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ABSTRACT

Problems concerning transmission lines have been solved
in the past by treating the line in terms of lumped parameters.

Pioneering work was done by L. Vs Bewley and S. Hayashi
in the application of matrix theory to solve polyphase multi-
conductor distributed parameter transmission system problems.

The availability of digital computers and the increasing complexity
of power systems has renewed the interest in this field.

With this in mind, é systematic procedure for hahdling
complex transmission systems was evolved. Underlying the pro-
cedure is the significant concept of a complete system which
defines how the parametric inductance, capacitance, leakance and
resistance matrices must be formed and used. Also of significance
is the use of connection matrices for handling transpositions and
bonding, together with development of the manipulation of these
matrices and the complex (Z) and (Y) matrices. In the numerical
procedure, methods were found to transform complex matrices
into real matrices of twice the order and to determine the
coefficients in the general solution systematically. The pro-
cedure was used to deal with phése asymmetry and mixed end

boundary conditions.
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l. INTRODUCTION

The purpose of this thesis is to develop a procedure
for solving the problem of polyphase, distributed parameter
transmission systems, during steady state operation., Histori-
cally, this problem has been attacked by treating the line
configuration in terms of lumpéd circuit parameters, obtained
through transformations from the distributed parameters, lead-
ing to various closed form solutions.

Early work in the development of matrix methods for
analysis was done by L.V. Bewley (1). The approach taken was
to analyze the lossless polyphase line and to expand fhe
analysis to include lines with losses. From this, travelling
wave solutions were developed which led to a study of surges
by matrix methods. L.A. Pipes (2) followed Bewley's approach
but used Laplace transform methods. Parallel developments were
made by S. Hayashi (3) who extended the analysis to transient
phenomena, including travelling wave properties of surges.

The increasing complexity and interconnection of
modern power systems, together with the flexibility and availa—
bility of digital computers, makes the use of matrix methods both
imperative and practicale

With this in mind, a systematic mathematical and
numerical procedure for handling the complex system is evolved
in this thesis. The rationalized M.K.S. system of units is used

throughout.



2. GENERAL DIFFERENTIAL EQUATIONS FOR MULTI-CONDUCTOR SYSTEMS

Consider a system of (n + 1) parallel conductors
mutually coupled electrostatically and electromagnetically. By
definition, this is a complete system if and only if the sum of

the currents over the whole system is zero,

Z i; =0 2-1

i=1

This definition precludes radiation effecfs, but this

is an acceptable approximation at low frequencies.
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Fig 2.1 Part of Mutually Coupled Circuit of (n + 1)
conductors.



O0f the (n + 1) conductors, n will be defined as being
independent; the (n + 1)th conductor becomes the reference
conductor for voltages and the"return" path for unbalanced
currents. Depending on the physical arrangement of the trans—
migsion system, this reference conductor would normally be taken
as a ground conductor or an equivalent earth conductor (4).

The voltage and current equations for the ith conduc~—

"tor may be written

—avi -Bw& R.1 2-2
9x T B% t Riti o -
o4 2y + il 2-3
dx — ot i
where v, = potential of conductor i with respect to some
t arbitrary reference
Vi = total flux linkages per unit length of conduc—
tor i due to .currents in all conductors
Ri = series resistance per unit length of conductor i
ii = current in conductor i
q; = charge per unit length on conductor i
and ii = leakage current per unit length from conductor i

The system is assumed to be linear in the following
analysis. Let p be the differential operator p = a,/ai;

Associated with each unit length of conductors i and j are

2i; = B; +ply;
235 = Plij

Y;l = Gii + PCll
Yij = Gy * 20y



where Ri = series resistance of conductor i
i = self inductance coefficient of conductor i
i = mutual inductance coefficient of conductors
J i& j '
i1 = self capacitance coefficient of conductor i
Ci' = mutual capacitance coefficient between conduc—
J tors i & J
T leakance from the ith conductor to the arbi=
trary reference
Gij = leakance between conductors i & j
The @gfferential equations of the ith conductor become
V.
- 1 _ 1 . 1 ' . 1 .
"rx = le ll + Ziz i2 + see + Zil li + eee + Zl’n+1 ln+l
24
aii
— —_ 1 1 ' !
T}E = Yil Vl + YiZ V2 + sse + Yii Vi + sos + Yi,n"l'l Vn+1

2-5
In matrix form, the 2(n + 1) equations for the (n + 1)

conductors may be written

_olx)
o X

where (v) and (i) are column vectors, (2') and (Y') are square

it

2'(p) (i) 2-6

(x:(p) (v) 2-7

lf

matrices which are functions of time (the differential operator p),

By differentiation with respect to x and substitution,

equations 2—-6 and 2-7 may be combined to give



32
& @ - @we) e
2
D5 (1) = (@) (2'(p)

dx?

where (Z') and (YI') are both independent of x.

(v)

(1)

2-8



3. THE DIFFERENTIAL EQUATIONS FOR STEADY STATE ANALYSIS

Consider the system of conductors operating under
a-c¢ steady state conditions such that the voltages of the (n+1)

conductors at a position X, with respect to some arbitrary

reference, are given by 3-1
v, = [V, e j(at+91) = V‘l IOt _ (V) cJeot
jlot+0,) V!
VZ V2 e 2 v 5
jlot+e_ o) =
Vn+l Vo4 © n+l Y nt

Since the system is linear, the current response will

have the same form with different phase angles ¢1, ¢2, ene ¢n+l

' : - jot
o\ = gr e dlet)\ = (TH e -2
. jlot+d,)
i, 12 e 2
i I e j(wt+¢n+1)

n+1 n+l

where (V') and (I') are phasor vectors.
Substitution of these phasor vectors into equations

2=6 and 2~7 respectively, with the operator p replaced by jw yields



-2 @) = (2'@) (T') 3-3
-a-g(fv) = (¥'(0) (V') 3-4

Equations 3-3 and 3-4 are written in terms of voltages with
respect to some arbitrary reference. For a cbmplete system,
some reference within the system, such as a "ground" conductor
may be used. if the (n+l)th conductor is chosen as the refer-

ence conductor, then the voltage phasor vector becomes

T — ¥ - vt o T -
(V) = A vI-v 3-5
v2 Vé - Vi
® »
- L J
_ = =
Vn vn V'n-i-l
and
n
Ty = = > T 3-6
i=1

Applying these constraints to equation 3-3 yields the

reduced system of equations for n independent conductoré.

- @ = (2 () (1) 3-7
where zij(m) = Zij(m) + z£+1,n+1(m) - Z{,n+1(m) B} z£+1yj(w)



Since (Y'(w)) in equation 3-4 is not a function of x,

- (@) = £ (v ) THaE

Let (Y (w)) ~1 be the reduced form of (I' (@) "', then,

-@ = (T @) LM

and the current equation for n independent conductors may be

written
- (}E (M) = (¥ W) () 3-8

This analysis indicates that the reduction must be achieved with
the ( I' (0)) matrix in its inverse form.
The leakance matrix (G) may be separated into two parts,
(a) the leakance empirically derived from the losses due to
the supporting mechanism (towers, conduits etc.) of the
transmission systemy
(b) the leakance due to the geometrical configuration of the
conductors and to the conductivity of the surrounding media.
If part (b) alone is considered, then since the field
distribution and leakage current distribution are the same for

any given linear system of conductors. (5),

(Y’ (w)) -1 (P')

T (o + jue)
where (P') is the potential coefficient matrix for the (n+1)
conductors
¢ is the conductivity of the medium surrounding the
conductors
and € is the permittivity of the medium surrounding the

conductors.



Therefore, the matrix (P) for the reduced system of n independent

conductors will have elements of the form

Pij = P'ij + P‘n+1,'n+l - P'i,n+l - P'n+1,j '
i, =1y 2, eeaey N
and
(T (@) = (o +jec) ()7

Note that for most transmission systems, ¢ /we « 1
Finally, the reduced equations 3-7 and 3-8 may be

combined as before to give

(A@) (M)

lﬁ-ﬂ

=i
Sas”
it

(2(w)) (T(0)) (V)

[\
e

(Bw) ()

IQ-:

~
Hi
S
il

(T(w) (z(w)) (T)
3-10



10
4. SOLUTION OF THE DIFFERENTIAL EQUATIONS

4,1 Characteristic Root and Characteristic Vector Analysis (6)

Equation 3-9, the voltage equation, may be written

2 2 -

A, —- d%/dx Ay o o o o v v Ay Vv,\ =0
2 2 F
A21 A22 bt d /dx . L) . s V2
Anl ¢ o o o e » 0o O 6 o & e o Ann-d /dx Vn

4-1

This has & non-trivial solution if and only if the determinant

det | (A) - a%/ax?(u)| =o
4-2

where (U) is the ‘identity matrixe. This determinantal equation
is the characteristic equation whose solution yields the charac-
teristic roots.

Consider again equation 3-9. There are n ordinary
second order linear differential e%uations with constant coeffi-

. . . d
cients which are homogeneous in T35 .
dx

Hence the form of the solution is

— I ¥~ ' —¥r .
vi=2 (cire + C! e ) s i=1, 2, eee, D
=
4-3
where the C's and C' 's are the complex constants of integration
and K'i =\/Ai, where the A's are the characteristic roots of the

determinantal equation 4-2,



11

There are 2n2 constants of integration in the above
form of the solution but it will be shown that only 2n of these
constants are independents Substitution of the general solution,
equation 4-3 into the equation 3~9 yields n equations of the

form

::E; % 2 (c.. KESIY e—xrx) . <-4 (e 8T
ir

|
H
|
b
H
—
P
Q
H
Lo}
o
+
Q
o
N
H
S

. . Yr* ~¥r*
Collecting terms in e and e we have
2 ¥ X
Ei FOY 20y € - Ai10pp = AjpCor = oo = A3l )e
Ir=
2 _ t o ' ' ~¥r*) =0
+ (¥ r Aii)Ci AiCir — 830000 = oee - Alncﬁr)e 3
- 4-4

Hence each of the coefficients in equation 4-4 is individually

equal to zero for a non—trivial solution, (i = 1, 2, eee, D)o

This provides n2 equations for the unprimed constants, C,and n2

. . . '
equations in the primed constants, C, as both i and r vary.
For the unprimed constants, C

A, - A A A

11 r 12 Cc =0 y T = 1,2,...,n

1n 1r

A - Ar..t Azn C

21 A22 2r

nn I nr
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Similar equations may be written for the constants,
Cl, and since these systems of equations are homogeneous, there
are (n=1) independent relations between the constants C and also
between the constants C' for each choice of ro This leaves 2n
independent constants to be found from the boundary conditions.

It is apparent from the above discussion that the
determination of the relationship between the constants, C
yields the characteristic vectors, with one vector corresponding
to each choice of A. This may be shown explicitly by rewritf¥ing

equations 4-5 as follows,

All - lr A12 s Aln Clr / Cnr Cnr =(0)

A21 Azz-}\r * ° e & CZI‘ / Cnr

A - * L] . L] ° - . ] A "‘;\ 1

nl nn r

All - }\r A12. * . e e Ai,“'i Dlr = - Aln

A21 A22"}\r0 L) ] - » Dzr Azn

Ah-yf s s s w@ndflr Dn—l,r An—l,n
4-6

where D, = C, /C__ and C__ # O.

ir ir’ “nr nr
This analysis indicates a method of determining the characteris-—
tic vectors numerically. The same vectors hold for both the

constants C and Cl.



4.2 The General Solution 13

The voltage solution may be wvritten as

:f;i ¥t —z'x
' - 1 :Z =
vj — an Djr e + C J Jr y r = 1,2,‘..’n
r=1
47
where D =~ = 1, and C 34 C' are unknown constants to be

determined from the boundary conditions.
By a similar analysis; the current solution$ may be
written as :
1 X X —X X
T = :E r 1 :; r =
IJ = FI].J GJI‘ e + Fn;] GJI‘ e ’ r = 1,2,00_.11
r=1 Ir=

: 4-8
where G = 1, and F_,, F', are unknown constants. It will
nr nj nj ‘

be shown that the X;'s are the same for both voltage and current

3 . , ] [ . -
solutions. The constants an, an and Fnj’ Fnj are not indepen

dent but are related through equations 3-7 and 3-8.

This solution may also be written in the alternative
hyperbolic form using the hyperbolic sine and cosine.

The general solution for voltage and current may be

written in matrix form

X —er
(V) (D )i(cnrexl’ y *+ (Cp.e )g 4-9

(T) = (G)i(Fnrexrx) + (Fl'lre-xrx)} 4-10

where (D) and (G) are square matrices containing characteristic
vectors as columns. For example, the first column of (D) is the

characteristic vector which satisfies

((a) = &, (@) () = o

and hence is associated with the characteristic value Al' Note

that the entries D __ (and Gnr) for r = 1, 2, eesy, n will be
unitye.
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+

_J X
The matrices (Cnr e T ) represent column vectors
+ +,
=¥ ) A =%1%
(Cnr e = Cnl e 4-11
+
_sz
an e
»
L
&
.
RAVED ¢
¢ e Un

nn

As stated previously, the voltage and current solutions
are related through equations 3~7 and 3-8; these equations imply
that the current solution may be obtained from the voltage solu-
tion and vice versa.

Let the current solution be known, then by redarrange-—

ment of equation 3-8

T = (1) &(T)

it

- (1)t (G)%(Fr’lrexrx ¥

- Py Xre-b/rx );
= (D) 3 (Cnrexrx) + ( C’nre Zfr)g

X - X

¥r and e °F respectively, we obtain

By equating coefficients of e

(2)(c,)

Il

(1)t (e ) Fnrxr) 4-12
= -(2@) (¢)( 2, )



15

It

(1) ™ (&) E¥,) 4-13
= (2@) (6 )( 7, )

where leakance has been ignored and (.Y(m))( P(w)) = (ET).

and ( D )( Cr'xr>

Thus the general form for the voltage and current

solutions may be written

(7) = - (2@) () Bpute®™) = (Biaes™ " N s xi2p0en

4-14

- X -¥.X
( I ) = (G )E(Fnrexr ) + ( F r’ * )} » T=l929009n
' 4-15
In a similar manner the current constants may be

determined in terms of the voltage constants by use of equation

3-7 using the properties of duality,

(F) = (0)§(0e®™ ) + (03,8 ™) 222,00
4-16
(1)

~(2@)) ()} ey’ ) - (e T7))

I‘=l,2,..,n 4—17

'For equations 4~16 and 4-17, the voltage solutions
will be defined as the "primary" solution; the current solu-
tion is a "derived" solutione Conversely, for equations 4-14
and 4-15, the current solution is the primary solution from
which the voltage is deriveds This latter form will be chosen

to illustrate the following analysis of the boundary conditions.
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5. BOUNDARY CONDITIONS
Consider the boundary conditions for the complete:. -
conductor systems, There must be 2n such conditions which may be
specified as constraints on the voltage, current or both at the
boundaries.
For such an n-conductor system, there are in general
4n conditions at the boundaries, én at each end of the line.

The se are

(

<l
~
ne

(Vg)

s sending end conditions,

—~~
i

S~
e

x = -0 = (1)

<l
b4
e

and ( x =0 ( v, )

s receiving end conditions.

e

(T)x-o (1)

Alternatively, the origin of x may be defined at the sending
end, in which case the receiving end is designated by x = £‘;
in both cases, x increases from the sending end to the recei&ing
end.

0f the 4n boundary conditions, 2n must be known in
order to obtain a unique system solution. Several special cases

may be considered,
(1) (v,) end (I_,) or (V. ) and (I, )
(ii) ( v ) or ( I ) and ( V. ) or (.Ir )

(iii) (V. ) or (1) ana ( z_)
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(iv) any 2n conditions of ( Vs> ,( Is) ,(Vr> and ( Ir)

where (zr) is the receiving end impedance matrix defined by

(v.) é.(zr Y1)

The primary current form of solution is used to
illustrate these special casess
(i) (Vr> and ( Ir> known,

"n" equations may be written for (Ir) .

(i) + (P - (1)

and n equations for (Vr) ’

-(P((o))( G)g(Fanr> B (F'nrxr\)g = (Vr)
or (G>§(Fnrxr> - (F'nr\‘r)g = -(i(w))(Yr)

The 2n equations in 2n unknowns may be rewritten in

the form
((U) (uv) ) F__ = ((G)'l(lr) )
(vy) -(Uy) (Fn> -@) T (x@)(v )
5-1
where (UY) % (¥, o 5-2
\ ¥2 R
0 ey

An explicit solution may be obtained for the column

vectors (Fnr> and <F'nr> ’
(7)) = #§Cert (1) -~ (U@ (x@)(v, %
) = 3CeyT(n) + (o) (1@)(v, )
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Let (X) 2(Ce)(uy) ?
(7o) = HCo¥XX1,) - (X)E@)(v,)
and (Fr'n') = %g(UX)<XXIr> + (XXY(“D( er)i

which is the simplest form for numerical solution using a

digital computer.
(iia) ( I ) and ( IS')known.

The 2n equations are

(e)(r,) +(m) = (1)
and (e §<Fnr e-yr£> + (B eXrY.)g = (1)

or () (v) ) <Fnr> = (G)-1<Ir)
((Ue“z‘() (vet) (Fﬁr) ((G>—1(Is> »

5-3
which may be solved as in case (i)a.
(iib) ( Ir') and ( v ) known.

The matrix equation is

(m (v) )((an) - [()H () )
(uge ") ~(oge¥®)| | (72,) (@7 (T@)(v,)
which may be solved as in case (i) -4

(iii) ( I > and ( Z, ) kﬁown.

From ( Is) ’

(G)E(Fnr e—3r2> + (B egrﬁ)g = (1)
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From (Vr) (zr><1r> ’
X N - (R = (2D + ()]

or in matrix form

(G)(Ue_8l> : (e )( Ue“) F_\=/(1,)

(2.)() + P@) (O 0y - 2w @[T (o)
5=5

(iv) Bonding of cabless

| '
' 1 !
D Y !
t i } | L
\ \ !
2 ' ! o
. [ !
Y ' ; /\
3 ]
! J/ !
Y v !
n ! !
. ) ! ) I
2 : '
[} ! ‘
Xz-g,, X0 X =-8, !> =0
xX=~L x=~4 %=0

Fig. 5-1 Single Section of a Doubly Bonded Cable
Transmission System with Six Independent
Conductors.
Consider a section of a doubly bonded cable transmission
system as shown, where conductors 1, 2, and 3 are the cable cores,

conductors 4, 5, and 6 are the respective sheaths which are open

circuited at x = 0 and x = -L. The sheaths are doubly bonded to
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the equivalent ground conductor, g, at x = -vﬂ, some point
between the terminals. This ground conductor will be used as the
voltage reference conductor. If the earth is to be considered as
interacting with this system, then a further equivalent earth
conductor would be necessary-—this would be used as the reference
conductor, giving a system of seven independent conductors.
Consider this system of conductors where the core cur-
rents and the cdre voltages at the load are specified. In this
case the double-bonding junction must be treated as a '"new"
boundary and the given section of the transmission system must be
treated as two sub-sectionse If the load end sub-section is
< x
1
£ 0, then for section () the system of

designated as sub-section(D) , —QI (2 O, and the remaining

sub-section as @ , -4, £ X,

equations to be solved for the boundary conditions

( V1,2,3,> X. =0 = (V;?>1 , receiving end conditions

1
— A ] .
(Tay5,6 ), = =g, 2(v%), =(0), sending ena
and (Tj>x =0 & <Ir>’ =1, 2, «sey 6 , receiving

1 end conditions
is

~@Xe)Xvy) ) (p@)(e)us)

(rows 1,2,&3) (rows 1,2,&3) V?>
R R | CRA T
—(P(m))(G)(UXe - l) : (P((O))( GXUge 1 o ( S
(rows 4,5,8&6) . (rows 4,5,&6) o ) v >1

(¢) : (¢) 0
(all rows) | (all rows) (Ir)
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which may be expanded as

A I T A o T L N |
N l‘e'.'x' L ben (v,

Rk % o s s |E) [

_qu'eﬁf,f. o -l“xe '| ul le,' " ”(“XBJ& (V:)
A Ba e A :%u gy

SR FRTRI | 9
T N 'I-»..n-\\\v!'
l
I

96! o v e 9“

'96! Ve géé

where ¥ ij is the (i,j)th element of the product (P(w))(G)

and g5 is the (i,j)th element of the characteristic vector
matrix (G )

The system of equations 5-6 can be solved for the
constant vectors ( Fnr) 1 and( F;1r> 1 for sub—section@ . Hence
the remaining unknown currents and voltages at the left-hand
boundary of sub-section@ y X = -Ql’ can be found. The co'r.e
voltages and currents are continuous and the boundary conditions

for sub-section @ are

(Vj)xzzo L (v), = (\'fj) )=l 3 =1 2 ey 6
(T1,2,3) -0 = <I§)2

X2—-

and ( T4,5,6>x2= _ez é (I: > =(O> .

>
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The system of equations

- P G)(U P G)(U =V
G)Ey) (o) @y Vel
(Fnr)2
(G) (G)
(rows 1,2,&3) (rows 1,2,&3) (1°)
. 2
() (ve~ ¥12) @ wer¥t2y [ (1), i
(rows 4,5,&6) (rows 4,5,&6) (I:)2
57
can be solved for the constant vectors (Fnr)2 and (Fljlr)2

Knowing the constant vectors for each sub-section of the
transmission line, the complete solution for the complete section
can be determined using equations 4-14 and 4-=15.

If the sheath bondings for each sub-section are
connected, additional constraints are imposed on the system. 1In

this case,; the constraint equation is
6 6
>(1.) =-> (1) 5-8
i=4 3 1 3=4 372

Since the load boundary conditions for the case are specified,

then the connection of the bonding causes a constraint to be im-
posed of sub-section @ by sub-section®.

| Such a constraint can be handled by using a transposition
matrix as specified in the next chapter. However, since the
entries in a transposition matrix are unity, this represents a
"lJossless" internal boundary or transposition point. This is

satisfactory as a first approximation.
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For a "lossy" transposition, where voltage and current
magnitude and/or phase angle for a given conductor does change,
the corresponding entry in the transposition matrix will be in
general a complex number with absolute value different from

unity. Such an entry, tij’ may be represented by
t.. = ei(f) +JI‘)
1]

where‘P is the attenuation factor, and n gives the phase angle

Shifto



24

6. TRANSPOSITION MATRICES AND THE COMPLEX CHARACTERISTIC
MATRIX .

6.1 The Transposition Matrix.

Consider a transmission line with multiple sections
Qhere at each or any junction, two or more of the conductors have
#heir physical locations in space interchanged. Such an interchange
is indicated in the resistance, (R), inductance, ( L) and capaci-
tanceg( c ) coefficient matrices by a corresponding interchange of
the appropriate rows and columnss.

For examplé, the interchange of two conductors (i&j)
at one junction may be made in the( R ), ( L ) and.(C ) matrices
by using the transformation matrix('Er> which is formed from
the identity matrix(IJ) by interchanging the ith and jth TOoWS

or columns

E = 1 O
r

O ~—H — = = - — — .

f
I
i
f
|

Premultiplication of any matrix (A ), (say), by the
matrix(’Er) » (which is compatible with matrix (A.),) causes the
i oh and jth rows of ( A ) to be interchanged, and postmultiplica-

tion causes the corresponding columns of ( A ) to be interchanged.
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ice. (E(A) yields (A) with i*® and j*® rows interchanged,
(AXE,) yields(a ) with i
and ( Er)(A)(Er) yields (A) with ith and jth rows and columns

interchanged.

and jth columns interchanged,

Consider some properties of the set of matrices (Er> .

By inspection, these matrices are symmetric,

(Er3 = ( Er>ht 6-2

- If the matrix:(E% > of rank r, is partitioned as follows,‘

(E.) =<(Ui()) 0 5
0 (v,

. where ( Ui) is an identity matrix of rank i, and(‘I) is a

~—

matrix of rank (j - i - 1),

(d) = yfl = (¢ (0) 1
1 (0) (U;_;_)0)

where the symbol @ represents the scalar zero,

c. (9)%2 - /a o\ = (v,_;,)
(Vy_i-2)
0 1
and (E_ )% = fu) 0 = (u)
(5) 2
0 Wey)
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oo (e XE), = (u ) 6-3
and(Er) is orthogonal.

For this matrix (Er> the distributive law holds, i.e.

()(R)E,) + jo (B )L)E,) = (E)(2)(E,)
and hence,
(E)(2)E)(E)TNE) = (B)(a)E,)
where (2)(Y) = (a). |
Thus the transformation is valid on the product,(.A), without
reverting to the separate parts of the matrix (A.).

From these properties of the transposition matrix, it
may be seen that the operation (Er)(A)(Er) is a similarity trans-
formation which leaves the characteristic roots of (A) and (ErXAXEr)
unchanged, but not the characteristic vectors. The fact that the
characteristic roots of the different sections of the line are the
same is to be expected from physical considerations of the trans-—
mission line as a whole, since the geometrical configuration of
the conductors is unchanged.

The relationship between characteristic vectors for two
sections of line may be found from the defining equations of the

characteristic vectors for each section,

(A)(X) = A (x) ’
where (x) is the characteristic vector corresponding to the

root A for matrix (A) , and (Er)(AXEr)(ﬁ) = }‘(';i>

e (AEDN(M) = A (BTN = A (B )(Y)
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Hence the required relationship which depends on the orthogonality
of (Er) is
(x) = (B, X(w.

Consider the physical situation where at a junction,
more than one pair of conductors is interchanged. Implicit here
is the assumption that the necessary elementary transformation
matrices of the type (Er) may interchange at different times the
same rows and columns more than once.

For example, in order to interchange the ith, jth, and

kth conductors cyclically, the ith and jth rows and columns must

th and "old"

be interchanged, followed by an interchange of the k
ith rows and columns.

Consider n such interchanges at one junction and the
associated elementary matrices(lEl> » E2) y seey (En) . The

relationship between the original section of transmission line

with associated characteristic matrix(.A') is given by

(&) =(E)E_ ;) « « « « (E(ENA)EDN(E,). . . (E)
(@)(a)(x)

The relationships between the characteristic roots and vectors

e

of the matrices (A) and (A') are valid if it can be proved that
() -1 =(X), i.e. that such a transformation is a similarity

transformation. It will also be shown that( ®) is an orthogonal -

ma,trix,(c.o)((o)t = (U).

(o)™ (B B )« - - - (B(®))) ~F

(El)"l(Ez)“l v (B )N (E )T

i

il
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= (E)Ey) . v (B _NE ) = (X)
Also, (m)t = (El)t(Eg)t s e '(En_l)t(En>t

(B )(E,). - o & (En_l>(En) = (x)

e (0)(o )t = (U) as required. Note that (@) is not

symmetric.
Thus the characteristic roots of(.A) and (A') are the
same and the characteristic vectors of these two matrices are

related by

(a)(x)
(A)(4) = & (¥)
vhere (A') =(X)7F(a)x)
e (x) = (x)(4)
or (49) = (e)x).

Although the ( A ) matrices are complex symmetric

A (x)

matrices, only real elementary transformations have been used.

6.2 Expansion of Complex Matrices to Real Matrices of Twice
the Order. (8, 9, 10, 11)

In the numerical determination of the characteristic
roots of the complex matrix (A.), it is found convenient to expand
this matrix into a real matrix of twice the order, i.e. if(A)is

of rank n, then( A) will be of rank 2n.

expanded
Hence for the expanded matrix there will be twice as

many characteristic roots as for the original matrix. It will

be shown that the 2n roots of( A) expcomprise the n roots of (A)

and n conjugates of these roots.
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The usual way of expanding a complex matrix (ﬂf)into the
real matrix('So)which doubles the number of rows and columns, is

to expand each element, a + jb, of(‘T)as follows,

a + jbm~ / a b)
-b a

A more convenient form of the matrix ( So) is

(s) = /(&) (B))
<-—(B) (4)

where( A) is a matrix comprising the real parts of each complex
element of ( T ) in the same order, and(.B) is the corresponding
matrix for the imaginary part.

Now, it may be shown that the matrices ( So) and‘( s )
are similar by use of transformation matrices of the type ( E )

of the last section.
iee  (5) = (R)THs)(®) = (RXS)R)
where (P) = (E(E,)) - « « - (B (B )

and (P)(P)t =(U)

Hence since similar matrices have the same characteris-—

il

tic polynomials and characteristic roots, either of the above
forms may be used.

The relationship between the characteristic values, A,
of the complex matrix ( A ) = ( B ) + j( C ), and the charac-
teristic roots of the expanded real matrix ( A )exp may be shown
as follows. The characteristic equations of the complex matrix

(A.)and,its conjugate matrix (A.)* are
| det $(A) = A (U} = o



30

and det %(A)* - A*(U)% = 0

The characteristic equation of the following expanded complex

matrix has twice the rank of the original complex matrix(.A) ’

det (("A) - A (U) 0 = 0
0 ' (A)*-A*(Ub

or

get § (4) - (Ul . aetf(a)* - A*(U)i: 0

Therefore the characteristic roots of this expanded complex
matrix are the roots of ( A ) and their conjugates.

Consider the similarity transformation (T?)—l( K)T)
1 -]
1 J

For (K )= /(B) + j(c) 0
0 (B)—j(C>

where

(r) =

t\)] =

v

this transformation becomes

-1 _ /1 1) [(®) +(c) -i(B) + (e =/ (B) (©)) = (A,
(70 - () )<<B>-j<c> o - (o0) (o~

j -3
which is real.

The expanded matrix ('A)exp can also be reduced to the

((B) =(c)
(c) (B)

by a further similarity transformgtion using the matrix To vhere

(r,) = {7 )" =<o 1)

1 0

form
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These expanded matrices being similar, they have the same

characteristic roots and these roots will be the roots of (A) and
their conjugates, as required for the roots of a real matrix.
Since this process yields 2n characteristic roots and only the n
roots associated with the complex matrix ( A ) are required, then
it becomes necessary to separate these n required roots from the
2n roots obtained.

One approach to the selection of the required roots is to
determine the complex characteristic polynomial by evaluating
detl (A) - a(vU )l = O. Only n of the roots would satisfy
this equation; the remaining roots must be discarded. Such a
numerical process was devised using the numerical evaluation of
the characteristic polynomial attributable to A.M. Danilevsky.(lz)

As an alternative approach, it will be shown that if
the rank of the original complex matrix,(A)is small (né10 say)
then it is possible to determine the required roots by inspection.

Since the roots must appear as conjugate pairs, then the
real parts of the roots, Re(Ai) will be repeated. For the imagin-
ary parts, Im(Ai) there will be a change in sign. Hence the
problem becomes one of separating from the 2n known imaginary
parts, the n required imaginary parts. This may be achieved by
comparing the aggregate of the n imaginary parts of the roots to
the imaginary part of the trace of the complex matrix (A) since

Im (tr(A)) = :%: ¥ Im (Ai)

i=1
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63 Transposition and Connection Matrices for Multiple Section
Lines.
Consider the partially transposed transmission line
shown in Fig. 6.1 where the geometrical configuration of the
line is the same for both sections and losses due to the trans-

position itself are negligible,

o '
o 5\/ 'Y - L
ok 2 o
© 3 5 B A

3
‘Aj Q
) '\ 1P
T 4 (3
® ®
:_cz'"ez X © ;(-_.z-2| x‘=0

Fig. 6.1. Partially Transposed Transmission Line.

The relationships between the two sections ares
. -1
(1) (x) 7 (2)(x) = (z,)

and  (x) "M (1) (x) = (1)

(1) (X)) () (%) = (5,)(z,)

(iii) +the characteristic roots of the two sections are thé

same
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(iv) +the characteristic vectors of the two sections are

related by

(x) (e
or (x) (o)) (p,)
and (x)7 (&) = (&)
or (x)™ (o) =<G2)

where (d) ’ ( g) represent one characteristic vector of the vol-

(ay)

]

tage and current solutions respectively, and (])), (G ) repre-
sent the square arrays of the n characteristic column vectors
of the voltage and current solutions respectively.

For the two sections of line, the voltage and current

solution equations 4-14 and 4-15 become

(7)) = - (2 )(c )(Ux)§(F1 et ) (e )]
(F) = (o) ( 7y, mee®™™) + (30100 1)
for section () and
(720 = = (2 0, (™) = (53,0077 )
(5) = () (Famet 2) # (Fpmee 7 2 )} ‘
for section(?). But,
(@) = (x) (2 @)(x) =(x), (P (@)(x)
and (6,) = (x) 7 (e) = (x),(¢)
(py@)(a,) = (x), (P @)(c)

Hence the current and voltage solutions for secthnlgbbecome
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(7,) = (1) (3@ ()7, 0o’ ™2) = (B3 0" 2

and (Tz) = (x)t(Gl)é (Fz,nrexrxz> + (Fé,nre-xrX2 )g

Since the sequence in which the propagation constants,
Xr are taken is unchanged by the transformation, the matrix
(UX) is the same for both sections.

At the transposition boundary,

(Tg)x = (Tl)x

=0 1 =-44
an \i = NT
¢ (vz)xz.:o ( 1)x1=—421
-yt ¢
(G1)<Ue 1) (Gl)(Uex 1) l,nr

_(Pl (@ ))( G1)< Uye ) (Pl C »(Gl)( Uye ) F] nr

(x), (&) (x), (¢)) \ (%5, 0r)
~(x), (2 @)(e)(vy) (x), (2 @) (e)(wr)/ \(7y )

(x) ,/ (&) () % e
ey @) (o,)(vn) (e @) (6)) () \(vy )

6.4
This system of equations may be solved for (F2,nr)
t 1 ! 3
and (F2,nr) in terms of (Fl,nr) and (Fl,nr> . The first
n equations represent current continuity and the last n equations

represent continuity of the space derivative of current.
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. . Tyl
Note that since the matrices (Ux) and (Ue )are

diagonal, they commute and may be combined to form

¢! 3¢ +yt
(™) = (Y oy) - (we).
Since equation 6-4 provides a relationship between
the constants of integration for the two sections of the trans-

mission line, then the analysis can be extended to give similar

relationships between all sections of a multiple section line.

1 !

e \ 4 °
4 \ [ L

o

" 2 Y 2o (@]
o 5\\’1 3 A
" D

o3 L\ 3

J o\ o

6 6
® 0]

x,=0 = =~ £, x,=0

Fig. 6.2. Two Sections of Transmission Line.

The form of the system of equations 6-~4 indicates an
alternative and simpler method of considering the transmission
line sections. For the transmission line shown in Fig. 6.2, the
sections are identical and hence have the same characteristic
equation, roots and vectors; only the constants of integration
are different. At the transposition boundary, the respective

13)

currents and voltages are related through a connection matrix(
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This connection matrix is identical to the matrix (X)'t as -

observed in equation 6-3
and (x), (v,)

I
~
<l

o
S’

This is an invariant power transformation as

(5,) . (7,) = (1)) (x)&x), (%) = (1)), (F,)

Use of the connection matrix facilitates solution for
multiple section transmission lines by greatly reducing the

complexity of the numerical analysis.
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7 THE (Z) AND ( Y ) MATRICES FOR A COMPLETE SYSTEM
7.1 The (Z) & (Y) Matrices

Under the constraints that the voltage reference is
within the system, and that the sum of the currents over all
conductors is zero, it has been shown that the matrices (z)
and ( Y') of rank (n + 1) reduce to the matrices ( 2 ) and ( Y )

of rank n. For the ( Z ) matrix,

- 1 ' - ! - 71
er = Z Trs +Z n+l,n+l Z r,n+l Z n+l,s
Hence,
er = Rr + Rn + Jm(er + Ln+1,n+1 - Lr,n+1 - Ln+1,r)
. D' D' D D!
= (R, +R) + J—‘%E (In X D' + In —-—-‘———DI,”l X - In D——-—‘-—,n"'l X _ |n F—)
r K n+l,n+1 r,n+l n+l,r
! — 1
and since Dr n+l = Dn+1 r
yA = (R 4+ R ) + M in(.].)_l_'.:ﬁ_l_) 7-1
- 1
rE o n ‘ 2m D n+1 n+l

where Dij is the geometric mean distance between conductors i and

J and Dy is the geometric mean radius of conductor i.

Similarly,
1 !
7 - R + Jeu ln Dr n+l Dn+1,s 722
rs 0 n 2% D! _.D'
s “n+l,n+l
and since Dij = D51’ the matrix ( Z ) is symmetric.

The reduced matrix ( Y) may be found from the

reduced form of the potential coefficient matrix ( P ) where

— 1 ' - ' - '
Prr - Prr + Pn+1,n+1 Pr,n+l Pn+1,r
2
1 |n (Dr,n+1) 7-3
- 2ne D _.D

rr° n+l,n+l
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I ey
and since D;; = Dj;, the matrix (P) is symmetric. The
reduced matrix, ( Y ) is given by

() = jo(P)™' = ju(c) 7-5
Since the matrix (P ) is symmetric, ( Y ) is symmetric.
7.2 Properties of the (2 ) and ( Y) Matrices.
Associated with the voltage equations we have
(4) = (zX¥) ,
and for the current equations
(8) = (1)z)
Since (z) = (z),
and (x) = (v),
(zXx) = (z2),(v), = ((xNz) |
(4) = (B), 7-6

Thus (.A) and (.B) are similar and hence have the same
characteristic values.

Since the matrices (D) and (G ) are the character-
istic vector matrices corresponding to the matrices (A) and

(B‘> respectively, we may write
(p) ™ (a)D)
and (¢) ™ (a)e)

(ur) 7-7

(un) 7-8

The transpose of equation 7-8 gives

(), (), (e)3 = (), = (m)

il
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and from equation 7-6,
-1
(6),(aXe); = () 7-9
Hence, from equations 7-7 and 7-9, we obtain

(¢) (D) = (v) 7-10

which is a sufficient but not necessary condition. It may
also be seen that if this condition is satisfied, the matrices
( G ) and (D) commute.

Since the voltage and current forms of solution are
related to the matrices ( A ) and ( A )t respectively, there

exists a matrix('T ) such that
(TYTH(AXTY = (a)y 7-11

Hence equation 7-8 becomes

(c)H{T)H(a))(e) = (wm) 712

and from equations 7-7 and 7-12

(p) = (7T)e). 7-13

7-3 Restrictions on the Use of the Distributed Parameters.

Fundamental to any derivation or use of the distributed
parameters is the assumption that there is a relationship with
Maxwell's electromagnetic equations(14).

The application of circuit concepts to electromagnetic
field phenomena, is restricted to those frequencies where the
wavelength is far greater than the physical dimensions of the

circuit. This condition is satisfied for power systems operating

at low frequencies.
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For a transmission line in a medium with homogeneous
dielectric, the distribution of leakage current in the space
surrounding the conductors follows the same pattern as the
electric flux distribution and thus the conductance matrix ( G )
has the same form as the capacitance matrix ( C ) with conduétivity

in place of dielectric constant (5);
() +io (C) al6y+ juey)

where the subscript "d" denotes dielectric. Hence ignoring the
conductance  ( G ) implies that the displacement current is far

greater than the conduction current in the dielectric,

!

i.e. &1

There is a further contribution to the matrix ( G ) due to the
supporting mechanism of the conductor system. This can only be
expressed empirically. In the physical model used, the effect of
resistance ( R ) but not of conductance ( G ) was included.
This implies that within the condﬁctor the displacement currents
are negligible compared to the conduction currents

0 c

@
€c

le€a

> 1

where the subscript "c" denotes conductor and G’C is finite,
Since there is a component of electric field in the

direction of propagation to force the current through ﬁhe

conductors, then the electric and magnetic field distributions

must be disturbed which in turn affects the original inductance
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and capacitance parameters. However, this may be neglected if
the axial electric field components within the homogeneous

dielectric are small compared to the transverse components

“eq

X1

Cc ¢

Proximity effect involves all the parameters but has
the most appreciable effect on the inductance and the capacitance.
If the separation between conductors, D, is much greater than

the conductor radius, ry

the effect is negligible,
These restrictions are applicable to the mathematical
model developed in préce¢ding chapters. Increased sophistication

of the model would require more stringent restrictionse.
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8 EXAMPLES OF APPLICATION AND RESULTS

Two examples of application were considered to test
the validity of the theory. The first was an aerial double-line
three phase transmission system with an overhead ground wire.
The second was a three phase sheathed cable underground transmis-
sion system with a separate ground wire. It was assumed that
homogeneous media surrounded the transmission system in both
cases. Effects of the earth on distribution parameters were
ignored. The rational M.K.S. system of units was used in the

calculations. Leakance was ignored in both examples.

8.1 The Overhead Transmission System

The overhead transmission line in Figure 8.1 consists
of six hollow aluminum conductors, 1-6, with inside radiﬁs
0.00622 metres and outside radius 0.0145 metres, and a copper
ground conductor, g, with radius 0.00636 metres. The géometrical
configuration of this system is shown in Figure 8.1.

Both transposed and untransposed systems were considered.
Transposition points are shown in Figure 8.1. The system was
assumed to operate at a constant temperature.

The transmission line has a capacity of 200 M.V.A. at
230 KV phase to phase and operates at 60 cycles per second. The
load is assumed to have a 0.8 lagging power factor with three
phase Y~connected balanced impedances.

Solutions for full load and no load conditions were

found for current, voltage and pover.
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Fig. 8.1 A three section, six conductor with ground, overhead
system.
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8.2 Results

In Figure 8.2, the ground wire current variation along
the transmission line from the receiving end is plotted. For
the untransposed system, the current varies linearly with dis-
tance as might be expected, and little variation is evident
between no load and full load conditions. For the transposed
system, the current variation is cyclic with maxima and minima
occurring at the transposition points for both no load and full
load, although the general trend is an increase in current from
the receiving end towards the sending end. The trend can be
explained on the basis of the different voltages occurring at
the transposition points. The reversal of current magnitude at
the transposition points is attributable to the effect of the
mechanically abrupt transposition on current continuity.

Figure 8.3 and Figure 8.4 show the variation of power
and reactive power respectively of the transmission system.at
no load. The real power increases rapidly at the sending end;
the capacitative reactive power increases less rapidly.

Figure 8.5 shows the current phase angle differences
at no load and full load. Although the three phase current.
phasors are balanced at full load, they are quite unbal@ﬁced
at no load due to the effect on the charging currents of the
asymmetrical geometry of the transmission line.

Figure 8.6 and Figure 8.7 show the a-phase current
variation in magnitude and phase respectively along the transmis-
sion lines As expected, the no load current distribution in~-

creases linearly from the receiving end. At full load the
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current decreases towards the sending end, which is an indication
of the compensation effect of the charging current on the load
current. Little difference was observed at full load between
the phase angle variation along the line of the transposed and
untransposed systems. A difference can be seen however, under
no load conditions.

The a-phase voltage magnitude variation and phase
angle shift are indicated in Figure 8.8 and Figure 8.9 respectively.
Under full load, the voltage difference between the transposed
and untransposed systems was slight, and for no load, no differ-
ence was detecﬁable. Similar statements can be made for phase
angle shifts along the transmission line.

The data for the above graphs is included in Appendix
C.l. In addition, it may be seen that at full load, while the
power consumption increases towards the sending end, the inductive

reactive power decreases.
8.3 The Underground Transmission System

The underground transmission system in Figure 8.10
consists of three sheathed conductors and a ground wire. The
solid copper conductors, 1-3, have a radius of 0.0132 metres and
the aluminum sheaths, 4~-6, have an inside radius of 0.0239 metres
and an outside radius of 0.0247 metres. The solid copper ground
wire has a radius of 0.00318 metres. The geometrical configura-
tion of the system is shown in Figure 8.10.

The system was assumed to operate at a constant tempera-

ture in a medium with relative dielectric constant, €. = 4,0.
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The transmission line has a capacity of 10 M.V.A. at
13.2 KV phase to phase and operates at 60 cycles per second.
The load is assumed to have a 0.9 lagging power factor with three-
phase Y-connected balanced impedances.

Solutions for full load and no load conditions were

found for current, voltage and power.
8.4 Results

In contrast to the overhead tfansmission system, the
gfound wire current of the underground system is independent of
load and decreaseé in magnitude slightly from the sending end to
the receiving end. A similar small change was observed in the
phase angle. These results may be seen in Appendix C.2.

Figure 8.11 and Figure 8.12 show that the variation
of power and reactive power respectively along the transmission
line at no load is linear.

The conductor current phase angles are symmetric for
full load conditions but not for no load conditions, as shown
in Figure 8.13. The phase angle drift along the line is negligi-
ble for no loa& and is slight for full load, as indicated in the
data of Appendix C.2. |

The conductor current variation along the line from
the receiving end, as shown in Figure 8.14, increases for both
no load and full load.

In Figure 8.15, the sheath current phase angle differ-
ences aré shown. These are the same for both no load and full

and there is no phase angle drift along the line for any phase.
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The variation of the sheath current along the line is
shown in Figure 8.16.

From Appendix C.2 it may be seen that conductor voltage
variation along the line in both magnitude and phase is small
at no load, but increases slightly at full load. The three
phase voltages are always balanced.

Figure 8.17 shows the phase angle differences of the
sheath voltages. Considerable imbalance is appdrent at no load
but is less severe at full load. The phase angle drift along
the line is small.

In Figure 8.18 and Figure 8.19 the sheath voltage
variations along the line for no load apd full load respectively
are shown. Linear increase from the receiving end is observed
at full load, but the increase is not linear at no load.

The data for the above graphs is included in Appendix
C.2. In addition it may be seen that at full load, while the
power consumption increases towards the sending end, the

inductive reactive power decreases.
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9 CONCLUSIONS

An accurate mathematical procedure was developed to be
used in the analysis and design of multiconductor transmission
systems under various loading or boundary conditions. The
validity of the theory was substantiated using two numerical
exampless The results of thesé two analysis are given in the
report.

The sequence in which the parts of the numerical analy-
sis must be performed is shown in Appendix B. It is apparent
that given the conductor and geometrical specifications of a
particular transmission system, a variety of terminal or boundary
conditions can be analysed for that system without repeating the
steps which lead to the general solution. In developing this
procedure, an important theoretical concept was evolved; the
concept of a complete system.

Consider the example of the overhead conducfor system,
which comprises seven conductors, including the groﬁnd wire but
excluding any earth effects. Only -six of these are independent.
By choice,  the ground conductor was used as a voltage reference,
but the magnetic, electric and loss effects due to this conductor,
which may not be ignored, appear in the system parametric matricese.
The reduced system resistance matrix for example is not a
diagonal matrix since the resistance of the ground wire appears
as a component of all matrix elements.

Had the earth effect been included in the model as an
equivalent earth conductor, then there would have been eight

conductors, seven of which would have been independent. The
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*

ground wire or the equivalent earth conductor would be chosen

as a reference conductor. Hence definition of the complete,

system requires the specification of a closed system of conductors,
one of which will be used as a voltage reference conductor.

This approach to transmission line analysis suggests
that it is ideally suited to time shared machine aided design.
The optimum boundary terminations or the best locations for the
transpositions, for example, could be arrived at by using a
computer to verify an analyst's heuristic reasoning.

Future research into this field should include analysis
of the full significance of the location of the characteristic
values in the complex plane with respect to propagation and
attenuation. Further development will lead to the superposition
of analysis of the same system at various frequencies for trans-
ient studies or for carrier wave transmission studies. A more
precise formulation and method for finding the complex trans-
position matrices which occur at lossy transposition boundaries
will also be required, particularly where optimum solutions are

to be found.
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APPENDIX A
THE PARAMETERS R, L AND C.

A.1 Assumptions

(14, 16) of the matrices ( R ) '

In the derivation
(L) and (C) , it will be assumed that skin effects,

proximity effects and saturation may be ignored. It will be
assumed also that derivation using static fields will not
invalidate the application to a slowly changing or quasi-static
system. The rationalized M.K.S. system of units will be used.

Initially, all the parameters for a system of (n + 1)
conductors will be related to some arbitrary external reference,
but in the final form,the restriction that the sum of the currents
within the system is zero will be'applied, and all voltages will

bé .referred to some conductor within the system (eege & ground

conductor, or an equivalent earth conductor).

A,2 The Resistance, Rl.,

The matrix of resistance per unit length is

(R) = [m
1
R2 | 0
1
0 Rn + 1
1 t
where Ri = joi /Ai’
. .th
A. = cross sectional area of the i conductor

1
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1 . .. .
and jo i = ‘)30(1 + at) = resistivity of conductor i at a.

temperature t°¢C

where ‘/oo resistivity of the conductor material at a

temperature tooC

and ' = thermal coefficient of resistivity.

A-3 The Inductance, L1

Consider the group of (n + 1) conductors shown in.
Fig. A.1 The axes are set up through conductor " o.",.about
which the flux linkages are to be computed. The point X is some
remote point where magnetic effects may be considered to be
negligible. The total number of linkages produced by flux
which crosses the x — axis between the origin and the point X

is given by

D D.
\V&=-§% (i+|n3.~_x)1 + I |n5b—:+.....+lj\n51§
n+1, x
+ ceee + In + lln T::—;—jfz—
- A=2
where w = permeability of the surroundiﬁg medium
Ty = radius. of conductor j
ix = distance between conductor j and the point X
Diﬁ = distance between conductors i and j
Ij = current in ith conductor

A similar expression can be written for the flux linkages surround-

ing the remaining conductors.
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d nel

Fig. A.1 Group of n + 1 Current Carrying Conductors.,

For two parallel cylindrical conductors of arbitrary
cross—section, the total flux linkage about one of the conductors

is given by (15),

=,
[

k.
¥
(O8]

_ ul
A*’T - 2n \n

l=}
(N

i

where I is the current in the conductor

Dij is the G.M.D., the geometric mean distance between the
conductors
D}i is the G.M.R., the geometric mean radius of the

conductor.
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Replacing the distances D and r of equation A-2 by

the geometric mean distances as defined in equation A~3 gives

Ya\ =

Y

Y'n + 1

pl pl pl
£ fln 22 2% ..., \n—%—‘-*—l—:—-’i T \ A-4
T ' a
Daa Dab a, n + 1
pl
ax
\nDl S & O ® 0 0 » % & 8 5 5 80 SO0 8 89O O 6O e SO0 OO Ib
ba
1 1
\n Dax \n Dn + 1, X I
D L I e @& & 8 o 1 n+1
n+1, a D

n+1l, n+1

For a linear system, the inductance coefficient, may

be defined as

. D
L &1 DR P A-5
ii I. |1, =0 2n T
J i D..
1’43 JJ
pl ‘
A Yi VIR I b4
L.. = = n A-6
ij 1. | I, =0 27 1
il D;
i#3j

1
and hence the inductance coefficient matrix (L ) becomes

(L') = [Lyp Ly eeeeeeene Iy AT

L21 ®© 9 86 698 085 000008880002 000 88000

® O 66O 09 500 "9 0D SOOI EDSOESOCOOODSO

L
n + 1’ 1 ..... Ln + 1, n + l
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A-4 The Capacitance, C! .

For a system of (n + 1) parallel conductors, Maxwell's

potential coefficients are defined by the equation

Va = Paa Pa,b .ooonoPa, n + l Qa A_8
Vb Pba. 06000000000 00000000 Qb
Vn + 1 Pn + 1, afan +1, n +1 Qn + 1

1
where the P , are the coefficients of potential.

Solving for the charges Qj we have

A-9
Qa = Caa’ Ca,b L N RSN S S A R Ca’ n +1 Va
Qb Cba * & ¢ ¢ 0 ¢ 0 & 0 8 0 O 00 " S " OO OO O T OO GO GO vb
.; ..Q......O..»G0.0.0.9.008&&0..‘.0. L X J
Qn + 1 Cn + 1, a**°**°°0 e Cn'+ 1, n +1 vn +
Where the C', are the capacitance coefficient
For the system of (n + 1) conductors,
o Y4 L ln —dex
P.. = = = n A-10
=0 2 D.
34 e is 3
P43
v
A 1 D.
P.. = — _ \ _ 1 1X A-11
1] Q,] Qi =0 = 27e \n D..
1]
i 4
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L

wherethe D's represept the distances between the points denoted
by the subscripts, and € is the permittivity of the medium
surrounding the conductors. Clearly, the matrices of potential,
capacitance and inductance coefficients are symmetrice.

Since, for the potential coefficient matrix
1)rr > Prs > 0
then for the capacitance coefficient matrix

Crr ) 0
and Crs é 0

For a system of conductors containing coaxial cables
where one conductor is completely enclosed by another as shown
in Fig A.3, then because conductor j is shielded by conductor

i,

-

Fig. A.2 Cross—section of part of a system of conductors where

one conductor completely encloses another.
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For the system,

() = (c)(v),

0.
— ol
then ij = v

In particular, for V:.L = 0, C.j becomes the capacitance between

two concentric cylinders. Also,

Qi
C.. = =—
ij Vj Vm =0
m £ j
Yy
==-¥.|lv =0
J m
m #£ j

and since the matrix (C) is symmetric, then

i3 = % 33
In terms of the potential coefficients, Pik = ij and .

Piﬂ =P imply that Cjk =‘Cje = 0, and Pi' = P.. = P.. implies

L 3 ji ii
C.. =C.. =-0C.,.
1) Ji Jd
that the permittivity of the medium surrounding the conductors

« In this discussion, it has been assumed

is constant.
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A flowsheet of the solution procedure for (n + 1) conductor system.

Part 1

Part II

Procedure

Compute R, L, C, G
coefficient matrices
from transmission line
configuration.

Form reduced Z and
Y matrices.

Find characteristic values

of characteristic equation
(A) -2 (u) =o0

where (A) = (2)(Y)

Find characteristic vectors
D - voltage vectors
G - current vectors

Solve for 2n unknown
constants using known
boundary conditions

and the connection matrices
at the transpositions.

Generate required output
from the particular
solution.

Checks

Manual calculation
of selected elements.

"

(0)~1(4)(D) = (r V)
(€)™ (a),(6) = (A V)

The voltage form of

the solution must give
the same results as the
current form of solu-’
tion

Part I of the procedure gives the general solution

for the given transmission line; Part II provides the particular

solutions for the specified sets of boundary conditions and

connection matrices at the transpositions.
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Appendix Cl.1 Overhead Conductor System, No Load Voltage and

Power
Dist%nceIVA/ IVg |Vc| [Ya [Yb lYC P/Q |
(km) * (kv) (kv) (kv) (deg) (deg) (deg) (m.v.a.)
UNTRANSPOSED
0 1%32.8 132.8 13%32.8 O ) =-117.2 117.2 0} 6/
' 0.0
133,2 1%0.8 127.6 127.7 0.58 -117.1 117.3 - 46@26/
0.4
1.52
1 399.6 115.6 112.8 113.5 0.30 . -=116.3% 119.1 -118.1
TRANSPOSED
0.46/
266.4 124.8 120.0 122.0 0.3%0 -116.7 118.0 = = BZ,O /
051
399.6 115.7 113.4 112.7 0.04 -115.1 118.6 -117.9

Appendix Cl.2 Overhead Conductor System, No Load Current.

Dist%nce Iz |z ) L, I_Ib L1, LIg/ T,
(km) (amp) (amp) (amp) (deg) (deg) (deg) (deg)/gmpxlo4
UNTRANSPOSED ‘
0 0 0 0 0 0 0 0
"'4707/
133.2 58.5 62.0 59.6 02.2 28.7 -152.8 21.0/
- 7 04
266.4 115.0 121.0 117.0 92.3 28.8 =-152.7 81e0/
-47.0
%99.,6 169.0 178.0 172.0 92,5 28.6 ~152,5 118.0
TRANSPOSED
-27.7/
=89,

399.6 170.0 174.0 174.0 90.5 28.6 =150.6 42.0
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Appendix Cl.3 Overhead Conductor System, Full Load Voltage and

Power.
Dist%ncelvg |Vb| IVJ tVa IYb [YC P/Q
(km) (kv) (kv) (kv) (deg) (deg) (deg) (m.v.a.)
UNTRANSPOSED
212.9/
0 132.8 13%2.8 13%2.8 0 -117.2 117.2 234.,7
324.2/
133.2 156.1 15%.0 148.0 7.6 -108.7 126.8 266.2/
) 3335
26644 176,8 175.0 165.5 13%.5 =-102.2 134.7 224.8/
341.0
399.6 19%3.9 193.4 181.0 18.5 - 96.,9 141.2 230.6
TRANSPOSED
333.5/
266 o4 176.,1 172.0 169.1 14.5 =-102.0 1%%.5 224.9/
' 341.,0
39946 190.9 191.0 186.5 20.4 - 907.% 139.6 230.5

Appendix Cl,4 Overhead Conductor System, Full Load Current.

Dist%nce|14 IIbl IIC| [la‘ LIb LIC ng/|Ig|
(km) (amp) (amp) (amp) (deg) (deg) (deg) (deg)/ampx104
UNTRANSPOSED
0 500.0 500.0 500.0 143.1 23.1 - 86.9 0 /
h'4"707
133-2 45830 45800 462-0 148.9 2904 - 90-6 ilog/
. - 7.
266.4 409.0 408.0 415.0 156.3 372 - 97.1 22.2/
—47.
399.6 357.0 3%58.0 372.0 166.0 47.5 ~107.0 122.,5
TRANSPOSED
-36.0/
26684 410.0 412.0 41400 15607 3701 - 9608 1907

_7700/
399.6 364.0 359.0 365.0 166.7 46.6 -107.0 69.4
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Appendix C2.1 TUnderground Conductor System, No Load Voltaée

Distance Voltage:

0

500

1000

1500

2000

2500

3000

and Power
~ System
Magnitude and Argument for Reel and
Reactive
conductors 1-6, [V/|V| Power

R R

0.0/
76.20

0.0/
76.20

0.0/
76,20

0.0/
76.205
0.0/
76.21

0.0/
76.21

0.04/
76.21

-120.0/ 120.0/ 0.0/
76.20 76,20 0.0

-120,0/ 120.,0/ =T.6/
76,20 T6.20 2,52

-120,0/ 120.0/ -6.1/
76.20 T6.20 4375

-120.0/ 120.0/ =4.5/
76,205 76.205 6.69

-120.0/ 120.0/ -2.65/
76.21 76.21 8.35

-120,0/ 120.0/ -0.55/
76.21 76,21 9.73

~120.4/ 119.6/ 1.9/
76,21 76,21 10.84

0.0/ 0.0/ 0.0/
0.0 0.0 0.0

~54.6/ -125.6/ 0.61/
3.41 1.41 -0.18

-51.6/ =120.5/ 1.22/
6.85 3,13 -0:37 -

-48.7/ -116.4/ 1.83/
10.35 5.20 ~=0.55

—45.7/ =112.9/ 2.44/
14.00  7.61 =0.73

-42.7/ -110.1/ 3.05/
17.70 10.41 -0.92

-40.1/ =107.7/ 3.66/
21060 13060 —1.10

Appendix C2.2 Underground Conductor System, No Load Current.

Distance Current:

b

500

1000

1500

2000

2500

3000

0.0/
0.0

5.7/
2.75

5.7/
5.50

5.7/
842%

5.7/
10.99

5.7/
13.71

5.7/
16.45

Magnitude and Argument for -

conductors 1-7, [I/\1

0.0/ 0.0/ =14.7/
0.0 0.0 17.8

-98.6/ 142.6/ -14.6/
2.94 2.76 14.8

-98,6/ 142.6/ -14.6/
5.87  5.50 11.85

-98.6/ 142.6/ -14.7/
8,80 8.28 8.88

-98.6/ 142.6/ -14.7/
11.75 11.05 5.92

-98,.6/ 142.6/ -14.7/
14.67 13.80 2.96

-98.6/ 142.6/ 0.0/
17.60 16.55 0.0

de de de de
(A ; (A ; (A ; A

-116.9/122.1/ 84.5/
16.9 17.0 5615

-116.9 122.0/ 84.4/
14.1 14.2 5425
-116.9 122.1/ 84.25
11.27 11.35 535
-116.9122.1/ 84.1
8.44 8.51 545
-116.9/ 122.1/ 84.0/
5.63 5.68 555

-116.9/122.1/ 83.9/
2,82 2.84 5.66

0.0/ 0.0/ 83.75/
0.0 0.0 5.76
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Appendix C2.3 Underground Conductor System, Full Load Voltage

Distance

(m)

500
1000
1500
2000
2500

3000

Appendix

Distance

L
(m)

500
1000
1500
2000
2500

3000

and Power
System
Voltage: Magnitude and Argument for Real and
conductors 1-6,. [V/IVI Reactive
) Power
(deg) (deg) (deg) (deg) (deg) (deg) P/Q
kv kv kv v v v (m.v.a.)
0.0/ ~120.0/ 120.,0/ 0.0/ 0.0/ 0.0/ 90.05/
76.20 76.20 76.20 . 0.0 0.0 0.0 43.82
0.0/ =-120.0/ 120.0/ 61.8/ -47.2/ 176.15/ 90.67/
76,23 76.23 76.23 62.4 65.5 63,0 43.70
0.0/ =120.0/ 120.0/ 62.1/ -47.0/ 176.20/ 91.29/
76026 76.26 76.26 124.8 13101 124'9 43059
0.0/ =120.0/ 120.0/ 62.2/ -46.9/ 176.40/ 91.91/
76.29 76.29 76.29 187.0 197.1 188.9 43.48
0.0/ ~120.0/ = 120.0/ 62.3/ -46.8/ 176.60/ 92.53/
76,33 76.33 76.33 250.0 262.5 251.3 43.36
0.0/ =120.0/ 120.0/ 62.4/ -46.6/ 176.75/ 93.15/
76536 76036 76036 312.0 328.5 31405 43.25
0.2/ =119.75 120,15/ 62.6/ -46.4/ 176.95/ 93.77/
76.39 76.4 76.4 374.0 %95.0 376.6 43,13
C2.4 Underground Conductor System, Full Load Current
Current: Magnitude and Argument for
Conductors 1-7, [I/1T|
(deg) (deg) (deg) (deg) (deg) (deg) [(deg)
i\ Iy R Iy N A A
-26.00/ ~146.00/ 94.00/-14.7/ -117.¢/'122.0/ 84.5/
439,0 439.0 439.0  17.75  16.90 17.00  5.15
-25.80/ -145.65/ 94.%/ -14.7/ -117.0/ 122.0/ 84.3/
440.0  440.0 440.0 14.80 14.10 14.20 5.25
-25.60/ ~145.40/  94.60/ -14.7/ -117.0/ 122.0/ 84.251
443,0  442.0 441,0 11.90 11.30 11.30 5.35
-25.45/ -145.10/ 94.9¢/ -14.7/ -117.0/ 122.0/ 84.10/
446.0  445.0 443.0 8.90 8.45 8.40 5.45
25,29 -144,90/ 95.20/-14.7/ -117.0/122.0/ 84.00/
448,0 446 .5 445.0 568 5.64 5.67 5.55
-25,10/-144.60/ 9540/ -14.7/ -117.0/122.01 83.91
450.0 448,0 447.0 2.84 2.82 2.84 5e66
-24,9/ -144.25/ 95.80/ 0.0/ 0.0/ 0.0/ 83.75/
452.0  450.0 449.0 0.0 0,0 0.0 5.76
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