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Abstract

This thesis is going to consider the inférences about the
relationships that determine jointly a continuous variable and a
categorical variable. These relationships can be cohsidered
separately into two models: a regression model ‘and a probability
model. The regression model can be estimated by ordinary least
squares, or Zellner's two stage method. The probability model
is estimated by the method of Nerlove and Press. Such

relationships will be given more complex consideration.

This kind of wmodel is applied in the analysis of an
economic problem. It 1is to «consider the 1labour supply of
married women. . Data are pooled from the Panel Study of income
Dynamics 1972. ., It is found that the age of the youngest child
is the most significant factor to determine the number of hours
wvorked by a married woman, and birth gap is the major effect in
the probability of a wife having a child not older than six

years of age. .
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Chapter I

Introduction

This ihesis1 is «concerned with making inferences about
relationships that determine jointly a continuous variable and a
categorical variable. Given the discrete random variable, the
continuous variable 1is related to a set of explanatory
variables; also the discrete random variable is related to the
same set of explanatory variables. For example, the timing of a
married woman participating in labour force activity will 1likely
depend upon the age of her youngest child. Let us assume that a
housewife will work less hours when she has a child not older
than 6 years. We will call z, a family constraint variable, if
it is 1 when a family has a child of 6 years or younger, and O
othervise, The timing of her 1labour force activity in each
case, that is for a given value of 2z, may relate to her
hushand's income, her expected wage, her fecundity and so on.
Also the probability of a family having a child not older than 6
years can be related to the same set of explanatory variables.
We would 1like to know the joint probability of her timing in
labour force activity as well as her youngest <c¢hild not being
older than 6 years. It is shown that we can estimate the
parameters of conditional regression equations and the
parameters of the discrete dependent variable regression
individually. It is very easy to extend the problem to involve
a polytomous dependent variable 1in regression rather than a

dichotomous dependent variable.



To consider the above problem in terms of a regression
model, "the model can be extended into a set of regression
equations including a set of conditional regressions and a set
of discrete dependent variable regressions. For example, at
year t, for a given value of z, the timing of a married woman in
labour force activity can be expressed in terms of a set of
explanatory variables, and the probability of a family having a
child not older than 6 years is related to the same set of
explanatory variables. Hence, we may consider such relations
for certain time periods, such as from 1967 to 1971. It is
found +that to apply Zellner's method(1962) to estimate the
paramefers of conditional regression eguations is more efficient
than to estimate them equation-by-equation. Some interesting

extensions of this model are mentioned.

The plan of this thesis is as follows. This thesis is
divided into a theoretical part and an applicational part. The
first part is a theoretical discussion composed of chapters 2,
3, and 4. In chapter 2 we describe the basicl model and prove
' that the estimators of the parameters in conditional regression
equations and the parameters in discrete dependent variable
regression are independent. In estimating parameters of
discrete dependent variable regression, we explain why we prefer
logit rather than other functions. Chow's test(1960) 1is wused
for +testing the equality of <coefficients of two conditional
regression equations. In chapter 3 we extend the basic model
into a set of regression equations. The method of estimating

equation-by-eguation is mentioned. Zellner's seemingly



unrelated regressions method is applied in order to get an
efficient estimation. Following is the description of testing
the aggregation bias. Chapter 4 is to propose some interesting

extensions of this basic model.

The second part is an application <concerning am economic
problem of labour supply of married women. The data used are
from the Panel Study of Income Dynamics 1972, which is collected
by the Survey Research Centre of the University of Michigan.
Data are focused primarily on change in family economic status.
Data-collection technigque is mainly on the household personal
interview. The empirical studies are compounded by two models
which are based on chapters 2 and 3. Chapter 5 1is the
description of our economic models, chapter 6 gives the results
under the first model and chapter 7 gives the results under the
second model. Chapter 8 " will be the conclusion of the whole

thesis.

Footnotes

! This is based on the preliminary work done by Nancy Reid and
me in the Econometrics and Statistics Workshop this‘year at the
Oniversity of British Columbia. Miss Reid is a master's student
of the Institute of Applied Mathematics and Statistics of the

University of British Columbia.



Chapter II

Rasic Model

I The mathematical model

Let us begin with a very simple model which has two
dependent variables, «c¢ne of which is y, a continuous variable,
and the other is z, a dichotomous variable having the value 0 or
1. For the given value of z, y is distributed normally, and is
expressed as a function of a number of variables? x1, seey xk.
Since z is dichotomous, we denote the functional :elations of y
and the x's as the following:

-1 k
f(X , e0es X )

]

E(y | z=1)
and

1 k
g(X 4 seey X )

]

E(y 1 z=0)

There will be a variety of functions to satisfy the above
relations. The simplest relationship between y and the x's is
linear. So for n observations, we write each of them more

formally under the linear hypothesis as:

11 k k
see + a x (i) + u{i)

]
s}
»

l:.

+

{y(i) 1z (i) =1)
and

11 X k
b x (i) + oo + b x (i) + v (i)

(y (1) 12(i)=0)

i=1, ..., n or in vector notation,



(y(1)1z(1)=1) ATX (1) + u(d)

and

(y (1) 1z (1) =0) B'X(i) + v (i)

1 kX 1 k 1 k
where R=(a ,eeepa )', B=(b yese,b )?, and X=(x {(i),eee,x (1)) ';
u, and v denote variables which may take on positive or negative
valhes. Usually u and v are called error terms or disturbance
terms. In order to make the model simple, let us first assume u
and v have the same distribution. We assume u and v are randomn
and normally distributed with mean zero, variance var(u) and

zero covariance, that is

E[u(i) ] = 0

Efu (i) ,u(3j) ]

i
[«
...l.
*

W]

]

var (u) i=3

Hence A, B and var(u) are unknown parameters. We may wish to
estimate these parameters statistically on the basis o¢f our
sample observations, and to test hypotheses about then.
Therefore, if we consider the conditional distributions of vy,
then when 2z=1, y 1is distributed normally with mean A'X and
variance var(u), and when z=0, y is distributed normally with

mean B'X and variance var{u).

For the dichotcmous dependent variable, we may be
interested in the probability that z will have the value 0 or 1.

The probability of 2z being 1 can also be expressed as a function

1 k
Of X , eesy X - SoO,



1 k

Prob(z=1) = h(Xx , seey X )
Suppose that we want a relationship in which Prob(z=1) 1is a
nondecreasing function of t with F (-0 )=0 and F(o@)=1; for the

ith observation,

Prob(z(i)=1) = p(i) = F(t({1)) i=1,eve 4

11 k k
where t(i)=c X (i)+...%+Cc X (i), or in vector notation:

Prob(z(i)=1) = p(i) = F(C*'X (1)) (1)

F(C'X{(i)) is taken to be a cumulative distribution function2.
.Therefore, we know p (i) will lie between 0 and 1, and p(i) is a
nondecreasing function of C'X, but may be decreasing in sone
variables, depending upon the signs of the components of C.

Therefore, we will focus our interest on the estimation of C.

Before we step into the estimation of these parameters, we
should discuss more about function F, because in the history of
statistics, there was a long argument about F. In the follcwing
section, wWe will d;scuss several transformation functions and

explain why the logistic function is chosen.

II Discrete dependent variable regression

Failure of linear approximation to the probability function:

If we use linear approximation to the probability functicn
F(C*X), then we will observe that the function is well

approximated in the centre, but poor for very 1large or small



value of C'X. There are technical difficulties in using
standard regfession techniques on binary data3. First, for
given observation x(i), z(i) is a Bernoulli random variable, soc
that the variance of the jth disturbance term depends upon j.
Those disturbance terms are heteroscedastic, therefore, ordinary
1east-squares. estimaticn will give inefficient estimators and
imprecise predictions. Zellner and Lee (1965), Goldberger {1964)
suggested the use of generalized least-squares to remove the
heteroécedastic problem, but this failed, because it ignored the
Bernoulli character of the errors; or did not guarantee that
z (i) should 1ie between 0 and 1 for all i, and resulted in some
negative variances. Furthermore, the : transformation on
generalized least-squares led into the numerical problem that if
the independent variable is larger than 1, the transformaticn is
undefined. . Cox(1970) concludes that 1linear approximaticn to
this function fails, since, "because the z(i)*'s are normally
distributed , no method of estimation that is linear in the

z{i)*s will in general be fully efficient.”

Probit analysis:

One feasonable approach 1is called probit analysis.
Bliss(1934) was the first to use it. Finny(1947) applied this
method in analyzing guantal (binary) responses in biocassay,
Cornfield and Nathan Mantal (1950) appiied it in calculating the
dosage response curve, and Tobin (1955) applied it in econoanic

surveys.



This method applies a grouping method for estimating the
equation (1). F(t) is considered 'as the cumulative distribution
function of the standard normal distribution by using grcuped

data®, Hence p(i) is estimated by sample proportion, i.e.
PH{(i) = r(i)/n (i) i=1,e0e,.0
where r (i) is the number of elements in ith cell having value 1,

and n(i) is the total number of elements in the ith cell. We

define probit as following,

Probit (p*(i)) = t*(i) + 5 (2)
where t+ (i) is defined by p*(i) = F(t*(i)). F is the cunmulative
standardized normal distribution. One adds 5 in the

transformation in order to get ?ositive values for the
transformed variable. Hence Probit (p*(i)) is normally
distributed with mean 5 and variance 1. So we can apply
ordinéry least-squares to the transformed data. Putting it into

a regression equation, it will be
Probit{p*(i)) = C'X (i) + e(d) i=1,s49+,0 (3)
where e (i) with zero mean, zero covariance, and variance eéual

tc var{e(i)).

Finally, we note with Press and Nerlove(1973) that: "For
this probit analysis method to be useful, there should be

several observations per <cell(n(i) > for every i). Morecver,



efficiency of estimation is lost in the ad hoc procedure
associated with the added 5 in (2). . Note also that there are
computational difficulties associated with the use of thé
integrals in this procedure. Unequal num?ers of observations
per cell are dinefficient, and cells with one or Zero

observations per cell are not useful."”

Logit analysis:

Another method called 1logit analjsis was introduced by
Berkson(1944) . Using cell fregquency, F(t) is considered as the
cumulative distribution function of the standard logistic

distribution function; that is,

F(t) = 1/(1+exp(-t))
where t is realg S0
p(i) = 1/[1+exp(-C'X (1)) ]
or,

log(p (i) /(1-p(i)) = C'X (i)

Now we define Logit(pt(i)) as following,

Logit(p* (1)) = log(p*(1)/(1-p*(1)))

where p*(i) is estimated by sample portion. C can be estimated
from regression estimation. Bishop(1969), Goodman(1570), Press
and Nerlove {(1973) apply this method in dealing with contingency

tables.
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Other transformations:

Coleman {1964) has proposed an exponential model by choosing
p(i) = 1-exp(-X'C)

The weakness of this function is that p(i) is not constrained to
lie Dbetween 2zZero and one unless all of the parameters are non-
negative. Goodman (1972) made a comment about this
transformation., He said, "Coleman's article did not show how to
test whether his model fit the actual data, nor was he able to
measure how well it fit. Furthermore, he did not show how to
test +the statistical significance of the contribution made by
the various parameterslin the.model, nor could he measure their

contribution's magnitude."

Angular transformations are very possible candidates, but
those +transformations are not as simple as the logistic
transformation. So our selection is limited to probit and logit

analysis,.

The choice of transformation:

The above discussion shows, our choice will be either
probit or logit analysis. Gunderson(1974), Buse(1972), Chambers
and Cox(1967) have done some work about this problem. They
found that the numerical difference between these two is very
slight except at the twe extremes. From the optimization point
of view, it is sure that the maximum of a logistic function is

the global maximum. If we consider the cost of computation,
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logit analysis is much better than probit analysis. On the
other hand, there is the theoretical‘argument that the probit
transformation is the appropriate one to use under the
hypothesis of log-normally distributed tolerances.

Berkson(1951) is very doubtful as to the validity of this

hypothesis. He says that the practice of injecting an
interpretation of “tolerance® into response data is
objectionable; it can be misleading and harmful. He explains

+hat if on the other hand the formulation is only that of a
"pathematical model"”, to guide the method of calculation, then
iﬁ would seem more objective and heuristically sounder mnot to
creafe any hypothetical tolerances, but merely to postulate that
the proportion of responses affected follows +the integrated
normal function.. For these reasons, the 1logit analysis is

preferred.

III Estimation

We recall the conditional distributions of y when 2=1, is
1
N{(aA'X, var(u)), and when z=0, y is N(B'X, var(u)) where 2 = (a ,
k 1 k 1 k
eeeg @ )%, B= (b, eeey b)?' and X =(X , eeey X )'; prob(z=1)
1 k
P{X'C) where C = (C , <204 C ). Thus the joint density of vy

]

and z will be f(y,z). If we express the joint likelihood

function using matrix alqgebra, then

f(Y,zyp,X) = h(¥12,P,X)g{2|P,X) 4)
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Where, P=(A',B',C',var(u))?', X 1is a nxk matrix, i.e. D

observations and k dimensions. For each observation i,

h{y (i) 1z (1),P,X (1))

= (2fvar(u))—0%.Sexp{[y (i)~ (X (1) 'Az (i) +X (1) *'B(1-z (1)) ]2/ (2var (u))}

and,
) . ) z (1) . - (1=z (1))
g{z{i)I1P,X{1)) = F(X(1)'C) [1-F(X(1)'C) ]
Let L(P)' be the Jjoint likelihood <function, L (P) 1is

proportional to the products of h and g, that is

n
L(P) : jf1h(y (1) 12 (1) ,P,X (1)) g(z (i) IP,X (1))
1=

) n
log (L) : 2 {z(i)log[F(X(i)'CJ+(1-2(i))log[ 1-F(X(i)*'C) 1}
i=1
n
-(2var(u))-§2:{y(i)-[A'X(i)Z(i)+B'X(i)(1~2(i)J}2

i=1
-{n/2)log (var(u)) /2 - {(n/2)log (2N) (5)

Estimation of logit parameter:

This is just as Dempéter(1972) points out that the joint
density of Y and Z in (4) can be factorized into two functions,
h and g, which depend on disjoint parameter sets. The maximum
likelihood estimators of all the parameters can be found by
maximizing these two functions separately. The function g is a
log likelihood from a fixed logit model, and function h is just

a multivariate general linear regression model.

There are several methods to estimate 1logit parameters.
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Berkson(1955) introduced a method called "minimum Chi square"
whose results are asympototically equivalent to the maximum
likelihood estimation. Theil (1970) suggested tge use of the
generalized least-sgquares method. Both are applicable only in
large samples or designed exberiments, since in Theil's method
one deletes those «c¢ells which <contain only one or no
observations, and in Berkson's method one requires more than one
observation per cell. Goodman(1972) used the maximum likelihood
estimation in logit analysis, and he <found +that he got a
somewhat smaller variance from MLE than Theil's estimation from
weighted least-squares. One disadvantage of MNLE is that it

takes more computational time.

This +thesis adopts the method of maximum likelihood
estimation and wuses the computer program which is developed by
Press and Nerlove{1973). The method can be summarized as

follows:

=p

L{g(z1P,X)) W g(z{i)1p,X(1))

i=1

n z (1) {(1-z (1))
"_II"IF(X(i) 1C) ] [1-F(X(1)'C) ]
1=

Define T+ as the sum of X{i)z (i), where i runmns from 1 to n.
T+ ié a sufficient statistic for C, i.e. T+ is the sum of those
X (i) for which z(i)=1. Hence C*+, the MLE of C must satisfy
n

[1+exp{(~-X(i)'C*) J-1X(i) = T+ = 2= X(i)z(i) (6)
-
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Note log(lL) is globally concaveS, so (5) provides an absclute

maximum. Hence,
pt (i) = [1+exp (=X (1) 'CH+) I~

There are many numerical methods by which L «can be maximized,
The program developed by Press and Nerlove(1973) wuses the
Fletcher-Powell method of function minimization and the Davidon

algorithm® for computing the inverse of the information matrix.

Estimation of conditional parameters:

In order to estimate A,B and var(u) by using MLE method, we
set af/dA = 0, af/@B = 0, and @f/avar{u) = 0. For example, to
get A+, the estimator of A; since {1-z(i))z(i) = 0, we can solve

A+ from 2f/®A = 0, then we have,
At = {Xl'Xl ]—-IXIIYI

where X! 1is nxk matrix, for each cbservation i, X1 (i) =
1 ' K
[x (1)Z(1), eees X (i)2z(i)]', i=1,.c.,n and ¥ = {y(1)2{(1), ...

-

y{n)z{n) ]J*. Similarly,

B+ = [ (X2) ' (X2) m1(X2)'y2

where X2 1is anxk matrix, for each observation i, X2 (i)
1 k
{x (i) (1-z(i)), esey x (1) (1-2())]*y 1i=1,¢s.,n and y2 =



{y(M) (1=2(1)), see, ¥(n) (1-2(n)) }]'. The estimated variance will

be
var+ (u) = (Y-Y+)' (¥-Y*)/n

where Y+ = (X1) 'A++(X2)'B+, If we prefer to use the unbiased

estimpator of var+{u) then

Vart(u) = (Y-Y+)*' (Y-Y+)/ (n-k)

Those results are not strange to us. If we split our
sample into two groups, one contains all 2z=1 and the c¢ther
contains all z=0, and if we apply ordinary least—sqhgres on each
group, we will get the same results(Appendix A). He know A+ and

B+ are unbiased. The covariance matrices of A+ and B+ are

cov (A+) Var+{u)[ (X1)? (x1) }-?

cov {B+) Var*(u)[ (X2) ' (x2) -1

Estimation of unequal variances of conditional model:

If we relax +the condition that u and v have the sane
distribution, then as shown in Appendix A, we may observe that

the estimations of A and B are same as before, but

var+ {u) (Y1- (X1) A+)* (Y1-(X1) A%) /(ni-k)

varct (v) (Y2- (X2)B+) ' {Y2- (X2)B+)/ (n2-k)

cov(B¥) = Var*(v)[ (X2) ' (Xx2) ]2
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where n! is the total number of observations when z=1, and n? =

n - nt,

IV Hypothesis testing

Logistic model:

For large samples, we set hypotheses about C+ by using the
fact that C+ is asymptotically normal. Its covariance matrix 1is

obtained from the inverse of its information matrix I(C*), where

i j i 3
I(C*) = [@2L(C*+)/aC @aC ] = [@2g (C*+)/aC acC ] 1,951,004,k

Also, any hypothesis about C+ can be tested by‘ using a
likelihood ratio test (Appendix B). The likelihood ratio, r is
the ratio of the value c¢f the likelihood function g maximized
under the constraints of the hypothesis being tested to the
value maximized without constraints. In 1large samples, the
value of -2log{r) is distributed as Chi square with q degrees of
freedom; q is the number of independent restrictions in the null

hypothesis.

Conditional model:

Hypothesis about A is H: A = A0, where A0 is a given

vector. For each component under H, we know
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i i ii :
(at - a9 )/(w Var{u))9.5
has asymptotic t-distribution with g! degrees of freedon, in

ii ,
which gl > 0; w is the ith diagonal element of ((X1)*'X1)—1,

and gt is the difference between m, the number of observations
when 2z=1, and k, the number of independent variables. Since t2
is distributed as F distribution, we <can test the hypothesis

using F-test. The ratio is distributed with F(1,q1).

An alternative way to test the hypothesis is Hotellingt's T2
test. Since (A+-A0) ? [ (X1) ¥X1)~1 (A+-20) /{var {(u)) is a
Hotelling's T2 where T2 = kqt'F(k,qi-k+1)/(gql-k+1) and PF?'(k,ql-

k+1) is an upper tail of the probability function.

Similarly for B, H: B+=B9, where B9 is given, for each
component under H, we know

i i ii
(b+ = b0 )/(r Var({v))o.s

is distributed as t(g2) where g2=n-m-k > 0, and rll is the 1ith
diagonal element of ((X2)'(X2))—-1, Similarly the hypothesis can
be tested by using F-test, F(1,492). Or, using Hotelling's T2,
Hotelling's T2 is (B*+-BO)?((X2)'X2)—1 (B*+-BO)/(var(u)), where T2

= kg2F (k,g%-k+1) /(g2-k+1) .

Testing equality between two conditional distributions:

N

The conditional variable y given 2z may have the sane
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distribution for different values of z, so we are going tc test
their equality. We apply Chow's test{1960) to test H: A=B=F,

and rewrite the distributions into linear models.

YI(i) = (y(i)lz{i)=1) = X1(i)'a + 0B + u(i)
y2(i) = (y{i)1z(1)=0) = oa + X2(i) *B + v(i)
In there, we assume they have equal variance and zZero

covariance. Under the H then

Y1 = X1'F + U

Y2 = X2'F + V
so F is estimated as
F+ = [ (X1,X2) (X2,X2)* J-1(X2,X2) (Y2,¥Y2)"
Let E={U,V)?' then
E+'E+ = [ (Y1,Y¥2) "= (X!,X2) 'F+]'[ (Y1,¥2) "= (X1,X2) "F+] (7N

E+ 1is estimated from the entire sample, so E+'E+ has rank n-k.

Under the alternative hypothesis A+#B, we have
Ut 1U++V+IV+ = (YI-X1A+) " (Y1-X21A+) + (Y2-X2B+)? (Y2-X2B+) (8)

U+'0+ has rank gq! amnd V¥+'v+ has rank g2, U and V are

independent, so the rank of U+'U++V+1y+ is gl+g2=n-2k.
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FY1=X1P4+y = (Y1-X1A+, + X1B+-X1F+,
Ly2-}2F+4 Ly2-Y2p+d LY2R+=-X2F+4 {9)

I {(Y1-X1F+,Y2-X2F+) | |2
= || (Y2-X1A+,¥Y2-X2B+) | |2 + || (X1A+-X1F+ X2B+-X2F+) ]2
+ cross product terms
Since the cross product term is zero, so the square on the left

of (9) is the sum of squares on the right, that is

l’(Yl—X;F+'Y2—X2F+)i|2

= |1 (Y31-X1A+,Y2-X2B+) | |2 + || (X1A+-X1F+,X2B+-X2F+)| |2 (10)
or say,
Ql = QZ + Q3
From the estimations of A, B and F, we get
(X11X14X29X2)F+ = X1'Y1 + X21y2 = XitX1p+ 4 X21X2B+
which implies
B¥+-F+ = - (X2'X2)=1 (X11X1) (A+-F+) (1)
A+-F+ is a linear transformation of U and V, so0 we substitute

the estimated functions of A+ and F* in terms of U and V. Then

under H we will have
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2+-F+ = 4-(X11X1+lexa)-l (X3 ,X2)1(U,V)? {(12)

Substituting (11) and (12) into eguation (10), we claim Q3 has

rtank k, since rank(Q2) = n-2k and
rank (g1) < rank(Q2) + rank(Q3)
Therefore, the H can be tested by F ratio

F(k,n-2k) = (JI1X3A*-X1F+j12+]|X2B+-X2F*]|12) (n=2k)
(11Y2-X1A%[ |2 + ||Y¥2-X2B*||2)k

V Polytomous Variable

Generalizing the dichotomous variable to a polytomous
variable in this model is very easy. The Dbasic structure on
estimation and hypotheses testing are mostly the sane,
therefore in this section, we just bring out the idea of this
generalized model and its parameters estimations; hypotheses
testing is omitted. let us assume that the «categorical
variable z has more than two categories. The distributioq of
y (1) gifen z(i)=a] is normal, N(X(i)'sj,var(uj)), where aj is a
scalar, S is a vector kx1, X{i) is a vector kx1; i=l,..., 0, n
cbservations, and j=1,...,9, 94 possible responses on z.

ij j J
P = Prob(z(i)=a ) = F(X{(i)'R )

J
where R is a vector kx1. Define a transformation t(i,]j) as
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n T j T
t{i,j) = 'IT' (z(i)y-a )/{a -a ) T,3=1seee,9; i=1,0..,0
r#3j ,
r=1

]
Hence t{i,j)=1 when and only when z(i)=a , ctherwise t(i,j)=0.
Now we define,

1 ] ]
i) ¥ to be a ngxl vector, Y = (Y , eess ¥ ); where ¥ =

»

(tE, DY, oees tn,J)y(n)) for 3=1,...,93

* ‘
ii) X to be a block diagonal matrix with dimension ngxgk, i.e.

* 3
. for each X ,

*5 r 1 k J
X = 1t (1,3)x (1) ... t(1,3)x (]
i ese l
| 1 k |
tt(n,3)x (n) «.. t(n,j)x (n)d
1 g 3
iii) S to be a gkx1 vector, S=(S ',...,S ')?', and S is kx1
3 13 kj
VECtOT, S =(S 4e2+¢S )';
1 3 J
iv) U to be a ngx1 vector, U=(U ',...,0 ")?'; U = (0Q(i), esees

J
u (n))', J=1,...,9. The disturbance variance-covariance 1is a

direct product of a gxgq diagonal matrix D and & nxn unit matrix
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1 q
I, where diag(D) = [var{u ), ..., var(u) J.
ij j i g S
v) p = Prob{z(i)=a ) = exp(X(i)'R )/ Z exp(X(i)'R ), and R =
s=1 '
1 q J j1 Jjk
{R ', eeey R ')? fOrL B = (T , eee, T )7'.

As before, we <can obtain those parameter estimates by

estimating two separated models. Hence, the conditional model

is
*
Y= XS + 10U
*3i %5 ‘
Since =z (i) {(1-z(i)) = 0, this implies X and X are orthogonal
when 1i#j so
3 3 *j *3 3
S = ((X X )7 )'Y
53 3 %3

J 5| _ ] 3
Vart(u ) = (¥ —(X )*'S* ) ' (Y -{(X )'S* )/(n-k)

3 *J *3 3
Cov{St ) = ((X )"(X ))~ivar+*(u)

In logistic part, the maximum likelihood function is

n g ij ij q
L =T (p t(i,J), ch:p =1, Z t(i,3) = 1.
i=13=1 3=1 3=1
b n i
Also we know T = Z. X t(i,j) is sufficient for R given X. So
j i=1 :
the MLE of B can be found by maximizing L subject to the sum of

3 ]
R for all j is 0, and R* nmust satisfy the equations

n j q i [ i n i
T [exp(X 'R* )/ exp{X 'R* ) ]X = Z X t(i,])
i=1 s=1 i=1

i
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We claim the solution to this problem yields a maximum. Since,

i 7

i 3 q ;
log{ Z exp(X 'R ))
3=1

q
log(l) = Z T *'r -
3=1

I E

1

m m
@21og (L) /@R BR !

g i j m ii
n {Z exp[X *(R =R )]-11(X X ')
= -2 3=1 g4 i 3 b
i=1 {Z exp[X '(R -R ) 32
j=1
i i

Hence the log{l) is concave because (Xixv') is positive semni-

definite for all i, and exponential funtion is positive.

Footnoies:
1 Constant term a, is considered as a product of ax?, where x1
is a variable always having value 1,
2 J, Press and M. Nerlove, Univariate and Multivariate Log-
linear and Logistic Models, Dec. 1973, pp.10.
3 J. Press and M. Nerlove, Univariate and Multivariate Log-
linear and Logistic Models, Dec. 1973, pp.5.
4 Group data means many observations per cell.

n
S log(L)=-;E {z(1)log[ F{X(1)'C) J+(1-2(1i))log[ 1-F(X(1)'C) 1}, F is
convex ané—1log function is increasing so the composition
function of 1log(F) is convex. The sum of convex functions is
convex, but the negative convex function is concave. Therefore
log (L) is concave. |

6 see Box, Davies and Swvann (1969) Ch.4 pp. 38 - 39,
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Chapter III

System of Equations HModel

The basic model proposed in the previous chapter can be
expanded in every dimension. This chapter and the following
chapter will discuss several extensions of this basic model.
Because of the limited scope of this research, the presentétion
is as follows: we will discuss a simple extension, called systen
of equations model a little bit moré in this chapter, then in
the following chapter we will Jjust mention some interesting
extension models and leave out all the details.  System of
equations model is defined as a set of regression or logistic
equations. . This set can be partitioned into certain number of
disjoint groups and each gfoup can form a basic model as we
discussed in the previous chapter. In the basic model, our
interest concentrates on the Jjoint density of two dependent
variables involving continuous variable y and categorical
variable z. Here we are not only interested in the joint
density of these two dependent variables, but we are also
interested im the interaction effects between g¢groups. For
example, we may ;ish to analyze the joint density of the +timing
of a married woman in labour force and her child not older than
6 years of age within a period 1967-71, but it will be more
interesting to <consider this problem year by year and observe
the interaction effects between years. Let us say, y for given
z 1s distributed normally, so written in matrix notation they

will be
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t t t t t
{y ()iz (1)=1) is N(X (i)'A , var(u))
t t t t t
(y (1)iz (1)=0) is N(X (1) 'B , var(v ))
and
t t t
Prob(z (1)=1) = F{X (1)'C )
t t
for t=1,...,d, d groups; X (i) is kx1 vector i=1,...,n « 1In
t t
order to estimate the joint densities of y (i) and z (i), we
t t t t t '

have to estimate 3 , B , C., var{(u ), and var(v ). Let us start

with an easy method.

I Estimation equation-by-equation

This method is very simple. The estimation is based on the
assumption that the data are indepéndent between groups. . Hence,
those parameters can be found by considering the vwhole problenm
as d separate basic models, and estimating those models one by

one.

In most of «cases, data across dgroups are correlated.
Hence, this kind of estimation is not efficient. In the
following section, we will discuss a method which handles the

case when correlation across groups is taken into account.

II Dependence among groups

In the previous chapter we assert that the estimation can

be separated into two parts, because the joint density function
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can be factorized dinto two functions which depend on disjoint
parameter sets. So if we wish to consider the interaction
effects between groups, we will observe those effects on the

logistic part and the regression part individually.

1) Interaction effects between groups on conditional

regressions:

Estimaticn:

There are several kinds of interaction effects between
groups on conditional regiessions. In this section we only
consider a special one, and we will discuss more about it in
chapter 4. Let us assume that +the disturbance terms in
dif ferent groups are highly correlated. Hence under this
assumption, the estimators obtained by an eguation-by-equation
are not 1in general efficient. Zellner(1962) has proposed an
efficient method called "Estimating Seemingly Unrelated
Regressions', This method applies Aitken's generalized least-

squares to the whole system of equations. For group t, we know:

t t t t t
(y (1)1z (i)=1) is N(X (i)*'a , var(u ))
t t t t t
(y (i)iz (1)=0) is N(X (1)*'B , var(v ))
t t
- then (y (i)lz (1) is distributed normally with mean
t t t t t t t t

X (i)'2 z (1)
t t
var[v (i) (1=z (1)) J« - So if we write in regression equation with

+ X (1) *B (1-z (i)) and variance varfu (i)z (i) ] +

matrix algebra then
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Y =X 'S +U

t

*t

where X is a nx2k matrix, for each row observation i,

t t t t
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*t

X

(1)

[X (1)'z (1), X (i)*{(1-2 (i)) ], Y is nx1 vector of observatioas

*t *t t t
on the t th group, U is nx1 vector which U = [u (1)z (1) +
t t t t t t
v (N (1-2 (1)), eeepy u {n)z {(n) + v (n) {(1-z2 (n)) 3}, and t=1,
eesgy d, 4 groups. So put then together, it will be
r 1 r *1 v r 14 e *¥1 4
[ 4 ] = X 0  +«as 01 | S | + 1 U i
| 2 | i *2 11 2] I *2
Y | 0 X e o 1t s | I U |
' a.o' ‘ L ] l I .oo’ : o.q.'
I 4 | | *d| | 4| | *4d |
Lt Y F] 1L 0 e e X 4 L 5 3 L. )
or, Y = X5 + 10U (1)
11 4d?
where Y = (Y , «+e«, Y )? X is a block-diagonal matrix, in which
*1 *d 11 de LER

diagonal is (X , eees X ), S = (S 4 eees S)', U= (U , ceey
*Qq 1
U )' to apply Aitken'’s generalized least-square, we get

S+ = (X'H'HX)-1X'H'Hy = (X'€-1X)—-1X'Z-1y

where H is an orthogonal matrix such that E (Huu'H')=HZH'=I, and

var {S*) = (X'Z—-1X)—1, wvwhere

X—1 = Var—1{U)

r MM 14 4

= |E I .« E TI|

' e e

] 41 ... dd |

LE I L2 I E IJ
= (E+)—1I1

¥ij *¥i %3 i *1  *i 3
since (n-2k)E* = (n-2k) var{U ) = 0 0 = (¥ - X **s )*(y

*5 %3 *i

- X 'S ), i,3=4+++,d4, where s is estimated from the basic
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*i i1 Xk
models, S = (A , B ). Hence (E¥)—1 can be estimated. These

estimators are more efficient because 1in estimating the
coefficients of a single equation, the Aitken procedure takes
account of zero restrictions on coefficients occurring in other
equations. Zellner and Huang (1962) pointed out that these

estimators have the optimal forecasting properties.

Hypotheses testing:

We may wish to test that +the data 1in the groups are

homogeneous in items of their regression coefficient vectors.

There are several ways to test this hypothesis, but only
t¥o are considered. One is as Zellner (1962) suggested that the
test statistic can be employed by using a F-test as

F(2k (d-1) ,d(n-2k)) = di{n-2k) (S*)—1D*'fDVar(S+*)D!]-iDS*
2k (d-1){Y' (E+)—1IY-Y" (E+) —31IXS+]

where D, the matrix of the restrictions, with dimension (d-1)xd,

D: rI -I O ”.Qo 0 0 O ]
'0 I -1 ..o 0 O 0‘
| |
10 0 0 «.. I -I 0§

0 I -14

t0 0 0 “..

such that DS=0.

Another method is to use the maximum likelihood ratio test
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which leads to the same result. The general idea of this test
has Dbeen stated in previous chapter. A detail about applying

this test in this hypothesis is shown in Appendix B.

If this hypothesis is true, then there 1is no aggregation
bias in simple linear aggregation. Hence, the estimators taken
from the entire sample will be statistically asymptotic

equivalent to the parameters estimated from individual groups.

B) Interaction effects between groups on logit model:

As we said, each group can form a basic model as introduced
in the previous chapter. Within each group, we have one
conditional continuous variable énd one qualitative variable, so
in this special model we have 4 conditional continuous variables
and d qualitative variables. Therefore, if the gqualitative
variables are unordered, then we may explore our interest into
the more general case of any number of Jjointly varying
dichotomous variables and the probability that a gualitative
variable takes on a particular value. This will bring our
attention into the —relation between the log-linear model of
contingency table analysis and the standard logistic model. In
this section, we discuss neither this relation, nor the general
model of several gualitative dichotomous variables, because they
have been done by Nerlove and Press({1973). The model which is

suggested by Nerlove and Press is assumed that:

1) all higher order interaction effects vanish,1
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2) the second order interaction effects . are constant and

independent of the values of any of the exogenous variables.

3) the main effects are 1linear functions of the various

exogenous explanatory variables.

Parameters are estimated by the maximum likelihood method. The
computational algorithm?2 is based on the Fletcher-Powell method
of function minimization, andl the Davidon algorithm for
estimating the inverse of the matrix of the second derivatives,-

the information matrix3.

IV Further discussion

In the previous discussion, w2 only consider the
disturbances in the regression eguations are correlated. For
each period of time, we can also consider the observations are
serially correlated. This can be easily solved, since we know
how to handle autocorrelation problem in regression. We may
detect autocorrelation by conventional test and apply Theil BLUS
procedure® to get better estimates in our first stage, then we

apply Zellner?'s method to get our result.

Furthermore, it is no great trouble to generalize this
model to involve polytomous variables instead of dichotomous
variables. In chapter 2, we have discussed about how to
generalize our basic model from dichotomous to polytomous. This

model is just a bit beyond our basic model, so everything



31

discussed in this <chapter are still applicable to polytcmous

variables. Therefore, polytomous generalization is omitted.

Fcotnote:

1 This assumption in the computer program of Nerlove and Press
has now been eliminated and in an updated reversion of the
program, higher order interaction effects are permitted.

2 See Nerlove and Press(1973), Appendix A, esp..  pp. 92-94,

3 See Box, Davies and Swann{(1969), ch. 4, esp. pp.. 38-39,
and the references cited therein.

4 H. Theil, "The Analysis of Disturbances in Regression
Analysis", J. Am. Statist. Assoc.., vol. 60, pp. 1067 -
1079, 1965.

N Koerts, "Some Further Notes on Disturbance Estimates in
Regression Analysis", J. Am. Statist. Assoc. , vol. 62, pp.
169 - 183, 1962.

H. Theil, "A Simplification of the BLUS Procedure for Analyzing
Regression Disturbances", J. Am,,6 Statist, . Assoc., vol. 63,

J. Koerts and A. P. J. Abrahamse, "On the Power of the BLUS
Procedure”, J, Am,. Statist. Assoc. , vol. 63, pp. 1227 -
1236, 1968,
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Chapter IV

Model Extensioans

I Lagged variables nmodel

We suppose that the dependent variables are dependent, not'
only on the current value of X, but also on the previous value
of X. For example, the number of hours worked by wife depends
on +the economic factors (head's unemployment, wife's wage,
...etc.) of this year as well as the economic factors of the
last year. Similarly, the probability that a married woman will
bear a baby is dependent upon the economic factors of this year
as well as last year. Let us consider the very simple case of
one variable, and assume there is nulticollinearity in the
problem. He may assumevthat all the coefficients exponéntially

decrease with respect to time. So let w = xz + x(1-z) then

t t 1 (t-1) t
y = a + bw + b W + s e + e
t t t 1 (t-1)
log(p /(1-p )) =T + sx + s X + ..
where
i i i i
b = bx(d) , s = s*{(d) , i=1,2,0004 0<d<1

In regression, we have

t t (t-1) t
y = a +wa + bdw + 0. + &

(t-1) (t-1) - (2=2) (t-1)
y = a + bw + bdw t cee t &
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t (t-1) t t (t-1)
y - dy = a(1-d) + b w + (e - de ) (1)

Equation (1) can be estimated easily. Similarly in the logistic
part, we have .

t t (t-1) (t=1) t
log[p /{(1-p ) ] - d*log[p /(1-p )] = r(1-4) + sx

similarly, the logit function can be estimated.

II Model with constraints

In some cases we may know .some parameters will have meaning
only in a certain domain, or interrelationship of parameters may
form a constraint. For example, we may consider such a case
that the total working hours of the head and the wife must
greater than a certain number. We know the maximum likelihood

method is suitable to estimate such a model with constraints.

"III Model with jointly dependent variables

We may consider inferences about relationships that
determine jointly dependent discrete variables, which are both
categorical and unordered. For example, the hushand of a
married woman is employed or unemployed; she will bear a baby or
will not. 'He may wish to relate the joint probability of fhese
two events to a set of social factors. As discussed in chapter
3, in some cases logistic function can be considered as several

qualitative polytomous variables. The solution of such function
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has been proposed by Press and Nerlove(1973). Therefore the
model with Jjointly dependent variables can be considered as a

special case of chapter 3.

IV Simultanous—-eguation model

#e may consider our basic model is composed of two
simultanous-equation systens. Oone system is formed by linear
regression equations, and the other system is formed by logistic
equations. 1In regression system, we can apply three-stage least
squares which is proposed by Zellner and Theil(1962). This
method is known to us. The logistic system has been solved by
P. Schmidt and R. Strauss{1974). They are using the maxinmum
likelihood approach and consider it is a special case of the
model of Nerlove and Press(1973). Many social problems can be
analyzed by such model. For example, the expenditure of a
family will depend upon the hours worked by the wife, and other
factors, and also the hours worked by wife will depend upon
family expenditure and the other factors. The probability of a
family going on vacation will depend on whether the wife bears a
baby. So if we wish to know the joint prgbability of a family
going on vacation and its annual expenditure, we may apply this

model.

V Recursive model
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This is the most interesting model proposed. This is a
very new study area. There is no formal literature about this
kind of model. 1In this model, the continuous variable and the

discrete variable are inter-dependent. That is

E(yiX,z) = £(X,z) z=0,1 (2)

p = Prob(z=11y,X) = [ 1+exp(-C'X-dy) J™! (3)

P. Schmidt and R. Strauss have discussed this problem, but
they only considered it as a start of this topic. They consider
how +to maximize the likelihood function. Their suggestion does
not seem to be novel and is expensive to compute. The following
discussion can be considered as an initial step in attacking

this model, and we hope it is a step in the right direction.
If we rewrite equation (3), then it becomes
w = log{p/(1-p) ] = C'X + dy (4)

Since z is a categorical variable, we will apply dummy variablés
in regression (2). Hence, equations (2) and (4) form a
simultaneous regression equation systen. This we <can solve
either by three-stage 1least-squares, or the full information
maximum likelihood method. The full information maximum
likelihood method is an expensive computational method, and it
will be very difficult to oEtain parameter estimates when the
number of degrees of freedom 1is large. Three-stage least-

squares is an extension of two-stage least-squares, which we
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mentioned in chapter 3. It is more efficient than two-stagel! if
the disturbances in various structural egquations are correlated.

Both methods are described in many econometric text books.

Footnote:
i 3. Zellner and H. Theil, "Three-stage, Least-squares:
Simultaneous Estimation of Simultaneous Eguations", Econometrica

vol. 30, pp. 54 - 78, 1962.
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Chapter V
A Study on Labour Supply of Married Women

--- Model Description ---

I Introduction

The empirical 1literature on female labour supply,
especially for married women, is not nuch. Related studies are
J. Korbel(1962), J. Mincer (1963), G, Cain{19686), S.
Hoffer (1973), R. Freeman (1973), and E. Berndt and T.

Wales (1974).

In this chapter, our study is to observe the 1labour force
participation of married women in different situations, and the
determination of these situations in the United States over the
five-year period 1967-71. This study will be divided into two
parts: the first part is to study our economic problem wusing
five vyears data, and the second part is to study the problem
yearly. Our data is drawn from the University of Michigan
Survey Research Centre Panel Study of Income Dynamics {(1972).
There were 2500 family units randomly chosen, and each family
unit was re-interviewed annually over the 1967-71 time period.
As E. Berndt and T. Wales(1974) pointed out this period, 1967-
71 was of particular interest since the national unemployment
rate for women aged 20 and over varied considerably from 3.8%

and 3.7% in 1968 and 1969 to 5.7% in 1971; further, toward ‘the
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end of this period an increasing enphasis was placed on

eliminating discrimination against working women.

II Specification of models ,

Although this study will be divided into two parts, they
still have the same economical structure. In the first part,
the model is built upon chapter 2 and in the second part, the
model is built upon chapter 3. 340 family units are selected.
The analyses are based on these family units. Every year, these
family units are partitioned into two groups. Group I contains
all the family units thch have a child of 6 years or younger,
and group II contains the rest. It is very obvious that these
two groups are disjointed, but it is not true that the number of
elements in sach group is fixed for every year, because the age
of the youngest child is increasing. Suppose the ycungest child
of a family was 5 years old in 1967, and the family bhad no
further new born child within the time period 1967-71. Then in
1967 and 1968, this family belongs to group I, but in 1969-71,
this family belongs to group II. Therefore, group I of 1967 and
group II of 1970 are not disjointed. In here we call a family
constraint variable z to be 1 when a family has a child not
older than 6 years, and 0 otherwise. Hence, group I contains
all the family units in which z=1, and group II is when z=0.. de
assume that the labour force activity of the wife in group I
will be less than those in group II. We wish to observe how the
timing of these two groups of married women in labour force will

be determined differently, due to the same economic factors( or
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independent variables). Also we wish to relate the probability
that a family has a child not older tﬁan 6 years of age to the
same explanatory variables. In the following discussion we will
call the conditional regression equations, labour equations, and

the logistic function, a probability function.

III Specification of variables

Dependent variables:

Categorical dependent variable:

In this study, our categorical variable is z, whose value
is 1 when a family has a child not older than 6 years of age,
-otherwise the value of z is 0. At the beginning z was defined
as 2z=1 when a family has a new born child otherwise z=0. This
definition of z led 4into statistical insignificance in the
models because of our lack of observation in 1970 and 1971, and
mest of the wives did nct work when z=1,. Furthermore, a wife
will work less not only because of having a baby, but also
because of her commitment to her family work. Suppose she has a
child who is not of school age, or even if her child is in grade
I, she may like to lock after her <child rather than to work

outside.

Continuous dependent variable:

Qur continuous variable 1y, 4is the timing in the labour

force of a married woman: that is her annual worked hours.
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Independent variables:

At the beginning, the explanatory variables are centered
around the following economic factors: birth gap, predicted wage
.of wife, head?'s income including income from elsewhere,
unenployment of head, fecundity, and the ratio of incomes over

needs.

BirthGap -- Birth gap

Birth gap is defined as expected completed family size
minus actual number of children in year t. Expected completed
family size is the total number of children expected and decided
by a «couple. These figures can be found on the survey data so
they are actual data. We will expect that the larger the birth

gap, the greater the probability that z=1.

Wife wg -- Wife expected wage

The predicted wage of the wife is measured accoraing to the
result of E. Berndt and T. Wales(1974). A wife with a higher
predicted wage would tend to keep on working more and would try
to aveid 'having a baby, or she would like to go back to the
labour force as soon as possible. Therefore, if our assumption
is correct the predicted wage will be positively correlated with
Y. the number of hours worked by the wife. Following the same
argument, we can also assume that it 1is positively <correlated
with the ©probabilty of z=1. Many married women are family
oriented. They would like to work at home, or given more care

tc their children rather than to work outside, or toc work a few
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hours for pleasure. Therefore, in those cases, the prédicted
wage of the wife will correlated with 1y, or Prob{z=1)
negatively. Hence, the relationships between (Wife wg) and y;
between (Wife wg) and Prob{(z=1) are in quadratic shape. That

introduces a new variable: the (Wife wg)? in ocur nodels.

Head inc -- Head's wage plus transfer income

The variable, the head's income is very similar to the
predicted wage of the wife. It varies in U-shape too. This
variable includes head?'s wage, aid to dependent <children,
pensibns, incomes from welfare, social security, unemployment or
workmen's compehsation and alimony or child support. All the
sources except the head's wage are called transfer incone.
Usually a wife has to work more when her family income is low.
She would try to re-enter labour force gquickly. On the other
hand, Jjust Dbecause the family income is high, that does not
necessarily mean that the wife will worklless, or have a higher
probability of having a baby, because a high income family may
have a high transfer income and a 1low head's wage. In this
case, the wife will work more, and put less time into her house
werk in order to make her family economy stable. Hence (Head

inc) 2 is included in the models.

Unemploy -- head's unemployment

The relationship between vy and the unemployment of the
head (given in days), or between Prob(z=1) and the head's

unemployment (given in weeks), is unexpected. Normally we would
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think when a hushand is unemployed, the wife would have to work
more and leave the family affair behind. Unexpectedly, we get a
negative result in testing our model I on the pulled data
(Appendix C). It was nct because the entire economy was bad
within the period 1967-71. This outcome may be explained in the
fcllowing ways. Some of the heads may be seasonal workers with
high wage such that it is not necessary for their wives to work
more. Another ©possible reason 1is a family may move from one
+town to ancther tcwn because the head can not find a job in his
own town. This will cause the wife to lose her job. Sometime
when a person changes his job, he would take this opportunity to
have a lcnger vacation. This will also cause his wife to work
less, When we plotted ocut the data, using the number of hours
worked by wife against the unemployment of the head in days, wve
found that data are distributed more or less in a quadratic

form. Therefore, we add (Unemploy)?2 as another new variable.

Fecundit -- Wife's fecundity

Fecundity is an agg_variable defined as 45 minus the age of
wife at time t. We consider the relationship between fecundity
and y, or Dbetween fecundity and Prob(z=1) 1is gquadratic.
(Fecundit)2 is added because a younger woman has less family
work and better physical ability to work more, but she does have
a high probability' tc bear a baby, which forces her to work-

less.

Inc/need -- ratio of tctal incomes except wife?’s wage over needs
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Incomes per needs is defined as the total family net real
income! minus the wife's wage and divided by the family needsZ2.
Even if this ratio is high it does not always mean that the
family has a high income, since the number of dependents may be
less. Similarly, even if the ratio is low that may be caused by
large family size. Most likely, this ratio varies with y or
Prob{z=1) in a non-linear pattern, .sc¢c we alsc <consider

(inc/need)? in our model.

Finally in our models, we have 11 explanatory variables.

They are:

1. BirthGap --- birth gap

2. Wife wg --~ predicted wage of wife

3. (Wife wg)2 =--- square of Wife wg

4, Head inc --- head's income plus transfer income
5. (Head inc)?2 --- square of Head inc

6. Unemploy --- unemployment of head

7. (Unemploy)?2 --- square of Unemplcy

8. Fecundit --- fecundity

g. (Fecundit)?2 --- fecundity square

10. inc/need --—- ratio of total incomes except wife's

Wage over needs

11« ({inc/need)? --- sguare of inc/need

IV Data restriction

The data sample is obtained from the University of Michigan

Survey Research Centre, Panel Study Of Income Dynamics (1972)
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which is based on 5 annual surveys. We restrict data in our
analysis of the models by using the following constraints:
1. The husband and wife were present in the household in
all 5 years, 1967-71.
2. The head was married for the first time.
3. The husband worked for at least 350 hours in éach of
the 5 years.
4, The wife was nct older than 45 years old in 1971.
5. The head was less than 50 years of age‘in 1971.
6. The birth gap, the family expected size minus the

actual family size, was positive in all 5 years..

These constraints are used to eliminate all the special
cases so that our analysis will be based on a more reliable
sample. Suppose the first two constraints are used to eliminate
those abnormal households. In some cases the wife will have
bsen married before, and have children from the earlier
marriage. Hence these two constraints ensure that the children
in the faimly belong to the couple. 1In most of the families,
the head is - responsible for +the family economy. The family
expenditure is mainly dependent upon his earning. Hence,
constraint 3 is used to ensure the stability of family econony.
An observation is valid or interesting only if the wife 1is of
child bearing age, or the children are not old enough to be left
alone while she works. This is the usage c¢f constraint 4.
Restriction 5 is used to prevent case such that a young girl is
married to an c¢ld millionaire. Such observations are not
interesting, because data are biased. Constraint 6 is to ensure

‘that the birth gap has statistical meaning. This leaves us with
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1700 observations for the 5 years period: that 1is 340 family

units in total.

Footnotes:

1 The total family net real income is defined as the total real
income minus the cost of earning income, minus help from outside
the family unit, if there are children under 18. (see definition
in A Papel Study Of Income Dynamics )

2 The Family needs is adjusted according to the US annual living

need standard in year t.{(see definition in A Panel Study QOf
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Chapter VI

Empirical Results of Model I

This model is estimated by using the model described in
chapter 2. We have 1700 observations in total, that is 340
family units in all the 5 years. In considering the timing of
the married women participating in the labour force, we split
the sample intc two categories according to the age of the
youngest child in the family. If a family has a child not clder
than 6 years of age, which is z=1, we put it into group I; the
others we put into group II. Hence, group I{under the condition
that z=1) has 885 observations, and group II(under the condition
that z=0) has 815 observations, From table II, we observe that
on the average, the number of hours worked by a wife in group I
is much less {about 47%) than those worked by a wife in group
I1. This supports our assumption that a wife with a child not

older than 6 years of age will work .less hours.

I. Results from the labour regression equations:

From Table I, we find that the labour equation of group I
has a bigger constant term than the equation of group II.
Suyppose we keep all the explanatory variables fixed and let the
wife's wage and 1its square vary with the hours worked by the
wife; then we find in grecup I, the curve is concave upward Dbut
in group 1II, the curve is concave downward. From the figqures

shown on table I, we know that +the hours worked by those
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hqusewives having children not older than 6 years of age,
normally will not be affected by their wages. They will work
more only when théir wages are high, except for those who are
ambitious to work. Those wives whose children are older than 6
years of age, will wcrk only up to a certain number of hours.
In the labour eguation o¢f group I, we find that 1) wife's wage,
2) the head's wage plus transfer income, 3) the ratio of incomes
over needs and, and 4) the squares of 1), 2), and 3) are
statistically significant in the regression of the number of
hcurs wcrked by the wife on the explanatory variables. On the
other hand in group II, the hours worked by the wife is
significantly affected by 1) the head's wage plus transfer
income, 2) the ratio of incomes over needs, 3) fecundity, 4) the

sguares of 1), 2) and 3), and 5) the square of the wife's wage.
Hypothesis testing -- the equality of two labour eguations

In the above discussion, we observe that each labour
equation has its own characteristic structure, but now we assume
the equations are equal, in crder to test the equality of these
two equations. From Chow?!s test, we find F(12,1676) = 11.7861
that is far beyound 95% significance value (F=2.30), so we

reject the hypothesis of equality.

II Results from the probability equation

From Table III, we find the birth gap, the head's income,
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fecundity and the square of fecundity have a strongly
significant effect on the probability of z=1. This 1is a very
good outcome because these major variables turn out as we
expected in chapter 5. Also, the ratio of incomes over need,
the wife's wage and the square of the wife's wage, do sightly

affect the probability of z=1.

e scale the units of the head?!s income, the ratio of
incomes over needs, the unemployment of +the head, and the
squares of these variables, to speed up the convergence rate in
maximizing the maximum likelihood function; otherwise

ccnvergence is very difficult to cbtain.
I1I Further estimation:

If we consider those statistically significant variables
which we obtain from the results of the estimation of this model
as reliatle variables, we would like to re-estimate the model

only with those variables. The following are the new estimates.

Regression model -- Labour equation

Group I, (y | 2z = 1)

HourWork
= 1193.0 - 633.7 (Wife wqg) + 182.0(¥ife wg)2 - 0.1772(Head inc) +

0.25x10-5 (Head inc)2 + 5.789 (inc/need) - 0.0034 (inc/need)?
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Group II, (y | z = 0 )

HourWork
= 792.1 - 35.57 (Wife wg) - 0.1676(Head inc) + 0,22x10—5 {(Head

inc)2 + 6.197(inc/need) - 0.0032(inc/need)2 + 42,15 (Fecund)
Logistic model -- Probability eguation

Logit (p*(i))
= -1.883 - 0.3412(BirthGap) + 0.5426 (Wife wg) - 0.1556 (Wife wuwg)=2
+ 0.0494 (Head dinc) - 0.1616(inc/need) + 0.,1895(Fecundit) -

0.0037 (Fecund) 2



Variable
constant
BirthGap
Wife wg
{(dife wug)2
Head inc
(Head inc)?
Unenmploy
(Unemploy) 2
inc/need
{inc/need) 2
Fecundit
(Fecundit) 2

Observations

R2

* significant level of 5%

Group I Group II
(y1 z=1 (yl z =20)
1699.6306% 472,9470%
{73.384) (21.344)
-44,7253 ~-36.7626
{1.378) (1.708)
-704,.254 3% 364.1801
(3.274) (1.774)
190.1427% -114.0060%
(3. 896) (2.582)
-0.2082% -0.1744%
(14.829) {13.536)
0.2918x10-5% 0.2348x10-5%
(9.931) (7.248)
3.0143 -0.7786
(1.176) (0.275)
-0.0220 -0.0123
{1.403) {0.666)
6.6705% 6.1337%
(8.578) {14.408)
~0.4145x10=-2% =0,3154x10-2%
(4.455) (8.795)
-12.6039 43.2141%
(0.629) (3.130)
-0.5377 -1.,7835%
(0.785) (3.309)
885 815
0.2538 0.3201
under H:

Asymtotic t values are in parentheses.
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Whole sample
y unconditional

1180.0698%
(71.507)

6.6327
(0.392)

-130.0699
(0.863)

31.8822
(0.958)

-0.1949%
(21.289)

0.2617x10—5%
{13.436)

1.4487
(0.749)

-0.0188
(1.547)

6.1123%
(17.821)

-0.3184x10—2%
(9.775)

5.2290
(0.469)

-1.1625%
(2.833)
1700

0.2789

parameters = 0.0



Group I Group II Whole sample

Variable (y!l z=1) (y! z=0) y unconditional
HourWork 771.519 1133.79 945.196
(792.743) (761. 958) (798.696)
BirthGap 0.3785 0.6025 0.4859
(0.7627) (1.4130) (1.1277)
Wife wg 1.8497 1.9598 1.9025
(0.5728) (0.6316) (0.604)
(Wife wg)2 3.7491 4,2393 3.9841
(2.4977) (2.8939) (2.705)
Head inc 82387.175 8933.23 8602.40
: (4569.88) (5243.44) (4913.16)
(Head inc)i 0.897x108 0.107x109 0.981x108
(0.209x109) {0.175x109) {0.194x109)
Unemploy 5.1388 4,1931 4,.6854
(21.5523) {19.8563) (20.7558)
(Unemploy) 2 490,385 411.371 452.505
: {3509.11) (3028.43) (3286.73)
inc/need 285.906 332,063 308.034
‘ (132.113) (173.459) (155.012)
{inc/need) 2 0.992x105s 0.140x10% 0.119x108
(0.108x108) (0.184x105) (0.151x10%6)
Fecundit 15.9503 11.1767 13.6618
(5.8996) {€6.9893) (6.871)
{Fecundit)? 289,177 173.709 233.821
{175.181) (189.114) (190.871)
Observation 885 815 - 1700

Standard deviations are in parentheses.



Variable Coefficient Asym stdv Asym t-ratio
constant -1.94222% 0.3079 6.308
BirthGap -0.33526% 0.0412 8.134
Wife wg 0.50063% | 0.2557 1.958
(Wife wg)2 -0.14714%* 0.0564 2.608
Head inc 0.06981% 0.0158 4.y29
(Head inc) 2 -0.00050 0.0003 1.505
Unemploy 0.2055¢8 0.3257 0.631
(Unemploy) 2 -0.09577 0.1999 0.479
inc/need -0.17239%* 0.0747 2.307
(inc/need) 2 0.00019 0.0084 0.022
Fecundit 0.18811% 0.0216 8.726
{Fecundit) 2 -0.00357% 0.0008\ 4.627

Log of likelihood function = -947.522 after 11 iterations.

* significant level of 5% under H: parameters = 0.0

note:
1 Head inc = $1,000 1 (Head inc)2 = $1,000,000
1 inc/need = 100 1 {(inc/need)2 = 10,000

i

1 Unenmploy 100 days of head's unemployment

1 (unemploy)2 = 10,000 days.
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Chapter VII

Empirical Results of Model II

Before we begin to analyze the result, let us consider the
annual hours worked by wives. From table V, we observe that in
general, those wives whose children are older than 6 years of
age will work more hours. The range is from 30.17% to 57.95%1.
In comparing fecundities we know that on the average those wives
in group I are younger and their wages are less than those in
group II. These are consistent with the findings of Berndt and

Wales (1974) .

I Results of single equation estimation

From table IV, we find that the head's wage plus transfer
income, and the ratic of incomes over needs are statistically
significant in most of the_years,. but the birth gap is not
significant in any year. The degrees of significance of the
rest of the explanatory variables vary in different years. If
we compare the functional structures year-by-year, we will
observe that they have different shapes. Suppose we keep all
the explanatory variables constant except the unemployment of
the head and its square, and compare 1968 with 1969; then vwe
will find in 1968, the curve is concave dowanward, but in 1969 it
is upward., Downward or wupward will give us different -
interpretations. An upward curve will point out that there are
big increases in two extremes. A downward curve will indicate

to us that the variable will be meaningful only in a certain
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domain, because we are not interested in negative values of the

dependent variable.

Hypothesis testings =-- the equality of the two labour equations

in each year:

The hypothesis +testings of the equality of the two labour
equations in 1967 using a 5% critical point, and in 1970 using a
1% critical point are acceptable; in all other years the
hypotheses are not acceptable. These tell us that for 1967 or
1970 we can aggregate all the data and express the 1labour
relation for that year using a linear function, regardless of

what the value of z is.

II Results of Zellner’s seemingly least squares method

If heteroscedasticity is present, then the weighting in a
single egquation, is not appropriate. The reason is that in an
equation-by-equation method, we use the least-squares procedure
tc obtain the parameter estimates, but all variables are given
the same weight. This weight is unsatisféctory in our sample.
Suppose Wwe use the two stage Aitken method as introduced by
Zellner {1962); then we find that the regression paraneters so
obtained are at least asymptotically more efficient than those
obtained by an equation-by-equation method using ordinary least-

squares.
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The comparison of the results from this method with the results

from single equation estimation

In table VI, the results show a significant reducticn in
the deviations of estimated parameters. The range for reduction
is from 10% to 20%. %e find that there are apperently different
gunadratic fornms, Such differences are possible because vwe
expect the two stage Aitken's estimators are more efficient than
those from ordinary least-squares. In the two stage Aitken’s
method we assign different weights to the sample, so the result
should be somewhat different than the result of the ordinary
least-squares. Most of the changes do not affect the economical
interpretation, but some do. Suppose that in the labour
equations of group II in table VI E, there are different
interpretation of the wife's wage and the head's unemployment,
For example, if we keép all the independent variables fixed
except the wife's wage and its square, we will f£find from the
single equation method that the curve is concave downward, but
from two stagé method it is concave upward. Hence, if we adopt
the result from‘ the single equation, we will say that those
¥wives whose children are clder than 6 years of age will not be
stimulated to work more by their expected wages. On the cther
hand, if we use the result from the two stage estimation, we
will observe that those wives will work more in both extremes.
Likewise, we find a similar difference in the head's
unemployment from this table. Such examples can be easily found
from the results of other years. Another significant difference
is in two stage estimation, none of the hypotheses of equality

tested is acceptable. It dis not 1like the single equation
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estimation where we do have some statistical significance.

Testing for Aggregation Bias for Model II:

Before we go into the logistic model, let us consider the
aggregation bias. Our testing hypothesis asserts that data in
every year are. homogeneous insofar as regression coefficient

vectors are concerned. That is

H: coeff of 67 = coeff of 68 = ... = coeff of 71

There are two testing methods: +the method suggested by
Zellper using an F-test, and the likelihood ratio test. Here we
use the F-test approach. From the test we find that for the
labour egquation of group I, F (48,1640} = 3.4044 and for the
labour eguation of group 1II, F(u48,1640) = 58.4047. Both are
rejected2, Therefore, we conclude that there ié an aggregation

bias involved in single linear aggregation.

The estimated labour equations:

The about discussion shows that there is a significant
reduction in the deviations of estimated parameters by wusing
Zellner's two stages estimation method. The estimated equations

can be summarized as follows:
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Group I, ( y |

N
]

1)

1967:

HourWork
= -24.88 + 206.3(BirthGap) + 360.0 (Wife wg) - 50.99 (Wife wg)2 -
0.2742 (Head inc) 0.621x10-S (Head inc)2 + 37.26(Unemploy) -
0.5963 (Unemploy) 2 + 10.54 {inc/need) - 0.0095(inc/need)2‘ +

20.42 (Fecundit) - 1.512 (Fecundit) 2

1968:

HourWork
= 719.5 + 58.64(BirthGap) + 54.45(Wife wg) + 8.394 (Wife wg)2 -
0.1846 (Head inc) + 0.242x10—-5(Head inc)2 + 6.746 (Unemplecy) -
0.0856 (Unemploy)?2 + 6.638(inc/need) -~ 0.00371{inc/need)? +

4,671 (Fecundit) - 1.278 (Fecundit)?

1969
HourWork
= 1074.0 + 44,.,85(BirthGap) - 240.5(Wife wg) + 81.98(¥Wife wg)2 -

0.2054 (Head inc) + 0.267x10—S (Head inc)2 - 5.1539(Unemploy) +

0.1846 (Unemploy) 2 + 9.697 (inc/need) - 0.0073{inc/need)?2

52.76 (Fecundit) + 0.3216 (Fecundit)2

1970:

Hour¥Work
= 1413.0 - 92.92 (BirthGap) - 653.0(¥Wife wg) + 157.1(Wife wg)2 -
0.2830(Head 1inc) + 0.470x10-S(Head inc)?2 + 4.514{Unemploy) -

0.0290 (Unemploy)2 + 10.68{inc/need) - 0.0074 (inc/need) 2 -



15.17 (Fecundit) - 0.8335(Fecundit)?2

1971:

HourWork
= 1330.0 - 58.39(BirthGap) - 473.8(Wife wg) + 130.3(Wife wgq)2
0.2869 (Head inc) + 0.648x10-5 (Head inc)2 + #4.826(Unenploy)
0.0239 (Unepploy) 2 + 8.738{inc/need) - 90.0062{inc/need)?

19.41 (Fecundit) - 0.2104 (Fecundit)?2

Group II, (y | z = 0)

1967:

HourWork
= 1704.0 + 6.748(BirthGap) - 789.1({Wife wg) + 100.5(Wife wg)2
0.2643(Head 4inc) + 0.433x10-S{Head inc)?2 - 1.174(Unemploy)
0.0102 (Unemploy)2 + 10.37{(inc/need) - 0.0067 {(inc/need) 2

29.11(Fecundit) - 1.692 (Fecundit)?2

1968:

HourWork
= 1207.0 - 11.95(BirthGap) - 524.5{Wife wg) + 73.18 (Wife wg)2
0.2294 (Head inc) + 0.363x10-5 (Head inc)2 - 0.2577 (Unemploy)
0.0541 (Unemploy) 2 + 11.08(inc/need) - 0.0077{inc/need)?

23.43{Fecundit) + 0.2166 (Fecundit)?2

1969:

HourWork

58
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= -61.86 - 53.81(BirthGap) + 479.7(Wife wg) - 135.4 (Wife wg)2 -
0.1750 (Head inc) + 0.257x10-5(Head inc)2 + 6,129 (Unemploy) -
0.0385(Unemploy)? + 7.854(inc/need) - O.OOSO(inc/nged)2 +

75. 980 {Fecundit) - 3.208 (Fecundit)?2

1970:

HourWork
= 47.04 - 34.05(BirthGap) + 590.2(Wife wg) - 146.9 (Wife wg)2 -
0.1548 (Head inc) + 0.199x10—S (Head inc)2 - 3.178(Unemploy) -
0.0035 (Unemploy) 2 5.528(inc/need) - 0.0025(inc/need) 2 +

74.65(Fecundit) - 3.702 (Fecundit)?

1571:
HourdWork
= 839.7 - 112.1(BirthGap) - 104.1(Wife wg) + 8.551(Wife wg)2 -

0.1368(Head dinc) + 0.176x10—5(Head inc)?2 + 3,280 (Unemploy)

0.0163 (Unemploy)2 + 4.813(inc/need) - 0.0021(inc/need)2 +

29.40 (Fecundit) - 1.030 (Fecundit)=2

I1II Results of probability functions

From table VII we find the birth gap is very significant in
all the probability functions. The results in the years 1968
and 1969 are interesting. In 1968, the probability function is
significantly affected by the birth gap, the head's wage plus
transfer income, fecundity and the square of fecundity. In
1969, the function is affected by most of the variables, such as
the birth gap, the head's unemployment, the ratio of inconmes

over needs, fecundity, the wife's wage and the squares of the
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head's unemployment and the wage's wage. One thing which has

surprised us is that the head'!s wage plus transfer incomes does
)

not significantly affect the probability function that happens

in most of the years except 1968, and 1971. Moreover, we dc not

draw any fruitful conclusion from the results of the years 1970

and 1971.

Test for aggregation bias:

In considering the test of the aggregation bias for this
part, we find the ratio of maximum 1likelihood is so big(Chi
sguare{(4#8) = 0.39x109) that we can not accept the hypothesis

that there is no aggregation bias.

The estimated probability functions:

We conclude the estimation of probability functions for

each year as focllows.

1967:

Logit (p* (1))
= -2.428 - 0.4167(BirthGap) + 0.3549(Wife wg) - 0.0962 (Hife wg)2
+ 0.0651(Head inc) + 0.488x10-%(Head inc)2 + 0.0283(Unemploy) -
0.0005 (Unemploy)2 =~ 0.0221(inc/need) - 0.6281(inc/need)z +

0.2835(Fecundit) - 0.0073(Fecundit)?2

1968:
Logit{p*{i))

= - 3,055 - 0.4486 (BirthGap) + 1.002(Wife wg) - 0.220171 (¥Wife wg)?2
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+ 0.1150{Head inc) - 0.0005(Head inc)2 - 0.0109 (Unemploy) +

0.0001(Unemploy)2 - 0.3319({inc/need) - 0.0028(inc/need)?2

+*

0.2486 (Fecundit) - 0.0049 (Fecundit)?2

1969:

Logit (p*(i))

+

= -2,390 -0.4669 (BirthGap) + 1.671(Wife wg) - 0.3913(Hife wg)2

0.0717{Head inc) "~ - 0.0003{Head inc)2 + 0.0534(Unemploy)

*

0.0011(Unenmploy)2 - 0.4832(inc/need) + 0.,0289(inc/need)?

0.1198 (Fecundit) - 0.0002 (Fecundit)?2

1970:

Logit(p* (1))
= =2.035 - 0.2968(BirthGap) + 1.258 (Wife wg) - 0.3676 (Wife wqg)?2
+ 0.0887 {Head inc) - 0.,0017(Head 1inc)2 + 0.0016(Unemploy) +
0.411x10-2% (Unemploy)? - 0.2755(inc/need) + 0.0144 {inc/need)2 +

0.0776 (Fecundit) + 0.0016{(Fecundit) 2

1971:

Logit (p* (1))
= =1,297 - 0.1922(BirthGap) + 0.2137(Wife wg) - 0.1016(Wife wg)2
+ 0.1593 {Head inc) - 0.0059(Head inc)2 - 0.0049{Unemploy) +
0.340x10—% (Unemploy)2 - 0.1830(inc/need) + 0.0075(inc/need)2 +

0.0500 {Fecundit) + 0.0023{Fecundit)?2

IV Further estimation

If we consider those statistically significant variables
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which we obtain from the results of the estimation of this model
as reliable variables, we would like to re-estimate the model
only with those variables. The new. estimates are shown as

follows:3

Regression model -- labour equation

Group I, {y | z = 1)

1967:

Hourwork
= 592.6 - 0.2331 (Head inc) + 0.51x10—5 (Head inc)2 +
45,87 {Unenploy) -~ 0.7770 (Unemploy) 2 + B8.262({inc/need) -

0.0064 (inc/need) 2

19682
HourWork
‘= 1768.0 + 187.8(Wife wg)2 - 0.0763(Head inc) + 0.14x10~S (Head

inc)®

1969:
HourHork
= 732.6 + 51.77 (¥ife wg) 2 - 0.1448 (Head inc) +

0.13x10-5 (Head inc)2 + 3.327(inc/need)

1970:
HourWork
= 640.8 - 0.2325(Head inc) + 0.37x10—-5 {Head inc)?2 +

7.428(inc/need) - 0.0048 (inc/need)?
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1971:
HourWork

= 291.1 - 0.1459 (Head inc) + 7.100(inc/need) - 0.0050 (inc/need)?2

Group II, (y | z = 0)

1967:
Hour¥Work
HourWork
= §55.6 - 0.196 (Head inc) + 0.26x10—S {Head inc) 2 +

8.959 (inc/need) - 0.0061(inc/need)?

1968:
HourWork

= 332.5 - 0.1308(Head inc) + 8.561(inc/need) - 0.0060 (inc/need) ?

1969

HourWork

{

= 655.8 - 0.1046 (Head inc) + 6.096 (inc/need) - 0.004 (inc/need)?

1970:

HourWork
= 649.7 - 0.1521{Head inc) + 0.20x10—-5(Head 1inc)2z +
5.469 (inc/need) -~ 0.0028(inc/neea)2 + 62.44 (Fecundit) -

3.204 (Fecundit) 2

1971:
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Hour#Work
= 913.0 - 0.131(Head inc) + 0.16x10-5 (head dinc)? +

4.425(inc/need) - 0.0021{inc/need)?

Logistic model -- Probability equation

1967:
logit (p* (1))
= -1.475 - 0.4866 (BirthGap) + 0.2291 (Fecundit) -

0.0058 (Fecundit) =

1368:

Logit(p+(i)) = -1.004 ~ 0.6208(BirthGap) + 0.0972(Fecundit)

1969:
Logit (p* (1))
= -1.086 - 0.5104 {(BirthGap) + 0.0100 (Fecundit) + 5.609 (Unemploy)

- 11.56(Unenploy)?2

1870:

0.3183 - 0.0849 (Wife wg)2

Logit (p* (1))

1971z -

Logit (p* (1)) 0.2879 - 0.0363 {Head inc)

footnote:
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1 1967 - 30.17%, 1968 - 51.20%, 1969 - 57.95%, 1970 - 46.36%,

1971 - 47.41%

2 pnder 5% critial points the value of F(48,1640) is 1.49.

3 Some variables, which were statistically significant when we
estimated the model with all the variables, were not significant
in re-estimation, e considered such variables as not

statistically significant.



Parameter Estimates for Labour Eguations 1967

Variable

constant

BirthGap

Wife wg

(Wife wqg)2

Head inc

Head inc 2

Onenploy

(Unenmploy) 2

inc/need

(inc/need) 2

Fecundit

(Fecundit) 2

Observations

R2

1558.7693%
(30.861)

111.2579
(1.169)

-704.1122
(1.576)

176.6363
{(1.916)

~0.2652%
(6.312)

0.5668x10-5%
(4.666)

42.6361%
(3.348)

-0.7200%
(3.366)

8.9754%
(4.273)

-0.7210x10—2%
{(2.384)

-4,2753
(0.086)

(0.4665)
189

0.3u444

Group II
(ylz=20)

1267.7070%
{25.414)

~3,7038
(0.088)

-184.1179
(0.413)

-18.0680
{0.139)

-0.2698%
(6.912)

0.4198x10—5%*
(3.045)

-1.5681
(0.225)

-0.0193
{0.547)

10.1893%
(5.604)

-0.6520x10—2%
(2.683)

12. 6560
(0.291)

'10 3261
(0.945)
151

0.46u6

Hhole samnmple
unconditional

1556.3296%
(42.271)

29.7965
(0.806)

-471.3710
(1.463)

90.6479
(1.369)

-0.2926%
(10.685)

0.5784x10~5%
(6.893)

5.1312
(1.044)

-0.0531*%
(1.967)

10.193 1%
(7.500)

-0.7719x10—2%
(4.114)

-0.6339
(6.020)

-1.0798
{1.032)
340

0.3493

* significant level of 5% under H: parameters = 0.0

Asymtotic t values are in parentheses.

Chow test F(12,316) = 2.2980

66
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Parameter Estimates for Labour Egquations 13968

Variable

constant

BirthGap

Wife wg

(Wife wg) 2

Head inc

(Head inc)?2

Unemploy

{Unemploy) 2

inc/need

{inc/need) 2

Fecundit

{Fecundit) 2

Observations

R2

* gignificant level of 5% under H:

2402, 0710%
(49.929)

-77.0932
(0.850)

-1036.6126%
(2.229)

251.1645%
(2.505)

-0.1902%
(6.316)

0.1797x10-5%
(2.249)

1.8356
(0.147)

-0.0231
(0.158)

4.0753
(1.904)

0.9217x10-3
(0.291)

(0.082)

-0.9524
(0.628)
181

0.3135

Group II

{yt z=20)

1344, €320%
{28.548)

-30.6823

(0.711)

-542.6887

(1. 142)

66.3974
(0.671)

-0,2265%
{5.276)

0.3386x10-5%

21.6627
(1.270)

-0.2880
(1.040)

11.2963%
(7.345)

-0.8178x10-2%
(4.919)

-41,8059
(1.098)

1.1036
(0.822)
159

0.4371

Asymtotic t values are in parentheses.

Chow test F{12,316)

= 7.3582

Whole sample
unconditional

1577.3882%
(45.707)

30.2229
(0.864)

-537.8107
(1.651)

112.4804
(1.620)

-0.2213%
(11.508)

0.3169x10-5%
{7.597)

10.3385

{1.175)

-0.1266
(1.103)

8.6154%
(7.627)

-0.5580x10-2%

(4.094)

-19.3969
(0.693)

-0.4556
(0.474)
340

0.3606

parameters = 0,0



Variable

constant

BirthGap

Hife wg

(Wife wg)2

Head inc

(Head inc)2

Unemploy

{OUnemploy) @

inc/need

{inc/need) 2

Fecundit

{Fecundit) 2

Observations

R2

Table I

et

C

68

1910.3313%
{(37.255)

-51.3668
(0.618)

-828.3737

(1.377)

224.4707

-0.1907%*
(6.379)

0.2277x10-5%
(3.511)

-11.4448
(0.698)

0.2350
(0.608)

7.3298%
(3.270)

-0.4885%10-2
(1.582)

-40.0683
(0.873)

0.0498
{0.003)
178

0.2817

Group II
(y 1l z=20)

24.0713
(0. 4852)

-67.4059
(1.357)

635.7993
(1.183)

-182.5847
{1.594)

(4.018)

0.3083x10-5
(1.802)

2.281%4
(0.257)

-0.0215
(0.367) -

T« 5U424%*
(5.102)

-=0.5037x10—2%

{3.351)

70.3725
(1.738)

-2.7817
(1.667)
162
0.3325

Whole sample
unconditional

949.3052%
{25.880)

2.9322
(0.079)

-58.3414
{0.154)

9.3886
{0.1117)

-0.1936%
(9.857)

0.2364x10—-5%
(6.149)

0.4696
(0.078)

0.5634x10-2
{0.126)

7.7892%
(7.103)

-0.5187x10-2%
(4.165)

10.5490
(0.380)

-1.6838
{1.648)
340

0.2991

* significant level of 5% under H: parameters = 0.0.

Asymtotic t values are in parentheses.

Chow test F(12,316) =

3.6634



-3
1)

ble IV D

69

Parameter Estimates for Labour Egquations 1970

Variable
constant
BirthGap
#ife wg
(dife wg) 2
Head inc
{(Head inc)?2
Unenmploy
(Unemploy) 2
inc/need
(inc/need) 2
Fecundit
{Fecundit) 2

Observations

R2

¥ significant level of 5% under H: parameters

(y 1l z=1)
1680.9971%
{32.395)

-113.2762
(1.889)

-736.9992
(1.178)

167.3082
(1.055)

-0.2874%
(5.622)

0.4527x10—5%
(2.514)

5,7146
(1.249)

-0.0382
(1.486)

(5.651)

~0.6144x10-2%
(3.468)

4,4495
(0.097)

-1.3858
(0.841)
173

0.3320

Group II
(yl z=20)

52.8269
(1. 074)

-33.8650
(0.592)

704.6772
(1.504)

-178.8685
(1.760)

-0.1588%
{6.260)

0.2108x10—S*
{3.881)

0.1341
(0.015)

-0.0872
{0.953)

5.3371%
(6.407)

-0.2656x10—2%
{(4.236)

75.9236%
(2.161)

-3.5510%
(2.225)
167

0.3444

Asymtotic t values are in parentheses.

Chow test ¥ (12,316)

= 2.7094

Whole sanmple
anconditional

1033.5461%*
(28.059)

-36.6936
(0.934)

1.1532
{0.003)

-15.3298
(0.187)

-0.2036%*
(9.236)

0.2823x10—5*
(5.415)

-0.8891
(0.247)

-0.6823x10-2
(0.317)

6.2063%*
(8.751)

-0.3129x10-2%
(5.277)

28.2306
{1.085)

-2.3265%
(2.264)

340

0.3088

= 0.0
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Parameter Estimates for Labour Equations 1971

Variable

constant

BirthGap

Wife wg

{Wife wg)2

Head inc

{Head inc)?2

Unemploy

{Unemploy) 2

inc/need

{inc/need) 2

Fecundit

(Fecundit) 2

Observations

R2

* significant level of 5% under H:

1496.4514%
(27.655)

-62.9480
(1.022)

-896.2939
(1.477)

224.4905
(1.448)

-0.2370%*
{3.256)

0.3970x1C—5S
(1.050)

4.1735
(0.840)

-0.0218
(0.749)

8.4099%
(4.689)

-0.6105x10-2%
(2.940)

-8.1950
{0.178)

-0.4393
(0.251)
164

0.2811

Group I1II Whole sample
(y !l z=0) unconditional
587.5898% 1151.3694*
(11.748) {(30.555)
-89.8988 -53.3045
{1.520) (1.311)
205.7050 -298.0087
{0.358) (0.721)
-75.6943 66.7110
{0.558) (0.662)
-0.1402% -0.1772%
(5.117) (7.926)
0.1815x10-5%* 0.2457x10—5%
{3.034) (4.481)
-3.0860 3.3144
(0.471) (0.882)
0.0274 -0.0183
(0.569) (0.761)
4,8945% 5.4899%
{5.095) {(7.327)
-0,2270x10-2% -0,2643x10-2%
(3.329) (4.454)
36.3512 19.9307
(1.08¢) (0.811)
-1. 1797 -1.6618
(0.697) (1.580)
176 340
0.23861 0.2394
parameters = 0.0

Asymtotic t values are in parentheses.

Chow test F{12,316)

= 5.5301
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Mean and Standard Deviation of the Model II, 1367

VYariable

Hour#ork

BirthGap

Wife wg

(Wife wug) 2

Head inc

{Head inc) 2

Unenploy

(Unemploy) 2

inc/need

(inc/need) 2

Fecundit

{Fecundit) 2

Observations

Group I
(ylt z=1)

774,894

(832.1748)

0.4180
{0.6013)

2.0312
(0.6498)

4.5457
(3.0821)

7812.65
(4311.02)

0.7952x108
(0.1608x109)

3.2090
(10.6461)

123.038
(630.650)

242.873
(116.078)

0.7239x105
(0.8825x105)

16.1481
(6.0053)

296.635
(190.053)

189

Group II
{yl z=20)

"1008.69

{806.400)

1.0331
{1.6183)

2.08863
(0.6742)

4.8139
(3.2770)

7522.16
(5073.70)

0.8215x108
(0.1333x109)

4.9735
(25.3447)

662.838
(5019.12)

265.384
(146.320)

0.9170x105
(0.1078x10%)

15.0530
{7.5189)

282.748
(238.273)

151

Standard deviations are in parentheses.

Whole sample
y uncoadition

878.726
(827.825)

0.6912
(1.2054)

2.0567
(0.6604)

4.6648
(3.1682)

7683.64
(4660.26)

0.8069x108
{0.1490x109)

3.9927
{18.6509)

362,773
{3382.22)

252.871
(130.657)

0.8096x105
{0.9776x105)

15.6618
(6.7313)

290.468
(212.603)

340



Variable

HourWork

BirthGap

Wife wg

(Wife wg)2

Head inc

(Head inc)=2

Unemploy

{Unenploy) 2

inc/need

{inc/need) 2

Fecundit

(Fecundit)?

Observations

T49.293
{756.947)

0.3812
(0.6178)

1.9666
(0.5927)

4.2169
(2.6983)

8552.08
(5424.92)

0.1024x109
{0.2962x109)

2.8488
(12.6523)

167.313
(1072.79)

264.033
(121.435)

0.8438x10%
(0.1080x10%)

16.5580
(5.8900)

308.669
(183.222)

181

Group 1T
(y 1 z=20)

1132.99
(763.656)

0.7862
{1.5482)

2.0144
{0.6335)

4.4564
(2.9939)

8499.53 -
{4702.69)

0.9422x10%8
{0.1099x109)

2.6376
(11.3457)

134.872
(697.642)

303.673
(149.635)

0.1145x106
{0.1231x108)

12.5031
(6.9917)

204.906
(203.140)

159

Standard deviations are in parentheses.

72

Whole sample
y uncondition

928.726
{782.811)

0.5706
(1.1665)

1.9889
(C.6117)

4.3289
(2.8387)

8527.51
(5092.60)

0.9858x108
(0.2285x1079)

2.7500
(12.0418)

152.142
{915.526)

282.571
(136.594)

0.9845x105
(0.1161x10%8)

- 14.6618

(6.7313)

260. 144
(199.365)

340
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Yean and Standard Deviation cf the NModel II, 1963

Variable
HourWork
BirthGap
Wife wug
{(Wife wg)®
Head inc
(Head inc)=2
Unerploy

(Unemploy) 2
inc/need

{inc/need) 2

Fecundit

{Fecundit) 2

Observations

z =1

756.927
(781.734)

' 0.3483

(0.6656)

1.8301
(0.5237)

3.6218
(2.2029)

8609. 85
(5525.41)

0.1045%109
(0.3004x109)

2.6938
(8.6431)

81,5407

. {377.597)

284.146
(123.874)

0.9600x105
(0.1017x10%)

16.0955
(5.9296)

294,028
(176.1428)

178

Group II
) (y

1195.58
{(745.969)

0.5988
(1.47¢64)

1.9638
(0.6173)

4,2351
{2.8226)

9097.13
(4544.49)

0.1033x10°
(0. 1135x109)

2.7284
{15.9771)

261.136
(2441.43)

328.210
{144.391)

0.1284x106
{0.1273x106)

10.9877
(6.5579)

163. 469
{(172.537)

162

Standard deviations are in parentheses.

{ z =0)

Whole sample
y uncondition

965.932
(794.667)

0.4677
(1.1323)

1.8938
(0.5733)

3.9140
{2.5321)

8842.02
(5080.19)

0.1035x109
(0.2307x109)

2.7103
{12.6585)

167.112
(1706, 86)

305.141
{(135.644)

0.1115x108%
(0.1156x106)

13.6618
(6.7313)

231.821
(186.158)

340



Variable
HourWork
BirthGap
Wife wg
{(Wife wg)2
Head inc
{Head inc)?2
Unenploy
{Unemploy) 2
inc/need
(inc/need)2
Fecundit

(Fecundit) 2

1

Observations

781.601
{(807.945)

0.3757
(0.9357)

1.7079
(0.46924)

3.1358
(1.8479)

8253.68
(3700. 80)

0.8174x108
{0.9086x108)

9.2269
(32.2653)

1120.17
(5777.52)

312.040
(140.308)

0.1169x10%
{0.1181x108)

15. 8150
(5.8220)

283.815
(164.463)

173

1143.93
{758.429)

0.3713
(1.1745)

1.9147
{0.6349)

4.0669
(2.8769)

9687.73
(5921.69)

0.1287x10°
(0.2492x109)

3.3802
{15.3756) .

206.421
(1535.59)

364,401
(188.303)

0.1680x106
{0.2356x106)

9.3952
{6.0260)

124.365
(141.679)

167

Standard deviations are in parentheses.

Whole sanmple

y uncondition

959.571
{803.603)

0.3735
(1.0581)

1.8095
{0.56554)

3.5931
(2. 4500)

8958.05
(4963.42)

0.1048x10°
(0.1875x109)

6.3552
(25.5447)

6381.002
{(4275.75)

337.759
{(167.447)

0.1420x106
(0.1868x1086)

12.6618
(6.7313)

205.497
(172.990)

340
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Variable
Hour#Work
BirthGap
dife wg

(Wife wg)2
Head inc
{Head inc)=2
Unemploy

{Unemploy) 2
inc/need

{inc/need) 2

Fecundit

{Fecundit) 2

Observations

797.360
{(789.206)

0.3659
(0.9530)

1.6824
(0.5206)

3.09972
{2.0359)

8283.83
(3356.62)

0.7982x108
(0.6195x108)

8.2317
(31.4318)

1049,70
(5537.04)

333.982
(140.231)

0.1311x106
(0.1130x108)

15.0366
(5.7939)

259.463
(154.686)

164

Group II
) Ly

1175.35
(734.960)

0.2898
(1. 1064)

1.8392
(0.5805)

3.7178
(2.4179)

9668.88
(5530.66)

0.1239x10°9
{0.2085x109)

7.0483
(26.3531)

740.217
{3553.56)

387.778
{199.672)

0.1900x106
(0.2454%106)

8.5171
(5.9904)

108.222
(126.997)

176

Standard deviations are in parentheses.

| z = 0

75

Whole sample
y uncondition

993.026
(783.650)

0.3265
(1.0345)

1.7636
{(0.5572)

3.4197
{2.2598)

9000.80
(4657.06) -

0.1026x109
(0.1574x109)

7.6191
(28.8773)

889.495
(4498.73)

361.829
(175.389)

0.1616x10%
{0.1952x106)

11.6618
(6.7313)

181.174
{(159.872)

340



The Comparison of the Two Stag

i¥0 otage
Q

Variable

constant

BrithGap

Wife wg

(Fife wg)2

Head inc

(Head inc) 2

Unenploy

{Unemploy) 2

inc/need

{inc/need) 2

Fecundit

(Fecundit) 2

(y 1 z=1)

Two Stage
-24.8795
{536.694)

206.277
(79.5456)

360.029
(402.916)

-50.9948
(83.6112)

~0.2742
(0.03637)

0.621x10~5 "

(0.1x10-5)

37.2640

- (9. 8779)

-0.5963
(0.1677)

10.5357
(1.7873)

-0.0095
(0.0025)

20.4197
{(44.1752)

-1.5124
(1.4128)

Sstandard deviations are

Chow Test:

Two Stage,

Single Egn, F(12,316)

F(12,316)

]

Single Egn
1558,7693
(602.6uU86)

111.2579
(95.1705)

-704.1122
(446.8012)

176.6363
(92.1762)

-0.2652
(0.0420)

0.567x10—S
(0.1x10—5)

 42.6361

(12.7363)

-0.7200
(0.2139)

8.9754
{2.1005)

-0.0072
(0.0030)

-4,2753
(49.6485)

-0.7383
(1.5827)

in parentheses.

3.4416

2.2980

76

and the Single Egquation
Model II, 19617
-y = 0)

Two Stage Single Egn
1704.61 1267.707
(555.908) (599.956)
6.7483 -3.7038
(40.4629) (42.2918)
~-789.138 -184.1179
{413.982) {445.6689)
100.5296 -18.0680
(84.9228) {90.5690)
-0.2643 -0.2698
(0.0351) (0.0390)
0.433x10—5 0.420x10—5
{(0.1x10—5) {0.1x10-5)
-1. 1740 -1.5681
(6.1164) (6.9694)
-0.0102 -0.0193
{0.0309) (0.0352)
10.3676 10.1893
(1.6288) (1.8183)
-0.0067 -0.0065
(0.0022) (0.0024)
29.1138 12.6560
(40.8465) (43.4798)
-1.6923 -1.3261
{1.3143) (1.4035)



Iable ¥I B .
The Comparison of the Two Stage Aitken and the Single Equation
Least-sguares Estimation of the Model II, 1368
(yl z=1) (y1lt z=20)
Variable Two Stage Single Egn Two Stage Single Eqn
constant 719.489 2402.071 1207.37 1344.832
(497.420) (617.6222) {(506.332) {580.5073)
BrithGap 58,6397 -77.0932 -11.9464 -30.6823
(67.7885) (80.6618) {39.5871) (43, 1462)
Hife wg 54,4460 -1036.6126 -524,.545 -542.6887
(374.372) (465.0873) (413.052) (475.2111)
{dife wug)2 8.3943 251.18645 73.1776 66.3974
{81.0106) (100.2469) (86.7298) (98.8818)
Head inc -0,1846 -0.1902 -0.2294 -0.2265
{0.0229) {(0.0301) {(0.0358) (0.0429)
(Head inc)=2 0.242x10—5 0.180x10—5 0.363x10"5 0.339x10-5
(0.6x10—8) (0.8x10—9) (0.1x10—5) {0.2x10-95)
Unemploy 6.7462 1.8356 -0.2577 21.6627
(8.6091) (12.4788) (13.3125) (17.0604)
(Unemploy)2 -0.0856 -0.0231 0.0541 -0.2880
(0.0990) {0.1458) (0.2178) (0.2769) -
inc/need 6.6379 4,0753 11.0835 11.2963
(1.5732) (2.14009) (1.2870) (1.5380)
(inc/need) 2 -0.0031 0.0009 -0.0077 -0.0082
(0.0023) {0.0032) (0.0014) (0.0017)
Fecundit 4.6712 -3.7857 -23.4310 -41,8059
(38.6399) (46.3501) (34.3664) (38.0776)
(Fecundit) 2 -1.2779 -0.9524 0.2166 1.1036
(1.2737) (1.5159) (1.2025)

Standard deviations are
Chow Test:

F(12,316)

Two Stage,

Single Egn, F{12,316)

in parentheses.

9.2483

7.3582

(1.3420)



St-squares

Variable

constant

BrithGap

Wife wg

(§ife wg)2

Head inc

{({Head inc) 2

Unemploy

{Unemploy) 2

inc/need

(inc/need) 2

Fecundit

{Fecundit) 2

Standard deviations are

Chow Test:

Two Stage,

Single Egn, F(12,316)

F(12,316)

(y | =z

Two Stage
1074.15
(584.199)

44.8480
(69.4932)

-240.4760
(501.982)

81.9762
{118.436)

-0.2054
(0. 0246)

0.267x10—5
{0.5x10—5s)

-5.1539
{12.7613)

0.1846
(0.3000)

9.6972
(1.8008)

-0.0073
(0.002)

-52.7559
{40.7958)

0.3216
(1.4042)

0l

Table VI C
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n of the Two Stage Aitken and the Single Equation

Estimation o

f the Model IXI, 1969

s o — —

:1)
Single Egn

1910.3313
(685.601)

-51.3668

{83.1572)

-828.3737
(601.6302)

224.4707
(142.5031)

~0.1907
(0.0299)

0.228x10-5
(0.6x10—96)

-11.4448
(16.3863)

0.2350
{0.3862)

7.3298
(2.2416)

-0.00489
{6.0031)

~40.0683
(45.8751)

0.0498
(1.5686)

in parentheses.

7.7696

3.6634

(y
Two Stage

-61.8565
(515.343)

-53.8075
(43.6123)

479.664
{4U46.460)

-135.453
(95.4104)

-0.1750
(0.0387)

0.257x10—5

(0.1x10—-3) .

6.1288
(7.0696)

-0.0385
(0.0462)

7.8545
(1.2175)

-0.0050.
(0.0013)

75.8987
(35.6987)

-3.2084
(1.4490)

Single Egn

24,0713
{606.944)

~67.4059
(49.6914)

635.7993
{537.3614)

-182.5847
(114.5202)

-0.1901
(0.0473)

0.308x10-5
{0.2x10-5)

2.2814
{(8.8619)

-0.0215
(0.059)

7.5424
{1.4784)

-0.0050
(0.0015)

70.372%
(40.4924)

-2.7817
(1.6690)
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Iable ¥I D
The Comparison of the Two Stage Aitken and the Single Eguation
Least-squares Estimation of the Model II, 13870

(y 1l z=1) (yt z=20)
Variable Two Stage Single Egn Two Stage Single Egn
constant 1412.61 1680,997 47.0384 52.8269
(559.445) (656.8402) (441.321) (517.0958)
BrithGap -92.9189 -113.2762 ~-34.0479 -33.8650
(52.7555) {59.9558) (51.44487) {57.1928)
Wife wg -652.953 -736.9992 590,173 704.6772
{(523.368) {627.373) (387.140) (468.432)
{(Rife wg)2 157.065 167.3082 -146.911 ~-178.8685
{132.528) (158.5716) (84.1822) (101.6526)
Head inc -0.2830- -0,2874 -0.1548 -0.1588
{(0.0422) {(0.0511) (0.0214) (0.0254)
(Head inc)?2 0.470x10—5 0.453x10—5S 0.199x10—-5 0.211x10-5
(0.2x10—5) {0.2x10—5) {0.5x10-8) {(0.5x10—¢6)
Unemploy 4,5144 5.7146 -3.1778 0.1341
{3.5196) (4.5743) {(6.8682) (9.1211)
(Unenmploy) 2 -0.0290 -0.0382 -0.0035 -0.0872
{0.0199) {0.0257) (0.0687) (0.0915)
inc/need 10.6796 9.3285 5.5279 5.3371
(1.3660) {1.6508) (0.6995) {0.8330)
(inc/need) 2 -0.0074 -0.0061 -0.0025 -0.0027
' {0.0015) {0.0018) (0.0005) {0.0006)
Fecundit -15.1719 4,4495 74.9506 75.9236
(41.0756) (45.8121) (32.0058) {35.1332)
(‘Fecundif.)2 -0.,8335 -1.3858 -3.7018 -3.5510
(1.14878) {1.6470) {1.4362) {1.5960)

Standard deviations are

Chow Test:

Two Stage,

Single Egn, F(12,316)

F(12,316)

in parentheses.

26.339

2.7094



The Comparison of the Tuo Stage A

it
Least-squares Estimation of

variable

constant

BrithGap

Hife wg

(Wife wg)2

Head inc

(Head inc) 2

Unemploy

(Unemploy) 2

inc/need

{inc/need)?

Fecundit

{(Fecundit)?

(y i z

Two Stage
1330.05
(586.100)

-58.3862
(56.9849)

-473.837
(531.652)

130.288
(135.215)

-0.2869
(0.0619)

0.648x10—5
(0.3x1053)

44,8257

(4.1312)

-0.0239
(0.0240)

8.7383
(1.5652)

(0.0018)

-19.4112
(42.7355)

-0.2104
(1.6331)

Standard deviations are

Chow Test:

Two Stage,

Single Egn, F(12,316)

F(12,316)

"
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and the Single Eguation

Single Egn

587.5898
(566.7747)

-89.8988
(55.1419)

205.7050
(575.294)

~75.6943
(135.7505)

-0.1402
{(0.0274)

0.182x10-5
(0.6x10-6)

-3.0460
(6.4734)

0.0274
(0.0481)

4.8945
(0.9606)

-0.0023
{0.0007)

36.3512
(33.4791)

-1.1797

ken

the Model II, 1971
= 1) (y |
Single Egn Two Stage
1496.4514 839.732
(664.1467) (493.843)
-62.948 -112.064
(61.6013) (54.42009)
896.2939 -104.060
{605.2837) {491.017)
224.4905 8.5510
(155.0258) (116.298)
-0.2370. -0.1368
{(0.0728) (0.0241)
0.397x10—5 0.176x10~5
{0.4x10—5) (0.5x10—%6)
4.1735 3.2804
(4.9665) {5.1358)
-0.0218 -0.0163
{(0.0291) (0.0380)
8.4099 4.8126
{1.7937) (0.8318)
-0,0061 -0.0021
{0.0021) (0.0006)
-8,.1950 29.3953
{46.0873) (30.9769)
-0.4393 -1.0301
(1.7509), (1.5451)

in parentheses.

48.711

5.5301

(1.6528)



Variable Coefficient Asyn stdv Asym t-ratio
constant -2.42797* 0.74520 3.25817
BirthGap -0.41671* 0.09670 4.,30938
Wife wg 0.35486 0.54061 0.65641
(Wwife wg)2 -0.09620 0.11071 0.86890
Head inc 0.06513 0.04625 1.40828
(Head inc)?2 0.488x10—4 0.00135 0.03629
Unemploy 0.02830 0.01896 1.49258
(Unemploy) 2 -0.00046. 0.00031 1.48280
inc/need -0.02214 0.22531 0.69826
(inc/need) 2 -0.02807 0.03065 0.91577
Fecundit 0.28355% 0.05580 5.08141
(Fecundit) 2 -0.00735%* 0.00177 4,.14357

Log of likelihood function

-191.969 after 10 iterations.

* gsignificant in 95% under H: parameter estimates =

note:
1 Head inc

1 inc/need

1]

$1,000

1 (Head inc)2 =3$1,000,000

100 1 {inc/need)2 = 10,000

0.0



- — i i i

Probability Function Estimates of the Model II, 1968

Variable Coefficient Asym stdv Asyr t-ratio
constant -3.05536% 0.80555 3.79287
BirthGap -0.44861% 0.10617 4,22535

Wife wug 1.00167 0.60746 - 1.64835
(Wife wg)2 -0.22005 0.12970 1.69655

Head inc 0.11504%* 0.03902 2.94809
(Head inc) 2 -0.00055 0.000930 0.61233
Unemploy -0.01095 0.01661 0.65922
(Unenploy)? 0.00015 0.00022 0.66373
inc/need -0.33192 0.24118 1.37618
(inc/need)2  -0.00278 0.03091 0.08988
Fecundit 0.24864% 0.05810 4.27937
(Fecundit) 2 -0.00489% 0.00196 2.49738
Log of likelihood function = -176.713 after 13 iterations..

* significant in 95% under H: parameter estimates = 0.0

note:

$1,000 1 (Bead inc)?2 =$1,000,000

1 Head inc

1 inc/need 100 1 {(inc/need)?2 = 10,000



Probability Function Estimates of the Model II, 1963

Variable Coefficient Asym stdv Asym t-ratio
‘

constant -2.39040% 0.77684 3.077089
BirthGap -0.46689% 0.10790 4,32698

Wife wg 1.67102% 0.69282 2.41191
(Rife wqg)2 -0.3912§;1wA 0.15509 2.52292

Head inc 0.07168 0.03768 1.90244
(Head inc)2 -0.00032 0.00088 0.36407
Unemploy 0.05337* 0.02657 2.00867
{(Unemploy) 2 ~0,00109% 0.00054 2.03169
inc/need -0.48319% 0.20561 2.35006
{(inc/need) 2 0.02887 0.02326 1.24127
Fecundit 0.11981%* 0.05352 2.23850
(Fecundit) 2 -0.00025 0.00204 0.12416
Log of likelihood function = -174.969 after 20 iterations.

* gignificant in 95% under H: parameter estimates = 0.0

note:

1 Head inc = $1,000 1 (Head inc)2 =$1,000,000

1 inc/need 100 1 {inc/need)2 = 10,000



Probability Function Estimates of the Model II, 1370

Variakble Coefficient Asym stdv Asym t-ratio
constant ~-2.03529% 0.76525 2.65963
BirthGap -0.29682% 0.09165 3.23849

Wife vwg 1.25770 0.73180 1.71864
(Wife wg)2 -0.36765* 0.17337 2.12059

Head inc 0.08875 0.05830 1.52238
(Head inc)?2 -0.00170 0.00210 - 0.81031
Unemploy 0.00164 0.00909 0.18042
(Unemploy) 2 0.411x10-¢ 0.834x10~—+ 0.49300
inc/need -0,27551 0.15846 1.738689
{inc/need) 2 0.01443 0.01493 0.96648
Fecundit 0.07757 0.05195 1.49326
(Fecundit) 2 0.00157 0.00212 0.73948
Log of likelihood function = -172.197 after 15 iterationmns.

* gignificant in 95% under H: parameter estimates = 0.0

note:

il

1 Head inc $1,000 1 (Head inc)2 =%$1,000,000

]

1 inc/need 100 1 {inc/need)? = 10,000



e ——————

Variable Coefficient Asyn stdv Asym t-ratio
constant -1.29702 0.72143 1.79768
BirthGap -0.19225% 0.07349 2.61615

Wife wg 0.21367 0.71663 0.29816
{(Wife wg)2 -0.10158 0.17430 0.58281

Head inc 0.15931% 0.07094 2.24571
(Head inc)2 -0.00592 0.00315 1.87641
Unemploy -0.00493 0.00689 0.71503
{Unemploy) 2 0.340x10—% 6.459x10°4 0.74210
inc/need -0.18304 0.15392 1.18917
{inc/need) 2 0.00748 0.01437 0.52037
Tecundit 0.04998 0.04688 1.06614
(Fecundit) ? 0.00228 0.00206 1.10551
Log of likelihood function = -180.441 after 11 iterations.

* gignificant in 95% under H: parameter estimates = 0.0

note:
1 Head inc = $1,000 1 (Head inc)2 =$1,000,000
1 inc/need = 100 1 (inc/meed)2 = 10,000



Chapter VIII

Conclusion

The proposed basic model, which involves discrete and
continuous dependent variables, is estimated by separating the
model into a simple regression model and a probability equation
model., The regression model can be estimated by ordinary least-
squares. It is suggested that the probability eguation model be
formulated as a 1logistic function.and estimated by using the
maximum likelihood methcd. While the basic model 1is extended
into a system of equations, it can be separated into a system of
regression egquations and a system of logistic equations. .The
system of Tegression equations can be estimated by Zellner's two
stage method in order to gain efficiency. The probability model
can be estimated by the method of Nerlove and Press. It is
interesting that, this basic model <can be extended by
considering the correlation of disturbances in the regression
equations, .to be a model with constraints, to be a model with
jointly dependent discrete variables, or to be a simultanous-
eguation model. Those extended models are solvable. One
extension of this model, which has not been solved with
verification, 1is +the recursive model. The basic model is more

common in social science, although there is not much literature.

The economic model in this thesis is a study on the 1labour
supply of American married women from 1967 to 1971. We find
that the number of hours worked by married women is affected by

the age of their youngest child very much, and slightly by their
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head's income. There is some effect from other social factors,
such as the head?s unemployment, and the ratio of 1incomes over
needs, yet the significance of these factors varies from year to
year. The birth gap has a significant effect on the probability
of the wife having a <c¢hild  not older than & years of age.
Therefore, the results tell us that the married woman's role in

the labour market is quite dependent upon her family planning.
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Appendix A

Least-Squares Estimation

Here we follow all the notations defined in chapter 2.

Therefore the conditional regression will be written as

following:
[Y?,Y2]) = [X?,X2] ¢B 04 + [u,v]
: 10 B4 We
will call ¥ = [¥Y?*, Y23, X = [X1,X2], and E = ([u,v]. Fronm

generalized multivariate regression!, we know

A+ = (X'X)-1X'Y

(X'X) = ¢(X1)'4[X2 X2] = ¢(X1)' (X}) 0 4
L(X2) 4 ¢ 0 (X2) * (X2)4
(X'X)=1 = o (x1ex1)-3 0 .
L 0 (X21X2)~14
so
:rA* 0 q = ‘-(Xl'xl)—"1 0 1 ,—X“Yl 0 1
L Q) B+ L 0 (X21x2)—11 » O X2ty21
Hence,
A+ = [X1tX1}-1(X1) 1yt
B+ = [X21X2]-1 (X2)'y2
Cov+ (u,v) = gVar#(u) 0 + =E+E+t/qn
i 0 Vart(v)4
Since,
E+ = {Y1-X13%+ Y2-X2B+]
then,

Cov¥ (U, V) = 1g(Y1-X1A+) ' (Y2-X1A+) (Y1-X1A+)" (Y2-X2B+),
nt(Y2-x2B+) ¢ (Y1-X1A+) (Y2-X2B+)? (Y2-X2B+)4

= ¢ (Y1-X1A+)? (Y1-X21A+)/n 0 1

L 0 (Y2-X2B+) ' (Y2-X2B+) /nd

For unbiased estimators of Var+{U) and Vart+(V), we have
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Vart(u) = (Yi-X1p+) 9 (Y1-X21a+) / (nl1-k)
vart(v) = (Y2-X2B%*)? (Y2-X2B+)/ (n2-Kk)
where"ni is the total number of observations when z=1; n2 = n-
nt,
Footnote
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Appendix B

Likelihood Ratio Test for Micro Regression

Coefficient Vector Equality

1 d
Under the hypothesis of chapter 3, H: S =.+e= S , The

systemn of equations can be written as

r¥iq = X130 + (UL,

gn | 40! l‘ '

'. ‘ IO ' l' ‘

b« | le | fs |

| di | dli 1 di

1Yy 4 LY 4 Lty 4
or,

Y¥ = X*W + U= (B1)
We define a transformation T, such that E (TU*U**T') = var (U%)I.
Let TY* = YO, TX* = X0, and TU* = U090, Then the 1likelihood
function, L{U9), under the hypothesis is
-dk,/2

L(U*) = (2 var (U9)) exp(-U0rUo/ (2var (u))) (B2)

The maximumr likelihood estimators for equation (B1) are

Vart (H*) = [JOo+1? UO+/dk

(YO-XO0W#t) v (YO-XO0y+) sdk
and

§+ = (X01x0)—1x0ryo

Hence if we rewrite eguaéion {B2) in terms of these estimators,
then

w

-dk/2
L(U¥+) = (2 var#*(U¥)) exp (-dk/2)



Likevise,

3 by

U+ then

5o, the

or,

-dk/2
L(UY) = (2 Var(Uu+)) exp (-dk/2)

estimated likelihood ratio, r is

a}
]

L (U*¥) /L (U¥)
-dk/2
[Var* (u*)/vVar+ (u) ]

-2log{r) = dklog[ Var+*{u¥*) /Var+(u) ]

Which is asymptotically distributed as Chi squares

degree of freedon.

91

we transform the variables in equation (1) of chapter

T and express the maximum likelihood function in terms of

with (d-1)n



Appendix C
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Parameter Estimates for Labour Equation 1967 - 71

When unenmployment of the head was considered

relationship

without (Unemploy)2

as a linear

annual hours worked by the wife in the

regression model, we found that they are negatively correlated.

He tabulated the results of model I as following:

Variablse

constant

BirthGap

Wife wug

(4ife wg)?2

Head inc

(Head inc) 2

Unenmnploy

inc/need

(inc/need) 2

Fecundit

(Fecundit) 2

observation

R2

Group I
(ylz=1)

1728.3230
(4.0485)

-42.8763
{(1.7460)

-714.5180
(11.0354)

192.8221
(15.6143)
-0.2069
(217.8773)

0.2892x10-5
(97.1418)

-0.2405
(0.0486)

6.5660
(78.8038)

-0.0040
(19.0210)

-13.2484
(0.4368)

-0.5110
(0.5569)

885
0.2521

Asymtotic t values are in parentheses.

Group I1I
(y it z=20)

478.4102
(1.2482)

-36.5538
(2.8869)

360.3229
(3.0861)

-113.3932
(6.6019)
-0.1740
(182.9149)

0.2337x10—5
(52.2186)

-2.5008
(4.7875)

6.1298
(207.5199)

-0.0032
(77.3457)

43,1432
(9.7703)

(10.9088)

815
0.3197
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