiency of this operation can be improved by using an array of
inflatable tubes, each carrying a hydrophone at one end and joined
to a pump-equipped central head at the other (Figure 1-1). The
target can then_be located through processing of signals received

by the array, provided the position and orientation of the array

are known.

The optimal design of such a submarine detection system
requires a knowledge of its response to environmental loads such as

ocean currents, waves and other local disturbances. The general
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Figure 1-1 Schematic diagram of a submarine detection system using an
array of neutrally buoyant inflatable cantilevers



motion of the system is quite complex_because of tﬁe large number

of degrees of freedom involved?®: the rolling and spaéial oscillations
of the buoy superimposed on its drifting, three dimensional motion

of the flexible cable, and the coupled inplane and;out of plane

flexural-rotational motions of the atray‘itseif;

1.2 Literature Review

The interest in inflat#ble structufes is:gf relatively
recent origin. Leonard, Brooks andecComb'+ were pfoﬁably the first
'_tolcalculate the collapse and buckling loads for iﬁflated cylindrical
cantilever-beamﬁ. Buckling in the form of wrinkles occurs_when'
compressive benaing stress balances the tensile stress due to internal
pressure. As the load is increased the Qrinkles pfogress'around
the cross section; and collapse occurs when they propagate all the
.way to the cher extreme, Assuming the collapsing root to fold like
a plastic hinge, the critical tip load was found to be F=ﬂpa3/L,
where p is int;rnal pressure, and a and L are the radius and length
of the beam,‘respéctively. The test data presented showed good
agreement with this equation. Stein and Hedgepeth® derived a theorj
to prediét the structural behaviour of wrinkled membranes. It was
shown that membfane structgreé'retain much of their stiffness at
loads substanti;lly above that at which wrinkling first occurs.

.Comer and Levy® studied the tip‘defleétions and maximum stresses of

inflated cylindrical cantilever beams for loads between incipient

buckling and :final collapse. Topping7 analyzed the buckling of



inflated plates and columns by deriving a relation between shear
stiffness and inflation pressure accounting for beam edge effects.

He concluded that the inflation pressure can be treated as an effective
shear modulus. All these inﬁestigatoré observed that the flexural
stiffness is essentially independent of internal pressure. This is
true if the deformation is small and the yield strength of the

material is not . exceeded.

A theory for the case of small deformation superposed on
known finite deformations of a thin, homogeneous, elastic membrane
was formulated by Corneliussen and Shield®. Small deformations of
é circular cylindrical tube subjected £0 finite homogeneous ex-
tension and inflation were considered as an éxample. A circular
membrane shell prgstressed by internal pressure and by axial tension
has been studied by Huangg. The behaviour of the membrane subjected
to a radial line lgad waé considered in detail. Using the theory of
incremental deformations, Douglas'? investigated the effect of finite
inflation on the subsequent resﬁonse of a circular cylindrical canti-
lever to bending loads. The analysis accounted for changing geometry
and material properties during inflation. It was observed that for
small inflation the pressure and inflafion stretch are nearly linearly
related. The effect of internal pressure on the influence coefficients
of cylindrical shells subjected to axisymmetfic edge loads was studied

1

by Narasimhan'®. Using the stress-deformation equations formulated

by‘Nachbarlz, curves;bf influence coefficients for various edge loads

3

were obtained. Koga% also presented a system of linear constitutive

i



equations for small strain deformations superimposed upon a known
state of finite deformation. The equations were applied to an in-
flated circular cylindrical membrane subjected to pure beﬁding.
These investigations are limited to materials with time-independent

properties.

A knowledge of the hydrodynamic forces acting on a vibrating
cylinder is essential to the study of its underwater dynamics. A
number of model and prototype investigations devoted to force data
is summarized by Wiegellu. The conventional Morison's type equation,
derived independently by Morison et al.!® and Keulegan and Carpenter’'®,
assumes that thg total hydrodynamic force can be obtained by linearly'conr
bining the drag and added inertia components, and is virtually
universally used in this class of investigations. Keulegan and
Carpenter investigated the drag and inertia coefficients of cylinders
in simple sinusoidal currents and correlated them with the period
parameter UmT/D;"where U, is the maximum intensity of the sinusoidal
current, T is the period of the wave, and D is the diameter of the
cylinder. They observed that the drag and mass coefficients show
opposite behaviddrs over the range_of the period parameter considered,
but the sum of fhe two forces deviates relatively little from the

17

average value. Stelson and Mavis studied the virtual mass of long

circular cylinders oscillating in water and found that for cylinders

with large length to diameter ratios the added mass approaches unity,

18

as predicted by potential flow analysis. Jen'~ observed, experimentally,



that the forces exerted by unifofm periodic waves in relatively deep
water give an average added mass coefficient of 1.04. Laird et al.'®
and Toebes et al.?’ assumed a constant mass coefficient and included
all its deviations from unity in the variation of the drag coefficient.
The forces on cylindersAhaving constant acceleration and deceleration
have been measured by Laird et al. Although the drag coefficient was
found to change, the variations were not substantial. Toebes et al.
measured the hydrodynamic forces on a transversely oscillating cylinder
with its axis perpendicular to the mean flow direction. The drag
coefficient was observed to deviate substantially from the theoretical
value if the vibrational frequéncy was close to the Strouhal frequency.
However, the deviations were small for frequencies far from the Strouhal
frequency. Using a similar concept, Protos et al.?! also considefed

a fixed apparent mass and studied the variation of the remaining

force with the frequency ratio (ratio of the natural frequency of

the cylinder to the Strouhal frequency). In another study, Laird

et al.?? demonstrated that wave forces on a circular cylinder could

be influenced significantly by eddy-shedding from neighbouring

cylinders.

In contrast to the extensive literature on apparent mass
effects for a rigid cylinder in a fluid, the corresponding studies

23’2'-} and

for a flexible cylinder are relatively scarce. Landweber
Warnock?® investigated dynamics of an elastic cylinder in an incom—
pressible, inviscid fluid to determine the apparent mass effects.

However, the potential flow assumed discounted any hydrodynamic

damping forces. . The flexural vibration of an inflated cylindrical



cantilever in air has been studied by Douglas®®, and Corneliussen

and Shield®. Misra®, on the other hand, investigated an inflated
viscoelastic cantilever vibrating in water. In the study a detailed
analysis of the cylindrical cantilever in the presence of hydrodynamic
'drag and a tensile follower force was given. However, the elemehtary
beam theory employed does not account for the circumferential stress
induced by the internal pressure. Modifications of the Timoshenko‘
beam equations for thin-walled tubes to account for normal pressure
and Poiséon ratio effects were made by Simmonds?’. The study was con—-
fined to open-ended - tubes as there was no axial initial stress terms

present.

T,

To fullyiaccount for the stresses arising due to internal
pressure, one has-to resort to thin shell theory. However, only a
small portion of the vast amount of available literature on shell vi-
brations is concerned with the beam-bending mode of interest here.
The reason may be that, as pointed out by Forsbergza, for relatively
long shells without internal pressure, the beam-bending mode analysis
can be considerably simplified without much loss of accuracy by
considering thé shell as a ﬁhin—walled beam anq applying the beam
theory. Kornecki?® has shown that, for the>beam—bending mode of
shells without internal pressure, fhe Goldenveizer shell equations30

reduce to an equation very similar to the one for the transverse

vibrations of a beam with rotary inertia included.

Incorporating initial stress effects due to internal pressure
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requires a generalization of the equations.of motion for thin sheilé.
Various shell equations accounting for initial stresses have been
collected and listed in a monograph by Leissa®!. Because of the
relative mathematical simplicity, the vast majority of studies made

té date have dealt with shells having their boundaries'supported by
"Shear-Diaphragms" (SD). Straight-forward methods for handling

other edge conditions, including an exact procedure, are available but
have been sparingly applied because of the great deal of effort

32 and Vlasov®® have independently shown that in

requifed. Reissner
" the case of the SD-SD shells,'use of the Donnell-Mushtari theory
and neglecting tangential inertia, give rise to simple formulas,
which directly relate frequencies for the unloaded and uniformly ;

prestressed shells. Using the Flugge theory, Greenspon’"

_also

arrived at a relation between the natural frequencies of the pressurized
and unloaded shells, and coﬁcluded that an internal pressure will

always give an increase in natural frequency. This is in variance

with the results'given by Baron and Bleich®® for the beam~bending

mode. However, for other modes their results approach the values
predicted by Greenspon. DiGiovanni and Dugundji3®, using the Washizu

31; analyzed pressurized -SD-SD shells by the exact

shell equations
- method. For the beam-bending mode the frequency was found to be '
virtually independent of internal pressure, especially for short shells.
Even for long shel}s the increase in frequency was very moderate and

of minor importance. Fung et al.?®’ investigated the effect of pressure

on the frequency of vibrations of SD-SD cylindrical shells. The



10

frequency equation was established on the basis of the Timoshenko-

Voss31

theory. However, for certain ranges of shell parameters and
for modes having small number of circumferential waves their results,
as claimed by Herrmann and Shaw3e, cannot be relied on to yield more

accurate results than those obtained by Reissner®®

using a shallow
shell theory. In these investigations, where the shells are supported
at both ends by shear-diaphragms (SD-SD), the equations of motion

and the end conditions are exactly satisfied by simple displacement

functions.

For other boundary conditions the problem is considerably
more complicated and relatively few results are available. The exact
procedure to dgtermine.frequency parameters for clamped-clamped shells
was described b& Seggelke“o. Unfortunately, the results presented
do not sﬁecify ;he shell theory used, thus making uséfulness of the
data questionable. Experimental results for clamped-clamped circular
cylindrical shells subjected to internal pressure were given by Mixson

41

and Heer °, Miserentino and Vosteen“z, and Nikulin“3. The Rayleigh-

Ritz method or its equivalent have been used by several investigators

to study the motion of shells with various boundary conditions**™%2,

** used the Rayleigh-Ritz technique with beam functions

Sewall and Naumann
and the Goldenveizer-Novozhilov shell theory to obtain frequencies

for clamped—freé'shells and compared them with experimental results.
They employed seven terms in the assumed mode shapes to obtain conver-

gence of the Ritz procedure. Results were also obtained by Resnick

and Dugundji'+5 using an energy method equivalent to Rayleigh-Ritz,



11

beam functions, and the Sanders shell theo;y. A good agreement between
theory and expefiment was found only for modes with more than five
circumferential waves. Extensive numerical results for clamped-free
shells were obtained by Sharma and Johns“®—"2 using the Ritz method
and the Flugge shell equationms. Displacement functions were assumed
to be a combination of‘the clamped-free and clamped-pinned beam
functions. It may be pointed out that the above approximate investi-

gations were confined to the case of zero initial stress.

The energy method was also used by Arya et al."® to study
the dynamic characteristics of fluid-filled shell containers. Open
cylindrical shells clamped at the base and free at the top were
studied under ﬂu;empty condition as well as when filled to varying
water depths. T@é mode shapes and frequencies of free vibration of
cantiléver cylinérical shells paftially or completely filled with
fluid were studied by Baron and Skalak®?. Numerically obtained virtual
mass coefficients were presented as functions of the height of the
fluid in a tank. The free vibrations of orthotropic and isotropic
fluid-filled cylindrical shells using the Rayleigh-Ritz method were

1

also studied by Jain®! and Stillmansz.

A number of workers have used shell theories to study the

added mass effects of cylindriéal shells in a fluid media. Workers

3 4 55

like Greenspon® , Warburton® s, Bleich and Baron Herrmann and Russelss,
P . s

and Berger57 are'émongst the interested investigators.

From space consideration, it is attractive to look at the
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array configuration, mentioned in the context of submarine detection,
consisting of tapered inflatable cantilevers. Hence a brief review
of the literature on tapered beams, Which have interested researchers
for a long time, would be appropriate.‘ Conway et al.®® calculated
the frequencies for truncated-cone cantilever bars for a number of
different boundary conditions. The first three natural frequencies
and the corresponding modes of vibration of cantile?er beams for
numerous different tapers were presented by Housner and Keightley®®.

60 derived approximate formulas for upper and lower

Gaines and Volterra
values of the three lowest natural frequencies for transverse vibrationé
of cantilever bars of variéble cross sections. Other investigations on
 the free vibrations of taper cantilever beams include thése by Cranch
and Adler51, Siddall and Isaksonsz, and Pinneysa. All these workers

made use of elementary beam theory and effects of initial stress

were not considered.

If thé“initial stress effects are to be included, shell théory
has to be used.i In this case the tapered cantilever beam becomes a
conical shell, the analysis of which is far from simple. Weingartens?
investigated the case of the simply-supported conical shell frustum
subjected to internal and external pressures. The Galerkin method
was applied to reduce the Donnell conical shell equations to the form
of a frequency deterﬁinant..The agreement between theoretical and experi-
mental frequencies was poor for modes with a small number of circum-

ferential waves, mainly due to the nature of the Donnell theory used.
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Goldberg et al.®5°66 developéd a general numerical integration computer
program and demonstrated its applicability to the problem of the
clamped-clamped conical shell subjected to pressure. Unfortunately

whether the pressure was internal or external was not indicated.

The inflatable members of the array under study are generally
made of plastic films which are viscoelastic and exhibit time-dependent
behaviour. This internal damping effect has received little attention
in the past while studying the dynamic characteristics of inflated
. beams. The forced lateral vibration of a uniform cantilevér Timoshenko
beam with internal damping was studied by Lee®’. On the other hand,

Leissa and Hwee®?®

investigated the problem of forced vibrations of
simply-supported Timoshenko beams with viscous damping. Numerical
results showed that the amplifude responses for the Timoshenko Beam

to be considerably larger than the corresponding -simple beam predictionms.
Baker et al.®? introduced various internal and external damping forces
into the equations for free vibration of elementary beams. Solutions:'

to the equations were obtained by energy methods in conjunction with

a digital computer. The free vibration of a cantilever was also studied

by Paidoussis and des Trois Maisons’®

» who represented the viscoelastic
effects by the two parameter Kelvin-Voigt model. Finally, the steady-
state vibration of beams with nonlinear material damping was analyzed

by Fu’! using a pérturbation technique. Numerical results obtained

were compared to the ones given by Pisarenko’?.

+

Under operating conditions the submarine detection system will-
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be continually disturbed by the marine environment. .The buoy at the
water surface is excited by wind, surface waves, and currents. The
cable and the hydrophone array are perturbed by currents, sub-surface
turbulence, and internal waves. Each subsystem responds to these
disturbances with drift motion together with translational and rota-
tional oscillations. The cable sﬁbsystem also suffers from mechanical
deformation. The general response of the whole assembly is governed

by interactions between the coupled subsystems. The equilibrium
configurations and dynamical behaviour will be similar to those of "
abtowed vehicle system although the drifting velocity is usually much
lower. The towed vehicle problem has drawn considerable interest

for the last two decades. Applications of this system range from
mooring of buoys to towing of glider aircrafts. A variety of techniqﬁes
have been employed in studying these systems -- methods of characteristics,
linearization procedures, equivalent lumped mass approach, finite
element method, etc. A survey of these analytical methods for the
dynamic simulation of cable-buoy systems is given by'Choo and
Casarella’?. Ahvinteresting description on the advances in Canadian
towed system research is presented by Eames and Drummond’". The fairing
of the cable to:reducé drag and its associated problems are discussed

in depth. An extensive literature review on cable dynamics and towed

3

systems 1is giveﬁ%by Misra

The configuration of the towed body in the submarine detection

system under consideration is more complicated than previous studies
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due to coupling of the array of flexible viscoelastic tubes. The
flexibility of the array legs is'an important parameter in the analysis

and can affect the stability of the system considerably.

1.3 Purpose and Scope of the Study

In the dynamical study of any system, a knowlgdge of the
stiffness and response characteristics of the constituent members
necessarily forms a prerequisite. With this in mind and because of
the complex nature of the problem, a small subsystem is selected. An
effort is made to investigate in detail the static and dynamical be-
haviour of the ngutrally buoyant, inflated, viscoelastic beams forming
the hydrophone é;ray. Two geometries of the thin-walled viscoelastic
beams are consid;red: uniform circular cylindrigal and circular tapered.
The static solutions of the elastic, inflated cantilevers are first |
extended to the viscoelastic case for moderately large inflation. This
is followed by free vibration analyses of the inflated cantilever
members in the ocean environment. For the unifbrm cylindrical beam,
the shell theory is used to account for the internal pressure effects
on the statics and free vibration characteristics. For the tapered
case elémentary beam theory is used to predict their natural frequencies;
Next, the dynamical response of the viscoelastic, inflated cantilevers
(uniform cylindrical and tapered) to root excitation is studied. The
governing nonlinear equations are analyzed by taking two terms of the
assumed Fourier series solutiop. Experimental results are obtained to

substantiate the static and free vibration analyses.

Figure 1-2 illustrates schematically the plan of study.
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i
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Figure 1-2 Schematic diagram of the proposed plan of study
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2. STATICS OF NEUTRALLY BUOYANT INFLATED

VISCOELASTIC CANTILEVERS

Thé present chapter investigates static deflections of
neutrally buoyént inflated viscoelastic circular beams. It is assumed
that internal pressure effects are relatively small such that the
change in material properties is insignificant7. Consequently only
geometricai variations due to inflation are treated. The viscoelastic
deflections are obtained using the three parameter‘solid model in
conjunction with the correspondencé principle. The analysis is
substantiate& through én experimental program employing a large number
of uniform and tapered beam models made of mylar-polyethylene sand-

wiched films.

The objectives of this chapter are:
(i) to predict static deflections of circular cylindrical uniform
and tapered beams made from plastic films;
(ii) to obtain information conéerning material constants for the
specified mylar-polyethylene sandwiched films;
(iii) to investigate the interﬁal pressdre effects on the static
behaviour of the inflated éantileﬁers.

¢
[

2.1 Theoretical Analysis

2.1.1 Uniform Cylindrical Beam

Consider_a thin-walled inflated circular cylindrical cantilever
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(Figure 2-1) of initial length L_, diameter dO’ wall thickness h

0’ 0’

and internal pressure p. The dimensions at any instant during inflation
are related to their initial values by the principal stretches as

follows,
% %
L=AL R d=AX.d and h = A.h . (2.1)

As the bulk modulus of the materials under study is relatively large,

incompressibility can be safely assumed, and hence,
AnE 2 ' 2.2
17273 : (2.2)

The principal stresses for the cylindrical beam can be shown to be!?

Az,_w | | | F
7]

g

A ‘Internal pressure=p

AAVAN ALY

Figure 2-1 Geometry of flexure of an inflated circular
cylindrical beam ' '
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2 =2

* *
99 = GptdiA, +o_ A, pd/2h , (2.3b)

- Q
|

*2 *'2
33 = 9015 o 125

(o

O(P) : ’ » . (2'3C)

\

where ¢i are scalar functions of the diagonal stretch matrix. Note

that 033 is small compared to O

order of h/d). Setting o

11 and 622 (the ratio being of the

33 to zero, Misra® has shown that, for

moderate stretches up to 40% increase in diameter,

A =1 , (2.4a)
x - -1/4 '

Ay = (1-pdy/20h) E | (2.40)

Aj =1\ (2.4¢)

2 b

where E is the shear modulus of the undeformed material. As

*
<< 1, the expressions for A

*
9 and A3 can be simplified to get

de/ZGh0

A, = 1+pd,/8Ch, , (2.5a)
AY = 1-pd /8Ch 2.5b
3 - P9 0 (2.5b)

In actual practiée, a change in length will be small compared to
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changes in diameter and thickness. Hence Equations (2.4) represent

a good approximation to changes in dimensions due to inflatiom.

To account for the time dependent properties of the material,
Equations (2.5) can be modified using a concept similar to the corres-

pondence principle75,
AS(t) = l+pd 8 | 2.6
o(0) = Lpd J_(©)/8hy (2.62)
K* = 1-pd /8h 2 6'
3(t) = =P OJS(t) 0 ’ ( . b)
where p is the step pressure applied at t=0 and JS(t) is the shear

creep compliance of the material. The dimensions after a long time

are thus given by

Lf = L0 , , . (2.7a)
dg = 4, [1+pdyJ_(=)/8h, ] , ©(2.7b)
h, = ho[l—pdon(m)/sho] " : (2.7¢)

The cantilever beam is now allowed to undergo bending de-
formations. It is assumed that the internal pressure is suffiéiently
large to makeﬁthe resultént stress tensile everywhere so that no
.wrinkles appear on the beam. lThe resultant axial stress on an element

with coordinates (x,y,z) is obtained by superposing the stresses due
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to bending and inflation pressure, i.e.,
011 = F(L—x)z/I+pdf/4Hf s (2.8)

where F is the load and I the cross-sectional moment of inertia about

a transverse axis,
_ 3
I= ﬂdfhf/8 .

From elementary beam theory the curvature is given by

d2w
—5 = -F(L-x)/EI . (2.9)
dx

Integrating twice and applying the boundary conditions at x = 0,

leads to the static deflection expression of an elastic cantilever,
3 2
w(x) = -(FL/6EI) [ (x/L) (3-x/L)] = W(x)/E . (2.10)

For step loads the Laplace transforms of the viscoelastic

and elastic deflections are related via the correspondence principle:

?,?v o, (x,8) = w(x,s)E/SE(s) R (2.11)

where EQ o (x,s), w(x,s) and E(s) are the Laplace transforms of the

viscoelastic solution, elastic solution, and the relaxation modulus
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of the material, respectively. Noting that
w(x,s) = W(x)/sE ,
from Equation (2.11) one obtains
— 2_.
LA (x,8) = W(x)/s"E(s) . _ (2.12)
For relatively low stress levels the beam material under study
is found to exhibit a small long-time creep and behaves like a linear

viscoelastic solid. Hence the three parameter viscoelastic solid

model (Figure 2-2) can be used to represent its behaviour fairly well.

For a three parameter solid,

Eo

Figure 2-2 Three parameter viscoelastic solid
model
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2-_ .
s E(s) = sEl(E2+st)/(E1+E2+vzs) . (2.13)
where El’ E2 and v2 are the three parameters defining the material

behaviour. Substituting Equation (2.13) into Equation (2.12) and

inverting into time domain, gives

G&OE:(x,t) = W(x)J(t) , | (2.14)

where
J(t) = 1/E+(1/E,) [1-exp(-E,t/Vv,)] ,

and W(x) is obtained from Equation (2.10).

&

2.1.2 Tapered Beam

For a tapered cantilever (Figure 2-3), the diameter and

length are linear functions of x, and. thus the curvature relation is

9—.—%’_ = -F(L-x)/EI ,
dx
where
I= 1) = LRGP
k = |

taper ratio = (dr-dt)/dr~ s
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Figure 2-3 Geometry of flexure of an inflated tapered
beam

Ir = moment of inertia at root, i.e., at x = 0.
Integrating twi;e and using the boundary conditions gt x = 0, leads to
W) = WEE ey
where

W(x) = -FL3{ [ (k-1)/(1-kx/L)~(k+1)1/2-1n(1-kx/L) }/k31r

Analogous to the uniform cylindrical beam, the viscoelastic solution
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may be written as

Wv.e.(x’t) = W(x)J(t) y (2.16)

where J(t) and W(x) are given in Equations (2.14) and (2.15),

respectively.

2.2 Experimental Program

2.2.1 Test Equipment and Procedures

To assess validity of the analysis and to generate relevant
design information, ah experimental programme4was undertaken. Model
test were performed in a l.83x0.91x1.22m (6'x3"'x4") rectangulér water
tank (Figure 2-4) made of ﬁaterproof plywood with front and side
plexiglas panels.to facilitate observation. A compressed air bottle
pressurized an intermediate water tank for inflating a model after the
tesf tank had been filled with water. A pressure gauge in the inter-
connecting piping indicated the inflation pressure. A trolley system

enabled static loading at any desired station along the tube.

As the static deflections are time varying and the measure-
ments at different stations along the tube hgve to.be taken simul-
taneously, photographic technique was employed to reéord the time
history of a beam undergoing creeping deformation. 35mm pictures
were taken, initially 30 seconds apart with the interval gradually

increasing to 5 minutes as the creep rate diminished. A thin wire



Figure 2-4 Experimental set-up

9¢
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strung above the beam served as a reference during these measurements.
The deflection data were obtained from the projection of the pictures

On a screen.

2.2.2 Test Models

A large number of uniform and tapered cylindrical tubes were
made from thin sandwiched films of mylar and polyethylene. For the
tapered beams only the case of 0.5 taper ratio, i.e., dr = 2dt,'is
coqsidered. Two sheets of the commercially available plastic film
(Nap-Lam clear laminating film by General Binding Corporation) were
pressed togethé{ by a heat tacking iron. The heat melted the poly-
ethylene layers.and fused them together (Figure 2-5a). The sandwiched
sheet was then wrapped around an appropriate cylindrical blank to
form thevdesired cross~section, and the edges sealed with a piece of
mylar heat-sealing tape (Schjel-Bond GT-300 Thermoplastic Adhesive by
Schjeldahl). One end of the tube was closed using a thin plexiglas

cap epoxy-glued to the end (Figure 2-5b). Each tube was divided into 10.16 cm

(4 in) sections at which deflections were measured.

2.3 Results and Discussion

Although a vast amount of experimental information was generated,

only a few of the typical results helpful in identifying trends are
presented here. Figure 2-6 shows a typical creep-relaxation curve
for the sandwiched material under study. An instantaneous deflection

followed by creep is apparent; The creep rate decreases and becomes
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/_ Mylar

[CIES——— Typical Plastic Film

\Polyethylene |

Sandwiched
Material

(a) Sandwiched material made from two layers of
plastic films

/—Tube‘
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|4

%
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(b) "End details

Figure 2-5 Sandwiched material -and details of the end cap
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Figure 2-6 A typical creep-relaxation c_urve.for the sandwiched inflated beam
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almost negligible after about 40 minutes. Removal of the load causes
an instantaneous drop in the deflection, of the magnitude equal to the '
initial one. The beam asymptotically returns to the original pqsitioﬁ
follbwing essentially the same behaviour as thét observed during the

loading cycle.

2.3.1 Uniform Cylindrical Beam

Figure 2-7 compares some of the test results with analytical
predictions. It is interesting to note that the behaviour can be
described very well by the three parameter solid model. Average values

of the three material constants, El’ E2’ and v, have been obtained

2

to give the analytical curves. In the tests vz was found to vary

slightly, but El,.the instantaneous modulus of elasticity, was very

nearly constant (=1.65x109 N/m2 or 2.4x105 psi).

It should be emphasized that for higher stress levels the

long time strain has a nonlinear relationship with the stress.

6

Kalinnikov7 observed the creep relation for polyethyleneterephthalate

(mylar) to be of the form.

. mn
= 0'
EC €c0+a t ’

where a, m, n are material constants. On the other hand, Findley and

Khosla’” have found the creep of polyethylene to follow the equation

oot v n
€, = €c031nh(0/0e)+m 31nh(0/0m)t .
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Figure 2-7 Comparison of analytical and experimental results
- for the static deflection of uniform cylindrical
beams ' '
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where eéo, m', n, o, and 0, are constants. In the study of dynamics
of these structures, however, only the short time creep is of signi-
ficance, since the period of most of the neutrally buoyant beams is

very small (around one second).

The effect of internal pressure on the static deflections is
shown in Figure 2-8. For the range of preseures considered, the
inflation.causes little change in the static behaviour of the canti-
lever‘beam. This means that the deviations from unity of K; and A;
in Equations (2.5) are small. In the actual calculation it is found
that, since the_shear modelus of the material is relatively large,
the internal pressure induces geometrical changes of less than 1%.
On the other hand, Misra® has found that, for polyethylene, the

effect may be significant and changes in dimensions can reach as

high as 15Z.

In the gesign of these inflated cantilevers the L/dO ratio
is an important parameter. Figure 2-9 shows the deflection histories
»for two L/dO ratios. Good agreement between theory and experiments
confirms the cubic power variation of deflection with L/d0 ratio
predicted by the theoretical analysis.

2.3.2 Tapered Beam

Figure 2-10 shows some of the typical deflection histories
and their corresponding analytical predictions. Again the validity the

of the'theoreticalmanalysis is confirmed by its good agreement with

experimentel data.
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Figure 2-10 Comparison of analytical and experimental results
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The deflections of three tapered beams subjected to different
internal pressures are plotted in Figure 2-11. The experimental data
all fall very close to the zero-inflation theoretical curve, and no

significant effects of internal pressure is observed.

The tip deflections at t = 0 (instantaneous) and t = 30
minutes are plotted as functions of L/dr in Figures 2-12 and 2-13,
respectively, fo; the structural model having a wallvthickness of
0.008cm (0.003") and tip load of 4.45N (1.0‘1b). The lines represent
the analyticél results as given by Equation (2.16) while the isolated"
points indicate the test data. Potential of the analytical approach
becomes apparent as it is able to prgdict with accuracy even large

deflections. This suggests that the curvature can be represented by

) :
é_g without much error even though the deflections are large.
dx

2.4 Concluding Remarks

From the preceding static analysis several important con-~
clusions can be summarized as follows:

(i) The analysis suggests that the three parameter solid model
can be used to yield sufficiently accurate‘results useful
in the design éf neutrally buoyant inflated structures
made from the viscoelastic sandwiched films specified.
Even farge deflections can be predicted with acéuracy by
the simple analysis given.

(ii) Provided the internal pressure is moderate and no wrinkles
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occur, inflation has negligible effects on the static bending
stiffness of the inflatable beams considered. At high
internal pressures, however, changes in both the geometric
and the material properties may be significant and the
deflection relationship will become nonlinear.

The instantaneous modulus of elasticity, El’ for the visco-
elastic material considered is found to be nearly conétant

at l.65x109 N/m2 (2.4x105 psi). Avefage values for E, and

2
. 10 2 6 .
are experimentally found to be 1.24x107 N/m"~ (1.8x10 psi)

2
9 2 5 . .
and 3.72x10° N-sec/m~ (5.4x10” psi-sec), respectively.

AY

This information on the material properties will be useful
in the forthcoming study of the dynamic behaviour of the

viscoelastic cantilevers.
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3. FREE VIBRATION OF NEUTRALLY BUOYANT

INFLATED CANTILEVERS

Static behaviour of the neutrally buoyant inflated visco-
elastic cantilevers having been studied, the next logical step would
be to analyze dynamic response of the beams vibfating in the écean_
environment. The object of this chapter is to‘investigate free
vibration'characteristics of uniform c¢ircular cylindrical and tapered

beams in water.

First, the flexural frée vibration of the inflated qniform
cylindrical cantilever is considered. Shell equations aré used.to
“incorporate the initiai stresses due to iﬁternal pressure. For
relatively long?shells vibrating in the beam-bending mode, the
governing shell equations are found to be reducible to a single
equation very gimilar to the one for the transverse vibrations of a
beam with rotary inertia included. Three different approaches are
studied: the membrane, Flugge's, and Herrmann and Armenakas'. The
natural frequencies obtained are compared ;ith the experimental

results and those predicted by the Rayleigh-Ritz method in conjunction

with the Washizu andvmémbrane_shell theories.

The presence of hydrodynamic forces introduces nonlinearities
into the governing equation of motion. Effect of this nonlinear drag
force on the free response, as given by the reduced Fligge equation, is |

studied using the perturbation technique.
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This is followed by a free vibration analysis of the inflated
tapered beam. The elementary beam theory is used and the natural
frequencies are found using the mode-approximation procedure. Validity
of the approximate method is examined by comparing the results with

the experimental data.

| As the material under study has relatively small damping, the
time dependence of the natural frequencies‘is of secondary importance
in fransient response studies presented here. Hence, no attempt is
made to incorporate the viscoelastic properties in the investigation,

and the material is treated as elastic with Young's modulus El'

3.1 Uniform Cylindrical Beam Analysis

3.1.1 Reduced §hell Equation Approach

(a) Formulation

The conventional beam equation, because of its inability to
account for stresses induced by the internal pressure, cannot be applied
to inflated thiﬁ?ﬁalled beams. In order to investigate initial stress
effects on the d&namic behaviour of the inflated cantilevers one has

to resort to thin shell theory.

Shells have all the characterisfics of plates but with one

difference —- curvature. In other words, plate represents a limiting

case of the shell with no curvature. Besides the added complexity
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of curvature, shells are more difficult to analyze than plates since
their bending cannot, in genefal, be separated from stretching. Thus,
a classical bending theory of shells is governed by a system of |
eighth order partial differential equations, while the corresponding
plate equations are of the fourth order. A further challenge enters
the problem through the boundary conditions as well. Four specified

conditions, as compared to two in plate theory, are required here.

To complicate matters further, whereas all academicians agree
on the form of the classical, fourth order plate equations, such
agreement does not exist in shell theory. Numerous different theories

have been derived and are in use.

The equétions of motion for a thin circular cylindrical shell

may be written conveniently in matrix form as

L3 Lyp Iy3 X
Lyp Loy Loy y = {0} , (3.1)
b31 D3 By3] |2

- where x, y, and z are the orthogonal components of displacement in
the X (axial), 0 (circumferential), and radial directions, respectively

(Figure 3-1).

v -
[

For the most commonly used Flugge's shell theory, the differ-

ential operators in Equation (3.1), after neglecting the small terms

involving h2/(12a2), are’®!
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_ d
Ly, = (1+Ne/C)§§ ,
L..=1+c¢ c32 ey’ Tw
33 3752 T og2 I

where
s=%a , G=pa’(1-v2)/E , C=Eh/(1-v®) |,

and Cl’ c2, c3 are tracers (=0 or 1) introduced to identify the effect

of the different inertial forces. also incorporates the added mass

effect of the sufrounding water.
The problem of determining the functions x, y, and z satisfy-
ing Equation (3.1) can be reduced to solution of a single equation

involving one potential function I'(s, 6, t). Let D be a determinantal

operator

D = det |L] . (3.2)

30

it can be shown that each solution of the equation

D(T) = 0 | | (3.3)

corresponds to an integral of the system of homogeneous equations of

motion [Equation (3.1)] given by



46

2

x= 20D | (3.4a)
2
z = 1:3D33(P) s . (3.4¢)

where D13 denote the corresponding minors of the determinant in
Equation (3.2). It should be noted that in the above derivation the

differentiation symbols are treated as algebraic quantities. This

is applicable only if their coefficients are constants.

Assuming solutions of the form

x(s,“e, t) = §:x (s,t)cos(nb) , (3.5a)
n=0 n

y(s, 6, t) =3y (s,t)sin(nb) _— | (3.5b)
n=0 n

z(s, 0, t) = 2,z_(s,t)cos(nb) , (3.5¢)

‘ & ‘

T'(s, 0, t) =irn(s,t)cos'(ne) . (3.5d) -

n=0 .

and substituting into Equations (3.4) yields:

N nz( - )( ) ( 2MgN_ Ng
x (s,t) = = (1#N,/C) (v-1-2N,/C)T' + (—= + =
n I-v* 78 6 (nct T
204
2\)N~x 2c2G P Pn ‘
EED \)]I‘r'l" + 1—\)("'Ne/c]_‘§' s (3.6a)

at



3 '2Ne 2nc1G azrn
y (s,t) = -n (1+Ne/c)(1+?1-376)r = v)(l+N /c) "
t
(3+V)N
2n (4, 0, R RTCE I
+ (l_v)(l. e+ 1N /C1= -5--)rn ,  (3.6b)
z_(s,t) = n4(1+N /c)(1 )r — n? (35 [1+N_/C][1+N,/C]
n'>? 6 HEEDTe v)c V' Tk 6

ZNe 1-v NX 1y 2N XER]
(1_V)C][ ])r + (1+T1—376)(1+Nx/c)rh

+[1+

2N, 2ch )azr 2clc2G 5 r
- [N /C] + =2
(1-v)C | atz‘ 1vvn 3t4

+n2(c2G[lJ

2N 2¢,G -3 F"

-X 2 ’
1+ [1+N /C]) , - (3.60)
(a-vc' T i-v o2

(c G[1+

in which the primes denote differentiation with respect to-s.

The potential function Fn must satisfy Equation (3.3) which

appéars in explicit form as

2T a4r 2°r_ 2T a'r_
AT + A + A A —+4
o' ¥ M52 2 T hg Y AT T AT
36rn a4rn ot o°r
AT T AT At t0 - GD)

ds ot ot ds ot

The following aséumptions are now made:
(i) Only the lowest derivatives of I with respect to time are
important.
(ii) Two adj;bent axial‘npdes are very far apart. This impliés

that thé most significant terms in Equations (3.6) and (3.7)
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are those with the lowest derivative of T in s, i.e.,

29
o™y

mt+l

a"r

— >
3s™ 9s

Hence the higher derivatives of T with respect to s may be

neglected as a first approximation.

For the beam-bending mode of interest here, n = 1, and the

initial stresses induced by the internal pressure are
Ne = pa s Nx = pa/2

Defining a dimensionless pressure P = pa/(Eh), and keeping in mind the

aforementioned assumptions, Equation (3.7) can be reduced to

o', e’y 2T,
A + A + A =0 , (3.8)
2ot har?  Spg2pe? :
where
Lo @D s asvavh?o | aseav-1v) av?)
= ——iP7 ¢ P+ ~P
2 Z 8 8
» @0 a-v)
2 9
o 2,22 3-v, o 2. 1-v
A4 = G(C2+C3)[(l—\) YPT + (—i—) (1 \) )P + > ] s
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2
A5 = 6{Cerep) 1) %" - [7(2#0)e,+2 (3-0) e +3(3-v) e ] ()P

_ -y

2
5—cy = (1-v)e, - (1—v)c3)

Retaining the first-order terms only in this approximation,

Equations (3.6) become

2 ory
x; = ((+v)P[v-3-2(1~v )P]-1) 5= , (3.9a)
y, = —[1+(1—v2)P][1+2(1+v)P]P1 : (3.9b)
2 =Yy , . (3.9c)
and, by Equations'(3.5),‘

X = xlcose s (3.10a)'
y = yiéine , , (3.10b)
z = zlcose = —ylcose S (3f10c)

Multiplying Equations (3.10b) and (3.10c) by sinf and cos6,

respectively, and subtracting gives

yl(s,t) = ysinf - zcosH . (3.11a)
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- On the other hénd, multiplying them by cos6 and sinf, respectively,

and aldc.iing gives

0 = zsinb + ycos6 (3.11b)

" The right—hand side\bf Eqﬁation‘(3.lla) denotes the vertical
while théffof (3.lib) the hori?ontal displacements of the points 6f
the middle surface of‘the«sheli_(Figure 3-2). Since'they do nét
débend upén_e, the sheli:behgvesblike a beam. The cross sections

rémain rigid in their planes.énd are displaced vertiéally‘by
¥,(s,t) = w(s,t) . | (3.12) .

Letting & =§/L.and usiﬁg Equation (3.12), Equation (3.8) can be
Z

horizontal
displacement

Y

Figure 3-2 Vertical and horizontal displacément
' : components -
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rewritten as

2 A 4 A
SRR R P 0.1
ot 4 9" dt 4 13

By Equations (3.9a) and (3.12) the longitudinal displacement is

l—(l+\))P[\) 3—2(1—\) )P] aw
[1+(1-v2) ] (142 (140)] 5

osB s

which corresponds to the rotation of the cross section about its

horizontal diameter.

Equations (3.9) suggest that the radial and circumferentiél
. displacements z and y are of the same order, thus cy has to be set to
unity.’ If the rotary inertia is to be taken into account és well,

¢, must also be unity. To incorporate the added inertia of the water

both inside and outside the tube, c, is adjusted to l+(1+Cm)pwa/(ph)

3
(Appendix I). The value of the added mass coefficient C 0 asbpredicted by
the potential theory’®, is 1.0. This was confirmed experimentally by
Stelson and Mav1s17 for cyllnders with large length to dlameter

ratios. Hence, in the analysis here the added mass coefficient is

taken to be unity.

" Note that for a shell Vibratihg in air with no internal
pressure, cg = 1 and P:= 0, and Equation (3.13), after some rearranging,

reduces to
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2 4 ) 4
3w, E 3w (+2v) dw _ , (3.14)

/
st 2pa’art 2 ar%y2

Equation (3.14) is identical to the one derived by Kornmecki®??. It is
interesting to compare this with the elementary beam equation for a

thin-walled tube including fotary inertia,

It is apparent that the reduced shell equation takes into account

the Poisson ratio effect which the simple beam theory ignored.

To account for the viscous effect of the surrounding water

-~

a hydrodynamic resistance force is added. The hydrodynamic resistance
is generally taken as a drag force proportional to the square of

the velocity, i.e.,

1

Fd B icddpwvrellvrell > (3.15)

where C. is the drag coefficient, and v

d the velocity of the shell

rel

element relative to the fluid. The value of C, in the flat portion of

d
the subcritical region is approximately79 1.18, and this value is used

in the present analysis.

Defining

a 4( _ 1Y
pa” [2+(1+¢ ) ) (D) ]

p
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Equation (3.13) can be nondimensionalized as

4 2.
2—% + Bz"g_ﬂi + Bla-g”+ a§D|§D| =0 . _ (3.17a)
o9& 9§79t oT 3T 91 o
whére'_
o = e, () @) /[1+(1+C.) (o /) (a/h) ]
T dp h m T w
- 2c, ; -
* S , (3.17b)

since (1+C_) (pw/p) (a/h) >> 1.

It may be noted that the damping parameter O is identical to the one
formulated by Misra® and is independent of the geometrical dimensions

of the cylinder if (a/h) >> 1. The boundary conditions are given by

on(0,1) _ 3%n(
98 . 3

3
1,7) _ 9a'n(l,t) _ , N
5 353 =0 . (3.17¢)

n0,t) =

This nonlinear partial differential equation does not seem to have any
known closed form solution. Hence one is forced to approach the

problem through numerical analysis or approximate procedures.
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(b) Solution for Zero Drag

For determination of the natural frequency it can be assumed,
at least up to the first order approximation, that the period of
oscillation is essentially unaffected by the presence of hydrodynamic

drag?. Dropping the drag term, Equation (3.17a) becomes

4

am + B _éfﬂ__ +B EED =0 (3 18)
e ZagZar? Ly

Assuming solution of the form
n(,t) = BE)E(T) s (3.19)

and substituting into Equation (3.18) gives

B v dfifippifoo |
dg ’ dg”dr dt
or
Bl Tt ' E 4 : .
———j—=— = - Z = A = constant. (3.20)
T

This leads to two ordinary differential equations:

4

2 .
g_g + }\4f =0 , ' (3.21a)
dt
4 .2
dB _ 4548 54 . -
A 'A,BZ 5 Bll B=20 , (3.21b)
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with solutions

rh
]

fccos(KzT) + fssin(AzT) , (3.22a)

w
]

C,cosh(A'E) + C

1 sinh(X'E) + C,cos(A"E) + C,sin(\"E) .

2 3 4

(3.22b)

Applying the boundary conditions (3.17c) gives the following equations

relating A, A', and A'":

B§A4 + 2¢§I(l+coshk'cbsl") —/ﬁ;szzsinhA'sink" =0 , (3.23a)
A2 Z a2 Bzx4 X (3.23b)
ATAN = /EIAZ . (3.23¢)

By solving Equations (3.23) the natural frequencies and the associated

mode shapes can be found. The general solution is then given by

nE = LB O M, (3.24)

r=1

where Br(g) is the normalized mode shape given by

sr(g) = Kr[coshA;E-Cssinhkégecos};£+06sinX;E] fv, N
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with

l'zcoshk'+l"2cosk"
: r r T

C5 = r2 ' )
A'TsinhA'+A'A"sinA"
r r ' rr r
K'Zcoshk'+k”2cosk"
C = —I r'r r
6 AtA"sinhA'4A"ZsinA"
r'r r'r r

Here Kr is chosen to normalize Br(E), i.e.,

1
2
Jer®a =1
0

Analysis showed Ki to be

2 2 L
(C6—C5) sinhA

= | r 2 v_ '
K_ = (1 + 5+ 2y [ (1+C5)coshA!-2C sinhA ! ]
sinA; 9 2
- "_ LN 1 "
f —EX:—[(l C6)cos)\r 2C6s1nAr] + ;TE:;:E[(CSXr C6Ar) *
' r r

: ' n_ ' 1 | RPN "n_yt
coshkrcoskr (A;+C5C6Ar)coshkr51nlr+(C5C6Xr Ar) *

1

' 2

" ] " 1 L L * " '__ "

31nhkrcoskr+(cskr+c6kr)sinhkr31nkr+C5Ar C6Ar]) . (3.25)
The natﬁral frequencies are thus given by

2 _ 2 ,
w, = B\ - (3.26)

where Ar is the solution of Equations (3.23), and B, is given by

3
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Equation (3.16).

The orthogonality condition for the normalized mode shape

B(E) is found to be (Appendix II)

.f B, ¢ B, 4 4 |
B B.df = — |JB'B'dE - [A_B'(L)B (L)-A_B (L)B'(1)] , .
3 m ? 18 mn Bl(Ai_xi) m m n nm n

form#n . (3.27)

(¢) Perturbation Solution

To investigate effect of the hydrodynamic drag on the free
response, Equation (3.17a) must be solved. The nonlinear nature of the
equation dpes not permit an exact solution and one is forced to resort to
an approximate analysis. In this section the pertufbation technique
is used to study the response of the inflated cantilever subjected

to hydrodynamic drag.

The governing Equation (3.17a) may be rewritten as

4 4 2

an 9N aMm C oMy 2
—+B +B.— *a(==)" =0 , (3.17a")
N NI R W T |

where the appropriate sign for the drag term is chosen so as to oppose
the motion. It is sufficient to solve the above equation either for the
positive or negative sign over half a cycle, solution for the other half

obtained simply by reversing the sign of o with new initial conditionms.
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The solution for the negative sign is sought in the form
' 2
neE,) =ny(E,1) +oan, (€,7) +am,(E,T) +. . . . (3.28)

A new time variable t defined by

2

t =1[1+0b, + 0 b2 +...] (3.29)

1

is introduced where bl and b2 are slowly varying function of &, to
account for the period of oscillation which may vary along the length.

Substituting from Equations (3.28) and (3.29), the governing equation

takes the form

4 ' 4

-9 2 _ 2 2 9
—z(gton +an,+. LL) + {I4eb+atb, 4 L L) {B,——(ny+on,
ag 9g7at

+a2n + )+B 23—(n +om_ +a’n + )—a[a-(n +on_+a’n
Al A | (o Rha i/ A T 01 2

582

+. . .)]2} =0

Equating the coefficients of the different powers of O to zero one

obtains
0 aﬂb ‘aﬂb 3%b
@ 1 —— + By—s—s + Bj——s = 0 , ~ (3.30a)
dF d9E°at ot
1 84”1 >34”1 azr’1 a4no a"2“0
o+ —F +B,—s + B = -2b (E) [B,—5—5 + B,—]

3 3£%at 1 g2 Y] 32
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Bno 2 _
+ (—) s (3.30Db)
ot
2 84”2 a4n2 azn2 2. a4no azno
a° 1 —F + B,—5—= + B,—5 = -—[2b2(€)+b1(£)][32——~2'+ B,—]
13 9E" 9ot ot 9E° 3t ot
84n1 Bénl Bno 2 anoanl o
26, (8) [B,—5—=5 + B;—351 + b, () (—) +2——
- ‘3£t 3 ot 9t 9%

(3.300):.

etc.

' The objective is to solvé this system of equations such that
all ni'é conform to the boundary conditions (3.17c) with the\prescribédv'
initial conditions satisfied by novalone, and zero initial conditions

for other ni's.

Equation:(3.303) is identical in form to Equation (3.18) whose
solution has been shown to be (3.24). However, the rather complex_
orthogbnality condition [Equation (3.27)] for the exact mode function"
~ does not permit decoupling of the equations later on in the perturbation
analysis. Hence an approximatevsoiution to Equation (3.30a) is sought

in the form
Ny = 2;i¢r(€)fr(t) s o (3.31)

where @r(E)’are the eigenfunctions of a cantilever beam,
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¢ (£) = cosh(u &) - cos (1 &) - 0 [sinh(u &) - s1n(ur£)]v
Here
o= (coshur + cosur)/(31nhur + sinur) R
and ur are the roots of the frequency equation
1 + coshpcosy = 0 . y

Substitution of Equation (3.31) into Equation (3.30a) gives

o (d"cbr 'd2®rd2fr dzfr) -
f + B —t—x + B0 —L)=0 ) (3.32)
rg atr 2 d€2_ a2 1Tz

d4<I>r 4
P (3.33a)
%o
and that —;g§ can be expressed in terms of @r(g) by the series
<12<1>r -
. =i§ C ;% (®) , | (3.33b)

where Cr is given by®°

i
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| i+r 2
1 2o 4o ~u o )/ DT -Gy /o )],
= —r = o i#r
Cri = / 58446 = | o
o % Mo _(2-u0) , i=r ,

Equation (3.32) may be rewritten as

o a?s

. 4, 2 : ry _
E (wo £ + (B, > c 0480 1—5) =0 . (3.32a)
r= i=1 dt

Multiplying by Qj’ integrating with respect to & over the length,

and noting that

1

0f¢>i<l>jd£ = aij’ ,

where 6ij is the Kronecker delta, Equation (3.32a) becomes

2
4 d°f,

o
. ety o
Ujfj + [B, 12=:1crj+Bl] py 0o , j=1,2, ...,

The solution of this equation is

1 1

ay 2 < "2 2o <
fj(t) = chcos[ujt/(B1+B2-'§=:ler) 1 + st51n[ujt/(Bl+B2 f:'\:‘;lcrj)

2

(3.35)

Let the initial conditions be

1.



nE,0) = A (E)  and  Z(E,0) =
: ot

the zeroth order solution is;then

o -2 :
nO(E,t) = ZE;AOj®j(E)cosujt s
j=1
where
1 .
Aoy = fA()(a)@j(g) €,
0
and

With this, Equation (3.30b) becomes

84nl | Bl'nl anl .
— + B3 + By = q(§,t)
ag ag ot ot

where

a(E,T) = 2b, (€) Z: Bt TB, 0. ()48, —T
£

Nll—'

j k=1

- cos(ﬂ?+ﬁi)?]

;};Z AO A ku uk<l> (é)cb (E)[cos(u uk)t

62

(3.36)

(3.37a)

(3.37b)

(3.37¢)

(3.38)
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A solution to Equation (3.38) can be taken in the form

nED =D e @ ® . (3.39)

m=1

Substituting Equation (3.39) into Equation- (3.38), multiplying by @n(g),
integrating with respect to £ over the length and using the orthogonality

- condition leads to

2 ~
df (%)

b o~ n - .

Hofp () + [B,+4B, Ecmn]—_d,E_Z— =Q® , n=1,2, ..,

(3.40)
_ where
1
q_(®) = fq@ﬁ:)@n(’s;)da

0
Equation (3.40) can be rewritten as
a2 £ s

-—+uf—Qn(T:) , n
d¥

]
b
]

-
-
8

where

Q (®) = q_(B)/18,+3, n;fm“] = [1/(8 43, n;cmnn *

ey

- 1
(2 Z.AOJug‘ b, (E)2_(E) [B,+B,— 2]dgcosﬁ:2]E
i=1 0 d&

co [ ]
1 i =2-2, _9 9
+ izkz_lﬁ kn Juk 0j Ok[COS(U 11 )t—cos(uJ+u )t]) "

j=1
(3.40a)
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and

B it =/¢j<a>_¢>k<e>¢n<€>d€ :  (3.400)
0

As the term involving bl(E) in Equation (3.40a) gives rise

to secular quantities, it must vanish for all 3
b)) =0 s (3.41)

i.e. the natural frequencies are independent of the nonlinear hydro-
dynamic drag up to the first order. This confirms the approximation
made in the previous section that the period of oscillation is un-

affected by the presence of the hydrodynamic drag.

The solution to Equation (3.40) can now be written as

[+

- -2~ -2~ 1
= i = E *
fn(t) Clncosunt + Dln51nunt + 2[l/(Bl+B2m= cC 1]

©o o]

-2 =2.2
EE: Jkn J k 03 0k(°°s(“3-uk)t/[u (u - ) 1
1 k=1

.~

- COS(ﬁ§+ﬁ12<)T:/ [ﬁg;(ﬁ§+ﬁ12() )] . (3.42)

Applying the zero initial_conditions-gives

=72 [1/(31”322(3 )]Z B P3P0 A0k *

1 ‘ 1 )
-2 -2.2 =2, -2.2 , (3.43a)
J W) (u +uk)

u - (WS-



65

D1y = 0 . . (3.43b)

Substitution of Equation (3.43) into (3.42) yields

~2-2
e B HUWAL AP (E)
N kn"1"k05 0k
n(€B) =5 Y » N (ke ikojlkn Ty,
n=

j=1 k=1

i B,+B, E C
m=.
4

-2~ -2 =2~ - -2 =2.2
([cosunt-COS(uj-uk)t]/[u -(uj-uk) ]

=

-2, =2 =2 nq p=b =2 =-2.2
- [cosii, E-cos (Hy+HI ) E]/ [ - (HyHi) 1) (3.44)
Thus the solution, up to the first order of approximation, is
n(g,%) = ny(g,%) + on, (€,%) . : (3.45)

3.1.2 Rayleigh-Ritz Method

Consider a uniform cylindrical shell in equilibrium acted upon
by static initial stress Oi, Oé, and Uie. During vib;ation the internal
stresses in the shell consist of tﬁe initiai streésés and the additional’
vibratory stresses Ox’ Ge, and Oxe' Assuming there is no interaction
between the prestress dispiacements and the vibratory stresses, the
internal strain energy of the shell, taking the prestressed equilibrium

state as the reference level, can be written as?!
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1
=1 +
U 5 f(Oxex Ogeq + Gxere)d(Vol.)

Vol
i i s i
4l/}cx?x + oeee + cxeyxe)d(Vol.) (3.46)
Vol.
= Ul + U2 .

The vibratory stresses Ux’ Oe, and Oxe are related to the

vibratory strains by Hooke's Law

E

o = 1_v2<ex + vey) , (3.47a)
o, = (e, + Ve ) , (3.47b)
3] 1_v2 5] X

s - _E (3.47¢)
X0 = 2(1+v) 'x8 y -alc

Substituting Equations (3.47) together with the strain-displacement
relations of a given shell theory into (3.46) and iﬁtegrating over

the thickness yields the strain energy. Because the initial stresses
may be large it is necessary to use the second-order, nonlinear strain-
displacement equations in the U2 of Equation (3.46) while using

only the linear relations in U This maintains the proper homogeneity

31
in the orders of magnitude of the terms in the integrands

1°

Ul is made up of two parts, one due to stretching (membrane)

and the other due‘to the addition of bending stiffness, i.e.,
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Ul = Umembrane t Ubending * (3.48)

The membrane component is given by81

c B (a2 2 20?4 0¥,
Unembrane = 2(l_\)Z) J(yta(a§) + a(36+z) + 2v3§(36+z)

(1-v) 0%, 0y\2y _
+ (-a-é+a§¥-{) ) dxd® , (3.48a)
while U contains small terms proportional to (h/a)3 that are

bending

negligible for modes with small number of circumferential waves®?

It should be noted that all the existing shell theories lead to the

identical expression for U

membrane® the differences occur in the

Ubending'

For pressurized tubes the initial stresses are given by
= R8 . X R

o n s o 0 . (3.49)
The strain e of an element at a distance z from the middle

surface consists of the stretching of the middle surface and that due

to rotation of the element. Accordingly,
e =€ _+ ZK , (3.50a)
M:

o ¥ g | (3.50b)

where €. ee denote the middle surface strains and Kx’ Kg the changes
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in curvature. Note that €'s and k's are not functions of %.

Equations (3.50) may also be derived from strain—displécement
relations of the three-dimensional theory of elasticity. In order to
satisfy the Kirchhoff hypothesis, which states that the normals to
the undeformed middle surface remain strgight and normal to the deformed
middle surface and suffer no extension, the digplacements are
festricted to linear relationships. Using the linear relations and
'-neglecting the (z/a) terms in comparison with unity the strain-

displacement relations simplify to Equations (3.50).

The'sedond order strain-displacement relations according to

Washizu's shell theory®?® are

_9x  1l.09%2 = 9y.2 92,2
=z 3l + G~ + 5)7] , (3.51a)
-1y  z 1 922 y3z
€9~ a6 Tat 3G9 ~ 5 . (3.51b)
2a a“ 90

Since the initial stresses are assumed to be due to membrane action,
i.e., uniform through the thickness, it is sufficient to retain only
linear terms in the expressions reléting curvature changes to displace—@'
ments®*. Thére is genéral agreement among the shell theories for

expressions of the middle éurface curvatures Kx and Ke, usually taken

as

e
N

(3.52a)

I
]
1]
|
@
%
[\
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- .1_2.2_ A (3.52b)
592 - :

9
9

v

¢ = 133
e"z

D

Substitution of Equations (3.49) to (3.52) into U2 and inte-

gration fhrough the thickness gives

N dx X 9 3 2 x 3 z
Uy = ff(NxE)x + —“3?3 + "‘51) tr @D - ——
4 9%
N N .
83y No oy 8 . 7,2
+ R Vg * —<‘B) ¥ 2[39"‘2] —5 (58]
gy Toate Telay N.@.“ No® 2x,2
42230 422002 42200 4al  8a> 98
N h Ngh o _
8" 3y, .2 2:2) e |
- -8:3[364«21 - 3[}1—?] ) ad%d . (3.53)

The kinetic energy of the inflated shéll accounting for the

added inertia is»
2
r__-zph ff[( + &%+ 5?aceaz
+ %‘(1-+-Cm)pW fff [g-zsine + %—EcosG]zrdedidr

(1+C )p
3x 2 wa dy
= Zeh ff[(a Go* + 5% + 22 e
+§Zcos6)2]ad6di . | . - .(3.54).

at

The aséumed displacements in the beam bending mode are
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x = [al¢;(E) + aZW;(E)]cosecoswt , €3.55a)
y = [a3¢r(5) + a4wr(E)]sinecoswt . : (3.55b)
z f [aSQr(E) + aGWr(E)]cosecoswt b, (3.55¢)

where ¢r(E) are the characteristic‘beam functions for cantilevers and
Wr(g) = coshUrE - coSUrE - ar(sinhUrE - sinUrE)'

are the characteristic functions for a clamped-pinned beam. Here
Sr = cotUrL R

and Ur are the roots of the frequency equation
tanUL-tanhVUL = 0

' The modal forms used in Equations (3.55) are quite realistic as

in practice behaviour of an inflated shell suggests boundary conditions

between the two sets mentioned above®Z.

According to the Rayleigh-Ritz Method

-3-; (U-T) = 0 ) R (3.56)
i
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Substituting the assumed modes (3.55) into the energy
expressions, integrating over the period, and applying'the Rayleigh-
Ritz procedure one obtains a sixth degree frequency equation, which

can be rearranged to form an eigenvalue problem of the type
2 -
[M](a) = R7[N](a) , (3.57a)

where 92 is the dimensionless frequency given by

2 _ pa?‘(l—\)z)uo2

& E

(3.57b)

The order of the matrices will be 3n in general, where n is the number

of mode shapes in the assumed solution.

Premultiplying Equation (3.57a) by [N]_1 gives
-1, 2
[N] "[M](a) = Q7 (a)
or

[Ql(a) = ﬂz(a) R (3.57¢)

7

where

[Ql = [N]71pu] .
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- The system of Equations (3.57c¢) can now be solved by an iteration
procedure (e.g. UBC DREIGN) to obtain the frequencies and mode shapes.
The elements of the matrices [M] and [N] are given in Appendix III

for Washizu's shell theory.

3.2 Tapered Beam Analysis

For a tapered beam one has.fo resort to the conical shell
theory to account for initial stresses induced by inflation pressure.
The conical shell theory is a simﬁle generalization of the uniform
cylindrical»shell theory. Uniform cylindrical shells are a special
case of conical shells with zero vertex angle. Due to varying fadiué
along the length, the inflation prestresses are functions of x, the
axial co-ordinate. Hence the potential reduction technique employed in
the previoﬁs section for the uniform cylindrical shells cannof be
applied in the present case. The exact solution of the conical shell
equations themselves is far from simple. In general, approximate and
numerical techniques have been used_in the inflated conical shell
studies to date. As pressure effects on the natural frequencies of
the conical shells are expected to-be small for the beam-bending mode
of interest here, é first simplification would Be to neglect the
internal pressure effects and study the tapered cantilever using the

elementary beam theory.

Equilibrium of the forces acting on a section of a tapered

beam (Figure 3—3) oscillating in water leads to
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|

- . ' L : >

Figure 3-3 Geometry of motion of a tapered cantilever

32 2 2

3w 3w _ N
ST + o A (S5 + Fy =0 (3.582)
9x ox ot :

where FH is the total hydrodyﬁamic force on the element. It may be
noted that the second term representing the inertia force of the
section is primarily due to the water inside the cantilever since the

mass of the wall material is very small. The resistance FH is taken

5

to be of the Morison type1 , i.e., made up of a drag force proportional

to the square of the velocity and an added inertia force caused by the

acceleration of the surrounding water,

dv :
1 rel e
By = 50440 v v | + A 0 —3= (3.58b)
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where Cd and Cm are the drag and added mass coefficients, respectively,
and Vel the velocity of the cantilever relative to the fluid. This
assumes that the drag and the inertia effects are free of appreciable

mutual interference. In the study the values of C. and Cm are assumed

d
to be constant and equal to 1.18 and 1.0, respectively, as in the

uniform cylindrical beam analysis.

From quations (3.58a) and (3.58b) one obtains

2 mm¥ + 14c e 02 + o acop 22 < o
2 ) m pw w3 2°q¢'\ pw3t ot!

9x 9x ot

(3.58¢)

Defining

n= W/dr s E = X/L ’ k = (dr_dt)/dr ’
and noting that

3 ' 2
I(x) = I_(1-k§) s A (x) = A (1-kE) ,
r w Wr

d(x) = d_(1-kE) , (3.59)
Equation (3.58c) can be rewritten as

EI .2 2 2

] 9
251 0-kE) 2] + (14c ) A (1-kE) L]
L~ 3¢ : 3E r dt

o1 2,0 . .y0nion; _ L o
* 3P kgl =0 (3.60)
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For the purpose of finding natural frequencies, Equation (3.60)
may be simplified considerably if it is assumed that the nonlinear
drag term has only a second order effect and may be neglected as a
first approximation. Discarding the nonlinear term; Equation (3.60)

can be rewritten as

4
4 3 282 (1+Cm)prer an
3€ og 13 r ot
=0 . (3.61)

In absence of any known closed form solution an approximate
procedure has to be used. The solution is assumed to be of the

form

nED = D e E5® | (3.62)

where, as before, @i are the characteristic beam functions for a

cantilever.

Substituting (3.62) into Equation (3.61), multiplying by

@r(g) and integrating over the length gives

3 2

Zf d<I>i 2d <I>i
(l—kE - 6k(1- , o f,
d£3 ri dgz ri
4
- (l+Cm)prWrL , dzfi
+ = (1-kE)@. @ z)dg =0 . (3.63a)
r dt
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For natural vibrations, f  vary harmonically with the same circular

i
frequency w. Thus
2
d™f
— - - ui
dt
Noting that
d%i 4
= U.Q. 3
d€4 i'i
Equation (3.63a) becomes
2N b e, Ldhy . |
E (-6k(1-kE)—=0_ + 6k“—=30  + (1-kE) [U] (1-kE)
3r 2'r i
i=1 0 dE dg
4 2

(1+Cm) prW L wi

- = L3 ]¢i¢r)fidg =0 , r=1,2, ..., 1.
r

(3.63b)
The above set containing an infinite number of frequency equations

gives rise to the eigenvalue problem of the form

[81¢6) = A2V , (3.64a)

or

[21(£) = A2 () , ' (3.64b)

where [S], [V], and [Z] are square matrices of order i, with
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(z] = 1" 4s1

and XZ is the dimensionless frequency given by

4 2
( 1+Cm) pWAWrL wy

i - EI
T

A detailed calculation procedure and the elements of the
matrices [S] and [V] are given in Appendix IV for i = 1, 2, and 3,

respectively.

3.3 Results and Discussion

To assess validity of the analytical procedures, it was thought
appropriate to experimentally determine natural freqﬁency over the
range of system parameters of interest in practice. The tests were
carried out in the hydraulic tank, (Figure 2-4), described in Chapter
2. A series of cantilevérs of varying radius, length, taper, film
tﬁickness and internal pressure were tested. Natural frequencies
- were monitored through two waterproof strain gauges attached to the
top and bottom side of an inflated'beam near its root (clamped end).
Free vibrationéswere triggered through initial displacement and
release, and the cyclic strain recorded on the oscilloscope indicated
the natural frequency. A typical trace on the oscilloscope screen
is shown in Figure 2-4. 1In general, the tests for a giveﬁ setting

were repeated at least five times and the average was used. The
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tests can be repeated with deviations less than 2%.

3.3.1 Uniform Cylindrical Cantilever

Table 3.1 compares the expefimentally measured frequencies
of_five inflated cantilevers with various theoretical predictions.
Experimental results show a slight increase in frequency with pressure.
Although thevincréase is quite small.and almost negligible for all
practical purposes, it is significant to recogﬁize that this trend is
correctly predicted by the solutions to Flﬁgge's reduced equation
(3.13). vThe difference between the exact ffequency [Equation (3.26)] and
that obtained by the mode-approximation [Equation:(3.37c)] is negligible
for all cases considered. Both solutions are capable of‘predicting
the natural frequencies with excellent accuracy. Besides Flugge's
theory, the reduction procedure was also applied to theAmembrane and
Herrmann—-Armenakas theories (Appendix V). The results obtained from
these reduced equations are included in the table for comparison.

Both the methods tend to overstress the pressure effects, with the
Herrmann-Armenakas theory erroneously predicting a decrease in frequency
with internal pressures. 1In a few cases the frequencies drop to zero
and turn imaginary, rendering the validity of the reduced Herrmann-
Arménékas equation questidnable. The redgced membrane equation predicfs
a much larger increase in frequency with internal préssure than that
observed. On the other hand, the much simpler elementary beam theory,

despite'its inability to predict the pressure effects on natural fre-

quencies, gives results of reasonable accuracy.
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PressBre Experi- Reduced Equations Rayleigh-Ritz
TUBE N/m mental] Beam | Mem- |Herr.- Flugge Washizu Membrane
SIZES (psi)- Data [Theory| brane [Armen. I IT [1-term|2-term| 2-term
0 0.69 | 0.69] 0.69 |0.69/0.69| 1.05 | 1.02 | 1.02
L = 1.02m 4 :
(40™) 2kg7§§o 0.70 1.05| 0.20 {0.69(0.69| 2.40 | 2.22 | 1.47
d =5.08cm 3 4éx104 .
(2.0 71570 0.70 1.23] Im. |0.69]0.69] 2.97 | 2.65] 1.69
h=0.008cm 4 1Ax104
(.003") |60y 0.70 1.31| 1Im. [0.69]0.69| 3.22 | 2.89 | 1.78
0 1.04 | -1.04| 1.04 |1.05{1.04| 1.58 | 1.54 | 1.54
L = 0.91m 4
(36") 2&27§§0 1.06 1.36| 0.74 |1.05(1.04| 2.86 | 2.71 | 1.94
d =7.62cm 3 4éx104
(3.0M |70y | 107 1.54| 0.45 |1.05/1.05| 3.45 | 3.19 | 2.16
h=0.008cm 4 1Ax104
(.003") |0 1.08 1.62| 0.16 {1.06[1.05| 3.71 | 3.39 | 2.26
L-o.6lml O . 1.91 | 1.91] 1.91 {1.92|{1.91| 2.90 | 2.82 | .2.82
17” L
i o5 ogenl S0 | 2,00 2.32| 1.56 |1.93{1.91| 4.61 | 4.44 | 3.34
e = 10k
h—O(SbgC; 3&25§§° 2.01 2.56| 1.28 1.93]1.92] 5.45 | 5.14 | 3.64
- . ] 4
"
(.003%) 4zé4g§° 2.02 2.67| 1.12 |1.93]1.92] 5.82 | 5.44 | 3.77
L o6l © . 2.34 | 2.34] 2.34 {2.38{2.34| 3.52 | 3.41 | 3.41
12 .
1 =7(§gci 2227g§0 2.38 2.70| 2.07 {2.39]2.35| 4.99 | 4.82 | 3.85
. 0) ,
12 ]
oo o) 2en0 | 2.3 2.91| 1.87 [2.39]2.36| 5.76 | 5.48 | 4.10°
. .0) ,
1"
(.003%) 4E24§§0 2.39 3.01| 1.77 {2.39(2.36] 6.11 | 5.76 | 4.22
L= o0.61m| O . 3.31 | 3.31| 3.31 {3.36/3.31| 4.97 | 4.81 | 4.81
11"
q _7(23C; zig7§§0 3.36 3.57] 3.12 {3.37|3.32| 6.10 | 5.93 | 5.13
=17 e . 4 ) .
(3.0") | 3.45x%10 .
h=0.015em| (5.0) 3.37 3.73| 3.00 |3.37|3.32] 6.75 | 6.53 | 5.33
1"
(.006™) 42243§0 3.37 3.81| 2.93 |3.37|3.32]| 7.05 | 6.78 | 5.43
I - Exact solution [Equation (3.26)]

II - Mode-approximation solution [Equation (3.37c)]

Table 3.1

Comparison between Analytically and Experimentally Obtained

Frequencies for Uniform Beams (Hz)
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Also shown in Table 3.1 are thé theoretical predictions based
on the Rayleigh-Ritz method applied to the Washizu and the membrane
shell theories. The derivation of the energy expressions for the
membrane theory is presented in Appendix VI. For the Washizu
theory results for one- and two-term approximations are shown for
‘comparison., Their agreement with experimental results is poor, and
the large difference between the one- and two-term approximations
indicates a slow convergence of the natural freqqencies. The fact

that the convergence of results can be very slow has been observed

by other investigators such as Sewall and Naumann“"

, and Resnick and
Dugundji"s. Sewall and Naumann compared analytical freﬁuencies with
experimental results for clamped-free shells without prestfess.. They
used seven terms in the assumed mode shapes to obtain convergence

of the Ritz procedure. Resnick andbDuéundji, usihg an energy apﬁroaéh,
fouﬁd that the theoretical and experimental data agreed only for

modes with more than five circumferential waves. Thus a large number
of terms will be required to converge to the right value, but the
amount of algebta involved is great since the order of the governing
matrices increases rapidly with the number of terms used in the

approximation (order of matrices equals three times the number of

terms used).
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3.3.2 Tapered Cantilever

Variation of the fundamental and second mode eigenvalues
(/X;) with the taper ratio k is shown in Figure 3-4 for the caseé of
one-, two-, and three-term approximations. For the fundamental mode
the three;term approximation gives eigenvalues that lie in between the
ones predicted by the one- and two-term approximations. If more terms
are taken in the evaluation, results will probably converge to intermediate
values bounded by the two- and three-term approximations. For the
second mode, the eigenvalue remains relatively unchanged up to a taper
ratio of about 0.5. For léfger éaﬁers the two-term approximation
fails to give accurate predictions. On the other hand, the one;term
approximation, employing the second-mode cantilever beam function,
provides estimates deviating less than 2.5% from their corresponding
three—terﬁ approximation values. Nevertheless, the deviations among
the three approximations shown are negligible for small tapers

(k < 0.5).

Table 3.2 shows the experimental results and the associated
theoretical predictions. The agreement is very good and the simple
beam theofy used is capable of accurate predictions. It is obvious
from the experimental results that the increase in frequency due to
internal pressure may be considered negligible from practical desigﬁ '

considerations.
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Figure 3-4 Variation of eigenvalues with taper ratio
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' PRESSURE TUBE = LENGTH
) 0.61m (24") 0.81m (32") | 1.02m (40")
"N/m” Beam Expt. | Beam Expt. | Beam Expt.
(psi) Theory Data |Theory Data | Theory Data
0 3.27 1.84 1.18
dr=7.62cm 4
"
(3.0") . 2237g§0 3.22 1.84 1.21
d_=3.81lcm ’ nl
"
(1.5") 3Eg5§§0 3.25 1.84 1.22
h=0.008cm : 4
(.003") | 4.14x10
(6.0) 3.25 1.85 1.22
0 3.74 2.13 1.36
dr=10.16cm 4 '
"
(4.0™) 2227g§0 3.74 2.13 1.30
d,=5.08cm ’ 4
"
2.0 3&253§0 3.76 2.14 1.32
h=0.008cm ) 4
(.003") { 4.14x10
6.0) 3.77 2.15 1.33
0. 4.22 2.38 1.52
dr=12.70cm ) 4
dt=6.35cm : 4
" .
(2.5") 3i§53§0 4.24 2.40 1.53
h=0.008cm v 4
(.003") | 4.14%10
(6.0) 4,24 2.40 1.54
0 4.63 2.60 1.67
dr=7.62cm ' 4
(3.0") 2&373%0 4.64 2.49 1.64
d _=3.8lcm " 4
(1.5") 32§5§§0 4.65 2.52 1.65
h=0.015cm o 4 ‘
(0.006")} 4.14%10
(6.0) 4.66 2.53 1.65

Table 3.2 Comparison Between Analytically and
Experimentally Obtained Frequencies (Hz)
for Tapered Beams (Hz):

83
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3.4 Concluding Remarks

The significant conclusions based on the free vibration

analysis can be summarized as follows:

@

For the uniform cylindrical inflated cantilevers vibrating
in the beam-bending mode, the governing three-dimensional
shell equations do not permit simple solutions. Although

an exact procedure is available, it has been sparingly applied

because of the great amount of work required. Numerical and

approximate techniques‘have mostly been used in the shell
vibration.studies to date. For the present study, it is
found that the sheli equations can be feduced to é éingle
equatibn'similar in férm to the one for the transverse
vibrations of a beam with rotary inertia included. Flugge's
shell gquation in reduced form‘is capable of predicting the
vibrational behéviour of uniform cylindrical be;ms subjected
to internal pressure. Accurate predictions are possible

even with the approximate solution of the equation discussed
here. However, the reduction technique should be applied with
care, sincé various sheil theories'give results which may be °
signifidéntly different. The reduced equations for the
membrane and Herrmann-Armenidkas theories fail to give reason-
able resﬁlts. It should also be noted that for certain

shell theories the equations are nonsymmetric (e.g., the

Timoshenko-Voss equations used by Fung et al.®7) and the
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potential function I' will not be simply related to the
lateral displacement w. In these cases the reduction process

will not give meaningful results.

(ii) The elementary beam theory gives predictions of reasonabie
accuracy for both the uniform cylindrical and the tapered
beams although the theory does not incorporate internal
pressure effects. Fortunately the effect of pressure, at
least in the raﬁge investigated here (< 4.14x104N/m2 or 6.0
psi) appears to be insignificant. Even with the internal
pressure of 4.14x104N/m2_or 6.0psi (P = 0.02), the increase

in frequency would amount to less than 2%.

(i1i) The Rayleigh-~Ritz method does not give accurate results in
the present investigation. The convergence of the results
is slow and the relatively great amount of work required

to achieve acceptablevaccuracy cannot be justified.

(iv) The hydrodynamic drag damping causes only an amplitude decay
and does not affect the resonant frequenciées of the canti-

levers up to the first order approximation.

(v) For the tapered beam the fundamental frequency increases
with the amount of taper. On the other hand, the second
natural frequency stays relatively constant up to a taper

ratio of about 0.5. For beams with taper ratios less than
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0.5, there is no apparent advantage in employing more than

one term in the assumed mode solution (3.62).
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4, TFORCED VIBRATION OF NEUTRALLY BUOYANT

VISCOELASTIC INFLATED CANTILEVERS

The previous chapter investigated free response of the in—
flated cantilevers. It was noted that with increasing pressure, the
increase in resonant frequencieé is so small that the pressure effects
may be neglected. The object of this chapter is to study the steady

state response of the viscoelastic cantilever to wave excitation.

A preliminary study on the coupled motion of the submarine
detection system was made by Misras, who concluded that displacements
of the cantilever tips, where the hydrophones are located, may be
éeduced by using an elastic cable with small stiffness and a heavy
central head. With a soft cable thé transmission to the array of
the buoy movemepts due to the surface waves will be relatively small.
0f course, in g;neral, such a submerged platform is subjected to a
vériety of disturbances including those due to surface and internal
waves, and ocean currents. The configuration of the submarine detection
system of interest here suggests that wave excitation félt by the
. buoy and transmitted by the cable ére ultimately experienced by the
central head. Hence in the present investigation, the disturbance is

taken to be a generalized known displacement objective being the

resulting response of the inflated cantilever.
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To incorporate viscoelastic nature of the beam material,
equivalent dissipative terms are included in the governing equation. :

This can be achieved quite readily byvreplaging>the modulus of elasticity

by the complex Young's modulus®’®®, For a three parameter solid the
complex.Young's modulus can be represented as’®
.
E (w? = El(E2+iv2w)/(El+E2+iv2w) . (4.1a)

Equation (4.la) may be rewritten as a sum of real and imaginary parts,

i.e.,
* _‘ 6._ — 6—8 . -
E (w) = El( +iwy) = El( +Y§E) , (4.1b)
where
§ =1 - E.(E.A4E.)/[(E.+E.) 24v20?] (4.1c)
1712 17727 T2 ’ .

and Y is the loss factor given by

¥ = Ele/[(E1+E2)2+v§w2] ) (4.1d)

4.1 Uniform Cylinarical Beam

For forced vibration, the root (clamped end) of the cantilever

is assumed to be displaced periodically by
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[o0]
x . *
n. = z(nc,mcosum + ns,msmmwr) . (4.2)
m=1
where T is related to.the real time t by (3.16) with the Young's

modulus E replaced by the instantaneous modulus E It should be

1°
noted that Equation (4.2) is a Fourier series and is capable of re-
presenting any periodic excitation. In the analysis, however, only
the first two terms are included as spectral analysis of a typical

ocean wave shows a steep reduction in energy content at higher

harmonics (Figure 4-1). Recognizing that the maximum energy content

:_Long E)_eriod A Gravity  Waves ECapiIIary
X Waves 5 rr\Nbves
1 . ! ] -
. I :
, ' {
>l N ,
< | ; |
o ; :
= ' '
w i ; !
' i ' !
g‘/ﬂf-Tndes ; :
i : B
gﬁg= ——t ; o
10 1073 107! 10’

Frequency (Hz)

PYTY: —SBmn 01s6c
Period

Figure 4-1 Schematic representation of the energy contained in -
the surface waves of the oceans -~ (Reference.86): -
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of the surface waves is at around 0.1 Hz while the natural frequency
of the inflated beam is in the range of 0.7 to 4 Hz (table 3.1, p. 79)

the effect of higher harmonics is expected to be negligible.

The absolute lateral displacement of the beam is
n€,1) =n_+n(E,7) , (4.3a)

where n(f£,T) is the displacement of the cantilever relative to the

root. In general the relative displacement can be represented by

n(E,T) =Z[nc’n(§)cosnw'r 0 L (E)sinnur] . . (4.3b)

n=1

Substituting Equations (4.1) and (4.3) into the nondimensionalized

governing equation of motion (3.17a) leads to

— d d4nc n d4ns n 2 2
{[8+y=]I 2—cosnuT + 2—sinnwT] - n"w B, *
3t 4 4 2
n=1 m= dg dg
‘ 2 2
[g;ﬂsigcosan + : ns’nsinnw'r]-— sz [mz(n* cosmwT
2 2 1 c,m -

dg dg

* 2 ' 2 *
; i +
+nc m51nmwT)+n (nc’ncosnwr+-ns ns1nnw"c)] w on[m(nS [ COSTIT

’ 5 b

* *
- sin +n(n_ _cosnwt-T sinnwt m cosmwT
Tlc,m ™t ) (ns,n wt nc,n w )]I (ns,m

.
-nc’m51nmwT)+n(nS’ncosan—nan51nan)I} =0 , (4.4)
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where

<
]

;q

=

Taking two terms (n=2) in the assumed solution (4.3b) the

nonlinear drag term in Equation (4.4) can.be rewritten as
2 ..2 .2 . 2 .2 -
+w o[A"sin (wT-¢l)+2AB51n(wT—¢l)sin(2wT—¢2)+B sin (2wr—¢2)]

where

% =ty g %+ g e %1
8% = 4ty p P+ o] g D71
x .
¢1 = arctan 2%;&;__2541 .

Ne,1t NeLz

% + n
¢2 = arctan ni’z 5,2
nc,Z + nc,2

Multiplying Equation (4.4) by coswt, cos2wT, sinwT, and sin2wt,
respectively, and integrating with respect to WT over the period gives
four independent equations. It should be noted that the hydrodynamic
drag force represented by the last term in Equation (4.4) is in phase

with the velocity and changes direction twice during a cycle. - Hence
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the correct sign should be chosen accordingly. However, the positive
and negative intervals of this term is depeﬁdent on the émplitudes A
and B. Here, as a first approximafion, it is assumed that A>>B such
that the direction of the force is governed by the term involving A2.
This is justified as the second harmonic response will be in general
much smaller than the fundamentai one. A better estimate may be |

obtained_by.examining the first-approximation solufions of A and B

and adjdst the sign accordingly to give more accurate results.

Assuming the sign of the drag term to be governed by
wzaAzsinz(wT—¢l) and carrying out the integration results in the

following four equations:

4 4 2

dm dn d™n
5"'22} + yw 841 - szz"'Efl - w’B (”c e, *
dE dg dE .

{-A 51n¢l+B [251n¢l—351n(3¢1 2¢,)- sin(5¢l 2¢2)]}

= .,0' ’ . | (4.5a)

dan a d4n | ﬁzn
1- *
dE _ dg - dg o
- Zapou® [251n¢2+—sin(2¢l+¢ )=3sin(46,-9,)] = , (4.5b)
d4nsA1 a‘n 1 2 d2ns 1 2, %
S——J7 - Yo—5= - WBy——== - WB (N, 4N ) -
dE dg dg 1S,

2
{8 2cos¢ +B [2cosd +-cos(3¢ 2¢ )- cos(5¢ 2¢ Y1} =0

(4.5c)

s



4 4 2
dn dm d™n
s—242 - 2yo—22 - w’s,—22 - s (] i )
dg g g s,
~ 2aBow? [cosh. +rcos (4. ~4.)] = O (4.54)
7 215 17%2 ,
' * an” b d
The quantities nc,ﬁ’ ns,n’ nc,n’ an ns,n can be represented as
[+¢]
(E) C .%.(%) s (4.6a)
=1 nj j
S .0 , 4.6b
NG Zl a3y ® (4.6b)
J
S 5 4.6c)
Men = 2aCai®i® - (4.60)
j=1
* b *
D BENCN S (4.6d)
j=1 -
Substituting these into Equations (4.5), multiplying.by @l and 52,
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respectively, and integrating with respect to & over the length, one

obtains eight simultaneous algebraic equations:

4o 2 . 2 4
(1) 6-w (ByCy #B1)1CH; — w B2C21 12t “1Y“511

w
+—.Tr—]'.l“0 ’
[Ws-4w (B.C. .+B )1S,, - 4 28 . T+ 2u%vuE
Hp073w (8,891™5, W Bobo1top T SH{YWS,q
2

" _ :
+2-TI_—12—0 s

*

wByCy

(4.7a)

*
- 4w2B C

1721

(4.7b)



b = Ly 2 - 2 -
MpywCyy = [uyd-w (ByCp1¥By) 181y + W'ByCo5yy

4

- by | 2 - 2 _
2u7Y0Cyy = [Hy8-4u™(ByC y¥B)) 1Sy + 407B,Cy159y
4w?B. 5" 4"“"2 -
+ AW B S, + AT, =0 ,
2 - 4 2 - 4L -
W'B,Cy5Cyq = [Hy8-wT(B,C,yy+B1) IC) ) — WyYWS),
2
2. *
+WB. Gy - Ig=0 ’
2 - by | 2 _ b =
4TByC1yCoq = [My0-4w"(B)C),+B,) IC,yy = 2UyYWS,,
2
L, 2 * o
+ 4w Blc22 - 2—71'—16 = 0 s
4 - 2 - by 2 -
HpYWCpy + 07ByC1oS1y — (MO~ (ByCyp#B 1S
2
2 * oS,
+(1)B1512+TI7—0 R
b - 2 - Ly 2 -
Zuzywczz + 4w BZC12521 - [u26—4w (BZC?_2+B1)]S22
2 * awz
+ 4w"B.S + 4=—T_ =0 )

1722 ™ 8
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(4.7¢)

(4.74d)

(4.7e)

(4.71)

(4.7g)

(4.7h)
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where

AR 2 peimg. - L _
I, = 0/;1{3A sin@l + B’ [2.5;1n<l>l - §sin(3<1>l 2@2)

- %sin(5¢1—2®2)]}di , ; | o | .8a)

1 N
- * 3 l' —_ .1- 1 — 1 . .
I, = '/.AB<I>1[2s1n<I>2 + 3sin(2<1>1+<1>2) 531n‘(4<1>1 <I>2)]dE , (4.8b)

2
0
1 .
8.2 2 1
I3 —o'f{sA cos<I>1 + B [2cos<I>l + §cos(3<1>1—2<1>2)_
= Leos(50.-20 )]0, dE (4.8¢)
5 172 1 ’ , .
1
1
I4 = /AB[COS(DZ + Ecos(l@l—@z) ]<I>ld£ . . (4.84d)
1
_ (8,2, 2., o _ 1. _
15 = f{3A 51n<I>l + B [231n‘1>1 331n(3<1>l 2<I>2)
0
1 | |
- 331n(5®1—2®2)]}©2d£ . (4.8e)
L 1 1
I6 =Of[Zsin(I>2 + §Sin(2@1+@2) - -S-Sin(l@l-@z)]AB@sz , (4'8?)

N 82 -2 .2 1 _
I, = d/r}3A cos“®, + B°[2cosd, + Fcos(30,-20,)

- %cos(5®1—2®2)]}¢2d£ R (4.8g)

1
1
8 /[cos@z + 1—5§os(4®1—®2)]AB®2d£ - (4.8h)

i
1]
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The set of Equations (4.7) has to be solved simultaneously to obtain

the response amplitudes. Here it was accomplished numerically.

4.2 Tapered Beam

The governing equation based on the elementary beam theory

was given previously in Section 3.2,

EI .2 520
- 9__[(1_kg)38 n] + (1+C P AL (l—kﬁ)
L% ag? ag% " o’
1

+ 36,0 a2 (1-ke)3R 3| =

Accounting for the viscoelastic dissipation the equation may be

nondimensionalized as

2% 33n 952 a2 321
[6+y ][(l—kE) ——— - 6k(1- kE)-—§ + 6k —] + (1~ kE)—-E
3E L1 8& 0T

With a periodic root excitation given by (4.2) and an assumed solution
similar to that for the uniform cylindrical beam eight simultaneous
equations are obtained after following the anlytical procedure similar

to that for the uniform case:
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2

4 2 4 2v=
{u § - w” + [ -2u 6)x3 66xl]k + [u + 6(x2+cll)]6k }C11

1%4
+ {[wzx - 6(2u4x +6X.) 1k + [u4x + 6(x, +C )]sz}ﬁ
7 2"7 5 2"8 6 21 12

4 4 4 2=
+ {ulyw = [2ugxy + 6x Iywk + [HX, + 6(C1+Xy) JYwk }sll

4 4 =
Yol [21,X, + 6XgTk - [HyXg + 6(x6+021)]}s12

*
- wz{C

*- * o
11 [XBCll + x7clz]k - ﬁIl} =0 R (4.9a)

{ula 4w + [2X3(2w -u G) - 66Xl]k + [ulx4 + 6(X2+C )]Gk }c

+

{[2x7(2m —uzd) - 66x5]k + [u2x8 + 6(x6+021)]6k }C
FLu® - Ay - a1k + 2™, + 600+C, ) TkA WS
1 13 1 14 2 711 21
-'{4[u4x + 3x.] - 2[u4x + 6(x,+C...) 1}yws
27 5 278 6 21 22

w?ic) +. Kk + 2% w” I} =0 4.9b
- w0y - Xy *%;Cp] T Lyt = > (4.99)

- 4 4 -
Ty - 20Xy + 3x Ik + Tugx, + 6 (x,+Cy1) 1}ywCyy

4 4 -
- {2[u)xy + 3x51 - [Myxg + 6(x6+621)]}Yw012

2

b b 2 4 2=
- {u16 - we - [(Zulé—w )Xy + 66x1]k + [ulx4 + 6(X2+Cll)]6k }Sll
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+ {[(Zuaé—wz)x + 681k - [p4x + 6(x +C )]6k2}§
: 2 7 577 28 6 21 12
2. % % * o _
+ W {sll ",[X3811 + 5 ,X,1k + 1-TI3} =0 , - (4.9¢)

’ 4 4 4 | 2, =
{2u] - 4lugxg + 3xg Tk + 2[uqx, + 6(X,*Cq ) 1K FyuCy

4 4 2, =
{4[u2x7 + 3x5 Ik = 2[uyxg + 6(Xg+Cyp) 1K }wa22
- 2 4 2 4 2=
- {ula - bt - 2[(u8-2w7)x, + 68, Ik + [ux, + 6(X2+Cll)]6k }521

Crorpbe o 2 - 2,2
+ {2[(u26 2w )X7 + 36x5]k [u2x8 + 6(x6+021)]6k }822

*

4w {s) .
+ S 21X3 + S99X7

21 = I8

Ik + %14} =0 , (4.9d)

: 2, 4 4 24

2

. 9 -
+ {ugd - w + [(wz—Zugé)x13 - 66Xll]k + [u;xl4 + 6(x12+C22)]6k }C12

: 4 : 4 -
- {2[u]x, + 3Xglk = [HyXg + 6(x;(+C ) THwS

C 4 4 4 -
+ {uy = 2[uyXqq *+ 3xgqlk + [HpXyy + 60 p7Cy) Ihywsy,
2 % % * a _
= w{Cy = [C 3%y * CipXpqlk = 3T }=0 , (4.9e)

5

5 4 4 2.=
{20 (u"-u 8)x; - 38xglk + [uyxg + 6(X1*Cy,) 19k }C2l
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2

4 ) ,
+{u3s - d® - 20 (uas-27)x 5 + Bx Ik + TR

2._
6(xy,+C,,) BK7IC,, - {4[uix7 + 3y Tk - Z[UiXS + 6(Xqq*C 0] *
kz} wS.. + 2u4 - 4[u4 + 3 1k + Z[p4 + 6¢( +C,..)] *
YWS,q 2 2X13 7 X11 2X14 X127%22

2, - 2, * % * o .,
K hywSy, - WG,y - [Cyxy + CopXqalk - FIgh =0

(4.9f)
{2[p4 + 3y.lk - [u4 + 6(X., +C )]kz}ymE - {u4 -
1X7 7 X 1X8 X10712 11 2
aluly. .+ 3y Tk + [udx,, + 60 +C..) Tk IywC, . +
2X13 7 X1 2X14 X12722 YWty

2 .4 4 2. =
{[w -2u8)x, - 68Xglk + [MiXg + 6(Xy*Cq,) 16K }Sll

2

4 4. 2 4
+ {18 - 0" - [(2u,0-w")xy4 + 68%,q Jk + [HoXqy + 6(X191Cy,01 *

*

*
[S11X7 * 519X13

2. = 2, % a4
Sk }s12 -w {s12 - 1k + 517} =0 , (4.9g)
Dy + 3Tk - 2ludx, + 60 +C, ) PG, - (20

1X7 9 1X8 10712 21 2
- Ay + 3 Tk + 2[u%y, . + 60y, .+C..) T2 IywC

2X13 72X 2X14 X127227 AhaV)

) 2 4 4 ' -
+ {2[ 2w ~U,8)%, - 36x9]k + [uyXg + 6(xlO+C12)]6k }321
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4 2 2 4 4
+ {u26 = dw” + 2[00, 8)X 4 - 38%; 11k + Duyxyg, +

1k

2,= 2, * x
6(Xp+Cyp) 18K71S,, — du{s,, - [851%; * SppXp3

a -— .
whe;e
1 1
— Tt — tre
X, = J ,2]''dE ; X, = J £0;0]"'dE ,
0 0
1 1
B 2 _ 2.2
1 )
= 11y = tee
Xs f 2.0, . Xg of £0,00'dE
1 1 5
X, = J £0,0,d8 . xg= [ g0 0,8 :
0 0
1 1
= [ = 1y
Xg = [ 23", » o Xgom JoERptedE
0
jq)z@n' " , ,‘.E@ q)'vv ,
1 1
2 _ 2.2

As in the case of the uniform cylindrical beams, Equations (4.9) were -

solved numerically using a simultaneous-equation computer subroutine
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(e.g. UBC NDINVT).

4.3 Results and DiscussiOn

In order to evaluate the response, the relative magnitudes
in the chosen harmonics and the modes are rewritten in two different

forms as

3
]

Hlsin(wT+¢l) + stin(ZwT+w2) s (4.10a)

and

3t

= [Rllsin(wT+Al) + R

lzsin(ZwT+A2)]<Dl

+ [Rlein(wT+A3) + R 2sin(2wT+A4)]<I>2 . (4.10b)

2

Here Hl and H2 correspond to amplitude responses in first and second
harmonics of the forcing frequency, respectively, while Rij refers to

. o .th .th .
amplitude response in the 1t mode due to Jt harmonic.

Figures 4-2 and 473 show the response amplitudes at three
different points along the beams of various degrees of taper subjected
to excitations at the root. It should be noted that w is dimensionless
and proportioﬁal to the frequency ratio wf/wn (wf = forcing

frequency, wn'= natural frequency). w and w_ are related by

f
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where B3 is defined in (3.16)._ For a particular beam /ﬁ; can be
calculated and w may béAfound if the forcing frequency is known.
Figure 4-2 shows the response to.a one-term harmonic exqitation.

There is no second-harmonic response (i.e. H2=0) in this case. With
an increase in taper ratio, the peak tends to occﬁr at a larger w

but has a smaller magnitude. The first and’second mode contfiﬁutions,
R11 and RZl’ are also shown as functions of w. These are constant
along the length of the beam. For an increase in taper ratio, the
R11 response peaks at a larger w with a smaller amplitude. On the

other hand, the R, ., amplitude is largef for a higher taper ratio. The

21 A
internal pressure effects for the range of interest here are less than

1% and can certginly be considered negligible. TFigure 4-3 shows the
responses for an excitation including a second harmonic of a representative
ampiitude. Here the second-harmonic responée is apparent. Thé response

H1 is identical to that in Figure 4-2 for simple harmqnic excitation.

The fundamental response components, Rll and R21, are also very much
similar except for minor magnitude differences. The superharmonic

response components, Rlé and R22, are due to the presence of the second
harmonic exciting term. It is apparent that the.response amplitude
decreases with an increase in taper ratio. It should be noted that

the amplitude components R ‘

RZl’ and R,, are independent of the

11° Rpo0 22

locations along the beam and are thus identical for all values of £.
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-y . L .
Neg=10 & Msq=Mg,=Tg,=0

£=08

Figure 4~2 Response of viscoelastic cantilevers to simple harmonic
root excitation
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0.75

Figure 4-3 Response of viscoelastic cantilevers to excitation with
a small second-harmonic component:

(a) £ =0.4, 0.8
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oq= e,1= A

”3,2'—‘ n§,2=0-1/~f?

075l 571

Figure 4-3 Response of viscoelastic cantilevers to excitation with
a ‘small second-harmonic component:

() & =1
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Before closing a comment concerning the effect of low temp-
erature on response of the system would be appropriate. This is quite
relevant because of the interest'in its performance in the arctic region.
Although material properties of polymers vary with temperature, the
glass transition temperature is expectgd to be very low (below -50°C
for polyethylenea7), hence tﬁe material is likely to behave as visco-
elastic undef almost all practical conditions. However, at low temp-
eratures, the stiffness of the matefial increases while the creep rate
decreases. Hence for certain applications, e.g., submarine detection
in the Arctic, the material properties will be different from the
aforementioned ones‘(Section 2.4, p. 36), which are measured at a
temperature of around 10°C. A typical stiffness—temperature plét for

polyethylene is presented in Figure 4-4. It is apparent that with a

Stiffness (psi)

A.STM.—D747

~40 =20 0 20 20 850
Temperature (°C)

Figure 4-4 Effect of temperature on the stiffness of
polyethylene
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decrease in temperature from 10°C to 0°C the rise in stiffness can be

by around 20%. This would be reflected in the corresponding reduction
in thevfrequency ratio (mf/wn)Vand hence'a.reduction in the response
amplitude. Thus the system performance is expected to improve in the
low temperature environment. However, this does not necessarily imply
better performance in the arctic region as now the character of the
forcing function is expected to be substantially different due to
floating~colliding ice masses. Litérature survey reveals considerable
‘effort in progress to assess this., Unfortunately, no precise information

is yet available.

4.4 Concluding Remarks

The above analysis of the viscoelastic cantilevers subjected
to periodic root excitation leads to the following conclusionms:
(i) Within the range of internal pressures studied the inflation
- has negligible effects on the forced response of the visco-
elastic cantilevers in water.

(ii) The analysis enables the prediction of the response of thg
viscoelastic cantilevers fo periodic excitations that are
expressible in termsvofthe fundamental forcing frequency and
its seéond harmonic.

(iii) TFor the case of the simple harmonic excitation, the nonlinear
hydrodynamic drag introduces no superharmonic components

into the response.

H
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At low exciting frequencies typical in the ocean an increase
in taper ratio will reduce the displacements of the leg tips.
However, for frequencies above the fundamental resonance, a

high taper ratio will increase the tip displacement amplitudes.

Dynamical response of the uniform cylindrical and tapered

viscoelastic beams to root excitation accounting for the
hydrodynamic drag should prove useful in the design of

an underwater submarine detection system.
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5. CLOSING COMMENTS

5.1 Summary of Conclusions

As stated at the outset, the objective of this investigation
has been to gain an understanding of the statics and dynamics of the
neutrally buoyant inflated viscoelastic structural members constituting
a submarine detection system. The emphasis has been on the deter-
mination of trends rather than presenting massive data. The important

conclusions based on the study can be summarized as follows:

(i) The specified materials of the inflatable members are visco-
elastic and.can be described with good accuracy by the
‘three parameter solid model.

(ii) The elementary beam theory, with the three parameter solid
model, is capable of predicting accurately the static be-
haviour of both the uniform cylindrical and the tapered
cantilgvers.

(iii) The free response of the uniform cylindrical beams may be
studied using the reduced shell equation derived in this
dissertation. The shell theory includes the initial stress
effects due to inflation, and the reducing technique describéd
combinés the three shell equations into one that gives
results of adequate accuracy for the beam-bending mode of

interest here. The elementary beam theory is adequate in
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predicting the dynamical behaviour of the inflated tapered’
beams. Experimental data obtained confirms the validity

of the analysis. The results should be useful in the
subsequent stud& of the submarine detectlon system.

For the range of inflation of interest here, the internal
pressure has a negligible effect on the dynamical behaviour
of the neutrally buoyant inflated cantilevers. The pressure,
however, should be adequate to prevent wrinkling of the
cantilevers at all times.

The forced response of the cantilever to root excitation
should prove useful in the design of the system. The
analysis enables an estimate of the beam response to.

displacement excitations expressible by the first two terms

" of the Fourier series.

5.2 Recommendafion for Future Work

There are numerous possibilities for extension of the present

investigation. Some of the important areas of interest are indicated

below:

(i1)

An intensive experimental program to determine the gpparent
_mass;coefficient, one of the uncertain parameters in the
study, should prove very useful.

Prototype tests in the ocean would undoubtedly provide

valuable insight. The possibility of excessive flexural
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displacements for legs with very large L/d ratios may
necessitate a ﬁore refined large—-amplitude theoty as the
slope effects may become significant.

The current stﬁdy could first be extended to the coupled
motion of three similar flexible inflated cantilevers placed
around a central head to form an array. The possibility of
dynamic instability should be investigated. This could be
followed by the consideration of the entire submarine de-
tection system consisting of the érray joined to a floating
buoy by a cable. The dynamics of the drifting assembly

and its stability will pose a chéllenging problem.

A detailed experimental study of the material behavioﬁr at
low temperatures will enable its application to regions of
extreme cold, e.g., sﬁbmarine detection in the Arctic. The
dynamical analysis of the buoy-cable-array assembly in the
arctié environment should prbve to be of practical signi-

ficance.
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APPENDIX I

DERIVATION OF WATER INERTIA TERM IN SHELL EQUATIONS

e N
/ q

\
Fa \

Figure I-1 Geometry of lateral diéplacement
of a shell section

Let q be the normal pressure acting on shell due to inertia

of water inside. q is defined positive outwards.

From geometry,

52 52 52 |
mw—-% = mw—%sine - mw——gcose . ‘ (I.1)
ot ot ot

A force balance in the vertical direction gives

T 2

2 3 27 a 82 a2z '
f qacos6db = f me =P f f [-—%sin6 —'—4§_cos(3]adrde
0 ot Yo o ot ot

(1.2)
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Assuming

£
i

qow(x)cosecoswt s

and

YY(x)sinBcoswt , z = ZY(x)cosBcoswt g

<
]

Equation (I.2) becomes

27 9 pwwzazlp(x) 2T a 9 2
/ qow(x)cos Bcoswtadd = - —_— | [(¥sin“B=Zcos 8)coswtdd .
0 00 . .
(1.3)
For the beam-bending mode, Y =-Z, and Equation (I.3) becomes
’ 2
q0 = pwaw z
Thus
2 2 282
-qa = - p_a w ZY(x)cosbcoswt = p_a gz . ' (1.4)
" W 2
ot
a2(l-v2)
In the shell equations the force term is 'q'°Eﬁ“'"" and is equivalent to
3 2
P, (1-v )azz
- Eh 2 ’

ot
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or

To account for the inegtia of the water surrounding the '
beam, an added inertia coefficient, Cm, is introduced. The term
to be added to the shell equatiomns is then ..

2
Pu2a%z

(1+C_)G—r— .
m P hatZ o
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APPENDIX II

ORTHOGONALITY CONDITION FOR EQUATION (3.22b)

' Equation §3.21b) may be rewritten, for modes m and n, as

Ty

w0
L]

4 11 . .
A (BB +B.B ) , (1I.1a)

LRI

4'|‘| v '
An(BZBn +Ban) .- | - (II.1b)

-

Multiplying Equations (II.la) and (II;lb)'by Bn and'Bm, respectively,

subtracting and integrating over the length, one obtains

1 LA ) tre

1 3
_ 4 T
f®_ B -8B )= Of [\, (B8 B +B.B B )

o . & B n mn
AA v S '
- A (B8 B +B,8 B )1dE . (11.2)
Integrating by barts, Equation (II.2) becomes

‘ 1
_ 4" 4 1, .4 4 -
0= BZ[A B8a2 BmBn]O + (Am_ln)Bl OI BmBndE

mmn n
- B %% le'B'dE o (11.3)
2'm 'n o mn v :

Applying the cantilever boundgry'condition, Equation (II.3) can be

rearranged to give
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4 \] 4 ' N
B \ ke o
f18 B_dE - %2 fls'e'dg , BaPaPp (DB, A8, (B, ()]
o mn By mn R
| \ XY
= 0 ’ for m # n . . (11.4)

This is the condition of orthogdnality of the eigenfunctions B(E);
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APPENDIX IIX

RAYLEIGH-RITZ MA'I»"RIX-ELEMENTS FOR WASHIZU'S éHELL THEORY
- The eigenvalue problem given by Equation (3.57a) is
MlGa) = °[NIGa) .
The gleménts of [M] and [N] are:

1 1 ,
= ) [or%ar + 22 [ e % + avhHp
0 | 0

myy =
L
[<2——-+ ) f o' % + < )2 f $''74g] ;-
’ a B
RN a2 (Lo 2,
m, = (1-v) [oryrae + 2¢5) [ e ¥IrdE + (1-v)P *
0 : 0
. 1
[(2—-+- 2) f QYdE + (7 ) f 'Y dE] ;
6a .
ay 1 12
my = (F)[2v [ @''®dE ~ (1-v) [ @'“dg] ;
0 .0 -
s 1 1
m, = ()2 [ ''vaE - (1-v) [ ®'¥'dE] ;
0 0
. L
m o = 2v(i)of o' '3dE ;
1

= a r .
mg = zv<L>of o''vdE
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0 0

h hZ
a
a

1

1
1) [ vlag + 22 [ vrrae + avhe
0

0

2 1 1
h, h .2 a,2 o2
lggr=p [ ¥iae + @ [ ¥ %az)

6

1
(E)[zv [ o¥rrdE - (1-v)
0 0

1
(E)[zv [ wyrrde - (1-v)
0 0
2v(§) [ ovrrdg :
0
1
2v(%) [ werrde ;
0
a l
() [2v J 03''dE - (1~v)
0 0

1
G [2v [ o¥''dE - (1-v)
0 0

1

1
[ oryrag)

1
[ vr2agg

1
[ er2ag]

1
[ o'yrag]

.
’

.
b

’

.
H

.
s

| T 1
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1 : 2 1
2 + (1—v)(§)2 / ¢'2dg + (1—v2)P[4-2+-h§+(€)2 / o' %dE]
0

1

0

2 1
[y [owdz + 7
32" 0

1
[ oryrag]
0

3a

| 1
2 [ ovag + - [ o'vag + a-vP)p x
0

?

0
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s 1 1,
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L% 0 |

1 2 1 2
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0 - 0

1
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64

65

66
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APPENDIX IV

FREQUENCY EQUATION FOR TAPERED BEAMS USING

1-, 2-, AND 3-TERM APPROXIMATIONS

For one-term approximation Equation (3.59b) becomes

3<1> ) d2<I>l .
f {-6k(1-k&)—3 cp + 6K, —5 + (1-kg) [u] (1-kE) -
d«E dE
A*1023ag =
The solution can be written as
Oi lZGm
}\m=um{1kI [l+k(12-—2—21 )+k(I ———3—+
um ] um
9Cmm}1/4
A ’
um
where
)
= f ek

(=
]

1
2 2
2m Of 3 deg ?

and CInm is given by-Equation (3.33¢).

131

(Iv.1)

(1v.2)
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Two equatibns are obtained from Equation (3.59b) for the

two-term approximation:

3 2

1 a’e d“o
1 2 1 4 2,2
Of {(—6k(1—k5)®1—;g§ + 6k ¢1';g§ + (1-KE) [U; (1-kE) = A ]@l]fl
a%e a%e
2 2 2 4
+ (-6k(1-kg)<1>1—--§ + 6k°0,—5 + (1-KE) [1,(1-KE)
dg d&
- A2]®1¢2)f2}d£ =0 - (IV.3a)
3 2
1 4 % d°e 5
[ {(~6k(1-kE)—L0, + 6k>—D0, + (1-kE) [L¥(1-kE) - A"10.0.)f
0 | ae3 2 acl 2 1 17251
| o, do 4.
+ (-6k(1-kE)O,—=% + 6k“0,—5 + (1-kE) [M,(1-kE)
d& d§ :
- 2%182)¢,}dE = 0 : (IV. 3b)

Eqdations (IV.3) may be put in the form of (3.64a), i.e.,
2
[S1(£) = AT[VI(£) s

where

_ 4 4 . . : 4 2
s11 = M [_6Xl + 2u1x3]k + (6)(2 + 6Cll + ulxa)k R
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o 4 2
S19 = [6x5 + 2u2x7]k + [6X6 + 6C 2x8]k ,

S,, = —[6)(9 + 2u 1k + [6x + 6C ]k ,

21 1%7 12 T 1X8

_ 4 4 ' 4 2
Syp = My = [6Xqq + 2UpXqqlk + [6X 5 + 6Cyy + HoXy, 10
vll = 1 - X3k ,

12

22

For the three-term approximation three equations are obtained
from Equation (3.59b) which can be written in the matrix form (3.64a).

The elements of the two matrices are:

\

= Ao 4 b 1.2 )
811 = Hl=6xq + 2uyX5lk + [6x, + 6C;) + HiX, 1k :
.. = —[6y. + 2uty. ]k + [6%, + 6C.. + 1y ]k .
12 Xg T “HaXg X6 21 T HoXg ;
1 1 1
- - Ty te
513 [60f 9,0)"'dE + 2u3 i £®l®3d£]k + [6 f £Q 01" 'dE

1
) 2
+ 6C, + uBOf 70, 0,dE]k :
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0

1
) 2
+ 6C,, + u30f £70,2,dE ]k

1 !
_ 11
[60f ]''0,dE + zuloj £9,9,

1
4 .2 2
+6C 4 + ulof £70,0,dE]k

1 s L
_ [
[60f 23" '0,dE + 2u20f £9,9

1
; 4 .2 2
+6C,, + uzoj £70,0,dE]k

- tey 1
My [eof 9,01 'dE +.2u30f EQ AE]k + [60f £0,01"'dE
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bo2.2 002
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18
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1 1 1
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- tre try
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1
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APPENDIX V

REDUCED MEMBRANE AND HERRMANN—ARMENAKAS EQUATIONS

(i) Reduced Membrane Equation

The differential operators in Equation (3.1) for the membrane

theory, after neglecting terms involving h2/(12a2), are®!

2 2 2
L= é‘i + l%2§‘§ - c1Ga 7 ,
38 ' 50 9t
Lo bw
12 = "7 5530 ’
9
L3 = V55 ,
21 = "7 536 ’
2 2 2
1-v) 5 3
L=y 9 g9 ,
2207 7,27 37 9%
-9
Ly = 35 ’
)
L3; = V33 ,
3
L3z = 38 ,
L N .. Gaz Mg N2
33 Ko 302 T og? T a2
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Carrying out the reduction procedure the following equation is obtained

for the beam~bending mode:

A 333 + A Efy + A QEY + A ——ﬁfﬂ— =0 (V.1)
lasz 2354 43t2 58s23t2
where
,

A = (3+v) (1-v7)
i | 4 P 3
L GewvByasd o avy avh

2 8 2 ’

. 1-v
A, = G5 (ey + cg) ,
(1-v%) (1-v) 2

A5 = -G{ A [2c1 + (l—v)cz]P + 5-Cq + (1-v )c2 + (l—v)c3}

(ii) Reduced Herrmann-Armenakas Equation

For the linearized Herrmann-Armenakas theory, the differential

operators, after neglecting the small terms involving h2/(1232), are’!

N .2 N L2 2
9 1-v 049 P

L= (1+25% + (&Y + )% - ey ,

11 /) 3 T YT 12
L =.].'i)82

12 =~ "7 5536 ,

3

L3 = V53 J



L = .]i-\)— 82
21 2 ds06 >
N
_ (1l d
Ly, = (T +) =5+ L+
ds
N
- N
L23 = (l + 26—)-8—6
_ .9
L31 = V55 ’
N
_ 043
L32 = (l + 2 a—-)a—e-
L33 =1+ E- + C3Cv
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Applying the reduction technique outlined in section 3.1.1

and setting n=1, one obtains an equation similar to (V.1l) with the

coefficients given by

g
1

(27—7v)(17v2)2P2 .\ (9—7\)—2\)2)(1—\)2)P

_(2(1-v%) %% + -2y avHZe? + (1-v) (1-vP)P)

1
Ay = (1-v2)3p3 +
1—v—v2+v3
+
2
A, =

G ey + e

3)

8

A

6l2(c, + c3)(l—v2)2P2 + (2 (e, + c3)(l—v2)P +
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_ 3 222 (11-v)
A5 = G{[2cl + 2(c2+c3)](l V)PT + [(2—\))cl + =
(13-3v) 2 (1-v) 2 )
+ 22— J(IV)P + 25e, + (1v e, + (1 V)c3}

(iii) Solution

Letting

E=%L , n=wd ,
Equation (V.1l) may be rewritten as

320 A2 a %% A a ey A5 a2 af -

=D YD StEY 2270 (v.2)

ot 4 9 4 9 4 0879t

To find the fundamental frequency an approximate solution is sought

in the form
n = K@l(E)coswt

Substituting (V.3) into Equation (V.

(v.3)

2), multiplying by ®l(g) and inte-

grating with respedt to £ over the length one obtains

!
A,

22
A,

a4 4
(i) Hy +

2 a. 2
W+ G) Cq

5,a,2
- Kz(i) T

A 2

0 (V.4)
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Equation ’(V.4) may be solved to give the frequency

a,2 a
A)(E)C AR Y

w =

a. 2
A, + As(E)Cqy



APPENDIX VI

POTENTIAL ENERGY EXPRESSION FOR THE MEMBRANE THEORY

141

The strain-displacement relations according to the membrane

theory are’!

_9ox , 1lcazy2
e, =53+ 3053 ;
=108y 2, 1 (372
g =2Ge) tat Zaz(ae) '

and K, are identical to the omes

The middle surface curvatures Kx 8

in (3.52).

Substituting the above relations into U2 and integrating

through the thickness gives

N N N
) ax . Nxdzy2 , Yeay Mo dzy2, .-
U2 f f {ng;z + Z—(F;i) + 2 56 - 5?(86) }adxd0o

(VIi.1la)

(VI.1b)

Assuming mode shapes given by (3.55) and applying the Rayleigh-

Ritz technique (3;56) the following elements are obtained for the

[M] in Equation (3.57a): -

1 2 1
12 a ) .
1 (1-v) [ 9'°dE + 2(3) oj o114k :

0

1
1-v) [ o'vdg + 2
0

we

, 1
AR AVARI
12 ) of orrYIdE

matrix



13
14
15
16
21
22
| 23
24
25
26
31
32

k!

a 1 ! 2
l2v [ e''dg - (1-v) [ o' 7dE]
0 ' 0

1 1
G2y [ o''vdE - (1-v) [ 0'¥'dE]
L™ 0

-e

1
(@) [ o'eds
0

we

1
2v@) [ o' 'vaE
0

1 , 1
(1-v) [oryrde +2(5)° [ orryrrag
0 : 0

. 1 1
1) fwrtas + 2P v fa
0 0

1 1
G)[2v [ o¥''dE - (1-v) [ &'¥'dE]
L 0

1 1,
(%)[Zv [ w¥rrde - (1-v) [ ¥roag]
0 0

1
2v(§) [ o¥'rag
0

e

1
2v(7) [ wy'rde
70

we

. 1 1 2
Glav [ 0011dE - (1-v) [ #'7dE]
0 0
1 1
Gyl2v [ o¥''dg - (1-v) [ @'¥'dE]
0 0

1
2+ (1—v)(§)2 [ o'2a .
0

we

o

-e

e

-e
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T34

1

2 [ ovaE + -0 )

0

1
2 [ ovdg
0

1 .
(%)[Zv [ @r'vde - (1-v) |
0 0

b

2

1

[“oryrag
0

1

1

) |
G)[2v [ WdE - (1-v) [ ¥rlaE]
L 0

1

2 [ oVdE + (1—\))(%)2
0

1
[ orvrag
0

. 1
2 + (1—\))(%)2.0f ‘i"zdg 3

1
2 [ ovdg
0.

1
2v(F) [ o0''aE
0

1

2v(3) [ o¥''dg
0

2 [ ovdg

b

b

we

we

3

¢'¥'dE]

.

b

-e
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g
1l

1
2y (242 )2 .
55 = 2+ (I-V)PIE) OI 9" dE] 3

1 o 4 L
2 [ O¥dE + (1-v )(g) P [ o'Y'dg 3
0 0

=S
]

56

1
m,, = 2v(§) [ o''vag
0

61
. L
— = L] . .
m, = () [ wrrvde .
0
1
Mo = 2 [ ovdg s
0
Mgy, = 2 ;
1 2, ,a,2 1
m. =2 [ O¥dE + (1-Vv)(E) P [ @'¥'dE 3
65~ L
0
2, ,a,2 1 2
= — e 1
m =2+ (V) () Pof Yroge

The matrix [N] is 'identical to the ome given in Appendix III for

Washizu's shell theory.



