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ABSTRACT

This thesis examines‘methods“for predicting queue length
of single server queues in order ﬁo evaluate how the practi—
tioner may achieve greatest accuracy. Because accuracy is
dependent on the correct:estimation of the rate parameters
of the popuiation distributions and the choice of the appro-
priate method of prediction, the effects of errors 'in both of
these are examined. | |

'A computer simulatiqn'model.writteh'in GPSS/360 ‘is
used to create a real worldAfrom which daﬁa ie drawn and where

!
long run performance represents the correct solution. For four

values of rhe nine simulations are run, each with a unique
combination of inter-arrival and service time distributions.
In each of the 36 runs 10,000 arrivals afe geherated'from which
~two samples of size‘36 and 100 are taken and from whieh the
generated queue statistics form the s{;andard° A statisticel
analysis is used to detect samples takeﬁ from exponential
diStfibutiohs. :The lack of a suitable test for small samples
led to the development of a test based on the'cerrelation»
coefficient of the sample times and pre-computed standard data.
Estimates for gqueue length ere found with classical
. queueing formulae and solgtion methods suggested by Marshall
These predietions'areAdone_without priorlknowledge of.rate
paramete:s and queue type which are estimated from the samples.
-Then the estimated solutions are compared to the real world

solution derived from the simulation.

Estimation error for each method is measured and -~
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conclusions are drawn as to their éccuracy in predicting
queue length, It is found that accurate queué length
estimation is possible ﬁsing methods that can be applied
" without a great deal of prior mathematical knowledge. The
cldssical formulae are accurate~only when applied to gqueues
with exponential inter—arrivél times and are found to over-
estimaté when applied to othef queue types. The Increasing
Failure Rate (IFR) bdunds on qﬁeue length provide a satisfac-

.tory method of estimation for the general class of gueues.

.
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NOTATION

time between n~th and (n+l)=th arrival, T~ A(t),

H
i

| CE[T,] = 1/
Sp, = service time of n-th customer, S,~ G(t), E[S,] = 1/u
U, = S, = Ty, U, ~ K(t)
p = A/u
- (n) . _
Y f.'= n-th moment about origin of random variable with

distribution F,.

variance of a random variable with distribution F

_Q%

2

2 ’ : :
%/(vf)z, where-cf is the coefficient of variation

FC(t) = 1 - F(t) for any distribution F



CHAPTER I

INTRODUCTION

" Statement of Contents

This thesis will present én analysis of single server
queues to establish how the practitioner might best solve-
his gueueing problems,

The.approéch-is to examine raw data of inter-arrival
- and servicé times sampled froﬁ a simulated real world, to
'calculaté queue statistics, and to compare these to ﬁhe loﬁg
run performance of the simulation model. This simulation
model, in effect, provides the real world solution_with'which
' we can compare our calcdlated predictions of gqueue length and
waiting timé;

Some statistical procedures inténded to aid the practi-
tioner in arrivihé at his assumption of queue type will be

examined for their applicability, ease of use and accuracy.

- Purpose of Study

Queueing theory has developed considerably‘over’the
past twenty years through the>use of sobhisticated mathematics.
Perhaps the most widely appiied portion of gqueueing theory is
derived_from the classicél.M/M/l situétion where the Pdisson
assumption makes the derivation of formulae for queue length

‘and waiting times comparatively simple., The solution of



non=- Poisson queues is considerably mbre:difficuit and has
- not produced such easily calculable formulee. .Indeed'the'
solution to general single-server queues'is not expressed
solely in terms of the momehts of the arrival and service
distribution but require moments of the idle time distribu-
tion which are hard to find.l

Many queueing situations found in industry (the classic
being the supermarket check-out problem) are assumed to be of
the M/M/. type since the Poisson process is found so offen in
nature and the type of facility being analyzed often displays
the characteristics on which the Poisson is founded. ‘This
assumptioh may be false. However with the added convenienee
in applying the Poisson queueing formulae and in the absence
of a similarly convenient general set of formulae, the Poisson
assumption is made almost indiscfiminaﬁelyo This is certainly
common in business where the potential benefits associated |
With greater accuracy are often not considered worth the added
cost of analysisa'

‘For these reasons it is our intentien ﬁo find‘the level
of mathematicél rigour required to arrive at'soiutions to
various Roisson and non-Poisson gqueues which are sufficiently
accurate for practlcal purposes, and to measure the amount’ of

error one can expect from a wrong assumption about queue type.

Ix,T. Marshall Some Inequalities for Slngle Service
Queues, Berkeley, Operatlons Research Center, Unlver51Ey of
California, 1966, p. 6.
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The essumptions considered here-ere that a particular distriwl
bution of inter—arrival or service times is, or is not dis-
tributed exponientially. Thus a single service queue may be
‘any of the following four types:2 1) M/M/1
. | | 2) M/G/1

3)'G/M/l

4 6/6/1
A sub-cla551f1catlon of the general [G] dlstrlbutlon will be
'  introduced later in the analysis to ‘differentiate between
those having increasiﬁg faiiere rate and decreesing failure 

i

rate, These latter terms are_defined in Appendix I.
l'Recogn'izing that a large part of the solution lies in
identifying.the inter-arrival and service time distributions,
| we shall examine methods which differentiate between expo-

nential and non—exponentlal dlstrlbutlons.

The Standard and Data Source

One of  the greatest problems‘in analysing dueues
empirieally is to establish a suitable standard‘against which_
to ﬁeaéﬁre the performance of the hypothesized solution,

| In this study use of a computervsimulaﬁion written in
'GPSS/360 is made as a real world from which data can be drawn
and where lohg run:perforﬁahce'represents tﬁe cerrect | |

- solution. Single channel queues with traffic intensities (p)

2 M denotes exponentlallty dlstrlbuted times and G
denotes all other distributions of times,
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of .6, .7,.8 andv,9 were simﬁlatedq For each value of p nine
simulations were run, each with a unigque combination of
inter-arrival and service time distributions. The basic dis-
tributions from which eacﬁ pair was selected are shown in
Figure 1. In each of the thirty-six runs, 10,000 arrivals
generated'qdeue statistics to form the standard. Two samples,
of 36 and 100 sequential méasures af inﬁeraarrival and servicev
times, were taken.at arbitrarily chosen points from each run;
the two sample sizes were used to reveal how much effect
sample size actually had onbthe accuracy of thé solution.

~The entire simulation was run independently of the
‘ wrlter and only the two samples from each run were reluased
for analysis. The generating distributions were not identi-
fied until all calculations were done and each.saﬁple was
approached with no prior information whatsoevef. Since
samples of limited size are thé only soﬁrce of knowledge of
the situation a user faces; the queueihg analysis as present-
ed in this thesis is worked from the samples alone. This pro-
cedure is to duplicate the industrial user's p051tlon as far
'as is p0551b1e.

The solution of queue length calculatea by Qariaus
methods is later compared to £he simﬁlated:stahdard; Conclu-
sions are then draﬁn as to thefeffectiveness of queue type
identification; the accuracy of.éach'method and the superior=-

ity of one method over another,
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Methods of Analysis

'Each sample run is anaiyzeé in two stages, First,
some statistical tests are used to identify the type of
distribution from which,thé sample times were drawn, As an
- analyst in business would generally need a readily usable
proceaure; the tests considered are relatively simple to
 calculate and are élementary tb‘apply. It is assumed an
analyst would be limited to a desk calculator and slidevrulé
for his calculations. o |

The second step is analysis dquueue Opefafing
'charaCteristics.by several methods of calculation, Solutions
for queue length are found fromvthe classical M/M/lyqueueihg
formulae and from equatiohs for G/G/i queues giveniby Marshallf
Values for upper and lower bouﬁds on queue length for both_
M/M/1 and G/G/l based solutions are 3150.worked out,
Calculations for both M/M/l and G/G/1 are ﬁade for all samples.
This will permit. us to compare computed queue lengths for |
each sample under correct and incorrect assumptions of

queué type; We can then derive the amountvof error fhat can
be expected to result from analysis basedAon-efrOneous

identification of queue type.

31bid., p.4.



CHAPTER II
STATISTICAL ANALYSIS OF DATA

The comparative ease with which one can find solutioﬁs
for queues with exponentiai inter-arrival times from the
M/M/l or the Pollaczek - Khintchine formulae makes analysis of
this distribution imperative, When a successful analysis is
-possible it can be extended to the service time distribution
with very little additional effort and significant benefits
‘in speed of computation. One is not so much concerned with
actually identifying a distribution or classifying it as one
of the known fheoretical distributions, as with ascertaining

if/it comes from the exponentialAdr not.,

Considerations in Choosing the Test

Standard tests sﬁch as the chi-squared and/Kolmogorov-
.Smifnov tests, while very popular, have certain limitations,
The Kolmogorov - Smirnov is very powerful with an extensive
body of data but will give errors with less than one hundred
observations,4 There ére not many praétical situations where
it is possible to take as many as 100 samples in steady state,
In féct; in these experiménts the two samples tested are size

thirty-five and one hundred, It is the smaller one which is

_ 4w, Feller, "On the Kolmogorov - Smirnov Limit Theorems
for Empirical Distribution", Annals of Math, Stat,, 19,
pp. 177-189, cited in IBM Systeém/360 Scientific subroutine
Package, Version III, White Plains, N.,Y,, IBM Corporation,
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béing teSted, being of_practical size, and the larger is
used mainly as a control, The Kolmogofov - Smirnov teét is
then of little value exéept for'larger bodiés of data. It
may be noted here as well'that Lilliefors observes that
critical values detérmined in thié test are not correct when
one ér more paraméters are estiméted froﬁ the sample,? The
computation of this test ié a difficult and lengﬁhlj proée?'
dure, réndering it yet aqaih unsuitable for our purposes.

The chi-squaréd test for goodness: of fit is perhéps
the c1aséic:test for the fit of distributions, Its applica=-
tion too has limitations when the sample is small, The
shortécomingé encountered with this test are discussed in

greater detail later in this chapter,

" Tests Based on Life Testing

Epstein6 wrote a paper concerned with statistical
techniques in life testing of exponentials. These are tests
of the asSumption that any given sample data come from an

exponentlal dlstrlbutlon. Two tests are examined in this

5H.W. Lilliefors, "On the Kolmogrov - Smirnov Test
‘for Normality with Mean and Variance Unknown", J.A.S.A. 62,
(1967) pp.399-402, cited in IBM System/360, Scientific Sub-
routine Package, Ver51on III, White Plains, N.Y, IBM
Corporatlon. ‘
6-B.-Epstein, Test for the Validity of the Assumption
that the underlying Distribution of Life 1s Exponential,
Washington, D.C,, U.5. Dept. of Commerce, Offlce of
Technical Services, 1959 .
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present thesis; one graphical test which is of some value,

and one analytical which is based on a false assumption. For

-the sake of continuity the latter is presented first.

An Analytic Exponential Test

h This test uses a basic property of the Poisson process
Whiqh is;7 |
"s0.1f one observes a Poisson process for a fixed
'length of time T and if r events occur in [O,T} at

€ T, then these times

ctimes, t € t; € ty... €t

(after‘being subjected. to a random permutation) can
be considered as r independent observations of a

random variable uniformly distributed over [0,T]".

. Thus for r even moderately large (assumed to be larger
o : r _ : o
than 10) _thi~is approximately normally distributed with
i A
rT e r7?
— and variance 5
standardising 2 |
‘ i=

~mean by the Central Limit Theorem. By

lti , the resultant statistic should be

easily found in a table of areas ﬁndér the normal curve. At

the same time confidence limits around the mean can easily be
computed ; This is an attractive test for our éurpoée because
- of the simple computation and speed in providing a test of the

hypothesis.

7 1bid., p. 7.
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This test however is invalid. Consider the following

example;

~Let £t =t =,..=t =.5.be successive interval times
1 2 20 ’

ffdm a stochastic process, Let T = 10. To test that the
process is ekponential, the 20 times must be tested to see if

they are uniformly distributed on [0,T], The expectation of
r

oty is rT = (20)(10) = 100, The standard deviation is

o i=l 2 2.

<

C/TTE = /38(r) = 12.9
12 vVi2

The 95% confidence acceptance interval for the sample

.is 100 * (1,96) (12,9) = 74,7, 125,3. The observed sum

Lty = 100
. so, clearly, the_hfpothesié that the tj are exponehtial is.
accepted. But these data came from the degeﬁerate distribu-
tion and thus the test is invalidated, |
| Thé error lies in the standardization of the random
' ~~wvariabie._.The standérdization of a random variable X with a -
finiie méan and variance is defined (denoted by X*),

X* = x = E(x)

X* is approximatelymnormally aistfibuted with mean zero and

»“vafiance bne; However any_ranaom variable must be:standard-

 m;izéd with itswownwmean.andvvariance. ;When exponential daﬁa
is tested the standardiied variable is N(O;l). With any
other data the distribution of the random variable is not

- “determined, “In the above example merely juggling T will
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cause the test to reject or accept arbitrarily.

A Graphical Exponential Test

In a well known procedure using.probability paper,

data are pldtted to see ifvthey form a straight liné° A
étraight‘line indicates that the data are distributed with
the same function as was used to'coﬁstruct the paper, Thié
o proéedufe is commonly used with normally distributed data
and normal probability graéh paper. The usual proceaure
plots;the observations on the liﬁear scale and cumulative
proportions on the non—linear,séale. For small'samples one.
may plot the individual obserﬁations against i for
1=1, 2, eoeos ng8

o Epstein showslfhat a similar plotting procedure can
be used for testing exponentials., He suggests that the
orderéd times statistics tl;<t2;<t3.o.<t be plotted

n
against the quantity,

y = 1n 1 )} where i =1, 2, c.0, N, (1)
-F(t; :
where F(t;) = i and where y 1s the ordinate,
' n +

If the exponential assumption is correct, the plotted points
will be fitted well by a straight line passiﬁg through the

origin with slope equal to the reciprocal mean of the t;’s,

8B.E, Cooper, Statistics for Experimentalists,
Braunschweig, Germany, 1969, p. 82. :
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but as Cooper9 points but:

"One criticism of this procedure is that no

Awfééﬁal test of‘straightness exists at present”.

| The expression (1) 1s developed from the cumulative
density funcﬁion for thé exponential F(t) giveh by

P (t)

i

o t<o0.
' =it '
l - e - if t 2 Oo

1n n +.l
Cin + - 1

 and it reduces to,

4

for ease of computation., _
| The data may'bé plotted in two ways. Plain graph
tpaper'may be used to'plot the natural logarithms of the

. Taking

ordinate with the ordered times Cie too eees ti

natural logarithms can be avoided by plotting n+ 1
v : ' n+ 1 - 1

- with the times on semi;log graph paper. This lattéf proce-
: dﬁfe is recommended for the normal user in busihess since it
considerably reduces ﬁhe time required to arrive at a satis-
factory answer and avoids the conversion of data where
mistakes cAn occur; Figure 2 shows both exponenﬁial data and
uniformly distributed data piotted on'semi-logvpaper.

| It must be further.emphasized that this prbcedure is not
a test as such; but a method of_prOViding an indication that
£he exponential assumption may be justified., |

'We now extend thiS“graphical proéedure byAapplying some

analytical techniques and tests to develop a measure of how

gIbid.' pg 83.
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well the sample data is approxiﬁaﬁed by the exponential
| distribution., _ v

.~ The thecoretical straight line fitted to the plottéd
points of an exponential has slope equal to the exponential
‘parameter and passes through the origin., There are a number
of énalytical procedures available for.describing plotted
‘data and fitted straight lines. Those considered ares
| a, correlation coefficient

b. a regression line y = a + bx
¢, a t-test for the ordinate

a) Correlation Coefficiént

This is a measure of scatter indicating the degree of
relationship bet%een one variable and another, It is compar-
ativély easy to calculate with the aid of an adding machine
or mechanical desk calculator and will provide the degree of
';elaﬁionship between sample times and the statistié
Ay =’ln{ﬁ_%;§_%;£}; The user would have pre-computed y's with
the sum and sum of'squares for several sample sizes. After a
;,sample of a.specific size has been gathered, computation of
a correlation coefficient would produce a statistic}that the
‘analyst could compare to some pre—computed.standérd confi-
dence intervals., The analysis of the sample generated for
this thesis produced a marked diffefence in correlation
coefficient for exponential and non-exponential distributions,
indicating that this may be a valid test., Results of appli-

cation are presented in a later section of this chapter.
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b) A Regression line y = a + bx

A more preciée result is obtained by fitting a regres-~
sion line to the data. Here the line should be y = 0 + bx
where b is equal to one.ovér the mean of the distribution.

We are limited in the analysis of the regression by our lack
of knowledge of population parameters. We db know however
that the population alpha is zero and a t-test can be used,
The b coefficient cannot be tested as the population mean is
unknown. A test for linearity is not'pbssible since two or

more y values do not occur for each t ; there is a one to one

i
correspondence, ‘

c) A t-test for the Ordinate

If we assume the underlying process to be exponential,
the population ordinate will be Zero,-'With the sample stan-
‘dard error of a, a t-test is constructed such that if | ]

exceeds the critical value td/Z, n - 2 shown in tables, we

reject the null hypothesis that the casual distribution was
' exponential, ‘The following test statistic is computed and
the result of application to the sample data'foliow in a

later section of this chapter,
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Chi-Squared Test for Goodness of fit

The X* test for goodness of fit is probably the best
known test. It to hasvlimitations related to the amount of
data available. A rule of thumb found in many references
requires the number of expected observatidns in any one
class to be at leést 5 befofe tﬁe chi=-square test can be
considered accurate.b Parl.gives additioﬁal limitations on

sample sizeo10

He suggests that the test gives reasonably
good results in the case of larger sampless

coo"defined for present purposes as donsisting'

of at least 100 items., Samples of less than 50

items are generally con51dered unreliable in -

many applications”

Cochran suggests that the restriction on the expected

. number in each class can be relaxed to at least one.ll He

- also suggests that the combining-of classes weakens thev
sensiti?ity of thé.chi«quare test., i

| .The chi-square is.used in this work to fest the
hypothesis that the éample data came from the Poisson,
Claéses W¢re combined to ensure at least one expected obser-
‘vation in-each cell, Since the mean is used in generating

- the Poisson is the sample mean, the number of degrees of

10 ‘
‘Boris Parl Basic StatlSthS, New York, Doubleday
and Company Inc, 1967, pP.199,

] .llGeorgeAW.-Snedecor and William G, Cochran,
Statistical Methods, Iowa, Iowa State University Press, 1967,

p|2350 '
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freedom must be reduced by this one estimated parametergl2

The results of these testsfollow,

.....

Each of the procedures or tests described in the
previous section was applied.to thevsample distributions to
find éut'ﬁow accurately each test identified those distribu-
fions which were genérated from the exponential population
ﬁsed in the simulation model., From these results we deduce
the relative worth of each test and find that only onép the
"correlationvcoefficient test", provides consistent results,
~ In addition the-coefficient of variation; while not a formal
test statistic by‘itself, is described because it helps to
detect those distributions that come from the exponential
population. A procedure for tésting sample ‘data useful to
bthe practitioner,aé well>as pre-computed data will‘be fdund

in Appendix II,

a) Correlation Coefficient

We havé»previousiy discussed the correlation coeffi-‘
cient as almeasure of scatter; From the coﬁputed statistics
and the times ti the correlation coefficient was computed.
The resulting coefficients for each exponential and non-

exponential distribution are collected in Table I.

124.f, = (No. of classes) = (Nb. of estimated
parameters) - 1, ' '



TABLE I
Frequency Distribution of Correlation Coefficient

for Exponential and General Sample Distribution

Exponential . General

| . sample size 36 100 36 100

Correlation
Coefficient

.820-,829 |
.830-,839 | | 2
.840-,849 | -
.850-,859
.860~-,869
.870~,879
+880-,,889 o
.890-,899 - - 1
.900-,909
.910-,919
2920-,929
.930-,939
.940~,949
<950~,959
.960~,969
2970-,979 -
.980-,989
.990-.999 . ... .

' [y
VIR O O

HEWWROHO & &0 N

S VowWwNOrOH
TNV N R

Mean ~ .9797  .9883 . ..8906 .8818
St. Dev. .0166  .0078.  .0272 .0196

95% Confidence 11,0000 1.0000 «9440 29202
%imits y «9472 .3729 09372 .8434

-
I
i

81
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An incfease in sample size considérably reduces the stan-
dard error of the correlation coefficient and may provide
;a significant test with a yet to be determined relationship
' between them, This needs to be tested with additional
distributions and with differing sample sizes.,

It would appear that the significant mark in the
current data is .93, a coefficient greater than this figure
indicating exponentiality. Even with a sample size of 36
the type 1 and II errors shown in Table II are not sigﬁifiw
cant in this case and may prove not to be so in geneiﬂal°
‘The 1096 standard deviation confidence limits around the
‘mean correlaﬁion coefficient'are‘shown° It should be noted
that a significaﬁt difference exists between the lower limit
for the nonéexpohentialo This gives further encouragement
to the hypqthesis that the correlation coefficient is .a
iuseful test statiétic fbr.detecting exponential distributions
"and warrants further investigation, |
A supplementary indicator of exponentiality is found

in the coefficient of variation, This was used and tested in

- much the same manner as the correlation coefficient and is

'presentedihére as an additional statistic to be used with the
former recognizing that uéing'it alone it can give very mis-
leading results; This quantity is_a rélative measure of |
dispersion where the standard deviation is expressed as .a
percentage of the mean;

Using the same procedﬁre as before the coefficient of

variation for each sample size are grouped in distributions,



© TABLE II
Type 1 and II Errors from Testing for Exponentials
with Correlation Coefficient

‘Null Hypothesis Hég Distribution is Exponential if c.c. > 930

Type 1 Error Type II Error

Sample size No,/24* % No,./48% %
36 1 4.2 | 2 4.2

100 0 0 o 0

*The difference between these quantities is due to the greater number
of combinations of queue type with general distributions

0z
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These are shown in Table III, Again the exponential can be

differentiated, The theoreticél coefficient of variation for

an exponential distribution is 1, and all coefficienté found

for the sémple non-exponential distributions were less thén'
.8 « It is suggested that a confidence band of 1. : o3

couid be used to accept random data as being from an exponen-
tial, The crucial point to be remembered here is that while

a theoretical exponential distribution has a coefficient of

v = Sed./mean): other non-exponen-

-variation of'one, (from c
' tial distribution can also have ' a coefficient of one., Thus
‘only when the correlation coefficient is close to 1.0 can the
coefficient éf variation be validly used to confirm exponen-
tiality. | |

. This coefficient is used however, as a formal test for
the IFR condition in a generél distﬁibution as.explainedvin
 Appéndix I, ThisAis noﬁ to be confused with the use being
'made of this quantity above,

The Type I and Type iI‘errors resulting from applying

the coefficient to fhe sample data is shown in Table 1V,
It is concluded that inferences should be drawn ffom this

table cautiously and the coefficient should be applied with .

the same degree of caution for the reasons mentioned above.



TABLE III

Frequency Distribution of Coefficient of Variation

for Exponential and General Sample Distributions

Exponential General
Sample size - 36 100 36 100
Coefficient
Variation
o1~ 2199 2
02= ,299 5 6
3= ,399 1 14 12
o4~ ,499 0 11 13
«5= 599 0 : 013 . 16
6~ ,699 4 2 -3 1
o 7= 4799 3. 3
«8- ,899 5 3
0 9= ,999 3 2
-1,0-1,099 -3 6
1.,1-1.199 : 1 5
1.2-1,.299 3 2
1.3-1,399 1 0
104"]-:499 0
1.5-1,599 -1
Mean 9042 1,0080 04297 «4404
St Dev, o 02267 02115 »1203 »1064
95% Confidence 1.3492 1.4158 +6657 . 6464
»5858 «1937 c2344

~Limits - 4492

(44



TABLE IV
Type 1 and Type II Errors for Testing for Exponentials
- with Coefficient of Variation

Null Hypothesis Ho: Distribution is Exponential if Cv? € [.7, 1.3]

Type 1 Error .~ Type II Error

~Sample size . No,/24 : -3 No./48 %
3 s 21.0 | 0 0

100 5 21,0 0 0

14
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b) A Regression line y=atbx

No direct use was made of this regression line except
in connection with the t-test fof.the ordinate which.is
disgﬁssed in the next s#b-section. Testsiof linearity could
not be performed for reasons mentioned.previously and the
iack of knowledge of the population mean prevented an

analysis of variance and F=-tests.

T 4

c) t-Test

This tést provided the least interesting'rééulﬁf and
no cgnclusions could be drawn except that the test is
unsatisfactory., The results are summarized in Table Vv and
are inconclusive since both types I and II errors were

plentiful,

d) Chi-Squared Test

This test did not'produce_satisfactory results either,
It was possiblé to manipulate the results at will when )
cbnstructigg a.PoisSon distribution.. |

Arrival‘rate distributions were conéttudted from the
sample times using a time unit chosen fo:vitsconveniénce.
Initially the time unit.was chosen to give_thé same number of
units as evehts,‘théfeby.making fhe arrival rate equal to
1,0, If this was always done; a user would only need one
set of figures for the theoretical distribution thus making

his job of testing easier. This test produced such inaccu-



TABLE V
, Type I and II Errors from t-Test
- that Ordinate of Fitted Reg:éssion_line

Equals Zero¥*

. Type I Error : _ Type II Error

Sample size No, /24 | .% No./48 , %
36 14  s58.0 22 46.0
100 227 92,0 4 . 8.4

* at a ,01 significance level
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rate resultsihowever that.a search was made for a better time
unit, No satisfactory time unit was found as can be seen from

" Table VI which shows the results from chi-square tests on the
'sample data for eight aifferent time unit values. The eight
values in the left-haﬁd column show the number of arrivals
per-time uhit; the actual time unit being a function of the
total elapsed time of inter-arri?al times err thé sample and :
" the number of arrivals. As in the t-test these results are

inconclusive,
Summary

| There does not appear to be a simple test for expo-=
nential distributions that is satisfactory under a variety of
conditions especially small sample sizes, Fof guidance the
vgraphicalvtest is useful, The test based on the correlation
coefficient has promise but needs moré extensive examination
and trial with different sample sizes and a larger selection
of distributions. It would be of interest to try some non-
exbonéntial distributions cdnstructed to have a coefficient
of'vériation close to one. |
"The test for the IFR ana DFR properties déscribed in
Appéndix I; qsing the coéfficient_of.variation, appears to be
the only reliable test at present, - The significance of IFR’
and DFR properties wiil become apparent in Chapter IV and
therefo:e desetve reference here due to that.importance.
A procedure for testing a distributién, eaéily used

by a non-technical person, is shown in Appendik IX. This is



TABLE VI

Type:l-and II Errors from Chi~Square'Tést*

~of Rate Distributionsof Sample Data

Sample size

36 100
Ave rate per : S
time unit*#* Type 1/24 Type II/24 Type 1/48 Type II/48
»05 0 48 0. 48
10 0 48 0 48
«30 5 33 13 6
«50 11 6 17 0
75 -9 10 . 19 0
1,00 13 1 18 0
1.25 16 2 19 1
1,50 -~ . 14 . 20 0

*at ,01% level of Signifiéance

**see text for explanation of time unit.

Le
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the "correlation coefficient testﬁ and uses pre=computed
data points for’c_:omparisono The method of caiculation,
with formulae, shows a potential user the steps required
' to arrive at conclusive evidence based on this test as to

the nature of the distribution,



CHAPTER III
METHODS FOR THE ANALYSIS OF‘ QUEUES

In this chapter we examine the solution methods used

to find queue length and waiting times.,

Assumptions

A broad and not completely justifiable assumption used
through all the queue analysis is that of steady state. This
permits the use of equilibrium solutions. However, the major-
ity of situations faced by the small business operator may not
be steady sﬁate° An example is a spafe parts counter where
the pace of business increaées in the'early morning then
decreases over the lunch period and may peak again in the

‘ afternoon; These problems can be overcome by isoiéting each
‘period with changed arrival patterns and_perforhing separate

analyses,  However, this does not fully account for transient

__behaviour.

jM/M/l Queue

Expected system length, L = ipp ' (1)
vVar (L) = P ' (2)

(I-p) %
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i
(o]

Expected gqueue length, Lg (3)

p? + p3 = p"

(L - p)?

Var (Lg) (4)

" M/G/1 Queue

These are the Polléczek - Khintchine formulae:

2.2 2 ‘
AOg * p° (5)
2(1 =p )

Expected system length, L o +

2(? - p)

i

Expected queue length, Lg

G/G/l, G/M/1 Queues

The solution of queue length and waiting time for the
general case is complex and the exact formulae depend on the
moments of the idle time distribution as shown by Marshall,}3

The expected wait in queue is found to bes

Wq = E (U?) ; E(I2)
. =2E(U) 2E(I)

(2)

_ A2(02 + 02) + (1-p)2 _' v

2)(1 = o) - 2wy ‘7)

where Un = Sn - Tn, The idle time distribution is

13Marshall, p. 4.
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found from the fundamental identity,

W max [0, Wn + un]

n+l
But letting X, = - min [0, Wn + Un]

From the above where Xn > 0 Xn =1
The variance of the expected wait in queue is shown by

'Marshall to be

]

. E(U) ® [?(UZ)]Z E(I*) (E(Iz)]2
o + -1

wg -3’ \2E(U)

83 = 9B+ 3(0uf? - vi?)

= +
3(1 - p)
. (AZ(G§ +02) + (1= 0)%)" -0l (8)
23 (1 = p) J

o g2 . = yl3) u(2))2
where o p = o - (2%_)] _

| Yh 2Vp
From successive inter-arrival and service times (Tn
" and Sn) one can compute Xn and the moments of the idle time
_ distribution, While a .tedious task by hand, they can be
derived easily on a computer; such was our case., It is doubt-
ful that the average user under consideration would be a
computer or compute these quaﬁtities by hand. To obviate this

- problem, Marshall's bounds on expected wait for the G/G/1 queue

.are shown, -

G/G/1 Bounds

a) Upper bound




32

. 2 2 - ' .
wg = (%t 9 | | | (9)

2(1 - p)

_By multiplying both numerator and denominator by A

this expression becomes -

Wq = o3 + o2
2(1/x = 1/u)

which is Kingman's heavy traffidiépproximation. The latter
states:

"For this approx1matloh to be valid, the denomlnator
must be small compared to the square root of the numerator .14

This bound is expected to be hlgh for rho values of 09.
or léss, alﬁhough it will be accurate as an équality for rho
vgreater than .9 . |

This bound is particularly useful because it only

depends on the first two moments of the 1nter—arr1val and

‘service time distribution,

'b)>Lower bound

Theblqwer bouhd‘ L<E(W) (Wq) is found'as the solution of
X = ff#I K?(u)du; where Un = (Sn - Tn) - K(u) . | (10)
This bound is shown by Marshall .to be unique fdr.rho less than
1, | n
' The computation of K®(u) requires £he coanlutioh‘of

Sn and Tn.

l43,F.c. Kingman, "The Heavy Traffic Approximation
in the Theory of Queues", Proceedings of the Symposium on
Conjestion Theory, ed Walter L, Smith and william J. Wilkinson,
Chapel Hill, The University of North Carolina Press, 1965,
- p. 137- 157
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As an alternative to computing the convolution of

(Sn = Tn) the distribution of K(ﬁ) is found from each sample

" using empirical density functions.

Let_T~ FT(x) and S~ Fs(x).

If
-0 X < Xy
FT(X) = l/T xl < X < XZ
, 1.0 xT< X
then ~ R o _
F = : ; it
T x) % 2151 U(x; = X) where U is the unit step fcn.,
“Then * 1. t =5x3 |
- i
fx(s) = .‘E Zi=l e
The Laplace transform of U = S, - T,
is E * £
| , fs_KS) o £ (=s)
which equals " n o n -s(T4)
=1 5 es®h . % e )
ni=1 j=1
v P
- %2 5 aS(si) - s(Tj)
i,i=1
1% _s(uk) )
= Hz kE e‘s k = 0' ‘1' o & o 'n2
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We now solve for x the lower bound in

[e+]

x = 7 (L= Fa(u) du

which is splved computationally’

X
X = 1
. m=nz Um
where
, Un = 81 - T; and Up2= S, - Tj
Thus the bound can be found very easily from the sample
- data,

One great asset in thié lower bound is the self-
genération of data points for'the-KC(u) distribution. For
each n arrivals n? points .are used in the distribution, thus
for a very small amount of data quite a precise distribution.

can be expected.

_IFR/G/Ll, DFR/G/l Queues

Tighter bouﬁds on the expected wait in queue can be
found fof these two.classes; (See Appendix I)A

The_bounds on IFR(DFR)/G/1 queues are generally
stronger than those mentioned previdusly; bounding the

expected number in the gueue to at most, one customer,

a) IFR/G/l Queue

ERNUEE A I
3\ q <Y

e :
AJ (p + C%) < Lq < AT
2
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where J = C; + 2202
2 9
23 (1 =p)

b) DFR/G/1 Queue

' 2
L <Wgqg <J = p+ Cg
' 2X

and - , ) Lo
AL < Lg < J = (p + C2)/2
- where J is as above and 2is the solution to the lower bounds

"‘in the G/G/1 case.,

-

Expected Wait and Queue Length

Comparative queue characteristics can easily be

éomputéd from the foilqwing relationships:

AWL5

L =
Lqrﬁ Wq

u

Lg :' L - p

Computation

All formulae shown in this section are coded for .
solution on the Computer. - This is a straight forWard task
‘exéebt for the solution to thé'lbwgr'bound eduation (10) which
was found, as‘explained, through the use‘of the,empiricél

density function,

‘ 155,p, Little, "A Proof of the Queueing Formula: L = AW",
Operations Research, Vol. 9, (1961), pp. 383-387, :




CHAPTER IV

QUEUE ANALYSIS

In this chapter we apply the theoretical methods to
the sample daté'generated from the’simﬁlation model, in order
that we may eetimate queue length. These estimators will
then be. compared to the simulated real world solution and
_their accuracy evaluated.

- There are three steps in this process. The firstvis
to establish ﬁhe accuracy'of the sample parameters as
.estimates of the population parameters., This is important
.since many of the classical queueing'calculations depend
solely on the eﬁpeeted values of the pepulation distributions,
Only the calculations for the general lower bound (lO)16 and
the moments of the idle time distribution en the other hahd;.
rely directly on the interaction between specific sequential
inter-arriva}‘and service times, as can be appreciated from

U, = S

n n - Tn‘° The importance of the first moment of the

sample distributions is emphasized‘by.its use in the
“eorrelatioh coefficient test" and ih‘the computation of rho
which, of course, subsequehtlyléffeets queue lehgth estimates,
The second step is-an evaluation of the queueing cal-
culationvmethOds themselves, Since some serlous errors do result
when estlmatlng the population dlstrlbutlon parameters only

those queue with a calculated rho w1th1n 5% of the simulated

16 Numbers in brackets in thlS sectlon refer to'
- equation numbers in Chapter ITI, :
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rho will be used in this étepo " This will give us a measure
of the ability of the various methods chosen for éstimating
queue length to perform under the same parameters that the
simulation used, One would noﬁ expect to find disagreement
between the simulated and calculated queue length for these
samples. | o | |

The thifd étep is‘to evaluate the éverall result,
Having established some knowledge of the behaviour of the
methodsbused in gueue length estimation under optimum conditions
we will better understand the errors in estimating queue length
resﬁlting from errors in estimating distribution parameters.
Runs which have an'eStimated rhovconsiderably in error from the
'simuiated rho will be examined to fin& the best method of |

approach to minimize overall error in estimating queue length,

 Step One: Evaluation of Sampling Errors

Since the majority of queue operating charécteristics
depend on the expected inter-arrival and éervice times through
their cbﬁposition of rho;vand as the Pollaczek-=Khintchine
formulae'depend on the coefficient of variation squared as well,
it is most desireable to accurately predict these expected
values if one anticipates their successful épplicétion in queue-
ing analysis;

In some exploratory éimulation runs; té test the operation
of the experiment, largevdiscfepancies between the simuiation
parametér mean and the'sampled mean occurred; It Was thought

that this was due to the integér form of data with a low mean of
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ten, To prevent distortion or bias from‘the simulation, the
mean was raised to one thousand, in the case of inter~arrival
times, to produce integers with three significant aigits.

This new data was then read by the gueue programs with the
deéimél point displaced ﬁwo positions left, The new data then
wés.accuraté to one one hundredth of a time unit. The blame
for "bad" data could not now be laid with the simulation. We
'should note at this time that the random number genérator is
considered to be sufficiently random that results will not be
.biased by cycling of the raﬁdom number string. The IBM.staﬁv

!
dard random number generator is tested to generate two to the

|
' 17
twenty-ninth digits before repeating.

Before we look at the specific figures for_lémda, mu,
and rho; consider the effects on rho of a change in Lamda and
mu. As would be expected from the well known relationship
p = A/u ; a fractional change in lamdélwill cause a propor-
tional change in rho; Thﬁs if the arrival rate is increased
by'tenvpercént;'tﬁe traffic intensity (rho) will increése by
the same ten percent; This is not true with mu. A fractionél
-change‘in mu, denoted b; will cause a change in rho eqﬁal to
--B—g—r . This means that a Zb% increase in the service
. rate will improve.the trafficAintensity by only 16.7%,. - The
combined effect of changeAin lémdé and mu, denoted by a and'b

- respectively, on rho can be expressed as c¢=2 - b

T ! where ¢

--is the fractional change in rho,

This relationship is very pertinent to the application

_17Subroutine RANDU, IBM System/360 Scientific
Subroutine Package Version III, White Plains, N,Y,, IBM Corp.
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of queueing'results when cdnsidering the cost of altering or
service rates, It is mentioned here solely to aid the reader
in understanding how errors in the estimation of pepuiation
.parameters can effect the subseguent queue analysise
Essentially errors in mu will have less effect on rho'although
the‘diminishing effect is only obvious‘when errors in mu are
"larger than approximately’ten percent,
| .An additional problem concerns the direction of change

in rho caused by the combined errors in lamda and mu, The

following Figure 3 shows the directional change in lamda and mu,

Sign of a Sign of b Change in Condition
. . ., rho
+ . + o+ . a>b
- + -
+ - +
- - - a>b>b

Fig, 3 Effective direction of change in rho, for
changes of lamda and mu,

In the following presentation of the actual data, all
errors are shown as a percent error from the intended value
_.from the 51mulatlon model. This glves us a unlt of comparlson

that is common to all quantltles.
Since each sample of data was generated independently,
each estimated rho is considered as a separate entity and

whlle the mean percent error overall in the values of rho may
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be close to zero, this is not an indicator of accuracy as one
can see from the data presented. Tables VII and VIII show
sample values as well as_percenf érror of lamda, mu, and rho
for the two sample sizes, ,
To help the feadef.in interpreting these tables, errors
in the eétimation'of rho, shown as a percent of the intended
values of rho in the simuiation.model, are grouped by their
deviation from zero_in five percent steps ignoring the |

direction of error. Figure 4 below shows this grouping for the

two sample sizes,

$ Error % , L
Class : . Frequency by Sample Size
36 -

Boundries - 100 -
0 - 4,9 7 15
5 = 9,9 12 7

10 -14.9 8 6

15 =1%8.9 2" 3

20 -24.,9 3 2

25 -29,9 1 2

30 -34,9 2 1

35 =39,9 . R S

" Fig. 4 Distribution of Percent Error in Rho
: by Sample Size.

It should be emphasized here th;t the error in rho ié calculated
on the intended valué of rho and not the actual simulated result. -
As the lérgest deviation of the simulated rho from the intended.
value was less than one peréent in all but two cases, both of
Qhose deviatidns were within 1;5%, the intended values are
considefed sufficiently accurate, Use of the intended values

also aides in the presentation of data where, for example, .9 is
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Key to Tables VII and VIII

"Run Number
" Intended Rho

‘Estimated Rho

Percent Error in Estimating Rho
Intended Lamda
Percent Error in Estimating Lamda ;

Intended Mu

Percent Er:or‘iﬁ Estimating Mu
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TABLE VII

" Percent Error_of Rho, Lamda, and Mu (Samplé Size 36)
(5)

(3)

.130
745
. 855
.590
.978
741

.779
624
.921
346
472
.532
.060
.850 -
.62
.553
. 980
.856
700
.601

L6984
.703
.781
542
. 889
070
.34k
.505
.811
.693
.957
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.020

.765
.640
. 545
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-6.
22.
-1.
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7.
11,
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2.
5,
-3,
-11.
778
.250
.857
1833
.889
0G0
000
.167
. 889
125
571
667
222
750
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. 830
375
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.500
333
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167
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000
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20.
7.
19.
-1.
7.

000
¢0o0

000
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000 -

oo
000
goo

000

000
.0

.000
.000

.CG0
.0

000

G090
.000
.000
.GOC
L000
200
200
1. 000
.Geo
000
.000
.0C0
-7.

6.
-G,
-1.
-12.

200
oo
a0
000
000

0.
0.
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(7)
111

175

(8)
-3.
14,
.700
.800
.500
.3800
.600
.800
.600
.800
.500
.800
.500
.600

700
L00

500

.L00
. 800
400
.500
.200

.200
.000
000
.300
. 800
.800
300
.800
.200
. 800
.600
<400
.LG0
.600
.500
.600
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TABLE VIII

‘Percent Error of Rho, Lamda, and Mu (Sample Size 100)
(7)
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3)
.89

(4)
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reason .to-believe that there was.
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sufficiently accurate for .893 and the extra decimals do not

_ provide any significant information,

‘Estimates of rho from the larger samples are not signi-

ficantly more accurate than those from the smaller sample.

The notable difference lies in the larger number of estimates
with errors of five percent or less resulting from the larger
sample size. Even so, approximately half ofvthe estimates are
still greater fhan ten percent in error from the real world rho

as determined in the simulation model. This leads us to con-

.clude that no significant benefit can be gained from the

increased sample size, It also follows that the large, samples

do not improve our knowledge of the accuracy of the smaller
samples in their ability to satisfactorily estimate rho, There
does not appear to be any evidehce here to justify increasing
the sample size from 36 to 100, |

Furthering our analysis of the error in estimation of

rho, the data from the two sample sizes is grouped in Table IX

by intended rho value. We notice that the mean percent error

is small for all parameters with no significant differehces_

between the small and large sample results., This proximity to

zero for all parameters is expected since group means calcula-

“ted from both positive and negativé-values would tend toward

~zero unless an unusual bias was present at the time of selec-

tion of specific inter-arrival and service times. There is no

There-appears to be a slight difference between samples

in their respective maximum negative errors. Eight of the

twelve values in the iarger sample are smaller than the
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Sampling Errors for Lamda, Mu, and Rho

- TABLE

IX

as Percentage of Intended Simulated Values

Sample Sizes |

100

. 6,63

! 36 . :

Mean Stn - Max(+) Max (=) Mean Stn Max(+) Max(-)

Variable $ Error Dev, % Error $ Error % Error Dev, $ Error $ Error.
09 A 1.44 11.54 20,00 18,00 0,11 8.57 12.00 12.00
u _2.29 8056 9.80 ) 1.4950 On.o"v 8082 8090 20980
0 4,74 14,70 25,56 "22.89 0,46 9.45 13.33 16.22
.8 A 0,0 9.57 16,00 17.00 3,99 8.47 18.00 8,00
u -0,08 9,52 16,00 12,80 .71 8.06 16 .80 9.60
o} 695 L4.50 33,75 13,38 4,13 13.73 31.25 10,75
T )y 6,77 14.48 26,00 22,00 -0,33 8,27 14,00 12,00
' u 2435 - 7.36 15,50 7.60 1.18 13,16 21.80 21,60
P 5.58 20,89 36,71 32,57 - 0.38 17.48. 27,14 27.7%
o6 A -3.66 6.65 11,00 12,00 -0,77 5,73 10.00 8,00
U 4,13 9,16 24,80 , 5.20 4,93 7.13 16,40 9,40
p 7.20 4,00 - 15.83 =5,15 7.20 5.17 21,00

1A%



corresponding values in the sample of 36 observations. This
trend is reversed in the maximum poéitive errors where only
fi&e of the twelve are smaller. This tends to confirm the
' lack of aﬁy objective evidence of benefits in accuracy in
estimating pqpulation parameters by increasing sample size.

| Considering each of the 72 values of lamda, mu, and rho
individually, the following Figure 5 verifies that little can be
.gained from the larger sample in estimating the three para=-

meters,

Error from

100 size was -Lamdav Mu Rho
Larger 17 19 14
Same 0 1 0
Smaller 19 16 - 22

Fig, 5 Comparison of percent error
: between sample sizes.

These errors are 6f course further compounded by the different
effects that errors in lamda ahd mu have on rho, especially with
respect to sign. This is noticed most of all’iﬁ_the calcula=-
.tiohs for M/M/l queues (see Tables VII and VIII) where both
lamda and mu have greater‘errbr in‘the iarger sample size, yeﬁ
rho has less error overall, as indidated in the first run of
each sample size,

 One remembers from Chapﬁer II that the chénce of an
incorrect identification of a distribution was reduced by using

the larger sample size, It will be shown later in this’chapter



46
that identification of the shape of the distribution is
important in arriving at accurate estimates of queue length.
For this purpose alone the user is justified in taking a
larger samplee

Step 2: Evaluation of Calculation Methods With Accurately
Estimated Parameters.,

It is important to decide‘which of the methods shown
‘in the previous chapter we will consider within the grasp of
’Ithe average user, Havihg settled this, we can thén test to see
if any are satisfactory in consiétently and accurately estimat-
ing queue length, | |

We will assume tha£ the analyst is able to find a bést.
éstimate for lamda and mu from the data available. From this
the calculation of rho follows, With this the user has access
to solutions to all the classical formulae for M/M/1 ciueues°
From the variance of the service time distribution he can
compute the coefficient of variation and is subsequently able
to solve for M/G/1l queues with-the Pollaczek=Khintchine
formulae. The computation required‘for application of the
G/G/1 equation for Wq (7) is considered too complex to be used
'in everyday analysis. The procedu;e for finding the general
lower bound is of this class too. The upper G/G/l bound is.
dependent on the first two momenté of the inter-arrival and
service distributions only and is thus usable by the analyst."
The bounds on queues that meet the IFR condition (see Appendix

I and Chapter II (12)) rely on the same bounds and are also
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_//included. Only the upper bound (13) for the DFR condition

is included since the lower DFR bound is the same as the

/
/

G/G/1 lower bound.
In Step l_we saw that errors in rho are caused by.
errofs in predicting the estimated arri&al and service rates.
Beforé tﬁe true values of rho and qgueue length were revealed to
this writer, the estimation and'gaicﬁlatidn of gqueue lengths
for each of the 72.runs_had been completed using the most
‘accurate estimates of the population parameters that could be
derived from the samplé data. In this section we will evaluate
the ability of the methods described in Chapter III to con~-
sistenily find acchrate solutions. This can only be accomplished
if 6ne»has accurate ihput data, Otherwise the errors arising from
inaccurate estimation of the parameters will iﬂterfere with
the estimation of queue length, ‘
The sample runs analyzed bélow ail have a rﬁo thaﬁ
was confirmedjfo be with;n plus or minus five percent of the
true value in the parent simulatidn run} wheﬁ thevtrue values
were revealed. ThesevtwentQtwo runs of the seventy-two will
be considered the "accurate data". Because six éstimated rho
, values exceeded 1.0 they were discarded and the remaininé 44
- runs comprise the data which will be examined in Step 3.

Results from Accurate Data

The opérating characteristics of these runs are shown in
Tabie X. In most cases there is at least one method for which

the error in estimation is small while ﬁhé most consistent
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Key to Tables X, XI, and XII

Run Number

Quéue Type

Intended Rho

Average Queue Length from Simulétion
Estimated Queue Length by General Method

Percent Error in (5)

- Estimated Quéue'Length from Classical Formulae.

Percent Error in (7)

IFR Lower Bound, DFR bounds marked #

. IFR Upper Bound, DFR bounds marked #

Percent Error in the Mean of (9) and (10) compared
to (4) : .



TABLE X

Summary of Queue Statistics from Accurate Data

Sample Size 36

(1) (2 (3 (4 (5)  (8) (7) (8) (9) ~ (10) (11)
4 M/ M/1 0.6 0.82 0.82 0.61 0.85 2.92 0.69 1.38 27;23
8 M/G2/1 0.6 - 0.6k4 0.6L 1.10 0.72 13.5%k 0.38 1.01 8.753
9 M/G3/1 0.9 5.37 7.50 " 39.65 7.56 40,386 7.10 8§.03 bp.91
19 G2/G2/1 0.7 0.50 0.66- 31.60 1.63 225.80 0.38 . 0.91 30.40
20  G2/G2/1 0.6 0.28 6.22 -20.,86 0.90 224,82 0.02 0.48 -1C.43
25 C3/ M/1 0.9 5.17 6.77  31.00 7.12 37.79 6.65 7.40 35,953

34 G3/C3/1 0.8 1.86 0 1.21 ~-34.38Y 2.49 33.93 0.8 1.5 -31.02
Sample Size 100 | ‘

1 M/ M/1 0.9 7.74 8.90 15.10 7.50 ~3.02 0.32 L,63 -68.02
5 M/G2/1 0.9 L,10 7.83 91.05 7.24 76.5 0.25 1.06 -84.10
7 M/G2/1 0.7 1.07 1.12 4,10 1.29 20.50 1.17 1.99 47.06
8 M/G2/1 0.6 0.6k 0.61 -3.77 0.65 - 1.73 0.13 0.47 =52.83

11 M/G3/1 - 0.7 1.18 - 0.80 -23.79 o 1.17 -3.59 .17 1.15 -43.86

12 M/G3/1 0.6 0.67 0.58 -13.26 0.60 -10.153 0.43 1.15 17.30
13 G2/G3/1 0.9 - 3,08 2.85 -7.50 6.50 10L.o 2.54 3,16+ =-7.49
16 G2/G3/1 0.6 0.34 0.41 21.89 0.82 143.79 0.20 0.70 34,32
18 G2/G2/1 0.8 0.97 0.92 -5.25 2.71 179,30 0.62 1,18 ~7.26
20 G2/C2/1 0.6. 0.28 0.27 -4 .32 0.84 201.08 0.05 0.51 0.72
21 G2/ /1 0.9 5.48 L,58 =16.55 5.89 7.38 L,16 4,81 -18.30
26~ G3/ M/1 0.8 2.48 2.18 -12.15 2.92 17.38 2.05 2.69 -L,61"
30 G3/G2/1 0.8 1.36 0.94 -30.98 2.51 84,21 0.68 1.29 -27.64
31 G3/G2/1 0.7 0.69 0.67 -2.6 1.82 165.65 G.44 1.04 3.08

0.6 0.453 0.8 ~ 12.18 0.3k 97.42 0.27 0.84 29.39

36 C3/G3/1

G

8Y
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method overall is the G/G/1 solution. This, unfortunately,

is one methoa assumed too complex for the average user. The
‘predictions shown in Table X will be evaluated in two groups;'
those witﬁ exponehtial inter-arrivals first, followed by the
general arrival gqueues, To make reference to the various
solution methods in the following discussion easier, the
'solution method for the M/M/l.or‘M/G/l queue type will be
Vreférred to as the exponential éoldtion° Similarly the solution
method for the G/G/1 queué will be called the generai solution,
Reference to the bounds used in estimating queue length will be

made in the normal manner, i.e. the IFR bounds.

' a) 'M/M/l and M/G/1l Queues

Nine of the twenty-two sample queues are discussed here
and will be referred to by their unique run number, Runs 4 and
l:are M/M/1 and the exponential solution estimates queue length
accurately in both instances, Evén in the relatively congested
'_queue; run 1, the solution is within 3% of thé.simulated result,
This degree of accuracy is expected and helps to confirm the
satisfactory operation of the entire experiment., The generél
method estimatesgqueue iehgth with an acceptable degree of
_error althoﬁgh these solutions are less conéistent than the
exponential onés. ' |

TheAexponential solutions to.the M/G/l gueues are less
' satisfactofy although only in runs 9 and 5 are the errors

excessive, These latter runs are marked by very consistent

solutions from the general method as well, The consistency
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between the general and exponehtiai éplutions in these runs
suggests that either these methods both overestimate queue
lenéth or the simulated value is not a steady state value.
In the following evaluation of the G/G/1 queues, we will see
‘that>the exponential method considerably overestimates queue
length and it is suspected that this may be the case in these
M/G/1 queues,>>In view of this itbis hard to reconcile the
consistency of the general and ekpoﬂential eétimations in these
two runs, particularly when the error in the general eétimation
is distinctly higher than in all other génerai estimations in
the twenty-two runs. Except for runs 9 and 5 the estimation
of qdeue length for M/G/1 queues is considered acceptable by
both methods although the only method used by an analyst will
be the exponential., o

The,IFR bounds span the simulated solution in”only three
of the nine runs under discussion. In‘two cases the coefficient
of variation of the inter-arrival time distributions exceeds
1.0 and DFR bounds are computed. These substantially under-
estimate the simulated solution. The bounds that fail to
" include the simulated‘solution within their span are both high.
and low with ho apparent trend; and are not cohsidered é
| reliable estimator of queue length in thevexponential arrival
time case, I | -
| One may conclude from this first set of funs that the
“classical queueing formulae will generally be reliable in
éstimating gqueue length in those situations for which they

are intended, and will be of practical use to the average user
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in the business community. Errors in estimation may occur when
service times are not distributed exponentially, but the magni-
tude of these errors and any method of their prediction is not

knowne.

b) G/G/1 Queueé

The estimated solutions to these queueé are moré consis-
_tent with each other than in the previous section. These soclu-
tions are estimated within 30% of the true figure by the general
method while the errors in the IFR bound estimated solution tend
to be compatable in size and in direction.

Table loishows that the general solution and the IFR
bound solution estimated more accﬁrately in the larger sample
queué than in the smaller; We have already suggested that little
- benefit isigained from the larger sample size ih estimating
‘queue length since population parameters are not.estimated with
.noticeable improvement in accuracy. The evidence in this table
- tends tb refute this'arguemént and support the idea that the
larger sample does permit better estimates for queue length for
the general inter-arrival time queué. Equation (7) from Chapter
III‘for'the expected wait‘in the queue depends on the moments of
the idlevtime distribution. The same number of observations_
that are in thé sample go into cémpﬁting-the.shape of this
distribution so that a more accuraté estimation of the idle
time distribution parameters will reéult from the larger sample,
This Would account for greater accuracy in the general solution

methOd .
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The estimated‘solutibns to queue 1ength by the IFR bounds
seem more reliable in these general queues than was found in
the exponentlal examples., Nine of the thirteen bounds span
‘the simulated queue résults, and the remaining four are not
grossly inaccurate. The average of these two bounds is compareds
to the simulated figure and theupercent‘differensés are shown in
- Table X. This is a crude and unscientific method of estimation
as we have no knowledge of.where specifically'any solution should
lie within the span of these bounds. It is done here to measure
how large estimation error will be with s m&keshift method based
on thess bsundsa EVéh'so, errors in estimation of queue length
~are not significantly worse than from the general solution. This
means that the IFR bduhds can be used to give as reliable, and
in sbme cases more reliable, solutions than the generslvcase.
Reliable in this context is within 20%,
| In the absence of a more accurate alternats method this
vamount of error must be accepted, even though for most purposes
it is not con51dered to be excessively lncorrect. This is
partlcularly so when we are discussing fractional expected
‘queue lengths; A 20% error in an expected queue length of say
.6 is only ;12 and estimatisn_in this case is not sefiously in
error., | | |

The‘ekponential'solution‘mefhod sverestimates in all
cases.in this sesond group of queues; The resultant solutions
vdo not contribute at all to our finding of actual queue lengths
but certalnly do p01nt out the necessity of accurate distribu-

tion 1dent1f1catlon. In all but three cases, at least 100%
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‘error occurred, By assuming that a queueing problém is M/M/l
when in fact it is not, the analyst is likely to considgrably
overestimate the real qdeue length,

From experimental_runs.analyzed one may conclude that
 provided correét identification of the inter-arrival and ser-
vice distributions is made, énd'iﬁ appears from Chapter II that
this can be done, an analyst can find estimates of queue length
".(Lq) with a high probability of less than 20% error, This, of
course, assumes that population parameters, lamda and mu, ére
'accurately estimated., The éssumption that a queue is of the
.M/M/i type should be'méde cautiously. Overestimation errors
:exceed'IOO% if the assumption.is‘false. On the other hand if all
queués are assumed to be G/G/1, erroré from applying the IFR
solution method will not be és cqrrespondingly excessive; It
~appears safer to assume that all Queues are of éhe géneral
type unless some positive identification of ﬁhe inﬁer-arfival
pattern is made, Only then is 1t advisable to apply the class-

1cal queuelng formulae for exponentlal arrivals.,

Step 3: Results from Inaccurate Samples

_ " Calculation of estimated queue length from this body
.of data by any of the methoas; did not pro&ide satisfactory
ahswers. " All errors in estimationvwere iarée; indicaﬁing a
relatibnship between érrors'in estimating rhd'and queue

length, The results are shown in Tables XI and XII.

a) M/M/1 Queues

The classical formulae produce exceptionally high



. TABLE XI

Summary of Queue Statistics From Inaccurate Data (Sample Size 36)

(1) (2) (3) (4) (5) (6) (7y - (8) (9) (10) (11)
2 M/ M/1 0.8 2.96 ~2.05 -30.80  2.18 -26.27 2.00 2.77 -19.44
3 M/oM/L 0.7 ~ l.64 L.73 188.71 5,02 206.2 0.25 - 2.08 -28.86 -
5 M/G2/1 0.9 4,10 32.31 687.76 30.55  0OLL.38hL 0.28 . 1.41 -79.31
6 M/G2/1 0.8 - 1.92 2.01 .52 1.47  -23.45 0.19 0.96 -70.15
7 M/G2/1 0.7 1.07 1.44 33.83 1.88 - 75.68 1.43 2.21 £9.66
10 M/G3/1 0.8 2.43 4L.06 66.94 3.55 . L5.97 0.24 1.65 -61.25
11 M/G3/1 . 0.7 1.18  0.34 =-71.21 0.32  -72.u48 0.18 .78 -53.57
12 M/G3/1 0.6 0.67 0.31 -53.50 0.9 -27.12 0.09 0.55  -51.78
14 G2/G3/1 0.8 1.32 1.68 27,42 L.82 265.C0 1.43 2.01 30.
15 G2/G3/1 0.7 -0.61 0.28 =54,41 1.03 68.95 0.03 . 0.49  -53,35
16 G2/G3/1 0.6 . 0.3%4 0.29 =-12.72 - 0.68 102.37 0.03 0.7 -26.92
17 G2/G2/1 0.9 . 2.36 15.05 536.90 k6.8L4 1882.27 1n.72 15.38 536.86
18 G2/G2/1~ 0.8 0.97 1.78 83.653 5.09 423.7S 1.39 2.00 7h.41
21 G2/ M/1 9.9 5.48 0.79 -85.52 1.57 =-71.30 0.54 0.98 -86.13
22 ¢2/ M/1 - 0.8 1.86- 0.3 -50.24 1.66 -10.683 0.69 1.22 -~-48.87
23 G2/ M/1 0.7 0.97 1.98 102.87 2.78 185.54 1.75 2.0 113,
24 G2/ M/1 0.6~ 0.52 0.20 -61.2 - 0.64 23.51 0.05° 0.47 ~50.18
27 G3/ WM/1. 0.7 1.17 2.77 137.50 4,58 292.2Z89 2.65 3,33 155.18
28 ° G3/ /1 0.6 0.65 0.35 -L7.18 0.51 =-21.57 0.25 0.74  ~24.66
29 G3/G2/1 0.9 - 3.62 1.42 -60.389 5.48 ~4.0G0 1.17 1.81 -~58.88
30 G3/G2/1 - 0.8 1.36 0.68 - -50.29 1.56 I4.54 0.306 0.91 -53.52
31 G3/G2/1 0.7 0.6S 10.11 1371.03 21.24 2991.41 9.52 10.35 1346.29
32 G3/G2/1 0.6 0.37 0.31 =-16.126 0.56 51.76 0.006 0.56 -16.380
35 G3/G3/1 0.7 0.80 0.66 -17.46 1.14 43,34 0.40 0.99 -12.19
36 G3/G3/1 . 0.6 0.43 0.32 -25.76 0.65 52.93 0.153 0.62 -12.88

3L

28

vs



. TABLE XII

Summary of Queue Statistics From Inaccurate Data (Sample Size 100)
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queue‘lengths when rho approaches one., As a result, ovef-
‘estimation of rho at high values provides theoretically
éorrect but results impossible in practical situations; Yet
'underéstimAtién ofvrho at lower values may provide almost no
effect at all on queue length, It is virtually impossible to
draw.consistent conclusions as to the size of error from the
M/M/1 queue résults, in the absence of any apparent trend,
other than to say that all estimates were increasingly in-
éécurate as rho was estimated with greater error.> |

b) G/G/1 Queues

The need for an accurate éstimation of rho is indi-

cated in thesé runs too, The relationship between errors has
a more consistentAtrend in the genéral arrival queues. In each
- run shown in Tablés XI and XII for this class éf queues, the
sign of the‘estimation error in rho and in gqueue length is
the same, Little use cah be made of this fact in feducinq
prediction errors when rho error is unknown, It is interesting
'~ to note that even in terms of errors, the G/G/l queue tends to
‘behave with greater stability than the M/M/1 queue,

| In none of the-runs with inaccurately found rho values
aid errorsldompensate for themselves to produce good estimates
for Queue;lehgth from poor.daﬁa; The occurence of accurate |
queue prediction in this case would; of course; be by
accident, One cannot conclude that this form of accident
would never occur; one can sugéest that it is very unlikely;
based on the runs generated in this experiment,-

In cases where a poor prediction of rho is recognized
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_ by‘anZ%élyst because of his experiehce and his feel for the
.system some compensation for_exéected error can be made, This
may be in the form of additional sampling to provide sbme addi-
 'tiQnal comparative estimates of rho or it may be mérely an
adjustment based on intuition. The analyst is advised in this
situétiqn to compute solutions for a range of rho values to
determine the behaviour of the specific queue in question., He

then can determine the effect of erroneous rho values,

Summarz
.

Essential to successful analysis of any queueing problem
are accurate ?redictions of populétion parameﬁers. Easily
applied methods ekist for finding of adequate solutions ﬁo
qﬁeuéing probléms provided the parameters used. are accurate to
approximately 5% of the true vaiué. if theée pérameters are not
good predictions e&en thé expert will fail to arrive at satis-
Afa¢tory answers,

The method of solution for M/M/1 queﬁes; the classical
.queueing formulae;_are shéwn to provide accurate prédictions
of queue length p;ovided the exponential assumption is correét.
Misapplication of these formulae will seriously overestimate
gueue length; The IFR bouhds‘while'not particularly satis-
factory for the M/M/1 situation do give as éccurate a Solutidn
as any of the other methods considered when applied to G/G/1

. queues °



CHAPTLER V

AN APPLICATION AND CONCLUSION

The actual process that an analyst could use is
exemplified here, This is followed by a recapitualation of

our findings. -

An Application

 Let us assume thét a service station operator also
offérs a car washing service.on his lot, Because of the nature.
of the extra services he offers in the washing and cleaning of
cars, such as vacuuming, tar removal, and engine cleaning,
cars to not move through his plant deterministically as is
usual, Let us assume that he thinks he will lose customers if
'they are forced to wait in a queue of three cars or longer on
the average. He needs to know how long the average queue of
cars will be and how long a customer will spend on the average
- getting his car washed,

The service station operator has special cards that

are stamped by a time clock when a car enters the wash and ére
étamped again when it leaves. To collect the data he needs for
~his queueing analysis he records tﬁe'time of arrival on the |
card when a car joins the queue for'washing. From the three
times recorded for each car he computes the time each car
Speht in the queue and in the wash. These are the inter-
arrival and service times; | |

" "The mean inter-arrival and service times are easy to
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- compute. By squaring each of the inter-arrival and service
times, summing them, and dividing by the number of cars
observed, the variance is found. Let us suppose that the
values. found in this example are:
a) average inter-arrival time 10 mlnutes, with
variance 54,4 minutes and,
b) average service time 6,45 minutes, wlth
variance 23,7 minutes,

‘The parameters lamda and mu are the reciprocals of the

averages shown above.

A  = .1 arrivals per minute,
_u = '°l55- services per minute,
Rho is then computed p= A =_ .1 = .64;
: v ,155

thlS value belng the intensity of use of the facility expressed
as a fraction of one.

Identification of the type»of each aistribution is fhe
neXt step in this analysis¢ Reference to Appendlx IT shows pre=-
- computed data with whlch to compute the test statistic and the
method of computation, _Assume that the following correlation
coefficients were computed:

" a) inter-arrival distribution .86

b) service distribution . . <87

This Would indicate'thaﬁ both dietributions-ere not
exponentially'distribﬁted and the IFR bound method will be used.
To verify thatjboth distributions do have the IFR property, the

test mentioned in Appendix I will be used., The coefficients of
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variation are computed with,

Cc? = variance
mean >

The example coefficients are:
‘ - 54,4

‘a) inter-arrival distribution 1o = 044
' 23,7

b} service distribution .
6,45 T 570,
r

therefore both distributions have the IFR property.
Using equation (12) of Chapter III the IFR bounds

are found:

J = Ca? + 2202 = (.544) + (.1)(,1)(23.7)
2 (1I=-p) 7 {(2) (L) {(.30)
.781
= 70732
= 10.82

o

Lower bound .on gueue length

a7 - (p?+ ca’)
B = (D)

it

1,082 - «064 + ,54.4
: (2)

= 1,082 - ,592

= .590

Upper bound on queue length:
UB = A\J = 1,082

- The average of these bounds‘ié .84 and this is assumed_to be
the estimate oquueue length. Using the relationships bétween
'queue lengﬁh and time spent queueing; the service station
operator can compute the total time that a customer will spend

having his car washed on the average,
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to be 8.4 minute

From Wq = Lq = .84 = 8.4 we find the average wait in gqueue

The total time spent in the car wash is

then W = Wq + 1 = 8,4 + 6,45 = 14,85 minutes. It takes
U . -
approximately 15 minutes on the average to be processed by

this facility.

Conclusions

Successful application of queue length estimation
methods is dependent upon the identificatioﬁ of exponentially
distributed interéarrival and service time distributions,
Identificatipn is made difficﬁlt by the lack of a consisten£
test which detects exponentiality in sﬁall samples, A test is
developed in this thesis from a well known graphical procedure.
"This test'consistently detects samples that are drawn from
exponential distributions and rejects those that are not.
Samples of 36 and 100 observations were tested_° An attractive
feature of this test is its ease in applicationo |

When identification is possible, appropriate methods
for estimating quéue length are accurate for most practical
épplicétions. Classical queueing methods when applied to M/M/1
and M/G/1 queues provide satisfactory estimates bgt serious . .

'~ overestimation results from their application to G/G/1 and
G/M/1 queues, Thus.the assumption'that a queue isvexponéhtial
musﬁ'be made with care., The method for successful queue length
prediction in géneral is considered too complex for practical

application and IFR and DFR bounds are a satisfactory -
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replacement. The average of»the upper and lower bounds in the.
IFR case provides a prediction that is as accurate as the
'soluﬁion from the complex general'calculation;

Regardless of which method is chosen for estimation,
inaccﬁrate prediction of queue length will result from
inaccurate estimation of rate parameters of the sampled

population diétributions°
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APPENDIX I

INCREASING AND DECREASING FAILURE RATE

The information COntained»in this appendix is taken
froﬁ Barlow ahd Proschana Mathematical Theory of Reiiability,
(John Wiley & Sons, 1967) which may be used as a more
ektensive reference,

"It has been found that certain objects tend to fail,
as time progressés, with increasing or decreasing probability.
Phenomena with increasing failﬁre rate (IFR) fail in the
vperiod'[t, £+dt] over time (t) with increasing probabilityor
Those with decreasiﬁg failﬁre rate (DFR) fail with less
probability over time., |

| Applications are found, in the case of fFR in the
.computation of mortality tables and empirical evidence
suggests DFR is found in most solid state éledtronic components,

When applied to éueueing, IFR is used to mean that the
probability_of an érrifal during [t, t+dt] increases over time.
vConversely'DFR implies a decreasing probability, Hence refer;

ence will be made to IFR/G/1 and DFR/G/l queues.

A Statistical Test for IFR and DFR

The coefficienf of variétion (s;d./mean)'for IfR
distributions is less than one and for DFR is greater than one.
A distribution with a coéfficient of vériation equal to one is
éxponentially diétributed and displays both IFR and‘DfR
properties, - Identification thus displays both IFR and DFR

properties. Identification of these properties can be made by
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comparing a distribution's coefficient of variation to one

and drawing the appropriate conclusion,



66

APPENDIX II

.Ih thié appéndix we will test two saﬁpies of data to
present in detail the test for exponentiality using the
correlatioﬁ coefficient, This procedure uses pre-compﬁted
data for comparison with the observed data. The pre-
computéd figures are shéwn in Tabié XIII and are arrénged for
use with samplé sizes of 25, 35,‘50, 75,'and1100° The sum, sum.
of squares, mean and variance are included. These figures are
nétural.logarithms of the statistic for ﬁhe correlation
coefficient test shown in Chapter II ahd represent. the!
ordinéte values, For example'Sizein, thé numbefs in Table
XIII are computed from
| y = ln[ n+ 1 ']

n+ 1 - ij ‘ o

The following times are the inter-arrival times recor-
ded for 35 successive arrivals of custdmers in a qﬁeue° They
should be read by column for the correct sequence or occur-

rence,

.60 25,77 L 9,43 34.40 2,75

- 1.88 .74 4,10 3.73 29.71
. 65 1.52 26.64 .46 4,92

15.59 7.07 10.57 3.09 27.08

17.37 4,04 5.36 20.61 3.87

5.83 3.16 1.05 14,72 .99

4,13 7.41 17.37  11.65 5.94

Before'actually'calculating‘the correlation coeffi-

cent,. several summations are to be found that make it easier,
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Rep#senting thé.spécific interarrival times by x
we cOmﬁuﬁe,ﬂ | | } | | :
. Ix = 333.24, Ix?* = 6310,0, Ixy = 594.8, Ix = 9.52
where y is defined abdvé. o !
Célculating the correlation coefficient using the
y values for samplé size 35 takeh‘from Table XIII we find,

r = Ixy - XLy -
V(Ix* - ¥Ix) (Ly® - ¥Iy)

= 594,8 - (9.52) (33,28)
V/(6310.0 - (9.52)(333.24)) (56.98 ~ (.95) (33.28))

= 277.968
281,924

+986

_Since this figure exceeds .93 we assume that ﬁhé inter-
arrival time distribution is ekponential. |
| The service times corresponding to thé_inteﬁarrival
times afe_listed by column in order of occurrenée°

5,04 - 4.62 12.58 13.01 12,93

. .28 17.44 9.41 2,46 10.24
11.12 215,15 4,08 : 15.69 16,90

© .01 12,54 5.04 14.92 3.94

17 4.42 - 16627 13.42 10.47

- 17.36 5,27 7.90 14.63 14.43

7.07 1.71 11,66 3,78 14,27

As above we compute, _
x = 321,7, x = 4033,1, xy = 452.8, x = 9.19
and using the same y values as above find for the

correlation coefficient,

r = 56.98 - (9.19) (33.28) -
/(4033,1 - (9.19) (321.7)) (56.98 - (.95) (33.28))
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146 .82
165.06

= ,889

This r is less than .93 and we conclude that the
service times are not exponentially distributed. This gqueue

is identified as M/G/1,



" TABLE XIII

‘Pre-computed Ordinate Values for the

Correlation Coefficient Test

Sample Size 25 Sample Size 35
0.039 - 0.028
. 0.080 - 0.057
0.123 . 0.087
0.167 . 0.118
0.214 ©0.150
£ 0.262 ' 0.182
0.314 ' 0.216
0.368 0,251
0.425 ' 0.288
0.486 ’ 0.325
0.550 | 0.365
0.619 _ 0.405
0.693 ' : 0.448
0.773 . 1 0.L492
0.860 0.539
0.956 0.588
1.061 0.639
1.179 , 0.693
1.312 0.750
1.466 g 0.811
1.649 ' 0.875
1.872 7 0.9h4L
2.159 1.019
2.565 0 1.099
3,258 , 1.186
’ 1.281
1.386

: I

Ly = 23,449 T

o 1.792

2 .

Ly’= 38.698 | o 1.974
- ' 2.197
y = .938 : 2.5485

o ' ' - 2.890
3,584

Ty = 33,287

Iy®= 56,987

<
i

951



TABLE XIII (cont'd)

Sample Size 50

0,020
0.04LO
0.061
0.082
0.103
0.125
0,143
0.171
0.194
0.218
0.243
0.268
0.294
0,321
0.348
0.376
0.405
0.L435
0.466
0.498
0.531
.565
.600
.636

OO0 OO0

Ly =
Ly?=

v =

674

48,113
85.038

0962

00
0.
00
0.
0.
Oﬁ
O.
ll
1.
1.
1.
1.
1‘
1,
-1,

1'
1.
1.
1.
2.
2‘
2.
2.
3.
3.

713
754
736
8Ll
387
936
987
oul
099
159

224

293
367
L47
534
629
735
652
986

140

322
5406
833
239
8932

70



TABLE XIIT (cont'd)

Sample Size 75

0.

OO OC}DD
- o o &

~—

01
2
I
tI
16 8

OC‘) OQC)Q

8

097

\)("‘

0.111

- Q.
0.
0.
0.
0.
0.
0.
0.

126
41
156
172
188
204
220
230

0.2553

0.

270

0.288

0.

0

305

.323
0.

342

0.360

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
<693

-0

379
399
19
439

481
502
524
547
570
593
ol7
642
667

O\l N

LEO

y = 72,914

Iy2= 132,656

7 =

0972

0.
0.
0.

0.8304

0.

720
747
775

\:714

0.565

0.
0.
0.
).999
1.
1.
1.
’1.
1.
1.
1.
1.
1.
‘1o

1.
1.
.10
1.
1.
1.
'10
2.

2.
2.
2.

2.
2.721
2.
3.
3.
L

897
930
563

035
073
112
153

195

240
286
335
386
Lyg
498
558
623
692
766
SL4b6
933
028
134
751
385
539

ahb
252

638 -
.331

71



TABLE XIXI (cont'd}

Sample Size 100

QOO TDODDO DO OO O OCOOO OCCO O OO OCOO OO OO
.

.010 0.425 1.119
. 020 0.4kl 1.149
030 0.456 1.181
. 040 0.1h72 1.214
.051 0.488 1.248
061 0.504 1.283
072 0.521 1.319
083 0.538 1.357
093 0.555 1.396
104 0.572 1.437
115 0.590 1.480
126 0.608 1.524h
.138 0.626 1.571
. 113 0.645 1.619
161 0.564 1.671
172 0.683 1.725
. 184 0.703 1.782

196 0.723 1.843
.208 0.74k4 1.907
221 0.765 1.976
233 0.786 2,050
. 246 0.808 2.130
.258 0.831 2.217
271 0.854 2.313
.28L 0.877 2.1418
298 0.902 2.536
311 0.926 2,669
.325 0.952 2.823
.338 0.978 3.006
. 352 1.004 3.229
.367 1.032 3.517
381 1.060 3.922
. 336 1.089 h.615
410 |

Ty = 97.772

Zy?= 180.862

<
i

978



