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ABSTRACT

Sufficient conditicns for the absolute stability of a class of non-
linear sampled-data systems are derived using the techniques of system trans-
formations due to Aizerman and Gantmacher. These criteria are based on different
forms used to approximate the area under the nonlinear characteristic. It is
also shown that the stability criterion can be improved by relaxing a restric-
tion on the slope of nonlinear element.

In multiple nonlinearily continuous systems, by the application of
numefical techniques, it was shown that some improvement over previous_staBility

bounds can be made.
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1. INTRODUCTION

In recent years much attention has been given to the consideration of
the absolute stability of nonlinear control systems. The most fruitful approaches
to the derivation of stability criteria have been Liapunov's Second Method and
Popov's frequency domain method.

Befére the publication of V.M. Popov's paper [1] the investigation of
_nonlinear system was usually based on the Liapunov function of Lurie type [2] -
consisting of a quadratic forﬁ plus an integral of the nonlinearity. This second
method was extended to discrete systems by Kalman and Bertram. {3]. Although
the method yields sufficient conditions fo; system stability and is general inv
application, nevertheless it is sensitive to the choice of suitable functions.

In 1961, Popov [1] developed an enfirely new approach to the classical
-problem of ébsolute stability and obtained a number of very powerful results. One
of the main advantages of Popov's method is that a stability criterion is obtained
in terms of the frequency response of the linear part of the system, similar in
many respects to the Nyquist stability criterion for linear systems. Kalman [4]
obtained an equivalent reéﬁlt and showed that the frequency stability criteric.
derived through_Popov's approach is a necessary and sufficient condition for the
existance of a Liapunov function of the Lurie type.
) Recently, Tsypkin [Sj and Jury and Lee [6], [7] used the Z—tfansform
method to extend Popov's method to a class of sampled-data systems with a.éingle
nonlinearity. Szegd and Pearson [8] obtained eésentially the same result using
the Liapunov method. Jury and Lee [9]'then extended their reéults (671, [7]
further to multivariable systems, and Anderson [10] has.used tha Liapunov method
for multivariable continuous systems.

In chapter II, two sufficient conditions for the absolute stability of

nonlinear sampled-data systems are -derived. Although these criteria are indentical



to the results of Jury and Lee - [6], [7), the derivation, using the technique of
system transformations of Aizerman and Gantmacher [11], is more straightforward.
Further, an example of the application of the theorem, when compared with previous
work, [6], [8}, is more general.

In chapter TII, the constréints on the slope of the nonlinearity of
Theorem I are felaxed. The ﬁheorem for absolute stability of nonlinear sampled-
data-systems is proved using the same method applied in chapter II.

Several examples illustrating the best choice of the free parameters,
95 and maximum gains, ki, of the multi-variable nonlinear continuous systems are
"considered in chapter IV. In the general case, since the evaluation of the
principal minors of criteria matrices is very complex, some simplification

is necessary in order to reduce the number of variable parameters.
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2. THE STABILITY OF NONLINEAR SAMPLUED-DATA SYSTEMS

2.1 Description of Sysgtem

Consider the single input-single output sampled-data feedback system
S shown in Figure 2.1. Tt consists of a mewmoryless nonlinearity N and a linear,
time-invariant plant G subject to the following conditions:

(N.1) The nonlinear function §(og) is aésumed to be piecewise continuous

and to satisfy the conditions:

p0) = 0,

0 <e < B(0)/o <k-ey, - Yo #0 (2.1)
and |

-k' < df/do < K", ‘ (2.2)

- The output of N is
u(n) = Ploln)]. : (2.3)
Eq. (2.1) restricts the nonlinear function to lie in a sector [e, k-e] with e
arbitrarily small as shown in Figure 2.2. Eq. (2.2) bounds the slope of the
noﬁlinear function.
{G) Thne system at the nth sampling instant is described by
n :

s(n) = r(n) - nin) - I E(mDu). 2.4

Here g(n) is the sampled impulse response and n(n) is the zero-input response of
the linear plant G. The input r(n) is assumed to tend to zero as n»w and to be bounde
In addition, the following conditions are imposed:

(G.1) For any initial state, n(w) and its first backward difference
Un{(n). are bounded, are elemenﬁs of LZ(O,w) and so go fo Zero With time.

(G.2) g(n) and its first backward difference 7g(n) are bounded, are
elewents of Ll(O,w) and so go Lo zero With time. It is assumed further that for
some o > 1

) ang(n) < @ , (2.5)
n=0 .
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Thus, G(z), the Z-transform of g(n), is analytic in |z[>a , and has poles within

circle Iz[ < @, i.e. the linear plant is strictly stable.

Accoxding to the notation of Jury and Lee [7]}, a nonlinear sampled-data
(NSD) system S satisfying these assumptions for specific nounegative k, k', k"
is referred to as an NSD system S of (0,k; -k',k").

In the following section, sufficient conditions are derived for the
absolute stability of the equilibrium point c(n) = g(n) = u(n) = 0. The zero
| equilibrium point of the system described above is said to be absolutely stable if,
for aﬁy Blo(n)] satisfying Egs. (2.1) and (2.2), the zero solution is globally

asymptotically stable. That is

lim c(n) = lim o(n) = lim u(a) = O. (2.6)

n > o n*>"oo n-—)OO

©2.2 Sufficient Condition for Absolute Stability

Theorem T
- The NSD system S of (0,k; -«,k") is absolutely stable if there exists
a nonnegative number q such that

Rell, (2) = Re([1+(2-1)q1G(2)} - S [(-)e() > + £ 5> 5> 0 ()

=~

for all Izl = 1.

.Corollary I

The NSD system of (0,k; -k',») is absolutely stable if there exists a
nonnegative q such that .

(z~ l) 1

ReH'(z) = Ref[1+2=22 q1G(z)} —-_—4|\z e |+ =585 0 Q")

.for all ]z] = 1.
Note: If g=0, (Q) and (Q') reduce to the Tsypkin criterion [5]

ReC(z) + %~3_6 > 0 " (?)

for all |z[ = 1, where § is arbitrérily small.
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Proof of Thecrem I

Rewriting the system equation (2.4) equivalently as

n
o) = x(n) - % gh-i)ul(i) (2.7)
' 1=0
where
x(n) = r(n) - n(n). ' ‘ (2.8)
From.Eq. (2.7), the first backward difference of o(n) is
n
Yofn) = ¥x(n) - & Vgh-i)u(i). (2.9)
i=0

Truncate the variable u(n) at any positive integer N, then define the

following auxiliary functions such that

u(n), 0 <n <N
uN(n) = (2.10)
0, otherwise
n .
ON(n) = x(n) - I g(n~i)uN(i), (2.11)
. _ i=0
: n
VON(H) = vx(n) - § Vg-i)u (i) (2.12)
1=0 N |

Therefore, because of the truncation, UN(n) are elements of Lz(O,m).
In addition, by assumption (Gl), x(n) and Vx(n) clearly belong to LZ(O,w), and by
(G2), g(n) and Vg(n) belong to Ll(O,w). Then, making use of the fact that the

convolution of L., and L2 sequences is an L

1

, sequence, ON(n) and VON(H) ?elong to

L,(N,»).

Let us introduce the notation

£,(a-1) = o (a-1) # Vo, (n) - k—luN(n—l), (2.13)
fz(ﬂ~l) = x(n~1) + qVX(n). (2.14)

It is obvious that f, and f2 belong to LZ(O,w). This guarantees the existance of

1
Z-transform denoted by Fl(z) and Fz(z).

By substituting Eqs. (2.11) ard (2.12) inte Eq. (2.13) and using Fq. (2.14),



we obtain -
n

fo(n-1) = £.(n-1) - £ [gl-i-1) + qVg(n-i)lu_(@i) - k_lu (n-1). (2.15)
1 2 , N N
1i=0
Consider the summation
co 5 B
I f (n-Du (n-1)e> ™D (2.16)
1 N
n=1
where o > 1.
Then, from Eq. (2.16),
t f.(n-1Du (n—l)az(n—l) = & f (n—l)u‘(n—l)ﬂz(nul)
. 1 N 2 N
n=1 n=1
o n
-1 i ' -
- (n—l)cc(n ){ r {gn~i-1) + qY%(n~1)]u (1)}a(n D
UN N _
n=1 i=0
- «° 2 2 (n—
-k vy ou_(n-1)g (n 1). (2.17)
N
n=1
"It is now to be noted that
N 2 9(m-1) N 2 2(n-1) 29 (n-1) :
g [vs(m)] o = 3 [VGN(D)] a < T [VGN(H)] ot (2.18)
n=1 n=1 =1
and, by using Eq. (2.12) we obtain
K'a N 2 2(n-1) _ K'"qa . n 2 2(a-1)
-%;1 5 [Vo(n)] a” " -5_—53- Io[vx(n) - T Vg(n-i)ug (i)] e P29
n=1 _ n=1 i=0 : ’

Adding the quantities on both sides of the inequality (2.19) to those of

Fq. (2.17), the following key inequality is established:

= | " N
z fl(n—l)uN(ﬁ—l)az(nml) + E§3~ v [vo(n)]zaz(ﬂ'l)

=1 n=1

> ; £, (n-1uy (n-1)o” "7

n=1

© ’ n ) ..°

- ¥ u (n—l)a(nﬁl){ L [ghn-i-1) + qY%g(n-1i)]u (i)}a(nwl)
N X N

n=1 : i=0

MkN1 % ué(n—l)az(n_l)

n=1



.2

K n
4+ =t 7 fx(n) - T,

2 2(n-1)
2 n 0

Vg(nwi)uN(i)] o . (2.20)

1 i

Applying a modified form of Parseval's theorem (Appendix A) to the right-
hand side (vx.h.s.) of inequality (2.20) and collecting like terms, the right-hand

side of ¥q. (2.20) can bhe expressed as:

P

-1 : 2 -1
r.h.s., = 5;54 ﬁ;{[l+(zl—l)q]?(zl) - ~§ﬂ-](zl*l)G(zl)] + k 7}
12 -1
']UN(zl)l z dz

1 ' ' 2 - =1
+ Pk, —- k" - I % 2 P
777 Je [12 (71) k q‘zl ll X (zl)G(zl)]UN(zl)z dz

k'a L . 2 -1,
+ Z;a §i‘(41 l)X(41)| z “dz,

(2.21)
where z = exp(jw), zy = Eﬁgﬁlﬁl and in general [12] for any x (n) with Z-transform
X(zl), | |

Z{x(n)aé] = X(zl), (2.22)

and the asterisk (*) is used to indicate the conjugate of a complex function.

It is convenient to define the following functions

M (z)) = [1+ (z;-1qle(z)) - ke |(zl_;)c(zl)}2 L RCRE

% - P - " o - 2 (5
F4 (zl) = F2 (Zl) k q!zl l] X (Al)G(Zl)' | (2.24)
Nothing that the right-hand side must be a real quantity, after substituting

. -1 :
zy = e/ and z “dz = jdw in Eq. (2.21), it can be shown that

e N jw Jw 12
r.h.s. = ZW‘X“Reﬂl(e /a)! UN(O /o) | do

4l

. ) . A T . .
+Z% _ﬂFZ (ejw/u)UN(er/a)dw + Z%}J:ﬁ Fa(ejw/a)UN*(ejw/a)dw
K ' 7rejw T 5
,+~z%-Jiﬂk — - Dx(e!/w)] "o (2.25)
where ’
e, 5@ (10) + ¥, (10U I00)] = Relr, (@)U 0] (2.26)



It

ReH1(er/@) 3_60 > 0, for =-m <w <, ~ ‘ (2.27)

then

Re{[1l + (zl—l)q]G(zl)} - k:é'—q-l(zl—l)G(zl)l2 + k—l i_éa. (Q)

Since satisfaction of (Q) is assumed, hence (Q) implies (Qo) for sufficiently small
o > 1 [13].

Now completing the square in the right—hénd side of Eq. (2.25), we obtain
. T ' jo '
v . . F,(e’7/q) 2
-1 1/2 o
r.h.s. = =(2%) j [[ReHl(er/a)] / U (eJLU/OL) + 4 I dw
-7

N .
2[ReHl(er/aﬂl/2

(e, W dw . |
+ _l.vr DA N %;ﬂ;f |(35—~— X0 [? do. €2.28)
- 7

8n i ReHl(er/a)

Removing the first integration, wvhich is always negative, from the right-hand side

and making use of the condition (2.27) yields

i .
. 11 m 10) .
1 : 2
r.h.s. < 7, (e3970) 2wt =2 ] [E— - DxEY/0)]” . (2.29)
e~ 4 b o
8ﬂ6a -

Frem Appendix B, Eq. (2.29) can be expressed as:

<t 48 {Ix(n-1) + qVX(n)]2 + k%ﬂ.[vX(n)]z}GZ(n—l).

n=1 o :

r.h.s. < E (2.30)

It is obvious that the right-hand side of Eq. (2.30) does not depend on N, but
depends quadratically on the initial conditions and tends to zero with the initial
condition tending to zero.

Now returning to the left-hand side (1.h.s.) of Eq. (2.20) and

substituting the expression for fl(n—l), we obtain

1Lhes. = 3 loy (1) - K o (o) o (aeDe” 7Y
n=1
-z W N
* qnil VON(H)UN(n*l)aZ(n—l? + 1~(39»--‘2'[v(j(n)]zaz(n*l) ) (2.31)

n=1



or
N
Lhs. = 5 (- Do enyprogen e 07D
n=1 . )
N W N .
+q {1 Blot-DIvem) + 5L 5 Vo)1 2 1e” (2.32)
n=1 © n=1
The first sum in Eq. (2.32)vis always positive, that is
) .
- Beldysenpro@-n1 20, for ali v 0. (2.33)
n=1 . )

"

For the second and third sums, because of the constraint -= f.%%’i_k s
the following area inequality, due to Jury and Lee [6], applies.
v K" 2 o (n) .
Plo(n-1)]vo(n) + [Vo(n)] 3_EY f(o)do, for all n > 0,  (2.34)

2
o(n-1)

and, since g > 0, it follows that

N W N |
q I #lo(n-1)1vo(n) + 553 I (Vo1 > q[8(o(N]) - ¢(o[0])] > -qo(a[0])  (2.35)
n=1 n=1
where

(o

5(0) = by f(s)do.
0 |

Therefore, by using the inequality (2.35) in (2.32), it follows that

N
l.h.s. = & [1 -
n=1

PoC=D)ys (a-1)plo (=110 71 qaotoe® W7

(2.36)

Finally, returning again to Eq. (2.20) and using the Egs. (2.30) and

(2.36) the inequality is rearranged to yield

N .
plo(n-1)]

E (1 - —ngajiy—lo(n*l)ﬂ[o(n—l)]
n=1 o

< Z { E [x(n-1) -+ qVX(n)}Z + E”—q[YJX(n)]Z} J.be(o[-O]) . (2.37)

= =1 48u 2 »
or

N - Aol Chygo -1 < c (2.38)

el

ko (n-1)
n=1

10
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Here the constant C, which denotes the right-hand side of the inequality (2.37), depend
only on the initial values and tends to zevo together with them. Note this con-
stant is obviously independent of N. Conseguently, the inequality (2.38) is

valid for all N, and implies that this sum is uniformly bounded for all N [6].

Therefore
. P(n-1)

ilz_z(n—l)ﬂ(n~l)[ o (o l)] 0. (2.39)
From Eq. (2.1),

: P(n-1) : . '

[1 - Ko (- 1)] > 0, for all o # O. | | (2.40)
Hence

lim o(n) = 0, and lim @lo(n)] =-O, (2.41)

n > n > ©

and the theorem is proved.

- Proof of the Corollary

For the NSD system S of (0,k,-k',»), the constraints of nonlinear element

are satisfied by the conditions (2.1) and

] d¢(0) © . .
-k’ = a5 < (2.42)

Since q > 0, these conditions ensure the existance of the following inequality

area [7], that is, 5(n)
aBlo @) 195 () + 5270 ()17 j §(c)do, yn >0 (2.43)
o(n-1) :
The auxiliarvy functions fl and fZ’ first defined in Egs. (2.13) and (2.14),
are replaced by
. —1 ) .
.fl(n) = ON(n) +‘quN(n) -k uN(n) (2.44)
£,() = x(n) + q7x(n). o (2.45)

Now, following the steps of the derivation given in Theorem I, it can

be shown that if the condition,

Rett' (e?%/0) > § >0, for -7 <w <w : (2.46)



is satisfied the following inequality, first shown in Eq. (2.37), follows.

N
Plo( ]y gr

nzo [L - o () Jo(m)Plo(n)]

“ r 2 . k'q 2 ‘

% {Z—~'[X(n) + qux(n)]” + [vx(m) 17} + 9(c(0)) (2.47)
§ 2
n=0 o
or

N Plo(n)] -
n50{1 -'ia;a;f*—]o(n)ﬁ[c(n>] < C'. | (2.48)

Here the constant C', just like the constant C, depends only on the initial values
and tends to zerc together with them.

This completes the proof of the corollary.

2.3 Application of Theorem I

The examples given in {6] and [8] all satisfy the constraint
Re(z-1)G(z) > 0, for Iz] = ] ‘ - (2.49)
" and the maximum k'', denoted by R”m, is just equal to the minimum positive value

of -x'"" given by:

w_ —Re(z-1)G(z)
= 2
| (z-1)G(z)|" -

Furthermore, the inequality (Q) does depend on the choice of g and no siﬁple ara-
phical procedure has yet béen developed for q # O.

In this thesis, the case of'q # 0 is considered and the following step
by step method for determining maximum k of k" is suggested. TFirst rewrite the

inequality (Q) as

-1
2[ReG(z) + ; | [~Re[(z—l)G(§)] F K" > 0, (2.50)
| (z-1)G(2) ] | (z-1)G(2) ]
and let '
v < 2(ReC(@) + Ky
| (z-1)G(2) |2 > (2.51)

L = -Re (2-1)G(z) . : (2.52)

| (z-1)0(2) |




Then Eq. (2.50) can be expressed as

yu - q (X”“H{”) i O. (253)
But the equation
y' - g = 0 ‘ (2.54)

is the equation of a straight line with slope q, passing through the point -k
on the real axis of x'-y" plane shown in Figure 2.3,

This straight line dividgs the plane into two half planes. The inequality
(2.53) is satisfied if a real positive q may be found such that the plot of x"+ jy"
as a function of w(0 to ) in the x''-y" plane, lies entirely to the left of this
~straight line.
From Figure 2.3, for y" =0 at ¢ = w s Eq. (2.54) becomes

K" o= x ' (2.55)

Hence .
_ 2[Re(z-1)G(2)]

k.‘ lm . 2
[(z-1)G(2) ]

(2.56)

. jw,
.Z;QJ m
It is clear that k”m may be found from the x''-y" plane for different

values of k starting with the value at gq=0. Then, if k' is given, it is easy to
find the largest permissible k irom k-k" curve.
Example 1.

The open loop transfer function of the linear part of system § is

1

C8) = T 0.0 G + 0.3, (2.57)
Consider the sampling period T = 1 second and take the Z-transform of G(s)
G(z) = 5[~ - ——3] - (2.58)
z—e- z-e T 7 ‘
Substituting z = e’ into Eq. (2.54). Then setting q = 0 in inequality (0), one

can find

Min.ReG (el = —3.44. (2.59)
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Therefore
k = 0.29, (2.60)
Now, according to the procedure mentioned above, the relation between

k and k”m, is shown in Table 1, and is plotted in Figure 2.4,

Table 1
k k”m
0.3 0.837
0.5 ’ 0.809
0.7 0.805
0.8 0.804
0.81 0.804

From Figure 2.4, the minimum positive value of k”m that satisfies the
constraint k_ < k”m is equal to 0.804. Hence, the svstem S is absolutely stable

if

k < k" < 0.804. ' (2.61)



3. THE STABILITY. OF NONLINEAR SAMPLED-DATA SYSTEMS
WITH A MONOTONE NONLINTARITY

3.1 Description of System

In this chapter the stability of NSD systems with a monotone increasing
nonlinear function will be considered. The system is similar to that treated in
Chapter II.

(N) The nonlinear function @lc (n)], is assumed to be a piecewise con-
tinuous and a montonically increasing relation, and is described by the equations

(2.1), (2.3) and
Wbl]—@bz]
0 < < k foro, #aq (3.1
—0y "0, — s 1 2

(G) By setting the input v = 0, the system is described by

- n
gin) = =-nq(n) - % gl-iduld), - (3.2)
: i=0

.

or using the symbol * to denote the convolution, we obtain

g(n) = -n(n) - (g*u) (n). : (3.3)

Here 1 and g satisfy the conditions (Gl) and (G2) of Chapter IT.

Denoting
T]M = SUP I T](n) [ s gM = SIP g (I’l) [ > (3 'z‘)
n>0 - n>0

16

and using u ._” to denote L] norms and ll- ”2 to denote L2 norms individually,
fvl = = I Inll, = C = o) ? (3.5)
n=0 - n=0 , °

3.2 Sufficient Condition for Absolute Stability

Theorem IT.
Consider a svstem satisfying the above conditions. TLet y(n) be
any real-valued function such that

-~

(i) vi(n) =0 for n < 0,

(3.5)

/

(ii) v(n) <0 forn >0,
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If, for some q > O,

K . 2
Rell, (2) = Re{[1+(z-1)q#¥(2)]1C(2)} ~ ~?—q | (z=1)C(2) |
-1
+ Re[1+Y(2) ]k © > & > 0, for all Iz} =1 (3.7
then
(1) sup |on)| < o, (3.8)
n>0
(i1) lim o) = 0, (3.9)
n - «©
(iii) as|| n H2 + || vn ”2 + 0, the corresponding g(n) has the property that
‘ sup ]g(n)l =0,
n >0
Lemma.

Let x(n) and flx(n)] be functions in LZ(—w,w).‘ If f{x(n)] is monotonically

increasing, then for all i,

g x(n-1)fx(n)] <= ¢ x@)flx()]. : (3.10)
n=-—o n::-—-bo
If, in addition, f[x(n)] is odd (f(x) = -f(-x)), then the inequality above holds

with absolute value taken on the left sum.
The proof of this lemma is obtained with slight modification from that

contained in [14]. This important result is used in the proof of Theorem II.

Proof of Theorem II

For any positive integer N > 0, the following auxiliary functions are

defined: , .
u (n) 0 <n< N ' ‘
uN(n) ={ -7 : (3.11)
0, otherwise
w () = Ploy ()], | (3.12)
o N(n) = I g(n—i)uN(i), ' | (3.13)
© i=0
n v
m%N(n) = 7 Vg(n~i)uN(i). (3.14)

i=0



Thus, oeN(n) and VgeN(n) belong to Lz(N,m).
Let

o =g + g e v, . u = 4 + U‘/':y (315)
m m

and, in general, given any function x, we define [15]

X = X + xhy
m .

Then, let us introduce the notation

-1

fl(n~l) = omN(n—l> + quN(n) -k umN(n~l), (3.16)

fz(n~l) = —nm(n—l) - qvn(n). (3.17)
Because

ON(n) - -n(n) - oeN(n), . (3.18)
therefore,

-1 ,

fl(n—l) = fz(n—l) - [ceNm(n—l) + queN(n) + k umN(n—l)], | (3.1.9)

or
by fl(nml)uN(n—l) =3 fz(n—l)uN(n—l)
n=0 n=0
- -1
—nio[OeNm(n~l)+qVGeN(n)+k umN(n~l)]uN(n—l). (3.20)

1t is anw to be noted that

[VON(n)]2 = 559-2 [VOeN(n) + Vn(n)]z. (3.21)

n=0 n=0

kg
2

I ™ 8

Making use of Fgs. (3.20) and (3.21), we obtain

o 0

r £ . (n-1)u_ (n-1) + kg v (Ve (n)jz
1 N 2 N
n=0 n=0
o °i’ -1
= 3 fz(n—l)uN(n—l) - % [geNm(n—l)+qvgeN(n)+k umN(n—l)]uN(n—l)
n:O » n=O
k «a % ) a2 ‘
! 2 niO[VOeN(n) + In(m)] . : (3.22)

Then, applving Parseval's theorem [18] to the right-hand side (r.h.s.) of FEq. (3.22),

and collecting like terms, the r.h.s. of Eq. (3.22) can be expressed as:



Bhos. =g §ﬂ{[l"‘(z—-l)q F Y2160 - 5L (D6 \?
-1 2
+ [14+Y(z) ]k }iuN(z)[ z dz

1 -1 2 ~1 -1
+ E;5~‘§C [Fz(z )y - kqlz—ll X{(z )G(z)]UN(z)z ! dz

+ %} § |<z—1>x<z)[2 271 4 _ : (3.23)
C

 where
X(z) = =Z[n(n)].

Now, define

It

HZ(Z) [(1+(z-D)g+Y (2 ]G6( 2 - %ﬂl(z—l)G(z)]z +.[1+Y(z)]k—l, (3.24)

Fy(2) = F,(7 ) - kqlz-1]"x(Z 6. . (3.23)

" Since the imaginary part of the kight-hand‘side must be equal to zero, and by the
coﬁdition of the theorem,
ReHz(z) > 4.
Then, following the steps of the derivation given in Theorem I (from Eq. (2.25) to
(2.30)), it can be shown that
o E

r.h.s. = I {+
n=0 46

]2

[ (n-1) + qvn(1” + Svn @)1, | (3.26)

Now, returning to the left-hand side (l.h.s.) of Eq. (3.22) and substitu-

ting the expression for fl(n—l), we have

oo —]- .
1.h.s. = nEo[omN(n-l) + quN(n) -k umN(n~l)]UN(n—l)
N .
k 2
+ Eﬂ' v [(Vo(n)]™. , (3.27)
n=0
Consider
® mN(n)
z [OmN(H) - ~—E-—IUN(H)
n=0
0 uﬁ(n) o Uy ,
= I [ON(H) - ]uN(n) + z [y""(GN* - T{’)](Iﬁ)Ll;\](ll). (3.28)
n=0 : n=0

19



Define

o uw(n—i)

R(D = T [o, (i) - ———Ju (), (3.29)

n=0

Since B(o) is a monotonicallv increasing function, by lemna,
R(i) < R(0). (3.30)

Considering the last sum in Eq. (3.28),

[S) . UN oo [ UN (T]"‘]'.)
Z.(y*(oN - ﬁfﬁ)(n)UN(n) = 3 {zx Y(i)[oN(ﬂ—i) - —"i?“_“"]}u (n)
. : . N
n=(_) n:O l._:O
o © uN(n—i)
= $y(){ 2 loy(n-1) - ——u_ ()}
, N k N
i=0 n=0
P y(1)R() | (3.31)
j=0f (R '
Since y < 0, substituting Yq. (3.30) into Iq. (3.31) vyields
2 y(@RGE) > -RO) ||y, (3.32)
i=9
Let i=0, Then substituting Eqs. (3.29) and (3.32) into eq. (3.28) gives
0 umN(n)
HEO[QmN(H) - “E”~—*]UN(§)i<[l-—"yH JR(0). » (3.33):

For ||y} < 1, there is a finite b(N) > (1. - Ivll) > 0, such that

N u ()
v {g (n) - Ju(n) = b@)HRC0) > 0. (3.34)
m k —
n=0 :
Remember that uN(n) = @[GN(n)] . By using Eq. (3.34) in Eq. (3.27), it follows
‘that
- ' kq 2
l.h.s. > q & Plo,(n-1)]vs, (n) + 5= 5 [Vo, (n)] (3.35)
N N 2 N .
: n=0 n=0
Also, because of the constraint 0 j_gg'fik, the inequality (2.35) can be used in

Eq. (3.35), Hence

l.hos. > qolo(N)] - qola(0)]. (3.36)

o

Finally, returning again to Eq. (3.22) and using the Egs. (3.26) and (3.36)

[0]

and rearranging the inequality on both sides yields
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o0

' - A I 22 k. 2 e
qdfo(N)] - qolo(0)] < I fzg[nm(n*l) + qvn(n) ] o+ %ﬂiVn(n)] . (3.37)
n=0 - :
Letting
wClln Lo ) = & (E 2 kg 2
2 2 n=0{4é[nm(”"]') +qim@)]T + 5 ()17} (3.33)

and adding to both sides of the ineguality (3.37) the positive quantity ao[o(0)],

also, for ceunvenience, writing M for N(l[n ”2’ 1IV”’E)’ Eq. (3.37) beconmes

qofo(M)] < M+ qolc(O)]. . (3.39)

Since Plo(n)] is monotonic

slom)] = [Pl / 2k, | - (3.40)

-hence

lum |? < Mg 0 (0)]. (3.41)

It is clear that the right-hand side of inequality (3.41) is independent of W,
2 _
thus |u(N)|” is uniformly bounded for all N. Therefore

suP |u(n) | 5_{2K[Mq"l + @(0(0))]}1/2 (3.42)

n >0
and‘SUP N >0[u(n){ tends to zero as llnuz + |[vn ”2 > 0.
Now, let ug show that o(n) +» 0 as n » ». Trom Eqs. (3.27), (3.34) and

(3.37), we have

N .
PN T (o6(n-1) - Eig:ll)u(nul) + qo(o (D)) - qo(c(0)) <M (3.43)
n=0 ' R ’
Thus
N u{n-1) -1 '
£ [o(n-1) -~ ——Jun-1) < [+ qo(c(03)] (1 ~ “y[]) . (3.44)
n=0

Since the right-hand side of Eq. (3.44) is cbviously independent of N, and ténds
to zero with together lln “2 + IIVn “2 + 0. This property implies that the sum
of Eq. (3.44) is uniférmly bounded for all N. Therefore, using the same arguments
as in Theérem I one can show that

lim o(n) = 0. . | : ©(3.45)

n - ©

In addition, since u(n) -+ 0 only if o(n) - 0, ineguality (3.42) implies that



sup lo(n)| < wand tends to zero as !ln ”2 + Ian “2 = 0.

n >0

This completes the proof of Theorem ITI.

3.3 Example
ixample 2.

Conéider the system and transfer function of example 1.
q = 0, the inequality (3f7> becomes

Re[l + Y(2)1[C(z) + K 71 > 0.
or

[1 + ReY(2)]ReG(z) - ImY(z)ImC(z) + [1 + Re¥(z)]K * > 0.
Assuming

1 4 Re¥(z) > 0,
then, dividing 1 + ReY(z) on both sides of inequality (3.47) vields

ReG(z) = ImY(2)ImG(z)/[1 + ReY{(z)] + k~l > 0.

Let
ReG' (z) = ReG(z) - ImY(z)ImG(z)/[1l + ReY(z)].
Hence
, -1
ReG' (z) + k = > 0.
.1 -en . .
Suppose v(n) = = e with a choice of ¢ and d to satisfy
1 -cn
Hy(n)H = Z I— q e LI < 1.
n=0
The Z-transform of y(n) is
Y(z) = - S
d(z - e )

By taking
§3‘
(3.
(3.
(3.
(3.

(3.

(3.

(3.

By choosing ¢ = 1, d = 1.7 and substituting z = e’ into Eq. (3.53), it can be

shown that
. _L dw
Min [1 + Rei(e‘ Y] > 0.

Then, making use of Egs. (2.58) and (3.53) din Eg. (3.47), we find

(3.

46)

47)

48)

49)

50)

51)°

52)

53)

54)



 Min ReG'(e?¥) = -0.8075 : (3.55)
at w = 0.8 rad..
Therefore

5

k < 1.237. (3.56)

N

Due to the compensation of ImY(z)ImG(z)/[1+ReY(z)] in Eq. (3.49), the
value of k is larger than k = 0.29 the value found from Theorem I.

In this example, q was taken zero in order to reduce the complexity

of calculation.



C4L THE STABTLITY O NONLINEAR CONVINUGUS SYSTEMS WITH
SEVERAL NONLINEARITIES

4.1 Formulation of the Problem

The system under consideration is shown in Figure 4.1, where r,
g, u and ¢ are n-vectors,
N is a time-invariant memoryless nonlinearity, K The ith components of

its input, oi(t), and output, ¢i(oi(t)) are assumed to be characterized as follows.

.0 < Do, < k.o.z, for o, # 0, (4.1)
- 1L i — 1 1 1

Qi(O) = 0, 1= 1,2,.........,0), (4.2)
where ki is the ith element of diagonal matrix k.

G is a linear-time invariant sub-system, the relation of its input,
P(t) and output, c(t), is described by the equation:

c(t) = n(e) - 1% ge=np(n)dr, (4.3)

o

where g(t) is the nxn impulse response matrix of G, and n(t) is n-vector and is the
zero-input response of G. It is assumed that the following conditions are satisfied:
(Gl) For all initial states, the zero input response (a) ni(t) is bounded

on (0,2), (b) ni(t),ﬁi(t) £ LZ(O,w) and (c) ni(t) > 0 as t » o,

(Gé) Impulse response of G (a) gij(t)e L](O,w) and (b) gij(t) - 0 as

In the finite-dimensional case, (Gl) and (G2) are implied by the require-
ment that G(s), the laplace transform of g(t), has no singularity in the right-

hand plane or on the real frequency axis except for a single pole at the origin.

4.2 Statement of Theorem
| Theorem IIT

Let k‘be a real diagonal matrix with positive elements. If the system
under consideration satisfiee the above assumptions and there exiéts a real

diagonal matrix g, such that
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Figure 4.1 Nonlinear Multi-variable Feedback System.
G
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r—_ L(i-l ¢] ij
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Tigure 4.2 Two-Variable Cascade System.
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CP(w) G + uEGe > 0. Vo, 4. 4)
then the system is absolutely stable.
V¥ is the complex conjugate transpose of W and
WG = [0+ JuqleGe) + K | 4.5

The proof of the theorem was given by Jury and Lee [9], using the Popov

approach, and by Anderson [10], using the Liapunov approach.

4.3 Specific Structures

iLet us conéider the general case of transfer matrix G(s) as

6(s) = [y, ()], (i, = 1,n), (4.6)
for which the corresponding system (with n = 2) shown in Figure 4.2 is a cascade
connection.
Howevgr, when

6, () = [6,, ()], <G =2,m3 3 = 1n), | 4.7
the systeﬁ also implies a parallel connection as shown in Figure 4.3.

In addition, one series case is considered for which

/ N

0 0 0 --------=---- Gln(s)
G(s) = Gy (s) 0 -mmem e 0 (4.8)

0 ~G32(s) ——————————————— 0
| ) i
! ' .
I ! '

L 0 0 === - -~ NGn n—l(s) 0 .

The corresponding system is shown in Figure 4.4,

4.4 Application of Theorem IIIX

In this section, the system shown in Figures 4.2 and 4.4 will be con-
sidered as example. TFor the convenience of future use, the G(jw) matrix appearing

in the étability criterion takes the general form as shown in Ta. (4.6).
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N L e ¢

Figure 4.3 n - Variable Parallel.System.

g1

N M1 21 n 1n

Figure 4.4 n - Variable Series System.
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. . R | L. . . W O
(1.+jmql)Gll(Jw).hl (l.%qul)Glz(Jm) __________ (L.+qul)G1n(Jm)
|
!
-1
s (s (1 .44, Cyar !
(1.4qu2)C21(Jw) (1 FJuqz)Gzz(Jw) 12 S I
W(jw) = S , ! !
| ! |
| ! !
t
(.4 qu)cnl (o) (.43 mqn)GnZ(Jw) - - (LT.+juq H)a (jw)"v'};l
~ n’ nn n y
(4.9)

then by the theorem, a sufficient condition for abhsolute stability of the system

is that the following criteria matrix

[ Wll(jw)+wll(“jw) le(jw)+w21(—jw) - wln(jM)+wni(mjw)\
Wy (Gu)+, (=5w) Wy, (G0 (<jw) - - = W, (Ju)+ o (=ju)
l ' t
1 | | ;
l ! 1
| g G (250) L e e WG (=w) 4.10)

be positive definite for all w.

It is seen that even for the very simple system, the polynomials
produced by the principal minors of Eq. (4.10) are far too complex for manual
evaluation. Even with qi (i = 1,2,...,n) given there is no known general method
for exact finding the largest range on the no;linearity gains ki L =1,2,...,n).

Qur main purpose is to find the best a; with the largest gains ki'by
applying two geometric techniques, namely
(1) Gradient Méthod
(ii) Projected Gfadient Method [16].

The calculations are made by a digital computer, on the basis of the
flow-chart shown in Figure 4.5.

The outline of flow~éhart is as follows

(1) The coefficients of transfer matrix G(g) and the initial values

of a and kj are read.



(2) Trequency is changed from zero until the minilimum positive values
of the principal minors of the criterion matrix P(w) with the corresponding
frequency w > are found.

(3) Frequency is fixed at W and ki is increased along the normal
gradient direction until one of the minors falls into the positive constraint
range e, . '

(4) Procedure (2) is repeated again.

(5) 1If one of the minors is negative at some frequency; then k
is decreased and the procedures of (2) to (4) are repeated until one of the
minimum minors converging in the range ei, all other minimum minors are positivé.

(6) In the general case, q will be increased, and the procedures of
(2) - (5) are repeated until the maximum values of ki are found.

(7) In the sefies case, ki and a will be changed in the projected
gradient direction on the'basig of wm

(8) Procedures of (2) and (7) are repeated until ki cannot be increasea.

The symbols used in the flow—chartvare explained as follows:

N1: the number of nonlinearity.

M: the order of numeratof of G(s) ; N: the order of denominator of G(g).

?i,j,k: the.coefficients of numerator of G(s):
i,j,lz the coefficients of denominator of G(s).

dk: the increment of ki in the normal gradient direction.
de: the convefge factor ’
NJ

xk . : the coefficients of functionf = L oxk

Q.
ni . ni ‘ni
. i ni=NO

e,: the constraint range of A, .
i i
o,.: the increment of projected gradient direction.

JJ
Pij: the elements of criterion matrix P(s).
Ai: the real principal minors of P(s).

DELij: projected gradient direction.

NOTE: 1i,3=(L,NL), 33=(L,NJ), ni=@N0O,NJ), k=(0,M), 2=(0,N).



Figure 4.

5 TFlow-Chart of the Multiple Nonlinear System.

| Read NL,ND,M,N I

lz

[ NO=NLA+1 ; NJ=2NL ]

Read a, . ,, b,. .
1,3 ,]\ 1375 9
k.
430%
dk, de,
xk ., e.,, 0..
ni i 11

Check A,>0
i

J72

30

k5 = -1

Find min. 4. at w=w
i

m

<

Yes

NO 110

Gradient method
kj = ki + dkewf

Yes A,::>S>
i

for all w.
k3 = 2
12
s = cnplx (0. ,w)
k
G,.(s) = R
1] 1,3,
9. ppl =

pp2

[

P14

(I+sq_ )G, . (s)
i® ij
(1-sq.)G. . (-s)
i’ i

ppl + pp2

Decrease o,
i

a, = ao./2
1 i

Go to 300 

Find new minuw

k, = k, - dk¥f]
i i 4

Go to ©

k., = k./2
i i

Decrease initial kj

Go to 9
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110
No
Series case of the system
W= W
m
- = k 'q =
R e A E
Find
6, () | o duy
P..(s) J jo
ij s = om
Ai
. _ s
My s aLi/aqj
Aqi,ni f BAi/gkj

}

General case of the system
L, W
i

m

Find the direction of projected gradient-

G = Aq, ..
(GXGX')i .=. L Aq. ..AMq. ..
3 41 1,33 73,33
MAGD = |G_G_"]
. X X
ci.  =[@GGe", 17t
s L B3N
igoni Lobdgy o, 2 GL .
- > - j=l NERNR j:l s ] Jo
D .
= I — -
gjj,ni .( ij,ni)/MAGD
NI
DELX,. = T xk_.
3T pi=no ™ 843 ni

WRITE DELX1, w

3

7

Go to 9

300

Yes

° No
Stop

Go to_lﬂ




Example 1
Consider a series system as shown in Fig. 4.4 with

N |
n=2, Cpr(8) = o5 C1p(s) =

s + 1
(¢ + 2){(s + 3) (4.11)

The linearized system, that is,the system with the nonlinear elements

replaced by linear elements with gains ki(i = 1,2))is stable for klk?:) -30.

A.G. Dewey [17] avnplied the theorem in section 4.2, and found that g, =

17 4y = 0.19,

the nonlinear system is stable with ka? < 2390.
Substituting FEaq. (4.11) into Eq. (4.10), it follows that the nonlinear
system is stable if

(1) kl > 0,

: (15 aa,) (+ie) (1-juwag,)
(11)  4(k k, 1 1 2

) —](2+jw>(3+jw) ENCETD) > 0

for all . (4.12)

It is clear that at w = 0, the inequality becomes

-1 1 '
- 4,13
é(klkz) 500 > 9> (4.13)
or
<, < . ' 4,14
kllz 3§OO | (4.14)
Thus the best that vwe can expect from inequality (4.12) as the values
of ay and qzhére varied is Fq. (4.14). By using of both the normal and pro-

jected gradient method, values of qq = 0.20, q, = 0.166 are found, for which the

system is absolutely stable with k < 3599.

k
12

Example 2
Consider a three-variahle general system as shown in Fig. 4.2, where

the matrix transfer function of the linear part is

- N
1 1 1
s + 1 s + 4 s + 6
’ ] 1 1
Gls) = s + 9 s +.2 s + & (4.15)
1 1 1
§ s + 10 s + 12 s -+ 3
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It can be shown that the lincarized system is stable for all positive

k (i = 1,2,3). A.G. Deweyv [17]} has used the theorvem shown in section 4.2, for
i
a choice of [q] = 0, he establishes stability for the nonlinear system with

= = | = .
kl 9 I 3 10

By using of the nmnormal gradient method in this example, it-was found

that the nonlinear system is stable with

18, for [q] = 0
k., = k, = k,_ = ' (4.16)

[323. for a, = q, = q, = 0.2

1 3

Although, the results are much better than the previous work, since
the minimum values of principal minors of criteria matrix (4.10) do not simul-
taneously converge to zero, it is assumed that ql =q, = q3, so simplifying the

computation. Indeed, only the highest principal minor converges to zero.
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5. CONCLUSIONS

Sufficient conditions for the absolute stability of nonlineav sampled-
data systems have been derived. The method used is the technique of system
transformation of Aizerman and Gantmacher, adapted to sampled-data system.

The criterion in Theorem I was expressed in terms of the frequency
transfer funcfion of the linear elements and the bounds on the gain and on the
slppes of the nonlinear elements. . Corollary I was expresses in similar form
except.that the slope of nonlinear element was bounded from below. These criteria
were based on different forms used to approximate the aréa under the nonlineér
characteristic. A simple graphical method for testing stability of the case g # 0
was suggested.

Theorem IT relaxed the restriction on the slope of nonlinear element
and introduced a auxiliary function y(n) which méy be used to increase the maximum
gain k. However, some difficulties occurred in choosing the function y(n).

In the multiple nonlinear continuous systems, by the application of
numerical techniques, it was shown that some improvement over previous stability
bounds can be made. But, in the general case, the computational difficulties
are significant. TFor this reason, simplified assumptions, such as taking
9 = 9 =‘q3, are often necessary to simplify the conputation.

The extension of the nonlinear sampled-data system criteria given in
theorems I and IT to systems involving time-varying gain is desirable. Such an

extension has been made for the continuous case.



TAPPENDIX A

The Z~transform of :Ez(n) is

ORI f7(n)z—n. (A1)
n=0 -

By dinverse integral,

B S D
fz(n) = G5 \))Fzr(z)z dz. (A.2)
The Z-transform of f, (n)ozn gives
Z[f7(n)0én] = F(z/a) = F(z]). ‘ (A.3)
By inverse integral,
- —v
R (n)an] = —~]—-— jp F(z/OL)z(n l>dz. (A4
2 27w] e
Therefore,
% [fz(n)an][uN(n)an] = T uN(n)uH %‘ C F(z/oc)z<n—l)dz
n=0 . . n=0 "~ "3 \yc
= -—L§ F(z/a) [ T uY(n)(ocz)n]z—ldz
273 N
n=0
c
1 X -1 i
= g F(z/a)U _(1/az)z “dz. (A.5)
213 ) N
W
c
Let
7l = z/a, , (A.Q)
Thus ,
OZO [£.( )'n][' (n)ocn S g F(z )U_*( )7_1(], | (A7)
o 2110, u, = 7n J) (2,00 z,)7 Z. |
. c

This is the modified Parseval's theorem.
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APPENDIX B

Inequality (2.29) is rvepeated for convenience

SRR S 17, (e1%0) | Paw + 35 7Wégji— DxE ) [ a (3.1)
r.h.s. = 8w60 B 4 ) | dw + 5o . DX(e” a) we .1
By modified Parseval's theorem -

m (e o]
-1 jo 2
' o 1 — -
(2m ™) 5\ |X(e”?"/a) | “do ) xz(n~l)a2(n 1),
il n=0
(B.2)
j(.L) . © N\
- o - 2 2-2(n-1
(2n S '“E'OT - Dxe?/e)|aw = 1 [vx(m)], (1),
: n=0

-1

Replacing F, in the first integral in (B.1) by the expression in Eq. (2.24),

4 Iy

therefore,

-
) W . . . .
S‘ [Fq(ejw/@)lz = S {Fz(e_Jw/u) -+ qk"[(ejw/@) - lIZX(e_Jw/@)G(er/u)lzdw,
u

=" - (8.3)
Since
£, = [x1) + qux) 10T, (B.4)
then, by modified Parseval's theorem
Juw | C——jw Jw
P, (e’ /a) = [1 +q@ - Y1X(e” /), (3.5)
and
. -jw ejw -Jw
Fyle 7%/e) = [1+ (Ll - =) x(e "%/a). (.6)
Therefore (B.3) may be rewritten as
m
i 2
S [Fl"(ejw/a)‘ dw
Jw 5 . 2
- E erJ -jw 2 k”ql(g"“" 1 “G(ejw/@)
if- ][l+q(1 - ;;—)]X(e ] /a)]‘ |1 - ¢ ” dw. (B.7)
- N

e
1+ q(l - ——
q( a)

Since G(z1) is analytic in the domain o > 1 for o sufficiently small, therefore

- 2] 2
k' le!”/a) = 16 /a)
1 - T < E < o, (B.8)
o
1+ q@ ==

sup
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- Because -
2 2
= S
'F/+] _114 ’ 3
hence
ki) i 6) 2 T e—jw jw 2 ’
S l]?a(ej /oa)}“dwf_E 5 ][l+ q(l - ‘oc )]X(eJ /o:)[ dw
il -
o 5 _
<28 ¥ [x(n-1) + q\7x(n)]~c1,2(n l). (B.9)
n={) .
Making use of (B.2) and (B.9), inequality (B.1l) becomes
r.h.s. = = {2{%}— [x(n-1) + qu(n)]2 + %[Vx(n)]z}-aun—l), (B.10)
n=0 g :

which is inequality used in Eg. (2.30).
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