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ABSTRACT

A contour~tracing technique originally divised by Clemens and Mason
was modified and used with several different classifiers of varying complexity
to recognize upper case handprinted alphabetic characters. An analysis and
comparison of the various classifiers, with the modifications introduced to
handle variable length feature vectors, is presented.

On independent charactere, one easily realized suboptimum parametric
claésifier yielded recognition accuracies which compare favourably with other .
published results. Additional simple tests on commonly confused characters
improved results significantly as did use of contextual constraints. In
addition, the above classifier uses much less storage capacity than a non-
parametric optimum Bayes classifier and performs significantly better than the
optimum classifier when training and testing data are limited.

The optimum decision on a string of m contextually constrained
characters, each having a variable-length feature vector, is derived.‘ A
compqtationally efficient algorithm, based on this equation, was developed
and tested with monogram, bigram and trigram contextual constraints of English
text. A marked improvement in recognition accuracy was noted over the case
when contextual constrainte were not used, and a trade-off was observed»
not only between the order of contextual information used and the number of
measurements taken, but also between the order of context and the value of a

parameter ds which indicates the complexity of the classification algorithm.
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I. INTRODUCTION

1.1 Purpose of Research

The purpose of this research was to: (1) assess the suitability
of a simple contour-analysis feature-extraction scheme for recognizing hand-
printéd upper case characters when the feature vector is operated on by
classifiers of varying degrees of complexity; (2) improve the results of the
classifiers above by using contextual constraints and additional simple
classfdependent tests to differentiate commonly confused characters; and
(3) observe trade-offs, if any, between the number of meaéurements, complexity
of the basic classifier and order of contextual information used when tﬁe

available storage is limited.

1;2 Review of Previous Research

The great spatial Variébility of handprinted characters, even
among samples from the same person, has lead many researchers to exploré unique
methods of feature extraction and classification. _In many of these cases the
preprocessing . is of considerable comple%ity and the dimensionality of the
feature vectors is large, fypically greater than 100, making classification
difficult [1—31. Some: of the researchéfs such as Kamentsky [4], Bakis et al. [5],
ana Greanias et al. [6] have considered only numeric character sets; and others
suchras Roberts [7], Highleyman [8] and Grimsdale et al. [9] used the same
data set for training and testing which is now known fo yield an overoptimistic
prediction of performance.

in 1965 Clemens [10, 11] devised a relatively simple contour tracing
algorithm to recognize machine-printed characters. The relative ease of imple-
mentation of the scheme and the low dimensionality of the feature vectors, typically
about 20, attracted researchers of handprinted character recognition. In
1966 Chodrow et al. [12] reported poor results in gpplying'C1emens' techniaue

to alphabetic handprinted characters. In 1968 Munson [13] obtained equally poor



.results using a slight modification of Clemens' technique. Since then,better
results have been reported by Johnson et al. [14], Munson [13, 15] and
Knoll [16] using more complicated techniques, but there seems little hope of
arriving at very satisfactory results without the use of contextual information.
In the past, the use of contextual constraints to improve character
recognition has-been scant and limited generally to the dictionary look-up
method and the Markov approach. 1In 1959 Bledsoe and Browning [1] used the
character confidences of a word together with a vocabulary of Inglish words
of the-length in question to make a decision on the word. Cornew (17]
applied an extensive dictionary lookfup method to spelling correction and
Alter [18] used a sequential decoding method for determining which of many
poésible symbol sequences is in some sense most likely to have been intended
given the sequence actually received.. The disadvantages of these methods are
that a dictionary of practical size takes up too much storage, and not enough
information is used from the measurements. In fact these methods often operate
on tﬁe output of a classifier which contains the decision, rather than the
categofy likelihoods, for the input character. The Markov approach is based
on the éssumption that the true identity of a character is dependent on the
true identities of neighbouring characters. Carlson [19] used the Markov
approach to replace missing characters from names on the basis of the
most probable trigrams. Edwards and Chambers [20] used conditional bigrams
in a machine-printed character recognition scheme,which uses the previous
decision and a present choice based on the two categories having highest likeli-
hoods, actually resulting in a decrease in performance for high initial recog-
nitién accuracies.
In 1966 Abend [21, 22] theoretically solved the problem of optimum
use of context using compound decision theory. Practically, however, this

solution is virtually unrealizable and simplifying assumptions have to be made,
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One way to simplify the problem is to assume Markov dependence among the
characters to be recognized and then use squential compound decision theory

to make a decision on one character at a time [23]. Another way to simplify
the problem is to have as the classifier output iny a fixed number of choice cat-
esories having the highest confidence. This simplification was made by Duda. and
Hart [24] in a handprinted character recognition scheme using both syntax

and .semantics. However, the study was made only on the FORTRAN language and

the confidences used were not equal to the category likelihoods. Similar

studies need to be made on the much more difficult problém of handling naturai
language such és English. In addition, similar decision algorithms need to

be derived for handling variable-length feature vectors which result froﬁ

sonme feature extraction schemes such as the one used in this thesis.

1.3 Scope of the Thesis

In this thesis, the complete pattern recognition system shown in
Fig. 1 is considered. The input to the system consists of upper case handprinted
alphabetic characters, binary quantized on 50 x 50 arrays. The transdu;er, in
this case, consists of an enlarger projector and.kevpunch operators. Two
types of feature extraction are performed on the data, for comparison, by a
method of contour trécing 5ased on Clemens' technique. Various algoritbms are
used in the classifier stage either by themselves or making use of contextual
. information or tentative decision making followed by additional feature extrac-
tion before proceeding to a final decision.

The theoretical aspects of the techniques used to solve the pattern
recognition problem are treated in Chapter II. Some aspects regarding the square.
contour trace not treated before in the literature, including the equations

for its implementation, are discussed in section 2.3. Section 2.4 briefly'

reviews some of the simple classification techniques used in the past and



describes the necessary changes needed to handle variable length feature vectors.

|24

Subsection 2.4.5 describes a non-Euclidean distance classifier for which, to the
author's knowledge, no character recognition experiments have been previously
reported. Subsection 2.4.6 describes some of the important interrelationships,
not observed in the literature, between the various classifiers, and presents an
interesting theorem and proof concerning the'equivalence between a linear
decision boundary and the nénlinear decision boundary of the classifier of
subsection 2.4.5. Subsection 2.4.8 describes a parallel-sequential mode of
classification for which theiscans and decision trees of éection 4,2 were

- designed. It was necessary to obtain the equation, not available in the litera-
ture, for the optimum decision on a string of m characters having variable
length feature vectors. This equation is derived in subsection 2.4.9 and
an.apparently veryAsuccessful modification is made for decreasing the amount of

computation.

The experiments are described in Chapter III. In the past, two methods

haVe'been used with relatively small data sets; the first does not use the
data efficiently and the second needs a very large amount qf computation. A
new experimental procedureiis described which is a compromise between the two
methods above. The results are given in Chapter IV and the discussion and

conclusions are treated in Chapter V.

4



IT. THE PATTERN-RECOGNITION PROBLEM

2.1 Introduction

The general pattern recognition problem is expressed in the block
diagram in Fig. 1. The real world data set is composed of a possibly dinfinite
number of patterns which are to be classified into a finite number of categories
in decision. space. The transducer converts a pattern from the real world into
a pattern in image space by digitization and quantization which contribute to
the high dimensionality of the image space. Thé feature extractor maps the image
space into the, usually much lower dimensional, measurement spaée. Feature
extraction is effected by designing fhe mapping in such a way that there exist
strong intra-category similarities and strong inter-category dissimilarities
among feature vectors. In some cases the transducer and feature extractor are
difficult ‘to separate. The classifier acts on measurement space and makes either
a tentative.or final decision either solely on the basis of the feature vectors or
with the help of contextual information.

Let the features from pattern class Ci be described by a vector
¥ = (xl,xz,...,xd). If P(Ci) and P(flci) denote, respectively, the probability
- of Ci and the probability of X conditioned on Ci’ then‘the probability bf
" misclassification is minimized by choosing i to maximize any monotone increasing

function of

R, = P(X|C,) P(C,) = P(x,%,,

crxg[C) P(C) (1)

In most handprinted character recognition schemes the dimensionality
d ofvﬁ is large; typically d > 100. Even if the components df X are binary,
'learning the étatistics of 2d'different probabilities P(ﬁlci)l for each i
requires many training samples and much storage capacity. When the d components

3 5 o . '
of X are statistically independent, however,

d
P(X|c,) P(C,) = kgl P(x [C.) P(C)) | (2)

Xk
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in which case 4t is necessary to learn and store only the d terms P(x]|C.)
. i
for each i. Two possibilities now arise. (A) If the components x, are
<.
not strongly interdependent, and if there are not enough samples to estimate

P(X

Ci) sufficiently well when the true distribution is not known, it may

be best to assume (2), or to use some other suboptimum classifier which can be

trained on fewer éamples than are needed to estimate P(f Ci). (B) Even when
P(i}Ci) is knowﬁ.a suboptimum classifier which fequires less storage capacity

than the optimum classifier ﬁay be desirable. Unused storage can then be occupied
by contextﬁal information and ﬁore sophisticated classification algorithms,

both of which can effect considerable improvement in recognition accuracy [13,

18, 23, 24]. Thus, feature extraction schemes which retain those features
essential for recognition while keeping d small are attractive, because not

only do they simplify the classifier in terms of less storage and cbmputation,

but the relative independence of the x, 's encourages the use of (2), further
p g

k

simplifying the problem.

2:2 Transducers

Transducers can be roughly divided into two groups. In one kind
only digitization and quantization are performed and the difference between the
pattern in the real world and in image space is minimized. In the other kind
actual feature extraction is done during transducihg, thus mapping the real
world directly into measurement space. Either scheme can be used with

contour tracing.

2.3  Feature Extraction
-2.3.1 Introduction
There exists today no general theofy that will yield an optimal set
of features for a given pattern recognition problem. .{eﬁce there is some

justification in allowing designers to use features which they think might
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extract the significant information from patterns. In the past some success
has been achieved through intuitive application of ideas from biological pro-
totypes but the field remains an art rather than a science [25].

It is well known that the contours of a pattern contain most of
the information needed to recognize it [5, 6, 10-12, 25-32]. The feature
extraction algérithms used in this thesis are baséd on two observations. First,
reasonably legible Roman characters-are recognizable solely on the basis of
their external contour. Second, confusion between characters is not random,
but highly structured. For example, in the experiments described below con-
" fusions arose mostly between the characters A and R, K and X, 0 and Q, and
B and D. Accordingly, a character's outside contour was used to generate a
binary vector X which was then classified either as a single character, or as
one of a group of characters not easily distinguished solely on the basis of X.
In this latter case, simple class-dependent tests were designed to effect
final recognition of the unknown character. The transformation of character
confdurs into binary vectors is a modification of the one used by Clemens and
Mason [10, 11, 25-27] and by Troxel [28, 29] for recognizing machine-printed
characters. In addition to being easy‘to implement, the transformation

yields a feature vector of small dimensionality.

2.3.2 Contour Tracing
All contour tracing algorithms are similar in that they effect, in
some manner, a stepwise trace of the hlack-white boundary .of a pattern. There
are, however, several ways of implementing the stepwise trace eacb serving a
slightly different purpose and requiring different local properties of the
patterné to be traced [6, 10, 26, 29, 31-33]. Greanias et al. [6] was one
.of the first to use circular tracing. In his Ph.D. thesis Clemens [1C]

introduced hexagonal tracing, a simple operation requiring little logic.



Latér Mason and Clemens [26] used the square trace which is‘used in this thesis.
The algofithm consists of making a left turn upon entering a black square and
a right turn upon entering a white square as illustrated in Fig.AZ. Let
R{x,y) be the image matrix composed of elements which can take on the values
'zero' or 'one', where the set of 'ones' is the quantized representation of
some pattern P(pl,pz,...,pn).
Definition .

Two elements of R are adjacent if they differ by 1 in one of their
coordinates.

Definition

Two elements of R are diagonally adjacent if they differ by 1 in
both of their coordinates.
Definition

A pattern P is connected if, and only if, given any two elements 1
and pj, there exists a sequence of elements (pl’pZ""’pg) where Py=P; and
p, = pj such that P and p .1 are édjacent for 1 <m < 2-1.

L

Equations describing the square trace were derived in order to compare

)

them with those for hexagdpal tracing in {10]. Let (xk, yk) and @k—l’ Y1

be the coordinates of the present and past location of the scanning spot.

The next location on R is given by the following 3-state equations:

M ™ K (g 12ROy 1) | (3)

a1 = Vi T U 12ROy O-1TE (4
Although the square trace is geometrically simpler than the hexagonal trace, the
equations (3) and (4) needed to implement it are slightiy more. complex than
the 2-state equations in [10]. The hexagonal method is more suited to contour
tracing.patterns in the real world because points are interrogated only once,
thus combatting the effects of jitter. Troxel [29] modified the square tracé

to combat. jitter effects also. One advantage of the square trace is that it
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Fig. 2 TIllustrating the contour trace. Search for the character begins at
S. The CONTOUR mods begins at C.

can completely contour trace certain patterns containing sections which are
only diagonally adjacent which cannot be traced completely by the hexagonal
method. However, both schemes wili contour trace any pattern that is connected
in the sense defined above, and the choice of the algorithm in this thesis is
strictly arbitrary. An analogous theorem to that given in [10] holds for the

square trace.



Theorem

If the square tracing routine is started at the lowest black point
of a non-white column, (x,y), its first move is to (x-1, y) and the trace will
always return to (x-1, y) after tracing the outside contour of a connected
pattern exactly once.

This theorem can be inductivély pfoved by starting with a pattern
consisting of only one square and constructing a general connected pattern

by adding other adjacent black squares. A formal proof, however, will not

be given here.

2.3.3 Smoothing
The same two-dimensional hysteresis smoothing technique used by

Clemens [10, 25, 26] was used here. Let Xy and X1 be, respectively, the

. s s
present and future x-coordinate of the raw character trace. Let X and X1

be, rexpectively, the present and future x-coordinate of the smoothed character

trace. The algorithm can be described with three interrogations.

s s _ _
1f X <X T TX/2, then X1 = g TX/2,
-~ / .5 s _
If X141 TK,2 < S Ky + TX/Z, #hen LN Xk,. (5)
If x0 > + T /2, then x° . = + T /2
kT T 7O PR B T Rl TS

where TX is the threshold discussed in subsection 2.3.5. A similar operation
is used for the y direction. The effect of this algorithm is to smooth out all
extraneous extrema. The size of the exfraneous extrema is determined by the
relative size of Ty and TX with respect to the height and width, respectively,

of the character.
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2.3.4 Gestalt Variables

Variables which do not provide the kind of information needed to
reconstruct fairly well the original pattern but which nevertheless abstract
important properties of the shape as a whole are known as gestalt variables.
Examples of gestalt variables are, the number of sides in a polygon, the
height to width ratio (H/W) of a charaéter, or the ratio of the perimeter to
the square root of the area of a pattern (P/VA) [30]. Clemens used H/W very
successfully on machine-printed characters which yielded four virtﬁally non-"
overiapping distributions. It was anticipated that for handprinted characters
H/W would not be satisfactory and so P/VA, which is a measure of the dispersion
of a shape, was tried as well. Although P/vA was slightly better than H/W
as far as overlapping distributions are concerned, the amount of computation
needed for it was too great to iustifyvits improvement. In addition P/VA
oﬁly helped in separating categories which did not need help. Accordingly
it was decided to abandon gestalt variables and look instead toward the‘white~
to-black transition scans of section 4.2 to help with the commonly confused

characters resulting from contour tracing alone.

2.3.5 Feature Vector Formation

Duriﬁg the SEARCH mode (Fig. 2) the scanning spot moves, point by- .
point, from the bottom to the top of the left most column, and successively
repeats this procedure on the column immediately tb the right of the columh
previously scanned, until the first black point is found. Upon locating this
point, the scanner enters the CONTOUR'mode, in which the scanning spot moves
according to the square trace described earlier and ter@inates when it
completés its trace around the outside of a character and returns to its starting
point.

After the character has been traced once the rectangle surrounding
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the character is divided into either four or six equal~-sized subrectangles whose
size depends on the height and width of the letter (see TFig. 3). In previous
research only the four-rectangle subdivision has been used but it was anti-
cipated that less information from the middle of characters would be lost,

due to quantization, with a six-rectangle subdivision. To further reduce
quantization errors the subdivisions are assigﬁed 3-bit labels in such a
manner that thé Hamming distance between any fwo labels is equal to the number
of_rectangles between the two labels, vertically and/or horizontally. Ay
threéhold equal to one-half each rectangle's height and an x threshold equal
to one-half each rectangle's width are defined and the character is contour
traced for a second time. Whenever the x co-ordinate of the scanning spot
reaches a local extremum and moves in the opposite direction to a point one
fhreshold‘away from thé résulting extremum, the resulting point ié designated
as either an X ox OF xmin.Analoéous comments apply to the y co-ordinate

of the scanning spot. The starting point of the CONTOUR mode is regarded
as.an Xmin; The CODE word for a character consists of a 1 followed by binary
digits whose ofder coincides with the order in which extrema occur during
contour tracing; 1 denoteé x-extrema, while 0 denotes y-extrema. The ordering
of the binary.labels of the rectangles in accordance with the rectangles in
which extrema fall in event sequence constitutes the COORD word. The feature
~vector consists of tﬁe concatenation of the CODE and COORD words. Fig. 3 shows
the CODE and CdQRD words for "C'". Further details relating to CODE and COORD

word. generation appear elsewhere f1o, 11, 25-29].
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2.4 C(Classification
2.4.1 Introduction

A great deal of theory.has been developed during the pasl ten years
in the field of classification theory [27]. Most classifiers fall into either
the parallel or sequential type. In the parallel classifier a set of measure-
ments is first tagen on a pattern and then a decision is made. The bulk of
the referenées and this thesis are concerned mainly with this type of classifier.
When taking measurements is costly it is desirable to use sequential claéu
sification't34] in which after taking each measurement a decision is made
either to take another measurement or to decide on the identity of the
pattern based on the measurements taken up to that time.

Every classifier undergoes some kind of training phase, when the
pattern distributions are not known a priori, in which either the distributions
themselves are implicitly or explicitly estimated ( nonparametric training)
or in which some parameters of the distributions are estimated (parametric
training). In past Qork Clemens [10], Chodrow [12], and Munson [13] all
applied a tabie look—~un classification scheme to the feature vectors;.In
“this section the basic form of three parametric classifiers used, as well
as the table look;up method, are described. -For clarity, more meaningful
comparison, and geometric interprétation, the cléssifiers aré looked at from
the discriminant function point of yiew [35]1 For R categories there are
R discriminant functibns yielding R discriminants of which the largest is
always chosen as representing the true category. Given R. discriminant fufc—

-> > -> . -
tions gl(X), gz(X), ces gR(X), for -any two of R categories i, 3 the equation
bf the decision surface between those two categories is given by
gi(i) - gj(i) = 0. For simplicity it.ﬁill be assumed in subsections 2.4.3 -

2.4.5 that all feature vectors have the same dimensionality and that all
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categories hawequal a priori probabilities. These special cases will be

treated in 2.4.8 and 2.4.9.

2.4.2 The Table Look-up Method
The table look-up method (also exact match classifier) is a special
case of the Fix and Hodges nénparametric method [36]. Given some fixed number
N of training'patterns in each of R categories a table is made up containing
the NR feature vectors. Now, to classify an arbitrary pattern %} the feature
vectors in the R training subsets are pooled and a search is made of all feature
vectors having zéro—Hamming distance with the arbitrary pattern. Suppose that

of all the zero-Hamming distance feature vectors found,nl belong to C

1°
n2 to C2,....? ny to CR. We theh set
81(52)"—' n,
5,0 =, (6)
: 8R(§) = ng

and a deéision is made by selecting the largest discriminant. If no zero-Hamming
distance feature vectors are found then the pattern X is rejected. If the
categories have some nonuniform a priori distribution then the table can be

set up by using training subsets of sizes propoftional to the a priori
probabilities or the table can be constructed as‘above and the discriminants can

‘be multiplied by the a priori probabilities. Then nl; n would become

s +eey Dp
nlp(Cl), nzp(Cz),..., an(CR) where p(Ci) are est}mates of the a priori probabi-
lities P(Ci). Clearly this method is an attempt to estimate the values of

e .
P(X|Ci)P(Ci) for i=1, ..., R. For a low reject rate a large number of training

samples are needed, especially with patterns of high vatiability such as

handprinted characters. This requires a great deal of storage as well as a
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rapid-access memory [35]. This method will be referred to as algorithm 'S'.

2.4.3 The Parametric Bayes Approach
Given a feature vector X it is desired to maximize the a posteriori
probability P(Cili) over i or an increasing monotonic function of it as in (1).
From (1) and (2), assuming equiprobable characters all with d dimensional

feature vectors and taking logarithms we get. the discriminant function

d
->
g, () = 2 1nP(x, [C.) (7)
. k=1
where the P(Xklci) for i=1, ..., R and k=1, ...,d are the parameters of the

>
distributions P(XICi). When a discriminant function is linear, its decision
boundary is a hyperplane and it can be very easily implemented in terms of thre-
shold logic elements [35]. Any linear discriminant function can be expressed

: : . >
as a linear equation in terms of the components of X as

g. (X) = g w, . X+ w,
: k=1 i k'k . i,d+1 (8)
where the orientation of the hyperplane is determined by the weights
wi,k for k=1, l.., d, and the position of the hyperplane is determined by the
weight w, It can be shown [37] that for binary measurements (7) can

i,d+1’
" be written in the form of (8) where
d

W, = i 1nP(x, =0]|C,
i,d+1 k;l k [ 1)

(9)

. and

B g = 1nP(xk=l[Ci) - lnP(xk=O|Ci).
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2.4.4 Minimum Fuclidean Distance from the Means
In the Tuclidean distance classifier a metric, monotonic to the LFucli-
dean distance such as the square of the Fuclidean distance, is minimized over

: >
Ci, i=1, ..., R [35, 38]. This metric is taken between the given pattern X and
the mean of each categor X Let the mean % 8 (~' X x . .) where
© ’ R gory m,i° m,i 1,i°72,i° 2 0g,i7

xy,iis the mean of the k'th component of the training feature vectors for category
g L

Ci' A decision is then made by minimizing

d _ 9 _
ro(x, -x, ) (10)
k=1 k “k,i
which can be put in the linear discriminant function form of (8) where
d
1 2
w, =-= % [P(x,=1]|C.)]
i,d+1 2 k=1 k i
and '
w; = PO=LlC)) (11)

"when the measurements are binary valued. Equation (11), however, will not be

derived in this thesis.

2.4.5 A Non-Euclidean Distance Classifier
A metric difficult to find in classification theory but used in
sequential decoding for telephone signals is the decoding distance described in
[39]. This distance is defined as

d —
X X, = X, 1.
k=1 k k,i

(12)
Although, in general, (12) implements a nonlinear decision boundary, it will

be shown in the next subsection that, for binary measurements, it is equi-

valent to a linear discriminant function closely related to (7)
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2.4.6 Some Important Interrvelationships
For the three classifiers (7), (10) and (12) the prototype or
mean point for each category lies somewhere inside a hypefcube._ For any two
categories Ci,Cj there are two mean points which can have‘certain symmetries with
respect to the sides and veftices of the hypercube depending on the distribu-
tions of th¢ binary feéture vectors. Certain interesting relationships arise
between (7), (10) and (12) under certain types of symmetry. In addition, the

following interesting theorem to classification theory is proved.

Theorem

The minimum decoding distance classifier, (12), whicﬁ, in general,
implements a nonliﬁear decision boundary is equivalent to a linear discriminant
function when the measurements are binary and the categories have equal a priori

probabilities.

—_—
X] , . ( ] l .) ( )

The minimum decoding distance classifier for equiprobable categories can be

written as

Min- d
{ ¢ |x -P(x =1]|C,))|}. ,
i k=1 k k i (14)
- When x, =1, [x - P(xk=llCi)l = P(x,=0[C,) -
When xk=0, !Xk - P(xk=l|Ci)! = P(xk=l|Ci).
.. (14) can be written as
Min
(= P(xk=OlC,) + % P(xk=l|C_)} (15)
1 kea Y keb *

o1

where a is the =zet of k's for which X

and b is the set of k's for which xk=0.
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Since % P(x =0]C,) is inversely monotonic in i to £ -~ P(x =0|C,) and to
I I i . K k i’
vo[1-P(x =O]C.)] and since & [1-P(x =O[C,]_: b} P(x'=llC,), (15) can he
K 1 i k i k i )
k k k
written as

Max ‘
;L p(xk=11ci) + I P(Xk=Olbi)}
kea keb

which is equal to the discriminant function

d
>
g . (X) = I P(x_|C.). (16)
i k=1 k' i
(16) can be written as
: P
>
gi(x) = kfl [ka(xk—lICi) + (l—xk)P(xk—O]Ci)]. (17)
Recombining terms yields
> d d
g, (X) = kzl [P(xk=l|Ci) - P(xk=0|Ci)]xk + kzl P(xk=olci) (18)

which is a linear discriminant function. Q.E.D. This algorithm will be called
'iL'. Note its simiiarity to (7). It can be generated by taking the anti-
logarithm of every term in the summation of (7).

The relationship between (7), (10), (12) and TL can easily be
observed when the symmetries are viewed in two-dimensional space. Let the

following symmecries be defined for any i and j, i#j:

P(x,=1]C.) = P(x,=0[C.)

'A' symmetry 1 t 1 J
P(x2=1lci) = P(x2=1lcj)

P(x.=1]C.) = P(x,=0]|C.)

'B' symmetry 2 + 2 J
: P(x1=l|Ci) = P(xl=l|Cj)
P(x,=1]C.) = P(x.=0]C.)

'C' symmetry 1 + 2 J
P(x2=l|Ci) =»P(gl=olcj)
. P(x.=1]C.) = P(x,=0]cC.)

'D' symmetry L t ! ]
P(x2=O|Ci) = P(x2=1[cj)
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It can be_shown that (10) and TL implement the same decision line when either

A, B, C or D symmetries are obscrved, (7), (10) and TL implement the same decision
line when either A, B or C symmetries are observed, and (7), (10), (12) and TL
all implement the same decision line when A or B symmetries ére observed. If
none of the above symmetries are observed all four decision boundaries are
different but some may still effect the same decision for binary feature vectors.
For example, (12) and TL always implement the same decision for binary feature
vectors, and (7), (10), (12) and TL do so under C symmetry. These ideas can

be extended to treat hyperspace. Since in realistic problems these symmetries
are likely to occur dnfrequently it is reasonable to expect different results
‘for the three different algorithms. ¥Fig. 4 shows an example of the decision
boundaries, implemented by (7), (10), (12) and TL, for the two-dimensional

case when the above symmetries are not observed.

2.4.7 Handling Feature Vectors in Multispace
In order to implement (7), (10) or (12), certain modifications have
‘to be made in order to handle Vectors‘in multispace, a problem which seldom
arises in character recogﬁition. In this thesis three approaches to the

problem are taken. Let x. . . P(x

]C,,L,) and. L, stand for the mean of the
k,i,]3, k!71 J J

k'th component of the i'th category yielding feature vectors of the j’th length,
the probability of the k'th component conditioned on category i of length j,
and the j'th lehgth; respectively. In addition let M be the maximum value of

L..
J

In the first approach feature vectors of length Lj < M were made to

have lengths equal to M by setting Xk=0 for Lj < k < M. Index i was then

chosen to maximize W, and minimize Y,, where
_ i i

M
W, = % InP(x, |C.) + 1nP(C.) (19)
1 k=1 . k!'7i i
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Fig. 4 Some decision boundaries between two pattern-class-means in two dimen-
sional space.

M
Y. = I

17 5 - lnP(Ci). (20)

Xk_;k,il
Algorithms W and 'Y above are tﬁé>same as (7) and (12), respectively,with a
priori probability bias terms added. In W the bias term follows from a decision
theoretic develépment, in Y the bias term is arbitrary but reasonable.

In the second.approach, given an unknown character yielding a
feature'vecfor of a particular length Lj’ only the discriminants for the

categories Ci containing a prototype of the same Lj were calculated. Index

i was then chosen to minimize Ui and Vi’ where

L,
3 - . '
= = - 1nP.
U, ki] ]xk <k’i,j| nP(C,) (21)
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L,
J — 2
vV, = % (x,-%x, ., ) = 1InP(C.) (22)
i k=1 k “k,i,] i

Algorithms U and V above come from (12) and (10) respectively with bias terms
added. Again, although the bias terms are arbitrary, they are reasonable and
easy to implement because the P(Ci) are known a priori.

The third approach consists of maximizing P(iCiLj), the joint
probability that a feature vector i‘has Lj components and comes from a charactef
belonging to category Ci’ under statistical independence among components. As
in (21) and (22) only the discriminants for the categories containing a pro-
totype of the same Lj were calculated. Index i was then.chosen to maximize
Ti’ where

L,

] .
T, = I 1InP(x |C.,L.) + 1nP(L,]C.) + 1nP(C.) (23)
i 4 k' 13 jtd _ i

>
Equation (23) follows directly from P(XCiLj) under statistical independence among

components.

2.4.8 A Parallel-Sequential Classifier

In the parallel-sequential mode of classification some of the decisions
- formerly taken as final in algorithms T and U, were taken as tentative and
the scans of Fig. 7(a), for algorithm U, were taken sequentially according to
the'decision trees of Fig. 7(b). The scans and decision trees of Fig. 7 are

explained in section 4.2,

2.4.9 Compound Decisions on Strings of Dependent Characters
In the algorithms discussed so far a.decision was made on individual
characters solely on the basis of the measurements and the a priori probability
of those characters. This mode of decision ignores the dependencies that
characters may have in a given sequence. It is desirable to make use of these

dependencies by making decisions on a string of characters rather than on



characters individually. In this subsection the equation for the optimun
decision on a string of characters, given variable-length feature vectors, is
derived using certain underlying assumptions, and a procedure for reducing
the amount of Computation is given.

We wish to maximize the a posteriori probability of a sequence of h

characters given by

i i3 iy ¥
P(Cl,...,Cm,L seeesln L X xm) (24)

i, .
where Cn is the category of the n'th character in the sequence and can take
on i values, Li is the length of the feature vector of the n'th character and
R :
can take on j values, and Xn is the feature vector of the n'th character. Since

i . . . i
we do not care what lengths Li are associated with the decisions Cn’ the

. . . . . . i i i
optimum decision is arrived at by selecting the categories Cl’ C2, ceey Cm

which maximize (24). Usihg Bayes' rule (24) becomes

> 5 A i3 ' i i3 j
P(Xl,...,Xmlcl,...,Cm,LJ,..,L;) P(Cl,...,Cm,LJ,...,L%)

> N ©(25)
P(X 505X )

Exﬁanding the numerator of (25) and deleting the denominator because it does

not depend on i yields

i

i i iy
l,...,cm)P(cl,...,cm). (26)

%X qch .l el
P(xl,...,§ﬁ|cl,...,cm,L soe s IR, 1 o
Assuming that,

2

> X >
1 Xn 1s}1ndepeédent of Xh,.C2 and L
for n=1,...,m; h=1,...,m; 2=1,...,m; n#h# e

2) L is independent of L_ and C

h h

for n=1,...,n; h=1l,...,m; n#h,
(26) can be written as follows:
m

. . m . . . .
> 1.7 jr A1 i 1
I P(ancn,Ln) it P(Lnlcn)P(cl,...,cm). 27)
n=1 n=1
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Taking mnatural logarithms yields

m . . m . . . .
> .1 3 } S dy At L i _
z 1nP(xn|cn,Ln) + % lnl(Lnlcn) + lnP(Cl,...,Cm) . (28)
n=1 n=1
If it is now assumed that the components of iﬁ = (xl,xz,...,i j) are independent,

L
n
then the optimum decision on the sequence of m characters is made by maximizing

> > m
G(Xl,...,Xm) over R possible sequences, where
N m Li i3 .
G(Xl,. .,xm) N 1nP(xk[cn,Ln) + ]nP(Lnlcn)]
n=1 k=1
+ 1nP(Cl,...,C0). - (29)
1 m

One can vastly reduce the computation time by assuming that in an ordered list
of bracketed, [], térms in (29) over Ci,Lg, the correct identity of an unknown
character has a high probability of being in the top ds entries of the ordered
1ist,.where ds is called the 'depth of search' and G is maximized over (ds)m

sequences. For bigrams m=2 and for trigrams m=3.

2.5 Training and Storage Requirements
-5
"Probabilities P(XIC.), P(x [C,) and P(x IC,,L,) were estimated or
€ k'1 k! 1774
learned by determining the relative number of times a vector X or component

x, occurred, given the event C:i or the joint event Ci,Lj. Since we do not

k
know the probability distributions of the probability values themselves we
.cannot make optimum estimates of those values and we are jﬁstified in using
the maximum likélihood estimates described above.

Algorithm S must learn and store P(ilci)P(Ci) for virtually all X
'. which occur in a test set. Algorithm T needs only P(xklci,Lj), P(LjICi)
and P(Ci)' In addition to P(Ci), forlbinary measurements, U and V need

P(xlei,Lj) while W and Y need P(xlei). Algorithm G needs P(xk[Ci,Lj),

P(leci) and P(Ci,...,C;). Note that, under the assumptions made, G learns the



. m
same about the measurements as does T but needs to store R instead of R a

priori probabilities and needs to search over the same number of discriminants.



‘ III. EXPERIMENTS

3.1 Introduction

Although the whole system of Fig. 1 can be simulated in one program,
too much computation would be duplicated in performing the many experiments.
Accordingly, Qach section of the recognition problem was simulated separately.
The contour tracer was simulated using an IBM-7044 computer into which punched
éards containing all the data had been read, and out of which punched cards
containing the feature vectors were obtained. Hence this opération-was
performed once for 4-PAD and once for 6-PAD only.* All the classifiers were
simulated on an IBM-360/67 computer where the feature vectors were stored.in
a file. Since the training for algorithm G is the same as that for T,
all the likelihoods for each feature vector in the T experiments were stored
on tape together with bigram and trigram statistics. UFence the bigram and
trigram prégramsioperated only on the likelihoods of the feature vectors, thus
saving a gfeat deal of classification computation and reducing the bigram and
trigram programs to combinational operations for the most part.

| The purpose of the experiments in this thesis is five-~fold; 15 to

compare the six-part area division (6-PAD) feature extraction scheme with
4-PAD, 2) to compare the vérious classification algorithms in terms of per-
formance and storage requirements, 3) to observe the effects of monograﬁ,
bigram and trigram contextual constraints in terms of performance, classifier
complexity, and added storage requirements, 4) to obtain reasonable predictions
of the probability of error on reai world data, and 5) to compare performance
on an individual with that on the -population.

In early experiments researchers in the field predicted the per-

formance of a recognition scheme by obtaining a sample of data, training the

* 4-PAD and 6-PAD refer to four and six-part area division, respectively.



aléorithm on that sample and testing it on the same sample. This method is
known as the R method (resubstitution) [42].

It is now well known [40] that this procedure vields a biased over-
optimistic prediction of performance. Highleyman [41] showed that for very
large fixed samples of data there exists an optimum partitioning of the set
into a'trainiﬁg set and a testing set in order to best predict the performance,
with the result that the testing set should never be smaller than the training
set. Tor small data sets, however, Highleyman's method breaks down and
yields an overpessimistic eétimate of performance [40]. Tﬁis procedure is
referred to as the H method (holdout). In 1968 Lachenbruch and Mickey
[42, 43] showed that for small sample sizes a much better estimate of performance
consists of training the classifier on all but one pattern in the set and
then testing on the pattern left out during training, repeating this pro-
cedure until every pattern of the data has been used as a test pattern.
Needless to say, unless the data size is very small, a great deal of training
computation is needed in this method referred to as the U method.

In this thesis a variation of the U method is used to predict per-

formance. The method and its advantages are described in section 3.3.

3.2 Description of the Dafa

A total of twenty upper case alphabets were obtained from seven
different persons, all of whom were required to print on good quality graph
paper in squares 0.40 in. high by Q.SO in. wide. A Paper Mate thin-felt-tip
pen was used. Each person was asked to leave the outside contour of each
character unbroken. All seven persons printed the alphabet once from A-Z, as
shown in Fig. 5, and once from Z-A. Two persons printed three additional
alphabets by copying three randomized lower case alphabets. An enlarger-—

projector of magnification ten was used to project each character onto an
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Fig. 5 Alphabets from seven persons.
from PERSONS 1 and 2, respectively.

The sixth and seventh alphabets are
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area divided into 2500 0.1 in. squares. If more than 507 of any square's areca
was black the square was blackened and assigned a value 1. Otherwise the
square was left white and assigned a value 0. TFach spatially quantized charac-
ter was then encoded onto IBM punch cards by experienced keypunch operators.
The legibility of the data was estimated by asking 10 graduate
students to identify all 520 magnified spatially quantized characters. [Each
student responded verbally to characters viewea one-at-a-time in random order
at close range for as long as desired. All viewing was done at one session
whicﬁ lasted approximately 12 minutes per student. The recognitioen accuracy
averaged over the first two alphabets of all seven persons and over all 10
viewers was 99.7%. Averaging over all 10 viewers and over the five alphabets
from PERSONS 1 and 2 yielded 99.87 and 100%, respectively. Machine recognition
errors in excess of a fewiper cent would therefore result from weéknesses in

either feature extraction or classification, or both.

3.3 Experiments on Independent Characters

| The experiments on the test data over the population (POP) were
-performed-using the first two alphabets from five persons fnr training, and
two alphabets from each of the two- remaining persons for testing. The results
were averaged over seven trials. In the i'th trial, data from PERSONS i and
i+l, i=1,2,...,6, were used for testing. 1In the seventh trial data from
>PERSONS.7 and 1 were used for testing. For tests on aata from one individﬁal,
four alﬁhabets were used for training and the remaining one for testing. The
results were averaged over five trials in which a different alphabet.served as
the test data for each trial. This procedure for estimating the performance is
a compromise between the H méthod and the U method [40]. Although the U method
would bé a better estimate and would probably predict a better performance,

too much training computation would be required with the data set above.



The method used here, in addition to being more economical on data

than the H method, involves far less training computation than the U method.
It is, thus, a reasonable method to use and if anything probably yields a
slightly negatively biased estimate of performance. For experiments on the
training data in the POP tests the first two alphabets from each person were
used. In tests . on alphabets from PERSONS 1 and 2 all five alphabets were used.

| The experimental procedures described above yielded maximum likeli~
hood estimates of B@ICi), i=1,2,...,26, i.e., the probability of error condi—.
tioned on pattern class Ci’ for algorithms S, T, U, V, W and Y. To calculate
'Athe total probability of error, P(e), for each algorithm, the estimates of
P(e]Ci)were substituted into ,
: 26 .

P(e) = T P(elci)P(Ci) (30)
i=1

For the experiments on equiprobable characters (EQP), P(Ci) was made equal to
1/26 for all i in (30) and in the classification algorithms. For the
experiments on English a priori probability characters (ENG), S5-decimal digit

estimates of the values of P(Ci) were obtained from Pierce [44].

3.4 bExperiments on Dependent Characters

Algorithm G, eq. (29), was used with bigram (m=2) and trigram (m=3)
contextual constraints. Maximum likelihood estimates for the bigram and
trigram a priori probabilities were obtained by dividing their frequency of
occurrence, given in Pratt [45], by their total number observed. There were
304 and 2,510 bigram and trigram entries, respectively. All other possible
combinations of two and three characters were considered illegal. Accordingly,
when the deptﬁ of search (ds) was so small that éll the prospective strings of
m characters were illegal, a decision was made on individual characters without
using context. However, the likelihood of observing legal bigrams and trigrams

in the search made by G rapidly increases, varying with the square and cube



of ds, reépectively.

The experiments on the test data vere performed using the first two
alphabets from five persons for training and forming samples of bigrams and
trigrams out of the two alphabets from each of the two remaining persons for
testing, The results were averaged over seven trials as described in section 3.3.
In each trial'2(2)m samples of bigrams or trigrams were formed for each entry,
where 2" samples are formed from the two character-samples of each testing
person. For experiments on the training data the first two alphabets from
each of the seven persons were used forvtraining and 7(2)ﬁ1 bigram or trigram
'sampleé per bigram or trigram entry were formed, as described above, for
testing.

The experimental procedures described above yielded estimates of
=1,...,26; 1

: P(eICil,Ciz,...,Cim) for i 2=l;...,26; v im=l,...,26, where

1

any combination of il’i2"'

.im was a legal string of m characters. The total

probability of error was then calculated using

2 6
P(e) = 3 ¥ ... I P(e|Cci,,Ci,,...,Ci )P(Ci,,Ci .,C1) (31)
. - S -1 > Tm 1 m

2 20

over all the iegal strings of m characters.

‘The probability of error was calculated for various values of the
depth of search, for bigrams up to ds=16 and for trigrams up to ds=5, using POP
training data with 4-PAD feature extraction. Having found an experimental
optimum value of dS,.P(e) was calculated for the 4-PAD TS case and for the

6~PAD TR and TS cases.



IV, RESULTS

4.1 Introduction

Although the results of main interest are those coming from the test
set, results on the training set are included for three reasons. (1) The smaller
the difference between the performance of a classifier on the training set and
on the testing set is, the smaller the amount of data needed altogether becomes.
In other words, if both methods yield comparable results one can be reasonably
confident that enough data has been collected. This may be helpfﬁl to know
wheﬁ data is difficult to collect. (2) Given a small data set, if two clas-
sifiers perform equally well on the testing set it may do well to decide on
the classifier yielding better performance on the training set. Since if a
large data set becomes available one wquld expect the test set results to
lie between the previous test set and training set results, the classifier
pfeviously yielding better performance on the training set may subsequently
yield better performance on the testing set. (3) 1If the small data set
available is an unbiased estimate of the future characters to come then the
performance on the training data of the small set is a reasonable eétimate for

the performance on the future characters. For other cemments see also [46].

4.2 Independent Characters

Results obtained using algorithms S, T, U, V, W and Y of suBsection
2.4.7 appear in Fig. 6. EQP means equiprobable cbarécters; ENG means that
the P(Ci) assumed the probabilities in English.text. TS and TR denote test set
and ﬁraiqing sef, respectively, while 6 and 4 apply to the area division. The
first, second, and third squares apply, respectively, fo data from the population,
PERSON 1 and PERSON 2. The numbers which are neither in brackets nor parenthesis
indicaté misclassification (error plus reject) probabilities when rejects

do occur; if no rejects occur the-numbers indicate error probabilities. HNumbers
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Fig. 6 Misclassification and reject probabilities in per cent.



in parentheses denote the reject probability and numbers in brackets denote
the error probability when the scans of Fig. 7 were used to resolve confusions.
For algorithms W and Y, results are for equiprobable characters on the training
set.,

Over POP's 14 alphabets the average vector length was 17 and 25
for 4-PAD and 6-PAD, respectively.

>
The procedure used to obtain finite estimates of P(X

C.) and

i’

P(xk[Ci,Lj) makes rejection of any character unnecessary, For example, when
P(ilci)P(Ci) =  zero for all i, the optimum decision isAto select any one

of the 26 characters as being correct. The number in parenthesis in Fig. 4
merely indicates the probability that the'optimum choice is any one of the

26 characters; in many recognition schemes, however, the.unknown characters
. would‘be rejected in such cases. Thus, rejects are indicated for algofithm

S Qhenever a feature vector different from any encountered during training occurs
during testing, and for T, U and V whenever the length of the test vector

is diffefent from any encountered during training. No rejects occur, as exﬁected,
when ‘testing is done on the training data. For all algorithms, when the dis-
criminénts'of.tWo or more categories were equal, the unknown character was
classified on the basis of the first discriminaﬁt in alphabetic order.

Some scans used to differentiate easily confused characters appear in

‘Fig. 7. Fig. 7f(a) shows the scans fpr resolving character confusions that

were uséd on the training data with algorithm U, 4-PAD, ana equiprobable charac~
ters. Single headea arrows external to the boxes indicate that the scan

begins at the leftmost black point in the top and bottom rows, respectively,

of S2 and.S3, and at the lowest black point in the leftmost column of S8. Charac-
ter width and height is W and H, respectively. Double headed arrows accompany

the height or width fraction at which the scans occur. Fig. 7-(b) shows
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the decision trees for the population. The number on a tree branch indicates
the number of white-to-hlack (UB) transitions resulting from the scan shown

at the previous node. Thus, if Ui in eauation (21) is minimum for both

Ci = A and Ci = (0, then S1 is applied; if three WB transitions occur, final
classification is B. Otherwise $2 is applied followed, if necessary, by

S3. The deérease in error probability for any given tree appears in square
bréckets. Fig 7-(c) shows the decision trees used for PERSON 2. Use of

these scans and decision trees on the training data with algorithm U reduced
error probability for POP from 247 to 10%. The ABD decision tree reduced

the error for PERSON 2 from 8.5% to 0.87%. A procedure similar to the one

in Fig. 7 yielded the other numbers iﬁ square brackets in Fig. 6, although fewer
scans, trees, and tree branches were needed in these other cases. Applying
decision trees and scans to the ENG-6-PAD training daté with algovrithm T
yielded recognition rates of 98.2%, 100% and 100% on the data from the popula=

tion, PERSON 1 and PERSON 2, respectively.

4.3 Dependent Characters

Results obtained using algorithm « wfth m=2 and m=3 appear in
Figs. 8 and 9. Fig. 8 shows the per cent error as a function of ds for the
.4—PAD testing data. For the bigram case the per cent error was calculated
for ds up to a value of 16. Note that there is no need to increase ds any
further since,for the data in these experiments, 16 was the lérgest number of
categories that could have prototyﬁe feature vectors of the same length as
_ that of the unknown vector in question. 1In other words, given any test
feature vector, the largest number of ﬁossible category likelihoods for that
Vecﬁdr was 16. ‘For the trigram case calculation of the error rate stopped
at ds=5 because'the amount of éomputer time needed for ds > 5 would have‘

been too large. A FORTRAN program written twice for the sake of efficiency
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Fig. 8 Per cent error probability as a function of ds for the 4-PAD testing
data.

took almost 2 hours of CPU time on the IBM-360/67 for the trigram case with

ds¥5.

Both error rates on Fig. 8 decrease at an accelerating rate reaching
a minimum at ds=4, after which they increase at a decelerating rate. The
bigram P(e) rapidly becomes uniform af a value of 17.9%. Since the data
distributions.ére the same for the bigram and trigram cases and since the
same underlying assumptions of algorithm G are made for bigrams and tri-
grams one would expect that the trigram error curve for ds > 5 would behave
in a éimilar fashion to the bigram efror curve,

Fig. 9 shows the per cent P(g), for‘the A—PADland 6-PAD cases on
the training and testing data seté, as a function of the order of contextual

information used. Zero order represents equiprobable characters, first order

I
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represents monogram statistics, etc.. Note that the zero and first order
results come‘from algorithm T which requires the same measurement training as
C but cannot make use of character dependencies. The bigram and’trigram

- values of P(e) are those for ds=4. With trigrams and 6~PAD algorithm G
yields 867% and‘98% correct recognition on the testing and training data
respectively. A marked improvemeng is noted in all four cases in going from
zero to tﬁird order contextual information. The error rate for TS-4-PAD,

for example, reduces from 33% to 16%, i.e., an error reduction of more than

50%.



V. DISCUSSION AND CONCLUSJIONS

5.1 Evaluation of Results

Although algorithm S vielded the lowest P(e) on the training set
with independent characters, the differvence between S and T is small. This
suggests that the assumption of statistical independence among feature vector
components is reasonable. Algorithms T, U and V all performed much better
than S when the training and test data were disjoint, which indicates that
in such circumstances suboptimum classifiers having relatively few parameters
may be significantly better than optimum classifiers reduiring extensive
training. This conclusion is similar to the one reached by Hughes [47]
which was that when a pattern recognitioh problem is selected at random
from all possible problems, the optimum number of theofetically possible
feature vectors decreases with.the amount of training data. For.equiprobable

characters T performs better than U and V. This is reasonable because both

U and V do not have P(Lj Ci) available as does T. In addition it can be showrn

(theorem in subsection 2.4.6), that for equiprobable characters and binary

measurements, U can be generated by omitting the P(Lj Ci) term from T and
taking the antilogarithm of the remaining terms. If, in adddition, the compo-
nents of the feature vectors are statistically4independent then U must be
inferior to T.

When the P(Ci) of Fnglish texf are used the difference bhetween T, U
and V én the testing data with 6-PAD becomes minimal and, in fact, U and
V perform equally well and both perform slightly better than T. This clearly
indicates that when storage capacity is limited a trade-off exists between
contextual constraints and measurement statistics. Suboptimum classifiers
whiéh use less measurement statistics and more contextual data may well be

superior to optimum classifiers which make little or no use of existing

contextual constraints.



Comparison of the results for 1T vs., W and U vs. Y shows that neglecting
the information contained in the length of the feature vectors, by making them
equal in length through the addition of zeros, makes recognition more difficult.
It‘should be kept in mind that although the feature vectors in W and Y are
made longer by adding zeros, W and Y in fact use up much less storage than
T and U because tﬁey store probabilities for Ci,rather than Ci,Lj categories.

For T and U recognition accuracy improves as the number of scans and
deéision tress increases. Although the experiments show that the scans can
indeed impfove recognition, to fully appreciate their capability, more
experiments on largé testing sets would have to be performed.

Considerable improvement results ﬁsing 6-PAD rather'than 4L-PAD
with all algorithms except S. It was expected that S would perform worse
with 6-PAD on the teéting data because 'S has no generalization capability and
a larger number of different feature vectors have to be learned with 6-PAD.
Clemens [10] used the binary vector resulting from 4-PAD, along with two
binary digits describing one of the four H/W ratios observed, to recognize
260 upﬁer case alphabetic characters from 10 different type fonts (algorithm
S was used). [Lven on the training data 157 error resulted élthough, by using
x and y thresholds equal to 3/16 the letter height, the error was reduced to
3%. Important extrema on many of the upper case characters occur in squares
100 and 101 in Fig. 3, and these extrema are more accurately located by a
six-part than a four-part COORD word. 1In aadition, characters that are
commonly confused under 4-PAD, such as P and D, due to the fact that the X ok
occurs in square 10 for both P and D, are not confused any more with 6-~PAD
because the X ox lies ip rectangle 101 for P and 001 for D in Fig. 3. 1In
applying Clemens' technique to the recégnition of upper case handprinted
characters Munson [13] obtained 427 misclassificationvof which 19% was reject

when 2340 characters from seven writers were used for training and an (apparently)
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comparable number of samples from different individuals was used for testing.
These results are for x and y thresholds of 1/10 a character's width and height,
respectively. Perhaps Munson's results would improve considerably if, in addi-
tion to using a six-part area, either a larger number of training samples were
used or the experiment were repeated using algorithm T rather than S.

On, completely unconstrained characters the feature extraction scheme
in this thesis may encounter some difficulty with broken characters such as
"R" in Fig. 10. Two methods of attacking this problem are suggestéd in the next
secfion. Of course the problem of broken characters can also be solved by
simply requiring that people avoid printing them, a constraint which apparently
in these experiments, did not cause the printer real difficultv although
some was reported in [12].

All algorithms for all casés performed better_on individuals than on
the population and in some cases the improvement was pronounced. For some cases
algorithms T and U yielded recognition accuracies of 100% on the training data
of PERSONS 1 and 2 when the scans were used.

.As was expected bigram and trigram information with algorithm G de-
creased P(e) for all cases. Looking at the TS A—PAD and 6-PAD error curves
of Fig. 9>one can see tha£ they tend to follow a decreasing exponential path.
VThis suggests that a decreasing amount of new contextual information becomes
available by increasing further the order of the contextual information used.
In fact the cufves suggest that P(g) would not be decreased significantly
by going beyond 3rd order contextual»information. The curves also show that
:asvthe ofder of.context increases the difference in performance between
6-PAD and 4-PAD decreases although it still remaihs‘ important, noting that
6—PAb with bigrams results in a lower P(e) than 4-PAD with trigrams. 1In

addition it is much easier to implement 6~PAD with bigrams because the storage

saving in going from trigrams to bigrams is much greater than the extra storage
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needed by the slightly longer feature vectors. These results illustrate the
importance of balancing appropriately the information from the measurements
and frém context as suggested by Raviv [23]. 1In addition, Fig. 8 shows that it
is élso important to balance contextual information from the order of the context
used with that obtained from the depth of search. Although for every value of
ds P(e) is lower for trigrams than.for bigrams, for bigrams with ds=4 it
is lower than for trigrams.with ds=3. In addition, much less storage is needed
fér bigrams, and the classification computation is reduced sincesfor the
former case, 42=l6 a postefiori probabilities are searched or 8 per character,
wvhile,for the latter case, 33=27 or 9 probabilities per character are searched.

It is interesting to note that the experimental optimum value of ds
‘with respect to P(e) does not correspond with that predicted by eq. (29). This
suggests that the assuﬁptions made in subsection 2.4.9 in the derivation of (29)
are not entirely-valid. However, the assumptions are nevertheless necessary in
order to make the solution feasible. As was noted in subsection 2.4.9 the
curves of Fig. 8 are expected to depend also on the distribution of the
correct labels (characters) with respect to ds.

It is reasoﬁable to expect P(e) to decrease at an accelerating rate
for low values of ds because for very low values of ds less contextual infor-
mation is made use of. For example, out of the 17,576 theoretically possible
trigrams only 2,510 are English entries in these experiments; when ds has a
value of 2 only 23'or 8 out of the possible 17,576 are looked at. One can see
that there is a significant probability that the 8 trigrams looked at are part
of the 15,066 illegal trigrams after which aidecision is made individually
wiﬁhout the use of context. This wés observed to happen quite frequently for
ds=2.aﬁd less frequently for ds=3. 1In spite of the frequent disregard for
context when ds=2, P(e¢) for bigrams was still slightly lower than that

resulting from the use of monograms,
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It would seem from this data that the bulk of the correct labels occurs
for ds < 4. This would help to explain the slight increase in P(e) . for
ds > 4. 1If the greater part of the correct labels occursfor ds < 4, increasing
ds further, would only increase the chance of finding an erroneous bigram or
trigram with a higher a posteriori probability than the correct one, and thus

increase P(g).

5.2° Suggestions for Further Research

Since the requirement that people avoid printing broken characters
may not be a desirable constraint, in view of the fact that some printers [12]
found difficulty in overcoming this constraint, two ways of handling un-
constrained data are suggested. One corrective measure is to close small breaks
by blackening all white squares adjacent to a black square and repeating this
procedure a certain number of times. However, if the break is more than a few
ﬁnits widevthe cﬁaracter can be distorted considerably by repeating the above
prqcedure >enough times to ciose the break. A second alternative without this
disédvantage is to move a bar of length b along the outside contour, keeping
one énd of the bar against the contour and maintaining an angle of 90° Between
the bar and the line tangenf to the contour at the bar-contour point of contact.
Whenever the other end of the bar encounters black during the contour trace,
the line defined by that portion of the bar between the two black pointé is
made part of the character, as in Fig. 10. The bar must be long enough to
close most breaks but short enough that intentional breaks that differentiate
pattern classes remain. |

More experiments with aﬁdeithout the above methods should be per-
formed .on large unconstrained data sets.

One source of feature vector variability within pattern classes in the

present scheme is the mode of searching for the character. In many characters
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Fig. 10 Illustratlng a technique for closing small breaks in broken
characters.

the leftmost black part of the character may occur at the top or the bottom of
the character in various samples of the same character, especially if printers
slant in different ways. This causes the vertical search mode to encounter the
character sometimes at the upper—leftmost‘part and sometimes at the lower-
leftmost part, resulting in different feature vectors. In most of these
cases, a diagonal search mode at 135 degrees would encounter the lower-leftmost
part of a character only.

As can be seen in Fig. 6, Qith English a priori probabilities U per-
formed better on TS-6-PAD than T, even though U is a simpler classifier énd uses

less storage. Similar methods to algorithm G for bigrams and trigrams should
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be tested using U to compare with G's results.

5.3 Summary of Conclusions

Although final conclusions should wait for experiments on several
large data sets, it abpears that the parametric classifiers T, U and V operating
on binary vectors obtained from contours of characters quantized as in Fig. 3
yield recognition accuracies much better than those obtainable u&ing the
optimum nonparametric classifier S, and that if 6-PAD is used reasonably good
reéognition accuracies can be achieved, particularly if English a priori
probabilities of the characters are incorporated. The results also suggest
that recognition schemes which use additional simple class dependent feature.
extraction to differentiate between commonly confused characters may perform
significantly better than those which use only one feature extraction»method
common to all pattern classes. ' In addition, it appears that algorithm G
using bigram and trigram statistics, with a depth of search value equal to &4,
can significantly improve the recognition accuracy. These conclusions support
thése of Bakis et al. [5] that curve-following featurés extfact the significant
information frém hanéprinting, and those of Raviv [23] and Duda and Hart [2¢]
that using the measurements of neighbouring characters together with_contex—

tual constraints greatly improves the recognition accuracy.
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