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ABSTRACT 

. A s t u d y was made o f the petrology of a v a r i e t y of underground i c e 

types i n permafrost on t h s Tuktoyaktuk P e n i n s u l a and P e l l y I s l a n d , 

Mackenzie D e l t a , N.W.T. Ice bodies of a considerable range of ages occur, 

i n c l u d i n g s o m a deformed i n tha Wisconsin g l a c i a t i o n ; a l s o permafrost and 

i c e i s growing ab i n i t i o beneath r e c e n t l y drained lake bottoms. Tha 

spectrum of i c e body s i z e i s a l s o wide, extending from p o r e - s i z e d p a r t i ­

c l e s to beds 25 m t h i c k . 

The major o b j e c t i v e of the study was an understanding of the growth 

and deformation of such i c e bodies from a p e t r o l o g i c viewpoint. Thus 

s e v e r a l bodies of known, recent, age -were analyzed i n order to enumerate 

features t y p i c a l o f g r o w t h . T h i s was p o s s i b l e f o r i c i n g mounds, t e n s i o n 

cracks a n d a c t i v e l a y e r i c e which grew i n w i n t e r 1973-74. Growth c o n d i ­

t i o n s were i n f e r r e d i n terms of water supply, f r e e z i n g d i r e c t i o n s and 

r a t e s , s o l u t e r e j e c t i o n (bubble formation) and c r y s t a l s i z e , shape, 

l a t t i c e and dimensional o r i e n t a t i o n . 

On t h a basis o f t h i s knowledge of growth.features, o l d e r and l a r g e r 

i c e bodies w e r e s t u d i e d , a n d p o s t - s o l i d i f i c a t i o n c h a r a c t e r i s t i c s ware 

analyzed. Soma near-surface i c e g a v e evidence of thermomigration of 

bubbles, b u t t h e m a j o r changes i n f a b r i c w a r e due to th e r m a l l y and mech­

a n i c a l l y i n d u c e d s t r e s s e s . I n t h e case of w e d g e i c e , p r o g r e s s i v e changes 

i n c r y s t a l s i z e , s h a p e , l a t t i c e a n d dimensional o r i e n t a t i o n w a r e recognized 

from t h a c e n t r e t o t h e boundary o f t h e w e d g e , due to r e c r y s t a l l i z a t i o n 

a n d grain' growth a s s o c i a t e d w i t h w e d g e development. 



Segregated i c e was s t u d i e d ia pingos and an i n v o l u t e d h i l l . A 

pingo core w i t h s t e e p l y - d i p p i n g beds showed l i t t l e evidence of flow w h i l e 

broader pingo with a greater pore ice content had undergone some f l o w i n 

the segregated i c e l a y e r s . A range of f a b r i c s was found i n the i n v o l u t e d 

h i l l , o p t i c a x i s o r i e n t a t i o n s becoming i n c r e a s i n g l y concentrated normal 

to compositional l a y e r i n g while dimensional o r i e n t a t i o n s tended towards 

p a r a l l e l i s m w i t h the l a y e r i n g i n a n t i c l i n e s i n the i c e . The i n f l u e n c e of 

bubbles on deformation i s pointed out i n that l a r g e r c r y s t a l s occur i n 

c l e a r i c e and thus have greater i n t r a c r y s t a l l i n e s l i p than i n bubbly i c e . 

Where a wedge penetrated such a f o l d , the f a b r i c changed along the f o l d 

limb i n a manner symmetrically r e l a t e d to the wedge. 

A d d i t i o n a l l y , s e v e r a l near-surface i c e s ware s t u d i e d and showed 

evidence of m u l t i p l e growth pe r i o d s , and m u l t i p l e f r e e z i n g d i r e c t i o n s , 

i n d i c a t i n g that the i c e grew i n enclosed water i n f r o z e n m a t e r i a l . Thus 

the complexity of f r e e z i n g and melting h i s t o r i e s may be recognized p e t r o -

g r a p h i c a l l y w h i le i t i s not r e a d i l y apparent i n the f i e l d . 
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Chapter 1 
1 

INTRODUCTION 

Permafrost i s a temperature condition of s o i l and rock materials where 

these materials have been maintained below 0*C for a minimum of two years. 

Two broad zones of permafrost are recognized, (a) continuous, (b) d i s c o n t i n ­

uous, (a) In the continuous zone permafrost i s present everywhere beneath . 

the surface, except below large water bodies. A temperature of -5°C e x i s t s at 

the southern boundary, at the depth of zero annual amplitude (about 15 m) and 

permafrost may reach 1000 m i n thickness, under B a f f i n Island f o r example, 

(b) In the discontinuous zone permafrost may be l o c a l l y absent; where present 

i t i s thinner than i n the continuous zone, and v a r i a b l e i n thickness. 

From the temperature conditions i t i s evident that water i n permafrost 

may be i n the s o l i d form, but t h i s i s not n e c e s s a r i l y the case as s u b s t a n t i a l 

amounts of l i q u i d water may be adsorbed on clays (Williams 1967), and a l s o 

s a l i n e permafrost has been reported. 

Where ground i c e occurs i t may be i n one of a wide range of forms; 

coatings on sediment p a r t i c l e s , pore cement, i n d i v i d u a l grains, veins, i n f i l s 

i n cracks, or massive beds. In the continuous permafrost zone a l l types may 

be a c t i v e l y growing, whereas i n the discontinuous zone i c e bodies are gen­

e r a l l y smaller and i n a c t i v e . In p a r t i c u l a r , i c e wedges are i n a c t i v e i n the 

discontinuous zone (Brown and Pewe 1973). Ice may grow and melt annually i n 

the seasonally freezing and thawing layer, or a c t i v e l a y e r , above permafrost. 

Thus some forms are tr a n s i e n t . In the thick continuous permafrost zone, 

permafrost aggradation and associated ground i c e growth i s being monitored 

(Mackay 1973a) beneath recently drained lake bottoms adjacent to very old 
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permafrost and contained i c e . Some of these o l d bodies have been deformed 

b y Wisconsin i c e sheets .(Mackay, Rampton and F y l e s 1972). Thus i c e bodies 

i n permafrost are of widely ranging ages and h i s t o r i e s . 

The permafrost l i t e r a t u r e has abundant references to s u r f i c i a l forms 

u n d e r l a i n by i c e , f o r example a range of ice-cored mounds has been recognized 

(French 1971). However, there has been l e s s advance i n understanding mech­

anisms of growth and deformation of ground i c e . Some aspects of the p e t r o l o g y 

of i c e wedges (Black 1953; Corte 1962a) and beds (Corte 1962a; Mackay and 

Stager 1966a) i n c l u d i n g i c e i n submarine permafrost (Mackay 1972a) have been 

s t u d i e d , but no comprehensive theory of growth and subsequent h i s t o r y of 

such i c e bodies from a p e t r o l o g i c viewpoint i s at hand. 

Valuable c o n t r i b u t i o n s to our knowledge of a range of ground i c e types 

have come from papers by Mackay (1966, 1971, 1973a). Heat conduction theory 

has been a p p l i e d to the f r e e z i n g of massive i c e bodies, and the r e s u l t s 

t e s t e d by d e t a i l e d f i e l d measurement of pingo growth (Mackay 1973a). The 

c r a c k i n g patterns of i c e wedges have been stu d i e d at s e v e r a l s i t e s over a 

p e r i o d of years (Mackay 1974a). A l s o a d i s c u s s i o n has. been presented of the 

development of r e t i c u l a t e i c e veins i n f i n e - g r a i n e d m a t e r i a l s (Mackay 1974b, 

1975c). 

The above work has been based l a r g e l y on observations of exposed i c e . 

bodies and i c e grown under known c o n d i t i o n s . Such exposures and monitoring 

are rare and c r i t e r i a f o r r e c o g n i z i n g i c e type and growth and deformation . 

h i s t o r y from l i m i t e d samples are needed. 

In the past 13 years there have been two i n t e r n a t i o n a l conferences on 

permafrost, which included papers on ground i c e . The F i r s t I n t e r n a t i o n a l 
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C o n f e r e n c e on P e r m a f r o s t was h e l d i n 1963 and t h e p r o c e e d i n g s were p u b l i s h e d 

i n 1966, w h i c h c o n t a i n e d l i t t l e r e f e r e n c e t o the. p e t r o l o g y o f ground i c e 

a l t h o u g h i t was mentioned as an a i d i n i c e c l a s s i f i c a t i o n . The m o d e r a t o r ' s 

r e p o r t o f t h a t c o n f e r e n c e i n c l u d e d the f o l l o w i n g s t a t e m e n t s . c o n c e r n i n g 

ground i c e (p. 550): 

S h u m s k i i arid V t i u r i n p r e s e n t a c l a s s i f i c a t i o n based on g e n e t i c 
p r i n c i p l e s . U n f o r t u n a t e l y t h e o r i g i n s o f many ground i c e masses 
ar e n o t y e t w e l l enough known t o p l a c e them i n such a . c l a s s i f i c a ­
t i o n . T h e r e i s an immediate need f o r more d e t a i l e d knowledge o f 
th e p h y s i c a l p r o p e r t i e s and s t r u c t u r a l p e c u l i a r i t i e s o f t h e v a r i o u s 
t y p e s o f m a s s i v e ground i c e . . . A t p r e s e n t two t y p e s o f m a s s i v e 
ground i c e can be d i s t i n g u i s h e d : (1) P i n g o i c e - c h a r a c t e r i z e d 
by t r a n s l u c e n t , l a r g e - s i z e , s i m p l e shaped c r y s t a l s and by t h e 
o c c a s i o n a l s c a r c i t y or more o f t e n t h e c o m p l e t e absence o f i n t e r n a l 
s t r u c t u r e s . (2) Ice-wedge i c e - c o n s i s t i n g o f s m a l l s i z e c r y s t a l s 
and showing a d i s t i n c t v e r t i c a l t o i n c l i n e d f o l i a t i o n . A c o n s i d ­
e r a b l e amount o f m i n e r a l and o r g a n i c m a t e r i a l i s a l i g n e d w i t h t h e 
f o l i a t i o n . 

So f a r a l l o t h e r v a r i e t i e s o f m a s s i v e ground i c e must be lumped 
t o g e t h e r w i t h o n l y the c e r t a i n t y t h a t t h e r e a r e more t y p e s t o be 
d i s t i n g u i s h e d when more c o m p l e t e d e s c r i p t i o n s and q u a n t i t a t i v e 
d a t a a r e a v a i l a b l e . The p o s s i b l e T a b e r i c e i s i n t h i s group. 
The t h i c k t a b u l a r s h e e t s o f ground i c e c h a r a c t e r i z e d by h o r i z o n t a l 
l a y e r i n g w i t h f r e q u e n t d i r t y i c e l a y e r s r e p o r t e d f r o m t h e M a c k e n z i e 
D e l t a , n o r t h e a s t G r e e n l a n d , and v a r i o u s p l a c e s i n S i b e r i a may be 
a n o t h e r d i s t i n c t t y p e . 

. . , I n p r e s e n t i n g s u g g e s t i o n s f o r f u t u r e r e s e a r c h on m a s s i v e ground i c e , i t 

was s t a t e d t h a t ( p . 5 5 1 ) : 

...Perhaps the g r e a t e s t p r e s e n t need i n t h e s t u d y of m a s s i v e ground 
i c e i s f o r q u a n t i t a t i v e i n f o r m a t i o n on the i c e b o d i e s and t h e i c e . 
i t s e l f . . . I n f o r m a t i o n s h o u l d a l s o be c o l l e c t e d on b u b b l e s i z e , 
shape, and d i s t r i b u t i o n . . . A f u r t h e r c o n c e n t r a t e d a p p l i c a t i o n , of. 
p e t r o f a b r i c s t o a l l t y p e s o f m a s s i v e ground i c e i s needed.. 

The above s t a t e m e n t s were made i n 1963, but by t h e time t h e Second 

I n t e r n a t i o n a l C o n f e r e n c e on P e r m a f r o s t t o o k p l a c e i n Y a k u t s k i n 19 73, l i t t l e 

s u ch work had been c a r r i e d o u t . I n a r e v i e w paper on t h e o r i g i n , c o m p o s i t i o n 
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and s t r u c t u r e of p e r e n n i a l frozen ground and ground i c e , Mackay and. B l a c k 

(1973) r e f e r r e d to the i n c l u s i o n c h a r a c t e r i s t i c s of i c e s , but the only mention 

of c-axis d i s t r i b u t i o n s was based on the e a r l y work of Black (1954). Thus 

i t appeared that no new studies on the petrology of ground i c e had been 

c a r r i e d out i n North America i n the years 1963-1973. . Again the recommenda­

t i o n was made (Mackay and Black 1973, p. 190) tha t : 

A d e s c r i p t i v e c l a s s i f i c a t i o n and u n i f i e d terminology of a l l ground 
i c e types and of r e l a t e d morphologic forms should be adopted 
before the T h i r d I n t e r n a t i o n a l Permafrost. Conference meets. 

. This summarized the s t a t e of ground i c e p e t r o l o g y at that time. I n 

1974, the Ad Hoc Study Group on Permafrost of the Committee on P o l a r Research, 

NRC-NAS, produced a survey of " P r i o r i t i e s f o r B a s i c Research on Permafrost." 

This included the f o l l o w i n g statement: 

S p e c i f i c s tudies of the. p e t r o l o g y , geochemistry, and p h y s i c a l 
c h a r a c t e r i s t i c s of ground i c e are r a r e and g r o s s l y i n s u f f i c i e n t 
to provide the understanding necessary f o r d e t e c t i n g , d e l i m i t i n g , 
and i d e n t i f y i n g ground i c e by i n d i r e c t means such as a i r b o r n e 
and s a t e l l i t e sensors and geophysical techniques. In f a c t , ground 
i c e as i t . appears i n cores has not been s u f f i c i e n t l y s t u d i e d to 
permit i d e n t i f i c a t i o n as to o r i g i n or to compare i t s chemistry, 
except r a r e l y , w i t h that of a d j o i n i n g waters (pp. 31-32). 

x^as pointed out that c r y s t a l c h a r a c t e r i s t i c s are important . 

r h e o l o g i c a l p r o p e r t i e s of i c e bodies and permafrost. From a 

point of view it.was s t a t e d that f o r ground i c e : 

No g e n e r a l l y u n i f i e d terminology e x i s t s , s i n c e each d i s c i p l i n e 
.and country uses i t s own w i t h only c e r t a i n words common to many. 
A standardized terminology should be developed (p. 31).. 

In terms of c l a s s i f i c a t i o n s of ground i c e , the committee, concluded t h a t : 

' . A v a r i e t y of ground-ice c l a s s i f i c a t i o n s e x i s t ( s ) f o r s p e c i f i c 
'• purposes,' but there i s n e i t h e r a g e n e r a l l y accepted d e s c r i p t i v e 

I n a d d i t i o n i t 

i n determining 

t e r m i n o l o g i c a l 
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morphometric c l a s s i f i c a t i o n , nor a genetic c l a s s i f i c a t i o n . These 
should be developed and accompanied by a standardized system of 
symbols for f i e l d mapping and laboratory studies. Such a task 
can best be implemented by a cooperative i n t e r n a t i o n a l e f f o r t 
(p. 31). 

A. b r i e f review of c l a s s i f i c a t i o n s i s given i n Chapter 2 of this t h e s i s , 

the point being made here i s that the need for studies of the structure and 

petrology of ground i c e has been recognized, but very few papers have been 

produced i n North America. 

The major objective of this study i s art understanding of the growth 

and deformational c h a r a c t e r i s t i c s of ice bodies i n permafrost. In terms of 

ice growth, p e t r o l o g i c and pe t r o f a b r i c techniques are employed to determine. . 

the mode of water supply to the freezing front, the growth d i r e c t i o n s and 

growth rates, and mechanism of i n c l u s i o n incorporation and i t s influence on . 

c r y s t a l c h a r a c t e r i s t i c s . Post-freezing phenomena are in v e s t i g a t e d from a 

petro l o g i c viewpoint: thermomigration, flow and f r a c t u r e . No f i e l d 

measurements of flow and fracture are attempted. 
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Chapter 2 . 

BACKGROUND TO THE PRESENT STUDY 

1. Permafrost i n the outer Mackenzie D e l t a - Tuktoyaktuk P e n i n s u l a Area 

The modern Mackenzie Delta i s g e n e r a l l y a low, f l a t a rea, but on 

the d i s t a l boundary are i s l a n d s of P l e i s t o c e n e age reaching 50 m i n 

• a l t i t u d e , due to g l a c i e r i c e t h r u s t i n g (Mackay 1971). Tuktoyaktuk Pen­

i n s u l a , of P l e i s t o c e n e age, i s predominantly l o w - l y i n g but w i t h abundant 

p o s i t i v e r e l i e f features i n the form of i n v o l u t e d h i l l s , and pingos which 

. may reach up to 50 in. 

The p r i n c i p a l study area l i e s on the coast of the Beaufort Sea 

w i t h i n a 30 km radius of Tuktoyaktuk, and a secondary area i n c l u d e s P e l l y 

I s l a n d , one of the outer i s l a n d s beyond the modern D e l t a ( F i g . 1). The 

P l e i s t o c e n e c o a s t a l p l a i n i n the Tuktoyaktuk area has been c l a s s i f i e d as 

" U n d i f f e r e n t i a t e d c o a s t l a n d s " by Mackay (1963, p. 137). Parts of the 

coast are receding r a p i d l y , e s p e c i a l l y where abundant ground i c e occurs. 

The e n t i r e area i s i n continuous permafrost which may exceed 370 m (Jessop , 

1970) but l o c a l l y depressions or through t a l i k s i n the permafrost occur 

below extensive water bodies which do not freeze to the bottom i n w i n t e r . 

Drainage of such lakes provides c o n d i t i o n s f o r permafrost aggradation. 

. Examples have been monitored and described by Mackay (1973a). I n one case 

c o a s t a l r e c e s s i o n caused lake drainage, permafrost and then pingo growth. 

Thus o l d permafrost and contained ground i c e i s being degraded and removed 

i n some areas, w h i l e new permafrost and ground i c e grow nearby. 
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P r i n c i p a l s t u d y a r e a and sample s i t e s 



Thermal C h a r a c t e r i s t i c s 

D e t a i l e d temperature data for the area are becoming a v a i l a b l e . The . 

mean annual s o i l surface temperature i s taken as -8" C (Mackay 1974c). 

However, v a r i a t i o n s i n surface temperature are important i n that thermal 

t e n s i o n and compression-occur a n n u a l l y , sometimes tensions are s u f f i c i e n t 

to cause f r a c t u r e and the growth of i c e wedges. A d d i t i o n a l l y the creep 

behaviour of i c e i s temperature dependent, and thermal gradients may cause 

thermomigration. 

Ground Ice Types 

Several i c e types have been observed i n the area; these have been 

enumerated by'Mackay (1972b, p. 4): open c a v i t y i c e , wedge i c e , v e i n . i c e , 

t e n s i o n crack i c e , closed c a v i t y i c e , e p i g e n e t i c segregated i c e , aggrada-

t i o n a l i c e , s i l l i c e , pingo i c e and pore i c e . These i c e types have been 

studied by i n s p e c t i o n of slump face s , probing of i c e wedges, and d r i l l - h o l e 

a n a l y s i s . 

From exposures and d r i l l - h o l e records . i t i s evident that i c e u n d e r l i e ; 

a l l major topographic highs. Thus i c e i s important i n the geomorphic evo­

l u t i o n of the area. However, exposures also, show that there i s no simple 

r e l a t i o n between surface form and the presence of i c e at depth; f o r example 

large i c e wedges may have no surface expression i n the form of troughs, 

and abundant i c e may u n d e r l i e l o w - l y i n g areas (Rampton and Walcott 1974). 

A l s o , mescscopic features of i c e bodies i n chance exposures may not r e a d i l y 

i n d i c a t e the growth or deformation mechanisms which have operated. Few 

workers have employed standard p e t r o l o g i c techniques on ground i c e ; these 

•methods are a p p l i e d here to a i d i n understanding i c e In permafrost. 
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Several c l a s s i f i c a t i o n s of underground i c e types have been prepared 

(Shumskii and V t i u r i n 1966; V t i u r i n a and V t i u r i n 1970; Mackay 1972c). The 

c l a s s i f i c a t i o n s are based on such f a c t o r s as place of development, o r i g i n 

of water, phase composition and m o d i f i c a t i o n of water ( V t i u r i n a and V t i u r i n 

1970) or o r i g i n of water p r i o r to f r e e z i n g , p r i n c i p a l t r a n s f e r process and 

ground ice forms (Mackay 1972c). The petrology of the r e s u l t i n g i c e was not 

included i n such c l a s s i f i c a t i o n s ; the present study w i l l attempt to show 

the value of the approach. 

4. Previous Ground Ice Petrology Studies 

The pioneers i n t h i s f i e l d wave Shumskii i n the U.S.S.R. and B l a c k 

i n A l a s k a , who c a r r i e d out t h e i r f i e l d work i n the l a t e 1940s. Black's 

work on i c e wedges was published i n 1963; more extensive r e s u l t s are a v a i l ­

able i n h i s Ph.D. t h e s i s (Black 1953) and an unpublished manuscript (1954). 

A wide range of i c e types"was studied by Shumskii whose research was t r a n s ­

l a t e d i n t o E n g l i s h i n 1954. 

The only l a t e r work outside the U.S.S.R. has been t h a t of Corte 

(1962a), based on Greenland s t u d i e s , M u l l e r (1963) and some Japanese 

r e p o r t s . Extensive work has been continued i n Prussia and V t i u r i n a and 

V t i u r i n (1970) have summarized recent r e s u l t s . The proceedings of the 

F i r s t and Second I n t e r n a t i o n a l Conferences on Permafrost c o n t a i n r e f e r e n c e 

to ground i c e p e t r o l o g y . Some of the major r e s u l t s of these s t u d i e s are 

discussed below. 

S h u m s k i i (1954) grouped underground ice types under the heading of 

" c o n g e l a t i o n i c e , " i n c l u d i n g p e r e n n i a l v e i n Lee (wedge i c e ) , segregation 

ice and i n j e c t i o n ice. The primary (growth) t e x t u r e of wedge i c e was 
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termed " a l l o t r i o m o r p h i c - g r a n u l a r " or."hypidiomorphic-granular"; a l s o i n ­

a c t i v e , or " f o s s i l " wedges were observed. The texture of segregation i c e 

was described by Shumskii (1964, p. 222) as "hypidiomorphic-granular" and 

" a l l o t r i m o r p h i c - g r a n u l a r " w i t h c r y s t a l s being elongated p a r a l l e l to the 

f r e e z i n g d i r e c t i o n , and normal to the l a y e r i n g ; a i r i n c l u s i o n s were a l s o 

observed, and i t was pointed out that there i s a range of forms from pore 

i c e to segregated i c e . " I n j e c t i o n . i c e " was considered by Shumskii to be 

important i n pingo growth. However, " i n j e c t i o n " i c e text u r e s and p e t r o ­

f a b r i c s were not analyzed i n d e t a i l , but st u d i e s showed very l a r g e g r a i n s 

w i t h random l a t t i c e o r i e n t a t i o n s . . These data and the i n c l u s i o n p a t t e r n s 

were taken to i n d i c a t e the f r e e z i n g of large masses of int r u d e d water. 

The three ground i c e types of wedge i c e , segregation i c e and i n j e c t i o n 

i c e were discussed by Shumskii; on.the other.hand, Black (1953) s t u d i e d 

only i c e wedges, but i n greater d e t a i l . His f i e l d areas were near F a i r ­

banks and Barrow, A l a s k a . Black defined some of the main f a b r i c s to be 

expected i n surface and buried wedges, and demonstrated that c o n t r a c t i o n 

and expansion of the ground caused flow and f r a c t u r e of i c e i n wedges. 

Deformation f a b r i c s were found to. be superimposed on growth f a b r i c s ; the 

o r i g i n of some f a b r i c s was not understood. Black pointed out the presence 

of i n c l u s i o n " f o l i a t i o n s " s u b p a r a l l e l to the wedge s i d e s , c o n t a i n i n g 

v e r t i c a l l y o r i e n t e d i n c l u s i o n s . C r y s t a l s i z e ranged from 0.1 ram to 100 mm; 

shapes were equidimensional, p r i s m a t i c or i r r e g u l a r ; and boundaries, 

s t r a i g h t to sutured. Seven types of c-axis d i s t r i b u t i o n were recognized, 

the three most widespread'being (1) v e r t i c a l , ( 2 ) normal to the wedge a x i s 

and h o r i z o n t a l , ( 3 ) normal to the wedge a x i s and i n c l i n e d to one or both 

s i d e s . Black recognized the importance of temperature g r a d i e n t s , the 

l a t e r a l s t r e s s system, and bas a l g l i d e i n f a b r i c development.' 



Corte (1962a) i n v e s t i g a t e d four patterned ground types at Thule, 

Greenland, and made c o r r e l a t i o n s among surface p a t t e r n , g r a i n s i z e and 

s t r u c t u r e of the a c t i v e l a y e r , and type and d i s t r i b u t i o n of ground i c e 

f o r the patterns i n v e s t i g a t e d . F a b r i c . a n a l y s i s , was performed on four 

ground i c e types: - i c e wedges, r e l i c t i c e , i c e mass and i c e l e n s , and 

on contacts of i c e wedges w i t h r e l i c t and mass i c e , and f a b r i c c r i t e r i a 

were found to b e . h e l p f u l i n d i s t i n g u i s h i n g i c e types. 

V t i u r i n a and V t i u r i n (1970) summarized Russian work on ground i c e 

development. They included d i s c u s s i o n of the growth of pore i c e , lens i c e , 

i n j e c t i o n i c e , wedge i c e and the b u r i a l of surface i c e such, as naleds and 

g l a c i e r i c e . ' L i t t l e reference was made to p e t r o l o g i c aspects of the i c e . 

types; no p e t r o f a b r i c diagrams were presented, but c r y s t a l shape r e c e i v e d 

some c o n s i d e r a t i o n . 

M i i l l e r (1963) stud i e d some c r y s t a l c h a r a c t e r i s t i c s of pingo i c e i n 

the Tuktoyaktuk area, and compared t h i s i c e w i t h wedge and g l a c i e r i c e . . 

C r y s t a l s i z e was measured and rubbings d i s p l a y e d c r y s t a l shape and con­

tained bubbles. The bubbles were unusual i n that.they were p a r a l l e l i n a 

given c r y s t a l , but not i n adjacent c r y s t a l s . As no c-axis measurements 

were made i n that study, the planes of bubbles could not be r e l a t e d to 

c r y s t a l s t r u c t u r e ; however i t seems l i k e l y that they were i n the basal 

plane. C r y s t a l s i z e was ^ 1 0 mm mean diameter f o r pingo i c e , and <6 mm 

f o r wedge i c e . As pointed out by M i i l l e r c r y s t a l shapes d i f f e r e d markedly 

from those i n g l a c i e r i c e , e i t h e r a c t i v e or stagnant.. 

Some p e t r o f a b r i c a n a l y s i s . o f a segregated i c e body was c a r r i e d out by 

Mackay and Stager (1956a); Mackay (1972b, p.. 21) described a t h i n s e c t i o n of 

i c e from a d r i l l core from below the Beaufort Sea. 



12 

5. Terminology 

The few papers concerned w i t h the petrology of ground i c e have no 

co n s i s t e n t terminology f o r f a b r i c p r o p e r t i e s . Black (1953, p. 64) d i s ­

cusses the a p p l i c a t i o n of igneous and metamorphic. rock terms i n i c e wedges, 

and points out that t h i s should not be attempted as many such terms are 

genetic i n connotation. Elsewhere Black (1953, p. 43) l i s t s terms f o r 

types of dimensional l i n e a t i o n of c r y s t a l s : h o l o c r y s t a l l i n e , anhedral 

(zenomorphic), subhedral (hypautomorphic), euhedral (automorphic), e q u i -

dimensional and elongated. 

In c o n t r a s t , Corte (1962a) d i d not employ such t e x t u r a l terminology, 

but used the terms " i r r e g u l a r " and "elongate" f o r c r y s t a l shape.. Shumskii 

(1964) developed a more complex nomenclature (Table 1), and a l s o gave a 

s e r i e s of terms, f o r f r o z e n s o i l t e x t u r e which i s discussed in a l a t e r 

s e c t i o n . 

Considering deformation textures., we f i n d that Black (1953) discussed 

the t r a n s f o r m a t i o n of growth " f a b r i c s " by ground expansion i n the summer 

causing h o r i z o n t a l s t r e s s e s . Previous cracks w i t h a i r bubbles and hoar 

i n f i l s become shear planes whereas cracks with c l e a r i c e are strong and 

shear takes place adjacent to them. I n i t i a l hoar c r y s t a l s are r e c r y s t a l -

l i z e d and r e o r i e n t e d . Black pointed out the importance of temperature and 

s t r e s s i n determining the response of c r y s t a l s (p. 76): 

Rapid flow or shear at low temperatures seems to produce small 
'rectangular grains., .but ac high temperatures l a r g e sutured 
grains seem to r e s u l t . 

... o p t i c a x i s 1 ine.ations . . .. seem to be due to the response of 
i n d i v i d u a l c r y s t a l s to shear, i n which c r y s t a l s r o t a t e to 
permit g l i d i n g on the basal plane... ' 



TERM PAGE 

Euhedral 131 

A11 o t: r i o m a r p 11 :i. c - 171 
granular 

Hy p :i. d 1 duo r p h i e - 171 
. g.cii ii'j l i i i ; 

P• ismati.e.- 160 
ir.! i ar 

I n t e r s e r t a l 178-9 

Folk LILt Lc 175,179 

C a t a e l a s t i c 203,349 

CRYSTAL CHARACTERISTICS 

C r y s t a l s bounded by r e g u l a r faces. 

I s o m e t r i c , anhadral, random 
c-ax.es. 

Golurnnar, i n a zone of geometric 
s e l e c t i o n ; a l s o c a l l e d c r y s t a l l i n e 
granular; intermediate between 
allotrio.norphic-gra.nular and 
pr isnia-t ic-granu l a r . 

P a r a l l e l - f i b r o u s o r iented growth; 
a l s o c a l l e d Panidiomorphic. -
).',ru.iHI I .'i r. 

Rejected i m p u r i t i e s arranged on 
g r a i n boundaries (term a l s o 
employed for frozen ground 
t e x t u r e ) . 

C r y s t a l s c o n t a i n i n g insoluble, 
s o l i d i m p u r i t i e s or f i n e a i r 
i n c l u s i o n s . 

Large primary c r y s t a l s remain 
among f i n e crushed granules. 

ICE TYPES 

Extruded i c e ; Perennial vein i c e . 

Extruded i c e ; Perennial v e i n i c e ; 
segregation i c e . 

Vein i c e , naiads, segregated ice and 
poss iI) 1 y i i I j ec ted ice... 

Congelation i c e . 

Congelation i c e . 

Perennial vein i c e . 

Table I. Shumskii's t e x t u r a l terminology. 
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Corte (1962a, p. 38) summarized h i s r e s u l t s on wedge i c e as: 

The smaller grains are those formed r e c e n t l y i n a thermal 
c o n t r a c t i o n crack, while those at.each s i d e (of the wedge) 
are o l d e r grains formed by r e c r y s t a l l i z a t i o n from small ones. 

S o i l t e x t u r e 

I n t e r r e l a t i o n s h i p s between i c e and sediment have been considered 

by Shumskii (1964) and L i n e l l and Kaplar (1966). Shumskii d i s t i n g u i s h e d 

textures of frozen ground from i c e t e x t u r e s : (1) i n t e r s e r t a l - r e f e r s to 

the i n s i t u f r e e z i n g of water without m i g r a t i o n - i c e grains f i l l the pores 

and are u s u a l l y smaller than the s k e l e t a l p a r t i c l e s (Shumskii 1964, p. 214); 

(2) p o i k i l i t i c (p. 215) describes s k e l e t a l p a r t i c l e s i n cluded i n . t h e l a r g e 

c r y s t a l s of the i c e cement which has grown along the pores. 

L i n e l l and Kaplar (1966) produced a c l a s s i f i c a t i o n system of f r o z e n 

s o i l s , and gave some d e s c r i p t i o n s on the basis of i c e content, i c e d i s t r i b u - ^ 

t i o n and i c e type ranging from i c e coatings on p a r t i c l e s to lenses. 

From the above d i s c u s s i o n i t i s evident that more work i s needed on 

the growth and deformation of ground i c e w i t h v a r y i n g i n c l u s i o n contents. 

Since the p u b l i c a t i o n of the above st u d i e s much experimental work on i c e 

has been performed, which i s reviewed i n the next s e c t i o n . 

Ice Growth: A Review 

(a) I n t r o d u c t i o n 

I t i s obvious that underground i c e bodies have grown under w i d e l y 

v a r y i n g c o n d i t i o n s of temperature, s o i l type, water supply, and time. 

P e t r o l o g i c data on s o l i d i f i c a t i o n features of such i c e are l a c k i n g . The 

i n t e n t i o n i n t h i s s e c t i o n i s to review work on the growth of i c e i n lakes 
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and under experimental c o n d i t i o n s . C o n s i d e r a t i o n i s given f i r s t l y to bulk 

growth of i c e from pure water; secondly to the r e d i s t r i b u t i o n of s o l u t e s 

at an advancing ice-water i n t e r f a c e ; and t h i r d l y to the r e j e c t i o n of s o l i d 

p a r t i c l e s at the i n t e r f a c e . The t h i r d case i s the c l o s e s t approach a v a i l ­

able i n the l i t e r a t u r e , to i c e growth i n a,porous medium. In the present 

study we are concerned with such . o p t i c a l l y recognizable f a c t o r s as g r a i n 

s i z e , g r a i n shape, dimensional o r i e n t a t i o n , , substructure and c r y s t a l l o -

graphic o r i e n t a t i o n r e l a t i v e to the growth d i r e c t i o n ; these f a c t o r s are 

important i n the inference of growth d i r e c t i o n s , and a l s o determine the 

mechanical and other p r o p e r t i e s of a given i c e body. 

(b) The F r e e z i n g of Bulk Water 

Studies of lake i c e and i c e grown i n the l a b o r a t o r y (Perey and 

Pounder 1958) have shown that p o l y c r y s t a l l i n e aggregates d i s p l a y at l e a s t 

two t e x t u r a l l y d i s t i n c t zones: (a) a zone of competitive growth at the 

c o o l i n g surface ( l a k e - a i r i n t e r f a c e or l a b o r a t o r y c e l l w a l l ) ; and (b) a 

zone of elongated c r y s t a l s a l i g n e d p a r a l l e l to the heat flow d i r e c t i o n . 

A s i m i l a r banding occurs i n other m a t e r i a l s , such as. metal c a s t i n g s . I n 

the case of i c e the t e x t u r a l zonation i s accompanied by an increase i n 

l a t t i c e p r e f e r r e d o r i e n t a t i o n i n the columnar, zone. Numerous workers have 

i n v e s t i g a t e d c r y s t a l o r i e n t a t i o n s i n lake i c e and p r e f e r r e d o r i e n t a t i o n s 

were u s u a l l y found, although the o r i e n t a t i o n s reported by d i f f e r e n t authors, 

and i n some cases the o r i e n t a t i o n s i n d i f f e r e n t p a r t s of the same water 

body v a r i e d from c-axis h o r i z o n t a l to c-axis v e r t i c a l , to random. M i c h e l 

and Ramseier (1971) found v e r t i c a l , random and h o r i z o n t a l p r e f e r r e d 

o r i e n t a t i o n s , but v e r t i c a l columnar c r y s t a l s had h o r i z o n t a l c-axes. Lab­

oratory c o n t r o l l e d studies were a l s o i n c o n c l u s i v e (Perey and Pounder 1958; 
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Pounder 1963; Harrison and T i l l e r 1963) but a general tendency was found 

f o r c-axes normal to. the growth d i r e c t i o n . S e v e r a l t h e o r i e s have been 

proposed .to e x p l a i n the appearance of p r e f e r r e d o r i e n t a t i o n s . Most t h e o r i e s 

e x p l a i n some experimental and f i e l d ' r e s u l t s , . b u t not a l l . Ketcham and 

Hobbs (1957) studied the growth of two thousand g r a i n p a i r s and e s t a b l i s h e d 

that the c o n d i t i o n s f o r one g r a i n (A.) to encroach upon the other.(B) are 

that: (1 )' B must have i t s c-axis t i l t e d towards the l i n e formed by the 

i n t e r s e c t i o n of the g r a i n boundary between A and B and the ice-water i n t e r ­

face c a l l e d "Line L" , ( 2 ) the p r o j e c t i o n on the i c e - l i q u i d i n t e r f a c e of the 

c-axis of 3 must be perpendicular to l i n e L. • 

The major p o i n t s to be e x t r a c t e d here are that i n i c e grown, from the 

melt the i n i t i a l growth i s i n a zone o f randomly o r i e n t e d c r y s t a l s from \ 

which develops a zone of columnar c r y s t a l s elongated p a r a l l e l to the heat 

flow or f r e e z i n g d i r e c t i o n , but w i t h c - a x i s o r i e n t a t i o n s normal to that 

d i r e c t i o n . Thus i f these r e s u l t s can be a p p l i e d t o i c e growth i n perma­

f r o s t we have u s e f u l c r i t e r i a f o r determining growth d i r e c t i o n s . However-, 

under n a t u r a l l y o c c u r r i n g c o n d i t i o n s , i c e growth does not u s u a l l y occur 

i n pure bulk water, and water, supply i s normally drawn through a porous 

medium. Thus we must consider these f a c t o r s and t h e i r i n f l u e n c e on growth, 

c o n d i t i o n s . 

(c) R e d i s t r i b u t i o n of Solutes 

The growth of i c e from aqueous s o l u t i o n s i s more complex than f o r 

pure water because of the r e d i s t r i b u t i o n of s o l u t e s that occurs during 

s o l i d i f i c a t i o n . ' Weeks and As sur (1.964) presented a theory f o r sea i c e 

based on the metals l i t e r a t u r e , but ground i c e . except i n unusual circum­

stances., has impurity concent rae ioris f a r lower than i n sea i c e . 



S o l i d s o l u b i l i t y i n i c e i s very low (Glen 1974) and as i c e c r y s t a l s 

grow there i s r e j e c t i o n of s o l u t e at the i n t e r f a c e i n t o the l i q u i d . Since 

r e d i s t r i b u t i o n i s p r i m a r i l y by d i f f u s i o n , c o n c e n t r a t i o n gradients are 

e s t a b l i s h e d i n . t h e l i q u i d w i t h the highest s o l u t e concentrations at the 

i n t e r f a c e . Consequently an i n i t i a l l y planar i n t e r f a c e becomes unstable 

to changes i n shape. Any i c e p r o j e c t i o n s i n t o the zone of lower s o l u t e 

tend to grow and i n t e r d e n d r i t i c spaces are r i c h i n s o l u t e , thus i r r e g u l a r ­

i t i e s appear on the columnar c r y s t a l s . Although much of the s o l u t e content 

i s r e j e c t e d at. the i n t e r f a c e , some i n c o r p o r a t i o n occurs at zones of d i s ­

order such.as g r a i n boundaries and l a t t i c e . d e f e c t s . In the case of i n ­

s o l u b l e f o r e i g n p a r t i c l e s , d i s l o c a t i o n s are nucleated when p a r t i c l e s are 

grown i n t o the c r y s t a l . Where the c r y s t a l grows around the i m p u r i t y , the 

d i s l o c a t i o n s are propagated i n t o the growing c r y s t a l . When d e n d r i t i c 

growth occurs, the i n t e r d e n d r i t e spaces e v e n t u a l l y c l o s e , o f t e n w i t h a 

m i s o r i e n t a t i o n , and j o i n i n g occurs by d i s l o c a t i o n s . Other mechanisms of 

d i s l o c a t i o n formation, and t h e i r mechanical s i g n i f i c a n c e are discussed 

l a t e r . 

An important type of s o l u t e i n water i n the f i e l d s i t u a t i o n i s t h a t 

which forms bubbles on f r e e z i n g . . The presence of gas bubbles i n massive 

ground i c e bodies has been pointed out by Mackay (19.71) , i n i c e lenses by 

Gold (1957) and Penner (1961) but no d e t a i l e d d i s c u s s i o n of t h e i r character­

i s t i c s has been given. 

- • Bubbles may ba c h a r a c t e r i z e d by t h e i r s i z e , shape, o r i e n t a t i o n , 

l a y e r i n g and changes in.those p r o p e r t i e s . But f i r s t l y we must consider • 

the n u c l e a t i o n of bubbles; t h i s i s approached through standard models of 

s o l u t e r e j e c t i o n at an advancing s o l i d - l i q u i d i n t e r f a c e (Pohl 1954). The . 
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d i s t r i b u t i o n c o e f f i c i e n t for a i r i n the ice-water system i s taken as 0.01, 

thus a strong c o n c e n t r a t i o n i s e s t a b l i s h e d ahead of the i n t e r f a c e i n an 

a i r saturated l i q u i d . N ucleation may occur on p a r t i c l e s , but i n e x p e r i ­

mental s t u d i e s , Maano (1967) and B a r i and H a l l e t t (1974, p. 503) showed 

that wetted p a r t i c l e s d i d not produce t h i s e f f e c t . Such would always be 

the case, i n tha f i e l d s i t u a t i o n ; th'are n u c l e a t i o n probably occurs at p o i n t s 

of high s o l u t e c o n c e n t r a t i o n . A f t e r n u c l e a t i o n , slow growth gives l a r g e 

s p h e r i c a l bubbles; Intermediate growth gives a c y l i n d r i c a l shape p a r a l l e l 

to the growth d i r e c t i o n ; i n r a p i d f r e e z i n g , bubbles are entrapped by ad­

vancing c r y s t a l so a small s p h e r i c a l form i s r e t a i n e d (Chalmers 1959). . 

Very r a p i d f r e e z i n g gives i n s u f f i c i e n t time f o r bubble growth. The shapes 

are from theory; i n p r a c t i c e d i f f e r i n g shapes may occur c l o s e together,' 

as depicted by Vasconcellos and Baech (1975 p. 83, F i g . 3 ) , whose c o n t r o l l e d 

experiments were performed on the water-ice-CO^ system. In the f i e l d the 

s i t u a t i o n i s more complex, water supply through s o i l may vary, rates of. 

heat e x t r a c t i o n may vary, and freezing' may be m u l t i d i r e c t i o n a l f o r example 

i n the a c t i v e l a y e r . 

(d) Substructure 

Substructure i s here defined as o p t i c a l l y r e c o g n i z a b l e v a r i a t i o n s i n 

l a t t i c e p r o p e r t i e s w i t h i n a given c r y s t a l . U s u a l l y t h i s i s confined to • 

d i f f e r e n c e s i n l a t t i c e o r i e n t a t i o n . 

D i s l o c a t i o n formation and propagation due t o d e n d r i t i c growth and 

i n c o r p o r a t i o n o f f o r e i g n atoms has already been discussed. In a d d i t i o n , 

s m a l l a n g l e boundaries can o c c u r by the amalgamation o f d i s l o c a t i o n s by 

climb. Tha sub-boundaries so formed i n t e r s e c t the s o l i d - l i q u i d i n t e r f a c e . 

and a r e p r o p a g a t e d p a r a l l e l co t h e growth d i r e c t i o n , w i t h m i s o r i e n t a t i o n s 



19 

of s e v e r a l degrees. 

. Substructures may be produced during growth by mechanically, 

t h e r m a l l y , or c o m p o s i t i o n a l l y induced s t r e s s e s . Thermal g r a d i e n t s , 

e s p e c i a l l y non-uniform.gradients, can produce s t r e s s e s which w i l l gen­

erate d i s l o c a t i o n s . As discussed above compositional changes occur w i t h 

v a r i a t i o n s i n f r e e z i n g r a t e . The r e s u l t a n t f l u c t u a t i o n s i n l a t t i c e 

constant can produce d i s l o c a t i o n s . The c o n c e n t r a t i o n of d i s l o c a t i o n s i s 

of fundamental importance to the deformation of i c e c r y s t a l s i n post-

s o l i d i f i c a t i o n s t r e s s systems. 

(e) Laboratory Growth of Ice i n Sediments 

The growth of i c e i n porous media, e s p e c i a l l y s o i l s , has been i n ­

v e s t i g a t e d f o r over 45 years. E a r l y s t u d i e s . o f s o i l f r e e z i n g and asso­

c i a t e d i c e growth were c a r r i e d out by Taber. (1930) and Beskow (1935). 

Taber pointed out that s e v e r a l f a c t o r s were i n v o l v e d i n i c e segregation: 

s i z e and shape of s o i l p a r t i c l e s , a v a i l a b i l i t y of water, s i z e and percen­

tage of v o i d s , r a t e of c o o l i n g , and r e s i s t a n c e to heaving. A major 

c o n t r i b u t i o n was Taber's demonstration (p. 308) t h a t growing i c e c r y s t a l s 

are i n contact w i t h a water f i l m adsorbed on mineral p a r t i c l e s , and water 

flows through the f i l m to nourish the growing c r y s t a l s . 

The r e s u l t s of Taber and Beskow were supported by the xrork of Corte 

(1962b). The base of a w a t e r - f i l l e d box was subjected to f r e e z i n g temper­

atures while the top was maintained above 0°C. Some p a r t i c l e s placed on 

the i c e surface rose w i t h the growing i c e , i n d i c a t i n g the presence of a 

water l a y e r between- the i c e and s o i l p a r t i c l e s . Such a process i s a n a l -

agous to freeze-back from the top o f permafrost. I f the experimental' 
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system i s - i n v e r t e d , the - mechanism of i c e lens growth i s represented. .In 

the case where a range of p a r t i c l e s i z e s i s present, s o r t i n g occurs, the 

i c e excluding those p a r t i c l e s which can migrate through the. pores. 

Higashi (1958) performed experimental s t u d i e s of f r o s t heaving, 

and r e l a t e d i c e segregation types to heaving. He c l a s s i f i e d three types 

of i c e segregation:-- (a) i c e filament l a y e r , (b) s i r l o i n - t y p e f r e e z i n g , 

(c) concrete-type f r e e z i n g . Types (a) and ( b ) , w i t h high i c e content, 

occurred under c o n d i t i o n s of slow f r e e z i n g boundary p e n e t r a t i o n . Concrete 

f r e e z i n g (c) d i d not show any degree of i c e segregation and occurred under . 

f a s t f r e e z i n g c o n d i t i o n s . 

Pe\iner (1961) grew i c e lenses i n s o i l w i t h c a r e f u l l y c o n t r o l l e d 

environment of temperature, pressure and water supply, and found t h a t the 

s t r u c t u r e of the lenses was not as uniform as a n t i c i p a t e d . Ice g r a i n s were 

elongated i n the d i r e c t i o n of heat flow, but o p t i c a x i s o r i e n t a t i o n i n 

adjacent c r y s t a l s was o f t e n markedly d i f f e r e n t . A l s o , c r y s t a l o r i e n t a t i o n 

was u s u a l l y d i f f e r e n t above and below the s o i l occluded i n the i c e l e n s . 

This was probably a r e s u l t of n o n - u n i d i r e c t i o n a l heat flow around the 

contained s o i l . Penner's sample was r e s t r i c t e d to only a few g r a i n s , so 

no s t a t i s t i c a l a n a l y s i s could be a p p l i e d . -

Unpublished work by Kaplar and Goodby at CRREL (Kap l a r , personal 

communication, 1974) produced r e s u l t s s i m i l a r to those of Penner, but w i t h 

a stronger c o n c e n t r a t i o n of o p t i c axes p a r a l l e l to the heat flow d i r e c t i o n . 

( f ) R e j e c t i o n of I n s o l u b l e P a r t i c l e s at the F r e e z i n g I n t e r f a c e 

The supply of water to i c e bodies such as lenses i s through a porous 

medium of sand or c l a y . Thus the' ice-water i n t e r f a c e i s more complicated 
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than i n the f r e e z i n g of bulk water. Mackay (1973a) has pointed out the 

major d i s t i n c t i o n between pore i c e and segregated i c e , which both form i n . 

porous media. In a d d i t i o n , experimental s t u d i e s (Uhlmann et a l . 1964; 

Hoekstra and M i l l e r 1967) have been performed on the i n t e r a c t i o n between 

i n s o l u b l e suspended p a r t i c l e s and the s o l i d - l i q u i d i n t e r f a c e . These are 

b r i e f l y reviewed. Uhlmann et a l . (1964) used ice-water and other transparent 

m a t e r i a l s at v a r y i n g f r e e z i n g r a t e s , and various suspensions, i n c l u d i n g 

s i l t , w i t h i r r e g u l a r - s h a p e d p a r t i c l e s , s i z e ranging from 1 micron to s e v e r a l 

hundred microns. At low growth v e l o c i t i e s , p a r t i c l e s were r e j e c t e d at the 

i n t e r f a c e , and pushed f o r s e v e r a l centimetres. With c l o s e l y spaced par­

t i c l e s , as i n s o i l , the process continued, impinging p a r t i c l e s being pushed 

together. (In the f i e l d there i s a l i m i t to the space a v a i l a b l e f o r 

r e j e c t e d p a r t i c l e s . ) With i n c r e a s i n g f r e e z i n g r a t e , a c r i t i c a l v e l o c i t y 

was found at which the p a r t i c l e s ceased to be r e j e c t e d and were i n c o r p o r a t e d 

i n t o the i n t e r f a c e . There was, however, a dependence on p a r t i c l e s i z e . 

The c r i t i c a l v e l o c i t y f o r p a r t i c l e s l e s s than 15A i n diameter was inde­

pendent of s i z e , whereas f o r l a r g e r p a r t i c l e s , the l a r g e r the s i z e the 

lower the c r i t i c a l v e l o c i t y f o r t r a p p i n g . 

Hoekstra and M i l l e r (1967) performed experiments on the ice-water-

p a r t i c l e system, employing Pyrex-glass.spheres and s o f t - g l a s s c y l i n d e r s 

as f o r e i g n p a r t i c l e s . With an upward-moving f r e e z i n g i n t e r f a c e , the 

c r i t i c a l v e l o c i t y was i n v e r s e l y p r o p o r t i o n a l to the p a r t i c l e r a d i u s . They 

a l s o found that adding NaCl to the water caused reductions i n the' c r i t i c a l 

v e l o c i t y . ' • . •• 

Uhlmann et a l . (1964). and Hoekstra and M i l l e r ' (1967) i n t e r p r e t the 

r e j e c t i o n of p a r t i c l e s as being due to an imbalance of surface t e n s i o n 
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forces between the p a r t i c l e , water and i c e . In order to s a t i s f y the 

energy requirements and keep the p a r t i c l e ahead of the i n t e r f a c e , ' l i q u i d 

r e p l e n i s h e d the i c e behind the p a r t i c l e s . I t was argued t h a t the p a r t i c l e - . 

i n t e r f a c e s e p a r a t i o n decreased w i t h increased f r e e z i n g . r a t e , and the 

c r i t i c a l v e l o c i t y corresponded to the po i n t at which f u r t h e r decrease of 

p a r t i c l e - i n t e r f a c e s e paration would lower the chemical p o t e n t i a l of the 

system, rendering the pushing c o n f i g u r a t i o n unstable and a l l o w i n g i n c o r ­

p o r a t i o n of the p a r t i c l e . Grooves or depressions on the i n t e r f a c e tended 

to trap the p a r t i c l e s at lower growth r a t e s . Thus i t i s to be expected 

t h a t g r a i n boundaries would trap - s o l i d p a r t i c l e s . 

Ketcham and Hobbs (1967) described an experiment whereby a piece of 

f i n e copper wire was placed i n a sample of p o l y c r y s t a l l i n e i c e and obser­

v a t i o n s were made of the i c e surface as i t grew i n t o the water. I t was 

found that g r a i n boundaries moved away from the v i c i n i t y of the w i r e , 

which was a s c r i b e d to the wire forming a more e f f i c i e n t heat s i n k than the 

i c e , thus causing the grains adjacent to the w i r e to protrude f u r t h e r i n t o 

the water than the surrounding g r a i n s . Such v a r i a t i o n s i n temperature • . . 

across the i c e i n t e r f a c e due to i n c l u s i o n s would be expected to a f f e c t 

r e l a t i v e c r y s t a l growth. 

(g) Conclusion 

Few s t u d i e s have been performed on the petrology of underground i c e ; 

however, the r e s u l t s of the more d e t a i l e d s t u d i e s of i c e growth -in l a b o r a ­

t o r i e s and surface i c e types (sea, l a k e , r i v e r ) may be a p p l i e d to perma­

f r o s t c o n d i t i o n s . Review of i c e growth' i n bulk water has shown that-

f r e e z i n g d i r e c t i o n s may be i n f e r r e d i n terms of zonation of c r y s t a l s i z e 

and shape, bubble zones and bubble e l o n g a t i o n d i r e c t i o n . Bubble type 
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depends on f r e e z i n g r a t e , as w e l l as the amount o f d i s s o l v e d a i r i n t h e 

w a t e r . I n n a t u r a l l y o c c u r r i n g f i e l d s i t u a t i o n s f r e e z i n g r a t e s and s o l u t e 

c o n t e n t s a r e u s u a l l y unknown, thus r i g o r o u s a p p l i c a t i o n o f t h e o r y i s 

i m p o s s i b l e , but where b u l k w a t e r f r e e z e s the g e n e r a l p r i n c i p l e s may be 

e x p e c t e d to h o l d . Under p e r m a f r o s t c o n d i t i o n s : w a t e r s u p p l y i s g e n e r a l l y 

t h r o u g h a permeable medium. From the r e v i e w o f r e j e c t i o n o f i n s o l u b l e p a r ­

t i c l e s a t an i c e - w a t e r i n t e r f a c e , i t i s a p p a r e n t t h a t p r e f e r e n t i a l r e j e c t i o n 

o f f i n e - g r a i n e d p a r t i c l e s may o c c u r but d u r i n g r a p i d i n t e r f a c e a d v a n c e , a l l . 

p a r t i c l e s may be e n g u l f e d . Thus c r u d e e s t i m a t e s o f f r e e z i n g r a t e may be 

g a i n e d from sediment c o n t e n t , a l t h o u g h t h i s a l s o depends on.water a v a i l a ­

b i l i t y . A d d i t i o n a l l y d u r i n g f r e e z i n g , d i s l o c a t i o n s a r e i n c o r p o r a t e d i n t h e 

c r y s t a l g r o w t h mechanism, and a l s o a t i n c l u s i o n s . A r r a y s o f d i s l o c a t i o n s 

a r e o f fundamental" i m p o r t a n c e i n d e f o r m a t i o n . p r o c e s s e s . I t appears t h a t t h e 

major d i f f e r e n c e s i n i c e grown i n sediment from i c e grown i n b u l k w a t e r a r e 

c r y s t a l s i z e , d i s l o c a t i o n c o n t e n t and sediment i n c o r p o r a t i o n w h i c h a l l i n f l u ­

ence f l o w c h a r a c t e r i s t i c s . 

7. P o s t - F r e e z i n g Phenomena 

(a) I n t r o d u c t i o n 

Some o f t h e . f e a t u r e s r e s u l t i n g f r o m f r e e z i n g a r e s u b j e c t t o s e v e r a l 

t h e r m a l l y and m e c h a n i c a l l y i n d u c e d phenomena, w h i c h must be r e c o g n i z e d . 

(b) T h e r m o r a i g r a t i o n 

F o r the moment l e t us c o n s i d e r the t h e r m a l f i e l d and i t s e f f e c t s . 

I n p e r m a f r o s t c o n d i t i o n s the upper 10 t o 20 m o f e a r t h m a t e r i a l s are. s u b j e c t 

to a p p r e c i a b l e annua.!' t e m p e r a t u r e v a r i a t i o n s . The r e s u l t i n g t emperature 

g r a d i e n t s may g i v e r i s e to t h a r m o m i g r a t i o n o' f i n c l u s i o n s . F o r example, 
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Stehle (1967) and K h e i s i n and Cherepanov (1969) have reported bubble migra­

t i o n and the breakup of c y l i n d r i c a l bubbles i n t o s t r i n g s of s p h e r i c a l bubbles 

i n lake i c e . I n a d d i t i o n the mi g r a t i o n of s a l i n e i n c l u s i o n s i n i c e has been 

observed. The m i g r a t i o n of. such drop l e t s was observed i n experiments by 

Ha r r i s o n (1965) as f o l l o w s : - (a) droplet e l o n g a t i o n i n the m i g r a t i o n d i r e c ­

t i o n , (b) diagonal .migration -- due to mig r a t i o n p a r a l l e l to the c- a x i s r a t h e r 

than i n the heat flow d i r e c t i o n . I t i s evident that w h i l e a v e r t i c a l temper­

ature gradient p r e v a i l s i n permafrost, m i g r a t i o n might occur p a r a l l e l to c-axes. 

Thus thermomigration i s a problem to be considered i n i c e p e t r o l o g y . 

(c) The Deformation of Ice 

(1) I n t r o d u c t i o n 

Under n a t u r a l permafrost c o n d i t i o n s i c e bodies are su b j e c t to v a r i o u s 

s t r e s s f i e l d s , e.g. thermally induced s t r e s s e s a s s o c i a t e d w i t h annual expan­

s i o n and c o n t r a c t i o n of the upper ground l a y e r s ; a d d i t i o n a l l y some massive 

i c e bodies have t h i c k cores (Mackay 1973b) which have s u f f e r e d d i f f e r e n t i a l 

u p l i f t and may be expected to creep. 

.Thus a review i s made of the deformation mechanisms i n i c e , 

based on l a b o r a t o r y and g l a c i e r s t u d i e s , emphasis being g i v e n to pe t r o -

graphic and p e t r o f a b r i c f e a t u r e s . The most common experimental technique 

i n the study of the deformation of i c e has i n v o l v e d e x e r t i n g compressive, 

t e n s i l e , or t o r s i o n a l s t r e s s e s on a c y l i n d r i c a l sample of p o l y c r y s t a l l i n e 

i c e . Frequently the experiments have been d i r e c t e d toward a q u a n t i t a t i v e 

a n a l y s i s of the flow, but o f t e n the r e s u l t s are i n t e r p r e t e d i n terms of 

i n t r a c r y s t a l l i n e and i n t e r c r y s t a l l i n e s l i d i n g , e t c . Some workers have 
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prepared t h i n s e c t i o n s from the i n i t i a l and deformed i c e i n order to examine 

changes i n c r y s t a l s i z e , shape, o r i e n t a t i o n , s u b s t r u c t u r e , and to r e l a t e 

these changes to. the s t r e s s f i e l d . • By t h i s method bulk r e l a t i o n s h i p s are • 

obtained, but d e t a i l e d knowledge of i n d i v i d u a l c r y s t a l s i s not always a v a i l ­

a b l e . S i m i l a r l y , - s t u d i e s on g l a c i e r - samples have been performed, but i n 

these cases the s t r e s s and s t r a i n f i e l d s are poorly known, thus i n t e r p r e t a ­

t i o n of f a b r i c diagrams i s d i f f i c u l t . . I n the present study no f i e l d measure­

ments of s t r a i n were p o s s i b l e , but gross estimates are a v a i l a b l e from the 

t h e o r e t i c a l work of Lachenbruch (1962) and comparison w i t h g l a c i e r s t u d i e s . 

( i i ) Deformation mechanisms i n i c e 

The major work i n t h i s f i e l d has been by Gold (1953, 1972), and by 

Kamb (1972) who performed long-term, high-temperature (-5°C to 0°C) e x p e r i ­

ments on p o l y c r y s t a l l i n e i c e , and presented photomicrographs and p e t r o f a b r i c 

diagrams r e p r e s e n t a t i v e of several, stages of the flow. E a r l i e r Steinemann 

(1954) and Shumskii (1958) deformed and annealed p o l y c r y s t a l l i n e i c e , and 

analyzed the r e c r y s t a l l i z a t i o n . -

Kamb (1972) studi e d p e t r o f a b r i c and t e x t u r a l changes during flow, 

and showed that g r a i n s i z e and shape changed from 0.5 - 0.9 '.-nm equant, 

s t r a i g h t sided grains to coarser, h i g h l y i n t e r l o c k i n g shapes by a g r a i n 

boundary m i g r a t i o n mechanism.. The s i z e increase was enhanced nearer the 

melting p o i n t . S t r a i n shadows, frequent at a l i temperatures, were thought 

to i n d i c a t e k i n k i n g during t r a n s l a t i o n g l i d i n g on the b a s a l plane. The 

i n i t i a l p e t r o f a b r i c p a t t e r n of the i c e was approximately random, but o r i e n ­

t a t i o n s became s t r o n g l y p r e f e r r e d during ' r e c r y s t a l l i z a t i o n . Two maxima 

developed i n simple shear, the stronger maximum being normal to the shear 
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plana and the second i n c l i n e d at about 20° to the d i r e c t i o n of shear. 

Shumskii (1953).found a s i m i l a r p a t t e r n i n a shear experiment, and argued 

that the major maximum•comprised r e l a t i v e l y unstrained, grains grown d u r i n g 

deformation, but Karab (1972) found no such d i s t i n c t i o n . 

An important r e s u l t of Kamb's work was to show the dependence of 

p e t r o f a b r i c s on shear s t r e s s , by comparing p e t r o f a b r i c s of two samples 

deformed to the same t o t a l shear s t r a i n but at d i f f e r e n t s t r e s s e s . He went 

on to discuss the r e l a t i o n s h i p of g r a i n s i z e and shape to flow. The i n c r e a s e 

i n g r a i n boundary i r r e g u l a r i t y would be expected t o decrease the r o l e of 

g r a i n boundary s l i d i n g , and g r a i n coarsening should, increase the creep r a t e . 

I n t r a c r y s t a l l i n e p l a s t i c flow caused s t r a i n shadows, but these d i d not i n ­

crease w i t h t o t a l s t r a i n i n d i c a t i n g that u n d i s t o r t e d c r y s t a l l i n e m a t e r i a l 

was generated during r e c r y s t a l l i z a t i o n . I t was.found that the shape changes 

occurred much more r a p i d l y than p e t r o f a b r i c changes, a l s o t e x t u r e i s temper­

a t u r e - s e n s i t i v e i n that the higher the temperature the coarser the g r a i n s i z e . 

Conversely, p e t r o f a b r i c s show no such s e n s i t i v i t y . 

I f an attempt i s made to r e l a t e t e x t u r a l changes to s t r e s s , .there is. 

the problem of temperature dependence, and the wide range of temperatures 

employed by d i f f e r e n t workers. But i t i s apparent from.Kamb's (1972) work 

that g r a i n boundary mi g r a t i o n occurs over.a wide range, of s t r e s s e s , i n c l u d i n g 

those below i kg cm"-. Although po.lygonization and primary r e c r y s t a l l i z a t i o n 

were reporte d by Shumskii ' (1958)•and Gold (1953) the two processes were not 

d i s t i n g u i s h e d p e t r o l o g i c a l l y , nor were the s t r e s s e s given. Kamb's (1972) 

r e s u l t s ' are h e l p f u l i n that, l a t t i c e o r i e n t a t i o n s were measured, which showed 

that s t r e s s e s "> 1 kg cm ~" are necessary f o r new c r y s t a l growth.. 
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(d) The Influence of Inreurities. on Deformation 

( i ) I n t r o d u c t i o n 

Ice bodies i n permafrost may c o n t a i n i n c l u s i o n s i n the s o l i d , l i q u i d 

or gaseous s t a t e s . Therefore as some deformation mechanisms depend on 

unin t e r r u p t e d movement of boundaries and d i s l o c a t i o n s , f o r e i g n atoms or 

gross defects w i l l a f f e c t the deformation process. 

( i i ) S o l i d I n c l u s i o n s 

The i n c l u s i o n s which are of primary i n t e r e s t i n the study of the 

petrology of underground i c e are sediment p a r t i c l e s , r a t h e r than s o l i d 

s o l u t i o n s , as only o p t i c a l methods were employed i n the present f i e l d study. 

Se v e r a l xwrkars have s t u d i e d the creep of frozen s o i l s and i c e c o n t a i n i n g 

dispersed sand (Goughnour and Anders land 1 9 6 8 ; Hooka et a l 1 9 7 2 ; Ladanyi 1972) 

but no t h i n s e c t i o n analyses ware performed. Thus the r e l a t i o n s h i p of i n c l u ­

sions to g r a i n c h a r a c t e r i s t i c s i s unknown. 

The e f f e c t of immobile second phases on g r a i n boundary motion i s de­

termined by the boundary type and p o s i t i o n on the boundary. _High boundary 

curvature i n d i c a t e s the p o s s i b i l i t y of more r a p i d movement, and thus the 

i n c l u s i o n w i l l have- l i t t l e a f f e c t , whereas- p i n n i n g of boundaries of lower 

curvature i s l i k e l y . The in f l u e n c e of second phases at c r y s t a l . t r i p l e p o i n t s 

has not been considered i n the l i t e r a t u r e . 

( i i i ) Gageous Inclusions'; 

A high c o n c e n t r a t i o n of gas bubbles occurs i n a l l n a t u r a l i c e s -. 

g l a c i e r , lake, saa and permafrost i c e - but the a v a i l a b l e l i t e r a t u r e contains 

no reference to f i e l d s t u d i e s of the in f l u e n c e of such bubbles on deformation. 
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A l s o , the experimental work on the e f f e c t of bubbles on the deformation of 

i c e i s f a r from c o n c l u s i v e . 

I t i s i n t e r e s t i n g to compare the r e s u l t s , of Steinemann (1958), Kamb 

(1972) and Kuon and Jonas (1973) i n terms of the i n f l u e n c e of a i r bubbles . 

on r e c r y s t a l l i z a t i o n and g r a i n growth. Kamb (1972, p. 233) has pointed out 

that 

Since the changes i n te x t u r e and f a b r i c here i n specimens 
c o n t a i n i n g abundant a i r bubbles ware comparable to the 
changes observed by Steinemann (1958) i n a i r - f r e e samples, 
i t f o l l o w s that the a i r bubbles do not s u b s t a n t i a l l y 
i n h i b i t the processes of r e c r y s t a l l i z a t i o n and g r a i n growth. 

On the other hand, Kuon and Jonas (1973) found a d i s t i n c t i n f l u e n c e of. 

the a i r bubbles i n r e t a r d i n g g r a i n boundary motion, and thus i n f l u e n c i n g 

the g r a i n growth process. The r e s u l t s of Kuon. and Jonas (1973) are i n 

agreement w i t h other r e s u l t s i n the ma t e r i a l s science l i t e r a t u r e ( G l e i t e r 

and Chalmers 1968) and i n the absence of more d e t a i l e d work on i c e , are 

accepted here. 

(e) The Fr a c t u r e of Ice 

I n t r o d u c t i o n 

F r a c t u r e occurs when the l a t t i c e loses cohesion. F r a c t u r e i n columnar 

grained i c e under compressive s t r e s s has been reviewed comprehensively by 

Gold (1972) but he d i d not t r e a t the thermal c o n t r a c t i o n mechanism which i s 

discussed below. Gold '(1961) discussed the c r y s t a l i o g r a p h i c dependence of 

cracks produced by thermal shock. 
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( i i ) Thermal Stresses' 

The temperature of the upper few metres of permafrost v a r i e s sea­

s o n a l l y . In p a r t i c u l a r , a steep v e r t i c a l temperature gradient becomes 

e s t a b l i s h e d i n winter. Thermal c o n t r a c t i o n i s l a r g e l y c o n s t r a i n e d , and 

t e n s i l e s t r a i n s a r i s e , which are a f u n c t i o n of the temperature d i f f e r e n c e 

between the ground surface and an "average" temperature, and the c o e f f i c i e n t 

of thermal c o n t r a c t i o n over that temperature range. There may be, however, 

a r a p i d d i s s i p a t i o n of thermal s t r a i n w i t h time. 

( i i i ) Factors I n f l u e n c i n g F r a c t u r e 

Crack patterns developing under thermal shock i n i c e p l a t e s ware shown 

by Gold (1951) to be dependent on the c r y s t a l l o g r a p h i c o r i e n t a t i o n of the 

i c e w i t h respect to the shocked s u r f a c e . A preference was found f o r the 

surface trace of cracks to be. p a r a l l e l to the planes c o n t a i n i n g 'a' and • . 

'c' d i r e c t i o n s . Abrupt changes i n crack d i r e c t i o n i n passing from one g r a i n 

to the next were observed. . 

In the f a i l u r e experiments of Gold (1972) and others the i c e samples 

have been f a i r l y pure or at l e a s t deaerated. By comparison, permafrost 

i c e u s u a l l y has a high.bubble, sediment and s o l u t e content. A l s o ground 

i c e may have a wall-developed c r y s t a l s ubstructure and v a r y i n g c r y s t a l s i z e 

and shape, compared w i t h the more uniform l a b o r a t o r y samples. F u r t h e r , a l l 

i c e bodies near the ground surface have complex c y c l i c s t r e s s h i s t o r i e s and 

may have been subject to s u b s t a n t i a l r e c r y s t a l l i z a t i o n , with an e f f e c t on 

'subsequent f r a c t u r e c h a r a c t e r i s t i c s . 
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( f ) •Conelu5 ion 

Mackay (19 71, 19 72b) has pointed out the wide range of c o n d i t i o n s to 

•which various ground ice types are subject. In the present review of post-

s o l i d i f i c a t i o n phenomena we have considered the response of i c e to.the 

experimental i m p o s i t i o n of thermal gradients and mechanical l o a d i n g , and 

pointed out p e t r o l o g i c c r i t e r i a ' w h i c h may be a p p l i e d to the f i e l d s i t u a t i o n . 
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Chapter 3 

TECHNIQUES 

1. I n t r o d u c t i o n 

The major o b j e c t i v e of t h i s s t udy i s an understanding of mechanisms 

of growth and deformation of i c e bod ie s i n permafrost.in r e l a t i o n to t h e i r 

thermal, s t r e s s and gepmorphic environments. To t h i s end a sampling p l a n 

was e s t a b l i s h e d f o r exposed i c e bodies such that s t r a t i g r a p h i c and s t r u c ­

t u r a l r e l a t i o n s were known, and c r y s t a l and i n c l u s i o n c h a r a c t e r i s t i c s could 

be r e l a t e d to those data. F i e l d and l a b o r a t o r y techniques are discussed 

s e p a r a t e l y . 

2. F i e l d Techniques 

Maps'of physiographic provinces were presented by Mackay (1963) and 

of sediment d i s t r i b u t i o n by Rampton (1972 a,b); the d i s t r i b u t i o n of i c e 

bodies i n . t h e f i e l d area has not been given and mapping i s not attempted 

Sampling was r e s t r i c t e d to those i c e bodies exposed on c o a s t a l 

s e c t i o n s or.subject to easy d r i l l i n g . . As an example, consider the case 

of an i n v o l u t e d h i l l , near Tuktoyaktuk. Here a. massive i c e core has been 

exposed f o r many years. I t i s apparent on 1935 a i r photographs ( a i r photo 

#A 5023-S7R). A sampling plan was devised to i n v e s t i g a t e : 

nere. 

Sampling 

(I) the r e l a t i o n s h i p among c r y s t a l and i n c l u s i o n c h a r a c t e r i s t i c s 

and depth i n core samples of r e l a t i v e l y undeformed i c e ; 
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(2) the r e l a t i o n s h i p of c r y s t a l and i n c l u s i o n c h a r a c t e r i s t i c s to 

f o l d symmetry where d i f f e r e n t i a l u p l i f t has occurred; 

(3) the i n f l u e n c e of wedge p e n e t r a t i o n i n a f o l d . 

A d d i t i o n a l l y core samples were taken from a 6 m deep p i t for compar­

i s o n w i t h samples from the c l i f f exposures to i n v e s t i g a t e the e f f e c t on 

t e x t u r e and p e t r o f a b r i c s of load r e l e a s e and changed thermal regime due 

to c o a s t a l r e c e s s i o n . Elsewhere s i m i l a r p r i n c i p l e s were employed i n order 

to examine texture and p e t r o f a b r i c s w i t h reference to macroscopic symmetry, 

e.g. f o l i a t i o n s i n i c e wedges. 

For the purpose of understanding p o s t - s o l i d i f i c a t i o n changes i n a 

given i c a type, bodies of known age ( i . e . those which grew between the two 

f i e l d seasons of 1973 and 1974) were compared w i t h older bodies. This was 

p o s s i b l e f o r t e n s i o n crack i c e , where crack i c e i n the a c t i v e l a y e r of 

1973 was sampled i n 1974. A l s o i c i n g mounds which grew a f t e r , f r e e z e b a c k 

of the 1973 a c t i v e l a y e r were sampled by Dr. J.R. Mackay; t h i s provided 

i n f o r m a t i o n concerning s o l i d i f i c a t i o n features and the response of. e a r l y 

c r y s t a l l a y e r s to heave. A c t i v e l a y e r i c e was a l s o studied.. 

In the case of i c e grown i n f r a c t u r e s the only i c e of known age 

was the t e n s i o n crack i c e , mentioned, above. No example of 1973-1974 wedge 

c r a c k . i c e was obtained, although recent thermal c o n t r a c t i o n crack i c e was 

found and the prograde f a b r i c s of wedges p e n e t r a t i n g sediment and massive 

i c e were compared. Thus i t was p o s s i b l e to compare i c e growth i n the two 

major f r a c t u r e types: tension cracks (mechanically induced) and ice.wedge 

cracks ( t h e r m a l l y induced). 
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Lake .ice'was-also studied i n order to i n v e s t i g a t e the p o s s i b i l i t y of 

buried lake i c e being mistaken f o r i c e grown i n s i t u . 

A SIPRE corer and a chain saw were employed f o r sampling; t h i s has 

been a standard method on other Ice types, e.g. g l a c i e r s , sea and lak e i c e . 

I t provided a r a p i d means of o b t a i n i n g good core lengths of 75 mm diameter 

and was used with a power u n i t when c o l d storage f a c i l i t i e s were nearby. 

Hand d r i l l i n g was c a r r i e d out i n an underground p i t and samples were s t o r e d 

there f o r t r a n s f e r by h e l i c o p t e r to the l a b o r a t o r y . 

Where c o r i n g was not p o s s i b l e , as around f o l d s on c l i f f s , a c h a i n 

saw was employed; t h i s method was p r e v i o u s l y used on ground i c e by Corte 

(1962a) .and on g l a c i e r s by Colbeck and Evans (1973). As i c e on 'the c l i f f s 

had s u f f e r e d changes i n loading and thermal c o n d i t i o n s due to c o a s t a l 

r e t r e a t , a channel was f i r s t cut i n t o the c l i f f and samples taken from the 

back of the channel and l o c a l v a r i a t i o n s i n c r y s t a l and i n c l u s i o n c h a r a c t e r ­

i s t i c s were sought, f o r example T y n d a l l f i g u r e s . A d d i t i o n a l l y samples of 

cores from a man-made p i t were compared, w i t h c l i f f samples. Sawn samples 

were t r a n s f e r r e d as q u i c k l y as p o s s i b l e , u s u a l l y <^ hour, i n f r e e z e r boxes 

to c o l d storage at -20°C. 

The e f f e c t of storage on c r y s t a l c h a r a c t e r i s t i c s has been s t u d i e d by 

Carte (1961b) who showed that t h i n s e c t i o n s could be stored at -20°C f o r 

months without major adjustment of g r a i n boundaries. Kamb (1972) stored, 

t h i n s e c t i o n s at a s i m i l a r temperature, and B a r i and H a l l e t t (1974) sug­

gested storage at or below -20°C to avoid changes i n bubble c h a r a c t e r i s ­

t i c s . In the present study most core and block samples were analyzed 

w i t h i n a few days of sampling, but some were stored at <-20°C f o r about 

8-10 months. Thick sections•were prepared and sandwiched between g l a s s 
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s l i d e s with" a v a s e l i n e s e a l around the edge, to prevent s u b l i m a t i o n , and 

stored w i t h the samples; photographic s l i d e s taken before and a f t e r storage 

showed no reco g n i z a b l e change. Thus i t i s concluded that stored samples 

are reasonably r e p r e s e n t a t i v e of the f i e l d s i t u a t i o n . 

3. Laboratory Techniques 

Th i n s e c t i o n p r e p a r a t i o n v a r i e d w i t h the i c e type, i n terms of 

i n c l u s i o n content and c r y s t a l s i z e . 

In the case of c l e a n , f i n e c r y s t a l l i n e i c e , a microtome was used, as '. 

. described by Langway (1958) and Mic h e l and Ramseier (1971). 

For c o a r s e l y c r y s t a l l i n e i c e , a more r a p i d method was employed, 

namely f r e e z i n g a smoothed t h i c k l y sawn s e c t i o n to a s l i d e , then t h i n n i n g 

w i t h a f l a t metal p l a t e , and sand- and emery-paper. This i s standard 

p r a c t i c e i n g l a c i e r s t u d i e s , and K r e i t n e r (1969) showed, i n a study of 

a u f e i s , that smoothing of sect i o n s w i t h a warm i r o n produced no change i n 

c r y s t a l c h a r a c t e r i s t i c s . 

In some i c e s there were bands of high sediment content, and the 

above two methods were i m p r a c t i c a l . In such cases gradual t h i n n i n g was 

p o s s i b l e u s i n g emery paper and carborundum; sediment p a r t i c l e s were 

removed w i t h a p o i n t . As found by Black (1953) and Corte (1962a) the best 

temperature f o r t h i n s e c t i o n p r e p a r a t i o n was about -10° C. 

As the study was f i e l d - b a s e d , only o p t i c a l methods were employed. 

T h i n s e c t i o n a n a l y s i s and u n i v e r s a l stage technique i s standard, and no 

'discussion i s given here. Ice c r y s t a l c-axes ware measured and i n some 

cases a-axis o r i e n t a t i o n s were found by e t c h i n g , although t h i s was not 



widely employed. Where p o s s i b l e , at l e a s t 100 c-axes were measured and 

p l o t t e d on equal area, lower hemisphere p r o j e c t i o n s . In g e n e r a l , s c a t t e r , 

diagrams are given together with component diagrams based on such c r y s t a l 

c h a r a c t e r i s t i c s as s i z e , shape, su b s t r u c t u r e , i n c l u s i o n content and r e l a ­

t i o n s h i p to l a y e r i n g s . Most of the patterns show a high degree of pre­

f e r r e d o r i e n t a t i o n and . contouring i s not always employed; but i n order to 

emphasize progressive changes i n f a b r i c some diagrams have, been contoured 

by Kamb's (1959) method. The method i n d i c a t e s the s t a t i s t i c a l s i g n i f i c a n t 

of o r i e n t a t i o n maxima. In the present work, contour i n t e r v a l s of 2«" are 

used, where <r i s the standard d e v i a t i o n from the expected d e n s i t y of a 

uniform p o p u l a t i o n . I n c l u s i o n l a y e r i n g s , f o l i a t i o n s , e t c . , are included 

to show symmetry r e l a t i o n s h i p s . C r y s t a l dimensional o r i e n t a t i o n s ' a r e 

given i n separate diagrams. 
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Chapter 4 

RESULTS 

Permafrost c o n d i t i o n s i n the f i e l d area, the v a r i e t y of contained 

ground i c e types and t h e i r r e l a t i o n s h i p s to s u r f i c i a l form have been p o i n t e d 

out. I t i s the . i n t e n t i o n i n the present chapter t o d i s c u s s the growth and 

deformation of i c e bodies l a r g e l y from.a p e t r o l o g i c viewpoint. Thus Ice 

bodies of known ages ( < 1 year) were analyzed i n order to enumerate t y p ­

i c a l growth f e a t u r e s . Growth c o n d i t i o n s are d i s c u s s e d i n terms of water • 

supply, f r e e z i n g d i r e c t i o n s and r a t e s , s o l u t e r e j e c t i o n (bubble formation) 

and c r y s t a l s i z e , shape and l a t t i c e and dimensional o r i e n t a t i o n . . With t h i s 

knowledge as a foundation, c o n s i d e r a t i o n i s given to o l d e r i c e bodies, and 

p o s t - s o l i d i f i c a t i o n features are.discussed i n r e l a t i o n to deformation asso­

c i a t e d w i t h , f o r example, growing i c e wedges. 

A summary diagram, based on Mackay rs (1972b) c l a s s i f i c a t i o n of under-' 

ground i c e i s given i n Appendix 1. The diagram i s an attempt at showing 

i n t e r r e l a t i o n s h i p s among i c e types, surface form, and water source and 

t r a n s f e r mechanisms. E x t r a .categories are i n c l u d e d to i n d i c a t e i n c l u s i o n , 

t e x t u r a l . a n d p e t r o f a b r i c features s i g n i f y i n g growth and l a t e r c o n d i t i o n s . 

Chapter O u t l i n e 

An examination of lake i c e introduces the d i s c u s s i o n of i c e types. 

The i c e grew during winter 1973-74 and represents growth i n bulk water. 

This i s followed by c o n s i d e r a t i o n of s e v e r a l topographic r i s e s of v a r i o u s 

s i z e s , u n d e r l a i n by i c e w i t h d i f f e r e n t i n c l u s i o n contents. Such i c e bodies, 

and a l s o frozen sediment, may be f r a c t u r e d . . Thus a d i s c u s s i o n i s given of 

mechanically- and thermally-induced f r a c t u r e s . T h i s Is followed by i n v e s -
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t i g a tion.- of other i c e types which d i f f e r i n form and i n r e l a t i o n to surface, 

expression. The importance of m u l t i p l e growth and melt periods are p o i n t e d . 

out. . 

Lake Ice 

I n t r o d u c t i o n 

The p o s s i b l e existence of a v a r i e t y of surface i c e s , which became 

buried and preserved w i t h i n permafrost, has been pointed out (Mackay 1972a, 

p. 5) although they are thought to be uncommon i n North America. The case 

against a buried o r i g i n of massive., i c e bodies has been given by Mackay (1971, 

1973b) i n terms of i c e body t h i c k n e s s , topographic p o s i t i o n , s t r a t i g r a p h i c 

p o s i t i o n , water q u a l i t y , i c e f a b r i c s and bubble p a t t e r n s . I t i s to be 

expected that small i c e bodies may have o r i g i n a t e d from b u r i e d snow banks, 

lake i c e or sea i c e where coasts are a c t i v e l y slumping. I t i s the i n t e n t i o n 

i n t h i s s e c t i o n to examine non-buried lake i c e , as an a i d i n d i s t i n g u i s h i n g 

such i c e from underground i c e grown i n s i t u . 

F i e l d C h a r a c t e r i s t i c s 

A s i t e was chosen on a small shallow lake near Tuktoyaktuk. The 

c o r i n g p o s i t i o n was nearshore but not l i a b l e to slumping.. A core 0.68 m 

long was obtained,- i n c l u d i n g dark i c e at the top and the contact w i t h 

sediment and organic matter at the base. 

Ice C h a r a c t e r i s t i c s 

The upper 0.08 a comprised dark i c e and the remainder had. long.' 

v e r t i c a l bubbles. .So disturbance of the p a t t e r n was observed,' e i t h e r ' i n 

terms of growth c o n d i t i o n s or p o s t - s o l i d i f i c a t i o n s t r u c t u r e s . 
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Bubble C h a r a c t e r i s t i c s 

In the upper 0.08 m i s a high co n c e n t r a t i o n of apparently randomly 

s c a t t e r e d bubbles which are s p h e r i c a l and <^0.5 mm diameter together w i t h 

some f i n e v e r t i c a l bubbles. At 0.08 m depth the bubble, p a t t e r n changes; 

l a r g e , 15 mm long, 3 mm diameter v e r t i c a l l y elongated bubbles appear, 

superimposed on the upper p a t t e r n . A d d i t i o n a l l y there are v e r t i c a l t r a i n s 

of small ( < 1 mm) s p h e r i c a l bubbles separated by 2-3 mm. This p a t t e r n 

continues to the.basal contact w i t h sediment. 

C r y s t a l C h a r a c t e r i s t i c s " • . 

Figure 2 (a)-(e) demonstrates the change i n c r y s t a l s i z e and shape 

w i t h depth. The h o r i z o n t a l s e c t i o n s ( F i g . 2 ( a ) , ( b ) , ( c ) ) are at depths 

0.015 m, 0.3 m and 0.5 m. In the upper s e c t i o n c r y s t a l s are g e n e r a l l y 

r e l a t i v e l y small,.6 mm x 3. mm; there i s an increase i n s i z e downwards to 

30 mm x 20 mm at 0.5 m depth ( i n h o r i z o n t a l s e c t i o n s ) . C r y s t a l shape i s 

anhedral and s e r r a t e d , g i v i n g an i n t e r d i g i t a t i n g but not complexly i n t e r -

l o c k i n g p a t t e r n , as found by Ragle (1963). V e r t i c a l s e c t i o n s show the 

v e r t i c a l dimensional o r i e n t a t i o n t y p i c a l of the f r e e z i n g of bulk water 

( F i g . 2 ( d ) , ( e ) ) . A marked zone of wedging out of competing c r y s t a l s 

e x i s t s i n the upper 100 mm, and at 200 mm depth c r y s t a l s have widened to 

>10 mm and may exceed 200 mm i n length.. There are no l a t e r a l i r r e g u l a r i ­

t i e s i n c r y s t a l shape. This p a t t e r n continues to the base of the core, and 

i n d i v i d u a l c r y s t a l s were t r a c e a b l e f o r over 0.35 m. There i s no pronounced 

substructure throughout. 

The r e l a t i o n s h i p between bubbles and c r y s t a l c h a r a c t e r i s t i c s i s such 

that i n the upper zone of high bubble c o n c e n t r a t i o n , bubbles .are both 
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Figure 2. Thin sections of lake i c e . 
Crossed p o l a r i z e r s 
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•• i n t e r g r a n u l a r and. i n t r a g r a n u l a r ; at depth the l a r g e r elongated bubbles are 

f r e q u e n t l y on v e r t i c a l boundaries. At 0.5 m elongate bubbles are not. 

always v e r t i c a l although groups'are p a r a l l e l w i t h i n i n d i v i d u a l c r y s t a l s , 

which i n d i c a t e s l a t t i c e c o n t r o l . ..' 

L a t t i c e o r i e n t a t i o n s are shown In F i g u r e 3. A h o r i z o n t a l c - a x i s 

p r e f e r r e d o r i e n t a t i o n . i s evident throughout, but w i t h a p r o g r e s s i v e decrease 

i n spread about the h o r i z o n t a l w i t h depth. The small number of c-axes 

p l o t t e d f o r the p e t r o f a b r i c diagrams of deep i c e i s due to the small number 

of long c r y s t a l s . The c o n c e n t r a t i o n of c-axes represents a high s e l e c t i v i t y 

of l a t t i c e o r i e n t a t i o n s . 

I n t e r p r e t a t i o n 

The i c e i s known to have grown over one winter (1973-74). The body 

was not observed during growth, nor were any major surface s t r u c t u r e s 

v i s i b l e at the time of sampling owing to presence.of a small snow cover. 

The bubble and c r y s t a l c h a r a c t e r i s t i c s are t y p i c a l o f . l a k e i c e ' f r o m 

other areas (Knight 1952a; Lyons and S t o i b e r 1952; Ragle 1953).. There i s 

evidence f o r only one period and d i r e c t i o n of growth; downward from the top, 

as a competitive zone of c r y s t a l growth occurs there, w i t h a p r o g r e s s i v e 

downward increase i n l a t e r a l s i z e of v e r t i c a l l y elongated c r y s t a l s . . C-axis 

o r i e n t a t i o n s • a r e h o r i z o n t a l throughout i n d i c a t i n g b a s a l plane growth; the 

range-of v a r i a b i l i t y around the h o r i z o n t a l decreases w i t h depth. Bubble . 

patterns are. a l s o i n d i c a t i v e of v e r t i c a l growth.. There i s no evidence f o r 

i n t e r r u p t i o n s ' of the growth, or l a t e r f r a c t u r e . I t i s i n t e r e s t i n g to com­

pare' t h i s i c e w i t h the i c i n g mound i c e , discussed elsewhere, i n which heave, 

caused a m o d i f i c a t i o n of c r y s t a l c h a r a c t e r i s t i c s i n . t h e upper ice,'and a 
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F i g u r e 3..' (a)., (b) , (c) are from p r o g r e s s i v e l y deep v e r t i c a l s e c t i o n s ; 
( d ) , ( e ) , ( f ) are from p r o g r e s s i v e l y deep h o r i z o n t a l s e c t i o n s ; 
(d) i s from above (a) ; (e) i s from above ( b ) ; ( f ) i s from above ( c ) . 

.Diagrams i n plane of'samples . ' - ' . • ' . ' • • ' . 
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f r a c t u r e became i n f i l l e d with, i c e of d i f f e r i n g , features from the primary-

growth. On such evidence i c i n g mound i c e and lake i c e could be d i s t i n ­

guished i f the l a t t e r became b u r i e d . A l s o .lake i c e i s q u i t e d i s t i n c t 

from lens i c e and wedge i c e i n terms.o'f i n c l u s i o n s , c r y s t a l s i z e and 

shape, and l a t t i c e o r i e n t a t i o n s . F u r t h e r , i f lake i c e became buried by 

slumping the o v e r l y i n g m a t e r i a l would be d i s s i m i l a r i n sedimentary features 

and l a t e r f r e e z i n g texture from non-slumped or otherwise undisturbed 

m a t e r i a l which froze i n s i t u . Thus on s u c h : s t r a t i g r a p h i c and p e t r o l o g i c 

c r i t e r i a , i n a d d i t i o n to those enumerated by Mackay (1971, 1973b), i t 

should be p o s s i b l e to d i s t i n g u i s h buried i c e from i c e grown underground.. 

I c i n g Mound Ice • • -• 

I n t r o d u c t i o n ' 

An i c i n g i s a mass of f r e s h water i c e which has fr o z e n at or near 

the ground s u r f a c e , from s p r i n g or r i v e r water. Where the water passes 

through f r o z e n ground, the f o r c i n g mechanism i s a r t e s i a n pressure. The 

water does not always reach the ground s u r f a c e ; some may spread l a t e r a l l y 

i n t o or between sediment horizons, thus u p l i f t i n g the overburden to form an 

'icing mound. .Although i c i n g s are f a i r l y frequent i n permafrost (and non-

permafrost) areas (Carey 1973) they have not been stud i e d i n d e t a i l i n 

North America. Few have bean reported in.th e f i e l d , area (Mackay 1975b) 

b u t . i n view of t h e i r s u r f i c i a l nature, p o s s i b l e e xtent, geomorphic form 

and water source, i t i s important•to be able to d i s t i n g u i s h the i c e type 

from, say,, pingo i c e which grows by '-a d i f f e r e n t mechanism. Gra d a t i o n a l 

forms e x i s t ' between i c i n g mounds and' those of segregated ice.' Two such •' 

mounds ( F i g . . 4) grew i n winter 19 73-1974 on the. Tuktoyaktuk peninsula • 



Figure 4 . F i e l d p o s i t i o n (Photo by Dr. J.R. Mackay) 
Liverp o o l Bay i c i n g mound 
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and provided an opportunity to inspect i c e bodies of known age before 

major p o s t " s o l i d i f i c a t i o n changes could occur. 

(a) Tuktoyaktuk I c i n g Mound 

• F i e l d C h a r a c t e r i s t i c s 

A s m a l l i c i n g mound (3 m high) grew over the w i n t e r 1973-1974 

. on the si d e of a pingo (Mackay 1973a, F i g . 18, Pingo No. 13; 1975b) 

20 km east of Tuktoyaktuk.. The mound was not present i n August 

1973, and was f i r s t observed in. J u l y 1974, thus i t s maximum age i s . 

known. D r i l l i n g on the lake bottom has shown that a r t e s i a n pressures 

have developed i n sub-permafrost ground water by pore water, e x p u l s i o n 

during.permafrost aggradation i n sands (Mackay 1972b). The i c i n g 

mound grew from water moving up a t e n s i o n c r a c k from depth and being 

i n j e c t e d i n t o the a c t i v e l a y e r . A crack was s t i l l v i s i b l e , w i t h 

water f l o w i n g In J u l y 1974 and flow continued i n t o l a t e August 1974, 

and was observed i n March and August 1975 (Mackay, personal cbmmunica-

. t i o n ) . 

Ice C h a r a c t e r i s t i c s 

A 0.5 m t h i c k sample wasytaken (by J.R. Macka;/) from the upper 

part of the mound, to in c l u d e the. contact w i t h the a c t i v e l a y e r . 

• S t r u c t u r e s i n . the sample were s l i g h t ' f o l d i n g of the compositional 

l a y e r i n g due to heaving, and. a l a t e r f r a c t u r e . The compositional 

l a y e r i n g was determined by bubble content (no sediment or organic 

matter being present) ;..the bubbles occur in. d i s t i n c t bands p a r a l l e l 

to" the mound surface. Bubble s i z e s and shapes were uniform w i t h i n -

•• a given band, but varied' from band to .band ( F i g . 5). A - d e t a i l e d 



bubble s t r a t i g r a p h y i s given i n Figure 6.' Near the contact w i t h the 

organic matter, the i c e had a milky appearance due to the high, con­

tent of very small a i r bubbles followed below by a bubble-free zone,., 

then'bubbles ,. a p a t t e r n which- c o n t i n u e d : t o depth; • , •''.,-'• 

C r y s t a l C h a r a c t e r i s t i c s . . • 

C r y s t a l s i z e v a r i e s down the sample. Adjacent to the organic 

matter i s a zone of small c r y s t a l s i n d i c a t i n g a c h i l l zone ( F i g . 7 ( a ) ) . 

Where bubble l a y e r i n g appears, small c r y s t a l s (2.0 x 1.0 mm) occur . 

below bubbles. Below t h i s depth, g r a i n s i z e becomes .more consistent,, 

c r y s t a l s being very elongated, > 80 mm and widening from 2 mm t o as 

much as 8 mm i n the depth range 80 mm to 160 mm. . C r y s t a l s become 

longer than the t h i n s e c t i o n (80 mm) and average 5 mm i n width t o a 

depth of 0.4 m, then widen to 10 to 15 mm at the base ( F i g . 7 ( b ) ) . 

C r y s t a l shape v a r i e s w i t h depth. I n the•upper zone, c r y s t a l s , 

are anhedral, some having s l i g h t l y s e r r a t e d boundaries.. Many t e r ­

minate a b r u p t l y , being wedged out by adjacent c r y s t a l s . At the s m a l l 

bubble bands, g r a i n shape becomes more i n t e r l o c k i n g . Below, i n the 

zone of elongate c r y s t a l s , shapes are anhedral, w i t h some s e r r a t i o n s 

i n the upper part which become more g e n t l y curved at depth. The 

gently.curved boundaries continue to depth. The only major shape 

changes are at.some bubble bands, where one c r y s t a l grows l a t e r a l l y 

at the expense of i t s neighbour. . . • • 

' . " . • ' • ' ' . . • ' • • . . .1 ' ; 

Substructure, in-the form'of V a r i a t i o n , i n e x t i n c t i o n angle 

w i t h i n a c r y s t a l , i s confined to the upper- part of the sample', which. 

froze most r a p i d l y . A l s o , i t has s u f f e r e d the most- .heaving 'arid 



Figure 6. Figure 7 . 
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.'folding'-.of l a y e r s and g r a i n boundaries are most i r r e g u l a r . Dimen­

s i o n a l o r i e n t a t i o n i s c o n s i s t e n t throughout the body, being ortho­

gonal to the bubble banding, and p a r a l l e l to the f r e e z i n g d i r e c t i o n . 

The r e l a t i o n s h i p of. bubbles to c r y s t a l c h a r a c t e r i s t i c s i s as 

f o l l o w s : • • 

(a) In the upper, milky zone, bubbles are f r e q u e n t l y near g r a i n 

boundaries. 

(b) Bubbles .are c o n s i s t e n t i n s i z e and shape w i t h i n given bands 

throughout the s e c t i o n , not a l l are a s s o c i a t e d w i t h a g r a i n boundary 

p o s i t i o n . Thus a widespread n u c l e a t i n g event occurred, r e g a r d l e s s of 

t e x t u r e . Such an event could be s u p e r s a t u r a t i o n of gas at an essen­

t i a l l y planar i n t e r f a c e . Thus bubbles occur i n both i n t e r c r y s t a l l i n e 

and i n t r a c r y s t a l l i n e p o s i t i o n s . . 

(c) . Further from the c h i l l zone, the f r e e z i n g r a t e decreased and 

bubble nucleation. occurred p r e f e r r e d l y . a t g r a i n boundaries. At such 

s i t e s there i s increased gas c o n c e n t r a t i o n i n the l i q u i d where two 

i n t e r f a c e s are advancing. F i l a m e n t - l i k e bubbles l i e i n the boundaries, 

then widen downwards i n t o bulbous shapes, as more gas i s e x p e l l e d at 

the r e s t of the interface.. Gas moves along the c o n c e n t r a t i o n g r a d i e n t , 

thus the bubbles become fewer but l a r g e r . Some such bubbles have s m a l l 

bulbous zones on the f i l a m e n t s , or the f i l a m e n t s are detached, or are -

i n 2 parts ( F i g . 5). These features i n d i c a t e l o c a l v a r i a t i o n s i n 

supply of gas to i n d i v i d u a l bubbles, which are surrounded -by "normal" 

bubbles. S i m i l a r bubbles have been observed i n experimental ice-

growth (Carte 1961a), I f more "abnormal" bubbles occurred, i t might 



be i n d i c a t i v e of p o s t - s o l i d i f i c a t i o n break up ( K h e i s i n and Cherepanov 

1969), but t h i s process seems l e s s l i k e l y . The inverse - form of 

bubble, w i t h the filament at the base was never observed, so t h a t wa 

have a u s e f u l 'way-up' i n d i c a t o r f o r f r e e z i n g d i r e c t i o n . 

(d) A l o c a l e f f e e t . o c c u r s where'many c r y s t a l s , terminate at a • 

h o r i z o n t a l band of small bubbles and a l a r g e r number of c r y s t a l s grow 

below, i n d i c a t i n g that c r y s t a l s d i d not grow between bubbles, but ". 

n u c l e a t i o n occurred on the d i s t a l s ide of the band. 

The usual p a t t e r n of type ( c ) , above, returns below. I t i s 

p o s s i b l e that bubble n u c l e a t i o n occurs w i t h i n the l i q u i d or at an 

upward advancing i n t e r f a c e i f i c e i s also.growing upward due to 

f r e e z i n g at the base of the i n t r u s i o n . Such bubbles could become 

detached and r i s e through the l i q u i d to become attached to the upper 

i n t e r f a c e . No samples, ware obtained from the base of the i c i n g mound. 

In the intermediate zone where some bubbles are i n t r a c r y s t a l - . 

li n e , , formation may have been enhanced by small gas bubbles' i n sus­

pension produced during t u r b u l e n t flow up the f r a c t u r e , , or by 

. submic ros cop i c f o r e i g n p a r t i c l e s which have d i f f e r e n t s u rface energies 

and roughnesses from c r y s t a l s u r f a c e s . Howaver, growth i s p a r a l l e l 

to the basal plana, and Knight (1971) found that 0 , the e q u i l i b r i u m 

contact, angle, tends to zero f o r a i r bubbles i n water c o n t a c t i n g tha 

basal plane, so. n u c l e a t i o n would be r e l a t i v e l y easy. • . 

I t has been noted .above•that f i l a m e n t - l i k e growth was sometimes 

i n t e r r u p t e d l o c a l l y before l a r g e r , - c y l i n d r i c a l bubbles developed. 



This i s I n t e r p r e t e d , as i n d i c a t i n g a t r a n s i e n t s t a t e i n which bubble 

diameter increases but c o n d i t i o n s are very c r i t i c a l in-.terms of gas . 

c o n c e n t r a t i o n i n the water and s o l i d i f i c a t i o n r a t e . A change i n 

s o l i d i f i c a t i o n . r a t e may cause e i t h e r a diameter increase or a growth 

stoppage. When the,diameter increases a steady s t a t e may be. a t t a i n e d , 

which gives c y l i n d r i c a l bubbles p a r a l l e l to the f r e e z i n g d i r e c t i o n . 

In comparison w i t h the n o n - r e p r o d u c i b i l i t y of experimental bubble 

growth, i t i s s u r p r i s i n g that bubble c h a r a c t e r i s t i c s are so constant 

i n a given l a y e r i n the i c i n g mound. Vasconcellos and.Beech (1975) 

discussed the development of bubbles i n the ice/water/C02 system and . 

demonstrated that three adjacent bubbles grew: (a) f o r the most p a r t 

i n the t r a n s i e n t s t a t e , w i t h the diameter i n c r e a s i n g , (b) i n i t i a l l y 

t r a n s i e n t , then steady s t a t e , (c) i n steady s t a t e a l l the time. Thus 

i n the same c e l l , the s o l i d i f i c a t i o n r a t e v a r i e d w i t h p o s i t i o n , 

r a t e (a) <_ r a t e (b) -Crate ( c ) . In comparison bubble bands i n the 

i c i n g mound i c e d i s p l a y l i t t l e l a t e r a l v a r i a b i l i t y i n bubble s i z e 

and shape. 

P e t r o f a b r i c diagrams were prepared f o r . a s e r i e s of v e r t i c a l . • 

samples ( F i g . , 8 ) . A s t r o n g l y developed g i r d l e i s e v i d e n t , showing 

c-axes to be p a r a l l e l to the compositional, l a y e r i n g . T his i s charac­

t e r i s t i c of. r a p i d i c e growth i n t o bulk water. 

C r y s t a l s at the contact of i c e w i t h organic matter were not 

measured due to-'.the d i f f i c u l t y of making t h i n s e c t i o n s of i c e con­

t a i n i n g s o l i d i n c l u s i o n s and the. small c r y s t a l s i z e t y p i c a l of the 

c h i l l zone.. However, the uppermost measured c r y s t a l s show a wider 

g i r d l e ( F i g . 8(b)) than succeeding lower s e c t i o n s ( F i g . 8 ( c ) ) . 



Figure 8. 

(a) Tuktoyaktuk mound, 
V e r t i c a l S e c t i o n . 80 c r y s t a l 

(b) Upper 20 c r y s t a l s 

(c) Lower 20 c r y s t a l s 

(d) 70 f r a c t u r e i r i . f i 1. c r y s t a l s 

(e) L i v e r p o o l Bay.mound, 
V e r t i c a l S e c t i o n , 50 c r y s t a l s 
Diagrams i n plane of samples 
c '= compositional l a y e r i n g 
f = f r a c t u r e surfa.ce 
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This i s to be expected.on.the basis of s e l e c t i v e growth of c r y s t a l s .'' 

w i t h b a s a l planes p a r a l l e l to.the f r e e z i n g d i r e c t i o n . . 

F r a c t u r e Zone 

The above p a t t e r n was dis t u r b e d i n the centre of the sample, 

where the bubble l a y e r i n g was i n t e r r u p t e d by a zone of i r r e g u l a r l y 

shaped bubbles of various s i z e s . This zone was obiique to the 

general l a y e r i n g and veered p a r a l l e l to that l a y e r i n g near the top 

of the sample. The upper s e c t i o n s show a te x t u r e s i m i l a r t o t h a t of 

the.previous s e r i e s , but an abrupt change occurs i n the f r a c t u r e 

zone ( F i g . 9 ). Bubble shape v a r i e s c o n s i d e r a b l y , but w i t h a general. 

trend away from the surfaces of the f r a c t u r e zone. T h r e a d - l i k e . 

bubbles are. short (2-3 mm), narrow.(<1 mm), and i n t e r s p e r s e d w i t h 

s p h e r i c a l (1 mm) bubbles. C r y s t a l s i z e v a r i e s w i d e l y , from <3 mm '.' 

to >25 mm long a x i s , i n c o n t r a s t to the previous elongate p a t t e r n . 

C r y s t a l shapes are anhedral w i t h much more complex shapes than i n 

the banded i c e , having s e r r a t i o n s , cusps, and intergrowths. Sub- . 

s t r u c t u r e ( i . e . e x t i n c t i o n v a r i a t i o n ) i s not developed, but a c e l l u ­

l a r m i c r o s t r u c t u r e p a r a l l e l t o - b a s a l planes, as i n sea i c e occurs. 

There i s a tendency toward a. dimensional o r i e n t a t i o n t r e n d i n g i n t o 

the zone ( F i g . 9). 

P e t r o f a b r i c diagrams f o r the zone are shown i n F i g . 8(d), the . 

co n t r a s t w i t h F i g . 8(a) being evident. There i s no h o r i z o n t a l 

g i r d l e p a t t e r n , i n s t e a d c-axes are more, dispersed r e l a t i v e to the 

f r e e z i n g d i r e c t i o n s . 



Figure 9. 

Tuktoyaktuk i c i n g mound, 
Fract u r e i n f i l c r y s t a l s , 
V e r t i c a l S e c t i o n , 80 ram across 

Figure 10a. 

L i v e r p o o l Bay i c i n g mound, 
V e r t i c a l S e c t i o n , contact w i t h 
o v e r l y i n g s o i l . Note c h i l l zone 
elongated c r y s t a l s . 
S e c t i o n 80 mm square. 

Figure 1 0 b . 

L i v e r p o o l Bay i c i n g mound, 
Lower, v e r t i c a l s e c t i o n . 
10 mm g r i d . 1 > 

A l l s e c t i o n s under c r o s s e d p o l a r i z e r s 
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I n t e r p r e t a t i o n . 

The i c i n g mound r e s u l t e d from w a t e r under a r t e s i a n p r e s s u r e a t 

depth moving up a t e n s i o n c r a c k and. i n s e r t i n g , i t s e l f i n t o the. a c t i v e 

l a y e r on the s i d e o f the p i n g o p r o b a b l y i n l a t e autumn o r e a r l y 

w i n t e r . The a c t i v e l a y e r was c o l d , and c o p i o u s n u c l e a t i o n p r o d u c e d 

a c h i l l zone, from.which grew v e r y e l o n g a t e c r y s t a l s . A l t e r n a t i n g 

b u b b l y and b u b b l e - f r e e l a y e r s o c c u r r e g u l a r l y , b u b b l e shape b e i n g . 

cons i s t e n t i n o r i e n t a t i o n , . s i z e and shape w i t h i n i n d i v i d u a l bands. 

F i l a m e n t s o c c u r on t h e upper ends o f e l o n g a t e b u b b l e s , a u s e f u l way-up 

c r i t e r i o n . C - a x i s p r e f e r r e d o r i e n t a t i o n i s o r t h o g o n a l t o • t h e g r o w t h 

d i r e c t i o n . As g r o w t h c o n t i n u e d , . u p d o m i u g o c c u r r e d , f o l d i n g the u p p e r 

l a y e r s . . A l a t e r f r a c t u r e became i n f i l l e d w i t h i c e w i t h m a r k e d l y 

d i f f e r i n g t e x t u r e and p e t r o f a b r i c s . 

The t e x t u r e and p e t r o f a b r i c s o f the f r a c t u r e zone a r e i n t e r p r e t e d 

as i n d i c a t i n g the f r a c t u r e o f the r e g u l a r p a t t e r n , a n d l a t e r i n f i l l i n g . 

Some growth t o o k p l a c e i n l a t t i c e c o n t i n u i t y w i t h p r e v i o u s l y e x i s t i n g 

c r y s t a l s , but n u c l e a t i o n o f new c r y s t a l s a l s o o c c u r r e d ( F i g . 9 ) . Tha 

e l o n g a t e c r y s t a l s a r e o b l i q u e t o t h e p a t t e r n : o f the s u r r o u n d i n g i c e , . . 

and r e f l e c t m u l t i d i r e c t i o n a l growth i n t o a c a v i t y . D i m e n s i o n a l o r i e n ­

t a t i o n i s . . l o c a l l y p a r a l l e l to' f r e e z i n g ' d i r e c t i o n s . A c e l l u l a r ' sub­

s t r u c t u r e i n t h i s i c e s u g g e s t s . a h i g h e r c h e m i c a l c o n t e n t . 

I t i s i n t e r e s t i n g t o compare c r y s t a l g r o w t h i n t h e main mass o f 

tha mound w i t h t h a t i n the f r a c t u r e . . In' the. main mass c r y s t a l s a r e 

v e r y e l o n g a t e p a r a l l e l t o the f r e e z i n g d i r e c t i o n w h i c h changed v e r y 

l i t t l e . I n c o m p a r i s o n the t h e r m a l g r a d i e n t v a r i e d a r o u n d the 
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fracture.; "Thus f o r a columnar g r a i n to s u r v i v e over any great 

distance n e c e s s i t a t e s considerable c u r v a t u r e , due to the p r o g r e s s i v e 

change i n the favoured growth d i r e c t i o n . As the g r a i n ' s c r y s t a l l o -

graphic o r i e n t a t i o n remains constant, the curvature must be generated 

•by l a t e r a l branching. At some stage t h i s may become more d i f f i c u l t 

than the i n i t i a t i o n and growth of a new g r a i n oriented.more s u i t a b l y 

f o r continued growth. . Kence the v a r i a t i o n i n l a t t i c e o r i e n t a t i o n 

i n the p e t r o f a b r i c diagrams. 

The petrology of such mounds has not been di s c u s s e d elsewhere 

i n the l i t e r a t u r e . I t i s apparent that they d i f f e r markedly from 

segregated i c e i n the cases described. The mounds may be temporary, 

depending on the overburden thickness and water supply. 

(b) L i v e r p o o l Bay I c i n g Mound 

F i e l d C h a r a c t e r i s t i c s . 

A second i c i n g mound was found by Dr.. J.R. Mackay i n J u l y 1974. 

I t occurred on the si d e of a pingo (Mackay 19/3a, F i g . 19, Pingo 

No. 15) near L i v e r p o o l Bay, Tuktoyaktuk P e n i n s u l a . The mound was 

2.3 m high. The mechanism of growth i s b e l i e v e d to be the same as 

that of the previous example; water was bubbl i n g up i n a pool i n 

J u l y 1974 (Mackay, personal communication).. The growth p e r i o d i s 

known to have been during or a f t e r the freeze-back of the a c t i v e 

l a y e r i n the wi n t e r 1973-74, as the s i t e was surveyed i n summer 1973, 

and i c e growth took place at the base of the a c t i v e l a y e r . A sample 

of the upper p o r t i o n of the mound i n c l u d i n g p a r t of the overburden 

was c o l l e c t e d by Dr. J.R. Mackay, 
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Ice C h a r a c t e r i s t i c s ' ,'.'•'• 

The contact with the overburden-was.abrupt but hot planar. 

This represented the I n i t i a l contact - i . e . there had been no 

melt-through of the a c t i v e l a y e r at the time of sampling.' There 

were a l s o some t h i n ( < 5 mm) i c e lenses up to 50 mm long in. the 

overburden, which was mainly organic matter w i t h some sediment. 

I n c l u s i o n s of t h i s m a t e r i a l occurred .in the- top 50 mm of the i c e , 

i n p a r t i c l e s from 1 mm to 10 mm i n diameter, decreasing i n concen­

t r a t i o n downwards. The very few bubbles which occurred i n the top 

50 mm tended to be small (< 1 mm), s p h e r i c a l i n t r a i n s , or s l i g h t l y 

elongated. Below and throughout the whole sample was,a p a t t e r n of '-

very i r r e g u l a r s u b - v e r t i c a l l y elongated bubbles, g e n e r a l l y <L_ 25 mm 

long, but a few reached 75 mm.': No s t r u c t u r e s such as f r a c t u r e s were 

observed'.' 

A s e r i e s of v e r t i c a l t h i n s e c t i o n s 'was prepared. The over­

burden at the contact has a low, i c e content, and the contact w i t h 

the i c e i s abrupt and i r r e g u l a r , at two s c a l e s , i . e . sinuous at hand, 

specimen sc a l e ( F i g . 10(a)) and at microscopic s c a l e . Sediment \ 

content, i n the i c e tends to decrease downward from the contact. The 

bubble p a t t e r n d i f f e r s markedly from that In the p r e v i o u s l y discussed 

mound, there being no w e l l developed l a y e r i n g . There, i s a gen e r a l 

increase i n bubble c o n c e n t r a t i o n downwards. Few bubbles occur a t 

: the contact, and below'the' p a t t e r n i s e s s e n t i a l l y random, with 

l o c a l l y higher c o n c e n t r a t i o n s . ..Shapes range from s p h e r i c a l (^ 1 mm), 

to elongate i r r e g u l a r (8 mm long, 3 mm wide) - these bubble charac­

t e r i s t i c s , continue downwards.' A c e l l u l a r s u b s t r u c t u r e increases i n 



c o n c e n t r a t i o n with depth i n the form of a s e r i e s of l o c a l l y p a r a l l e l 

c e l l s , which are probably zones of higher chemical content p a r a l l e l 

to the basal plane. • • 

C r y s t a l C h a r a c t e r i s t i c s 

D i f f e r e n c e s from the previous i c i n g mound, continue i n tex-

t u r a l p r o p e r t i e s . Grain s i z e ranges from <1 mm at the contact 

( F i g . 10(a)) through an intermediate zone (5 mm x 2 mm) to an 

elongate zone (> 55 mm long by 20 to 30 mm wide). T h i s elongate 

c r y s t a l . z o n a extends f o r another 30 mm, some c r y s t a l s exceeding 

80 mm i n length ( F i g . 10(b)). Smaller c r y s t a l s (10 mm x 5 mm) 

occur i n t e r s p e r s e d or i n groups among the l a r g e r . . • .' . 

C r y s t a l shape i s anhedral throughout the sample. In tha 

competitive growth zone at the overburden contact, boundaries l a c k 

strong curvatures or s a r r a t i o n s . The zone of intermediate c r y s t a l s 

contains both v e r t i c a l and h o r i z o n t a l s a r r a t i o n s u n r e l a t e d to 

i n c l u s i o n s . Tha elongated c r y s t a l s have i r r e g u l a r . b o u n d a r i e s 

( F i g . 10(b)). Intergrowth i s demonstrated by r e p e t i t i o n of e x t i n c ­

t i o n angle i n nearby c r y s t a l segments and a l s o by s a r r a t i o n s which 

are mainly h o r i z o n t a l , but. may have secondary promontories., Dimen­

s i o n a l o r i e n t a t i o n i n the two se c t i o n s (Fig.. 1.0a,b) i s -markedly, 

v e r t i c a l , i . e . p a r a l l e l t o the f r e e z i n g d i r e c t i o n . . 

Substructure- i n the form of d i f f e r i n g e x t i n c t i o n bands occurs 

i n tha large columnar, c r y s t a l s , defined by i r r e g u l a r sub-boundaries. 

This type of • .subs t rue ture decreases with depth,- to be replaced- by a 

• c e l l u l a r s u b s t r u c t u r e , small pockats ( C 1 mm) p a r a l l e l i n a given 
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c r y s t a l , i n d i c a t i v e of s a l i n e i n c l u s i o n s . Superimposed on t h i s is-.' 

a tendency to varying e x t i n c t i o n p o s i t i o n . . 

No r e l a t i o n s h i p of bubbles to c r y s t a l c h a r a c t e r i s t i c s e x i s t s 

i n the upper i c e , n e i t h e r s p h e r i c a l nor elongated bubbles being 

p r e f e r r e d l y s i t e d i n c r y s t a l s or on boundaries. F a r t h e r from the 

c o n t a c t , small elongate bubbles are a l i g n e d on sub-boundaries and 

boundaries, w h i l e large i r r e g u l a r bubbles have no apparent r e l a t i o n ­

s h i p to t e x t u r e . Sediment i s mainly at or near to boundaries. 

Two h o r i z o n t a l s e c t i o n s were prepared from the top of the i c e 

body, one. i n the competitive zone and the second 25 mm below. . C r y s t a l 

s i z e changed from 2 mm x 1 mm-to 8 mm x 5 mm i n t h i s d i s t a n c e . 

C r y s t a l shape at the top was anhedral w i t h most boundaries being 

e s s e n t i a l l y s t r a i g h t but w i t h minor s e r r a t i o n s l o c a l l y . . This changed 

below to more s e r r a t e d , complex shapes i n the l a r g e r c r y s t a l s . I n 

.the upper c r y s t a l s , no.subs t r u e t u r e i s apparent, but i n the lower 

s e c t i o n low angle boundaries occur, meeting boundaries i n s e r r a t i o n 

grooves. Dimensional o r i e n t a t i o n i s nowhere w e l l developed. Most 

bubbles occur on g r a i n boundaries, but the c o n c e n t r a t i o n decreases 

downward,- i n the large c r y s t a l zone. 

P e t r o f a b r i c diagrams 'were prepared only f o r the v e r t i c a l 

s e c t i o n s ( F i g . 8 ( e ) ) . The h o r i z o n t a l g i r d l e i s c h a r a c t e r i s t i c of'.., 

r a p i d i c e growth i n bulk water, ra t h e r t h an i n a porous medium. 

I n t e r p r e t a t i o n . . 

The o v e r a l l form and the gross p a t t e r n of c r y s t a l s i z e and 

shape are s i m i l a r i n both i c i n g mounds. I n d e t a i l the second mound 



59 

l a c k s a w e l l developed, bubble l a y e r p a t t e r n , bubble shapes are i r r e g ­

u l a r , g r a i n boundaries have more s e r r a t i o n s , and the c e l l u l a r sub­

s t r u c t u r e i s apparent i n the whole body, compared w i t h i t s occurrence 

i n f r a c t u r e i c e only i n the previous mound. I t appears that the 

melt had higher s o l u t e content which produced the s e r r a t e d p a t t e r n 

and c e l l u l a r s u b s t r u c t u r e - This a l s o c o n t r i b u t e d to the complex . 

bubble shapes. 

Topographic Expression and Ice C h a r a c t e r i s t i c s 

The i c i n g mounds, were not observed i n the f i e l d by the author, 

but d e t a i l e d d e s c r i p t i o n s were s u p p l i e d w i t h the samples by Dr. 

J.R. Mackay (personal communication 1974, 1975). -

- From these d e s c r i p t i o n s and those of other authors (Shumskii 

1964) i t i s apparent that Such mounds may range w i d e l y . i n l a t e r a l 

extent and height. Growth may continue as long as water i s a v a i l a b l e , 

and f r a c t u r e s are common. The mounds thus resemble small pingos. 

The i c e c h a r a c t e r i s t i c s enumerated above demonstrate c l e a r l y 

the d i f f e r e n c e from pingo i c e (discussed i n s e c t i o n 3 ). The e v i ­

dence from i c e petrology i s that i c i n g mound i c e i n the above cases . ; 

i s t y p i c a l of t h e • f r e e z i n g of bulk water, r a t h e r than of segregated 

i c e . •' '. 

3. Pingo Ice 

I n t r o d u c t i o n 

Although very l i m i t e d i n t h e i r s p a t i a l d i s t r i b u t i o n , pingos are. 

dominant geomorphic features and have long a t t r a c t e d a t t e n t i o n . S e v e r a l 
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t h a o r i e s of o r i g i n have been proposed ( P o r s i l d 1938; M i i l l e r 1953; Shumskii 

1964;-Mackay 1962, 1972b, 1972s, 1973a, 1975b;Mackay and Stager 1966b) " 

and a d e t a i l e d understanding of many a s s o c i a t e d phenomena i s now at hand. 

In h i s 1952 paper Mackay a p p l i e d heat conduction theory to the f r e e z i n g 

of a lake b a s i n . i n permafrost with boundary c o n d i t i o n s a p p l i c a b l e to the 

Mackenzie D e l t a - Tuktoyaktuk Peninsula, area. In a d d i t i o n , theory and , 

lab o r a t o r y experimental knowledge of i c e l e n s i n g c o n d i t i o n s was employed . 

to e x p l a i n the v a r i a b l e i c e contents i n exposed pingo cores. This i n i t i a l 

theory of pingo growth has been tested by d e t a i l e d surveys of a c t i v e l y . 

growing pingos, and has been modified to i n c l u d e a r t e s i a n . p r e s s u r e s at the 

base of permafrost, p u l s a t i n g growth, t e n s i o n crack p a t t e r n s and a t e n t a ­

t i v e l i n k between growth r a t e and c l i m a t i c parameters (Mackay 1973a, 1975b). 

Despite these developments, there has been no concomitant advance in.our 

understanding.of the p e t r o l o g i c a l aspects of i c e w i t h i n , t h e cores of . 

pingos. As reviewed p r e v i o u s l y , almost no l a b o r a t o r y c o n t r o l l e d work has 

been performed on i c e growth i n sediment, from a c r y s t a l l o g r a p h i c view­

p o i n t . In p a r t i c u l a r the i n f l u e n c e s of pore water pressure and i n c l u s i o n s 

have not been i n v e s t i g a t e d . . In terms of f i e l d study of core i c e , no 

reports of p e t r o l o g i c a n a l y s i s have appeared, s i n c e 1965. M i i l l e r . (1953) 

compared pingos i n Greenland and.the Mackenzie D e l t a area and inc l u d e d 

some d i s c u s s i o n of c r y s t a l s i z e and shape, but no p e t r o f a b r i c diagrams were 

presented. • . . 

A f i e l d . i n s p e c t i o n of exposed pingo' i c e i n a cave on Richards I s l a n d 

was carried out by, Mackay and Stager (1955b) who.found that: 

The .ice was usually.bubble free. Although c r y s t a l sizes v a r i e d . . . 
from s i t e to. s i t e few were less than o n e - t h i r d of an i n c h across 
and many were 1 inch to 2 inches I n • diameter, 8 inches' being the-' 
largest dimension noted-. worm-like bubble tubes,, as much as 
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0.1 inc h i n diameter and 5 inches long, were sometimes found 
along i n t e r c r y s t a l faces. An examination of many tens of 

.bubbles, from s e v e r a l l o c a l i t i e s , showed a preference f o r two a x i a l 
o r i e n t a t i o n s : the f i r s t was toward the pingo c e n t r e , the second 
toward the outer base (p. 367). 

A d d i t i o n a l l y an u n s p e c i f i e d number of c r y s t a l o p t i c axes was measured i n 

a sample from one i c e l a y e r , and 

.. .• an .estimated 80 per cent of the o p t i c axes w e r e . h o r i z o n t a l . 
and l a y p a r a l l e l to the i c e - c l a y contact; that . i s , the axes 
pointed toward the geometric centre of the pingo (p. 367). 

Thus i t i s apparent that i n t h i s case both the o p t i c axes and elongate 

bubbles x^ere ge n e r a l l y . o r t h o g o n a l to the adjacent sediment, bands, d e s p i t e 

the dip of the l a y e r i n g , and i t seems reasonable to conclude t h a t the 

l i n e a t i o n s represent the f r e e z i n g d i r e c t i o n . 

Shumskii (1964) a l s o considered pingo i c e , and as i s found elsewhere 

i n the Russian l i t e r a t u r e (Sumghin 1940) he r e f e r r e d to i n j e c t i o n ' o f water 

at the f r e e z i n g f r o n t to cause r a p i d f r e e z i n g and u p l i f t . Mackay (1973a, 

p. 1000) discounted i n j e c t i o n ice. as a major f a c t o r i n pingo growth but 

pointed out t h a t . i t may occur temporarily. Thus one aspect of the present 

study i s to determine the mode of growth. . In our d i s c u s s i o n of i c i n g 

mound i c e the c h a r a c t e r i s t i c s of i c e grown from water i n t r u d e d beneath a 

t h i n overburden have been enumerated. Owing to the l a c k of. l a b o r a t o r y and 

f i e l d data on segregation i c e some of the f o l l o w i n g d i s c u s s i o n on growth 

of pingo cores i n terms of segregation or i n j e c t i o n and the i n f l u e n c e of 

heaving and overburden pressure on growth features must be considered 

s p e c u l a t i v e . 

http://that.it
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In the present work, three pingos were s t u d i e d : 

(a) a small pingo, one of a s u i t e s t u d i e d by Mackay (1973a, F i g . 14, 

Pingo No. 11); 

(b) W h i t e f i s h Summit•Pingo; 

. (c) a hollowed-out pingo i n Tuktoyaktuk. 

(a) Pingo'No. 11 (69° 23 'Nv 133° 30 'W) 

A drained lake near Tuktoyaktuk contains three l a r g e growing pingos 

and one s m a l l non-growing pingo (Mackay 1973a, F i g . 14, Pingo No. 11). The 

small pingo ceased to grow as i t was centred near the edge of the former 

lake and permafrost aggradation' cut o f f growth. I t thus provides an 

example of. e a r l y pingo growth which has not been d i s t u r b e d g r e a t l y by 

l a t e r heaving,.although general lake-bottom heave i s o c c u r r i n g . A l s o i t s 

approximate age i s known, so p o s t - s o l i d i f i c a t i o n changes can be dated. 

F i e l d C h a r a c t e r i s t i c s 

• The pingo i s 1.5 m high with.a w e l l developed v e g e t a t i o n cover. 

Two v e r t i c a l cores were- removed, one from the summit and one from 

the s i d e , each core being about 3.1 m long. 1.2 m of i c e - f r e e peat • 

o v e r l i e s 0.8m of a l t e r n a t i n g peat and i c e l a y e r s grading i n t o a 

pure i c e core w i t h a few peat I n c l u s i o n s at the top. Coarse sediment 

u n d e r l i e s the core. 

Ice C h a r a c t e r i s t i c s 

Ice l a y e r s w i t h i n the peat are lens-shaped, the t h i c k e s t are . 

. 20. mm and taper l a t e r a l l y . Ice-peat boundaries are i r r e g u l a r and 

peat i n c l u s i o n s up to .3 mm occur w i t h i n the i c e ( F i g . 11). Otherwise' 



Figura 11. Figure 12. 

Pingo No. 11, V e r t i c a l 
s e c t i o n . Ice lenses 
i n peat. 10 mm g r i d . ' 
Crossed p o l a r i z e r s 

Pingo No. 11, V e r t i c a l 
s e c t i o n . C r y s t a l s i n i c e 
core. 10 mm g r i d . ' 1 

Crossed p o l a r i z e r s 

F i g ure 13. Fractures i n core i c e , Pingo No. 11. 
(a) H o r i z o n t a l s e c t i o n , ( b ) V a r t i c a l s e c t i o n . 

/ 



the i c e i s c l e a r except f o r c y l i n d r i c a l bubbles and s t r i n g s of 

s p h e r i c a l bubbles., arranged v e r t i c a l l y w i t h diameters up to 1 mm 

and lengths of 3 mm. 

C r y s t a l C h a r a c t e r i s t i c s ... 

I n d i v i d u a l c r y s t a l s cross the i c e l a y e r s , and have grown to . 

2 cm v e r t i c a l l y . a n d l a t e r a l l y . Peat i n c l u s i o n s are contained i n 

s i n g l e c r y s t a l s , thus the peat d i d not encourage f u r t h e r c r y s t a l ' 

growth. Elongate bubbles occur both i n c r y s t a l s and on boundaries. 

Grain boundaries, are g e n e r a l l y s t r a i g h t to gently curved, and 

v e r t i c a l , s e r r a t i o n s mark the wedging out of a c r y s t a l by i t s neigh­

bours. . No.pronounced- substructure occurs i n the c r y s t a l s . 

W i t h i n the i c e core, peat i n c l u s i o n s become fewer, and s m a l l e r 

w i t h depth. Here, peat a f f e c t s c r y s t a l shape, boundaries t r e n d i n g 

h o r i z o n t a l l y below peat pockets, but v e r t i c a l l y where peat i s 

absent, which i n d i c a t e s s e l e c t i v e growth at the i m p u r i t y , due to , 

d i f f e r e n t i a l heat flow. Bubbles occur i n v e r t i c a l t r a i n s , d e creasing 

downwards i n s i z e from 2 mm. They occur on or c l o s e to c r y s t a l 

boundaries. 

C r y s t a l s are very.elongated, being greater than 160 mm long 

and.widen downwards to 30-40 mm wide. Shape i s anhedral w i t h curved 

and serrated boundaries. These boundaries have a general trend on 

which are superimposed, d e n d r i t i c shapes ( F i g . 12). 

This p a t t e r n continues f o r 0.3 m depth, where c r y s t a l s are 

s t i l l elongate and narrow, but more complexly intergrown. A l s o some 

grains d i s p l a y a l t e r n a t i n g e x t i n c t i o n . From a depth of 2.3 to 2.8 m. 



the i c e i s " e s s e n t i a l l y i n c l u s i o n - f r e e . C r y s t a l s are anhedral w i t h 

boundary shapes ranging from simple curvature to h i g h l y s e r r a t e d . 

These major s e r r a t i o n s occur on each s i d e of a c r y s t a l at a given 

depth, but become more frequent and l e s s pronounced downwards where 

s e v e r a l c r y s t a l s are wedged but. H o r i z o n t a l s e c t i o n s show c r y s t a l s 

to be anhedral i n that, plane a l s o . These more r e g u l a r c r y s t a l s con­

tinue' downward f o r 0.2 m where more complex shapes occur, c r y s t a l s 

are intergrown and c o n t a i n bands d i f f e r i n g i n e x t i n c t i o n angle by 

s e v e r a l degrees. These r e s u l t from branches of a c r y s t a l growing 

together along a m i s f i t boundary". 

The second core, from the s i d e of the pingo, had the same 

general c h a r a c t e r i s t i c s but w i t h some n e a r l y v e r t i c a l f r a c t u r e s ' 

between depths of 2.05 and 2.33 m. At-2.33-m occurs a 20 mm t h i c k 

peat l a y e r . The lower p e a t - i c e i n t e r f a c e i s . g r a d a t i o n a l , and 

v e r t i c a l , d i s c o n t i n u o u s . t r a i n s of peat fragments descend f o r 120 mm. 

Bubbles are few:; those which do occur are mainly w i t h i n the peat, 

and at the bottom of the i c e core, where a mass of f i n e bubbles gives 

the i c e a milky appearance. 

Fra c t u r e s are approximately v e r t i c a l and are i n d i c a t e d by 

f l a t t e n e d v o i d s , unlike.any bubble ( F i g . 13). I n h o r i z o n t a l s e c t i o n s 

the f r a c t u r e s meet at r i g h t angles. There i s no change i n f r a c t u r e s 

at c r y s t a l boundaries but two. f r a c t u r e s o f t e n meet at such a boundary. 

In v e r t i c a l s e c t i o n s f r a c t u r e s are seen to be sinuous, merge and 

b i f u r c a t e and to terminate upwards or downwards. They do not reach 

to the ground surface and have not been subject to l a t e r a l o f f s e t 

or new c r y s t a l groxvth; however a. small . c r y s t a l grows at a j u n c t i o n of 

two cracks (Fig.'1 3 ) . • 



A change i n texture occurs'at a h o r i z o n t a l peat l a y e r . Small 

c r y s t a l s occur i n the peat, but l a r g e c r y s t a l s grow immediately at 

the lower p e a t - i c e i n t e r f a c e . Such growth of large c r y s t a l s i s 

u n l i k e l y to. be new n u c l e a t i o n , and i n the absence of evidence of 

melt-back of e a r l i e r c r y s t a l s , i t seems l i k e l y that these are h o r i ­

z o n t a l extensions of c r y s t a l s . f r o m beyond the peat layer. which i s 

known to be l a t e r a l l y d i scontinuous. These c r y s t a l s grow competi- '• 

t i v e l y and at the base of the core (3.06 m) there i s only'one c r y s t a l 

i n a t h i n s e c t i o n . .This c r y s t a l has a w e l l developed.substructure 

at the base, associated w i t h a high bubble content. The i n c l u s i o n s 

have given r i s e to t r a i n s of d i s l o c a t i o n s , and a l t e r n a t i n g e x t i n c t i o n 

C r y s t a l dimensional o r i e n t a t i o n Is dominantly v e r t i c a l through­

out, except i n upper lenses where c r y s t a l long axes are c o n t r o l l e d by 

lens shape. C-axis o r i e n t a t i o n s (Fig-. 14) i n these lenses show a .. 

c o n c e n t r a t i o n i n the h o r i z o n t a l , and a d i f f u s e v e r t i c a l grouping . 

( F i g . 14(a)) .. No other c r y s t a l c h a r a c t e r i s t i c s c o r r e l a t e w i t h the 

d i f f e r i n g l a t t i c e o r i e n t a t i o n s . In the i c e core ( F i g . 1 4 ( b ) - ( f ) ) , 

c-axes.tend to l i e i n a h o r i z o n t a l plane., which contains p o i n t 

maxima, c r y s t a l s i n other o r i e n t a t i o n s being wedged out. Thus growth 

has been mainly i n the b a s a l plane. T h i s . p a t t e r n i s i n t e r r u p t e d i n 

the discontinuous peat, l a y e r s , where small c r y s t a l s show more d i s - •• 

persed c-axes, but the c - a x i s h o r i z o n t a l p a t t e r n i s found immediately 

below'the peaty l a y e r . 

I n t e r p r e t a t i o n 

The pingo began to grow between 1950 and "1957 (minimum date 

from w i l l o w s , Mackay 1973a, p. .987) i n a " r e s i d u a l pond" i n a drained 



F i g u r e 14. Pingo No. 11 
(a) v e r t i c a l s e c t i o n , c r y s t a l s i n lenses i n peat, core 
(t>) , (c) , (d) s u c c e s s i v e l y deep v e r t i c a l s e c t i o n s i n core 
(e) H o r i z o n t a l s e c t i o n , lower i c e ; 
( f ) v e r t i c a l s e c t i o n , c r y s t a l s i n peaty l a y e r , core 2. 
Diagrams i n plane of samples • • 



Take. . -Early, growth was. i n the form of lenses w i t h i n peat, below which, 

c r y s t a l c h a r a c t e r i s t i c s suggest growth i n bulk water. The v e r t i c a l 

columnar, shape with h o r i z o n t a l i r r e g u l a r i t i e s and h o r i z o n t a l c-axes 

are t y p i c a l of much growth. . There i s no evidence for' f r e e z i n g upward 

• from the base of t h e , i c e body, so i n t h i s case water was not. i n j e c t e d 

i n t o already f r o z e n m a t e r i a l , r a t h e r bulk water e x i s t e d t e m p o r a r i l y 

at the f r e e z i n g f r o n t . •' .-" 

(b) W h i t e f i s h Summit Pingo (69°23'N, 133°33'W). 

During June 1973 t h i s 16 m high c o a s t a l . p i n g o was s u b j e c t , t o wave 

a t t a c k which exposed the i c e core. Samples were taken as shown i n P i g . 15: 

a s e r i e s i n the upper i c e layer and a second s e r i e s approximately ver­

t i c a l l y through the core. Slumping q u i c k l y , b u r i e d the i c e core.. 

F i e l d C h a r a c t e r i s t i c s .' 

The exposed s t r a t i g r a p h y comprised, from the top down: 

(a) 3.5 m of stoney c l a y , which i s widespread i n . t h e area . 

(B.ampton 1972b) . This i s s t r u c t u r e l e s s i n terms of both 

primary d e p o s i t ! o n a l s t r u c t u r e s and features produced by: 

; f r e e z i n g . No r e t i c u l a t e i c e v e i n s were observed i n 1973. 

An i c e wedge, 1 m long and 50 mm wide at- the shoulder, 

penetrated the top of the pingo; - • . , ' • 

(b) 0.35 m of f i n e .sand d i s p l a y s laminations 3 mm to 50 mm 

. ; • • t h i c k , w i t h pockets of iron's t a i n e d sand; •' 

•(c) i c e core, 3 m thick;'. 

(d) pore i c e ( i n sand) of unknown t h i c k n e s s . 



F i g u r e 16. Dimensional o r i e n t a t i o n , basal, c r y s t a l s , W h i t e f i s h 
.Summit core. 
Diagrams in v e r t i c a l plane c o n t a i n i n g maximum dip of l a y e r i n g 
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• Ice C h a r a c t e r i s t i c s 

The pure i c e par t of the core was 3. m t h i c k , and u n d e r l a i n by f i n e 

sand c o n t a i n i n g some.pore i c e . Tt i s p o s s i b l e that, a f u r t h e r i c e l a y e r , 

u n d e r l i e s the. pore i c e , but was not exposed, and d r i l l i n g was not attempted 

through the frozen sand. However, the. steepness of the compositional 

l a y e r i n g and i c e - i c y sediment contact suggests excess i c e growth at depth. 

The only compositional l a y e r i n g i s determined by bubble content, 

i n terms of the presence or absence of bubbles and t h e i r s i z e and shape. 

The lay e r s are approximately p a r a l l e l to the upper surface, of the core 

and to the i n t e r f a c e w i t h the underlying sediment-rich i c e . Very l i t t l e 

sediment occurs i n the upper banded ice.. 

Bubble C h a r a c t e r i s t i c s .-. 

Few bubbles occur i n the upper part of the core. They are appar­

ently, randomly p o s i t i o n e d , and s p h e r i c a l , 1 mm i n diameter or s l i g h t l y 

elongated p a r a l l e l to the banding. Minor f r a c t u r e s a s s o c i a t e d w i t h the 

u p l i f t of the core have t h e i r p o s i t i o n s i n d i c a t e d by bubbles^and voids i n 

s u b v e r t i c a l t r a i n s . 

A d d i t i o n a l l y a 90 mm zone of melt f i g u r e s was observed i n the i c e 

at the slump su r f a c e , and p a r a l l e l to that surface. The high concen­

t r a t i o n of f i g u r e s w i t h i n c r y s t a l s contrasted s t r o n g l y w i t h the adjacent 

bubble-poor i c e where the few.bubbles were m a i n l y on c r y s t a l boundaries. 

Many figures' were l i n k e d by i n t e r - c r y s t a l l i n e . threads, i n d i c a t i n g - a m a l t i n g ' 

o r i g i n . '..-..•• 



One- meter above the pore-ice begin zones of higher bubble content. 

A zone of large bubbles, o v e r l i e s a zone of small bubbles, the. boundary, 

being abrupt.' Bubbles i n the upper zone are more widely, separate and 

vary i n shape: ( i ) elongate bubbles are orthogonal to the banding, 

but are not simple c y l i n d e r s . Upper ends are o f t e n p o i n t e d , i n c o n t r a s t 

to the lower ends. Bulbous and in v e r t e d U shapes are common. These e l o n ­

gate, bubbles range up to 15.mm i n length. The r e t e n t i o n of. these bubble 

shapes suggests that no strong deformation^of the i c e has taken p l a c e ; 

( i i ) s p h e r i c a l shapes are r a r e , occur i n groups, and are l e s s , than 1 mm 

i n diameter; ( i i i ) f l a t t e n e d f i g u r e s occur, u s u a l l y l e s s than 2 mm i n 

diameter. These are confined to the slump s u r f a c e , which suggests they 

are melt f i g u r e s , although s i m i l a r f i g u r e s were reported by M u l l e r (1963) 

i n deeper i c e . Bubble s i z e i n the small bubble zone i s r e s t r i c t e d to 

3 mm, s p h e r i c a l bubbles do not exceed 1 mm diameter. 

Closer to the contact .with the sediment-rich i c e , bubble s i z e 

g e n e r a l l y decreases. Worm bubbles decrease to 5 mm.in l e n g t h , 0.5 mm 

diameter, s p h e r i c a l are le s s than 0.3 mm. 

C r y s t a l C h a r a c t e r i s t i c s 

C r y s t a l s i z e i s s t r o n g l y r e l a t e d to bubble content. As bubble 
• 2 

content increases w i t h depth, so c r y s t a l s i z e decreases from 630 T 40 mm 
'' 4. 2 

at the top of the core to 120 i 20 mm at the base. L o c a l l y bubble bands 

occur in.the upper i c e , w i t h a s s o c i a t e d small c r y s t a l s . The ge n e r a l , 

r e l a t i o n s h i p of c r y s t a l s i z e and bubble content and the presence of . 

sediment-rich i c e at depth i n d i c a t e s an increase in. f r e e z i n g r a t e w i t h 

depth, r e l a t i v e to rate of water supply. 



Considering. c r y s t a l shape, i t i s found that small c r y s t a l s tend 

toward an equigranular shape w i t h no strong curvatures or embayments, 

wh i l e large c r y s t a l s . a r e more i r r e g u l a r with deep embayments and m u l t i p l e 

curvatures. S t r a i g h t compromise boundaries are r a r e . S t r a i n ' shadows 

occur throughout the i c e body, but i n l e s s than 307o of the c r y s t a l s . . 

C r y s t a l dimensional o r i e n t a t i o n i s orthogonal to the l a y e r i n g at the base 

of the i c e body ( F i g . 16) and becomes more n e a r l y . p a r a l l e l to tha l a y e r i n 

near the top. 

Bubble p o s i t i o n s r e l a t i v e to c r y s t a l s are such that the m a j o r i t y 

occur on c r y s t a l boundaries, although near tha slump surface a zone, of 

melt fi g u r e s , occurs p a r a l l e l to that surface, the included f i g u r e s being 

p a r a l l e l i n an i n d i v i d u a l c r y s t a l . This feature and the presence of 

threads l i n k i n g some f i g u r e s i n d i c a t e a m e l t i n g o r i g i n . 

The p r e f e r r e d dimensional o r i e n t a t i o n of elongate bubbles at the 

base of the i c e body i s p a r a l l e l to that of c r y s t a l s , , and orthogonal t o 

the compositional l a y e r i n g . This .indicates the heat flow d i r e c t i o n 

during growth, and that no changa i n the patterns has occurred s i n c e 

growth, i . e . no major flow has occurred to produce a c r y s t a l dimensional 

o r i e n t a t i o n p a r a l l e l , to the l a y e r i n g , as occurred i n the i n v o l u t e d h i l l 

ice,- • 

Many minor f r a c t u r e s are recognized i n the i c e core, thasa are both 

i n t e r g r a n u l a r and i n t r a g r a n u l a r . No new c r y s t a l growth i s presant, but 

voids occur which are f r e q u e n t l y f l a t and orthogonal to the f r a c t u r e 

s u r f a c e . 
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•Petrofabric diagrams f o r samples around the top of the core and 

i n a v e r t i c a l s e r i e s are shown i n Figure 17(a)-(o). Because of great 

v a r i a b i l i t y , each t h i n s e c t i o n i s given s e p a r a t e l y : (a)-(g) are from' 

the upper l a y e r , (h).-(j) from 1.5 m depth, (k)-(m) from 3.0 m depth, and 

(n ) , (o) from 4.5 m.. The tendency i s f o r c-axis o r i e n t a t i o n s to be more 

concentrated w i t h depth i n t o a g i r d l e p a r a l l e l to the compositional 

l a y e r i n g . , The c-axis p a t t e r n i s not t y p i c a l of segregated i c e i n exper­

i m e n t a l l y grown lenses (Penner 1961, Ka p l a r , personal communication 1974) 

or i n other large pingos (see Tuktoyaktuk pingo, next s e c t i o n ) or i n v o l u t e d 

h i l l i c e . The g i r d l e , patterns occur i n the zones of bubbly i c e which . 

have smaller but elongate c r y s t a l s , r a t h e r than columnar c r y s t a l s as was 

the case i n i c i n g mounds, and Pingo No. 11. 

I n t e r p r e t a t i o n 

The compositional l a y e r i n g throughout the i c e body was p a r a l l e l 

to the f r e e z i n g f r o n t at the time of growth. C r y s t a l s and bubbles near 

the base of the i c e core have a dimensional p r e f e r r e d o r i e n t a t i o n orthog­

onal to the l a y e r i n g which i n d i c a t e s that no major flow has occurred, 

a c o n c l u s i o n which i s supported by the l a t t i c e o r i e n t a t i o n s which have 

c-axes p a r a l l e l to the l a y e r i n g . Higher up the i c e body the dimensional 

o r i e n t a t i o n s are l e s s w e l l pronounced and c-axas are more d i s p e r s e d , 

which' c o n t r a s t s w i t h the i n v o l u t e d h i l l , , where more u p l i f t has occurred, 

and basal planes are p a r a l l e l to the compositional l a y e r i n g . - In the 

e a r l y growth stage, f r e e z i n g xvas slow, as i n d i c a t e d by the low bubble 

content and large c r y s t a l s i z e . An increase i n f r e e z i n g r a t e i s i n d i c a t e d 

by successively:.' i c e c o n t a i n i n g large bubbles orthogonal to; the banding 



F i g u r e 1 7 . 
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Figure 17 (cont 1d) 

I 



F i g u r e 17. 

(a)-(g) sections i n upper i c e l a y e r ; 

( h ) - ( j ) s e c t i o n s from 1.5 m depth; 

(k)-(m) sec t i o n s from 3.0 m depth; 

(n) j (o) sections from 4.5 m depth.. 
• c = compositional l a y e r i n g ' 
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w i t h smaller c r y s t a l s than the bubble-poor ice,, then i c e c o n t a i n i n g small, 

bubbles, then pore i c e . L a t t i c e o r i e n t a t i o n s provide a d d i t i o n a l evidence, 

the lower i c e c o n t a i n i n g c r y s t a l s with c-axes p a r a l l e l to the banding. 

Such an increase i n f r e e z i n g r a t e could be produced by u p l i f t of the lake : 

bottom and exposure to c o l d a i r temperatures. 

(c) Tuktoyaktuk Pingo 

This i s lower and broader than W h i t e f i s h Summit Pingo, and appears 

o l d e r , judging by the surrounding polygon p a t t e r n . I t . i s one of a group 

of three i n the Tuktoyaktuk hamlet area. The pingo,has been excavated to 

expose the core which comprises segregated i c e and pore i c e . The s t r a ­

tigraphy i n the core was discussed by Rampton and Mackay (1971) and.is 

summarized here. Pond s i l t contains i c e lenses and peat l a y e r s , and i s 

penetrated by i c e wedges. Below tha s i l t i s sandy g r a v e l which o v e r l i e s 

the pingo core. Nowhere do wedges penetrate the pingo i c e , which comprises 

a l t e r n a t i n g l a y e r s of i c e and sandy i c e . Rampton and Mackay (1971) r e f e r , 

to normal f a u l t i n g which occurred during u p l i f t of the pingo - s i m i l a r 

f a u l t s have been reported i n other pingos (Mackay and Stager 1956b). I n 

Tuktoyaktuk pingo the f a u l t can be traced on aach face of the c e l l a r , and 

the pingo core i s upthrown r e l a t i v e to the g r a v e l overburden, on a f a u l t 

plane d i p p i n g ca. 70°. 

Ice C h a r a c t e r i s t i c s 

The core c o n t r a s t s g r e a t l y with that of W h i t e f i s h Summit Pingo. 

Bubbles are very r a r e , and the compositional banding i s determined by 

sediment content ( F i g . 18(a)., (b)) C l a y . p e l l e t s up to 4 mm i n diameter 
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occur i n discontinuous l a y e r s , more f r e q u e n t l y sediment bands are of sand 

grade which continue l a t e r a l l y for many metres, i n d i c a t i n g the r e g u l a r i t y 

of the system. The bands are t y p i c a l l y up to. 10 mm t h i c k , separated by 

20-50 mm of sediment-poor i c e . These la y e r s are not p l anar but have l o c a l 

i r r e g u l a r i t i e s with v e r t i c a l symmetry planes. 

C r y s t a l C h a r a c t e r i s t i c s 

C r y s t a l shape c h a r a c t e r i s t i c s were s t u d i e d i n v e r t i c a l and hor­

i z o n t a l s e c t i o n s , i . e . orthogonal and p a r a l l e l to c o m p o s i t i o nal l a y e r i n g , 

and were found tb vary w i t h c r y s t a l s i z e and p o s i t i o n r e l a t i v e to sediment 

bands. 

.Large c r y s t a l s are anhedral w i t h sinuous mutual c o n t a c t s ; boundaries 

w i t h s m a l l e r c r y s t a l s are s t r o n g l y embayed, i n d i v i d u a l segments being 

s l i g h t l y curved or s t r a i g h t . Mutual boundaries of s m a l l c r y s t a l s are ; 

u s u a l l y s t r a i g h t and give polygonal shapes. The small c r y s t a l s have no 

pronounced substructure but embay large c r y s t a l s along t h e i r sub-boundaries. 

Near sediment bands shapes of a l l g r a i n s i z e s change such that boundaries 

approach the bands at r i g h t angles. 

C r y s t a l s i z e s are tabulated i n Table 2, o m i t t i n g c r y s t a l s w i t h i n 

sediment bands. Average s i z e s are f a i r l y c o n s i s t e n t throughout, f o r 
9 9 

both s e c t i o n o r i e n t a t i o n s , ranging from 47 mm- to 79 mm-. However there 
9 

e x i s t s a recognizable range i n s i z e w i t h i n a given s e c t i o n , from > 100 mm-
• 2 

to <.10 mm . Size f a l l s a r u r t h e r order of magnitude i n sediment l a y e r s . 



30 

Substructure i s confined to l a r g e r grains which have been embayed 

by small c r y s t a l s l a c k i n g .substructure.. This suggests the s u b s t r u c t u r e 

developed before formation of the small c r y s t a l s . P e t r o f a b r i c a n a l y s i s 

shows that the.small and large grains do not have markedly d i f f e r e n t 

l a t t i c e o r i e n t a t i o n s , i n d i c a t i n g that the small grains may.have formed 

by p o l y g o n i z a t i o n of large s t r a i n e d grains.. 

Dimensional o r i e n t a t i o n diagrams do not e x h i b i t s i n g l e maxima 

( F i g . 19). V e r t i c a l t h i n s e c t i o n s c o n t a i n v e r t i c a l c o n c e n t r a t i o n s i n 

c r y s t a l s away from sediment bands and h o r i z o n t a l concentrations, adjacent 

t o sediment. H o r i z o n t a l s e c t i o n s are dominated by long axes p a r a l l e l 

to the s t r i k e of sediment bands. . Thus sediment content p l a y s a major 

r o l e i n determining dimensional o r i e n t a t i o n . 

Optic a x i s o r i e n t a t i o n s are shown i n Figures 20, 21; F i g u r e 20 

r e p r e s e n t s . s e c t i o n s p a r a l l e l to the compositional l a y e r i n g and Figure 21 

represents orthogonal s e c t i o n s . Figure 20(a) and (b) a r e from adjacent, 

t h i n s e c t i o n s , (a) i s 25 mm above ( b ) ; (a) shows a more d i f f u s e p a t t e r n 

than ( b ) , but there i s a tendency toward a c o n c e n t r a t i o n approximately 

orthogonal to the l a y e r i n g . Component diagrams have been prepared on 

the b a s i s of presence or absence of sub-boundaries ( F i g . 2 0 ( c ) , ( d ) ) and 

c r y s t a l s i z e ( F i g . 2 0 ( e ) , ( f ) ) . The diagrams are e s s e n t i a l l y s i m i l a r , 

a l l are d i f f u s e s i n g l e maxima, but tha c r y s t a l s w i t h sub-boundaries are 

s l i g h t l y more concentrated than those without sub-boundaries and the l a r g e 

c r y s t a l s are less s c a t t e r e d than the s m a l l . Sub-boundaries i n d i c a t e 

basal.plane s l i p and the small c r y s t a l s represent break-up of l a r g e r 

g r a i n s . 



Figure 19. C r y s t a l dimensional o r i e n t a t i o n , Tuktoyaktuk Pingo, 

(a)-(c) h o r i z o n t a l sections; 
(d)-(f)' v e r t i c a l sections. 

., TABLE I I 
C r y s t a l S i z e , Tuktoyaktuk Pingo 

2 
S e c t i o n O r i e n t a t i o n C r y s t a l S i z e , mm 

V e r t i c a l 

100 cr ys t a l s 53 
119 cr y s t a l s 63 
114 cr y s t a l s 79 

97 cr ys t a l s .'• 47 
105 cr ys t a l s 55 
114 c r •ystals. 67 
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Figure.20. 



Figure 20 (cont'd) 
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C 



F i g u r e 20. Tuktoyaktuk Pingo. 

(a),(b) h o r i z o n t a l s e c t i o n s 
(c) c r y s t a l s without sub-boundaries 
(d) c r y s t a l s w i t h sub-boundaries 
(e) l a r g e c r y s t a l s 
( f ) s m a l l c r y s t a l s 
(g) h o r i z o n t a l s e c t i o n 
(h) s m all c r y s t a l s . 
( i ) l a r g e c r y s t a l s 
( j ) c r y s t a l s without sub-boundaries 
(k) c r y s t a l s w i t h sub-boundaries 
( 1 ) c r y s t a l s w i t h dimensional o r i e n t a t i o n normal to l a y e r i n g , 
(m) c r y s t a l s w i t h dimensional o r i e n t a t i o n at 4 5 . to l a y e r i n g 
(n) . c r y s t a l s w i t h dimensional o r i e n t a t i o n p a r a l l e l to l a y e r i n g . 

c = compositional l a y e r i n g 



Figure 2 1 . 
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Figure 21 (cont'd)• . 

1_. I 
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Figure 21 (cont'd) 



gure 21. Tuktoyaktuk Pingo P e t r o f a b r i c s . 

( a ) , ( b ) , ( c ) V e r t i c a l s e c t i o n s 

(d) 73 c r y s t a l s w i t h at l e a s t one s t r a i g h t side 

Ce) 67 c r y s t a l s w i t h no s t r a i g h t sides • 

( f ) 86 c r y s t a l s away from sediment bands 

(g) 64 c r y s t a l s adjacent to sediment, bands 

Ch) 73 c r y s t a l s w i t h sub-boundaries . 

( i ) 78 c r y s t a l s without sub-boundaries 

( j ) 58 c r y s t a l s w i t h long axes greater than 10 mm 

(k) 25 c r y s t a l s w i t h long axes l e s s than 6 mm 

CD 44 c r y s t a l s w i t h l e s s than 6 sides 

(m) 72 c r y s t a l s w i t h more than 6 sides 

Cn) 33 c r y s t a l s w i t h 6 sides 

Co) 31 c r y s t a l s w i t h 40" dimensional o r i e n t a t i o n 

CP) 37 c r y s t a l s w i t h 90° dimensional o r i e n t a t i o n 

(q) 24 c r y s t a l s w i t h 0° dimensional o r i e n t a t i o n 

Cr) 59 
or i 

c r y s t a l s 
Lentation 

w i t h other than 40° , 90° , 0° dimensional 

c = compositional l a y e r i n g 
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. -Figure . 20(g) represents another .section approximately p a r a l l e l 

to the compositional l a y e r i n g (sketched i n F i g . 18), and Fi g u r e 20(h)-. 

(n) are component diagrams. Again there occurs a major c-a x i s concen­

t r a t i o n orthogonal to the l a y e r i n g , but w i t h minor maxima a l s o . In the 

component diagrams, Figure 20(k) i n d i c a t e s that c r y s t a l s with sub-boundaries 

have a stronger c o n c e n t r a t i o n orthogonal to the l a y e r i n g than other c r y s ­

t a l s , w h i c h suggests these c r y s t a l s are p r e f e r r e d l y o r i e n t e d f o r b a s a l 

g l i d e . 

F i g u r e 21(a)-(c) represent a v e r t i c a l t h i n s e c t i o n , and. component 

diagrams are shown i n Figure 2 1 ( d ) - ( r ) . The general p a t t e r n i s f o r a. 

maximum at 60° to the l a y e r i n g , contained i n a g i r d l e orthogonal t o the 

l a y e r i n g . The component diagrams show no major .difference, although the 

co n c e n t r a t i o n maximum Is more pronounced i n c r y s t a l s w i t h sediment i n 

t h e i r g r a i n boundaries ( F i g . 21(g)) and the g i r d l e p a t t e r n i s b e t t e r 

developed, i n . o t h e r c r y s t a l s ( F i g . 2 1 ( f ) ) . In terms of c r y s t a l shape, 

F i g u r e 21(d) shows c r y s t a l s w i t h at .least'one s t r a i g h t s i d e ; the. p a t t e r n 

does not d i f f e r s u b s t a n t i a l l y from Figure 21(e). which represents c r y s t a l s 

having a l l sides curved. The r e l a t i o n s h i p between number of sides i n . 

c r y s t a l s and t h e i r c - a x i s . o r i e n t a t i o n was a l s o i n v e s t i g a t e d . . The r e s u l t i n g 

diagrams f o r n <6,. n> 5 and n = 6, where n = number' of. s i d e s , are shown i n 

Fig u r e 2 1 ( o ) - ( r ) ) . Figure 22(a) and (b) represent c r y s t a l s i n a v e r t i c a l 

s e c t i o n adjacent to that of Figure 21. The c-axis p a t t e r n d i f f e r s sub­

s t a n t i a l l y from Figure 21, many c-axes being c l o s e to the compositional 

l a y e r i n g . This i s a l s o evident in Figure 22(g) and (h) which represent 

v e r t i c a l s e c t i o n s , Hera the compositional l a y e r i n g i s l o c a l l y v a r i a b l e 

i n t hickness and o r i e n t a t i o n of which, an approximation i s shown i n the 



Figure 22. 



Figure 22. Tuktoyaktuk Pingo.. 

(a),(b) v e r t i c a l s e c t i o n s 

(c) 59 c r y s t a l s w i t h sub-boundaries 

(d) 39 c r y s t a l s without sub-boundaries 

(e) . "'32 small c r y s t a l s 

( f ) 29 large c r y s t a l s ., 

(g) v e r t i c a l s e c t i o n , 76 c r y s t a l s : 

(h) v e r t i c a l s e c t i o n , 78 c r y s t a l s 

c = composit i o r i a l . layering. 
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f i g u r e s . Thus there i s considerable v a r i a b i l i t y of o p t i c a x i s o r i e n t a t i o n s , 

i n adjacent s e c t i o n s , and patterns cannot be r e l a t e d s y s t e m a t i c a l l y to 

c r e n u l a t i o n s i n compositional l a y e r i n g s . 

I n t e r p r e t a t i o n • 

Tuktoyaktuk pingo core i s c h a r a c t e r i z e d by a l t e r n a t i n g l a y e r s of 

pore i c e and segregated i c e ; bubbles are almost completely absent. Thus 

growth c o n d i t i o n s d i f f e r e d s u b s t a n t i a l l y from those of W h i t e f i s h Summit 

Pingo, and Tuktoyaktuk Pingo i s a r e s u l t of both segregated and pore i c e 

growth. The l a y e r s of. pore i c e are up to 25 mm t h i c k and the segregated, 

i c e l a y e r s reach 100 mm. Layers are t r a c e a b l e l a t e r a l l y f o r s e v e r a l 

meters, and,are f a i r l y constant i n t h i c k n e s s . 

Despite the o v e r a l l symmetry of the mesdscopic fea t u r e s of the c o re, 

p e t r o f a b r i c diagrams show a range of p a t t e r n s from s i n g l e maxima orthogonal 

to the l a y e r i n g ( F i g . 20(b)) to g i r d l e s p a r a l l e l , to the l a y e r i n g ( F i g . 22 

( g ) , ( h ) ) . These v a r i a t i o n s occur over short l a t e r a l and v e r t i c a l d i s t a n c e s ; 

o f t e n the t h i n s e c t i o n s are from the same specimen, so there i s no pos­

s i b i l i t y of mistake i n tha o r i e n t a t i o n of the s e c t i o n s . L i t t l e heave has 

occurred compared w i t h the i n v o l u t e d h i l l and there i s no evidence of. 

s u b s t a n t i a l flow i n tha body, although b a s a l plane s l i p and deformation 

band development have occurred, i n d i c a t i n g that any flow was concentrated 

i n i c e l a y e r s r a t h e r than i n pore i c e . However, t h i s does hot e x p l a i n 

the l o c a l v a r i a b i l i t y i n p e t r o f a b r i c s . . In terms of o r i g i n a l growth con­

d i t i o n s , the a l t e r n a t i n g segregated and pore i c e l a y e r s i n d i c a t e v a r i a t i o n s , 

i n water supply and pore water pressure.-' 



Figure 23. Summary p e t r o f a b r i c diagrams, Tuktoyaktuk Pingo 

(a) Summary diagram of Figures ,20,. 21. 

(b) Summary diagram of Figure 22(a), ( b ) , ( g ) , ( h ) . 



Conclus ion 

The three pingos discussed represent three d i f f e r e n t stages i n -. 

Mackay's. (1973a) c l a s s i f i c a t i o n . Pingo No. 11 i s i n d i c a t i v e of a tempo­

r a r y , e a r l y growth stage i n bulk water, and d i s p l a y s some s i m i l a r i t y to an 

i c i n g mound. A change i n growth co n d i t i o n s was recognized i n W h i t e f i s h 

Summit Pingo, r e l a t e d to u p l i f t of the lake bottom, w i t h growth of segre­

gated i c e . In Tuktoyaktuk Pingo a f u r t h e r stage was shown by a l t e r n a t i n g 

segregated and pore i c e . In a d d i t i o n to d i f f e r e n c e s i n s i z e , shape and 

i n c l u s i o n patterns i n the three pingos, i t was found that there were 

r e l a t e d c r y s t a l c h a r a c t e r i s t i c s , although not a l l p e t r o f a b r i c diagrams 

could be exp l a i n e d . 

Involuted H i l l Ice . .. 

I n t r o d u c t i o n • 

The term -"Involuted h i l l " was a p p l i e d by Mackay (19S3,. p. 138) to 

extensive ice-cored h i l l s w i t h f l a t tops. A notable f e a t u r e i s the pre­

sence of steep ridges which are fr e q u e n t l y l a t e r a l , or cross the tops. . 

The h i l l s are abundant near Tuktoyaktuk. 

• F i e l d C h a r a c t e r i s t i c s 

The surface form of the h i l l s has been discussed by Mackay (1963, 

1973b) and a g r a v i t y p r o f i l e of one such h i l l was presented by Rampton 

and Walcott (1974). The i n t e r n a l s t r u c t u r e has been recorded from c o a s t a l 

and.Inland slumps (Mackay 1973b; Rampton and Mackay 1971) and a G e o l o g i c a l 



Survey of Canada d r i l l i n g p r o j e c t ( S c o t t , personal communication 1974). 

C h a r a c t e r i s t i c a l l y 1-10 m of stoney c l a y c o n t a i n i n g a r e t i c u l a t e i c e - v e i n 

system o v e r l i e s an i c e core, w i t h sand at depth. Observations of s e v e r a l 

h i l l s show that, surface ridges are u n d e r l a i n by r i s e s i n the. i c e core. 

Generally the r e t i c u l a t e i c e veins are orthogonal and p a r a l l e l to the 

upper surface of the massive i c e . Mackay (1974b) argues that the i c e 

veins formed i n the c l a y during downward f r e e z i n g , and the massive i c e 

core grew by a. segregation process and that sand below the cores s u p p l i e d 

the water necessary f o r core growth. The cores may reach 25 m i n t h i c k n e s s , 

but d r i l l i n g i n a number of h i l l s has shown t h i n discontinuous g r a v e l , 

sand and c l a y l a y e r s . , In t h i s study xje discuss only one h i l l , 5 km south-, 

west of Tuktoyaktuk. 

The presence of compositional l a y e r i n g i n the core was pointed but 

by Mackay (1963) to c o n s i s t of a l t e r n a t i n g : l a y e r s of c l e a r and bubbly i c e , 

and o c c a s i o n a l sediment-rich i c e . The l a y e r i n g at the top i s approximately 

p a r a l l e l to the upper i c e s u r f a c e , and becomes h o r i z o n t a l at depth. Ver­

t i c a l f r a c t u r e s . a r e present i n the massive i c e , and some i c e wedges pene­

t r a t e through the stoney c l a y overburden i n t o the core. 

Co a s t a l e r o s i o n has removed a major s e c t i o n of the h i l l ; t o t a l 

r e t r e a t i n the period s i n c e 1935 a i r photography has heeni> 240 m. This 

r e t r e a t has produced steep i c e c l i f f s , and has added to the creep process. 

Sampling was c a r r i e d out at. s i t e s where creep was minimal: (a) an 

a r t i f i c i a l p i t on the landward side of the h i l l ; (b) exposures away from 

c l i f f s . 

The presence of a n t i c l i n a l f o l d s i n the l a y e r i n g of the i c e core 

has been pointed out; l o c a l l y these f o l d s are. penetrated by i c e wedges., 
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The sampling plan was as f o l l o w s : ' ( i ) by c o r i n g front -'the exposed top of , 

the massive i c e , ( i i ) by c o r i n g from a p i t , ( i i i ) by sampling round a f o l d 

beneath a surface r i d g e , ( i v ) by sampling along the limb of- an a n t i c l i n e 

adjacent to a wedge. The. i n t e n t i o n was to demonstrate (a) any changes i n 

s t r u c t u r e , p e t r o f a b r i c s and t e x t u r e through the h i l l . , i n d i c a t i v e of growth 

mechanisms and subsequent deformation a s s o c i a t e d w i t h heave and g r a v i t y 

creep, (b) 1 the f o l d i n g mechanism beneath " i n v o l u t i o n s " (c) the i n f l u e n c e 

of wedge growth on the p e t r o f a b r i c s and. texture i n such a f o l d , (d) the 

c h a r a c t e r i s t i c s of thermal c o n t r a c t i o n cracks i n massive ice,, and t h e i r , 

mode of i n f i l . ' . 

(a) V e r t i c a l i c e cores  

I n t r o d u c t i o n 

A SIPRE corer was used to o b t a i n v e r t i c a l cores ( i ) at the. top of 

the h i l l , ( i i ) a t . s e a - l e v e l . Thus the p r o f i l e s obtained have a h o r i z o n t a l 

o f f s e t . The c o r i n g s i t e s were chosen.near exposed c l i f f s where l i t t l e 

f o l d i n g was observed, thus the core i s thought to represent r e l a t i v e l y , 

undisturbed i c e . Exposures on various parts of the h i l l d i s p l a y the 

r e t i c u l a t e v e i n i c e system w i t h i n the stoney c l a y overburden, the veins 

are approximately normal and p a r a l l e l to. the c o n t a c t . w i t h the u n d e r l y i n g 

ice.. Those, n e a r l y orthogonal to the contact dominate. 

Ice C h a r a c t e r i s t i c s 

A 3.3 m s e c t i o n of the upper core i s shown s c h e m a t i c a l l y i n F i g u r e 

24. The a l t e r n a t i n g bubbly/non-bubbly l a y e r i n g and sediment bands are 

apparent. Bubbles w i t h i n a given, band vary i n s i z e and shape, ranging up 
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Figure 25. Probable downward t r a n s i t i o n s from one i c e type to the. next: 
A = c l e a r i c e , .Bj_ •= small bubbles, B£ = medium bubbles, 
S3 = l a r g e bubbles, C = c l a y , D = sand. 



98 

to 10 mm.long. The l a y e r s are shown as h o r i z o n t a l , although a s l i g h t . 

dip was present.. I t i s evident chat the upper i c e has been'^subject to 

c o n s i d e r a b l e u p l i f t , at l e a s t 15 m (the thickness of the i c e core) and 

l o c a l l y d i f f e r e n t i a l u p l i f t ( f o l d i n g ) . A d d i t i o n a l l y i t i s to be expected 

that some creep under, g r a v i t y has occurred, and v a r y i n g thermal g r a d i e n t s 

have.been imposed. Thus some m o d i f i c a t i o n of the o r i g i n a l growth forms 

of the bubbles may have occurred. From F i g u r e 24 we see that elongated 

bubbles are orthogonal to the c o n t a i n i n g l a y e r s d e s p i t e the dip of those 

l a y e r s . Thus they have not been rot a t e d p a r a l l e l to the l a y e r i n g , or to 

the f o l d a x i a l s u r face. 

Sediment occurs as c l a y p e l l e t s and t h i n sand l a y e r s ; the two types 

occur s e p a r a t e l y . These bands are much narrower and f r e q u e n t l y l e s s 

extensive l a t e r a l l y (where exposed)' than the bubble bands. 

Banding P a t t e r n 

. . The sequence of l a y e r i n g i n terms of bubble and sediment content 

i s i n v e s t i g a t e d by recording, the frequency of t r a n s i t i o n s from one type 

of l a y e r t o the next and p r e p a r i n g a downward t r a n s i t i o n p r o b a b i l i t y 

m a trix. Probable t r a n s i t i o n s are shown i n F igure 25, suggesting that 

i n some cases s e v e r a l p o s s i b i l i t i e s are almost e q u a l l y l i k e l y , e.g. from 

medium bubbles to e i t h e r c l e a r i c e or large bubbles or c l a y , whereas i n 

other cases one t r a n s i t i o n i s more probable, e.g. c l a y to c l e a r i c e . Some 

probable sequences are c l e a r . i c e to c l a y to c l e a r i c e , c l e a r i c e to s m a l l 

bubbles to c l a y to c l e a r i c e , e t c . In terms of f r e e z i n g c o n d i t i o n s i t 

. i s apparent that there, i s no simple p a t t e r n , i n l a y e r i n g s and thus no • 

r e c o g n i z a b l e p a t t e r n i n sediment or gas i n c l u s i o n pr r e j e c t i o n f o r the 



given sample. Generally the i n c l u s i o n of sediment i n d i c a t e s lower pore 

water pressure. t • 

C r y s t a l C h a r a c t e r i s t i c s 

Tha compositional l a y e r i n g s of c l e a r i c e , bubbly i c e and sediment-

r i c h , i c e each have r e l a t e d c r y s t a l s i z e s . The l a r g e s t c r y s t a l s occur i n 

the c l e a r i c e , intermediate s i z e s i n the. bubbly i c e , and the s m a l l e s t 

i n the i c y sediment. Average s i z e s are given i n Table 3 f o r s e v e r a l 

depths. 

Table III 

Depth C r y s t a l s i z e 
(m) (mm2) 

Ice type 

0 

3 

6 

9 

12 

'..' 84 

.200 

: 39 

3 

9 3 

C l e a r i c e 

C l e a r i c e 

Bubbly i c e 

Sediment-rich i c e 

C l e a r i c e 

C r y s t a l s i z a i n i n c l u s i o n zpne3 i s . c o n t r o l l e d by tha d i s t a n c e between 

i n c l u s i o n s ( F i g . 26). This p a t t e r n i s repeated throughout the . 

thickness of the i c e and i n d i c a t e s the i n f l u e n c e of i n c l u s i o n s on. 

g r a i n boundary migration. Small i n c l u s i o n s are concentrated on g r a i n 

boundaries, i n d i c a t i n g that dragging of i n c l u s i o n s has occurred. 
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c 

F i g u r e 26. Influence of i n c l u s i o n s on c r y s t a l s i z e ; 
(a),(b) i n f l u e n c e of sediment (sand), v e r t i c a l s e c t i o n , 
( c ) , ( d ) i n f l u e n c e of bubbles, v e r t i c a l s e c t i o n , 10 mm g r i d . 
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C r y s t a l shape i s r e l a t e d to i n c l u s i o n type. In the case of c l e a r 

i c e there are no gross i n c l u s i o n s and no r e t a r d a t i o n of g r a i n growth 

has occurred, thus c r y s t a l s are l a r g e , anhedral and o f t e n i n t e r l o c k e d . 

S e r r a t i o n s are rare at the.boundaries of large c r y s t a l s , r a t h e r the 

i r r e g u l a r i t i e s are on a centimetre s c a l e . The s m a l l e r c r y s t a l s i z e i n ' 

bubbly i c e i s linked, to a d i f f e r i n g c r y s t a l shape;, intergrowths are ab­

sent, boundaries are more gently curved except where i n f l u e n c e d by bubbles, 

and i n many cases are approximately s t r a i g h t . S i m i l a r l y i n . s e d i m e n t - r i c h 

i c e the i n c l u s i o n s a f f e c t shapes;' c r y s t a l s i z e i s s m a l l e r , boundaries 

are e s s e n t i a l l y s t r a i g h t . f r o t a one i n c l u s i o n to the next. Zones are not 

always separated by abrupt j u n c t i o n s , f r e q u e n t l y one zone merges i n t o 

the next. However, w e l l defined sediment or bubble bands occur and the 

shape change i s abrupt. 

In a d d i t i o n , to g r a i n boundary m i g r a t i o n and the i n f l u e n c e of i n ­

c l u s i o n s , there are other f a c t o r s r e l a t e d to c r y s t a l s i z e and shape. 

These are the presence of sub-boundaries, polygonized subgrains, and-new 

grains formed during r e c r y s t a l l i z a t i o n . Sub-boundaries d e l i m i t zones of, 

c r y s t a l s w i t h s l i g h t l y d i f f e r i n g l a t t i c e o r i e n t a t i o n s and may thus i n t e r ­

s ect c r y s t a l boundaries. 

I n the lower s e c t i o n of the core the l a r g e c r y s t a l s may have s e v e r a l 

sub-boundaries whereas they are absent from s m a l l g r a i n s . In the l a r g e 

c r y s t a l s the sub-boundaries are orthogonal to the p r e f e r r e d dimensional-

o r i e n t a t i o n and are p a r a l l e l .to c-axes. • ' 

C r y s t a l dimensional o r i e n t a t i o n i s w a i l developed p a r a l l e l . t o the 

compositional l a y e r i n g i n the upper part of the core. The p a t t e r n becomes 



l e s s pronounced with depth, but i s l o c a l l y . s t r o n g where sediment bands 

influence, the p a t t e r n . Frequency d i s t r i b u t i o n diagrams of dimensional 

o r i e n t a t i o n f o r v e r t i c a l sections p a r a l l e l to the dip of the l a y e r i n g 

are shown i n Figure 27(a)-(e). 

The r e l a t i o n s h i p of bubbles to texture a l s o v a r i e s w i t h depth.. 

At t:he' top .bubbles are p r e f e r r e d l y located on boundaries,. although not 

n e c e s s a r i l y at i r r e g u l a r i t i e s . The l a r g e r the bubble.the greater the 

e f f e c t on t e x t u r e . There appears to be a minimum size, f o r a bubble to 

have c o n t r o l , and many small bubbles are contained w i t h i n c r y s t a l s . The 

l a r g e r the bubble the greater i t s e f f e c t on g r a i n boundary m i g r a t i o n . 

Boundaries may be temporarily retarded by, then break away from, : or drag 

small bubbles. Larger bubbles cause greater i r r e g u l a r i t i e s i n boundary 

shape. Bubbles are l e s s frequent on sub-boundaries, although i n the . 

l a r g e r c r y s t a l s , the l a r g e r bubbles may be so s i t u a t e d . . Bubbles tend t o 

be absent from sediment bands, as i s the case under growth c o n d i t i o n s . 

Sediment occurs as lay e r s of c l a y p e l l e t s and i c y sand. These 

l a y e r s are of l e s s e r v e r t i c a l and l a t e r a l extent than the c l e a r and 

bubbly bands, but, depending on the sediment"concentration, they have a 

marked e f f e c t on t e x t u r e . The zones of higher sediment content provide 

d i s t i n c t t e x t u r a l breaks; the o v e r l y i n g i c e , whether clear, or bubbly 

( F i g , 26), contains r e l a t i v e l y l a r ge c r y s t a l s which terminate at the 

sediment, w i t h g r a i n .boundaries orthogonal to the l a y e r i n g . C r y s t a l s , 

i n the sediment bands, were not r e a d i l y observed by the t h i n s e c t i o n t e c h 

nique due to the d i f f i c u l t y of p r e p a r a t i o n of s e c t i o n s of d i r t y i c e , but 

s i z e i s . very l i m i t e d • Where i t i s not concentrated- i n bands, sand tends 

to l i e on g r a i n boundaries, but not n e c e s s a r i l y at i r r e g u l a r i t i e s i n 
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Figure 27. C r y s t a l dimensional o r i e n t a t i o n , 
i n v o l u t e d h i l l . . 

(a)-(e) v e r t i c a l core 

( f ) - ( i ) a n t i c l i n e 

( j ) - ( p ) a n t i c l i n e penetrated by wedge 

A l l diagrams a r e . v e r t i c a l , p a r a l l e l to 
dip of compositional l a y e r i n g 
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those boundaries. . Clay p e l l e t s , are l e s s t e x t u r a l l y c o n t r o l l e d , and often''-, 

occur w i t h i n c r y s t a l s . 

Where sediment bands are c l e a r cut there are sharp changes i n 

c r y s t a l s i z e , from small i n the sediment to very- large i n the i n c l u s i o n 

f r e e i c e ( F i g . 26). .-'•'''••-. 

The.record of l a t t i c e o r i e n t a t i o n s i s incomplete as pa r t s of the 

core were l o s t i n t r a n s i t . The a v a i l a b l e , record i s summarized i n F i g u r e 

28. I t i s evident that strong.concentrations occur at some depths; 

elsewhere the diagrams are more d i f f u s e , but there i s an o v e r a l l tendency 

f o r c-axes to be orthogonal to the . l a y e r i n g . Concentrations are g r e a t e s t 

at the top of the core where some f o l d i n g has occurred, and a l s o i n . 

sec t i o n s c o n t a i n i n g the strongest dimensional p r e f e r r e d o r i e n t a t i o n s 

p a r a l l e l to the l a y e r i n g . An example of the l a t t e r i s where sediment 

bands occur, Figure 28(e);. here flow has been concentrated i n the i c e \ 

w i t h l e s s sediment i n c l u s i o n s , w i t h b a s a l planes becoming p a r a l l e l to. 

the l a y e r i n g . Towards the base of the core the most r e c e n t l y grown i c e 

has more d i f f u s e d i s t r i b u t i o n diagrams, but the major c o n c e n t r a t i o n i s 

evident i n a d d i t i o n to minor groupings and g i r d l e s . F i g u r e 2 8 ( j ) shows 

the c h a r a c t e r i s t i c s of c r y s t a l s outside the major c o n c e n t r a t i o n in.. 

Figure 2 8 ( i ) . In. the upper part of the s e c t i o n such c r y s t a l s are grouped 

r a t h e r than evenly d i s t r i b u t e d ; i n the lower part the c r y s t a l s are s m a l l e r , 

separated and surrounded by l a r g e r c r y s t a l s w i t h c-axes i n the major 

co n c e n t r a t i o n . I t i s evident that some c r y s t a l s w i t h c-axes outside the 

maximum are l a r g e , but the m a j o r i t y are small and are probably being 

consumed by t h e i r • neighbours. ' • • .• . .'.'•'•. 



Figure 28 
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F i g u r e 28 (cont'd) 

( j ) v e r t i c a l sec­
t i o n i n d i c a t ­
i n g c r y s t a l s 
outside the 
maximum. 

Crys t a l s 
outs ide 
maximum. 

Fig u r e 28. P e t r o f a b r i c s of i c e core, 
i n v o l u t e d h i l l . 

(a)-(g) s u c c e s s i v e l y deep s e c t i o n s , 
' . . 0-14 m; 

i ( h ) , ( i ) h o r i z o n t a l and v e r t i c a l 
s e c t i o n s , depth 8m. 

' . (cont'd) 
c = compositional layering.. 
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S t r u c t u r a l Features: Fractures 

F r a c t u r e s occur throughout, and are t y p i c a l l y approximately v e r t i c a l , 

and pass through the l a y e r i n g sequence; r a r e l y i s there any o f f s e t t i n g . -. 

Microscopic Features of F r a c t u r e s 

In t h i n s e c t i o n f r a c t u r e s appear as narrow planar features marked 

by f l a t t e n e d gas i n c l u s i o n s , and sediment. The gas i n c l u s i o n s occur on . 

f r a c t u r e surfaces passing through bubbly and bubble-free i c e . Bubbles 

adjacent to.the f r a c t u r e s are not deformed more than others. The paths of. 

the f r a c t u r e s . r e l a t i v e to t e xture are such that they are both i n t e r g r a n -

u l a r and i n t r a g r a n u l a r . No l o c a l d e v i a t i o n s occur; nor has there been 

any new c r y s t a l growth on the f r a c t u r e s u r f a c e s . 

I n t e r p r e t a t i o n 

I t i s apparent that while there are c o n t r a s t s i n p r o p e r t i e s from, 

l a y e r to l a y e r i n the v e r t i c a l i c e core, there i s no major change w i t h . . 

depth of c h a r a c t e r i s t i c s of a given l a y e r type. C-axis. o r i e n t a t i o n s are 

g e n e r a l l y orthogonal to the l a y e r i n g throughout, although more d i s p e r s e d 

patterns occur i n bubble bands. Weak c-axis maxima orthogonal to the 

l a y e r i n g are probably produced during the f r e e z i n g process; t h i s i s t r u e 

a l s o of some pingos. However i t i s evident that the i c e has been u p l i f t e d 

by heaving, and that creep under the weight of i c e and overburden has 

occurred. The l a t t i c e p r e f e r r e d o r i e n t a t i o n has been accentuated espec­

i a l l y i n the i n c l u s i o n f r e e i c e which now contains l a r g e r c r y s t a l s . 

Dimensional o r i e n t a t i o n i s p a r a l l e l to the l a y e r i n g , whereas i n the growth 

of ice. i n free water the o r i e n t a t i o n i s p a r a l l e l to the heat flow d i r e c t i o n , 



and thus orthogonal to any compositional l a y e r i n g . A l s o i n the l i m i t e d 

work on textures i n segregated i c e , c r y s t a l s tended to be columnar and • 

orthogonal to the plane of the.lens (Penner 1951; Kaplar, personal com­

munication 1974). Thus the p a t t e r n observed here i n d i c a t e s flow p a r a l l e l 

to tha l a y e r i n g . D i f f e r e n t i a l flow may.have occurred on l a y e r s of d i f - • 

f e r e n t i n c l u s i o n content. 

(b) A n t i c l i n e s beneath " I n v o l u t i o n s " 

I n t r o d u c t i o n 

Superimposed on the broad p a t t e r n of tha topographic highs are 

r i d g e s which may be p e r i p h e r a l or may cross tops of h i l l s . C o a s t a l 

exposures r e v e a l the underlying s t r u c t u r e to be a n t i c l i n e s ' i n the i c e , 

the overburden being t h i n n e s t over f o l d c r e s t s , which undulate l o c a l l y . 

Some ridges c o n t a i n i c e wedges, w i t h a s s o c i a t e d surface troughs, but 

i n i t i a l l y we consider a f o l d where wedges are absent, then proceed to. 

i n v e s t i g a t e , the i n f l u e n c e of wedge growth., on such a f o l d . The charac­

t e r i s t i c , banding determined by bubble and sediment content continues i n t o 

the fold3, w i t h l i t t l e v a r i a t i o n i n band t h i c k n e s s being observed over 

f o l d s . Thicknesses vary- from 50 mm to 1 m, w i t h o c c a s i o n a l discontinuous 

sediment l a y e r s 10 mm chick. 

The. sample s i t e s ( F i g . 30) f o r the f o l d comprised a v e r t i c a l s e r i e s 

of samples through the a x i a l plane, a series'around the f o l d c l o s u r e on 

a bubble-free band, and. samples of the contacts of the. discontinuous 

sediment band's with adjacent i c e . . 
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I l l / ' 

F i gure 30. A n t i c l i n e i n i n v o l u t e d 
h i l l , c-axes 



Figure 30 (cont'd) 

. ( f ) ~ ( j ) Sections on f o l d a x i a l 
plane, i n v o l u t e d h i l l . 

• c = c o m p o s i t i o n a l l a y e r i n g 
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Ice C h a r a c t e r i s t i c s • 

."• The compositional l a y e r i n g i s determined by bubble and sediment' 

content. W i t h i n a given band bubble shape and s i z e vary but w i t h a general 

increase i n s i z e downwards. E l l i p s o i d a l , f l a t t e n e d and i r r e g u l a r bubbles 

range up to 4 mm,, w i t h long.axes p a r a l l e l i n g the dip of the. banding; 

s p h e r i c a l bubbles are s m a l l e r . Where sediment bands occur, bubbles, are 

few, and there are no"bubbles f o r 30 mm beneath the sediment. ; 

C r y s t a l C h a r a c t e r i s t i c s . ( F i g . 29) 

Bubbles u s u a l l y occur on grain, boundaries, the l a r g e r .ones espec­

i a l l y at sharp i r r e g u l a r i t i e s i n the boundaries, or l e s s frequently- on 

sub-boundaries. Smaller bubbles are randomly s c a t t e r e d i n r e l a t i o n to 

te x t u r e . C r y s t a l s i z e v a r i e s w i t h p o s i t i o n r e l a t i v e to sediment and bubble 

bands. In bands of high bubble content, c r y s t a l long axes average 10 mm, 

and range up.to 25 mm. I n c l u s i o n - f r e e zones c o n t a i n c r y s t a l s up to 50 mm 

long; w i t h i n sediment r i c h bands, maximum dimensions are r e s t r i c t e d to. 

< 5 mm. 

C r y s t a l shape v a r i e s w i t h c r y s t a l s i z e ( F i g . 29).. Larger c r y s t a l s 

are u s u a l l y anhedral, i r r e g u l a r and i n e q u i g r a n u l a r . Boundaries are curved 

to cuspate, strong embayments occur where g r a i n boundaries and sub-bound­

a r i e s i n t e r s e c t . Large c r y s t a l s may be embayed by. each other or s m a l l , 

s t r a i n - f r e e c r y s t a l s . Strong boundary curvatures other than embayments. 

occur.at bubbles, i n d i c a t i n g a n.influence on g r a i n boundary motion. Small 

c r y s t a l s are anhedral but many mutual boundaries are . s t r a i g h t . 'These are 

more r e g u l a r and mora n e a r l y equigranular than l a r g e c r y s t a l s . 
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S d r a i n shadows occur r a r e l y i n small c r y s t a l s , but f r e q u e n t l y i n . 

l a r g e r c r y s t a l s , and are p a r a l l e l to the c-axis o r i e n t a t i o n and orthogonal . 

to the sediment or bubble l a y e r i n g . C r y s t a l dimensional o r i e n t a t i o n . 

( F i g . 27) i s g e n e r a l l y p a r a l l e l to the com p o s i t i o n a l l a y e r i n g , e s p e c i a l l y 

f o r large c r y s t a l s ; smaller c r y s t a l s aire more ne a r l y . e q u i d i m e n s i o n a l . 

Sediment i s g e n e r a l l y of medium to f i n d sand grade, o c c u r r i n g i n 

d i s c r e t e , discontinuous bands. A l s o some i s disp e r s e d i n c r y s t a l s and 

boundaries, w i t h no p r e f e r r e d t e x t u r a l p o s i t i o n . Clay p e l l e t s are ob­

served s c a t t e r e d i n l a y e r s , these are i r r e g u l a r i n shape, and up to 3 mm 

diameter. Dense sediment bands cause t e x t u r a l changes - i c e i n such 

l a y e r s comprises small c r y s t a l s . . Zones of small, c r y s t a l s occur below such 

sediment bands. Where sediment grains are more separate, c r y s t a l s from 

above the la y e r penetrate through, but w i t h s l i g h t changes i n dimensional 

o r i e n t a t i o n . . 

The c-axes of. a series, of v e r t i c a l samples from c l e a r and bubbly i c e 

over a v e r t i c a l distance of 4 m i n the f i e l d , and samples from f o l d limbs 

were analyzed. From these were prepared component diagrams ( F i g . 30), 

based .on t e x t u r a l c h a r a c t e r i s t i c s and r e l a t i o n to s t r u c t u r e s . A l l diagrams 

are e s s e n t i a l l y i d e n t i c a l , i n the form of a x i a l symmetry, the a x i s being 

orthogonal to the compositional banding, around the f o l d . 

I n t e r p r e t a t i o n : 

I t . i s evident that a n t i c l i n a l , f o l d s u n d e r l i e zones of thi n n e r over­

burden, but i t i s not c l e a r how the thickness p a t t e r n arose. The stoney 

c l a y m a t e r i a l i s widespread i n the area and o v e r l i e s most massive i c e 



bodies d r i l l e d so f a r (Mackay 1973b). Rampton (1972b) has described . 

the m a t e r i a l as a reworked t i l l which has been subject to slumping and . . 

mudflow a c t i v i t y , thus l a t e r a l v a r i a t i o n s i n thickness are to be expected.-

A d d i t i o n a l l y Mackay (personal communication 1975). p o i n t s out that there is. 

i n c r e a s i n g evidence f o r a s e v e r a l metre deep thaw i n the area, which c o u l d ' 

be r e s p o n s i b l e for removing m a t e r i a l on h i l l s i d e s . The r e t i c u l a t e v e i n 

i c e p a t t e r n over the massive i c e shows l i t t l e evidence of creep, but over­

l y i n g m a t e r i a l may have moved downs lope. Whatever i t s o r i g i n , the v a r i a - ' ... 

t i o n i n overburden thickness i s r e l a t e d to the upfolds i n the i c e . ' 

The o r i g i n a l compositional l a y e r i n g has not been g r e a t l y a f f e c t e d 

by the f o l d i n g process; bed thickness i n the upper layers, i s . g r e a t e s t over '• 

the f o l d c r e s t , but lower down the s e c t i o n bed t h i c k n e s s becomes more 

uniform around the f o l d ( F i g . 31). 

. In r e l a t i v e l y undeformed i c e , bubble e l o n g a t i o n i s p a r a l l e l to the 

temperature gradient during growth, whereas i n t h i s i c e bubbles tend 

toward p a r a l l e l i s m w i t h the dip of the l a y e r i n g . Assuming the bubbles 

were o r i g i n a l l y orthogonal to the l a y e r i n g , d i f f e r e n t i a l flow occurred 

during f o l d i n g . A l s o f l a t bubbles are e s s e n t i a l l y p a r a l l e l to the f o l i a - . 

t i o n . These f l a t bubble surfaces are p a r a l l e l to the b a s a l plane of the 

c o n t a i n i n g c r y s t a l s . A f u r t h e r t e x t u r a l f e a t u r e i s the p o s i t i o n of 

bubbles r e l a t i v e to g r a i n boundaries. Large c r y s t a l s were s t r a i n e d and 

p o l y g o n i z a t i o n has occurred. A d d i t i o n a l l y r e c r y s t a l l i z a t i o n has produced 

a.strong c-axis maximum f a b r i c . 
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Figure 31. Bed thickness 
around f o l d i n Figure 29, 

Fig u r e 32. Wedge p e n e t r a t i n g a n t i ­
c l i n e i n i n v o l u t e d h i l l . Note 
upturning of banding of massive 
i c e . 

Table IV 

C r y s t a l s i z e i n i n v o l u t e d h i l l i c e 
adjacent to wedge 

Distance from wedge (m) C r y s t a l s i z e (mm ) 

5.0 735 

3.0 563 

2.0 361 

1.0 303 

0.25 68 

0.1 26 
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(c) . A n t i c l i n e Penetrated by Ice Wedge 

I n t r o d u c t i o n ' . . 

Thus f a r we have considered r e l a t i v e l y undisturbed core i c e , and 

i c e folded by d i f f e r e n t i a l u p l i f t ; wa now. consider such a f o l d penetrated 

by a wedge. Tha wedge has grown where the c l a y overburden•is t h i n (1.5 m). 

The time of i n i t i a l c r a c k i n g i s unknown, but from the s i z e of the wedge 

(approximately 3 m across) i t has been growing f o r a few thousand y e a r s . 

This i s a rough estimate, as tha p r o b a b i l i t y , o f c r a c k i n g v a r i e s w i t h wedge 

s i z e (Mackay 1974a). However, near t h i s wedge there has been long-term 

peat accumulation i n d i c a t e d by a wedge w i t h at l e a s t 4 growth periods 

(Mackay 19 74a, F i g . 18).. . This s i t e was - tha depression between two i n v o l ­

u t i o n r i d g e s , and wedge growth occurred during peat accumulation. Thus 

co n d i t i o n s s u i t a b l e f o r wedga growth have p r e v a i l e d for. the time taken to 

accumulate at l e a s t 2 m of peat, namely about 5000 years. Although both 

wedges d i d not n e c e s s a r i l y grow at the same time or r a t e , the l a r g e r xjadga 

on tha r i d g e may w e l l have grown f i r s t as i t was on a r i d g e (otherwise the 

smaller wedge would have penetrated massive' i c e ) , thus c l e a r of snow, and, 

subject to r a p i d c o o l i n g which aids i n the c r a c k i n g process. .Recent f r a c ­

t u r i n g , was detected p e t r o g r a p h i c a l l y . 

The compositional l a y e r i n g i n tha i c e could be traced from i t s 

r e l a t i v e l y undeformad s t a t e up to the wedge contact, where i t became 

upturned and. penetrated by c r a c k s , s u b - p a r a l l e l to the. wedga. As i n 

other exposures, the compositional l a y e r i n g was determined by bubble 

and.sediment content w i t h . l a r g e bubbles above but u s u a l l y not immediately 

below sediment bands. 
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The sampling plan f o r these' s t r u c t u r e s was designed.to t r a c e any 

t e x t u r a l and f a b r i c changes w i t h distance from the wedge, c h a r a c t e r i s t i c s 

of f a u l t s and j o i n t s , and any v a r i a t i o n s i n wedge i c e . 

Banding C h a r a c t e r i s t i c s 

Bands of d i f f e r i n g composition have d i f f e r e n t t h i c k n e s s e s , but 

a l l bands are e s s e n t i a l l y p a r a l l e l and uniform i n . t h i c k n e s s on f o l d , 

limbs. No major t h i c k e n i n g occurs adjacent to the wedge, but a t t i t u d e 

changes, the c h a r a c t e r i s t i c upturning being shown i n F i g u r e 32. A s e r i e s 

of f r a c t u r e s occurs p a r a l l e l to the wedge between which segregated i c e 

can s t i l l be seen. Banding a l s o occurs i n the wedge, i n . t h e form of. 

v e r t i c a l t o s t e e p l y d i p p i n g bubble f o l i a t i o n s . 

Ice C h a r a c t e r i s t i c s . 

As was found elsewhere i n the i c e body, bubbles occur above 

sediment bands but very r a r e l y immediately below. Various s i z e s and 

shapes of .bubble occur w i t h i n , the bands: (a) Above sediment l a y e r s the 

bubbles are o f t e n f l a t , and i n the ba s a l plane of the c o n t a i n i n g c r y s t a l ; 

(b) s p h e r i c a l bubbles up to 1 mm diameter are o f t e n surrounded by " s a t e l ­

l i t e " bubbles 0.13 mm i n diameter; (c) elongate bubbles 2-3 mm long;-

(d) i r r e g u l a r bubbles, e s p e c i a l l y where connected by threads along g r a i n ' 

boundaries. In general, s p h e r i c a l bubbles occur i n groups,.but elongate 

and i r r e g u l a r bubbles show no z o n a t i o n w i t h i n a given band. 

At 0.25 m from the wedge the compositional l a y e r i n g i s d i s t u r b e d 

by f r a c t u r e s a s s o c i a t e d w i t h , and p a r a l l e l t o , the wedge. F r a c t u r e 
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s e p a r a t i o n decreases to 10-20 mm adjacent .to • the wedge and the f r a c t u r e s 

are up to 15 mm wide. The i n f i l s comprise bubbly i c e , .but segregated i c e 

i s s t i l l evident between them. Bubbles i n the f r a c t u r e zones are <C 0.5 mm, 

g e n e r a l l y s p h e r i c a l , and v e r y numerousj g i v i n g the i c e a cloudy appearance. 

Laye r i n g of bubbles p a r a l l e l to the f r a c t u r e w a l l s i s evident. Where the 

f r a c t u r e s o f f s e t sediment bands, elongate, bubbles up-to 10 mm long t r e n d 

p a r a l l e l to the f r a c t u r e . 

Despite the f r a c t u r i n g , the o r i g i n a l l a y e r i n g i s decipherable up 

to the wedge, and contrasts, w i t h the wedge i c e . The wedge i c e i s ..charac­

t e r i z e d by s t e e p l y d i p p i n g bands c o n t a i n i n g bubbles and some f i n e g r a i n e d 

sediment. The bubbles, are (a) s p h e r i c a l , approximately 0.3 mm; (b) el o n g ­

ated, up to 4 mm, p a r a l l e l to f r a c t u r e s ; (c) i r r e g u l a r , 0.05 mm. 

C r y s t a l C h a r a c t e r i s t i c s 

C r y s t a l s i z e i n the segregated i c e changes s y s t e m a t i c a l l y w i t h 

d i s t a n c e from the wedge as shown i n Table 4 and F i g u r e 33. The.reduction 

i n g r a i n s i z e i s considered to be due to flow and p o l y g o h i z a t i o n of l a r g e r 

grains, and growth of new grains o r i e n t e d favourably to accommodate, the j 

s t r e s s exerted by the growing wedge. A s i m i l a r v a r i a t i o n , i n c r y s t a l s i z e 

was found by Corte (1962a). A d d i t i o n a l l y there i s a v a r i a t i o n i n s i z e 

r e l a t e d to sediment content; c r y s t a l s w i t h i n sediment bands are <^0.5 mm' 

i n diameter, w h i l e adjacent to such bands c r y s t a l s are 5 ™ and increase 

to '3.5 mm away from the sediment. 

C r y s t a l shape a l s o v a r i e s w i t h distance'.from the wedge, and w i t h ' 

the presence of sediment. 'Three metres from the wedge, c r y s t a l s are -
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F i g u r e 33. Change i n c r y s t a l s i z e i n massive i c e adjacent to wedge. 
V e r t i c a l s e c t i o n s orthogonal to wedge. (a) sample s i t e s , 
(b) sample 3.0 m. from wedge ... continued. 
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ine q u i g r a n u l a r and i n t e r l o c k i n g , w i t h curved, s e r r a t e d and sometimes 

cuspate boundaries. The degree c f i r r e g u l a r i t y decreases, toward the 

wedge; w h i l e some l a r g e r c r y s t a l s r e t a i n some s t r o n g l y curved s i d e s , the 

smaller c r y s t a l s have s t r a i g h t mutual boundaries. This suggests polygon- . 

i z a t i o n gave r i s e to a r e d u c t i o n i n c r y s t a l s i z e , and t h a t new c r y s t a l s 

. grew. Fractures cross t h i s i c e i n an i n t e r g r a n u l a r and i n t r a g r a n u l a r 

f a s h i o n and f r a c t u r e i n f i l s c o n t r a s t w i t h the above p a t t e r n ; s m all c r y s ­

t a l s ( <" 2 mm) form a competitive zone at the f r a c t u r e boundary, from which 

grow elongated c r y s t a l s •(•< 7.mm) orthogonal to the f r a c t u r e , w h i l e i n 

the centre some c r y s t a l s are p a r a l l e l to the seam. L o c a l l y the g e n e r a l l y 

s t r a i g h t f r a c t u r e sides show strong i r r e g u l a r i t i e s and i t i s apparent that 

f r a c t u r e c r y s t a l s have invaded the surrounding segregated i c e , by a g r a i n 

boundary m i g r a t i o n mechanism. .. " . . 

Between f r a c t u r e s the segregated i c e comprises s t r a i g h t - s i d e d 

c r y s t a l s , <C 15 mm diameter.. The segregated i c e contains o f f s e t s on which 

no new c r y s t a l growth has occurred; o f f s e t s up to 5 mm have been observed. 

The adjacent wedge i c e d i f f e r s 1 i n that c r y s t a l s are elongated p a r a l l e l t o : 

the bubble zones and reach 25 mm i n length. 

The r e l a t i o n s h i p of bubbles, to texture i s such that s p h e r i c a l bubbles 

. l i e on boundaries, on sub-boundaries and x^ i t h i n c r y s t a l s . F l a t bubbles, 

occur only w i t h i n c r y s t a l s , i n d i c a t i n g a l a t t i c e c o n t r o l ; a l s o , no bubbles 

<C 1 mm were f l a t , so a minimum s i z e i s necessary. Some l o c a l . i r r e g u ­

l a r i t i e s i n boundaries are a s s o c i a t e d w i t h bubbles. In the f r a c t u r e zones, 

bubbles are <̂  1 mm i n diameter and s p h e r i c a l x ^ i t h i n boundaries of competi­

t i v e growth c r y s t a l s ; near the c e n t r a l seam bubbles are elongated p a r a l l e l 

to the seam, and cross g r a i n boundaries. 
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P e t r o f a b r i c diagrams were prepared for samples progressively near 

to the wedge. At 5.0 m from the wedge a c-axis maximum occurs orthogonal 

to the compositional layering, which i s s i m i l a r to that for the f o l d which 

has suffered nb wedge penetration (section .(b)). ,.At 3.0 m from the wedge, 

a single maximum l i e s at approximately 60° to the lay e r i n g ( F i g . 34(a)), 

and becomes rotated into the lay e r i n g at,1.0 m from the.wedge ( F i g . 34(c)). 

Thus the c-axis patterns become progressively more s i m i l a r to those of the 

wedge, indicating, the influence of wedge growth. Although the composition­

a l layering of the segregated i c e remains, the pe t r o f a b r i c s are such that 

the contained c r y s t a l s respond to the growth stress of the wedge i n a . . . 

s i m i l a r manner to the outer wedge c r y s t a l s . 

Superimposed on t h i s pattern are fractures i n which the texture i s 

s i m i l a r to that of fractures discussed i n section (a), above. S i m i l a r l y 

the l a t t i c e orientations (Fig. 34(e)-(h)) compare with recent fracture 

i n f i l s . discussed elsewhere (p. 155 f f . ) , i n d i c a t i n g that pos.t-solidif i c a - '.; 

tion- changes have been l i m i t e d . In addition there occur older fractures 

which have been deformed and the contained c r y s t a l s have l a t t i c e - o r i e n t a ­

tions nearer to the wedge pattern. 

Figure 35 gives grain type, d i s t r i b u t i o n s , i . e . histograms of numbers 

of sides to grains i n t h i n sections from the core, folded i c e and folded 

Ice with wedge. There i s an obvious tendency for grains to have 5 to 6 

sides i n the core Ice and folded i c e . In the ice adjacent to the wedge . 

a change i s evident - grains tend to be 6 to 7 sided, and there are more •-. 

grains with > 10 sides. This may be associated with .the progressive 

f a b r i c change i n that new c r y s t a l growth has occurred on old grain boundaries 

and that a previously s i n g l e boundary has become mu l t i p l e . 
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F i g u r e 34. F o l d penetrated by wedge, i n v o l u t e d h i l l . 

(a) . Sample 3.0 m from wedge 

(b) sample 2.0 m from wedge 

(c) sample 1.0 m from wedge . 

(u) sample adjacent to wedge ' 

(e) c r y s t a l s i n f r a c t u r e near wedge 

( f ) c r y s t a l s i n f r a c t u r e near wedge 

(g) x 20 c r y s t a l s i n bubbly i c e 

. 20 c r y s t a l s i n c l e a r i c e 

(h) 25 c r y s t a l s . a t edge of f r a c t u r e 

. ( i ) 50.elongated c r y s t a l s i n recent f r a c t u r e . 

( j ) 18 c r y s t a l s i n o l d f r a c t u r e 

(k) x 10 sm a l l c r y s t a l s i n f r a c t u r e 

. 4 0 . c r y s t a l s i n c l e a r i c e 

(I) x 23 c r y s t a l s adjacent to sediment 

. 37 c r y s t a l s away from sediment, 

(m) 50 small c r y s t a l s 

(n) x 50 small c r y s t a l s 

. 50 large c r y s t a l s 

(o) 47 c r y s t a l s between two f r a c t u r e s 

: (p) . 96 c r y s t a l s i n f r a c t u r e s 

(q) 109 c r y s t a l s away from f r a c t u r e . 

c = c o m p o s i t i o n a l l a y e r i n g 

f = f r a c t u r e 
w . b . = w e d g e b o u n d a r y 
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Sample p o s i t i o n s 

i 
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F i g u r e 34.' 
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Figure 34 (cont'd) 
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F i g u r e 35. Grain type d i s t r i b u t i o n s f o r t h i n s e c t i o n s from core i c e , 
folded i c e and fo l d e d i c e penetrated by wedge, i n v o l u t e d h i l l . 

•(a) - ( f ) core, i c e , s u c c e s s i v e l y deep samples 

( g ) - ( l ) a n t i c l i n e • 

(m)-(v).. limb of a n t i c l i n e , samples p r o g r e s s i v e l y near wedge. 



C r y s t a l dimensional o r i e n t a t i o n s are shown i n Fi g u r e 27. The max­

imum moves from p a r a l l e l i s m w i t h the compositional l a y e r i n g at 5.0 m from 

the wedge ( F i g . 27(j)). to approximate p a r a l l e l i s m w i t h the wedge contact 

at that contact ( F i g . 2 7 ( n ) - ( p ) ) . . In the l a t t e r case a secondary maximum 

occurs orthogonal, to the. f i r s t ( F i g . 27(n), (o)) , r e p r e s e n t i n g the columnar 

c r y s t a l s i n recent f r a c t u r e s . E a r l y dimensional o r i e n t a t i o n s a s s o c i a t e d 

w i t h growth c o n d i t i o n s i n the segregated i c e have become o b l i t e r a t e d . 

I n t e r p r e t a t i o n .' 

Progressive changes i n t e x t u r a l and p e t r o f a b r i c c h a r a c t e r i s t i c s 

w i t h d istance from the wedge are recognized. Comparisons among the unde-

formad banded i c e ( a ) , folded banded i c e (b) , and the present samples 

i n d i c a t e the i n f l u e n c e of the wedge,. Many.crystal features are symmet­

r i c a l l y r e l a t e d to the wedge. 

L a t t i c e o r i e n t a t i o n s i n the, banded, i c e change from p a t t e r n s t y p i c a l .' 

of the folded i c e without a wedge i n t o patterns s i m i l a r to. wedge i c e , 

.along a distance of 5.0 m. The sequence of f r a c t u r e s i n d i c a t e s the t r a n s ­

formation of growth f a b r i c s due to wedge growth, .-. 

Adjacent to the wedge, c r y s t a l dimensional o r i e n t a t i o n changes from 

p a r a l l e l i s m w i t h the compositional l a y e r i n g of the segregated i c e to par­

a l l e l i s m w i t h the wedge. 

C r y s t a l s i z e decreases towards the wedge, due to p o l y g o n i z a t i o n of 

l a r g e r g r a i n s , and'growth of new g r a i n s . • "-' . 
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Comparison of the r e s u l t s of secti o n s (b) and (c) i n d i c a t e . t h e 

i n f l u e n c e of wedge "growth on the i c e . We know that the wedge i s growing 

a c t i v e l y as recent cracks have been recognized p e t r o g r a p h i c a l l y . Thus, 

the c h a r a c t e r i s t i c g r a i n s i z e s and shapes and p r e f e r r e d o r i e n t a t i o n s have 

been produced p r i m a r i l y by sy n t e c t o n i c p l a s t i c deformation i n the form of 

d i s l o c a t i o n g l i d e , p o l y g o n i z a t i o n by d i s l o c a t i o n c l i m b , and r e c r y s t a l l i z a ­

t i o n . I t i s evident that r e c r y s t a l l i z a t i o n has occurred, as marked changes 

i n c r y s t a l l o g r a p h i c o r i e n t a t i o n have occurred. These could not be produced 

s o l e l y by p o l y g o n i z a t i o n of e a r l y . g r a i n s , as subgrains would have t h e i r 

o r i e n t a t i o n s c l o s e to those of the o r i g i n a l . However, d i s l o c a t i o n g l i d e 

and climb are a l s o o c c u r r i n g . The decrease i n c r y s t a l s i z e toward the 

wedge i s i n d i c a t i v e of p o l y g o n i z a t i o n causing r e d u c t i o n of the primary 

g r a i n s , and a l s o the growth of new c r y s t a l s , i . e . r e c r y s t a l l i z a t i o n , to 

give p r e f e r r e d dimensional o r i e n t a t i o n s r e l a t e d to the wedge. 

I t i s evident that wedge growth has l e d to the establishment of 

h o r i z o n t a l compression i n the frozen ground. Lachenbruch (1962) discussed 

the zone,of s t r e s s r e l i e f around a thermal c o n t r a c t i o n crack a f t e r f r a c ­

t u r e . The h o r i z o n t a l s t r e s s component normal to the crack w a l l , vanishes 

at the crack w a l l s , but increases a s y m p t o t i c a l l y t o tha p r e c r a c k i n g value 

..at large h o r i z o n t a l distance from the crack. 

In the. present study wa are also, concerned w i t h "compression caused 

by expansion of permafrost i n summer. This was not t r e a t e d by Lachenbruch, 

but I t i s to be expected that maximum s t r a s s w i l l occur adjacent to tha. 

wedge, and s t r e s s w i l l f a l l w i t h d i s t a n c e from the wedge. 
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The only previous mention of the i n f l u e n c e of a wedge on adjacent 

i c e was by Corte (1962a) who found that the change i n f a b r i c i n the surround­

ing i c e was confined to 30 cm from a small ( 1 m wide) wedge. I n the 

present study m o d i f i c a t i o n of f a b r i c was recorded up to 3 m from a l a r g e 

(3 m wide') wedge. Corte did not comment on any upturning adjacent to the 

wedge, but Pa"we" (1962) reported the e f f e c t up to 3 m from wedges. I n 

a d d i t i o n to, the e f f e c t on the surrounding m a t e r i a l , i c e i n a wedge i s 

i t s e l f deformed. Black (1953) argued that h o r i z o n t a l compression produced 

shear planes adjacent and p a r a l l e l to wedge s i d e s . Thus i t i s d i f f i c u l t 

to s p e c i f y the s t r e s s f i e l d adjacent to the wedge. I f wa assume u n i a x i a l 

compression, the theory of Kamb (1959) p r e d i c t s a c-a x i s maximum around 

the unique s t r e s s a x i s , although i n experimental work Kamb (1972) found an 

incomplete s m a l l - c i r c l e g i r d l e around the compression a x i s , i n i c e at 0°C. 

Kamb (1972) a l s o deformed i c e i n simple shear (-5° to 0°C), which r e c r y s -

t a l l i z e d to give a two maximum f a b r i c , one maximum at the pole of the shear -

plane and the other at 20° from the shear d i r e c t i o n . When a compressive 

s t r e s s was superimposed across the shear plane the two maxima combined i n 

a s m a l l - c i r c l e g i r d l e around the compression a x i s . In the present study 

the f a b r i c s were s i n g l e maxima but not centred on the s t r e s s a x i s (assuming 

compression normal to the wadge.axial p l a n e ) . But the maximum i s p a r a l l e l 

t o the maximum i n the wadge i c e , and thus p a r a l l e l to the pole to the wedge 

boundary and compositional l a y e r i n g i n the wedge. Thus i t may be th a t shear 

has occurred p a r a l l e l to the wedge boundary. 
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Tension Crack Ice  

I n t r o d u c t i o n 

Tension crack i c e grows' i n cracks r e s u l t i n g from mechanical rupture 

of the ground a s s o c i a t e d w i t h the growth of segregated or i n t r u s i v e i c e 

(Mackay 1972b, p. 8) and i s best observed on pingos. Exposure to depth 

of the cracks i s r a r e , but probing shows some of them to be s e v e r a l metres 

deep. Open cracks have been observed f r e q u e n t l y i n w i n t e r and s p r i n g 

when there i s no surface water flow, and i t has been argued that i n f i l i s 

from s u r f a c e water. Thus there i s no evidence f o r s y n t e c t o n i c c r y s t a l 

growth as may occur i n rock veins (Raybould 1975). However, t e n s i o n 

cracks may open year-round and i n summer : i n f i l might be more r a p i d , i f 

water i s a v a i l a b l e . Crack patterns are u s u a l l y dominated by a master 

crack, w i t h other cracks r a d i a t i n g from the pingo. The cracks are u s u a l l y 

v e r t i c a l , and planar. Tension crack i c e was c o l l e c t e d from two s i t e s : 

(a) Pingo Number 9 (Mackay 1973a, F i g . 15), (b) P e n i n s u l a P o i n t Pingo, 

near Tuktoyaktuk ( F i g . 1). 

The aims of the present i n v e s t i g a t i o n were: -

( i ) to study one season's growth of, t e n s i o n crack i c e ; 

( i i ) to compare new growth w i t h older i c e ; to. show changes over time; 

( i i i ) to compare tension crack i c e w i t h wedge i c e . 
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(a) Pingo Number 9 Tension Crack 

F i e l d C h a r a c t e r i s t i c s 

, This pingo i s growing i n a lake which drained s h o r t l y before 1950, 

and i t s growth has been monitored s i n c e 1970. Tension cracks are evident 

across the pingo (Mackay 1973a,'Fig.•15). Bench marks on each.side of the 

crack were surveyed i n June 1973 and again i n June 1974 and the mean annual 

growth of t e n s i o n crack i c e was 100 mm (Mackay, personal communication). 

There was no observable movement i n a d i r e c t i o n p a r a l l e l to the. crack. Ice 

samples were removed from w i t h i n the previous season's a c t i v e l a y e r , before 

thaw-down i n J u l y 1974, thus the maximum age of the i c e i s known. Cr a c k i n g 

occurred after.complete freeze back of the a c t i v e l a y e r d u r i n g w i n t e r 

1973.-74. A crack may open year round (Mackay, personal communication 

1975), thus, i t may have occurred any time a f t e r freeze back of the a c t i v e 

l a y e r and before spring.melt. Water has not been known to move up the 

t e n s i o n crack from depth, so the source i s thought to be s u r f a c e snow melt. 

The i c e grew immediately below the ground s u r f a c e , on a f r a c t u r e s u r f a c e 

i n f r o z e n s o i l . . Thus n u c l e a t i o n was not on c r y s t a l s i n the f r a c t u r e w a l l , 

although such may have occurred at greater depth, where the crack probably 

propagated through e a r l i e r t e n s i o n crack i c e . 

The l a t e r a l contacts between the i c e and adjacent a c t i v e l a y e r are 

abrupt, but' l o c a l l y i r r e g u l a r . A l s o soma small pockets of i c a occur i n 

tha a c t i v e l a y e r , p a r a l l e l to the crack. A prominent banding occurs i n 

tha i c e , determined by,bubble content ( F i g . 35). These bands a r e ' p a r a l l e l 

to one another and to the plane of the crack, but w i t h l e s s e r i r r e g u l a r i t i e s 

than, the i c e - s o i l contact. The crack was c l o s e d f o r most of i t s l e n g t h , but 

d i s p l a y e d l o c a l open zones which c o u l d be probed to 1 metre... 
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(1973). 
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Ice C h a r a c t e r i s t i c s 

Banding'was- determined s o l e l y by gas content; the l a c k of s o i l 

i n c l u s i o n s suggests tha a c t i v e l a y e r was s t i l l f r o z e n during melt-water 

flow. . Band type and thickness were approximately.symmetrical about the 

crack c e n t r e . On each.side of tha crack occurred a 10-20 mm t h i c k zone 

of mainly c l e a r i c e i n contact w i t h tha s o i l . Adjacent to these were 

1-2 mm bands of small s p h e r i c a l bubbles, tha bands being p l a n a r and 

continuous l a t e r a l l y and v e r t i c a l l y , but s l i g h t l y o f f s e t a t r a r e sediment 

i n c l u s i o n s . Next i n sequence came 20-30 mm bands of bubbly i c e , bubbles 

being <( 1 mm and decreasing i n c o n c e n t r a t i o n towards "the c e n t r e of the 

crack., Next there occurred abrupt changes to very high bubble content,, 

again decreasing toward the crack centre across bands 10-15 mm t h i c k . 

Narrow bands (4-5 mm) repeated tha c o n c e n t r a t i o n p a t t e r n , f o l l o w e d by c l e a r 

i c e to the centre of tha crack. In t h i s body, growth occurred a t a v e r ­

t i c a l i n t e r f a c e , y e t i t i s evident that many bubbles have been r e t a i n e d 

i n tha i c a , and d i d not f l o a t up under buoyancy.- This may ba because the 

i c e grew r a p i d l y and surrounded bubbles w h i l e they were s t i l l too s m a l l 

to f r e e themselves from the i n t e r f a c i a l t e n s i o n , o r because growth was 

not t a k i n g place i n t o a. " p o o l " of water, but i n a t h i n f i l m on tha s u r f a c e . 

I t i s i n t e r e s t i n g to compare bubbles i n t h i s i c e w i t h those i n the 

Tuktoyaktuk i c i n g mound, which grew at approximately the-same time. I n 

the i c i n g mound a steady water supply was a v a i l a b l e and f r e e z i n g r a t a -

gr a d u a l l y f a l l , thus large bubbles grew, elongated i n the f r e e z i n g d i r e c ­

t i o n whereas i n the tension crack i c e water supply was probably i n t e r ­

m i t t e n t , and f r e e z i n g was r a p i d so that only s m a l l bubbles grew. 
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C r y s t a l Charactar i s t i c s 

C r y s t a l s i z e v a r i e d across, the crack. Adjacent to the s o i l occurred 
2 

a zone of small c r y s t a l s , less than 0.1 mm , from which grew a zona of 

l a r g e r c r y s t a l s elongated orthogonal to the banding. Soma reached 5 mm x 

2 mm and extended i n t o the f i r s t bubbly band, w h i l e most c r y s t a l s terminated 

at the band contact', and gave way to new c r y s t a l growth (^0.1 mm ) with, 

l a r g e r c r y s t a l s extending from the .competitive zone. F u r t h e r c r y s t a l s 

grew from t h i s zone, reaching ^ 10 mm x 3 mm; some were truncated, but 

others widenad at that surface. In a d d i t i o n to the widening.of p r e - e x i s t i n g 

c r y s t a l s new c r y s t a l s grew, t h i s being the bubbly zone discussed above. 

C r y s t a l s became more elongated as bubble- c o n c e n t r a t i o n decreased, a p a t t e r n 

which was repeated toward the crack c e n t r e , the c e n t r a l clear, zone c o m p r i s i n 

large, c r y s t a l s , ( 7 an long by 5 mm wide. -

C r y s t a l shape v a r i e d w i t h s i z e . In competitive growth zones,, shapes . 

were g e n e r a l l y anhedral, but some s t r a i g h t compromise boundaries occurred. 

Elongated c r y s t a l s tended to be gently curved r a t h e r than s e r r a t e d . In-, 

many cases the outer boundary of elongate c r y s t a l s was s t r a i g h t i n h o r i z o n ­

t a l and v e r t i c a l sections,, thus p a r a l l e l to the crack. T h i s r e f l e c t s 

v a r i a t i o n s i n supply of melt water. A temporary c e s s a t i o n of water supply 

was followed by s l i g h t melting on resumption of flow. Rapid c o o l i n g would 

give copious n u c l e a t i o n at the i n t e r f a c e , although l o c a l l y growth would 

occur i n l a t t i c e c o n t i n u i t y w i t h p r e - e x i s t i n g c r y s t a l s . At the centre of 

the i c e body, there were departures from the trend of dimensional o r i e n t a ­

t i o n orthogonal to the plane of the crack. L o c a l zones of curved c r y s t a l s 

are shown i n Figure 37,' These i n d i c a t e m u l t i - d i r e c t i o n a l c r y s t a l growth 

i n t o enclosed space, rather.than curved growth dua to incremental d i l a t i o n 
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of the f r a c t u r e . In tha l a t t e r circumstance curvature would be as shown 

i n Figure 3 8 ( c ) , i . e . no converging p a t t e r n i s e v i d e n t . A l s o such curva­

ture r e q u i r e s displacement non-normal to the f r a c t u r e w a l l s . There i s 

no evidence f o r t h i s from d e t a i l e d bench mark surveys. 

I t i s i n t e r e s t i n g to.consider the form of the ice-water i n t e r f a c e 

during the l a t t e r part of f r e e z i n g , i t s e f f e c t on c r y s t a l c h a r a c t e r i s t i c s . , 

and on s u s c e p t i b i l i t y to l a t e r c r a c k i n g . From the above, i t i s apparent 

that due to s l i g h t l a t e r a l v a r i a t i o n s i n crack w i d t h some p a r t s impinged 

before others. Where a pool of l i q u i d was l e f t i t i s argued that the 

i n t e r f a c e advanced as i n Figure 38(a), r a t h e r than as the more rounded form 

shown i n F i g u r e 33(b). I n t h i s instance ( F i g . 38(a)) there i s an almost 

i n v a r i a n t d i r e c t i o n of maximum thermal gradient a t a l l points;' thus any 

g r a i n favourably o r i e n t e d f o r growth i s able to grow at optimum speed and 

"wedge out" l e s s favourably o r i e n t e d g r a i n s . I n c o n t r a s t , i n the case of 

a more-rounded i n t e r f a c e ( F i g . 3 8 ( b ) ) , the d i r e c t i o n of. maximum thermal 

gradient changes c o n t i n u a l l y and thus no one g r a i n i s favourably o r i e n t e d 

f o r a long p e r i o d , and more grains s u r v i v e to the centre. S i m i l a r r e s u l t s 

have been found i n metals (Savage and Aronson 1955). Once f r e e z i n g i s 

complete,, there i s a general decrease i n temperature of the body, and we 

must consider the response to c o n t r a c t i o n of each p a r t . During the i n f i l 

of the t e n s i o n crack,, c r y s t a l s grow from each s i d e and r e j e c t s o l u t e which 

p i l e s up between the two i n t e r f a c e s . A f t e r impingement of the g r a i n s these 

segregates may p e r s i s t as g r a i n boundary f i l m s , below 0°C. Thus c o n t r a c t i o n 

s t r e s s e s may r i s e to high l e v e l s w h i l e tha g r a i n boundary contact area i s 

s m a l l . A l s o , the l a r g e r tha s o l i d i f y i n g g r a i n s i z a , tha. s m a l l e r tha area 

of grain-boundary contact f o r a given l i q u i d content (Smith 1953). Thus 
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coarser grained s e c t i o n s are more s u s c e p t i b l e to c o n t r a c t i o n c r a c k i n g , and . 

e s p e c i a l l y where there i s a steep angle of g r a i n abutment ( F i g . 3 8 ( a ) ) . I t 

i s a l s o noted that i n cast metals i t has bean observed (Leas 1946) t h a t 

. f i n e - g r a i n e d m a t e r i a l s are f a r more r e s i s t a n t to cracking, than coarser 

m a t e r i a l s , due to t h e i r greater a b i l i t y to accommodate the c o n t r a c t i o n : 

s t r a i n s . Thus from the d e s c r i p t i o n of c r y s t a l features i t i s c l e a r why 

c e r t a i n areas of the i n f i l l e d f r a c t u r e may open before o t h e r s . 

Optic a x i s o r i e n t a t i o n s are shown i n F i g u r e 39(a). The o v e r a l l 

p a t t e r n i s a g i r d l e p r e f e r r e d o r i e n t a t i o n i n a plane p a r a l l e l to the 

banding. Thus ba s a l planes are orthogonal to banding. Component diagrams 

i n d i c a t e that small c r y s t a l s i n competitive zones show d i f f u s e g i r d l e 

p a t t e r n s ( F i g . 39(b)); elongate c r y s t a l s show stronger g i r d l e c o n c e n t r a t i o n s 

(Fig.. 3 9 ( c ) ) , thus a stronger p r e f e r r e d o r i e n t a t i o n developed as growth 

proceeded. I t i s noted that i n comparison, c-axas of c r y s t a l s i n veins 

i n d i c a t e growth i n o p t i c a l c o n t i n u i t y w i t h w a l l c r y s t a l s , although c-axes 

p a r a l l e l to long axes are f r e q u e n t l y found. 

I n t e r p r e t a t i o n 

The pingo i n which the t e n s i o n crack o c c u r s . i s a c t i v e l y growing and 

has been under observation f o r s e v e r a l years (Mackay 1973a). Tension 

cracks are r e c o g n i z a b l e on a i r photographs. As part of a study of pingo 

growth, bench marks have been i n s t a l l e d on the pingo, i n c l u d i n g one on 

each sIda of the crack at the top, D e t a i l e d surveys show th a t a s e p a r a t i o n 

of 100 ram occurred between June 1973 and 1974. No r e l a t i v e v e r t i c a l or 

l a t e r a l displacement of the. benchmarks was recorded. The time of f r a c t u r e 

i s unknown, but was a f t e r complete freeze-back of the a c t i v e layer.. 
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F i g u r e 39. Tension Crack, Pingo No. 11. 

(a) V e r t i c a l s e c t i o n , orthogonal to crack, 100 c r y s t a l s 

(b) 20 c r y s t a l s adjacent to organic s o i l . . 

(c) 20 columnar c r y s t a l s at crack c e n t r e . 
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I t i s not known whether the crack opened 100 rain i n one event, or 

whether gradual opening occurred a f t e r the i n i t i a l f r a c t u r e . Neither f i e l d 

not p e t r o l o g i c data provide s u i t a b l e i n d i c a t o r s . The Ice s t u d i e d grew . 

i n the a c t i v e l a y e r ; surface water, probably from snow melt, drained i n t o 

the crack and f r o z e with copious n u c l e a t i o n on the crack w a l l . C r y s t a l s 

w i t h c-axis. p r e f e r r e d o r i e n t a t i o n s i n a g i r d l e p a r a l l e l to the plana of 

the crack grew from the c h i l l zone. These c r y s t a l s a l s o had a strong 

dimensional o r i e n t a t i o n orthogonal to the crack w a l l . Thus c r y s t a l growth 

occurred i n the basal plane... By comparison w i t h the i c i n g mound i c e , which 

a l s o grew by a basal plana mechanism, the t e n s i o n crack c r y s t a l s are more 

numerous, and s m a l l e r . A l s o i n the t e n s i o n crack there are more l a y e r s 

of naw growth. This i n d i c a t e s v a r i a t i o n s i n supply of water. Supply of. 

surface water to the crack may have been i n t e r r u p t e d f r e q u e n t l y . I f f l o w 

ceased t e m p o r a r i l y , then recommenced, c r y s t a l growth c o u l d occur (a) i n 

l a t t i c e c o n t i n u i t y w i t h p r e v i o u s l y e x i s t i n g c r y s t a l s , (b) by new nuclea­

t i o n , (c) by growth on vapour c r y s t a l s . Evidence f o r (a) occurs i n the 

d i s c u s s i o n of t e x t u r a l c r i t e r i a ; (b) and (c) cannot be d i s t i n g u i s h e d . 

Where tha c r y s t a l s growing from each s i d e of tha crack meet, a c e n t r a l . 

seam occurs, w i t h l o c a l openings. T e x t u r a l c r i t e r i a may be used to d i s ­

t i n g u i s h betwaan openings which never c l o s e d , and new " f r a c t u r e s " . L o c a l l y 

there were found lens-shapad zones in.which c r y s t a l s had dimensional o r i e n ­

t a t i o n s orthogonal to that opening, a l l around the. adge. I n some cases . 

c r y s t a l s could be almost p a r a l l e l to the crack, whereas i f there had been 

c l o s u r e and a naw opening occurred, such curved c r y s t a l s would not neces­

s a r i l y occur. 



(b) P e n i n s u l a P o i n t Pingo Tension Crack  

F i e l d C h a r a c t e r i s t i c s 

T his i s a pingo near Tuktoyaktuk ( F i g , 1) which has been s u b j e c t to 

c o a s t a l e r o s i o n ; only h a l f the pingo remained i n 1935 a i r photographs but 

l i t t l e f u r t h e r e r o s i o n has occurred s i n c e then. . I t i s thought u n l i k e l y 

that the pingo has been growing r e c e n t l y , thus the pingo core and t e n s i o n , 

crack i c e are o l d compared w i t h Pingo No. 9 and t h i s t h e r e f o r e provides an 

opportunity to look f o r m o d i f i c a t i o n of growth f e a t u r e s i n the i c e . 

No major i c e core has been observed during the p e r i o d of exposure of 

the s e c t i o n , although 2 m t h i c k i c e . l a y e r s have.been reported o c c a s i o n a l l y . 

In J u l y 1973 slumping exposed t e n s i o n crack i c e ( F i g . 40) h a l f way up the 

pingo i n sands; a contact of' t e n s i o n crack i c e and core i c e was not exposed. 

The surrounding sands are f i n e to medium grained; sedimentary.structures 

have not been g r e a t l y d i s t u r b e d during f r e e z i n g ; plane beds c o n t a i n some 

organic matter, and r i p p l e marks a l s o occur. These beds are not disturbed'-

adjacent to the i c e , which i n d i c a t e s a t e n s i o n crack o r i g i n without sub­

s t a n t i a l l a t e r a l s t r e s s caused by growth and summer expansion as occurs i n 

i c e wedges. A.mineral s t a i n e d l a y e r 75 mm wide occurs adjacent to the i c e 

on one s i d e . 

Ice C h a r a c t e r i s t i c s .. 

The i c e body was, approximately 160 mm wide with.an abrupt contact 

.'with the surrounding sand. The compositional l a y e r i n g was determined by 

gas content; sediment content was low. The l a y e r i n g ( F i g . 41) was q u i t e 

d i f f e r e n t from that of Pingo No. 9. There was no symmetry t o the banding, 
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there being three bands of d i f f e r i n g widths and contained bubble types 

p a r a l l e l to the plane of the i c e body. 

Bubble C h a r a c t e r i s t i c s 

(a) A 50 am v i d e zone of e l l i p s o i d a l , elongata and i r r e g u l a r bubbles 

w i t h a h o r i z o n t a l l i n a a t i o n , approximately orthogonal to the cr a c k , and 

2-5 am long. They are not volumes of r e v o l u t i o n and have thus s u f f e r e d 

p o s t - s o l i d i f i c a t i o n m o d i f i c a t i o n . Many curve upwards 20°- 30° adjacent 

t o zone ( b ) ; 

(b) Tha c e n t r a l zone comprises 45 mm of vary elongate bubbles w i t h 

a sharp bend (40°) near the j u n c t i o n w i t h zone (a) and po i n t e d a t the other 

end. These bubbles are up to 18 mm long and ara separated by more c l e a r 

i c e than those i n zone ( a ) , but w i t h a few small (2 mm) s p h e r i c a l bubbles 

i n t r a i n s , suggasting break-up of l a r g e r bubbles ( K h e i s i n and Cherepanov 

1969); 

(c) The j u n c t i o n between (b) and (c) i s abrupt and co n t a i n s a d u s t i n g 

of sand. Zone (c) i s w h i t i s h due to the high c o n c e n t r a t i o n of small 

bubbles, and some l a r g e r , up to 3 mm. At the outer ice-sand contact a r a 

some I r r a g u l a r , elongated (4 mm) bubbles orthogonal to the c o n t a c t . 

C r y s t a l C h a r a c t a r i s t i c s 

C r y s t a l s i z e v a r i e s throughout the i c e body ( F i g . 43) but shape i s 

le s s v a r i a b l e ; zones are considered w i t h r e f e r e n c e to bubble zones: 

(a) C r y s t a l s are 20 .Tim x 10 mm and anhedral, i r r e g u l a r i n shape. 

Elongate bubbles are p a r a l l e l to c r y s t a l long axes and u s u a l l y i n g r a i n 

boundaries. 
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Figure 42. P e n i n s u l a Poinc Pingo 
Tension Crack. 

(a) V e r t i c a l s e c t i o n orthogonal 
to crack plane, 96 c r y s t a l s . 

(b) Right s i d e of ( a ) , 
44 c r y s t a l s . 

(c) L e f t side of ( a ) , 
52 c r y s t a l s . 

(d) V e r t i c a l s e c t i o n orthogonal 
to crack plane, 100 c r y s t a l s . 
t . c . = t e n s i o n crack plane 

Figure 43. C r y s t a l c h a r a c t e r i s t i c s . 
(compare w i t h bubble and sediment i n Figure 41) 
orthogonal to crack. 10 mm g r i d . 1 1 

V e r t i c a l s e c t i o n 
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(b) C r y s t a l s a r e 20 mn x 10 .mn and elongated p a r a l l e l t o the bubbles, 

i . e . a t 30° to the h o r i z o n t a l . Shanes a r e anhedral and i r r e g u l a r . Many 

elongate bubbles l i e i n g r a i n boundaries, others cross boundaries and 

change shape at the boundary. Tapering bubbles always l i e on g r a i n 

boundaries; conversely small s p h e r i c a l bubbles are i n t r a g r a n u l a r . 

( c ) C r y s t a l s i z e i s smaller than zones (a) and ( b ) , g e n e r a l l y 

15 mm x 5 mm, w i t h some 3 mm x 2 mm. O r i e n t a t i o n i s h o r i z o n t a l , and shapes 

are very i r r e g u l a r and s e r r a t e d . Sub-boundaries occur w i t h s t r a i n e x t i n c ­

t i o n . Larger bubbles tend to occur at g r a i n boundaries. 

Thus there i s a strong r e l a t i o n s h i p between c r y s t a l c h a r a c t e r i s t i c s 

and bubbles i n a l l i c e zones. A d d i t i o n a l l y zone (c) contains s m a l l amounts 

of sediment which again are concentrated on g r a i n boundaries. 

In comparing the c r y s t a l and i n c l u s i o n c h a r a c t e r i s t i c s of t h i s i c e 

with those of the p r e v i o u s l y discussed tension crack i t i s evident that the 

primary growth features have been modified; c o m p e t i t i v e growth zones have 

disappeared, c r y s t a l shapes are considerably m o d i f i e d and bubbles have 

moved r e l a t i v e to g r a i n boundaries. 

P e t r o f a b r i c diagrams are given i n Figure 4 2 ( a ) - ( d ) , f o r v e r t i c a l t h i n 

s e c t i o n s orthogonal t o the plane of the crack. The p a t t e r n comprises a 

broad maximum i n the p l a n e of the i c e body and a t about 4.5 ° to the h o r i ­

z o n t a l superimposed on a minor g i r d l e . Some c r y s t a l s i n the eas t e r n s i d e 

o f tha body nave more d i s p e r s e d z -axis o .tier, t a t ions but t h e s e c r y s t a l s 

have no apparent d i f f e r e n c e s from the o t h e c s t n t h i n s e c t i o n . I t i s r e ­

c a l l e d that i n the t e n s i o n crack -'a ?iago f.'o, 9 a p t i c axes gave a v e r t i c a l 

g i r d l e which became more narrow w i t h d i s t a n c e f r o m tha i c e - s o 11 i n t e r f a c e 
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and represented growth c o n d i t i o n s where basal planes were p a r a l l e l to the 

f r e e z i n g d i r e c t i o n . 

I n t e r p r e t a t i o n 

The tension crack i c e discussed here Is of c o n s i d e r a b l y g r e a t e r aga 

than that i n Pingo No. 9 and the pingo i n which i t i s l o c a t e d has s u f f e r e d 

long term c o a s t a l e r o s i o n . The sampling s i t e has been s u b j e c t to v a r y i n g 

temperature gradients and s t r e s s systarns as unloading occurred during ero­

s i o n . I t i s evident from c r y s t a l and bubble c h a r a c t e r i s t i c s t h a t o r i g i n a l 

s i z e s and shapes have been modified considerably. Bubble and c r y s t a l char­

a c t e r i s t i c s would have bean r e l a t e d symmetrically to the f r e e z i n g d i r e c t i o n 

during i n i t i a l growth, as has bean observed i n s e v e r a l r e c e n t l y grown i c e 

bodies (e.g. Tension Crack Ice, Pingo No. 9; I c i n g Mound I c e ) ; bubbles 

would be volumes of r e v o l u t i o n elongated i n the f r e e z i n g d i r e c t i o n and 

columnar c r y s t a l s would be p a r a l l e l to that d i r e c t i o n . In the P e n i n s u l a 

P o i n t Pingo, bubbles have i r r e g u l a r shapes, the i r r e g u l a r i t i e s being r e ­

l a t e d f r e q u e n t l y to c r y s t a l g r a i n boundaries; a l s o bubbles have broken up 

i n t o s t r i n g s or groups. Such features ara r e a d i l y e x p l a i n e d i n terms of 

changing thermal c o n d i t i o n s , but the o p t i c a x i s d i s t r i b u t i o n diagrams, 

which ara homogeneous f o r a l l parts of the body, ara unusual. The i n f l u e n c e 

of sediment on c r y s t a l s i z e i s evident from Figure 43; crapping of sediment 

on g r a i n boundaries has retarded g r a i n boundary m i g r a t i o n i n the r i g h t hand 

s i d e of the f i g u r e r e l a t i v e to the l e f t hand s i d e . 
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6 • T hernial Cone met ion Cracks and Wad^a I c e  

Introduct i o n 

l e a wedge i c e , formed by t n a i n f i l l i n g of thermal c o n t r a c t i o n c r a c k s , 

i s widespread i n the Tuktoyaktuk and P e l l y I s l a n d areas, as i n other a r c t i c 

r e gions. Mackay (1974a) has discussed cracking of wedge i c e on Garry 

I s l a n d , but there i s no published work on i c e wedge pe t r o l o g y i n the area. 

Elsewhere Black (1953, 1954, 1953) and Corta (1952a) have reported on the 

form and c r y s t a l c h a r a c t e r i s t i c s of i c e wadgas i n A l a s k a and Greenland, 

r e s p e c t i v e l y . In the Soviet Union, s i m i l a r work has bean c a r r i e d out by 

Shumskii (1954). Cracking i n A n t a r c t i c a has been s t u d i e d by B l a c k (1973). 

Wedge Growth Mechanism 

l e a wadgas grow from winter thermal c o n t r a c t i o n cracks which become 

i n f i l l e d by hoar f r o s t , snow and surface water. In h i s t h e o r e t i c a l work 

Lachenbruch (1952) argued that a r a p i d temperature drop superimposed on 

g e n e r a l l y low temperatures i s r e s p o n s i b l e f o r c r a c k i n g . However, G r e c h i s h -

chev (1970) considered Lachenbruch's work as only a f i r s t approximation, as 

i t was based on a l i n e a r dependence of thermal expansion and c o n t r a c t i o n 

on temperature. F u r t h e r , Grechishchev p o i n t e d out t h a t the moisture content 

i n the s o i l has a considerable a f f e c t on thermal c h a r a c t e r i s t i c s . Ha argued 

thac the water c o n t e n t of the a c t i v e layer d e c r e a s e s downward and so the 

t h e r m a l c o n d u c t i v i t y - / a r i a s . Thus Ln the f i r s t h a l f o f the c o l d p e r i o d 

tuns i o n o c c u r 3 i n the Lower one-ch i r d o f chs a c t i v e l a y e r w h i l e the top i s 

i n l o m p r a s s i o n . 
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I n tha present study, no measurements ware made of temperatures, 

s t r e s s e s , crack frequency or depth, as such would r e q u i r e a much longer 

period of study. The F e l l y I s l a n d s i t a , discussed below, i s near Garry 

I s l a n d where Mackay (1974a) has made a long term study of ground tempera­

tures and c r a c k i n g patterns i n low and high centred polygon wadges. 

Once f r a c t u r a has occurred, soma i n f i l l i n g proceeds by hoar c r y s t a l 

growth and snow melt before warming of the ground closes tha c r a c k s ; i t i s 

l i k e l y that only a m i n o r i t y of c l o s u r e i s due to i n f i l by c r y s t a l growth 

(Black 1953). Expansion of tha ground i n summer causes h o r i z o n t a l s t r e s s 

on tha whole i c e wedge. No q u a n t i t a t i v e astimate of the s t r e s s e s i n v o l v e d 

has been found i n the l i t e r a t u r e , although 31ack (1953, p. 72) s t a t e s that 

h o r i z o n t a l s t r e s s e s are produced "... w e l l above the l i m i t s of ... shear of 

Ic a . " A l s o a rough estimate of h o r i z o n t a l compression can be obtained from 

Lachenbruch (1952, p. 23) as summer expansion approximates w i n t e r c o n t r a c ­

t i o n . Thus s t r e s s e s of s e v e r a l bars are o p e r a t i v e , and temperatures a r e 

high, causing m o d i f i c a t i o n of growth features. 

I t i s the purpose i n t h i s s e c t i o n to discu s s p e t r o l o g i c aspects of 

the mode of f r a c t u r e i n ground i c e , f r a c t u r a i n f i l , tha r e l a t i o n s h i p of 

succeeding f r a c t u r e s t o e a r l i e r ones, tha prograda f a b r i c o f a growing 

wadge, and the i n f l u e n c e of a growing wedge where i t penetrates massive i c a . 

(a) F r a c t u r a propagation i n re i.ation to parmafrost features 

S i n g l e f r a c t u r e s i n sediment are a i r t i c _ i I t to f i n d , and t h i n s e c t i o n 

p r e p a r a t i o n noses manv p rob lams, tn.us i n d i v i d u a l thermal Ly induced f r a c ­

t u r e s i n massive ground i c e o n l y are c o n s i d e r e d . The i c e body i s an 
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i n v o l u t e d h i l l near Tuktoyaktuk, the core of which has bean exposed by 

c o a s t a l e r o s i o n . Some knowledge o f i n c l u s i o n and c r y s t a l c h a r a c t e r i s t i c s 

of the massive i c e i s necessary i n order to understand f r a c t u r e propaga­

t i o n . A d e t a i l e d d i s c u s s i o n i s g i v e n elsewhere (pp. 95-151) but a summary 

i s included hare. The massive i c e has a c h a r a c t e r i s t i c a l l y l a r g e g r a i n 

s i z e , ranging from 15 mm- i n bu b b l y l a y e r s to 4 600 mm i n bubble-free 

zones. Bubbles i n the massive i c e occur i n wide bands, range up to 3 mm 

i n diameter and are located both on g r a i n boundaries and w i t h i n c r y s t a l s . 

As such they represent major defects i n tha s t r u c t u r e and might be ex­

pected to i n f l u e n c e f r a c t u r i n g . Bubbles c o n t r o l c r y s t a l s i z a i n the massive 

i c e , s m aller c r y s t a l s o c c u r r i n g i n bubbly zones. Thus there e x i s t s a 

gre a t e r g r a i n boundary area, also g r a i n boundaries by d e f i n i t i o n saparata 

m a t e r i a l of d i f f e r i n g l a t t i c e o r i a n t a t i o n s . These g r a i n boundaries ara 

zones of atomic d i s o r d e r , and f r e q u e n t l y c o n t a i n sediment and segregated 

s o l u t a s . A l l these f a c t o r s tend to a l t a r the response of the i c a body 

to s t r e s s . 

The c-axes of tha massive i c e c r y s t a l s are approximately v e r t i c a l 

and i n the f r a c t u r e plana, thus the basal planes ara orthogonal to tha 

f r a c t u r e s u r f a c e . Thus, p r i o r to f r a c t u r e , the massive ground i c e has 

markedly d i f f e r e n t c r y s t a l c h a r a c t e r i s t i c s and bubble pattern from t e a 

samples usad i n l a b o r a t o r y experiments on f r a c t u r e . 

T y p i c a l f r a c t u r e s are shown i n F i g u r e I t i s evident t h a t cracks 

have p r o p a g a t e d t h r o u g h c o a r s e - g r a i n e d i c e ?.ni tended t o be trans g r a n u l a r 

r a t h e r than L nte r g r a n u i a r . Mo t a j o r cn.an|as i n f r a c t u r e o r i e n t a t i o n o c c u r 

at g r a i n b o u n d a r i e s , thus s l i g h t changes In L a t t i c e o r i e n t a t i o n e x a r t no 
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Figure 45. Types of f r a c t u r e i n f i l . (a) open f r a c t u r e , (b) no new 
c r y s t a l growth, (c) new growth on one s i d e , (d) new c r y s t a l growth 
on both s i d e s , (e) new growth on parts or both s i d e s . 
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major c o n t r o l , i n c o n t r a s t to the r e s u l t s of Gold (1961) on thermal shock. 

However, bands of d i f f e r i n g l a t t i c e o r i e n t a t i o n i n c r y s t a l s are a p p r o x i ­

mately v e r t i c a l and thus may have aided the f r a c t u r e process. 

The t r a n s g r a n u l a r cracks c o n t r a s t w i t h those of Anderson and Weeks 

(1958) f o r a sea-ice beam which f a i l e d i n t e n s i o n by f r a c t u r e along the 

b a s a l planes of c r y s t a l s . However, i n sea i c e the b a s a l planes are a l s o 

the s i t e s of b r i n e pockets which act as s t r e s s c o n c e n t r a t o r s . Such gross 

l i q u i d i n c l u s i o n s have not been observed i n ground i c e but gas bubbles 

occur; these are not g e n e r a l l y l o c a t e d p a r a l l e l t o b a s a l .planes. The 

i n f l u e n c e of bubbles i s not c l e a r , as any bubbles i n the f r a c t u r e path 

are o b l i t e r a t e d during l a t e r i n f i l of c r a c k s . . 

The spaed of f r a c t u r e propagation i s unknown, but from the p e t r o l o g i c 

evidence i t appears that f r a c t u r e has been r a p i d , such that t e x t u r e has 

exerted l i t t l e i n f l u e n c e . 

(b) I n f i l of f r a c t u r e 

The exact widths of f r a c t u r e s are unknown, as some c o n t r a c t i o n of 

the cracks may occur before i n f i l ( B l a c k 1953) and soma flow has occurred 

p r i o r to sampling. However, an astimate can be obtained from bubble zones 

p a r a l l a l to tha f r a c t u r e saam, and from boundaries between o r i g i n a l f r a c ­

tured grains and the i n f i l c r y s t a l s . These zones are up to 3 mm wide. As 

i s evident from F i g u r e 44, i n some cases the "massive" i c e c r y s t a l s have 

grown across to the f r a c t u r e seam; i n other' cases, a group of new c r y s t a l s • 

grew. The question a r i s e s of why both these cases occur. P e t r o f a b r i c 

diagrams of f r a c t u r e d c r y s t a l s show that there i s no s i g n i f i c a n t d i f f e r e n c e 
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batwaen c r y s t a l s i n the two cases. An i n d i v i d u a l c r y s t a l which i s f r a c ­

tured ( F i g . 45(a)) may be subject to one of s e v e r a l growth, pa t t e r n s : i n 

(b) new growth occurs on n e i t h e r s i d e ; i n (c) naw growth occurs on one 

s i d e ; i n (d) naw growth occurs on both s i d a s ; i n (e) new growth. occurs on 

parts of both s i d e s . Whatever the growth type, the seam i s c e n t r a l , so 

n u c l e a t i o n and growth rates i n a l i cases are approximately equal; •otherwise 

o f f s e t s would occur i n the seam. 

The f r a c t u r e s are o r i e n t e d such'.that "massive i c e " c r y s t a l b a s a l 

planes are approximately orthogonal to the crack s u r f a c e . The b a s a l plane, 

i s the plane of most r a p i d growth o f ' i c e ( H i i l i g 1958), thus n u c l e a t i o n and 

growth of new c r y s t a l s i s r a p i d . A l s o the i n f i l c r y s t a l s have a wider 

ranga of c-a x i s o r i e n t a t i o n s , which has.had l i t t l e e f f e c t on the i n f i l 

process ( F i g . 46). Figure 46(a) represents a v e r t i c a l s e c t i o n orthogonal 

to a f r a c t u r e showing c-axes of massive i c e c r y s t a l s to be v e r t i c a l i n the 

f r a c t u r e plane, w h i l e i n f i l c r y s t a l s form a v e r t i c a l g i r d l e normal to the 

f r a c t u r e . F i g u r e 46(b), (c) show c-axes of massive i c e c r y s t a l s , i n a 

h o r i z o n t a l s e c t i o n , and F i g . 46(d) i n d i c a t e s t h a t I n f i l c r y s t a l s give a 

v e r t i c a l g i r d l e . A f u r t h e r v e r t i c a l s e c t i o n i s represented i n F i g . 46(e) 

and i n f i l c r y s t a l s give a s i m i l a r p a t t e r n to F i g . 46(a). The p e t r o f a b r i c 

p a t t e r n f o r these f r a c t u r e i n f i l c r y s t a l s thus d i f f e r s markedly.from t h a t 

of tha recent tension crack ( F i g . 39) where a broad v e r t i c a l g i r d l e p a r a l l e l 

to the crack was found. However, i t i s noted t h a t In tha t e n s i o n crack 

copious n u c l e a t i o n occurred on the s o i l , r a t h e r than on f r a c t u r e i c e or 

hoar, and such c r y s t a l s had a much l e s s p r e f e r r e d o r i e n t a t i o n than the 

columnar c r y s t a l s which developed from the c h i l l zone. In the case of the 

thermal f r a c t u r e a much smaller space f o r c r y s t a l growth i s a v a i l a b l e , and 

a w a l l developed columnar zone has not developed. The i n f l u e n c e of hoar 
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•I 

Figure 46. F r a c t u r e s . i n "massive 
i c e " . ,. 

(a) V e r t i c a l s e c t i o n orthogonal to 
crack; x 18 massive i c e c r y s t a l s ; 
•62 i n f i l c r y s t a l s . 

(b) (c) H o r i z o n t a l s e c t i o n s o r t h o ­
gonal to crack, massive i c e 
c r y s t a l s . 

(d) 30 i n f i l c r y s t a l s i n s e c t i o n s 
( b ) , ( c ) . 

(e) V e r t i c a l s e c t i o n orthogonal to 
l o c a l l y d i p p i n g f r a c t u r e . 
40 i n f i l c r y s t a l s . . 

f = f r a c t u r e 
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c r y s t a l growth on i n f i l c r y s t a l s i s not known. I t i s i n t e r e s t i n g to note 

t h a t both tension crack and thermal f r a c t u r e i n f i l s d i f f e r from rock v e i n 

i n f i l s where"c-axes tend to be normal to the v e i n . 

The i n f i l texture d i f f e r s markedly from the "massive i c e . " C r y s t a l 

s i z e i s obviously l i m i t e d by the space a v a i l a b l e f o r growth, and c r y s t a l 

shape tends toward.columnar, p a r a l l e l to the growth d i r e c t i o n , and orthog-' 

onal to the f r a c t u r e s u r face. No w e l l developed zone of c o m p e t i t i v e growth 

occurs. Mutual boundaries are s t r a i g h t or gently curved, l o c a l l y w i t h small, 

gas, bubbles. No intergrowths occur at the c e n t r a l seam i n the i n i t i a l 

growth p e r i o d . Sub-boundaries were not observed i n the newly grown i n f i l 

c r y s t a l s . Subsequent changes i n t h i s o v e r a l l p a t t e r n are discussed l a t e r . 

A. small, amount of i c e growth occurs on the s u r f a c e of the f r a c t u r e d massive 

i c e before bubbles form. This i n d i c a t e s a b u i l d up of d i s s o l v e d gas at 

the s o l i d - l i q u i d i n t e r f a c e . i n the i n i t i a l f r e e z i n g . The bubbles occur on 

both sides of the f r a c t u r e over large areas thus i n d i c a t i n g a widespread 

event. 

Black (1953) discussed the response of f r a c t u r e i n f i l s t o compressive 

stress.. Cracks, w i t h a i r bubbles and hoar i n f i l s became shear, planes whereas 

cracks w i t h . c l e a r i c e ware stronger and shear took place adjacent to them. 

S i m i l a r l y , t e n s i l e s t r e s s e s would be expected to produce d i f f e r i n g responses 

on d i f f e r e n t f r a c t u r e i n f i l s . I t must be remembered that at d i f f e r e n t 

.depths the ground i s subject to d i f f e r e n t s t r e s s systems at the same time. .. 

Thus f r a c t u r e s which are i n i t i a t e d i n a zone of t e n s i l e s t r e s s may propa­

gate i n t o compressed zones (Lachenbruch 1962). 

Where a " s t r a t i g r a p h y " of f r a c t u r e s was observed, i t was seen t h a t 

small c r y s t a l s , i n older f r a c t u r e s had embayed .the "massive i c e " c r y s t a l s . . 
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Thus the o r i g i n a l f r a c t u r e surface was no longer approximately p l a n a r , 

r e p r e s e n t i n g the adjustment of c r y s t a l s to the s t r e s s system. 

(c) Subsequent Fr a c t u r e s 

I t i s evident from the above d i s c u s s i o n that an i n f i l l e d f r a c t u r e 

presents markedly d i f f e r e n t texture and p e t r o f a b r i c s from the o r i g i n a l 

massive i c e . The smaller i n f i l c r y s t a l s have a g r e a t e r s p e c i f i c g r a i n 

boundary area, p a r t i a l l y i n a v e r t i c a l seam on which are abundant gas 

bubbles. A l s o a greater range of c - a x i s o r i e n t a t i o n s occurs, i n c l u d i n g 

some, c r y s t a l s w i t h v e r t i c a l b a s a l planes. However, i t i s apparent from 

F i g u r e 47 that where r e f r a c t u r i n g has occurred the cracks do not f o l l o w . 

the same plane. Series of f r a c t u r e s are observed (between which massive 

i c e may' s t i l l be recognized); some c r o s s , and i n other cases a crack may 

trend i n t o a previous one. In general there i s no apparent c o n t r o l by 

e a r l i e r f r a c t u r e s , i . e . the texture and presence of c e n t r a l seams of f r a c ­

t ures c o n t a i n i n g bubbles had l i t t l e e f f e c t on subsequent f r a c t u r e s . This 

may be due to the f a c t o r , pointed out. In the d i s c u s s i o n of Tension Crack 

Ice , t hat f i n e r grained m a t e r i a l s a remore r e s i s t a n t to cracking! than 

coarse grained due to t h e i r greater a b i l i t y to accommodate c o n t r a c t i o n . 

s t r a i n s . 

(d) The Prograde F a b r i c of Wedges 

A s i t e on P e l l y I s l a n d ( F i g . 1) w i t h l a r g e - s c a l e wedges was s t u d i e d 

i n order to I n v e s t i g a t e changes i n texture and p e t r o f a b r i c s across wedges-, 

and the i n t e r s e c t i o n of two wedges. 



Figure 47. P a r a l l e l and 
c o n t r a c t i o n cracks i n 
s e c t i o n . 10 mm g r i d . 

converging thermal 
massive i c e . H o r i z o n t a l 

Crossed p o l a r i z e r s 
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. . F i e l d C h a r a c t e r i s t i c s . 

Tha Northwest coast of P e l l y I s l a n d has a l o w - l y i n g a r e a of polygon 

f l a t s i n l a c u s t r i n e c l a y s , p r e s e n t l y undar a c t i v e c o a s t a l r e c e s s i o n . . 

Wedges are r e a d i l y observed on a low c l i f f , , and polygon troughs and. r i d g e s 

are w e l l developed. Many, wedges are greater than 2 m across and some are 

over 3m.. The.upper.surfaces•of most c o a s t a l wadgas and surrounding peat 

and c l a y have been subject to melt down and p e r i o d s . o f freeze-back. Thermo-

k a r s t and thermal e r o s i o n was g r e a t e s t over and adjacent to wadges, the 

hollows having been i n f i l l e d subsequently by peat, c l a y and pond i c e . I n 

one casa t h i s l e f t a l a r g e wedge i n an i n a c t i v e state, and l e d to new wedge 

growth adjacent and approximately p a r a l l e l to the f i r s t . 

Tha wedges have the c h a r a c t e r i s t i c fan-shaped f o l i a t i o n (Black 1953) 

determined by bubble and sediment content, w i t h a general decrease, i n 

bubbles from the centre, outwards. Larga c l a y i n c l u s i o n s are found at the 

contact w i t h surrounding m a t e r i a l . In a d d i t i o n t o the fan-shaped f o l i a ­

t i o n s , o b lique f r a c t u r a s cross tha wadges ( F i g . 48). 

Samples were taken from a l a r g e wedge, 3.3 m wide w i t h an overburden 

of peat and c l a y 0.4-0.5 m. deep. Malt-down had occurred below the present 

a c t i v e l a y e r ( F i g . 49) as i n d i c a t e d by a c h e m i c a l l y s t a i n e d l a y e r i n the 

c l a y which a d j o i n s the lower shoulder of the wedge. This i s not a t w o - t i e r 

wedge,, but g r e a t e s t m e l t i n g occurred, at the boundary of the wedge, above 

which occurs a-body of pond i c e which f r o z e o m n i d i r e c t i o n a l l y . The upper 

wedge -surface has a r e l i e f of 0.1 m. Exposure of i c e was l i m i t e d to a 

depth of T to 1.5 m below the wedge top due to slumping, thus no samples 

could be removed from greater depths. . Four samples were taken .across the 

wadge from the centre to the boundary. 



Figure 48. Bubble bands and oblique fractures in.wedge, 
(schematic) 

A . L 
r-rrTTT ^ 

,,'','II'-'V-' 

" I ' l l 1 1 1 "/"/ 

^ 1 ••'',''///A////'V 

Figure Melt-down adjacent to large wedge, 
A.L. = present a c t i v e l a y e r ; 

= "pond i c e " ; 
— — = base of thawed zona. 
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Ice C h a r a c t e r i s t i c s , wedge centra • ' 

The bubble f o l i a t i o n of the c e n t r a l p o r t i o n of the wedge presents a. 

complex p a t t e r n . I t i s evident that cracking.does not always occur cen­

t r a l l y , as l a t e r o b lique cracks o f f s e t e a r l i e r f o l i a t i o n s (by a few mm). 

Bubbles, u s u a l l y elongated v e r t i c a l l y , average 10. mm i n le n g t h and .< 1. mm 

diameter; some s p h e r i c a l bubbles ( < 1 mm) are i n t e r s p e r s e d w i t h i r r e g u l a r 

ones. W i t h i n a given f o l i a t i o n , bubble shape i s f a i r l y constant, these 

f o l i a t i o n s are < 3 mm wide and separated by c l e a r e r i c e . Peat and sediment . 

i n c l u s i o n s are s c a t t e r e d along the t r a c e s . o f o l d f r a c t u r e s ; l a r g e r i n c l u ­

sions may have been broken up and o f f s e t by subsequent o b l i q u e f r a c t u r e s . 

More recent f r a c t u r e s have larger,. sub-planar c o n c e n t r a t i o n s . I n c l u s i o n s 

thus occur as: (a) i n d i v i d u a l fragments of 1-2 mm; (b) pl a n a r zones con­

tinuous l a t e r a l l y f o r 80 mm; (c) pods extending 2-3 mm out from the f r a c t u r e 

surfaces.. These i n c l u s i o n s provide no i n f o r m a t i o n concerning crack w i d t h s , 

as p a r t i c l e m i g r a t i o n , and flow of i c e have occurred s i n c e the f r a c t u r e s 

were i n f i l l e d . W i t h i n a given f r a c t u r e there i s no apparent r e l a t i o n s h i p 

between sediment or organic matter and bubble i n c l u s i o n s , i . e . the bubble 

contents above and below.organic matter are s i m i l a r . 

Ice C h a r a c t e r i s t i c s , wedge boundary 

The i c e at the wedge boundary d i f f e r s from t h a t described above. 

The f r a c t u r e p a t t e r n i s l e s s complex, the bubble f o l i a t i o n s and the i n t e r ­

vening " c l e a r bands" are wider, reaching up to 20 mm. Bubbles are mainly 

v e r t i c a l l y elongated, 10 mm long, •with fewer s p h e r i c a l bubbles than i n the 

centre of the wedge. Thus, w h i l e the f o l i a t i o n s have become r o t a t e d . t h e 

bubbles remain e s s e n t i a l l y v e r t i c a l . The f r a c t u r e s s u b - p a r a l l e l to the 
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wedge boundary have c l a y i n c l u s i o n s up to 3 mm wide and are more continuous 

than those i n the centre.of the wedge. U s u a l l y the f r a c t u r e s w i t h h i g h . 

c l a y content have few bubbles. Later f r a c t u r e s are ob l i q u e to the. e a r l i e r 

f r a c t u r e s and to the wedge boundary, and have low sediment content. 

Wedge Centre 

Bubble C h a r a c t e r i s t i c s . - Maximum i n f o r m a t i o n was obtained from 

v e r t i c a l s e c t i o n s orthogonal to the trend of the wedge. Bubbles occur i n 

markedly d i f f e r e n t d e n s i t i e s w i t h i n i n d i v i d u a l bands, which range i n dip 

from 40° to v e r t i c a l , but not a l l bands s t r i k e p a r a l l e l to the wedge. 

Bubble shapes are (a) elongate, (b) s p h e r i c a l , (c) i r r e g u l a r . 

(a) Elongata bubbles are o r i e n t e d approximately v e r t i c a l l y , whather 

the c o n t a i n i n g f o l i a t i o n i s v e r t i c a l or o b l i q u a . I n d i v i d u a l ..bubbles are 

<3 mm long and < 0.5 mm diameter, some having s l i g h t c u r v a t u r e , but.most 

are r e g u l a r c y l i n d e r s . 

(b) S p h e r i c a l bubbles are < l l mm i n diameter and occur i n d i v i d u a l l y , 

i n groups, or w i t h i n bands of mainly elongate bubbles. 

(c) I r r e g u l a r l y shaped bubbles are s i m i l a r In d i s t r i b u t i o n to the 

s p h e r i c a l , but may reach 3 mm i n length. 

Organic matter occurs mainly i n small pockets in. discontinuous, t r a i n s 

approximately p a r a l l e l to bubble bands. 

C r y s t a l C h a r a c t e r i s t i c s . - C r y s t a l s i z e v a r i e s markedly throughout 

the s e c t i o n ( F i g . 50), the average s i z e being .4 mm x 3 mm and. the range from 

<1 mm x <1 mm to 42 mm x 8 mm, tha l a t t e r b e i n g . v e r t i c a l l y elongated. 

C r y s t a l s are anhedral w i t h s t r a i g h t or s l i g h t l y 'curved boundaries. Soma 
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F i g u r e 51. Sketch of grains 
F i g u r e 50 for p e t r o f a b r i c 
a n a l y s i s , shown i n Figure 52. 
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of the l a r g e r c r y s t a l s have more i r r e g u l a r boundaries due to the presence 

of small c r y s t a l s • a l o n g t h e i r margins. There are d i f f e r i n g t e x t u r a i zones, 

areas where grains are equigranular w i t h no complex intergrowths c o n t r a s t - . 

i n g w i t h areas where grains are markedly d i s s i m i l a r i n shape, s i z e and 

s u b s t r u c t u r e . Dimensional o r i e n t a t i o n ( F i g . 55(a)) i s predominantly v e r ­

t i c a l throughout, but l o c a l l y more s t r o n g l y developed, and some recent 

f r a c t u r e i n f i l c r y s t a l s have h o r i z o n t a l axes. S p h e r i c a l bubbles tend to 

be on or near c r y s t a l boundaries r a t h e r than i n the centres of c r y s t a l s . 

No major change i n shape of bubbles occurs at g r a i n boundaries. Elongated 

bubbles r a r e l y occur w i t h i n a s i n g l e c r y s t a l , most cross boundaries or 

terminate upwards at boundaries. The l a t t e r suggests that m i g r a t i o n i s 

c o n t r o l l e d by the g r a i n boundary. Most i n c l u s i o n s of. organic matter are 

at g r a i n boundaries. A photograph of one t h i n s e c t i o n Is given i n F i g . 50, 

and a sketch of grains f o r p e t r o f a b r i c a n a l y s i s I n F i g . 51.. The general 

p e t r o f a b r i c p a t t e r n f o r the sample i s a broad s u b h o r i z o n t a l g i r d l e ( F i g . 

5 2 ( a ) , ( b ) ) , but l o c a l concentrations e x i s t , i n d i c a t i n g the complex i n f l u e n c e 

of m u l t i p l e f r a c t u r e s . C r y s t a l growth i n f r a c t u r e s i s expected to be 

i n i t i a l l y productive of a v e r t i c a l g i r d l e . n o r m a l to the crack, unless 

c r y s t a l s grow as extensions of cracked c r y s t a l s , where a h o r i z o n t a l g i r d l e 

p a t t e r n would be expected. Subsequent periods of thermally - induced s t r e s s 

cause flow and. r e o r i e n t a t i o n . L a t e r f r a c t u r e s may a l s o i n t e r r u p t the 

p a t t e r n . Component p e t r o f a b r i c diagrams ( F i g . 52(c)-(1)) have been prepared 

on the b a s i s of c r y s t a l s i z e , number of sides per c r y s t a l and bubble 

content. There' are no s i g n i f i c a n t l y d i f f e r e n t patterns f o r each set of 

diagrams. Thus the broad h o r i z o n t a l g i r d l e i s homogeneous throughout the 

s e c t i o n . 
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F i g u r e 52. (a),(b) 140 c r y s t a l s , v e r t i c a l s e c t i o n orthogonal to wedge a x i s , 
at wedge centre, .(c) 57 c r y s t a l s w i t h v e r t i c a l dimensional', 

• o r i e n t a t i o n , (d) 83 other c r y s t a l s , (e) 40 c r y s t a l s w i t h "> 6 
s i d e s , ( f ) 40 c r y s t a l s w i t h 5 sides., ... continued. 
Diagrams i n plane of seccions a.p. = a x i a l plana of wedge 
Contours at i n t e r v a l s ' 1, 2,.. 4, 6, 8 cr 



(Cont'd) (g) 60 c r y s t a l s with < 5 s i d e s , (h) 24 c r y s t a l s , 
>5 mm long axes, ( i ) 52 c r y s t a l s 3-4 mm axes, ( j ) 58 c r y s t a l s 
<2 mm axes (k) 69 c r y s t a l s c o n t a i n i n g hubbies (1) 71 c r y s t a l s 
without bubbles. 
Diagrams i n plane of s e c t i o n s a.p. = a x i a l plane of wedge 
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Wedge Boundary 

The contact of the wedge wi t h the surrounding c l a y i s i r r e g u l a r and 

cl a y blocks are contained w i t h i n the i c e . These blocks have rounded .edges 

and are d i s s i m i l a r to c l a y i n a lens ice-clay, system. The fr a c t u r e , p a t t e r n 

i s simpler than at the wedge centre; most f r a c t u r e s trend p a r a l l e l to the 

side of the wedge and are oft e n traceable c o n t i n u o u s l y through the s e c t i o n , 

although some are s l i g h t l y o f f s e t by l a t e r , o b l i q u e f r a c t u r e s ( F i g . 53). 

Many.earlier f r a c t u r e s have 2-5 mm t h i c k sediment i n c l u s i o n l a y e r s , w h i l e 

others are l e s s continuous. These e a r l y f r a c t u r e s have fewer bubbles but 

more sediment than l a t e r f r a c t u r e s . 

Bubble C h a r a c t e r i s t i c s . - Bubbles i n the o l d e r f r a c t u r e s have been 

subject to more thermomigration and f r a c t u r i n g . As the younger f r a c t u r e s 

tend to occur i n the c e n t r a l p o r t i o n , bubbles are b e t t e r preserved there 

than at the s i d e s . Owing to these changes, the c h a r a c t e r i s t i c wedge 

" f o l i a t i o n " i s l e s s e a s i l y traceable near the wedge boundary, e s p e c i a l l y 

where c l a y i n c l u s i o n s , and l e s s commonly organic matter, are present. •" 

Where bubbles occur at the s i d e s , they are more i r r e g u l a r than i n the wedge 

centre. S p h e r i c a l bubbles are le s s abundant than a t the wedge ce n t r e , 

0.5 mm i n diameter, and tend to surround elongate bubble zones. These 

probably represent the i n t e r a c t i o n of bubbles d u r i n g wedge growth. U s u a l l y 

t h e greatest i r r e g u l a r i t y appears on the s i d e of the bubble nearest the. 

wedge boundary. The l a t e r " f o l i a t i o n s " are bubble-bands 3 to 5 mm wide. 

c o n t a i n i n g more re g u l a r v e r t i c a l l y elongated bubbles, whatever the o r i e n - . 

•tation of tha .band. , . 

C r y s t a l C h a r a c t e r i s t i c s . - C r y s t a l s i z e v a r i e s throughout the s e c t i o n , 

but i s g e n e r a l l y l a r g e r . a t the wedge boundary than i n the wedge centre, 



Figure 53. J u n c t i o n of 
wedge with c l a y . Note 
bubble t r a i n s p a r a l l e l to 
j u n c t i o n , and tha oblique 
f r a c t u r e . 
10 mm g r i d . V e r t i c a l s e c t i o n 
perpendicular to a x i s of wedge. 
Plane p o l a r i z e d l i g h t . 

F igure 54. V e r t i c a l s e c t i o n , 
wedge boundary, orthogonal 
to wedge a x i s . 
10 mm g r i d . 
Crossed p o l a r i z e r s 
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average s i z e being 7 x 3 mm. Away from the edge of the wedge, c r y s t a l s 

reach 15 x lOymm, but small c r y s t a l zones a l s o occur ( F i g . 54; a l s o 

compare F i g . 50). 

C r y s t a l shape i s anhedral but w i t h the s m a l l e r c r y s t a l s tending to 

have some s t r a i g h t s i d e s . The most pronounced g r a i n boundary i r r e g u l a r i ­

t i e s are v e r t i c a l l y upward in d e n t a t i o n s at the base of c r y s t a l s , a s s o c i a t e d 

w i t h bubbles. 1 Upward m i g r a t i o n i s u n l i k e l y as m i g r a t i o n would, tend to be 

downward f o r most of the year to the warmer r e g i o n . G r a i n boundary 

mi g r a t i o n can occur i n any d i r e c t i o n , thus i t i s more l i k e l y t hat bubbles 

have l o c a l l y retarded that process. Some of the l a r g e r g r a i n s (> 10 x 5 mm 

are cut by l a t e r f o l i a t i o n s , thus an increase i n c r y s t a l s i z e occurred 

before the l a t e s t f r a c t u r e s . Some bubble i r r e g u l a r i t i e s o ccurred a f t e r 

the l a t e s t f r a c t u r e s , but the time of f r a c t u r i n g i s unknown. 

Dimensional o r i e n t a t i o n s ( F i g . 55(b)) are g e n e r a l l y , v e r t i c a l or 

pa r a l l e l - c . o the l o c a l f r a c t u r e , the o l d e r f r a c t u r e s dominating, but. t h i s 

p a t t e r n i s complicated where new f r a c t u r e s occur. Substructure occurs, 

mainly i n the l a r g e r g r a i n s , as s l i g h t l y d i f f e r i n g e x t i n c t i o n across 

c r y s t a l s , not as d i s t i n c t bands. 

There i s thus an o v e r a l l r e l a t i o n s h i p of t e x t u r e and f o l i a t i o n . In 

the zone of older f r a c t u r e s , small c r y s t a l s are e f f e c t i v e l y bounded by 

f r a c t u r e s . L a t e r f r a c t u r e s cross these o l d e r g r a i n s . In. comparison w i t h 

s e c t i o n s from the wedge centre, a higher p r o p o r t i o n of bubbles occurs 

w i t h i n c r y s t a l s , thus w h i l e bubble m i g r a t i o n and g r a i n boundary adjustment 

have occurred, bubbles have not a l l been trapped on boundaries. 
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Fi g u r e 55. Dimensional o r i e n t a t i o n , v e r t i c a l s e c t i o n s . 

.(a) Centre of wedge, s e c t i o n orthogonal to wedge a x i s ; 
(b) Boundary of wedge, s e c t i o n orthogonal to wedge axis.; 
(c) J u n c t i o n of two wedges. 

Fig u r e 56. Sketch of grains f o r p e t r o f a b r i c a n a l y s i s , shown i n F i g . 57. 
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Figure 5 7. 

(a),(b) 120 c r y s t a l s , v e r t i c a l 
. s e c t i o n orthogonal to x^edge 
a x i s , at x^edge boundary; 

(c) 43 c r y s t a l s <10 mm"; 

(d) 42 c r y s t a l s 10-20 mm2.; . "•' 

(e) 30 c r y s t a l s >20mra 2. 

Diagrams i n planes of s e c t i o n s 
a.p. ..= a x i a l plane of wedge 
w.b. '= xvedge. boundary 
contour i n t e r v a l s 2, 4, 6, 8, 

10, 12, 14 cr 
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P e t r o f a b r i c diagrams are given i n F i g . 57, f o r the s e c t i o n sketched 

i n F i g . 55. The p a t t e r n i s seen immediately to be more concentrated than, 

the previous case, d i s p l a y i n g a strong point c o n c e n t r a t i o n orthogonal to 

the plane of the major f o l i a t i o n , w i t h a minor, g i r d l e orthogonal to the 

compositional l a y e r i n g . The f a b r i c , has thus become r e o r i e n t e d i n t o higher 

symmetry than that of the wedge centre. Component diagrams ware prepared 

on the b a s i s of c r y s t a l s i z e , p o s i t i o n r e l a t i v e to f r a c t u r e s , and dimen­

s i o n a l o r i e n t a t i o n . . The three diagrams ( F i g . 57(c)-(e)) d i f f e r e n t i a t i n g 

c r y s t a l s i z e show that c r y s t a l s <^10 mm- tend toward a g i r d l e p a t t e r n which 

was c h a r a c t e r i s t i c of the wedge c e n t r e , w h i l e the l a r g e r the g r a i n s , the 

nearer the p a t t e r n approaches a p o i n t c o n c e n t r a t i o n . There i s no s i g n i ­

f i c a n t d i f f e r e n c e among diagrams based on dimensional o r i e n t a t i o n . 

H o r i z o n t a l Sections 

As a check on t e x t u r a l v a r i a t i o n across the s e c t i o n , h o r i z o n t a l t h i n . 

se c t i o n s were compared. The f r a c t u r e p a t t e r n i s more pronounced i n the . 

wedge'centre, most f r a c t u r e s are p a r a l l e l to the wedge trend,.but some 

i n t e r s e c t . Bubble i n c l u s i o n s are most s t r o n g l y concentrated i n younger 

f r a c t u r e s which separate zones of c l e a r e r i c e and of randomly s c a t t e r e d 

bubbles; few d i s c r e t e bands occur near the wedge edge. Organic matter i s 

much l e s s common than bubbles i n the c e n t r a l • s e c t i o n -- i n c l u s i o n s are 

r e s t r i c t e d to small p a r t s of a few f r a c t u r e s , o c c u r r i n g i n the form of 

s treaks and blobs. At the wedge boundary, organic matter i s i n the form 

of l i n e a r i n c l u s i o n s only. Average c r y s t a l s i z e v a r i e s from 3 x 2 mm i n 

the: wedge centre to 6 x 5 mm i n the outer s e c t i o n . C r y s t a l shape i n the 

centre i s g e n e r a l l y subhedral, curved faces being on the s i d e away from 



recent f r a c t u r e s . Most complex shapes are found near those f r a c t u r e s i n 

c r y s t a l s which have dimensional o r i e n t a t i o n s orthogonal to.the c r a c k s , 

whereas those f u r t h e r away are more n e a r l y equidimensional. I n the S e c t i o n 

near the wedge boundary, shapes are mostly anhedral but w i t h no complex 

intergrowths or s e r r a t i o n s . Major boundary i r r e g u l a r i t i e s are a s s o c i a t e d 

w i t h bubbles, i n d i c a t i n g r e l a t i v e bubble-boundary m i g r a t i o n . Substructure 

i s not w e l l developed i n any s e c t i o n ; i t occurs i n l a r g e r c r y s t a l s i n the 

wedge centre and more fr e q u e n t l y at the wedge boundary. The only pre­

f e r r e d dimensional o r i e n t a t i o n i s . orthogonal to recent f r a c t u r e s , i n d i c a t i n g 

space i n f i l l i n g ; l a t e r periods of s t r a i n modify such a p a t t e r n . In the 

c e n t r a l s e c t i o n bubbles and texture are r e l a t e d i n two ways:. . (a) recent 

f r a c t u r e s are.marked by continuous l i n e s of bubbles In t h e i r c e n t r e s , 

c r y s t a l s from each s i d e of the wedge meeting at the seam, and (b) away 

from recent f r a c t u r e s , bubbles tend to be i n g r a i n boundaries, probably 

r e s u l t i n g from t r a p p i n g during r e c r y s t a l l i z a t i o n . Near the wedge boundary, 

bubble bands are l e s s d i s t i n c t , and the l a r g e r g r a i n s have grown past 

the o l d bands, bubbles o c c u r r i n g w i t h i n c r y s t a l s and at boundaries., 

Organic matter always occurs at boundaries. 

J u n c t i o n of Two Wedges 

In a d d i t i o n to the f a b r i c s of s i n g l e wedges, a j u n c t i o n of two 

o r t h o g o n a l l y i n t e r s e c t i n g wedges was s t u d i e d . No. major d i f f e r e n c e s from . . 

s i n g l e wedges were found. C r y s t a l s i z e -ranged from 2 mm x 1 mm.tb 22 mm x 

8 mm, averaging 7 mm x 5 mm. No prominent banding was d i s t i n g u i s h e d on 

the b a s i s of g r a i n s i z e , except where a recent, f r a c t u r e was i n d i c a t e d by 

a small c r y s t a l zone. Shape i s g e n e r a l l y a n h e d r a l , although some c r y s t a l s 

have one of more s t r a i g h t s i d e s , and dimensional o r i e n t a t i o n i s . v e r t i c a l . 



p a r a l l e l to bubble f o l i a t i o n , and more pronounced than i n s i n g l e wedges. 

The p e t r o f a b r i c diagram ( F i g . 58) shows a broad h o r i z o n t a l g i r d l e which 

i s broader and weaker than the p a t t e r n i n s i n g l e wedges, but contains two 

orthogonal maxima, normal to the two wedges. From the l i m i t e d work done 

here i t i s not p o s s i b l e to suggest r e l a t i o n s h i p s of i n d i v i d u a l maxima to 

each wedge. 

D i s c u s s i o n of Wedge Ice 

The number of samples described here i s l i m i t e d compared w i t h the 

work of Black (1953), but w i t h i n a given wedge systematic changes were 

recognized. In a s i n g l e wedge grain, s i z e increased outward from the . 

centre and c r y s t a l s became dimensiorially o r i e n t e d p a r a l l e l to the compo­

s i t i o n a l l a y e r i n g . Towards the sides of the wedge o p t i c axis- o r i e n t a t i o n s 

form a strong po i n t maximum orthogonal to the l a y e r i n g due to r e c r y s t a l - . 

l i z a t i o n . The lower symmetry of the f a b r i c diagrams of the wedge centre 

i s due to the presence of m u l t i p l e oblique f r a c t u r e s and a s s o c i a t e d new 

c r y s t a l growth. With i n c r e a s i n g d i s t a n c e from the centre there i s l e s s 

disturbance and f a b r i c s adjust to the imposed s t r e s s system, producing a 

strong p o i n t maximum. While the major s t r e s s Is h o r i z o n t a l , wedges r e t a i n 

a wedge shape and b a s a l planes of c r y s t a l s are p a r a l l e l to the bubble 

l a y e r i n g . Towards the wedge boundary the l a y e r s increase i n d i p , but non-

s p h e r i c a l bubbles w i t h i n the layer s r e t a i n v e r t i c a l o r i e n t a t i o n s , due i n 

part to the s t r e s s system and p a r t i a l l y to the v e r t i c a l temperature gra­

d i e n t . The sample from the j u n c t i o n of two wedges shows the i n f l u e n c e of 

both wedges. 



F i g u r e 58. (a),(b) 100 c r y s t a l s at j u n c t i o n of two 
orthogonal i c e wedges. 
V e r t i c a l s e c t i o n 
a.p. = a x i a l planes of wadges 
contour i n t e r v a l s 2, 4, 6 cr 



In comparison w i t h Black's (1953) r e s u l t s , the f a b r i c s . f o u n d . h e r e . 

are f a i r l y simple. C-axis maxima are g e n e r a l l y orthogonal t o c o m p o s i t i o n a l 

l a y e r i n g s whereas Black found t h i s p a t t e r n plus a range of o t h e r s . However 

Black studied many more wedges which included wedges i n v a r i o u s s t a t e s of 

a c t i v i t y , i n c l u d i n g b u r i e d wedges. Buried, wedges had equigranular c r y s t a l s -

(Black. 1953, p. 65) which i s evidence of g r a i n growth. . 

In the t h e o r e t i c a l -work of Lachenbruch (1962) and Gfechishchev (1970) 

the wedges were considered to be f a i r l y uniform. I n the present study, the. 

v a r i a b i l i t y i n compositional and c r y s t a l c h a r a c t e r i s t i c s has been recog­

n i z e d . Compositional l a y e r s d i f f e r in. o r i e n t a t i o n throughout the wedge and 

the contained i c e s respond i n d i f f e r e n t manners. The l a y e r s are d e f i n e d by 

bubbles and other gross defects which act as s t r e s s c o n c e n t r a t o r s . Thus 

t h e o r e t i c a l models of c r a c k i n g are not r i g o r o u s l y a p p l i c a b l e . A d d i t i o n a l l y 

the presence of g r a i n boundaries, xvhich are zones of atomic d i s o r d e r , may 

i n f l u e n c e crack propagation.. The general i n c r e a s e i n g r a i n s i z e toward 

the edge of the wedge and a s s o c i a t e d change i n o p t i c a x i s l i n e a t i o n s toward 

a p o i n t c o n c e n t r a t i o n orthogonal to the . l o c a l f o l i a t i o n i s due to b a s a l 

s l i p and g r a i n growth occurs i n s u i t a b l y o r i e n t e d c r y s t a l s , w h i l e other, 

c r y s t a l s are consumed i n the boundary m i g r a t i o n mechanism. I n c l u s i o n s may 

a f f e c t the boundary adjustments, and bubbles are s u b j e c t to h o r i z o n t a l 

s t r e s s e s and a v e r t i c a l temperature gradient which produces t h e i r v e r t i c a l 

e l o n g a t i o n . . 

Shumskii (1954, p. 202) reported that at the upper end of wedges 

... c r y s t a l s are columnar. The s t r a t i f i c a t i o n becomes q u i t e 
i n d i s t i n c t ... and the number of mineral i n c l u s i o n s decreases 
c o n s i d e r a b l y . 
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T h i s suggests that the upper i c e was pool i c e , f r o z e n i n the wedge trough. 

Such m i s i n t e r p r e t a t i o n s are r e a d i l y made i n l i g h t of the f a c t that thermal 

e r o s i o n of i c e wedges may occur, as discussed by Mackay (1974d). Refrozen • 

i n f i l s of such channels have been observed, and subsequent f r a c t u r e s cross 

these i n f i l s (Mackay, personal communication 1975). 

(e) The Influence of Wedge Growth on Massive Ice 

In a d d i t i o n to s i t e s such as P e l l y I s l a n d , where wedge systems have 

developed i n sediments and organic matter, wedges have a l s o grown i n 

segregated i c e bodies. The. l a t t e r type i s l e s s frequent and c h a r a c t e r i z e d 

by l a r g e r polygons. As recent f r a c t u r e s were i d e n t i f i e d p e t r o g r a p h i c a l l y , 

the wedge, appears to be growing, and thus a c t i v e l y s t r e s s i n g the surrounding 

i c e . The compositional l a y e r i n g of the massive i c e i s deformed adjacent t o. 

the wedge, shown i n Figure 32. P e t r o l o g i c a n a l y s i s shows a decrease i n ... 

g r a i n s i z e toward the wedge, and a change i n p e t r o f a b r i c s from that t y p i c a l 

of f o l d e d massive i c e toward that of a wedge. I n a d d i t i o n recent f r a c t u r e s 

showed t h e i r c h a r a c t e r i s t i c f e a t u r e s . By comparison w i t h f o l d e d i c e which 

d i d not c o n t a i n a wedge, the i n f l u e n c e of the wedge i s apparent. 

( f ) Comparison of Tension Crack Ice and Wadge Ice 

Wedge i c e i s a r e s u l t of the i n f i l of f r a c t u r e s produced by thermal 

c o n t r a c t i o n of the ground, whereas t e n s i o n crack i c e i n f i l s f r a c t u r e s pro­

duced by mechanical rupture of the ground a s s o c i a t e d w i t h the growth of 

excess i c e at depth, as i n the case of pingos. However, t e n s i o n crack 

Ice i s a l s o subject to thermally-inducad s t r a i n s . 



Wedges c h a r a c t e r i s t i c a l l y form a; polygonal p a t t e r n (although there 

may be no surface expression on sl o p e s , due to s o i l creep) whereas t e n s i o n 

cracks are best observed on pingos, but may extend on to adjacent lake 

f l a t s , and have been traced f o r 2 km (Mackay 1973a, p. 992, F i g . 18). Thus 

the two i c e types may be d i s t i n g u i s h e d f r e q u e n t l y by surface e x p r e s s i o n . 

Where exposure to depth occurs the r e l a t i o n s h i p of the ice" body to. surround 

i n g m a t e r i a l d i f f e r s ; no upturning occurs at the t e n s i o n crack boundary 

( F i g . 40), whereas sediment and i c e banding are deformed adjacent t o 

wedges ( F i g . 32). 

Where such rare s e c t i o n s are not a v a i l a b l e , the p e t r o l o g i c c h a r a c t e r ­

i s t i c s of the i c e are u s e f u l ; however, no t e n s i o n crack i c e from the lake 

f l a t s was st u d i e d . In comparison w i t h wedge I c e , one season's growth of 

t e n s i o n crack i c e may be much greater ( i n t h i s study 100 mm) and has mul­

t i p l e bubble bands and c r y s t a l l a y e r s . c o n t a i n i n g l a r g e r c r y s t a l s than wedge 

i c e . A l s o l a t t i c e p r e f e r r e d o r i e n t a t i o n s are more concentrated i n the . 

g i r d l e p a t t e r n . In the case of the o l d t e n s i o n crack i c e there are again 

major d i s s i m i l a r i t i e s from wedge i c e in. terms of banding, bubbles, c r y s t a l 

s i z e , shape and o r i e n t a t i o n . ••. 
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R e t i c u l a t e Vein Ice  

I n t r o d u c t i o n 

F i n e - g r a i n e d sediments, such as g l a c i a l t i l l s , lake and marine c l a y s 

and mudflow deposits are of widespread d i s t r i b u t i o n i n the f i e l d area. 

W i t h i n such sediments, r e t i c u l a t e i c e veins have been recognized forming 

a three-dimensional p a t t e r n (Mackay 1974b). The veins tend to occur i n 

tha upper 10 m of exposures and are f r e q u e n t l y u n d e r l a i n by massive segre­

gated ice.. The primary veins may be e i t h e r v e r t i c a l or h o r i z o n t a l 

(Mackay 1975c) and range up to 5 m i n length and 0.3 m i n w i d t h . Ice 

w i t h i n the veins i s o f t e n i n c l u s i o n f r e e . 

S e v e r a l t h e o r i e s of v e i n growth have bean proposed (Popov 1967; 

D a n i l o v 1969; Katasonov 1967; Mackay 1974b, 1975c; McRoberts and. Nixon 

1975). The t h e o r i e s of PopOv, Danilov and Katasonov have been discounted, 

by Mackay (1974b) who presented a theory which e x p l a i n s the near s u r f a c e 

p o s i t i o n of the v e i n systems and the lack of excess water on thaw; the 

v e r t i c a l and h o r i z o n t a l o r i e n t a t i o n s are due to shrinkage c r a c k s and the 

water i s d e r i v e d from the adjacent " f r o z e n " c l a y b l o c k s , a f t e r downward 

p e n e t r a t i o n of the f r e e z i n g ' f r o n t . 

McRoberts and Nixon (1975) gave a d i s c u s s i o n of Mackay's (1974b) 

paper.in terms of h y d r a u l i c f r a c t u r i n g . In r e p l y Mackay (1975c) p o i n t e d 

out that h o r i z o n t a l h y d r a u l i c f r a c t u r i n g was unlikely., and that v e r t i c a l 

veins formed by such a mechanism could probably, be d i s t i n g u i s h e d by f u r t h e r 

study of i c e v e i n p a t t e r n s , i c e p e t r o f a b r i c s and water chemistry. . 
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I n " t h i s study r e t i c u l a t e v e i n i c e was obtained from'above the massive 

segregated core of an i n v o l u t e d h i l l . Emphasis i s given to c o n s i d e r a t i o n s 

of i c e p e t r o f a b r i c s as an a i d i n understanding growth and p o s t - s o l i d i f i c a ­

t i o n f e a t u r e s . 

F i e l d C h a r a c t e r i s t i c s 

The s i t e chosen f o r sampling i s an upper, a c t i v e slump face, i n a 

c o a s t a l exposure where s e v e r a l periods of slumping have occurred. A v a r ­

i a b l e t h i c k n e s s of stoney c l a y (1-10 m) o v e r l i e s a massive segregated i c e . 

core. A t t h i s s i t e the r e t i c u l a t e v e i n i c e p a t t e r n i s dominated by v e r t i c a l 

veins ( F i g . 59) which reach 0.25 m i n thickness but are u s u a l l y 10 t o 100 mm 

t h i c k , and widen downwards.' They are t r a c e a b l e v e r t i c a l l y f o r s e v e r a l 

metres,, to the top of the present slump, and terminate downwards i n massive 

segregated, i c e ; f r e q u e n t l y they become t h i n n e r j u s t above the i c e core. 

H o r i z o n t a l veins a l s o occur but are l e s s continuous; the enclosed c l a y , 

b l o c k s are up to 1 m x 0.3 m x 0.3 m. The topography of the h i l l and the 

upper surface of the u n d e r l y i n g massive segregated i c e i s u n d u l a t i n g . The 

veins are perpendicular and p a r a l l e l to the upper massive.ice s u r f a c e , 

except where s l i g h t downs lope creep has occurred. Thus the system has 

been subject to heaving during l a t e r massive i c e growth. 

Ice C h a r a c t e r i s t i c s 

The contact of the v e i n i c e and surrounding c l a y i s i r r e g u l a r , but 

abrupt, and a mineral f i l m i s observed between i c e and c l a y . I n c l u s i o n s , 

occur i n the form of bubbles and small clay, b l o c k s ; no s t r u c t u r e s are 

apparent. Samples were taken from both v e r t i c a l and h o r i z o n t a l v e i n s , and, 

t h i n s e c t i o n s p a r a l l e l t o and orthogonal t o the v e i n trends are d i s c u s s e d . 



Figure 61. V e r t i c a l s e c t i o n , 
p a r a l l e l to v e i n plana. 
G r i d 10 am..1 1 

Crossed p o l a r i z e r s 
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( i ) ' Narrow V e r t i c a l . Veins 

Inclusion C h a r a c t e r i s t i c s 

. Bubbles are few, spherical and small ( <1 mm diameter) or e l l i p s o i d a l . 

(3-4 mm long). Positions are apparently not r e l a t e d to the vein boundary 

or to clay i n c l u s i o n s . 

The clay blocks are i r r e g u l a r with conchoidal.faces s i m i l a r to those 

reported for h o r i z o n t a l lenses by Penner (1961), and range i n s i z e up' to 

30 mm on a side. No pattern of the blocks r e l a t i v e to the v e i n o r i e n t a ­

t i o n was recognized. 

.' C r y s t a l C h a r a c t e r i s t i c s 

C r y s t a l s i z e i s large ( F i g . 60) ranging from 4 x 5 mm to 20 x 30 mm, 

and shapes are anhedral, inequigranular. Boundaries vary widely; i n a 

given c r y s t a l , 2. or 3 sides may be e s s e n t i a l l y s t r a i g h t while the others 

are very highly curved and i n t e r l o c k i n g , e s p e c i a l l y along embayments. 

These embayments develop along sub-boundaries, which are we l l developed 

in many grains. While many sub-boundaries, are p a r a l l e l i n a.given c r y s t a l , 

others radiate from a point, often an i n c l u s i o n . There i s no well developed 

dimensional o r i e n t a t i o n . 

.'" Sediment in c l u s i o n s have an obvious c o n t r o l on texture. Most p a r t i ­

c les are: . (a) on boundaries where they help to p i n boundary migration; 

(b) on sub-boundaries which r e s u l t from d i s l o c a t i o n production at the 

in c l u s i o n ; or (c) at. the junction of sub-boundaries and boundaries where 

embayment has been arrested. L o c a l l y very complex boundaries are associated 

with.a group of i n c l u s i o n s . The few.bubbles are generally on grain boundar­

ies . ' ' ' • : ' ' . 
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F i g u r e 61 shows a t h i n s e c t i o n v e r t i c a l l y below t h a t - p r e v i o u s l y d i s ­

cussed. This shows the l o c a l v a r i a b i l i t y i n c r y s t a l s i z e . I n some cases 

i t i s apparent that one c r y s t a l has been subdivided by s t r a i g h t sub-bound- . 

a r i e s , by a p o l y g o n i z a t i o n mechanism. These s u b - c r y s t a l s have c l o s e 

e x t i n c t i o n p o s i t i o n s . 

( i i ) Wide V e r t i c a l Veins 

I n c l u s i o n C h a r a c t e r i s t i c s 

• - Generally the wider veins d i f f e r i n i n c l u s i o n c h a r a c t e r i s t i c s from 

the narrow v e i n s . Bubbles occur i n the c e n t r a l zone, but not near the 

contact w i t h the c l a y . U s u a l l y the bubbles are v e r y f i n e , s p h e r i c a l , and 

occur i n groups and networks. Tha absence of bubbles i n tha outer zone 

suggests slow f r e e z i n g , and r e j e c t i o n of s o l u t e , as i s a l s o seen i n the 

m i n eral f i l m s on the c l a y b l o c k s . 

Clay occurs as f i n e l y dispersed p a r t i c l e s , . and i r r e g u l a r blocks 10 mm 

a c r o s s , a l l away from the contact. 

C r y s t a l C h a r a c t e r i s t i c s . •• 

C r y s t a l s i z e and shape determine two zones: c l o s e to the v e i n edge 

c r y s t a l s are elongate, y 10 mm x 6 mm, and i n tha c e ntre of the v e i n are 

large c r y s t a l s ^ 30 mm x >̂ 20 mm ( F i g . 62).. The elongate c r y s t a l s are 

anhedral w i t h curved to s e r r a t e d boundaries w i t h s e r r a t i o n s normal to' tha. 

dimensional o r i e n t a t i o n which i s orthogonal to tha c l a y c o n t a c t . The l a r g e r 

c e n t r a l c r y s t a l s are anhedral, boundaries are curved or have s m a l l s a r r a ­

t i o n s . These c r y s t a l s are more n e a r l y e q u i g ranular and more i n t e r l o c k i n g 
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Figure 62. V e r t i c a l s e c t i o n 
normal to v e i n plane. Note 
h o r i z o n t a l columnar c r y s t a l s 
on l e f t - h a n d s i d e , adjacent' 
to c l a y . 
G r i d 10 mm.Crossed p o l a r i z e r s 

Figure 64. Sketch of gra i n s for p e t r o f a b r i c a n a l y s i s , F i g u r e 63(b). 
Shaded grains have c-axes outside the maximum. V e r t i c a l s e c t i o n , 
p a r a l l e l to v e i n plane. 
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i n nature. Substructure occurs i n the c e n t r a l c r y s t a l s but i s r a r e i n the 

marginal, elongated c r y s t a l s . 

A l s o the r e l a t i o n s h i p of c r y s t a l s and i n c l u s i o n s d i f f e r s i n the two 

zones.. Most of the sediment i s i n t r a c r y s t a l l i n e i n the centre of the v e i n , 

but i n t e r c r y s t a l l i n e i n the zone of elongated c r y s t a l s . The networks of 

bubbles are not everywhere r e l a t e d t o present g r a i n boundaries; the bubbles 

g e n e r a l l y l i e v e r t i c a l l y below the boundaries, suggesting r e l a t i v e downward 

motion of bubbles. 

P e t r o f a b r i c diagrams are shown i n Fi g u r e 6 3 ( a ) - ( f ) f o r samples p a r a l l e 

and orthogonal to lens trends. F i g u r e 63(a),(b) represent the c-axes of 

c r y s t a l s i n t h i n s e c t i o n s p a r a l l e l to v e r t i c a l v e ins ( F i g . 60, 61, 64). 

Here the o p t i c a x i s p a t t e r n tends toward a maximum orthogonal to the plane 

of the v e i n , as found by Mackay (T974b, p. 231). C r y s t a l s , o u t s i d e the 

maximum are shown by shading i n Fi g u r e 64; they, do not d i f f e r i n t e x t u r a l 

c h a r a c t e r i s t i c s , but o f t e n occur i n groups. . 

Figures 6 3 ( c ) - ( f ) are f o r c r y s t a l s i n s e c t i o n s orthogonal to the 

v e i n t r e n d , ( F i g . 6 5 ( a ) , ( b ) ) . From the previous diagrams, a h o r i z o n t a l 

p o i n t c o n c e n t r a t i o n orthogonal to the v e i n would be expected. This i s not 

the case, and i s p a r t i a l l y e x p l a i n e d by the f a c t that the-previous s e c t i o n s 

were from the v e i n centre, whereas the l a t e r s e c t i o n s i n c l u d e c r y s t a l s at 

the edge of the v e i n . F i g u r e 63(d) shows the r e l a t i v e p a t t e r n s f o r c e n t r a l , 

and marginal c r y s t a l s of Figure 63(c). The c e n t r a l c r y s t a l s tend toward a 

h o r i z o n t a l g i r d l e and the marginal c r y s t a l s a v e r t i c a l g i r d l e . However, 

t h i s . i s based on a small number of samples., and i s not repeated i n the 

other samples, e s p e c i a l l y the wide v e i n s , i n f a c t i n Fi g u r e 63(e) the 

marginal c r y s t a l s are on a h o r i z o n t a l • g i r d l e . F i g u r e 63(f) comprises only 
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Fi g u r e 63. (a),(b) v e r t i c a l s e c t i o n s , . p a r a l l e l plane o f - r e t i c u l a t e v e i n 
'.- (40, 100 c r y s t a l s ) ,' 
(c) v e r t i c a l s e c t i o n , normal to v e i n plane (42 c r y s t a l s ) , 
(d) x 16 c r y s t a l s i n v e i n c e n t r e , o 26 c r y s t a l s adjacent to c l a y , 
( e) 3 ( f ) v e r t i c a l s e c t i o n normal t o v e i n , x c r y s t a l s on boundary. 
' v .= v e i n plane' ''.-•••.•• 
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marginal c r y s t a l s (those i n F i g . 66) and tends to a v e r t i c a l g i r d l e p a t t e r n . 

T h i s complexity of f a b r i c diagrams i s r e l a t e d to s e v e r a l f a c t o r s ; . d i r e c t i o n s 

of heat flow and water supply i n the i n i t i a l and l a t e r growth p e r i o d s , and 

adjustments during heave caused by the growth of the u n d e r l y i n g massive 

segregated i c e . ' 1 

I n t e r p r e t a t i o n . 

Lens i c e i n c l a y s has been discussed by Penner (1961); the c r y s t a l s 

were large and extended across the l e n s . T h i s has a l s o been observed by the 

present author i n small lenses i n c l a y above Tuktoyaktuk pingo core. I n 

these cases the i c e bodies were perpe n d i c u l a r to the heat flow d i r e c t i o n s , 

i . e . normal lens growth, i n c o n t r a s t to r e t i c u l a t e v e i n growth where v e i n s 

occur p a r a l l e l and perpendicular to the " f r e e z i n g f r o n t . " A l s o i n the r e t i c ­

u l a t e p a t t e r n , lenses are more wid e l y separated and the enclosed c l a y con­

t a i n s no smaller lenses and i s o v e r - c o n s o l i d a t e d . I t i s considered (Mackay 

1974b, p. 235) that veins continue t o grow on t h e i r outer surfaces by water 

m i g r a t i o n from the adjacent c l a y b l o c k s , w e l l above the lower permafrost 

s u r f a c e . C o n s i d e r i n g the narrow v e i n s , c e n t r a l c r y s t a l s have t h e i r c-axes 

orthogonal to the v e i n trend, and are s i m i l a r to c r y s t a l s i n lenses,. whereas 

marginal c r y s t a l s , have t h e i r b a s a l planes orthogonal to the v e i n . .Thus the 

c e n t r a l c r y s t a l s are t y p i c a l of lens growth; the marginal c r y s t a l s d i f f e r i n 

c r y s t a l s i z e , shape, dimensional and l a t t i c e o r i e n t a t i o n s , and r e l a t i o n s h i p 

to i n c l u s i o n s and may represent d i s t i n c t growth c o n d i t i o n s . They may thus, 

represent the l a t e r stage of growth from water m i g r a t i n g from the adjacent 

clay,. as described by Mackay (1974b). However, i n the case of the wider 

veins c r y s t a l c h a r a c t e r i s t i c s d i f f e r again. The c e n t r a l c r y s t a l s have t h e , 

features of i c e growth i n bulk water w h i l e the marginal c r y s t a l s are s i m i l a r 

to those' i n the narrow v e i n s . 
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Figure 66. Columnar marginal c r y s t a l s i n v e r t i c a l 
s e c t i o n normal to plane of wide v e i n . 



192 

A c t i v e Layer Ice 

I n t r o d u c t i o n 

. . The a c t i v e l a y e r i s the zone of m a t e r i a l above permafrost which thaws 

and freezes a n n u a l l y . While the thawing occurs u n i d i r e c t i o n a l l y , down­

wards, there i s evidence that . freeze-back may occur both downwards from 

the s u r f a c e , and upwards from the top of permafrost. D e t a i l e d temperature 

measurements by Lachenbruch et a l . (19S2) i n d i c a t e the complexity of the 

thermal regime of the a c t i v e l a y e r and the m u l t i - d i r e c t i o n a l nature of 

freezeback. In any given area the a c t i v e l a y e r t h i c k n e s s may vary c o n s i d ­

era b l y w i t h s o i l and v e g e t a t i o n type, as discussed by Mackay (1975d). 

F u r t h e r , changes i n a c t i v e l a y e r c h a r a c t e r i s t i c s can occur due to change 

i n c l i m a t i c parameters, surface cover, or by sedimentation. Where sedimen­

t a t i o n , say, takes p l a c e , the base of the a c t i v e l a y e r , and.any i n c l u d e d 

i c e , becomes in c o r p o r a t e d i n t o permafrost as the permafrost t a b l e aggrades 

during re-establishment of thermal e q u i l i b r i u m . 

I t i s the i n t e n t i o n i n t h i s s e c t i o n to examine the c h a r a c t e r i s t i c s 

of i c e grown i n the previous season's thawed l a y e r as an a i d to under­

standing the thermal regime of a c t i v e l a y e r s , and- to enumerate some.fea­

tures of i c e s so formed as a b a s i s f o r d i s c u s s i o n of a g g r a d a t i o n a l i c e . 

Ice i n the a c t i v e l a y e r i s discussed from two s i t e s , an area o f , 

tundra polygons subject to c o a s t a l r e t r e a t , and a second s i t e i n high 

centred polygons near Tuktoyaktuk. 
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(a) Ice i n the A c t i v e Layer Adjacent to Wedges. . 

I n t r o d u c t i o n 

Extensive marine, u n d e r c u t t i n g of the polygon area l e d to block 

c o l l a p s e along i c e wedge boundaries which exposed small i c e bodies i n the : 

a c t i v e l a y e r of the adjacent o r g a n i c - r i c h s o i l ( F i g . 67). T h i s i c e had 

apparently grown s i n c e the previous.summer. 

F i e l d C h a r a c t e r i s t i c s 

The i c e bodies were 0.1 m t h i c k on the exposures nearest to the 

wedge, and tapered away from the wedge, under an overburden of 0.25 m of 

organic s o i l ; the bodies extended f o r up to s e v e r a l metres p a r a l l e l t o the 

trend of the wedge.. A l t e r n a t i n g 1-2 mm bubbly and non-bubbly l a y e r s were 

v i s i b l e i n the f i e l d , l o c a l i r r e g u l a r i t i e s occurred i n the l a y e r s , but 

elongate bubbles were g e n e r a l l y orthogonal to the l a y e r i n g . 

S e c t i o n P a r a l l e l to Wedge Trend 

Bubble C h a r a c t e r i s t i c s . - The contact of the i c e w i t h adjacent 

organic matter i s abrupt and few v e g e t a t i o n a l i n c l u s i o n s occur; bubbles : 

comprise the major i n c l u s i o n type. In a v e r t i c a l t h i n s e c t i o n p a r a l l e l to 

the wedge the bubbles occur g e n e r a l l y i n s u b - h o r i z o n t a l l a y e r s w i t h i n which 

s i z e and shape are c o n s i s t e n t , but there a l s o - o c c u r s h o r t e r (10-20 mm) 

narrow (3-4 mm) curved (convex, upward) layers of. peat p a r t i c l e s and bubbles. 

Probably the l o c a l accumulations of f i n e peat fragments at the i n t e r f a c e 

caused v a r i a t i o n s i n ra t e s of i c e growth and bubble n u c l e a t i o n and' growth. 

Elsewhere there occur elongate bubbles orthogonal tb the l a y e r s , and a l s o 



Figure 67. Block slump on coast 
exposing i c e i n the a c t i v e 
layer adjacent to wedges. 

'.JkT. 

i o m m 
i i 

Figure 63. Peat and bubble pattern, vertical section par a l l e l to w 

Figure 69 . P e t r o f a b r i c s of 
v e r t i c a l s e c t i o n , p a r a l l e l to 
i c e wedge, a c t i v e l a y e r i c e . 
34 c r y s t a l s . 
c = compositional l a y e r i n g 
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l a r g e r bubbles.at the lower p a r t of the body, adjacent to the organic 

matter. The above p a t t e r n i s d i s r u p t e d as shown i n F i g . 63. A s e p a r a t i o n 

of 15 mm occurs, i n the upper l a y e r s which are upturned l o c a l l y . The : 

v e r t i c a l . 3 0 mm long d i s r u p t i o n zone comprises c l e a r i c e surrounding a 

c e n t r a l core of elongate,' and s p h e r i c a l bubbles, the zone does not pene-

t r a t e to .the base of the i c e but terminates c e n t r a l l y . T h i s p a t t e r n 

suggests f r a c t u r e due to pressure associated, w i t h m u l t i - d i r e c t i o n a l f r e e z i n g 

i n the a c t i v e l a y e r . 

C r y s t a l C h a r a c t e r i s t i c s . - . C r y s t a l s i z e and shape, and dimensional 

and l a t t i c e o r i e n t a t i o n s . v a r y throughout the body. At. the upper and lower 

boundaries of the i c e occur zones of s mall c r y s t a l s . , which widen away from 

those boundaries and give r i s e to v e r t i c a l l y elongate', d e n d r i t i c c r y s t a l s 

>50 mm long x 5 mm wide. These c r y s t a l s d i s p l a y h o r i z o n t a l o f f s e t s at 

bubble and peat l a y e r s , but,no. t e r m i n a t i o n occurs. No pronounced sub­

s t r u c t u r e was observed. . These c r y s t a l c h a r a c t e r i s t i c s are d i s t u r b e d at 

the d i s r u p t i o n zone, c r y s t a l s are s h o r t e r and wider, but m a i n t a i n a den­

d r i t i c shape.. 

L a t t i c e o r i e n t a t i o n s f o r 34 c r y s t a l s are shown i n F i g . 69 f o r c r y s ­

t a l s i n the main.mass, and d i s r u p t i o n zone. C-axes tend to be contained 

i n a broad h o r i z o n t a l g i r d l e which suggests e x t e n s i o n i n the b a s a l plane. 

A second v e r t i c a l s e c t i o n p a r a l l e l to the wedge, but adjacent to, the 

s o i l , was analysed. 

those 

C r y s t a l C h a r a c t e r i s t i c s . - C r y s t a l s d i f f e r i n s i z e 

i n the previous s e c t i o n . • Although most have v e r t i c a l 

and shape from 

dimensional 
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orie n t a t i o n s . , h o r i z o n t a l boundaries are frequent ( F i g . 70) and o f t e n c o i n - " 

ci d e w i t h bubble l a y e r s . Sub-boundaries, are w e l l developed, and e x e m p l i f i e d 

i n the l a r g e upper c r y s t a l . Here the sub-boundaries are a s s o c i a t e d w i t h 

bubble bands. Above sub-boundaries, bubbles are elongate up to 6 mm, 

whi l e i n the sub-boundaries, bubbles are smaller and s u b - s p h e r i c a l or 

s l i g h t l y elongate i n the sub-boundary. Many elongate bubbles have s l i g h t l y 

bulbous and f l a t ends. The f l a t end i s o f t e n o b l i q u e to the bubble, a x i s , 

but p a r a l l e l to the b a s a l plane i n a given c r y s t a l . . 

The presence of the c r y s t a l s w i t h h o r i z o n t a l dimensional o r i e n t a t i o n s 

remains to be explained. The l a t t e r s e c t i o n was adjacent to the s o i l 

whereas the previous s e c t i o n was not; thus the i n f l u e n c e of c r y s t a l growth 

at the s o i l i c e i n t e r f a c e was i n v e s t i g a t e d i n a s e c t i o n orthogonal to th a t 

i n t e r f a c e . 

Sample Adjacent to S o i l , Orthogonal to S o i l - I c e I n t e r f a c e 

• Bubble C h a r a c t e r i s t i c s : In t h i s , sample the outer contact of. 

i c e w i t h organic matter i s i n c l u d e d , and the a s s o c i a t e d - b u b b l e p a t t e r n 

( F i g . 71a) d i f f e r s from that i n the previous samples. Bubble t r a i n s 

orthogonal to the s o i l curve upwards Into h o r i z o n t a l i t y . Most bubbles 

are elongate p a r a l l e l to the t r a i n s , and range downwards In s i z e from 

4 mm x 0.5 mm adjacent to the s o i l . 

C r y s t a l C h a r a c t e r i s t i c s : Crystal.shape i s r e l a t e d to bubble 

trends i n that dimensional o r i e n t a t i o n i s p a r a l l e l to. the t r a i n s ( F i g . 71b). 

C r y s t a l s i z e i s v a r i a b l e - s m a l l c r y s t a l s o c c u r . a djacent t o the s o i l and 

s i z e increases ax^ay from the s o i l . There. Is no tendency f o r bubbles t o . 
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F i g u r e 70. V e r t i c a l 
s e c t i o n , , normal and adja­
cent to s o i l , a c t i v e l a y e r 
i c e . Note h o r i z o n t a l l y 
elongated c r y s t a l s . , compare /yf i'y. 
F i g . 71b f o r i n f l u e n c e of pfa 
growth normal to s o i l , , 

s ubgrain boundaries 

F i g u r e 71. V e r t i c a l 
s e c t i o n orthogonal to s o i l , 
a c t i v e l a y e r i c e . 

(a) Bubble p a t t e r n , 
(b) C r y s t a l p a t t e r n . 

I: 

'/•"•••v:-: 

s o i l 

--'j 
ti 

..s t Figure 72. 
• "-'\\ P e t r o f a b r i c s , c r y s t a l s 

i n F i g . 71b. . 
x c r y s t a l s adjacent 
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occur p r e f e r e n t i a l l y on c r y s t a l boundaries; some h o r i z o n t a l o f f s e t s of 

upward growing c r y s t a l s occur at.bubble l a y e r s i n the lower i c e . C-axis 

o r i e n t a t i o n s f o r 63 c r y s t a l s are shown i n F i g u r e 72. The sample was 

l i m i t e d by the small s i z e . o f the specimen; the p a t t e r n i s a broad concentra­

t i o n , w i t h c r y s t a l s adjacent to peat being c e n t r a l l y s i t u a t e d . Thus the 

c r y s t a l s w i t h h o r i z o n t a l dimensional o r i e n t a t i o n i n Figure 70 are exten- , 

sions of c r y s t a l s which grew orthogonal to tha s o i l . 

Samples w i t h F r a c t u r e s 

I n t r o d u c t i o n : In a d d i t i o n to the previous samples there are some 

which c o n t a i n f r a c t u r e s . . Here wa i n v e s t i g a t e the i n f l u e n c e of bubble and 

c r y s t a l c h a r a c t e r i s t i c s on . f r a c t u r i n g . 

The f r a c t u r e s were observed In the f i e l d , p r i o r to sampling, and 

thus are not due to sampling, or thermal shock d u r i n g handling. The f r a c ­

tures were open, .and thus, occurred under "dry" c o n d i t i o n s . 

Bubble C h a r a c t e r i s t i c s : In common w i t h other a c t i v e l a y e r b o d i e s , 

there are a l t e r n a t i n g l a y e r s of high and low bubble contents, which are 

h o r i z o n t a l and p a r a l l e l away from the i n f l u e n c e of the s o i l . The contained 

bubbles are s p h e r i c a l , or elongated normal to the l a y e r s . 

C r y s t a l C h a r a c t e r i s t i c s : . A range of c r y s t a l shapes occurs, and 

the i n f l u e n c e of bubble bands on shape i s found- as before;, many c r y s t a l s 

terminate a b r u p t l y at h o r i z o n t a l bubble bands. F i g u r e 73 demonstrates the 

i n f l u e n c e of s e v e r a l bands. C-axis o r i e n t a t i o n s are given i n Figure 74(a), 

(b ) ; the o v e r a l l p a t t e r n i s an incomplete h o r i z o n t a l g i r d l e and a minor 

v e r t i c a l p o i n t c o n c e n t r a t i o n . A f u r t h e r s e c t i o n ( F i g . 74(c)) shows' a broad 
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F i g u r e 74. P e t r o f a b r i c s of a c t i v e 
l a y e r i c e . 
(a),(b) v e r t i c a l s e c t i o n , 

95 c r y s t a l s ; 
(c) v e r t i c a l s e c t i o n , 40 c r y s t a l s . 
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F i g u r e 75. V e r t i c a l s e c t i o n 
showing i n f l u e n c e of bubble 
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h o r i z o n t a l g i r d l e a l s o , t h i s suggests basal plane growth i n a p l e n t i f u l 

water supply. 

Fractures: The above pattern of c r y s t a l growth i s disturbed by 

fractures, of which the surfaces of separation, are p a r a l l e l to bubble 

layers , but stepped l o c a l l y (Fig.. 75). Due to the close a s s o c i a t i o n of 

bubble bands and c r y s t a l boundaries i t i s l i k e l y that the fractures have 

propagated along the weak zones. 

In t e r p r e t a t i o n ,. 

The ice bodies grew i n the previous season's active l a y e r , and there­

fore represent one winter's growth; any p o s t - s o l i d i f i c a t i o n m o d i f i c a t i o n 

has had l i m i t e d time f o r development.. The o v e r a l l i n c l u s i o n pattern i s 

ho r i z o n t a l bubble bands and v e r t i c a l l y elongate bubbles, r e s p e c t i v e l y 

p a r a l l e l and orthogonal to the freez i n g front, but also l o c a l l y curved 

t r a i n s orthogonal to s o i l . C r y s t a l dimensional o r i e n t a t i o n i s e s s e n t i a l l y 

v e r t i c a l , although c o n t r o l l e d l o c a l l y by h o r i z o n t a l bubble bands. L a t t i c e 

o r i e n t a t i o n s are such that basal planes are v e r t i c a l , p a r a l l e l to the 

growth d i r e c t i o n , although some are h o r i z o n t a l , i n c r y s t a l s which have 

hor i z o n t a l dimensional orientations and occur at bubble bands, i n d i c a t i n g 

l a t e r a l growth from the s o i l . ' P o s t - s o l i d i f i c a t i o n features are the f r a c ­

tures which are concentrated on bubble bands. The stress system responsible 

for the fractures i s not c l e a r , the fractures are h o r i z o n t a l , i n contrast 

to v e r t i c a l thermal contraction cracks. The c o a s t a l block slumping occurred 

i n early June 1973, thus fracture may have been due to sudden exposure to 

warm a i r temperatures, but t h i s i s speculative. There may a l s o have been 

an influence of the c o l l a p s i n g blocks. 
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(b) Tuktoyaktuk S i t e 

F i e l d C h a r a c t e r i s t i c s 

An area of high centred polygons l i e s above f l a t s surrounding a creek 

south of Tuktoyaktuk. During e a r l y June 1974 s m a l l excavations were made 

i n the polygon area during a study of wedges and•polygons. Small i c e 

bodies were found at. a depth of. 0.3 m,. and r e p o r t e d to the author. There 

was an abrupt contact between the i c e and the organic s o i l above and below, 

which was v i r t u a l l y i c e - f r e e . 

Ice C h a r a c t e r i s t i c s 

The i c e bodies g e n e r a l l y extended l a t e r a l l y up to 120 mm and v e r ­

t i c a l l y f o r 80 mm. No s t r u c t u r e s , e.g. f r a c t u r e s , were apparent; few 

organic m a t e r i a l i n c l u s i o n s occurred, but bubbles were abundant. The 

i n c l u d e d s o i l was l a r g e l y c l o s e to the i c e - s o i l c o n t a c t , w h i l e bubbles 

formed curved, converging t r a i n s . 

Bubble C h a r a c t e r i s t i c s 

The curved bubble t r a i n s begin adjacent and orthogonal to the i c e -

s o i l c o n t a c t s , which i n d i c a t e s m u l t i p l e f r e e z i n g d i r e c t i o n s . I n a d d i t i o n , 

i n some cases' a zone of small s p h e r i c a l bubbles l i e s p a r a l l e l to the s o i l , 

from which the. t r a i n s o r i g i n a t e ( F i g . 76(a)). A l s o a few s p h e r i c a l bubbles 

are incorporated i n t o the zone of bubble t r a i n s . The s p h e r i c a l bubbles are 

^ 2 mm i n diameter, and elongate bubbles are ^ 3' mm long and 1 mm i n 

diameter. 
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s o i l ; s o i l . 
i _ 1 • 

Figure 76. A c t i v e layer i c e , Tuktoyaktuk, (a) bubble pattern, 
(b) -crystal pattern. 

v e r t i c a l s e c t i o n 
scale 10 mm 
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C r y s t a l C h a r a c t e r i s t i c s • 

C r y s t a l s i z e v a r i e s , ranging from 2 mm x 3 mm i n i r r e g u l a r c r y s t a l s 

adjacent to the peat, to 10 mm x 5 mm i n elongate c r y s t a l s . The l a t t e r ' 

c r y s t a l s have simply shaped compromise boundaries, w i t h o c c a s i o n a l s e r r a ­

t i o n s . The p r e f e r r e d dimensional o r i e n t a t i o n of the elongated c r y s t a l s 

i s orthogonal to the s o i l i The r e l a t i o n s h i p of bubbles to t e x t u r e i s such, 

that bubble t r a i n s and c r y s t a l dimensional o r i e n t a t i o n s are p a r a l l e l and 

l a y e r s of s p h e r i c a l bubbles are confined to grain, boundaries.. 

I n t e r p r e t a t i o n 

The a c t i v e l a y e r p o s i t i o n and l a c k of i c e i n the surrounding s o i l 

suggest that water was confined during, downward f r e e z i n g from the ground 

surface and upward f r e e z i n g from the top of permafrost. The.two f r e e z i n g ' 

f r o n t s met and confined-the water body which f r o z e . o m n i d i r e c t i o n a l l y . The 

bubble t r a i n s and dimensional o r i e n t a t i o n of elongate c r y s t a l s i n d i c a t e 

the change.in f r e e z i n g d i r e c t i o n during p r o g r e s s i v e s o l i d i f i c a t i o n i n t o 

.enclosed water. I t i s l i k e l y that at the time of s o l i d i f i c a t i o n a steeper 

temperature gradient e x i s t e d i n the upper part of the a c t i v e l a y e r than 

below, as a i r temperatures were lower than those i n the s o i l below. E v i ­

dence f o r t h i s i s that downward growing c r y s t a l s have cut o f f the growth 

of other c r y s t a l s , as has been found i n metal c a s t i n g s where d i f f e r e n t 

temperature gradients have been maintained on d i f f e r e n t faces of a s o l i d i ­

f y i n g body. A d d i t i o n a l l y bubble p a t t e r n s [ d i f f e r s l i g h t l y i n the two zones. 
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Ice Bodies w i t h M u l t i p l e Freezing H i s t o r i e s  

I n t r o d u c t i o n 

In the i c e bodies discussed so f a r i t i s evident that.one major 

growth p e r i o d has been r e s p o n s i b l e f o r . t h e features observed ( e x c e p t . i n 

wedge and t e n s i o n crack ice)„ However, i t i s known that the c r e s t s of 

pingos may rupture and expose the i c e core, to meltdown. I c e wedge i c e i n 

troughs may be subject to melti n g and thermokarst development; a l s o a 

t h i c k e n i n g of the a c t i v e l a y e r , by n a t u r a l ..or a r t i f i c i a l means, may l e a d 

to thaw of i c e bodies. I f , at a l a t e r date, lower mean annual temperatures 

p r e v a i l i t i s to be expected that r e f r e e z i n g may occur, w i t h a s s o c i a t e d 

growth of i c e bodies w i t h d i f f e r e n t features from the pr e v i o u s . Sedimenta­

t i o n , s o i l creep or peat growth may produce s i m i l a r r e s u l t s . . Thaw uncon­

f o r m i t i e s and subsequent r e f r e e z i n g have been recognized at s e v e r a l s i t e s ' 

i n the f i e l d area. Such c o n d i t i o n s are discussed for.two s i t e s : 

(a) Tuktoyaktuk Coast, (b) P e l l y I s l a n d . 

(a) Tuktoyaktuk Coast . 

I n t r o d u c t i o n 

This i s a g e n e r a l l y f l a t - l y i n g area about 2 m above present sea l e v e l 

w i t h a complex p a t t e r n of high-centred ice-wedge polygons. I t i s not known 

whether the wedges are • p r e s e n t l y a c t i v e . In a d d i t i o n to wedges there i s 

abundant i c e i n the form of h o r i z o n t a l and d i p p i n g l a y e r s outcropping i n 

c o a s t a l exposures, causing r a p i d c o a s t a l r e t r e a t . I t i s t h i s r e t r e a t which 

led to lake drainage and the growth of pingos shown i n Mackay (1973a, Fig.15) 
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The polygon patterns but not the l a y e r s of i c e are apparent from such 

a e r i a l photographs. 

These l a y e r s are of v a r y i n g s i z e , shape and o r i e n t a t i o n , ranging from 

t h i n seams to 1 m t h i c k tabular blocks 3 m i n ex t e n t . The o r i g i n of these 

bodies- i s not immediately d i s c e r n i b l e on the b a s i s of previous d i s c u s s i o n s . 

F i e l d C h a r a c t e r i s t i c s 

I n June.1973 a storm caused r a p i d c o a s t a l r e t r e a t and exposure o f 

many ice,bodies by c o l l a p s e of l a r g e blocks of organic s o i l and i c e 

wedges ( F i g . 67). . . . 

Most i c e bodies were at l e a s t 0.3 m below the present a c t i v e l a y e r , 

the l o c a l s o i l having high organic and i c e contents i n c l u d i n g a g g r a d a t i o n a l 

ice.. Ice body s i z e and shape v a r i e d from s m a l l lenses through bodies 0.5 m 

by 0.2 m, to l a t e r a l l y extensive sheets over 3 m long. I n c l u s i o n s , were 

mainly bubbles and s o i l fragments, both i n h o r i z o n t a l l a y e r s and v e r t i c a l 

to c u r v i n g t r a i n s . Some bodies appeared to have f r o z e n o m n i d i r e c t i o n a l l y , 

some had truncated bubble bands which suggested l a t e r m e l t i n g and subsequent 

r e f r e e z i n g . I n a d d i t i o n some near surface bodies occurred a t the base of 

•the previous season's a c t i v e l a y e r . These three major types of body ware 

sampled f o r t h i n s e c t i o n a n a l y s i s . 

( i ) Ice Bodies with O m n i d i r e c t i o n a l Bubble T r a i n s 

I n t r o d u c t i o n • • 

Such features suggest that a po o l of water froze inwardly from a l l 

d i r e c t i o n s . Thus a s e r i e s of samples was taken to. include i c e - s o i l con­

t a c t s and bubble t r a i n s from a l l p a r t s of tha body. . . . . 
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Body No.. 1 

Bubble C h a r a c t e r i s t i c s . •• T h i s i c e t y p i c a l l y has a high content of 

bubbles i n l a y e r s and groups, . 1 mm diameter bubbles occupying up to 40% by 

volume. Fra c t u r e s d i s t u r b t h i s general p a t t e r n . For example a sample . : 

c o n t a i n i n g a l t e r n a t i n g c l e a r and bubbly l a y e r s of s p h e r i c a l 1 mm and e l o n ­

gate 2.5 mm bubbles contained a f r a c t u r e s u r f a c e w i t h voids or gas i n c l u ­

s i o n s . Although the bubble l a y e r s may dip at up to 40° , bubbles are 

elongate^, v e r t i c a l l y , suggesting m o d i f i c a t i o n of bubble o r i e n t a t i o n by 

thermomigration i n a v e r t i c a l temperature.gradient. I n comparison, bubbles 

i n t r a i n s i n a c t i v e l a y e r i c e are p a r a l l e l to- the t r a i n s ( F i g . 71(a)). 

C r y s t a l C h a r a c t e r i s t i c s . - I n a h o r i z o n t a l s e c t i o n ( F i g . 77) at 

the top of the body, large c r y s t a l s (long axes ^50 mm) occur throughout 

the s e c t i o n , but i n the f r a c t u r e zone, c r y s t a l s are s m a l l e r (< 2 mm) . The 

large c r y s t a l s are anhedral, and s t r o n g l y s e r r a t e d (3-4 mm amplitude) but 

not deeply intergrown, whereas c r y s t a l s i n the f r a c t u r e are a nhedral, 

approximately e q u i g r a n u l a r , w i t h s i n g l y curved or s t r a i g h t boundaries and 

no s e r r a t i o n s . Lineage substructure occurs i n the l a r g e r "grains, but not 

w i t h i n f r a c t u r e c r y s t a l s . No pronounced dimensional o r i e n t a t i o n occurs 

i n t h i s plane. L a t t i c e o r i e n t a t i o n s are shown i n Fig."78 f o r c r y s t a l s , i n 

the l a y e r e d i c e and f r a c t u r e . C-axes i n the l a y e r e d i c e are hear the plane 

of the bubble l a y e r s , and i n a point c o n c e n t r a t i o n . C r y s t a l s i n the f r a c ­

t u r e have grown w i t h a l e s s p r e f e r r e d o r i e n t a t i o n , at 20 to 65° to the 

f r a c t u r e plane. • 

A s e r i e s of s e c t i o n s was prepared from a v e r t i c a l , face d i s p l a y i n g 

bubble t r a i n s converging toward the centre of the body, i n d i c a t i n g f r e e z i n g 

from the peat on a l l s i d e s . Again bubbles are v e r t i c a l . i n t r a i n s of a l l 
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Figure 78. P e t r o f a b r i c s of i c e Figure 80. P e t r o f a b r i c s of i c e i n 
i n F i g . 77. x = f r a c t u r e c r y s t a l . F i g . 79. 
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o r i e n t a t i o n s , clue to l a t e r temperature gradient e f f e c t s . Peat forms 

another i n c l u s i o n type, trending inwards from the surrounding' peat mass, 

and i n separate, i n c l u s i o n s . 

. C r y s t a l C h a r a c t e r i s t i c s . C r y s t a l s are large and elongate', par­

a l l e l to the bubble t r a i n s , thus dimensional o r i e n t a t i o n v a r i e s s y s t e m a t i c ­

a l l y around the i c e body, being everywhere orthogonal to the ice-peat 

contact and c u r v i n g to the centre of the body ( F i g . 79). G r a i n boundary 

s e r r a t i o n s are orthogonal to long axes, i n d i c a t i n g d e n d r i t i c growth, and 

c r y s t a l s became narrower as they converged i n the growth d i r e c t i o n . Sub­

s t r u c t u r e occurs i n bands p a r a l l e l to the e l o n g a t i o n ; these o f t e n trend 

from peat i n c l u s i o n s , i n the growth d i r e c t i o n , suggesting a s l i g h t l a t t i c e 

o f f s e t where the c r y s t a l has grown round the peat. Where m u l t i p l e bands 

occur r a d i a l l y from i n c l u s i o n s , a.form of p o l y g o n i z a t i o n (Knight 1962b) has • 

occurred due t o growth.stresses. Bubbles occur i n groups near c r y s t a l 

boundaries, and as s i n g l e bubbles on boundaries. No major changes occur .: 

i n boundaries at the bubbles, d e s p i t e other evidence of thermomigration. 

In the c e n t r a l zone, c r y s t a l s become more equiaxed, and smaller.. Fewer 

peat i n c l u s i o n s occur and bubbles are c l o s e to g r a i n boundary i r r e g u l a r i - . 

t i e s . L a t t i c e o r i e n t a t i o n s f o r 37 c r y s t a l s are shown i n Fig.. 80. I n the 

outer zone, c-axes are p a r a l l e l to the e l o n g a t i o n d i r e c t i o n . 

I n t e r p r e t a t i o n ' 

These i c e bodies occur, i n a . l o w - l y i n g area of large tundra polygons 

and abundant organic matter. P r e s e n t l y some thermokarst a c t i v i t y i s 

o c c u r r i n g adjacent to the l a r g e r wedges. 
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From the o r i e n t a t i o n of bubble t r a i n s and the dimensional o r i e n t a t i o n 

of elongate c r y s t a l s i t i s evident that the ice body grew o m n i d i r e c t i o n a l l y . 

Thus the surrounding material was i n a frozen s t a t e ; i t i s thus argued that 

the body i s a frozen melt pond. The c r y s t a l s i n the h o r i z o n t a l s e c t i o n 

from the top of the body have horizontal'c-axes which, frequently occurs i n 

the freezing of bulk water whereas at the curved margin.of the body c r y s ­

t a l s have c-axes orthogonal to the boundary which in d i c a t e s growth normal 

to. the basal plane, which i s less frequently observed, although reported., 

by Michel and Ramseier (1971) i n lake i c e . There i s no c h i l l zone of 

competitive growth evident i n the v e r t i c a l s ections, so the c r y s t a l s grew 

i n l a t t i c e continuity with c r y s t a l s i n the peat. Toward the centre of the 

body l a t t i c e o r i e n t a t i o n tends toward that c h a r a c t e r i s t i c of basal plane 

growth. Some p o s t - s o l i d i f i c a t i o n modification has occurred i n that bubbles 

are not elongate, p a r a l l e l to bubble t r a i n s , but i n a v e r t i c a l d i r e c t i o n , 

i n d i c a t i n g thermomigration i n a v e r t i c a l temperature gradient. The lineage-

substructure i s present only i n pre-fracture grains and i s thus due to 

freezing conditions, probably the incorporation of i n c l u s i o n s , but i t may 

have been exaggerated by stresses produced by f r e e z i n g of confined water. 

The c r y s t a l c h a r a c t e r i s t i c s of t h i s i c e body are quite d i s t i n c t from 

those of lens i c e where growth i s u n i d i r e c t i o n a l . In lenses bubble and 

c r y s t a l dimensional o r i e n t a t i o n are not m u l t i - d i r e c t i o n a l . 

From the a i r or ground surface the area appears t y p i c a l of ice-wedge 

polygon f l a t s . There i s no surface expression of the -thermokarst-type- i c e . 
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Body No. 2 

f • • • 

A second i c e body has s i m i l a r gross c h a r a c t e r i s t i c s , i n d i c a t i v e of 

f r e e z i n g i n a c a v i t y w i t h i n f r o z e n peaty m a t e r i a l . However, the i n c l u s i o n 

content d i f f e r s from the previous case and i n f l u e n c e s c r y s t a l c h a r a c t e r i s ­

t i c s . 

I n c l u s i o n C h a r a c t e r i s t i c s . - There occurs a r e d u c t i o n i n peat con­

c e n t r a t i o n from dense i n the top l e f t hand corner through a zone of d i s ­

persed p a r t i c l e s and o c c a s i o n a l s t r e a k s , to c l e a r at the base; t h i s 

corresponds to the sequence: - elongated and s p h e r i c a l bubbles, s p h e r i c a l 

bubbles, bubble-free. 

C r y s t a l C h a r a c t e r i s t i c s . - Texture i s a g a i n r e l a t e d t o i n c l u s i o n 
2 

content. G r a i n s i z e In the.peaty zona averages 12 mm , compared w i t h 
2 

544 mm i n the p e a t-free zona ( F i g . 81). The former grains a r e a n h e d r a l , 

approximately equigranular and l a c k s e r r a t i o n s and s u b s t r u c t u r e ; t h e . l a t t e r 

grains are anhedral. w i t h m u l t i p l e curved or s e r r a t e d boundaries, and are 

elongate w i t h w e l l developed, s u b s t r u c t u r e . V a r i a t i o n of dimensional o r i e n ­

t a t i o n i n d i c a t e s p r o g r e s s i o n of the f r e e z i n g interface;. In the upper 

i n c l u s i o n zone, peat i s g e n e r a l l y confxned to g r a i n boundaries or d i s p e r s e d 

pockets, i n c r y s t a l s , whereas i n the lower peaty zone the peat i n c l u s i o n s 

are concentrated on p a r a l l e l l i n e s i n i n d i v i d u a l c r y s t a l s , a pparently the 

b a s a l planes. The f r e e z i n g i n t e r f a c e advanced downwards from the top and 

i m p u r i t i e s were r e j e c t e d except at g r a i n boundaries, whareas i n growth, 

from the base, c r y s t a l s extended i n , the b a s a l p l a n a , and i n c l u s i o n s ware 

trapped. 

.In the absence of d e t a i l e d thermal data i t i s d i f f i c u l t to compare 

downward and upward f r e e z i n g . However, i t . i s to be expected t h a t a steeper 
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F i g u r e 83. Schematic diagram of m u l t i p l e growth periods. 
(a) Bubble p a t t e r n . Note v e r t i c a l bubbles i n lower, c u r v i n g t r a i n s , 

and h o r i z o n t a l t r u n c a t i o n , , 

(b) C r y s t a l p a t t e r n . Note competitive growth zone at i c e - s o i l contact 
and above t r u n c a t i o n zona. Note, a l s o curved, elongate c r y s t a l s , 
p a r a l l e l to lower bubble t r a i n s . 
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thermal gradient would, e x i s t i n . t h e o v e r l y i n g m a t e r i a l , and thus i n f l u e n c e 

f r e e z i n g r a t e and the i n c o r p o r a t i o n of in c l u s i o n s . . This i s t r u e e s p e c i a l l y 

i n the case of buoyant i n c l u s i o n s which would be trapped at the top of the 

c a v i t y . ; /..''.' 

L a t t i c e o r i e n t a t i o n s f o r tha. c r y s t a l s i n F i g u r e 81 are shown i n 

F i g u r e 82. A change In l a t t i c e o r i e n t a t i o n w i t h depth i s recognized. A 

broad h o r i z o n t a l maximum (a) becomes more di s p e r s e d w i t h depth .(b),'(c).-. A 

second sample shows a change i n l a t t i c e o r i e n t a t i o n from a broad h o r i z o n t a l 

g i r d l e (d) to a 45° g i r d l e (e) to a p a r t i a l v e r t i c a l ' g i r d l e ( f ) . 

( i i ) Truncated Bubble Pat t e r n s  

I n t r o d u c t i o n 

The above d i s c u s s i o n described bodies which had not been subject, to 

great p o s t - s o l i d i f i c a t i o n changes. Nearby occurs an i c e body w i t h d i f f e r e n t 

mesoscopic f e a t u r e s . The curved, r a d i a t i n g bubble trains- occur at the 

lower edges of the body, but i n the top centre the p a t t e r n i s d i s t u r b e d . 

I n c l u s i o n C h a r a c t e r i s t i c s . 

At the base of the i c e , bubble t r a i n s are normal to the contact w i t h 

the peat and includ e some peat fragments, then curve upwards at 45° to 

the h o r i z o n t a l ( F i g . 83(a)). Bubbles: are approximately s p h a r i c a l or 

e l l i p s o i d a l , e l o n g a t e . v e r t i c a l l y w i t h i n the t r a i n s which cross i n d i v i d u a l 

c r y s t a l s , w h i l e dispersed bubbles are contained mainly w i t h i n c r y s t a l s . 

Above, t h i s p a t t e r n includes groups 10/100 m m - of bubbles 1-2 mm i n diameter. 

A surface of t r u n c a t i o n can be traced l a t e r a l l y and i s seen to cut across 

o r i g i n a l bubble t r a i n s of s e v e r a l o r i e n t a t i o n s . The surface contains peat 
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fragments, above which i s a l a t e r a l l y extensive l a y e r of s m a l l s p h e r i c a l 

bubbles, i n marked co n t r a s t to the u n d e r l y i n g i c e . Above, groups and 

contained elongated bubbles a r e . o r i e n t e d d i f f e r e n t l y from those i n the i c e 

beneath the t r u n c a t i o n zone, but orthogonal to t h a t zone, i n d i c a t i n g upward 

i c e growth. • 

C r y s t a l C h a r a c t e r i s t i c s 

We consider f i r s t l y , c r y s t a l s below the apparent " t r u n c a t i o n zone", 

then the e f f e c t of t h a t zone, f o l l o w e d by c r y s t a l s above t h a t zone. I n 

the lower i c e , c r y s t a l s increase i n s i z e upwards, reaching > 600 mm" a t 

the c u t - o f f . C r y s t a l shape i s anhedral w i t h s t r o n g l y s e r r a t e d boundaries. 

Dimensional o r i e n t a t i o n i s p a r a l l e l to the bubble t r a i n s , and s e r r a t i o n s 

are orthogonal to c r y s t a l long axes, as in. the p r e v i o u s l y d i s c u s s e d i c e 

bodies ( a ) . 

C r y s t a l c h a r a c t e r i s t i c s change at the t r u n c a t i o n zona ( F i g . 8 3 ( b ) ) . 
2 2 C r y s t a l s i z e i s 6 mm , i n c r e a s i n g upwards to 45 mm . C r y s t a l shape.in 

t h i s c o m p etitive growth zone i s l e s s complex than i n tha u n d e r l y i n g i c e , 

many s t r a i g h t compromise boundaries occur, and curved boundaries have 

s i n g l e c u r v a t u r e , which i s t y p i c a l of competitive c r y s t a l growth. Upwards 

a dimensional o r i e n t a t i o n develops p a r a l l e l to bubble e l o n g a t i o n . 

Tha r e l a t i o n s h i p of bubbles to c r y s t a l c h a r a c t e r i s t i c s v a r i e s w i t h 

p o s i t i o n . In the lower i c e , bubbles occur i n groups w i t h i n c r y s t a l s r a t h e r 

than on boundaries, as was. found i n lake i c e by Swinzow (1966). A s m a l l 

amount of i c e growth occurred above the t r u n c a t i o n zone before'bubble . 

n u c l e a t i o n ; bubbles were at f i r s t e s s e n t i a l l y randomly d i s t r i b u t e d , as 

found i n c o m petitive growth zones elsewhare ( i c i n g mound i c e , t e n s i o n crack 

ic e ) then became p r e f e r r e d l y s i t e d i n l a y e r s . ' .' '. . • . . • ' 



L a t t i c e , o r i e n t a t i o n s are shown f o r the lower i c e and upper i c e i n 

Figure 84(a)-(d). F i g u r e 84(a) includes c r y s t a l s from the base of the 

lower i c e up to the t r u n c a t i o n zone; an upward increase i n c - a x i s p r e f e r r e d 

o r i e n t a t i o n occurs i n a s s o c i a t i o n w i t h an increase i n c r y s t a l s i z e . 

F i g ure 84(b)-(d) s i m i l a r l y shows the change i n c - a x i s d i s t r i b u t i o n upwards 

from the t r u n c a t i o n zone. 

I n t e r p r e t a t i o n 

From the bubble patterns,, c r y s t a l s i z e , shape, dimensional and 

l a t t i c e o r i e n t a t i o n s , i t i s evident that i n i t i a l l y growth of i c e occurred 

i n a hollow w i t h i n frozen.peat, as i n the p r e v i o u s l y discussed bodies. 

L a t e r some melt-down occurred, as i s seen from the t r u n c a t i o n of bubble 

t r a i n s and the h o r i z o n t a l l a y e r of organic matter and gas i n c l u s i o n s . A l s o 

a major change i n c r y s t a l c h a r a c t e r i s t i c s occurs where new upward c r y s t a l ' 

growth took place. The t r u n c a t i o n zone i s not a temporary s t a n d s t i l l i n 

growth of the body, as i t truncates bubble t r a i n s of s e v e r a l o r i e n t a t i o n s 

and may be traced l a t e r a l l y i n t o the adjacent organic matter. From f i e l d 

r e l a t i o n s h i p s i t appears that s e v e r a l melt-down and regrowth events 

occurred i n the area. 

A second such body occurs nearby, d i s p l a y i n g s i m i l a r features.. Tha ; 

e a r l y growth has been subject to melt-down; large c r y s t a l s terminate 

a b r u p t l y upwards at a l a t e r a l l y e x tensive bubble l a y e r c o n t a i n i n g vegeta- . 

t i o n a l d e b r i s . Copious c r y s t a l n u c l e a t i o n occurred at t h i s l a y e r , f o l l o w e d 

by upward growth. Thus the previous more d e t a i l e d d e s c r i p t i o n i s , n o t of a 

rare occurrence, f i e l d c h a r a c t e r i s t i c s suggest the growth h i s t o r y a p p l i e s 

to many bodies along the coast. However the presence of such i c e can not 

be r e a d i l y i n f e r r e d from surface expression. 



igure 84. P e t r o f a b r i c s , c r y s t a l s below and above t r u n c a t i o n zone. 

(a) c r y s t a l s below t r u n c a t i o n zone; symbols i n sequence i n d i c a t e . • 
distance from s o i l - i c e c ontact; 

(b) ,(c),(d) c r y s t a l zones p r o g r e s s i v e l y upward from t r u n c a t i o n zone. 

Diagrams p a r a l l e l to sections-, 
t = t r u n c a t i o n zone 
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( H I ) Ice at tha Base of the Active Layer -

Introduction 

. . The ice bodies discussed i n sections (a) and (b) were..overlain by 

several.metres of organic s o i l , but there also occur ice. layers immediately 

at the base of tha a c t i v e layer. These are of p a r t i c u l a r i n t e r e s t as 

s l i g h t v a r i a t i o n s i n a c t i v e layer thickness occur from year to year and 

thus the upper part of such i c e would be expected to r e f l e c t these v a r i a -

t i o n s . 

F i e l d C h a r a c t e r i s t i c s 

The i c e body to be discussed l i e s near those i n (a) and (b), above. 

I t was exposed i n June 1973 and sampled before a c t i v e layer thaw reached 

the top of the i c e . Measurements i n August 1973 showed that l o c a l a c t i v e 

layer depth was greater than overburden thickness. 

The ice was lensoid i n shape, 0 to 0 . 5 m i n thickness, with a f l a t 

lower surface and convex upper surface, o v e r l a i n by 0 . 3 m of organic s o i l 

( F i g . 8 5 ) . Similar material underlay the. i c e , but with a higher i c e con­

tent than the overlying s o i l . 

Ice C h a r a c t e r i s t i c s 

The upper contact was less abrupt than the lower, and vege t a t i o n a l 

fragments, including roots,, were observed near the top, as w e l l as c y l i n ­

d r i c a l bubbles ( F i g . 8 6 ) . Bubbles at tha top of the body are c y l i n d r i c a l 

and' trend normal to the upper surface. These extend 8 mm i n t o the sample, 

below which is a 5 mm thick bubble-free band, abova a surface containing 

peat and roots. These roots l i e on the surface, b,ut below are'orthogonal 
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F i g u r e 8 5 . L e n s o i d i c e body 
e x p o s e d by b l o c k c o l l a p s e . F i g u r e 8 5 . S c h e m a t i c d i a g r a m o f 
O v e r b u r d e n t h i c k n e s s 0 . 3 m. t op o f F i g . 8 5 . R o o t s h a p e s , 

i n f i l l e d b u b b l e s and b u b b l e s . 

F i g u r e 8 7 . D e t a i l o f 
b u b b l e s h a p e s i n i c e o f 
F i g . 8 5 . L o n g s i d e i s 
8 mm. 

F- igure 8 8 . B u b b l e p a t t e r n 
t h r o u g h o u t l e n s o i d body (Fig. 
8 5 ) . No te zones o f e l o n g a t e 
and s p h e r i c a l b u b b l e s a t 
b a s e , above p e a t . 



219 

to tha s u r f a c e . These features are i n t e r p r e t e d as i n d i c a t i n g melt-down of 

the i c e body to the peaty s u r f a c e , f o l l o w e d by upward r e f r e e z i n g . The 

roots were o r i g i n a l l y orthogonal to the ground s u r f a c e , and p a r a l l e l t o 

the f r e e z i n g d i r e c t i o n ; thus o r i e n t a t i o n i s maintained below the melt-down -

surface. 

Bubble C h a r a c t e r i s t i c s 

Below the melt surface the only i n c l u s i o n s are bubbles, i n groups 

c o n t a i n i n g 2-3 mm long i n d i v i d u a l s , 1 mm i n diameter, and some d i s p e r s e d 

s p h e r i c a l bubbles, ^ 1 mm diameter. Elongate bubble o r i e n t a t i o n v a r i e s 

from orthogonal to the ground surface at the top, towards v e r t i c a l at 

100 mm depth. ,The d e t a i l e d shapes of bubbles are complex, elongate bubbles 

have bulbous ends and l o c a l promontories ( F i g . 87). Narrow or wide p o i n t s 

on i n d i v i d u a l bubbles do n o t . c o r r e l a t e . w i t h one another i n d i c a t i n g v a r y i n g 

f r e e z i n g c o n d i t i o n s or p o s t - s o l i d i f i c a t i o n changes. Tha former presence 

of bubbles- at the peaty surface i s seen by i n f i l l e d c y l i n d r i c a l pockets of 

peaty m a t e r i a l ( F i g . 86). 

F u r t h e r down.the i c e body, bubbles are confined.to a c u r v i n g zona 

( F i g . 88). A l s o at the contact of the i c e and u n d e r l y i n g o r g a n i c - r i c h 

s o i l i s a 10-20 mm h o r i z o n t a l band of v e r t i c a l l y o r i e n t e d ( 4 5 mm) bubbles, 

w i t h bulbous ends above which i s a zone of s p h e r i c a l bubbles ( 4 1 . 5 en),-

. ( F i g . 88). 

C r y s t a l C h a r a c t e r i s t i c s 

C r y s t a l s d i s p l a y a range of s i z e s , shapes and dimensional o r i e n t a t i o n s 

throughout the body. In the t h i n , s e c t i o n p a r a l l e l to the upper s u r f a c e , 

c r y s t a l s i z e i s l o c a l l y d i f f i c u l t to estimate due to the h i g h l y developed 
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sub-boundaries. The o r i g i n a l growth boundaries are taken to be s e r r a t e d 

compared w i t h sub-boundaries; a l s o the l a t t e r are the s i t e s of embayment 

at t h e i r contacts w i t h boundaries. On t h i s b a s i s , g r a i n s i z e i s 20 to 30 

mm long by 5 to 10 mm wide. ' W i t h i n these are elongate subgrains, u s u a l l y 

p a r a l l e l to the c r y s t a l long axes, but l o c a l l y sub-boundaries converge. 

C r y s t a l shapes are h i g h l y s e r r a t e d , w i t h s e r r a t i o n amplitudes of 1-2 mm; 

some are superimposed on s t r a i g h t s i d e s . • The bubbles show no p r e f e r r e d 

p o s i t i o n s on boundaries, nor are sub-boundaries g e n e r a l l y r e l a t e d to 

bubbles. Where bubbles are i n boundaries there are d i s t i n c t changes of • 

curvature of boundaries and f l a t t e n i n g of bubbles; away from such boundaries 

bubbles are approximately s p h e r i c a l . Bubble s i z e ranges from 0.1 mm to 

0.5 mm. The sub-boundaries are w e l l developed; not a l l a r e • s t r a i g h t , but. 

curve to maintain approximately 120° i n t e r s e c t i o n s w i t h boundaries. C r y s ­

t a l c h a r a c t e r i s t i c s i n the v e r t i c a l s e c t i o n s vary w i t h depth. I n the 

c e n t r a l i c e , c r y s t a l s i z e i s very l a r g e , ^.90 mm x 4^30 mm, elongate 

v e r t i c a l l y , w i t h s m a l l c r y s t a l s -\5 mm across at g r a i n boundaries of l a r g e 

c r y s t a l s , thus i n v e r t i c a l t r a i n s ; a. f u r t h e r t r a i n crosses from the l e f t 

hand s i d e of F i g u r e 89a, dipping at 40°.. Lower t h i s p a t t e r n changes, l a r g e 

(80 mm) c r y s t a l s have long axes at 45° to those above, again w i t h s m a l l 

( <.5 mm) c r y s t a l s i n t h e i r boundaries ( F i g . 8 9 ( b ) ) . These boundaries are 

h i g h l y indented, and i n t e r n a l s t r a i n bands i n t e r s e c t the boundaries a t 

i n d e n t a t i o n s . These bands are 2-3 mm wide and .'mostly continuous across the 

c r y s t a l . In a h o r i z o n t a l s e c t i o n the i n f l u e n c e of these, bands i s e v i d e n t ; 

g r a i n boundaries p a r a l l e l to the bands are approximately s t r a i g h t w h i l e 

boundaries trending normal are h i g h l y indented. The small c r y s t a l s tend 

to be equidimensional w i t h s t r a i g h t to g e n t l y curved boundaries and no 

su b s t r u c t u r e . Bubbles are not present i n the s m a l l c r y s t a l zone, elsewhere 

p o s i t i o n s are apparently random r e l a t i v e to g r a i n boundaries. 



F i g u r e 89. V e r t i c a l s e c t i o n s , l e n s o i d body ( F i g . 85). 
(a) Large., v e r t i c a l grains .with sub-boundaries, crossed by and 

separated by zones of s m all c r y s t a l s . . 10. mm g r i d . 
(b) Below F i g . 89(a). Note h o r i z o n t a l l y elongated c r y s t a l s i n b a s a l 

peaty zone. 10 mm g r i d . 1 — 1 

Crossed p o l a r i z e r s : ..'•'.•' 

Fig u r e 90., P e t r o f a b r i c s of i c e i n F i g . 85. 

(a) H o r i z o n t a l s e c t i o n , top of sample, 60 c r y s t a l s . . 
(b) V e r t i c a l s e c t i o n s , 120 c r y s t a l s , i n c l u d i n g bands of s m all 

c r y s t a l s . . . . 1 . 
x 18 h o r i z o n t a l l y elongated c r y s t a l s at base. 

Diagrams p a r a l l e l to sections' 
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.At the base of the i c e body l i e s a zone of markedly d i f f e r e n t 

texture ( F i g . 89(b)). The c r y s t a l s are very elongated h o r i z o n t a l l y up to 

80 mm, and boundaries are d i f f i c u l t to define due to peat content. 

. P e t r o f a b r i c diagrams are given i n F i g u r e 9 0 ( a ) , ( b ) . F i g u r e 90(a) 

represents the c r y s t a l s i n a . s e c t i o n p a r a l l e l to the upper s u r f a c e , which, 

give a p o i n t c o n c e n t r a t i o n . Figure 90(b) represents v e r t i c a l , s e c t i o n s i n 

which a l l c r y s t a l s are contained i n a point c o n c e n t r a t i o n , except f o r the 

lower zone of h o r i z o n t a l l y elongated c r y s t a l s which are contained In a 

minor h o r i z o n t a l g i r d l e . 

I n t e r p r e t a t i o n 

The f i e l d , bubble and c r y s t a l c h a r a c t e r i s t i c s of the body i n d i c a t e 

a. f a i r l y complex h i s t o r y . U n f o r t u n a t e l y the l a t e r a l f e a t u r e s of the. body 

are not known, thus the o r i g i n of the lower zone of h o r i z o n t a l l y elongate 

c r y s t a l s i s not c l e a r , although an abrupt change from the o v e r l y i n g i c e 

i s e vident, i n terms of shape and l a t t i c e o r i e n t a t i o n . The geomorphic 

p o s i t i o n of the body, namely i n an area of i c e wedge polygons sub j e c t to ~ 

thermokarst a c t i v i t y (see (a) and ( b ) , above) and c o a s t a l r e c e s s i o n means 

that thermokarst and thermal e r o s i o n (seaward water flow through wedge, 

troughs) processes have, operated. A l s o Mackay (1972d) has shown that Ice 

lensing . occurs i n ridges adjacent to wadges. Thus a complex thaw and 

freeze h i s t o r y may have taken p l a c e . The upper r o o t p a t t e r n i s evidence 

of. a recent malt-down and r e f r e e z i n g c y c l e , but t h i s does not e x p l a i n the 

major part of the body. There i s no s m a l l c r y s t a l zone t y p i c a l of c h i l l 

type growth, as discussed i n the cases of t e n s i o n crack, i c i n g mound and 

thermokarst depression i n f i l i c e s . Had upward growth occurred from above 

the zone of h o r i z o n t a l l y elongated c r y s t a l s , , a zone of competitive growth. 
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or growth, i n l a t t i c e c o n t i n u i t y would be expected, but n e i t h e r are found. 

Nor i s there an upper c h i l l zone. I t appears t h a t such a c h i l l zone 

occurred at the top and was removed by downmelting to the' i n c l u s i o n zone, 

then upward f r e e z i n g i n l a t t i c e c o n t i n u i t y occurred. However, i f the body, 

grew e s s e n t i a l l y by downward f r e e z i n g , f o r example water being drawn up 

p r o g r e s s i v e l y i n t o the polygon rim frota the adjacent deep wedge trough, 

the contact w i t h the lower zone of h o r i z o n t a l l y elongated c r y s t a l s must be 

explained. In the absence of knowledge of the l a t e r a l extent of the body, 

but knowing the p a t t e r n of wedges i t i s suggested' that the body tapered 

o f f l a t e r a l l y , and the growth d i r e c t i o n was o f f s e t from the v e r t i c a l at 

depth as i n d i c a t e d by the bubble o r i e n t a t i o n ( F i g . .88). T h i s c o n c l u s i o n 

must be considered s p e c u l a t i v e , but the complexity of the h i s t o r y i s recog­

n i z e d . 

(b) P e l l y I s l a n d . " . -

F i e l d C h a r a c t e r i s t i c s 

On the northwest coast of .Pelly I s l a n d is a low l y i n g a r e a of polygon 

f l a t s comprising l a c u s t r i n e . c l a y s w i t h a w e l l developed ice-wedge system. 

Many wedges are over 2 m across and some greater than 3 m. Polygons have 

diameters of. up to 10.m w i t h rims reaching 1 m h i g h and deep troughs. • 

These troughs have been subject to thermal e r o s i o n . C o a s t a l exposures 

i n d i c a t e that s e v e r a l periods of melt-down and freeze-back have occurred, 

and s e v e r a l wedges have i r r e g u l a r upper s u r f a c e s . Thaw zones may be t r a c e d 

i n t o the adjacent sediments, i n d i c a t e d by surfaces of i r o n s t a i n i n g , and . 

d i f f e r i n g lens s t r u c t u r e s i n the c l a y s . W i t h i n.the r e f r o z e n peat and c l a y s 

over the wedge-margins are "pond i c e " bodies ( F i g . 91) c h a r a c t e r i z e d on 
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Figure 91. F i e l d p o s i t i o n of 
"pond" i c e over wedges, 
P e l l y I s l a n d . 

Figure 92. "Pond" i c e body. Wedge 
i c a below. 

Figure 93. I n c l u s i o n 
p a t t a r n , "pond" i c e , 
v e r t i c a l s e c t i o n normal 
to s i d a . 

F i g ure 94. C r y s t a l p a t t e r n 
v e r t i c a l s e c t i o n s normal 
to s i d e . 10 im g r i d . 
Crossed p o l a r i z e r s 
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m e l t i n g surfaces by etched out c r y s t a l boundaries and bubble t r a i n s . These 

patterns i n d i c a t e m u l t i p l e f r e e z i n g d i r e c t i o n s ; the i c e type i s thus r e a d i l y 

d i s t i n g u i s h a b l e i n the f i e l d from lens i c e or wedge i c e . I n some cases an 

i n d i v i d u a l "pond i c e " body has been subject apparently to l a t e r m e l t i n g and 

upward refreezing.. Both peat.and clay, appear as i n c l u s i o n s w i t h i n , the i c e . 

A sample of t h i s i c e was taken from the area shown i n Fi g u r e 92 and hand 

specimen c h a r a c t e r i s t i c s are given i n terms of sediment and bubble content. 

Ice C h a r a c t e r i s t i c s 

F i r s t l y the features normal to a si d e of the pond.are g i v e n , then 

those i n a v e r t i c a l plane p a r a l l e l to the side.. 

( i ) Features Normal to the Side \ . . 

The nature of the f r e e z i n g process i s best understood from study of 

a v e r t i c a l sample orthogonal to the s i d e of,the body. No f r a c t u r e s were 

observed i n hand-specimen; i n c l u s i o n s are discussed i n terms of peat, 

sediment, and bubbles. Peat and sediment content i s confined to a s m a l l 

d u s t i n g of p a r t i c l e s i n the top 20 to 30 mm, the zone of s p h e r i c a l bubbles. 

Bubble C h a r a c t e r i s t i c s . 

The bubble pattern, comprises seven d i s t i n c t zones: 

(a) at the top of the sample i s a i0-20 mm deep zone of s m a l l •(''••4 1 mm 

diameter) s p h e r i c a l to e l l i p s o i d a l bubbles i n a g e n e r a l l y random p a t t e r n 

w i t h some l o c a l l y higher c o n c e n t r a t i o n s ; 

(b) a narrow e s s e n t i a l l y bubble-free zona; 



(c) a 40 ram deep band crosses' the sample s u b - h o r i z o n t a l l y , c o n t a i n i n g 

v e r t i c a l l y elongated bubbles 10 mm long and ^-1 mm i n diameter. Some have 

v a r i a b l e t h i c k n e s s , i n c l u d i n g bulbous ends. These elongate, bubbles may . . 

occur i n l o c a l groups or i n t e r s p e r s e d w i t h s m a l l ' 1 mm) s p h e r i c a l bubbles; 

(d) the next lower band comprises t r a i n s of elongate and s p h e r i c a l 

bubbles c u r v i n g down from band (c) and away from the.side o f the pond, and 

i n t o a lower narrow band of small s p h e r i c a l bubbles ( F i g . 93);. 

(e) below occurs a s e r i e s of t r a i n s t r e n d i n g upwards, i n the m i r r o r . 

image of.band ( d ) . The t r a i n s are curved but contained,elongate bubbles. 

(5 mm) are more ne a r l y v e r t i c a l l y oriented,'and i n t e r s p e r s e d w i t h s m a l l 

(1 mm) s p h e r i c a l and e l l i p s o i d a l bubbles. T r a i n s are 30-50 mm long, 

separated by 20-50 mm of c l e a r i c e , and become narrower upwards; 

( f ) beneath the t r a i n s i s a t h i n band of bubble-poor i c e , then a 

h o r i z o n t a l ; discontinuous band of s l i g h t l y elongated (3-5 mm) v e r t i c a l • 

bubbles, i n t e r s p e r s e d w i t h some s p h e r i c a l and i r r e g u l a r l y shaped -bubbles, 

i n d i c a t i v e of melt; 

(g) below i s a zone of low bubble content, c o n t a i n i n g patches of 

s p h e r i c a l and i r r e g u l a r bubbles i n a tren d s i m i l a r to th a t . i n . z o n e (d) 

but formed during a separate f r e e z i n g p e r i o d . Sediment occurs as pods 

and s t r e a k s above zone ( f ) , and p a r a l l e l to t r a i n s i n zone (e) and become . 

narrower upwards. ' 

C r y s t a l C h a r a c t e r i s t i c s 

C r y s t a l s i z e i s discussed w i t h reference to bubble zones ( F i g . 94). 
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( a ) , (b) and (c) contain c r y s t a l s averaging 3 mm x 2 mm, and ranging 

up to•12 mm x 10 mm; 

, . (d) at. the base of the zone of elongated bubbles begins a zone of 

narrow elongated c r y s t a l s > 30 mm x 6 mm, which curve round i n t o h o r i z o n -

t a l i t y i n zone ( e ) ; 

(e) c r y s t a l s are s l i g h t l y l a r g e r than i n zone (d) and tha dimensional 

o r i e n t a t i o n i s a m i r r o r image to that of zone (d) thus corresponding t o the 

bubble p a t t e r n . 

( f ) , (g) and (h) c o n t a i n l a r g e r c r y s t a l s , up to 50 mm l o n g , < 10 mm 

wide i n a p a t t e r n shown i n Figure 94 . 

C r y s t a l shape v a r i a t i o n s c o r r e l a t e w i t h bubble zones. Zones ( a ) , 

(b) and (c) c o n t a i n anhedral e q u i g r a n u l a r c r y s t a l s w i t h no s t r o n g i n t e r -

growths or s e r r a t i o n s . In zone ( d ) , shape changes to anhedral, s a r r a t e d , 

elongated c r y s t a l s w i t h a curved dimensional o r i e n t a t i o n . Wedging out of 

c r y s t a l s has occurred during downward growth. Zones (e) , ( f ) and (g) 

c o n t a i n anhedral, s e r r a t e d elongate c r y s t a l s w i t h a r a d i a l v a r i a t i o n i n 

dimensional o r i e n t a t i o n , shown i n F i g u r e 9 4 ( b ) , ( c ) . 

Substructure i s confined to l a r g e r c r y s t a l s . In zones ( a ) , (b) and 

(c) some la r g e c r y s t a l s are embayed by s m a l l e r c r y s t a l s , the boundary 

segments at embayments. are s t r a i g h t . In the lower zones elongate c r y s t a l s 

c o n t a i n complex sub-boundaries, i n patterns p a r a l l e l and normal to long 

axes. 

The broad r e l a t i o n s h i p between bubble p a t t e r n and t e x t u r e i s evident 

from the above d i s c u s s i o n and Figures 93, 94. 
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P e t r o f a b r i c diagrams for t h i s s e r i e s of samples are shown i n F i g u r e 

9 5 . C r y s t a l s i n the upper zones ( F i g . 9 b ( a ) ) have c-axes i n a zone p a r a l ­

l e l to the top of the body An i n t e r e s t i n g d i s t r i b u t i o n of c-axes e x i s t s 

i n the lower zones, shown n Figure 9 5 ( b ) . The i n i t i a l f r e e z i n g p a t t e r n 

was from a l l sides towards a c e n t r a l p o i n t , thus as the f r e e z i n g i n t e r f a c e 

changed, so the c r y s t a l dimensional o r i e n t a t i o n s , changed. But the c r y s t a l s 

were large and growth continued i n l a t t i c e c o n t i n u i t y r a t h e r than r e q u i r i n g 

f u r t h e r n u c l e a t i o n . A f t e r a period of melt-down, r e f r e e z i n g occurred, again 

from a l l s i d e s . Upward growth occurred on the a l r e a d y e x i s t i n g l a t t i c e 

s i t e s , thus the l a t t i c e o r i e n t a t i o n s are maintained. Downward growth occur­

red as an extension of the c h i l l zone, i n the form of a columnar zona. 

Where the two zones approached, dimensional o r i e n t a t i o n changed to remain . 

orthogonal to the f r e e z i n g i n t e r f a c e , but l a t t i c e c o n t i n u i t y was maintained, 

even i n h o r i z o n t a l c r y s t a l s . . Thus the g i r d l e of c-axes i s e x p l a i n e d . Sub­

s t r u c t u r e s observed i n the l a r g e r c r y s t a l s are due to i n t e r n a l s t r a i n . The 

enclosed f r e e z i n g discussed above,, and l a t e r temperature f l u c t u a t i o n s which 

would lead to expansion and c o n t r a c t i o n , gave r i s e to the small-angle bound-, 

a r i e s . 

( i i ) Sections P a r a l l e l to Side of Ice Body 

Sediment bands are not continuous throughout the body, but. taper i n ­

wards from the contact w i t h the surrounding c l a y , of which thay are composed. 

S l i g h t curvatures of the bands r e s u l t from v a r i a t i o n s i n the shape of tha 

f r e e z i n g i n t e r f a c e . W i t h i n the bands, sediment occurs as s m a l l ( < 5 mm) 

"pods" and as p a r a l l e l s t r e a k s , probably on c r y s t a l basal planes. Charac­

t e r i s t i c a l l y a band has ona d i f f u s a and one abrupt boundary, tha former 

being the f i r s t to f r e e z e , i n d i c a t i n g l a t e r a l l y uniform f r e e z i n g c o n d i t i o n s . 
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Figure 95. P e t r o f a b r i c s of "pond" 
i c e . 
(a) upper zones, v e r t i c a l 

s e c t i o n normal to side; 

(b) lower zones, v e r t i c a l 
s e c t i o n normal to. side; 

(c) upper zones, v e r t i c a l 
s e c t i o n p a r a l l e l to side; 

(d) ,(e) lower zones, v e r t i c a l 
s e c t i o n p a r a l l e l to side 
(converging c r y s t a l s ) . 

Diagrams p a r a l l e l to sections 
c. = compositional l a y e r i n g 
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Bubble C h a r a c t e r i s t i c s 

Bubble content i s v a r i a b l e . ( F i g . 96): 

(a) A high c o n c e n t r a t i o n of bubbles occurs i n the i c e above the top 

sediment band, comprising two.types: (1) s p h e r i c a l , ^ 1 mm diameter, 

randomly p o s i t i o n e d w i t h respect to elongate bubbles and sediment, 

(2) elongate < 1 mm diameter, up to 13 mm long, w i t h bulbous ends, 

o r i e n t e d orthogonal to the sediment banding, and arranged i n groups; 

(b) i n the top sediment band i s a much lower bubble c o n c e n t r a t i o n 

than i n zone ( a ) , s p h e r i c a l and elongate bubbles occur where the sediment 

content i s lower; • 

(c) below the sediment band i s a bubble-poor zone grading i n t o more 

bubbly i c e comprising (1) elongate bubbles which occur s i n g l y or w i t h i n 

patches of s p h e r i c a l and mainly c l o s e to the sediment band, (2) s p h e r i c a l 

bubbles < 1 mm diameter i n a 20-30 mm t h i c k zone immediately above the 

sediment, (3) curved t r a i n s , 70 mm long and 10 mm i n diameter which c o n t a i n 

s p h e r i c a l and e l l i p s o i d a l bubbles, trend upward from the second sediment 

band, (4) bubble groups occur midway between sediment bands and not asso­

c i a t e d w i t h a t r a i n ; 

(d) . i n the upper p a r t of second sediment band occur both s p h e r i c a l 

and elongate bubbles, but none were observed i n the. lower p a r t ; . 

(e) between the second and t h i r d sediment bands are few.bubbles, there 

being o c c a s i o n a l s p h e r i c a l and elongate bubbles above the sediment; 

( f ) the lower sediment band i s bubble-free. 
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F i g u r e 96. Bubble and c l a y 
i n c l u s i o n zones, v e r t i c a l face 
p a r a l l e l to side of "pond:' i c e . 

Figure 97. V e r t i c a l s e c t i o n , top 
of F i g . 96. T e x t u r a l change 
at c l a y i n c l u s i o n zone. 
10 mm g r i d 1 1 

Crossed p o l a r i z e r s 
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C r y s t a l Characc.erisic.es 

Textures are discussed i n r e l a t i o n to sediment and bubble bands. 

W i t h i n the upper bubble and sediment band are c r y s t a l s averaging 5 mm x 

4 mm, and ranging from 2 mm x 1 mm to 15 mm x 8 mm. . Below t h i s sediment 

band are l a r g e r v e r t i c a l l y elongate c r y s t a l s averaging > 3 0 mm x 1 0 mm, 

and ranging from 6 mm x 4 mm to > 4 0 mm x 2 0 mm ( F i g . 9 7 ) . Lower there 

occur much l a r g e r c r y s t a l s , up to 48.mm x 3 0 mm but o c c a s i o n a l l y around 

7 mm x 2 mm. There i s a f u r t h e r change i n g r a i n s i z e to more eq u i g r a n u l a r 

below the lower sediment band. G r a i n shape v a r i e s w i t h . g r a i n s i z e . I n 

the small c r y s t a l zone c r y s t a l s are anhedral, boundaries are s t r a i g h t or 

have simple curvature. There i s a s l i g h t dimensional p r e f e r r e d o r i e n t a t i o n 

p a r a l l e l to bubble e l o n g a t i o n . The elongate c r y s t a l s are anhedral w i t h 

w e l l developed s e r r a t i o n s and embayments; again the dimensional o r i e n t a t i o n 

i s orthogonal to the sediment band. I n the lower part of the sample elonga­

t i o n i s more complex. 

Substructure i s only p o o r l y developed i n the upper s m a l l c r y s t a l zone 

but i s strong i n s e v e r a l of the elongate c r y s t a l s , f r e q u e n t l y p a r a l l e l to 

the dimensional o r i e n t a t i o n ; a second r e c t a n g u l a r s u b s t r u c t u r e occurs lower 

down. 

There i s no strong r e l a t i o n s h i p between bubbles and t e x t u r e , other 

than p a r a l l e l , dimensional o r i e n t a t i o n . In the case of elongate bubbles, 

some pass, across' c r y s t a l boundaries, others terminate at boundaries, w h i l e 

s p h e r i c a l bubbles are s c a t t e r e d randomly w i t h respect to boundaries. An 

exception to the above p a t t e r n occurs where a bubble t r a i n w i t h i n otherwise 

c l e a r i c e i s contained w i t h i n one l a r g e elongate c r y s t a l . 'The r e l a t i o n ­

ship between sediment and texture i s two-fold: ,. 

http://Characc.erisic.es
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(a) "pods" of sediment are not contained w i t h i n c r y s t a l s ; . 

(b) " s t r e a k s " of sediment tend to be v e r t i c a l or l o c a l l y orthogonal 

to the trend of the band, but not r e l a t e d to c r y s t a l s t r u c t u r e or g r a i n 

boundaries, as i n d i v i d u a l l i n e s cross more than one c r y s t a l . . . 

I t i s not c l e a r whether the sediment p a t t e r n i s a f u n c t i o n of a 

complex i n t e r f a c e shape during f r e e z i n g , or l a t e r thermomigration. 

C-axis o r i e n t a t i o n s f o r the sample are given i n F i g u r e 95. Small 

c r y s t a l s i n the zones ( a ) , (b) and (c) give an approximately v e r t i c a l 

maximum which may occur during I n i t i a l downward f r e e z i n g ( M i c h e l and 

Ramseier 1971) and a minor v e r t i c a l g i r d l e ( F i g . 9 5 ( c ) ) . The c r y s t a l s 

i n the g i r d l e do not d i f f e r i n other c h a r a c t e r i s t i c s from the surrounding 

c r y s t a l s , although some deviate from the v e r t i c a l dimensional o r i e n t a t i o n . 

C r y s t a l s i n the zone of elongate c r y s t a l s are shown i n Fi g u r e 97 and t h e i r 

c-axes p l o t t e d i n F i g u r e 95(d). The maximum deviates from t h a t i n F i g u r e 

9 5 ( c ) . Below, the p a t t e r n i s more complex ( F i g . 95(e)) due t o the change 

i n f r e e z i n g d i r e c t i o n and dimensional o r i e n t a t i o n , but from comparison w i t h 

diagrams f o r the orthogonal s e r i e s of s e c t i o n s i t i s seen t h a t c-axes are 

orthogonal to the l o c a l f r e e z i n g d i r e c t i o n , and thus the p a t t e r n i s e f f e c ­

t i v e l y an extension of the c-axis h o r i z o n t a l p a t t e r n r o t a t e d f o r the l o c a l 

f r e e z i n g i n t e r f a c e . 

I n t e r p r e t a t i o n '. . 

From the f i e l d r e l a t i o n s and i n c l u s i o n , p e t r o f a b r i c and c r y s t a l 

c h a r a c t e r i s t i c s the h i s t o r y of the. i c e body can be described. A f t e r , 

c o n s i d e r a b l e development of the wedge system a greater depth of thaw, 

i n d i c a t e d by the surface of i r o n s t a i n i n g t r a c e a b l e l a t e r a l l y . f r o m wedges 
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into the adjacent sediment, occurred and d i f f e r i n g lens structure i n the 

c l a y s . A d d i t i o n a l l y thermokarst and thermal erosion processes have opera­

ted over the wedges. Refreezing occurred from above and below, and above 

the wedge pools of water froze to give the pattern shown i n zones (g)-(h) 

( F i g . 96). A subsequent melt-down removed the upper part of t h i s i c e and 

caused changes i n bubble shape and the i n t r o d u c t i o n of sediment (above zone 

( f ) ) . Refreezing again occurred simultaneously from, above and below g i v i n g 

r i s e to the equigranular c h i l l zone c r y s t a l s i n zone (a) to (c) and the 

curving, converging bubble t r a i n s and curved, elongate c r y s t a l s of zones 

(d) and (e), those i n (e) being extensions of c r y s t a l s i n zone(f). The 

zone of competitive growth above zone (f) from the previous f r e e z i n g was 

removed by melt-down. Bubbles wi t h i n the t r a i n s i n zones (d) and (e) are 

now elongate v e r t i c a l l y having been subject to thermomigration i n a v e r t i c a l 

temperature gradient. 

C r y s t a l c-axis orientations change from v e r t i c a l at the top to more 

nearly h o r i z o n t a l then change pattern due to the freezing d i r e c t i o n change. 

Relationship of Ice Type to Surface Form 

A e r i a l photographs of the area show the well-developed pattern of 

i c e wedge polygons with associated ridges. F i e l d examination of the area 

di s c l o s e d the presence of very deep troughs over some wedges which obviously 

did not freeze each winter. Also i t i s evident that some thermal erosion 

i s occurring l a t e r a l l y at the top of some troughs, and considerable over­

hangs of organic s o i l are developing . ( F i g . 91). However, these l a t t e r 

features are not always obvious from a i r photographs. Nor i s the presence 

of the ice bodies discussed above immediately evident from a i r photographs 
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or surface f i e l d examination; th e i r c h a r a c t e r i s t i c s and d i s t r i b u t i o n were 

well displayed only on coastal sections. Thus, i n summary, the i c e type 

had no s p e c i f i c surface expression, but i s an e x c e l l e n t i n d i c a t o r of the 

complex thermal h i s t o r y of the area. Similar processes of melt-down 

adjacent to wedges are now occurring nearby. A f u r t h e r , more minor, point 

to be extracted from the discussion i s tha importance of preparing t h i n 

sections of several o r i e n t a t i o n s . 

Aggradational Ice 

Introduction 

Aggradational i c e i s ice which grew at the base of an a c t i v e l a y e r 

and became incorporatad into permafrost as the permafrost t a b l e rose. This 

r i s e i n tha permafrost table may ba dua to thinning of tha a c t i v e layer i n 

a c l i m a t i c change or sedimentation on the ground surface. A subsequent 

change i n surface conditions could destroy such i c e . As surface conditions 

vary considerably i n space and time i t i s to be a n t i c i p a t e d that aggrada­

t i o n a l i c e c h a r a c t e r i s t i c s w i l l be v a r i a b l e l a t e r a l l y . 

We discuss aggradational ice from two s i t e s : (1) an involuted h i l l 

near Tuktoyaktuk, (2) a construction s i t e at Tuktoyaktuk. 

(a) Involuted H i l l S i t e 

Introduction 

In a previous s e c t i o n (Involuted h i l l i c a - f o l d e d i c e penetrated by 

wedga) wa di s c u s s e d a s i t e where paat had accumulated and an i c a wedga had 
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grown i n a m u l t i p l e f a s h i o n (Mackay 19 74a, p. 1379, F i g . .18). This i s 

evidence of a r i s e i n the permafrost t a b l e , and we now discuss i c e i n the 

adjacent s o i l . 

F i e l d C h a r a c t e r i s t i c s i 

The i n v o l u t e d h i l l on the coast near Tuktoyaktuk i s t y p i c a l of a l l 

such h i l l s i n the area, i n terms o f • s u r f i c i a l form, and c o a s t a l r e c e s s i o n 

has. exposed some of i t s i n t e r n a l f e a t u r e s . I t i s evident t h a t s e v e r a l 

metres of peat has accumulated i n i n t e r - r i d g e depressions ( F i g . 93), and 

that some minor thawing a c t i v i t y has occurred adjacent to some of the 

l a r g e r i c e wedges. Here we discuss i c e which i s , by d e f i n i t i o n , aggrada­

t i o n a l , and which has not bean di s t u r b e d by l a r g e s c a l e tharmokarst a c t i v ­

i t y . 

Most of the i c e i s i n a dis p e r s e d , p a r t i c u l a t e form and unsuited f o r 

t h i n s e c t i o n p r e p a r a t i o n , but at what was probably a depression i n a one­

time permafrost t a b l e , there occurs a l e n s o i d i c e body which i s s u i t a b l e 

f o r a n a l y s i s . . 

Ice C h a r a c t e r i s t i c s 

The lower surface of the body i s un d u l a t i n g and thare i s no abrupt : 

boundary w i t h the s o i l , r a t h e r there i s a g r a d a t i o n from peat through 

i c y peat to^ peaty i c e to i c e . W i t h i n the i c e body proper a r e b u b b l e • t r a i n s 

of v a r y i n g o r i e n t a t i o n ; these are truncated and-naw t r a i n s occur above 

( F i g . 9 9 ( a ) ) . The upper i c e - s o i l contact i s again not abrupt.. 

Bubble C h a r a c t e r i s t i c s 

The bubble p a t t e r n comprises tha f o l l o w i n g zones: 
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AI 

M. 1. 
/ M I 

Figure 93. Schematic diagram, peat accumulation and wedge 
ice growth, involuted h i l l . A.L. - a c t i v e layer. 1,2,3 
indic a t e old ac t i v e layers. P = peat, M..I. = massive i c e . 

Figure 99a. Schematic diagram, 
peat and bubble pattern, 
aggradational i c e . 

''OX aHa. o ••/»«• 
.. . ^̂ -/j A- <>«••• 
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( i ) Lower zone: This zone comprises v e r t i c a l l y elongate and some 

s p h e r i c a l bubbles which are <1 mm diameter, and lengths are </ 4 mm. 

There i s no o v e r a l l r e g u l a r p a t t e r n i n the form of l a y e r s of a given 

bubble s i z e or shape, r a t h e r there are groups of l o c a l l y higher concen­

t r a t i o n , surrounded by s p h e r i c a l bubbles. This zone has a h i g h peat 

c o n c e n t r a t i o n i n p a r t i c u l a t e form which may have c o n t r o l l e d bubble growth,, 

but i f any p a t t e r n of bubbles e x i s t e d immediately a f t e r s o l i d i f i c a t i o n , I t 

has s i n c e been modified. 

( i i ) C e n t r a l zone: The p a t t e r n i n zone ( i ) i s a b r u p t l y t r u n c a t e d i n a 

curved s u r f a c e , which i s not a growth f e a t u r e . W i t h i n zone ( i i ) i s a 

s e r i e s of discontinuous 1-2 mm l a y e r s c o n t a i n i n g bubbles t r e n d i n g away 

from the contact between zones ( i ) and ( i i ) . Above, the i c e becomes 

c l e a r e r and i s truncated approximately h o r i z o n t a l l y . 

( i i i ) Upper zone: Above the t r u n c a t i o n of zone ( i i ) i s a p a t t e r n of 

elongate bubbles t r e n d i n g orthogonal to the t r u n c a t i o n zone and upper 

s u r f a c e , which i s t y p i c a l of o m n i d i r e c t i o n a l f r e e z i n g as discussed e l s e ­

where. The contacts are abrupt, and bubble shape i s t h i n , <C 1 mm diameter 

and elongate, 3 mm. 

C r y s t a l C h a r a c t e r i s t i c s 

The c r y s t a l s i z e and shape c h a r a c t e r i s t i c s a r e c l o s e l y a s s o c i a t e d 

w i t h bubble zone f e a t u r e s , and are discussed i n terms of those zones 

( F i g . 99(b)). 

( i ) Lo-wer zone: This zone has a high i n c l u s i o n , content i n the form of . . 

peat and bubbles, and c r y s t a l s i z e i s g e n e r a l l y 1-2 mm f o r equant c r y s t a l s , 

w i t h some elongated c r y s t a l s up to 5 mm. G r a i n boundaries are. u s u a l l y 
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s t r a i g h t from one i n c l u s i o n t o : t h e next, but some l a r g e r c r y s t a l s are very 

i r r e g u l a r . 

( i i ) C e n t r a l zone. At the lower edge a mass of small c r y s t a l s grows up 

from the t r u n c a t i o n of zone ( i ) . The discontinuous bubble l a y e r s have a 

marked e f f e c t on c r y s t a l form - c r y s t a l s . t e r m i n a t e at these zones and new-

growth occurs on the other s i d e . Where no such bubble l a y e r s occur elonga­

ted c r y s t a l s reach 30 mm long and 3 mm wide. . 

( i i i ) Upper zone. C r y s t a l shape corresponds to the bubble p a t t e r n , c r y s t a l s 

have grown orthogonal to both the upper surface of zone, ( i i ) and the top of 

the i c e body. In some cases the lower c r y s t a l s are i n l a t t i c e c o n t i n u i t y w i t h 

those i n zone ( i i ) but i n general new growth has occurred. Competitive growth 

zones on a l l s i d es of the body give r i s e to elongate c r y s t a l s up to 20 mm long 

which trend toward the centre of the body. C r y s t a l s i n the upper p a r t are 

longer. -

L a t t i c e o r i e n t a t i o n s are shown i n Figure 100; s l i g h t l y d i f f e r i n g c - a x i s 

patterns correspond to the s e v e r a l bubble and c r y s t a l zones. I n the lower 

zone the p a t t e r n lacks p r e f e r r e d o r i e n t a t i o n ( F i g . 100(a)) from which develops 

a s l i g h t c o n c e n t r a t i o n i n zone ( i i ) ( F i g . 100(b)). A t r a n s i t i o n occurs i n 

the upper zone, where a random.. o r i e n t a t i o n f o r c r y s t a l s around the edges . 

( F i g . 100(c)) becomes a weak g i r d l e orthogonal to the dimensional o r i e n t a t i o n 

( F i g . 100(d)) i n the elongate c r y s t a l s . The samples are too small f o r r i g ­

orous d i s c u s s i o n , but F i g . 100(d) .corresponds to elongate c r y s t a l s . 

I n t e r p r e t a t i o n 

The growth sequence of l a y e r s i s zone ( i ) , zone ( i i ) , zone ( i i i ) . 

Zone ( i ) represents a l o c a l l y higher water content i n the peat which.gave 

r i s e to the t r a n s i t i o n from peat w i t h a high i n t e r s t i t i a l i c e content to 
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Figure 100. Petrofabrics for aggradational i c e . 

(a) lower zone 

(b) second zone 

(c) edge c r y s t a l s , upper zone 

(d) elongate c r y s t a l s , upper zona. 
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peaty i c e . The peat and bubbles (which, i n a d d i t i o n to d i s s o l v e d a i r , may 

i n c o r p o r a t e gases from r e a c t i o n s i n the peat) may have encouraged copious 

n u c l e a t i o n , and have a strong c o n t r o l on c r y s t a l s i z e and shape. T h i s i c e 

body was l a t e r subject to me It-down from above as i s evident from the 

i r r e g u l a r upper surface of zone ( i ) and the abrupt t r u n c a t i o n of c r y s t a l 

f e a t u r e s . Zone ( i i ) represents a new growth p e r i o d as seen by the t r a n s i ­

t i o n i n c r y s t a l and bubble dimensional o r i e n t a t i o n - growth i s everywhere 

orthogonal to the i r r e g u l a r . u p p e r surface of zone ( i ) . This zone i s i n 

t u r n truncated but the lower part of the zone became incorp o r a t e d i n t o 

permafrost. A f u r t h e r type of growth occurred i n zone ( i i i ) . Here.the 

bubble p a t t e r n and c r y s t a l dimensional and l a t t i c e o r i e n t a t i o n s i n d i c a t e 

simultaneous growth v e r t i c a l l y from above and below, and l a t e r a l l y . T h i s 

l a t t e r zone i s at the base of the present a c t i v e l a y e r and may be q u i t e 

recent. I t i s thus i n a p o s i t i o n where disturbance i s l i k e l y w i t h a s l i g h t 

change i n surface c o n d i t i o n s . In the case of such an event zone ( i i i ) 

might be melted down and d i s p l a y the features t y p i c a l of zones ( i ) and ( i i ) . 

(b) Tuktoyaktuk S i t e  

I n t r o d u c t i o n 

The P o l a r C o n t i n e n t a l S h e l f P r o j e c t has a base i n Tuktoyaktuk, which 

was b u i l t , i n 1956. This e n t a i l e d the l a y i n g of a g r a v e l pad on the e x i s t i n g 

a c t i v e l a y e r , on which b u i l d i n g s ware s i t e d . G r a d u a l l y permafrost aggraded 

through the o l d a c t i v e l a y e r u n t i l e q u i l i b r i u m was r e - e s t a b l i s h e d . 

In June 1973, the M e t a l l u r g y D i v i s i o n of the Department of Energy, 

Mines and Resources dug small e x c a v a t i o n pits, i n t o the g r a v e l pad, f o r the 

purpose of e r e c t i n g a t e s t compound.. During these excavations i c e was 
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encountered i n s e v e r a l forms:- p a r t i c u l a t e , and i n s m a l l bodies; samples 

of the l a t t e r i c e type- were s u p p l i e d to the author. 

F i e l d C h a r a c t e r i s t i c s 

The m a t e r i a l of the-"gravel pad" comprised a mixture of g r a v e l , sand . 

and organic matter (bulldozed from the.nearby.tundra). Ice samples were 

removed from beneath 0.9 m of overburden, at which depth the i c e formed 

discontinuous l a y e r s , *C 75 mm t h i c k and <3Q0 mm diameter. 

Ice C h a r a c t e r i s t i c s 

No s t r u c t u r e s were evident i n the i c e (some small f r a c t u r e s were 

probably a r e s u l t of the d i g g i n g ) . I n c l u s i o n s occurred i n s o l i d and gaseous 

form; bubbles d i s p l a y e d a s l i g h t tendency t o banding l o c a l l y , p a r a l l e l to 

the ground surface and orthogonal to bubble dimensional o r i e n t a t i o n , w h i l e 

sediment appeared to be randomly p o s i t i o n e d . . Bubbles were g e n e r a l l y c y l i n ­

d r i c a l i n shape, ^ 1 mm i n diameter, <cl5 mm long and v e r t i c a l l y o r i e n t e d . 

Sand g r a i n s and fragments of organic m a t e r i a l were <0.1 mm. 

C r y s t a l C h a r a c t e r i s t i c s 

C r y s t a l s i z e and shape vary w i t h i n c l u s i o n content. Small c r y s t a l s , 

2-3 mm i n diameter, were found near the top of the specimen, where a higher 

sediment content occurred, and s i z e i n creased to 5-25 mm below. Most 

c r y s t a l boundaries ware s t r a i g h t o r only s l i g h t l y curved, an i n d i v i d u a l 

c r y s t a l g e n e r a l l y had 6 s i d a s , both convex and concave boundaries; these 

c h a r a c t e r i s t i c s are complicated by the presence of s o l i d and gaseous i n c l u ­

sions. G r a i n shape becomes more complex i n zones of high i n c l u s i o n content, 

w i t h i r r e g u l a r boundaries, a l s o sub-boundary development i s c l o s e l y 

a s s o c i a t e d w i t h i n c l u s i o n s . 
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L a t t i c e o r i e n t a t i o n s are given i n Figure 101, which shows a hig h 

degree of p r e f e r r e d o r i e n t a t i o n , w i t h a s i n g l e maximum p a r a l l e l to the 

d i r e c t i o n of bubble e l o n g a t i o n . 

I n t e r p r e t a t i o n 

The equidimensional c r y s t a l s are clo s e to an e q u i l i b r i u m c o n f i g u r a ­

t i o n . G r a i n boundaries are mutually a d j u s t e d , probably sub-boundaries 

have become boundaries, except where i n t e r f e r e d w i t h by i n c l u s i o n s owing 

to the hig h content of v e r t i c a l l y elongated bubbles. C-axis o r i e n t a t i o n s 

are p a r a l l e l to i n f e r r e d heat flow d i r e c t i o n s , thus c r y s t a l s extended 

p a r a l l e l to the c-ax i s as found i n the experimental work of Kapl a r (per­

sonal communication, 1974). The i c e i s a g g r a d a t i o n a l , i n the sense t h a t 

the permafrost t a b l e has r i s e n due to a r t i f i c i a l sedimentation. 



Figure 101. Petrofabrics, aggradational ice, Tuktoyaktuk. 
Plane of diagram horizontal,parallel to section': 

r 
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Chapter 5 

SUMMARY AND CONCLUSIONS 

The widespread d i s t r i b u t i o n of ground i c e along the A r c t i c Coast 

and Mackenzie Va l l e y had been recognized previously, and a c l a s s i f i c a t i o n , 

of i c e types had been established i n terms of water supply, t r a n s f e r 

mechanisms and associated ground ice forms. This was based on long-term 

observations and precise surveys of a range of growing i c e s , but l i t t l e 

p e t r o f a b r i c study. In the present study a f i e l d area was chosen near 

Tuktoyaktuk i n order to undertake both d e t a i l e d f i e l d study of i c e i n good 

exposures and i n bodies of known h i s t o r y , and p e t r o f a b r i c a n a l y s i s of those 

i c e s . Thus i t was possible to compare ice of known age ( <C 1 year) with 

older bodies and thus to elucidate both growth features and p o s t - s o l i d i f i ­

c a t i o n changes. 

C r y s t a l and i n c l u s i o n c h a r a c t e r i s t i c s t y p i c a l of growth of i c e i n 

bulk water, as reported i n lake i c e and laboratory studies, were found to 

apply to some i c e bodies. Although previous f i e l d and laboratory work 

on pet r o l o g i c aspects of segregated i c e and pore i c e growth has been 

l i m i t e d , the r e s u l t s here are i n agreement with e a r l i e r r e p o r t s . 

M o d i f i c a t i o n of growth f a b r i c s was recognized i n seve r a l i c e types, 

for example i n ice wadges where progressive changes i n c r y s t a l features 

occurred from the centre (recent growth) to the wedge margin; also the 

f a b r i c of segregated ice adjacent to a wedge changed due to the growth 

of that wedge. :• 

o 
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. Thus each i c e type has a p a r t i c u l a r texture r e l a t e d to i t s h i s t o r y , 

and petrologic c r i t e r i a are added to a modified ve r s i o n of Mackay's (1972b) 

i c e c l a s s i f i c a t i o n given i n Appendix 1. 

A b r i e f summary of each.ice type is. given below: 

1. Lake i c e comprised an upper zone of small c r y s t a l s from which grew 

v e r t i c a l l y elongate c r y s t a l s , p a r a l l e l to the heat flow d i r e c t i o n , 

with optic axes i n a ho r i z o n t a l g i r d l e . 

2. Icing mound ice comprised an upper c h i l l zone of small c r y s t a l s , 

adjacent to the s o i l , from which grew elongate c r y s t a l s normal to the 

upper surface, with optic axes normal to the long axes. Bubble bands 

were p a r a l l e l to the upper i c e surface and contained elongate bubbles 

normal to the bands. A l a t e r fracture i n f i l comprised i c e with d i f f e r ­

ent c r y s t a l and i n c l u s i o n c h a r a c t e r i s t i c s r e l a t e d to the l o c a l thermal 

gradient. 

3. Ice from three pingos was studied and found t o d i f f e r i n a l l three. 

A small pingo of known age displayed c r y s t a l features t y p i c a l - o f i c e 

growth i n bulk water and i s interpreted as fr e e z i n g of a r e s i d u a l pond, 

as freezing was u n i d i r e c t i o n a l , rather than i n j e c t i o n i c e which would 

give evidence of m u l t i d i r e c t i o n a l freezing. 

A second pingo exhibited.a c l e a r i c e and bubbly ice core overlying 

pore i c e . An increase i n freez i n g rate during growth was indicated by 

a change i n i n c l u s i o n content and c r y s t a l l a t t i c e o r i e n t a t i o n ( o p t i c 

axes normal to freezing d i r e c t i o n ) . This i s at t r i b u t e d to u p l i f t of 

the lake bottom and exposure to cold a i r temperatures. 



In tha case of Tuktoyaktuk pingo there, i s a pattern of a l t e r n a t i n g 

layers of segregated ice and pore i c e , i n marked contrast to the 

previous cores. A general tendency e x i s t s f o r o p t i c axes to be normal 

to the compositional layering, but markedly d i f f e r e n t patterns e x i s t . 

Some flow has occurred since cessation of growth. 

Involuted h i l l i c e represents an extension of segregated i c e growth, 

with considerable upward movement of the i c e . An increase i n c-axis 

concentration orthogonal to the compositional layering and i n dimensional 

o r i e n t a t i o n p a r a l l e l to the layering occurred i n a n t i c l i n e s i n the i c e . 

Where an ic e wedge penetrated such a f o l d the p e t r o f a b r i c pattern 

changed adjacent to the wedge, and c r y s t a l s i z e decreased toward the 

wedge, due to the stress system associated with wedge growth. 

Tension crack i c e from two s i t e s was studied. Crack i c e which grew 

i n the 1973-74 season had fresh growth features markedly d i f f e r e n t from 

one season's wedge i c e growth. Older tension crack i c e , which had been 

subject to coastal recession, and thus unknown stress and temperature 

gradients, displayed features due to p o s t - s o l i d i f i c a t i o n m o d i f i c a t i o n . 
" . . . - ' 

Thermal contraction crack and wedge ice from several s i t e s was studied. 

Individual thermally-induced cracks i n segregated (involuted h i l l ) i c e 

were investigated; l i t t l e r e l a t i o n s h i p to the f a b r i c of the massive 

ice was found, nor were subsequent fractures influenced g r e a t l y by 

e a r l i e r ones. Large wedges on P a l l y Island showed the prograde f a b r i c 

of growing wedges. Progressive increases i n c r y s t a l size,, degree of 

preferred dimensional o r i e n t a t i o n ( p a r a l l e l to compositional layering) 

with distance from the wadge centre were recognized. The influence of 
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a growing wedge on surrounding i n v o l u t e d h i l l i c e was po i n t e d out 

above ( c o n c l u s i o n No. 5). 

R e t i c u l a t e v e i n i c e was examined a t one s i t e o n l y , where v e r t i c a l 

veins dominated. I n c l u s i o n and c r y s t a l c h a r a c t e r i s t i c s v a r i e d i n each 

sample. Narrow veins contained medium s i z e d c r y s t a l s w i t h c-axes 

normal to the v e i n . In large v e i n s , c e n t r a l c r y s t a l s were l a r g e r , 

without a strong p r e f e r r e d c-axis o r i e n t a t i o n , and surrounded by 

elongate c r y s t a l s , normal to the v e i n . 

8. A c t i v e l a y e r i c e i n d i c a t e d m u l t i p l e f r e e z i n g d i r e c t i o n s . 

9. Ice w i t h m u l t i p l e f r e e z i n g h i s t o r i e s was discussed from two s i t e s . 

O m n i d i r e c t i o n a l growth w i t h i n f r o z e n s o i l was observed i n c o a s t a l 

areas of ice-wedge polygons. C r y s t a l s and bubble t r a i n s t r e n d orthog­

o n a l l y from surrounding s o i l , w h i l e contained bubbles are v e r t i c a l i n 

response to a l a t e r v e r t i c a l temperature g r a d i e n t . In some cases l a t e r 

m e l t i n g and r e f r e e z i n g was evident. The p o s i t i o n of such bodies sug­

gests that they o r i g i n a t e from o m n i d i r e c t i o n a l f r e e z i n g of pools or 

channels produced by coastward flow of water. 

A g g r a d a t i o n a l i c e grew between two ri d g e s of an i n v o l u t e d h i l l , and 

i n a s s o c i a t i o n w i t h the upward growth of permafrost under a gravel 

pad. I n the former case upward growth f o l l o w e d by melt-down and sub­

sequent upward growth was recognized. ".' 

I t i s emphasized that any one c r i t e r i o n i s i n s u f f i c i e n t f o r i n t e r ­

p r e t a t i o n of the h i s t o r y of a given i c e body. For example the o r i e n t a t i o n 

of bubble long axes i n the i c i n g mound i c e ( F i g . 5) was p a r a l l e l to the 
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g r o w t h d i r e c t i o n as i n d i c a t e d by c r y s t a l ' z o n a t i o n , c r y s t a l d i m e n s i o n a l 

o r i e n t a t i o n , c r y s t a l c - a x i s o r i e n t a t i o n and t h e f o r m o f t he mound. I n 

c o n t r a s t , i n o l d e r , n e a r - s u r f a c e i c e s w h i c h h a v e been s u b j e c t t o m e l t - d o w n 

a n d s t r o n g t e m p e r a t u r e g r a d i e n t s (no t measu red ) t he b u b b l e s have d e v e l o p e d 

v e r t i c a l d i m e n s i o n a l o r i e n t a t i o n s ( F i g . 8 3 ( a ) ) d e s p i t e t h e d i p o f t he 

b u b b l e t r a i n . Howeve r , t he b u b b l e t r a i n s , c r y s t a l z o n a t i o n and d i m e n ­

s i o n a l o r i e n t a t i o n s and shape o f t he i c e - s o i l i n t e r f a c e i n d i c a t e t h e 

f r e e z i n g d i r e c t i o n , and t h e b u b b l e o r i e n t a t i o n i s i n t e r p r e t e d a s a r e s u l t 

o f t h e r m o m i g r a t i o n i n a v e r t i c a l t e m p e r a t u r e g r a d i e n t . A l s o , i n t h e c a s e 

o f f o l d e d i n v o l u t e d h i l l i c e , b u b b l e s we re m o d i f i e d f r o m t h e i r o r i g i n a l 

f o r m , b u t some u n d e r s t a n d i n g o f t h e h i s t o r y o f a n i n d i v i d u a l body may be 

g a i n e d f r o m c o n s i d e r a t i o n o f a l l p e t r o f a b r i c p r o p e r t i e s . T h i s i s t r u e 

e s p e c i a l l y where o n l y l i m i t e d s a m p l e s a r e a v a i l a b l e , f r o m a c o r e , f o r 

e x a m p l e . I n t h e p r e s e n t s t u d y s a m p l e s were o b t a i n e d f r o m w e l l e x p o s e d i c e 

b o d i e s , o r f r o m a r e a s o f w h i c h t h e g e o m o r p h i c h i s t o r y was w e l l known. 

E l s e w h e r e , e x p o s u r e may be l a c k i n g o r t o p o g r a p h i c e x p r e s s i o n may n o t 

r e f l e c t s u b s u r f a c e i c e f o r m . I n s u c h i n s t a n c e s t h e p e t r o f a b r i c f e a t u r e s 

summar i zed h e r e may be u s e d as a i d s i n c l a s s i f y i n g a n i c e s a m p l e , b u t a l l 

a v a i l a b l e s e d i m e n t a r y and o t h e r d a t a s h o u l d be e m p l o y e d . 

Know ledge o f c r y s t a l c - a x i s o r i e n t a t i o n s i s i m p o r t a n t i n t h e i n t e r ­

p r e t a t i o n o f r e s u l t s o f g e o p h y s i c a l i n v e s t i g a t i o n s on g r o u n d ' i c e . F o r 

e x a m p l e , s e i s m i c wave v e l o c i t y p a r a l l e l t o t h e c - a x i s i s 200 m.s ^ f a s t e r 

t h a n e l s e w h e r e , t hus p r e d i c t i o n o f f a b r i c s w o u l d be h e l p f u l . 
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Suggestions for further work 

The aim of the present study has been an understanding of p e t r o l o g i c a l 

aspects of the growth and deformation-of i c e bodies i n permafrost. The 

r e s u l t s summarized above indicate that some progress has been made i n that 

a foundation has been established on which to base further f i e l d and lab­

oratory study. In p a r t i c u l a r , ' p e t r o l o g i c a n a l y s i s of i c e i n lenses grown 

under known conditions of heat-flow and water supply should be attempted. 

Those pingos and other i c e bodies of which the recent growth h i s t o r i e s are 

well.known would provide excellent f i e l d comparisons. In terms of deforma­

t i o n , much could be gained from a knowledge of st r e s s d i s t r i b u t i o n s around 

wedges, and creep rates of the larger Ice masses. Detailed thermal data 

for. the upper layers of permafrost are a v a i l a b l e and i t i s apparent that . 

contained i c e bodies have complex, c y c l i c , thermal s t r a i n h i s t o r i e s which 

merit further study. Our understanding of the influence of i n c l u s i o n s on 

the flow of i c e i s l i m i t e d and more experimental work i s necessary to a i d 

i n f i e l d studies. 



251 

LITERATURE CITED 

AD HOC STUDY GROUP ON PERMAFROST 1974. P r i o r i t i e s f o r b a s i c r e s e a r c h on 
p e r m a f r o s t . Committee on P o l a r R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l . 
Nat. Acad. S c i . , Washington, D.C, 54 p. 

ANDERSON, D.L. , and WEEKS,W.F. 1958. A t h e o r e t i c a l a n a l y s i s o f s e a i c e .. ' 
s t r e n g t h . T r a n s . A.G.U., v . 39, no. 4, pp. &32-&40. 

BARI, S.A., and HALLETT, J . 1974. N u c l e a t i o n and growth o f b u b b l e s a t an 
i c e - w a t e r i n t e r f a c e . J . G l a c . , v. 13, no. 69, pp. 489-520. 

BESKOW, G. 1935. S o i l f r e e z i n g and f r o s t h e a v i n g w i t h s p e c i a l a p p l i c a t i o n 
t o r o a d s and r a i l r o a d s ( i n S w e d i s h ) . S w e d i s h G e o l . Soc. S e r . C, 
2 6 t h Y e a r b . , No. 3 ( T r a n s l . by J.O. O s t e r b e r g , N o r t h w e s t e r n U n i v e r ­
s i t y , E v a n s t o n , 111., 1947, 145 p . ) . 

BLACK, R.F. 1952. Growth o f ice-wedge p o l y g o n s i n p e r m a f r o s t n e a r B a r r o w , 
A l a s k a , ( A b s t r a c t ) . G e o l . Soc. Am. B u l l . , v. 63, no. 12, pp. 1235-
1236. 

1953. F a b r i c s o f i c e wedges. Johns H o p k i n s U n i v e r s i t y , Ph.D. 
d i s s e r t a t i o n ( u n p u b l . ) , 87 p. 

1954. I c e wedges and p e r m a f r o s t o f t h e a r c t i c c o a s t a l p l a i n o f 
A l a s k a . U n p u b l . MS., 2 v o l . , 788 p. ( R e s u l t s o f work u n d e r t h e 
a u s p i c e s o f the U.S.G.S.). 

1963. Les c o i n s de g l a c e e t l e g e l permanent dans l e n o r d de 
1'Alaska.- Ann. Geogr. v. 72, pp. 257-271. 

1973. Growth o f p a t t e r n e d ground i n V i c t o r i a L a n d , A n t a r c t i c a . 
pp. 193-202, i n P e r m a f r o s t : The N o r t h A m e r i c a n c o n t r i b u t i o n t o t n e 
Second I n t e r n a t i o n a l C o n f e r e n c e . Nat. A c a d . S c i . , W a s h i n g t o n , D.C, 
783 p. 

BOLLING, G.F., and TI L L E R , W.A. 1960. Growth f r o m t h e m e l t . I . I n f l u e n c e 
o f s u r f a c e i n t e r s e c t i o n s i n p u r e m e t a l s . J . A p p l . P h y s . , v. 3 1 , 

. no.. 8, pp. 1345-1350. .. 

BROWN, R.J.E., and PEWFT, T.L. 1973. D i s t r i b u t i o n o f p e r m a f r o s t i n N o r t h 
A m e r i c a a n d . i t s r e l a t i o n s h i p to. t h e e n v i r o n m e n t : A r e v i e w , pp. 71-100, 
i n P e r m a f r o s t : The N o r t h A m e r i c a n C o n t r i b u t i o n t o t h e Second I n t e r n a ­
t i o n a l C o n f e r e n c e . Nat. Acad. S c i . , W a s h i n g t o n , D.C, 783 p. 

CAREY, K.L. 1973. I c i n g s d e v e l o p e d f r o m s u r f a c e w a t e r and ground w a t e r . 
U.S. Army CRREL Monogr. I I I - D 3 , 67 p. 

CARTE, A.E. 1961a.. A i r b u b b l e s i n i c e . Proc.. P h y s . Soc. ( L o n d o n ) , v.' 77, 
pp. 757-768. 

_ _ _ _ _ 1961b. G r a i n growth i n i c e . B u l l , de 1 ' o b s e r v a t o i r e du Puy de D6me, 
no. 3, pp. 129-136. 



252 

CHALMERS, B. 1959. How .water f r e e z e s . " .S c i . Am., v. 200, no. 2, pp.114-
121. 

COLBECK, S.C., and EVANS, R.J. 1973. A flow law f o r temperate g l a c i e r i c e . 
J . Glac., v. 12, no. 64, pp. 71-86. 

CORTE, A.E. 1962a. R e l a t i o n s h i p between four ground p a t t e r n s , s t r u c t u r e of 
• the a c t i v e l a y e r and type and d i s t r i b u t i o n of i c e i n the permafrost.. 
U.S. Army CRREL, Research Report 88, 82 p. 

' 1962b. V e r t i c a l m i g r a t i o n of p a r t i c l e s i n f r o n t of a moving 
f r e e z i n g plane. U.S. Army CRREL, Research Report 105, 8 p. 

DANILOV, I.D. 1969. The permafrost-facies s t r u c t u r e of- the watershed 
r e l i e f forming deposits of the lower E n i s e i ( i n R u s s i a n ) . pp. 93-
105, in. Problems of C r y o l i t h o l o g y , v. 1, ed. by A . I . Popov, Moscow 
Univ. Press,. U.S.S.R., 176 p. 

• DURNEY, D.W., and RAMSAY, J.G. 1973. Incremental s t r a i n s measured by 
sy n t e c t o n i c c r y s t a l growths, pp. 67-96, in. " G r a v i t y and t e c t o n i c s " , 
ed. by K.A.. de Jong and R. Scholten,. J . Wiley, N.Y, 502 p. 

FIRST INTERNATIONAL CONFERENCE ON PERMAFROST, PROCEEDINGS 1966. Nat. 
Acad. S c i . , N.R.C. Publ. 1287, Washington, D.C., 563 p. 

FRENCH, H. 1971. Ice cored mounds and patterned ground, Southern Banks 
I s l a n d , Western Canadian A r c t i c . Geog. Annal., v. 53A, pp. 32-38. 

GLEITER, H., and CHALMERS, B. 1968.. G r a i n boundary m i g r a t i o n . pp. 127-
178, i n Progress i n M a t e r i a l s Science,, v. 16, ed. by B. Chalmers, J.W. 
C h r i s t i a n and T.B. M a r s a l s k i , Pergamon P r e s s , 195 p. 

GLEN, J.W. 1974. The physics of i c e . U.S. Army CRREL, Monogr.,II-C2a, 
80 p. 

GOLD, L.W. 1957. A p o s s i b l e f o r c e mechanism a s s o c i a t e d w i t h the f r e e z i n g 
of water i n porous m a t e r i a l s , Highway Res. Board B u l l . 168, pp. 65-73. 

. 1961. Formation of cracks i n i c e p l a t e s by thermal shock. Nature, 
v. 192, no. 4798, pp. 130-131. 

- 1963. Deformation mechanisms i n i c e . pp.. 8-27, i n "Ice and Snow", 
ed. W.D. Kingery, M.I.T. Pr e s s , Camb., Mass., 684 p. .. 

•; 1972. The f a i l u r e process in. columnar-grained ice.. Nat. Res. 
Counc. Canada, Div. B.ldg. Res., T e c h n i c a l Paper no. 369,- 108. p. 

GOUGHNOUR, R.R., and ANDERSLAND, O.B. Mechanical p r o p e r t i e s of a sand-ice 
system, J . S o i l Mech. and Foundat. Div., Proc. A.S.C.E., v. 94, no. 4, 
pp. 923-950. . . . 

GRECHI3HCHEV, S.S. 1970. On the bas i c methods of f o r e c a s t i n g temperature 
tensions and deformations i n frozen ground ( i n R u s s i a n ) . Moscow, 
M i n i s t r y of Geology of the U.S.S.R.,- 53 p. 



253 

HARRISON, J.D.. 1965. Measurement of b r i n e d r o p l e t m i g r a t i o n i n i c e . 
J . A p p l. Phys., v. 36, no. 12, pp. 3811-3815. 

and TILLER, W.A. .1963. -Ice i n t e r f a c e morphology and t e x t u r e 
developed during f r e e z i n g . J . Appl. Phys., v. 34, no. 11, pp. 3349-
3355. . 

HIGASHI, A. 1958. Experimental study of f r o s t heaving. U.S. Army CRREL, 
Research. Report 45, 44 p. 

HILLIG, W.B. 1958. The k i n e t i c s of f r e e z i n g of i c e i n the d i r e c t i o n per­
p e n d i c u l a r to the basal plane, pp. 350-359, i n Growth and P e r f e c t i o n 
of C r y s t a l s , ed. by R.H. Doremus, B.W. Roberts and D. T u r n b u l l , J . 
Wiley, N.Y., 932 p. 

and TURNBULL, D. 1956. Theory of c r y s t a l growth i n undercooled 
pure l i q u i d s . J . Chem. Phys., v. 24, no. 4, p. 914. 

HOEKSTRA, P., and MILLER, R.D. 1967. On the m o b i l i t y of water molecules 
i n the t r a n s i t i o n l a y e r between i c e and s o l i d s u r f a c e , J . C o l l . S c i . , 
v. 25, no. 2, pp. 166-173. 

HOOKE, R.'LeB., DAHLIN, .B.C., and KAUPER, M.T. 1972. Creep of i c e con­
t a i n i n g d ispersed f i n e sand. J . Glac., v. 11, no. 63, pp. 327-336. 

JESSOP, A.M. 1970. How to beat permafrost problems. Oilweek, Jan. 12., 
pp. 22-25. 

KAMB, B. 1959. Ice p e t r o f a b r i c observations from Blue G l a c i e r , Washington, 
i n r e l a t i o n to theory and experiment. J . Geoph. Res., v. 64, no. 11, 
pp. 1891-1909. 

1972. Experimental r e c r y s t a l l i z a t i o n of i c e under s t r e s s , pp. 211-
241, i n "Flow and F r a c t u r e of Rocks", ed. by H.C. Heard, I..Y. Borg., 
N.L. C a r t e r , C.B. R a l e i g h , A.G.U. Monograph 16, 352 p. 

KATASONOV", E.M. 1967. Features of deposits formed under permafrost c o n d i ­
t i o n s , pp. 237-240, i n A r c t i c and A l p i n e Environments, ed. by H.E. 
Wright and W.H. Osburn J r . , Indiana Univ. P r e s s , Bloomington, Ind., 
308 p. ^ 

KETCHAM, W.M. , and HOBBS, P.V. 1967. The p r e f e r r e d o r i e n t a t i o n i n the ' 
growth of i c e from the melt. , J . C r y s t a l Growth, v. 1, pp. 263-270. 

KHEISIN, D.H., and CHEREPANOV, N.V. 1969. M o d i f i c a t i o n of the form of 
gas bubbles i n i c e . Problemy A r k t i k i i A n t a r k t i k i , v. 32, pp. 100-
105 ( i n Russian),-

KNIGHT, C.A. 1962a. . Studies of A r c t i c lake i c e . J . G l a c , v. 4, no. 33, 
pp. 319-335. 

1962b. P o l y g o n i z a t i o n of aged sea i c e . J . Geol., v. 70, no. 2, 
pp. 240-245. 



254 

KNIGHT, C.A. 1966. Grain, boundary m i g r a t i o n and other processes i n the 
formation of i c e sheets on water. J . A p p l . Phys., v. 37, no. 2, pp. 
568-574. 

.1971. Experiments on the contact angle of water on i c e . P h i l . 
Mag. v. 23, no. 181 (8th s e r i e s ) , pp. 153-165. 

KRSITNER, J.D. 1969. The p e t r o f a b r i c s of a u f e i s i n a t u r b u l e n t A l a s k a n 
stream. Unpubl. M.Sc t h e s i s , Uriiv. of A l a s k a , 59 p. 

KUON, L„G., and JONAS, J . J . 1973. E f f e c t of s t r a i n r a t e and temperature 
on the m i c r o s t r u c t u r e of p o l y c r y s t a l l i n e i c e . pp. 370-376, i n P h y s i c s 
and Chemistry of Ice , ed. by E. Whalley, S.J. Jones,. L.W. Gold, Roy. 
Soc. Can., Ottawa, 403 p. 

LACHENBRUCH, A.H. 1962. Mechanics of thermal c o n t r a c t i o n cracks and i c e 
wedge polygons i n permafrost. Geol. Soc. Am. Spec. Paper 70, 69 p. 

• BREWER, M.C., GREENE, G.W., and MARSHALL, B.W. 1962. Temperatures 
i n permafrost, pp. 791-803, in Temperature; I t s Measurement and 
C o n t r o l i n Science and Industry, v. 3, p t . 1, ed. by F.G. Brickwedde, 
Reinhold Publ. Co., New York, 848 p. 

LADANYI, B. 1972. An engineering theory of creep of f r o z e n s o i l s . Can. 
Geotech. J . , v. 9, no. 1, pp. 63-80. 

LANGWAY, C.C. 1958. Ice f a b r i c s and the u n i v e r s a l stage. U.S. Army CRREL, 
T e c h n i c a l Report 62, 16. p. 

LEES, D.C.G. 1946. The h o t - t e a r i n g tendencies of aluminum c a s t i n g a l l o y s . 
J . I n s t . Met., v. 72, pp. 343-364. 

LINELL, K.A., and KAPLAR, C.W. 1966. D e s c r i p t i o n and c l a s s i f i c a t i o n of . 
froz e n s o i l s . U.S. Army CRREL, T e c h n i c a l Report 150, 10 p. 

LYONS, J.B. and STOIBER, R.E. 1962. O r i e n t a t i o n f a b r i c s i n la k e i c e . 
J . G l a c , v. 4, no. 33, pp. 367-370. 

MACKAY, J.R. 1962. Pingos of the P l e i s t o c e n e Mackenzie D e l t a area. Geogr. 
B u l l . , no, 18, pp. 21-63. 

• 1963. The Mackenzie D e l t a area, N.W.T., Geogr. Branch, Dept. 
Mines Tech. Surveys, Memoir 8, Ottawa: Queens P r i n t e r , 202 p. 

1966. Segregated e p i g e n e t i c i c e and slumps i n permafrost, Macken- . 
z i e D e l t a area, N.W.T. Geogr. B u l l . , no. 8, pp. 59-80. 

1971. . The o r i g i n of massive i c y beds i n permafrost, Western 
A r c t i c Coast, Canada.. Can. J . Ear t h S c i . , v. 8, no. 4, pp. 397-422. 

1972a. Offshore permafrost and ground i c e , Southern Beaufort Sea, 
Canada. Can., J . E a r t h S c i . , v. 9, no. 11, pp. 1550-1561. 



255 

MACKAY, J.R. 1972b. The world of underground i c e . Ann. Ass. Am. Geog., 
v. 62, no. 1, pp. 1-22. 

1972c. Permafrost and ground i c e . pp. 235-248, i n Proceedings, 
Canadian Northern P i p e l i n e Research Conference. Nat. Res. Counc. 
Can., Assoc. Comm. Geotech. Res., Tech. Man. No. 104, 331 p.. 

1972d. Some observations on ice-wedges, G a r r y . I s l a n d , N.W.T.. 
pp. 131-139, in Mackenzie D e l t a area monograph, 22nd I n t . Geog. Cong., 
ed. by D.E. K e r f o o t , Brock U n i . , 174 p. 

1972e. Some observations on the growth of pingos. pp. 141-148, 
i n Mackenzie D e l t a area monograph, 22nd I n t . , Geog. Cong., ed. by 
D.E. K e r f o o t , Brock U n i . , 174 p. 

' 1973a. The growth of pingos, Western A r c t i c Coast, Canada. Can. 
J. E a r t h S c i . , v. 10, no. 6, pp. 979-1004. 

_____ 1973b. Problems i n the o r i g i n of massive i c e beds, Western A r c t i c , 
Canada, pp. 223-228, i n Permafrost: The North American C o n t r i b u t i o n 
to the Second I n t e r n a t i o n a l Conference, Nat. Acad. S c i . , Washington, 
D.C., 783 p. 

1974a. Ice-wedge c r a c k s , Garry I s l a n d , Northwest T e r r i t o r i e s . 
Can. J . E a r t h S c i . , v. 11, no. 10, pp. 1366-1383. 

1974b. R e t i c u l a t e i c e veins i n permafrost, Northern Canada. 
Can., Geotech. J . , v. 11, no. 2, pp. 230-237. 

______ 1974c. Seismic shot holes and ground temperatures, Mackenzie D e l t a 
area, Northwest T e r r i t o r i e s . Geol. Surv. Can., Paper 74-1, P a r t A, 
pp. 389-390. 

. 1974d. The r a p i d i t y of tundra polygon growth and d e s t r u c t i o n , 
Tuktoyaktuk Peninsula-Richards I s l a n d area, N.W.T., Geol. Surv. 
Can., Paper 74-1, Part A, pp. 391-392. 

' 1975a. R e l i c t i c e wedges, P e l l y I s l a n d , N.W.T. (107C/12). Geol. 
Surv. Can., Paper 75-1, P a r t A, pp. 469-470. 

1975b. . F r e e z i n g processes at the bottom of permafrost, Tuktoyaktuk 
P e n i n s u l a area, D i s t r i c t of Mackenzie (107C) . Geol. Surv. Can., 
Paper 75-1, Pa r t A, pp. 471-474. 

1975c. R e t i c u l a t e i c e veins i n permafrost, Northern Canada: 
Reply. Can. Geotech. J . , v. 12, no. 1, pp. 163-165. 

______ 1975d. The s t a b i l i t y of permafrost and recent, c l i m a t i c change i n 
the Mackenzie V a l l e y , N.W.T... Geol. Surv. Can., Paper 75-1, Pa r t B, 
pp. 173-176. 



256 

MACKAY, J.R. and BLACK, R.F. 1973. O r i g i n , Composition and S t r u c t u r e of 
P e r e n n i a l l y Frozen Ground and Ground I c e : A Review, pp. 185-192, 
i n Permafrost: The North American C o n t r i b u t i o n to the Second I n t e r n a ­
t i o n a l Conference. Nat. Acad. S c i . , Washington, D.C., 783 p. 

, RAMPTON, V.N., and FYLES, J.G. 1972. R e l i c permafrost, Western 
A r c t i c , Canada. Science, v. 176, no. 4041, pp. 1321-1323. 

• and STAGER, J.K. 1966a. Thick t i l t e d beds of segregated i c e , 
Mackenzie D e l t a area, N.W.T. B i u l . P e r y g l . , no. 15, pp. 39-43. 

______ 1966b. The s t r u c t u r e of some pingos i n the Mackenzie 
Delta, area, N.W.T. Geog. B u l l . , no. 4, pp. 360-368. 

MAENO, N.. 1967. A i r bubble formation i n i c e c r y s t a l s , pp. 207-218, i n 
I n t . Conf. on Physics of Snow and Ic e , v . l , p t . 1, ed. by H. (Jura, 
The I n s t , of Low Temp. S c i . , Hokkaido Univ., Sapporo,- Japan, 711 p. 

McROBERTS, E.C. , and NIXON, J.F. .' 1975. R e t i c u l a t e Ice V e i n s , i n Permafrost, 
Northern Canada: Discussion.. Can. Geotech. J . , v. 12, no. .1, pp. 159-
162. 

MICHEL, B., and RAMSEIER, R.O. 1971. C l a s s i f i c a t i o n of r i v e r and la k e i c e . 
Can. Geotech. J.., v. 8, no. 36, pp. 36-45. 

MULLER, F. 1963. Observations on pingos. Nat k Res. Counc. Can., Tech. 
. Trans. 1073,. 117 p. 

PENNER, E. 1961, I c e - g r a i n s t r u c t u r e and c r y s t a l o r i e n t a t i o n i n a n . i c e 
lens from Leda c l a y . Gebl. Soc. Am. 'Bull. , v. 72, no.. 10, pp. 1575-
1578. 

PEREY, F.G.J., and POUNDER, E.R. 1958. C r y s t a l o r i e n t a t i o n i n i c e s h e e t s . 
Can. J . Phys., v. 36, no. 4, pp. 494-502. • 

PEWS', T.L. 1962. Ice wedges i n permafrost, Lower Yukon R i v e r area near 
Galena, A l a s k a . B i u l . P e r y g l . No. 11, pp. 65-76. 

P0HL, R.G. 1954. Solute r e d i s t r i b u t i o n by r e c r y s t a l l i z a t i o n . J . Appl.. 
Phys.,. v. 25, no. 9, pp. 1170-1178. • .' . 

.POPOV, A . I . 1967. Permafrost phenomena i n the earth's c r u s t . C r y o l i t h o l o g y 
( i n R u s s i a n ) . -Moscow Univ. Press, Moscow, U.S.S.R., 304 p. 

P0RSILD, A.E. 1938. E a r t h mounds i n u n g l a c i a t e d a r c t i c north-western 
America. Geog. Rev., v. 28, no. 1, pp. 46-58. 

POUNDER, E.R... 1963. C r y s t a l growth r a t e s as a f u n c t i o n of o r i e n t a t i o n . 
pp. 226-231, i n Ice and Snow, ed. by W.D. Kingery, M.I.T. P r e s s , Carnb., 
Mass ,, 684 p. 

RAGLE, R.H. 1963. Formation o f . l a k e i c e in- a temperate c l i m a t e . U.S. 
Army CRREL, Research Report 107, 25 p. 



257 

RAMPTON, V.N. 1972a. An o u t l i n e of the Quaternary geology of the lower 
Mackenzie r e g i o n , pp. 7-14, i n Mackenzie D e l t a area monograph, 22nd 
I n t . Geog. Cong., ed. by D.E. K e r f o o t , Brock Univ., 174 p. 

1972b. • S u r f i c i a l deposits of p o r t i o n s of the Mackenzie D e l t a 
(107c), Stanton (107D), Cape Dalhousie (107E) and M a l l o c h H i l l (97F) 
map-sheets; pp. 15-28, in Mackenzie D e l t a a r e a monograph, 22nd I n t . ' 
Geog. Cong., ed. D.E. K e r f o o t , Brock Univ., 174 p. 

and MACKAY, J.R. 1971. Massive i c e and i c y sediments throughout 
the Tuktoyaktuk P e n i n s u l a , Richards I s l a n d , and nearby areas, D i s t ­
r i c t of Mackenzie. Geol. Surv. Can., Paper 71-21, 16 p. 

and WALCOTT, R.I. . 1974. G r a v i t y p r o f i l e s across i c e - c o r e d topog­
raphy. Can. J . E a r t h S c i . , v. 11, no. 1, pp. 110-122. 

RAYBOULD, J.G. 1975. Tectonic c o n t r o l on the formation of some f i b r o u s 
quartz v e i n s , Mid-Wales. Geol. Mag. v.' 112, no. 1, pp. 81-90. 

. SAVAGE, W.F., and ARONSON, A.H. 1966. P r e f e r r e d o r i e n t a t i o n i n the weld 
f u s i o n zone. Weld. Res. Suppl., v. 45, pp. 85-89. 

SHUMSKII, P.A. 1958. The mechanism, of i c e s t r a i n i n g and i t s r e c r y s t a l - . 
l i z a t i o n . I.A.S.H., P u b l . No. 47, pp. 244-248. 

1964. P r i n c i p l e s of s t r u c t u r a l g l a c i o l o g y ( t r a n s l . D. K r a u s z ) . 
Dover P u b l i c a t i o n s , N.Y., 497 p. 

and VTIURIN, B.I. 1966. Underground I c e . pp. 108-113, i n Proc. 
Permafrost I n t . Conf., L a f a y e t t e , Indiana, Nov. 1963. Nat. Acad. S c i . , 
N.R.C., Publ. 1287, Washington, D.C.,563 p. . . . 

SMITH, C.S. 1953. Measurement of i n t e r n a l boundaries i n three-dimensional 
s t r u c t u r e s by random s e c t i o n i n g . Trans. A.I.M.E.', v. .197, pp.. 81-87. 

STEHLE, N.S. 1967. M i g r a t i o n of bubbles i n i c e under a temperature grad­
i e n t , pp. 219-232, i n Physics of Snow and I c e , v . l , p t . 1, ed. by 
H. dura, I n s t , of Low Temp. S c i . , Hokkaido Univ., Sapporo, Japan, 711 p 

STEINEMANN, S. 1954. Flow and r e c r y s t a l l i z a t i o n of i c e . I.U.G.G., I.A.S.H. 
Rome Gen. Ass., Tome IV, pp. 449-462.. 

' 1958. .Experimentelle untersuchungen zur p l a s t i z i t a t von e i s . 
B e i t r . zur Geologie der Schweiz, Hydrologie, no. 10, 72 p. 

. SUMGHIN, M.I., 1940. On the formation of p e r e n n i a l i c e mounds, bulgun-
niakhs. Comptes Rendus. (Doklady) de I'Academie des Sciences de 

• l'U.R.S.S., v. 28, pp. 156-157. . . 

SWINZOW, G.K. 1966. Ice cover of an a r c t i c p r o g l a c i a l l a k e . U.S. Army 
CRREL, Research Report No. 155, 43 p. 



258 

TABER, S. 1930. The mechanics of f r o s t heaving. J . Geol., v..38, no. .4, 
pp. 303-317. 

TILLER, W.A. 1957. The m o d i f i c a t i o n of e u t e c t i c s t r u c t u r e s . A c t a . Met., 
v. 5, no. 1, pp. 56-58. 

UHLMANN, D.H., CHALMERS, B., and JACKSON, K.A. 1964. I n t e r a c t i o n between. 
p a r t i c l e s and a s o l i d - l i q u i d i n t e r f a c e . J . Appl. Phys., v. 35, no. 10, 
pp. 2986-2993. 

VASCONCELLOS, K.F., and BEECH, J . 1975. The development of blowholes i n 
the ice/water/C02 system.. J . C r y s t a l Growth, v. 28, no. 1, pp. 85-92. 

VTIURINA, E.A., and. VTIURIN, B.I. 1970. Ice formation i n rocks ( i n . Russian) 
I z d a t e l s t r o "Nauka", Moscow, 280 p. 

WEEKS, W.F., and ASSUR, A. 1964. Growth, s t r u c t u r e and s t r e n g t h of sea 
i c e . U.S. Army CRREL, Research Report 135, 19 p. 

WILLIAMS, P.J. 1967. The nature of f r e e z i n g s o i l and i t s f i e l d behaviour. 
Norwag. Geotech. I n s t . P u b l . no. 72, pp. 91-119.. 





Appendix 2 

260 

GLOSSARY 

Anhedral - Descriptive of c r y s t a l s on which c r y s t a l faces are absent. 

Annealing - Recovery and r e c r y s t a l l i z a t i o n due to heating of deformed 
material'. 

Basal plane - (0001) plane, normal to c-axis or o p t i c axis, i n Ice c r y s t a l . 

C h i l l zone - A boundary layer, adjacent to a co o l i n g surface, of small, 
equigranular c r y s t a l s with random o r i e n t a t i o n s . 

Columnar c r y s t a l s - Elongate c r y s t a l s aligned p a r a l l e l to the d i r e c t i o n 
of heat flow. 

Defect - Imperfection i n cr y s t a l ' l a t t i c e , e.g. missing or e x t r a atoms, 
impurities, d i s l o c a t i o n s . • . _ • 

Deformation band - Deformation-induced c r y s t a l l a y e r d i f f e r i n g i n o r i e n t a t i o n 
from remainder. • . 

Dendrites - L a t t i c e c o n t r o l l e d projections of c r y s t a l s at advancing i n t e r f a c e . 

D i s l o c a t i o n - Linear l a t t i c e defect, produced during growth or under subse­
quent s t r e s s ; important i n deformation (see s l i p ) . 

D i s l o c a t i o n climb - Movement of d i s l o c a t i o n out of i t s s l i p plane, e.g. , 
over an obstacle. 

Grain boundary migration - Displacement of a boundary perpendicular to i t s . 
tangent plane. 

Grain growth - Increase i n grain s i z e of p o l y c r y s t a l l i n e aggregate at 
elevated temperature under a d r i v i n g force of reduction i n surface 
energy. 

Lineage structure - D i s l o c a t i o n arrays p a r a l l e l to growth d i r e c t i o n , formed 
during growth. 

Polygonization - Formation of low angle boundaries separating unstrained 
l a t t i c e segments during recovery of strained l a t t i c e . 

Recovery -Removal of re s i d u a l stresses of deformation. 

R e c r y s t a l l i z a t i o n - Nucleation of new, s t r a i n - f r e e grains i n a deformed . 
matrix. 

S l i p - S l i d i n g displacement of one part of a c r y s t a l r e l a t i v e to another by 
d i s l o c a t i o n motion p a r a l l e l . t o planes of high atomic density. 

Subgrains - L a t t i c e segments of a grain, separated by low angle boundaries. 


