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ABSTRACT

This study consists of several theoretical investi-
gations which bear on the question, “How similar may competing
species be and still coexist?" It evaluates two previously
suggested generalities, and suggests several factors which
are important in determining the limiting similarity of
competitors in a particular type of community.

The first part is a study of the limits to overlap
in resource utilization for competitors which are linearly
arranged. The question of whether there is a limit to the
similarity of species competing on a one-dimensional resource
axis has previously been investigated by a number of authors.
These studies have all used the Lotka-Volterra model of com-
petition, and have assumed that the competition coefficient
% 5 may be calculated using MacArthur and Levins' (1967)
expression,

| JUi(R)U.(R)dR
. Oess = J
| N o)) e

where U;(R) is the resource utilization curve of species i.

The generality of this formula is questioned, and two
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alternative expressions for aij

expressions are used in an analysis of limiting similarity,

are proposed. When these

qualitatively different conclusions emerge regarding the
existence and nature of this 1imit. The two alternative
formulae considered suggest that under some circumstances

very high overlap is possible in a linear array of competing
species. The available experimental eVidence does not strongly
support the validity of MacArthur and Levins' formula for a.,..

1]
Since a given method of calculating a,. must be derived from

1]
a higher level model, it is suggested that the Lotka-Volterra
model is not sufficient in an investigation of limiting
similarity. Different assumptions about the nature of the
resource utilization curves result in major differences in
the 1imiting similarity. If the resources at a given position
on the resource axis consist of a number of resource types,
it seems likely that very close species packing should be
possible.

The second part investigates the question of whether
several forms of environmental variability will limit niche
overlap in a group of competing organisms. A simtGlation
methodology was used to answer this question for the Lotka-
Volterra model of competition. The basic result of this
analysis is that systems where competition coefficients are

relatively high can tolerate nearly as high a level of environ-

mental variability as systems where niche overlap is low if,

iiid



(i) environmental variability means variation in the supply
of the resource for which the animals are competing, or
(i1) there is a high level of correlation in the fluctuations
in the rates of increase of different species (which, in turn,
will be the case if the competitors share the same predators
or have similar tolerances to physical stresses in the
environment). High levels of variability may preclude the
persistence of systems with a high level of competition when
variations in the per capita rates of increase are uncorrelated
or negatively correlated, or when increased variability is
corre}ated with a lower average per capita rate of increase.
The third chapter develops and analyzes a simple
model of exploitative competition in which the resource
consumers do not influence the rate at which resources
become available to them. The goal of this analysis is to
determine what factors allow relatively high (or low) resource

overlap among competitors. The basic results are that:

(1) The maximum overlap which will alflow coexis-
tence of two species, one of which has a slight competitive
advaﬁfage, is usually greater when exploitation is efficient
(i.e. when a large fraction of the resources entering the
system are consumed when the consumer populations are at

equilibrium).

(2) The effect of density independent predation

on this type of system is always fto increase the niche

iv



separation necessary for coexistence, and thus to decrease
species diversity. Predation increases the intensity of
competition and decreases the maximum overlap consistent

with coexistence for a pair of species. Environmental
fluctuations which result in a reduction of population levels

will have a smmilar effect.

These results appear to be fairly general, so it would be
desirable to try to determine whether the basic assumption
of the model is actually met in those natural systems where

it seems plausible.
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GENERAL INTRODUCTION

Ecologists have long recognized that competition
is an important factor structuring natural communities.
Specifically, competition sets Timits to the similarity of
competitors, since it is unlikely that two species with very
similar resource utilization patterns will be able to co-
exist. . This investigation attempts to examine this phenomenon
in a more quantitative manner using simple mathematical models.

More specifically, it is concerned with the following questions:

(1) What is the nature of the limiting
similarity of species which parti-
tion resources in a one-dimensional
manner?

(2) Does environmental variability set a
[imit to the overlap in resource
utilization of competing species?

(3) Under what biological circumstances

(e.g. intensity of predation, level

of environmental variability, envir-
onmental productivity) will relatively
large overlap in resource utilization
of competitors be likely?

Each of these questions is investigated using simple
mathematical models of competition. A complete answer to
any of the questions would require a study of a larger array

of models than is practical for a single individual. In



fact, the range of biologically possible communities is such
that it is doubtful that it will ever be possible to give an
answer to these questions that is valid for all cases. The
present findings are necessarily somewhat limited by the
range of models examined. Thus, conclusions are suggestive
rather than definitive.

The emphasis throughout is on simple models. This
stems from the conviction that, despite the complexity of
most ecological systems, an understanding of real communities
must be based on an understanding of simple models. A complex
simulation model of a specific system may reveal, for example,
that the maximum overlap in resource utilization of competitors
is not altered by an increasing variance in the food supply.
The same phenomenon might be suggested by measurement of
niche overlap in a series of communities which differ in
the variance of the food supply. However, such a study would
contribute 1ittle to the understanding of similar systems.
Would the same conclusions hold if some resource other than
food was varying? Would the conclusions be valid for organisms
with significantly different age structure? Without a study
of models on a simpler level, even tentative answers to
these sorts of questions cannot be supported. Thus, it would
not be possible to say very much about the generality of
the finding.

The present study is concerned both with the

existence of general patterns and with the explanation for



differences between communities. Previous theoretical studies

(e.g. May, 1973a) have suggested two genéra] results:

(1)

(2)

Species which partition resources in a
one-dimensional manner must have utili-
zation curves which are separated by a
distance equal to the standard devia-
tion of the curves.

Overlap in resource utilization by
competitors can be greater in less
variable environments.

The first two parts of this study are concerned with inves-

tigating the validity and range of applicability of these

generalizations. The third part then analyzes a simple model

of exploitative competition to suggest possible reasons for

the differences in the degree of resource overlap that has

been observed in groups of competitors (Schoener ,1974b).



Chapter 1

LIMITING SIMILARITY AND THE FORM OF THE
COMPETITION COEFFICIENT

INTRODUCTION

Beginning with Lotka, Volterra, and Gause, most
ecologists have held the view that extremely similar organisms
cannot coexist for long periods of time. It has not, however,
been until fairly recently that there has been a more quan-
titdative attempt to détermine how similar competing organisms
may be and still coexist in an equilibrium community. The
motivation for this line of 'study stems largely from Hutchinson's
(1959) observation that in several genera, sympatric species
form seqﬁences in which each species is about twice as
massive as the next. This led  to the conjecture that com-
petition may have resulted in this pattern. Several recent
studies have suggested that there is, in fact, a 1imiting
similarity of competing organisms, or that very high overlap
in resource utilization among competitors is unlikely if
not impossible (MacArthur and Levins, 1967; May and MacArthur,
1972; May, 1973a, 1974aj. Although thése studies have used.



different lines of analysis, they all reached approximately

the same conclusion; that for species competing on a one-
dimensional resource axis, there is a 1imit to similarity
corresponding to a pattern where the means of adjacent species'
resource utilization curves are separated by a distance
approximately equal to one standard deviation of the curves.
The terminology of this statement will be explained later,

but qualitatively, it prohibits -high overlap in resources

used by competitors which segregate'along some linear dimension
(by taking foods with different mean sizes or foraging at
different average heights, etc.).

May (1973a) has summarized much of the experimental
evidence which bears upon this contention. This evidence
will be discussed in more detail later, but there are at
least several cases where groups of competitors seem to be
close to the limiting similarity suggested by these authors.
On a more qualitative level, studies of the resource utiliza-
tion of closely related sympatric species have generally
revealed a high degree of resource partitioning (Schoener,
1974b).

Granting that resource partitioning is the result
of interspecific competition there are still at least two
possible mechanisms which may account for it. The observed
segregation may be close to the minimum consistent with
persistence of all of the populations. Alternatively, par-

titioning may be much greater than the minimum possible,



and may be due to selection for the avoidance of competition.
Before the cause of existing patterns of ecological segre-
gation may be determined, it is necessary (among other things)
to know the precise nature of the limits to simi]afity'set

by competition.

Since all of the previous studies regarding limit-
ing simi]arity (MacArthur and Levins, 19673 May and MacArthur,
1972; May, 1973a, 1974a;RRoufhgarden, 7974 )hhave at Teast two
common assumptions, it seemed worthwhile to examine the
effects of relaxing those assumptions. A1l of these studies
have been based upon the Lotka-Volterra model of competitive
interactions, although there have been several studies sug-
gesting that this model may not be a good description of the
population dynamics of .at least some groups of competitors -
(Wilbur, 1972; Neill, 1974). Whether a limiting similarity
may be derived from other models 6f competition will be the
subject of a later study. The current paper is concerned
with the second assumption; that the competition coefficient

%5 in the Lotka-Volterra model may be estimated by

[u; (v, (R)aR
Oy: = L J (1)
Ny r)) PR

where Ui(R)‘is a curve plotting the probability density that
a unit of spécies i's resources has come from position R
on the resource axis. By examining the effect of relaxing

this assumption, the current study should suggest something



about the generality of the previous result that utilization
curves must be separated by a distance equal to their standard
deviation.. If the result is not completely general, this
analysis should suggest what circumstances might permit
greater overlap.

The first section of this paper re-examines the
rationale for-using MacArthur and Levins' measure. The second
section presents and justifies two alternative formulae for
the competition coefficient, and the third section looks at
the effect that these alternative formulae have upon the
existence and nature of a limiting similarity. The paper
concludes with a review of some field evidence and a discussion
of the type of models which are 1ikely to be valuable in

studying limiting similarity.

MacArthur and Levins' Method of Calculating % 5

Formula (1) was originally proposed by MacArthur
and Levins in 1967. Before discussing the validity of their
estimate of the competition coefficient, it is first neces-
sary to explain the underlying model upon which it is based.
Most theoretical work dealing with limiting simi]arity‘has
concerned organisms which are characterized by the shape of
their resource utilization curve and by the position of that
curve on a one-dimensional resource axis. A resource axis

is a linear ordering of resource types for which the species



are competing. As noted above, the utilization curve of
species i is defined at each position R on the resource axis
as the probability density that a unit of ‘the resources con-
sumed by species i came from position R on the resource axis.
Although it is common in the 1iterature to speak of
the utilization curve as being a characteristic of a species,
such curves actually reflect the relative abundances of dif-
ferent resources as well as the species' ability to consume
a given resource. Since competitors alter the relative
abundances of resources, a given species' utilization curve
will generally change in the presence of competitors. It
is therefore convenient to spécify that utilization curves
be measured in the absence of competitors. In addition,
since the utifization curves are a function of the resource
availabilities in a given environment, it only makes sense
to ‘analyze competition in a specified environment. If
resource availabilities vary spatially or temporally within
that environment, utilization curves may be taken to be
averages over time or space. A gi?en shape of the utilization
curve may arise in a number of ways. Take the case of an
assembly -of insectivorous competitors and a resource axis
of food size. There are genera]}y a large number of dif-
ferent types of inseétﬁiof any given size. A low value of
U(R) may be the result of the insectivore eating only those

few species -of insects of size R which are easiest to catch



and consume, and ignoring all other insects of that size
(this will later be referred to as a type one utilization
curve). Alternatively, the consumer may accept all of the
insect species of size R, but be relatively ineffective at
catching insects of this size relative to other sizes (a type-
two utilization curve). Many intermediate cases are, of
course, possible. N

In speaking of a resource utilization curve as a
characteristic of a species, it is also implicit that the
population is relatively uniform in terms of resource utili-
zation patterns. If, for example, resource utilization were
a function of age in two populations, a given amount of
overlap could have greatly different meanings depending upon
the age specific pattern of uti]ization in the two species.

In general, utilization curves are only very crude
descriptions of a species' resource utilization pattern.
Such alcrude description may be inadequate in some cases.
This paper is mainly relevant to species which have reasonably
well defined resource utilization curves, are similar in
their general ecology, which compete only by using common
resources, and whose resources do not interact strongly with
each other.

MacArthur and Levins' original justification of

"

expression (1) was as-follows:

Basically, to compete for space, individuals
of species 1 and 2 must confront one another
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and hence be present simultaneously.
Similarly, when resources are rapidly
renewed, individuals only compete if they
are present within a short time of each
other. In either case (expression (1))
measures the relative probability of the
simultaneous presence of species 1 and
species 2 compared to species .1 and
species 1. Hence it measures «a.

If resources are renewed immediatély, resourcé supplies
will play no role in population regulation. Hence there will
be no exploitative competition. If resources are not renewed
immediately after being consumed (and this seems to be gen-
erally true) it is possible for one species to reduce the
resources available to a second species while never meeting
an individual of the second species. A food item eaten by
species one is no longer available to be eaten later by species
two. There is no necessity for the two species ‘to be present
in the same place withinaasshort timec6fzeachcother in order
for competition to occur. This is especially clear if the
resources are mobile.

| If space is being competed for, MacArthur and
Levins' argument may be more reasonable, but there are still
difficulties. Organisms which compete for space do not
continuously search for space; generally they settle into
an adequate habitat and remain and grow there, so that the
amount of time an organism spends in a habitat and its
growth rate and the dispersal of its progeny are important.

in determining the competition coefficient.
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MacArthur-(1972) and Schoener (1974a) have later
suggested that formula (1) may be justifiable since it can
be derived from a more explicit model of competition sug-
gested by MacArthur (1968). This model consists of differ-
ential equations specifying the rate of change of the competitor
and resource populations. Using Schoener's notation (1974b),

these may be written,

dN_i m
qT RiNi'[E a5kPikFk 01]1 i=1,c00,n
dF r F? n
k = k k = e e
T - vk K - Fo 2 ag Ny k=l,eem (2)

where bik‘represents the net energy per item of resource k
extractable by an individual of competitor 13 s is a con-
sumption rate of resource k by species 1i; "y and'Kk-are the
intrinsic rate of increase(and the carrying capacity of
resource k in the absence of the competitor populations;

Ci is the per-individual cost of maintenance and replacement
of competitor i; and R, is the number of individuals of .
competitor i that can be produced per unit of assimilated
energy. N is the competitor pqpu]ation density, and F ‘is
the resource density. An expression for a may be derived

by assuming that all populations have non-zero equilibrium’

values (unfortunately, they do not always), solving for the
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equilibrium resource abundance, and substituting this expres-
sion in the equation for the rate of change of the competitor
populations. If all of the resources have the same K, r, and
b, and utilization curves are measured when the species are
allopatric, then the expression for a réduces to expression
(1). Unfortunately, no natural system described in the litera-
ture consists of predators which eat a variety of prey, all
of which renew logistically. In fact, Schoener's 1973 study
indicates that logistic growth may be less common than is
usually supposed. When this basic requirement for logistic
resource growth is coupled with the conditions of equal K, r,
and b, and the further assumption that none of the resources
go extinct with the addition of a competitor, it begins to
appear that expression (1) may not be of very broad applic-
ability. In addition, MacArthur's derivation assumes what
was referred to earlier as a type two utilization curve,
which means that all of the resource types at any.position on
the resource axis are consumed at equal rates.

In spite of‘these arguments, it is possible that
MacArthur and Levins' formula is approximately correct for
some cases. The point being made here is simply that it is
unlikely ‘to be adequate to describe all or even most instances’

of competition.
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Other Measures of'aijv

In this section we will derive two alternative
expressions for the competition coéfficient dij' The first
will be derived by assuming_a model similar to the MacArthur-
Schoener model presented above, but assuming type one utili-
zation curves. The second expression will be derived by
approximating a different model of interspecific competition
by a set of Lotka—Volterra gquations at the equilibrium point.
These two examples certainly do not exhaust the range of
models for which it is possible to derive a competition co-
efficient. They do, however, serve to show the range of
expressions which may arise from different assumptions.

The assumption that all of the prey populations
grow logistically, and the other assumptions of the MacArthur-
Schoener model may not be very general. Neverthe}ess, this
is the only model of exploitative competition which, to my.
knowledge, results in Lotka-Volterra behavior (the per capita
growth rate of one species is a linearly decreasing function
of the population density of the other species and of its
own density). For this reason, it is worthwhile to analyze
it further. The version of this model discussed in the
previous section assumed‘that utilization curves were the
result of different consumption rates of resources at dif-
ferent poisitions on the resource axis. In most ' natural
systems, however, there will also be differences in the number

of resource ‘types taken at each position on the resource axis.
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Take, as an example, two species which partition food resources
by size. Each food size consists of a number of different
types which differ in pa]atébi]ity or ease of capture. Since
partitioning is assumed to be on the basis of size alone,

the vranking of food items of ‘a given size in terms of ease

of capture is the same for both competitors. The species

with smaller mean food size will take only those large food
items which are easiest to capture, but it may take them at

the same rate as the larger species (which takes a greater
number of Tlarge food'types). Similarly, the larger competitor
takes only those small food types which are easiest to capture.

In this situatiqn, the food taken by oneée competitor
may be divided into two classes; those which are shared with
the other species, and those which are not. If it is assumed
that the two competitors take approximately the same total
amounts of food, the fraction of the total resources used
by one of the species which are shared with the other species.
will be proportional to the area in common under the two
utilization curves.

The competition coefficient then can be calculated
in basically the same manﬁer as described before (or see
MacArthur,.1972). The result is that (if all resource types
have the same K, r, and b), the competition coefficient is
equal to the area in common under the two utilization curves.

Denoting this area by A,, the first alternative expression

for o is
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a = Ag (3)

Roughgarden (1972) has previously proposed that the
competition coefficient could be estimated by the area in
common under two utilization curves, although he did not
fully exp}ore the consequences of that assumption regarding
limiting similarity. It is probable that most utilization
curves are intermediate between type one and type two. Not-
only will compeﬁftors take fewer food types far from the
optimum size, but they will probably consume those food
items at a lower rate than those near the optimum of their
utilization curves.

It should be noted that expression (3) is not fun-
damentally different from expression (1). If U(R) is defined
in terms of resource type, rather than resource at a given
position on the resource axis, then formula (3) has a similar
form to formula (1)ﬂ Here U(R) .is assumed to take on a
certain positive value (for those types which are consumed)
or zero (for those types which are not), with no intermediate
values. This is analogous to the case of rectangular utili-
zation curves,»discussed later.

If the MacArthur-Schoener model were the .only
second level model of exploitative competition to which
conclusions derived_from Lotka-Volterra equations were
relevant, then these equations would be of very limited

value in analyzing exploitative competition.  However, several
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authors (e.g. MacArthur, 1972; May, 1973a) have argued that
conclusions derived from analyses of the Lotka-Volterra
equations may apply to a much wider class of models. The
Lotka-Volterra model then represents the first term in a
Taylor Series expansion of the alternative model about its
equilibrium point. Our second formula for the competition
coefficient is derived assuming a model of exploitative
competition which does not result in Lotka-Vo]terra behavior,
and then approximating this model by a Lotka-Volterra

model at the equilibrium point. Of course, if one were
interested in the limits to similarity in the original
model, that model should be analyzed directly, rather than
determining the limiting similarity for an approximation,
At present, however, we are concerned with Lotka-Volterra
systems.

This second alternative formula for o 5 also
assumes that utilization curves are of type one. Therefore,
resources may be divided into exclusive and overlapped
classes. The fraction of the total resources taken by a
species which are in the overlapped classes is equal to the
area in common under the utilization curves of the two
species. Resources do not, however, renew logistically.
Instead, it is assumed that resources are supplied at a

rate which is independent of the level of exploitation. For
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this sort of situation Schoener (1973) has proposed the

following model:

I
dN; _ 5. Ey Io .
dt'_ RINI[Nl * N1 + N2 - CIJ
Nz _ g,N £ + Lo _ ¢, (4)

where R is the number of‘individua1s produced from a unit of
energy. C is the energy cost of maintenance and replacement’
of an individual. IE is the energy extractable from a con-
sumer's eXc]usive resource per unit time, and I,.is the
energy that individuals of a competitor species can extract
from resources used by both species (per unit time). It

is assumed here that individuals of the two species exploit
the overlapped resources with equal efficiency; Also, for

mathematical convenience we assume that IE2 = I. , Ri = Rg,

E,
and C; = C,; i.e. that competition is symmetrical.

If the population densities of either species
become very low, this model becomes unrealistic, since a
very small population would be unable to exploit the same
amount of resources as a large population,vwas implied by
t4). However, the model may be anpaccurate description of

many systems in a large neighborhood around the equilibrium

point.
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To approximate this system by a set of Lotka-Volterra

equations, a is calculated according to the following formula:

d(per capita growth rate of species 1)
012 = d N, (5)
diper capita growth rate of species 1)||~ ~
d N, J IN1N2

~ A

where N; and N2 are the equilibrium levels of the two popu-
lations. The competition coefficient a1 thus measures the
effect of species 2 on species 1 re]ative to the effect of
species 1 on itself. The details of this calculation are
given in Appendix I. The result is that'a;z = To/(8Ip + Io).
Equivalently, o = Ao/(4AE + A,) where Ay is the area in
common under the utilization curves of the two species and

AE is the area under one curve but not the other. Since the
curves are normalized, AE =1 - Ay, and the above formula
becomes

OL'IJ = AO/(4 - 3A0) (6)

The remainder of this study examines the different
consequences that expressions (1), (3), and (6) have regard-
ing the existence and nature of a limiting similarity.

Before proceeding it should be noted that formulae (1),

(3), and (6) all assume approximately equal harvesting
efficiencies of the competitors. This results in an upper
bound of one for the competition coefficient and a symmetrica]

competition matrix (“15 = “ji)f
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There are two basic lines of analysis which argue
for the existence of a limiting similarity. The first sug-
gests that there should be a 1imft to the overlap of com-
petitors even when there is no environmental variability,
while the second argues that it is environmental fluctuations
which Timit overlap. Limiting -similarity in constant environ-

ments will be discussed first.

Limiting Similarity in Constant Environments -

MacArthur -and Levins' Theory

In 1967 MacArthur and Levins suggested that the’

similarity of competitors was limited because of both of the

following factors:

(1) tnvasion by a third species between
two resident species on some resource
axis becomes impossible if the overlap
between the residents is great enough,
and the carrying capacity .of the invader
is not greater than that of the residents.

(2) |f the species in a three species com-
petitive guild have high enough ovérlap,
there will be selective pressures for
tThe inner species in the array to con-
verge toward and eliminate one of the
outer ones.

As was mentioned earlier, these arguments were

made on the basis of a study of a Lotka-Volterra system and
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the assumed formula (1) for the competition coefficient.
We begin by re-examining their first argument.

The condition required for the successful invasion
of a third species midway between the two resident species

on a resource axis is that
a(2d) - (2/(K2/K))a(d) +1 >0, (7)

where 2d is the distance on the resource axis between the

two resident species, Kz is the carrying capacity of invader,
and K is the average carrying capacity of the residents.

We will begin by considering the case where the carrying
capacity of the invader is equal to that of the residents.

In this case the above requirement translates into
S L(d) = 2a(d) /(1 + a(2d)) < 1. (8)

MacArthur showed that if expression (1) is assumed for a

and the utilization curves are normal in shape with a
standard deviation of w, the function L(d) is greater than
one if the distance between the resident species is greater
than 1.56w. Morerrecently Roughgarden (1974) has calculated
this limiting value for a wider family of utilization curves,
and has found that closer packing is possible for more
leptokurtic curves (curves with thick tails and thick peaks

relative to the normal curve), but that there is st-11 a
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limiting value for the case of equal carrying capacities.
Thus, the assertion that there is a 1imiting similarity
under this assumption of equal carrying capacities does not
appear to be sensitive to changes in the shape of the utili-
zation curves. It is, however, sensitive to the assumption
that o is given by (1).

In Appendix TTzit is shown that any function a(d)
which is concave upwards will not result in a limit to the
similarity of competitors with equal carrying capacities,
and that expression (3) and (6) both result in a(d)‘being
concave upward. However, the validity of MacArthur and
Levins' theory depends on both halves of their argument, and
the second half appears to be invalid regardless of which of
the three formulae is assumed for a.

MacArthur and Levins argued that a species which
had a high enough carrying capacity to invade between two
residents would converge towards and eliminate one of the
residents. In fact, as is shown in the next section, if
the resident species are separated by significantly Tless
than d/w = 1, an invader with a largevenoligh carrying capacity
to invade successfully s likely to eliminate both resident
species without any convergence. Even if there were some
selective pressuré for convergence, a very small shift would
~generally be sufficient to result in exclusion of one of |
the residents. In addition, the argument is suspect on

other grounds. It assumes that position, but not shape of
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a utilization curve 1is evo]utionarf]y flexible. It assumes
that the positions of the residents* utilization curves are
fixed, but not that of the invader. It also assumes that
the carrying capacity is independent of the position-on the
resource axis, and that competition is the only selective
force acting upon the position of the invader's utilization
curve.

Finally, it is possible to examine the effect of
the competition function on MacArthur and Levins' argument,
granting the questionable assumptions. Although they did
not present their analysis very explicitly, it appears that
they assumed that the evolution of the invader occurred
when its population was small relative to that of the resi-
dents. Then, if the invader occupies a position a distance
x from one of the residents, and a distance 2d-x from the

other, its per capita growth rate may be written as

F(X) = K, - OL(X%K-I-‘*'d%ég(;—X-)'KV (9)

If this expression is unimodal and has a maximum at x = d,
then there will be no selective pressure for convergence of
‘the invader toward one of the resident phenotypes. Dif-

ferentiating (9) one obtains
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F'(X) = Wm 'O(,"(X) + o'(2d - x) !, ' (]0)

which clearly vanishes at x = d. Since a(x) is unimodal,

there are no other zeros. The second derivative is,

P00 T Tyt (0 - et(2d - 0. (11)

The second derivative of F(x) will be negative, and x = d will
be a maximum if the second derivative of o(x) is positive.
Thus, MacArthur and Levins' second argument, which has more
recenﬁ]y been reiterated by Cody (1974), also depends upon

the formula assumed for o. Expressions (3) and. (6), which
generate o(x) curves which are concave upwards, would not
suppoft the argument for evolutionary convergence.

Invasion of a third species into a two species guild
will always be possible if its carrying capacity is high enough
regardless of the formula used for LIER Therefore, MacArthur and
Levins' analysis does not justify the existence of a limiting

similarity.

Limiting Similarity in Constant Environments -

May's Theory

Although most of Robert May's work deals with
limits to similarity in fluctuating environments, he has also
advanced a Tine of argument to suggest that overlap may be

limited in deterministic systems as well (May, 1973a, 1974a).
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Briefly, his argument is that if overlap is high, the shape
of the resource spectrum (which reflects the relative abun-
dancés of resources at different positions on the resource
axis) must lie within very narrow limits for the species in a
competitive guild to coexist. This implies that high overlap
is very unlikely, although not impossible.

The argument can best be illustrated by studying a
three species system, since some of the arguments made earlier
will apply here as well. Assume that K; = K3 (the resource
spectrum is symmetrica]), and that the second species (with
carrying capacity K,) is located midway between the first

and third. Then the equilibrium populations are given by

ﬁ1 = Ns = bz Koo ld) 2
- 1 + a(2d) - 2(a(d))
oK Koa(2d) - 2K a(d) - (12)

1 + a(2d) - 2(a(d))?

The requirement that these populations be positive leads to

the following criterion for a stable three species equilibrium:

[1 . a(Zd)]/Za(d) s Ki/Ks > ald) (13)

Figure 1 (after May, 1973a) illustrates this criterion for

normal utilization curves, assuming expression (1) for a.
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Figure 1. The ratios of K,/K, which allow a stable
three species community, calculated using
MacArthur and Levins' expression for a,
and plotted as a function of the separation
of neighboring resource utilization curves.
The permissible ratios lie between the two
curves. Utilization curves are normal in
shape.
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For d/w less than 1, it is clear that the ratio of K;/K, must
fa]] within very narrow bounds for there to be a stable
community.

Similar results can be obtained for systems with more
species. For the case of a four species guild where K, = K,
and K, = K3, the criterion for a stable community works out

to be

1 + o(3d)

K1 S ('X.(d) +
a(d) + o(2d)

Ky a
K2 1 + O(.(d

, - (14)

>

2d)
)

This is illustrated in Figure 2, again assuming normal utili-
zation curves and formula (1) for a. The results here are
quite similar; the ratio of Kl/KZ must lie within narrow
bounds for a stable community if d/w is much less than one.
These results have already been illustrated by May (1974a).
If one regards differences in the carrying capacity
to be due to differences in the resources available to the
competitors (as does May), then Figures 1 and 2 are rather
misleading. This is true because, as overlap between adjacent
species becomes greater, the chance that one species will
have a larger amount of resources available to it decreases.
In the case of 100% overlap, the two carrying capacities must
be equal if carrying capacities are determined solely by
resource availabilities. Thus, although the range of per-
missible carrying capacity ratios becomes smaller as overlap
becomes gréater, the range of possible ratios becomes smaller

as well.
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The ratios of K;/K, which allow a stable,
symmetrical four species community, calculated
using MacArthur and Levins' expression for o,
and plotted as a function of the separation

of neighboring resource utilization curves.

-The permissible ratios 1ie between the two

curves. Utilization curves are normal in
shape.
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The carrying capacities may also differ due to a
difference in the efficiency of the two species in converting
resources into individuals (the parameter Ci in the two
models noted earlier (equations (2) and (4)). Two Species
may differ significantly in efficiency even though they
exploit the same resources. Therefore overiap of signifi-
cantly less than d/w = 1 is indeed unlikely if utilization
curves are normal and expression (1) is used for o. To give
a more quantitative meaning to the limiting similarity it is
poésib]e to define this entity as the value of d/w for which
the range of permissible carrying capacity ratios first
attains a given (small) value.

Before the 1imit of d/w =1 s accepted as being
generally applicable, however, it is necessary to determine
wHether the result is altered either by the shape of the
utilization curves or the formula assumed for a. Therefore
the criteria for stability for three and four species systems
(expressions (13). and (14)) were reexamined for utilization
curves which were rectangular and curves which had the shape
of back-to-back exponential decay curves (Laplace distribu;
tion curves) using formula (1) for o. In addition, all
three utilization curve shapes were studied using expres-
sions (3) and (6) for a. The results are shown in figures
3 through 6.

Figures 3 and 4 show that if expression (1) is
valid, tighter species packing is possible either for curves

which are leptokurtic (sharp peak and thick tails), or for
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Figure 3. The ratios K;i/K, which allow a stable three
species community with Laplace distribution
utilization curves, assuming MacArthur and
Levins' formula for a.



§'¢

|
eplz

l
98L° 1

i
PIL'D

f
LSE' D

0’0

3.8

0.4

0.0



30=a

Figure 4. The ratios K;/K, which allow a stable three
species community with rectangular utilization

curves assuming MacArthur and Levins' formula
for a.
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curves which are platykurtic (broad peak and thin tails) relative
to the normal curve (the former result has previously been noted
by Roughgarden (1974)). In this and subsequent figures only

the three species case is illustrated, since results for the four
species community are very similar.

For the case of rectangular utilization curves there is
no value of d/w below which the range of permissible carrying
ratios rapidly becomes very small. However, it is still possib1e
to define the limiting similarity as that value of d/w for which
the difference between the largest and smallest permisﬁb}e'ratios
of carrying capacities is an arbitrary (small) value. Thelimit-
ing similarity for the ca§e of rectangular curves will be much
smaller than that for either normal or Laplace curves, assuming
expression (1).

Expression (3) yields the same formula for o as does
expression (1) in the case of rectangular utilization curves.
Figures 5A and 5B show that normal or leptokurtic utilization
curves reéu]t in an even lower value for the limiting similarity
than for rectangular utilization curves if formula (3) is
applicable. The difference between systems with rectangular
and normal utilization curves is-relatively slight. However,
significantly closer species packing is possible if the utiliza-
tion curves have the shape of Laplace distribution curves.

In this case, for d/w = .03, the range of K;/K, values which
will result in a stable three species system is approximately
.6 to 1.5. This range is large enough so that it would not be

at all surprising to find a system with d/w = .03 or less if

utilization curves are type one.
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Figure 5. The ratios of carrying capacities which allow
a stable three species community assuming
a = Ap. (A) assumes Laplace distribution
utilization curves, and (B) assumes normal

curves. The graph for rectangular curves
is the same as Figure 4.
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Expression (6) yields lower values of a than (3),
and consequently results in an even lower value for the
limiting similarity. Figures 6A, GB, and 6C illustrate the
region of stable coexistence for a three species community
for normal, Laplace, and rectangular curves respectively.

For any of these utilization curve shapes there is a wide
range of K,/K; ratios which will allow coexistence when
d/w = .1 or Tless.

Thus, of the three utilization curve shapes and
three possible expressions for a considered here, only one
combination leads to a deterministic 1imit to similarity near
d/w = 1 (Expression (1) for o and norﬁa] utilization curves).

None of the three expressions for o considered
here lead to an absolute limit to.the similarity of com-
petitors in a constant environment. If there were an absolute
limit, it would be impossible for any stable community to
exist if utilization curve separation were less than a
certain amount. Such a Timit would exist in the three

species case if
5ol d = a(d) . | (15)

Were satisfied for some value of d greater than zero. For

the four species system, the requirement is that

1+ a(3d) _ a(d) + a(2d) (19)
o(d) + a(2d) T + ald) )




Figure 6.

34a

The ratios of carrying capacities which
allow a stable three species community
assuming o = A,/(4-3A,). (A) assumes
Laplace distribution utilization curves,
(B) assumes normal curves, and (C) assumes
rectangular curves. The upper curve in
(A) did not fit on the graph.
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In general, there is an absolute 1imit to the similarity of
competitors if the determinant of the following matrix is
equal to zero for some value of d greater than zero:

1 a(d) a(2d) =+« a({n-1)d)
a(d) 1 o(d) <+ a((n-2)d)

a((n-1)d) = « - 1

If this criterion is sati;fied, there can be no n species
community with a species spacing d/w less than that value
at which the determinant vanishes. This is true regardless
of the carrying cabacities of the component species.

There cannot be an absolute limit to similarity
for any of the three formulae for'a considered here. May
(1974) has shown that MacArthur and Levins' method of cal-
culating o leads to matrices which are positive definite
for unimodal resource utilization curves, so that the above
matrix does not have a determinant equal to zero for d
greater than zero. Expressions (3) and (6) result in of(d)
curves which are concave up. For the three species case,
this means that thé left hand side of (15) is nondecreasing,
so (15) can never be satisfied. A similar argument can be
used to show that (16) or (17) cannot be satisfied either.

There is no reason to believe, however,.that the

three expressions for o considered here exhaust the range

. . (]7)
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of biologically realistic formulations. There are a number
of plausible a{d) curves which do result in an absolute
limit to similarity. For example, if a(d) = 1/(1+d%),

no three species community is possible if d is less than
approximately .59. If a(d) = exp(-d3®), the 1imiting simi-
Tarity will be d = .68 in the three species case. (In

both of these cases d represents the absolute value of the
distance between two utilization curves.) These results are
similar for larger communities. For example, if a(d) =
1/(1+d®), an eight species community cannot be stable unless
d is greater than about .69. These two forms for o(d) are
reasonable in the sense of being decreasing functions with a
maximum of 1 at'd = 0, and approaching 0 as d becomes vefy
large. Whether and when such functions with broad peaks

and narrow tails are reasonable estimates of the competition
coefficient is a question that can be answered only by inves-
tigating models of competition where thé degree of overlap

in resource utilization enters the equations explicitly.

Similarity Barriers and Distributions of Niche

Separation Distances

Roughgarden (1974) has recently published a re-
analysis of MacArthur and Levins' (1967) findings. He

examined the ease of invasibility (as measured by the per

capita rate of increase of an invader when its population
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was small and the residents were at equilibrium densities)
of a two species guild as a function of the separation of
the resident species. The per capita rate of increase of

the invader 1is proportional to

o) - e - e

where 2d is the distance between the means of the utiliza-
tion curves of the resident species. This expression is a
linear function of expression (7). Roughgarden assumed that
a could be estimated by formula (1). For the case of normal
utilization curves (and all of the other curves he investi-
gated with the exception of rectangular curves), this method
of computing the competition coefficient will result in

G(d) curves having a minimum at some positive value of d
(say dm). Thus, invasion should be easier if the resident
species are separated by large distances or very small
distances than if they are separated by approximately dm.
Roughgarden termed this phenomenon a "similarity barrier,"
and claimed that it could result in a bimodal distribution
of niche separation distances. In fact, as Robert May has
also noted (Cody, 1974, p. 114) an invasion below the
"similarity barrier" dis 1likely to result in the exclusion

of both residents (as can be seen from Figure 1 for examp]e).
Thus it does not seem likely that a bimodal distribution

of of niche separation distances should arise for this

reason.
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In addition, the existence of a similarity . barrier
depends on the form of a(d) in the same way that the existence
of a 11m1ting similarity for fhe case of equal carrying
capacities did. This is clear since éxpression (18) is a
linear function of expression (7). Thus, there will be a
similarity barrier for cases where expression (1) for o
is appropriate, but not when expression (3) or (6) is valid.
Both Roughgarden (1974) and Cody (1974) have interpreted
field data using this theory. The dependence of Roughgarden's
results bn the form of a(d) suggests, however, that before
natural patterns are interpreted in 1light of his theory,
it is necessary to justify the use of expression (1) for a

in the particular case being studied.

Limiting Similarity of Competitors in Fluctuating

Environments

Although the suggestion that environmental variability
may limit the degree of overlap of competing species has
been made by several authors (Pianka, 1966; Miller, 1967;
STobodkin and Sanders, 1969), Robert May has been responsible
for developing this theory in a quantitative fashion (May
and MacArthur, 1972; May, 1973a, 1973b, 1974a). We will
begin by summarizing those aspects of his work which are
relevant to the present study.

May studied a Lotka-Volterra system whose com-

ponent populations experience random fluctuations in their
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per capita rates of increase. The rate of change of the

ith population is given by

dNi/dt = N, K, + q

where p. is a random term (white noise) with a normal
distribution with mean of zero and a variance o?.

May argued that the persistence of this sytem
depends upon the minimum eigenvalue of the interaction
matrix whose ijth entry is ﬁi“ij’ where ﬁi is the equilibrium
population level of the ith species in the deterministic
system. In general, he assumes that the equilibrium popu-
lations of the various species are equal. This tends to give
the most stable community for a given degfee of niche overlap,
and is therefore appropriate in investigating the Timits
of similarity. Specifically, May argues that the minimum
eigenvalue must be larger than the variance in the per
capita rate of increase about its deterministic value if

the populations are to persist (X > 02). This criterion

min
is very approximate, and it depends upon the assumption

that there are no cross correlations in the stochastic

terms of the competing species (see Chapter 2), an assumption
which may not often be met in natural situations. Never-

theless, if cross-correlations are small enough, a system

with a very small minimum eigenvalue is not likely to persist
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for long. For a more detailed justification of this criterion
of stability see May (1973b).

May assumes that o can be calculated by formula (1),
and proceeds to show that in a many species community with
gaussian uti]ization curves, the minimumléigenva1ue of the
interaction matrix rapid]y becomes very small once the dis-
tance between the means of neighboring utilization curves
(d) becomes less than the standard deviation (w) of the
curves. This result implies that there is a 1imit to niche
overlap of approximately d/w = 1, and that this Timit is
relatively insensitive to the degree of environmental varia-
tion unless the fluctuations are quite severe. The basic
result does not depend strongly on the shape of the utili-
zation curves, although one exception to this will be noted
later.

The purpose of the present study is to show that
very different results may be obtained if alternative formulae
are assumed for the competition function. Specifically, we
will examine the interaction matrices which arise ffom
formulae (3) and (6) for a. Figure 7 shows the values of
the three forms of the competition coefficient as a function
of d/w for normal resource utilization curves. Table I gives
comparable results for triangular utilization curves.

Since the minimum eigenvalue of a two species competitive

system is N{1-a), it is clear that either formula (3) or
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Plots the three expressions for o as a
function of utilization curve separation for
normal utilization curves. Curve A plots
expression (1); curve B plots expression
(3); and curve C plots expression (6).
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Table I.

a as a function of utilization curve
separation for triangular resource
utilization curves.
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Table I

D/W Formula (1) " Formula (3) Formula (6)
.050 .998 .960 .858
.098 .991 .922 ;746
.147 .980 .884 .655
.196 .965 .846 .579
.245 .946 _ .810 .516
.294 .924 774 .462
.392 .871 .706 .375 -
.490 .808 .640 .308
.612 .719 .563 .243
.710 .642 .504 .203
.808 .562 .449 .169
.906 - .483 .397 141
.004 .405 . 348 .118
.225 .250 v .250 077
421 .148 .176 .051
.617 .079 .116 .032
.813 | .035 .068 .018
.001 .012 .032 .008
.204 .002 .010 .003
.449 .000 .000 .000
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formula (6) allows higher overlap for a givén degree of
environmental variability. The difference between the three
curves is especially striking for relatively small d/w, so
that the difference in the 1imiting degree of overlap is
greatest for small to moderate levels of environmental vari-
ability. The same trends are illustrated for normal and
triangular curves. As noted before, expressions (1) and (3)
converge as the utilization curves approach a rectangular shape.

For competitive systems with more than two species,
it is generally necessary to use numerical methods to solve
for the minimum éigenva]ue. Eigenvalues were calculated
using Symal, a subroutine written for the U.B.C. IBM 370-168
computer. This routine reduces a symmetric matrix to a
symmetric tridiagonal matrix using Householder transformations,
and then uses QL transformations to find the eigenva]ﬁes
and eigenvectors of the matrix.

Results for four and eight species systems with
triangular and normal resource utilization curve shapes are
shown in Tables II, III, and IV. Although there are slight
differences depending upon whether the system has four or
eight species, and whether utilization curves are triangular
or normal in shape, the general features which emerge are
the same for the three tables. If d/w is significantly
greater than one, the minimum eigenvalue is comparable for

all three formulae for a. However, as d/w drops below



Table II.

The minimum eigenvalue of the interaction
matrix of an eight species community with
triangular resource utilization curves as
a function of the separation of adjacent
utilization curves.
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Table II

D/W Anin (Formula (1)) Apin (3) Apin (6)
.000 0. 0. 0.
.012 .52 x 1077 .005 .021
.049 .15 x 10-* .021 .082
110 .16 x 10°° .047 179
.196 .92 x 1073 .083 .298
.306 .002 .130 427
441 .005 .187 .536
.600 .009 .256 .638
.784 .053 .332 .723
.992 .243 .392 .788
.225 .530 .530 .855
.429 .728 .674 .906
.633 .861 791 .943
.838 L9417 .883 .969
.042 .983 .948 .987
.246 .998 .987 .997




Table III.

The minimum eigenvalue of the interaction
matrix of a four species community with
normal. resource utilization curves, as a
function of the separation of adjacent
utilization curves.
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Table III
D/W Amin(formula (1)) Amin (3) Moin (6)
.02 10-5 4.62 x 10°° 1.84 x 1072
.06 10-5 1.40 x 10-2 5.53 x 10-2
. 10-5 2.33 x 1072 9.16 x 10°2
.2 10-° 4.67 x 10”2 .178

.3 2.70 x 107° 7.61 x 1072 .256

.4 1.47 x 10-" 9.36 x 1072 .326

.5 5.49 x 10" 117 .389

.6 1.59 x 10-° 147 .445

7 3.83 x 107° 165 .495

.8 8.08 x 1073 .189 .544

.9 1.53 x 10-2 1214 .580
1.0 2.66 x 1072 .239 616
1.1 4.30 x 10”2 .265 .648
1.2 6.53 x 1072 .292 .678
1.3 9.37 x 1072 .319 .706
1.4 w128 .347 .736
1.5 .169 .376 .753
1.6 .214 406 774
1.7 .263 .435 .793
1.8 .315 .465 .811
1.9 .368 .495 .827
2.0 421 .526 .842
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Table IV.

The minimum eigenvalue of the interaction
matrix of an eight species community with
normal resource utilization curves, as a

function of the separation of adjacent
utilization curves.
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‘Table IV
D/W Amin(formu1a (1)) Anin (3) Xnin (6)
.1 10°° 2.06 x 1072 8.20 x 10-?2
.2 10-5 4.14 x 10-2 161
.3 10-° 6.23 x 1072 .234
.4 10-5 8.32 x 10-2 .301
.5 1075 .104 .362
.6 10°5 125 417
.7 4.85 x 10°° 147 .466
.8 2.53 x 10°* .168 511
.9 9.98 x 107* .190 551
1.0 3.10 x 10°¢ 212 .588
1.1 7.96-x 107° .235 621
1.2 1.74 x 1072 .258 .652
1.3 3.31 x 1072 .281 .680
1.4 5.64 x 1072 .306 .706
1.5 8.80 x 10-2 .331 .729
1.6 127 .358 751
1.7 174 .385 .770
1.8 .225 413 .789
1.9 .280 442 .806
2.0 .337 472 .822
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approximately one, MacArthur and Levins' formula results
in minimum eigenvalues which decrease very rapidly, whereas
formulae (3) and (6) result in eigenvalues which decrease
in an approximately linear fashion from d/w = 1 to d/w = .1.
For a system where o is calculated using expression (6),
the minimum eigenvalue changes fastest as a function of d/w
for values of d/w less than .1. As a consSequence, it is
impossible to isolate any particular value of d/w as a general
Timit to similarity. The Timit depends senstively on the
level of environmental variabiiity and the precise defini-
tion chosen for the limiting similarity. In addition, for a
given level of variability, formula (3) or (6) will allow
considerably higher overlap among the competing species than
does expression (1). For example, if the minimum permissible
eigenvalue is .05, utilization curves are triangular and
there are eight species in the competitive gquild, formula
(1) allows a minimum d/w of approximately .77; formula (3)
allows d/w z .11; and formula (6) permits a d/w of about .03.
It is worth noting that this Tlast va]ue_is probably not far
enough different from complete overlap to be distinguishable
from it in field situations. Similar results could be
drawn for the four species system or the eight species
system with normal utilization curves.

In addition to being sensitive tovthe expression

used to calculate the competition coefficient, May's result
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is also not preserved if utilization curves are rectangular
in shape. Figure 8 is a plot of the minimum eigenvalue as

a function of niche separation for an eight species system
with rectangular utilization curves. The curve behaves in a
rather strange fashion, but there is no clear 1imit to
similarity. It is worth noting that May's result is restored
quite rapidly if the rectangular curves are altered slightly,
so that they are not quite so sharply cut off (for example,
if the utilization curve is given by U(x) = 1/(1 + x*)),

so that the form of the minimum eigenvalue for rectangular
curves may not be of much biological significance.

It should be noted that if very close species pack-
ing is possible (as suggested by formulae (3) or (6)). the
implicit assumption in the pfevious analysis that the equili-
brium population sizes of the component species did not change
with the number of species or degree of overlap becomes
untenable. In the exact linearized analysis, the terms
&y of the interaction matrix are multiplied by the equili-
brium numbers of species i. If equilibrium populations.of
the different species are equal, the minimum eigenvalue
decreases linearly with the equilibrium population size.

If packing is close, similarity may be limited by the size
of the equilibrium populations, rather than by an instability

inherent in any system with the given number of species

and competition coefficients. If this is the case, however,
{



Figure 8.

The minimum eigenvalue of the interaction
matrix of an eight species community with
rectangular utilization curves assuming
formula (1) for a. The minimum eigenvalue
is plotted as a function of the separation
of neighboring curves.
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the minimum eigenvalue does not decrease abruptly at a
certain value of the species packing parameters, d/w, so that
again it is not possible to state a general value as the
limit td species packing.

In general, the results of this analysis of sto-
chastic systems parallels the earlier treatment of deter-
ministic systems. The existence of a limiting similarity
clearly depends upon the form assumed for the competition

coefficient.

Evidence from Natural Populations

If natural communities exhibitng one-dimensional
competifion generally had niche separations corresponding
to d/w of approximately one, this could lend some support
to the generality of formula (1), so it is worthwhile to
examine the field data on communities exhibiting approximately
one-dimensional competition. Much of the evidence available
regarding species packing in linear competitive systems has
been summarized by May (1973a). It should be noted that
most detailed studies have found that resource partitioning
occurs along several dimensions (Schoener, 1974b), and that
the competitors are not linearly arranged, so that in most
cases May's theory does not appear to be applicable. In
many of the cases cited by May, the presumed one-dimensional

nature of the competition may simply be a result of inadequte
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study of the organisms involved, and May himself has stressed
that the 1imit d/w = 1 will only apply to situations where
competition is one-dimensional.

Although May interprets ten or so examples as
supporting his general conclusions (i.e. exhibitng d/w = 1),
the evidence is, in fact, fairly weak. The examples are
basically of three sorts: (1) size differences of congeneric
competitors which, May contends, imply that d/w is approxi-
mately equal to one, (2) examb]es of groups which show
constant average niche overlaps in very different environ-
ments, which May interprets as indicating that limiting
similarity is not sensitive to the level of environmental
variability, and (3) four examples where actual resource
utilization data was available, showing d/w about equal to
one.

This evidence may be criticized on a number of
grounds. The first category is relatively indirect evidence.
In addition, several authors who have accumulated data on
prey size selection in flycatchers, seed size selection in
finches, and seed selection by desert rodents, all obtained
similar results; there was great overlap in the sizes and
kinds of food particles used, in spite of large differences
in body size or bill size (Brown and Lieberman, 1973).
Therefore, overlap in resource utilization may be higher
than that inferred from size, bill dimensions, or other

measurements.
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The fact that niche overlap is not correlated with
environmental variability (the second category of evidence)
may simply mean that environmental variabi]ity is not Timit-
ing niche overlap, that the animals in question are not
competing, or that competition is not for some one-dimensional
resource.

None of the four examples of resource utilization
has been studied thoroughly enough to rule out segregation
along niche dimensions other than the ones noted by May.

In one case (two Plethodontid sa]amander§ studjed by Dumas
(1956)) the author concluded that there was no competition
for food, the resource dimension discussed by May (1973a).

Finally, it should be mentioned that there are
a number of competitively based systems where very high over-
lap has been documented; flower and fruit eating birds
(Terborgh and Diamond, 1970), hermit crabs (Nyblade, 1974),
seed eating finches (Pulliam and Enders, 1971), and seed
eating rodents (Brown and Lieberman, 1973), although species
are not exactly linearly arranéed in all of these systems.
There are additional exampies Qf high overlap in systems
which have not been very thorodgh]y studied (Sycamore leaf-
hopeers (Ross, 1957); hoverflies (Diver, 1940); cichlid
fishes of Lake Malawi (Ricklefs, 1973); and gammarid amphipods

of Lake Baikal (Ricklefs, 1973)). In any case, available
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field evidence does not suggest that expression (1) is of
general validity, even for one dimensional systems.
Recently, Roughgarden (1974) has attempted to
explain some examples of high overlap in guilds of coral reef
fish by noting that if the utilization curves are
leptokurtic, d/w may be much less than one. However, this
result does not explain the observed high overlap in diet,
since leptokurtic curves do not overlap significantly until
d/w is very small. In addition, there is no evidence that
the fish that Roughgarden cites have leptokurtic utiliza-
tion curves, or even that they compete on a linear resource
axis. The present analysis suggests that this and other
examples of high overlap could be expected if the competi-
tion coefficient a can be estimated by formula (3) or (6).
Therefore, a possible explanation of high dver]ap could be
that utilization curves for the species are type one rather
than type two (i.e. each species has a set of exclusive
resourceé). Many of the traditional examples of one-dimen-
sional systems may consist of organisms with type one
curves, since resources at a given position on the resource
axis consist of a number of different-types. This is true
of competitors which segregate by food size or foraging
height in the canopy, for example. In some other cases,
however, it seems likely that utilization curves must be

type two. This seems ‘to be true of the wasps studied by
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Heatwole and Davis (1965) which differ in ovipositor lengths,
thus exploiting hosts at different depths in rotting logs.
It should also be true of any system where the resources at
a given position on the resource axis consist of only one
resource type.

~Given the sensitivity of results regarding Timiting
similarity to the form of the competition function, it would
Sseem to be more usefﬁ] to explain the differences in niche
overlap in different communities rather than looking for

universal patterns.

Use of the Lotka-Volterra Equations

The gist of this study has been that an analysis
of Timiting similarity using the Lotka-Volterra model depends
upon the form of the competition function. Therefore, if
one wants to explain differences in the degree of overlap
in different communities, it is necessary to be able to
decide how the competition coefficients are to be computed
in the various cases. Although it is possible to make some
intuitive arguments about the form of the competition
function, it is generally necessary to subport one form or
another by deriving it from a higher 1e§e1 model which in-
corporates more specific information about the nature of the
competition, as was done for formula (6). In this case,

however, it makes more sense to analyze limiting similarity
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using the higher level model, rather than>the Lotka-Volterra
approximation to that model.

As Levins (1966), May (1973a), and others -have
stressed, there is a wide range of models that may be applied
to any particular problem. Some of these will be too simple
to make realistic predictions, and others will be too :detailed
to allow generalizable results. The analysis of the Lotka-
Volterra model developed here can only suggest that, if there
are limits to similarity in natural systems, these Timits
will depend sensitively on the form of the competition func-
tion, which must be derived from another model. Thus, the
Lotka-Volterra equations, although useful, are not sufficient
to analyze the limits to the similarity of competing species.
A Tater paper will examine several more detailed models of

exploitative competition.



Chapter 2

NICHE OVERLAP AND ENVIRONMENTAL VARIABILITY

INTRODUCTION

The explanation for differences in species di-
versity in different communities has been a subject of con-
siderable interest to ecologists, and environmental vari-
ability has played a major role in speculations regarding
the cause of gradients in species diversity (e.g. Pianka,
1966; Slobodkin and Sanders, 1969). The general trend is
for species diversity to be higher in environments which are
presumed to be less variable. The tropics are often assumed
to be less variable than temperate regions, and species
diversity is usually higher in the tropics (MacArthur, 1972).
Species diversity in several groups of benthic organisms
genefa]]y increases with depth (Sanders, 1968; Buzas and
Gibson, 1969), and this corresponds to the fact that a number
of physical factors become less variable with depth.

One hypothesis to explain such patterns is that a

lower degree of niche overlap can be tolerated in variable

56
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environments. This hypothesis is difficult to test in the
field, since a difference in the observed degree of overlap
need not reflect a difference in the 1imiting degree of
overlap. However, an indication of the validity of this
hypothesis may be obtained from a study of mathematical
models of competitors in variable environments, and this is
the approach used here.

It has been common in the ecological liaterature
to speak of environmental variability és a single factor,
and previous theoretical work (May,v1973a) has modelled
environménta] varfabi]ity in a single way. AHowevef,'there
are many independent elements that constitute an organism's
environment, and it is not clear whether variability in
different elements should have similar effects on the T1imits
to niche overlap. This paper attempts to determine the
effect of different types of environmental variability on the
maximum tolerable niche. overlap in competitive communities.
This question is examined for a stochastic version of the
Lotka-Volterra competition equations using Monte Carlo simu-
lation. The Lotka-Volterra model was chosen for illustra-
tive purposes, since it was simple and widely used. Also,
Since previous work on this topic used the Lotka-Volterra
model, it seemed desirable to compare those results with the
current ones. However, the major qualitative results derived

here are not restricted to cases where the Lotka-Volterra
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model is accurate. This assertion will be justified in more
detail later.

The first section of the study presents the basic
model which will be investigated here. The second séction
describes the method used to determine the maximum level of
variability a given system can‘tolerate. There follows a
discussion of the different types of environmental vari-
ability which are modelled here. Part four is an extensive
anajysis of two species competition. Section five presents
an extension of these results to competitive guilds with
more than two species. The final portion of the article
discusses the generality of the findingé, and the implications
which these simple models have regarding species diversity

-in real communities.

The Model

The model which will be investigated here is a
modification of the familiar Lotka-Vo]terra equations to
include the effects of environmental variability. The rate
of change of the population density of competitor i is given

by

——ﬁ—— = Ni(t)‘[Ki - No(t) - j;l ociij(t) + ui(t)} (1)
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Here “1(t) is a. random variable which gives the increase

(or decrease) in the per capita rate of increase of species

i over (under) the value it would have in a constant environ-
ment. Different types of environmental variability will

be modelled by making different assumptions about the cross
correlations between “i(t) and uj(t), and by making different
assumptions about how the mean of the distribution of ji(t)
changes with a change in its variance. The species are
assumed to have similar intrinsic rates of increase, so that
factor has been scaled into the time variable. oy is
assumed to be an increasing function of the overlap in
resources used by species i and species j.

In effect, equation (1) models the effect of the
environmental variability (i.e. altered population growth
rate), rather than the actual fluctuations in temperature,
food supply, or whatever. Since the variance in “i(t) should
be an increasing function of the variance in the relevant

environmental parameter, o?

is a measure (albeit indirect)
of the level of{enV1ronmenta1 variability. Unless environ-
mental fluctuations have some effect on mortality and/or
fecundity, they are of no interest from the standpoint of
population dynamics.

~ Robert May (1973a, 1973b) has recently analyzed
the model presented above under one set of assumptions

about the ui(t) (that u(t) was Gaussian white noise, and that

“i(t) and uj(t) were uncorrelated). However, May used a
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different method to analyze the system than that used here.
His basic conclusion was that such a system would persist
for a long time if the smallest eigenvalue of the interaction

matrix was larger than the variance of the white noise terms.

%*

The elements of the interaction matrix are aij = uijNi’

where N: is the deterministic equilibrium population size.
Conversely, one or more populations would quickly become
extinct if the variance were larger than the minimum eigen-
value. If (1) is approximated by a set of difference equa-
tions with a time interval At, May's criterion for persistence

bacomes o?At < A ‘where o2 is the variance of u(t) and

min

A is the minimum eigenvalue. In his analysis, May scales

min
the minimum eigenvalue by dividing by the average carrying

2
capacity, so the criterion becomes g ft < A

min’ where >‘min
is the rescaled minimum eigenvalue.

Simulation was chosen as a method for investigating
the model used here because it involved less labor and was
more flexible than available analytical techniques. Two
different analytical methods have been applied in studyfng
the two species '‘Lotka-Volterra system. These are described
by May (1973b) and Ludwig (1974). May's method involves’
Tinearizing the Lotka-Volterra equations about their equili-

brium point, so that the system he studies (for the two -

species case) is actually:
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dN,/dt

KK + uy(t) - Ny - aN2)/(1 + a)

dN,/dt

K(K + po(t) - Np - aNy)/(1 + a). (2)

This is a fa§r1y good approximation to the Lotka-Volterra system
near the equ'librium point (where N; and N, are approximately
K/(1 + o)), but variations which are large enough to cause
extinction or near-extinction will obviously carry the
system far from the equilibrium point, so that May'svmethod
is questionable on these grounds. May also assumed that a
system would persist if the expected value of ¢ were less
than one, where ¢ is defined as (N(t) - N*)/N*g N being
the deterministic equilibrium population level. In reality,
if the expectation of ¢ were equal to one, this would imply
virtually immediate extinction, and it must be significantly
less than one for long term persistence. However, when
"significantly less" is translated into quantative terms,
it may mean quite different values for different systems.
For these reasons, May's method did not seem suitable, and
the present study was motivated in part to test the accuracy
of May's method for the one type of environmental variability
which he studied.

Ludwig (1974) has used more accurate methods to
solve for the expected time to extinction for a two species
Lotka-Vo]terfa system with a single value of a. However,

the difficulty of solving this single case (or any single
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case) was sufficient to make this method impractical for the
present investigation, where a large number of systems were
studied, using several definitions of persistence. Thus,
Monte Carlo simu]dtion seemed to be the best means for analyz-

ing the problem at hand.

The Simulation Methodology

For each of the models investigated in this study,
we were interested in determining the maximum variance in the
per capita rates of increase of the component species about
their deterministic values (equivalently “i(t)) which was
consistent with long term persiétence of all of the populations
in that system. The object was not to determine the absolute
level that each system could tolerate, since this clearly
depends upon the shape of the distribution of ”i(t)' Rather,
the aim was to determine the relative values of the maximum
levels of variation for two systems which differed in the
level of competition. For example, the fourth section is
concerned with determining the maximum levels of variability
as a function of o in a two species (Lotka-Vo]terré) system.
Before proceeding, it is necessary to discuss the meaning
of persistence and maximum tolerable variance, and to explain

how the Tatter was determined.
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Persistence

If the models which we investigated incorporated
the population levels as discrete variables, it is clear that
a population will persist as long as the population number N
is greater than zero. For models 1like the ones considered
here, where the population density is a continuous variable,
technically extinction will not occur until N equals zero,
although small values of N may actually represent fractional
individuals. Thfs is clearly unrealistic. In general, as
population sizes become small, "demographic stochasticity"
becomes important (May, 1973a), and models where the popula-
tion size is a continuous variable are no Tonger accurate..
In addition, the underlying model governing population dynamics
is 1likely to change when densities become small. Many popula-
tions have lowered fitness at Tow densities because of dif-
ficulties in potential mates locating each other or for other
-reasons (the A]]ee'effect). In such a case, extinction is
virtually assured if the population goes below some positive
value. Whether or not there is an Allee effect, if the popu-
lation size becomes too small too often, extinction due té
demographic stochasticity seems assured. Thus, for the
models we will be studying, extinction is better defined as
the reduction of the population to some small but positive
value, rather than the vanishing of the population. This

same point has been stressed by Capocelli and Riciardi (1974)
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and Ludwig (1974). The exact value of this threshold popula-
tion level will vary from one system to another, so several
possible values were examined in the simulations described
below.

No population persists forever; this is true of
natural situations and of mathematical models in which the
population is a discrete variable. It is also true of the
continuous models used here if extinction is defined as the
reduction of the population size to a threshold value. There-
fore, 1in spgaking of the maximum variability which will allow
persistence of a population, we are concerned with persistence
for a relatively long time. This is discussed in more detail

below.

Maximum Tolerable Varjability

There is, of’course, no single value of the variance
of the stochastic terms ”i(t) such that any larger variance
will result in quick extinction, and any smaller variance
will allow the system to persist indefinitely. However, for
most of the models discussed here, there is a relatively narrow
range of values of the variance such that the expected time
to extinction is relatively short for values above this range
regardless of the initial values of the populations. If the
variance is below this range, the expected time.to extinction

is many orders of magnitude larger (the expected persistence
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time is so Tong that extinction is unlikely to be 6bserved
in a simulation-run of a duration that is.economiéally feasible).
Here the expected time to extinction is again very Targe
regardless of the initial values of the populations, as long as
none are initially very close to extinction. It would be
possible to define a single value of the variance to be the
maximum tolerable variance if that value resulted in a_certain
moderately small expected time to extinctioni However, this
Tevel of precision was unnecessary in the current investigation,
and it is not likely to be very usefu] in general, since the
maximum tolerable variance would change with the shape of the
distribution of the “1<t)’ and the exact value would have to be
chosen arbitrarily. Thus, it does make sense to speak of a
maximum tolerable variance in the per capita rates of fincrease,
although it can only be specified approximately with reference
to any given distribution of the stochastic term “i(t)'

The situation is slightly different if the origina}
deterministic system is neutrally stable or has only a very weak
tendency to return to its equilibrium point. In this case, the
initial population levels may make a large difference in the
expected time to extinction if the variance is small. For the
case of the Lotka-Volterra system analyzed in the fourth section
if o = 1, there is no tendency for the ratio of N; : N, to
return to its initial value if it is displaced from that
value. Thus, in a random environment, the system will always

drift to extinction. If the variance of the stochastic term
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is small, it will take a long time for extinction to occur
if the initial populations of the two species are equal to K/2.
Iﬁ fact, the expected time to extinction will be arbitrarily
large if the variance is made small enough. This does not
imply, however, that a two species system with o = 1 is likely
to be found in environments which exhibit very small fluc-
tuations, since there does not seem to be any way thatrsuch a
system would begin with both populations equal to K/2. It
seems probable that the second species would invade after the
first had achieved a high population density, and for this
case, the expected time to extinction (of one of the species)
is much shorter. This type of effect is important in determ-
ining the length of {(or the initial values used in) a simu-
lation run to determine the maximum tolerable variability.
Since we consider the maximum tolerable variability of a
neutrally stable system to be zero, the simulation runs should
be Tong enough so that a neutrally stable system wi]T usually
drift to extinction within that time, given the initial
population levels used in the simulation run.

The models analyzed here are systems of stochastic
differential equations describing the population dynamics
of a number (usually two) of competitors. These differential
equations were approximated by a set of difference equations,
whose behavior was investigated by iteration on a computer.
The values of the stochastic terms were produced by a random

number generator which drew from a normal distribution.
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It is important to choose the time interval to be
small enough so that the system of difference equations
actually does approximate the differential equation system.

If the time interval is very large, the equilibrium point
disappears, and complex limit cycles can result, as May (1974b)
has pointed out. At smaller values of the time interval,

this behavior disappears, but it is still possible for the
population to become negative if “i(t) has a large enough
negative value. The time interval in the simulations described
below was chosen so that negative population values would

not occur (in effect, so that negative population values were
extremely improbable to result). In addition, results were
checked by performing the same simulations with a:time

interval which was an order of magnitude smaller than the
original.

The explicit methodology used here was as follows.
For a system with a given set of parameters (e.g. for a given
o in system (1)), a series of simulation runs was made,
each with a different value of the variance of the stochastic
term, u(t). 1In general, the initial values of the populations
were their equilibrium values, and the length of the simula-
tion was chosen so that a neutrally stable system would usually
become extinct at the lowest level of‘the variahce which was
simulated. When comparing a series of systems (for example,

a series of two species systems with different a's ‘and with

pi(t) and pa(t) uncorrelated), each simulation run utilized
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the same random number sequence in generating values for the
stochastic terms. To insure that the results were not dependent
upon an unusual feature of the given random number sequence,
the entire series was run again, with two different random
number sequences. In general, different random number
sequences wére used for the different cases considered (i.e.
different schemes of cross correlation). Similar results
were obtained for some of the systems by using shorter simu-
Tation runs, but specifying initial population levels in which
one population was much smaller than the others.

For each value of the variance it was noted whether
the population persisted for the duration of the simulation
run. This was done for several values of the threshold popu-
lation level (i.e. several different definitions of persistence).
The maximum level of the variance for which the system did
not go extinct was then chosen as the maximum tolerable variance.
Since only a finite number of variances were tested, this
number could only be specified to within one variance-interval.
For example, if the system were run for variances of
10,20,30,+++,100 (a variance interval of 10) and extinction
was first observed at a variance of 60, the maximum tolerable
variance would be defined as 50. In general the variance
interval used was fairly large, but a higher level of pre-
cision did not seem necessary, since the exact value depended

upon the random number sequence. Even with the variance
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interval chosen, the maximum tolerable variance determined

using two different random number sequences might differ.

Types of Environmental Variability

In this section three major types of environmental
variability are discussed. The goal is to determine how
increasing variability in each of these environmental factors
is 1ikely to alter the per capita rate of increase of the popu-
lations in a competitive guild. Specifically, it is noted
whether u(t) should have a mean of zero, and whether the mean
will change as the environmental fluctuations become larger.
Secondly the type of cross-correlation between “1(t) and uj(t)
is discussed.

Variation in the supply of the resource for which
the animals are competiting is discussed first. If the
resource supply (e.g. food supply) of an animal varies about
some mean value, the per capita rate of increase is likely
to vary as well. Within certin bounds, a higher level of food
results in a higher per capita rate of increase and a lower
level of food results in a Tower rate of increase. Thus
u(t) will usually have a mean of approximately zero, corre-
sponding to average resource levels.

If the supply of the resource fluctuates, then
the resulting fluctuations in the per capita rates of increase

of two competing species will, in general, be positively
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correlated. In addition, the strength of the correlation
will usually increase as the degree of overlap in resource
utilization patterns increases. The only case when the
correlation would not increase with overlap is when the degree
of correlation is high even when overlap is low. This might
happen if the same factor which causes the resources used by
competitor i to decrease (or increase) affected the resources
used by competitor j in the same way. Thus “i(t) and uj(t)
will be positively correlated, and the level of correlation
will be a nondecreasing function of gy In the limiting
case of o = 1, the two species have equivalent resource
utilization patterns, and ui(t) and uj(t) will be identical
(assuming that the variation in the supply of the resource
is the only reason for variation in the per capita rates of
increase). The only situation which could lead to a negative
correlation between “i(t) and uj(t) would be if o were low,
and if an increase in the resources available to species i
was correlated with a decrease in the resources available to
species j. This second condition will probably not often beimet,
since the abundance of similar types of resources usually
seems to be positively correlated. If overlap is relatively
high, negative correlations are impossible.

The second type of environmental variability cons
sidered here is fluctuation in the level of predation on the
competing species. Here again, we discuss the form of the

distribution of ui(t) and the nature of cross correlations
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in these terms. A deterministic model of population dynamics
can be viewed as incorporating an average lTevel of predation,
even if the phenomenon of predgtion is not explicit in the
model. For example, the carrying capacity K in the Lotka-
Volterra equations can be regarded as being composed of two
terms; K = K' - aP, where K' is the (hypothetical) carrying
capacity in the absence of predators, P is the predator popu-
lation density, and a is the rate of successful attacks by
the predator on the prey. If the predator population levels
or the rate of successful attacks varies, then the per capita
rate of increase of the population will be modified by a
random term which can take on positive or negative values,
and can be defined so as to have a mean of zero.

To the extent that the different species in a
competitive guild share the same predators, there will be
positive cross-correlations in the “i(t)' If they have dif-
ferent predators, the uﬁ(t) will often be uncorrelated,
although this is not necessarily true.

Variation in physical parameters (such as tempera-
ture, exposure, salinity, humidity, etc.) represents the third
type of environmental variability considered here. For this
category, the relation between the variance in the environ-
mental parameter and the form of the distribuiton of the “i(t)
can be somewhat different than in the previous two cases.

Many populations are optimally adapted to the average physical

conditions prevailing in their environment, so that for this
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case variation in physical parameters is likely to result in
a nonpositive value of “i(t)' Values of physical parameters
that are far from the average, whether high or low, are
likely to be detrimental to population growth. Thus, a more
variable environment will also be harsher, in the sense of
permitting a lower average per capita rate of increase for
any given population level. ui(t) will generally take on only
negative values, and its mean will consequegt]y decrease as
environmental variation increases. Sympatric competitors
are likely to often have similar physical tolerances, so that
the magnitude of the ui(t) will often be positively cross
correlated, although there are circumstances when this will
not be So. If two competitors are sensitive to two independent
environmental factors, the “i(t) will be uncorrelated. If
they have opposite tolerances to a single factor, the magni-
tudes of the “i(t) will be negatively correlated.

Variation in physical factors can also result in
“T(t) which take on both positive and negative values. For
example, in many poikilotherms, foraging is an increasing
function of temperature {(up to a point), so that if temperature
fluctuates with a greater variance, so will food intake, and
presumably the rate of increase. High temperatures result in
positive values of “i(t) and lTow temperatures result in
negative values.

The relationship between environmental variability

and variation in the per capita rates of increase of
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competitors is quite complex, and is likely to vary quite a
bit in its details for different organisms. It is possible
for both the mean and the distribution function of “i(t) to
change wifh increasing variance, but it is difficult to make
any generalization about how they will change, so this compli-

cation is not considered in the models below.

Two Species Lotka-Volterra Competition

The basic model which will be investigated here is
the two species version of equatfon (1). 1In addition, it is
assumed that competition is symmetrical (that K; = K,, and
%12 = 0Gp1). The assumption of symmetry was made mainly to
simplify the analysis, but our general results are not re-
stricted to this type of situation. u;(t) and u2(t) are
normally distributed and there is no correlation between

successive values of “i(t)'

py(t) and u,(t) Uncorrelated with a Mean of Zero

This is the system analyzed by May (1973b). It

should be applicable to at lTeast the following cases:

(1) Predation intensity is the factor
which varies, and different com-
petitors have different predators.

(2) The foraging activity of each of the
two species is |imited by a different
independent physical factor which
varies.
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It seems, however, that there are probably relatively few
situations that can reasonably be modelled by this sort of
variability.

Simulations were performed for o = 0, o = .25,
o = .5, a = .75, and o« = .9. The parameters used in the simu-
lation were: K =.300 (this should be interpreted as a popu-
lation density, rather than absolute numbers, so its value is
arbitrary), t = .0001, N;(t = 0) = Ns(t = 0) = K/(1 + a).
For each value of a, simulation runs were made for variances
of u(t) of 240,000, 480,000, <+« 2,400,000. In general, unless
otherwise noted, subsequent systems use the same parameters. The
system was iterated 15,000 times for each value of a and each
variance. This enabled a determination of the maximum toler-
able variance for each value of o. Table V shows the results
of one such series of runs for six definitions of persistence.
Instead of giving the variance of u(t), Table V (and subse-
quent tables) gives the variance multiplied by the time interval
which is the quantity May compares to the minimum eigenvalue
of the interaction matrix. The values of the minimum eigen-
value of each system are shown. The definitions of persistence
which were used were: (1) the population density does not
drop below 10, (2) the population density does not drop
below 5, (3) the population density does not drop below 1,
(4) the population density does not drop below .5, (5) there
are fewer than one per cent of the time intervals when one

population density is less than 10, and (6) there are fewer



Table V.

75 a

The maximum tolerable variance as a function
of the competition coefficient in a two
species system with p;(t) and {i,(t) uncor-
related and normally distributed. Parameters
of the simulations are given in the text.
Numbers given in the table are the maximum
tolerable variances multiplied by .0001 (At).
The subscripts on the variances on the left
hand side of the table indicate the defini-
tion of persistence which was used. For
example, oj, means that the maximum tolerable
variances were calculated assuming that the
system persisted if neither population dropped
below 10 during the course of the simulation.
The subscript A corresponds to definition

(5) in the text and the subscript B corresponds
to definition (6). K is 300. The minimum

eigenvalue is denoted by Amin'



Table V

ALPHA
0 .25 .5 .75 .9

0%, 144 120 48 24 24

o4 168 144 72 48 24

o; 240 216 144 96 48
o’ 264 240 168 120 48

0; 192 144 96 48 24

og 240 192 120 72 24
Mpin 300 180 100 42 .86 15.79
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than one per cent of the time intervals when one species'
population density is less than five.

Figures 9, 10, and 11 show the population denéity
of two competitors as a function of time (for 100 time intervals)
for o = 0, a = .5, and o = .9, with a variance of 10°. The
systems with higher competition coefficients come closer
to extinction.

The general features which can be drawn from these

results are:

(1Y Although the maximum tolerable variance
decreases with increasing a, the relationship is not that
predicted by using the relative value of the minimum eigenvalue
as a criterion of the relative stability of different systems.
Specifically, the maximum tolerable variance is greater than
that predicted on the basis of the relative values of the
minimum eigenvalue, especially for high values of o. For
example, using .5 as the critical population size, a system
with oo = .9 can tolerate a variance about one fifth as large
as a system with a = 0, although the minimum eigenvalue is

one-nineteenth as large.

(2) Table V shows that May's criterion o?At < LS.
does give some qualitative insight into fthe behavior of the
system. I+ tends .to overestimate the maximum tolerable

variance for low a, and underestimate for high a. For a

less than .9, this criterion results in an estimated maximum
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Figure 9. Population size as a function of time for
a two species system in a varying environ-
ment with o = 0. Length of simulation run
is 100 time units, and the variance is 10°.
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Figure 10. Population size as a function of time for
a two species system in a varying environment
with a = .5. Length of the simulation run
is 100 time units, and the variance is 10°.
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Figure 11. Population size as a function of time for
a two species system in a varying environ-
ment with o = .9. Length of simulation run
is 100 time units, and the variance is 10°.



79b

- 100.0

i
87.5

F
62.5

SB.D
TIME

.5

37

!
12.5

0.0

—
g o0s

:
L9°8y

£5- 656
AZ1S

I

0°052
NOILEIN

. -
L4991

did

i
£EC° €8

00



80

variance that is never off by as much as an order of magnitude

for any of the definitions of persistence.

(3) An examinafion»of Table V indicates that the
definition of persistence does have an effect on the rela-
tionship between a and the maximum tolerable variance. The
smaller the critical population size, the more concave downward
the curve of the maximum variance vs. a. I+ seemed worthwhile
to examine some more extreme values for the crifical popula-
tion size, so two additional series of simulations were per-
formed. n one, the variance interval was 100,000, and in
the second it was 400,000. From these runs, the maximum
folerable variance was determined using the following values
of the critical population density: 30, .!, .0I, .000I.

The results are shown in Table VI, and they confirm the general
features found in Table V. In addition, it should be noted
that a difference of an order of magnitude in the minimum
population makes |ittle difference in the relationship between
the maximum tolerable variance and the minimum eigenvalue.
However, if tThe criTicallpopula+ion size is relatively small,
environmental variability is less likely to limit niche overlap
than if the critical population is relatively large. When the
threshold population density is 10, a system with a = .9

can tolerate about |/6 the variance that a system with a = 0
can. With a threshold density of .000l, the corresponding

value is 4/9. Thus a change in the critical population of
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Table VI. Maximum tolerable variances for the two
species system with uncorrelated u(t) for
four extreme definitions of persistence.

As in Table V, the subscript of the

variance indicates the critical value of the
population Tevel defined as extinction.
Variances were multiplied by .0001.
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Table VI

ALPHA
0 .25 .5 .75 .9 1
T30 90 50 30 10 10 0
o, 280 200 160 120 40 0
6201 320 280 240 160 80 0
020001 360 320 280 240 160 0
AL 300 180 100 42.86 15.79 0

min
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five orders of magnitude changes this ratio by less than a
factor of 3. If the threshold population size is identified

with a density at which demographic stochasticity becomes

significant, then it will be a larger fraction of the carry-
ing capacity for populations with relatively small carrying
capacities. A similar relationship between the critical

population size and the nature of the plot of a vs. the maximum
tolerable variance could be found for any of the systems
discussed below, although usually only one value of The
critical population is used in subsequent fables. In general

a value less than 1% and greater than .1% of the carrying
capacity was examined, since these values seemed intermediate

among the ranges of biologically plausible values.

The problem of determining an appropriate time
interval in approximating differential equations by difference
equations was mentioned earlier. As a check to determine
whether the length of the time interval chosen above was
likely to influence the results, the system was studied with
a time interval of .00001. The smaller time interval required
a larger variance in the u(t) to produce extinction, so the
variances which were run were 4,000,000, 8,000,000, -«--
40,000,000. Here, and for subsequent models, the results
of only a single random number sequences are shown, Since
results were similar for different sequences. the results

are shown in Table VII. The relationship between o and the
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Table VII. Maximum tolerable variances for the two

species system with uncorrelated ji(t)
for a time interval one-tenth that used

in Table V. Variances are multiplied by
.00001.



Table VII
ALPHA
0 .25 .5 .75 .9
o 240 160 120 40 0
o 320 280 200 120 40

83b
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maximum tolerable variance does not appear to be qualitatively
different from that for the system with the longer time

interval.

w1 (t) and p,(t) Positively Correlated with a Mean of Zero

This category probably includes the majority of
natural types of environmental variability. We will consider
two separate models under this general heading: (1) ui(t)
and p2(t) have a positive correlation which is an increasing
function of a, and (2) u;(t) and p,(t) have a positive corre-
lation which is independent of a.

The first model is applicable to the situation
where the supply of the resource for which the organisms are
competing varies. It is assumed that the proportion of
commonly utilized resources is equal to a, which is not pre-
cisely true all of the time, but is probably close most of
the time. The different resource types are assumed to vary
independently, so that a reasonable method of modelling
this situation is to assume . u;(t) and u»(t) have a posi-
tive correlationywhich is independent of a.

The firsf model is applicable to the situation
where the supply of the resource for which the organisms are
competing varies. It is assumed that the proportion of
commonly utilized resources is equal to o, which is not

precisely true all of the time, but is probably close most of
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the time. The different resource types are assumed to vary
independently, so that a reasonable method of modelling this
situation is to calculate pi(t) and p2(t) by the following
scheme:

aA(t) + (1-0)B(t)

aA(t) + (1-a)C(t) (3)

=
-
—
‘+
~—
"

=
N
—
t+
~—
t

where A(t), B(t), and C(t) are independent, identically
distributed random variables here assumed to have a normal
distribution with a mean of zero. The variances of A, B, and
C are adjusted so that the variance .of p(t) does not change
with ao. To the extent that fluctuations in the supplies of
different food items are positively correlated (which may
often be the case in nature) then there may be a relatively
high level of correlation in the u(t) even for Tow values of
a, and the model discussed below may be more appropriate.

The second type of positive correlation could also
model a situation where predation pressure varies and the
two species have some common predators. The greater the
number of common predators, the higher the correlation. It}
could also be a model of at least some types of fluctuations
in physical variables, if the two species have similar toler-
ances to the physical variables, and if fluctuations in the
physical factors can result in positive as well as negative
deviations in the per capita rate of increase. Correlation
is modelled in essentially the same manner as for the above

case:
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kA(t) + (1-k)B(t)

py(t)

po (t)

kKA(t) + (1-k)C(t) (4)

where k is a positive constant less than one, and A, B, and C
are as above. A higher k indicates a higher level of correla-
tion. The correlation coefficient is k?.

Table VIII shows the results of simulation runs
. of the system described here for values of k of .25, .5, .75,
and .9. For all cases, the relationship between o and the
maximum tolerable variance is closer to horizontal over the
range o = 0 to a = .9 than the same reIationship-for the case
of no correlation (Table V). As the positive correlation be-
comes very high, the curve approaches a rectangular shape, so
that if k = .9, there is very little difference between the
maximum tolerable variability for a system with a = 0 and one
with o = .9. Figure 12 shows the actual population dynamics
of a system with k = .9. This should be compared with Figure
11 for the case of no correlations.

The same results can be used to illustrate situa-
tion (1) where k = o: This is shown in Table IX. Here
there is no clear increasing or decreasing relationship between
o and the maximum tolerable variance. If anything, systems
with a high value of a can tolerate a higher level of resource
fluctuations than those with a relatively low value of a.
Table X shows an extension of this relationship to high
values of o. If the only type of variation in the system is

variation in the resource supply, then systems with high a



Table VIII.

Maximum tolerable variances for five
values of o and four levels of cross
correlation in the u(t). Definition
of persistence was that neither popu-
lation density dropped below .5.
Variances are multiplied by .0001.

87a
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Table VIII
ALPHA
k 0 .25 .5 .75 .9
.25 216 168 144 96 24
.5 192 192 192 144 - 48
.75 216 192 192 192 168
.9 216 216 216 216 192
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Figure 12. Population size as a function of time for
a two species system in a varying environ-
ment with o = .9 and u;(t) and u,(t) cross
correlated with k = .9.
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Table IX. Maximum tolerable variances for a two
species system as a function of a for the
case of ji,(t) and u»(t) cross correlated
with a correlation which increases with o
as described in the text. Variances were
multiplied by .0001. The definition of
persistence was that neither population
density dropped below .5.



Table IX
ALPHA

0 .25 .5 .75 .9

216 168 192 192 192
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Table X.
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Maximum tolerable variances for a two

species system for the case of u;(t) and

v.(t) cross correlated with a correlation
which increases with a as described in the
text. High values of o are shown. Variances
were multiplied by .0001. The different

value of the maximum tolerable variance for

o = .9 here and in Table IX is due to the

fact that different definitions of persistence
were used.
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Table X

ALPHA
.9 .91 .92 1.93 .94 | .95 |.96 | .97 | .98 | .99} .999 |1.
168 [192 [ 192 (192 |192 {216 | 216 {216 | 216 { 240 240 | 240
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will actually be slightly more stable than systems with lower
values of o over the range from a = .9 to a = 1.

Another method of looking at the relative stability
of systems with different values of o was to plot the minimum
population size of either population as a function of o for
a series of runs at a given (high) level of variability,
assuming that correlation varied with a as before. The results,
for two different series of random numbers, are shown in
Figures 13 and 14. The results of the two runs vary slightly,
but there appears to be maximum stability for either very

high or very low values of a.

u;(t) and up(t) Negatively Correlated

As a third example, we will consider the case where
u1(t) and pa(t) are negatively correlated. It is likely that
this is not often the case in nature, but it could arise if
the two competitors had different predators, and the density
of the predators was for some reason negatively correlated.

It might also arise if two species' foraging activity were
Timited by a physical variable to which they had oppoéite
tolerances. Here the coorelation is modelled by the follow-
ing scheme:

ni(t) = kA(t) + (1-k)B(t)

pa(t) = -kA(t) + (1-k)C(t) (5)
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where A, B, and C are as before, and the magnitude of the
negative correlation increases with K. The results of a series
of simulations with k = .9 is shown in Table XI. Compariqg
this with corresponding results for the case of uncorrelated
u(t) (Table V) suggests that negative correlations result in

a slight decrease in the re]a;ive maximum variability for a
given value of a. For this case, the relative value of the
minimum eigenvalue is a fairly accurate predictor of the

maximum tolerable variance.

Mean u(t) Decreases with Increasing Variance

The previous analysis has assumed that the carrying
capacities of.the two competitors were equal. If the mean of
the ui(t) does not decrease with increasing variance, relax-_
ing this assumption does not qua}itatiye]y alter the basic:
conclusions. If, however, variability results in lower average
per capita rates of increase (equivalently, 1ower carrying
capacities) it is necessary to considér cases where the carry-
ing capacities of the two species differ. The:criterion for
coexistence of the two species in a constant environment is
that
1 Ky

i SRS (6)

If the carrying capacities are lowered by an amount x due

to environmental fluctuations, this criterion becomes
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Table XI. Maximum tolerable variances for the two
species system with pu;(t) and u,(t)
normally distributed but negatively cor-
related. Variances were multiplied by
.0001.



Table XI

ALPHA
0 .25 .5 .75
o 216 144 72 24
o 264 192 96 48

93b
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1 Ki-x
0o > Kz-X > 012 . (7)

For any case where (6) is satisfied, there is some value of

x such that (7) is not satisfied for any x larger than that
value, unless K; = Kp. Since it is very improbable that

- two carrying capacities will be exactly equal, this implies
that overlap may be greate; when fluctuations are less severe,
if fluctuations have the effect of reducing the average
carrying capacity (which, in turn, is often true when a
physical factor in the environment varies). This conclusion
holds even when the species react to environmental factors

in very similar ways.

Two Species Conclusions

This analysis of two species systems has resulted
in these major conclusions about when environmental vari-
ability will set a 1imit to the level of competition in a

group of species:

(1) 1f the only type of environmental! variation
is variation in the supply of the resources for which the
animals are competing, then the presence of a high level of
environmental fluctduations will not set a limit to the value
of the competition coefficient of two competing species.

A two species system with high overlap (actually a) can
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Figure 13. Minimum population size (of either of the
o two species) for a two species system with
i (t) and p,(t) cross correlated with k = o.
Length of simulation was 10,000 time units.
Variance was 1.44 x 1068.
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Figure 14. Minimum population size (of either of the
two species) for a two species system with
u1(t) and ua(t) cross correlated with
k= a. Parameters are same as in Figure 13,
except that a different random number
sequence was used.
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tolerate as high (or higher) levels of environmental vari-
ability as can a system with relatively d1ow or moderate

overlap.

(2) If the fluctuations in the per capita rates
of increase of the two species are highly posi+ively cor-
related (if they have common predators or are sensitive to the
same physical factor), 'a very variable environment will
only exclude systems with very high overlap. The maximum
tfolerable variance does not decrease rapidly as a func+fon of
o until a is quite large. Since competitors are often tax-
onomicalfy closely related, it is likely that they will
react similarly to environmental fluctuations, resulting in

positive correlations.

(3) The level of environmental fluctuations may
determine the maximum overlap in two species systems where

fluctuations are not highly positvely correlated. For a

given degree of environmental variability, the limiting
similarity will be less (the maximum o consistent with per-
sistence will be smaller) when the critical population size

is a relatively large fraction of the carrying capacity.

This may be true for rare species (species with a low carrying
capacity), but it is difficult to generalize. Maximum overlap
will be still lower if fluctuations in the per capita growth

rates of the ftwo species are negatively correlated.



(4) The ratio of the maximum tolerable variance of
a system with relatively high o to one with o = 0 is greater
than the ratio of the corresponding minimum eigenvalues.
This is true if fluctuations in the rates of increase are

uncorrelated or if they are positively correlated.

(5) If more variable sysfems are harsher in the
sense of having lower average carrying capacities, the
maximum level of overlap will decrease with increasing levels

of variability.

The increased stability for systems with high
overlap when the u(t) are positively correlated is due to an
increased tendency for a population which is displaced from
its equilibrium value to return to that value. For example:
if species one decreases from its equilibrium value by an
amount &, at time t, then it is Tikely that species two will
also decrease from itslequilibrium value at time t (by an
amount 8,). The rate at which population one increases in
the next time interval will be proportional to &6; + ad,.
This term is an increasing function of a, so that positive
correlations (which result in 8§, and 8§, being of the same
magnitude) will stabilize systems with high overlap (a).

If the ratio of species one to species two is displaced from
its equilibrium value, the rate of return will depend upon
the minimum eigenvalue. If the “i(t) are highly corre]ated,

however, the chance of the ratio being displaced from its
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equilibrium value by a large amount is greatly reduced. In
the limiting case of perfect correlation and o = 1, the system
is equivalent to a single species model where the individuals
are arbitrarily divided-into two equal groups. The same
reasoning explains why, if the ui(t) are negatively corre-
lated. systems with high overlap will be less stable than if
the “i(t) were uncorrelated. Here, if at time t, N; decreases,
N, is likely to increase. Then at time t + 1 the rate of
increase of N; will be proportional to &; - uﬁz (where &,

and 8§, are greater than zero), a decreasing function of a.
This leads to destabilization of systems with relatively high
overlap.

The above argument is applicable to a much larger
class of models than just the Lotka-Volterra. More generally,
the rate of increase of species one (after the two populations
have decreased by 6, and §,) will be an increasing function
of 8; + a8, rather than being directly proportional to this
quantity, but the rest of the argument is basically the same.

The argument that overlap must be lower in harsher
environments 1is a]sq likely to be fairly general. In a more
accurate model, the competition coefficients will be functions
of population density. If a.

1]
tion density, or if it only decreases slightly, the inequalities

increases with a decrease in popula-

(6) and (7) still indicate that overlap must be lower in harsher
environments. If, on thecother hand, the competition coeffici-

ents decrease significantly with a decrease in population
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densities, (7) may be satisfied for all of the cases where (6)
is satisfied. It is necessary to specify a model of the
competitive process before deciding between these alternatives,
but at least one other model (see Chapter 3) supports the
argument that overlap must be lower in harsher environments.
The argument that greater overlap is possibTe when
the critical population size is small is 1ikely to be true
of many models other than the Lotka-Volterra, but the quanti-
tative features of the relationship would have to be determined
for the specific model under consideration. Conclusions about
the precise relationship between the minimum eigenvalue of
the interaction matrix and the maximum tolerable variance

are mainly relevant to the Lotka-Volterra model.

Systems with More than Two Species

There did not seem to be any reason to believe that
the general features derived for the two species system would
be altered if there were more than two species in the com-
petitive gquild. However, several series of simulations of
three and four species guilds were run to verify this
assertion.

Figure 15 shows the maximum tolerable variance for
several three species systems. It was assumed that u,(t),
uz(t), and us(t) were uncorrelated and normally distributed.

The three competitors were linearly arranged, the carrying
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Figure 15. The maximum tolerable variance as a function
of a2 in a three species system where the
;ompetitors are linearly arranged gnd the

“i(t) are uncorrelated. o33 = a;»

Asterisks represent results of simulations.
X's represent results predicted from the
minimum eigenvalue. Variances are divided
by 10%. The criterion for extinction is
that a population drops below .5.
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capacities of the first and third species were equal, and the
carrying capacity of the second was changed with o so that

the equilibrium population sizes of the three species were
equal. In the figure, o is the value of ai2(= az1) which is
assumed equal to azs{(= a3zz2). o13(= asz1) is assumed to-be equal
to a;22. This particular relationship is designed to model
the case of three competitors linearly arranged on a resource
axis, and it is realistic at least to the extent that a;3

is Tess than o;2, and the difference between a;3; and a;2

has a maximum for intermediate values of o;»>. However, it

was chosen here merely for illustrative purposes. Figure 15
also shows the maximum tolerable variances predicted on the
basis that the maximum tolerable variance for a system with

o greater than zero was equal to the maximum variance for

o = 0 times the minimum eigenvalue for a system with the given
o divided by the minimum eigenvalue for o = 0. As in the

two species case, the actual maximum tolerable variance is
substantially higher than the predicted.

Figure 16 shows the results of a similar series of
simulations assuming that p,(t), u2(t), and ps(t) were posi-
tively correlated. Specifically, u:(t) = .9A(t) + .1B(t);
pa(t) = 9A(t) + .1C(t); wna(t) = .9A(t) + .1D(t), where
A, B, C, and D are independent normally distributed random
variables. As for the two species case, positive correlations
resulted in systems with high overlap (a) being able to
tolerate nearly the same level of environmental variability

as systems with low overlap.



Figure 16.

103a

The maximum tolerable variance as a function
of a;2 in a three species system where the
competitors are linearly arranged and the

ui(t) are cross correlated as described in

the text with k = .9. a:;3 = 0;22. Asterisks
represent results of simulations. X's repre-
sent results predicted from the minimum
eigenvalue. Variances are divided by 10*%.
The criterion for extinction 'is that a
population drops below .5.
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Tables XII, XIII, and XIV present similar results
for four species systems. The major differences between the
two species case and the many species case is that, for a
given average value of g5 the more species, the smaller the
equilibrium values of the populations. As a result, environ-
mental variation seems more T1ikely to set a 1imit to the degree
of overlap in many species systems. However, a high degree
of positive correlation in the u(t) will stabilize systems
with high overlap, so that systems with high values of the
competition coefficient are able to tolerate nearly as much
environmental variability as a single species system.

Modelling systems with different degrees of corre-
lation between different species pairs becomes difficult for
the many species case, but when overlap is very high, results
will be approximately the same as for the case of a constant

high level of correlation (with the same level of correlation

between the different species pairs).

Discussion

~The preceding analysis has involved many simplifying
assumptions, including the fact that attention was resfricted
to the Lotka-Volterra model. Although the results of this
analysis are not universally applicable, they are no doubt
true for many systems where the assumptions are not met.
It is 1ikely, for example, that the assumption that the ”i(t)

are normally distributed, and that the other parameters of the



Table XII.

Maximum tolerable variances for a four
species system with the competitors
linearly arranged. Alpha denotes the
value of a;2 (which is equal to a,s3 and

105a

- _ 9 _
asu)- 013 = O12 * O1y = 012 * O2y = O13.

The minimum eigenvalue is denoted by Amin'
Other parameters were the same as in the
two species system, except that the length
of the simulation was 4000 time units.
Variances are multiplied by .0001. The

“i(t) are uncorrelated and normally

distributed.
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Table XII
ALPHA
0 . .2 3 .4 5 .7 ;8 .9 1
oi 240 216 192 168 120 96 72 48 24 0
0?5 264 240 216 192 144 | 120 96 72 48 24
A 300. | 229. | 169. {120. {79. {47.1{24.1] 9.7 {2.5 | .25
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Table XIII. Maximum tolerable variances for a four
species system with the competitors arranged
in a nonlinear fashion. ai12 = 013 = Q14 = O.
The “i(t) were uncorrelated and normally

distributed. Length of the simulation was
4000 time intervals. Variances are multi-
plied by .0001. The minimum eigenvalue

is given by Amin'
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Table XIII
ALPHA

264 240 192 168 144 | 120 96 72 148 24

300 208. [ 150. |{100. | 81.8{60.0 | 42.9| 29.0[17.7|8.1
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Table XIV. Maximum tolerable variances for a four
species system with the competitors arranged
in a nonlinear fashion. o112 = 013 = 014 = Q.
The “i(t) were correlated with k = .75.

Other parameters of the simulation were the
same as for Table XIII.
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Table XIV
ALPHA

264 240 240 240 216 {216 192 168 | 144 |96

300 208. | 150. {100. |81.8160.0 |42.9 |29.0(17.7]8.1
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distribution function dO‘not change with increasing variance,
is not often satisifed. However, within 11mits, the major
results of this analysis are probably applicable to many cases
where this assumption is not met. This is due to the fact
that we are concerned with the relative values of the maximum
variance for two systems rather than the absolute value for
any particular system. Take, for example, a two species Lotka—
Volterra system with o = .5. If, for a given degree of environ-
mental variability, the variance of u;(t) and u.(t) decreased
with decreasing population sizes, the system could tolerate
a higher degree of variation than if this were not the case.
However, the ratio of the maximum tolerable environmental
variability for a two species system with oo = 0 to a similar
system with oo = .5 will be altered to a much lesser extent
by the assumbtion that the variance of the ui(t) is independent
of population size.

The mathematical analysis presented here suggests
that for many types of environmental variability, the level
of fluctuations will not prohibit the persistence of systems
with very high niche overlap (high values of the competition
coefficients) in a Lotka-Volterra system. Therefore, if this
analysis is fairly general, most examples of greater species
diversity in stable environments probably cannot be explained
by the argument that stable environments permit higher niche

overlap unless more variable environments are also harsher.
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There is relatively 1ittle information available
on the relationship between niche overlap and environmental
variability in natural communities. However, Cody (1974)
has found that overlap in horizontal habitat among birds is
higher in environments which have a higher degree of climatic
predictability. However, this pattern need not reflect a
difference in the 1imiting degree of overlap. It is possible
that lTower overlap is due to Tower population densities in
the Tess predictab]e areas. This would Tead to lower intra-
specific competition, so that the birds may utilize only the
optimal habitats. This would lead to Tower overlap, although
the Timiting degrée of err]ap may not be different.

Robert May also predicted that the level of environ-
mental variation would not greatly alter the maximum level
of competition consistent with stability (May, 1973a). How-
ever, his results are not likely to be generally applicable,

since,

(1) As May himself stressed (1973a), his argu-
ment only applies fto levels of environmental fluctuations at
least an order of magnitude less than the maximum tolerable

variance for a single species system.

(2) His conclusions were based on a mode! of
competitors whichlare linearly arranged along a resource
axis (or which may be rescaled to be linear), which does not
appear to be true of most real competitive guilds (Schoener,

|974b) .
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(3) May's results depend on a particular method of
calculating the competition coefficients, which may not be

generally valid (see Chapter 1).

This study has been concerned with nonperiodic
temporal variability, and thus deals mainly with unpredictable
events in an organisms' environment. It is not clear whether
the conclusions arrived at here are relevant to regular
seasonal changes. In fact, Stewart and Levin (1973) have
developed a model where coexistence of two species on a single
resource is possible in a seasonal environment, but not in a
constant one.

It should be stressed that the present analysis
can only provide a small part of the theory necessary to
explain higher species diversity in more stable environments.
Other proposals which must be tested include the hypothesis
that niche breadth is greater in more variable environments
and that stable environments are usually closer to an evo-
lutionary equilibrium (MacArthur, 1972). In addition, further
analysis of the present question using other models would

be instructive.



Chapter 3

LIMITING SIMILARITY IN A SIMPLE MODEL OF
EXPLOITATIVE COMPETITION

INTRODUCTION

There has been a great deal of theorizing in ecology
concerned with explaining differences in species diversity
under different conditions. With reference to groups of
competitors, differences in species diversity have been

explained in at least four ways (MacArthur, 1972):

(1) differences in the range of resources
available;

(2) differences in the number of potential
invaders or the amount of time for
speciation,

(3) differences in the niche breadths of
the competitors (more competitors
may coexist if the species are
specialists than if they are generalists),
and -

(4) differences in the limiting similarity
of competitors.

Here the term "T1imiting similarity" is taken to mean the

minimum difference in resource utilization patterns which will

111
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allow coexistence of two competitors, one of which has a
slight competitive advantage. This definition is discussed
in more detail later.

The present paper is a theoretical investigation
of the fourth point. Specifically, a simple model of exploi-
tative competition is proposed, and is analyzed to.see how the
Timiting similarity of competitors depends upon the parameters
of the model. The next section of the article discusses the
implications which this analysis has regarding the effect of
predation and environmental fluctuations on species diversity
in competitive communities. The final section discusses the
generality of the results derived here. This type of model
is designed to suggest possible exp]anations for patterns
rather than to make precise predictions about any specific

system.

The Model
This section is divided into two parts. The first
describes those communities where the present model may be

applicable. The second presents the details of the model.

The Assumption

This study deals with a specific type of consumer-
resource model in which the consumers do not alter the rate

at which resources enter the system (here system is taken
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to mean the area in which consumers may encounter resources).
I[f resources are not consumed, they eventually leave the
system; the residence time may or may not be constant. Thus,
resources enter the system at a rate which is independent

of consumer density, and leave either by being consumed or
through.some other process, such as decay. This type of
model was chosen both because it was simple, and because it
seemed to include a large fraction of the competitive guilds
which had been studied. If consumers can alter the rate at
which resources enter the system, then it is necessary to
specify the functional relationship between resource numbers
and resource reproduction before one can draw conciusions
about the limits to similarity.

A large number of organisms depend upon resources
which do not reproduce themselves, so they necessarily satisfy
the basic assumption of this model. Scavengers generally
cannot increase the rate at which their food becomes avail-
able. The ant communities studied by Culver (1974), for
example, fall into this basic category. Benthic sediment
feeders depend on a rain of nutrients from higher levels.

By consuming those nutrients, they can neither increase nor
decrease the rate at which nutrients become available.

Many nectivores and frugivores probably do not alter the

rate at which nectar or fruit is produced. In addition,

there are more specialized cases, such as hermit crabs, which

compete for empty gastropod shells (Vance, 1972a,b). Since
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the crabs do not kill the gastropods themselves, they cannot
alter the rate at which shells become available.

There are several sorts of systems in which the
resources reproduce themselves, but only a very small fraction
of the resource population ever becomes available to the con-
sumer population. This is no doubt the case for fish that
feed on insects that fall onto the surface of the water.
Another example is oceanic birds which feed on small fish
which are chased to the surface of the water by aquatic

predators. Ashmole (1968) states that,

Since predation by all tropical oceanic
birds is restiicted to a surface layer
only a few meters thick, 1t seems un-
likely that birds exert major effects in
determining the numbers of many of their
prey items.

The triclad flatworms studied by Reynoldson (e.g. 1966) only
attack prey which are injured or behaving abnormally, so that
they are unlikely to alter the rate at which their prey becomes
available. A similar situation probably exists for many
insectivorous birds and lizards, and should often be true
when consumers are “prudent predators” in Slobodkin's (1961)
sense.

The general assumption may also be satisfied for
a large number of cases in which the resources do reproduce
themselves and the consumers utilize a large fraction of the
resources. Most insectivores consume only one stage of the

1ife cycle of any insect species in their diet. The abundance
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of this stage in the next (insect) generation is affected
by many factors other than mortality during the particular
stage. Therefore, the correlation between the abundance of
that stage in generation t + 1 and mortality in generation t
may be negligible. Many seed-eaters consume a large fraction
of the available seed crop, but seed production in the next
plant generation will not be reduced if the plant population
is lTimited by density dependent mortality among young plants.
Even if the level of seed predation affects the plant popula-
tion, there will often be a very long time lag involved.
This will be true if the seeds eaten are produced by slowly
growing long-lived perrenial species. If the lag is long
enough with respect to population processes of the consumer
species, it may be possible to treat the system as though the
level of consumption did not alter the resource production.
The majority of the eighty-one studies of resource
partitioning reviewed by Schoener (1974b) fall into the second
or third category. The resources reproduce themselves, but
it is certainly possible that the level of consumption does
not alter the rate at which resources become available to the
consumers. There are, of course, situations where the
assumption is not satisfied. In most classical predator-
prey models with no prey refuge, the level of consumption
does alter the rate ét which resources enter the system.
For example, the assumption is not Tikely to be satisfied by
competing zooplankton which consume a large proportion of the

nannoplankton in a pond.
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“The Model
In general, the population dynamics of a group of

m competitors may be modelled by a set of m differential

equations of the following form,
dt = Nf-l g-i(NlaN23'°°aNm)] (])

Here, 9; is a function which describes the per capita share
of resources of :species i as a function of population den-
sities. fi is a function describing the per capita growth
rate of species i's population as a function of the per capita
share of resources. For present purposes, we will only be
concerned with the form of the function 9; and the value of
g; for which fi(gi) = 0. This value will be denoted T., so
f.(T.) = 0. fi is assumed to be monotone increasing (per
capita growth rate is an increasing function of the per capita
food supp]y).‘ Thus fi(gi) = 0 has a unique solution, T..
Otherwise, the precise form of fi is left unspecified. The
rationale. for ignoring the form of fi will be explained later.
It is implicit that f1 is a function only of gi» SO that
such phenomena as social facilitation and interference com-
petitidn are not considered in the model.

First, it is necessary to derive a form for 9;-
the assumption that the consumers do not influence the rate
at which resources are supplied to the system constrains the

form of g;- Consider first the case in which there is one
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resource type and one consumer. The simplest possible assump-
tions are that:
(1) resources enter the system at a
constant rate,
(2) resources are consumed at a rate
directly proportional fo resource
density and consumer density,
(3) resources present in the system at
a given time leave at a rate which
is proportional to the density of
resources in the system.
Let F denote the rate at which resources enter the system,
C denote the per capita rate at which consumers encounter a
unit density of resources, and S denote the rate at which
resources leave the system. Then the rate of change of
resource levels can be described by the following differential

equation,

dR/dt = F =SR -CRN , (2)

where R is the resource density and Niis the consumer density.
It may often be reasonably assumed that population processes
in the consumer population occur at a rate which is much
slower than in the resoufce population, so that the resource
density at any time may be found by setting the right hand
side of (2) equal to zero, and solving for the equilibrium
resource density, ﬁ. The per capita share of resources is

then CR, or

g(N) = CF/(S + CN) . (3)
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It is straightforward to generalize this expression to a
case where there are many consumers and many resources. For

the general case of m resources and n consumers,

This general expression is rather difficult to work with,
so the following section analyzes a particular case con-
sisting of two competitors and three resource types.

The three assumptions made in writing equation
(2) are not in general satisfied. The rate at which resources
enter a system generally varies. However, this will not
change the basic form of equation (3). The functional
response of the consumers will often be nonlinear. This
possibility is discussed in more detail in the final section,
but it does not change the qualitative features derived
below. Resources do not necessarily leave the system at a
constant rate, and the result of relaxing this assumption is
also discussed in the final section. Again, however, the
basic features of the analysis do not depend upon this
assumption. Other implicit assumptions are also discussed

in the final section.

Limiting Similarity in a two species model

The case which will be examined here is given by

the following equations:
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- Fi Fo
gl Q + Nl + Q + Nl + N2 Fl(Tl) - 0
- Fi Fo _
92 = Q + N2 ¥ Q + Ny + Ny FZ(.TZ) =0

Species one and species two are each assumed to have an
exclusive class of resources which is not utilized by the
other species. In addition, there is a class of resources
which is utilized by both species. It is assumed that the
entry rafe of species one's exclusive resources (F;) is equal
to that of species two's exclusive resources, that the
resources leave the system at equal rates (in the absence of
consumers), and that the two species exploit resources with
equal efficiencies. The per capita share of resources at which
each individual of 'species i replaces itself is Ti' Q is
equivalent to the quotient S/C using the terminology intro-
duced earlier. A1l of these assumptions are made to simplify
the analysis, and it is argued later (in the final section)
that the basic conclusions are not restricted to cases where
these assumptions are met. In a more realistic model, each
species would exploit a number of resources, some of which
are utilized with similar efficiency by both species, and
other of which are much more heavily used by one species

than the other. Although the division of resources into
shared and exclusive classes was intended mainly to simplify

the mathematics, there is some biological justification for
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this division. In several competitive guilds, each species
possesses a "resource refuge" (Reynoldson and Davies, 1970)
which it utilizes exclusively or to a much greater extent
than its competitors (e.g. triclad flatworms (Reynoldson,
1966), water mites (Lanciani, 1970), folijage gleaning birds
(Root, 1967)).

As stated in the introduction, the limiting simi-
larity is that approximate level of similarity in resource
utilization at which coexistence of two competitors, one of
which has a slight competitive advantage, becomes impossible.

Of course, the exact value of the T1imiting :similarity depends
upon how similarity in resource utilization patterns is measured
and upon the nature of the "slight advantage" of the superior.
competitor. In the model above, similarity in resource
utilization is easily measured by the ratio F,/(F, + F,), the
fraction of the resources entering the system that are of a
type exclusively utilized by one of the species. A species has
a competitive advantage if individuals of that species are able
to maintain and replace themselves at a lower level of resources
than individuals of the other species (i.e. the T vé]ue is Tower).
Coexistence is possible if each species can increase when the
other is at equilibrium densities (its carrying capacity).

A more detailed justificiation of this criterion for coexis-
tence for a more general class of two species models may be
found in Resigno and Richardson (1967). Since (for a given

Fi, F», and Q), equilibrium densities -are determined by the

T values, it is sufficient to know the values of T, and T, to
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determine whether the two species will coexist. It is un-
necessary to know the precise form of the function fi which
determines the per capita growth rate of a species as a func-
tion of resource availabilities. It is necessary only that
fi be an increasing function of g;-

To détermine the Timiting similarity in the model
given by equations (5) for a certain:set of parameter values
(Q, T1, T2) it is necessary to solve for the smallest value
of F;/(F; + F,) which will allow either species to increase
when its density is close to zero, and the other species'
density is near its carrying capacity. If we assume that
species two has the competitive advantage (so that T, = T; -6,
where 8§ << T;), it is sufficient to determine that species
one can increase when species two is near its carrying
capacity in order to establish that coexistence is possible.

*
The carrying capacity of species two, N,, may be

found by solving (F, + F,)/(Q + N3) = T-§ for N7. This gives

* Fy+ Fo o= QT + Q8
N2 - Tl _ 6 (6)

Species one will be able to increase when species two is

at equilibrium densities if,

Fi

This requireé that
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*
Substituting for N, from above, we obtain the criterion,

I A ] T e I
L (9)
Fat Fa (Fi1 + Fz)[Q s Bt !l:'j: ng . QG]

Denoting F,/(F, + F,) as.p, and F; + F, as F this expression

t’
may be simplified to give,

Qs -
P F T T.0 ¥ Q8 | (10)

Therefore, the minimum value of p which will allow coexistence
(pmin) is given by the right hand side of (10).

There are basically four parameters in this model.
The following section examines how the limiting similarity

of competitors varies with each of these parameters.

Q
From the derivation of equation (3), it may be
seen that Q is directly proportional to the rate at which
resources leave the system and inversely proportional to
the consumption rate of an individual competitor. Thus Q

will be relatively large if resources turn over quickly or
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if the consumers are relatijvely inefficient at exploiting
them. In order for species one to persist in the absence of
species two, it is necessary that Q < Ft/Tl. Therefore, we

examine the derivative 3p /3Q over the range @ = 0 to

min
Q = F,/T,. The partial derivative is,
t’

op._ . ' F.S

2 (F, - T+ 08)

Since this quantity is positive, the minimum separation
required for coexistence increases as the turnover rate of
resources increases or as the consumption rates of the con-
sumers decrease (either of which will result in\a large value

of Q). In the 1imit as Q approaches Ft/Tl, p approaches

min
one, so that no overlap is tolerated. In the 1Timit as Q

approaches zero, approaches zero, so that nearly complete

Pmin
overlap in resource utilization is tolerated.

§ is the difference between T; and T2, and thus
represents the competitive advantage of species two. One
would expect that, other things being equal, the larger the
competitive advantage, the larger the resource separation
necessary to allow coexistence. As expected, the derivative

of p with respect to & is positive.

min
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ap_ . F. - T:Q
mn .t (F, > T,0) (12)
(F, = T10 + Q8)

—+

Ft is the rate at which resources used by a species

enter the system, and it is thus a measure of environmental

productivity. The derivative of Pmin with respect to Ft is
negative.
op. .
min _ -Q¢8
oF, (13)

t  (F, - T:Q + Q8)°

Therefore, in a more productive environment, the maximum
tolerable overlap will be greater. As Ft approaches QT;,

approaches one. As F, becomes very large, p

P t

. . approaches
min min PP che

zero.

Ty is the share of resources necessary to maintain
and replace an individual of species one. The magnitude of
T, depends upon several factors. If the organism is in-
efficient at converting resources into new individuals, T,
will be high. If the species is subjected to heavy mortality
from harvesting or adverse physical condition, T, will be

high. The partial derivative of p with respect to T,

min
is positive.
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op. .
s (14)
b (Fy - TiQ + Q8)

Therefore, if the per capita resource requirements of a

species are relatively high, a large niche separation will

be required to allow coexistence compared to a case where T,

is lower. If T; is very low, most of the resources which enter
the system are consumed when the species are at their equili-
brium densities. If.Tl is relatively large, a relatively

large fraction of the resources which enter the system leave

without being consumed.

The Efficiency of Exploitation

An increase in F a decrease in T, or a decrease

t?
in Q will all result in an increase in the efficiency of
exploitation, defined as the fraction of resources which

enter the system which are consumed. Therefore, there should
be a trend for the maximum tolerable overlap to increase as

the efficiency of exploitation increases. However, the
limiting similarity is not equally sensitive to all of the
parameters, so it is possible for the efficiency of exploi-
tation to decrease while the maximum tolerable overlap
increases. For a single species, the fraction of all resources
which may be consumed which actually are consumed is equal

to N/(Q + ﬁ). Since ﬁ = F/T - Q, the fraction of resources

which are consumed is (F - TQ)/F. Thus, the efficiency of
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exploitation will remain the same if T increases and Q

decreases but TQ remains constant. However, p decreases

min
under the same conditions. Although it is probable that
relatively large niche separations are required for coexistence
when the efficiency of exploitation is low, a small enough
value of Q will allow high resource overlap with inefficient

exploitation.

Discussion of the Two Species Model

Limiting Similarity with no Competitive Advantage

The term "limiting similarity" in the preceding
analysis has been used in a .somewhat different manner than
its usage by previous authors (e.g. May (1973a), MacArthur
and Levins (1967)). These authors have examined the question
of whether two competitively equal species have a minimum
niche separation consistent with coexistence. May (1973a)
notes that for a deterministic Lotka-Volterra type model with
the assumption that aij may be calculated by MacArthur and
Levins' (1967) formula, there is no such limiting similarity.
For the model given by equations (5), such a T1imit does not
exist either. It may be seen from expression (11) that if
6 = 0, the minimum value of p is zero; i.e. there is no

Timiting similarity in May's sense.
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Will Niche Overlap be Higher Where Exploitation is

More Efficient?

Having analyzed the limiting similarity of compe-
titors based on the model given by (5), it is worth asking
whether niche overlap will be higher in those communities
in which exploitation is more efficient. If the model dis-
cussed above is applicable and if competitive exclusion is
the only factor which determines niche overlap, this should
be the case. However, selection for the avoidance of compe-
tition also influences observed patterns of niche overlap.
This section is a semi-quantitative analysis of the circum-
stances under which there wj]] be a selective advantage to
niche shift in the presence of a competitor. "Niche shift"
is being used in a broad sense to describe any change in the
consumption rates of different resources as a consequence of
interspecific competition (i.e. a change in C in equation
(2)). The shift could be strictly behavioral, or it could
involve genetic change.

We begin with a single species exploiting a set
of resources with a common turnover rate. The per capita
share of resources will be F/(Q + N;) where F is the total
rate of entry into the system of all the resources which
the species exploits. In the presence of a second species
which uses a subset of those resources used by species one,

the per capita share of resources of species one will be
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Fi/(Q +-N;) + F,/(Q + N; + Np). The question is then, when will
it be advantageous for species one to shift its utilization

so that F; increases (by AF;) and F, decreases (by AF,)?

Since the original utilization pattern of speices one is the
product of natural selection, one can assume that AF, is

smaller than AF,. If it were larger, the indicated niche

shift would have occurred in the absence of the competitor.

Niche shift will be advantageous when,

Fu + AFy , Fp - AFp _Fy Fs
Q + N, Q + N; + N, ©-Q + N, Q + Ny + N>

If Q is very large relative to N, and N,, the inequality
becomes approximately, AF; - AF, > 0. This caﬁnot be satisfied
since AF; is less than AF,. As Q becomes smaller (or as N;

and N, become larger, due to a larger Ft or smaller T), there
is a larger range of values of AF; and AF, which will satisfy
the inequality. A Targer niche shift will result in a larger.value
of AF, - AF,, so that when exploitation is more efficient,

a larger range of niche shifts will be advantageous. This
result is basically intuitive. The greater the reduction in
the supply of a resource by a competitor, the Targer the

range of niche displacements where the advantage of lowering
competition outweighs the disadvantage of exploiting non-
optimal resources. When exploitation (by both species) is
relatively efficient, competitors will effect a greater
reduction in each other's food supply for a given amount of

resource overlap.
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It should be noted that this same sort of reasoning
suggests that interference competition will evolve only when
exploitation by both species is relatively efficient. Here
interference may be thought of as reducing or eliminating
the competitors feeding on the shared resource, at the expense
of a higher value of T. Roughly, interference will be

advantageous when

Fi + Fo
Q + Ny Q + N,

e, Fy
Q + N, Q + N; + N

(T + AT) > - T

Again, this inequality is unlikely to be satisfied if Q is
large relative to N.

If there are a large number of potential invading
species and the competitive community is neaf equilibrium with
respect to species number, then competitive exclusion will
be the most important factor in determining niche overlap.

In this case, niche overlap should be greater where Pmin is
smaller. If, on the other hand, the community is not close
to being saturatéd with species, niche shift may play an
important role in determining observed overlap When exploi-
tation is efficient, and it is no longer clear whether higher
niche overlap will be correlated with efficient exploitation

or with p A comparison of niche overlaps in communities

min’
which differ in the efficiency of exploitation may suggest
whether niche shift or competitive exclusion is more important

in determining observed patterns of resource partitioning.
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Evidence from Natural Communities

If communities are relatively saturated, the present
model suggests that niche overlap will usually be higher in
those cases where exploitation is more efficient. Although
there is some data -available on niche overlap in bird and lizard
communities (e.g. Pianka (1973), Cody (1974)), there generally
is not sufficient information to judge whether the present
model is applicable, let alone to determine relative parameter
values in different communities. However, some patterns seem
to be consistent with the predictions made here, and should
be examined in more detail. For example, frugivorous birds
typically show less resource partitioning than insectivorous
species (Schoener, 1974b). It seems at least possible that the
parameter Q is usually larger for fruit than for insects, since
many of the latter are available during only.a brief part of-
their 1ife history, or while engaged in a certain type of
behavior. Similarly, relatively large organisms generally
exhibit a higher degree of partitioning than small organisms.
Large animals would be expected to have a high T value relative
to small organsims, so that the present model is consistent with
this observation as well. The best available evidence relevant to .
the predictions made here seems to be the studies of Vance
(1972a,b) and Nyblade (1974) on the hermit crabs of Puget Sounds,
since the basic assumption of the model is clearly met for these
invertebrates. The three species of intertidal crabs studied
by Vance show very distinct segregation by level in the

intertidal in which they occur. Subtidally, there are a
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larger number.of species (13), and Nyblade's data (Nyblade,
1974) suggests that overlap both with respect to habitats
used and shells used within a habitat are higher than in the
intertidal. There is fairly good evidence that the species
compete for shells, and it seems reasonable that shells Teave
the intertidal at a faster rate than the subtidal. In the
intertidal, shells which are not used are generally washed
out of the system, while subtidally, shells remain in fhe
system until they are buried by sediment or overgrown by
encrusting organisms. Difficulties in sampling the subtidal
community make results on niche overlap tentative. Further
work on these and other hermit crab communities could do much
to further our understanding of resource partitioning in

general.

The Effect of Predation and Environmental Variability on

Species Diversity

This section considers predation that acts in a
relatively density independent manner on each of the competing
species. It is clear that a predator which concentrates on the
most abundant species (a predator which exhibits switching
behavior) may allow competitors to coexist even if overlap in
resource utilization is complete (May, 1974c). Similarly,
if each competitor population is limited by a different
predator, coexistence with complete overlap in resource

utilization is possible. If the predators are limited by
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some factor other than the population density of the competing
prey populations, or if there is only a single.predator, then
this stabilizing density dependence will not be present,

and the basic effect of predation will be to reduce popula-

tion densities below the level which they would otherwise
attain. It is this type of "density independent" predation
which will be examined here. Predation may be density dependent
in the sense of increasing as the total population of all prey
species increases. What is important is that none of the com-
petitor populations is 1imited by a predator.

It is simple to modify the system considered in the
first section of this article to include the effect of pre-
dation by adding a term -aP to the expression for the per
capita rate of increase of the populations. Here P represents
the predator density and a represents the per capita con-

sumption rate of prey by predators. Thus,

dNi
4% - M fi[gi(lef'Nn)] - aP (17)

Since f(g) is an increasing function, it i§ clear that the
addition of the predation term is effectively equivalent to
increasing the value of T, the per capita share of resources
necessary for maintenance and replacement of the species.
Thus the effect of predation is to increase the minimum

niche separation necessary for coexistence. In the sort of
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community to which this model is applicable, predation that
is density independent will reduce species diversity.

This conclusion seems to be the opposite of the
traditional view of the effect of predation on the degree
of resource partitioning necessary for coexistence. This

traditional view has been stated by MacArthur (1972):

If abundant predators prevent any
species from becoming common, the
entire picture changes. Resources
are no longerof any concern, and our
equations (1) and (2) are irrelevant.
More correctly, resources are still
a concern, but their manner of sub-
division 18 irrelevant.

Along a similar vein, Connell (1971) states: "An alternative
hypothesis to explain such coexistence is that potentially
competing prey populations are kept at such low numbers by
very efficient predators that competition is greatly reduced.
The prey coexist because no species reaches high enough
density to exclude another in competition," and that, "Of
course, it has long been recognized that predators can keep
potential competitors so rare that they do not compete"
(Connell, 1975).

The fact that the minimum separation required
for coexistence increases as the level of predation increases
suggests that a simple reduction in competitor population
sizes does not reduce competition in this model. In fact,
it can be shown that several measures of the intensity of

competition increase as predation becomes greater. For
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example, assume that competition is measured by the effect
of species two on the per capita growth rate of species one
divided by the effect of species one on its own growth rate
(Gi11 (1974) has also suggested this quantity as a generally
applicable measure of competition). This quantity, which

will be labelled a;2,, may be calculated by the following

formula, .
aﬁ (per capita growth rate of species 1)
Qi12 = 32 - (-]8)
5N (Per capita growth rate of species 1)

For the present model,

Fo/(Q + Ny + Np)°

12 = ~ ~

(19)
Fi/(Q + Ni)% + Fo/(Q + Ny + N»)

2

where N; and N, are the equilibrium numbers N; and N, attain
when the two species are sympatric. Assume for simplicity
that Ty = T, = T, so that N; = N, = N. The derivative of

a;2 With respect to N is,

) { 2F1F,Q }
dayp _ (Q + N)® (g + 2N)°
aﬁ FlA + FZA
(Q + N)®  (qQ + 2N)?

(20)

2




135

Since this quantity is negative, a,» increases as equilibrium

population numbers decrease. The increase in T brought about

by predation will decrease ﬁ, and therefore increase a;2,
so by this measure of competition, predation increases the
intensity of competition.

The same effect may be seen by comparing popula-
tion densities of a species in the presence and absence of
its competitor. Again assuming equations (5) with T, = T,
the equilibrium density of a species in the absence of its
competitor is N = ((Fy + F»)/T) - Q. In the presence of

the competitor, the equilibrium density is

N = 2F1 + Fp - 3TQ + NT?Q%+ (2F, + Fp)® - 4TQF, + 2TQF,
4T

* ~
The ratio of N /N is another possible measure of the inten-
sity of interspecific competition. This ratio is an in-

creasing function of T. If T is very small, the ratio

approaches (F, + Fo)/(F; + .5F,). As T approaches (F, + F,)/Q,

“the ratio N*/ﬁ approaches (F; + 2F,)/(Fy + F,). Thus, for
a given degree of overlap, the fractional decrease in a
population brought about by its competitor is greater when
levels of predation are higher. Again, predation increases
the level of competition.

It should be noted that even though competition
is higher when T 1is higher, there is 1ittle change in the

observed resource utilization patterns with the addition of
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a competitor (when T is high). The proportion of species

one's diet that consists of shared resources is,

(22)

when the species are sympatric, and F,/{(F; + F3) when they
are allopatric. If Q is large relative to N; and N, (this
will be true if T 1is large), the proportion of the diet
that consists of overlapped types of food will not change
much if N, is increased from zero to equilibrium levels.
On the other hand, if equilibrium population levels are
much Targer than Q, the proportion of a species' diet that
consists of types of resources taken by both species will
decrease when the species are sympatric. This phenomenon
is not a niche shift in the sense used earlier, since con-
sumption rates per unit resource do not change. Vandermeer
(1972) has suggested that this type of change in resource
utilization when the species are sympatric can be used as
evidence of intense competition, an idea which is not sup-
ported by this analysis.

Experimental and field evidence on the effects of
predation on species diversity often, though by no means
always, show predation increasing species diversity. Darwin
noted over.a century ago that more species of grasses per-
sisted on lawns that were grazed or mown. More recently,

Harper (1969) has summarized experiments on the effect of
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predation on species diversity in plant communities, and
has concluded that predation can either increase or decrease
species numbers depending upon the selectivity of the
predator. Paine's (1966) experiment in which removal of a
starfish from intertidal plots resulted in decreased species
numbers is often cited as evidence supporting the hypothesis
that predation increases species diversity in competitive
communities. More recently, Addicott (1974) has studied
the effect of predatory mosquito larvae on protozoan-rotifer
communities in pitcher plants, and has found that predation
always resulted in decreased species humbers.

0f course, the present model is not applicable
to competition for space, so that Darwin's and Paine's
observations are not necessarily relevant here; However,
even in these cases it is not clear that coexistence is simply
due to reduction of all population sizes. It seems more
likely that increased diversity in both cases was due to
selective predation on the competitive dominant(s). Although
it is not yet possible to determine whether the present
model is adquate for the protozoan community studied by
Addicott, this system is clearly much closer to the type
discussed here than in Paine's. It is interesting to note
that the Lotka-Volterra model also predicts that predation
should reduce diversity in a competitive community (see

(Chapter 2).
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Environmental Variability and the Limiting Similarity

Environmental variability may take a number of
different forms, and it is necessary to specify something
about what_is varying before drawing any conclusions about
how environmental variability will influence niche overlap
(see Chapter 2). In the present section we consider those
sorts of environmental fluctuations which act so as to reduce
population sizes. This would occur when the organisms are
optimally.adapted to average physical conditions (e.g.
temperature, salinity, etc.) and increasing amplitude or
frequency of variations will lead to a decline in the popu-
lation size. Here, a more variable environment is harsher,
and the effect of environmental variations is similar to that
of predation.' A more variable environment results in a
higher value of T, the share of resources needed for main-
tenance and replacement. Thus, the maximum overlap consistent
with coexistence decreases as environmental variability
increases. This conclusion is independent of the nature
of cross cofre]ations in the effect of the environmental
factor on the per capita rates of growth of the different
species in the guild (i.e. whether the species react similarly
or differently to a given change in the environmental factor).
A similar conclusion may be drawn using a Lotka-Volterra
model of competitive interactions, if increased environmental
variability implies a lower average rate of increase. Any

factor which ‘acts to reduce population sizes will increase
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the niche separation required for coexistence, and, other
things being equal, will result in reduced species diversity.
This is consistent with most field observations which show
decreased species diversity in variab]e (harsh) environments.
It is also consistent with Cody's (1974) observation that
overlap in horizonta] habitat in bird communities was less
in environments with lower climatic predictability, although
other factors can explain this.

The fact that the predictions of the current
model are consistent with most data on the effects of
environmental variability on species diversity, but not with
data on predation may be explainable on the basis that most
natural predators tend to selectively prey on the compe-
titive dominant(s), whereas the effect of environmental
variabf]ity is generally less selective. Of course, further
work is needed before it is possible to determine whether
the present model is applicable to thdse cases for which

data 1is available.

General Discussion: How General is the Model?

There are basically two questions about the

generality of the model analyzed here.

(1Y Do the major results derived for
equations (5) also pertain to the
more general case given by (4)7?
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(2) Do results derived for (4) and (5)
apply to all cases where the major
assumption (that the consumers do
not influence the rate at which
resources are supplied to the system)
is met?

Unfortunately, it is difficult to give a very rigorous answer
to either of these questions. However, in this section it
is argued that the results derived here are likely to be

reasonably general.

Question (1)

The fact that there is a clear division between
shared and exlusive resources in (5) is not essential to
the analysis presented earlier. If, for example, model (5)
was changed to the form below, numerical analysis shows that
the same conclusions emerge about the relationship between
the efficiency of exploitation and the maximum overlap which

will permit coexistence.

g: = Fa + Fo + BF 1
! Q + N; + BN, Q + N; + N Q ++BN; + N,

B << 1 (23)

Fa

- Fo __BF,
92 Q + N2 + BNy

FOEN, VN, T QT BN, TN,

Here there are no truely exclusive resources. Each species
utilizes the resource refuge of the other to a limited

extent.
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Similarly, it is not necessary that the shared
and exclusive resources have the same Q value. It is diffi-
cult to derive a value for the minimum separation necessary
for coexistence for a situation where there are many consumers
and many resources. However, an indication of the general
behavior of such a system may be seen by examining the minimum
size of the resource refuge (i.e. the entry rate of exclusive
or almost exclusive resources) necessary to maintain a species
assuming that competitors obtain most of the overlapped
resources. If F; is the entry rate of resources exploited
only by species i, species i will be able to persist using
these resources alone when F; is greater than QT. (Or equi-

valently, if Pmin

is greater than QT/Ft). Therefore, the
minimum size of the resource refuge increases as Q or T
increases or as Ft decreases). This suggests that the con-
clusions about the effect of Q and T on the minimum separa-
tion necessary for coexistence in the two species-three

resource case are applicable to most of the cases covered

by (4).

Question (2)

This question is more difficult than the previous
one. The approach adopted here is simply to illustrate that
a number of plausible alterations in the model do not alter

the basic conclusions.
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Nonlinear Functional Reponse. The model analyzed

here was derived assuming a more or less linear functional
response; i.e. the rate at which consumers consumed resources
was a linear function of resource density. This is probably
reasonably accurate over a range of resource densities for
many real consumers. However, if resource densities become
high enough, the rate of consumption must decline if for no
other reason than the finite handling time involved in con-
suming a resource (Holling, 1965). Factors such as predation
which lower consumer population density will result in
relatively high resource densities, and hence Tow per capita
rates of consumption per unit resource. This effectively
incréases the value of Q in model (5) at low consumer
densities. As noted earlier, a higher value of Q results

in a larger niche separation being required for coexistence.
Therefore, this type of alteration in the form of the func-
tional response will not alter the basic conclusion that
factors which reduce consumer population densities result in

a requirement for greater resource segregation.

Utilization Patterns Contract at Low Densities. If
population densities dec]iné (due to predation or environ-
mental harshness) many species contract their utilization
patterns so as to only make use of the optimal types of
resources. If this is the case, predation or environmental

fluctuations may decrease the Tevel of competition if two
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competitors have different optimal resources. Alternatively,
if they have the same optimal set of resources, competition
will be increased when population densities are reduced.

Which of these phenomena occurs more often is important

in determining whether predation is likely to increase species
diversity in a given.situation. However, this type of
behavior is not directly relevant to the determination of the
maximum tolerable overlap of competitors under predation.

In addition, the analysis of niche shift presented earlier
argues that at low population densities, the presence or
absence of a competitor has little effect on determining
whether a given resource is worth exploiting. Therefore there
does not seem to be any a priori reason to believe that
competitors are much more likely to have different optimal
resources rather than the same optimal resource. This
suggests again that predation is likely to decrease species

diversity.

Rate of Increase a Function of Population Density

Independent of g(N). The present analysis has assumed that
resources were the only important factor in determining

the per capita rate of increase of a population. However,
social facilitation ahd interference competition are 1mportant
in determining the population dynamics of many species.

This section outlines the ways in which these two phenomena

may alter the analysis.
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Many orgahisms experience difficu]ty finding
mates and therefore have lowered fitness at: low densities.
In this case, an increase in population density may actually
increase the per capita rate of increase of a species.

A necessary condition for the stable coexistence

of two competitors is that the product of intraspecific

R of of . .
competition terms [gﬁf‘. gﬁf) (where f. is a function-giving

the per capita rate of increase of species i as before) is

less than the product of the interspecific competition terms

0f1 . 3f2) (o .g. Maynard Smith, 1974). Social facilitation
9N, AN,

has the effect of offsetting intraspecific exploitative

competition at low population densities, so that the product
af, . af,
oN, oN,
brium (co

becomes very small. As a result, a stable equili-
existence) is possible only if interspecific com-
petition is slight (i.e. niche overlap is low). Thus the
effect of social facilitation at low densities is to make
the effect of predation on species diversity even more pro-
nounced. Predation should cause a significant increase in the
minimum separation required for coexistence of competitors.
Behaviors such as pack-hunting or flocking may
result in social facilitation at higher densities. Little
can be said about the effect of these behaviors on the present
analysis without knowing the quantitative nature of the
benefits derived from them. It is certainly possible for

some types of flocking to reverse the conclusions drawn from

equations (5).
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Since many different types of interference com-
petition are possible, it is again difficult to make any
geneka]izations about the way this phenomenon would alter
our analysis. It is necessary to know the relationships
describing the effect of interference on the per capita growth
rate of a species and on its competitor before it is possible
to determine the effect of reduction in population density
on the limiting similarity. Roughly, if the ratio of inter-
specific interference to intraspecific interference increases
as population densities decrease, then a larger niche separa-
tion will be required for coexistence when there is relatively
high predation. If this ratio decreases as population
densities decrease, then predation may allow closer species

packing.

Resources do not Leave System at a Constant Rate.

If, instead of assuming that resources leave the system at

a constant rate, it was assumed that resources left after a
fixed residence time, T, the number of resources leaving

at time t will be equal to F(t - T)exp(-ajt Ndt), where

F is the rate of entry of resources and a gthhe per capita
consumption rafe. Assuming F(t) is constant, and that the

numbers of consumers do not change significantly during the

residence time, the change of resource density in a one-

consumer-one resource system is given by
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which is analogous to equation (2). Assuming the resources

are at equilibrium with respect to consumer density gives

a(n) - EQ - e (25)

In this model, a small value of at or a small value of N.
represents inefficient exploitation. In the two species

case analogous to (5),

g, - F](] _ e‘aTN]_) . FZ(-I _ e-aT(N1 + NZ)l
Ny N: + N2

If N; and N, are very large, or if at is large enough, this
expression approaches F;/N; + Fo/ (N1 + N,), and so is equiva-
lent to (5) for Q close to zero. For small values of a or
T or large values of T (which result in small values of ﬁ),
a larger value of F;/(F; + F2) will be required to allow
coexistence, since the exponential terms are larger. Thus,
the behavior.of the limiting similarity for this model is
substantially the same as for the model studied earlier.
It is easy to show that the analysis of when niche shift
will be advantageous is similar as well.

Another possibility is that resources leave the
system in a density dependent manner. For example, fruit

may become unavailable due to attack by a fungus, which
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proliferates faster when the density of fruit is relatively
high. In this case, the parameter Q in (5) will become larger
at low population densities of the consumer. This simply
reinforces the effect of predation in requiring a larger niche

separation among competitors.

Change in Searching Effort with Population Density.

The parameter Q in (5) is inversely proportional to the per
capita encounter rate between consumer and resource. The:
encounter rate is in tdrn a function of searching effort.

If higher searching effort were favorable in the presence

of a predator, predation would reduce Q and possibly allow
higher overlap than in the absence of predation. However,
search effort represents a balance between the risks of
being eaten while consuming resources vs. the gain in repro-
duction and survival from consuming more. Thus it seems
more likely that the presence of predators would favor reduced
searching effort, resulting in a larger value for Q, and a

greater separation required for coexistence.

Spatial Heterogeneity. The present model has
assumed a spatially homogeneous sytem, although many natural
systems are heterogeneous. Levin (1974) has shown that -
spatial heterogeneity can allow coexistence where it would
otherwise be impossible when there is a priority effect.

(In a two species system, a priority effect occurs when it
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is possible for species one to exclude species two or vice
versa depending upon initial numbers. More generally, a
priority effect will exist in a many species system when
there are several alternative stable equilibria.) 1In the:
model investigated here, a priority effect is not possible,
so that it seems unlikely that spatial heterogeneity will
substantially alter the conclusions. This is shown in

Appendix IITI.

Age Structure. In many organisms, resource utili-

zation is a function of age, and the nature of competitive
interactions will depend on the age-specific pattern of
resource utilization. If predation or environmental fluctua-
tions significantly alter age structures, competition may
be reduced or increased depending upon the age-specific
patterns of resource utilization and of mortality for the
species involved, so caution should be used in extending the
conclusions drawn here to situations where overlap in resource
utilization changes significantly with the age and/or size
of the competing species.

The preceding discussion was meant to suggest
that the results derived here are general enough to often
be used as an initial hypothesis about the effect of predation
(or environmental fluctuations) on the limiting similarity

of competitors, given that the basic assumption of the model
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is satisfied. However, as indicated, social interactions,
group foraging, and age structure may alter the results of
this analysis. It is likely that there are other factors
that may reverse the conclusions reached here. Regardless
of the generality of the model, it does suggest that the
intensity of competition can be severe even when populations
of the competitors are at low levels. It is common practice
to avoid these types of systems in studies of competition,
since high pbpu]ation densities and scarcity of resources
are often taken as indicators of intense competition (e.g.
Connell, 1975; Vance, 1972a). For the type of system
described here, competition will be most intense (for a given
degree of overlap in resource utilization) when resources
are relatively abundant and population levels are low. It
is hoped that the present analysis will stimulate the study
of competition in these sorts of systems.

In addition, the present analysis has provided
evidence for the need to extend competition theory beyond
the Lotka-Volterra equations. Since the Lotka-Volterra
equations assume that the effect of one species upon another
is independent of density, many of the features revaled in
the present model, such as the role of predation and environ-
mental fluctuations in increasing the intensity of competition,
could not be deduced from studying these equations. In addi-
tion, the fact that the Lotka-Volterra model does not ihcor—

porate parameters specifying overlap in resource utilization
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has resulted in a number of proposed schemes for relating

a to overlap (Vandermeer, 1972; Roughgarden, 1972; MacArthur
and Levins, 1967), without much discussion of when each method
will be applicable, and without very convincing arguments

that they are ever accurate. An understanding of resource
partitioning requires an investigation of models which incor-
porate resource overlap explicitly. Gill (1974) and Case

and Gilpin (1974) have argued using the Lotka-Volterra models
that interference competition is more'like1y to be favored
when aij without interference is relatively high. The present
model suggests that the efficiency of exploitation plays the
major role in determining whether interference competition
will be selected for. If T or Q in the present model is high,
competition as measured by several indices may be very high,
but there will be no selective advantage to interference
against members of the competing species. These point should

serve to show the kinds of phenomena that can be understood

by a study of alternative simple models of competition.
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CONCLUSIONS

These general conclusions have emerged from the

preceding analysis:

(1) The generalization that competing species.
which partition resources in a one-dimensional manner need
utilization curves which are separated by a distance greater
than the standard deviation of the curves does not seem to
be generally valid. It is most likely to be ftrue when re-
sources at a given position on the resource axis consist

of only one type.

(2) Contrary to the generalization that niche
overlap must be lower in more variable environments, many
forms of environmental fluctuations do not set l|imits to the
similarity of competitors. Specifically, if the competing
species react to the environmental fluctuations in the same
way, the maximum tolerable variability is similar for systems
with a high or low level of competition (niche overlap).

Environmental varability may limit niche overlap when species

151
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react to environmental factors in an uncorrelated or an
opposite fashion, or when increased environmental variability

is correlated with lower average rates of increase.

(3) For a simple model of competition in which
the competitors do not alter the rate at which resources
become available to them, the limiting similarity is usually
smaller (the maximum permissible overlap is greater) in those
cases where exploitation is relatively efficient. [f exploi-
tation is inefficient, greater niche separation is generally
required for coexistence.. Density independent predation or
environmental fluctuations which reduce population levels
will increase the niche separation required for coexistence.
Therefofe, These two factors should be correlated with lower.

species diversity in systems where the model is applicable.

The type of models which have been studied here
ére designed to help understand patterns of overlap in |
resource utilization observed in competitive communities.
Al1though the models are not 1ikely to be accurate descrip-
tions of any specific communities, they do suggest possible
explanations for observed phenomena in a wide variety of
communities. Assume for example, that one is interested in
explaining the difference in average overlap in diet in two
geographically separated groups of competitors. Without any
model of the competitive process, this type of question would

be virtually unanswerable. It would only be possible to
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document differences between the two groups of competitors,
and to try to manipulate randomly chosen factors which differ
between the two communities. Alternatively, it would be
possible to construct a detailed simulation model of the
competitors, and manipulate various parameters in the simu-
lTation model to determine their impact on the maximum tolerable
overlap. Although this would certainly be more feasible than
manipulating real communities, it is potentially a laborious
and costly procedure. In addition, one would be unlikely

to have any real appreication of the generality of the
results obtained from an analysis of the simulation.

A reasonably complete understanding of the question
is most likely to come from'a combination of simple models,
complex models, and field manipulations. Simple models
serve an important function in suggesting plausible explana-
tions for a given phenomenon. These explanations should
initially be . tested by constructing more realistic models
of the system under investigation, to determine whether any
specific feature of the real community is likely to alter
the predictions made by the simple model. This procedure
will ideally yield hypotheses which have a reasonably high
probability of being correct, and which are therefore worth
testing by experiments in the field if such are feasible.

The model described in Chapter 3 seems to provide
a possible explanation for the differences in overlap in

two hermit crab communities (see Chapter 3). An understanding
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of this system would bé furthered by constructing more

detailed models and performing experiments to determine whether
empty shells do turn over more quickly in the intertidal, as
postulated.

As May (1973a) has pointed out, simple models are
also valuable in that they sharpen discussion of issues.
Chapter 1 suggests the need to specify.resource utilization
patterns in more detail than implied by a simple "utilization
curve” if one is to understand the limits to resource overlap
of competitors. Chapter 2 illustrates the need to specify
the nature of environmental variability in dealing with the
question of whether environmental fluctuations will Timit
the similarity of competitors. Chapter 3 demonstrates that
the intuitive notion that a reduction in competitor numbers
reduces the intensity of competitive interactions is wrong
in at least one common type of system.

In a more general way, the three studies presented
here demonstrate the importance of studying a number of
models of ecological processes. The range of different
processes:;included under general headings such as competition
or predation is such that predictions based upon one model
or one set of assumptions are not likely to be accurate
for more than a small portion of biologically realized situa-
tions. Because of this, simple models are more likely to be
useful in explaining differences between communities, rather

than establishing general principles. The first two parts
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of this investigation show that even for the simplest possible
model of competition - the Lotka-Volterra - previously
suggested generalities are dependent on particular assumptions
which are often not reasonable. In order to understand
resource partitioning in competitive communities, it is
important to study models which incorporate explicitly the
degree of overlap of the competing populations. It is hoped
that the model presented in Chapter 3 will show the value of

this approach, and stimulate the study of other models.
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APPENDIX I

DERIVATION OF « FOR SCHOENER'S MODEL

The equilibrium population levels of the two species

may be found by setting the per capita rates of increase
equal to zero. Since we have assumed, in effect, that the
two species have equal equilibrium populations, this equa-

tion becomes,

o

IE I 21 + 1
— + = C or N=T
N

N
=2

The derivatives of the per capita rates of increase of

species 1 (P, = (IE/NI) + (Io/(N; + Nz)) - C) are,

dP, . -1, dp, _ g -1,

dN, - TN, + N.)2 dN; W2 F (N, + W,)%

Substituting (L.1) in (I.2), and taking the ratio
(dP;/dN2)/(dP,/dN;), one arrives at,

o
O
it
~
Q.
O
—
1]

o
=2
3+
[
=2
._..
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(I.1)

(1.2)



APPENDIX II

CONDITIONS FOR IHVASION ASSUMING EQUAL CARRYING CAPACITIES

The formula for L(d) referred to below is given
in chapter one. If the utilization curves are not
separated then L(0) = 1, since a(0) = 1. If L(d) is a
decreasing function of d for all values of d, then there
will be no limiting similarity, since L(d) will be less than
one for any positive value of d. Differentiating L(d) we

obtain

%g) - 4a(d)a'(2d) (I1.1)

Noting that a(d) is a decreasing function, the requirement

that the derivative of L(d) be less than zero translates

into
a'(d)(1 + a(2d)) < 2a(d)a'(2d),
or
o' (d) < []—%g%%—dy] o' (2d) . (11.2)
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At d = 0, the derivative of L(d) is equal to zero. For d
slightly greater than zero, 2a(d)/(1 + o(2d)) = 1, so that
condition (II.2) is satisfied if the second derivative of
a(d) is greater than zero (i.e. if the curve a(d) is concave
upward).

The next step is to consider what formulae for
a(d) and what utilization curves give an a(d) curve which
is concave upward. Here it is useful to restrict our
attention to the three expressions for o we are considering
here. Roughgarden (1974) has already analyzed expression
(1), and for the utilization curves which he analyzed,
a(d) has a negative second derivative near d = 0 resulting
in a 1imit .to the closeness of the resident species consistent
with successful invasion by a species with an equal carrying
capacity. Formula (3), on the other hand, can be shown to
generate a(d) curves which are everywhere concave upward
for any unimodal resource utilization curve. If the utili-
zation curves are norma]ized, formula (3) may be written as

=0}

a(d) = 2[ U(x)dx assuming the curves have the same shape
d/2
(for convenience the utilization curve U(x) has been assumed

to have a maximum at x 0. Differentiating this expression

twice results in a"(d) -U(d/2)/2. If U(x) is unimodal,
its derivative will be negative for x greater than zero, so
that the second derivative is always positive. For the

1imiting case of rectangular curves, a{d) is Tinear. A
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similar analysis may be used to show that expression (6) also
generates a(d) curves which are concave upward for any

unimodal utilization curve.



APPENDIX III

NO PRIORITY EFFECT FOR TWO COMPETITOR MODEL

This analysis assumes a slightly more general

version of (5), given by the following equations:

. F, F,
91 T @, N, T Q. F N, FCN,

_ Fs Fo
92 = Qs + N2 * Q2 + CN, + N,

In order for species one to be able to exclude species two
and vice versa, it is necessary that g,(0, N,) < T,, and

g2(Ny, 0) < T,. The following substitutions are made in

the above inequalities:

(1) g1(0,N,) + %i v —F2
1 Q, + CNy
(2) 92(0,N,) + f2 + —Che
3 Q, + N,

(3) T, =
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(4) Tz = ESA + CFep =

Qs + N Q, + CN»
This results in,
(5) Fay Fa P+ Fa

! Q2 + CN, Q; + Ny Q2 + N,

(6) Foy CFa (P, CFy
3 Q2 + Ny Qs + N, Q2. + CN:

Multiplying (5) by C and rearranging (5) and (6) gives

CFy , _ CFp  _ __CFy _ _ CFp, _ _Fs_, CFa_ _Fs
Ql Q. + CN, Q: + Ny Q. + Ny Qs + N, Q. + CN» Q3

For this to be satisfied for any parameter values, the left
hand term must be smaller than the right hand term. Can-

celling CF,/(Q, + CN,) from each side,

CFy . __CFy  __Fy _Fu
Qi g, 4N, Q,+N, U

Clearly, the left hand side is positive and the right hand
side is negative, so it is impossible for species one to
be able to exclude two and vice versa. There can be no

priority effect.



