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ABSTRACT

Solutions to classes of second-order, nonlinear

differential equations of the form
X 4+ 2E>£ + f(x) = 0, x(0) =1, x(0) =0

are approximated in this work. The techniques which are
developed involve the replacement of the characteristic,
f(x), in the nonlinear model by piecewise-linear or piecewise-
cubic approximations, From these, closed-form time solutions in
terms of the circular trigonometric functions or the Jacobian
elliptic functions may be obtained. Particular examples in
which f(x) is grossly nonlinear and asymmetric are considered.
The orthogonal Jacobi and shifted Jacobi polynomials are
introduced for the approximétion in order to satisfy criteria
which are imposed on the error and on the use of symmetry.

Error bounds are then developed which demonstrate
that the maximum error"iﬁ the normalized time solution:is
bounded, no mafter how large the coefficients of the non-
Iinear %erms in the model become. Because of these error-bound
results, an heuristic measure of the departure from linearity
is defined for classes of symmetric oscillations, and the
weighting of convergence of the Jacobi and shifted Jacobi
polynomial expansions is set according to this measure.

For asymmetric conservative models,. shifted
Chebychev polynomials are used to obtain near-uniform approxi-
mations to the characteristic in the nonlinear differential

- equation.
ii



Based on the equivalence of the classical approxi-
mation techniques which is given for the symmetric, conserva-
tive models, extension of the polynomial approximation to
classes of non-conservative models is considered.

Throughout the work, by comparison with classical
approximation methods, the polynomial approximation tech-
nigques are shown to provide an improved, direct and more
general sttack on the approximation. problem with a decrease in

tedious labor.
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JACOBI POLYNOMIAL TRUNCATIONS AND APPROXIMATE SOLUTIONS TO
CLASSES OF NONLINEAR DIFFERENTIAL EQUATIONS

1. INTRODUCTION

14,1 Description of the Mathematical Model

In order to obtain mathematical representations which
approach the natural behaviour of some real systems, nonlinear
relations among variables are often requifed. Many of these
systems are described by mathematical models for which closed-
form solutions cannot be found in terms of known functions, and
a numerical schemé must be employed to obtain an accurate so-
lution. There is a considerable advantage in having a closed-
form solution to a problem because one achieves insight into
changes in the solution with variation of particular parameters
in the model. In engineering, the concern with approximation
techniques is important because many models derived from the
physical world are themselves only approximations. Therefore,
it is often useful to approximate a nonlinear system model by
-one from which a closed-form solution may be obtained,

Initial consideration in this study is given to the

second-order differential equation
M(x) = % + £(x) =0, x(0) =1, x(0) = 0, (1.1)

which describes undamped or conservative oscillations with a
single degree of freedom. It is not required that f(x) have
zero-point symmetry in this model. Thus, the zero on the right-

hand side of equation (1.1) does not necessarily imply that the



oscillations are free - a constant or step function driving term

is allowed. The principle of superposition does not apply to

general nonlinear systems. In particular, nonlinear oscillations

descriﬂed by equation (1.1) show a dependence of the frequency

on the amplitude of the oscillation, To provide a constant

frame of reference from which the examples to be considered

may be compared, the initial conditions are normalized as

shown in equation (1.1), Conversion of models with arbitrary

initial conditions to this form is outlined in paragraph (2.1,1).
Common examples of the model in equation (1.1) occur

in the description of electrical and mechanical oscillating

systems. Suppose, for example, that iL(¢) = 2(@) where @ is

the flux density for the nonlinear inductor in the LC circuit

shown in Figure (1.1).

Figure 1.1 A Nonlinear LC Circuit

If the inductor alone is nonlinear, by Kirchhoff's current law
one obtains Cv + g(@) = 0. Now v = N for an N-turn coil from

Faraday's Law. Hence,

$ + 55 &l@) = o. (1.2)
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Carrying out a dual analysis for the case in which the capacitor

alone is nonlinear, one obtains
. 1
q + T h((l) = 0, (1-3)

where q is the charge on the capacitor and the voltage across the
capacitor is defined by the relation vc(q) = h(q). Hayashi(l)
gives practical examples of inductors for which the current-
flux relationship has the form iL(¢) = cl¢ + c3¢3 + 05¢5 + c7¢z
and for which the coefficients Cg and Co dominate over ¢y and Cs
for the larger values of ¢ on the interval of interest.

In mechanical systems the nonlinear charaéteristic re-
presents a restoring force or torque. Suppose that such a non-
linear force is given by T(®) = g(©) where 6 is a displacement.

By d'Alembert's principle for a restrained element of mass or

moment of inertia, J,

6 +1100) =0

-

is obtained as the system equation. For example, if the motion
of a body in a central force field depends only on the distance,

r, from some fixed point, then the equation of motion is

d2r

2
da

+£(r) =0, r(0) =1, (0 =0 (1.4)

where A is the azimuthal angle in spherical coordinates. Gold-

(2)

stein shows that determination of the motion of a system con-
sisting of two interacting particles may be reduced to the pro-

blem of determining the motion of a single particle in an exter-



nal fiéld,such that the motion is governed by equation (1.4).

(3)

Pipes gives a model of a mechanical system executing free
asymmetric oscillations. The model is ; + n2x + hx2 = Ogand it

is of importance in the theory of seismic vibrations. As a final
example, the application of models of the form X + cxlxlk_l =0

to the description of motion in principal modes of certain classes
of nonlinear systems having many degrees of freedom has been shown
by Rosenberg(4).

The electrical and mechanical examples quoted above all
have the form of the generic model in equation (1.1). In Chap-
ter 3 an extension is made to the case in which the model in
equation (1.1) assumes light, viscous damping. Primary consi-
deration is given to the conservative system, however, so that
the approximation of the nonlinear amplitude-~-frequency relation-

‘ship may be studied with variation of the characteristic, f(x),

alone.

1.2 BSome Existing Approximation Techniques

Classical first-order approximation techniques, such as

the perturbation method(S) and the averaging method of Krylov
and Bogoliubov(6) (K-B method), require an explicit linear term
which must dominate over the nonlinear terms in the model. These
techniques are unsﬁifable for the models in this work because the
"quasi-linear" nature of the model is undefined. The Ritz-
Galerkin(7)

(8)

Balance' 3 makes no such restrictions on the deviation of the

averaging method or the Principle of Harmonic

model from linearity, but it will be shown that this method fails

to yield practical approximate solutions when the deviation



from linearity becomes appreciable., Moreover, in Appendix C
the one-term Ritz method is shown to give the same first-order
approximate solution as the K-B averaging technique.

As an example, consider the nonlinear model
M(x) - x + f(x) = 0, x(0) =1, i(O) = 0, in which f(x) may be
asymmetric, or biassed. A first-order Ritz approximate solution
- X(t) = X, + A cos wt is assumed for this model. The Ritz
conditions plus a constraint from the initial conditions deter-
mine the parameters Xo’ A and w in this assumed approximate

solution. These conditions are

X, +4=1,
2%
f M(¥)d(wt) = 0
0
and
2w
f M(¥)cos(wt)d(wt) = O,
0

Satisfaction of these full-period averaging integrals on the
residual, M(¥), bears no direct relation to the error in the
approximate time solution. In this work the absolute error
e(t) = x(t) - X(t) is considered. Another indirect property
of the Ritz method is that the form of the approximate
solution must be assumed. Hence any features not assumed in
the approximate solution will not be found. Also, the Ritz

method yields nonlinear algebraic equations for which the



solution is difficult. If the above first-order solution is
refined to the form X(t) = X, + Acoswt + Becos3wt, then four non-
linear equations in Xo’ A, B and w are obtained from the Ritz
conditions.,

In a recent paper(g), Denman and Lul considered the
approximate solution of the equation X + ax + bx- = O. The
nonlinear characteristic was expanded to a linear polynomial
in terms of ultraspherical polynomials. The techniques given
in Appendix A allow a closed-form solution to be written for
this cubic equation by inspection.

Soudack(lo) has given techniques for the approximation-
of a nonlinear model in the form of equation (1.1), in which the
nonlinear characteristic is a polynomial with odd symmetry.

The techniques replace the nonlinear polynomial by a cubic one
and the closed-form solution of the resulting differential
equation is obtained using the Jacobian elliptic functions.
Approximate models obtained from a Chebychev expansion of the
nonlinear characteristic were found to give much better approxi-
mate time solutions than models with cubic characteristics ob-
tained by a‘least-square error or Legendre polynomial fit to

the nonlinear characteristics.

This work investigaﬁes piecewise~linear and piecewise-
cubic approximations to nonlinear characteristics. A direct
approach toward making the error in the approximate closed-
form time solutions "small" is undertaken. In Chapter 2,
criteria for the closeness of the approximate time solutions

are given,and some existing approximation techniques are
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investigated under these criteria. The derivation of bounds on
the approximation error is then made. In Chapter 3 new approxi-
mation techniques which employ the Jacobi and shifted Jacobi
polynomials are introduced. The restriction that the nonlinear
oscillation have a small am?litude or that the nonlinear charac~

teristic be quasi-linear is not imposed.



DEVELOPMENT OF THE APPROXIMATION TECHNIQUES

2.
2.1 Considerations of Approximation Range and Criteria for

Closeness of Fit in the Approximate Time Solutions.

2.1.1 Determination of Bounds on the Oscillation and Norma-

lization of the System Equation.

The first integral of equation (1l.l) is a statement

of the law of conservation of energy for a conservative system
Writing equation (1.1) in

with a single degree of freedom.

the form
. dé .
x gz +2(x) =0 x(0) = 1, x(0) = O, (2.1)
and integrating, one obtains
;2
5= + f(x)ax = Cg 9
(2.2)

or

The integration constant associated with this first integral

may be evaluated from the initial conditions given to equation
(2.1). In equation (2.2) the constant, E ., is equal to the
initial value of the potential function, V(1). The solution

of
(2.3)

V(X) = E't
)y determines the turning

for t ‘r root X = = .
wo real roots, ( 1, X = X5



points, (1, x ), of a bounded oscillation for a normalized

min
differential equation with an integrable nonlinear character-
istic, f(x).

The above discussion assumes that there are at least
two real roots of equation (2.3) over the range of interest in
the dependent variable,and that the solution to equation (2.1)
(

is bounded., Cunningham 11) has given a technique which determines
the position and nature of singular points in the phase plane
from extrema of the potential function, V(x). A singularity

at a relative minimum of V(x) is a centre point and the motion
is locally bounded. This "potential well" which exhibits a
local minimum is the most common one encountered in this study.
A singularity at a local maximum of V(x) is a saddle point and
the motion is locally unstable. At a point of inflection of
V(x), the local behaviour of the singularify is like that of
both a centre point and a saddle point and is thus unstable.

In attempting to solve a nonlinear problem, some knowledge of
the kind of solution to be expected is almost essential., Using
the potential function thus provides useful information about
the solution in various reéions of x even before a solution of
the system equation is attempted.

No generality has been lost by fixing the initial
conditions as in equation (2.,1). Consideration is given to
bounded, periodic oscillations in this work. These oscillations
may be started, arbitrarily, at a point where é(t) is zero by

making a shift in the independent variable., One special case

of interest serves to illustrate the normalization which is
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carried out. Consider a system which is initially at rest to

be acted upon by a step input at t = 0. That is,

o

+ h(y) = KU(t), y(0) = y(0) = 0. (2.4)

Q-L:s
o | o
™o

The bounds on the oscillation are obtained by finding the real

roots of potential function
v(y) = Sfluly) - x)ay +C .

The constant, CO, is obtained from the initial conditions and
the first integral., In this case CO nmust be chosen so that
V(0) = Oyand it is evident that y = O is one bound on the
oscillation. If the real root of V(y) closest to zero is

Yy = M and a minimum of V(y) is enclosed on the interval (0,A),

then a bounded oscillation limited by zero and A is obtained.,

y(t)

"t

x(T)

§ 0
-ES

Figure 2,1 Normalization of an Asymmetric,
Nonlinear Oscillation
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The transformation y(t) = Ax(¥) along with a shift in the inde-
pendent variable, T =t - Es’ may be used to transform equation
(2.4) to one of the form \
&  Ling) -E-0  x((0) =1, £(E=0) = 0
332 T A N =0) =4y =0) = O.
(2.5)

Figure (2.1) illustrates how this normalization is carried out.
Equation (2.5) may now ve written as

a°x o

5%5 + f(x) =0 x(0) = 1, x(0) = 0, (2.6)
which is the form of equation (1.1). Normalization to (0,1)
is useful both for comparison of mathematical models on (0,1)
and for comparison of errors in the approximate time solutions.

If the normalized f(x) in equation (2.6) has odd
symmetry on (~1, 1) and is monotonically increasing on (0, 1),
then the oscillatory time solution is symmetric with respect
to the first quarter period about the x(t) = 0 axis. It will
be shown in section (2.3) that the maximum error in the approxi-
mate time solution over a fixed time interval depends on the
maximum error, E(x)max, in the approximation to f£(x) in equa-
tion (2.6). Because of the above symmetry in the normalized
time solution, it is only necessary to make approximations to
f(x) on (x = 0, x = 1) for the first quarter period. Taking |
advantage of this symmetry in f(x) thus seems an obvious choice

because it is intuitive that E( < is smaller for a smaller

X)ma
approximation interval in the x-f(x) plane. The Ritz and



12

uwltraspherical polynomial truncation techniques make approxi-
mations on (-1, 1) for this symmetric case.

The smallest interval of symmetry for an oscillation
derived from a model with an asymmetric, nonlinear characteristic
is one half period. A plecewise approximation to £(x) may
therefore be made on the range (1, thn% and the remainder of
the approximate time solution may be obtained by symmetry with
this half period approximate solution. Figure (2.4) in section
(2.2) shows linear approximations to symmetric and asymmetric
£(x).

201.2 Criteria for Closeness of Fit in the Time Solution
Approximations

For a model normalized to (0,1) the error in the
time solution approximation is defined by &(t) = x(t) - X(t).
This error function is not, in general, obtainable because x(t)
cannot always be found in closed form., An IBM 7040 digital
computer was employed to obtain numerical approximate solutions
to the nonlinear differential equations. - The numerical so-
lutions were obtained using a fourth-order Runge-Kutta--Gill
integration subroutine. Direct comparison of the numerical
solutions with closed-~form Jacoblan elliptic function solutions
for cubic models shows that the numerical solutions are
accurate to six decimal:digits. A technique suggested by
Fererg(l2) was also employed to check the accuracy. Using
this technique, a change in the numerical integration step

size from 0,01 sec, to 0,001 sec. produced no change in the

first five significant digits of the solutions for the time
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intervals which were considered.

A goal of this work is to make the approximation
error, €(t), as small as possible with a minimum amount of
mathematical labor. The choice of the smallest intervals of
time symmetry for the approximations in section (2.1.1) is
directed toward this goal. The principal error criterion
chosen is that the error at the ends of an interval. of approxi-
mation be small compared to the maximum error over the
approximation interval., Since the numerical solution and
the approximate closed-form solution are matched at t = O,
the object is to have the error small at the end of the first
approximation interval. This is important because the so-
lution is constructed by matching each successive, partial
approximate solution with the final value of the previoué
approximation.

/ In seétion (2.3) it is shown that the maximum error
in the approximate time solution for a given model has an
upper bound. To justify the choice of the above error criteria,
suppose that the error is exactly zero at the end of a symmetric
approximation intervaly such as the quarter period. Then, by
symmetry, the bound on the error does not increase on subsequent
approximation intervals as the solution is extended in time.
Also, the frequency of the nonlinear oscillation is determined
exactly.

2.1.3 - Examples of Some Existing Approximation Techniques Under
the Given Error Criteria

Approximate solutions to the nonlinear differential
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equation,

X +% +x +102 =0, x(0) =1, x(0) =0,
(2.7)

are carried out throughout the remainder of this chapter.
The charaateristic in this equation is grossly nonlinear for
the larger values of |x| on (-1, 1)» The following analysis

indicates the importance of the error criteria in section (2.1.2):

(a) First-order Ritz and Linear Approximations

The first-order Ritz approximate solution to
equation (2.7) is (%) = cosvfgxt. A linear, least-square
error fit to the characteristic in this model over the interval

(0,1) yields the approximate equation
¥ + 9.043% - 2,105 = 0, X(0) =1, %0) = 0.

Solution of this equation gives ¥(t) = 0.767 cos(3.0Q7t)

+ 0.233 which is valid for the first quarter cycle of the
oscillation. In Figure (2.2) these first-order approximations
are plotted with the numerical solution for the first quarter

cycle.

(b) Cubic Polynomial Truncations

The characteristic in equation (2.7) is now replaced
by odd=cubic characteristics obtained by a Chebychev polynomial
approximation and a least-séuare error fit. Using the procedure
in Appendix A, solution of the Chebychev model gives
~

x(t) = Oh(0.7703, 3.373t), and the least-square error model
gives ¥(t) = Cn(0.7512, 3,276%), where Cn is the Jacobian
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elliptic cosine function. Curves of the error, e(t), over the
quarter period for these closed-form approximate solutions are

shown in Figure (2.3).

(¢) A Two-term Ritz Approximation
If a two-term Ritz approximation in the form x(t) =
A coswt +B cog3wt is assumed, then the Ritz conditions give

three algebraic equations in A, B and w. These are:

A+B=1,

S N QT TR ~ (2.8)
and

~94’B + B +%B3 + 298° +%+%A5 - 0.

Solution of these equations is difficult without some knowledge
of values of A and B to be expected. The error curves in
Figure (2.3) show the Jacobian elliptic cosine to be a close
approximation to fhe nonlinear oscillation. Soudack(lB)
suggested a device which facilitates the solution of equations
(2.8) for A, B and w. The Jacobian elliptic cosine solution
has approximately 5% third harmonic, so the choice A = 0,95

and B = 0.05 is made as a first guess in equations (2.8).
After a trial and error procedure with various values of A

and B, the two-term Ritz approximate solution is found to

be

(1) = 0.955 cos (2.624%t) + 0.045 cos (7.872%).
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(d) Summary

~ ~

Approximation e(0 - %)max e(%) e(o:¥>max Frgggiﬂcy
Ritz First-Order -0.06 +0.049 -0.25 3.9%
Linear Least-Squares -0.12 -0.10 +0.33 -8.2%
Cubic Chebychev 0.0073 0.0036 0.014 0.3%
Cubic Least-Squares -0,014 -0.014 0.05 -1.1%
Two-term Ritz -0.045 ~0.045 +0.14 ~3.65%

Table 2. Summary of Approximation Errors

The results are summarized in Table 2. Column three
of this table shows the maximum error over the first period.
For all the approximations considered, the error at the approxi-
mate quarter period, e(T/4), is not smell compared to the meximum
relative error over the first quarter period. Thus, the
numerical and closed—form solutions show a large phase difference
after only one cycle of the oscillation. The cubic Chebychev
approximation gives an approximate time solution which comes
closest to the error criteria discussed above. Stili, the
maximum error over the first quarter period is 0.0073 and the
maximum error over the first period grows to 0.014., Column
four of the table shows that the magnitude of the relative
error in the frequency of the approximation depends on the
amplitude of the error at the approximate quarter period.
Under the above error criteria a poorer approximate time
solution is obtained from the two-term Ritz method than from

either of the cubic polynomial approximations. Also, the
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labor for the two—tefm Ritz method is considerably greater.

The approximation techniques outlined in Table 2 do
not satisfy the error criteria which have been imposed because
the error at the quarter period is not small cbmpared to the
maximum error over the quarter period. In Appendix C, re-
placement of an odd-s&mmetric, monotonically increasing charac-
teristic in equation (2.1) by an ultraspherical, Chebychev
linear approximation is shown to give the same solution as the
first-order Ritz method. This equivalence of the Ritz average
over time with an orthogonal polynomial approximation in the
x = f(x) plane provides motivation for an investigation of the
approximating praperties of orthogonal polynomials more general

than the ultraspherical Chebychev polynomials.

2.2 Use of the Jacobi and Shifted Jacobi Polynomials for
Approximation

The object of the remainder of this chapter is to
give insight into the relation between the approximation of the
nonlinear characteristic in the x versus f(x) plane and the re-
sulting efror in the approximafe time solution. The goal is
then to obtain approximate time solutions which will satisfy
the error criteria imposed in paragraph (2.1.2). To achieve
these ends, the Jacobi and shifted Jacobi polynomials are
chosen for the piecewise approximation of the characteristic
in the nonlinear model. Approximations more general than
those obtained from Chebychev and Ritz approximation techniques
‘may be obtained using these(polynomials.

The expansion of a function which is absolutely
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(14)

integrable in terms of a set of polynomials, Pk(x), ortho-
gonal with weight function,W(x), on an interval (a,b) to a

polynomial of degree, n, has the form
n
P4
f(x) = E ckPk(x), ‘ (2.9)
k=0

where

b
L tx2 (x)w(x)ax
C =
B fb I:Pk(x)]‘2 W(x)dx
a

. (2.10)

The shifted Jacobi polynomials are orthogonal on (0,1) with
respect to the weighting function W(x) = (l-x)‘?-l xé_l. For
the ultraspherical Jacobi polynomials the weighting function
ig (1-x°)¥L and the interval of orthogonality is (-1,1).
Thus normalization of the oscillations to a maximum amplitude
of unity is necessary for the expansion of f(x) in terms of
these polynomials. Derivations and closed~f§rm expressions

- for these polynomials are given in Appendix B.

Only the shifted Jacobi polynomials, Gk(a’B)(x), are
considered for the linear or first-order approximation of the
models in this work. TFigure (2.4) shows how these approximations
are carried out. For the symmetric characteristic in Figure
(2.4a), the linearization is on the interval (0,1). In contrast,
Ritz and ultraspherical polynomial approximations are on the
interval (-1,1) for this symmetric case. For both asymmetric

and symmetric nonlinear characteristics an asymmeétric¢ linear
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differential equation of the form ¥ + b, ¥ + b, =0, ¥(0) =1,

¥(0) = 0,is obtained on (0,1). The solution to this equation is

%(t) = (1 + bo/bl) cogdfgz t - bo/bl'

f(x)r ’f\((X) e
/ f(x), f(x)
/
f(x) /7 Y
f(x
/ 4
7
/
Z min P
t } X } — X
-1 f 1 // 1
.
(a) Symmetric (b) Asymmetric

Figure 2.4 The Approximation of Two Nonlinear Characteristics

For the approximation of the nonlinear characteristic by
a cubic characteristic, both the ultraspherical Jacobi and
shifted Jacobi polynomials are employed. The ultraspherical
Jacobi polynomials, Pk(“)(x), may be used to approximate odd-
symmetric characteristics. This approximation‘produces the

equation x + blx + b3x3 = 0.

From this cubic model with zero-
point symmetry, the closed=form solutions may be written by

inspection using the techniques given in Appendix A.
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Approximation in terms of the shifted Jacobi poly-
nomials yields differential equations with asymmetric, cubic

2 4+ b

characteristics of the form ; + b3x3 + b2x 1%+ bo = 0.
These models are obtained from the refined approximation on
(0,1) of a characteristic with odd symmetry on (-1,1), or from
the approximation of an asymmetric characteristic hormalized to
(0,1). Distinct from the linear case, the asymmetric cubic
differential equation requires somewhat more labor to obtain
the closed form approximate solution than does the odd-symmetric,
cubic equation. Nevertheless, the techﬁiques in Appendix A
may be applied directly, and the labor is less than that required
for the two-term Ritz method shown in paragraph (2.1.3) for an
odd-symmetric characteristic. Examples of the closed-form
solution of differential equations with cubic characteristics
are given in Chapter 3.

From the expressions for an orthogonal expansion
given in equations (2.9) and (2.10), a linear approximation to

a given f(x) in terms of the shifted Jacobi polynomials may be

written

(Iﬁ_i_éL - Ei]. (2.11)

Iﬂ(B) is the gamma function. Also in this expansion
, 1
R = &}ﬂ f(x)xa_l(l - x)B—ldx
0



22

and
1
S = uf f(x) x%(1 - X)B-l dx.
0

For arbitrary «, B and f(x) the integrals R and S do
noty in general, have closed-form solutions. One special case
has been found, however, in which the expansion technique in

equation (2.9) is general. If
f(x) = x4, q + a>0,
then R and S reduce to the form

1

a[ x(m-l)(l-x)n—ldx = %:gﬂ)zﬂé?) ’

0

which is the integral for the Beta function. This result allows
one to make approximations to classes of hardening and saturating
characteristics which have g >1 and g <1 respectively. The
method is quite general because q need not be an integer.

When f(x) is itself a polynomial, a truncation or an
expansion in terms of the shifted Jacobi polynomials may be made

(15). (16) shows that

using Lanczos' Economization Lanczos
this truncation technique gives identical coefficients to the
expansion determined by equations (2.8) and (2,9) when ortho-
gonal polynomials are uséd for the truncation.

To illustrate thé procedure, consider the truncation

of
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f(x) = x + 3x3 (2.12)

to a linear polynomial on (0,1) using the shifted Chebychev

(0.5, 0~5)(x), For simplicity, the superscripts

polynomials, Gk
are dropped and the complete expansion of (2,12) may be

written
f(x) = cOGo(x) + chl(x) + 02G2(x) + 03G3(x),

A linear polynomial is desired so G3(x) and Gz(x) are used
successively to obtain expressions for the cubic and the
quadratic in terms of a linear polynomial. From G3(x) = -1

2

+ 18x - 48x° + 3213, one obtains

X0 = 3—:2L (1 - 18x + 48x°) + g%%(x)?

therefore,

X + 3% = 3% - %%x + %xz + 3% GB(X)‘

Similarly,

2 1 1 )
X = "8"(-1. + 8x) + 8G2(x) ’

hence,

.

{0))

x + 3%x0 = - %% + llx + E%GZ(X) +‘?%G3(x). (2.13)

[o)!

For a linear truncation G2(xj and G3(x) are set equal to zero,

Hence,

Flx) = - %% + %%x,
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Carrying through the orthogonal polynomials to equation (2.13)
in the expansion makes the distribution of the error in the
function approximation explicit. Since the maximum value of
Gz(x) or GB(XY is.standardized to be unity, the maximum error
produced by this truncation on (0,1) is Emax(x) = 9/16 + 3/32
= 21/32,and it occurs at x = 1 where the polynomials have a
maximum oscillation.

The distribution of the error in a convergent expansion
can be predicted roughly from the first term neglected. The
first term neglected in (2.13), c2G2(x), oscillates with six
times the amplitude of 03G3(x). Therefore, the error on (0,1)
behaves like Gz(x) with three, near-equal error maxima. The
two shifted Jacobi polynomials in Figure (2.5) oscillate with
a larger value néar X = 1 than near x = 0 on their range of
orthogonality. Thus, the distribution of the error in the
x - f(x) plane for a linear approximation behaves like
G2(o‘5’ 0'6)(3L and the distribution of the error in a cubic
polynomial approximation behaves like G4(O'5’ O‘6>(X) with
four, unequal error maxima, Since the exact and approximate
time solutions are matched initially where x = 1 and x = 0O,

heuristic arguments justify variation of the error in the

approximation of the characteristic near x = 1 in order to
obtain an improvement in the time solution at some point such

as the approximate quarter period. Change in the weighting
function of the shifted Jacobi polynomials allows this variation
in distribution of the error over the orthogonal range (0,1)

in the x - f£(x) plane.
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Figure 2.5 A Plot of Twa Shifted Jacobi Polynomials

2.3 Determination of Upper Bounds on the Error in the Approxi-
mate Time Solution

(17)

A method was developed by Soudack which gives a
rough upper bound on the error in the time solution approxi-
mation from the error in a cubic polynomial function approxi-
mation to a polynomisl of higher degree in the model. A similar
approach is used here to determine the upper bound when a

linear approximation is made to a higher degree polynomial.

For simplicity replace’§ by z, then the approximate equation

may be written as

e

+%(z) =0 z(0) = 1,‘ z(0) = 0,

and the original differential equation may be written in the

form



where

M
—
t+
~

i

z(t) + (%)
and

E(x) = £(x) - F(x).

26

Note that e€(t) is the error in the normalized time solution

(which is not in general obtainable in closed form) and E(x)

is the error in the function approximation. Now,

LA L LR ] LR

X =2 +6==2(2) +¢

It

il

-F(z + €) - B(z + &)
hence,

F(z) -F(z + &) -~ E(z + &)

For the linear approximation

Pad

f(z) = b, + bz,

we have
E=Db, + bz =Db - bl(z + €) - B(z + ¢€)
:—blE ""E(Z + E).

The differential equation for the error is thus

e + b € = ~E(z + €) e(0) = ;(O) = 0.

(2.14)
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The initial conditions are obtained as shown because the nu-
merical solution and approximate solution are matched initially,

The solution to equation (2.14) has the form

e(t) = € = p cos( /bl‘t). (2.,15)
The particular integral, e¢_, is determined from equation (2.14)

using convolution(la)

t
c, - - 331‘_‘ f [E*(s)] sin(t - ) ap,
0

/

, that is

*
where E (t) is the function obtained by replacing z and & by
their respective time functions. Since a bound on the error

is of interest here, consider

L]

sin(t - B)IdB.

t
< 1 *
ey — TBIT bf‘ IE (g)
0

PV
is bounded because f(x) and f(z) are bounded on

. ¥*

Now |E"(p)

(0,1). Tet|B*(8)| . = |B(z + )], & EMAX. EMAX cen be
= max max -

found from f£(x) and ¥(x). Thus, the bound on the particular

integral now becomes

Since the sine function is less than or equal to one, for a time
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interval At,we have

e é*?”gAX At. (2.16)
Specifically, the time interval, At, will be an approximate
quarter period or an approximate half period depending on the

interval over which the truncation is made,

From equation (2.15) one obtains

Is(t)lfélspl'll - cqu[gz tl

£ 2 EMAX

l—.qi' At,

This relation determines an upper bound on the error in a first-
order approximate time solution from the error in the x - f£(x)
plane matehing of the characteristic. Using a similar method

for a cubic polynomial truncation

2 3

+b32 ¢

~ ,
f(z) = bo + B2 + b,z

Soudack(lg) has shown that a rough upper bound for the error in

the time solution approximation is

le(t)] EMAX 1, | (2.17)
Theée results are for extreme upper bounds because

the above approach is a pessimistic one in which maximum or

worst = possible errors .are considered. In practice, the actual

error is much smaller than that predicted by equations (2.16)
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and (2.17). As an example, consider the linear, least-square
error approximation to eqﬁation (2,6) in paragraph (2.1.3).
The upper bound predicted for the first quarter-period by
equation (2.16) is

le(4)] o HMAX 4

max-— |b |
_ 5 2.06
- 2 504 0.62

= O.70o

From Table 2 the actual maximum error obtained over the first
quarter period is e(t)max = -0412.

The value of the above bounds on the error for approxi-
mations to polynomial characteristics arises from a proof by

Soudack(zo)

. It was shown that Ie(t)lmax is bounded when the
polynomial' characteristic is truncated down to a cubic poly-
nomial using the shifted Chebychev polynomials., Below, this
result is extended to the expansion of a polynomial in terms

of the orthogonal Jacobi or shifted Jacobi polynomials to either .

a linear or a cubic polynomial. Let

‘ m n-1l
Pn(x) = -A, = AL +..-A X +"‘-A(n~1)nx + A_x" (2.18)
represent an orthogonal Jacobi or shifted Jacobi polynomial as
given in Appendix B. The coefficient Amn is positive if n-m is
even; the signs have been chosen as shown for convenience., Also,

for convenience

A A
N L o(n=-1)n"(n=-2) (n-1)
Bn—2 - A(n-2)n + A(I’l—l) (n—l)
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and

An-2)ntn-m) (n1) | Bu-2)t(n-3) (n-2)
A A )
(n-1) (n-1) (n=2) (n-2)

®e

n-m A(n-m)n

N Blyoni1)A(n-m) (n-ms1)
A(n-m+l)(n-m+l)

are defined.

Application of Lanczos' Economization to the non-—

linear characteristic f(x) = j{:anxn yields
p-1
'f(x) = E bij,
3=0
where

n n-p
a B _ A, _
bomag 4y o | Ay ey —Emldlen) L (o)
kk J (k-m) (k-m)
k:p =l

The error in this approximation is E(2) = £(x) - £(x). -In terms

of the nonlinear characteristic and the orthogonal polynomials
(

n n
a X A P (x)
E(x) = —X “ —kn—lﬁ—} . (2.20
=) [Akk ), - (2.20)
p p

In. both (2.19) and (2.20), p = 2 for a linear approximation and

p = 4 for a cubic polynomial approximation.

th

Let PMk be the absolute value of the k Jacobi or
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shifted Jacobi polynomial at the point x where E(x) assumes a
maximum oscillation, EMAX. From equations (2.16), (2.17),

(2.19) and (2.20)

=1

—= — n— 2 3 A
k (k-m) "1 (Jc—m)
a1 + Ay + X
5 kk (k-m) (k~m)
Expanding the summations one obtains

anﬁl(Aqr)+an 1 2(Aqr)+..a+apHn p+l(Aqr)
al+anKl(Aqr)+an_.'lK2(Aqr)+.,..+apKn p+l(Aqr)

(2.21)

This error bound depends only on the coefficients, By in the
polynomial which is being approximated, the coefficiéﬁts, Agr,
of the orthogonal Jacobi polynomials and the time interval over
which the approximation is made., If a gets very large in

the polynomial being approximated, then from equation (2.21)

Hy e yp (AaT)

Kn k+£(Aqr)

| |m —-2At

which is constant, If more than one of the 2y such as 2y and

a,_j are increased, then

uuv+aan k+l(Aq_r)+ak lHn k+2(Aqr)+oao

...+ak e k+1(Aqr)+ak lKn k+2(Aqr)+,..

[e(t) | 28%
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a
=1
H cican (Aax) Yo n-k+2(Aqr)
- JA% a;-l s
Kh-k+l(Aqr)' I Kh~k+2(Aqr)

and this error bound is also a constant as ) and I get very
large. These results apply to both linear and cubic approxi-
mations to £(x), and they may be extended inductively to the
case where more than two of the I grow large, The form of
these error bounds depends on the fact that both the trun-
cation of f(x) by Lanczos' Economization and the maximum error
in the truncation have the same dependence on the coefficients,
ék. Thus, when the quotient is taken in equation (2.21), the
dependence on the 8 is removed, in the limit, as the 2, &row
large.

From these results it follows that if the maximum
error in the approximate time solution over a given time
interval is bounded, then the error at any point on the
approximate time solution, such as at the approximate quarter
period, must also be bounded. The approximate time solutions
which have been obtained in this work agree with these error
boundé. As an example, consider the nonlinear model which is
given in equation (2.7), that is

LN )

X + %+ % +10x° = 0, x(0) =1, x(0) = O,
(247)

If the amplitude of the oscillation is now doubled, then the

transformation x = 2y normalizes this equation to unity
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amplitude in the form

. e 5

v +y + 4y + 160y° =0, y(0) =1, y(0) = 0.

Similarly, if the amplitude of the oscillation in (2.7) is

halved, the normelization yields

-
* o

W o+ W o+ 0.25w0 + 0.156w° = 0, w(0) = 1, w(0) = op
where x = 0.5w. Clearly, these normalizations show considerable
differences in the characteristics as x(0) is varied. Other
normelizations similar to these have been made on equation (2.7),
and then first-order approximations to the models obtained
have been carried out using the one-term Ritz method and the

. . . (0.5,045) (05,0456) ()
shifted Jacobi polynomials Gy ’ (x), Gy
and Gk(o'5’0‘6)(x).

Figure (2.6) shows that both the maximum errors,

e(t) over the first quarter period and the errors, e(ﬁ74),

max’
at the approximate quarter period are bounded s the amplitude
of the nonlinear terms is increased by increasing x(0). The
saturation of the error at the approximate quarter period occurs
at a lower value for the nonsymmetrically-weighted, shifted
Jacobi polynomial approximations than for the ultraspherical,
shifted Chebychev or one-~term Ritz method approximations. When
z(0) = 1, as in equation (2.7), fér example, thé errors at the
approximate gquarter period are 0.049 and -0,004 for the one-

(0‘5’0‘6)(x) approximations respectively.

term Ritz and Gk
Extension of these solutions to a full period by symmetry

yields the maximum error of 0.25 for the one=term Ritz solution,
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~ (a)

‘ e(T/4)
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.02 |-
.0l ~
) (1iv)

— x(0)

3.0

.00 ‘,;(/:////.

(v)

Figure 2.6 Saturation of the Maximum and Quarter Period
* Errors for. Linear Approximations as the
Initial Amplitude is Increased.
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0.5,0°6)(x) approximation. A numerical so-

and 0.08 for the Gk(
lution of equation (2.7) gives a derivative at the quarter

period of -2.1981. The relative errors in the deri&ative at the
approximate quarter periods are =29% for the first-order Ritz
approximation and =13% for the G;(O°5’O°6)(x) approximate solus-
tion. Also, from a numerical solution a quarter period of

0.5777 seconds is obtained., The approximate quarter periods are:
0.553 sec., a relative error of 3.9% and 0.5728 sec., a relative
error of 0.8% from the Ritz and Gk(o°5’o‘6)(x) polynomial approxi-
mations, respectively.. The improvement over the Ritz method in
Figure (2.6) is mainly in the phase or frequency. This is

because the errors at the approximate gquarter periods saturate

at considerably smaller values for the weighted approximations.
The saturation of the maximum error over the first approximate
gquarter-period does not show such large d}fferenoés.

In Figure (2.6), the near~uniform, shifted Chebychev
approximation in curve (ii) shows the effect of an approximation
on the interval (0,1). The near-uniform Ritz or Chebychev
approximation on (-1,1) does not account for the symmetry in
the quarter-period. Thus,E(x)max obtained from the match to
f(x) by the Ritz or Chebychev approximation on (fi,l) is larger
than E(x)max from the shifted Chebychev approximation on (0,1).

As a result, both & and e(T/4) in curve (1) are'larger

t)max ‘
for the Chebychev approximation than for the shifted Chebychev
approximation shown in curve (ii). The improvement obtained

using the nonsymmetrically-weighted shifted Jacobi polynomials

shows, however, that near-uniform or Chebychev matching in the
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x - f(x) plane does not provide the best approximation to the
nonlinear amplitude-frequency relationship under the error cri-
teria which have been imposed.

Now consider maximum and quarter-period values of &(t)
for linear approximations over the first guarter period to egua-

tions of the form

% + nxP = 0, x(0) = 1, ;(O) = O,

-

In this case, x(0) is fixed at unity and different values of n
and p are used.

In Figure (2.7), curves showing the errors for various
values of p and for different linear shifted Jacobi polynomial
approximations are plotted versus an increase in n in the
characteristic. For clarity, the errors in the Ritz approxi-
mationsy which are much larger than those plotted in Figure (2.7),
have been placed in brackets on the curves. The quarter-period
amplitude errors are 0.010, 0.0%, 0,06 and 0.09 for the Ritz
approximation to models with p equal to one-third, three, five
and sevengrespectively. These error curvé% do not show the
same increase toward saturation as those in Figure (2,6), " This
is because the characteristic in equation (2.7) has a linear
term present which becomes dominant when the effect of the non-
linear terms is made small by decreasing the initial amplitude.
As predicted by equation (2.21), however, the curves in Figure
(2:7) demonstrate that the error is bounded as the coefficients

of the nonlinear terms increase.
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3.  APPLICATION OF THE APPROXIMATION TECHNIQUES TO SPECIFIC
NONLINEAR MODELS

3.1 Technigues for a Class of 0dd-Symmetric Nonlinear Character-
istics

%2.1.1 Definition of the Nonlinear Factor and Choice of Weighting
Functions

Characteristics with odd symmetry on (-1,1) and with

a monotonic increasing property on (O, i) are often called
hardening when f"(x)> 0 and softening when f"(x) < 0. This class
of qharacteristics is approximated in this section. For parti-
cular cases, the variable weighting of the error in the x-f(x)
.plane afforded by shifted Jacobi polynomial expansions has been
used in the previous chapter. These weighted polynomial
approximationé have yielded approximate time solutions with a
small error in the gquarter period. ZExtension of this weighting
property to more general characteristics in this class requires
a means for specifying the deviation from linearity of different,
normalized characteristics on the interval (0,1). TFor this

purpose, the nonlinear factor
‘ 1

42 u[ f(x)dx

1 - 9 (3.1)
£(1)

e

is defined. PFigure (3.1) shows graphically that F is the
difference between the area under the curve and the area under
the chord on (0,1), relative to the area under the chord. 1In
value, the nonlinear factor lies between -1 and +1 on (0,1).

For hardening characteristics F> O and for softening charac-
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teristics F <O0.

f(x)
(1)
f(x)| hardening
f(x)| softening
. } X
0 1

Figure 3.1 A Graphical Representation of the Measure of De-
parture from Linearity
Now consider variation of the parameters «,f and p

in the weighting functions

(a-l) (l—X) (B—l)

W (x) = x (3.2)

and

Wy (x) = (1-x2)P7L, (3.3)

according to the value of F. A derivation by Denman and Lui(zl)

shows that Chebychev approximation to "quasi-linear" f(x)
yilelds approximate time solutions with a small relative\error
in the period. Chebychev approximations are obtained when

x =B = =0.5. Thus, the weighting has been varied starting
from this case with "quasi~linear" characteristics. Heuris-
tically, the initial matching of the exact and approximate

time solutions at x(0) = 1 and %(0) = O allows variation of the
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3

error in the approximation to f(x) near x = 1. What is more
important, as the amplitude of the nonlinear terms increases,
the deviation from linearity is most severe for the larger
values of x on the interval (0,1). From equation (3.2), varia-
tion of B is seen to have the greatest effect on the weighting
near x = 1. Setting a = 0.5 makes the weighting close to that
obtained from a shifted Chebychev truncation for the small
values of x on the interval (0,1). This choice is reasonable
because Chebychev approximations in the x-f(x) plane give the
closest approximate time solutions for small values of F or
for "quasi-linear" characteristics.

Particular values of B and y have been chosen empiri-
cally from error saturation curves similar to those in Figures
(2.6) and (2.7) but with the nonlinear factor, F, as the abscissée

Approximation with different weighting using the shifted Jacobi poly:

Nonlinear Measure B o)
F= -0.40 0.37 0.35
- 40« F< -0.25 0.44 0.42
-0.25 L F £ 40.25 0.50 0.50
0.25 < F < 0.60 0.56 0.58
F= 0.60 0.63 0.65

Table 3.1 The Choice of Weighting for the Jacobi and Shifted

Jacobi Polynomial Approximations

nomials has been shown to produce large differences in the error



41

at the approximate quarter period. Henceyconsiderable improve=
ment in the amplitude-frequency relationship has been found
possible by choosing the weighting according to the value of F
given in Table (3.1). From a model with a saturating or soft-
ening characteristic, the frequency decreases as the initial
amplitude increases. In contrast, from a model with a hardening
characteristic, the frequency increases with the amplitude of

the oscillation. Variation of the weighting in a linear approxi-
mation varies the slope and\thus the approximate frequency
changes. Hence, variations of B or p are opposite for models

with softening and hardening characteristics.

3.1.2 Some Particular Cases

The nonlinear factor is now applied to weighting the
error in Jacobi and shifted Jacobi polynomial expansions. In
.Tables (3.2) and (3.3) the maximum error over the first quarter
perioq and the error at the quarter period are given for
approiimate solutions te the equations %:+-f(x) = 0, x(0) =1,
%(O) = 0. The nonlinear functions in Table (3.2) have all been
truncated down to an asymmetric linear polynomial én (0,1)
using Lanczos' Economization and the shifted Jacobi polynomials.
Initially, either a five~term Taylor series expansion to a
ninth degree polynomial or a four-term Legendre polynomial ex-
pansion to a seventh degree polynomial ig used to obtain poly-
nomial approximations to the functions in Table (3.2). The
Legendre approximation is carried out for the grossly nonlinear
functions marked by asterisks because the Taylor expansion converges

slole for these functions. The maximum error in these ﬁre-
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liminary Taylor and Legendre polynomial expansions was kept
below 0.5% of the value of the fungtion at x = 1. Under this
criterion, the linear shifted Jacobi polynomial truncations
carried out in the x - f(x) plane agree with corresponding
linear expansions obtained by numerical integration of equations

(2.9) to three significant figures.

Em

- ‘ .5,0.44
o

o |
.00+ } | - t /:;:isﬁxeéééf 1

1.0 \\if///"&o 4.0 5.0 8.0

-.02 +

Ritz Method
-.03

-.04}

Figure 3.2 A Comparison of the Error in Two Linear Approxi-

mations to x + “xl sgn x =0

The models with characteristics of the form xl/q,
and with g equal to 2,3,5, and 7 are given to show the behaviour
of approximations to models with softening characteristics.
Rigorously, these models are not Lipschitz at x = 0, but this

non-Lipschitz character at x = 0 will not be present in any



Table 3.2 Comparison of the First-Order Ritz
Jacobi Polynomial Approximations
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Method and Linear

Nonlinear Ritz Method Shifted Jacobi
Characteristic | P | e(t) _ e(T/4) | 8 (). e(T/4)
x40,16%°40.256x° 0.17 =0.0170 40.0027 0.50 =0.015  0.0005
X4+XO4X 0,39 =0.0390 +0.0160 0.56 =0,041 =0,0063
X4x45%° 0.55 =0.0560 40,0380 0,56 =0,060 +0.0040
x+x0+10%° 0,59 =0,0610 +0.0500 0.56 =0.065 -+0.0100
x+420+160x° 0.66 =0.0680 +0.0660 0.63 =0.090 =0.0080
X490 +810x° 0.66 =0.0700 40,0670 0,63 =0,090 ~0,0080
x40.25%740,31x° 0,26 -0.0250 +0.0064 0,50 =0.022 +0.0015

+Oal6x7 '
XX +X24% | 0.48 —-0.0480 40,0270 0,56 —-0.051 =00016
Z+X0410x°+410x|  0.67 =0.0680 +0.0690 0.63 =0.090 =0.0040
x4+x°+10x°+100x |  0.73 +0.0970 +0.0970 0.63 =0.100 +0.0060
2+0.5%° 0.11 =-0.0120 40,0011 0.50 =-0.009 =0.0010
x+0.75%° 0.21 =0.0220 40,0040 0.50 =0.018 =0.0003
x43x° 0.38 -0.0380 +0.0140 0.56 =0.039 =0.0070
x+12%° 0.46 -0,0480 40,0260 0.56 =~0.049 =0.0040
z+1000x° 0.50 =0.0520 +0.0300 0.56 =0.053 =0,0010
x° sen x 0.34 =-0.0340 40,0100 0.56 =0.032 =0.0070
x %2 sgn x 0.43 =0.0440 -0,0190 0.56 =0.044 =0.0050
x° 0.50 =0.0520 40,0300 0.56 =0.053 =0.0010
x° 0.67 =0.0700 +0.0600 0.63 =0.090 =0.0080
x! 0.75 +0.0840 +0.0840 0.63 =0.100 +0.0090
sinh (x) 0,10  0.0073 +0.0005 0.50 =0.006 =0,0009
sinh (2x) 0.24 =0.0240 +0.0060 0,50 =0.020 +0.0004
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Table 3.2 (Continued)

Nonlinear Ritz Method Shifted Jacobi
Characteristic F s(‘c)maX e(%74) B e(‘t)maX e(T/4)
sinh (4x)** 0.48 =0,0520 +0.,0320 0.56 =0.0540 +0.00050
sinh (4x)** 0.67 =0.0660 +0.0640 0.63 +0.0900 -0,00900
tan (x) 0.21 =0.0180 +0.0033 0,50 =0.0174 =0.00006
tan (1.3x)** 0.45 =0.0410 +0.0210 0.56 =0.0440 =0.00500
tan (1.5x)** 0.62 +0.0840 +0,0840 0.63 =0.0900 +0,00100
1] 0 Bsen x ~0.11 +0.0100 +0.0050 0.50 +0.0060 +0.00100
|x[" sen x ~0.33 +0.0280 +0.,0060 0.44 +0.0120 +0.00300
2f|z[* sen x ~0.33 +0.0290 +0.0060 0.44 +0.0120 +0.00300
/3 ~0.50 +0.0410 40,0120 0.44 +0.0150 +0.00500
x/5 ~0.67 +0.0520 40,0170 0.37 +0.0100 +0.00015
tanh (x) ~0.10 +0.0140 +0.0016 0.50 +0.0110 +0.00300
tanh (2x)** -0.38 +0.0380 +0.0080 0.44 +0.0230 +0.,00400
2%-0.5%° -0.17 +0.0150 +0.0020 0.50 +0.0130 +0.00300
2x-0.9z% sgn x  =0.27 +0.0250 +0.0040 0.44 +0.0170 +0.00140
sin(1l.5x)** =0.26 +0.0230 +0.0040 0.44 +0.,0150 +0.00030
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physical problems or in any digital simulation. - As an example
from Table (3.2), the first-order approximation of §‘+./|X|
sgn x = Q0. is shown in Figure (3.2). The error over the first
period is shown for the one-term Ritz approxiﬁation and the
shifted Jacobi polynomial expansion, Gk(o'5’0'44)(x).
Approximation to the classical pendulum model, ;
+ 8in(1.5x) =.0, is the final example in Table (3.2). An ana-
lytical solution to this model may be obtained in terms of the
Jacobian elliptic functions but the linearization in Table (3.2)
is given to show an example of the improvement in the shifted
Jacobi truncation technique over the Ritz averaging method.
Figure (3.3) compares results for the relative error
in the frequency or period. One-term Ritz and linear shifted
Jacobi approximations to the equation'; + X + x3 + le5 = 0,
x(0) =1, x(0) = 0y are shown in this figure. The normalization

with changes in x(0) has been carried out as described in

paragraph (2.3).

~
T - T
0‘06 T
Ritz Method
0.04F
0.02f Gk(O'S’B)(x)
i 3.0
} x(0)
l.o
'-0.0l -

Figure 3.3 The Relative Error in the FPrequency for Linear

Approximations to x + x + %0 + 10x° = 0, x(0) =1,
X(O) =0
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In Figure (3.3) the Gk(“’ﬁ)(x) approximations have a
smaller error than the Ritz method approximations. This means
that the shifted Jacobi polynomial approximate solutions do not
go out of phase as rapidly as do the Ritz approximations.

In Table (3.3), the functions to which Lanczos'
Economization does not apply have been expanded to cubic poly-
nomials by numerical integration of equation (2.9). This allows
the behaviour of the amplitude-frequency approximations to non-
linear models with characteristics more general than poly-
nomials to be studied under cubic, shifted Jacobi polynomial
expansions. Figure (3.4) gives the relative errors over the
first period for three cubic polynomial truncations to the
model‘£ L X o+ X0+ le5 = Oy plotted for the first period. Under
the error criteria of this work, the time solutions obtained

from the ultraspherical, Jacobi approximations Pk(O'S)(x) and

p (0:58)

Jacobi,

(x) on (-1,1) are poorer than the refined, shifted
Gk(o'5’0’56)(x) closed-form time solution. Also,

Table (2.1) shows that over the first period for this same
model, the maximum error in a two-term Ritz approximation is
0.14, and the error in a cubic, least-square error approximation
is 0.05. TFor the cubic Gk(o‘5’0‘56)(x) approximation in

Figure (3.4% the maximum error is -«=0.0028 over the first

period. This latter approximation also shows that the error

in the .extended solution does not grow large with respect to

the error over the first quarter period because the error at the

approximate quarter period is +0.0005.

As predicted by the relation obtained between s(t)maX



Table 3.3 Cubic

Polynomial Approximation of the Nonlinear Characteristics

. Nonlinear Chebychev Ultraspherical Jacobi Shifted Jacobi
o . ~s s ~ ~

Characteristics F e(t)maX e(T/4) ) €(t)max e(T/4) B E(t)max e(T/4)
X + O-.25x3 0.21 +0.00080 +0,00030 0,50 0.00080 +0.00030 0.50 =-0.,00020 .0.00000
+ 0.3125%° -
X + x3 + x5 0.39 +0.00190 +0.00090 0.58 -0.00200 -0.00009 0.56 =0.00050 +0.00000
X + 09562X3 0051 +OoOO5OO +000024O 0058 -0000400 +0000060 0056 -OQOO]—OO +0.00020
X + x° + iOx5 0.58 =0.00750 +0.,00360 0,58 =0.,00500 +0.00100 0.56 =0.00120 +0.00050
X + 4x3 + l6OX5 0.66 +0,01000 0.00470 0.65 =0.00700 +0.00200 0.63 =0.00180 +0.00006
X + 9x3 + 810X5 0.66 +0,01000 0.00480 0.65 ~0.00720 =0.00010 0.63 =0.00180 +0.00013
X + O.25x3 + O.31x5 0.25 +0.00140 +0.00600 0.50 +0.00140 +0.00600 0,50 =~0.00050 +0.00018
+O.15x7
X + x° + x5 + x7 0,48 +0.00480 +0.00250 0.58 =0.00400 +0.00040 0.56 =0.00130 +0.00020
X + x0 + le5 + le7 0.67 +0.01300 +0.00700 0.65 =0,00900 +0,00030 0,63 -0.00300 +0.00040

LY



Table 3.3 (Continued)
Nonlinear Chebychev Ultraspherical Jacobi Shifted Jacobi
Characteristics F E(t)ma.x 8(1']\3,/4) 1 e(t)max e(’f/zl) B e(t)max 5(6/4)

X + %0 + 10%° + 100%!  0.73 +0.02100 +40,01000 0.65 =0.0130 +0.0040 0.63 =0.0043  +0.00100
z° 0.67 +0.01400 +0.00450 0.65 =0.0074 =-0,0002 0.63 =0.0019 +0.00015
x° + x! " 0.71 +0.01600 +0.00740 0.65 =0.0100  +0.0007 0.63 =0.0033  +0.00080
x! 0.75 +0.02400 0,01100 0.65 =0.0137 +0.0024 0.63 =0.0047 +0.00180
sinh(x) 0.10 =0.00003 0.00000 0.50 =0.00003 0.00000 0.50 0.0000 0.00000
sinh(2x) 0.24 =0.00400 +0.00013 0.50 =-0.00400 +0,00013 0.50 =0.0001  +0.00003
sinh(4x) 0.48 +0.00440 +0.00240 0.58 =-0.003%60 +0.00050 0.56 =-0.0010 +0.00028
tan(x) 0.21 =0.00070 +0.00020 0,50 =0.00700 +0.00020 0,50 =0,0002  +0.00004
tan(1.3%x) 0.45 =0.00430 +0.00350 0.58 =0.00570 +0.00250 0.56 =0.0023  +0.00040
tan(1.5x) 0.62 +0.03800 +0.02900 0465 =0.02100 +0,00700 0.63 =0.0100 +0,00700
/3 ~0.50 ~-0.00800 =0.00310 0,42 =0.00540 +0.00200 0.44 +0.0009  -0.00040

8Y



Tsble 3.3 (Continued)

Nonlinear Chebychev Ultraspherical Jacobi Shifted Jacobi
- - N
Characteristics F s(t)max e(¥/4) " e(t)maX e(T/a) B e(t)max e(T/4)
tanh(x) =0,10 =0.00020 +0.00004 0.50 =0.00022 +0.00004 0,50 =~0.,00009 =0.00002
tanh(2x) -0.38 =0.,00340 -0.001%0 0.42 -~-0.00240 +0.00090 0.44 -0.00030 =-0.00012
xL/5 ~0367 =-0.01100 -0.00500 0.42 =-0.00760 +0.00180 0.44 =0.00100 =0.00050

Y4
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Figure 3.4 Comparison of Solutions to Models Obtained from Chebychev, Ultraspherical Jacobi
and Shifted Jacobi Approximations to x + x + x3 +10x? = 0
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and E(x) __ in equations (2.16) and (2.17), the time solution
errors for the cubic function approximations in Table (3.3)
are much smaller than errors from the linear approximations in
Table (3.2). This is because the cubic is always a closer fit
to f(x) than is the straight line in the x ~ f(x) plane.
Weighting the convergence in the x - f(x) plane according to the
value of F in Table (3.1) has resulted in improvement over the
classical Ritz=-averaging and Chebychev polynomial approxi-
mations. Particular examination of the refined, shifted
Jacobi approximations in Tables (3.2) and (3.3) shows that

the error at the approximate quarter period is less than 10%
of the maximum error over the first quarter period for most

of the examples considered.

3.2 Technigues for Models with Asymmetric Nonlinear Charac-
teristics

When the nonlinear characteristic does not have the
symmetry possessed by those considered in paragraph (3.1l), the
oscillation often has a large dc component. The procedure
given in paragraph (2.1.1) permits determination of the range
of oscillation of the dependent variable and normalization of
the initial conditions to x(0) = 1 and %(0) = 0. The trans-

formation x = (1-x_. )w + X is used to transform the range-

mi min

(1, xmin) to the range (w = 1, w = 0). Otherwise, the weighting
of the error in a shifted Jacobi polynomial approximation in the

X - f(x) plane will not be controlled. The nonlinear charac-~

terlstlc now has the form g(w) = [l )o An

mln]w * Tmin .
approximate solution to the model w + gl{w) = 0 is valid for the
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first half period.

Approximations to the characteristics in this asym-
metric class have been attempted using the shifted Jacobi
polynomials., Some models yield approximate solutions which
show improvement over the near-uniform, shifted Chebychev
approximations. Notably, the characteristics in these models
have terms of even symmetry which are small compared to the
amplitude of the odd-symmetric terms., For other characteristics
which have significant asymmetries, a common property which would
allow nonsymmetrically-weighted approximations to be used has
not been found. Thus,near~uniform or near equal-ripple shifted
Chebychev linear and cubic expansions are considered for models

with asymmetric, nonlinear characteristics.

3.2el First-Order or Linear Approximations

The Ritz-Chebychev equivalence has been shown for
models with symmétric characteristics., ILinear, shifted Cheby-
chev polynomial approximations to equations with asymmetric
characteristics normalized to (0,1) give similar results to the
two-term Ritz method discussed in paragraph (1.,2). The dis-
tribﬁtion of the error over the full period shown in Figure
(3.5) compares these two techniques. Our asymmetric example

in this case is X + x + x2 + 3x3

= Oyand its range of bscil-
lation is (x =1, x = -1,176). The two-term Ritz approximation

is

¥ 4 3.542% + 0.335 = 0,
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Figure 3.5 Error in the Ritz and Shifted Chebychev Approxi-

- e

mations to x + X +‘x2 + 3x3 =0

‘While direct truncation of the nonlinear characteristic in

terms of the shifted Chebychev polynomials gives
¥ + 3.512% + 0.328 = O.

In general, the shifted Chebychev polynomial truncation tech-
nique is preferred over the two-~term Ritz approximation because

the predetermination of X makes the Chebychev approximate

in
solution closer to the numerical half-period than does the Ritz
approximation technique. This property may be observed in
Figure (3.5). Also, the Ritz method requires the solution of
nonlinear, algebraic equations to determine the parameters in

the assumed solution.
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362.2 Cubic Approximations to Asymmetric Models

When the normalized characteristic, g(w), is approxi-
mated by e cubie polynomiel on (0,1), the technigues given in
Appendix A may be used to obtain e closed-form time solution,
As an example, consider the approximate step response of a sys—

tem which is initially at rest and is described by the model
X+ 102 + % + % = U(+), x(0) = x(0) = 0, (3.4)

U(t) is the unit step function. From the initial conditions

and the first integral

mlN ¢
[\

+ 1.6667%° + 0.25%° + 0.5%° - % = O,

one obtains (x = 0, x = 0.7825) as the range of the oscillation.

The transformation x = 0.7825 w gives the normalized model
W o+ 3.7492w5 + 0,6123w3 + w-— 1,278 = 0, w(0) = w(0) =0,

with (w = 0, w = 1) as the range of the dependent variable.
Lanczos' Economization of the characteristic in this equation
using the shifted Chebychev polynomials on (0,1) plus a shiff
in the independent variable, defined by t = T+ ts’ produces
the approximate equation

2o
d?‘g + 11.1569%° - 8.78T2%° + 2.97T1% ~ 1.3490 = 0,  #(0) = 1,
a .

%(0) = o, | (3.5)
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The first integral of (3.5) is

(‘-1-11;-‘)2 + 2.7892%4 = 2,9290%° + 1.4885%° - 1.3490% = O.
a

] [

Integration of this first integral gives

T w
uf dt = ~ df ai .
0 1 \/—%'(5.,5784%’3 - 5.8582%° + 2.9771¥ - 2.6980)\9
hence,

w
' g +'E72 = - Jr o

A / (5.5784%° - 5.8582%° + 2.9771% -2.6980)

(3.6)

In general t'“é t, but the shifted time, t', is equal to the
real time, t, in this special case because the oscillation
starts one half period before the firgt maximum and thus,

ts = 572, The procedure described in Appendix A may be used
to transform the integrand in equation (3.6) to the form of
the Elliptic Integral of the First Kind. Then a closed-form
expression for W(t) may be obtained from Table A according to
the parameters in this elliptic integral. 1In this example,
both w = 0 and w = 1 are tﬁrning points of the motion,so both
zero and one are roots of the polynomial in equation (3.6).
After the roots are found, p = 0.3673 and g = -1.3843% are
obtained from Appendix A. The transformation w = (p + qy)/

(1L.+ y) applied to equation (3.6) gives
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1.3484 dt = .

\
o.3312ﬂ1 - 14,2029y2)(1 + 4.1273y2)

2 2

Choosing h° = 14.2049 and g° = 4.1273 so that ¢® = g°/h°< 1,

and making the transformation v = hy, gives the form

av
1.6828 dt = ' ’ (3.7)

\/(1 ~ v2)(1 + 0.2906v2)"

which corresponds to entry II in Table A. TFrom equation (3.7)

and Table A, the modulus of the elliptic integral is

\
k = V/;2/(l + 02) = 0.4745, and the complementary modulus

isk =/ 1 - %% - 0.8802. In the form of the elliptic inte-

gral, equation (3.7) becomes

@
1.6828 t = f 0.8802 %g-
0

Ih this case, to obtain a closed-form time solution, the im-
portant function is @(t) rather than t(@). Under the trans-
formation v = cos @ for inversion of the elliptic integral
given in Table A, the Jacobian elliptic cosine function, Cn,
is defined. That' is,

1.6828t

_1(
0.8802

= 1.9117 t = Cn"*(v),

Thus, v{t) = Cn(k,wt) = Cn(0.4745, 1.9117t). Retracing through

the transformations which have been made, the closed-form

. N~ p + (a/h)v
solution for W is 4%f(t) = T /0
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_0.367301 - on(0.4745, 1.91174)]
1 + 0.2653 Cn(0.4745, 1.9117%) (3.8)

Figure (3.6) compares the closed-form, shifted Cheby-
chev polynomial approximate solution given in equation (3.8)

with an

Ew

010
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Least Square Error
-0I0

-0I5 |

-020 i~

Figure 3.6 The Error Distribution in Shifted Chebychev and
Least-Square Error Cubic Approximation to

X +X + X+ le5 = U(%)

approximéte solution obtained from a cubic least-square error
approximation to the characteristic in this same model. The
distribution of the error over the first period of the oscil-
lation is shown in this figure. In comparison, a linear shifted
Chebychev approximation to this model gives a maximum error of

0.16 over the first half-period and this grows to -0.26 over the
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first period.
The original normalization, x = 0.7825w, was performed

on equation (3.1) to change the range of oscillation to (0,1).

Therefore, from equation (3.8),

’i(t) _ 0.28 1l = Cn(0. 1.9117%
1 + 0.2653Cn(0.4745, 1.9117%)

is the shifted Chebychev, cubic approximate solution to

P + X + %2 + 10%° = U(t), x(0) = x(0) = 0. This approximaté
oscillation is on the range (0, 0.7824).

3.3 An Extension of Lanczos' Economization to the Transient
Response of Lightly-Damped Models

It has been shown that the amplitude-frequency re-
lation in a conservative, nonlinear oscillation need only be
determined over an interval of symmetry. Nonlinear, non-
conservative oscillations show a more interesting, continuous
change in frequency as the amplitude of the oscillation is
damped. Based on the Ritz - K-B equivalence for symmetric,
conservative models and the improvement in phase obtained from
shifted Jacobi polynomial truncations, an extension of these

nonsymmetrically-weighted approximations to models of the form
X +28% + £(x) =0, x(0) =1, x(0) =0

is now undertaken.
The K~B averaging method requires f(x) to have an
explicit linear term and imposes criteria for the "lightness"

of damping and for the "quasi-linear" nature ‘of the characteristic.
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The parameters a(t) and ©(t), given in Appendix C, for the change
in emplitude and phase, respectively, are assumed constant over
the first cycle of the oseillation, In this work, the egponential
decay predicted by the first-order approximate solution‘in
equation (C.l) of Appendix C is assumed,and a direct piecewise-
linearization of the characteristic in ferms of the shif ted
Jacobi polynomials is carried out. No restriction is placed
on the change in frequency of the nonlinear oscillation over the
first cycle or on the presence of a linear term in f(x). Only
f(x) with an odd-symmetric, monotonic—increasing property are
considered for the approximation because the nonsymmetrically-
weighted approximations have been applied only to this class.
Also, the K-B approximation of the form ¥(t) = a(t)cos (wot + 6(t)),
applicable to f(x) = wix‘+ pg(x), would not be expected to fit
an asymmetric oscillation.

To show the application of the linearization procedure,

consider approximate solutions to the equation

L 3 © L

X + 0.4X + X + X0 + 5x5 = 0, x(0) =1, x(0) = O.

The K-~B approximate solution to this equation is

F(t) = e792% cos ( [4.875 %), (3.10)

This solution is valid for the first cycle of the oscillation.
As shown in Table (3.2), the characteristic in equation (3.9)
has a nonlinear factof F = 0.55. A Lanczos' Economization of

this characteristic in terms of the shifted Jacobi polynomials,

\
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Gk(o‘590°56)(x), on (0,1) yields the linear approximation

o8

¥, + 0.4% +5.782x - 0.900 =0, K (0) =1, F(0) -o.

Hence the approximate solution, valid for the first quarter-cycle,
is

Loacd

xl(t) = O.847e"o°2t

cos (2.40% = 0.083) + 0.153,
(%,11)

From equation (3.10) an epproximation to the first minimum is

X . = =0.76. A truncation of the characteristic in equation

min
(0.5,0.56)(

(3.9) on (0, ~0.76) in terms of the G Xx) polynomials

k
yields the approximation

A~
X

o+ o.4§2 + 2.6¢§é + 0.340 = O, %%(0.78) = 0,

é%(0.78) _ -1.66.

The initial conditions for this equation are obtained from
equation (3.11) when'ii(t) = 0. The approximate solution for

the next half-period on (0, =0.76) is thus

-Oo2t

~/

xz(t) = 1.19e cos (1.61t - 2.70) - 0.13. (3.12)

The approximate solutions Qa(t) and ﬁé(t) are valid for the
range 0£t£2,.93 sec. and this is three quarters of the first
cycle. Using the amplitude decay predicted by the K-B averaging

method, the approximate amplitude after one cycle is = 0.56.

*nex
The normalization of equation (3.9) from the range (0, 0.56) to

the range (0,1), under the transformation x = 0.56y, gives
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§°+ Oo4§ + ¥ + O.314y3 + 0.492y5 = O, (3.13)

As the oscillatibn is damped, the amplitude of the nonlinear
terms decreeses and the value of F, which has been defined on
(0,1), elso decreases. The normelized characteristic in equation
(3.13) has F = 0.28. After truncaeting this characteristic on
(0,1) in terms of the Gk(o’590°56)(y) polynomials, and then
changing back to the range (x = 0, x = 0.56), we obtain

a o

3{3 + 0.4%, + 1.08%.

3 3
’3}’3(2.93) = 1.00

- 0.091 = O, %’3(2,93) = 0,

as the third piecewise approximation, valid for the next half
cycle. The K-B solution and the above piecewise-linear solution
- for equation (3.9) are compared in Figure (3.7).

In Figure (3.8), piecewise-linear approximations to

X + 0.2x + tanh(2x) = O, x(0) =1, x(0) = 0,

have been carried out in terms of the shifted Jacobi polynomials,
Gk(o°5’o°44)(x). The characteristic tanh(x) arises physically as
a model for nonlinear barium titinate capacitor characteristics

<22). For this equation the K-B method does not apply because an

explicit linear term is not present. Instead, Lanczos' Economi-
zation of a least-square error, seventh-degree polynomial approxi-
mation to tanh(2x) is carried out for each linearization. To get
an approximation to the amplitude at each half cycle of this
damped oscillation, a linear Chebychev polynomial truncation is

made on (-1,1), and then the solution of the resulting
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approximation is used to determine Xoin® This technique gives
an approximate amplitude of X oin = -0.717 after one half-cycle

and an amplitude of x < = 0.538 after a full cycle. Linear

me.
truncations in terms of the shifted Jacobl polynomials,
Gk(O’S’ O'44)(}:), are then made for the first quarter-cycle

and for each successive half cycle. The progedure is the same

as for the example in equation (3.9). Figure (3.8) compares

the numerical and approximate solution.

In the above two examples, the first piecewise-lineari-
zation is over only the first quarter cycle of the oscillation.
This is useful because the nonlinear terms in the characteristic
have a large magnitude where the aﬁplitude of the oscillation
is greatest, and thus a small approximation interval is important.
The piecewise-linearization also allows different, weighted
approximations to be made as the oscillation damps out.

The possibility of using cubic truncations to improve
the approximation has not been explored. Only a first-order
approximation to the decay in amplitude of the nonlinear oscil-
lation has been found. Therefore the Jacobian elliptic functions
are not considered in the approxinmation of non-conservative

oscillations.

3.4 Discussion and Pogsible Extension of the Results

An advantage of the orthogonal polynomial truncation
techniques given in this chapter is that they are generally
applicable to a wide range of both conservative and non-

conservative models for common physical systems. Also, the

(
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refinement of the approximate model from a linear one to a

cutic ore is direct, and the seme technigues are employed for
gymmetric, asymmetric and non-conservative models. In contrast,
*he classical averaging technigues refer indirectly to the
residaal error obtained when the assumed solution is substituted
into the model. Refined solutions are also difficult to obtain
from the classical techniques,

Application of polynomiel truncation to first-order
differential equations was considered. In some cases, weighted,
Jacobl approximete solutions, improved over those obtained by
rear-uniform expansion of the characteristic, have been found
ket no relation to the weighting of the truncated approximation
to a second-order model has been noted., This is because the
same arguments for a small error at the end of an interval of
symmetry do not apply to first-order systems. For this reason,
approximation of first-order systems has not been studied in
this work.

Extension of this work to second-order models driven
by harmonic time-~functions 1s also possible. Results obtained
by Klotter<23) show theat the backbone of the nonlinear amplitude-
freguency response curves is obtained by setting the driving
term to zero. Hence, approximations to the backbone curve,
improved over the one-term Ritz method, may be obtained directly
from the results of this work., The arguments for the use of
symmetry and the insight gained into weighting the approximations
ir. this work could be investigated for tﬂe symmetric, steady-

state response. Also, the error criterion on the error at the
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end of an interval of symmetry is important for the steady-
state approximation. Near resonance, where the amplitude of
the oscillation is large, the effect of the nonlinear terms is
important. ZFor lightly-damped models, the amplitude of the
steady-state response approaches the backbone curve near re-
sonance. Thus, an improvement over the classical one-term Ritz
method could, perhaps, be significant using different weighting

in Jacobi polynomial approximations.
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4. CONCLUSIONS

Piecewise-linear and piecewise-cubic approximations,
from which analytical solutions to classes of second-order non-—
linear differential equations may be obtained, have been developed
in this work. Initially, criteriae for the error in the approxi-
mate time solutions were imposed. The introduction of Jacobi
and shifted Jacobi polynomials has given a flexibility to the
approximation techniques which is not possessed by the classical
approximation methods.

Error bounds were then given which prove that the
maximum relative error in the solution to an approximate Jacobi
or shifted Jacobi model is bounded, no matter how large the
coefficients in the original nonlinear model become. An
empirical measure of the departure from linearity, based on
these error bound results, permitted approximations to be made
using the shifted Jacobi polynomials, Gk(O’S’ B)(x). Approxi-
mate time solutions for which the relative error at the
approximate guarter period is of the order of 10% of the maxi-
mum relative error over the quarter period have been obtained.
Thus, it has been possible to obtain quantitative approximations
to the nonlinear amplitude-frequency relationship. Unrefined
approximations using the ultraspherical Jacobi polynomials
allowed closed-form solutions to be written for symmetric,
cubic models by inspection. |

To provide a general approach for the approximation
of asymmetric, conservative models the shiffed Chebychev

polynomials, Gk(O‘S’O‘S)(x), were employed., This approximation
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technique was found to provide improved solutions over the
one—~term Ritz method in the first-order approximation case,
and over the two-term Ritz method and least-square error
approximation in the cubic case.

Improvement in the amplitude;frequency approximation
obtzined from the K-B method has been shown possible for
second~order nonlinear models with light, viscous damping.
Again the Gk(o°598)(x) polynomials have been used for a
direct, piecewise-linearization of the characteristic in the
nonlinear model,

The polynomial truncation techniques have provided
a direct attack on\the approximation problem. The results
which have been obtained using these techniques show improve-
ment 6ver the classical averaging methods with a decrease in

tedious labor.
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APPENDIX A

The Closed Form Solution of Second-Order, Conservative System

Models with Cubic, Nonlinear Characteristics

For the special case in which the cubic characteristic
has zero-point symmetry, Soudack(24) has derived closed-form
solutions in terms of the Jacobian elliptic functions., The

cases of interest are:

(i) x + ax - bx- - 0, x(0) =X ;{(O) = 0, a,b>0.

09

The solution is x(t) = X Sn(k,wt + K(k)) for X < [£5

where «° = a - 0.5 ng and k° = in/(2a - bX%)

o0

(ii) X + ax + bx° = 0, x(0) =X

i

o’ ;{(O) = O, a,b(O.

The solution is x(%) XoCn(k,th where «° = a + ng

and k° — in/Z(a + in).

(iii) x - ax + bxo = 0, x(0) =X

il

. x(0) =0, a,b>o0.

An oscillatory solution, symmetric in the origin, is

obtained in the form of case (ii) when a is small. For

a<:bX§/2, the solution is x(t) = XoCn(k,th where w® = -a + ng

2

and k“ = bX§/2(-a + in). An oscillatory solution for larger

a has the form x(t) = XoDn(k,th where k° = 2(1 - a/ng) and
w2 = bX§/2. The conditions on the initial amplitude are
0<XL< f2a/b and X #[a/b.

When the nonlinear characteristic does not have the

above symmetry the closed-form solution may not be written by
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inspection. The system model now has the form

2
4w
dfz + bo + blw + b2w

2 4 b3w3 =0, w(0) =1, w(0) =0. (A.1)

The range of oscillation of w in this model will always be
(0,1) after the normalizations described in paragraphs (2.1.1)
and (3.2) are carried out. From equation (2.1), the first

integral of the motion is
2 3 4
Lodwy2 _ - W i W

A E, - V(w)

The normalized initial conditions of (4.1) give B, = V(1), and

= ;//2 [V(l) - VCWD ) (A.3)

from (A.2). The minus sign is chosen from physical considera-

hence

tions because w decreases as t increases from zero for this

bounded oscillation. Integration of (A.3) gives

T dw

w
at = - —_—— 0£w<£l (4.4)
f f /2 V(1) - v(w)] "’ !
0 1 |

or

w
t =% ‘f i 5 0£w£l
A /2 VL) - V)] - s
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where

N

AT

y (4.6)

1

_ Jf dw

=T - \
/2T - V)

The quantity, AT, obtained by dividing the range of integration
in equation (A.4), is either one gquarter period or one half
period depending on the symmetry of the'problem being considered.
Equation (A.6) is a complete elliptic integral of the first

kird. A technique given by Hancock(ZS)

allows the integrand

in (A.5) to be transformed to the Jacobién ellipti¢c Integral

of the first kind using Legendre's transformation,and then a

closed—form expression for w(t') may be obtained. Evaluation
of (A.6) is not necessary because the gquarter period or half

period may be obtained from w(tv).

The integrand in (A.5) may be written in factored

form as

du _ dw :
N b \
/-—42 [(X-Q)(X—A)(X—g)(x—g)]

It is clear from (A.2) and (A.3) that x = 1 is a root of the

(A7)

denominator polynomial in (4.7). Hence, this polynomial can
always be reduced to a cubic and the roots may be found. The
roots in (A.7) are ordered so that @>A> u> x with the real

roots ordered first. Legendre's transformation is

w=(p+aqy)/(Q +y)
where
OA ~
P +9 ==
2 "8 ArA-L-Z and
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Orlp + m) - pa(@ + A)
S+tAi-p-x |

pa =

Under this transformation

dw _ (g = p) _ (A.8)

V[-\ Vr_‘ V/(+m v© o+ n2y2)(+r + S 2)‘

is obtained, where

m® = (p - 9)(p - 1), n® = (q - 8)(q - 1),

r2

(p - w(p - =) S (@ = p)lq - =)

For the special case in which 8 + A = p + = the transformation
=y + (& +A)/2 =y + (p + ®)/2 is used. It is shown by

Hancock that p + ¢ and pq are always real. From equation

(A.7), equation (A.5) may now be written in the form

d.t' - (q o D)dV .

\
mx;/i(l + gy%) (1 + n%y?)

On the right hand side of this expression, h and g are defined

so that h> g and then the integrand may be further reduced to

dt' — (Q - D)dv
2 5 2,
mrS//+(l + 35 ve) (1 + v©)
h

1 dv (4.9)
= § - ’ A

> *\

+1 + ¢ 2v2) (1 + v 2)

2

where v = hy and ¢ = g2/h2<:l° Hancock shows that N is always

real. It is also shown that of the eight possible combinations

. . , . 2 224"
of sign under the radical in equation (4.9), / -(1 + v)(1 + c“v9)
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!
may be neglected, since W, which is positive for some of the
original w, cannot be transformed to a function which is always
negative by a real substitution.

Using Table A below, closed-form expressions may be
obtained for v(t')'according to each of the seven possible

sign combinations in equation (4.9). In this table

AP = \/[ k S1n2¢, where k and @ are defined as the modulus

and the amplitude of t respectively. The trigonometric sub-
stitutions in Table A define the Jacobian elliptic functions.
The quantity k is defined as the modulus of the elliptic
function,and @ is defined as the amplitude of the elliptic
function. For example, the substitution v = tan ¢ 2 Tn(Nt')

= Tn(k,Nt') for entry I in Table A defines the Jacobian elliptic

tangent function from

;oL f dv .
J @ v+ AP
The complementary modulus is defined to be‘k' =/ 1 - k2 .
Entries VI and VIa in Table A have the same form. In VI,
v€1l, while in VIa,v2 2‘5. The elliptic integrals of the first
kind and the elliptic functions are obtainable from works such

as the "Smithsonian Elliptic Function Tables".(26>
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ITI

IV

dv

V/(l+v2)(l+02v2)‘

av

TABLE A
Standard Forms for Jacobian Elliptic Integrals
of the First Kind

3

-k a¢

v/(l-vz)(l+c2v2)\

av

V/(vz-l)(l+c2v2)\

dv

V/(1+V2)(l-c2v2)‘

V/(l+v2)(c v l)

dv
J (1v2) (1=c2v2)

\/(v -1) (v

1)

av
V/(v2-l)(l-c2v

cag
'
- g
- 55

>|e:

- <4
- <35

tan @ k

= cos @ K2
= sec @ x°
= sin @ K2

1 2
= E—gzﬁ—a k

- sin® ¢+cos2 o)
2
c

= l-c2

T4

2

k= = 1-02
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APPENDIX B
Derivation of the Jacobi and Shifted Jacobi Polynomials

(27)
Lanczos gives a development of the Jacobi polynomials

from the hypergeometric series

( vx) A8 AA +1)68(0 +1) .2
F\K,angx) =1 + o X - E(a T l) 1-0

LA+ DO+ ) (6 + 1)(e +__L 3

(e + 1)« 5) « T+ 2 - + oecoo

This series terminates with the power 2 if A = -n, The
choice of @ =n + a + B - 1 yields the set of orthogonal

polynomials

G£<a’B)(X) ~F(-n,n +a+p8 -1, « ; x),

which are orthogonal on (0,1) with respect to the weight
factor W(x) = x* (1 - )P, 1In this study the shifted
Jacobi polynomials have been formed by standardizing the above
polynomials so that Gn(“’ﬁ)(l) = 1., Defining the quantities
On =n+a« +p ~1, Bn =f +n and @ =@ +n, the first

five shifted Jacobi polynomials may be written

G’O(X> =1
=)
1
Gl(x) = -g- [—l + —-a-x:l
' aay 28, 6,0 2]
GZ(X):-@—]?[I-CXX-I-EIIX

30 30
GB(X) - =12 [-l + 35 - 2 4'xz + 242 4 3]
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o) - ST [0, R o 0% 5 9000 )
4 BB]_BQBB R o a(xl oco:l(x2 aalazaB

Some special cases of the above shifted Jacobi polynomials are:
« = B = 0.5, shifted Chebychev polynomials; « = B = 1.0, shifted
Legendre polynomials.

The wltraspherical Jacobi polynomials, orthogonal on
2)u-1

(1,-1) with respect to the weight factor (1 - x , are ob-

tained from the hypergeometric series.

P;(“)(x) =F(-n, n +2u -1, u; L > ),

The first eight ultraspherical Jacobi polynomials, standardized

so that Pn(“)(l) = 1, are:

PO(X) =1
Pl(X) = X
P, (x) = Z_le l:x2(2u +1) - 1]
P3(x) = 5% [(2}1 +3)x° - 3;{]

P4(x) = Z;(EL;ﬁfy [(2u +5)(2p + 5)xd - 6(2p + 3)x° +f3]

P5(x) = ZETELI—TT [(2p + T)(2p + 5)x° - 10(2p + 5)x° + le]

Pe(x) = gy (20 + 92w+ 2w+ 5)x® - 1502 + 7)

(2p + 5)x% + 45(2p + Sbg-lé]

Pplx) = 8ulp + l%(u + 2) [(2“ +11)(2u + 9)(2u + 7>X7"

21(2p + 9)(2p + % + 105(2Q + T
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Some special cases of these ultraspherical Jacobi polynomials
are: pu = 0.5, Chebychev polynomials; p = 1.0, Legendre poly-
nomials; and u = 1.5, Chebychev polynomials of the second

kind,
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APPENDIX C

The Krylov-Bogoliubov Approximation; its Bgquivalence with
the One-Term Ritz Method and with a Linear Expansion in Ultra-
spherical Chebychev Polynomials.,

The method of Krylov and Bogoliubov or the K-B

approximation applies to the second order model x + wi b'd

+ pf(x, x) = O, where p is a "small" parameter. For the model

X + wix + U [28& + g(x)] == 0, the K-B approximation may be

assumed in the form X(t) = a(t) cos (mot + 6(t)) a a(t) cos alt).

(28)

Cunningham shows the evaluation of a(t) and ©(t) by averaging

over one cycle of the oscillation. The result is

a(t) = Aoe"HSt (c.1)
and
ok 1
é(t) = EE%'E g(a cos a) cosa da. (C.2)
0
0

For the case in which the oscillations are damped, the K-B
method applies only to models with an explicit linear term.
Consider the special case in which the damping term is zero

and the model takes the form x +‘w§x + pg(x) = 0, Then

2n
%% =+ 5;%1; Jﬂ g(a cos «) cosada £ wla)
0
0 (C.3)

Integrating this expression for the phase, one obtains

a(t) = w(a)t + €. If %(0) = O in the model, then C = O.
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From (C.3) we have
2w
2(a) = of + =K g(acosa) cos ada
] T8 . ’
0

where second-order terms in p are neglected. Thus,

2w 2T

W(a) = T-z-]a—' [ wia f cos®ada + " f g(acoscx)cosada]
0

0
ok 4
_ wlacos + uglacosa) cosada
= ma o )
0

m
- F(acosa)cosada
—“a L
0
where F(x) = wix + pelx).

This expression thus determines the approximate frequency,
w(a), for a nonlinear model X + F(x) = 0.

For the case in which f(x) has odd-symmetry in
x + f(x) =0, x(0) =1, i(o) = 0, Soudack(zg) has shown that
a one~term Ritz approximation is equivalent to a linear ex-

pansion in terms of the Chebychev polynomials. The Ritz

conditions give

w2 =% f £(cos 8)cos ©4d6. (c.5)
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Similarly a Chebychev polynomial expansion gives

1
W = % uf x f(x)(1 - XZ)(_O°5)dX
-1
2%
= % Jf f(cos ©)cos ©de (C.6)
0

for an odd f(x) under the substitution x = cos ©. The one-
term Ritz and Chebychev approximation techniques are applicable
to models more general than those restricted to have an explicit
linear term by the K-B approximation. Nevertheless, théyex—
pansions in (C.4), (C.5) and (C.6) show that, for conservative
models to which the K-B method applies, the same approximate

solution is obtained from the X-B method and the Ritz method.
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