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ABSTRACT 

Problems concerning transmission lines have been solved 

in the past by treating the line in terms of lumped parameters. 

Pioneering work was done by L. V» Bewley and S. Hayashi 

in the application of matrix theory to solve polyphase multi-

conductor distributed parameter transmission system problems. 

The ava i labi l i ty of d ig i ta l computers and the increasing complexity 

of power systems has renewed the interest in this f i e l d . 

With this in mind, a systematic procedure for handling 

complex transmission systems was evolved. Underlying the pro­

cedure is the significant concept of a complete system which 

defines how the parametric inductance, capacitance, leakance and 

resistance matrices must be formed and used. Also of significance 

is the use of connection matrices for handling transpositions and 

bonding, together with development of the manipulation of these 

matrices and the complex (Z) and (T) matrices. In the numerical 

procedure, methods were found to transform complex matrices 

into real matrices of twice the order and to determine the 

coefficients in the general solution systematically. The pro­

cedure was used to deal with phase asymmetry and mixed end 

boundary conditions. 

i i 
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1. INTRODUCTION 

The purpose of this thesis i s to develop a procedure 

for solving the problem of polyphase, distributed parameter 

transmission systems, during steady state operation. H i s t o r i - i 

c a l l y , this problem has been attacked by treating the lin e 

configuration i n terms of lumped c i r c u i t parameters, obtained 

through transformations from the distributed parameters, lead­

ing to various closed form solutions. 

Early work i n the development of matrix methods for 

analysis was done by L«V. Bewley ( l ) . The approach taken was 

to analyze the lossless polyphase l i n e and to expand the 

analysis to include lines with losses. From t h i s , t r a v e l l i n g 

wave solutions were developed which led to a study of surges 

by matrix methods. L.A» Pipes (2) followed Bewley's approach 

but used Laplace transform methods. P a r a l l e l developments were 

made by S. Hayashi (3) who extended the analysis to transient 

phenomena, including t r a v e l l i n g wave properties of surges. 

The increasing complexity and interconnection of 

modern power systems., together with the f l e x i b i l i t y and a v a i l a ­

b i l i t y of d i g i t a l computers, makes the use of matrix methods both 

imperative and p r a c t i c a l . 

¥ith this i n mind, a systematic mathematical and 

numerical procedure for handling the complex system i s evolved 

i n this thesis. The ra t i o n a l i z e d M.K.S. system of units i s used 

throughout. 
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2. GENERAL DIFFERENTIAL EQUATIONS FOR MULTI-CONDUCTOR SYSTEMS 

Consider a system of (n + l) parallel conductors 
mutually coupled electrostatically and electromagnetically. By 
definition, this is a complete system i f and only i f the sum of 
the currents over the whole system is zero, 

n + 1 
i i = 0 2-1 

i = 1 

This definition precludes radiation effects, but this 
is an acceptable approximation at low frequencies. 

Fig 2.1 Part of Mutually Coupled Circuit of (n + l) 
conductors. 
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Of the (n + l ) conductors, n w i l l be defined as being 

independent; the (n + l ) t h conductor becomes the reference 

conductor for voltages and the"return" path for unbalanced 

currents. Depending on the physical arrangement of the trans­

mission system, this reference conductor would normally be taken 

as a ground conductor or an equivalent earth conductor ( 4 ) . 

The voltage and current equations for the i t h conduc­

tor may be written 
£ v . ^ y . 

" 1ST = ITt + V i 2~2 

2> i , 2>q. n 

" "Sic = TT + 1 i 2 ~ 3 

where v. = potential of conductor i with respect to some 
l a r b i t r a r y reference 

vp. = t o t a l f l u x linkages per unit length of conduc­
tor i due to currents i n a l l conductors 

R̂  = series resistance per unit length of conductor i 

i . = current i n conductor i I 

q^ = charge per unit length on conductor i 

and i ^ = leakage current per unit length from conductor i 

The system i s assumed to be linear i n the following 

analysis. Let p be the d i f f e r e n t i a l operator p = 5 / t 

Associated with each unit length of conductors i and j are 

Z! . = R. + pL. . 
xx 1 ^ 11 

Z!. = pL. . 
13 * i j 

T! . = G.. + pC.. 
x i 11 • 11 

I! . = G. . + pC. . 
10 13 * 13 



4 

where IL = series resistance of conductor i 
L.. = self inductance coefficient of conductor i 

1 1 

L.. = mutual inductance coefficient of conductors 
1 J i & j 

G i i = s e ^ capacitance coefficient of conductor i 
C . = mutual capacitance coefficient between conduc— 

1 J tors i & j 
G.. = leakance from the ith conductor to the arbi— 

1 1 trary reference 
G.. = leakance between conductors i & j 

The differential equations of the ith conductor become 

" T x = Z i l A i + Z i 2 *2 + + Z i i * i + — + Z i , n + 1 in+l 
2-4 

3 i . 

- T i = T i l V l + T i 2 V2 + + T i i V i + — + T i , n + 1 v n + l 
2-5 

In matrix form, the 2(n + l) equations for the (n + l) 
conductors may be written 

= ( Z ' ( P ) ) (i) 2-6 

- l ^ 1 = (T'(p)) (v) 2-7 

where (v) and (i) are column vectors, ( Z 1 ) and (Y 1) are square 
matrices which are functions of time (the differential operator p). 

By differentiation with respect to x and substitution^ 
equations 2-6 and 2-7 may be combined to give 
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4̂ M = (Z'(p)) (I f ( p ) ) (v) 2-8 

where (Z 1) and ( Y T ) are both independent of x. 



3. THE DIFFERENTIAL EQUATIONS FOR STEADY STATE ANALYSIS 

C o n s i d e r the system of conductors o p e r a t i n g under 

a-c s t e a d y s t a t e c o n d i t i o n s such t h a t the v o l t a g e s of the (n+l) 

conductors a t a p o s i t i o n x , w i t h r e s p e c t t o some a r b i t r a r y 

r e f e r e n c e , are g i v e n by 3-1 

a j(»t+0o) 

KJ n+l n+l/ 

S i n c e the system i s l i n e a r , the c u r r e n t response w i l l 

have the same form w i t h d i f f e r e n t phase a n g l e s 0^, 0^> ••• * ^ n + i 

- / I , j (at^.) ( I ' ) 3-2 

1 2 e 3(«t+02) 

I n + 1 e J ( • * * » « > . 

where ( V ) and ( l T ) are phasor v e c t o r s . 

S u b s t i t u t i o n o f these phasor v e c t o r s i n t o e q u a t i o n s 

2-6 and 2-7 r e s p e c t i v e l y ^ w i t h the o p e r a t o r p r e p l a c e d by jtt y i e l d s 
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- (V') = (Z'(«)) (!') 3-3 

- 3! ( T 1 ) = (!'(•)) (V') 3-4 
Equations 3-3 and 3-4 are written in terms of voltages with 
respect to some arbitrary reference. For a complete system, 
some reference within the system, such as a "ground" conductor 
may be used. If the (n+l)th conductor is chosen as the refer­
ence conductor, then the voltage phasor vector becomes 

and 

3-5 

3-6 
i = 1 

Applying these constraints to equation 3-3 yields the 
reduced system of equations for n independent conductors. 

- (V) = (Z ( « ) ) (I) 3 - 7 

where Z^) = ZL(.) + - « J - * A + l f , < « ) 

i» 0 = 1» 2, n 
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Since ( Y ' ( « ) ) i n equation 3-4 i s not a f u n c t i o n of x 

- (v«) = £ ( i ' ( • ) ) - 1 ( ! • ) 

L e t ( Y ( « ) ) ""1 be the reduced form of ( Y T (w)) """"/then, 

-(v) = C Y ( « ) ; - 1 fe (I) 

and the cur r e n t equation f o r n independent conductors may be 

w r i t t e n 

- fe ( D = ( I (•)) (V) 3 - 8 

This a n a l y s i s i n d i c a t e s t h a t the r e d u c t i o n must be achieved with 

the ( Y* ( » ) ) matrix i n i t s i n v e r s e form. 

The leakance matrix (Gr) may be separated i n t o two p a r t 

(a) the leakance e m p i r i c a l l y d e r i v e d from the l o s s e s due to 

the supporting mechanism (towers, conduits etc.) of the 

t r a n s m i s s i o n system^ 

(b) the leakance due to the geometrical c o n f i g u r a t i o n of the 

conductors and to the c o n d u c t i v i t y of the surrounding media. 

I f p a r t (b) alone i s considered, then since the f i e l d 

d i s t r i b u t i o n and leakage c u r r e n t d i s t r i b u t i o n are the same f o r 

any g i v e n l i n e a r system of conductors ( 5 ) , 

where (P') i s the p o t e n t i a l c o e f f i c i e n t matrix f o r the (n+l) 

conductors 

<r i s the c o n d u c t i v i t y of the medium surrounding the 

conductors 

and e i s the p e r m i t t i v i t y of the medium surrounding the 

conductors. 
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Therefore, the matrix ( P ) for the reduced system of n independent 
conductors will have elements of the form 

13 13 n+ljn+1 i,n+l n+l , j 1 

i, 3 = 1 » 2, •»»t  n  

and 
( I («•)) = ( 0 - + j » e ) (P)" 1 

Note that for most transmission systems, 6-/«e <£. 1 
Finally, the reduced equations 3-7 and 3-8 may be 

combined as before to give 

^ 2 (V) = ( £ ( • ) ) (!(•)) ( ? ) i ( A ( o ) ) ) (V) 
d x 3-9 

d 2 ( D = (!(•)) ( Z ( « ) ) ( I ) £ (B(«)) ( I ) ^ 2 dx 
3-10 
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4. SOLUTION OF THE DIFFERENTIAL EQUATIONS 

4.1 C h a r a c t e r i s t i c Root and C h a r a c t e r i s t i c Vector A n a l y s i s (6) 

Equation 3-9, the v o l t a g e equation, may be w r i t t e n 

0 

4-1 

This has a n o n - t r i v i a l s o l u t i o n i f and only i f the determinant 

det | (A) - d 2 / d x 2 ( u ) | = 0 
4-2 

where (u) i s the i d e n t i t y m a t r i x . This determinantal equation 

i s the c h a r a c t e r i s t i c equation whose s o l u t i o n y i e l d s the charac­

t e r i s t i c r o o t s . 

Consider again equation 3-9. There are n o r d i n a r y 

second order l i n e a r d i f f e r e n t i a l equations with constant c o e f f i — 
d 2 

c i e n t s which are homogeneous i n —5- . 
dx^ 

Hence the form of the s o l u t i o n i s 

— N & X — Y x 
V i = I> ( Cil,e r +

 °i*e 9 i = 1, 2, n 

4-3 

where the C's and C ' s are the complex constants of i n t e g r a t i o n 

and y'^ = v/X^ , where the X's are the c h a r a c t e r i s t i c roots of the 

determinantal equation 4—2. 
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There are 2n constants of integration in the above 

form of the solution but i t w i l l be shown that only 2n of these 

constants are independent. Substitution of the general solution, 

equation 4-3 into the equation 3-9 yields n equations of the 

form 

2 

r=l r=J 

+ 

^ * (c. e
w r + C! e o r ) 

^ 0 r i r l r ' 
y x - v x n y x Sr . „ . *r x ^ r - A ( c _ J r 

i l i r 
+ 0 ! e~* r*) i r ' 

n + ^ A, J C _ e o r + C' e ° r ) 
in nr nr 

v x —^ x 
Collecting terms in e and e r 

r=T 

we have 

r=i 
( ( * C i r - A i l ° l r - A i 2 C 2 r ' — " A - C - ~ > in nr 

+ <<* r " A i i ) C i r - A i l ° i r " Ai2°2r ~ — " A i n C A r 

4-4 

Hence each of the coefficients in equation 4-4 is individually 

equal to zero for a non—trivial solution, (i = 1, 2, . . . , n). 
2 2 This provides n equations f o r the unprimed constants, C,and n 

equations in the primed constants, c', as both i and r vary. 

For the unprimed constants, C 

r 7=0 

/ A l l r 

A21 

A 
12 L ln 

A22 " Kr"" A 2 n 

V n l 

= 0 , r = 1,2, a • • , n 

4-5 
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Similar equations may be written for the constants, 

f and since these systems of equations are homogeneous, there 
are (n—l) independent relations between the constants C and also 
between the constants C for each choice of r» This leaves 2n 
independent constants to be found from the boundary conditions. 

It is apparent from the above discussion that the 
determination of the relationship between the constants, C 
yields the characteristic vectors, with one vector corresponding 
to each choice of X. This may be shown explicitly by rewriting 
equations 4—5 as follows, 

A l l - X r 

A 21 

h i 

A12 # # * * A l n 

A 2 2 " X r 

A -X 
nn r, 

(c , / C \ C =(0) l r nr nr 

0 o / C 2r nr 

V / 
/A, , - X 

11 r 
A 21 

A, n t • - • • A \ 
12 

A 2 2 " V 

^-l,n-rXr/ 

D 2r 

\ D n - l , r / 

- - N \ 
L2n 

Ln-l,n/ 

4-6 
where D. = C. /C and C ^ 0. i r i r nr nr 
This analysis indicates a method of determining the characteris­
t i c vectors numerically. The same vectors hold for both the 
constants C and C . 



13 4.2 The General Solution 
The voltage solution may be written as 

J no ^ jr no ^> j r 
r=l r=l 

Y. = C . >~D. e + 0 1 ^ D- e ~ r > r = l,2,.»*n 
no j r no ^> ;~ 

4-7 
where D = 1 . and C .. C T. are unknown constants to be nr * nj* no 
determined from the boundary conditions. 

By a similar analysis, the current solution^ may be 
written as 

_ n v x n -V x 
I. = F . ̂ >"G. e° r + F 1 . > G. e , r = l,2,...n 
3 nj ^ j r nj jr ' -

r=l r 3 
4 - 8 where G = 1 . and F .. F* , are unknown constants. It will nr ' nj* nj 

be shown that the y ' s are the same for both voltage and current 
solutions. The constants C . i C . and F ., F'. are not indepen-

nj nj nj nj 
dent but are related through equations 3-7 and 3-8. 

This solution may also be written in the alternative 
hyperbolic form using the hyperbolic sine and cosine. 

The general solution for voltage and current may be 
written in matrix form 

( V ) = ( D ) U C n r e * r X ) + ( C n r e * ^ 4-9 

C D = ( O f + (* n re"* r X)} 4-10 

where (D) and (G) are square matrices containing characteristic 
vectors as columns. For example, the f i r s t column of (D) is the 
characteristic vector which satisfies 

( (A) - X 1 (U)) ( D x ) = 0 

and hence is associated with the characteristic value X-̂ . Note 
that the entries D (and G ) for r = 1, 2, ...,n wi l l be 

nr nr y ' ' 
unity. 
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The matrices (C e ) represent column vectors 
nr 

( 0 e " & X ) t \ nr / /C i e nl 

C n 2 6 

4-11 

V e-V/ 
» T i n ' nn 

As stated previously, the voltage and current solutions 
are related through equations 3—7 and 3-8$ these equations imply 
that the current solution may be obtained from the voltage solu­
tion and vice versa. 

Let the current solution be known, then by rearrange­
ment of equation 3-8 

v = -(y(a))"1 fj - (T) = - (H-))"1 « » ) { ( » l l r . * r X y r ) • 

— Y X. 

y x - y x 
By equating coefficients of e r and e r respectively, we obtain 

( D ) ( c n r ) =-(i ( . ) ) - l ( o ) ( » „ y r ) 

- ( ' W ) ( « ) ( u ) 

4-12 
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A N D ( D X C

N R ) = (T(<°>) ' ( O K A ) 4" 1 3 

= (*(•>) (0(*Aryr> 
where leakance has been ignored and ( !(«))( P ( « ) ) = (U) . 

Thus the general form for the voltage and current 
solutions may be written 

( ? ) = - ( P ( . ) ) ( 0)j( F n r t f r e * r X ) - (Kj/*1*)] ' 

4-14 

( l ) = ( O J ( ^ n / r X ) + ( S A / X r X ) ] . r=l,2,..,n 
4-15 

In a similar manner the current constants may be 
determined in terms of the voltage constants by use of equation 
3-7 using the properties of duality, 

<n = ( » ) j ( C n / r X ) + ( C A / ^ ) ] , r=l,2,..,n 

( T ) . - f z W ) - 1 ^ ) ^ / ^ ) - ( ^ / ^ l 
r=l,2,..,n 4-17 

For equations 4—16 and 4—17, the voltage solutions 
w i l l be defined as the "primary" solution; the current solu­
tion is a "derived" solution. Conversely, for equations 4—14 
and 4-15, the current solution i s the primary solution from 
which the voltage is derived. This latter form will be chosen 
to illustrate the following analysis of the boundary conditions. 

4-16 
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5. BOUNDARY CONDITIONS 

Consider the boundary c o n d i t i o n s f o r the complete; • 

conductor system. There must be 2n such c o n d i t i o n s which may be 

s p e c i f i e d as c o n s t r a i n t s on the v o l t a g e , c u r r e n t or both at the 

boundaries. 

For such an n-conductor system, there are i n general 

4n c o n d i t i o n s at the boundaries, 2n at each end of the l i n e . 

These are 

< T > » - - i - ( T . > 

and ( V ) _ I ( Y r ) 

( * ) x = 0 = ( I r ) 

, sending end c o n d i t i o n s , 

, r e c e i v i n g end c o n d i t i o n s . 

A l t e r n a t i v e l y , the o r i g i n of x may be d e f i n e d at the sending 

end, i n which case the r e c e i v i n g end i s designated by x = I, ; 

i n both cases, x i n c r e a s e s from the sending end to the r e c e i v i n g 

end. 

Of the 4n boundary c o n d i t i o n s , 2n must be known i n 

order to o b t a i n a unique system s o l u t i o n . Several s p e c i a l cases 

may be considered, 

( i ) ( V g ) and ( I g ) or ( V r ) and ( I r ) 

( i i ) ( V s ) or ( l g ) and ( V r ) or ( I r ) 

( i i i ) ( V g ) or ( I g ) and ( Zr ) 
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( i v ) any 2n c o n d i t i o n s of ( V g ) , ( I ) , ( V r ) and ( I p ) 

where ( Z ) i s the r e c e i v i n g end impedance m a t r i x d e f i n e d by 

( O X X r ) . 

The p r i m a r y c u r r e n t form of s o l u t i o n i s used to 

i l l u s t r a t e these s p e c i a l c a s e s . 

( i ) ( V r ) and ( I r ) known, 

"n" e q u a t i o n s may be w r i t t e n f o r ( I ") . 

and n e q u a t i o n s f o r ( V ) , 

-(*<•))( <0[(*nrXr> " ( P 'nry r)i " ( V r ) 

0 1 ( G ) [ ( P n r K r ) - 0 ' n r * r ) | ="(!(•))( T r ) 

The 2n e q u a t i o n s i n 2n unknowns may be r e w r i t t e n i n 

the form 

fcO (u ) p n r 

nr - ( G ) - 1 ( K « ) ) ( V ) 

where (u^) = 0 

•y2 

r 
5-1 
5-2 

0 

An e x p l i c i t s o l u t i o n may be o b t a i n e d f o r the column 

v e c t o r s ( F } a n d ( F ' ^ , ^ n r / \ nr / ' 

( F n r ) " ^ ( ^ ( I , ) " ( u ^ X d ) - 1 ( Y ( . ) ) ( V r ) ^ 
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L e t ( X S ) H C O X U K ) ) " 1 

•'• ( F n r ) = *[USrXxXlr) -UX'WXOJ 
and ( P A r ) = *[(D)fXxXl r) + (xXK»)X¥r)^ 
which i s the simplest form f o r numerical s o l u t i o n u s i n g a 

d i g i t a l computer. 

and 

or 

(')[( F e nr 

s ) known. 

are 

+ ( * ' )\ N nr 'J 

\ nr / 
/ 

\ nr > j 

/ ( O ( u ) 

( l i e " * * ) ( lJe*<) 

which may be solved as i n case ( i ) . 

( i i b ) ( I and ( v
s ) known. 

The matrix equation i s 

/ ( u ) ( u ) \ ( P )\ 
\ nr / 

(pi ) 
\ nr / 

which may be solved as i n case ( i ) . 

( i i i ) ( I ) and ( ) known. 

From ( I g ) , 

u r ^ I ) 

5-3 

- ( G ) - 1 C K . ) ) ( 0 

5-4 

F e nr ) + ( p A r e ^ ^ . ( I . ) 
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From ( V ) 

- ( P ( « ) ) C O K F n A ) 
or in matrix form 

(Z r)(G) + P(tt) ( 6)(ny)jC8 r)(G) - P(o>) (G)(U g ) j \ ( F A r ) 

(iv) Bonding of cables. 

K l . ) 

5-5 

1 
1 i 

L 

O 

; * \ 

' 2 / 

\ i 
\ i 
\ i 

i 
i i 

L 

O 
( / / i 

A 

D 

i 5 \ 

'3 J 
i 

A 

D 

/ l / ' 

I 
i i 

i 

oc-O 

Fig. 5-1 Single Section of a Doubly Bonded Cable 
Transmission System with Six Independent 
Conductors. 

Consider a section of a doubly bonded cable transmission 
system as shown, where conductors 1, 2, and 3 are the cable cores, 
conductors 4, 5, and 6 are the respective sheaths which are open 
circuited at x = 0 and x = -L. The sheaths are doubly bonded to 
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the equivalent ground conductor, g , at x = some point 
between the terminals. This ground conductor will be used as the 
voltage reference conductor. If the earth is to be considered as 
interacting with this system, then a further equivalent earth 
conductor would be necessary—this would be used as the reference 
conductor, giving a system of seven independent conductors. 

Consider this system of conductors where the core cur­
rents and the c6,re voltages at the load are specified. In this 
case the double-bonding junction must be treated as a "new" 
boundary and the given section of the transmission system must be 
treated as two sub-sections. If the load end sub-section is 
designated as sub-section 0 , — - 0, and the remaining 
sub—section as (?) , ~ x2 ~ ̂ ' then for section© the system of 
equations to be solved for the boundary conditions 

• ( V]_ 92 3 ) x - 0 ^ ( ^r ) 1 ' r e c e i v i n g e n d conditions 

( ?4,5,6 ) X l = -L = ( A ) l = ( ° ) > "ending end * 1 1 conditions 

( T i ) x = 0 = ( I r ) , j = 1, 2, 6 and , receiving 
end conditions 

i s 
-(p(«oX<0(u*) 

(rows 1,2,&3) 

-(p(.)XoX^._,l:<1) 

(rows 4,5,&6) 

(all rows) 

! (p(.>x8x°«) 
1 _(rows_l,J,&3]_ 

(p(-)XoX"x»Wi: 
(rows 4j5,&6) 

(al l rows) 

/ \ 
v nr' 1 

/ \ / \ 
v nr' 1 1 

f „. \ F' ) 1 • nr'1 

\ / 

5-6 
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which may be expanded as 

9.. I T . it 

i l l * » t 

' 6 > > > I 3 6i 

(ti 

where £ i > i s the ( i , j ) t h element of the product (P(<O))(G) 

and g^^ i s the ( i , j ) element of the c h a r a c t e r i s t i c v e c t o r 

matrix ( G ). 

The system of equations 5-6 can be sol v e d f o r the 

constant v e c t o r s ( P ) n a n d ( F ' ) , f o r sub-section© . Hence 
* nr ' 1 v nr / 1 w 

the remaining unknown cur r e n t s and vo l t a g e s at the l e f t - h a n d 

boundary of s u b - s e c t i o n ( 7 ) , x 1 = -$^t can be found. The core 

v o l t a g e s and cur r e n t s are continuous and the boundary c o n d i t i o n s 

f o r s u b — s e c t i o n (z) are 

<Vx,=0 1 ( V r ) 2 " (fj) x,=-L • J = 1. 2 . & 

and 

^ i , 2 , 3)x 2 = o M . ; ) 2 
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The system of e q u a t i o n s 

/- P(a)(G)(Uy) 
' ( a l l rows) 

*<•> ( 0 ) ( U y ) \ / \ =/(V r) 
( a l l rows; \ / \ / 

V 

(G) 
(rows 1,2,&3) 

(G) (Ue~ ^ ^ 2 ) 
(rows 4,5,&6) 

(G) 
(rows 1,2,&3) 1 
(G)(Ue + ^ 2 ) / 
(rows 4,5,&6)/ 

< Fnr>2 

(P' ) 
v n r ; 2 

( I C ) . r 2 

5-7 

can he s o l v e d f o r the c o n s t a n t v e c t o r s (P ) 0 and (P* ) 0 

nr 2 nr 2 
Knowing the c o n s t a n t v e c t o r s f o r each s u b - s e c t i o n of the 

t r a n s m i s s i o n l i n e , the complete s o l u t i o n f o r the complete s e c t i o n 

can be d e t e r m i n e d u s i n g e q u a t i o n s 4-14 and 4—15. 

I f the sheath bondings f o r each s u b — s e c t i o n are 

connected, a d d i t i o n a l c o n s t r a i n t s are imposed on the system. I n 

t h i s case> the c o n s t r a i n t e q u a t i o n i s 

2 ( 1 . ) 
0=4 J 1 3=4 

5-8 

Si n c e the l o a d boundary c o n d i t i o n s f o r the case are s p e c i f i e d , 

t h e n the c o n n e c t i o n of the bonding causes a c o n s t r a i n t to be im­

posed of sub-section© by sub-section®. 

Such a c o n s t r a i n t can be handled by u s i n g a t r a n s p o s i t i o n 

m a t r i x as s p e c i f i e d i n the nex t c h a p t e r . However, s i n c e the 

e n t r i e s i n a t r a n s p o s i t i o n m a t r i x are u n i t y , t h i s r e p r e s e n t s a 

' ' l o s s l e s s " i n t e r n a l boundary or t r a n s p o s i t i o n p o i n t . T h i s i s 

s a t i s f a c t o r y as a f i r s t a p p r o x i m a t i o n . 
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For a "lossy" transposition, where voltage and current 
magnitude and/or phase angle for a given conductor does change, 
the corresponding entry in the transposition matrix w i l l be in 
general a complex number with absolute value different from 
unity. Such an entry, ^^y m a y be represented by 

t. . = e ± ( / + ^ ) 

where p is the attenuation factor, and r\ gives the phase angle 
shift. 
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6. TRANSPOSITION MATRICES AND THE COMPLEX CHARACTERISTIC 

MATRIX 

6*1 The Transposition Matrix* 
Consider a transmission line with multiple sections 

where at each or any junction two or more of the conductors have 
their physical locations in space interchanged. Such an interchange 
is indicated in the resistance, ( R ) , inductance, ( L ) and capaci­
tance, ( C ) coefficient matrices by a corresponding interchange of 
the appropriate rows and columns. 

For example, the interchange of two conductors (i&j) 
at one junction may be made in the ( R ), ( L ) and ( C ) matrices 
by using the transformation matrix ( E r) which is formed from 
the identity matrix ( U ) by interchanging the i and j rows 
or columns 

i j 
E 1 0 

0 1 

i 
0 -

1 -

6-1 

1 
I 
i 

0 - — -

Premultiplication of any matrix ( A (say), by the 
matrix ( E^ ) , (which is compatible with matrix ( A ) ,) causes the 
i ^ * 1 and j ^ * 1 rows of ( A ) to be interchanged, and postmultiplica-
tion causes the corresponding columns of ( A ) to be interchanged, 
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i . e . ^ E r
> ) ( A V ) y i e l d s ( A ^ w i t h i ^ * 1 and j ^ * 1 rows interchanged, 

( A ^ ( E r ) y i e l d s ( A ) with i ^ * 1 and j ^ * 1 columns interchanged, 

and ( E r ) ( A ^ E p ) y i e l d s ( A ^ w i t h i ^ * 1 and j ^ * 1 rows and columns 
interchanged. 

Consider some p r o p e r t i e s of the set of matrices ( E ^ } 

By i n s p e c t i o n , / these matrices are symmetric, 

(O = ( E r ) t 6 ~ 2 

I f the matrix ( E ^ of rank r , i s p a r t i t i o n e d as f o l l o w s , 

( O ( V.) 0 

o ( u r . p , 
where ( u\ ) i s an i d e n t i t y matrix of rank i , and ( J ) i s a 

matrix of rank (j - i - l ) , 

( J ) f0 (0) 

(0) (U._.^(0)| 

(o) 
i & 

where the symbol 0 represents the s c a l a r zero, 

.-. ( j ) 2 = / l 0\ = (Vi_i) 
<Vi-2> 

,0 

and ( E ) 

( J ) 



26 

6-3 

a n d ( E ) i s o rthogonal. 

For t h i s matrix ( E ) the r 
d i s t r i b u t i v e law holds, i . e . 

( E r ) ( R ) ( E r ) + ( E r ) ( L ) ( E r ) ( E r ) ( z ) ( E r ) 

and hence, 

K)(A)(Er) 

Thus the t r a n s f o r m a t i o n i s v a l i d on the product, ( A ) j without 

r e v e r t i n g to the separate p a r t s of the matrix ( A ) . 

From these p r o p e r t i e s of the t r a n s p o s i t i o n matrix, i t 

unchanged, but not the c h a r a c t e r i s t i c v e c t o r s . The f a c t t h a t the 

c h a r a c t e r i s t i c r o o t s of the d i f f e r e n t s e c t i o n s of the l i n e are the 

same i s to be expected from p h y s i c a l c o n s i d e r a t i o n s of the t r a n s ­

m i s s i o n l i n e as a whole, since the geometrical c o n f i g u r a t i o n of 

the conductors i s unchanged. 

The r e l a t i o n s h i p between c h a r a c t e r i s t i c v e c t o r s f o r two 

s e c t i o n s of l i n e may be found from the d e f i n i n g equations of the 

c h a r a c t e r i s t i c v e c t o r s f o r each s e c t i o n , 

maybe seen that the o p e r a t i o n ( E ) ( A ) ( E ) i s a s i m i l a r i t y t r a n s ­

formation which leaves the c h a r a c t e r i s t i c roots 

( A ) ( x ) = X ( x ) , 
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Hence the r e q u i r e d r e l a t i o n s h i p which depends on the o r t h o g o n a l i t y 

of ( E r ) i s 

( x ) = ( K r X y ) . 

Consider the p h y s i c a l s i t u a t i o n where at a j u n c t i o n , 

more than one p a i r of conductors i s interchanged. I m p l i c i t here 

i s the assumption that the necessary elementary t r a n s f o r m a t i o n 

matrices of the type (E^) may interchange at d i f f e r e n t times the 

same rows and columns more than once. 
t h t h 

For example, i n order to interchange the i , j , and 
~th *th "th k conductors c y c l i c a l l y , the i and j rows and columns must 

"th 

be interchanged, f o l l o w e d by an interchange of the k and " o l d " 

i ^ * 1 rows and columns. 

Consider n such interchanges at one j u n c t i o n and the 

a s s o c i a t e d elementary matrices ( ) T{E^) , ..., ( E ) . The 

r e l a t i o n s h i p between the o r i g i n a l s e c t i o n of t r a n s m i s s i o n l i n e 

w i t h a s s o c i a t e d c h a r a c t e r i s t i c matrix ( A') i s given by 
( A ' ) = ( E n ) ( E n _ 1 ) . . . . ( E 2 ) ( E 1 ) ( A ) ( E 1 ) ( E 2 ) . . . ( E n ) 

= ( « ) ( A X X ) 

The r e l a t i o n s h i p s between the c h a r a c t e r i s t i c roots and v e c t o r s 

of the matrices ( A ) and ( A' ) are v a l i d i f i t can be proved t h a t 

( «> ) = ( X ) , i . e . t h a t such a t r a n s f o r m a t i o n i s a s i m i l a r i t y 

t r a n s f o r m a t i o n . I t w i l l a l s o be shown t h a t ( <o) i s an orthogonal 

a t r i x , ( «)(<o ) ̂  = ( U ) . 

= ( K ) ( V ! > ( " 2 X > i » - 1 

= ( E , ) - 1 ^ ) - 1 ( E ^ ) - 1 ^ ) - 1 
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Also, ( « O t = ( B 1 ) t ( B 2 ) t . . • • ( E n _ l ) t ( E n ) t 

= ( E l ) ( E
2 ) ' * • * ( E n - l X E n ) = ( X ) 

**. («)(«) .j. = ( u ) as required. Note that (<o) is not 
symmetric. 

Thus the characteristic roots of ( A) and ( A' ) are the 
same and the characteristic vectors of these two matrices are 
related by 

(A)(x) = A ( X ) 

( A ' ) ( i O = A ) 

where ( A» ) = ( X ) _ 1 ( A ) ( X ) 

( x ) = ( X ) ( y ) 

or ( y ) = ( <o )(x ) . 
Although the ( A ) matrices are complex symmetric 

matrices, only real elementary transformations have been used. 

6.2 Expansion of Complex Matrices to Real Matrices of Twice 
the Order. (8, 9, 10, l l ) 

In the numerical determination of the characteristic 
roots of the complex matrix ( A ) , i t is found convenient to expand 
this matrix into a real matrix of twice the order, i.e. i f ( A ) is 
of rank n, then ( A ) e X p a n ^ e a

 W 1 1 l be of rank 2n. 

Hence for the expanded matrix there wi l l be twice as 
many characteristic roots as for the original matrix. It wi l l 
be shown that the 2n roots of ( A) eXpComprise the n roots of ( A ) 
and n conjugates of these roots* 
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The usual way of expanding a complex matrix ( T ) into the 
real matrix ( S jwhich doubles the number of rows and columns, is v o' 
to expand each element, a + jb, of ( T)as f o i l ows, 

a + jb ~ f a b\ 
\-b a/ 

A more convenient form of the matrix ( S Q) is 

( S ) = / ( A ) (B)\ 
-(B) ( A ) / 

where ( A ) is a matrix comprising the real parts of each complex 
element of ( T ) in the same order, and ( B ) is the corresponding 
matrix for the imaginary part. 

Now, i t may be shown that the matrices ( S Q ) and ( S ) 
are similar by use of transformation matrices of the type ( E ) 
of the last section. 

i.e. -(S ) = ( P ) - 1 * S o)(P ) = ( P)(S)(P) 

where ( P ) = ( E 1 ) ( B 2 ) . . . . ( V l M B
n ) 

and (P)(P) t = (U ) 
Hence since similar matrices have the same characteris­

t i c polynomials and characteristic roots, either of the above 
forms may be used. 

The relationship between the characteristic values, X, 

of the complex matrix ( A ) = ( B ) + j ( C ) , and the charac­
t e r i s t i c roots of the expanded real matrix ( A ) m a y be shown 
as follows. The characteristic equations of the complex matrix 
( A ) and i t s conjugate matrix ( A ) * are 

det \ ( A ) - X ( U ) j = 0 
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and det j (A)* - X* ( U ) \ = 0 

The characteristic equation of the following expanded complex 
matrix has twice the rank of the original complex matrix ( A ) , 

det /( A ) - X ( U ) 0 \ = 0 
\ 0 ( A ) * - X*(U)/ 

or 

det [ (A ) - X ( U ) j . det [(A)* - X* ( U )\ = 0 

Therefore the characteristic roots of this expanded complex 
matrix are the roots of ( A ) and their conjugates. 

Consider the similarity transformation ( T ) ~*( K ) (T ) 
where ^ 

( T ) = ^ fl -j' 

For ( K ) = f{ B ) + j ( C ) 0 
0 ( B ) - j ( C )y 

this transformation becomes 

(T)-\K)(T) = Z / 1 1\ /(B) + 3(C) -j(B) +(C.)\ =/(B)(G)\ =(A e  

W 7 2 \ j - j / \ ( B ) - j ( C ) j ( B ) - (0)/ \(-C)(B)/ 

which is real. 
The expanded matrix ( A)gXp can also be reduced to the 

form 

'(B) - ( C ) N 

.( 0 ) ( B )/ 

by a further similarity transformation using the matrix T Q where 

1 O i 



These expanded matrices being similar, they have the same 
characteristic roots and these roots w i l l be the roots of (A) and 
their conjugates, as required for the roots of a real matrix. 
Since this process yields 2n characteristic roots and only the n 
roots associated with the complex matrix ( A ) are required, then 
i t becomes necessary to separate these n required roots from the 
2n roots obtained. 

One approach to the selection of the required roots is to 
determine the complex characteristic polynomial by evaluating 
det | ( A ) - X( U )| = 0. Only n of the roots would satisfy 
this equation; the remaining roots must be discarded. Such a 
numerical process was devised using the numerical evaluation of 

(12) 
the characteristic polynomial attributable to A.M. Danilevsky. ' 

As an alternative approach, i t w i l l be shown that i f 
the rank of the original complex matrix, ( A ) is small (n^lO say) 
then i t is possible to determine the required roots by inspection. 

Since the roots must appear as conjugate pairs, then the 
real parts of the roots, Re(X^) w i l l be repeated. For the imagin­
ary parts, Im(X_̂ ) there w i l l be a change in sign. Hence the 
problem becomes one of separating from the 2n known imaginary 
parts, the n required imaginary parts. This may be achieved by 
comparing the aggregate of the n imaginary parts of the roots to 
the imaginary part of the trace of the complex matrix (A) since 

Im (tr ( A) ) = ± Im (X.) 
i=l 
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6.3 Transposition and Connection Matrices for Multiple Section 

Line s. 

Consider the partially transposed transmission line 
shown in Fig. 6.1 where the geometrical configuration of the 
line is the same for both sections and losses due to the trans­
position i t s e l f are negligible. 

* J — 1 
e 

t> 

. z ' \ r 
o 

7 
,. - , , ft. — , . ,, 

L 

\ ft 0 
0 

. 3 7 s A 
0 

/ \ < 
1 • — 1 D 0 

® 
0 

Fig. 6.1. Partially Transposed Transmission Line. 

The relationships between the two sections are: 

(i) (x) -1 (Zl)(x) = (z2) 
and ( X ) " 1 ( 1 ^ ( 1 ) = ( I 2 ) 

( i i ) (X)'1(J1)( Z l ) ( X ) = ( T 2 ) ( Z 2 ) 

( i i i ) the characteristic roots of the two sections are the 
same 
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( i v ) the c h a r a c t e r i s t i c v e c t o r s of the two s e c t i o n s are 

r e l a t e d by 

( x ) " 1 ( d l i ) - ( d 2 i ) 

- ( « 2 i ) 

(x)-l(h) - ( o 2 ) 
where ^ ^ ) » ( s ) represent one c h a r a c t e r i s t i c v e c t o r of the v o l ­

tage and cur r e n t s o l u t i o n s r e s p e c t i v e l y , and ( D ) , ( G ) r e p r e ­

sent the square arrays of the n c h a r a c t e r i s t i c column v e c t o r s 

of the v o l t a g e and c u r r e n t s o l u t i o n s r e s p e c t i v e l y . 

For the two s e c t i o n s of l i n e , the vol t a g e and cur r e n t 

s o l u t i o n equations 4-14 and 4-15 become 

(V - - ( P 1 ( - ) ) ( ^ ) ( u » ) [ ( » l f n r . , , ' X l ) - ( F i ( n r . ^ I t ) | 

( f 1 ) - M ( ' I l / 1 ) *("l,n/ V l)l 
f o r s e c t i o n Q and 

( Y 2 ) = -(P2(.)X °tX*4('2,»SlXi) - K n / ^ )| 

f o r s e c t i o n ^ . But, 

( p 2 ( « ) ) = ( x ) " 1 ! ^ ^ ) ^ ) = ( x ) t ( p 1 ( « ) ) ( x ) 

and ( G 2 ) = ( X) _ 1 ( G x ) = ( x ) t ( G ^ 

••• ( * 2 i 0 ) ) ( Q 2 ) = ( X ) t ( P l ( w ) ) ( G l ) 

Hence the c u r r e n t and v o l t a g e s o l u t i o n s f o r s e c t i o n (D become 

or 

and 

or 
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( V 2 ) = - ( l ) t ( P 1 ( . ) ) ( G 1 ) ( u r i ( ( F 2 i n r . ^ ) . (,.̂ .-̂ 2)1 

* r x 2 \ . /„, " * r X 

and ( l 2 ) = ( x ) T ( G ! ) ( F 2 f n r e 5 r 2 ) + ( * 2 f 
e r 2 

nr 

Since the sequence in which the propagation constants, 
^ r are taken is unchanged by the transformation, the matrix 
(u^) is the same for both sections. 

At the transposition boundary, 

x 2 = 0 x± = -l± 

and ( v 2 ) = ( v ± ) 
x 2 = 0 x l = 1 

1 ,nr 

( x ) t ( G l ) ( x ) t ( G l ) \/(* 2 , n j 

v-(x) t (P^-OXGjXuy) (x) t ( p ^ ^ D t ^ f u ^ t F ^ ^ J 

< * > t / ( ° l > W Y F 2 , n r ) N 

V ^ C ) ) ( G . X U J J ) ( P . U ) ) ( G ^ O J * ) / \ ( P 2 > N R ), 

6 . 4 
This system of equations may be solved for ( F 2 n r ) 

and ( F l in terms of ( F, ) and (F' ) . The f i r s t v 2,nr/ v l,nr' v l,nr/ 
n equations represent current continuity and the last n equations 
represent continuity of the space derivative of current. 
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Note t h a t since the matrices ( U f l ) and ( U e ~ ̂ ) are 

d i a g o n a l , they commute and may be combined to form 

Since equation 6-4 provides a r e l a t i o n s h i p between 

the constants of i n t e g r a t i o n f o r the two s e c t i o n s of the t r a n s ­

mission l i n e , then the a n a l y s i s can be extended to give s i m i l a r 

r e l a t i o n s h i p s between a l l s e c t i o n s of a m u l t i p l e s e c t i o n l i n e . 

a
 1 ' C ©•• —— —— "'• ™ ' o 

- 0 4V / 4. 

r Z
 V ^ 0 

L 
o o —-—-\ u 

n V r 
0 s-W sr 

V 
r. 3 ' \ 3 " 

A 

D 

/ V 
fe 

© 
fe 

© 

F i g . 6.2. Two Secti o n s of Transmission L i n e . 

The form of the system of equations 6-4 i n d i c a t e s an 

a l t e r n a t i v e and simpler method of c o n s i d e r i n g the t r a n s m i s s i o n 

l i n e s e c t i o n s . For the t r a n s m i s s i o n l i n e shown i n F i g . 6.2, the 

se c t i o n s are i d e n t i c a l and hence have the same c h a r a c t e r i s t i c 

equation, roots and v e c t o r s ; only the constants of i n t e g r a t i o n 

are d i f f e r e n t . At the t r a n s p o s i t i o n boundary, the r e s p e c t i v e 

c u r r e n t s and v o l t a g e s are r e l a t e d through a connection m a t r i x ^ 1 3 
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This connection matrix is identical to the matrix ( x ) ^ as 
observed in equation 6-3 

i.e. ( X ) t ( Tx ) = ( T 2 ) 

and ( X ) t ( V x ) = ( V 2 ) 

This is an invariant power transformation as 
required since 

Use of the connection matrix facilitates solution for 
multiple section transmission lines by greatly reducing the 
complexity of the numerical analysis. 
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7 THE ( Z ) AND ( T ) MATRICES FOR A COMPLETE SYSTEM 
7.1 The (Z) & (Y) M a t r i c e s 

Under the c o n s t r a i n t s t h a t the v o l t a g e r e f e r e n c e i s . 

w i t h i n the system, and t h a t the sum of the c u r r e n t s over a l l 

c o n d u c t o r s i s z e r o , i t has been shown t h a t the m a t r i c e s ( Z 1 ) 

and ( Y' ) of rank ( n + l ) reduce to the m a t r i c e s ( Z ) and ( Y ) 

of rank n. For the ( Z ) m a t r i x , 

Hence , 

Z = Z1 + Z 1 -, n - Z' , - Z' , r s r s n+l,n+l r,n+l n+l,s 

Z = R + R + j « ( L + L , , , - , - L .n - L ) r r r n d v r r n+l,n+l r,n+l n + l , r ' 

D' D • ' , D ' . D' 
n+l t x \ r x in , D ) , .i«M. /1 „ r x , i n+l ,x l n+l ,x \ _ r 

r r n + l , n+l r,n+l n + l , 

and s i n c e D ; > n + 1 = D ^ r 

Z = (R + R ) + Jf± l n ( ^ ± i ) 2 7-1 
r 2 7 1 D r r ' D n + l , n + l 

where D^j i s the geometric mean d i s t a n c e between c o n d u c t o r s i and 

j and D ^ i s the geometric mean r a d i u s of conductor i . 

S i m i l a r l y , 

z = R + j-fc | n °r tn+l' DA+l fs 7 _ 2 

2 1 1 D r s - D n + l , n + l 
and s i n c e D^ = ^ j ^ , m a t r i x ( Z ) i s symmetric. 

The reduced m a t r i x ( Y ) may be found from the 

reduced form of the p o t e n t i a l c o e f f i c i e n t m a t r i x ( P ) where 

P = P' + P' _ p' - P' r r r r n+l,n+l r,n+l n + l , r 
1 Ir, ^ r . n + l ^ 7 -

r r n + l , n+l 



38 

P = ^ In r t n + l n + l ? s ? _ 4 

D r r ' D n + l , n + l 

and s i n c e D. . = D . . . the m a t r i x ( P ) i s symmetric. The 

reduced m a t r i x , ( 1 ) i s g i v e n by 

C T ) = j« ( P ) ~ 1 = j« ( C ) 7-5 

Si n c e the m a t r i x ( P ) i s symmetric, ( Y ) i s symmetric. 

7.2 P r o p e r t i e s of the ( Z ) and ( I ) M a t r i c e s . 

A s s o c i a t e d w i t h the v o l t a g e e q u a t i o n s we have 

( A ) = ( Z X I ) , 

and f o r the c u r r e n t e q u a t i o n s 

( B ) = ( Y ) ( Z ) 

S i n c e ( Z ) = (Z ) t 

and ( l ) = ( l ) t , 

(Z)(I) - ( Z ) t ( l ) t = ( ( T)(Z» t 

( A ) = ( B ) T 7-6 

Thus ( A ) and ( B ) are s i m i l a r and hence have the same 

c h a r a c t e r i s t i c v a l u e s . 

Since the m a t r i c e s ( D ) and ( G ) are the c h a r a c t e r ­

i s t i c v e c t o r m a t r i c e s c o r r e s p o n d i n g to the m a t r i c e s ( A ) and 

( B ) r e s p e c t i v e l y , we may w r i t e 

( D ) " 1 ( A ) ( D ) = ( U X ) 7-7 

and ( G ) - 1 ( A )(G ) = ( UX ) 7-8 

The t r a n s p o s e of e q u a t i o n 7-8 g i v e s 

t ( B ) t ( G ) t ( G ) t ( B ) t ( G ) t 1 = ( ™ ) t - ( ™ ) 
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and from equation 7-6, 

( G ) t ( A ) ( G ) " 1 = ( U X ) 7-9 

Hence, from equations 7-7 and 7-9, we o b t a i n 

( G ) t ( D ) = ( U ) 7-10 
which i s a s u f f i c i e n t but not necessary c o n d i t i o n . I t may 

als o be seen that i f t h i s c o n d i t i o n i s s a t i s f i e d , the matrices 

( G ) and ( D ) commute. 

Since the vo l t a g e and cur r e n t forms of s o l u t i o n are 

r e l a t e d to the matrices ( A ) and ( A ) ̂  r e s p e c t i v e l y , there 

e x i s t s a matrix ( T ) such t h a t 

( T ) ~ 1 ( A ) ( r ) = ( A ) t 7-11 

Hence equation 7-8 becomes 

( G ) - 1 ( T ) - 1 ( A ) ( T ) ( & ) - ( " O 7-12 

and from equations 7-7 and 7-12 

( D ) = ( - O ( G ) . 7-13 

7-3 R e s t r i c t i o n s on the Use of the D i s t r i b u t e d Parameters. 
Fundamental to any d e r i v a t i o n or use of the d i s t r i b u t e d 

parameters i s the assumption t h a t there i s a r e l a t i o n s h i p with 
(14) 

Maxwell's electromagnetic equations 

The a p p l i c a t i o n of c i r c u i t concepts to electromagnetic 

f i e l d phenomena, i s r e s t r i c t e d to those frequencies where the 

wavelength i s f a r gr e a t e r than the p h y s i c a l dimensions of the 

c i r c u i t . This c o n d i t i o n i s s a t i s f i e d f o r power systems ope r a t i n g 

at low f r e q u e n c i e s . 
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For a t r a n s m i s s i o n l i n e i n a medium with homogeneous 

d i e l e c t r i c , the d i s t r i b u t i o n of leakage c u r r e n t i n the space 

surrounding the conductors f o l l o w s the same p a t t e r n as the 

e l e c t r i c f l u x d i s t r i b u t i o n and thus the conductance matrix ( G ) 

has the same form as the capacitance matrix ( C ) with c o n d u c t i v i t y 

i n place of d i e l e c t r i c constant ( 5 ) ; 

( G ) + j < o ( c ) o c ( < r d + j « e d ) 

where the s u b s c r i p t "d" denotes d i e l e c t r i c . Hence i g n o r i n g the 

conductance ( G ) i m p l i e s t h a t the displacement c u r r e n t i s f a r 

gr e a t e r than the conduction c u r r e n t i n the d i e l e c t r i c , 

i . e . <s 1 
toed 

There i s a f u r t h e r c o n t r i b u t i o n to the matrix ( G ) due to the 

supporting mechanism of the conductor system. This can only be 

expressed e m p i r i c a l l y . In the p h y s i c a l model used, the e f f e c t of 

r e s i s t a n c e ( R ) but not of conductance ( G ) was i n c l u d e d . 

This i m p l i e s that w i t h i n the conductor the displacement c u r r e n t s 

are n e g l i g i b l e compared to the conduction currents 

c 

where the s u b s c r i p t "c" denotes conductor and Q* i s f i n i t e . 

Since there i s a component of e l e c t r i c f i e l d i n the 

d i r e c t i o n of propagation to f o r c e the cu r r e n t through the 

conductors, then the e l e c t r i c and magnetic f i e l d d i s t r i b u t i o n s 

must be d i s t u r b e d which i n t u r n a f f e c t s the o r i g i n a l inductance 
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and capacitance parameters. However, t h i s may be ne g l e c t e d i f 

the a,xial e l e c t r i c f i e l d components w i t h i n the homogeneous 

d i e l e c t r i c are small compared to the transverse components 

d « 1 
r c 

P r o x i m i t y e f f e c t i n v o l v e s a l l the parameters but has 

the most a p p r e c i a b l e e f f e c t on the inductance and the capacitance. 

I f the s e p a r a t i o n between conductors, D, i s much g r e a t e r than 

the conductor r a d i u s , T'Q 

i.e. -JJ <5s. 1 

the e f f e c t i s n e g l i g i b l e . 

These r e s t r i c t i o n s are a p p l i c a b l e to the mathematical 

model developed i n p r e c e d i n g chapters. Increased s o p h i s t i c a t i o n 

of the model would r e q u i r e more s t r i n g e n t r e s t r i c t i o n s . 
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8 EXAMPLES OF APPLICATION AND RESULTS 

Two examples of a p p l i c a t i o n were c o n s i d e r e d to t e s t 

the v a l i d i t y of the t h e o r y . The f i r s t was an a e r i a l d o u b l e - l i n e 

t h r e e phase t r a n s m i s s i o n system w i t h an overhead ground w i r e . 

The second was a t h r e e phase sheathed c a b l e underground t r a n s m i s ­

s i o n system w i t h a s e p a r a t e ground w i r e . I t was assumed t h a t 

homogeneous media surrounded the t r a n s m i s s i o n system i n b o t h 

c a s e s . E f f e c t s of the e a r t h on d i s t r i b u t i o n parameters were 

i g n o r e d . The r a t i o n a l M.K.S. system of u n i t s was used i n the 

c a l c u l a t i o n s . Leakance was i g n o r e d i n b o t h examples. 

8.1 The Overhead T r a n s m i s s i o n System 

The overhead t r a n s m i s s i o n l i n e i n P i g u r e 8.1 c o n s i s t s 

of s i x h o l l o w aluminum c o n d u c t o r s , 1-6, w i t h i n s i d e r a d i u s 

0.00622 metres and o u t s i d e r a d i u s 0.0145 metres, and a copper 

ground c o n d u c t o r , g, w i t h r a d i u s 0.00636 metres. The g e o m e t r i c a l 

c o n f i g u r a t i o n of t h i s system i s shown i n F i g u r e 8.1. 

B oth t r a n s p o s e d and u n t r a n s p o s e d systems were c o n s i d e r e d . 

T r a n s p o s i t i o n p o i n t s are shown i n F i g u r e 8.1. The system was 

assumed t o operate a t a c o n s t a n t t emperature. 

The t r a n s m i s s i o n l i n e has a c a p a c i t y of 200 M.V.A. a t 

230 KV phase to phase and o p e r a t e s a t 60 c y c l e s per second. The 

l o a d i s assumed to have a 0.8 l a g g i n g power f a c t o r w i t h t h r e e 

phase T—connected b a l a n c e d impedances. 

S o l u t i o n s f o r f u l l l o a d and no l o a d c o n d i t i o n s were 

found f o r c u r r e n t , v o l t a g e and power. 
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8.2 R e s u l t s 

I n P i g u r e 8.2, the ground w i r e c u r r e n t v a r i a t i o n a l o n g 

the t r a n s m i s s i o n l i n e from the r e c e i v i n g end i s p l o t t e d . For 

the u n t r a n s p o s e d system, the c u r r e n t v a r i e s l i n e a r l y w i t h d i s ­

tance as might he e x p e c t e d , and l i t t l e v a r i a t i o n i s e v i d e n t 

between no l o a d and f u l l l o a d c o n d i t i o n s . F o r the t r a n s p o s e d 

system, the c u r r e n t v a r i a t i o n i s c y c l i c w i t h maxima and minima 

o c c u r r i n g a t the t r a n s p o s i t i o n p o i n t s f o r b o t h no l o a d and f u l l 

l o a d , a l t h o u g h the g e n e r a l t r e n d i s an i n c r e a s e i n c u r r e n t from 

the r e c e i v i n g end towards the sending end. The t r e n d can be 

e x p l a i n e d on the b a s i s of the d i f f e r e n t v o l t a g e s o c c u r r i n g a t 

the t r a n s p o s i t i o n p o i n t s . The r e v e r s a l of c u r r e n t magnitude a t 

the t r a n s p o s i t i o n p o i n t s i s a t t r i b u t a b l e to the e f f e c t of the 

m e c h a n i c a l l y abrupt t r a n s p o s i t i o n on c u r r e n t c o n t i n u i t y . 

F i g u r e 8.3 and F i g u r e 8.4 show the v a r i a t i o n of power 

and r e a c t i v e power r e s p e c t i v e l y of the t r a n s m i s s i o n system a t 

no l o a d . The r e a l power i n c r e a s e s r a p i d l y a t the sending end; 

the c a p a c i t a t i v e r e a c t i v e power i n c r e a s e s l e s s r a p i d l y . 

F i g u r e 8.5 shows the c u r r e n t phase angle d i f f e r e n c e s 

a t no l o a d and f u l l l o a d . A l t h o u g h the t h r e e phase c u r r e n t 

phasors are b a l a n c e d a t f u l l l o a d , they are q u i t e unbalanced 

a t no l o a d due to the e f f e c t on the c h a r g i n g c u r r e n t s of the 

a s y m m e t r i c a l geometry of the t r a n s m i s s i o n l i n e . 

F i g u r e 8^6 and F i g u r e 8.7 show the a-phase c u r r e n t 

v a r i a t i o n i n magnitude and phase r e s p e c t i v e l y a l o n g the t r a n s m i s ­

s i o n l i n e * As e x p e c t e d , the no l o a d c u r r e n t d i s t r i b u t i o n i n ­

c r e a s e s l i n e a r l y from the r e c e i v i n g end. A t f u l l l o a d the 
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c u r r e n t decreases towards the sending end, which i s an i n d i c a t i o n 

of the compensation e f f e c t of the changing c u r r e n t on the load 

c u r r e n t . L i t t l e d i f f e r e n c e was observed at f u l l l o a d between 

the phase angle v a r i a t i o n along the l i n e of the transposed and 

untransposed systems. A d i f f e r e n c e can be seen however, under 

no l o a d c o n d i t i o n s . 

The a-phase vol t a g e magnitude v a r i a t i o n and phase 

angle s h i f t are i n d i c a t e d i n Figure 8.8 and F i g u r e 8.9 r e s p e c t i v e l y . 

Under f u l l l o a d, the v o l t a g e d i f f e r e n c e between the transposed 

and untransposed systems was s l i g h t , and f o r no load, no d i f f e r ­

ence was d e t e c t a b l e . S i m i l a r statements can be made f o r phase 

angle s h i f t s along the t r a n s m i s s i o n l i n e . 

The data f o r the above graphs i s i n c l u d e d i n Appendix 

C l . In a d d i t i o n , i t may be seen that at f u l l l o a d, while the 

power consumption i n c r e a s e s towards the sending end, the i n d u c t i v e 

r e a c t i v e power decreases. 

8 . 3 The Underground Transmission System 

The underground t r a n s m i s s i o n system i n Figure 8.10 

c o n s i s t s of three sheathed conductors and a ground wire. The 

s o l i d copper conductors, 1-3, have a ra d i u s of 0 . 0 1 3 2 metres and 

the aluminum sheaths, 4-6, have an i n s i d e r a d i u s of 0 . 0 2 3 9 metres 

and an outside r a d i u s of 0.0247 metres. The s o l i d copper ground 

wire has a r a d i u s of 0.00318 metres. The geometrical c o n f i g u r a ­

t i o n of the system i s shown i n F i g u r e 8.10. 

The system was assumed to operate at a constant tempera­

ture i n a medium with r e l a t i v e d i e l e c t r i c constant, e = 4.0. 
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The t r a n s m i s s i o n l i n e has a c a p a c i t y of 10 M.V.A. at 

13.2 KV phase to phase and o p e r a t e s a t 60 c y c l e s per second. 

The l o a d i s assumed to have a 0.9 l a g g i n g power f a c t o r w i t h t h r e e -

phase Y-connected b a l a n c e d impedances. 

S o l u t i o n s f o r f u l l l o a d and no l o a d c o n d i t i o n s were 

found f o r c u r r e n t , v o l t a g e and power. 

8.4 R e s u l t s 

I n c o n t r a s t to the overhead t r a n s m i s s i o n system, the 

ground w i r e c u r r e n t of the underground system i s independent of 

l o a d and d e c r e a s e s i n magnitude s l i g h t l y from the sending end t o 

the r e c e i v i n g end. A s i m i l a r s m a l l change was observed i n the 

phase a n g l e . These r e s u l t s may be seen i n Appendix C.2. 

F i g u r e 8.11 and F i g u r e 8.12 show t h a t the v a r i a t i o n 

of power and r e a c t i v e power r e s p e c t i v e l y a l o n g the t r a n s m i s s i o n 

l i n e a t no l o a d i s l i n e a r . 

The conductor c u r r e n t phase a n g l e s are symmetric f o r 

f u l l l o a d c o n d i t i o n s but not f o r no l o a d c o n d i t i o n s , as shown 

i n F i g u r e 8.13. The phase angle d r i f t a l o n g the l i n e i s n e g l i g i ­

b l e f o r no l o a d and i s s l i g h t f o r f u l l l o a d , as i n d i c a t e d i n the 

d a t a of Appendix C.2. 

The conductor c u r r e n t v a r i a t i o n a l o n g the l i n e from 

the r e c e i v i n g end, as shown i n F i g u r e 8.14, i n c r e a s e s f o r b o t h 

no l o a d and f u l l l o a d . 

I n F i g u r e 8.15, the sheath c u r r e n t phase angle d i f f e r ­

ences are shown. These are the same f o r b o t h no l o a d and f u l l 

and t h e r e i s no phase angle d r i f t a l o n g the l i n e f o r any phase. 
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The variation of the sheath current along the line is 
shown in Figure 8.16. 

From Appendix C.2 i t may be seen that conductor voltage 
variation along the line in both magnitude and phase is small 
at no load, but increases slightly at f u l l load. The three 
phase voltages are always balanced. 

Figure 8.17 shows the phase angle differences of the 
sheath voltages. Considerable imbalance is apparent at no load 
but is less severe at f u l l load. The phase angle d r i f t along 
the line is small. 

In Figure 8.18 and Figure 8.19 the sheath voltage 
variations along the line for no load and f u l l load respectively 
are shown. Linear increase from the receiving end is observed 
at f u l l load, but the increase is not linear at no load. 

The data for the above graphs is included in Appendix 
C.2. In addition i t may he seen that at f u l l load, while the 
power consumption increases towards the sending end, the 
inductive reactive power decreases. 
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Pig. 8.10 An underground, three phase cable system with separate 
ground wire and sheaths around each conductor. 
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9 CONCLUSIONS 

An accurate mathematical procedure was developed to be 

used in the analysis and design of multiconductor transmission 

systems under various loading or boundary conditions. The 

va l id i ty of the theory was substantiated using two numerical 

examples. The results of these two analysis are given in the 

report. 

The sequence in which the parts of the numerical analy­

sis must be performed is shown in Appendix B. It is apparent 

that given the conductor and geometrical specifications of a 

particular transmission system, a variety of terminal or boundary 

conditions can be analysed for that system without repeating the 

steps which lead to the general solution. In developing this 

procedure, an important theoretical concept was evolved; the 

concept of a complete system. 

Consider the example of the overhead conductor system, 

which comprises seven conductors, including the ground wire but 

excluding any earth effects. Only six of these are independent. 

By choice, the ground conductor was used as a voltage reference, 

but the magnetic, electric and loss effects due to this conductor, 

which may not be ignored, appear in the system parametric matrices. 

The reduced system resistance matrix for example is not a 

diagonal matrix since the resistance of the ground wire appears 

as a component of a l l matrix elements. 

Had the earth effect been included in the model as an 

equivalent earth conductor, then there would have been eight 

conductors, seven of which would have been independent. The 
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ground wire or the equivalent earth conductor would be chosen 
as a reference conductor. Hence definition of the complete 
system requires the specification of a closed system of conductor 
one of which w i l l be used as a voltage reference conductor. 

This approach to transmission line analysis suggests 
that i t is ideally suited to time shared machine aided design. 
The optimum boundary terminations or the best locations for the 
transpositions, for example, could be arrived at by using a 
computer to verify an analyst's heuristic reasoning. 

Future research into this f i e l d should include analysis 
of the f u l l significance of the location of the characteristic 
values in the complex plane with respect to propagation and 
attenuation. Further development w i l l lead to the superposition 
of analysis of the same system at various frequencies for trans­
ient studies or for carrier wave transmission studies. A more 
precise formulation and method for finding the complex trans­
position matrices which occur at lossy transposition boundaries 
w i l l also be required, particularly where optimum solutions are 
to be found. 
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APPENDIX A 

THE PARAMETERS R, L AND C. 

A . l Assumptions 
I n the d e r i v a t i o n ^ ^ ' of the m a t r i c e s ( R ) , 

( L ) and ( C ) , i t w i l l be assumed t h a t s k i n e f f e c t s , 

p r o x i m i t y e f f e c t s and s a t u r a t i o n may be i g n o r e d . I t w i l l be 

assumed a l s o t h a t d e r i v a t i o n u s i n g s t a t i c f i e l d s w i l l n o t 

i n v a l i d a t e the a p p l i c a t i o n to a s l o w l y changing or q u a s i — s t a t i c 

system. The r a t i o n a l i z e d M.K.S. system of u n i t s w i l l be used. 

I n i t i a l l y , a l l the parameters f o r a system of (n -K l ) 

co n d u c t o r s w i l l be r e l a t e d t o some a r b i t r a r y e x t e r n a l r e f e r e n c e , 

but i n the f i n a l form,the r e s t r i c t i o n t h a t the sum of the c u r r e n t s 

w i t h i n the system i s z e r o w i l l be a p p l i e d , and a l l v o l t a g e s w i l l 

;be r e f e r r e d t o some conductor w i t h i n the system ( e . g . a ground 

c o n d u c t o r , or an e q u i v a l e n t e a r t h c o n d u c t o r ) . 

A, 2 The R e s i s t a n c e , R"1"., 

The m a t r i x of r e s i s t a n c e per u n i t l e n g t h i s 

where R^ = jo^ /A^, 

t h 
A. = c r o s s s e c t i o n a l a r e a of the i conductor 
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and Ji t = + at) = res i s t iv i ty of conductor i at a. 

temperature t ° C 

where q = res i s t iv i ty of the conductor material at a 
o _ 

temperature t C 

and o< = thermal coefficient of re s i s t iv i ty . 

A-3 The Inductance, L̂ " 

Consider the group of ( n + l ) conductors shown in 

F ig . A . l The axes are set up through conductor 11 o. about 

which the flux linkages are to be computed. The point X is some 

remote point where magnetic effects may be considered to be 

negligible. The total number of linkages produced by flux 

which crosses the x — axis between the origin and the point X 

is given by 

D 
T I n + 1 . x 

+ . . . . + I n + j 
a , n + 1 

A-2 

where \i = permeability of the surrounding medium 

r =• radius of conductor j 

D. = distance between conductor j and the point X 

D. . = distance between conductors i and j 

I. = current in i conductor 
J 

A similar expression can be written for the flux linkages surround­

ing the remaining conductors. 
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O © 
c b 

O 

a X 
' x 

P i g . A.l Group of n + 1 Current C a r r y i n g Conductors. 

For two p a r a l l e l c y l i n d r i c a l conductors of a r b i t r a r y 

c r o s s - s e c t i o n , the t o t a l f l u x linkage about one of the conductors 

i s g iven by (15), 

where I i s the current i n the conductor 

i s the G.M.D., the geometric mean di s t a n c e between the 

conductors 

^ i i """S G.M.R., the geometric mean radi u s of the 

conductor. 

A-3 
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Replacing the distances D and r of equation A-2 by 
the geometric mean distances as defined in equation A-3 gives 

/ i n i In ^ °S + 1? X \ / Ta\ 2n I DL D a b \ , n + 1 \ / aa 
, D 

In - f t . 
Dba 

V f n + 1 Wn ax 
D n + 1, a 1-3 n + 1, x 

D n + l , n + l 

For a linear system, the inductance coefficient, may 
be defined as 

a 
L.. 
« I3 

1 J ^ 

I . = 0 l 
i ^ J 

I . = 0 1 
i i j 

-Ji 
2it 

2TX 

i n 

D 

J3 
1 

D. 

A-5 

A-6 

and hence the inductance coefficient matrix (L ) becomes 

/ L11 L12 

J21 

1, n + 1 

\ n + 1, 1 .... L n + l t n + ± 

A-7 



A-4 The Capacitance, C 

For a system Df ( n + l ) p a r a l l e l conductors 

p o t e n t i a l c o e f f i c i e n t s are d e f i n e d by the equation 

a 
'P P , 

aa ab a, n + 1 \ /^a \ 

n + 11 

ba 

\ P n + 1, a** Pn + 1, n + l / \°-n + 1/ 

where the P , are the co e f f i c i e n t s of p o t e n t i a l 

S o l v i n g f o r the charges Q. we have 
3 

I fia\ 'C c , aa ab 'a, n + 1 

'ba 

Ai + J n + l , a*** ** n + 1, n + 1 

Where the C , are the capacitance coefficient 

For the system of (n + l ) conductors, 

P. . A 
V . 

i ^ d 

l 
2%e 

D . 
n -1' x 

D. J y J 
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where the D's represent the distances between the points denoted 
by the subscripts, and e is the permittivity of the medium 
surrounding the conductors. Clearly, the matrices of potential, 
capacitance and inductance coefficients are symmetric* 

Since, for the potential coefficient matrix 

P > P > 0 rr rs ^ 

then for the capacitance coefficient matrix 

C > 0 rr * 
and C S 0 rs 

For a system of conductors containing coaxial cables 
where one conductor is completely enclosed by another as shown 
in Fig A.3, then because conductor j is shielded by conductor 
i . 

C, = C. , = 0 
J 

O 
Fig. A.2 Cross—section of part of a system of conductors where 
one conductor completely encloses another. 
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For the system, 

( Q ) = ( c ) ( v ) , 

then 
03 

1A. 
V. 
3 

V = 0 m 
m ^ 3 

In p a r t i c u l a r , f o r V\ = 0, C.... becomes the capacitance between 

two c o n c e n t r i c c y l i n d e r s . A l s o , 

Qi 
1 J V 3 

V = 0 m 
m ^ 3 

v. 
3 

V = 0 m 
m 4 3 

and since the m a t r i x ( C ) i s symmetric, then 

C. . = C . . 
13 3 i 

In terms of the p o t e n t i a l c o e f f i c i e n t s , P ^ = Pj^. a n d 

P. 0 = P.. imply t h a t C ., = C .9 =0, and P. . = P. . = P. . i m p l i e s 
3>c 3^ 3*" !3 3 1 1 1 

;. . = c. . = - c . . 
13 31 33 

In t h i s d i s c u s s i o n , i t has been assumed 

t h a t the p e r m i t t i v i t y of the medium surrounding the conductors 

i s constant. 
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APPENDIX B 

A flowsheet of the solution procedure for (n + l ) conductor system. 
Procedure 

Part I Compute E, L, C, G 
coefficient matrices 
from transmission line 
configuration. 

Checks 
Manual calculation 
of selected elements. 

Form reduced Z and 
Y matrices. 

Find characteristic values 
of characteristic equation 

(A) - X (U) =0 
where (A) = (Z)(T) 

Trace (A) =' 
i=l 

Find characteristic vectors 
D - voltage vectors 
G - current vectors 

(D)"1(A)(D) = (X U) 
(G)" 1(A) t(G) = (X U) 

Part II Solve for 2n unknown 
constants using known 
boundary conditions 
and the connection matrices 
at the transpositions. 

The voltage form of 
the solution must give 
the same results as the 
current form of solu­
tion 

Generate required output 
from the particular 
solution. 

Part I of the procedure gives the general solution 

for the given transmission l ine ; Part II provides the particular 

solutions for the specified sets of boundary conditions and 

connection matrices at the transpositions. 
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Appendix C l . l Overhead Conductor System, No Load Voltage and 

Power 

Distance 1V I 
T, a< 'Vh' K P/Q 

(km) (kv) (kv) (kv) (deg) (deg) (deg) (m.v.a.) 
UNTRANSPOSED 

0 132.8 132.8 132.8 0 -117.2 117.2 0 132.8 
0.06/ 

133.2 130.8 127.6 127.7 0.58 -117.1 117.3 - 46.2 133.2 
0.46/ 

266.4 125.0 121.9 122.2 0.50 -116.8 117.5 - 87.1 266.4 125.0 
1.52/ 

399.6 115.6 112.8 113.5 0.30 . -116.3 119.1 -118.1 
TRANSPOSED 

0.46/ 
266.4 124.8 120.0 122.0 0.30 -116.7 118.0 - 87.0 266.4 124.8 

1.51/ 
399.6 115.7 113.4 112.7 0.04 -115.1 118.6 -117.9 

Appendix C1.2 Overhead Conductor System, No Load Current. 

Distance 11J 
T, a l ^ 1 K 1̂  

(km) (amp) (amp) (amp) (deg) (deg) (deg) (degVampxlO 4 

UNTRANSPOSED 
0 0 0 0 0 0 0 0 

-47.7/ 
133.2 58.5 62.0 59.6 92.2 28.7 -152.8 41.0 

-47.4/ 
266.4 115.0 121.0 117.0 92.3 28.8 -152.7 81.0 266.4 115.0 

-47.0/ 
399.6 169.0 178.0 172.0 92.5 28.6 -152.5 118.0 

TRANSPOSED 
-27.7/ 

266.4 177.0 120.0 118.0 91.2 29.7 -150.8 31.0 266.4 177.0 
-89.2/ 

399.6 170.0 174.0 174.0 90.5 28.6 -150.6 42.0 



69 

Appendix C1.3 Overhead Conductor System, Pull Load Voltage and 
Power, 

Distance 1V 1 
T. A ^b 1 ^ 0 P/Q 

(km) (kv) (kv) (kv) (deg) (deg) (deg) (m.v.a 
UNTRANSPOSED 

312.9/ 
0 132.8 132.8 132.8 0 -117.2 117.2 234.7 

324.2/ 
133.2 156.1 153.0 148.0 7.6 -108.7 126.8 266.2 

333.5/ 
266.4 176.8 175.0 165.5 13.5 -102.2 134.7 264.8 

341.0/ 
399.6 193.9 193.4 181.0 18.5 - 96.9 141.2 230.6 

TRANSPOSED 
333.5/ 

266.4 176 a 172.0 169.1 14.5 -102.0 133.5 264.9 
341.0/ 

399-6 190.9 191.0 186.5 20.4 - 97.3 139.6 230.5 

Appendix C1.4 Overhead Conductor System, Pull Load Current 

Li. Distance 11 I 
L a 

I h l 

(km) (amp) (amp) 

0 500.0 500.0 
133.2 458*0 458.0 
266.4 409.0 408.0 
399.6 357.0 358.0 

266*4 410.0 412.0 
399.6 364.0 359.0 

u i 'Li ; ix 
c a h 

(amp) (deg) (deg) 
UNTRANSPOSED 

500.0 143.1 23.1 
462.0 148.9 29.4 
415.0 156.3 37.2 
372.0 166.0 47.5 

TRANSPOSED 
414.0 156.7 37.1 
365.0 166.7 46.6 

- 86.9 
- 90.6 
- 97.1 
-107.0 

- 96.8 
-107.0 

(I /II I g g 
(deg) (deg)/ampxlO^ 

0 
-47.7/ 
41.6 
-47.6/ 
82.8 
-47.2/ 
122.5 

- 3 6 . 0 / 
19.7 , 

-77.0/ 
69-4 
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Appendix C2.1 Underground Conductor System, No Load Voltage 
and Power 

System 
Distance Voltage: Magnitude and Argument for Real and 

conductors 1-6, LY/|V| ^ower^ 6 

L (deg) (deg) (deg) (deg) (deg) (deg) P/Q. 
(m) (kv) (kv) (kv) (kv) (kv) (kv) (nuy.a.) 

-120.0/ 120.0/ 0.0/ 0.0/ 0.0/ 0.0/ 
76.20 76.20 0.0 0.0 0.0 0.0 

-120.0/ 120.0/ -7.6/ -54.6/ -125.6/ 0.61/ 
76.20 76.20 2.52 3.41 1.41 -0.18 

-120.0/ 120.0/ -6.1/ -51.6/ -120.5/ 1.22/ 
76.20 76.20 4.75 6.85 3.13 -0.37 • 

-120.0/ 120.0/ -4.5/ -48.7/ -116.4/ 1.83/ 
76.205 76.205 6.69 10.35 5.20 -0.55 

-120.0/ 120.0/ -2.65/ -45.7/ -112.9/ 2.44/ 
76.21 76.21 8.35 14.00 7.61 -0.73 

-120.0/ 120.0/ -0.55/ -42.7/ -110.1/ 3.05/ 
76.21 76.21 9.73 17.70 10.41-0.92 

-120.4/ 119.6/ 1.9/ -40.1/ -107.7/ 3,.66/ 
76.21 76.21 10.84 21.60 13.60 -1.10 

Appendix C2.2 Underground Conductor System, No Load Current, 

Distance Current: Magnitude and Argument for -
conductors 1-7, / i / l l l 

L (deg) (deg) (deg) (deg) (deg) (deg) (deg) 
(m) ^ A T ( I T (A) (I) (I) (AT (A) 

0.0/ 
0 76.20 

0.0/ 
500 76.20 

0.0/ 
1000 76.20 

0.0/ 
1500 76.205 

0.0/ 
2000 76.21 

0.0/ 
2500 76.21 

0.04/ 
3000 76.21 

0 
0 . 0 / 
0 . 0 

0 . 0 / 
0 . 0 

0 . 0 / 
0 . 0 

- 1 4 . 7 / 
1 7 . 8 

-II6.9 / 1 2 2 . 1 / 
1 6 . 9 1 7 . 0 

8 4 . 5 / 
5 . 1 5 

5 0 0 
5 . 7 / 
2 . 7 5 

- 9 8 . 6 / 
2 . 9 4 

1 4 2 . 6 / 
2.76 

- 1 4 . 6 / 
1 4 . 8 

- 1 1 6 . 9 1 2 2 . 0 / 
1 4 . 1 14 .2 

8 4 . 4 / 
5 . 2 5 

1 0 0 0 
5 . 7 / 
5 . 5 0 

- 9 8 . 6 / 
5 . 8 7 

1 4 2 . 6 / 
5 . 5 0 

- 1 4 . 6 / 
1 1 . 8 5 

- 1 1 6 . 9 1 2 2 . 1 / 
1 1 . 2 7 1 1 . 3 5 

8 4 . 2 5 
5 . 3 5 

1 5 0 0 
5 . 7 / 
8 . 2 3 

- 9 8 . 6 / 
8.80 

1 4 2 . 6 / 
8.28 

- 1 4 . 7 / 
8 . 8 8 

- 1 1 6 . 9 / ' 1 2 2 . 1 / 
8 . 4 4 8 . 5 1 

8 4 . 1 
5 . 4 5 

2 0 0 0 
5 . 7 / 

1 0 . 9 9 
- 9 8 . 6 / 

1 1 . 7 5 
1 4 2 . 6 / 

11.05 
- 1 4 . 7 / 

5 . 9 2 
- 1 1 6 . 9 / 1 2 2 . 1 / 

5 . 6 3 5 . 6 8 
8 4 . 0 / 

5 . 5 5 

2 5 0 0 
5 . 7 / 

1 3 . 7 1 
- 9 8 . 6 / 

14.67 
1 4 2 . 6 / 

13.80 
- 1 4 . 7 / 

2.96 
-116 . 9 / 1 2 2 . 1 / 

2.82 2 . 8 4 
8 3 . 9 / 

5 . 6 6 

3 0 0 0 
5 . 7 / 

1 6 . 4 5 
- 9 8 . 6 / 

17.60 
1 4 2 . 6 / 
16 .55 

0 . 0 / 
0 . 0 

0 . 0 / 0 . 0 / 
0 . 0 0 . 0 

8 3 . 7 5 / 
5 . 7 6 
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Appendix C2.3 Underground Conductor System, Fu l l Load Voltage 
and Power 

Distance Voltage: Magnitude and Argument for 
conductors l-6,.JV/lVl 

L 
(m) 

0 

500 

1000 

1500 

2000 

2500 

3000 

(deg) (deg) 
kv 
0.0/ ' 
76.20 
0.0/ 
76.23 
0.0/ 
76.26 
0.0/ 
76.29 
0.0/ 
76.33 
0.0/ 
76.36 
0.2/ 
76.39 

kv 
-120.0/ 
76.20 

-120.0/ 
76.23 

-120.0/ 
76.26 

-120.0/ 
76.29 

-120.0/ 
76.33 

-120.0/ 
76.36 

-119.75 
76.4 

System 
Real and 
Reactive 
Power 

(deg) (deg) (deg) (deg) P/Q 
kv v v v (m.v.a.) 
120.0/ 0.0/ 0.0/ 0.0/ 90.05/ 
76.20 . 0.0 0.0 0.0 43.82 
120.0/ 61.8/ -47.2/ 176.15/ 90.67/ 
76.23 62.4 65.5 63.0 43.70 

120.0/ 62.1/ -47.0/ 176.20/ 91.29/ 
76.26 124.8 131.1 124.9 43.59 
120.0/ 62.2/ -46.9/ 176.40/ 91.91/ 
76.29 187.0 197.1 188.9 43.48 
120.0/ 62.3/ -46.8/ 176.60/ 92.53/ 
76.33 250.0 262.5 251.3 43.36 
120.0/ 62.4/ -46.6/ 176.75/ 93.15/ 
•76.36 312.0 328.5 314.5 43.25 
120.15/ 62.6/ -46.4/ 176.95/ 93.77/ 
76.4 374.0 395.0 376.6 43.13 

Appendix 02.4 Underground Conductor System, F u l l Load Current 
Distance Current: 

L 
(m) 

0 

500 

1000 

1500 

2000 

2500 

3000 

Magnitude and Argument for 
Conductors 1-7, 

(deg) 
A 

(deg) 
A 

-26.00/ -146,00/ 
439.0 439.0 
-25.80/-145.65/ 
440.0 440.0 
-25.60/ -145.40/ 
443.0 442.0 
-25.45/ -145.10/ 
446.0 445.0 
-25.2^ -144.90/ 
448.0 446.5 
-25.10/-144.60/ 
450.0 448.0 
-24.9/ -144.25/ 
452.0 450.0 

(deg) 
A 

(deg) 
A 

(deg) 
A' 

(deg) 
A 

94.00/-14.7/ 
439.0 17.75 
94.30/ -14.7/ 

440.0 14.80 
94.60/ -14.7/ 
441.0 11.90 
94.90/-14.7/ 
443.0 8.90 
95.20/-14.7/ 

445.0 5.68 
95.40/ -14.7/ 
447.0 2.84 
95.80/ 0.0/ 

449.0 0.0 

-117.0/'12 2.0/ 
16.90 17.00 

-117.0/ 122.0/ 
14.10 14.20 

-117.0/ 122.0/ 
11.30 11.30 

-117.0/ 122.0/ 
8.45 8.40 

-117.0/122.0/ 
5.64 5.67 

-117.0/122.01 
2.82 2.84 
0.0/ 0.0/ 
0.0 0.0 

(deg) 
A 

84.5/ 
5.15 
84.3/ 
5.25 

84.251 
5.35 

84.10/ 
5.45 
84.00/ 
5.55 

83.91 
5.66 
83.75/ 
5.76 
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