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"Big whirks have Little whirks that feed on
thein velocity,
Little whirnls have Lessern whirnls, and 40 on

to viscosity."

L.F. Richardson
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ABSTRACT

The velocity profile shape and boundary layer
thickness of an equilibrium boundary layer grown over a
long fetch of roughness are closely matched with those of
a boundary layer artificially thickened using spires (by
adjusting the shape and height of the spires). Other
turbulent characteristics of these two wind tunnel simula-
tidns of the atmospheric wind are then compared. At the
- same time, more information on rough wall boundary layers
is obtained to allow for a rational choice of the shape
and spacing of roughness elements required to produce a
particular simﬁiation of the full scale boundary layer.

A ﬁechnique for calculating the shape of
boundary layeré in exact equilibrium with the roughness
beneath, usin§ a data correlation for the wall stress
associated with very rough boundaries and a semi-
empirical calcﬁlation method, is examined experimentally.
Wall shear st?éss, measured directly from a drag plate, is
combined with boundary layer integral properties to show
that the shear stress formula is reasonably accurate and
that the boundéry layer grown over a long fetch of
- roughness is Eiose to equilibrium after passing over a
streamwise dis£ance equal to about 350 times the rough-

ness element'héight.



The boundary layer quickly generated using
spires proved to be a fair approximation to that grown
over a long fetch of roughness, but did not accurately
represent the longitudinal turbulence intensity of the
full scale atmospheric wind or the naturally grown boundary
layer.

The boundary layer produced here by spires
showed little change in gross characteristics after travel-
ling about eight spire heights downstream of the spires.

A distance of six or seven such heights has been advised

by other workers in the past.
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NOMENCLATURE

constants

frontal area of one roughness element
effective floor plan area associated with each
roughness element

drag coefficient of a square bar

drag coefficient of one roughness element
slant wire rms voltage
slant wire mean Qoltage
shape factor = §*/6
unusual shape factor = éﬁig*

&on Karman's constant

integral length scale

foughness element height

é constant depending on the aspect ratio
of a hot wire

frequency, cps

Reynolds number

ﬁower spectrum ft2/sec

integral time scale

local mean velocity, ft/sec

free stream‘velpcity or gradient wind,
ft/sec

friction velocity, =




8*

= JCE rms of the turbulence velocity in
. the x-direction, ft/sec
streamwise distance; distance downstream
height above ground
roughness length, z=2, at U=0
H-1

shape factor, = 5—i power law exponent if

‘a power law is assumed

boundary layer thickness
displacement thickness
bar spacing; distance between square rough-

ness bars

"equivalent" bar spacing

Aair density

.momentum thickness

:éngle of yaw, usually 45° for a slant wire
-shear stress

.éurface shear stress

kinematic viscosity



CHAPTER 1

" INTRODUCTION

The atmospheric wind has always had a strong
effect on man and his environment. Within the last fifteen
years or SO, an overall concern for human comfort and
safety has led to a need for more extensive data on wind
characteristics in the atmoépheric boundary layer. Reasons
for renewed engineering.interest in the study of wind effects
include economic loss, and loss of life and limb caused
by wind devastation, problems that could_grow alarmingly
with urban concentration and population increases.

Engineers need to obtain more data on forces
on glass and ciadding in tall structures, as well as the.
deflections ofﬁthe structures themselves, caused by the
atmospheric wihd. Anbther céncern is human comfort in
pedestrian aréas surrounded by tall étructures, and in thé
upper reglons of these structures. Also wind-induced
oscillations of bridges and transm1s51on lines have to be
predicted. The need to control air pollution has
caused intereét in the dispersive properties of the
atmospheric béﬁndary layer. Wind effects on nuclear
power plant sﬁ?uctures and,lafge solar collectors must
be considered Qhen developing alternative energy

sources.



Theoretical methods used to predict these
flow processes would involve a combination of meteorology,
fluid mechanics, and structural mechanics, and at present
require drastic assumptions and simplifications. An
increasingly common and very effective method of obtaining
data on wind effects on full scale systems is to test small
scale models in a reasonable simulation of the lower portion
of the neutral atmospheric boundary layer. Under strong
wind conditions, the intense turbulent mixing in the wind
leads to an adiabatic lapse rate, so that a model boundary
layer with isotﬂérmal conditions is suitable for these
studies.

Varidﬁs methods are used to obtain a satisfactory
model of this neutral atmospheric boundary layer. One
technique is téuérow the boundary layer over a long fetch
of roughness elements upstream of the test model, as advocated
by Davenportl_éna Cermak.2 The dimensions of each roughness
element and the“foughness spacing geometry can be altered
to produce the-fequired velocity profile shape. This long
fetch of roughnéss elements is then representative of the
full scale rougﬂﬁess (trees, buildings, etc.) that the
atmospheric boundary layer grows over. The disadvantage
with this methdd is that it requires a large wind tunnel
with a working section about 80 ft long in order to produce

a boundary layer 2 to 4 feet thick.



When it is necessary to.produce a boundary layer
within a very much shorter distance, various techniques
are used to thicken the bounaary layer artificially and
shape it to the desired velocity profile. One method is
to use a set of mechanical devices, such as spires or
wedges located at the entrance to the working section of

the tunnel.3’4

These devices, usually about as tall as
the desired boundary layer thickness, vary in design and
shape. Others prefer to use jets with air injection
perpendicular to the flow,5 or upstream oriented wall
jets,6 or a cémbination of jets with grids.7

Campbell and Standen,8 in an exhaustive study
using.spires,Aéfids and bars of various dimensions and
combinations, found that trips. could be designed for
reasonable simﬁlation of most of the turbulent character-
istics of the;étmosphéric boundary layer. However, these
characteristics were not all simultaneously simulated by
one pérticular:device or set of devices. For example,
they found thét:a certain set of spires produced good
simulation of;£he'full scale Velocity profile and turbu-
lence intensiﬁ&, but that the simulation of the atmospheric
power spectrum!Was poor. . A combination of short spires
and a uniform ﬁesh grid prodﬁced good power spectra, |

but other characteristics were not properly simulated.

The general consensus of opinion appears to be that a



complete simulation of the atmospherig wind in all reépects
is difficult, and a compromise must be achieved whereby
it is decided beforehand what aspects of the natural wind
need be accurately represented, and a trip designed for
these purposes.

| If a thick turbulent boundary iayer is grown
over a long fetch of roughened floor, various methods have
been used to scale this model boundary layer with the
particular portion of the atmospheric boundary layer that
is being simulated. In most instances, the geometry of
the roughness éiements on the floor has been chosen by
trial and errof. The shape of the velocity profile which
must be producéa by these elements is known in broad terms,
however. Davenp:ort9 gives an indication of the values of
the exponent d, for a particular terrain, if a power law

of the form

' U , C ' .
TET = 3 )y ... (D)
is assumed.
Here U = 1local velocity
fUl = free stream velocity or gradient
) wind - |
;z = height above ground

"§ = boundary layer thickness.



For example, Davenport suggests a power law exponent = 0.16
for open grassland, a value of a=0.28 for forest and
suburban areas, and 0=0.40 for city centres.

The objective of this work is to compare the
characteristics of two boundéry layers, one produced by a
long fétch of roughness and the other by a set of spires.
Identical measurements made under similar conaitions
would allow for a better comparison than would measurements
made by different workers at separate facilities.

At the same time, more information on rough wall
boundary layérs is obtained to allow for a more_rational
choice;of the”shape and spacing of roughness elements.

We first consider here theory on rough wall boundary layer
approaéhes td équilibrium. The present experimental
arrangéments afe then described, followed by a discussion
of results obtained for both the long fetch of roughness
and the shortér fetch with spires, known as the 'naturally

grown' and 'aftificially grown' cases respectively.



CHAPTER 2

ROUGH WALL BOUNDARY LAYERS

Prandtl10 suggested that the fluid flow around
objects, or over a flat plate, could be divided into two
“parts: (1) the boundary layer, often defined as the
region in which the velocity of the fluid is less than
99 percent of the local maximum velocity of the flow (the
free stream velocity), (2) the region outside this boundary
layer, where there is usually no vorticity. The boundary
layer is therefore the region in which almost all of the
viscous losses occur. The velocity gradieﬁt is high,
and the shear stresses are important. Outside the boundary
layer, with little velocity variation, the resulting
shear stresses are negligible. When the boundary is a
flat plate, a laminar boundary layer is formed initially,
with transition to a turbulent boundary layer occurring
if the plate is long enough or if a small roughness element
or "trip" is placed on the pléte. The solution to the
mathematical equations describing the laminar boundary
layer is an infinite series, known as the Blasius solution.
If the velocity profiles for a laminar boundary layer in
zero pressure gradient are plotted in appropriate non-

dimensional form, only one curve, the Blasius profile,



is obtained, regardless of the Reynolds number of the
flow.

In turbulent flow; fhe time-averaged equations
cannot provide a solution fér‘the boundary layer velocity
profile, and various semi-empirical profiles are used.
One such velocity distribution has already been mentioned,
the power law, derived from Blasius' resistance formula
for smooth pipes, but also apblicable to boundary layers
in zero pressure gradient; If the non-dimensionalized
velocity profiles for the smooth wall turbulent boundary
layer are plotﬁéd, they do not collapse, as was the case
with the laminar boundary layer, but instead form a family
of profiles foi'varying Reynolds number. Cléuser}l extend-
ing this idea tb turbulent boundary layers on rough walls,
shows that turbﬁlent boundary layers form families of
profilés depenaént on both the Reynolds number and the
degree of roughhess on the wall.

Anothér semi-empirical profile is the so-called
"law of the wéll,“ derivable gy dimensional analysis. For
smooth walls,'fhe mean velocity is expected to be of the .

form

v oo 20
U:,t » Vv
C zU U
which implies that a plot of ( 5 ) vs. (ﬁ—) for various

o T
flows will yield a single curve. '



If, a small distance away from the wall, the

velocity gradient %g is independent of the wviscosity as

z L]

well, then (U
T

%g) is a constant and the law of the wall

can be written in the usual semi-logarithmic form:

z U

T
S5 +a

U o_ 1
UT K
- where K énd A are constants, the former being called.
'von Karman's constant'. Nikuradse12 and others have
verified that this law holds for both smooth and rough
walls, even for moderdte pressure gradients.

For fully rough walls,

UTk

(—3— > 70)
the viscosity is no longer important, and the law of

the wall relationship becomes

é% _f f (%)

(where k is a typica1 roughness height) provided that the
\region directly affected by individual roughness elements
‘(% < 2) and the region far from the wall (% > %) are
excluded. Again, if, away frbm the immediate wall region

we can take the velocity gradient %g to be determined by



z ., 30 is a constant] and the
UT 9z

semi-logarithmic relationship becomes

UT and z only (not k), then

u _ 1 Z
-[t = EQH(E) + B

1 -

It can be assumed that the viscosity is not
important for the outer, fully turbulent portion of the
boundary layer; if the velocity defect (UI4J) depends only
on the shear stress at the wall, the boundary layer thick-
ness and the distance z; then by dimensional analysis we

have

This is called the velocity defect law, which is satisfied
experimentally for zero pressure gradient for the outer
portion of the boundary layer, independent of wall rough-
ness. |

Clauser describes the turbulent boundary layer
on a smooth wall in terms of an outer layer and an inner.
viscous sublayer next to the wall. By analogy, the rough
wall boundary layer has an inner region which is dependent
on the individual roughness elements, their shape, spacing

and height. Outside this region, it appears that only
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the effective wall stress affects the flowA the mechanism
creating the shear stress (whether it be viscosity or
surface roughness) being irrélevant.

The structure of the rough wall boundary layer
therefore is as follows, and is shown in Figure I: (a) an
inner "roughness" sublayer directly related to the roughness
element geometry and shape, (b) a region extending from
the top of this inner sublayer up to a height of about
'one-third the boundary layer thickness in which the law
of the wall is applicable, (c) the outer région of the
.boundary layer,‘where the defect law is valid. Regions
(b) and (c) mé&loverlap,‘and the overlap region of the
defect law wouia then be logarithmic.

Regiohs (a) and (b) are together sometimes called
the constant étress layer. Although measurements in
smooth wall boahdary layers show that the shear stress is

13 Section 7.7),

roughly constant for z/6 < 0.1 (see Hinze
the shear stréés is not actually constant throughout

regions (a) ana (b). In rough wall boundary layers, the
inner region (a) may be large enough to obscure any regipn

of constant shear stress, as measurements by Antonia

and Luxton14 Suggest.
15

- Dvorak made an extensive review of existing

data obtained.ﬁsing square two-dimensional bar roughness
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elements and used the form proposed by Clauser16 to relate
bar height (k) and spacing (A) to the boundary layer
displacement thickness (§*) and effective wall shear

stress (TO) as follows:

%=%zn(§:-5k*)+za—c C e (2)
where
(;T—) - [ 9
1.  pUl
U0 = frée stream velocity--already defined
in Equatidn (1)
p = density of fluid
A = constant x 4.8
K = constant, usually taken to be 0.41
§* = displacement thickness, a measure of
boundary layer height
and C is a constant depending on A and k as follows:
C = 17.35 (.707 n & - 1) for § < 4.68
: | EY
C=-5.95 (.48 %n £ - 1)  for } > 4.68 .
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|
From Equation (3), the value of C is a maximum
when A/k = 4.68. Closer bar spacing merely fills the
tunnel, raising the effectivé floor heightfby producing

greater mutual sheltering between the roughness bars.

The Equations (2) and (3) are strictly valid

U k
only for values of —%— > 70, the "fully rough" condition,

which is satisfied in most atmospheric applications.
" They allow the friction velocity ratio UT/Ul to be obtained
for any height ratio §*/k and spacing A/k.

| However, few rough boundaries can be approximated
by the squareAtwo-dimensional bars used by Dvorak, and
Gartshorel7 géneralized the results to three-dimensional
roughness eleﬁénts of various shapes. This.was doﬂe by
- defining an éffective spacing between two-dimensional bars
which producég surface drag per unit‘area (or average shear

stress) equal to that of the three dimensional roughness

pattern. From this work
: C

Xe _ DB . Ap

*.7 T, A

DR F

where A, is the effective plan area associated with each

element, and‘AF the frontal area.

Thé_ratio Xe/k is the equivalent spacing of two-

dimensional pérs of height k, which will produce wall
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shear stress equal to that produced by the general rough-

ness of height k. C and CD are the drag coefficients

DB R

of a bar and of one roughness element respectively measured
under identical conditions.  For square bars and cube
shaped roughness with small upstream boundary layers

(compared to roughness height),
C =~ C > 1.2 (see references 18,19):

and it is assumed here that for roughness elements whose

frontal shape is nearly a square,

CD
B: ~
— -~ l -
CD
R
Therefore,
%—.; 2 2-13 . C )
P .
Clearly, for random roughness,C A_ and A_ would
have to be statistical averages. S0 now Ae/k from

Equation (4) above can replace A/k in Dvorak's relations
and allow a generalization of his bar roughness correlation
to any fullyirough geometry. These relations are valid

only for roughness provided by essentially isolated
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roughness elements on comparatively smooth boundaries.
Very close spacing between roughness elements would have
a mutual sheltering effect similar to that from extremely
closely spaced bar roughness, so that the festriction
Ae/k > 5 is placed on these relations.

In order to relate the velocity profile shape
o to the friction velocity three equations are needed to
solve for the unknowns UT, §* and a. Dvorak uses
Equation (2) above as the first equation, and the momentum

integral equation

/P ae (5)
v dz S

1

(where 8 is the momentum thickness related to 6* and o)
as the second‘equation. ‘The third equation which he used
is a standard_empirical corrélation known as Head's method.
Empirically, Head devises functions F, and G, such that

1 1
entrainment rate

d

ax 10,8 = 601

is related to the unusual shape factor

§ - &%

Hy = 5

as follows:
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1 d _
] ax [U; (8 = 8%)1 = Fl(Hl). . . . .(6)

where H, is related empirically to the uéual shape factor

1
H = §%/6 by

H = Gl (H) .

The functions F, and G, are specified by the numerical

1 1
description given in Appendix I.
The basis for these correlations is extenéive
work on smooth wall turbulent boundary layers, also valid
for rough wall cases.15

Fof Ul = constant (zero pressure gradient,

Equation (6) above becomes

Ix (§ - &%) = Fl (Hl) . e . . (7
. . _ 8§ -4 ' .
Since Hl is defined as Hl = 5 ., Equation (7) can be
written as
2 m) = F, (1) - (8)
ax | 1 1 1 . . e e .

Zero pressure gradient smooth wall boundary layers

closely conform to the condition of exact equilibrium over
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limited streamwise distances.20 - Equilibrium here means
that the structure of the boundary layer does not change
significantly in the streamwise direction, i.e., properties
- such as nondimensional spectra, turbulence intensities,
‘etc.,.remain.the same with changes in streamwise distance
Xx. Exact equilibrium, also known as self-preservation,21
is only possible for zero pressufe.gradient rough wall
boundary layers in rather extreme cases: either the rough-
ness elements are high compared to their spacing22 or else
the roughness height and spacing change with streamwise
distance x suéh that they remain a constant fraction of
the boundary iayer_thickness.23

Zerd'pressure gradient boundary 1a§ers develop-
ing over a céﬁstant roughness geometry with Ae/k > 5 conform
approximately to the condition of eqﬁilibrium after travel-
ling a fairlyhlong distance downstream of their origins.
Estimates of.this distance vary from 320 times the roughness

24 to 1000 times the roughness height?5 What this

height
means is tha£ boundary layer;characteristics such as H,
Hy and o are ﬁot changing significantly with change in
the streamwise distance x. In this case, the differen-

tial Equations (5) and (8) become arithmetic. For equili-

brium, Equation (8) becomes

1ax - T )
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or,

ae _ F1 M)
dx Hl
Since
4o o .
Ix = function (H)
“and %% is therefore a constant since H is a constant.
Now we define a new shape factor o = (E%l). This shape

factor is equal to the exponent of the power law (Equation(l))
if a'power law:is assuméd. If a power law is not a good
deséription of the velocity profile, then o is simply a
non-dimensional description of the boundary layer shape.

Now, since

(H - 1)
2

a6

dax

0.

function (a)

and by comparison with Equation (5) the result is:

T = function (a) . e .. . (9)
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U

Equation (9) shows that ﬁl is a constant for any one equi-
1 _

librium case (i.e., one shape of boundary layer), which

is strictly possible from Equations (2) and (3) only when
Ae/k and 6*/k remain constant, as already mentioned. Using
Equation (2), Equation (9) above can be written as

A

_ §* e
a = fn [ T R 1 . e . . . (10)

It must again be emphasized here that the shape

factor o as used here is simpiy defined by

| 0 = H;l
where
_ o*
H = 5 - . . . < {11)
Also, since
§* 8 a |
T "_.»E(—_1+oc) | e . . (12)

can be used to define a nominal boundary layer thickness §,
equal to the actual boundary layer thickness if a power
law profile exiéts, Equation (10) can be written as

8 Ae

oc="fn'[}—(-,—k—] ) . .. . (18)
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Equation (14) above is valid only for conditions at or -
near equilibrium.
The ratio Ulé*/UTG is related to the defect law,

as pointed out by Clauser}6 By definition,
{9 U
§* = f (1 - ﬁ—) dz . .« . .(15)

If the displacement thickness as given in Equation

(15) above is combined with the defect law, which is

= fn (z/6)

it is easily shown that:

U .l U. =-u
%’i- L - J 1~ a(z/6)

T

£f (z/8) d(z/S)

]
—
o =

constant.

The present equilibrium calculations from Head's method
give a value of this parameter (Ulé*/UTG) between 3.80
and 3.99, compared to Clauser's experimental value of

3.60 for boundary layers developing over constant roughness.
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Various methods have been used by other workers

to measure the friction velocity ratio UT/Ul' related to

the wall shear stress by

5
=
=N

and three of these methods are described here:

1.

Shear stress can be obtained directly if the
drag on a section of the floor (a drag plate)

is carefully measured. .

Shear stress can be inferred if a log law of

the form ' -

u _ 1 Z
ﬁ‘k‘zn_(i) | | . . . .(16)

is assumed. This technique necessitatés
assuming some figure for the von Karman constant,
usually taken to be 0.41, an assumption which
éppeafs to be at best a rough approximation.
Wooding et al.26;point out that this vélue of
0.4l:was obtained for classic cylindrical rough-
ness shapes. | Using a wide range of data |

gathered using roughness elements of many shapes
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and sizes, they deduce that the value of
the von Karman constant may lie between
0.25 and 0.41, depending on the type of
roughness. These values will be discussed
in the light of new experimental data in

Chapter.4.

3. Another method for measuring shear stress
that appears to have particular merit is the
slanted hot-wire anemometer technique used
by Patel,27 and described in Appendix II. Of
course, the slant wire cannot be used very
close to the floor because of the roughness
elements, but the constant stress region -
already discussed is expected, and should
suffice to give a clear indication of the
valpe of the wall shear stress To*
All three of these measurement techniques have
been used heréiand the results from all of them will be

discussed in Chapter 4.
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CHAPTER 3

EXPERIMENTAL ARRANGEMENTS

The U.B.C. wind tunnel used to gather experi-
mental data is an open circuit, blower type tunnel 8 ft
wide and initially 5 ft 2 in high with a test section 80 ft
long. The area contraction ratio (ratio of the area of
the entrance to the contraction to that of the entrance
to the working section) is 4:1. The test section roof can
be adjusted to maintain ambient room pressure throughout
the test section, implying zero pressure gradient along
the tunnel. Pressure taps located at 8 ft intervals
along the back wall of the tunnel were connected to a
multitube manoﬁeter for this purpose.

For the "naturally grown" boundary layer, the
floor of the waking section of the tunnel was covered
with uniformlyLspaced roughness element strips 1.5 in
high, 0.75 in Qide and 0.041 in thick, as shown in Figure
II. The strips were placed 6 in. apart from each other
in lines acrosé the tunnel. The liﬁes were also 6 in.
apart from each other, and a staggered pattern was used
as shown, so that no roughness element was directly behind

another rodghness element .in the row ahead of it. This
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yields a value of Ap/AF‘of 32 for Equation (4), and the
assumption that the drag coefficients are equal giVes a
value of Ae/k = 32 from Equation (4).

For experimental convenience, measurements with
different lengths of roughness fetch were made at a fixed
point 12 ft upstream from the open end of the wind tuhnel.
Adding or subtracting roughness sections upstream of the
ﬂfixed point of measurement then yielded the required
roughness fetch.

Antonia and Luxton14 also found that the dis-
turbance introduced by the first roughness element had
a significant'effect on the flow downstream. In order
to reduce the importance of this factor, and also to
reduce the iméértance of any leﬁgth of smooth floor up-
stream of theiﬁirst roughness elements; a wedge as high
as the roughnéss elements (1 1/2 in) was placed across
the tunnel. -fhis wedge, of 8 in chord and as wide as
the tunnel, then created a two-dimensional ramp and then
a backward faéing step. This wedge is referred to in
later discuséion as the 'trip"following.common use of
the term.

Meaﬁ velocity and rms measurements were made
using a lineafized hot wire in conjunction with a DISA
type 55D01 aﬁémometer, a DISA type 55D10 linearizer, and

a DISA type 55D25 auxilliary unit. A Krohn-Hite Model
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335 low pass filter*was used to reduce electronic noise.

Drag measurements were made using;a drag plate,
a floating isolated section of rough floor, about 7' x3',
fastened to an accurate wind tunnel balance. The gap
around the drag plate was carefully made as small as
possible, but not so small as to affect the readings by
causing contact at high wind speeds. |

The method obewdreyzgwas followed for the
spire design, with modifications as made by Campbell and
Standen.8 The spires were designed to produce a boundary
layer at about'éight spire heights downstream that would
match the measpred measured shape factor o and measured
boundary 1ayer7£hickness § of the “naturally'grown"
boundary layer.which had been:observed 61.6 ft downstream
of the trip. |

It Qés decided to design a simple array of flat
wooden spires ﬁsing 1/4 in plywood, the advantage with
this construction being that the spires could be made
slightly overgized, and then small changes to their profile
made until thé;required specifications were met downstream.
Campbell and Sfanden found that the best velocity profile
was generated¥by modified half-width spires--that is, with
spire width equal to half the boundary layer thickness.
Before modifiéétion of these spires, Cowdrey's design was

followed by Campbell and Standen with the result that the

* h .
Filter setting equals 20 kHz.



25

spires were very sharply spiked at the top%’ As a result,
a boundary layer thickness five-sixths thefheight of the
spires was obtained by these workers. Hence, one of the
modifications made by Campbell and Standen was to con-
struct the modified half-width spires tallér than the
required boundary layer thickness.

For the purposes of this program, the design of
Cowdrey, with the modifications made by Campbell and
Standen, was followed.v Also a further modification was
added here, because the present plywood spires could not
be very sharpl§ spiked. The spires were designed to
produce the dééired shape factor o and boundary layer
thickness 6, aﬁd were then smoothly rounded off at a height
.equal to about 0.85 8, where the spire width was very small.
The distinctioﬂlbetween.the actual spire height (about
0.85 8) and the design spire height (about 1.10 §) must be
pointed out, and is illustrated in Figure III. Clearly,
the boundary léyer thickness downstream of the present
spires would be larger than the actual spire height, in
contrast to thé-results of Campbell and Standen.

A shdit fetch of the saﬁe roughness as was used
in the case of.£he naturally grown boundary layer was
placed downstream of the spires. Drag measurements were
made as before, using the drag plate.. Again, for experi-

mental convenieﬁce, data was taken at a fixed point, and



measurements at different distances behind the spires were
made by moving the spires up . or down the tunnel, and
adding or subtracting roughnéss sections behind them.

Thus, in the cases of both naturally grown and
artificially grown boundary layers the measurements do not
relate precisely to a single boundary layer, since up-
stream of each fetch of roughness of streamwise length x
there is a variable length of smooth floor equal to the
tunnel length minus x.

In both cases, auto-correlations of the longi-
tudinal turbdience velocity at wvarious heights above the
floor were ob£ained at the distances downstream where the
velocity profiles were matched, using a PAR Model 101
Correlation fﬁnction Computer in conjunction with the DISA

instruments already mentioned. Fourier analysis of these
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functions were made using a PAR Model 102 Fourier Analyser.

All of these correlations and Fourier analyses were found
to be repeatable.

The Reynolds number at which these tests were

s 4 Ulk
made was of the order of 3x107, where Re = - -



CHAPTER 4

RESULTS

The Naturally Grown Boundary Layer

Drag measurements were made using the drag plate

for a wide range of wind velocities, at various distances
downstream of the trip. Drag readings were found to be
sensitive to tunnel pressure gradient, which was set as
accurately as possible to zero by adjusting the tunnel
roof. Drag readings were found to be accurately propor-
tional to the square of the free stream velocity, as
expected, iﬁdicating that no Reynolds number effects
were present. - This is illustrated in Figure IV. For
clarity,.data points are shown on only one line. All
other lines were as well describea by the experimenfal
points, and éli values were found to be repeatable.v
Values of 6* and 6 were obtained by integration

from the measured mean velocity profiles, using the

relations
- S U ,
§* = f (1 - ﬁ—) dz .+« «(15)
c 0 1
and :
. 8 - u
e . = f (l - _) dZ . - . - . (17)
0 upn oy
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~a and § were then deduced from 5*.and 8 as déscribed_pre—
viousiy in Equations (li)_and (12). The veiocity
aistributions were not particularly well described by the
relation in Equation (1), but the values ofjd estimated
directly from the velocity profiles were clése to the values
obtained by the mdre precise integral methoé. An example
of the power law profile plotted in the form log(U/Ul) vS.
log(z/8), so that o is deduced directly from the slope
of the plot, is shown in Figure V.

Mea;ured values of &* and UT/Ul are plotted in
Figure VI, aibng with Dvorak'svcorrelation of Equation (2).
The meésured Qélues in Figure VI agree with the trend of
the theory, aﬁa indicate an effective value_éf Ae/k of
_ about 30, whidh is close to the geometrical value of 32
obtained by Eéuation (4) using the assumption that the
drag coefficients are equal. Thus, there is some verifi-
catioﬁ for Dvérak's shear stress correlation for two-
dimensional bérs and its extension to three-dimensional
roughness elé&ents. |

IﬁAFigure VII, where the shape factor a is
plotted agaiﬁét-é,'the calculated curves assume equilibrium
conditions, i.e., that the shape factor is not changing
significantlg,in the streamwise direction. = As can . be
seen, the méésured values approach the expected equilibrium,

and are well‘represenﬁed by the equiiibriumicurve of
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Ae = .30 for fhe two largest values of x/k, i.e., x/k=396.8
and x/k = 492.8,

This trend towardsvequilibrium at large values
of x/k is also repreéented by the ¢hange in the integral
defect law parameter Ulé*/UTG, given in Table II. It is
seen that values of this quantity decrease from a value of
4.26 at the smallest value of x/k to a value of 3.96 at
x/k = 492.8. Assuming exact equilibrium, this value is
3.99 for Ae/k = 30 and o = 0.26.

From these figures it can.be concluded that Dvorak's
correlation of*shear stress with integral boundary layer
properﬁies and roughness geometry is a useful correlation
of rough wall bdundary layer characteristics. From
Figure VII andi£he defect law parameter Ul6*/UT6 we con-
clude that thié”rough wall boundary layer approaches
equilibrium at“a value of x/k.% 350. This is in agreement
with the valﬁe-Qf x/k = 320 obtained by Antonia and Luxton,24
and suggests thét equilibrium can be'approached quite closely
for x/k less than 1000, the value suggested by Counihan,25
from an extrapolation of non—equilibrium data.

In adéition to the drag plate method, shear
stress on the floor can be inferred from the log law,

as previously discussed‘in Chapter 2, with some uncertainty,

as to what value must be assumed for the von Karman constant.
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If the classical value of K = 0.41 is assumed in the

equation

_ 1
5 = ® M . . . . (16)

~IN

values of UT/Ul were found from the velocity profiles which
were much larger than those obtained directly by the drag
plate method. Since this suggested that the value of K
was too large, the values of UT/Ul obtained by the drag
plate method fpr the various distances downstream from the
trip were substituted in Equation (16). This, together
with plots of the mean velocity érofile, yie}ded values
between-0.33 and 0.38 for von Karman's constant, as shown

in Table II.

Artificially Grown Boundary Layer

The naturally grown boundary layer apparently
reaches equilibrium in these tests for x/k < 400. We now
wish to compafé this equilibrium boundary layer with one
grown artificially, that is, using spires, and developed
in a shorter léngth of wind tunnel. For this purpose
spires were dééigned as described in Chapter 3 to produce
a boundary layer at abbut eight design spire heights (h)

downstream whose gross shape (a) and thickness (§) were
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the same as the corresponding values measured in the
equilibrium naturally grown case at x/k * 400. Comparisons
of wall stress and turbulent characteristics; i.e.,
intensities, length scales, spectra etc., could then be
made between the two cases.

As before, drag measurements were made using the
drag plate. Roof adjustments were carefully made to
maintain ambient roomvpressure throughout the length of
the tunnel. Once again, drag readings were found to be
repéatable, and proportional to the square of the free
stream velocitf, indiéating the absence of Reynolds
number effects;: |

Velocity profiles were taken at vafious dis-
tances behind fhe spires, and as in the case of the
naturally growﬁ:boundary'layer, values of §* and 6 were
obtained by infégration using Equations (15) and (17).
Values of o and:G were then deduced from §* and 6 using
Equations (ll):and (12), as before, and are plotted in
Figure VIII. |

The ﬁeasured values in Figure VIII show that
beyond a distaﬁce of eight design spire heights, the
values of &8*, 0.and o remain roughly constant. With
regard to the étreamwise gradients in the flow, this
distance appeafé preferable to the six spire heights

commonly used,. at least as far as the present spire



design is concerned. It is not clear from Figure VIII

whether equilibrium has been reached at the point where a

close match was attempted with the naturally grown
equilibrium boundary layer. The measured value of the
defect law parameter at this point.is equal to 4.12,
compared with the calculated equilibrium value of 3.99,
and the value of 3.96 for the naturally grown boundary
layer at x/k = 400.

Measured values of 8*, a, § and UT/Ul for the
artificially grown boundary layer are also plotted in
Figures VI anaAVII for x * 8 design spire heights, the
point where a:ﬁatch with the equilibrium naturally grown
boundary layer was attempted. In Figure VI; a value of
ke/k greater than 30, in fact, closer to 40 is suggested.
In Figure'VII; where the plotted curves were calculated
using the assﬁmption of equilibrium, the value of Xe/k
suggested is Qery close to 30. However, this is not
significant,.since the spires were designed to produce
these very véiues of o and S§. Equilibrium cannot be
assessed by fﬁe values in Figute VII alone since the
shear stress relation plotted in Figure VI must also be
valid for the.equilibrium;plots of Figure VII to be

valid.

32
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Comparison Between the Two Simulations and With Full
Scale Conditions

The shear stress measurements in the air using
the slant wire technique are shown in Figure IV for each
case at the streamwise positions where o and § were
matched. The values of T/pUi in each case approach the
value on the floor as calculated using the drag plate
method. Neither of the two simulations exhibit a region
of constant shear stress extending upwards from the

13 the shear stress is

floor. However, as shown by Hinze
constant only;in the region x/§ < 0.1, and no measurements
were taken below x/8 = 0.1 here.

The:élant wire was also used to meésure the
shear stress aﬁ distances beyond eight design spire
heights behind.the spires, where a*,'e and o remain
roughly constaht. It was found that the single point
shown on Figufe VI is representative of the artificiélly
grown boundary layer more than eight design spire heights
downstream frém the spires.

Auﬁb—correlations Qf'the longitudinal turbulence
velocity froﬁvthe two simulations were taken at heights
(z) of 2k, 5;3k and 10k. Fourier analysis of these
functions were also made. Power spectral densities of

the longitudinal turbulence from the two simulations at

each height plotted in the form



n Suu(n)
—_—_—— VS. n * Tu
ul

are shown in Figures X to XII, along with the well known

von Karman spectrum, of the form

n Suu(n) - 4n + Tu
u2 [1+70.7 (n-Tu)?1°/®
where
n = frequency in Hz.
Suu(n) = power spectrum ftz/sec
. X
Tu = integral time scale = —%2
U
where
XLu{» = integral length scale.

The integral time scale was found in the present measure-

ments by integfating autocoffelations in the usual way.
Also shown are represeniative results of full

scale measurements taken from references 30 and 31. The

power spectrum of horizontal wind speed at a height of

about 330 ft éhown in Figure X was taken in 1955-56 at

the 375 ft meteorological tower of the Brookhaven National

Laboratory by piecing together various portions of the
spectrum. The data analyzed ranged from 5-day average

speeds covering almost a year to 2 sec average speeds

34
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covéring an hour. The value of the power law exponent o
for this set of measurements is not given in reference 30,
but Templin32 in a later work, deduces that a value of

o = 0.28 is appropriate for this case.

The full scale data shown in Figure XI for
Montreal was taken on a tower in the Botanical Gardens, on
the upper level of Mount Royal, at a height of about
250 ft. In this case, a value of a = 0.28 is quoted by
Davenport.31 It is seen that the peak of this Montreal
data is very well defined and coincides closely with the
peaks of both the theoretical and experimental curves
althoﬁgh the écatter does not enable us to define a slope
clearly. |

Davénport9 gives a typical atmospheric boundary
layer thickneés of 1300 £t for o = 0.28, allowing us to
estimate z/6-§ 1/4 for Brookhaven, and z/§ = 1/5 for
Montreal reséectively.

Boéﬁ naturally grown and artificially grown
boundary layers are close to the theoretical curve, with
both curves éghibiting similar'slopes to that of the von
Karman spectrﬁm over a wide range of reduced frequency
n * Tu. Thé;disﬁribution of energy is therefore roughly
correct for both measured cases.

Thé*biggest difference found between the two

simulations is shown in Figure XIII, the plot of longi-
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tudinal turbulence intensity. From a maximum value close
to the floor, the rms values for the naturally grown
boundary layer decrease sharply with an increase in
distance above the floor z, similar to the full scale
boundary layer. For the artificially grown boundary
layer, the values of rms do not change much up to a value
of z equal to about 1/2 § , and this is not representative
of full scale conditions.

One interesting point to notice in connection
with the intensities measured in the artificially grown
boundary layer;.is that these wvalues increase as x
increases for fiked.z over a fairly large range of z,
roughly z > 1/2 S. This is possibly due to the transport
of turbulent energy by the large scale motions from the
wall region, where turbulence energy is high, and being
produced, to thé outer region, where it is lower, and
where productioh is also low. The activity of these
large scales apbéars to be too great in the artificially
grown case, insofar as the turbﬁlence level in the outer
part of this bdundary layer is significantly higher than
the naturally g;own case.

The fuil scale atmospheric turbulence intensity

~
=~

was obtained ffom reference 18, using a value of zZ, 30 cm,

where z is the surface roughness length, as suggested by

Davenport9 for d x 0.28.
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CHAPTER 5

CONCLUDING DISCUSSION

Major conclusions with brief discussion of each

are listed below:

1.

Dvorak's correlation, and its extension to include
three—dimensional roughness elements appears to be
a useful method for predicting a roughness geometry
which will produce a desired wall shear stress or
éhape factor, once equilibrium has been reached.
Many problems remain to be solved-~for example, the
actual boundary'layer development is not predicted
here. However, this is a step towards more rational
wind tunnel simulation of the atmospheric boundary
layer [for individual cases, as opposed to the
general 'Cify centre' boundafy layer (a = 0.40) or
'urban féﬁch'(a - 0.28). currently in common use'

(see also.reference 19)171.

The present‘naturally grown boundary layer is close
to equilibfium after passing over uniform roughness
a distanceidownstfeam.equal to about 350 times the

roughness-height. The agreement with the value of



about 320 obtained by Antonia and Luxton raises the

interesting point--Does the value of x/k needed to

reachequilibrium depend significantly on A/k or on &/k

at eéuilibrium, or does it depend on the dimensions
of the trip, or has it a relatively universal value? .
More work needs to be done in this area, as well

as in predicting the actual boundary layer thickness
which will be obtained over any given streamwise
length of roughness fetch. Non equilibrium calcula-
tions must be used here, and iﬁ remains to be seen

whether Dvérak's correlation and Head's method are

‘sufficiently accurate to predict boundary layer

growth far from equilibrium conditions.

This boundéry layer quickly generated by artificial
means proVéd to be a fair;approximation to that
grown ovefla long fetch of roughness. Whenever
possible it is advisable to use that produced by
the long fetch, however, and in any case to allow
as long a-.fetch as possiblé downstream of the
spires fof the boundary layer to reaéh streamwise

stability;-



The boundary layer produced here by spires showed

‘little change in gross characteristics ¢*, 6 and

§ after travelling about eight design spire
heights downstream of the spires. A distance of
six or seven such heights has been advised by

other workers in the past.

This set of spires did not accurately represent
the longitudinal turbulence intensity of the full
scale atmospheric wind. The author is in agree-
ment with éampbell and Standen in that the three
main turbﬁient characteristics of the boundary

layer, i.é;, the velocity profile (shape and

thickness)} the power spectrum, and the turbulence

intensity} cannot all be acceptably simulated by

the same mechanical device, if in addition a reason-

able degree of streamwise stability and moderate
simplicity in the design and construction of the

spires is required.
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Head's empirical functions can be numerically

APPENDIX 1

defined15 as follows:

| F(Hl)

where

G(H)

G(H)

where

I

exp (

(8§ -

for

for

§*/0

~3.512 - 0.617 %n (8, - 3) )
5% /6
+ exp (.4667 -2.722 Ln(H - .6798)

H < 1.6

+ exp (.4383-3.064 An(H- .6798)

H>1.6
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APPENDIX 2

The slanted hot wire anemometer technique for
measuring shear stress used by Patel follows the work of
Champagne29 and others. Basically, the technique uses
two readings of the hot wire rms voltage (Ez). The slant
wire is set at an angle +y into the mean wind directién
and the first set of rms readings (éi), taken. Now the
slant wire is turned 180° in the plane defined by the
wire and mean wind velocity, to an angle -y, and the
second set of readings taken.

The shear stress is given as

-2 22
) ]
2" 2
E E 2 2
. N 1 2 1 + kj Cot”
— 2 2
pUi 4 (1 - kl)Cot P

where e, E are the rms and mean voltage readings taken
by the slant wire at each orientation respectively.

Usually, ¢ = 45° and kl = 0.2, so that the

equation above reduces to.
' 2
~fU_\2 .
(ﬁi) = 0.27 -2
1 .

3
E)

(0]
M1

=
= N N

= N



TABLE I

Dimensions of Modified Half-Width Spires

Height (in)

Spire Width (in)

20.0

24.0
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TABLE II
Variation of the Defect Law Integral Parameter and von
Karman's Constant with Distance Downstream for

the Naturally Grown Boundary Layer

i K
140.8 : 4.26 0.33
268.8 ’ 4.24 - 0.35
332.8 ': 4.13 0.38
396.8 ‘ 3.99 | 0.38
492.8 ‘? 3.96 0.34
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Figure I Structure of the rough wall boundary layer
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Figure 11 Roughhué element spacing and dimensions

49



50

(a)

30 in
(b)

(c)

20 in

10 in

— — — actual spires-

design of spires

(a) design spire height (32 in)
(b) boundary layer thickness (29 in)
(c) actual spire height (24 in)

Figure III Spire dimensions
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Figure IV Drag vs. pui; naturally grown boundary layer
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Figure V - Sample log-log velocity profiles
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Figure IX -Shear stress as measured using a slant wire
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