# LONGITUDINAL PERMEABILITY WITHIN DOUGLAS-FIR (<u>PSEUDOTSUGA MENZIESII</u> (Mirb.) Franco) GROWTH INCREMENTS

1

÷

- by - .

# GEORGE BRAMHALL B.A.Sc., University of British Columbia, 1946

# A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

in the Department of FORESTRY

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

August, 1967

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and Study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Forestay Department of

The University of British Columbia Vancouver 8, Canada

ept. 11, 1967 Date

#### ABSTRACT

An apparatus was constructed to measure the longitudinal gaspermeability of wood microsections about 150 microns thick. This apparatus was used to examine low surface tension drying methods of wood (freeze-drying and alcohol-benzene extraction) believed to maintain the bordered pit tori of Douglas fir (<u>Pseudotsuga menziesii</u> (Mirb.) Franco) in the non-aspirated condition. Results were compared with drying methods believed to aspirate tori (air-drying, oven-drying and boilingunder-vacuum). Dry nitrogen gas-permeability measurements were made under "steady state" conditions. Similar drying techniques were used to prepare gross specimens which were subsequently subjected to "non-steady state" pressure treatment in end-penetration. Sapwood and heartwood specimens from impermeable interior-type and permeable coast-type Douglas fir were tested.

With both gross sections and microsections, the two low surface tension drying methods provided more permeable wood than did air-drying. Boiling-under-vacuum was as effective as low surface tension methods in improving gas-permeability, but not creosote-permeability, whereas ovendrying was as effective as low surface tension methods in improving creosote-permeability, but not gas-permeability. The improvement was most striking in all sapwood samples, less in coast-type heartwood, and nil or not measurable in interior-type heartwood.

Under the experimental conditions, latewood gas-permeability was about 2 darcies for all specimens and drying methods. Heartwood earlywood gas-permeability ranged from 0.02 to 2 darcies but was unaffected by drying methods. Sapwood earlywood gas-permeability was improved from

-ii-

8 to 30 times by low surface tension drying. The greatest gaspermeability was found in the first-formed earlywood, which ranged from 2 to 100 darcies. The later-formed earlywood ranged from 0.02 to 100 darcies, depending on wood origin and drying method.

Creosote-permeability of interior-type heartwood was uniformly low by all drying methods. Interior-type sapwood and coast-type sapwood and heartwood were much more permeable after low surface tension drying or oven-drying. By visual observations, after all drying methods, latewood was more permeable than earlywood.

Low surface tension drying methods improve earlywood gaspermeability of sapwood, and latewood creosote-permeability of sapwood and coast-type heartwood.

| TABLE OF CONTENTS |  |
|-------------------|--|
|-------------------|--|

|                                                          | Page |
|----------------------------------------------------------|------|
| Abstract                                                 | ii   |
| Table of Contents                                        | iv   |
| List of Tables                                           | v    |
| List of Illustrations                                    | vi   |
| Acknowledgements                                         | viii |
| Introduction                                             | l    |
| Literature Survey                                        | l    |
| Penetration Through Spiral Checks                        | l    |
| Penetration Through Resin Canals and Wood Rays           | 2    |
| Penetration Through Bordered Pits                        | 3    |
| Effect of Pit Aspiration on Penetration                  | 3    |
| Effect of Drying from Organic Solvents on Pit Aspiration | 4    |
| Effect of Solvent Drying on Permeability                 | 5    |
| Earlywood <u>vs</u> . Latewood Permeability              | 6    |
| Dbjectives                                               | 9    |
| Development of Apparatus                                 | 9    |
| Experimental                                             | 12   |
| Selection of Gross Specimens                             | 12   |
| Handling and Cutting of Gross Specimens                  | 13   |
| Drying Techniques                                        | 14   |
| Creosote-Impregnation of Gross Specimens                 | 15   |
| Gas-Permeability of Microsections                        | 16   |
| Results and Discussion                                   | 19   |
| Effect of Wood Zone and Provenance on Permeability       | 19   |
| Effect of Position within Increment on Gas-Permeability  | 20   |

-iv-

| Effect of Drying Procedure on Gas-Permeability      | 21             |  |
|-----------------------------------------------------|----------------|--|
| Effect of Provenance on Creosote-Permeability       | 24             |  |
| Effect of Drying Method on Creosote-Permeability    | 24             |  |
| Relationship between Gas- and Creosote-Permeability | 25             |  |
| Conclusions                                         | 27             |  |
| Literature Cited                                    |                |  |
| Tables                                              | 32 - 57        |  |
| Illustrations                                       | 58 <b>-</b> 77 |  |

.

.

Page

## LIST OF TABLES

| <b></b> | 7  | Characteristics of Douglas fir stem sections<br>used in gross and micro-permeability studies | Page |
|---------|----|----------------------------------------------------------------------------------------------|------|
| Table   | 1. |                                                                                              | 32   |
|         | 2. | Gas-permeability experimental data                                                           | 33   |
|         | 3. | Regressions of Douglas fir gas-permeability<br><u>vs</u> . specific gravity                  | 47   |
|         | 4. | Rate of creosote absorption in gross specimens                                               | 48   |

-vi-

## LIST OF ILLUSTRATIONS

1

| Figure 1. | Gas-permeability apparatus (diagram)                                                                                                          | 58 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.        | Gas-permeability apparatus (photograph)                                                                                                       | 59 |
| 3.        | Permeability cell                                                                                                                             | 59 |
| 4.        | Microsection cross section                                                                                                                    | 60 |
| 5.        | Boiling-under-vacuum apparatus (diagram)                                                                                                      | 61 |
| 6.        | Boiling-under-vacuum apparatus (photograph)                                                                                                   | 62 |
| 7.        | Pressure retort                                                                                                                               | 62 |
| 8.        | Interior-type Douglas fir sapwood. Oven-dry specific gravity and longitudinal gas-permeability <u>vs</u> . position in growth increment       | 63 |
| 9.        | Interior-type Douglas fir heartwood. Oven-dry specific gravity and longitudinal gas-permeability <u>vs</u> . position in growth increment     | 64 |
| 10.       | Coast-type Douglas fir sapwood. Oven-dry specific gravity<br>and longitudinal gas-permeability <u>vs</u> . position in growth<br>increment    | 65 |
| 11.       | Coast-type Douglas fir heartwood. Oven-dry specific gravity and longitudinal gas-permeability $\underline{vs}$ . position in growth increment | 66 |
| 12.       | Rate of creosote absorption through the ends of<br>l x l x 10-in. air-dried Douglas fir                                                       | 67 |
| 13.       | Rate of creosote absorption through the ends of $l \ge 1 \ge 1 \ge 10$ -in. oven-dried Douglas fir                                            | 68 |
| 14.       | Rate of creosote absorption through the ends of<br>1 x 1 x 10-in. solvent-dried Douglas fir                                                   | 69 |
| 15.       | Rate of creosote absorption through the ends of $l \ge l \ge l$ and $l \ge l \ge l$ .                                                         | 70 |
| 16.       | Rate of creosote absorption through the ends of<br>1 x 1 x 10-in. boiled-under-vacuum Douglas fir                                             | 71 |
| 17.       | Effect of drying method on rate of creosote absorption<br>through ends of 1 x 1 x 10-in. interior type Douglas<br>Fir (Prince George, B.C.)   | 72 |

# Page

| · | Figure 18. | Effect of drying method on rate of creosote<br>absorption through ends of 1 x 1 x 10-in. coast type<br>Douglas fir (Lake Cowichan, B.C.) | 73 |
|---|------------|------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | 19.        | Effect of drying method on rate of creosote absorption<br>through ends of 1 x 1 x 10-in. coast type Douglas fir<br>(Haney, B.C.)         | 74 |
|   | 20.        | Creosote penetration of specimens, interior-type<br>Douglas fir                                                                          | 75 |
|   | 21.        | Creosote penetration of specimens, coast-type Douglas<br>fir (Lake Cowichan, B.C.)                                                       | 76 |
|   | 22.        | Creosote penetration of specimens, coast-type Douglas fir (Haney, B.C.)                                                                  | 77 |

.

.

.

#### ACKNOWLEDGEMENTS

Dr. J.W. Wilson offered valuable assistance and constructive criticism in carrying out this investigation. His guidance is greatly appreciated.

Dr. R.E. Foster, Director, Vancouver Forest Products Laboratory of the Department of Forestry and Rural Development, provided laboratory facilities and services, while the staff rendered valuable assistance. The following individuals were particularly helpful: Mr. A.E. Black, who constructed several versions of the permeability cell and modified other parts of the apparatus; Mrs. V. Cernetic and Mr. E.P. Lancaster who provided technical assistance; and Mr. B.E. Fox who rendered photographic services.

Dr. R.W. Wellwood and Mr. L. Valg offered constructive criticism on the preparation of the manuscript. Their advice has been most helpful.

The financial assistance of the Department of Forestry and Rural Development during this investigation is gratefully acknowledged.

-viii-

#### INTRODUCTION

The manner in which liquids and gases penetrate into coniferous woods is of interest to wood scientists in the fields of wood preservation, pulping, fire retardants and, more recently, wood-plastic copolymers. Since investigations were begun in the first decade of this century, many aspects of wood penetration have been studied so that at the present time a considerable amount of information has been collected. In spite of this, however, there are still areas of doubt as to some details of the penetration mechanism. It is the purpose of this study to investigate certain of these.

#### LITERATURE SURVEY

#### Penetration Through Spiral Checks

Tiemann (25) observed that under some conditions, spiral checks appear in wood cell walls, and he presumed that the passage of liquids from one tracheid to the next took place through these checks. Weiss (26) amplified this theory by proposing that the higher permeability of latewood was attributable to its greater tendency to check due to the stiffer nature of its cell walls.

Gerry (11) did not find evidence that the spiral slits of loblolly pine (<u>Pinus taeda</u> L.) assisted penetration. Bailey (1) in a microscopic study of Sequoia (<u>Sequoia</u> spp.) and longleaf pine (<u>Pinus</u> <u>palustris</u> Mill.) woods showed that while spiral checks were sometimes observed, they penetrated only the tertiary and secondary walls, whereas the primary wall remained intact and presumably resisted passage of fluids.

Penetration Through Resin Canals and Wood Rays

Gerry (11) investigated the function of horizontal resin canals and ray cells in the penetration of loblolly pine wood, and considered that their participation had been overestimated. She found that ray cells in the latewood appeared to be penetrated by creosote only after the adjacent tracheids were full. The horizontal resin canals were found to contain resin, which was not dissolved by the creosote even when adjacent tracheids were penetrated. Penetration of the earlywood, which might be expected to receive creosote from adjacent resin canals was found to be extremely slow.

Teesdale (24), after penetration studies on several woods, concluded that, while horizontal resin canals were responsible for treatability of some species, they were not a significant factor in others.

Erickson (9) forced water through tangential specimens of loblolly pine, longleaf pine, shortleaf pine (<u>P. echinata Mill.</u>), Douglas fir (<u>Pseudotsuga menziesii</u> (Mirb.) Franco), and tamarack (<u>Larix laricina</u> (Du Roi) K. Koch) 1.25 mm.thick, and demonstrated that horizontal resin canals in some cases conducted water. Permeability of the resin canals, however, varied greatly both with species and within individual specimens.

Buro and Buro (5) found no correlation between the concentration of resin canals and the longitudinal gas permeability of 7 mm cubes of pine (<u>Pinus</u> spp.). It appears, therefore, that resin canals vary in their effect on permeability between species and even between specimens.

Above all, resin canals alone do not explain penetration effects,

-2-

since woods not having normal resiniferous systems also display variable penetration behaviour.

#### Penetration Through Bordered Pits

Bailey (2) demonstrated by the use of carbon particles in suspension that liquids penetrate from tracheid to tracheid by way of bordered pits, and proposed that the formation of gas-liquid menisci in the minute openings of the pit membrane prevents penetration of gases. While communication through the bordered pit pairs has been questioned from time to time (11, 23) it has generally been accepted by wood scientists.

## Effect of Pit Aspiration on Penetration

Bailey (2) likened the torus of a coniferous bordered pit pair in the living tree to a valve which resists penetration of gases. Extending the concept that gas-liquid menisci in the openings of the pit membrane resist gas movement, he proposed that additional pressure applied on the gas moved the torus to cover one or the other pit opening, effectively sealing the pit. Griffin (12, 13) showed that, while atmospheric air pressure alone is not sufficient to displace the torus, air-dried Douglas fir generally contains a higher proportion of aspirated pits than does unseasoned material. Phillips (20), in studies on Austrian pine (<u>Pinus nigra var. calabrica</u>), noted a gradually increased number of aspirated pits as the wood dried from the green condition to about 30% moisture content, at which time the majority of the pits became aspirated. Erickson and Crawford (7), in studies on Douglas fir and western hemlock

-3-

(<u>Tsuga heterophylla</u> (Raf.) Sarg.), noted similar aspiration of bordered pits during drying.

Although the aspiration of bordered pit tori is generally believed to prevent the penetration of fluids, this is not unanimously accepted. Bailey (2) considered aspiration as preventing penetration, and Griffin (12) provided evidence to support the theory, particularly as it applies to mountain-type Douglas fir. Stone (23), however, examined 10,000 tori in treated and untreated coast-type Douglas fir wood and concluded that in spite of the fact that most tori were aspirated the wood was still permeable. He concluded further that the lining of the bordered pit was too rough to give a tight seal.

Effect of Drying from Organic Solvents on Pit Aspiration

Bailey (2) suggested surface tension of water as the functional agent in aspiration of coniferous pit tori. Although Liese and Bauch (18) formally demonstrated that a surface tension of the evaporating liquid in excess of about 26 dyne/cm.is sufficient to effect pit aspiration in Scots pine (<u>Pinus sylvestris</u> L.), and that liquids with a surface tension below this value do not aspirate the torus, Griffin (12) had anticipated these results. She demonstrated that soaking green wood in alcohol (surface tension 22.3 dynes/cm.at 20°C) and subsequent drying left the torus in the central position. Stone (23), however, reported that soaking in alcohol did not prevent the majority of pits from being aspirated. More recently Furusawa (10) and Erickson and Crawford (7) confirmed Griffin's conclusions.

-4-

Effect of Solvent-Drying on Permeability

In spite of the fact that Griffin demonstrated the effect of solvent-drying on aspiration, and indirectly suggested the effect on permeability, Erickson and Crawford (7) appear to have been the first to test the relationship between permeability and pit aspiration by determining the permeability of solvent-dried wood. In their experiments they measured the longitudinal water-permeability of green Douglas fir and western hemlock. Results were compared among matched specimens, some of which were air-dried and others solvent-dried from alcohol, alcohol-benzene and acetone. Whereas air-drying reduced the waterpermeability of green Douglas fir wood to one to two per cent and western hemlock to two to four per cent of their respective green values, the water-permeability of solvent-dried Douglas fir was 70 to 103 per cent and western hemlock 110 to 115 per cent of green values. Based on microscopic observations, they attributed the improved permeability of solvent-dried wood to the fact that the tori of bordered pits were not aspirated.

Clermont and McKnight (6) subjected Douglas fir, red pine (<u>Pinus</u> resinosa Ait.) and white spruce (<u>Picea glauca</u> (Moench) Voss) woods to various drying treatments -- air-drying, oven-drying, and solvent-drying -followed by measuring nitrogen-permeability in the axial direction. Sapwood samples were about one hundred times more permeable than corresponding heartwoods. In general, solvent-dried samples were more permeable than air-dried samples. However, heartwood samples from Douglas fir and white spruce were not affected by the seasoning treatments.

- 5 -

Krahmer and Cote (16) reported that the increased permeability of alcohol-dried wood was not caused by extractive removal. In performing a control for their experiment they soaked the sapwoods of Douglas fir, western hemlock and western redcedar (<u>Thuja plicata Donn</u>) in alcohol, then in water, and permitted the woods to dry from the water-wet condition. No improvement in permeability resulted when this drying sequence was used.

### Earlywood vs. Latewood Permeabiltity

Weiss (26) appears to have been the first to record the observation that latewood is more readily penetrated in the axial direction than earlywood. This has been confirmed by many investigators since that time, and has been a constant consideration in theories on wood permeability. Weiss (26) explained the phenonemon on the basis that spiral checks in tracheid walls were responsible for communication from lumen to lumen. Griffin (12) confirmed the observation, but explained the effect on the basis of aspiration of bordered pits. Other investigators, including Erickson, Schmitz and Gortner (8), Furusawa (10), Harris (15), Koljo (17), Scarth (21) and Teesdale (24) have noted also the higher permeability of latewood.

Investigators are not unanimous in recognizing higher permeability for latewood. Scarth (21), Buckman (4) and Teesdale (24) recorded cases where earlywood had a higher permeability. Teesdale (24) found that in most species the latewood and, in particular, the last formed tracheids which have the thickest walls and the smallest lumens, is penetrated first. However, in redwood (<u>Sequoia sempervirens</u> (D. Donn) Endl.),

-6-

tamarack and yew (<u>Taxus brevifolia</u> Nutt. ), this generalization did not hold. In redwood the earlywood was the most easily treated, the summerwood being scarcely treated at all, whereas in tamarack and yew, both zones were similarly penetrated. Buckman (4), in study of southern yellow pine (<u>Pinus</u> spp.), found that in spite of the apparently higher concentration of cresote in the latewood, there was actually a higher concentration in the earlywood. Guillemain-Gouvernel (14), impregnated Jerusalem pine (<u>Pinus halepensis</u> Mill.) and Scots pine with pentachlorophenol dissolved in benzene, and found by analysis that Scots pine contained a significantly higher concentration in the latewood, whereas in Jerusalem pine the concentration in the two zones was not significantly different.

While these casual observations have been made for the last fifty years, only recently has a formal attempt been made to measure relative permeabilities of earlywood and latewood. No doubt this is because of difficult experimental problems associated with making such measurements.

Buro and Buro (5) attempted to partition the axial gas-permeability of small blocks of pine into earlywood and latewood components by sealing exposed earlywood on the ends of blocks with paraffin. They found considerable variation in their results. In some specimens, latewood permeability was low and fairly constant, whereas earlywood permeability ranged from high in the sapwood to low in the corewood. In other specimens, permeability was equal in adjacent earlywood and

- 7 -

latewood ranging from high in the sapwood to low in the corewood. In still other specimens, the permeability of both zones was equal and constantly low.

Osnach (19) compared longitudinal gas-permeabilities of seven deciduous and four coniferous woods, and also partitioned the permeability of the faster growing species, poplar and pine (not identified as to species) into earlywood and latewood components. In the partition experiments, two types of specimen were used:

- Specimens 20 mm. long and 2 to 3 mm. thick, consisting entirely of the growth zone portion being measured, and
- 2. Gross specimens with resin applied selectively on the cross-sections to isolate earlywood and latewood zones.

He obtained consistent results by both methods. In Canadian poplar sapwood, the earlywood was found to be 2.8 times more permeable than the latewood. In poplar heartwood this ratio was 4.9. The opposite relationship was noted for pine, for which sapwood latewood was 5.5 times more permeable than the corresponding earlywood. In heartwood the ratio was 7.6.

In the investigations reported by Buro and Buro (5) and by Osnach (19), no information was provided on wood seasoning methods. Presumably, these investigators dried their specimens from the green condition to the moisture content at which measurements were made without special seasoning techniques.

-8-

#### OBJECTIVES

The purpose of this study was to construct axial gas-permeability profiles within coniferous growth zones in examination of the hypothesis that important variations in permeability occur at this level of wood organization, and that these variations are reflected in creosotepermeability of whole wood. The hypothesis that wood permeability is seriously reduced during drying as a result of surface tension phenomena was also examined.

Since methods were not available for making gas-permeability measurements at the level desired, it was necessary to develop new techniques for examining minute wood specimens.

#### DEVELOPMENT OF APPARATUS

The gas-permeability apparatus was constructed as detailed in Fig. 1, and as pictured in Fig. 2. In principle, dry nitrogen is passed through the specimen at a pressure differential measured by a manometer, and its volume is measured by water displacement in a calibrated pipette. Five interchangeable pipettes, 0.2, 1, 3, 10 and 50 ml. capacity were constructed to conveniently measure a wide range of permeabilities.

The permeability cell (Fig. 1 and 3) was constructed to accept specimens of the order of 150 microns thick, about 8 mm. wide and 25 mm. long. The specimen is placed in jaws constructed to fit snugly over its ends without bearing on it. These jaws are connected to air inlet and outlet tubes, and the entire assembly of tubes, jaws

-9-

and specimen is placed between two rubber sheets which separate the upper and lower parts of the hollow permeability cell. After bolting the cell together with the rubber sheets acting as gaskets, compressed air is admitted into upper and lower cavities of the cell to force the rubber into intimate contact with the microsection in order to prevent leakage around the specimen face from inlet to outlet.

Leakage around the specimen was the source of most problems encountered. At first, leakage was detected by replacing the microsection by a piece of brass shim of the same dimensions. It was found that when 40 psi pressure was used to force the rubber into contact with the brass shim, leakage still occurred for two reasons:

- 1. The rubber did not conform perfectly to the specimen, particularly along the edges, or
- 2. The rubber was sufficiently porous to permit detectable air-flow even when no differential pressure was applied across the specimen.

The use of a thick rubber reduced the second error, but increased the first, while the use of a thin rubber reversed the effect. Leakage around the brass shim blank was effectively prevented by the use of prophylactic rubber. While this material is very prone to damage when used alone, and is somewhat porous, when used in conjunction with thin dental rubber it did provide a perfect seal. In use, the dental rubber is placed adjacent to the metal cell, and the prophylactic rubber next to the specimen.

The use of pressuresvarying from 40 to 80 psi, to force the

-10-

rubber into contact with wood microsections resulted in widely different gas flow readings. In fact, early experiments gave a high correlation between void volume of the wood and gas-flow for most of the determinations made under these conditions, suggesting that the greater part of the gas flow was taking place in the open, surface tracheids and minor cutting irregularities.

It was found that by placing cellulose adhesive tape on both sides of the specimen, and maintaining 80 psi pressure on the specimen for about an hour, consistent gas flow readings could be made when the compression pressure within the cell was in the range of 40 to 80 psi. Photomicrographs of microsection cross-sections prepared in this way showed the surface tracheids to be completely filled with the adhesive, whereas specimens similarly prepared but with pressure applied for only a few minutes had many surface tracheids incompletely filled (Fig. 4). Gas-flow determinations with these latter specimens at different compression pressures showed small but significant differences, supporting the hypothesis that, in previous experiments, the rubber was an imperfect seal for wood specimens. No specimens showed evidence of adhesive penetration beyond surface cavities.

In addition to the gas-permeability apparatus, two other pieces of equipment were constructed. The first was an apparatus for boiling micro- and gross specimens under vacuum as diagrammed in Fig. 5, and shown by photograph (Fig. 6). Specimens are placed in the retort containing a steam coil to supply heat, and are held down by means of metal bars. After closing the retort by placing a glass plate over the opening, xylene

-11-

was added to cover the specimens. Connection to a Dean-Stark watertrap and condenser was made through a tapered metal female and standard 24/40 ground-glass male joint. Extra condensate collection capacity was obtained by connecting an Erlenmeyer flask into the system. The entire unit was operated at a vacuum of 20-in. mercury.

The third apparatus (Fig. 7) was a pressure retort for treating gross specimens. This was constructed of a piece of 2-in. steel pipe laid horizontally, and a vertical 3/4-in. pipe equipped with a boiler gauge glass. The retort was of a size to allow pressure-impregnation of one  $1 \times 1 \times 12$ -in. specimen at a time. The gauge glass was pre-calibrated to read in grams of creosote. Air pressure applied above the liquid level in the standing pipe was used to impregnate the specimen, while readings of liquid level with time provided a measure of absorption rate.

#### EXPERIMENTAL

### Selection of Gross Specimens

The gross specimens used for this study were selected to give a wide range of permeability, and to provide material for satisfactory preparation of matched microsections.

In a previous study, Bramhall (3) compared the permeability to creosote oil of Douglas fir from various provenances in British Columbia, and confirmed previous knowledge that the heartwood of specimens grown east of the Coast Range is quite impermeable, whereas the heartwood of specimens from the coastal region is usually relatively permeable. A relationship was noted also with annual precipitation in that areas of

-12-

high rainfall produced permeable heartwood, whereas dry areas produced more impermeable heartwood. Sapwoods, though considerably more permeable than the corresponding heartwoods of each region, appeared to be influenced by the same factors.

Stem sections of freshly-felled Douglas fir (<u>Pseudotsuga</u> <u>menziesii</u> (Mirb.) Franco) trees from Prince George, Haney, and Lake Cowichan, B.C. were obtained. Prince George, which is near the northern limit of the Douglas fir range in the B.C. interior, produces typically impermeable heartwood. Haney, in the lower Fraser Valley, is in a high rainfall area of the coastal region, and produces moderately permeable heartwood and permeable sapwood. Lake Cowichan is centrally located in the southern part of Vancouver Island. The permeability of Douglas fir from this area appears to vary widely, depending on the annual rainfall at the specific locality of growth.

In addition to geographic variation, stem sections were also selected to provide acceptable microsections, and gross sapwood specimens of suitable width. For this purpose such characteristics as: sapwood zone at least  $l\frac{1}{4}$ -in. wide, rate of growth 8 to 18 rings per in., straight grain, and diameter 15 to 20 in. inside the bark were chosen. Sections were cut 3-ft. long. Characteristics of specimens used in the study are given in Table 1.

Handling and Cutting of Gross Specimens

On arrival at the laboratory, the wood specimen blocks were stored in a controlled temperature -- humidity room at 35°F and 100 per

-13-

cent relative humidity until they were removed for cutting. Gross specimens were cut to provide at least seven 1 x 1 x 14-in. specimens from each heartwood and sapwood. Sapwood specimens were cut on three sides parallel to the grain. The fourth, cambial side was left uncut, with only the bark removed. Heartwood specimens were cut adjacent to the sapwood-heartwood boundary. After cutting, specimens were returned to the humidity room until required.

#### Drying Techniques

Gross sapwood and heartwood specimens from each geographic area were dried according to each of the following five techniques:

- 1. Air-dried at room temperature to constant weight,
- 2. Oven-dried at 70°C to constant weight,
- 3. Freeze-dried at 50 microns mercury absolute pressure to constant weight,
- 4. Solvent-dried by Soxhlet extraction with 1:2 ethanol : benzene, for one week, during which
  4 changes of solvent were made, followed by airdrying to constant weight, and
- 5. Boiling-under-vacuum in xylene at 20-in. mercury (about 250 mm mercury absolute pressure) until no more water could be removed, then air-dried to constant weight.

After seasoning, gross specimens were stored in a desiccator over "Drierite", anhydrous calcium sulphate, until required. Creosote-Impregnation of Gross Specimens

After drying, the gross specimens were coated on four sides with two coats of clear epoxy resin in order to limit subsequent creosote penetration to the end surfaces. After polymerization of the resin, both ends of the specimens were trimmed to provide fresh surfaces. Length was reduced to a uniform 10-in. The specimens were then stored in a desiccator until required for impregnation with creosote in the apparatus (Fig. 7) described on p. 12. Each sample was weighed, following which it was placed in the lower 2-in. diameter pipe, which was then sealed with a plug. Creosote was introduced into the vertical pipe until it reached the zero mark on the calibrated boiler glass. A pressure gauge was screwed into the inlet. Air pressure at 80 psi was applied, and absorption readings versus time were recorded.

It was noted that, on application of pressure, the level in the boiler glass immediately fell 5 grams but this value was subsequently recovered on release of pressure. This is attributed to expansion of the equipment and compression of the wood under pressure. Pressure was applied until the specimens had absorbed 45 grams of creosote or for a period of three hours, whichever came first. After impregnation, the retort was drained, and the specimen was removed, cleaned and weighed. Treated specimens were then stored at -20°C until all impregnations were complete. They were then thawed, allowed to bleed, and split by saw in the radial plane to permit examination of earlywood-latewood penetration. The exposed surfaces were coated with lacquer to prevent

-15-

surface-bleeding. In all, thirty specimens were treated as described. Gas-Permeability of Microsections

Gross specimens for microsectioning were chosen to represent a wide range of permeabilities as determined by creosote-impregnation of air-dried specimens (Treatment 1). The specimens selected were sapwood and heartwood from both Prince George and Haney, B.C. No material from Lake Cowichan was used for this phase of the investigation. Of the gross specimens previously described, one from each area with straight grain in both axial and tangential directions had been set aside for microsectioning.

These four specimen blocks,  $1 \times 1 \times 3\frac{1}{2}$ -in. long, were saturated with water by soaking under vacuum until they sank, followed by applying pressure at 80 psi. Specimen blocks were then carefully aligned in the microtome to provide sections parallel with the grain, and serial tangential microsections of at least three consecutive growth increments were collected. Section thickness was about 150 microns. The sections were maintained saturated at all times.

Each microsection blank was cut into six pieces  $\frac{1}{2}$  x 1-in. long, each suitably identified and randomly placed into a separate group. In this way six matched groups were formed from the original microsections. Five of the groups, randomly selected, were dried by one each of the five drying techniques already described for gross specimens (Treatments 1 to 5), and the sixth was retained as a spare. After treatment each microsection of a group was weighed, and the results were used to plot an approximate specific gravity profile across the annual rings being examined.

-16-

It is recognized that because of variation in individual specimen volumes, these results were only approximations, but they were sufficiently accurate for the purpose intended.

Eight micro-specimen blanks, equally spaced along the specific gravity profile of one annual increment, and two micro-specimen blanks, one earlywood and one latewood from next later growth increment, were designated for permeability measurements. The micro-specimen blanks were transferred to a large dry-box where the designated sections were selected from each group. One edge was torn from each specimen blank to establish grain direction, and specimens were cut to a standard width of 8.6 mm. by means of a cutting die mounted in an Arbor press. While still in the dry-box, the thicknesses were measured to the closest micron and recorded. Specimens were then transferred to another dry-box containing a Cahn electro-balance where their oven-dry weights were measured to 0.01 milligram.

Some minor discrepancies had been noted in the cutting of specimens to a standard width. Specimens were therefore measured as to both length and width on a travelling stage microscope, and returned to the desiccator for storage.

Cellulose-adhesive tape was applied to both sides of specimens to cover them for 23 mm.of their total length of 25 mm. They were then pressed between rubber sheets at 80 psi for three hours to cause exact conformity with specimen surface irregularities.

The specimens were placed in the permeability cell in the manner that has been described, and a cell pressure of 80 psi was applied

-17-

to complete the seal and prevent leakage.

Depending on permeability of the individual specimen under test, either the 1 ml. or 10 ml. pipette was used. Extremely permeable or extremely impermeable specimens were tested at gas flow pressures of 3 and 60 cm. mercury (0.6 and 12 psi), respectively, while specimens of intermediate permeability were tested at an intermediate pressure. The objective was to maintain a fairly uniform, reasonable test time, which was usually between one and five minutes.

Replicate determinations in which the specimen remained in place in the permeability cell gave reproducibility within two per cent. No significant increase in error was noted when the specimen was removed from and replaced in the cell between determinations. Since the variation between adjacent microsections of similar specific gravity was usually several times this value, only two determinations of permeability without removal from the cell were made on all specimens. Two hundred microsections were tested in all.

Gas-permeability data and calculations are recorded in Table 2. Specific gravity, G, was calculated using the equation:

$$G = \frac{1000 \text{ x wt}}{\text{L x W x T}}$$

where: L = length, oven-dry (mm.) W = width, oven-dry (mm.) T = thickness, oven-dry (microns) wt= weight, oven-dry (grams) Permeability is defined as <u>nLV</u> where volume V of a fluid of viscosity n passes through a specimen of length L and cross-sectional area A in time t under a pressure differential p. In this investigation longitudinal gas permeability P, in darcies (cp. ml./cm. atm.sec.) was calculated from the equation:

- 18 -

$$P = \frac{1.52 \times 10^{9} \text{xVxL}}{\text{T x W x p x t}}$$

where;

L = length (mm.) p = pressure (mm. mercury) T = nominal thickness (microns)(see Fig.4) t = time (sec.) V = volume of gas (ml.) W = width (mm.)

and the viscosity h(0.02 for nitrogen at 20°C) is included in the constant. RESULTS AND DISCUSSION

Specific gravities and the corresponding permeabilities are plotted against position within growth increments in Fig. 8 to 11 for each method of drying for interior-and coast-type Douglas fir sapwood and heartwood. Because of the natural curvature of the growth increment, the various test specimens cut from the same microsection blank did not come from exactly the same position within the increment. Points on the graph, therefore, were adjusted laterally to correspond to the appropriate point on the common specific gravity profile.

Effect of Wood Zone and Provenance on Permeability

It will be noted that the four graphs (Fig. 8 to 11) representing permeability of interior and coastal sapwood and heartwood, illustrate quite different permeability profiles, and that, with the exception of interior sapwood these patterns were not much changed by any of the drying methods used. All have in common a latewood permeability of about 2 darcies. Earlywood permeability varied over a wide range, however, depending on provenance and wood zone tested. Gas-permeability was lowest in the earlywood of interior Douglas fir heartwood, with values of about 0.02 darcy. These values were too low to be measured accurately because of experimental errors introduced at this level. Interior sapwood earlywood was more permeable, with a wide range of values from 0.2 to 20 darcies. Coastal heartwood earlywood permeability was more uniform with values near 2 darcies, and coastal sapwood earlywood was the most permeable with values from 12 to 120 darcies.

## Effect of Position within Increment on Gas-Permeability

While the gas-permeability has been shown to differ between earlywood and latewood, its profile symmetry did not always correspond with that of the specific gravity profile. The permeability profiles of Haney sapwood are symmetrical about the specific gravity profile (Fig. 10) and, as a result, a regression of permeability versus specific gravity is highly significant (Table 3). The permeability profiles of Haney heartwood are also symmetrical, because they are uniform across the growth increment (Fig. 11), but not all regressions are significant.

The permeability profiles of interior heartwood are strikingly similar, uniform and symmetrical (Fig. 9). They are not symmetrical, however, about the specific gravity profile in that they are displaced to the right. The zone of greatest permeability was at the boundary between the latewood and first-formed earlywood, and in the first cells of the earlywood. As a result, regressions of gas-permeability versus specific gravity gave somewhat lower correlations for the interior heartwood sample (Table 3).

The permeability of interior sapwood appears to have interacted with drying treatment. In those specimens which were freeze-dried and solvent-dried, the zone of greatest permeability was again in the firstformed earlywood, while the maximum for specimens boiled-under-vacuum appeared at the earlywood-latewood boundary.

These results suggest that a simple correlation between specific gravity and longitudinal gas-permeability may be fortuitous, and that the point of greatest permeability within an increment is not that of

-20-

greatest specific gravity. These results add support to evidence presented by Wu and Wilson (27) that the first-formed earlywood has characteristics similar to those of the last-formed latewood, and quite different from those usually associated with earlywood.

Effect of Drying Procedure on Gas-Permeability

Liese and Bauch (18) have shown with Scots pine that drying from a liquid having surface tension at more than 26 dynes per cm. aspirates the torus of bordered pits, whereas drying from a low surface tension liquid results in non-aspirated tori. The same effect might be expected from freeze-drying, where a high surface tension gas-liquid interface is completely avoided. Since fluid flow in wood is believed to pass through the bordered pits, it would be expected that freezedried or solvent-dried wood would be more permeable than similar airdried or oven-dried wood. These expectations were realized in these experiments for both interior and coastal sapwood earlywoods.

Longitudinal gas-permeability of coastal sapwood earlywood was increased 3 to 10 times over its air-dried values by solvent- and freeze-drying, whereas the latewood was not significantly affected (Fig. 10). Interior sapwood earlywood permeability was even more strikingly affected, being increased by a factor of about 30, while again the latewood was not significantly affected (Fig. 8). However, the heartwood of neither Douglas fir type was much affected by drying procedure.

The results support the currently accepted belief that aspiration of the bordered pits significantly affects permeability.

-21-

While the action of solvent-drying in improving permeability might be interpreted as a removal of incrusting substances or extractives from the cells, a similar result by freeze-drying indicates that aspiration of the earlywood tori is the predominant factor responsible for poor permeability of some Douglas fir.

This confirms the findings of Sebastian, Cote and Skaar (22) who observed aspiration and incrustation of bordered pit membranes in white spruce. Aspirated and non-incrusted membranes were common in slightly permeable heartwood, and non-aspirated, partly incrusted membranes were found in permeable sapwood. This suggests that aspiration, and not incrustation, is the more important factor of the two.

In both interior and coastal Douglas fir sapwood, the latewood permeability does not appear to be significantly affected by the drying procedure. Furthermore, as has already been noted, the latewood permeability is quite uniform in interior and coastal sapwood and heartwood. This supports the view of Phillips (20), who suggested that the thicker membrane of latewood bordered pits is stiff enough to resist aspiration by a receding water meniscus. The earlywood bordered pit membrane, however, is considerably thinner, and will be aspirated by a receding water meniscus.

The results of boiling-under-vacuum in xylene were inconsistent. In drying interior sapwood by this method, the earlywood permeability was reduced to values similar to those of air-dried and oven-dried wood. On the other hand, in drying coastal sapwood by this method, the earlywood

-22-

permeability remained as high as that of freeze-dried and solventdried material. The following explanation is suggested for this apparent anomaly. In freeze-drying and in solvent-drying the surface tension of the evaporating interface is zero and 20 dynes per cm., respectively. Both values could be less than the minimum required to aspirate the earlywood tori. In air-drying and oven-drying, the surface tension is near that of water, in the order of 60 to 73 dynes per cm. at the temperatures prevailing. In boiling-under-vacuum, air is removed from the wood, and direct contact between water and xylene may be expected at an interfacial tension of about 32 to 37 dynes per cm. It is suggested that the force exerted by a meniscus of this nature is enough to aspirate some tori, as for example, those of interior Douglas fir sapwood earlywood, but not sufficient to aspirate stiffer tori, as for example, those of coastal Douglas fir sapwood earlywood. The fact that variations in resistance to aspiration exist is supported by Phillips (20) who showed in his studies that British-grown Douglas fir latewood was 21% non-aspirated, whereas Canadian-grown Douglas fir latewood was 53% non-aspirated.

While sapwood earlywood appears to be affected considerably by low surface tension drying techniques, neither latewood nor heartwood of either type are affected. No significant changes were found in either the characteristic shape of heartwood permeability profiles, or in their absolute values. Furthermore, the changes in coastal sapwood earlywood permeability, being of the order of 3 to 10 times, were not as great as the differences between earlywood and latewood permeability,

-23-

which were of the order of 8 to 20 times. Consequently, no great differences was found in the character of the profile.

In the case of interior sapwood earlywood, the differences resulting from low surface tension drying are greater than earlywoodlatewood differences. Consequently the characteristic shape of the curve is inverted. Earlywood remains more permeable than latewood by this technique.

#### Effect of Provenance on Creosote-Permeability

The rates of creosote absorption through the ends of l x l x 10-in. specimens are shown in Table 4. Variation of Douglas fir creosote-permeability with provenance in British Columbia is well known, and is dependent not only on region, but also upon annual precipitation on the growth site (3). This provenance effect is shown in Fig. 12 to 16. It will be seen that for all drying methods the sapwood and heartwood permeability decreases almost invariably in the order of Haney, Cowichan and Prince George. These represent high and moderate rainfall B.C. coastal conditions and a B.C. interior environment. It also appears from these data that factors responsible for low permeability in the heartwood had their origin in the sapwood, since the order of decreasing permeability is the same for both wood zones.

Effect of Drying Method on Creosote-Permeability

Fig. 17 to 19 show the effect of drying methods on the creosotepermeability of Douglas fir.

Rate of creosote absorption by interior-type Douglas fir heartwood was unaffected by drying methods (Fig. 17). Heartwood of intermediate

-24-

permeability from a moderate rainfall coast environment was affected to some degree (Fig. 18), and permeable heartwood from a high rainfall coastal environment was largely influenced by drying methods (Fig. 19). The results show that the two methods believed to reduce pit aspiration by low surface tension drying phenomena, i.e., solvent-drying and freeze-drying, were consistently effective in maintaining wood permeability. Surprisingly, oven-drying at 70°C was equally effective. Air-drying and boiling-under-vacuum were associated with reduced creosote-permeability.

While the more permeable specimens absorbed creosote at a faster rate than impermeable specimens, the pattern of penetration varied little (Fig. 20 - 22). Invariably, near the specimen ends both earlywood and latewood were thoroughly penetrated, whereas several inches from the ends only the latewood was penetrated. In several cases, Cowichan solvent-dried sapwood, Cowichan air-dried, freeze-dried and boiledunder-vacuum heartwood, Haney oven-dried sapwood and Haney air-dried heartwood, creosote was observed in the earlywood tracheids immediately adjacent to and on both sides of the latewood. Since all drying methods demonstrated this phenomenon, it appears to be unrelated to drying method. In a few cases, Cowichan boiled-under-vacuum sapwood, interior oven-dried and boiled-under-vacuum sapwood, and Haney solventdried heartwood, the penetration appeared to be similar in both earlywood and latewood.

Relationship between Gas- and Creosote-Permeability

It was shown in the gas-permeability studies that longitudinal

-25-

latewood permeability was not influenced by drying method, but that in most cases earlywood permeability was substantially affected. It is seen that longitudinal creosote-permeability is also substantially affected by drying method. Consequently a correlation might be expected between longitudinal gas-permeability of the earlywood and whole wood creosote-permeability. This expectation was realized, and is expressed in the following equation:

> log Y = -1.233 + 0.34 log X (R =  $0.74^{**}$ , n = 20 SEE = 0.39) or Y =  $0.06 \times 34$  \*\* significant at 0.01· level

Gas-permeability and creosote-permeability were both very high after solvent-drying and freeze-drying, the two drying methods believed to leave the bordered pit tori non-aspirated. Permeability to both fluids was seriously diminished by air-drying, which is believed to cause aspiration of the tori. However, opposite reactions were found to ovendrying, which left creosote-permeability of all specimens unimpaired, but diminished gas-permeability, and to boiling-under-vacuum which left Haney sapwood earlywood gas-permeability unimpaired, but reduced creosotepermeability. These reactions did not relate to visual examination of the treated specimens. Considering only those drying methods which produced the same effects in gas- and creosote-permeability, it is seen that latewood gas-permeability is not affected by drying method, but that the earlywood is affected. In comparing the creosote-permeability of specimens dried by various methods, however, no significant change of earlywood penetration was observed; in all cases the latewood was more easily penetrated, and only the rate of penetration was affected. It appears, therefore, that maintaining the earlywood bordered pits in a non-aspirated condition improves latewood creosote-permeability, without significantly improving earlywood penetration. No explanation is offered for this phenomenon.

## CONCLUSIONS

Low surface tension drying methods (freeze-drying and alcoholbenzene extraction) rendered Douglas fir more permeable in the axial direction to gases and creosote than similar airdried wood. Boiling-under-vacuum was as effective as low surface tension methods in improving gas-permeability, but not creosote-permeability, whereas oven-drying was as effective as low surface tension methods in improving creosote-permeability, but not gas-permeability. The similar effects of freeze-drying and solvent-drying support the hypothesis that aspiration of pit tori causes reduced permeability of air-dried wood.

-27-

- 2. Improvement of both gas- and creosote-permeability with low surface tension drying was most striking in sapwood, less in coast-type heartwood, and nil in interior-type heartwood. This indicates, as has been observed by other investigators, that in green Douglas fir most sapwood tori are non-aspirated, whereas many tori in coast-type heartwood and most tori in interior-type heartwood are aspirated and the wood is impermeable. Low surface tension drying methods do not release tori which were aspirated in the green wood.
- 3. Under the experimental conditions, latewood gas-permeability was about 2 darcies for all specimens and drying methods. Heartwood earlywood gas-permeability ranged from 0.02 to 2 darcies but was unaffected by drying methods. Sapwood earlywood gas-permeability, from 0.4 to 10 darcies in air-dried specimens, was improved 8 to 30 times by low surface-tension drying. This supports the hypothesis that the stiffer latewood pit membranes offer more resistance to pit aspiration in drying than earlywood pit membranes.
- 4. The highest gas-permeability within the growth increment of interior-type Douglas fir was in the last-formed latewood and first-formed earlywood, indicating that the first-formed earlywood has permeability characteristics more related to latewood than earlywood.
- 5. Whereas low surface tension drying methods improved earlywood but not latewood gas-permeability, they appeared to improve

earlywood and latewood creosote-permeability proportionately, suggesting that non-aspiration of earlywood bordered pit tori directly affects the penetration of latewood.

## LITERATURE CITED

ţ

- 1. Bailey, I.W. 1913. The preservative treatment of wood. I. The validity of certain theories concerning the penetration of gases and preservatives into seasoned wood. For. Q. 11:5-11.
- 2. Bailey, I.W. 1913. The preservative treatment of wood. II. The structure of the pit membranes in the tracheids of conifers and their relation to the penetration of gases, liquids and finely divided solids into green and seasoned wood. For. Q. 11:12-20.
- 3. Bramhall, G. 1966. Permeability of Douglas fir heartwood from various areas of growth in B.C. B.C. Lumberman 50(1):98-102.
- 4. Buckman, S.J. 1936. Creosote distribution in treated wood. Ind. Eng. Chem. 28:474-80.
- 5. Buro, A. and E.A. Buro. 1959. (Studies on the permeability of pine wood). Holz Roh-u. Werkstoff 17(12):461-474. U.S. Dept. Agric. F.P.L. Trans. 263.
- 6. Clermont, L.P. and T.S. McKnight. 1963. Factors influencing the impregnation of spruce with various liquids. Project 0-384-2. Progress Report No. 1. Permeability of Douglas fir, white spruce and red pine to nitrogen gas. Can. Dept. For. and R.D.
- 7. Erickson, H.D. and R.J. Crawford. 1959. The effects of several seasoning methods on the permeability of wood to liquids. Proc. Am. Wood Preserv. Assoc. 55:210-220.
- 8. Erickson, H.D., H. Schmitz, and R.A. Gortner. 1937. The permeability of woods to liquids and factors affecting the rate of flow. Minn. Agric. Exp. Sta. Tech. Bull. 122.
- 9. Erickson, H.D. 1938. Directional permeability of seasoned woods to water and some factors which affect it. J. Agric. Res. 56(10):111-146.
- 10. Furusawa, K. 1954. (Studies on the penetration of 'Karamatsu' (Larix <u>kaempferi</u>) by creosote oil). Bull. For. Exp. Sta. Meguro, Tokyo. No. 76:169-74.
- 11. Gerry, E. 1912. Microscopic structure of woods in relation to properties and uses. Proc. Soc. Am. Foresters 8(2):159-175.
- 12. Griffin, G.J. 1919. Bordered pits in Douglas fir: A study of the position of the torus in mountain and lowland specimens in relation to creosote penetration. J. For. 17:813-822.

- Griffin, G.J. 1924. Further note on the position of the tori in bordered pits in relation to penetration of preservatives. J. For. 22:82-83.
- 14. Guillemain-Gouvernel, J. 1959. Etude de l'absorption de produits de preservation dans differents pins et comparaison entre l'absorption dans le bois initial et le bois final. Proceedings of the Fourth International Congress of Biochemistry, Vienne, 1-6 Sept. 1958. Vol. II. Symposium II: Biochemistry of wood. Pergamon Press, London.
- 15. Harris, J.M. 1953. Heartwood formation in <u>Pinus</u> <u>radiata</u> (D. Don). Nature 172(4377):552.
- 16. Krahmer, R.L. and W.A. Cote, Jr. 1963. Changes in coniferous wood cells associated with heartwood formation. Tappi 46(1): 42-49.
- 17. Koljo, B. 1951. The mechanics of the movement of liquids during wood impregnation. Medd. Svenska Traforsk. Inst. No.258.
- 18. Liese, W. and J. Bauch. 1967. On the closure of bordered pits in conifers. Wood Science and Technology 1(1):1-13.
- 19. Osnach, N.A. 1961. (On the permeability of wood). Derev. Prom. 10(3):11-13. Can. Dept. For. and R.D. Trans. No.99.
- 20. Phillips, E.W.J. 1933. Movement of the pit membrane in coniferous woods, with special reference to preservative treatment. Forestry 7:109-120.
- 21. Scarth, G.W. 1928. The structure of wood and its penetrability. Paper Tr. J. April 26. pp.228-233.
- 22. Sebastian, L.P., W.A. Cote, Jr., and C. Skaar. 1965. Relationship of gas phase permeability to ultrastructure of white spruce wood. For. Prod. J. 15(9): 394-404.
- 23. Stone C.D. 1936. Penetration of preservatives in Douglas fir as affected by the position of the tori in the pit-pairs. Master of Science thesis. College of Forestry, University of Washington, Seattle.
- 24. Teesdale, C.H. 1914. Relative resistance of various conifers to injection with creosote. U.S. Dep. Agric. Bull. 101.
- 25. Tiemann, H.D. 1910. The physical structure of wood in relation to its penetrability by preservative fluids. Amer. Ry. Engin. and Maintenance of Way Assoc. Bull. 120 (App. D):359-375.
- 26. Weiss, H.F. 1912. Structure of commercial woods in relation to the injection of preservatives. Proc. Am. Wood Preserv. Assoc. 8:195-187.
- 27. Wu, Y-t. and J.W. Wilson. 1967. Lignification within coniferous growth zones. Pulp & Paper Mag. Can. 68(4): T-159-T-164.

## Characteristics of Douglas fir stem sections used in gross- and micro-permeability studies

|               | Diameter,                                          | Age, | Age at Sapwood-     | Sapwood    | 1                  | Origin of Te    | est Specime      | n                  |   |
|---------------|----------------------------------------------------|------|---------------------|------------|--------------------|-----------------|------------------|--------------------|---|
| B.C. Source   | in.                                                | yr.  | Heartwood Boundary, | Thickness, |                    | oss             | Mi               | cro                |   |
|               | بر او موجود او |      | yr.                 | in.        | Sap.<br>Age, yr.   | Ht.<br>Age, yr. | Sap.<br>Age, yr. | Ht.<br>Age, yr.    |   |
| Prince George | 20.1 - 20.5                                        | 73   | 56                  | 1.5 - 2.25 | 57-73              | 46 <b>-</b> 54  | 69 <b>-</b> 70   | 50-51              | 1 |
| Haney         | 15.5 - 16.0                                        | 59   | 38 - 42             | 1.75 - 2.5 | 46 <del>-</del> 59 | 29 <b>-</b> 38  | 55 <b>-</b> 56   | 34 <del>-</del> 35 |   |
| Lake Cowichan | 16.1 - 16.1                                        | 49   | 29 <b>-</b> 32      | 1.1 - 1.6  | 34 <b>-</b> 49     | 21 <b>-</b> 29  | 45 <b>-</b> 46   | 25 <b>-</b> 26     |   |
|               |                                                    |      |                     |            |                    |                 |                  |                    |   |

-32-

TABLE 2

|         | WEIGHT<br>MG              | LENGTH<br>MM |            | THICK<br>MICRON | PRESSUR<br>MM HG           | E TIME<br>SEC                | VOLUME<br>ML | SP GR          | PERM<br>DARCIES | LOG PERM           | IDENT                              |        |
|---------|---------------------------|--------------|------------|-----------------|----------------------------|------------------------------|--------------|----------------|-----------------|--------------------|------------------------------------|--------|
| · ····· | INTERI                    | OR SAPWO     | DOD A      | IR DRIE         | D                          |                              |              | · ·            |                 |                    |                                    |        |
|         | 2328                      | 2-55         | 78         |                 | 5_9_•_8                    | 1-7-02-                      | 1.0          |                | 2-•-8-7         | 0                  | <u>     I-S-3        6        </u> |        |
|         | 23.28                     | 25.5         | 7.8        | 170.2           | 59•8                       | 169.8                        | 10           | 0.688          | 2.88            | 0.4587             | IS3 6                              |        |
|         | 6•92                      | 25.5         | 8•2        | 152•4           | 60.0                       | 134•2                        | 1            | 0.217          | 0.39            | -0.4143            | IS3 19                             |        |
|         |                           | 255          |            | _152.4.         | 6-0-•-0                    |                              | <u>]</u>     |                | 03-9-           |                    | IS3-1.9-                           |        |
|         | 6•44                      | 25.3         | 7.9        | 154•9           | 60.0                       | 93•2                         | 1            | 0.208          | 0.56            | -0.2504            | I\$3 21                            |        |
|         | 6•44                      | 25.3         | 7.9        | 154•9           | 60.0                       | 94•6                         | 1            | 0.208          | 0.55            | -0.2569            | IS3 21                             |        |
|         | 2-34-0                    |              | 8-•-4      | -2337-          | 6-0                        | 442-                         | <u> </u>     | 04-6-7         | 07-4-           |                    | <u> </u>                           |        |
|         | 23.40                     | 25.5         | 8.4        | 233.7           | 60.0                       | 44.6                         | 1            | 0.467          | 0.74            | -0.1320            | IS3 24                             | •      |
|         | 24.50                     | 24.5         | 8.6        | 188.0           | 60.0                       | 28.8                         | 1            | 0.619          | 1.33            | 0.1249             | IS4 2                              | r<br>L |
|         | 24.50                     | 24.5         | 8.6        | 188.0           | 60.0                       | 29.2                         | <u>_</u>     | 0.619          | 1.31            | 0.1189             | <u>154</u> 2                       | ŭ      |
|         | 23.90<br>23.90            | 25•6<br>25•6 | 8.3        | 200•7<br>200•7  | 60.0                       | 33.6                         | 1            | 0.561          | 1.16            | 0.0641             | IS4 3                              | •      |
|         | 16.84                     | 25.6<br>25.5 | 8•3<br>8•7 | 200•7<br>190•5  | 60.0                       | 34.2                         | 1            | 0.561          | 1.14            | 0.0564             | IS4 3<br>IS4 5                     |        |
|         | <u>    10.84</u><br>16.84 | 25.5         | 8.7        | 190•5           | <u>    60   0</u><br>58  0 | <u>67.2</u><br>67.8          | <u>1</u> 1   | 0.398<br>0.398 | 0.58            | -0.2366            | <u>• 0</u>                         |        |
|         | 8.98                      | 25.5         | 8.6        | 154.9           | - 60•0                     | 142.2                        | 1            |                | 0.59            | -0.2257            | IS4 5                              |        |
| •       | 8.98                      | 25.5         | 8.6        | 154.9           | 59.8                       | 142•2                        | 1 .<br>1     | 0.264          | 0.34            |                    | IS4 8<br>IS4 8                     |        |
| · .     | 7.26                      | 25.4         | 8.3        | <u>154•9</u>    | 60.0                       | $143 \cdot 4$<br>123 \cdot 8 | l            | 0.264          | 0.34            |                    |                                    |        |
|         | 7.26                      | 25•4<br>25•4 | 8.3        | 154.9           | 60.0                       | 123.0                        | 1            | 0•222<br>0•222 | 0•40<br>0•40    | -0•3934<br>-0•3948 | IS4 14<br>IS4 14                   |        |
|         |                           | 27.4         | 0.0        | 1)40)           | 00•0                       | 12402                        | <b>1</b>     | 0.222          | 0.40            | -0.5940            | 134 14                             |        |
|         | INTERI                    | OR HEARI     | WOOD       | AIR DR          | IED                        |                              |              |                |                 |                    |                                    |        |
|         | 6.84                      | 25.3         | 8.3        | 172.7           | 59.8                       | 149.2                        | 1            | 0.189          | 0.30            | -0.5219            | IH2 11                             |        |
|         | 6.84                      | 25.3         | 8.3        | 172.7           | 59.8                       | 155.2                        | 1            | 0.189          | 0.29            | -0.5390            | IH2 11                             |        |
|         | 9.56                      | 25.6         | 8.2        | 160.0           | 500.0                      | 1000.0                       | 1            | 0.285          | 0.01            | -2.2269            | IH2 13                             |        |
|         | 9.56                      | 25.6         | 8•2        | 160.0           | 500.0                      | 1000.0                       | 1            | 0.285          | 0.01            | -2.2269            | IH2 13                             |        |
|         | 26.64                     | 25.6         | 8.0        | 180.3           | 60.0                       | 30.2                         | 1            | 0.721          | 1.49            | 0.1727             | IH2 18                             |        |
|         | 26.64                     | 25.6         | 8•0        | 180.3           | 60•0                       | 29•0                         | 1            | 0.721          | 1.55            | 0.1904             | IH2 18                             |        |
|         | 27.88                     | 25.6         | 8.4        | 167.6           | 59.6                       | 29.4                         | 11           | 0.773          | 1.58            | 0.1978             | IH2 20                             |        |
|         | 27.88                     | 25.6         | 8.4        | 167.6           | 59.6                       | 30.0                         | 1            | 0.773          | 1.55            | 0.1891             | IH2 20                             |        |

|   |              |              |       |                   | TABL              | E2     | (CONTIN                                   | IUED)     |                 |          |                |     |
|---|--------------|--------------|-------|-------------------|-------------------|--------|-------------------------------------------|-----------|-----------------|----------|----------------|-----|
|   | WEIGHT<br>MG | LENGTH<br>MM |       | H THICK<br>MICRON | PRESSURI<br>MM_HG |        | VOLUME<br>ML                              |           | PERM<br>DARCIES | LOG PERM | IDENT          |     |
|   | INTERIC      | OR HEAR      | TWOOD | AIR DF            | RIED              |        |                                           |           |                 |          |                |     |
|   | 19.50        | 25.5         | 8.5   | 147.3             | 59.6              | 10•4   | · 1                                       | 0.611     | 4.99            | 0.6984   | IH2 21         |     |
|   | 19.50        | 25.5         | 8.5   | 147.3             |                   | 11.8   |                                           | 0.611     | 4.40            | -        | IH2 21         |     |
|   | 8.30         | 25.5         | 8.5   | 170.2             | 59.6              | 27.6   | 1                                         | 0.225     | 1.63            | 0.2119   | <u>IH3 1</u>   |     |
|   | 8.30         | 25.5         | 8.5   | 170.2             | 59.6              | 28.6   | 1                                         | 0.225     | 1.57            |          | IH3 1          |     |
|   | 7.14         | 25.5         | 8.2   | 170.2             | 59.8              | 52.0   | 1                                         | 0.201     | 0.89            | -0.0490  | IH3 3          |     |
|   | 7.14         | 25.5         | 8.2   | 170.2             | 59.8              | 56.8   | 11                                        | 0.201     | 0.82            | -0.0874  | <u>IH3 3</u> . |     |
|   | 6.58         | 25.4         | 8.1   | 162.6             | 500.0             | 1000.0 | 1                                         | 0.197     | 0.01            |          | IH3 9          |     |
|   | 6.58         | 25.4         | 8.1   | 162.6             | 500.0             | 1000.0 | 1                                         | 0.197     | 0.01            | -2.2318  | IH3 9          |     |
|   | 26.40        | 25.5         | 8.3   | 165.1             | 59.8              | 24.2   | 1                                         | 0.756     | 1.95            |          | <u>IH3 30</u>  |     |
|   | 26.40        | 25.5         | 8.3   | 165.1             | 59.8              | 24.8   | 1                                         | 0.756     | 1.91            |          | IH3 30         |     |
|   | COASTAL      | L SAPWO      | OD AI | <u>R DRIE</u>     | <u> </u>          |        |                                           |           |                 |          | · ·····        | -34 |
|   | 7.04         | 25.5         | 8.5   | 147•3             | 21•2              | 63.8   | 10                                        | 0.220     | 22.88           | 1.3595   | CS3 10         | •   |
|   | 7.04         | 25.5         |       | 147.3             | 21•1              | 68.6   |                                           | 0.220     | 21.38           |          | C53 10         |     |
|   | 9.52         | 25.5         | 8.4   | 172.7             |                   | 57.0   |                                           | 0.257     | 20.74           |          | CS3 13         |     |
|   | 9.52         | 25.5         | 8.4   | 172.7             |                   | 56.5   |                                           | 0.257     | 21.11           |          | CS3 13         |     |
|   | 35.20        | 25.7         | 8.7   |                   |                   | 68.0   |                                           | 0.689     |                 | 0.1640   |                |     |
|   | 35.20        | 25.7         | 8.7   | 228.6             | 19.8              | 67.6   |                                           | 0.689     | 1.47            |          | CS3 15         | · · |
|   | 32.08        | 25.5         | 8.1   | 198.1             | 21.6              | 51.8   |                                           | 0.089     | 2.16            |          | CS4 1          |     |
|   | 32.08        | 25.5         | 8.1   | 198.1             | 21.0              | 55.0   |                                           | 0.784     | 2.04            |          | CS4 1          |     |
|   | 27.38        | 25.8         | 8.3   | 233.7             | 21.9              | 274.6  |                                           | 0.547     | 3.36            |          | CS4 3          |     |
| • | 27.38        | 25.8         | 8.3   | 233.7             | 21.7              | 301.2  |                                           | 0.547     | 3.09            |          | CS4 3          |     |
|   | 10.55        | 25.6         |       | 152.4             | 22.6              | 232.4  |                                           | 0.322     | 5.79            |          | _              |     |
|   | 10.55        | 25.6         | 8.4   | 152.4             |                   | 260.8  | 10                                        | 0.322     | 5.27            |          | CS4 4          |     |
|   | 8.56         | 25.6         | 8.7   | 154.9             |                   | 187.8  | 10                                        | 0.248     | 7.32            |          | CS4 8          |     |
|   | 8.56         | 25.6         | 8.7   | 154.9             | 21.0              | 189.6  | 10                                        | 0.248     | 7.18            |          | CS4 8          |     |
|   | 0.00         | <u> </u>     |       | <u> </u>          | <u> </u>          | 10/00  | <u>+                                 </u> | 0 • 4 - 0 | <u> </u>        |          |                |     |
|   |              |              |       |                   |                   |        |                                           |           |                 |          |                |     |
|   |              |              |       |                   |                   |        |                                           |           |                 |          |                |     |

· \_\_\_\_

\_\_\_\_

· \_ \_

|                               |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                     | (CONTIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IUED)    | ·               |                                       |               |             |
|-------------------------------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|---------------------------------------|---------------|-------------|
|                               | WEIGHT<br>MG | LENGTH<br>MM |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H THICK<br><u>MICRON</u> | PRESSURE<br>MM HG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SP GR    | PERM<br>DARCIES | LOG PERM                              | IDFNT         |             |
|                               | COASTAI      | L HEARTW     | NOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AIR DR                   | IED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |                                       |               |             |
| Egyptic for the second second | 7.30         | 25.4         | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 157.5                    | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68•4                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.215    | 0.70            | —                                     |               | <b>F</b>    |
|                               | 7.30         | 25.4         | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69•0                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.215    | 0.70            |                                       | CH3 8         |             |
|                               | 7.12         | 25.5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.6                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.221    | 0.58            |                                       |               | <u> </u>    |
|                               | 7.12         | 25.5         | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88•4                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.221    | 0.58            |                                       | CH3 13        |             |
|                               | 24.52        | 25.3         | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44•0                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.743    | 1•12            |                                       |               |             |
|                               | 24.52        | 25.3         | and the second sec | 165.1                    | the state of the s | 44.6                                  | and the second s | 0.743    | 1.10            |                                       | CH3_15        |             |
|                               | 26.14        | 25.5         | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 127.8                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.796    | 1.76            |                                       | CH3 19        |             |
|                               | 26.14        | 25.5         | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 141.0                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.796    | 1.59            |                                       | CH3 19        |             |
|                               | 25.14        | 25.5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 162.6                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41.6                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.798    | 1.26            | · · · · · · · · · · · · · · · · · · · | CH3 22        | <del></del> |
|                               | 25.14        |              | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.8                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.798    | 1.22            |                                       | CH3 22        |             |
|                               | 12.66        | 25.5         | 8•1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.0                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.396    | 3.62            |                                       |               | 3           |
| · . ·                         | 12.66        | 25.5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65.8                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.396    | 3.35            |                                       | <u>CH3 23</u> | Ši          |
| ·                             | 8.02         | 25•4         | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 215.0                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.254    | 1.03            | 0.0133                                | CH4 2         | •           |
|                               | 8.02         | 25.4         | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 219.2                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.254    | 1.01            | 0.0049                                | CH4 2         |             |
|                               | 6.92         | 25.4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48•4                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.215    | 1.05            |                                       | <u>CH4 5</u>  |             |
| _                             | 6.92         | 25.4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 152•4                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.8                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.215    | 0.93            | -0.0323                               | CH4 5         | _           |
|                               | 6.68         | 25.5         | 8•1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133•2                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.212    | 0.39            | -0.4057                               | CH4 11        |             |
|                               | 8.62         | 25.4         | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 149.9                    | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 157.8                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.287    | 1.50            | 0.1754                                | CH4_11        |             |
|                               | 31.10        | 25.4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 188.0                    | 14•1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 105.0                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.794    |                 |                                       |               | ***** ·     |
|                               | 31.10        | 25.4         | 8.•2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 188.0                    | 14•1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.0                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.794    | 1.62            | 0.2082                                | CH4 13        |             |
|                               | INTERIC      | OR SAPWO     | <u>000 (</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JVEN DR'                 | IED .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u> |                 |                                       |               |             |
|                               | 20.77        | 25.5         | 7•8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 172•7                    | 61•1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40•2                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.605    | 1.17            | 0.0687                                | IS4 6         |             |
|                               | 20.77        | 25.5         | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.4                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.605    | 1.08            | 0.0354                                | IS4 6         | ·····       |
|                               | 6.18         | 25.3         | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 154.9                    | 60.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 278.4                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.210    | 0.20            | -0.7045                               | IS4 19        |             |
|                               | 6.18         | 25.3         | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 275.2                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.210    | 0.20            |                                       | IS4 19        |             |
|                               | 6.30         | 25•4         | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 395.8                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.211    | 0.14            |                                       | IS4 21        |             |
|                               | 6.30         | 25.4         | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 154•9                    | 60.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 411.8                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.211    | 0.13            | -0.8793                               | IS4 21        |             |
| •                             |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | · ·····         | · · · · · · · · · · · · · · · · · · · |               |             |
|                               |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |                                       |               |             |

| いにすぐい                                                                                                                     | IT LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WINTU                                                                                            | тытси                                                                                                     | DDECCHD                                                                                                                                                                                                                                                                                      |                                                                                                                        |                                      |                                                                                                                            | PERM                                                         | LOG PERM                                                                                                                                               | IDENT                                                                                                                                                    |   |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| weign<br>Mg                                                                                                               | MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | MICRON                                                                                                    | MM HG                                                                                                                                                                                                                                                                                        |                                                                                                                        | ML                                   | SP GR                                                                                                                      | DARCIES                                                      | LUG PERM                                                                                                                                               | IDENT                                                                                                                                                    |   |
| MO                                                                                                                        | [v] [v]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [*] [*]                                                                                          | MICKON                                                                                                    |                                                                                                                                                                                                                                                                                              | 320                                                                                                                    | 1*! L                                | · · · · · ·                                                                                                                | DANCILS                                                      |                                                                                                                                                        |                                                                                                                                                          |   |
| INTER                                                                                                                     | IOR SAPW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00D 0                                                                                            | VEN DRI                                                                                                   | ED                                                                                                                                                                                                                                                                                           |                                                                                                                        |                                      |                                                                                                                            |                                                              |                                                                                                                                                        |                                                                                                                                                          |   |
| 26.57                                                                                                                     | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.6                                                                                              | 203•2                                                                                                     | 60.2                                                                                                                                                                                                                                                                                         | 22.0                                                                                                                   | 1                                    | 0.675                                                                                                                      | 1.90                                                         | 0.2776                                                                                                                                                 | IS4 24                                                                                                                                                   |   |
| 26.57                                                                                                                     | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.6                                                                                              | 203•2                                                                                                     | 60.2                                                                                                                                                                                                                                                                                         | 22•4                                                                                                                   | 1                                    | 0.675                                                                                                                      | 1.86                                                         | 0.2698                                                                                                                                                 | IS4.24                                                                                                                                                   |   |
| 20.14                                                                                                                     | 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.7                                                                                              | 172.7                                                                                                     | 60.2                                                                                                                                                                                                                                                                                         | 66•6                                                                                                                   | 1                                    | 0.592                                                                                                                      | 0.73                                                         | -0.1368                                                                                                                                                | <u>IS4 2</u>                                                                                                                                             |   |
| 20.14                                                                                                                     | 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.7                                                                                              | 172.7                                                                                                     | 60.0                                                                                                                                                                                                                                                                                         | 68.8                                                                                                                   | 1                                    | 0.592                                                                                                                      | 0.71                                                         | -0.1495                                                                                                                                                | IS4 2                                                                                                                                                    |   |
| 16.26                                                                                                                     | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8•0                                                                                              | 165.1                                                                                                     | 60.1                                                                                                                                                                                                                                                                                         | 211.0                                                                                                                  | 1                                    | 0.483                                                                                                                      | 0.23                                                         | -0.6356                                                                                                                                                | IS4 3                                                                                                                                                    |   |
| 16.26                                                                                                                     | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.0                                                                                              | 165.1                                                                                                     | 60.3                                                                                                                                                                                                                                                                                         | 213.8                                                                                                                  | 11                                   | 0.483                                                                                                                      | 0.23                                                         | -0.6428                                                                                                                                                | <u>IS4 3</u>                                                                                                                                             |   |
| 10.60                                                                                                                     | 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8•1                                                                                              | 160.0                                                                                                     | 60•2                                                                                                                                                                                                                                                                                         | 413•2                                                                                                                  | 1                                    | 0.319                                                                                                                      | 0.12                                                         | -0.9183                                                                                                                                                | IS4 5                                                                                                                                                    |   |
| 10.60                                                                                                                     | 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.1                                                                                              | 160.0                                                                                                     | 60.1                                                                                                                                                                                                                                                                                         | 388.6                                                                                                                  | 1                                    | 0.319                                                                                                                      | 0.13                                                         | -0.8910                                                                                                                                                | IS4 5                                                                                                                                                    |   |
| 8.06                                                                                                                      | 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.2                                                                                              | 154.9                                                                                                     | 60.3                                                                                                                                                                                                                                                                                         | 386.0                                                                                                                  | 1                                    | 0.248                                                                                                                      | 0.13                                                         | -0.8808                                                                                                                                                | <u>IS4</u> 8                                                                                                                                             |   |
| 8.06                                                                                                                      | 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.2                                                                                              | 154.9                                                                                                     | 60.3                                                                                                                                                                                                                                                                                         | 411.0                                                                                                                  | 1                                    | 0.248                                                                                                                      | 0.12                                                         | -0.9081                                                                                                                                                | IS4 8                                                                                                                                                    |   |
| 6.97                                                                                                                      | 25•4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.9                                                                                              | 154.9                                                                                                     | 60.1                                                                                                                                                                                                                                                                                         | 256.8                                                                                                                  | 1                                    | 0.224                                                                                                                      | 0.20                                                         | -0.6896                                                                                                                                                | IS4 11                                                                                                                                                   | Y |
|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |                                                                                                           |                                                                                                                                                                                                                                                                                              |                                                                                                                        |                                      |                                                                                                                            |                                                              |                                                                                                                                                        |                                                                                                                                                          |   |
| 6.97                                                                                                                      | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.9                                                                                              | 154.9                                                                                                     | 60.1                                                                                                                                                                                                                                                                                         | 267.2                                                                                                                  | l                                    | 0.224                                                                                                                      | 0.20                                                         | -0.7068                                                                                                                                                | <u>IS4 11</u>                                                                                                                                            |   |
| INTER                                                                                                                     | RIOR HEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TWOOD                                                                                            | OVEN D                                                                                                    | RIED                                                                                                                                                                                                                                                                                         |                                                                                                                        | <u> </u>                             |                                                                                                                            |                                                              |                                                                                                                                                        |                                                                                                                                                          |   |
| INTER<br>7•39                                                                                                             | RIOR HEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TWOOD<br>8•5                                                                                     | OVEN D                                                                                                    | 0RIED                                                                                                                                                                                                                                                                                        | 1000•0                                                                                                                 | 1                                    | 0.204                                                                                                                      | 0.01                                                         | -2.2661                                                                                                                                                | IH2 4                                                                                                                                                    |   |
| INTER<br>7•39<br>7•39                                                                                                     | RIOR HEAR<br>25.4<br>25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TWOOD<br>8.5<br>8.5                                                                              | OVEN D<br>167.6<br>167.6                                                                                  | 0RIED<br>500•0<br>500•0                                                                                                                                                                                                                                                                      | 1000•0<br>1000•0                                                                                                       | 1                                    | 0•204<br>0•204                                                                                                             | 0.01<br>0.01                                                 | -2.2661<br>-2.2661                                                                                                                                     | IH2 4<br>IH2 4                                                                                                                                           |   |
| INTER<br>7.39<br>7.39<br>8.00                                                                                             | 25.4<br>25.4<br>25.4<br>25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TWOOD<br>8.5<br>8.5<br>8.2                                                                       | OVEN D<br>167.6<br>167.6<br>162.6                                                                         | RIED<br>500.0<br>500.0<br>500.0                                                                                                                                                                                                                                                              | 1000•0<br>1000•0<br>1000•0                                                                                             | -                                    | 0 • 2 0 4<br>0 • 2 0 4<br>0 • 2 3 4                                                                                        | 0.01<br>0.01<br>0.01                                         | -2.2661<br>-2.2661<br>-2.2337                                                                                                                          | IH2 4<br>IH2 4<br>IH2 9                                                                                                                                  |   |
| INTER<br>7.39<br>7.39<br>8.00<br>8.00                                                                                     | 25.4<br>25.4<br>25.4<br>25.6<br>25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TWOOD<br>8.5<br>8.5<br>8.2<br>8.2                                                                | OVEN D<br>167.6<br>167.6<br>162.6<br>162.6                                                                | RIED<br>500.0<br>500.0<br>500.0<br>500.0                                                                                                                                                                                                                                                     | 1000•0<br>1000•0<br>1000•0<br>1000•0                                                                                   | 1<br>1<br>1                          | 0 • 204<br>0 • 204<br>0 • 234<br>0 • 234                                                                                   | 0.01<br>0.01<br>0.01<br>0.01                                 | -2.2661<br>-2.2661<br>-2.2337<br>-2.2337                                                                                                               | IH2 4<br>IH2 4<br>IH2 9<br>IH2 9                                                                                                                         |   |
| INTER<br>7.39<br>7.39<br>8.00<br>8.00<br>9.86                                                                             | 25.4<br>25.4<br>25.4<br>25.6<br>25.6<br>25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TWOOD<br>8.5<br>8.5<br>8.2<br>8.2<br>8.5                                                         | OVEN D<br>167.6<br>167.6<br>162.6<br>162.6<br>160.0                                                       | RIED<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0                                                                                                                                                                                                                                            | 1000•0<br>1000•0<br>1000•0<br>1000•0<br>1000•0                                                                         | 1                                    | 0 • 204<br>0 • 204<br>0 • 234<br>0 • 234<br>0 • 281                                                                        | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                 | -2.2661<br>-2.2661<br>-2.2337<br>-2.2337<br>-2.2391                                                                                                    | IH2 4<br>IH2 4<br>IH2 9<br>IH2 9<br>IH2 13                                                                                                               |   |
| INTER<br>7.39<br>7.39<br>8.00<br>8.00<br>9.86<br>9.86                                                                     | 25.4<br>25.4<br>25.6<br>25.6<br>25.6<br>25.8<br>25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TWOOD<br>8.5<br>8.5<br>8.2<br>8.2<br>8.5<br>8.5                                                  | OVEN D<br>167.6<br>167.6<br>162.6<br>162.6<br>160.0<br>160.0                                              | RIED<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0                                                                                                                                                                                                                                   | 1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0                                                               | 1<br>1<br>1<br>1                     | 0 • 204<br>0 • 204<br>0 • 234<br>0 • 234<br>0 • 281<br>0 • 281                                                             | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01         | -2.2661<br>-2.2661<br>-2.2337<br>-2.2337<br>-2.2391<br>-2.2391                                                                                         | IH2 4<br>IH2 4<br>IH2 9<br>IH2 9<br>IH2 13<br>IH2 13                                                                                                     |   |
| INTER<br>7.39<br>7.39<br>8.00<br>8.00<br>9.86<br>9.86<br>12.50                                                            | RIOR HEAR<br>25.4<br>25.4<br>25.6<br>25.6<br>25.8<br>25.8<br>25.8<br>25.8<br>25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TWOOD<br>8.5<br>8.5<br>8.2<br>8.2<br>8.2<br>8.5<br>8.5<br>8.5                                    | OVEN D<br>167.6<br>167.6<br>162.6<br>160.0<br>160.0<br>167.6                                              | RIED<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0                                                                                                                                                                                                                          | 1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0                                                     | 1<br>1<br>1<br>1<br>1<br>1           | 0.204<br>0.204<br>0.234<br>0.234<br>0.281<br>0.281<br>0.281<br>0.344                                                       | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | -2.2661<br>-2.2661<br>-2.2337<br>-2.2337<br>-2.2391<br>-2.2391<br>-2.2644                                                                              | IH2 4<br>IH2 4<br>IH2 9<br>IH2 9<br>IH2 13<br>IH2 13<br>IH2 15                                                                                           |   |
| INTER<br>7.39<br>7.39<br>8.00<br>8.00<br>9.86<br>9.86<br>12.50<br>12.50                                                   | RIOR HEAR<br>25.4<br>25.4<br>25.6<br>25.6<br>25.8<br>25.8<br>25.8<br>25.5<br>25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TWOOD<br>8.5<br>8.5<br>8.2<br>8.2<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5                             | OVEN D<br>167.6<br>167.6<br>162.6<br>162.6<br>160.0<br>160.0<br>167.6<br>167.6                            | PRIED<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0                                                                                                                                                                                                                | 1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0                                           | 1<br>1<br>1<br>1<br>1<br>1<br>1      | 0.204<br>0.204<br>0.234<br>0.234<br>0.281<br>0.281<br>0.344<br>0.344                                                       | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | -2.2661<br>-2.2661<br>-2.2337<br>-2.2337<br>-2.2391<br>-2.2391<br>-2.2644<br>-2.2644                                                                   | IH2 4<br>IH2 4<br>IH2 9<br>IH2 9<br>IH2 13<br>IH2 13<br>IH2 15<br>IH2 15<br>IH2 15                                                                       |   |
| INTER<br>7.39<br>7.39<br>8.00<br>8.00<br>9.86<br>9.86<br>12.50<br>12.50<br>12.50<br>19.40                                 | RIOR HEAR<br>25.4<br>25.4<br>25.6<br>25.6<br>25.6<br>25.8<br>25.8<br>25.5<br>25.5<br>25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TWOOD<br>8.5<br>8.5<br>8.2<br>8.2<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5                      | OVEN D<br>167.6<br>167.6<br>162.6<br>162.6<br>160.0<br>160.0<br>167.6<br>167.6<br>157.5                   | S00.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         60.6 | 1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>249.0                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 0 • 204<br>0 • 204<br>0 • 234<br>0 • 234<br>0 • 231<br>0 • 281<br>0 • 344<br>0 • 344<br>0 • 568                            | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | -2.2661<br>-2.2661<br>-2.2337<br>-2.2337<br>-2.2391<br>-2.2391<br>-2.2644<br>-2.2644<br>-0.7169                                                        | IH2 4<br>IH2 4<br>IH2 9<br>IH2 9<br>IH2 13<br>IH2 13<br>IH2 15<br>IH2 15<br>IH2 17                                                                       |   |
| INTER<br>7 • 39<br>7 • 39<br>8 • 00<br>9 • 86<br>9 • 86<br>9 • 86<br>12 • 50<br>12 • 50<br>19 • 40<br>19 • 40             | RIOR HEAR<br>25.4<br>25.4<br>25.6<br>25.6<br>25.6<br>25.8<br>25.8<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TWOOD<br>8.5<br>8.5<br>8.2<br>8.2<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5               | OVEN D<br>167.6<br>167.6<br>162.6<br>162.6<br>160.0<br>160.0<br>167.6<br>157.5<br>157.5                   | RIED<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>60.6<br>60.6                                                                                                                                                                                                 | 1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>249.0<br>259.8                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 0 • 204<br>0 • 204<br>0 • 234<br>0 • 234<br>0 • 281<br>0 • 281<br>0 • 344<br>0 • 344<br>0 • 568<br>0 • 568                 | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | -2.2661<br>-2.2661<br>-2.2337<br>-2.2337<br>-2.2391<br>-2.2391<br>-2.2644<br>-2.2644<br>-0.7169<br>-0.7354                                             | IH2 4<br>IH2 4<br>IH2 9<br>IH2 9<br>IH2 13<br>IH2 13<br>IH2 13<br>IH2 15<br>IH2 15<br>IH2 17<br>IH2 17                                                   |   |
| INTER<br>7 • 39<br>7 • 39<br>8 • 00<br>9 • 86<br>9 • 86<br>12 • 50<br>12 • 50<br>12 • 50<br>19 • 40<br>21 • 24            | RIOR HEAR<br>25.4<br>25.6<br>25.6<br>25.6<br>25.8<br>25.8<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TWOOD<br>8.5<br>8.5<br>8.2<br>8.2<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>7.3               | OVEN D<br>167.6<br>167.6<br>162.6<br>160.0<br>160.0<br>167.6<br>167.6<br>157.5<br>157.5<br>170.2          | RIED<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>60.6<br>60.6<br>61.0                                                                                                                                                                                         | 1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>249.0<br>259.8<br>89.2                 |                                      | 0 • 204<br>0 • 204<br>0 • 234<br>0 • 234<br>0 • 281<br>0 • 281<br>0 • 344<br>0 • 344<br>0 • 568<br>0 • 568<br>0 • 668      | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | -2.2661<br>-2.2661<br>-2.2337<br>-2.2337<br>-2.2391<br>-2.2391<br>-2.2644<br>-2.2644<br>-0.7169<br>-0.7354<br>-0.2398                                  | IH2 4<br>IH2 4<br>IH2 9<br>IH2 9<br>IH2 13<br>IH2 13<br>IH2 13<br>IH2 15<br>IH2 15<br>IH2 17<br>IH2 17<br>IH2 18                                         |   |
| INTER<br>7.39<br>7.39<br>8.00<br>9.86<br>9.86<br>12.50<br>12.50<br>12.50<br>19.40<br>21.24<br>21.24                       | RIOR HEAR<br>25.4<br>25.4<br>25.6<br>25.6<br>25.8<br>25.8<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.6<br>25.5<br>25.5<br>25.5<br>25.6<br>25.6<br>25.6<br>25.5<br>25.5<br>25.5<br>25.6<br>25.6<br>25.5<br>25.5<br>25.5<br>25.5<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TWOOD<br>8.5<br>8.5<br>8.2<br>8.2<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>7.3<br>7.3        | OVEN D<br>167.6<br>167.6<br>162.6<br>160.0<br>160.0<br>167.6<br>167.6<br>157.5<br>157.5<br>170.2<br>170.2 | RIED<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>500.0<br>60.6<br>60.6<br>61.0<br>61.0                                                                                                                                                                        | 1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>249.0<br>259.8<br>89.2<br>90.2         |                                      | 0.204<br>0.204<br>0.234<br>0.234<br>0.281<br>0.281<br>0.344<br>0.344<br>0.568<br>0.568<br>0.668<br>0.668                   | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | -2.2661<br>-2.2661<br>-2.2337<br>-2.2337<br>-2.2391<br>-2.2391<br>-2.2644<br>-2.2644<br>-0.7169<br>-0.7354<br>-0.2398<br>-0.2447                       | IH2 4<br>IH2 4<br>IH2 9<br>IH2 9<br>IH2 13<br>IH2 13<br>IH2 13<br>IH2 15<br>IH2 15<br>IH2 17<br>IH2 17<br>IH2 18<br>IH2 18<br>IH2 18                     |   |
| INTER<br>7.39<br>7.39<br>8.00<br>8.00<br>9.86<br>9.86<br>12.50<br>12.50<br>12.50<br>19.40<br>21.24<br>21.24<br>28.08      | RIOR HEAR<br>25.4<br>25.4<br>25.6<br>25.6<br>25.8<br>25.8<br>25.8<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TWOOD<br>8.5<br>8.2<br>8.2<br>8.2<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>7.3<br>7.3<br>8.6 | OVEN D<br>167.6<br>167.6<br>162.6<br>160.0<br>160.0<br>167.6<br>157.5<br>157.5<br>170.2<br>170.2<br>165.1 | RIED         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         60.6         61.0         60.7                                | 1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>249.0<br>259.8<br>89.2<br>90.2<br>45.4 |                                      | 0.204<br>0.204<br>0.234<br>0.234<br>0.281<br>0.281<br>0.344<br>0.344<br>0.568<br>0.568<br>0.568<br>0.668<br>0.668<br>0.773 | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | -2.2661<br>-2.2661<br>-2.2337<br>-2.2337<br>-2.2391<br>-2.2391<br>-2.2644<br>-2.2644<br>-0.7169<br>-0.7354<br>-0.2398<br>-0.2398<br>-0.2447<br>-0.0024 | IH2 4<br>IH2 4<br>IH2 9<br>IH2 9<br>IH2 13<br>IH2 13<br>IH2 13<br>IH2 15<br>IH2 15<br>IH2 17<br>IH2 17<br>IH2 17<br>IH2 18<br>IH2 18<br>IH2 18<br>IH2 20 |   |
| INTER<br>7 • 39<br>7 • 39<br>8 • 00<br>9 • 86<br>9 • 86<br>12 • 50<br>12 • 50<br>12 • 50<br>19 • 40<br>21 • 24<br>21 • 24 | RIOR HEAR<br>25.4<br>25.4<br>25.6<br>25.6<br>25.8<br>25.8<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6<br>25.6 | TWOOD<br>8.5<br>8.5<br>8.2<br>8.2<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>7.3<br>7.3        | OVEN D<br>167.6<br>167.6<br>162.6<br>160.0<br>160.0<br>167.6<br>167.6<br>157.5<br>157.5<br>170.2<br>170.2 | PRIED         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         500.0         60.6         61.0         60.7         60.6    | 1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>249.0<br>259.8<br>89.2<br>90.2         |                                      | 0 • 204<br>0 • 204<br>0 • 234<br>0 • 234<br>0 • 281<br>0 • 281<br>0 • 344<br>0 • 344<br>0 • 568<br>0 • 568<br>0 • 668      | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | -2.2661<br>-2.2661<br>-2.2337<br>-2.2337<br>-2.2391<br>-2.2391<br>-2.2644<br>-2.2644<br>-0.7169<br>-0.7354<br>-0.2398<br>-0.2447                       | IH2 4<br>IH2 4<br>IH2 9<br>IH2 9<br>IH2 13<br>IH2 13<br>IH2 13<br>IH2 15<br>IH2 15<br>IH2 17<br>IH2 17<br>IH2 18<br>IH2 18<br>IH2 18                     |   |

,

| ME I GH I<br>MG | LENGIH<br>MM |       | THICK<br>MICRON | PRESSURE<br>MM HG | SEC   |     | SP GR | PERM<br>DARCIES | LOG PERM | IDENT         |      |
|-----------------|--------------|-------|-----------------|-------------------|-------|-----|-------|-----------------|----------|---------------|------|
| INTERIC         | DR HEAR      | TWOOD | OVEN            | DRIED             |       |     |       |                 |          |               |      |
| 25.37           | 25.5         | 7.9   | 165.1           | 60.7              | 32.7  | 1   | 0.763 | 1.50            |          | IH3 30        |      |
| 25.37           | 25.5         | 7•9   | 165•1           | 60•6              | 32•7  | 1   | 0.763 | 1.50            | 0.1760   | IH3 30        |      |
| COASTAL         | SAPWO        | DD OV | EN DRIE         | ED .              |       | •   |       |                 |          |               |      |
| 6.48            | 25.6         | 8.5   | 149.9           | 13.0              | 74•6  | 10  | 0.199 | 31.50           | 1.4983   | CS3 10        |      |
| 6.48            | 25.6         | 8.5   | 149.9           | 13.0              | 75.2  | 10  | 0.199 | 31.25           | 1.4948   | CS3 10        |      |
| 5.98            | 25.3         | 7.3   | 147.3           | 13.0              | 151.8 | 10  | 0.220 | 18.12           | 1.2582   | CS3 11        |      |
| 5.98            | 25.3         | 7.3   | 147.3           | 13.0              | 160.8 | 10  | 0.220 | 17.11           | 1.2332   | <u>CS3 11</u> |      |
| 6.18            | 25.5         | 7.9   | 147•3           | 13.4              | 101•2 | 10  | 0.208 | 24.56           | 1.3902   | CS3 13        |      |
| 6.18            | 25.5         | 7.9   | 147.3           | 13.4              | 108.0 | 10  | 0.208 | 23.01           | 1.3620   | CS3 13        |      |
| 6.48            | 25.6         | 7.9   | 149.2           |                   | 117.0 | 10  | 0.214 | 21.28           | 1.3280   |               |      |
| 6.48            | 25.6         | 7.9   | 149.9           | 13.1              | 126.6 | 10  | 0.214 | 19.82           | 1.2971   | CS3 14        |      |
| 18.04           | 25.5         | 7.1   | 200•7           |                   | 248.4 | 1   | 0.497 | 0.84            | -0.0744  | CS3 15        |      |
| 18.04           | 25.5         | 7.1   | 200.7           |                   | 254.6 | 1   | 0.497 | 0.82            | -0.0851  | CS3 15        |      |
| 28.68           | 25.6         | 7.9   | 172.7           |                   | 108.6 | 1   | 0.821 | 1.99            | 0.2987   | CS4 2         |      |
| 28.68           | 25.6         | 7•9   | 172•7           |                   | 117.2 | 1 . | 0.821 | 1.83            | 0.2623   | CS4 2         |      |
| 44.10           | 25.5         | 8.5   | 243.8           |                   | 167.8 | 10  | 0.834 | 8.51            | 0.9298   | <u>CS4</u> 3  | ···· |
| 44.10           | 25.5         | 8.5   | 243.8           |                   | 172.4 | 10  | 0.834 | 8.34            | 0•9214   | CS4 3         |      |
| 12.68           | 25.6         | 8.5   | 154•9           |                   | 308•2 | 10  | 0.376 | 7.43            | 0.8711   | CS4 5         |      |
| 12.68           | 25.6         | 8.5   | 154.9           |                   | 323.8 | 10  | 0.376 | 7.07            | 0.8496   | <u>CS4 5</u>  |      |
| 11.98           | 25.5         | 8.5   | 157.5           |                   | 179.6 | 10  | 0.351 | 12.21           | 1.0869   | CS4 6         |      |
| 11.98           | 25.5         | 8.5   | 157.5           |                   | 182•4 | 10  | 0.351 | 11.94           | 1.0769   | CS4 6         |      |
| 7.88            | 25.6         | 7.7   | 154.9           | 13.0              | 60.0  | 1   | 0.258 | 4.18            | 0.6213   | <u>CS4</u> 8  |      |
| 7.88            | 25•6         | 7.7   | 154•9           | 13.0              | 61.0  | 1   | 0.258 | 4•11            | 0.6142   | CS4 8         |      |
| 27.10           | 25.5         | 8•4   | 180•3           | 13.0              | 46•6  | 1   | 0.702 | 4•22            | 0.6257   | CS5 2         | •    |
| 27.10           | 25.5         | 8.4   | 180.3           | 13.0              | 49.4  |     | 0.702 | 3.98            | 0.6003   | <u>CS5 2</u>  |      |

|     | IGHT<br>MG | LENGTH<br>MM |       | H THICK<br><u>MICRON</u> | PRESSURE<br>MM HG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |     | SP GR | PERM<br>DARCIES |         | IDENT         |        |
|-----|------------|--------------|-------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-------|-----------------|---------|---------------|--------|
| CO  | ASTA       | L HEART      | WOOD  | OVEN DR                  | RIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |       |                 |         |               |        |
|     | •84        | 25.6         | 8•4   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83•0  | 1   | 0.209 | 0.61            |         | CH3 9         |        |
|     | •84        | 25.6         | 8•4   | 152•4                    | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80•6  | 1   | 0.209 | 0.63            | -0.2017 | CH3 9         |        |
|     | •40        | 25.5         | 7.7   | 172.7                    | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92.0  |     | 0.778 | 1.61            | 0.2063  | <u>CH3 19</u> |        |
| 26  | •40        | 25.5         | 7.7   | 172.7                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95.0  | 1   | 0.778 | 1.58            | 0.1990  | CH3 19        |        |
|     | •64        | 25.6         | 7.8   | 162.6                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99•4  | 1   | 0.759 | 1.56            | 0.1929  | CH3 22        |        |
|     | •64        | 25.6         | 7.8   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99.8  | 11  | 0.759 | 1.53            | 0.1846  | CH3 22        |        |
|     | •28        | 25.4         | 7.8   | 175.3                    | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77.8  | . 1 | 0.670 | 1.83            | 0.2633  | CH3 23        |        |
| 23  | •28        | 25.4         | 7.8   | 175.3                    | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92•4  | 1   | 0.670 | 1.56            | 0.1930  | CH3 23        |        |
| 13  | •72        | 25.5         | 8.0   | 162.6                    | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.4  | 11  | 0.414 | 2.66            |         | CH4 1         |        |
| 13  | •72        | 25.5         | 8.0   | 162.6                    | 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64.6  | 1   | 0.414 | 2.40            |         | CH4 1         |        |
| . 6 | •26        | 25.4         | 8.0   | 157.5                    | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53•4  |     | 0.196 | 0.96            |         | CH4 11        |        |
| 6   | • 26       | 25.4         | 8.0   | 157.5                    | 59.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55.0  | 1   | 0.196 |                 | -0.0307 |               |        |
|     | •72        | 25.5         | 8.3   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44.6  |     | 0.211 | 1.01            |         | CH4 13        | α<br>I |
|     | •72        | 25.5         | 8•3   | 172.7                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46•4  |     | 0.211 |                 | -0.0113 | CH4 13        |        |
| IN  | TERI       | OR SAPW      | 00D 5 | SOLVENT                  | DRIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |     |       |                 |         |               |        |
|     | • 4.8      | 25•4         | 8.1   | 149.9                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123.2 | 10  | 0.210 | 20.33           | 1.3081_ | IS3 19        |        |
| 6   | • 48       | 25•4         | 8.1   | 149.9                    | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125.6 | 10  | 0.210 | 19.94           | 1.2997  | IS3 19        |        |
| 8   | •38        | 25.5         | 7.7   | 198.1                    | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 161.4 | 10  | 0.215 | 12.40           | 1.0933  | IS3 21        |        |
|     | •38        | 25.5         | 7.7   | 198.1                    | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 164•1 | 10  | 0.215 | 12.19           |         | IS3 21        |        |
| 23  | • 0 8      | 25.5         | 8 • 2 | 180.3                    | 12•7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 621.6 | 10  | 0.612 | 3.32            |         | IS3 24        |        |
| 23  | •08        | 25.5         | 8•2   | 180.3                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 629•4 | 10  | 0.612 | 3.23            |         | IS3 24        |        |
| 22  | • 0 8      | 25.6         | 8.2   | 175.3                    | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 134.0 | 10  | 0.600 | 15.91           | 1.2017  | IS4 2         |        |
| 22  | •08        | 25.6         | 8.2   | 175.3                    | and the second se | 138.0 | 10  | 0.600 | 15.45           |         | IS4 2         |        |
| 16  | •66        | 25.5         | 8•1   | 160.0                    | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94•2  | 10  | 0.504 | 25.00           |         | IS4 3         |        |
|     | •66        | 25.5         | 8.1   | 160.0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94.4  | 10  | 0.504 | 24.94           |         | IS4 3         |        |

|          | WEIGHT  | LENGTH   | WIDTH                                         |        | PRESSURE | - TIME | VOLUME | SD CP | DEDM    | LOG PERM                                                                                                       | IDENT         |                                        |
|----------|---------|----------|-----------------------------------------------|--------|----------|--------|--------|-------|---------|----------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|
|          | MG      | MM       |                                               |        | MM HG    |        |        |       | DARCIES |                                                                                                                |               |                                        |
|          | INTERIC | DR SAPWO | DOD S                                         | OLVENT | DRIED    |        |        |       |         |                                                                                                                |               |                                        |
| •        | 14.30   | 25.5     |                                               | 157.5  |          | 99•2   |        | 0.434 | 23.82   |                                                                                                                | IS4 4         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|          | 14.30   | 25.5     |                                               | 157.5  |          | 99.8   | 10     | 0.434 | 23.68   | 1.3744                                                                                                         | IS4 4         |                                        |
|          | 10.88   | 25.5     |                                               | 152•4  |          | 137.0  |        | 0.341 | 17.83   |                                                                                                                | IS4 5         | ·                                      |
|          | 10.88   | 25.5     |                                               | 152.4  |          | 135.6  |        | 0.341 | 18.01   |                                                                                                                | IS4 5         |                                        |
|          | 8.36    | 25.5     | 8•2                                           | 149.9  | 12.9     | 129.0  | 10     | 0.267 | 18.95   | 1.2777                                                                                                         | IS4 8         |                                        |
|          | 8.36    | 25.5     | 8.2                                           | 149.9  | 12.9     | 131.2  | 10     | 0.267 | 18.64   | 1.2704_                                                                                                        | IS4 8         |                                        |
|          | 6.86    | 25.5     | 7.9                                           | 149.9  | 12•7     | 101•4  | 10     | 0.227 | 25.42   |                                                                                                                | IS4 14        |                                        |
|          | 6.86    | 25.5     | 7.9                                           | 149•9  | 12.9     | 100•2  | 10     | 0.227 |         |                                                                                                                | IS4 14        |                                        |
|          | INTERIC |          |                                               |        | NT DRIED |        |        |       |         | many sector to a sector to |               | L.                                     |
| • - ···· | 14.18   |          |                                               | 421.6  |          |        |        |       |         | -0.7908                                                                                                        | IH2 16        |                                        |
|          | 14.18   | 25.5     | 7.9                                           | 421.6  | 60.5     | 130.6  | 1      | 0.167 | 0.15    | -0.8319                                                                                                        | IH2 16        | 1                                      |
|          | 21.44   | 25.6     | 7.6                                           | 198.1  | 60.0     | 58.8   | 1      | 0.556 | 0.73    | -0.1352                                                                                                        | IH2 18        |                                        |
|          | 21.44   | 25.6     | 7.6                                           | 198.1  | 59.9     | 59.0   | 1      | 0.556 | 0.73    |                                                                                                                | <u>IH2 18</u> |                                        |
|          | 27.82   | 25.6     | 8.3                                           | 180.3  | 59.7     | 26.6   | 1      | 0.726 | 1.64    | 0.2141                                                                                                         | IH2 20        |                                        |
|          | 27.82   | 25.6     | 8.3                                           | 180.3  | 59.5     | 28•2   | 1      | 0.726 | 1.55    |                                                                                                                | IH2 20        |                                        |
|          | 23.50   | 25.3     |                                               | 162.6  |          | 27.2   |        | 0.705 | 1.79    |                                                                                                                |               |                                        |
|          | 23.50   | 25.3     | *                                             | 162.6  |          | 29.4   | 1      | 0.705 | 1.66    |                                                                                                                | IH2 22        |                                        |
| -        | 6.84    | 25.3     |                                               | 170.2  |          | 175.0  |        | 0.189 | 2.57    |                                                                                                                | IH3 3         |                                        |
|          | 6.84    | 25.3     |                                               | 170.2  |          | 193.6  | ÷ •    | 0.189 | 2.32    |                                                                                                                | IH3 3         |                                        |
|          | 5.76    | 25.4     |                                               | 167.6  |          | 62.0   |        | 0.191 | 0.87    |                                                                                                                | IH3 9         | - <u></u>                              |
|          | 5.76    | 25.4     |                                               | 167.6  |          | 62.0   |        | 0.191 | 0.87    |                                                                                                                | IH3 9         |                                        |
| · ·      |         |          | ··· <u>·····</u> ···························· |        | <u>,</u> |        |        |       |         | <u></u>                                                                                                        |               |                                        |
|          |         |          |                                               |        |          |        |        |       |         |                                                                                                                |               |                                        |
|          |         |          |                                               |        |          |        |        |       |         |                                                                                                                |               |                                        |
|          |         |          |                                               |        |          |        |        | •     |         |                                                                                                                |               |                                        |

5 TELEVISION (1997)

-----

|   |              |              |       |                 | TABLE             |         | <u>(CONTIN</u> |        |                 | · · · · · · · · · · · · · · · · · · · |              |
|---|--------------|--------------|-------|-----------------|-------------------|---------|----------------|--------|-----------------|---------------------------------------|--------------|
|   | WEIGHT<br>MG | LENGTH<br>MM |       | THICK<br>MICRON | PRESSURE<br>MM HG |         |                | SP GR  | PERM<br>DARCIES | LOG PERM                              | IDENT        |
| ` | COASTAL      | SAPWO        | OD SO | LVENT D         | RIED              |         |                |        |                 |                                       |              |
|   | 6.90         | 24.6         | 8.3   | 149•9           | 3.7               | 169.0   | 10             | 0.226  | 48.08           |                                       | CS3 10       |
|   | 6.90         | 24.6         | 8.3   | 149.9           | 3.7               | 176.2   | 10             | 0.226  | 46.11           | 1.6638                                | CS3 10 ·     |
|   | 7.40         | 25.4         | 8.1   | 175.3           | 3.3               | 91.2    | 10             | 0.205  | 90.37           | 1.9560                                | CS3 14       |
|   | 7.40         | 25.4         | 8•1   | 175.3           | 3.3               | 92•6    | 10             | 0.205  | 89.00           | 1•9494                                | CS3 14       |
|   | 17,26        | 25.3         | 5•4   | 231.1           | 12.7              | 42.0    | 1              | 0.547  | 5.78            | 0.7616                                | CS3 15       |
|   | 17.26        | 25.3         | 5.4   | 231.1           | 12.7              | 42.2    | <u>·1</u>      | 0.547  | 5.75            |                                       | CS3 15       |
|   | 25.14        | 25.6         | 6.1   | 238.8           | 12.5              | 127.6   | 1              | 0.674  | 1.68            | 0.2240                                | CS4 1        |
|   | 25.14        | 25.6         | 6.1   | 238.8           | 12.5              | 129.8   | 1              | 0.674  | 1.65            | 0.2166                                | CS4 1        |
|   | 33.50        | 25.3         | 7.7   | 254.0           | 17.6              | 79.4    | 1.0            | 0.677  | 14.07           | 1.1483                                | <u>CS4 3</u> |
|   | 33.50        | 25.3         | 7.7   | 254•0           | 17.5              | 81.0    | 10             | 0.677  | 13.87           | 1.1421                                | CS4 3        |
|   | 9.02         | 25.6         | 8.0   | 147.3           | 3•4               | 97.6    | 10             | 0.299  | 99.50           | 1.9978                                | CS4 5        |
|   | 9.02         | 256          | 8.0   | 147.3           | 3.3_              | 6_      | 10             | 0.299. | . 100.45        | 2.0020.                               | _CS45        |
|   | 8.64         | 24.6         | 8.2   | 147•3           | 3•7               | 89.2    | 10             | 0.291  | 93.79           | 1.9721                                | CS4 6        |
|   | 8.64         | 24.6         | 8.2   | 147.3           | 3•5               | 91.2    | 10             | 0.291  | 96.97           | 1.9866                                | CS4 6        |
|   | 7.86         | 25.5         | 8.3   | 154.9           | 17.8              | 31.4    | 10             | 0.240  | 53.93           | 1.7318                                | <u>CS4 8</u> |
|   | 7.86         | 25.5         | 8•3   | 154•9           | 3•1               | 153•4   | 10             | 0•240  | 63.38           | 1.8020                                | CS4 8        |
|   | 26.14        | 25.5         | 7•4   | 221.0           | 12.6              | 48•4    | 1              | 0.627  | 3.89            | 0.5896.                               | CS5 2        |
|   | 26.14        | 25.5         | 7.4   | 221.0           | 1,2 • 5           | 49.8    | 11             | 0.627  | 3.81            | 0.5807                                | <u>CS5</u> 2 |
|   | 27.64        | 25.8         | 8.3   | 188.0           | 12•1              | 45•4    | 1              | 0.687  | 4.58            | 0.6605                                | CS5 3        |
|   | 27.64        | 25.8         | 8•3   | 188.0           | 12•1              | 47•6    | 1              | 0.687  | 4.36            | 0.6399                                | CS5 3        |
|   | COASTAL      | HEART        | MOOD  | SOLVENT         | DRIED             | <u></u> |                |        |                 |                                       |              |
|   | 7.05         | 25.6         | 8.3   | 146.0           | 12.8              | 130.4   | 1              | 0.227  | 1.92            | 0.2840                                | CH3 9        |
|   | 7.05         | 25.6         | 8.3   | 146.0           | 13.0              | 140.6   | 1              | 0.227  | 1.76            | 0.2446                                | CH3 9        |
|   | 6.56         | 25.2         | 8.1   | 151.1           | 12.7              | 129.0   | 1              | 0.213  | 1.91            | 0.2810                                | CH3 12       |
|   | 6.56         | 25.2         | 8.1   | 151.1           | 12.7              | 135.6   | 1              | 0.213  | 1.82            | 0.2593                                | CH3 12       |
|   | 16.50        | 25.5         | 7.8   | 151.1           | 12.7              | 240.8   | 1              | 0.549  | 1.08            | 0.0315                                | CH3 16       |
|   | 16.50        | 25.5         | 7.8   | 151.1           | 12.7              | 260•4   | 1              | 0.549  | 0.99            | -0.0025                               | CH3 16       |
|   | 27.00        | 25.5         | 7.8   | 165.1           | 12.9              | 142.4   | 1              | 0.822  | 1.64            |                                       | CH3 19       |
| • | 27.00        | 25.5         | 7.8   | 165.1           |                   | 149.6   | 1              | 0.822  | 1.51            |                                       | CH3 19       |
|   | 25.38        | 25.5         | 7.8   | 152.4           | 12.9              | 124.4   | 1              | 0.837  | 2.03            | 0.3079                                | CH3 22       |

|                                 |                                                                                                           |                                                              |                                                                                                                            |                                                                                                                            | TABLE                                                                                                        | 2                                                                                                                   | (CONTIN                                                                 | IUED)                                                                                                                      |                                                                                                              | <u>, , , , , , , , , , , , , , , , , </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |           |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| . h                             | VEIGHT I<br>MG                                                                                            | LENGTH<br>MM                                                 |                                                                                                                            | THICK<br>MICRON                                                                                                            |                                                                                                              |                                                                                                                     | VOLUME<br>ML                                                            | S.P GR                                                                                                                     | PERM<br>DARCIES                                                                                              | LOG PERM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IDENT                                                                                                                                                      | 4 <b></b> |
| C                               | COASTAL                                                                                                   | HEARTW                                                       | VOOD                                                                                                                       | SOLVENT                                                                                                                    | DRIED                                                                                                        |                                                                                                                     |                                                                         |                                                                                                                            |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                            |           |
|                                 | 25.38                                                                                                     | 25.5                                                         | 7.8                                                                                                                        | 152.4                                                                                                                      | 13.2                                                                                                         | 128•4                                                                                                               | 1                                                                       | 0.837                                                                                                                      | 1.92                                                                                                         | 0.2842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH3 22                                                                                                                                                     | <u></u>   |
|                                 | 1.98                                                                                                      | 25.5                                                         | 7.9                                                                                                                        | 142.2                                                                                                                      | 13.1                                                                                                         | 23.6                                                                                                                | 1                                                                       | 0.418                                                                                                                      | 11.16                                                                                                        | 1.0476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH3 23                                                                                                                                                     |           |
|                                 | 11.98                                                                                                     | 25.5                                                         | 7.9                                                                                                                        | 142.2                                                                                                                      | 13.1                                                                                                         | 25.2                                                                                                                | 11                                                                      | 0.418                                                                                                                      | 10.45                                                                                                        | 1.0191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>CH3 23</u>                                                                                                                                              |           |
|                                 | L5•30                                                                                                     | 25.4.                                                        | 8•0                                                                                                                        | 157.5                                                                                                                      | 10•7                                                                                                         | 127.4                                                                                                               | 1                                                                       | 0.478                                                                                                                      | 2.25                                                                                                         | 0.3518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH4 1                                                                                                                                                      |           |
| 1                               | 15.30                                                                                                     | 25•4                                                         | 8•0                                                                                                                        | 157.5                                                                                                                      | 10.7                                                                                                         | 130.0                                                                                                               | 1                                                                       | 0.478                                                                                                                      | 2.20                                                                                                         | 0.3430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH4 1                                                                                                                                                      |           |
|                                 | 8.38                                                                                                      | 25.5                                                         | 8.2                                                                                                                        | 149.9                                                                                                                      | 12.6                                                                                                         | 205.2                                                                                                               | <u> </u>                                                                | 0.267                                                                                                                      | 1.22                                                                                                         | 0.0863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH4 5                                                                                                                                                      |           |
|                                 | 8.38                                                                                                      | 25.5                                                         | 8•2                                                                                                                        | 149•9                                                                                                                      | 12.6                                                                                                         | 205•2                                                                                                               | 1                                                                       | 0.267                                                                                                                      | 1.22                                                                                                         | 0.0863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH4 5                                                                                                                                                      |           |
|                                 | 6.54                                                                                                      | 25.5                                                         | 8.3                                                                                                                        | 152.4                                                                                                                      | 10•6                                                                                                         | 235•6                                                                                                               | 1                                                                       | 0.203                                                                                                                      | 1.23                                                                                                         | 0.0888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH4 11                                                                                                                                                     |           |
|                                 | 6.54                                                                                                      | 25.5                                                         | 8.3                                                                                                                        | 152.4                                                                                                                      | 10.7                                                                                                         | 264.2                                                                                                               | 1                                                                       | 0.203                                                                                                                      | 1.08                                                                                                         | 0.0350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH4 11                                                                                                                                                     |           |
| 2                               | 23.58                                                                                                     | 25.6                                                         | 8.1                                                                                                                        | 170•2                                                                                                                      | 13.0                                                                                                         | 147.2                                                                                                               | 1                                                                       | 0.668                                                                                                                      | 1•48                                                                                                         | 0.1688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH4 13                                                                                                                                                     |           |
| 2                               | 23.58                                                                                                     | 25.6                                                         | 8•1                                                                                                                        | 170.2                                                                                                                      | 13.5                                                                                                         | 155.6                                                                                                               | 1                                                                       | 0.668                                                                                                                      | 1.34                                                                                                         | 0.1283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CH4 13                                                                                                                                                     | -41<br>1  |
| I                               | NTERIO                                                                                                    | R SAPWC                                                      | DOD F                                                                                                                      | REEZE D                                                                                                                    | RIED                                                                                                         |                                                                                                                     |                                                                         |                                                                                                                            |                                                                                                              | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                          |           |
|                                 |                                                                                                           |                                                              |                                                                                                                            |                                                                                                                            |                                                                                                              |                                                                                                                     |                                                                         |                                                                                                                            |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                            |           |
| 2                               | 24.38                                                                                                     | 25.5                                                         | 8.1                                                                                                                        | 177.8                                                                                                                      | 19.7                                                                                                         | 44•6                                                                                                                | 1                                                                       | 0.664                                                                                                                      | 3.06                                                                                                         | 0.4862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IS3 6                                                                                                                                                      |           |
|                                 | 24.38                                                                                                     | 25.5<br>25.5                                                 | <u>8 • 1</u><br>8 • 1                                                                                                      | <u>177.8</u><br>177.8                                                                                                      | <u>    19   7                             </u>                                                               | 44.6                                                                                                                | <u> </u>                                                                | 0.664<br>0.664                                                                                                             | <u>3.06</u><br>3.02                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>IS3 6</u><br>IS3 6                                                                                                                                      |           |
| 2                               | 24.38                                                                                                     | 25.5                                                         | 8.1                                                                                                                        | 177.8                                                                                                                      | 19.7                                                                                                         | 45•2                                                                                                                | 1                                                                       | 0.664                                                                                                                      | 3.02                                                                                                         | 0.4804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I53 6                                                                                                                                                      |           |
| 2                               | 24•38<br>6•58                                                                                             | 25•5<br>25•4                                                 | 8•1<br>8•2                                                                                                                 | 177.8<br>152.4                                                                                                             | 19•7<br>19•5                                                                                                 | 45•2<br>193•8                                                                                                       |                                                                         | 0.664<br>0.207                                                                                                             | 3.02<br>0.82                                                                                                 | 0•4804<br>-0•0875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IS3 6<br>IS3 19                                                                                                                                            |           |
| 2                               | 24•38<br>6•58<br>6•58                                                                                     | 25•5<br>25•4<br>25•4                                         | 8 • 1<br>8 • 2<br>8 • 2                                                                                                    | 177•8<br>152•4<br>152•4                                                                                                    | 19•7<br>19•5<br>19•4                                                                                         | 45•2<br>193•8<br>213•0                                                                                              | 1<br>1<br>1                                                             | 0.664<br>0.207<br>0.207                                                                                                    | 3.02<br>0.82<br>0.75                                                                                         | 0.4804<br>-0.0875<br>-0.1263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IS3 6<br>IS3 19<br>IS3 19                                                                                                                                  |           |
| 2                               | 24•38<br>6•58                                                                                             | 25•5<br>25•4                                                 | 8•1<br>8•2                                                                                                                 | 177.8<br>152.4                                                                                                             | 19.7<br>19.5<br>19.4<br>19.2                                                                                 | 45•2<br>193•8                                                                                                       | 1                                                                       | 0.664<br>0.207<br>0.207<br>0.451                                                                                           | 3.02<br>0.82<br>0.75<br>0.86                                                                                 | 0.4804<br>-0.0875<br>-0.1263<br>-0.0631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IS3 6<br>IS3 19                                                                                                                                            |           |
| 2                               | 24.38<br>6.58<br>6.58<br>25.50                                                                            | 25.5<br>25.4<br>25.4<br>25.5                                 | 8 • 1<br>8 • 2<br>8 • 2<br>7 • 8                                                                                           | 177.8<br>152.4<br>152.4<br>284.5                                                                                           | 19.7<br>19.5<br>19.4<br>19.2                                                                                 | 45.2<br>193.8<br>213.0<br>105.2                                                                                     | 1<br>1<br>1<br>1                                                        | 0.664<br>0.207<br>0.207                                                                                                    | 3.02<br>0.82<br>0.75<br>0.86<br>0.82                                                                         | 0.4804<br>-0.0875<br>-0.1263<br>-0.0631<br>-0.0881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IS3 6<br>IS3 19<br>IS3 19<br>IS3 24<br>IS3 24                                                                                                              |           |
| 2<br>2<br>2<br>2                | 24.38<br>6.58<br>6.58<br>25.50<br>25.50                                                                   | 25.5<br>25.4<br>25.4<br>25.5<br>25.5                         | 8 • 1<br>8 • 2<br>8 • 2<br>7 • 8<br>7 • 8                                                                                  | 177.8<br>152.4<br>152.4<br>284.5<br>284.5                                                                                  | 19.7<br>19.5<br>19.4<br>19.2<br>19.0                                                                         | 45.2<br>193.8<br>213.0<br>105.2<br>112.6                                                                            | 1<br>1<br>1<br>1<br>1                                                   | 0.664<br>0.207<br><u>0.207</u><br>0.451<br>0.451                                                                           | 3.02<br>0.82<br>0.75<br>0.86                                                                                 | 0.4804<br>-0.0875<br>-0.1263<br>-0.0631<br>-0.0881<br>0.2968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IS3 6<br>IS3 19<br>IS3 19<br>IS3 24<br>IS3 24<br>IS3 24                                                                                                    |           |
| 2<br>2<br>2<br>2<br>2           | 24.38<br>6.58<br>6.58<br>25.50<br>25.50<br>21.70                                                          | 25.5<br>25.4<br>25.4<br>25.5<br>25.5<br>25.5<br>25.4         | 8 • 1<br>8 • 2<br>8 • 2<br>7 • 8<br>7 • 8<br>8 • 2                                                                         | 177.8<br>152.4<br>152.4<br>284.5<br>284.5<br>165.1                                                                         | 19.7<br>19.5<br>19.4<br>19.2<br>19.0<br>20.0                                                                 | 45.2<br>193.8<br>213.0<br>105.2<br>112.6<br>72.0                                                                    | 1<br>1<br>1<br>1<br>1<br>1                                              | 0.664<br>0.207<br>0.207<br>0.451<br>0.451<br>0.631                                                                         | 3.02<br>0.82<br>0.75<br>0.86<br>0.82<br>1.98                                                                 | 0.4804<br>-0.0875<br>-0.1263<br>-0.0631<br>-0.0881<br>0.2968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I53 6<br>I53 19<br>I53 19<br>I53 24<br>I53 24<br>I53 24<br>I54 2                                                                                           |           |
| 2<br>2<br>2<br>2<br>2           | 24.38<br>6.58<br>6.58<br>25.50<br>25.50<br>21.70<br>21.70                                                 | 25.5<br>25.4<br>25.4<br>25.5<br>25.5<br>25.5<br>25.4<br>25.4 | 8 • 1<br>8 • 2<br>8 • 2<br>7 • 8<br>7 • 8<br>8 • 2<br>8 • 2                                                                | 177.8<br>152.4<br>152.4<br>284.5<br>284.5<br>165.1<br>165.1                                                                | 19.7<br>19.5<br>19.4<br>19.2<br>19.0<br>20.0<br>20.0                                                         | 45 • 2<br>193 • 8<br>213 • 0<br>105 • 2<br>112 • 6<br>72 • 0<br>75 • 2                                              | 1<br>1<br>1<br>1<br>1<br>1<br>1                                         | 0.664<br>0.207<br>0.207<br>0.451<br>0.451<br>0.631<br>0.631<br>0.269                                                       | 3.02<br>0.82<br>0.75<br>0.86<br>0.82<br>1.98<br>1.90                                                         | 0.4804<br>-0.0875<br>-0.1263<br>-0.0631<br>-0.0881<br>0.2968<br>0.2779<br>0.4554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I53 6<br>I53 19<br>I53 19<br>I53 24<br>I53 24<br>I53 24<br>I54 2<br>I54 2                                                                                  |           |
| 2<br>2<br>2<br>2<br>2           | 24.38<br>6.58<br>6.58<br>25.50<br>25.50<br>21.70<br>21.70<br>8.56<br>8.56                                 | 25.5<br>25.4<br>25.4<br>25.5<br>25.5<br>25.4<br>25.4<br>25.4 | 8 • 1<br>8 • 2<br>8 • 2<br>7 • 8<br>7 • 8<br>8 • 2<br>8 • 2<br>8 • 2<br>8 • 1                                              | 177.8<br>152.4<br>152.4<br>284.5<br>284.5<br>165.1<br>165.1<br>154.9                                                       | 19.7<br>19.5<br>19.4<br>19.2<br>19.0<br>20.0<br>20.0<br>19.6<br>19.4                                         | 45 • 2<br>193 • 8<br>213 • 0<br>105 • 2<br>112 • 6<br>72 • 0<br>75 • 2<br>55 • 0<br>57 • 0                          |                                                                         | 0.664<br>0.207<br>0.207<br>0.451<br>0.451<br>0.631<br>0.631<br>0.269<br>0.269                                              | 3.02<br>0.82<br>0.75<br>0.86<br>0.82<br>1.98<br>1.90<br>2.85<br>2.78                                         | 0.4804<br>-0.0875<br>-0.1263<br>-0.0631<br>-0.0881<br>0.2968<br>0.2779<br>0.4554<br>0.4444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IS3 6<br>IS3 19<br>IS3 19<br>IS3 24<br>IS3 24<br>IS4 2<br>IS4 2<br>IS4 3<br>IS4 3                                                                          |           |
| 2<br>2<br>2<br>2<br>2<br>2<br>1 | 24.38<br>6.58<br>6.58<br>25.50<br>25.50<br>21.70<br>8.56                                                  | 25.5<br>25.4<br>25.4<br>25.5<br>25.5<br>25.4<br>25.4<br>25.4 | 8 • 1<br>8 • 2<br>8 • 2<br>7 • 8<br>7 • 8<br>8 • 2<br>8 • 2<br>8 • 1<br>8 • 1                                              | 177.8<br>152.4<br>152.4<br>284.5<br>284.5<br>165.1<br>165.1<br>154.9<br>154.9                                              | 19.7<br>19.5<br>19.4<br>19.2<br>19.0<br>20.0<br>20.0<br>19.6<br>19.4                                         | 45 • 2<br>193 • 8<br>213 • 0<br>105 • 2<br>112 • 6<br>72 • 0<br>75 • 2<br>55 • 0<br>57 • 0<br>196 • 4               |                                                                         | 0.664<br>0.207<br>0.207<br>0.451<br>0.451<br>0.631<br>0.631<br>0.269<br>0.269<br>0.342                                     | 3.02<br>0.82<br>0.75<br>0.86<br>0.82<br>1.98<br>1.90<br>2.85<br>2.78<br>8.22                                 | 0.4804<br>-0.0875<br>-0.1263<br>-0.0631<br>-0.0881<br>0.2968<br>0.2779<br>0.4554<br>0.4444<br>0.9148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IS3 6<br>IS3 19<br>IS3 19<br>IS3 24<br>IS3 24<br>IS4 2<br>IS4 2<br>IS4 3<br>IS4 3<br>IS4 5                                                                 |           |
| 2<br>2<br>2<br>2<br>2<br>2<br>1 | 24.38<br>6.58<br>6.58<br>25.50<br>25.50<br>21.70<br>8.56<br>8.56<br>0.86                                  | 25.5<br>25.4<br>25.4<br>25.5<br>25.5<br>25.4<br>25.4<br>25.4 | 8 • 1<br>8 • 2<br>7 • 8<br>7 • 8<br>8 • 2<br>8 • 2<br>8 • 2<br>8 • 1<br>8 • 1<br>7 • 9<br>7 • 9                            | 177.8<br>152.4<br>152.4<br>284.5<br>284.5<br>165.1<br>165.1<br>154.9<br>154.9<br>157.5<br>157.5                            | 19.7<br>19.5<br>19.4<br>19.2<br>19.0<br>20.0<br>20.0<br>19.6<br>19.4<br>19.3<br>19.0                         | 45 • 2<br>193 • 8<br>213 • 0<br>105 • 2<br>112 • 6<br>72 • 0<br>75 • 2<br>55 • 0<br>57 • 0<br>196 • 4<br>201 • 2    | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>10                              | 0.664<br>0.207<br>0.207<br>0.451<br>0.451<br>0.631<br>0.631<br>0.269<br>0.269<br>0.269<br>0.342<br>0.342                   | 3.02<br>0.82<br>0.75<br>0.86<br>0.82<br>1.98<br>1.90<br>2.85<br>2.78<br>8.22<br>8.15                         | 0.4804<br>-0.0875<br>-0.1263<br>-0.0631<br>-0.0881<br>0.2968<br>0.2779<br>0.4554<br>0.4444<br>0.9148<br>0.9111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I 53 6<br>I 53 19<br>I 53 19<br>I 53 24<br>I 53 24<br>I 53 24<br>I 54 2<br>I 54 2<br>I 54 3<br>I 54 3<br>I 54 5<br>I 54 5                                  |           |
| 2<br>2<br>2<br>2<br>2<br>2<br>1 | 24.38<br>6.58<br>6.58<br>25.50<br>25.50<br>21.70<br>8.56<br>8.56<br>0.86<br>7.54                          | 25.5<br>25.4<br>25.4<br>25.5<br>25.5<br>25.4<br>25.4<br>25.4 | 8 • 1<br>8 • 2<br>8 • 2<br>7 • 8<br>7 • 8<br>8 • 2<br>8 • 2<br>8 • 1<br>8 • 1<br>7 • 9<br>7 • 9<br>7 • 6                   | 177.8<br>152.4<br>152.4<br>284.5<br>284.5<br>165.1<br>165.1<br>154.9<br>154.9<br>157.5<br>157.5<br>149.9                   | 19.7<br>19.5<br>19.4<br>19.2<br>19.0<br>20.0<br>20.0<br>19.6<br>19.4<br>19.3<br>19.0<br>19.8                 | 45.2<br>193.8<br>213.0<br>105.2<br>112.6<br>72.0<br>75.2<br>55.0<br>57.0<br>196.4<br>201.2<br>35.0                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>10<br>10<br>10<br>1             | 0.664<br>0.207<br>0.207<br>0.451<br>0.631<br>0.631<br>0.269<br>0.269<br>0.342<br>0.342<br>0.260                            | 3.02<br>0.82<br>0.75<br>0.86<br>0.82<br>1.98<br>1.90<br>2.85<br>2.78<br>8.22<br>8.15<br>4.91                 | $0.4804 \\ -0.0875 \\ -0.1263 \\ -0.0631 \\ -0.0881 \\ 0.2968 \\ 0.2779 \\ 0.4554 \\ 0.4444 \\ 0.9148 \\ 0.9111 \\ 0.6912 \\ 0.6912 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875 \\ 0.0875$ | I 5 3 6<br>I 5 3 19<br>I 5 3 19<br>I 5 3 24<br>I 5 3 24<br>I 5 4 2<br>I 5 4 2<br>I 5 4 3<br>I 5 4 3<br>I 5 4 5<br>I 5 4 5<br>I 5 4 8                       |           |
| 2<br>2<br>2<br>2<br>2<br>2<br>1 | 24.38<br>6.58<br>6.58<br>25.50<br>21.70<br>21.70<br>8.56<br>8.56<br>10.86<br>7.54<br>7.54                 | 25.5<br>25.4<br>25.4<br>25.5<br>25.5<br>25.4<br>25.4<br>25.4 | 8 • 1<br>8 • 2<br>7 • 8<br>7 • 8<br>7 • 8<br>8 • 2<br>8 • 2<br>8 • 2<br>8 • 1<br>8 • 1<br>7 • 9<br>7 • 9<br>7 • 6<br>7 • 6 | 177.8<br>152.4<br>152.4<br>284.5<br>284.5<br>165.1<br>165.1<br>154.9<br>154.9<br>157.5<br>157.5<br>149.9<br>149.9          | 19.7<br>19.5<br>19.4<br>19.2<br>19.0<br>20.0<br>20.0<br>19.6<br>19.4<br>19.3<br>19.0<br>19.8<br>19.7         | 45.2<br>193.8<br>213.0<br>105.2<br>112.6<br>72.0<br>75.2<br>55.0<br>57.0<br>196.4<br>201.2<br>35.0<br>36.6          | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>10<br>10<br>1<br>1         | 0.664<br>0.207<br>0.207<br>0.451<br>0.631<br>0.631<br>0.269<br>0.269<br>0.342<br>0.342<br>0.342<br>0.260                   | 3.02<br>0.82<br>0.75<br>0.86<br>0.82<br>1.98<br>1.90<br>2.85<br>2.78<br>8.22<br>8.15<br>4.91<br>4.72         | 0.4804<br>-0.0875<br>-0.1263<br>-0.0631<br>-0.0881<br>0.2968<br>0.2779<br>0.4554<br>0.4444<br>0.9148<br>0.9111<br>0.6912<br>0.6739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I 5 3 6<br>I 5 3 19<br>I 5 3 19<br>I 5 3 24<br>I 5 3 24<br>I 5 4 2<br>I 5 4 2<br>I 5 4 3<br>I 5 4 3<br>I 5 4 5<br>I 5 4 5<br>I 5 4 5<br>I 5 4 8<br>I 5 4 8 |           |
| 2<br>2<br>2<br>2<br>2<br>2<br>1 | 24.38<br>6.58<br>6.58<br>25.50<br>25.50<br>21.70<br>8.56<br>8.56<br>0.86<br>10.86<br>7.54<br>7.54<br>7.28 | 25.5<br>25.4<br>25.4<br>25.5<br>25.5<br>25.4<br>25.4<br>25.4 | 8 • 1<br>8 • 2<br>7 • 8<br>7 • 8<br>8 • 2<br>8 • 2<br>8 • 2<br>8 • 1<br>8 • 1<br>7 • 9<br>7 • 9<br>7 • 6<br>7 • 6<br>8 • 2 | 177.8<br>152.4<br>152.4<br>284.5<br>284.5<br>165.1<br>165.1<br>154.9<br>154.9<br>157.5<br>157.5<br>149.9<br>149.9<br>152.4 | 19.7<br>19.5<br>19.4<br>19.2<br>19.0<br>20.0<br>20.0<br>19.6<br>19.4<br>19.3<br>19.0<br>19.8<br>19.7<br>19.6 | 45.2<br>193.8<br>213.0<br>105.2<br>112.6<br>72.0<br>75.2<br>55.0<br>57.0<br>196.4<br>201.2<br>35.0<br>36.6<br>170.6 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>10<br>10<br>10<br>1<br>10<br>10 | 0.664<br>0.207<br>0.451<br>0.451<br>0.631<br>0.631<br>0.269<br>0.269<br>0.342<br>0.342<br>0.342<br>0.260<br>0.260<br>0.229 | 3.02<br>0.82<br>0.75<br>0.86<br>0.82<br>1.98<br>1.90<br>2.85<br>2.78<br>8.22<br>8.15<br>4.91<br>4.72<br>9.24 | 0.4804<br>-0.0875<br>-0.1263<br>-0.0631<br>-0.0881<br>0.2968<br>0.2779<br>0.4554<br>0.4444<br>0.9148<br>0.9111<br>0.6912<br>0.6739<br>0.9656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IS3 6<br>IS3 19<br>IS3 19<br>IS3 24<br>IS3 24<br>IS4 2<br>IS4 2<br>IS4 3<br>IS4 3<br>IS4 3<br>IS4 5<br>IS4 5<br>IS4 5<br>IS4 8<br>IS4 8<br>IS4 8<br>IS4 11 |           |
| 2<br>2<br>2<br>2<br>2<br>2<br>1 | 24.38<br>6.58<br>6.58<br>25.50<br>21.70<br>21.70<br>8.56<br>8.56<br>10.86<br>7.54<br>7.54                 | 25.5<br>25.4<br>25.4<br>25.5<br>25.5<br>25.4<br>25.4<br>25.4 | 8 • 1<br>8 • 2<br>7 • 8<br>7 • 8<br>8 • 2<br>8 • 2<br>8 • 2<br>8 • 1<br>8 • 1<br>7 • 9<br>7 • 9<br>7 • 6<br>7 • 6<br>8 • 2 | 177.8<br>152.4<br>152.4<br>284.5<br>284.5<br>165.1<br>165.1<br>154.9<br>154.9<br>157.5<br>157.5<br>149.9<br>149.9          | 19.7<br>19.5<br>19.4<br>19.2<br>19.0<br>20.0<br>20.0<br>19.6<br>19.4<br>19.3<br>19.0<br>19.8<br>19.7<br>19.6 | 45.2<br>193.8<br>213.0<br>105.2<br>112.6<br>72.0<br>75.2<br>55.0<br>57.0<br>196.4<br>201.2<br>35.0<br>36.6          | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>10<br>10<br>1<br>1         | 0.664<br>0.207<br>0.207<br>0.451<br>0.631<br>0.631<br>0.269<br>0.269<br>0.342<br>0.342<br>0.342<br>0.260                   | 3.02<br>0.82<br>0.75<br>0.86<br>0.82<br>1.98<br>1.90<br>2.85<br>2.78<br>8.22<br>8.15<br>4.91<br>4.72         | 0.4804<br>-0.0875<br>-0.1263<br>-0.0631<br>-0.0881<br>0.2968<br>0.2779<br>0.4554<br>0.4444<br>0.9148<br>0.9111<br>0.6912<br>0.6739<br>0.9656<br>0.9551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I 5 3 6<br>I 5 3 19<br>I 5 3 19<br>I 5 3 24<br>I 5 3 24<br>I 5 4 2<br>I 5 4 2<br>I 5 4 3<br>I 5 4 3<br>I 5 4 5<br>I 5 4 5<br>I 5 4 5<br>I 5 4 8<br>I 5 4 8 |           |

|                                       |              |              |        |                   | TABL             | .E 2   | (CONTIN      | IUED)   |                 |          |              |     |
|---------------------------------------|--------------|--------------|--------|-------------------|------------------|--------|--------------|---------|-----------------|----------|--------------|-----|
|                                       | WEIGHT<br>MG | LENGTH<br>MM |        | I THICK<br>MICRON | PRESSUR<br>MM HG |        | VOLUME<br>ML | SP GR · | PERM<br>DARCIES | LOG PERM | IDENT        |     |
| · · · · · · · · · · · · · · · · · · · | MO           |              | 1.11.1 | HI CRON           |                  |        | 1-11-        |         | DARCIES         |          | · ·          |     |
|                                       | INTERIC      | OR HEAR      | TWOOD  | FREEZE            | E DRIED          |        |              | -       |                 |          |              |     |
|                                       | 7.36         | 25.5         | 8.4    | 149.9             | 500.0            | 1000.0 | 1            | 0.229   | 0.01            | -2.2106  | IH2 4        |     |
|                                       | 7.36         | 25.5         | 8.4    | 149.9             | 500•0            | 1000.0 | 1            | 0.229   | 0.01            | -2.2106  | IH2 4        |     |
|                                       | 8.24         | 25.6         | 8.2    | 147.3             | 500.0            | 1000.0 | 1            | 0.266   | 0.01            | -2.1910  | <u>IH2 9</u> |     |
|                                       | 8.24         | 25.6         | 8.2    | 147.3             | 500.0            | 1000.0 | 1            | 0.266   | 0.01            | -2.1910  | IH2 9        |     |
|                                       | 9.22         | 25.5         | 7.9    | 144.8             | 500.0            | 1000.0 | 1            | 0.316   | 0.01            | -2.1689  | IH2 13       |     |
|                                       | 9.22         | 25.5         | 7.9    | 144.8             | 500.0            | 1000.0 | 1            | 0.316   | 0.01            | -2.1689  | IH2 13       |     |
|                                       | 6.62         | 25.5         | 8.2    | 149.9             | 500.0            | 1000.0 | 1            | 0.211   | 0.01            | -2.2001  | IH3 9        |     |
|                                       | 6.62         | 25.5         | 8.2    | 149.9             | 500.0            | 1000.0 | 1            | 0.211   | 0.01            | -2.2001  | IH3 9        |     |
|                                       | 16.42        | 25.5         | 7.9    | 157.5             | 60.5             | 143•4  | 1            | 0.518   | 0.36            | -0.4448  | IH2 16       |     |
|                                       | 16.42        | 25.5         | 7.9    | 157.5             | 60.5             | 147•4  | 1            | 0.518   | 0.35            | -0.4567  | IH2 16       |     |
|                                       | 25.94        | 25.5         | 8.0    | 160.0             | 60•4             | 33.6   | 1            | 0.795   | 1.49            | 0.1737   | IH2 18       | -42 |
|                                       | 25.94        | 25.5         | 8.0    | 160.0             | 60.4             | 33.8   | 1            | 0.795   | 1.48            |          | IH2 18       | ţ,  |
|                                       | 24.92        | 25.6         | 7.8    | 154.9             | 60.0             | 36.4   | 1            | 0.805   | 1.47            | 0.1686   | IH2 20       |     |
|                                       | 24.92        | 25.6         | 7.8    | 154.9             | 60.0             | 36.2   | 1            | 0.805   | 1.48            |          | IH2 20       |     |
|                                       | 14.38        | 25.5         | 8.2    | 149.9             | 60.0             | 184.8  | 10           | 0.459   | 2.84            |          | IH2 22       |     |
|                                       | 14.38        | 25.5         | 8.2    | 149.9             | 60.0             | 187•2  | 10           | 0.459   | 2.81            |          | IH2 22       |     |
|                                       | 24.78        | 25.5         | 8.1    | 165.1             | 60.5             | 28.4   | 1            | 0.727   | 1.69            |          | IH3 30       |     |
|                                       | 24.78        | 25.5         | 8.1    | 165.1             | 60.5             | 28.7   | 1            | 0.727   | 1.67            |          | IH3 30       |     |
|                                       | COASTAL      | L SAPWO      | OD FR  | REEZE DR          | RIED             |        |              |         |                 |          |              |     |
|                                       | 6.90         | 25•4         | 8•2    | 151.1             | 4.5              | 156.8  | 10           | 0.219   | 44.15           | 1.6450   | CS3 10       |     |
|                                       | 6.90         | 25•4         | 8.2    | 151.1             | 4 • 4            | 154.2  | 10           | 0.219   | 45.92           | 1.6620   | CS3 10       |     |
|                                       | 6.36         | 25.7         | 8.1    | 147.3             | 4•2              | 117.0  | 10           | 0.207   | 66.62           |          | CS3 13       |     |
|                                       | 6.36         | 25.7         | 8.1    | 147.3             | 4.2              | 120.0  | 10           | 0.207   | 64.95           |          | CS3 13       |     |
|                                       | 9.72         | 25.3         | 8.5    | 162.6             | 4.3              | 109.2  | 10           | 0.278   | 59.27           |          | CS3 14       |     |
|                                       | 9.72         | 25.3         | 8.5    | 162.6             | 4 • 2            | 114.6  | 10           | 0.278   | 57.82           |          | CS3 14       |     |
|                                       | 20.32        | 25.6         | 8.5    | 175.3             | 4.4              | 63.4   | 1            | 0.533   | 9.36            |          | CS3 15       |     |
|                                       | 20.32        | 25.6         | 8.5    | 175.3             | 4 • 2            | 64.0   | 1            | 0.533   | 9.72            |          | CS3 15       |     |
|                                       |              |              |        |                   |                  |        | -            |         |                 |          |              |     |
|                                       | 32.86        | 25.4         | 8.3    | 203•2             | 4•4              | 233.0  | 1            | 0.767   | 2.23            | 0.3489   | CS4 1        |     |

4

3

.

. .

|       |          |       | <u> </u> | TABLE    | 2     | (CONTIN | IUED) | <u></u> |                |              |             |
|-------|----------|-------|----------|----------|-------|---------|-------|---------|----------------|--------------|-------------|
|       |          |       |          | PRESSURE |       |         | SP GR |         | LOG PERM       | IDENT        |             |
| MG    | MM       | MM.   | MICRON   | MM HG    | SEC   | ML      |       | DARCIES | ,,,,,,,,,,,,,_ |              |             |
| COAST | AL SAPWO | OD FR | EEZE DI  | RIED     |       |         |       |         |                |              |             |
| 37.50 | 25.5     | 8.5   | 223.5    | 4•6      | 38.0  | 1       | 0.774 | 11.67   | 1.0671         | CS4 3        |             |
| 37.50 | ) 25.5   | 8.5   | 223.5    | 4•4      | 38.8  | 1       | 0.774 | 11.95   | 1.0774         | CS4 3        |             |
| 15.60 | ) 25.6   | 8.6   | 152.4    | 4.5      | 41.0  | 1       | 0.465 | 16.09   | 1.2066         | <u>CS4 4</u> |             |
| 15.60 | 25.6     | 8•6   | 152.04   | 4•4      | 43.0  | 1       | 0•465 | 15.69   | 1•1957         | CS4 4        |             |
| 8.90  |          | 8.7   | 149•9    | 4•2      | 163.2 | 10      | 0.266 | 43.71   | 1.6406         | CS4 6        | •           |
| 8.90  | 25.7     | 8.7   | 149.9    | 4•2      | 162.2 | 10      | 0.266 | 43.98   | 1.6433         | <u>CS4</u> 6 |             |
| 8.39  | 25.7     | 8.5   | 154.9    | 4•4      | 164•4 | 10      | 0.248 | 41.01   | 1.6128         | CS4 8        |             |
| 8.39  | 25.7     | 8.5   | 154•9    | • 4•5    | 166.4 | 10      | 0.248 | 39.61   | 1.5978         | CS4 8        |             |
| 28.20 | 25.5     | 8.6   | 170.2    | 4•4      | 136.2 | 1       | 0.756 | 4•42    | 0.6453         | CS5 3        |             |
| 28.20 | 25.5     | 8.6   | 170.2    | 4•4      | 143.8 | 1       | 0.756 | 4.19    | 0.6218         | CS5 3        |             |
|       |          |       |          |          |       |         |       | -       |                |              | <b>-</b> 43 |
| COAST | AL HEART | WOOD  | FREEZE   | DRIED    |       |         |       |         | 1              |              | <u>.</u>    |
| 10.70 | 25.6     | 8•0   | 149•9    | 20.0     | 66.6  | 1       | 0•349 | 2•44    | 0.3868         | CH3 9        |             |
| 10.70 |          | 8.0   | 149.9    | 19.8     | 73.8  | 1       | 0.349 | 2.22    | 0.3466         | CH3 9        |             |
| 7.12  |          | 8.2   | 147•3    | 60.0     | 60.6  | 1       | 0.232 | 0.88    | -0.0560        | CH3 13       |             |
| 7.12  |          | 8.2   | 147.3    | 60.0     | 62.8  | 1       | 0.232 | 0.85    | -0.0715        | CH3 13       |             |
| 23.88 |          | 7.7   | 167.6    |          | 149.2 | ī       | 0.725 | 1.02    | 0.0071         | CH3 23       |             |
| 23.88 |          | 7.7   | 167.6    | 19.8     | 150.0 | 1       | 0.725 | 1.01    | 0.0048         | CH3 23       |             |
| 22.88 |          | 7.8   | 154.9    | 60.0     | 35.4  | 1       | 0.742 | 1.51    | 0.1790         | CH4 5        |             |
| 22.88 |          | 7.8   | 154.9    | 59.9     | 35.6  | 1       | 0.742 | 1.50    | 0.1772         | CH4 5        |             |
| 6.98  |          | 8.1   | 162.6    | 20.2     | 56.0  | 1       | 0.208 | 2.60    | 0.4153         | CH4 13       |             |
| 6.98  |          | 8.1   | 162.6    | 20.0     | 60.6  | 1       | 0.208 | 2.43    | 0•3854         | CH4 13       |             |
|       |          |       |          |          |       |         |       |         |                |              |             |
|       |          |       |          |          |       |         |       |         |                |              |             |
|       |          |       |          |          |       |         |       |         |                |              |             |
|       |          |       |          |          |       |         |       |         |                |              | •           |
|       |          |       |          |          |       |         |       |         |                |              |             |
|       |          |       |          |          |       |         |       |         |                |              |             |

| WEICHT |          | Мтрти | тытси  | DDECCUD  |        | VOLUME |       |         | LOG PERM |               |                                 |
|--------|----------|-------|--------|----------|--------|--------|-------|---------|----------|---------------|---------------------------------|
| MG     | MM       |       | MICRON | MM HC    |        |        | SP GR | DARCIES | LUG PERM | IDENT         |                                 |
| INTERI | OR SAPWO | •     |        | JNDER VA | CUUM   |        |       |         |          |               |                                 |
| 18.04  | 25.5     | 6.8   | 167.6  | 19.9     | 49.2   | 1      | 0.621 | 3.47    | 0.5407   | IS3 6         |                                 |
| 18.04  | 25.5     | 6.8   | 167.6  | 19•9     | 50•4   | 1      | 0.621 | 3.39    | 0.5302   | IS3 6         |                                 |
| 6.26   | 25.4     | 7.5   | 157.5  | 19.0     | 240.0  | 1      | 0.209 | 0.72    | -0.1446  | <u>IS3 19</u> |                                 |
| 6.26   | 25.4     | 7.5   | 157.5  | 19•2     | 288.6  | 1      | 0.209 | 0.59    | -0.2292  | IS3 19        |                                 |
| 6.96   | 25.3     | 8.6   | 157.5  | 60•8     | 115.2  | 1      | 0.203 | 0.41    | -0.3921  | IS3 21        |                                 |
| 13.82  | 25.5     | 8.5   | 180.3  | 19.3     | 186.1  | 11     | 0.354 |         |          | IS3 24        |                                 |
| 13.82  | 25.5     | 8.5   | 180.3  | 19.0     | 191.5  | 1      | 0.354 |         | -0.1580  | IS3 24        |                                 |
| 25.19  | 25.6     | 8•4   | 167.6  | 18.8     | 39.0   | 1      | 0.699 | 3.77    | 0•5762   | IS4 2         |                                 |
| 25.19  | 25.6     | 8.4   | 167.6  | 19.7     | 39.2   | 1      | 0.699 | 3.58    |          | <u>IS4 2</u>  |                                 |
| 23.14  | 25.6     | 8.5   | 172.7  | 19.3     | 27.2   | 1      | 0.616 | 5.05    |          | IS4 3         |                                 |
| 23.14  | 25.6     | 8.5   | 172.7  | 18•9     | 28.0   | 1      | 0.616 | 5.01    | 0.6997   | IS4 3         |                                 |
| 16.49  | 25.5     |       | 154.9  | 19.8     | 80.8   | 1      | 0.497 |         | 0.2699   |               | 4                               |
| 16.49  | 25.5     |       | 154.9  | 19•7     | 84.2   | 1      | 0.497 | 1.80    |          | IS4 4         | 1                               |
| 13.68  | 25.6     |       | 162.6  | 62.5     | 75.8   | 1      | 0.387 |         | -0.2259  | IS4 5         | -                               |
| 13.68  | 25.6     |       | 162.6  | 62.3     | 83.8   | 11     | 0.387 |         | -0.2681  | IS4 5         |                                 |
| 9.20   | 25.4     | 8.5   | 157.5  | 20.2     | 983.0  | 1      | 0.271 |         | -0.8379  | IS4 8         |                                 |
| 9.20   | 25•4     | 8.5   | 157.5  | 61•3     | 318.2  | 1      | 0.271 | 0.15    |          | IS4 8         |                                 |
| 7.98   | 25.5     | 8.4   | 154.9  | 59.5     | 273.4  | 11     | 0.240 | 0.18    | -0.7374  | IS4 11        |                                 |
| 7.98   | 25.5     |       | 154.9  | 59.5     | 275.8  | 1      | 0.240 |         | -0.7412  | IS4 11        |                                 |
| 7.47   | 25.5     | 8.6   | 157.5  | 61.5     | 199.5  | 1      | 0.216 |         |          | IS4 14        |                                 |
| 7.47   | 25.5     | 8.6   | 157.5  | 61•3     | 225.0  | 1      | 0.216 | 0.21    |          | 154 14        |                                 |
| INTERI | OR HEAR  | rwood | BOILED | UNDER    | VACUUM |        |       |         |          |               |                                 |
| 7.66   | 25.5     | 8.2   | 167.6  | 500.0    | 1000.0 | 1      | 0.219 | 0.01    | -2.2488  | IH2 4         | · · · · · · · · · · · · · · · · |
| 7.66   | 25.5     | 8.2   | 167.6  |          | 1000.0 | 1      | 0.219 |         | -2.2488  | IH2 4         |                                 |
| 8.68   | 25.6     |       | 162.6  |          | 1000.0 | 1      | 0.264 |         | -2.2175  | IH2 9         |                                 |
| 8.68   | 25.6     | 7.9   | 162.6  |          | 1000.0 | 1      | 0.264 |         | -2.2175  | IH2 9         |                                 |
| 26.50  | 25.4     | 8.1   | 182.9  | 60.4     |        | 1      | 0.704 |         | -0.1432  | IH2 16        |                                 |
| 26.50  | 25.4     |       | 182.9  | 60.4     |        | -      | 0.704 |         | -0.1373  |               |                                 |

a arrest successions and a succession and a

|                  | WEIGHT<br>MG | LENGTH<br>MM |              | H THICK<br>MICRON | PRESSURE<br>MMHG                 |        |                                | SP GR | PERM<br>DARCIES | LOG PERM                                                                                                       | IDEN | T  |          |
|------------------|--------------|--------------|--------------|-------------------|----------------------------------|--------|--------------------------------|-------|-----------------|----------------------------------------------------------------------------------------------------------------|------|----|----------|
|                  | INTERI       | OR HEAR      | TWOOD        | BOILE             | D UNDER V                        | VACUUM |                                |       | 1               |                                                                                                                |      |    |          |
| e                | 27.36        | 25.5         | 8.0          | 182.9             | 60.5                             | 38.6   | 1                              | 0.733 | 1.13            | 0.0548                                                                                                         | IH2  | 18 |          |
|                  | 27.36        | 25.5         | 8•0          | 182•9             | 60.5                             | 38.6   | 1                              | 0.733 | 1.13            | 0.0548                                                                                                         | IH2  | 18 |          |
|                  | 16.50        | 25.5         | 8.5          | 154.9             | 60.6                             | 24.6   | 1                              | 0.491 | 1.97            | 0.2954                                                                                                         | IH3  | 31 |          |
|                  | 16.50        | .25.5        | 8.5          | 154.9             | 60.6                             | 25.0   | 1                              | 0.491 | 1.94            | 0.2884                                                                                                         | IH3  | 31 |          |
| <b>**</b> ***, . | COASTA       | L_SAPWO      | <u>OD BC</u> | <u>)ILED UI</u>   | NDER VACU                        | JUM    |                                |       |                 | · · ····                                                                                                       |      |    |          |
|                  | 7.38         | 25.6         | 85           | 147.3             | 3•9                              | 116.6  | 10                             | 0.230 | 68.33           | 1.8346                                                                                                         | CS3  | 10 |          |
| •                | 7.38         | 25.6         | 8.5          | 147.3             |                                  | 122.8  |                                | 0.230 | 70.29           |                                                                                                                |      |    |          |
|                  | 7.00         | 25.5         | 8.5          | 154.9             |                                  | 86.6   |                                | 0.208 | 89.43           |                                                                                                                | CS3  |    |          |
|                  | 7.00         | 25.5         | 8.5          | 154.9             |                                  | 95.0   |                                | 0.208 | 91.12           |                                                                                                                | CS3  |    | <u>.</u> |
|                  | 7.76         | 25.2         |              | 162.6             |                                  | 91.4   |                                | 0.223 |                 |                                                                                                                | CS3  |    | 4        |
|                  | 7.76         | 25.2         | 8.5          | 162.6             |                                  | 94.7   | and a second data and a second | 0.223 |                 |                                                                                                                | CS3  |    |          |
|                  | 17.66        | 25.6         | 8.5          | 200•7             |                                  | 149.3  |                                | 0.404 | 36.38           |                                                                                                                | CS3  |    |          |
|                  | 17.66        | 25.6         | 8.5          | 200.7             |                                  |        |                                | 0.404 | 37.41           | -                                                                                                              | CS3  |    |          |
|                  | 32.86        | 25.6         | 8.5          | 193.0             |                                  | 376.4  |                                | 0.782 | 3.17            | the second s | CS4  | 1  |          |
|                  | 32.86        | 25.6         | 8.5          | 193.0             |                                  | 45.0   |                                | 0.782 | 2.66            |                                                                                                                | CS4  | ī  |          |
|                  | 45.38        | 25.5         | 8.5          | 274.3             | 4•4                              | 27.0   | 1                              | 0.763 | 13.99           |                                                                                                                | CS4  | 3  |          |
|                  | 45.38        | 25.5         | 8.5          | 274.3             | 4•3                              | 28.2   | 1                              | 0.763 | 13.71           | 1.1370                                                                                                         | CS4  | 3  |          |
|                  | 16.74        | 25.6         | 8.5          | 142.2             | 4•6                              | 36.4   | 1                              | 0.541 | 19.22           | 1.2838                                                                                                         | CS4  | 4  |          |
|                  | 16.74        | 25.6         | 8.5          | 142.2             | 4•6                              | 36.8   | 1                              | 0.541 | 19.01           | 1.2790                                                                                                         | CS4  | 4  |          |
|                  | 9.64         | 25.2         | 8.5          | 147.3             | 4.3                              | 125.0  | 10                             | 0.305 | 56.91           |                                                                                                                | CS4  | 6  | ·····    |
|                  | 9.64         | 25.2         | 8.5          | 147.3             | 4•2                              | 128.2  | 10                             | 0.305 | 56.81           | 1.7544                                                                                                         | CS4  | 6  | `        |
|                  | 8.58         | 25.6         |              |                   |                                  | 171.0  | 10                             | 0.254 | 45.47           | 1.6577                                                                                                         | CS4  | 8  |          |
|                  | 8.58         | 25.6         | 8.5          | 154.9             | . 3.6                            | 181.4  | 10                             | 0.254 | 45.24           | 1.6556                                                                                                         | C54  | 8  |          |
|                  |              |              |              |                   |                                  |        |                                |       |                 |                                                                                                                |      |    |          |
|                  |              |              |              |                   | 1912 MARCAN IN IN INC. I AND A T |        | - <u>Inventor</u> - 1992       |       |                 |                                                                                                                |      |    |          |

|                                              |              |                                    |                       | •                                      | TABLE             | 2            | (CONTIN      | IUED)          |                 | <u></u>  |                         |          |
|----------------------------------------------|--------------|------------------------------------|-----------------------|----------------------------------------|-------------------|--------------|--------------|----------------|-----------------|----------|-------------------------|----------|
|                                              | WEIGHT<br>MG | LENGTH<br>MM                       |                       | H THICK<br>MICRON                      | PRESSURE<br>MM HG | TIME<br>SEC  | VOLUME<br>ML | SP GR          | PERM<br>DARCIES | LOG PERM | IDENT                   |          |
|                                              | COASTA       | L HEARTI                           | WOOD                  | BOILED                                 | UNDER VA          | CUUM         |              |                |                 |          |                         |          |
|                                              | 14.30        | 24.9.                              | 8.3                   | 170.2                                  | 20.6              | 77.6         | 1            | 0.407          | 1.68            |          | CH3 13                  |          |
|                                              | 14.30        | 24.9                               | 8.3                   | 170.2                                  | 20.6              | 84•4         | 1            | 0.407          | 1.54            |          | CH3 13                  | •        |
|                                              | 27.28        | <u>25.4</u><br>25.4                | <u>8 • 1</u><br>8 • 1 | <u>167.6</u><br>167.6                  | 20•4              | 70.6<br>72.4 | <u> </u>     | 0.791<br>0.791 | <u> </u>        |          | <u>CH3 15</u><br>CH3 15 | ······   |
|                                              | 26.40        | 25.4                               | 7•9                   | 175.•3                                 | 20•4              | 57.0         | 1            | 0.754          | 2.41            | 0.3824   | CH3 19<br>CH3 19        |          |
|                                              | 26.40        | 25.3                               |                       | 175.03                                 | 20•2              | 58.8         | 1            | 0.754          | <u> </u>        |          | <u>CH3_19</u>           |          |
|                                              | 19.26        | 25.5                               |                       | 160.0                                  |                   | 45.6         | 1            | 0.583          | 3.21            | 0.5071   | CH3 22                  | ······   |
|                                              | 19.26        | 25.5                               |                       | 160.0                                  | 20•4              | 47.4         | 1            | 0.583          | 3.09            |          | CH3 22                  |          |
|                                              | 10.38        | 25.5                               |                       | 157.5                                  | 20.4              | 60.8         | 1            | 0.308          | 2.36            |          | CH3 23                  |          |
|                                              | 10.38        | 25.5                               | 8.4                   | 157.5                                  | 20•4              | 64.0         | 1            | 0.308          | 2.24            |          | CH3 23                  | ·····    |
|                                              | 8.46         | 25.5                               |                       | 160.0                                  | 59.8              | 145.4        | 1            | 0.247          | 0.33            |          | CH4 ]                   | J        |
|                                              | 8.46         | 25.5                               | 8.4                   |                                        |                   | 168.8        | 11           | 0.247          |                 | 0.5456_  |                         | 46       |
|                                              | 30.54        | 25.5                               | 7.8                   | 175.3                                  | 20.0              | 53.2         | 1            | 0.876          | 2.66            | 0.4257   | CH4 13                  |          |
|                                              | 30.54        | 25.5                               | 7.8                   | 175.3                                  | 19.7              | 55.0         | 1            | 0.876          | 2.62            | 0.4178   | CH4 13                  |          |
|                                              | 10.54        | 25.4                               | 8.7                   | 172.7                                  | 60.0              | 40.2         | 1            | 0.276          | 1.07            | 0.0274   | <u>CH4 11</u>           |          |
|                                              | 10.54        | 25.4                               | 8.7                   | 172.7                                  | 60•0              | . 43•4       | 1            | 0.276          | 0.99            | -0.0058  | CH4 11                  |          |
|                                              |              |                                    |                       |                                        |                   |              |              |                |                 |          |                         |          |
| <u>,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              | k ga shere ta ka ga ga ga ga ga ga |                       |                                        |                   |              |              |                |                 |          |                         |          |
|                                              |              |                                    |                       |                                        |                   |              |              |                | ·               |          |                         | <u> </u> |
|                                              | •            |                                    |                       |                                        |                   |              |              |                |                 |          |                         |          |
|                                              |              |                                    |                       |                                        |                   |              |              |                |                 |          |                         |          |
|                                              | ,            | •                                  |                       | ······································ |                   |              |              | ····           |                 |          |                         |          |
|                                              |              |                                    |                       |                                        |                   |              |              |                |                 |          |                         |          |
|                                              |              |                                    |                       |                                        |                   |              |              |                |                 |          |                         |          |
|                                              |              |                                    |                       | •                                      |                   |              |              |                |                 |          |                         |          |

|                                                                                 | TABL                                           | E. 3                                           |                            |                                                        |                                           |
|---------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------|--------------------------------------------------------|-------------------------------------------|
| Regressions of Douglas                                                          | fir gas-p                                      | ermeability                                    | vs. sp                     | ecific gravit                                          | y                                         |
| Regression                                                                      | s have the                                     | form log H                                     | )=a+                       | ЪG                                                     |                                           |
| where                                                                           | P = permeal                                    | bility (dar                                    | cies)                      |                                                        |                                           |
|                                                                                 | G = specif:                                    | ic gravity                                     |                            |                                                        |                                           |
|                                                                                 | -                                              | nts tabulat                                    | ed belo                    | w                                                      |                                           |
| -                                                                               |                                                |                                                |                            | R                                                      | SEE                                       |
| Drying method                                                                   | a                                              | Ъ                                              | n                          | n                                                      | 9<br>Eff                                  |
| Interior-type sapwood                                                           |                                                |                                                |                            |                                                        |                                           |
| air-dried<br>oven-dried<br>solvent-dried<br>freeze-dried<br>boiled-under-vacuum | -0.751<br>-1.339<br>-1.383<br>-0.464<br>-1.150 | 1,509<br>1.211<br>-0.685<br>-0.473<br>1.267    | 20<br>20<br>20<br>18<br>22 | 0.93 **<br>0.91 **<br>0.45 *<br>0.22 n.s.<br>0.91 **   | 0.109<br>0.188<br>0.234<br>0.375<br>0.231 |
| Interior-type heartwood                                                         |                                                |                                                |                            |                                                        |                                           |
| air-dried<br>oven-dried<br>solvent-dried<br>freeze-dried<br>boiled-under-vacuum | -1.407<br>-3.339<br>0.022<br>-3.050<br>-2.291  | 2.308<br>1.446<br>0.045<br>4.447<br>3.410      | 18<br>18<br>11<br>18<br>12 | 0.56 *<br>0.98 **<br>0.03 n.s.<br>0.88 **<br>0.72 **   | 0.899<br>0.212<br>0.307<br>0.599<br>0.795 |
| Coast-type sapwood                                                              |                                                |                                                |                            |                                                        |                                           |
| air-dried<br>oven-dried<br>solvent-dried<br>freeze-dried<br>boiled-under-vacuum | 1.405<br>1.389<br>2.572<br>2.155<br>2.307      | -1.528<br>-1.189<br>-2.907<br>-1.955<br>-1.941 | 18<br>22<br>20<br>20<br>18 | 0.84 **<br>0.60 **<br>0.90 **<br>0.92 **<br>0.93 **    | 0.217<br>0.391<br>0.289<br>0.196<br>0.173 |
| Coast-type heartwood                                                            |                                                |                                                |                            |                                                        |                                           |
| air-dried<br>oven-dried<br>solvent-dried<br>freeze-dried<br>boiled-under-vacuum | -0.150<br>-0.369<br>0.268<br>0.121<br>-0.226   | 0.441<br>0.829<br>0.001<br>-0.054<br>0.815     | 22<br>20<br>20<br>16<br>18 | 0.46 *<br>0.59 **<br>0.00 n.s.<br>0.06 n.s.<br>0.66 ** | 0.229<br>0.283<br>0.292<br>0.196<br>0.236 |

| ·                                            | TABLI                                               | <u>E 4</u>                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |  |
|----------------------------------------------|-----------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| RATE OF CREOS                                | SOTE ABSORP                                         | TION IN GF                                        | ROSS SPECIMENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                              |  |
| TIM                                          |                                                     | RETENTION                                         | LOG RET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |  |
| MINUT                                        | ES                                                  | GRAMS                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |  |
| INTERIOR SAPWOOD (PRINCE GEO                 | ORGE) AIR DE                                        | RIED                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *****                                                                                                          |  |
| 0.                                           | 3 -0.5229                                           | 1•0                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |  |
| 7.2                                          |                                                     | 5•0                                               | 0.6990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |  |
| 24•0                                         |                                                     | 9•0                                               | 0.9542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |  |
| 44•(                                         |                                                     | 13.0                                              | 1.1139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |  |
| 60.(                                         | فتسمع وتجربا فالالجائلا تقريبيهم ومتخاط كمرجاوا بال | 15.0                                              | 1.1761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ananga di sa si kananga kananga dan kananga dan kanga kananga dan kanga kananga kananga kananga kananga kanang |  |
| 76•0                                         |                                                     | 17.0                                              | 1.2304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |  |
| 1-26 • (                                     |                                                     | 21-0                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                              |  |
| 180.0                                        |                                                     | 23.0                                              | 1.3617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |  |
| INTERIOR HEARTWOOD (PRINCE (<br>17.0<br>40.0 | 0 1.2304                                            | 2•0                                               | 0.3010<br>0.4771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |  |
| 60.0                                         |                                                     | <u> </u>                                          | 0.5441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                                                              |  |
|                                              |                                                     |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |  |
| COASTAL SAPWOOD (HANEY) AII                  | R DRIED                                             | anna ann an Anna ann an Anna an Anna an Anna an A | د المراجع المراجع المعرفين المعالي المراجع الم |                                                                                                                |  |
|                                              |                                                     | 5•0                                               | 0.6990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x *                                                                                                            |  |
| 2•!                                          |                                                     | 10.0                                              | 1.0000 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |  |
| 6.(                                          |                                                     | 15.0                                              | 1.1761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |  |
| . 11.0                                       |                                                     | 20.0                                              | 1.3010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |  |
| 21.0                                         |                                                     | 25.0                                              | 1.3979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |  |
| 38•(                                         |                                                     | 30.0                                              | 1.4771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |  |
| 61•0                                         |                                                     | 35.0                                              | 1.5441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |  |
|                                              |                                                     | 40.0                                              | <u>1.6021</u><br>1.6335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |  |
| 120.0                                        |                                                     | 43∙0<br>45∙0                                      | 1.6532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |  |
| 100t                                         |                                                     | 49€U                                              | 1.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |  |
|                                              |                                                     |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |  |

|                                |           |                    | · · · · · · · |                                         |
|--------------------------------|-----------|--------------------|---------------|-----------------------------------------|
| TIME<br>MINUTES                | LOG TIME  | RETENTION<br>GRAMS | LOG RET       |                                         |
| COASTAL HEARTWOOD (HANEY) AIR  | DRIED     |                    |               |                                         |
|                                |           |                    |               |                                         |
| 0•5                            | -0.3010   | 1•0                | 0.0000        |                                         |
| 7.5                            | 0.8751    | 3•5                | 0.5441        |                                         |
| 27.0                           | 1.4314    | 6.0                | 0.7782        | ·                                       |
| 60.0                           | 1.7782    | 8•5                | 0.9294        |                                         |
| 120.0                          | 2.0792    | 11•0               | 1.0414        |                                         |
| 150.0                          | 2.1761    | 12.0               | 1.0792        |                                         |
| 180•0                          | 2.2553    | 12•5               | 1.0969        |                                         |
| COASTAL SAPWOOD (COWICHAN) AI  | R DRIED   |                    |               |                                         |
| 4•0                            | 0.6021    | 4•0                | 0.6021        | Į.                                      |
| 14.0                           | 1.1461    | 9.0                | 0.9542        | -49-                                    |
| 25•0                           | 1.3979    | 14•0               | 1.1461        | ······································  |
| 37.0                           | 1.5682    | 19•0               | 1.2788        |                                         |
| 55.0                           | 1.7404    | 24•0               | 1.3802        |                                         |
| 75.0                           | 1.8751    | 29.0               | 1.4624        | <u></u>                                 |
| 99.0                           | 1.9956    | 34•0               | 1.5315        |                                         |
| 127.0                          | 2.1038    |                    | 1.5911        |                                         |
| 161.0                          | 2.2068    | 44•0               | 1.6435        |                                         |
| COASTAL HEARTWOOD (COWICHAN)   | AIR DRIED |                    |               |                                         |
|                                | 0.3010    | 1.0                | 0.0000        |                                         |
| 16.0                           | 1.2041    | 2•0                | 0.3010        |                                         |
| 60.0                           | 1.7782    | 3•5                | 0.5441        | • • • • • • • • • • • • • • • • • • • • |
| 90.0                           | 1.9542    | 4•0                | 0.6021        |                                         |
| 180.0                          | 2.2553    | 4•0<br>5•0         | 0.6990        |                                         |
|                                |           |                    | 0.0750        | · · · · · · · · · · · · · · · · · · ·   |
| INTERIOR SAPWOOD (PRINCE GEORG | E) OVEN D | RIED               |               |                                         |
| 0.3                            | -0.5229   | 5•0                | 0.6990        | · · · · · · · · · · · · · · · · · · ·   |

,

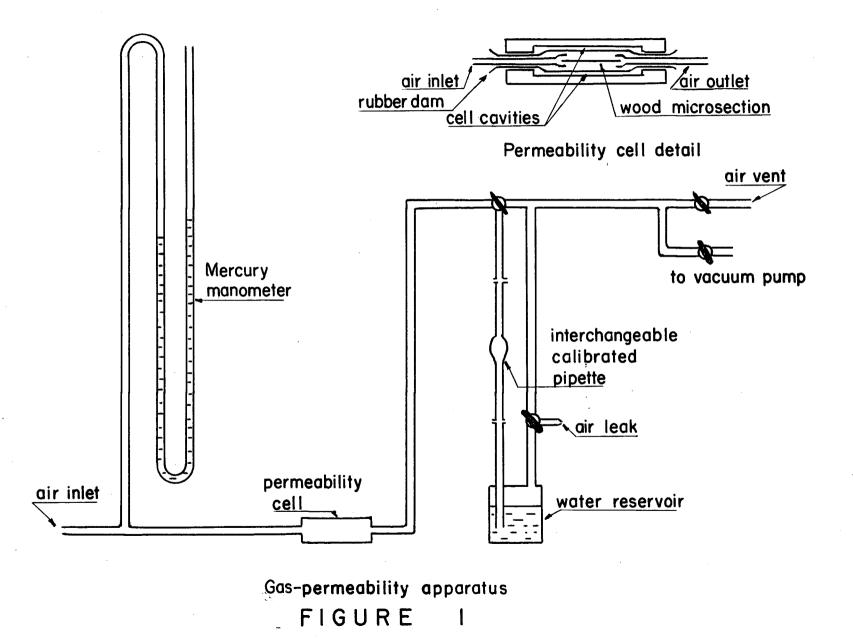
|                                                                                          | TABLE 4 (C                                                                    | CONTINUED)                          |                                                                    |                                       |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------|---------------------------------------|
| TIME<br>MINUTES                                                                          | LOG TIME                                                                      | RETENTION                           | LOG RET                                                            |                                       |
| INTERIOR SAPWOOD (PRINCE GEOR                                                            | GE) OVEN D                                                                    | DRIED                               |                                                                    |                                       |
| 1.0                                                                                      | 0.0000                                                                        | 10.0-                               | 1.0000                                                             |                                       |
| 2•2                                                                                      | 0.3424                                                                        | 15•0                                | 1.1761                                                             |                                       |
| 3.7                                                                                      | 0.5682                                                                        | 20.0                                | 1.3010                                                             |                                       |
| 6.0                                                                                      | 0.7782                                                                        | 25.0                                | 1.3979                                                             |                                       |
| 9•1                                                                                      | 0.9590                                                                        | 35.0                                | 1.5441                                                             |                                       |
| 12.9                                                                                     | 1.1106                                                                        | 35.0                                | 1.5441                                                             |                                       |
| 17•7                                                                                     | 1.2480                                                                        |                                     | 1.6021                                                             |                                       |
| 26•3                                                                                     | 1.4200                                                                        | 45.0                                | 1.6532                                                             |                                       |
| INTERIOR HEARTWOOD (PRINCE GE                                                            | DRGEL OVEN                                                                    | N DRIED                             |                                                                    | · · · · · · · · · · · · · · · · · · · |
| INTERIOR HERRINOOD THREE OF                                                              |                                                                               |                                     |                                                                    | <b>1</b><br>50                        |
| 1•7                                                                                      | 0.230,4                                                                       | 2.0                                 | 0.3010                                                             | Ō                                     |
| 30.0                                                                                     | 1.4771                                                                        | 3.5                                 | 0.5441                                                             | in - ang ang at a rain a raing − .    |
| 60.0                                                                                     | 1.7782                                                                        | 4•0                                 | 0.6021                                                             | •                                     |
| 90.0                                                                                     | 1.9542                                                                        | 4•5                                 | 0.6532                                                             |                                       |
| 120.0                                                                                    | 2.0792                                                                        | 5.0                                 | 0.6990                                                             |                                       |
|                                                                                          |                                                                               | 5.5                                 | 0•7404                                                             |                                       |
| 150.0                                                                                    | 2.1761                                                                        |                                     |                                                                    |                                       |
|                                                                                          | 2 • 1 761<br>2 • 2553                                                         | 6.0                                 | 0.7782                                                             |                                       |
| 150.0<br>180.0                                                                           |                                                                               |                                     |                                                                    |                                       |
| 150.0<br>180.0<br>COASTAL SAPWOOD (HANEY) OVEN<br>0.2                                    | 2.2553<br>DRIED<br>-0.6990                                                    | 6•0<br>5•0                          | 0.7782                                                             |                                       |
| 150.0<br>180.0<br>COASTAL SAPWOOD (HANEY) OVEN                                           | 2.2553<br>DRIED<br>-0.6990<br>-0.1549                                         | 6•0                                 | 0.7782<br>0.6990<br>1.0000                                         |                                       |
| 150.0<br>180.0<br>COASTAL SAPWOOD (HANEY) OVEN<br>0.2<br>0.7<br>1.2                      | 2.2553<br>DRIED<br>-0.6990<br>-0.1549<br>0.0792                               | 5.0<br>10.0<br>15.0                 | 0.7782<br>0.6990<br>1.0000<br>1.1761                               |                                       |
| 150.0<br>180.0<br>COASTAL SAPWOOD (HANEY) OVEN<br>0.2<br>0.7<br>1.2<br>1.8               | 2.2553<br>DRIED<br>-0.6990<br>-0.1549<br>0.0792<br>0.2553                     | 5.0<br>10.0<br>15.0<br>20.0         | 0.7782<br>0.6990<br>1.0000<br>1.1761<br>1.3010                     |                                       |
| 150.0<br>180.0<br>COASTAL SAPWOOD (HANEY) OVEN<br>0.2<br>0.7<br>1.2<br>1.8<br>3.0        | 2.2553<br>DRIED<br>-0.6990<br>-0.1549<br>0.0792<br>0.2553<br>0.4771           | 5.0<br>10.0<br>15.0<br>20.0<br>25.0 | 0.7782<br>0.6990<br>1.0000<br>1.1761                               |                                       |
| 150.0<br>180.0<br>COASTAL SAPWOOD (HANEY) OVEN<br>0.2<br>0.7<br>1.2<br>1.8<br>3.0<br>4.5 | 2.2553<br>DRIED<br>-0.6990<br>-0.1549<br>0.0792<br>0.2553<br>0.4771<br>0.6532 |                                     | 0.7782<br>0.6990<br>1.0000<br>1.1761<br>1.3010<br>1.3979<br>1.4771 |                                       |
| 150.0<br>180.0<br>COASTAL SAPWOOD (HANEY) OVEN<br>0.2<br>0.7<br>1.2<br>1.8<br>3.0        | 2.2553<br>DRIED<br>-0.6990<br>-0.1549<br>0.0792<br>0.2553<br>0.4771           | 5.0<br>10.0<br>15.0<br>20.0<br>25.0 | 0.7782<br>0.6990<br>1.0000<br>1.1761<br>1.3010<br>1.3979           |                                       |
| 150.0<br>180.0<br>COASTAL SAPWOOD (HANEY) OVEN<br>0.2<br>0.7<br>1.2<br>1.8<br>3.0<br>4.5 | 2.2553<br>DRIED<br>-0.6990<br>-0.1549<br>0.0792<br>0.2553<br>0.4771<br>0.6532 |                                     | 0.7782<br>0.6990<br>1.0000<br>1.1761<br>1.3010<br>1.3979<br>1.4771 |                                       |

|                               | TABLE 4 (C | <u>ONTINUED)</u>   | · · · · · · · · · · · · · · · · · · · |                                       |                                       |
|-------------------------------|------------|--------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| TIME<br>MINUTES               | LOG TIME   | RETENTION<br>GRAMS | LOG RET                               |                                       |                                       |
| COASTAL HEARTWOOD (HANEY) OVE | EN DRIED   |                    |                                       |                                       |                                       |
| 0•2                           | -0.6990    | 5•0                | 0.6990                                |                                       | · · · · · · · · · · · · · · · · · · · |
| 11.2                          | 1.0492     | 10.0               | 1.0000                                |                                       |                                       |
| 15.0                          | 1.1761     | 11•0               | 1.0414                                |                                       |                                       |
| 30.0                          | 1 • 4771   | 15•0               | 1.1761                                |                                       |                                       |
| 45•0                          | 1.6532     | 18•0               | 1.2553                                |                                       |                                       |
| 60.0                          | 1.7782     | 20•0               | 1.3010                                |                                       |                                       |
| 90.0                          | 1.9542     | 23.0               | 1.3617                                |                                       |                                       |
| 105.0                         | 2.0212     | 24•0               | 1.3802                                |                                       |                                       |
| 120.0                         | 2.0792     | 26•0               | 1.4150                                | ·                                     |                                       |
| 135.0                         | 2.1303     | 27.0               | 1.4314                                |                                       |                                       |
| 1,80.0                        | 2.2553     | 30•0               | 1.4771                                |                                       | · 1                                   |
| COASTAL SAPWOOD (COWICHAN) ON | VEN DRIED  |                    |                                       |                                       | ·                                     |
| . 0.5                         | -0.3010    | 2•0                | 0.3010                                |                                       |                                       |
| 2.5                           | 0.3979     | 8•0                | 0.9031                                |                                       |                                       |
| 6.0                           | 0.7782     | 13.0               | 1.1139                                | •                                     |                                       |
| 10.4                          | 1.0170     | 18•0               | 1.2553                                |                                       |                                       |
| 15.4                          | 1.1875     | 23.0               | 1.3617                                |                                       |                                       |
| 23.5                          | 1.3711     | 28.0               | 1.4472                                |                                       |                                       |
| 34•7                          | 1.5403     | 33.0               | 1.5185                                |                                       |                                       |
| 47.8                          | 1.6794     | 38.0               | 1.5798                                |                                       |                                       |
| 64•5                          | 1.8096     | 43•0               | 1.6335                                |                                       |                                       |
| 90.0                          | 1.9542     | 48.0               | 1.6812                                |                                       |                                       |
| COASTAL HEARTWOOD (COWICHAN)  | OVEN DRIED |                    | · · · · · · · · · · · · · · · · · · · |                                       |                                       |
| 3.0                           | 0.4771     | 3.0                | 0.4771                                | · · · · · · · · · · · · · · · · · · · |                                       |
| 1 5 0                         | 1.1761     | 5•5                | 0.7404                                |                                       |                                       |
| 15.0                          |            |                    |                                       |                                       |                                       |

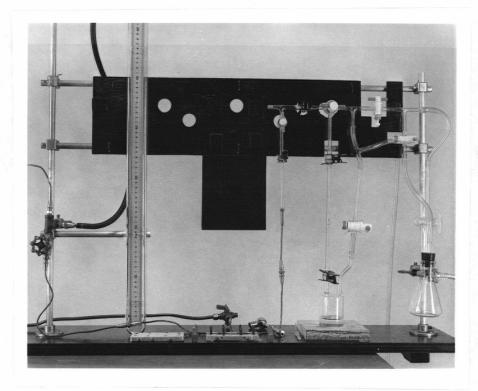
|                                | TABLE 4 (C                 | ONTINUED)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|--------------------------------|----------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| TIME                           |                            | RETENTION<br>GRAMS | LOG RET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| COASTAL HEARTWOOD (COWICHAN)   | OVEN DRIED                 | )                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 90.0                           | 1.9542                     | 15.0               | 1.1761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 120.0                          | 2.0792                     | 17.0               | 1.2304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 150.0                          | 2.1761                     | 18.5               | 1.2672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 180•0                          | 2.2553                     | 19•5               | 1.2900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·        |
| INTERIOR SAPWOOD (PRINCE GEOR  | GE) SOLVEN                 | IT DRIED           | and a second state of the |          |
| 0•2                            | -0.6990                    | 5•0                | 0.6990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 0.5                            | -0.3010                    | 10.0               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 0.9                            | -0.0458                    | 15.0               | 1.1761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 1•5                            | 0.1761                     | 20.0               | 1.3010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -52      |
| . 2•4                          | 0.3802                     |                    | 1.3979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N<br>I   |
| 3.8                            | 0.5798                     | 30.0               | 1.4771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 5.5                            | 0.7404                     | 35.0               | 1.5441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 7.5                            | 0.8751                     | 40.0               | 1.6021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 10.5                           | 1.0212                     | 45.0               | 1.6532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| INTERIOR HEARTWOOD (PRINCE GE  | ORGE) SOLV                 | ENT DRIED          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 1•2                            | 0.0792                     | 0•5                | -0.3010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 9.0                            | 0.9542                     | 1.5                | 0.1761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|                                | 1.4624                     | 2.5                | 0.3979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 29.0                           |                            |                    | 0•5441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>r</i> |
| 29.0<br>41.5                   | 1.6180                     | 3•5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                | 1.6180<br>1.7782           | 3•5<br>4•5         | 0.6532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -        |
| 41.5                           |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 41•5<br>60•0                   | 1.7782                     | 4.5                | 0.6532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 41.5<br>60.0<br>120.0          | 1•7782<br>2•0792<br>2•2553 | <u> </u>           | 0.6532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 41.5<br>60.0<br>120.0<br>180.0 | 1•7782<br>2•0792<br>2•2553 | <u> </u>           | 0.6532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |

| TIME                          | LOG TIME    | RETENTION | LOG RET  |   |
|-------------------------------|-------------|-----------|----------|---|
| COASTAL SAPWOOD (HANEY) SOLV  | ENT DRIED   |           | í        |   |
| 1.5                           | 0.1761      | 15•0      | 1.1761   |   |
| 2.5                           | 0.3979      | 20.0      | 1.3010   |   |
| 4.0                           | 0.6021      | 25.0      | 1.3979   |   |
| 7.0                           | 0.8451      | 30.0      | 1.4771   |   |
| 12.0                          | 1.0792      | 35•0      | 1.5441   |   |
| 19.0                          | 1.2788      |           | 1.6021   |   |
| 29.0                          | 1.4624      | 44•0      | 1.6435   |   |
| 3•0<br><u>6•0</u>             | 0.4771      | 2•5       | 0.3979   |   |
| 30.0                          | 1.4771 .    | 12.5      | 1.0969   | ĩ |
| 60.0                          | 1.7782      | 18.0      | 1.2553   |   |
| 90.0                          | 1.9542      | 22.0      | 1.3424   |   |
| 120.0                         | 2.0792      | 25.0      | 1.3979   |   |
| 150.0                         | 2.1761      | 28.0      | 1.4472   |   |
| 180•0                         | 2.2553      | 30.0      | 1.4771   |   |
| COASTAL SAPWOOD (COWICHAN) SO | OLVENT DRIE | D         |          |   |
| 0•2                           | -0.6990     | 5.0       | 0.6990   |   |
| 0.8                           | -0.0969     | 10.0      | 1.0000   |   |
| 1.3                           | 0.1139      | 15•0      | 1.1761   |   |
| 2•3                           | 0.3617      | 20•0      | 1.3010   |   |
| 3.5                           | 0•5441      | 25•0      | 1.3979   |   |
| 5•2                           | 0.7160      | 30.0      | 1 • 4771 |   |
|                               |             |           |          |   |

| v<br>: | 0.2     | -0.6990                               | 5.0  | 0.6990 |                                       |           |
|--------|---------|---------------------------------------|------|--------|---------------------------------------|-----------|
| •      | 0.8     | -0.0969                               | 10.0 | 1.0000 |                                       |           |
| 12     | 1.3     | 0.1139                                | 15•0 | 1.1761 |                                       |           |
| 11     | 2•3     | 0.3617                                | 20.0 | 1.3010 |                                       |           |
| 010    | 3.5     | 0.5441                                | 25•0 | 1.3979 |                                       |           |
| 9      | 5.2     | 0.7160                                | 30.0 | 1.4771 |                                       |           |
| 3      | <br>7•2 | 0.8573                                | 35•0 | 1.5441 | · · · · · · · · · · · · · · · · · · · |           |
| 07     | 9.5     | 0.9777                                | 40.0 | 1.6021 | •                                     |           |
| 6      | 12.8    | 1.1072                                | 45.0 | 1.6532 |                                       |           |
| 5      |         | · · · · · · · · · · · · · · · · · · · |      |        |                                       | • <u></u> |

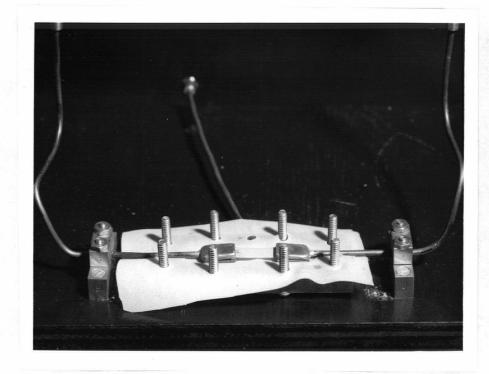

.

|                    | ·                              | TABLE 4 (C  | CONTINUED)         | ······        |                                                                                                                 |
|--------------------|--------------------------------|-------------|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------|
|                    | TIME<br>MINUTES                | LOG TIME    | RETENTION<br>GRAMS | LOG RET       |                                                                                                                 |
|                    | COASTAL HEARTWOOD (COWICHAN)   | SOLVENT DF  | ₹IED               |               |                                                                                                                 |
|                    | 1.6                            | 0.2041      | 1•0                | 0.0000        | and a construction of the second s |
|                    | 15•0                           | 1.1761      | 5•0                | 0.6990        |                                                                                                                 |
| <u> </u>           | 19•2                           | 1.2833      | 6.0                | 0.7782        |                                                                                                                 |
|                    | 68.0                           | 1.8325      | 11.0               | 1.0414        |                                                                                                                 |
|                    | 118•0                          | 2.0719      | 16•0               | 1.2041        |                                                                                                                 |
| <b>**</b> - *** ·· | INTERIOR SAPWOOD (PRINCE GEOR) | .GE) FREEZE | E DRIED            |               |                                                                                                                 |
|                    | 0•4                            | -0.3979     | 11.0               | 1.0414        |                                                                                                                 |
|                    | 1•0                            | 0.0000      | 15.0               | 1.1761        | ·                                                                                                               |
|                    | 2•5                            | 0.3979      | 18•0               | 1.2553        | •                                                                                                               |
|                    | 4.5                            | 0.6532      |                    | 1.3617        | 5                                                                                                               |
| ····               | 7.0                            | 0.8451      | 27.0               | 1.4314        | 1                                                                                                               |
|                    | 10.5                           | 1.0212      | 31.0               | 1 • 4914      |                                                                                                                 |
|                    |                                | 1.1614      | 35.0               | 1.5441        |                                                                                                                 |
|                    | INTERIOR HEARTWOOD (PRINCE GEO | .ORGE) FREE | EZE DRIED          |               |                                                                                                                 |
|                    | 60.0                           | 1.7782      | 1•0                | 0.0000        | an a                                                                        |
|                    | 120.0                          | 2.0792      | 1•0                | 0.0000        |                                                                                                                 |
|                    | 180.0                          | 2.2553      | 2.0                | 0.3010        |                                                                                                                 |
|                    | COASTAL SAPWOOD (HANEY) FREE   | ZE DRIED    |                    |               |                                                                                                                 |
|                    | 0.1                            | -1.0000     | 3•0                | 0.4771        |                                                                                                                 |
|                    | 0.2                            | -0.6990     | 10.0               | 1.0000        |                                                                                                                 |
|                    | 0.5                            | -0.3010     | 15.0               | 1.1761        |                                                                                                                 |
|                    | 0.9                            | -0.0458     | 20.0               | 1.3010        |                                                                                                                 |
|                    | 1.5                            | 0.1761      | 25.0               | 1.3979        |                                                                                                                 |
| •                  |                                |             |                    | 1.4771        |                                                                                                                 |
|                    | 2•2                            | 0.3424      | 30•0               | I. ● 4+ 1 1 ± |                                                                                                                 |


|                    | ······································ | TABLE 4 (C                       |                                       |                  |        |                                       |         |
|--------------------|----------------------------------------|----------------------------------|---------------------------------------|------------------|--------|---------------------------------------|---------|
| · · · · ·          | TIME<br>MINUTES                        | LOG TIME                         | RETENTION<br>GRAMS                    | LOGRET           |        |                                       |         |
| COASTAL SAPWOOD (H | HANEY) FREEZ                           | 'E DRIED                         |                                       |                  |        |                                       |         |
|                    | 4.5                                    | 0.6532                           | 40•0                                  | 1.6021           |        | · · · · · · · · · · · · · · · · · · · |         |
| •                  | 6•2                                    | 0.7924                           | 45.0                                  | 1.6532           |        | · · · ·                               |         |
| COASTAL HEARTWOOD  | (HANEY) FRE                            | EZE DRIED                        | · · · · · · · · · · · · · · · · · · · |                  |        |                                       |         |
|                    | . 3.5                                  | 0.5441                           | 5•0                                   | 0.6990           |        |                                       |         |
|                    | 13.0                                   | 1.1139                           | 10.0                                  | 1.0000           |        |                                       |         |
|                    | 30.0                                   | 1.4771                           | 15.0                                  | 1.1761           |        |                                       |         |
|                    | 54•0                                   | 1.7324                           | 20.0                                  | 1.3010           | · .    |                                       |         |
|                    | 82.0                                   | 1.9138                           | · · · · · · · · · · · · · · · · · · · | 1.3979           |        |                                       |         |
|                    | 135.0                                  | 2.1303                           | 30.0                                  | 1.4771           |        |                                       |         |
|                    | 170.0                                  | 2.2304                           | 32.5                                  | 1.5119           |        |                                       |         |
| COASTAL SAPWOOD (C |                                        | · · · · · ·                      | <i>a</i>                              |                  | ·····  |                                       |         |
|                    | 0.2                                    | -0.6990                          | 5.0                                   | 0.6990           |        |                                       |         |
|                    | 0.8                                    | -0.0969                          | 10.0                                  | 1.0000           | •      |                                       |         |
|                    | 1.7                                    | 0.2304                           | 15.0                                  | 1.1761           |        |                                       |         |
|                    | 2•5                                    | 0.3979                           | 20.0                                  | 1.3010           |        | ,                                     |         |
|                    | 3.5                                    | 0.5441                           |                                       | 1.3979           |        |                                       |         |
| •                  | <u> </u>                               | 0.7404                           | 30.0                                  | 1.4771           |        | · · · · · · · · · · · · · · · · · · · |         |
|                    |                                        | 0.8751                           | 35.0                                  | 1.5441           |        |                                       |         |
|                    | 10•0<br>13•4                           | 1.0000                           | 40•0<br>45•0                          | 1.6021           |        |                                       |         |
|                    | 13•4                                   | 1.1271                           | 45.0                                  | 1.6532           |        |                                       |         |
|                    |                                        |                                  |                                       |                  |        |                                       |         |
| COASTAL HEARTWOOD  | (COWICHAN)                             | FREEZE DRI                       | ED                                    |                  |        |                                       |         |
| COASTAL HEARTWOOD  | (COWICHAN)                             | FREEZE DRI<br>1.2788             | 1ED<br>5•0                            | 0.6990           | mememe |                                       | <b></b> |
| COASTAL HEARTWOOD  |                                        |                                  |                                       | 0.6990<br>0.9031 |        |                                       |         |
| COASTAL HEARTWOOD  | 19•0<br>60•0<br>75•0                   | 1 • 2788<br>1 • 7782<br>1 • 8751 | 5•0                                   | 0•9031<br>0•9542 |        |                                       |         |
| COASTAL HEARTWOOD  | 19.0<br>60.0                           | 1.2788<br>1.7782                 | 5•0<br>8•0                            | 0.9031           |        | ``                                    |         |

|                       | TIME                                                                              | LOG TIME                                                                                | RETENTION                                                                                                           | LOG RET                                                            |                                       |
|-----------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------|
|                       | MINUTES                                                                           |                                                                                         | GRAMS                                                                                                               |                                                                    |                                       |
| INTERIOR SAPWOOD (PRI | NCE GEOR                                                                          | GE) BOILED                                                                              | UNDER VAC                                                                                                           | UUM                                                                |                                       |
|                       | 4•2                                                                               | 0.6232                                                                                  | 5•0                                                                                                                 | 0.6990                                                             | · · · · · · · · · · · · · · · · · · · |
|                       | 10.0                                                                              | 1.0000                                                                                  | 9.0                                                                                                                 | 0.9542                                                             |                                       |
|                       | 21.3                                                                              | 1.3284                                                                                  | 14•0                                                                                                                | 1.1461                                                             |                                       |
|                       | 40.0                                                                              | 1.6021                                                                                  | 18.0                                                                                                                | 1.2553                                                             |                                       |
|                       | 69.0                                                                              | 1.8388                                                                                  | 23•0                                                                                                                | 1.3617                                                             |                                       |
|                       | 104.0                                                                             | 2.0170                                                                                  | 27.0                                                                                                                | 1.4314                                                             |                                       |
|                       | 155.0                                                                             | 2.1903                                                                                  | 32•0                                                                                                                | 1.5051                                                             |                                       |
|                       | 180.0                                                                             | 2.2553                                                                                  | 33•0                                                                                                                | 1.5185                                                             |                                       |
| INTERIOR HEARTWOOD (P | RINCE GE                                                                          | DRGE) BOIL                                                                              | ED UNDER V                                                                                                          | ACUUM                                                              | . <del></del>                         |
|                       | 15                                                                                | 0.1761                                                                                  | 1.0                                                                                                                 | 0.000                                                              |                                       |
|                       | 60.0                                                                              | 1.7782                                                                                  | 2•0                                                                                                                 | 0.3010                                                             |                                       |
|                       | . 120.0                                                                           | 2.0792                                                                                  | 2•0                                                                                                                 | 0.3010                                                             |                                       |
|                       | 180.0                                                                             | 2.2553                                                                                  | 2•0                                                                                                                 | 0.3010                                                             |                                       |
|                       |                                                                                   |                                                                                         |                                                                                                                     |                                                                    |                                       |
| COASTAL SAPWOOD (HANE | Y) BOILI                                                                          | ED UNDER VA                                                                             | CUUM                                                                                                                |                                                                    |                                       |
| COASTAL SAPWOOD (HANE | Y) BOIL                                                                           | ED UNDER VA                                                                             | 5•0                                                                                                                 | 0.6990                                                             |                                       |
| COASTAL SAPWOOD (HANE |                                                                                   |                                                                                         |                                                                                                                     | 0.6990<br>1.0000                                                   |                                       |
| COASTAL SAPWOOD (HANE | 0•4                                                                               | -0.3979                                                                                 | 5•0                                                                                                                 |                                                                    |                                       |
| COASTAL SAPWOOD (HANE | 0•4<br>1•6                                                                        | -0.3979<br>0.2041                                                                       | 5•0<br>10•0                                                                                                         | 1.0000                                                             |                                       |
| COASTAL SAPWOOD (HANE | 0•4<br>1•6<br>3•3                                                                 | -0.3979<br>0.2041<br>0.5185                                                             | 5•0<br>10•0<br>15•0                                                                                                 | 1.0000<br>1.1761                                                   | · · · · · · · · · · · · · · · · · ·   |
| COASTAL SAPWOOD (HANE | 0 • 4<br>1 • 6<br><u>3 • 3</u><br>5 • 4                                           | -0.3979<br>0.2041<br>0.5185<br>0.7324                                                   | 5 • 0<br>10 • 0<br>15 • 0<br>20 • 0                                                                                 | 1.0000<br><u>1.1761</u><br>1.3010<br>1.3979                        |                                       |
| COASTAL SAPWOOD (HANE | 0 • 4<br>1 • 6<br>3 • 3<br>5 • 4<br>9 • 1                                         | -0.3979<br>0.2041<br>0.5185<br>0.7324<br>0.9590<br>1.1818                               | 5.0<br>10.0<br>15.0<br>20.0<br>25.0                                                                                 | 1.0000<br>1.1761<br>1.3010<br>1.3979<br>1.4771                     |                                       |
| COASTAL SAPWOOD (HANE | 0 • 4<br>1 • 6<br>3 • 3<br>5 • 4<br>9 • 1<br>15 • 2<br>24 • 9                     | -0.3979<br>0.2041<br>0.5185<br>0.7324<br>0.9590<br>1.1818<br>1.3962                     | $5 \cdot 0$ $10 \cdot 0$ $15 \cdot 0$ $20 \cdot 0$ $25 \cdot 0$ $30 \cdot 0$ $35 \cdot 0$                           | 1.0000<br>1.1761<br>1.3010<br>1.3979<br>1.4771<br>1.5441           |                                       |
| COASTAL SAPWOOD (HANE | 0 • 4<br>1 • 6<br>3 • 3<br>5 • 4<br>9 • 1<br>15 • 2                               | -0.3979<br>0.2041<br>0.5185<br>0.7324<br>0.9590<br>1.1818                               | 5 • 0<br>10 • 0<br>15 • 0<br>20 • 0<br>25 • 0<br>30 • 0                                                             | 1.0000<br>1.1761<br>1.3010<br>1.3979<br>1.4771                     |                                       |
| COASTAL SAPWOOD (HANE | 0 • 4<br>1 • 6<br>3 • 3<br>5 • 4<br>9 • 1<br>15 • 2<br>24 • 9<br>44 • 8<br>75 • 0 | -0.3979<br>0.2041<br>0.5185<br>0.7324<br>0.9590<br>1.1818<br>1.3962<br>1.6513<br>1.8751 | $5 \cdot 0$ $10 \cdot 0$ $15 \cdot 0$ $20 \cdot 0$ $25 \cdot 0$ $30 \cdot 0$ $35 \cdot 0$ $40 \cdot 0$ $43 \cdot 0$ | 1.0000<br>1.1761<br>1.3010<br>1.3979<br>1.4771<br>1.5441<br>1.6021 |                                       |

|                              | TABLE 4 (C   | CONTINUED)         |         |          |          |
|------------------------------|--------------|--------------------|---------|----------|----------|
| T I ME<br>M I NUTE           |              | RETENTION<br>GRAMS | LOG RET |          |          |
| COASTAL HEARTWOOD (HANEY) E  | 30ILED UNDER | VACUUM             |         |          |          |
| 17.0                         | 0 1.2304     | 5•0                | 0.6990  |          |          |
| 27.0                         | 0 1.4314     | 6•0                | 0.7782  |          |          |
| 60.0                         |              | 8•0                | 0.9031  |          |          |
| 120.0                        |              | 11.0               | 1.0414  |          |          |
| 180.0                        |              | 13.5               | 1.1303  | · · ·    |          |
| COASTAL SAPWOOD (COWICHAN)   | BOILED UNDER | R VACUUM           |         |          |          |
| 1.0                          |              | 5•0                | 0.6990  |          |          |
| 2.5                          |              | 7.5                | 0.8751  | · · ·    |          |
| 4 • C                        | 0 0.6021     | 10.0               | 1.0000  | <b>.</b> |          |
| 8.5                          | 5 0.9294     | 15.0               | 1.1761  |          |          |
| 14.5                         | 5 1.1614     | 20.0               | 1.3010  | •        |          |
| 24.0                         | 0 1.3802     | 25.0               | 1.3979  |          |          |
| 40•0                         | 0 1.6021     | 30.0               | 1•4771  |          |          |
| 66.0                         |              | 35.0               | 1.5441  |          |          |
| 116.0                        |              | 40.0               | 1.6021  |          |          |
| 180.0                        |              | 42.5               | 1.6284  |          |          |
| COASTAL HEARTWOOD (COWICHAN) | ) BOILED UNI | DER VACUUM         | ,       |          |          |
| 0.6                          |              | 2•0                | 0.3010  |          | <u> </u> |
| 15.0                         |              | 5•0                | 0.6990  |          |          |
| 30.0                         |              | 7•0                | 0.8451  |          | -        |
| 45.0                         |              | 8.5                | 0.9294  |          |          |
| 60.0                         |              | 9•5                | 0.9777  |          |          |
| 75•0                         |              | 10.5               | 1.0212  | 、        |          |
| 90.0                         | 0 1.9542     | 11•5               | 1.0607  |          |          |
| 105•0                        | 0 2.0212     | 12•0               | 1.0792  |          |          |
| 120.0                        | 0 2.0792     | 12.7               | 1.1038  |          |          |




-58-



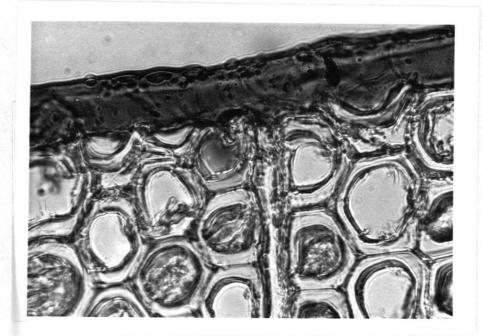

Gas permeability apparatus

FIGURE 2

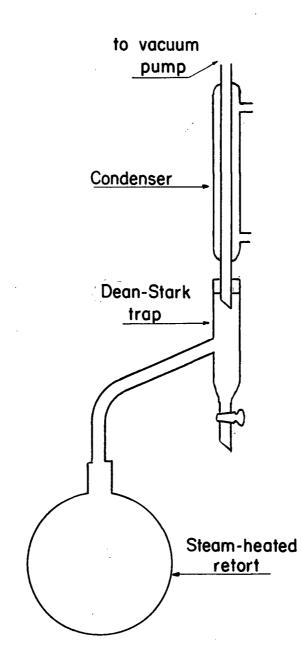


Permeability cell

FIGURE 3

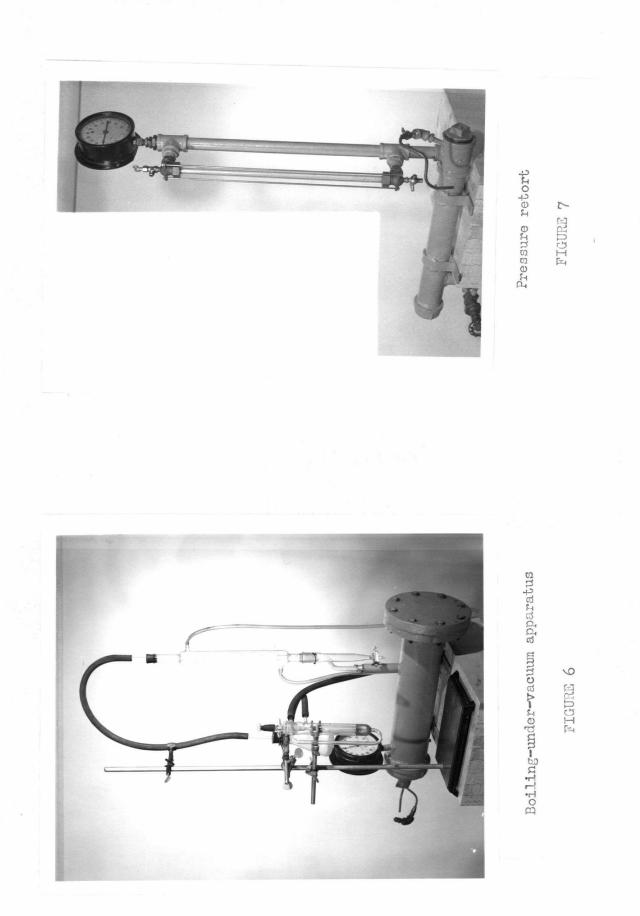


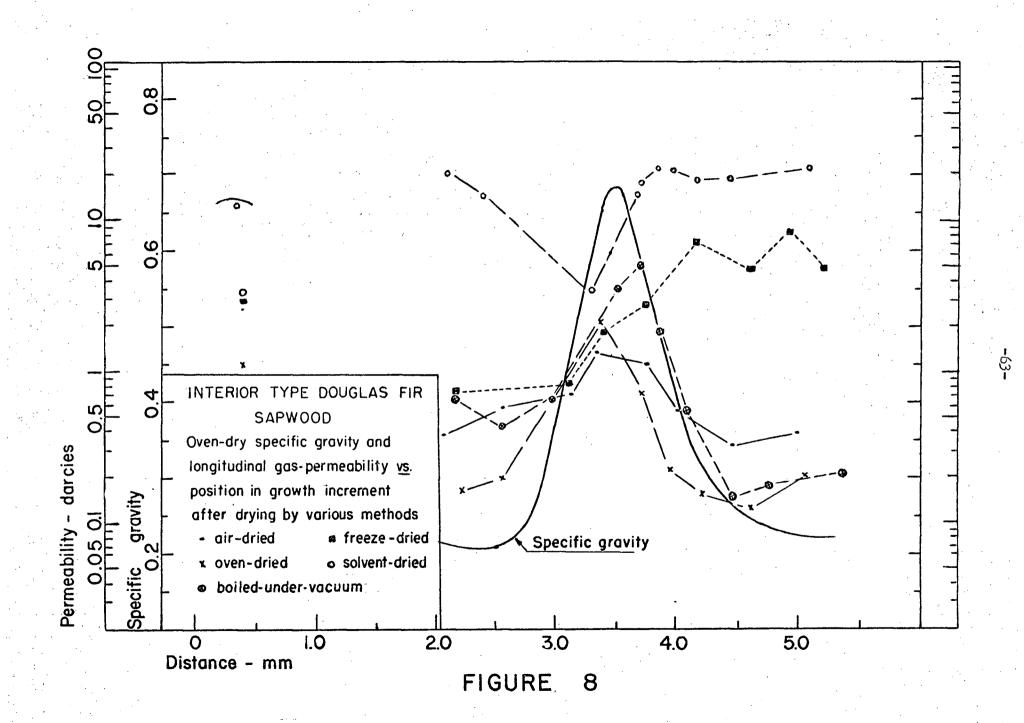
a. Adhesive on cellulose tape has not completely penetrated surface cavities




Ъ.

Adhesive on cellulose tape has completely penetrated surface cavities

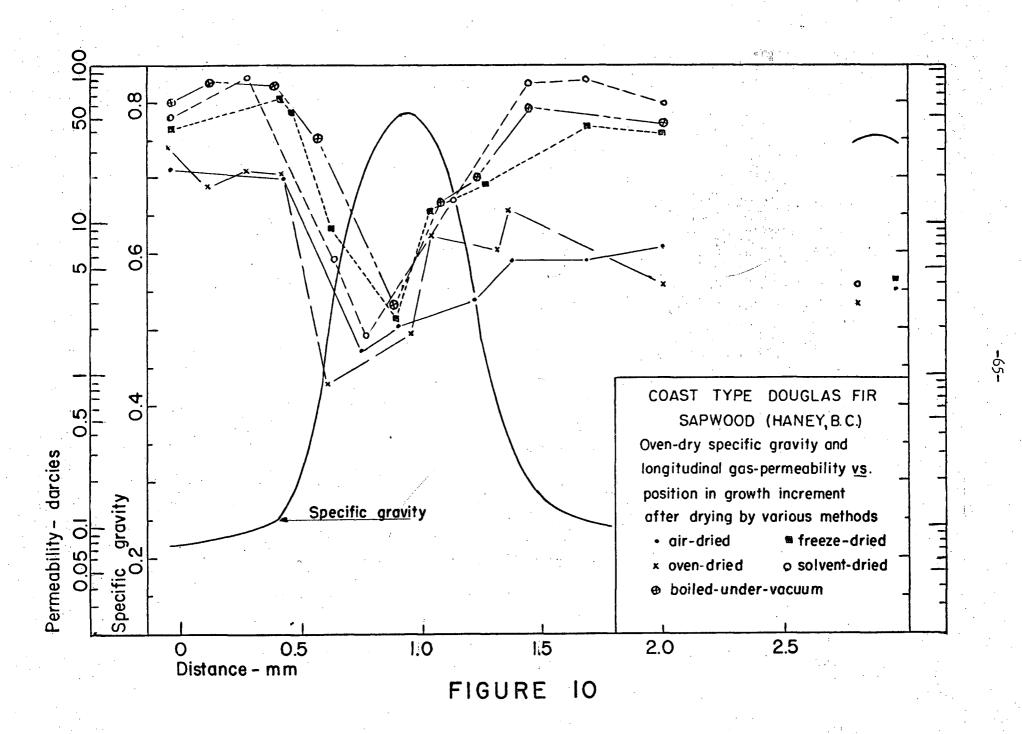

Microsection cross section

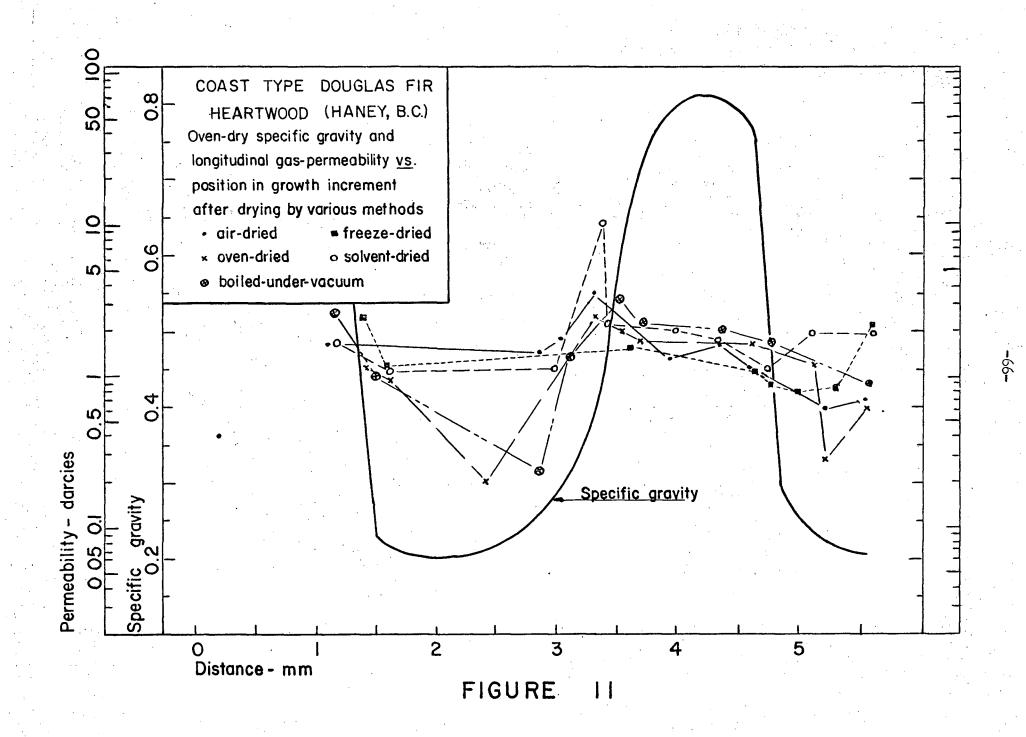

FIGURE 4

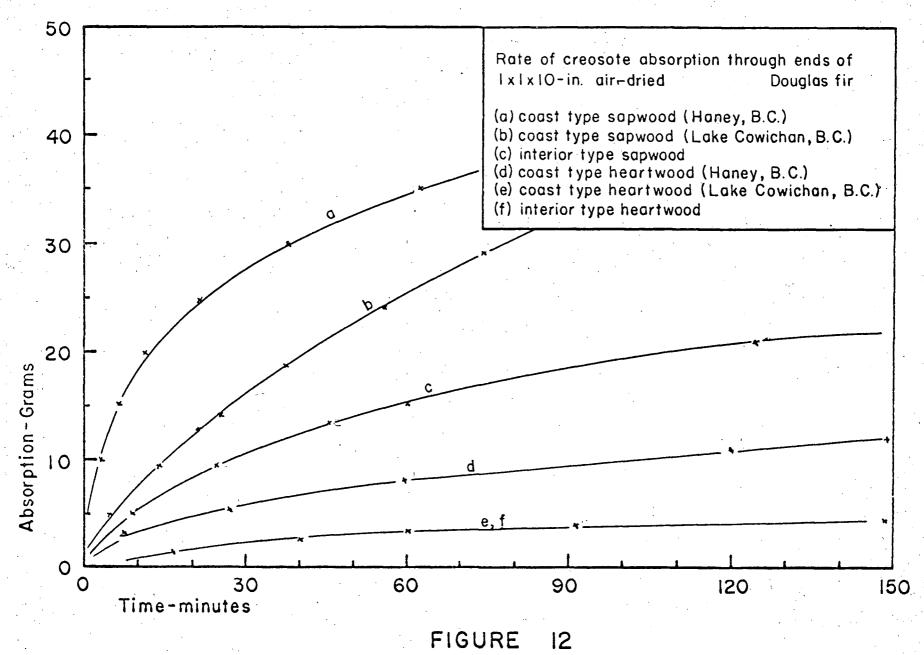



Boiling-under-vacuum apparatus

FIGURE 5




4

FIGURE 







.

•

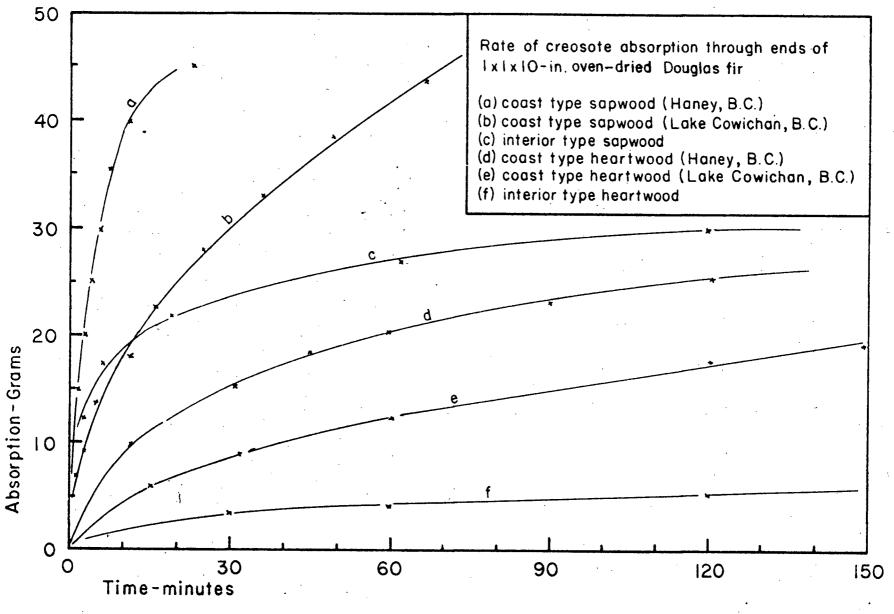
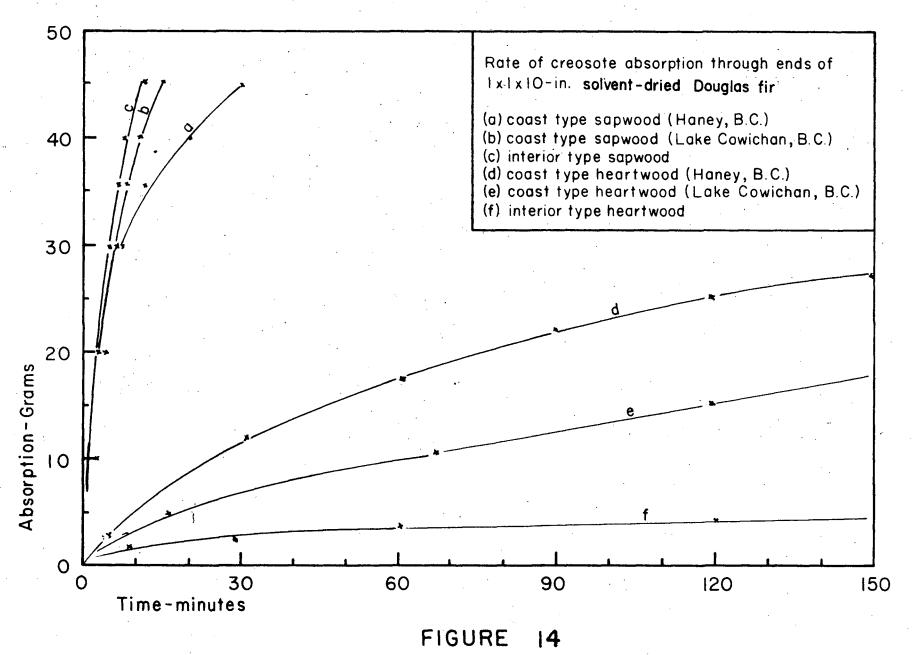
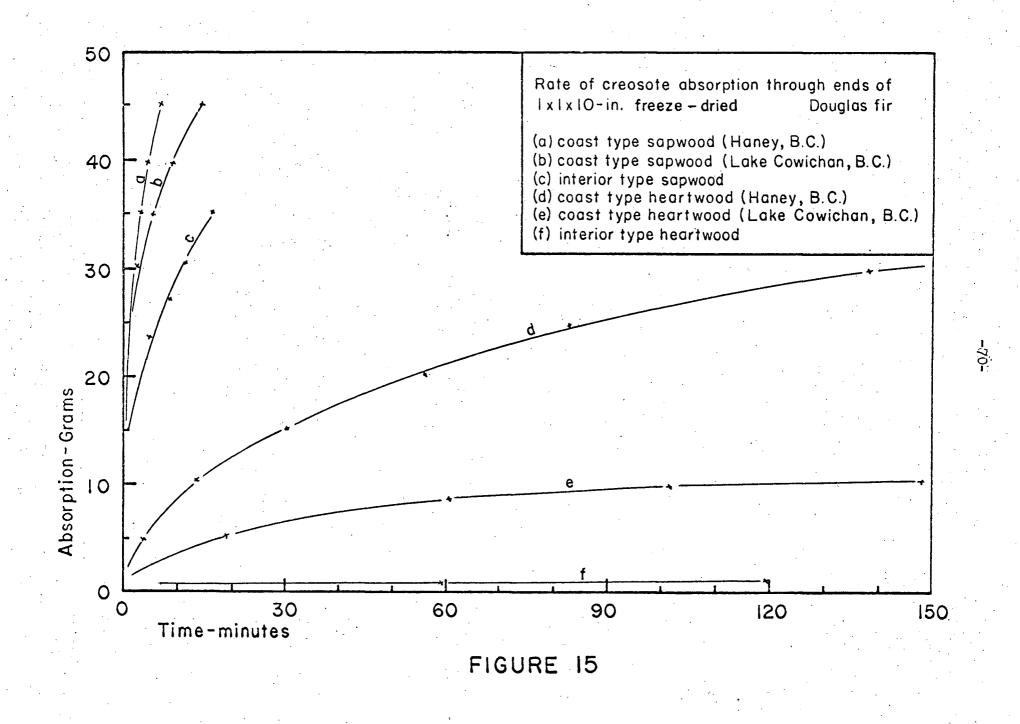
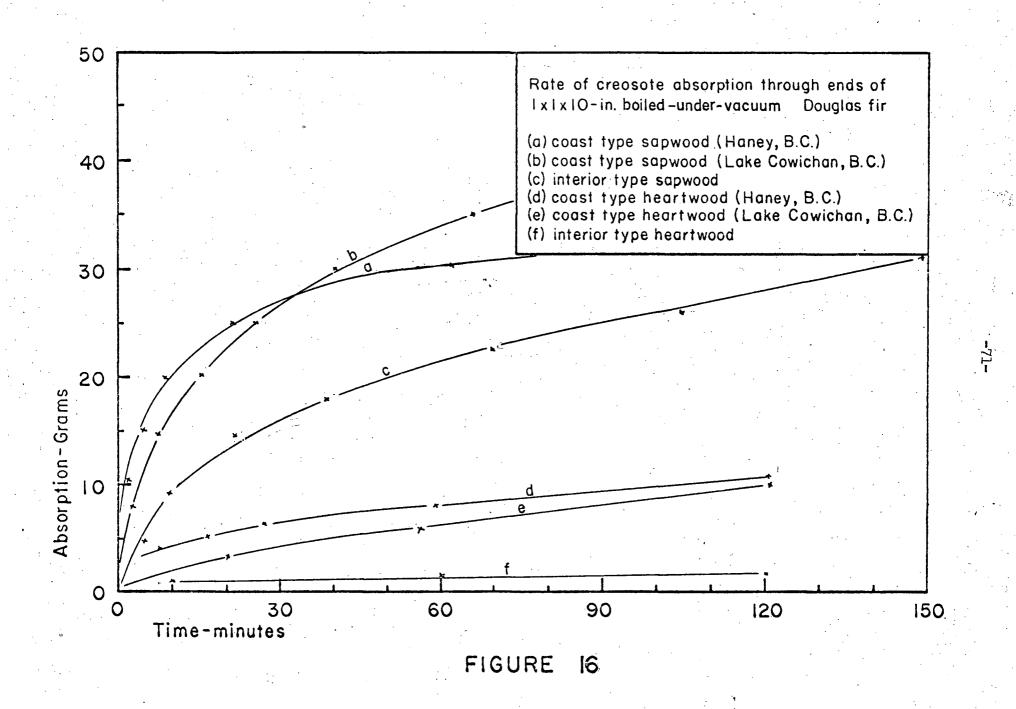
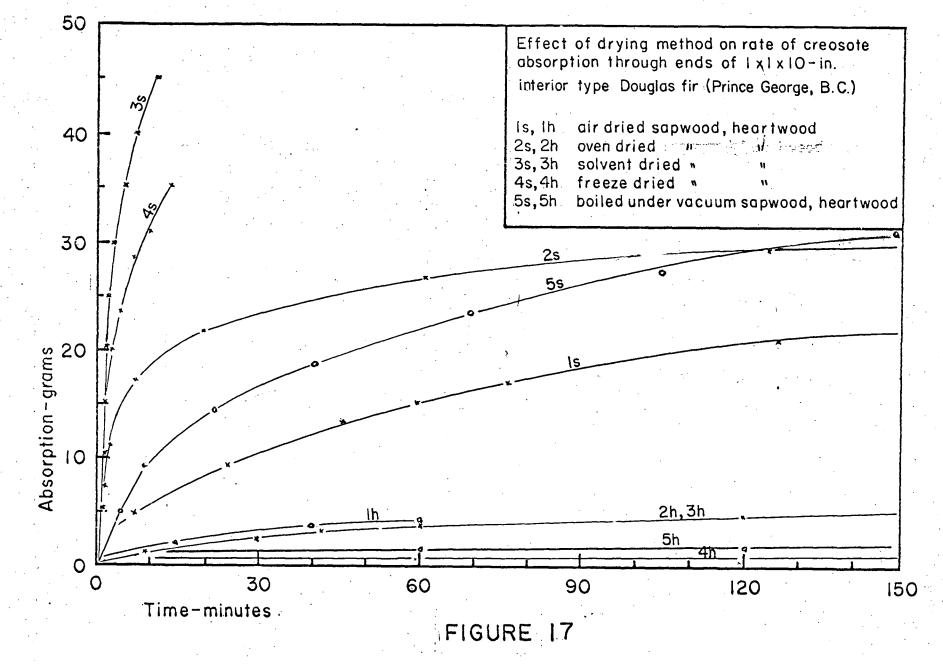




FIGURE 13

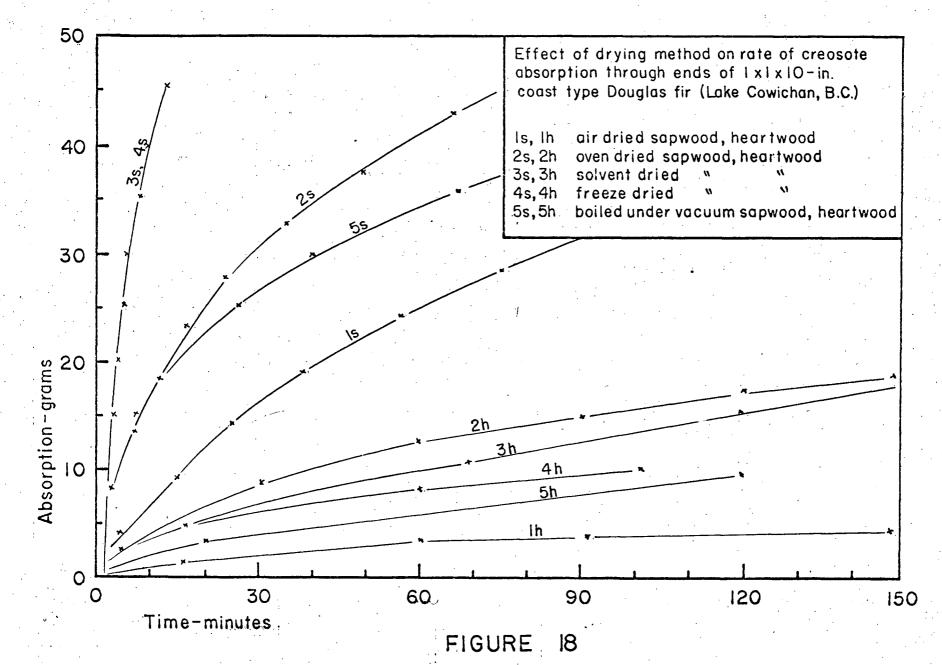

•


-80-



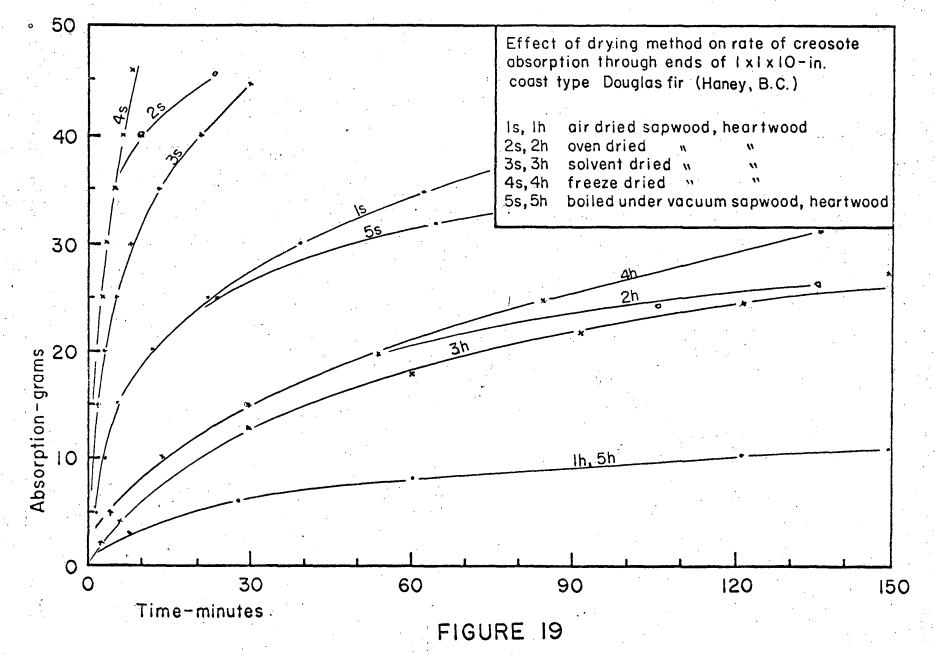

.

-69

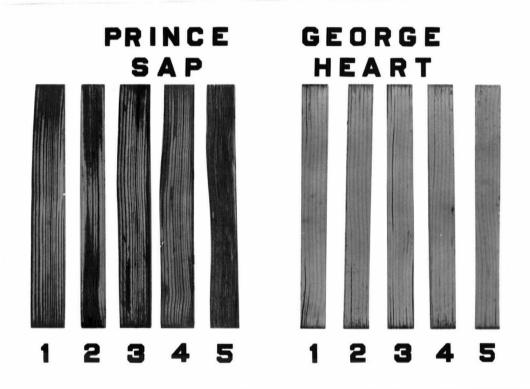




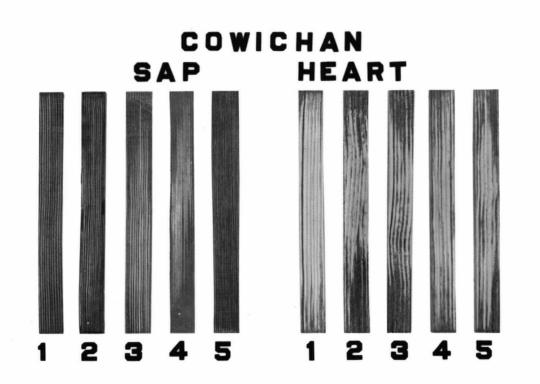




.

3



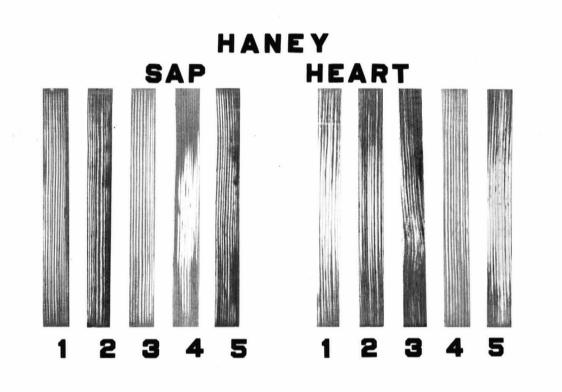

• . •


5



.




Creosote penetration of specimens, interior-type Douglas fir (Numbers as on page 14) FIGURE 20



Creosote penetration of specimens, coast-type Douglas fir (Lake Cowichan, B.C.)

(Numbers as on page 14)

FIGURE 21



Creosote penetration of specimens, coast-type Douglas fir (Haney, B.C.) (Numbers as on page 14)

FIGURE 22