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ABSTRACT

A powér system may be subjected to different types of disturbances.
The control strategy to be taken in order to preserve system stability
depends on the severity of the disturbance.

For very severe disturbances, power system stability can be improved
by sudden changes in the electric power network such as the insertion of braking
resistors, generator dropping or load shedding. A unified treatment of
optimum‘switching is presented»by considering the switching instants to be
elements of a generalized control vector.Dynamic optimization is.then applied
‘to determine optimum éwitching instants.

Less severe disturbances can be overcome by employing governor and/or
voltage regulator controls. The govefnor control problem for a large signal
model of interconnected power plants is inyestigated via the multi-level concept.
A fwo—level controller for interconnected power plants is discussed. Each
plant has a first-level local optimal or suboptimal controller. The second
level of control is an intervention control performed by a central co-ordinator.
If a sudden system disturbance causes the system angular acceleration to exceed
preset tolerances, a priority interrupt to the central co-ordinator initiates
intervention control. Angular veloFity deviations of all plants are transmitted
to the‘co—ordinator. This data is used to generate coefficient data for each
plant. On receiving its coefficient data, each plant generates a local second-
level intervention control which augments first-level local control.

The Load;Frequency Control problem; due to minor or routine distur-
bances causedlby load changes,is investigated. Since the incremental power

demand in a power system is not always known a priori,direct application of the
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optimum linear-state regulatqr to Load-Frequency Control is not pbssible.
Furthermore, Load-Frequency Control generally requires the use of an integral-
type control operation to meet the system operating specifications. This .
requirement is introduced into the formulation of the optimum Load-Frequency
gontrol problem presented in this thesis.

Two methods are éuggested for demand identification. The first
method makes use -of differential approximation. The second method makes use
of a Luenberger observer to identify unmeasured states. The optimum control is
a linear function of measured étatés, identified unmeasured states, and the
identified incremental power demand.

A method is given for solving, suboptimally, the problem of optimum-
1oéd frequency sampled-data control with either»unknown deterministic power
demand or randomly varying system disturbances. It is shown how to modify an
optimum continuous control to obtain optimum control in the case of discrete-
data transmission and unknown déterministic demand.

The case of random power demand and raﬁdom disturbances is treated
by introducing an adaptive observer. A three stage systematic design procedure
is given. The effectiveness of Load-Frequency Control using an adaptive

observer is illustrated by an example.
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1. INTRODUCTION

Interconnection between adjoining power systems is an inevitable
development in the utility industry because it offers the mﬁtual benefits of
inherent economy, reliability of operation and improved stability. The pros-
pect of transferring large blocks of power ovér long transmission distaﬁces
between neighbouring systems in different time zones, to assist each in turn
through its respective peak load period is very attractive and a great
encouragement to large scale interconnection. 1In its realization, many new
problems and difficulties are confronting the power utilities, With ever
increasing demands for electric power and the desire to improve still further
the quality of service, utilities must meet the challenge of seeking improved

methods of regulating power generation.

1.1 System Decomposition

An interconnected power system is .a complex system whose primary goal
is to furnish electrical energy as required by customers and asklong as. required.
Requisite to this objective is avquality of service characterized by stable
electrical frequency and voltage and by continuity in time.

A general solution to the problem of controlling the whole system
sugh that all the operating objectives are satisfied at all times is impractical.

Decomposition of the system 'space-wise'" and "time-wise' is necessary to solve such

a complicated problem.

1.1.1 Spatial Decompositioﬁ

We can. take the whole power system and decompose it into sub-
systems or areas. The need for subdivision into areas will depend on: (1) The

complexity and computational difficulty associated with a single control model.



(2) The geographical location of generating sources and the associated
load allocation and political boundaries. (3) Overall consideration of
reliability.

Decomposition is generally guided by the specific nature of the
network. For control reliability it is usually required to have each
area as self-sufficient as possible in generating capacity and in inter—
connection support. In a power system consisting of strong areas connected
by weak ties the following policies are usually recommended:

a) each area has the responsibility of seeing that its internal
disturbances do not disrupt the interties or impair service in other areas ;

b) both terminal areas are responsible for c0unteracting distur-

bances on the interties between those areas.

1.1.2 Sequential Decomposition

Even for each area, single control policy would be inadequate for
‘all operating states. Characterization of power system operation by
operating states has been investigated in [1], according to "conditions for
operation'. It is,in effect, decomposing the total operating problem
into a set of sequential problems, corresponding essentially to "before,
during and after' a severe system disturbance.

According to [1], the power system can be considered in one of the
following states; A

(a) Preventive operating state (normal operation):

In this state the power system is being operated so that the
demands of all customers are satisfied at standard frequency and voltage.
The control problem in this state is to continue indefinitely the.satisfaction

of customer demand without interruption and with minimum cost.



(b) Emgrgency operating state:

Aside from the causes that bfiﬁgs the syétem'to that. state; an>
emergency operating.state cbmeé ébSUt wheﬁ the rating of some components
are cheeded, or-wheﬁ the'voltage cannot be maintéined at a safe minimum,
or when the system frequenc§ starté t§ decreése towérd a value at which
motors will stall; or when.thé'eleétfical s?steﬁ is iﬁ the process of
loosing synchro‘nism.v The control objective in this state is to relieve
the system distresé énd féréétall further degradation while satisfying
a specified customer deméné. _Ecbnbmic tonsiderations become secondary
in this state:

(c) Restorative state:

This is the state wheré thé power system will.be in partial
load operation; when some CUéfbmer loéds_hés been 1os£: Usually this is
the aftermath of an emergency. The control objective in the restorative
state is the safe transition from partial to 100 percent‘satisfaction
of all customer demand in minimum time;

It is hard to define general boundaries between the different
states of operation; This is because of the different design and nature
for different parts of the system; To clarify thié point,consider.for
ekample two areas of the same capécity; Two equal disturbances at both
areas may cause instability to one area while the other may be able to
survive the disturbance: The first area would be in the emergency state
andbemergency control action should be taken according to the nature of
.disturbance. For eﬁample,braking resistors may be necessary to decelerate

the accelerating generators. For the second area, because of the design



of its generators, stability could be mainﬁaingd by using gxis;ing
controls such as governors and/or yoltage regulators; ‘There is a limit,
howaver; on thé.émgﬁﬁt Sf digtﬁrbaﬁce aftér thch.thé second area.must
take emergency control ﬁéésurés:

| Tgis theéis ié concefnéd with the problém of control in the
emergenc& and preventive'Stété. In the nékt ééctibn; we are going to
eiamine some control aépects felated to these states from the energy

balance and dynamic behaviour viewpoint, along with the current work

and thesis layout.

1.2 ‘Background and Thesig Layout

During steady state operation of power system there is equilibrium
between the mechanical power inpﬁt éf geﬁerators and the sum of losses
and electrical power output: Non—equilibfium can occur as a result of
either a change in mechaniéal input or é éhange in electrical output.
However; from a practicél viéwpoint; it is obvious that changes in
electrical output can occur élmoét,instantaneously because of change in
the network; whereas the mechanical input cannot change nearly so fast.
The difference between input and output power is known as the accelerating
or decelerating powef. The immediate sign of non-equilibrium is system
acceleration (the accelerating or decelerating power divided by the
inertia constant);

Depending on the éeVerity of the disturbance and conéequently
the acceleration; a power system can be in.ény of the operating states
mentionéd beforef Thé controls for each state depend onAthe severity of

disturbance. The following points briefly outline the contents of this thesis.



1. For a very severe disturbance caused by change in the
network, a discontinuous form of control is required to prevent excessive

system upset. This control problem has been investigated2’3’4’5’6’7,

but
no unified teéhnidué hés been éi&en'té détérmine thé op timum switching
times; In Chapter 2; thé'préblém §f Opfimum nétwork éwitching is
inVeStigated8; A unified tréétmeﬁt §f opfimuﬁ switchiﬁé‘is presented by
considering the'switchiﬁé inéténEs to be elements of a géneralized control
vector; Dynémic optimizatioﬁ ié theh‘applied to determiné optimum
switching instants:

2, Modefate disturbaﬁces cén be overcome by employing: (a)
faster control of prime moveréggl(b) high speed excitation system with
supplementar? gignals fér pfovidiﬁg étrong démping of swings. 'The above
continuous type of control éctién can be augmented by discontinuous
control action:

The solution to the linear repulator problem with & quadratic
cost index is well known; Its practical application to the céntrol of
pover systems, however? poses severe pfoblgms. These are the modelling
of high order non-linear systems by a linear system, the computation,
and transmission of large quantities‘of data between different'plaﬁts.
Some form of suboptimal control isv therefore- essential. Presently known
suboptimal controilers,sucb as specific obtimum controllers,reduce |
somewhat the severity of the problém. Howéver, it is difficult to
account for system interaction and non—linearitiés in‘SUCh controlliers
without requiring continuocus communication of large amountsof daﬁa between
the plénts; Significéﬁt imprerment in desién techhidue,and system response

over the conventional methods has been achieved by the application of



the linear regulator problem to power systems with;sqme degrqes of sub-
optimalitylo’ll’lz.

In Chéptef 3; the pﬁésibility of implementing a simple control

for a large signal model of interéonnécted powér plants-is ekamined via

the concept of multi;levél coﬁtroli A two-level control is proposed.

The first level consisté of iﬁdepéndent liheér subsystems; which have local
feedback controllers; The seéond—level controller co-ordinates the sub-
systems by an intervention épen-loop controil3.

3; Minor or routine disturbances causeg small deviations from the
fiked references and are corrected by governor and/or voltage regulator .
controls; The main problem in this state is Load-Frequency Control (LFC)
problem*., This is the problém bf reguiating the power output of electric
~generators within a prescribed areavsuch that each area satisfies its own
demand;

For improved dynamic performance; the linear regulator solution
was adopted by ElgerdlA. In reference 14; the state deviations are
expressed iﬁ_termS‘of the final states; the states the system is supposed to
reach after a certain demand is applied. The final states cannot be
known unless the demand is known a priéri which is not the situation in
practice. A feasible‘optimum control must identify the unknown demand.

In Chapter 4; two methods are suggesteé for identifying the demand.
The first method usés differential approkimation and is suitable for slowly
changing demands; In the second method the system states are aﬁgmented by

a demand equation, and a minimal order Luenberger observer is utilized. 1In

the second method, it is assumed that the tie-line and frequency deviations

See Appendix I for detailed definition.



are the only measurements available. A modified form of the regulator
problem solution15 is considered, which gives, in conjunction with the
demand identifier, a feasible suboptimum control for the LFC problem.

4. A practical situation which must be considered is that the
tie~line deviation may not be instantaneously available for utilization in
the controller. In addition, for practical systems, both plant and measure-
ment devices are disturbed by noise. In the last part of the thesis, Chapter
5, these two points are investigated. The sampled-data regulatorl6, which
is suitable for continuous systems that have a communication link in the
feédback loop, is considered. ‘Beéause of the noise present in the system,
the system states are estimated by a suboptimal filter. The filter does
not require detailed a priori knowledge of noise statistics. The filter
is essentially ;n adapti&e observer and is based on adaptively changing
.a.scalar gaiﬁ. Updating the .gain .is based .on .minimizing an instantaneous
cost index; The cost index realizes a trade off between a deterministic
performance index and an esfimation error. The proposed scheme is simple

and does not require excessive computer memory or computation time,.



2. OPTIMUM NETWORK SWITCHING IN POWER SYSTEMS

2.1 Introduction

Power system stability can be improved by discontinuous changes in
the electric power netw0rk2. The actions to be takén in order to bring the
system to equilibrium after a severe disturbance dépend on the nature of the
disturbance, brief or prolonged. Sometimes there ére different actions to
choose from. The choice of action not only depends on the type of distur-
bance, but also on economical and practical considerations.

Consider, for example, a brief disturbance, lasting typically a
fraction of a second, such as a short circuit cleared in normal time. Such
a fault near a generating plant accelerates the generators. This disturbance
-can be counteracted by a short application of a shunt braking resistor
located at the generating plant3.

Other disturbances, for example the loss of a large load, produce
a sustained non-equilibrium condition. The control action should Ilikewise
be sustained,and in this event it is logical to disconnect an amount of
generating capacity equal fo the lost load.

In the latter case, prolonged application of a braking resistér
would be effective, but it would be uneconomical to provide resistors of the
required rating. .In the former cése, dropping of generation would be inappro-
priate unless. it could be restored to sefvice rapidly and with accurate timing.

Kimbark has discussed the possibilities of improving power system
stability by control of discontinuous changes in the electrical networkz.

In his paper he doés not present a systematic method for evaluating the

switching times. A practical implementation has been reported by the British



Coiumbia Hydro and Power AuthorityB. A braking resistor is switched on at
time of isolating the faulted line and switched off at a later time. This
time was determined by digital simulation and numerical experimentation.

Transient control by using network parameters énd by series
capacitor switchiﬁg has recently received considerable attention4’5’6’7.

The methods discussed in references 4 and 5 are based on derivation of
switching functions from energy flow considerations. These methods do not
appear suitable for the case of third or higher order machine models or for
multi-machine systems. References 6 and 7 treat series capacitor switching
by optimal control theory. The cost index used is minimum time. No
systematic iterative numerical method is given for obtaining the solution.

A trial-and-error approach using an analog computer with subsequent digital
computer refinement . is used. Furthermore, the case of general network
switching with cost indices other than minimum time is not discussed.

It is the purpose of this Chapter to present a systematic method
for evaluating optimum switching times. The method is general and is appli-
cable to any of the possibilities discussed by Kimbark. In determining the
critical switching time, the method appears to offer both cémputational as

well as practical advantages over stability approaches based on the construction

0,21

of Liapunov functions2

2.2 Problem Formulation for Optimum Switching Times

A steepest descent method for solving a combined continuous and
bang-bang optimum control problem has been proposed by Vachinozz. This is

based on considering the switching instants for the bang-bang control as a

parametric control and augmenting it with a continuous control to form a
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generalized control vector. A simplified wversion of this method seems to
be applicable to the problem of optimum switching times in power systems,
as formulated by Kimbark. This is a consequence of the structural form of
the differential equations describing power gystem dynamics as well as the
relatively small and known number of switching instants.

The differential equations describing the state of the system
have the form

* = f(x, o

k) (2.1)

where x is an n state vector and & is a system parameter vector which is

constant for tk—l g Tt and which can change at any of N switching

instants t t2, oo t

1° The problem to be considered is to choose the

N
switching instants so that a cost index
6= 0(x), x & x(e) (2.2)
£’ f f
is minimized at a final time te =ty defined by a given stopping condition.
The initial state, x(to) 4 X s is considered known.
In formulating a solution to the optimization problem it is con-

venient to consider the set of differential equations given by (2.1) as

one differential equation of the form

X = F(x, 0, V), - x(to) =X . (2.3)
where '
A N+1
F(x, a, v) = & f£(x, o )[h(t-t ) - h(t-t,)] (2.4)
o1 k k-1 k .

In (2.4), h(t) is the unit step function, o is a comﬁosite parameter vector

formed from the O and

t
Vo=t ty, el ) (2-5?



is considered a generalized control vector (prime denotes transposition).

The optimization problem defined by 2.2y, (2.3), (2.4) and (2.5) can be

formulated as an optimal control problem23. The simplest numerical method

of solution of optimal control problems is steepest descent in control

function space. However, the parametric form of the control vector (2.5)

and the discontinuities in (2.4) make it necessary to modify this method.

The required modification is obtained by considering the incre-

mental change in state 6x resulting from an incremental change 6v in the

control vector (see (2.5)).

.

§x

where

1]

Linearization . of (2.3) yields:

ne>

oF
1,

axl

L

F 6x + F
X v

Sv, &x =0 (2.6)
0
-
aFl
90X
n
(2.7)
oF
..n
9X
n

To apply a steepest cescent method,the incremental cost ¢¢ must

be expressed in terms of the incremental control 8v. The desired expression

is

where

>

>

by

In (2.8) ¢X is the gradient

§¢ = ¢;6xf

= ¢;8v (2.8)
3¢ ]
3
n
(2.9)
9
atN-

respect to x,and ¢V is the gradient



"of ¢ with respect to v. In order to find ¢v an alternative expression
must be found for &¢. This expression is obtained by use of the identity
(see (2.6)),

a%{p'éx) =V6x'[§+F;p] + p'F ov (2.10)

where p is the costate vector which is defined by equating the coefficient
of 6x in (2.10) to zero:

.:—_..-.' ' 14 ’

p F'p (2.11)

Integrating (2.10) with the initial condition Gxo = 0 and choosing
P = —¢, (x) (2.12)

for the terminal condition, it is seen that

t ‘
= At = n' - - £ ' : :
8¢ ¢x6xf pfﬁxf‘ }; HV6V dt (2.13)
» » .0
where H é.p'F is the Hamiltonian. Since 8v.is constant it .follows by

comparison of (2.8) and (2.13) that

te R
¢ — _ﬁ Hvdt (2.14)

v
O
The evaluation of HV is straightforward. From (2ﬂ4) it is seen

that . ,
S p'g—f— = p'IEGx, o )-f(x, a,)]1A(t-t) (2.15)
K K
since
9

_&;— h(t—-tk) = —A(t-—tk) . (2.16)
where A(t) is the unit impulse function. Substituting (2.15) into (2.14)

yields -
p' (e ) (e - £,(e ]

b = : , ' (2.17)

p' (£ [E, (b)) - fNH(tN)]J

12



, \ A
where, for notational convenience, fk(tk) = f(x(tk), ak), fk+1(tk)

é_fCX(tb), o

k+i)' Tt follows from (2.8) that the steepest descent adjust-
ment is given by:

Sv = -2¢

v _ _ (2.18)
where £ > 0 is a step size.

2.3 Algorithm

A systematic method for evaluating v is given by the following
algorithm.

1. Starting with a nominal control v and a given initial state

x integrate (2.3) forward in time from t, until the stopping condition
is satisfied, which defines tf.

2. Integrate (2.11) backward in time using (2.12) to initialize
the costate vector. ‘

3.

Use (2.18) to update the control (v
4,

= v + §v).
Terminate the computation when |MV|‘ is sufficiently small.

2.4 Applications

To illustrate its effectiveness, the general technique developed
in the previous section is applied to the following problems:

I. To find the critical switching time for:

(a) - One machine infinite bus system (second order model;
constant voltage behind transient reactance).

(b) One machine infinite bus system (third order model;
taking account of field flux linkage changes).

(¢) Multi-machine system (second order model for each machine).

II. To find the optimum time of switching off a braking resistor
for (a), (b) and (c).



2.4.1 Critical Switching Time

. , . : . 0
The system equations for the multi-machine case are given by:2

§, = w,

1 1

D, = 41{P -D.w.-P .1, i =1,2 N (2.19)
®; 7 MmiT i ei’ e R .

where Nm is the number of machines. Mi’ Pmi and Di are the inertia
constant, the mechanical input power and the damping coefficient for the
ith machine, respectively.

For a single machine the electrical output power Pei and the

damping coefficient Di in (2.19) are defined by,

by 2 Vp
Pe = Cl (¥—J + (C2 cos§ +C3 81n6)(¥—)
o )
) 2 2. A
+ C, sin28 +C_ sin § +C, cos 6. (2.20)
4 5 6 -
C, . +C C,.-C
D = 112 12 ¢ AL 12 cos2s . (2.21)

where wF = a flux linkage proportional to field flux linkage, and To is
the direct-axis transient open circuit time constant.

In the case of a third order model the rate of change of wF is

given by:

_wF = C7+08,sin6+09 cosé+ClOwF (2.22)

- where:
A ' ,
L | C; 2 =C;¥p(0)Cg cos8(0)-Cy sind(0) (2.23)

In the case of a second order model, wF in (2.20) is replaced by
_ wF = wF(O) = constant. The parameters Cl’ C2, e C12 are the elements

of.the parameter vector a(see (2.4)) and their values depend on machine

parameters and network impedances (see Appendix II).

14
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In the multi-machine case the quantities in (2.19) are given by:20
N
A 2 o :
P = ESG,.+ ¥ E.E,B,, sin(6.-8.) (2.24)
ei i,y i i ]
3
Di = di = constant i =1, 2, ..., Nm (2.25)

where: Ei/éi internal phasor voltage of the ith machine, Gij+jBi' =

j
short circuit transfer admittance between the ith and the jth machine, and
Gii is the load conductance at the ith machine bus (Gij is neglected in
(2.24)}).

The rotor angle of each machine is fixed with respect to the elec-
trical phase angle of the voltage behind the transient reactance. The
angles are measured with respect to a common axis rotating at synchronous
speed (the infinite bus in the one machine caée). In the multi-machine
case the parameters Gii and Bij are the elements of the a vector,

Figure (2.1) illustrates situations (a) and (b). A salient pole .
synchronous generator is éonnected to an infinite bus by two transmission
lines. The machine supplies a complex power P + jQ at a terminal voltage
Vt.' The infinite bus has a fixed volpage vof A sudden three phase symme-
trical short circuit to ground is considered to occur at position (x) at
t = 0. The faulted line section between A and B is disconnecﬁed after 8
cycles at time to. The faulted line is reconnected after m cycles with the
fault cleared.

Figure (2.2) illustrates the power angle diagram for the three

stages: (a) fault on, (b) faulted line disconnected, (c) line restored



with fault cleared. The critical switching time (in cycles) is the maximum
number of cycles, m, for which the machine stays ‘in synchronism with the

infinite bus. An equivalent definition can be given by the equal area

criterion (Al = A2) which defines the critical switching time t. at § = 6(tc).

It is evident from Fig. (2.2), that the switching time equals the

critical switching time, tS = tc’ when the conditions

w(te) = 0 (2.26)

Pm(tf)—Pe(tf) =0

are satisfied, where t_ is the time of the first swing. A possible cost

f

The switching time becomes critical when t_. is a maximum

index is t £

£
subject to the conditions (2.26). However, the terminal conditions on the
costate are then unknown and a more involved iterative procedure is required.

This complication can be avoided by choosing a penalty function cost index

based on (2.26) as a target set. That is, a cost index of the form
$ = 0.5[W w>(t )+, (P (£.)-P (t.))2] (2.27)
) 1 £7 72 m £ e f '

can be chosen, where W, and WZ are positive weighting factors. The choice

1

of (2.27) allows the simple algorithm given in the previous Section to bé

used. The stopping condition, which defines tf,is taken to be the instant

of time when one of the following conditions is satisfied;
wleg) <0 (2.28)
Pm(tf)—Pe(tf) >0

Problems I(a) and (b) are defined by (2.19)-(2.23); the value of
a.for variouslstages are shown in Table (2.1). The pre- and post-fault value
is a,, during the fault it is o, and with the faulted line disconnected it

2° F

16
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Fig. (2.1) One machine infinite bus system
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dfo) ‘ dltc)

] d(to)

(tc:defined by Al= A2)

Fig. (2.2) Power angle diagram
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Table (2.1)

Probl({a)(b) &1 o2
Probll (a)(b) <3 <] <2 “F
(o 0.226 | 0.244 | 0.358 | 0.345 |[.38x10
C, |-.258 |-:296 |-.412 |-.424 0
C3 0.519 |0.907 | 0.528 1 0.921 0
¢ ~.046 | 0.113 | 0.059 | 0.124 0
Cs |--026 |-.043 |-.045 |-.061 0
Ce 0.034 | 0.056 | 0.057 | 0.082 0
c, 1.268 | 1.268 |.1.268 | 1.268 1.268
Cg 0.138 | 0.134 | 0.216 | 0.188 0.
o 0.396 | 0.678 | 0.428 | 0.704 0
Cp |-156 | -.187 | -.159 | -.190 | -.397
Cy /My | 0.272 | 0.556 | 388 | 0.626 0
G /M] 0.036 |-.090 056 0.106 0
Table (2.2)
(Prob. Ifa))
ITERATION ceoomns |G (tr) | P ¢ l
! 0.1157 | -, 29 ~.38 23 0.35
2 0.200 | -.18 ~.25 95 0.48
3 0.2167 | .06 -.21 4.8 0.52
4 0.233 | -.09 -.15 3.4 0.58
5 0.250 | -.03 | -.08 69 0.71
Pl Ry P (tp)
Table (2.3)
{Prob. 1(b})
ITERATION ts wity) | P, 0 t
1 2167 | ~.087 | -.27 8.2 0.40
2 133 | -.045 | - 24 5.9 0.43
3 15 -.07 | -.19 4.3 048
4 J667 | -~ 02 -.14 1.9 .55

18
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is Gy Equation (2.19) is initialized at t = 0 with M = .0212 (pu power secz),

Pm = ,735 (pu), wF = 9.48 (pu), 8(0) = .9414 (rad), w(0) = 0(rad/sec) and

o= a (The subscript '1l' is omitted for the one machine case).

F

Problem 1(a) is solved by integrating (2.19) with wF = constant

- = . 1 1 =6 = .

wF(O) fromt = 0 to t ts This yields xl(to) (to) 1.183 (rad),
'xz(to) = w(to) = 4.14 (rad/sec) (a fourth-order Runge Kutta Subroutine is
used with a step size of 1 cycle = .01667 sec.). In (2.27) the choice Wl =

W2 = 200 is made. The results for the proposed method are given in Table
(2.2). Note the steady decrease in the cost index. A critical switching
time of 15 cycles is found after five iteratioms.
Problem I(b) is solved by using (2.22) with the same values at
t = 0, defined in I(a). Integration during the fault stage yields xl(to) =
l.l§3 rad, xz(to) = 4,14 rad/sec., and x3(to) = wF(to) = 9,195 pu. The
results -are shown in Table (2.3). The critical switching.time.is 10 cycles.
Problem I(c) is the multi-machine problem. When a fault occurs;
the machine having the greater ratio of initial accelerating power to
momentum constant would be expected to accelerate faster than the other
machines. In reference 20, the critical switching time is defined with"
respect to the fastest machine and it has been shown that this definition
is a useful one. Consequently, it is bossible to use (2.27) for the multi-
machine problem, choosing the variables to be those of the fastest machine.
The fault is takén to be a sudden three phase symmetric short circuit
fo ground at any one of the tie lines between tWo‘machines. The fault is
assumed permanent. The circuit breakers open ts seconds from fault occurence

to isolate the faulted section. A four-machine system with data taken from
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reference 20 is considered. The relevant data are shown in Tables (2.4),
(2.5) and (2.6). The one line diagram of the system is shown in Fig. (2.3)
and the reduced system in Fig. (2.4). |

The fastest machine in this case is machine number 3. The results
obtained from the proposed method are shown in Table (2.7). The critical
switching time is 155 radians (time unit used, T, in radians for comparison
with reference 20, T = 2nft.). This is in agreemeﬁt with the numerical
reéult using a Liapunov function given in reference 20.

Since the methods are completely different, a direct comparison
of the two approaches is not possible. The advantage of the proposed
approach is that it is not affected by the order of the model. Governor
and voltage regulator effects can be included, if desired. The approach
based on constructing a Liapunov function becomes impractical for system

models greater than second order.

2.4.2 Optimum Switching Time of a Braking Resistor

The braking resistor is connected to the generator bus at the

instant t, at which the circuit breaker opens. The resistor is discon-

e

nected after a period t The size of the resistor is usually determined

b.
by economic considerations and the power demand under normal operating
2, . . . ) .
. For a given resistor and cost index there is an optimum

conditions

time of switching ty
For.the multi-machine system, the resistor is applieﬁ to the fastest

machine. A suitable cost index fof defining an optimal tb is given by:

t
f 9 5 gﬁ f
J = Q.S . (W16 + sz )d; = fn+ldt (2.29)



LOAD

3- PHASE®
FAULTS

Fig. (2.3) One line diagram of a four machine system

Fig. (2.4) Reduced system of Fig. (2.3)

Table (2.4)

(DATA AND INITIAL CONDITION )

GEN. O&gA%//‘FY Mpu Dpu Epu ‘grgg) Pm pu
1 00 | 75350 | 10 | rooos | 0013 | .332
2 15 1130 120 | 10410 | 030 | 100
3 40 2260 | 25 | 1900 | 970 | 300
4 30 1508 66 | romo| o772 | 200




_ Table (2.5)
j . - (DURING FAULT ADMITTANCES)

/ ! 2 3 4
™ =
1]-3.582 | 0.546 | . 00 0.303 |. 1} 1.456
21 0.546 | - .871 0.0 0.062 2l 0.027
Bjj— Gif e
0.0 0.0 2.0 0.0 31 00
4} 0.303 0.062 0.6 |-1.216 4 0.22J
Table (2.6)
N (AFTER FAULT ADMITTANCES)
i 7 2 3 4
| -2.30 | 664 656 751 1| 864
2| 664 .880 Jg21 062 2| 029
Bij— ’ Sl C
2| 656 J21 ~.868 062 31 .104
4} 751 .062 062 |-.984 41 225
. —
Table (2.7)
(Prob I(c))
ITER. | ts (rad)| 100 Py ¢
! 130 -2 _.84 70.8
2 135 | -.046 | -.81 64.8
3 140 -1 -.76 58.0
4 145 ~.12 - .68 47.0
5 155 ~.045 -.39 - 15.4

22



The cost index (2.29) is a measure of -the mean square frequency and rotor

angle deviation. Augmenting (2.1) by §n+ (to) = 0, it is

1 - forr Foe

seen that the cost index is ¢ = J = Xn+l(tf)' The costate p has to be aug-
o . ‘ L _ . ‘
@ented by Pi1 and the Hamiltonian bgcomes H=rp'F + Pn+1fn+lf It follows
from (2.11) and (2.12) that
. N ' '
= - I e ! — — — =
) Hx kilf kxp[h(t tk—l) h(t tk)] + f(n+l)x’ p(tf) 0
o (2.30)
. -93H 3¢
p = = O 'p (t ) = = -1
ntl 8xn+l nt+l " f 8xn+l

The algorithm remains otherwise unchanged. In (2.29) the choice W, = 100,

1

W2 = lQ is made.

Consider problem TI(a). The braking resistor has a vaiue of 5.55
(pu), equal to the local load resistance (dotted lines in TFig. (2.1)). The
braking resistor is applied at t = to and the circuit breaker is assumea
to reclose after 12 cycles. The values of the o vector for various stages
‘are given in Tablg (2.1). The results obtained by the algorithm.for ty = 90
cycles (from ts) are shown in Table.(2.8).' The éwing curves for the caées
" (a) no braking resistor, (b) a braking resistor applied for the optimum time
interval of 18.cyc1es, are shown in Fig. (2.5). |

In problem II(b) the cifcuit breaker - is assumed to reclose after
9 cycles. The results are given in Table (2.9). The optimum time interval
is 18 cycles.

In problem II(c)-the braking resistor has a value of 0.2 (pu) and
is applied to méchine no. 3 at the instant tS when the circuit breaker opens

’

"~ (155 radians from to). The results obtained from the proposed algorithm-

23
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-1

~-~ Table (2.8)
(Prob I{a))

ITER. | tp(sec)| ¢
! 0657 | 248.7
2 0883 | 247.9
3 1 247.6
¢ (ho BR. ) =373.3

Fig. (2.5) - (Prob II(a) )

Table (2.9)
(Prob (b))

ITER. | t,(sec) ]
] 0667 | 233.7
2. | 0833 | 2315
3 J 229.8
4 1167 | 2286
5 133 227.9
6 15 227.7

¢ (no B.R) =354.1

TIME (cycles)

24



are given in Table (2.10). The optimum time interval is 80 radians. The
swing curves for the cases (a) no braking resistor, (b) braking resisfor
switched off after 200 radians, are shown in Fig. (2.6).

Note that the use of braking resistor damps out the first swing
during the first half second (30 cycles Fig. (2.5)). It is possible to
reapply the braking resistor and diséonnect it again for further damping
in the subsequent swings. This, however would be uneconomical since a
braking resistor of higher rating would be required.

The subsequent swings can be damped out by using governor and/or
voltage regulator controls. In the previous examples, those controls
were totally neglected, and therefore there is no damping effect after
the first swing. It is the purpose of next Chapter to investigate the

governor control for large signal model of interconnected power plants.

25
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d(Rad.)

Table (2.10)
(Prob. IT (c})

-2
ITER | t,(rad) [107%p
H 30 462
2 50 430
3 80 427

-2
10 (o BR)=643.2

-1

-2

-3}

L

Fig. (2.6) — (Prob.I(c})
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3. TWO-LEVEL CONTROL OF INTERCONNECTED POWER PLANTS

3.1 Intréduction

Sevére disturbances, causéd by éuddéh changes in the electrical
network, can be counteractéa by diécontiﬁUOué control as explained in
Chapter 2; However; for optimum syétém performance; discontinuoﬁs controls
should be augmentéd by continucus or modulated céntrols naméiy (a)
voltage regulator control and (b) governof control.

By representing the dynamics of a power system by a linear model
and choosing a quadratic cost index, the above control probléms (a) and (b)-
can be formulated as the well known infinite-time linear state regulator
problem of optimal control théoryzA. The state regulator control problem
objective 1s to control the system so that the system states are kept small
in some sense. The solution of this problem leads to an optimal controller
which is a linear function of the states of the éystem.

Application of the solution of the linear state regulator problem
to the optimum control of machine excitation’in a one-machine infinite bus
system ié‘giVen in reference 11. The optimum control was derived from a
linear low-order model and was teéted on a non-linear high order model
representation for one machine and multimaﬁhine systems. Even though this
control was found effective in damping oséillations, no attempt was made to
find the optimal control for a large signal model of interconnected machines.

The problem of governor control of the érime mover for a one-
macﬁine infinite bus system can be treatea in a similar ﬁannerlo. The
regulator problem splution has also been suggested for the Loéd—Frequency

. : . %
Control-problemla, and was applied to two interconnected similar power plants .

Interconnected areas were considered in reference 14. Here, it is assumed
that each area has only one plant.



Because of the coupling in the model representing the plants, the optimum
control for each plant is a linear combination of its own states-and the
states of the other plaﬁté. In referencé'14; for the é%émple used, thé gain
éssociated with the states of thé other plant was very small and was neglegted.
" That is, each plant uses only local state information and consequently is
controlled in a suboptimal fashion. This.suboptimal golution may be

adequate for small-signal model as in the eiample used, but it cannot be
adopted as a general policy. This fact ié shown in the present study of two

25’26. It was found that a

typical interconnected steam and hydro plants
local suboptimal control based on a linearized system model can result in
system instability‘ Consequently, coupling between plants and system non-
‘linearities cannot always be neglected and a good suboptimum control requires
that each plant have information available about the states of other plants.
Implementation of such control would be expensive due to the high cost of
continuous communication required between the plants.

The purpose of this Chapter ié to examine the posdibility of
implemenping a simpler control for a large—signal model éf interconnected
power plants., It will be assumed that the generator voltages are held
constant by the voltage regulator controls. Ekcitation control,.however,
can be considered without much difficulty.

For large deviations, -the dynamics of the system can be represented
by a set of first order non-linear differential eéuations. By inspecting
‘the system dynamics it is found to belong to a class of non-linear systems
for which a multi-levei suboptimal control can be developed. The concept
of multi-level control27 is attractive sincé it appears applicable to man&

complex systems such as power systemns.
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A two-level govenor control §f a power system is proposed. The
'firsﬁ level consists of ihdependent linéar Subéystems (plants); which have
local feedback controllers; .The éecond—lévél controller co-ordinates the
subsystems by an intervention open-loop control. The intervention control
is used to compensate for a decrease in system performance due to neglecting
interaction and non?lineaiities at the local level.

For ease in reél—time on-line implementation,a suboptimal solution
to the optimum intervention control is deterﬁined as a function of initial
conditions and real time. The scheme is simple, fastiand requires a

comparatively small amount of computer memory.

3.2"Large‘Signal‘Model'for'Interéonnected‘Power'Plants

A block diagram representation for a steam and a hydro plant 14,25,26

is shown in Fig. (3.1) and Fig. (3.2) respectively. The state variables
and controls for the ith plant are defined as follows: (there are 4 states

for the steam plant and 5 states for the hydro plant)

X4 A Adi = voltage angle deviation in radians

Xy. 4 Awi’= angular frequency deviation in rad/sec.

Xy £ APgi = deviatiop in mechanicalvpower==deviation in generated power,
in pu.power (assuming-that the time constant of the generator
is négligiblé in comparison to governor and turbine time constants,
also the two plants are assumed of equal capacity).

‘x&i 4 Axéil deviation in governor position.in pu pOWef (steam plant)

xz}i—é Agi deviation in gate position in pu power (hydro~p1ant)
Xgy 4 Axgi deviation in governor position in pu power (hydro plant)
u, é‘AP , speed changer position in pu power



E;
ATl A T el !
Y; STgivd fx,. ST+l Mio+Gi Ix,,
GOVERNOR TURBINE GENERATOR

t

Tin sin (6id;)

Fig. (3.1) Steam plant block diagfam

I
ar;
110l 1 |29 j-p;s 41 _f(’@_q ] dwilT
STt Xxg; [STtitl [Xy4; |50 5+7 Xy, MS+6; | x; LS
o GENERATOR
GOVERNOR TURBINE sp ENE .
T,'j sin (d','-Jj)
Tin sin(dj~dp)

Fig. (3.2) Hydro plant block diagram
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AP, deViati&n in tie-line.flows in .pu power
Ptsij = scheduled tie-line power between the ith and jth plant.

The dynamics of the hydro plant aredifferent from that of the
steam plant because of water inertia. In the hydro plant, when the gates
open, the turbine torque tends to decrease momentarily and then increases.

The extra block in Fig. (3.2) represents this situation.

The tie-line flows are given by

Pti = 5): .Pt_:ij A (3.1)
J#i
where
= . _ A .

Ptij = 'vi| |vj||Yij|81n(Gi Gj) Tij’s1n 6ij : (3.2)

where

A

Ty = |vi||vj||Yijl | (3.3)

is assumed constant, where

s, &
1]

(6i—éj) ' , (3.4)
and where v, = Ivi| eJ6i is the wvoltage at the ith plant bus bar in pu.
Yij is the line admittance between the ith and the jth plant

(line resistance is neglected). The expression for the tie line deviation

APti is derived by considering a deviation Aaij from the nominal ng:

) ' o :
= T 3 . .
Pti + APti j. Tij 81n(6ij+AGij) (3.5)
| it
since
P° = § P ., = 3 T, sincso, . ' © (3.6)
ti . tsi] . 1] 1]
3 J
Lt j#
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It follows that

AP, = I T,,[sind°, (cosAs, ,~13+coss®,sinks, ] (3.7)
ti ij ij ij ij ij

i
J#
Equation (3.7) can be decomposed into a linear local term which is a function

of Aéi only, and non-linear coupling terms:

0 , 0 _
" ] ijC]Aéi + jz [Tijs(cosASij 1)

j#t J#i

o) . . _ '
+ Tijc<81nA6ij - Aﬁi)] ‘ , _ (3.8)

where

3
it

. T,., cos 8?‘,
ijc ij ij

==
i

°, T.. sin 6°,, and
ijs ij ij

>

. AS, = AS,.
1] i J

No unique method exists for decomposing the system into linear
subsystems for which a feedback control is used and then accounting for

subsystem interaction by an open-loop intervention control. For the inter-

connected plants discussed here, the decomposition (3.8) proved successful.

This decomposition results in the local voltage angle deviation being

used in a local feedback control.

3.3 System Dyriamics In ‘State Variable Form

The dynamics of each plant can be represented in the form:
X, = + + Xy oon .9
Xi AiXi BiUi Fi(xl’XZ’ XN) | _ (3.9)
where
Xi is a vector of state wvariables of dimension n, (for the model

used,ni=4 and 5 for steam and hydro plants, respectively )-



U is a vector of control variables of dimension mi<mi=l for

[

both steam and hydro plants)-

F, is a vector function of dimension n, which contains the -

|

coupling and non-linear terms.

Ai’Bi are time invariant matrices of appropriate dimensions.

The matrices Ai’ Bi and the vector Fi are defined for each steam and hydro

plant as follows:

Steam Plant

- -
0 1 0 0
. o '
[jz Tijc]/Mi -Gi/Mi 1/Mi 0
j#i
a4
0 0 -1/Tti J./Tti
0 —Ei/Tgi 0 —1/Tgi _
e . _J
B 200 0 o0 1/T.]
i gi
'r—
0 -
1 o o .
"N .Z [Tijs(cosAGij l)+TijC(slnAGij—A6i)]
A 1]
F, = j#i




" Hydro Plant

= “1
0 1 0 0 0
: Z.m0
- M, 0 0
[j Tijc]/Mi Gi/Mi 1/ i
J#
s b 0 0 -2/p,  (2/p;H2/T ) -2/T
l .
0 0 0 —l/Tti l/Tti
- ' - -1/T
L 0 Ei/Tgi 0 0 / gi
'm0 o o o 1/7.]
i gi
-
0
1 o ~1347° - -AS
- Mi jZ .[Tijs<COSAéij 1) Tijc<31nAﬁij i>
o J#i
i 0 o
0 : -
0 .

For N interconnedtedvplants the dynamics of the system can be
written as a composite state Vectbr équation of the form
X = KX+ BU + FOO, X(£) = X_ | (3.10)
where the matrices A and B are known block diagonal time invariant matrices

so that, for example

[ 0 --0

A= A2 (3.11)

Y

The composite state vector X and the composite control vector U

are composed of the state vectors Xi and the control vector Ui’ i=1, 2,...,N,

respectively so that

X' = (X],Xp,...,%)) and U' =(Uf, Uy eves UY).
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(the prime is used to denote transpose of a vector or matrix).. Similarly

F' ;(F', Fé,...,F

It should be pointed out here that the control vector could be

0.
augmented to includé é*citation coﬁtroi ahd in this case we would have a
two-dimensional control vector fér eath plant. The system dynamics can
still be formulatéd in the general form (3;10): E%citation control has been
shown to give damping effect on systeﬁ osciliationl2;‘ However, to clearly
~1llustrate the proposed control, only govérnor control is considered.

The control problem is the following. It is required to find a
control vector U such that the deviations in the states resulting frbﬁ a
system disturbance is minimized without e%cessiVe control effort. The
problem can be formulated by introducing a cost index

1 e
J =3 J{ (X'0QX + U'RU)dt (3.12)
t

o
where Q and R are block diagonal weighting matrices (Q isa positive or
semipositive definite matrik, R is a positiﬁe definite matrix), and chbosing
U so that J is a minimum. The state X is cubject to the dynamical constraint

(3.10).

3.4 Two-Level Structure of the Control Problem

A two-level structure is chosen. It is assumed that the structure
specifies'a feedback control of the form
U, = -C,X, (3.13)
_ i i
for the local controllers,_and that the second-level controller co-ordinates

the subsystems (plants) by an intervention control V. The resultant composite

control is



U e -CX4 Y o  Gab
where C is a ccmpoéité ﬁlock diagonal métri# of thé’form (3.11) composed
from the Ci’ iél; 2; .;; N, |
The firét lével of-thé control is obtained by neglecting the
coupling fuﬁction; F(X), in (3;10); The problém théﬁ reAuces to the well
known linear control problem with quadratic cost iﬁde%24; The optimum controi
can be obtained-as a feedback control .given by |

1

U=-RB'RX = -CX | (3.15)

where K is the solution of the matrix Ricatti equation

K = -KA - A'K + KSK -~ Q, K(tf) =0 | (3.16)
where |

s & pr7lp: . (3.17)
Since A, B, Q and R are block diagonal mafriceé, the solution for K is a

block -diagonal matrix (from (3.16) and (3.17)). The solution for -each |

"block Ki is obtained by solving

R, = <K_A, - A'K, + K.S.K, - Q, , K, (t,) =0,
i ii i1 iii i i f (3.18)
s, &5 r71p » i=1,2,...N
i i1 i
For A, B, Qahd R time invariant, let KS be the steady state
solution of (3.16):
0=-KA-A'K +KSK -Q. (3.19)
s s s s :
An easily implemented control results if ,
C = R_lB'KS | O (3.20)

is used as a suboptimal local gain matrix. The choice (3.20) is optimﬁm
if te = in (3.12) and it often gives an excellent suboptimal control.

There is an increase in. the cost index associated with the subsystem
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interaction and system non—lingarities which haye been neglgcted in the
suboptimal choice (3.20). .To'account for these effécﬁs a sécond—%eVel
control of the form
v = R 'B'h | (3.21)
is intro&ucea; To determine the optimum h; the original problem must be
reformulated. Substituting (3.14),(3.20),and (3;21) into (3.10) gives
X - (A—SKS)X + F + Sh; X(0) =-x0 (3.22)
U = KB (K X+h) (3.23)
The problem is to choose the intervention control h so that the cost indéx
(3.12) is a minimum subject to the-dynamical constrainf (3.22). The Hamiltonian

for this problem is

H = p'[(A-SK )X + F + Sh] - -;- X' QX (3.24)

. i (3.24)
--5_(-st+h) s(—KSx+h)

Applying the necessary conditions of optimal control theory yields

= -H = (A T;l N i v g
P Hx (A Sst_X) p + QX KSS( RSX+h) .

(3.25)
p(tf) =0
0 =H =.S(p+KsX—h) o '(3.26)
where 3 -
o b COF T b rﬁ_{—'
X 9%y 80Xy | h ahl
(3.27)
:9'; .sFﬁ SH
| Xy Ky | | - 8hy |
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Equations (3.22), (3.25) énd (3.26) define a two-point bopndaxy~
value problem whésé fsoiution gives the optimum iﬁte.r\)ention control h. "
Since the equationé are nbn«liﬁéar; iterative methods aré required to'bﬁtain
the SOIution; Consequéntly; éincé oﬁ—line implementation is desired,.:xk
optimal control is not feasible andva good suboptimai control policy must
be determined:

If h - h = 0, then local control only is applied. TLet X, p be
the solution of (3.22) and (3;25) for this control. A fundamental result
of optimal controi theory ig that an incremental control §h results in an

incremental cost index,given by

te 4
6J = - ﬁﬁ sh dt (3.28)
t
(o]
where
B = s+ KSX) . | (3.29)

. The intervention control is to be chosen so that system performaﬁce is
improved. That is,so that &§J, the incremental cost index, is decreased.
Since S is positive definite,it is seen from (3.28) and (3.29) that

sh = 2(p + K_X), T (8.30)

“where 2> 0 is a step size parameter, accomplisheé ghis objéctive. In
control theory terminology (3.30) is a steepest descent inérement in function
space.

For compﬁtational reasons it is convenient to derive an equatién

for’ _ : ' R
p+HKE - | N O



With the aid of (3.19), (3.22), (3.25) and 63.31) it is\sgen that

§ = —(A-SK + ) qHER BHKCF L ) = K X(ep) (3.32)
(the terms with an OVerbaf;aré evéluated fo‘the hominal(i; which is the
solution of (3;22) for h ; h - 0):

The algorithm for finding h is simple one. Equation (3.22) is
integrated in the forward direction; taking h = 0; Equation (3.32) is then
integrated in the backward direction to find q. The intervention control is
then h = h + 6h = 2q. The optimum value 20 of.waﬁich minimizes J can be
found by a simple difect search procedure. The details of this algorithm.
is given in Section (3.6.2). However, on~line implementation.of this
algorithm for computing h(t) is not practical. The next section considers

this problem.

"3.5 'On-Liné Control Implementation

The intervention gontrol h(t) is a funétion of time and initial
conditions of‘all the subsystems (see (3.22) and (3.32)). Suppose that this
function is known. To'generate h(t), initial conditions must be.transmitted
‘to the second level. After generating h(t), the second-level coordinator
continuously transmits the_compongnts of h(t) back to the subsystems.

A more feasible way of implementing this control is to transmit
a minimum amount of information between the local controllers and the
central co-ordinator. In prder for this to be accomplished,h(t) must be
approkiméted in the form ‘

h, () ?ﬁi = gi<di<xo)',’t> (3.33)

where g, is a non-linear function of time with unknown coefficients. Each
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coefficxent is non—llnear functlon of initial condltlons.. $he cogffipign;s
are chosen such that llh (t) - 1, [I is minimum. A suitable élgebraic
form for g; and o, is given in Sectlon (3 6 3) and Appendlx IIl‘, respectlvely

On-line 1mplementat10n would be as follows. Each subsystem is
-ilocally controlled by a feedback control U = —CiXi At the time £'= t, of
~-a system d1sturbance the 1n1t1a1 condltlons of each subsystem are.transmltted
- to ‘the central co-ordinator which generates the coefficients for (3.33).

The intervention control hi(t) is generated locally by a function génerator
-after recei&ing the coefficients from the central co-ordhator (see Fig.
(3.3)).

In implementiﬁg (3.33),prelimiﬁary off-line computations are
required to determine the unknown coefficients which are stored by the central
co-ordinator. On-line control requires relatively few multiﬁlications and
additions at the central co-ordinator level (after receiving Xo from the
-subsystems) to generate the coefficients.

-As will be shown later, each di_is a vector. For the system under
‘investigation a dimension of four for each vector oy Was found adequate

o~

-for generating the his.

3.6 Off-Line Control Design

_Implementing (3.23) and (3.33), the control design follows three
steps:a) design of the feedback control ui.= -CiX,b) design of the inter-
svention control h(t), and c) design of the approximate intervention control

-ﬁ. The design details for each of the three steps follow.

4C
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Fig. (3.3) On-Line control implementation
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3.6.1 Design of the Teedback Control (Ui =‘—Ci§il

'Synthésizing.this control re@hires éolutions of (3.19) to
obtain Ksi‘ Since.coupliﬁg is ﬁeéiécﬁéd af this 1evél; the solution
reduces to solving (3:19) for.eéch pléﬁt separately: ‘One method of
solving (3.19) is by the NewtOn—Raphson téchniqUe28: For fast -convergence,
. 5 v

the initial guess for Ksi is obtained by integrating (3.18) for a short

. ' . e M
period (e.g. 10 seconds). Ci is given by Ci = Ri BiKsi'

3.6.2 'Design of the Tntérvention “Coritrol h(t) p

The open loop intervention control h(t) depends on the initial
conditions .Given X s the optimum value h*(t) is obtained as follows:

(1) Integrate (3.22) forward from t=t0 to t=t_, with h=h=0 * The

f
trajectory obtained is the nominal trajectory X(t). Evaluate the final
condition of (3.32), q(t;) = Ksi(tf).

(2) Integrate (3.32) backward from t=t, to t=t_ (with X(t)=§(t))

f
‘and store q(t).

(3) Choose é step size 2> 0,and with h(t) = 2q(t) evaluate the
cost indek J.

(4) Find the optimum step £ = 20 at which J is minimum. V(This

ig easily done by incrementing 2).

(5) The optimum intervention control is chosen to be h* = Qoq(t).

Note that only some components of h(t) (and consequently q(f)) are
to be stored. For one control component in each plant, for example, only
one component of h(t) would be required to be stored since the other components

are multipled by zeros (see (3.17) for S and (3.22) for Sh). Therefore, for



the case of two interconnected power'Plants having the model of Section

(3.2), only two cémponents for hiCt) (1 = 1,2) are required.

As pointéd out b.efo'ré:,f-':- the previous algorithm for h(t) cannot-
be implemented for.on;liné control of thé pé@er éystem under investigation.
However; by appro%imatiﬁg h(t) by é suitablé fﬁnction of known algebraié
form, on-line implemeﬁtétion is feasible. Suitable functions are poly-
nomials or sblines.

By plotting the intérVention controls as a function of time
for each set of initial conditions, k, it was noticed that a cubic
polynomial in t could be fitted to each h?(t) (the superscriptvk denotes
that hi(t) is evaluated for the set of initial conditions k). Consider the
case of approximating one intervention control, for example hl(t) of the
first plant. The same procedure is followed for the intervention
controls of the other plants.

(1) Let h?(t) be approximated by a cubic polynomial in t:

‘ 4
hli(t) = 5 o™l
m=1

(3.34)

A curve-fitting routine based on a least-squares approach can be employed
to find the coefficients dﬁ. .Thisvis done for different sets of initial
conditions k=1,2,...M. |

(2) 1In general,the coefficients di are functions of the initial
conditions. Consider the'mib_coefficient o Let-di'be approximafed by

vk
Q
m

- dm(X§> | (3.35)
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where am(XE) is a specified function of XE with unknown coefficients. It is

required to find the coefficients in am(xo) such that

T
m m

s m=1,2,3,4 5 k=1,2,...M (3.36)

is minimum for all k. The choice of the function (3;35) is arbitrary.
A choice of (3.35) suitable for the power éystéﬁ studied is given in
Appendix III,

For on-line implementation the coefficients (3.35) are stored by
the central co-ordinator. On receiving the initial conditions from each

subsystem, the central co-ordinator computes four parameters o and

1 %20 %3
o, for each plant and transmits them to the different subsystems. Each

~
subsystem then generatesits own intervention control hi'

_3.7' Application

An ekample of .an . interconnected steam and hydro plant 25 is
considered. Let the subscripts 1 and 2 denote the steam and hydro plants,
respectively. |

The first sign of impending trouble in a power system disturbed
by loss of load is acceleration; The speed deviation (time integral of
acceleration) -appears later, and Fhe angular change (integral of speed)
still later (see Fig. (3.9)). Because of the relatively long time
constants associated with fhe governor and turbine, their outputs do not>
change instantaneously and can be assumed constant during the very short
period following a disturbance. Consequently, detection of angular
acceleration is the most promising way of quickly initiating control actionz.

In this application,the disturbance is assumed to be a speed
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deviation from nominal at t=t6’ all other states are assumed zero. The cost

inde% ig chosen as : | 20
1 o2 2 2 2 2 2
J = 0} (Aél + Wy +A62 +Ao)2 + Ul'+ Uz)dt
0
That is
Q, = |1 . Q. =11 , R =1; R, =1.
1 1 2 1 _ 1 2
0 0
0 0
J 0
The choice te = %0 seconds is made since the system séttling time is

around 30 seconds.
The different parameters for each plant represented by Fig. (3.1)

and Fig. (3.2) are as follow325

Ml = ‘04i G1=.O%, TFl = O'Si ?gl = O.Sf ?1 = ,03 N

M2_= a.03, G2 = .008,vD2 = 0.5, Tt2 = 0.5, ng = 1,2, E2 = ,013
, _ O

le—0.0S ’612— 1

The local feedback controls for each plant is obtained as explained in

Section (3.6.1) and afé given by:

Il

Y

U2

-0.336 ASl—.607 Awl—.416 APg1—1.6 AXgl

.515A62—l.l6Am2~11.5 APg2~4116Ag2—9.22 Ang

For the design of the intervention éontrol,9 sets of speed
deviations are cohsidered; Three different sets forkeach of the following
cases afe faken;

(a) Disturbance at plant (1) only.

(b) Disturbance at plant (2) only.

(c) Disturbance at both plants simultaneously.

Following the design procedure of Section (3.6.3), it was noticed that
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h*(t) is almost zero after 10 secogds. Consequently, the fitting routine for
(3.39) was given data up to 10 seconds only. Therefore, the generation
of h at the local level is done for 10 seconds after which intervention
control is removed. The coefficients to be stored at the central co-ordinator
which are used for generating h (see Appendix III) are given in Table (3.1).
For the 9 sets of initial conditions?a comparisonbis made between
the cost function J for the cases (a) using local controi only (Ja);
(b) using local plus interyention control h*(t), (Jb);and (c) using local
plus intervention control %, (JC). The results are given in Table (3.2).
To sﬁow the effectiveness of on-line generation of ﬁ(t), a

different set (wlo=5, w O=O) was tested (Test, Table (3.1)). With local

2

control only the system was unstable. By introducing the intervention

control B the system was stabilized. Figure (3.5) shows these results.
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Fig. (3.4) Angle and angular speed as a function of time for a
step change of angular acceleration

Table (3.1)

INITIAL
SET NO.| CONDITIONS I I J,
: Wig, Wap
1 1,0 446 360 | 0.364
2 2,0 1957 1.470 | 1.487
k] 3,0 6.233 | 3.427 | 360
4 0, - 1.33 1.625 1.435 | 1453
5 0, -2.667 6.191 5.610 | 5619
6 0,-4 13.95 | 12.738 | 12.785
7 1, -1.33 1.5 1.45 1. 459
P 2, -2.667 5.9 5.650 | 5.720
9 3, -4 13.73 12.3 13.35
a 14.84
TEST 5,0 10.4 x 10 .




Table (3.2)

m ﬂmo ﬂml /3m2 ﬁmi’ ﬁmd /3m5
LS
3 r -.996 | ~42.5 | -46.0 | -2.78 | =27 | -2.9
-}
@ 2 -2.70 | 228 8.82 7.89 0.9 4.79.
E 2 0.55 0.77 | -0.66 | -1.99 | -1.50 | -108
o 4 -0.03 [ -0.07 | ~0.02 | 123 0.01 07
5 ! 18.0 | -91.7 | 688 | =319 | -1.91 | -166
3 2 | -8 06 | -296 | -5.77 | -0.88 | 2.64
Q 3 2.26 | -722| 6.87 1.91 0.26 | 0.1
§ 4 -0.134 | -0.418 | _0.42 | -0.136| -0.02 | ~.022
!
/
2.5( /
' 7
/7
200 /
- ,Ad’2 (a)
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Fig. (3.5) Angular and tie-line deviations for wlb = 5, Wy = 0 with

local control only, (b) local plus intervention controls.
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4, OPTIMUM LOAD-FREQUENCY CONTINUOUS CONTROL WITH UNKNOWN

DETERMINISTIC POWER DEMAND ’ !

4,1 Introduction

Power system disturbances caused by load-fluctuations result in
changes.in tie-line real power and system frequency, necessitating some
form of load-frequency control. The form of Load-Frequency Control (LFC)
preséntly in use is based on an error signal which is a linear combination
of the net intérchange and frequency errors. A simple integral-type control
action drives the error signals to zero.

Modern optimal confrol theory has led to the development of design
fechniques which can result in significant improvement in the control of
high-order systems. The applications of these techniques to improve LFC is

14517,25,32' Elgerd and Fosha14

currently receiving increasing attention
applied the solution of the state-regulator problem to the LFC problem. This
approach, however, requires.khowledge of the new steady-state operating point.
Consequently, the control is not a feasible optimum control, since the
information required for its implementation is not évailable.

Feasible optimum load-frequency control requires the identification
of the incremental power demand in order to optimaily compensate for load-
frequency deviations. This fact was regpgnized in reference i7 where a
modified Kalman filter was introduced to perform the identification. The
approach suggested in 17 has, however, several shortcomings. The assumption‘
is made that the increpental tie-line power APt is a known (ﬁhrough measure-

ments) function of time. Actually, APt depends on the system state and this

must be accounted for in the optimal control formulation of the LFC problem.
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A rather serious shortcoming in 17 is the manner in which the Kalman filter
is used.

The Kalman filtgr outpﬁt gives an estimate X of a state X.
Normally, it is the filter output X which is used for implementing control
action.‘ In 17 however, the filter input é, is used instead of the filter
output, Invariably, the filter is realized in a discrete form on a digitai
computer. The numerical generation of £ from sampled data could introduce
highly undesirable noise problems. The unconventional requirement for é
seems to arise out of the manner in which integral control action is
introduced in the problem formulation;

In the method presented here, X is used to implement control
action so that the Kalman filter can- be used in.itg conventional form.
However, there is a practical difficulty associated with implementing a
Kalman filter. Detailed statistical data‘ﬂxmf plant and measurement noise
is required and suchvdata is generally not available‘fo? a power system.
Consequently, instead of a Kalman filter, two alternative methods are
suggested for demand idenfification. The first method is extremely simple
and identifies incremental demand by the differential approximation techni-
que. The second method is based on using a Luenberger-type observer to
.perform the identification of thé demand and to estimate the unmeasured
states. The adyantage of these alternative methods is that they do not

require data about noise statistics.

4,2 Problem Formulation

A typical model of two interconnected power areas is shown in

f)
Fig. (4.1)14’17’25"6’32. The controlling station in the first and second

area is taken to be a steam-plant and a hydro-plant, respectively.
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Flg (4.1) Block diagram of two interconnected steam and hydro areas.
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In state variable form the i-~th controlling plant dynamicg in an N-inter-

connected system has the form

X . =A,x ,+B,u, +7T, AP
pi ipi i i

A A VR (8
di IJ( 3> 4.1)

where for a steam-plant the state vector is (prime denotes transposition)
x' = [AP Aw AP AX 4.2)
> (4P, . g] (
and for hydro-plant the state vector is
A .
x' = [AP Aw AP A AX 4.3)
p - P g 48 0%l (

The matrices in (4.1), for a steam-controlling plant are given by: (The

matrices for a hydro plant have a similar structure).

0 r  T°, 0 0 ]
. ijc
j
j#i
A N 6y /My /M 0 (4.4)
0 0 —1/Tti 1/Tti
0 —Ei/;gi 0 -1/Tgi
v A ’ . '
Bj = [0 . 0 0 l/Tgi] | (4.5)
|A‘ ' ' : .
ry = [0 —1/Mi 0 0] (4.6)
r, & [-1°, 0 0 0] : (4.7)
ij ije

where the terms in (4.2)-(4.7) are as defined in Section (3.2).
To avoid unnecessary complications in notation,the coupling

terms between the areas are set equal toc zero in the initial problem formulation



and the subscript i is dropped (non-zero coupling is considered in the
example). Equation (4.1) then takes the form

%x = Ax + Bu-+ TAP (4.8)
P P d

To obtain a feasible control, the LFC problem must be considered
to be composed of two separate problems: (1)  Problem of identifying the
unknown power demand APd. (2) Problem of optimally controlling the dyﬁamic
response so that the generation becomes gqual.to the demand at the specified
frequency.

Consider the second of the above problems and assume for the
momgnt that APd is a known constant. The terminal conditions to be satisfied
are*

AP (=) = 0, Auw(=) =0, APg(w) - AP

= 0 and AXg(w) - AP, =0 (4.9)

d d

To formulate an optimal control problem, a change of variables is introduced:

~

% = Xp - pAPd _ (4.10)
where | _
20 o 1 . (4.11)
Substituting (4.10) into (4.8) (and setting Aﬁd to zero) yields;
K= AR+ But (Ap + TIAP, (4.12)
The terminal condition (4.9) requires thaf
f(e) = 0 = i) (4.13)
It is seen from (4.11) and the definition of the system matrices that
Ap +‘P = -B (4.14)

An essential characteristic of the load-frequency control is the
requirement for an integral-type operation on the error signal. To introduce
this control requirement into the formulation of an optimal control problem

necessitates augmenting (4.12) by

*
See Appendix I for LFC criteria
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~

A
xn+1(t) = g(t) - APd (4f15)
~ so that , '
' X, =u . (4.16)
where nfl. . , .
e d iy | (4.17)
The augmented system is therefore (see (4.14))
- J X = AX + B u (4.18)
where .
~ .1 x . A B L 0
x & , Al and B & (4.19)
X 41 0 O | 1
The cost index is taken to have the quadratic form
1 ® P
"J =3 j. (X'QX + u'Ru)dt : - (4.20)
0

where Q and R are positive definite matrices.
The optimal control for the problem defined by (4.18) and (4.20)

is given by ;.; Cvi ' ©(4.21)

where :
) B
c' = [s sn+1] . (4.22)

is a constant vector which can be found by solving a steady-state Riccati
equation (see Section 3.6.1).

In terms of the original state variables the control is given by
(see (4.10), (4.15) and (4.19))

oy = ! _A‘v
u=-s xp + Sn+l? (s'p + sn+l)APd (4.23)

Awhere u(0) is arbitrarily taken Lo be zero. The control (4.23) is similar

~ to the conventional proportional plus integral control which is presently
used for load-frequency control. It is seen, howe&er, that the control (4.23)
is feasible only if APd can be identified. The next Section discusses the

demand identifier.

4.3 Demand Identifier - Differential Approximation

To implement the control given by (4.23) requires the identification
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of the parameter AP A simple identifier for AP, can be constructed by

d* d

using the method of differential approximation23.
Let TO = t, -t be a fixed identification period which starts at

k "k

time t and terminates at time t

k=1 Kk The sequence (to, tys tos ...) defines

a set of identification intervals. In actual power systems, APd is constant
or slowly varying. Consequently, a reasonable approximation for APd in
(4.23) is to use the demand identified during the previous period. That is,
by taking
= - (4,
APd APd(k 1) _ o (L.24)

for the dinterval t, <'t g

X , where APd(k—l) is determined by integréting

Ykl
the power equilibrium.equation (see Fig. (4.1)).
APg - APd = MAw + GAw + APt (4.25)

over the previous interval tep TS B This yields

AP 4 (k-1) = %—O[-M(Aw(tk) - dwty_;)) .
£ | (4.26)
+J (—GAw(t)+APg(t)'—APt(t))dt]
tk-l

The quantities on the right-hand side of (4.26) are determined by measure-
ments on the system. |

The estimate given by (4.26) could be improved by averaging over
several identification intervals. The type of averaging andvthe nuﬁber of
intervals used would depend on the kind of load'distuybance.

The structure of the composite plant and controller is illustrated

in Fig. (4.2). 1In load-frequency control there is ﬁhe problem of the

controller following rapidly changing random-load disturbances. This is



inefficient and contributes to unncessary wear in the controller mechanism.
R05519 treated.thiévproblem and suggesfed the use of an Error Adaptive
Control Computer (EACC). The EACC monitors the error signals and

computes the probability that load-frequency control action is required.
Control acﬁion is initiated only when_the computed probability éxceeds a
preset threshold. As indicated in Fig. (4.2), an EACC can be used to aug-

ment proposed load-frequency control given by (4.23) and (4.26).

4,4 Applications

The proposed load-frequency contreller is tested on two inter-
~ connected steam and hydro-plants (Fig. (4.1)). The parameter values used
are as given in Section (3.7)

Due to the coupling between the plants, the optimum feedback

control is -a function of -all the states. .The complexity .of .such.a controller

makes it essential to investigate various forms of suboptimum controllers.
Two different suboptimum controllers are considered, and they are compared
to the optimum control.

The optimum feedback. control has the form

1T =

U = [‘301 .ﬁoz], (4.27)
- = ot - -

Uy SOlle + 8012X2’ (4.28)
- = o' ¥ -

Uy, SOZle + 5022X2, ,(4'29)

where X1 and X2 are the state vectors (in the form (4.19)) for the first
and second plant, respectively. The gain vectors SOjk (i, k=1, 2) are .

. ) , . , 24
solutions of a steady-state matrix Riccatl equation™ .

By neglecting the coupling between the plants, an optimum control
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of the form

w A - . - :

u = [url urz], | (4.30)
~ _ ' ~
url = Srllxl, (4.31)
~ - ' -~ .
U, Sr22X2’ | (4.32)

is obtained for each plant. ‘The control (4.30) is suboptimum for the
coupled system.
By neglecting the coupling terms in the optimum control (4.27),

a suboptimum control of the form

~ A L ~ '
t o
ul = [uSl usZ]’ . (4.33)
Y1 = So11¥1 (4.34)
~ _ ' ~
Ugg = 802057 ‘ (4.35)

is obtained. The type of'suboptimal control given b& (4.34) and (4.35)
is discussed in reference 33.

" Example (4.1) The Q and R matrices in (4.20) are chosen to be

the unit matrices and the assumed demands are taken to be slowly time-

varying‘and'giVen by

0.1 sin(nt/20) 0 <t g 10 '
bRy =lo.1 £ > 10 (4.36)
Asz = 0.0 |
The didentification interval TO and the final time tf are chosen to.be 0.5

and 30 seconds, respectively (at tf = 30 the sysﬁem has essentially reached
the steady-state). The initial conditions on the controllers are
arbitrafily sét equal to zero.

Table (4.1) gives the numerical values of the gain vectors (in

terms of the original states (see (4.23)) and the performance cost J.
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Table (4.1)

STATE GAINS FOR THE CONTROLS
FE . . .
o i Y% Yr %
C . . . » a .
Y, Yoo Ury Ur, Uy + Y
) 5
ak 7.5 15.62 7.5
~
5 |law |..62|-.48|_.5 _ 52
<
a af, 8 {-3.3 {_7.2 _8.
oz I
3 aXy, |57 |14 |5 _5.7
G | oy 476|474 .66 _4.76.
&R, |ig.4s| 5.7 ]17.25 18.45
AP 21. 27.5 21,
t2
acy |22 s 22 49
| .
= AR, |17t | --09 - .09 _.09
-J
T a9, |.5.7 |10.7 1.3 _10.7
o
& g ] i
S | %% 2.02|.12.9 13.4 12.9
T u, |- 47|63 4.7 463
AB, 9.9 |26.32 29.49 28.32
J 0.53 0.78 0.65
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Example (4.2) Table (4.1) shows that the suboptimal control ﬁs
gives a lower cost than ﬁr. Consequently, ﬁs is used in this Example which
illustrates the effect of TO on ldentification and control. The following

demands are assumed:

AP = {0.15 sin (wt/20) 0 <t g 10"
dl 0.15 t > 10
(4.37)
AP =-{—0.l sin (nt/20) 0 <t g 10
d2 -0.1 t > 10

The system responses for (a) TO = 0.5, and (b) TO 1, are shown in Fig.
(4.3). It is evident from Fig. (4.3) that the load-frequency
control (4.34) and (4.35), with powér demand identification given by (4.24)

and (4.26) results in a satisfactory system response.

Example (4.3). In this example the control Gs is compared with a

conventional load-frequency controller given in transfer function form by25.
u= (&) 20 (cow + 4P) | (4.38)
s’ "bst+l t

The optimum parameter values for the controller, as given in reference 25,

are:

a) Steam plant; a;

b) Hydro plant; a, = Ay b2

.09, bl = 0.3, ¢q = .02

= 0.3, c, = .02
Since power demand is not idéntified, ;he optimization is performed after
averaging over a specified set of power demand profiles. Consequently,
" for a given power demand, (4.38) is subdﬁtimum.

Figure (4.4) illustrates the comﬁarison'of the system resﬁonses
for: (a) the conventional control u giQen by (4.38); and (b) the proposed

control GS. The demands were chosen to be25,

AP .. = -.005 AP .. = .005

dl ‘ d2
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It is evident from Fig. (4.4) that the identification of the power demand
and the use of the load-frequency control Gé results in a significant

improvement in system response,

4,5 Demand Identifier - Luenberger Observer

Tie-line power and frequency deviations (the first two states in
the model given by (4.1)) are the only measurements required in presently
used-load~frequency controllers. The optimum éontrol given by (4.23)
requires that all the states be measured and that APd be identified. For
an observable system, measurements of some of the stétes can be used to
reconstruct the complete state by use 6f a Luenberger observer34

Consider a system model énd a measurement system of the form

X

Ax + Bu

(4.39)

z = Hx

where x is an n-state vector and z is an m measurement vector (in general
m<n). It is assumed that (4.39) is observable. Luenberger has shown fhat a
class of_(n—m) dimensional observers can be structured from (4.39).
The observer outputs give an asymptoticaliy correct estimate of the un-
measured states. In theory, arbitrarily small settling time of the
observer can be achieved.

To illustrate the use of observers to identify unmeasured power
system states and a constant APd, a single steam planﬁ is considered; The-
system state equations are augmented by Aéd = 0. This yields

X = Aax + Bau : o ' (4.40)

where x' = [xp AP, ], and where (see (4.4)).
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o |
0 . | O 0 0
- - I _ -
1/M1 Gl/Ml | 1/Ml 0 1/Ml |
__________________ |
A 0 0 S Vo S Vi 0 Mg M2
A = l e e — | (4.81)
: 0 /T .1 0 1/T 0 Ao1 1 Ao
- 1 gl l - gl | e
0 0 ; 0 0 0
340 o0oto-20]=10 o0} B,] (4.42)
a . ' Tgl ] t 2

Assuming that only the first two states are measured, the measurement

matrix in (4.39) takes the form

1 0 0o o o
H = [c> 1 0 0 o] (4.43)

The partitioning indicated in (4.41) and (4.42) is used to
decompose (4.40) inteo the form

+ A (4.44)

1A BT AL 5

&, = A21 g, t Ay, £, 1B, u (4.45}
where gl is the measured m-vector and £2 is an n-m vector which is to be

reconstructed by an observer.

Consider the observer defined by36
L=N,; c+N,¢E +B,u (4:46)
g = L~ My &ys B CILY))
where
Ny : Mi1810 T Ay
(4.48)
, ) ] |
Npp = Mg (Apy = ApMyy) + (8,0 = Ay M),



In (4.48) Mll is an arbitrary (n-m)xm matrix. Let ¢ A £, - Ez be the

2
: A
error between the unmeasured vector £, and the observer output £., as
2 Put 5> @

given by (4.46) and (4.47)., It is seen that

Y = ' 4
o (A2 Mll 12)0 (4.49)
Consequently, if Mll can-be chosen so that (4.49) is asymptotically stable,
it follows that
£,(t) > £, (8) as  t e
To determine such a matrix, consider the auxiliary system35

u o= (A22 + M 11 12) u (4.50)

and let
V= —ptop (4.51)

where C is an arbitrary positive definite constant matrix. It follows

from (4.50) and (4.51) that

V = u'Ku (4.52)
" where
\} _
(A22 11 12)1( + K(A + M11A12) + C 0 _(4.53)
By taking
| N |
Mg = 2 KAlZ , (4.54)

where S is an arbitrary positive-definite matrix, (4.53) takes the form

A K + KA! SA,, K+ C=0 (4.55)

22 22 12 12
Equation (4.55) is the algebraic matrix Riccati equation which can be
solved for a positive definite symmetric’matrix. With this choice of Mll
it is séen from (4.51) and (4.52) that the auxiliéry system (4.50).is

asymptotically stable. Since (4.49) and (4.50) have the same eigenvalues,
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it follows that (4.49) is asymptotically‘stable.

Figure (4.5) illustrates a blockvdiagram of optimum load-
frequency contfol with partial measurements of the state and an observef
to recongtruct the remaining state componenfs. Notice that the -demand APd
is included in %2 which is reconstruéted by the observer from (4.46) and

(4.47).

Example (4.4) The data for the single steam-plant considered in

this example is the same as used in Example (4.1). Only the first two
states (tie-line and frequency deviations) are measured. Digital simulation

indicated. that

-, 1.0 0 '
s =[; 1OQ] , c=100010 1 0 (4.56)
0 0 1

.was a reasonable choice for this example. .Thé.observer matrices resulting

from this choice are

~4.97 2 2.97 [2.97 -1.4
N, =|-1.33 -2 133, N, =133 -3, (4.57)
| 79 0 -7.8| ~7.9  3.36

To -.12 C (4.57)
M. = |0 =-.05
11 0 0.32

A constant demand of APd = 0.1 is assumed. Figure (4.6)
illustrates the system respomces for load-Frequency Control using: (a)

nMeasurement of all the states assuming AP. is knownj (b) measurement of

d
two of the sta&e components and observer reconstruction of remaining com-
ponents. The slight difference in responses indicates that the observer

reconstructs the unmeasured states with adequate (for control purposes)

accuracy.
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5. OPTIMUM LOAD-FREQUENCY SAMPLED-DATA CONTROL

WITH RANDOMLY VARYING SYSTEM DISTURBANCES

5.1 Introduction

A power syétem area generally has interconnections which are
physicaliy remote from the controlling station or dispatching center.
Feedback regulatory coﬁtrol of the system requires the measurement of tie-~
line flows at interconnections and the transmission of measured data over
data links to the controlling plant or dispatching center. It is essential,
therefore, to investigate the effect of sampling time on a control strategy
based entirely on continuous signalsl7. In reference 17 the effect of tie-
line measurement‘delay is tested on the continuous system. No attempt, how-
ever, is made to take this effect into account in theioptimal control desigﬁ.

This Chapter deals, essentially, witﬁ.the sampled-data .or discrete-
time version of the controller discussed in Chapter 4. There is, however,
another important aspect of power system control that is considered. Many
load disturbances are random in nature and measurements of the system state
are often perturbed by noise. The problem of optimal control in the presence
of plant and measurement noise is known as the stochastic optimal control
» problemBl. The problem has been solved for the case of a quadratic cost in-
dex.l The resulting controller consists of a céscade combinationvof a Kalman
filter with the standard optimum controller for a linearAdéterministic system,
The detailed statistical data about plant and measurement noise required to
implement the Kalman filter is generally not available in a power system.

A suboptimal stochastic controller is investigated which does not require

extensive statistical data for its implementation. The small number of
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parameters in the controller makes on-line tuning feasible.

5.2 Qgﬁimél Sampled-Data Regulator

The problem formulation for continuous optimal load-frequency

control is given by (see Chapter 4, (4.18) and (4.20)).

X=AX+Bu C(5.1)
J=—2—J (X' QX+ u' R wdt (5.2)
t
(s}

The introduction of a data-link in the regulatory 1éop of a power system
results in a sampled-data system and a continuous optimal control is then
" no longer realizable.

Consider a set of sampling instants (to, ti, t2, ...) and let

T = tk - tk—l be a constant sampling interval. In a sampled-data system,

the control is constrained to be constant between sampling instants:

<
t =

T <t " (5.3)
The formulation of an optimal control problem with a sampled-data control
of the form (5.3) requires that (5.1) and (5.2) be transformed into a discrete-

time equivalent set of equations. Since A and B are time-invariant, the

solution of (5.1) for the interval'tk 1< tit is given by

~

t
K+1 e
X(tyyq)

@(tk_H_, tk)Xk +ft q>(tk+l,T)ka dt
k

>

e

(5.4)

o Xk + ka
where ¢ & ®(T,0) is the state-transition matrix of (5.1):

b =A0, 80,00 =1 (5.5) .
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(I is the unit métrix), and where
~ A T . -
D = J‘ o(T,t)B dt. . (5.6)
. ,

The cost index (5.2) can be expressed as the sum of N integrals, each

integral being evaluated over a sampling interval. Using (5.4) it is seen

that
D S TR v
J = 2 Z (XkQXk + 2X1Mkv + VkRkV ) ‘(5.7)
where ‘
~ A T ~ ~ o~ N
Q =J o' (T,t)Q (T, t)dt (5.8)
0
T
Méj o' (T,£)QD(T, t)dt (5.9)
0
~ A T ~ .n
R £ ‘{\ [R + D'(T,t)QD(T,t)]dt (5.10)
J0
The optimum feedback control for the discrete-time problem given
by (5.4) and (5.7) is'®
~ ~
vy = ~C Xk ‘(5.11)
where
~1 . o =177
c=rM + (R + D'KD) DK@ (5.12)

The nxm constant matrix K is the steady—state solution of the matrix~Riccati

difference equation

R =0k, - K DR+ DR DR le + A (5.13)

where im = (0 is the boundary éondition and where
ol -prtw (5.14)
rq-mr (5.15)



Expressing (5.11) in terms of the original system states (see
Chaptei by (4.8), (4.23)) it is seen that the following equations describe

the optimum sampled-data load-frequency control:

xp(r) ?'A;XP(T) + B:u(r) +T APd TE[tk, tk+l] (5.16)
u(t) = U + t ;k te[0,T] (5.17)
U= Yy + T Vi (5.18)

- A - '

Virr - 8" Xk t s Y (s'p + Sn+l)APd (5.19)
A
c' = (s, sn+1) . (5.20)

It is seen from (5.11), (5.12) and (5.17) that the optimum

- control for a sampled-data system depends parametrically on the sampling
time T. It is shown in reference 16 that, as T - 0, .the continuous optimum
control is the limiting case of the sampled-data control.

J
Example (5.1) Consider the single steam plant discussed in

Chapter 4, Example (4.4). The following three control policies are

considered for a demand APd = 0,1:

(a) A continuous control u, which uses continuous state
information (see Chapter 4, Table (4.})).

(b) A sampled-data control uz'which uses state information at a:
sampling rate of 1 second (T=1). .

-

(¢) Control uy, same as (b) above with T=2.

The feedback coefficients (5.20) for the above controls are:

G = [15.62 -.5 =-7.2  -5.4  -4.66] o (5.21)
Cy = [2.04 0.03 -0.18 -0.48 =-1.58] (5.22)
¢y = [.172 0,02 0.17 0.1l -0.51] (5.23)



The cost indicies for the three above cases are:
. Control ) Uy u, u,
Cost Index 0.754 1.465 2,319
The cost index has practical usefulness only if the associated coﬁfrol
strategy results in acceptable system responses. These are shown in Fig.
(5.1). It is seen frpm Fig. (5.1) that uy gives the fastest response.

However, there is no significant deterioration in dynamic performance by

using a sampling rate of one second.

5.3 ‘Stochastic Optimum and Suboptimum Control

The stochastic optimal control problem for a discrete~time linear

system with linear measurements is defined by

Xg] = % Xy + Dk‘uk + Vi ‘ (5.24)

2t = Bt ¥er Vi (5.25)
L X _ o

J =< ¥ x'Q.,x, + u,R,u 5.26)

k2 j=1 JQJ k| 37373 _ (

where wk_is an n-dimensional plant noise vector, 2y is an m~dimensional

measurement vector and vk is an m-dimensional measurement noise vector.

In (5.26), 53 is a positive semi-definite weighting matrix sequence and

Ej is a positive definite weighting matrix.
The problem is to determine a realizable control sequence which

" minimizes E(Jo), the expected value of Jo’ given the measurement sequence

and the féllowing statistical data (E(+) is the expectation operator):

E(xo) =X E(xoxé) = Po R E(wk) = E(Vk) = 0 (51275‘

E(iji) = 0, E(vjvﬁ) o E(iji> = 0 (3#k)

Blugy) = Qp  Elvyvp) =Ry
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If the statistics are Gaussian, it is known that the optimal conttol

sequence is given by

A

wo=-C x , (k=0,1, ... N-1) (5.28)
where Xy is the conditional mean of Xy and where Ck is the control gain
for the optimum deterministic (noise-free) controlBl. The estimate X, can
be generated recursively on-line by use of the Kalman filter:
L G T R T e (Y (5.29)
i = 2 T B 17D 1 G 1% (5.30)
The vector Yie is the difference between the measurement vector and the
predicted measurement vector, and Kk is the optimpm filter gain. It is
seen from (5.24) - (5.30) that the error, e = X = Xy and the error
covariance, Pk’ are given respectively by
e = (= KD jer * Vi) ~ KoV (5.31)
é Ty = - 1 _ 1
Py = Blepep) = (I-KHD) (0 P19 g F Qe g) FKH) (5.32)

R R K

The optimum filter gain, Kk’ minimizes Tr(Pk), the trace of the error
covariance matrix.

From a mathematical point of view the splufion is surprisingly
simple. The control gain matrix.in (5.28) can be determined by solving
- the noise-free optimal control problem and Qk is determined by solving,-
separately, an optimal filter problem. From a practical point of view,
however, the on-line implementation of (5.28) raises severe problems,
particularly in power system applications. Even in the noise-free case,
‘due to the complexity of the optimum controller, optimum control of a power

system is both impractical and uneconcmical.
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It is essential to invgstigate suboptimum controllers and to
simplify the system model. Consedquently, the noise sequences in (5.24)
and (5.25) may in part arise from modelling efrors, thus invalidating the
Gaussian‘yhite noise assumption used in deriving (5.28). Furthermore,
- data in ?he form (5.27) is generally not available for a power system. It
is reasonable, however, to retain the control structure defined by (5.28),
(5.29) and (5.30) in a suboptimum stochastic controller. This follows
from the fact that, for arbitrary Kk’ (5.29) is an observer for the system
(5.24). The usefulness of an observer has been shown in Chapter 4. The
observer (5.29) gives improved estimates if the observer gain Kk is chosen
to minimize an estimation error cost index (such as Tr(Pk)).

Let L be a constant observer matrix gain which results in a

stable observer and let

Kk = gkL (5.
where gk is a scalar gain. A class Og of stable observers is defined by
the stability limits, ‘ _

< <

8y < 8, < 8y (5.
on the scalar gain. All subsequent observers are considered to belong to
Og. An optimum gain could be defined in 0g by associating a cost index
with Pk (see (5.32)). Consider the choice

, — 9
Tr(QkPk) =0 g - ZBk 8 + Yy »(5.
where A _
a2 ' .
B = TrlQLE (3 1Py 10 g T Qe p)] 5
..A.. Y ‘ 1 | 1
U = TrQLE (O 1P g®y ¥ Qo) + RILD

and where Qk is a positive semi-definite weighting matrix, The optimum

gain which minimizes the cost index (5.35) is given by

7¢

33)

34)

35)

36)



BE = Bk/ak. . (5.37)

f;ltering and minimization of estimation-errér do not, hOWeQer,
represent the complete problem,which is to determine a suboptimal control.
Furthermore, even though there are onl& two statistical parameters in
(5.37), it is desirable to reduce further the need for statistical data.
The dependency of the optimum stochastic control (5.28) on the data (5.27)
arises out of the global minimization of the cost index E(Jo)‘ A suboptimal
stochastic control can be determined by a local (stage-wise) minimization

of an instantaneous cost Jk associated with a control decision at stage k.

The cost jk must be related in some meaningful manner to (5.26).

In the noise-free case, the system dynamics are

o>

X.,. =0, %, +D, u
S R T, B

"

1] k k s j

Sk (5.38)

the optimal control sequence is given by §}~=?—C5;},»and-(5w26)-eanmbe

expressed in the closed form

% » (5.39)

A_—];A'
e = 7 F Ve

k .

where Vk'is the solution of a discrete matrix-Riccati equationBl. Let

X, be defined by (5.27) where X4 is known from the previous stage and let
, 8 X, - X | (5.40)
A simple estimate of the effect of the error e, = ik = x - X, at stage k

on the cost Jk can be obtained by taking the predicted value of future

noise at any stage j > k to be equal to the mean value, which is zero, as

given by (5.27). Consequently

b
ft

spp = (85 = DCOx, = V(3HL, K)xy

®5+1

(5.41)

]
I

(8, - D,Cle, ¥(3+1, Ke, , (G 2 K)
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are predicted future values_ofvxk and e respectively. 1In (5.41),
¥(j,k) is the system state transition matrix. Introducing (5.40) and

(5.41) into (5.26) and making use of (5.39) yields

~

.__A |= 'n_:_]-_l=
Jk = Jk + ey Qk x, t ey Qk e | (5.42)

where

Q

>
el

i=k

The expectation of (5.42) is

BG) = BQY + Tr@EGeD) + 5 @Ey (5.
Equation (5.44) represents é decomposition of an estimate of thé average
cost into a deterministic control cost (first term) and a cost of esti-
-mation error (third term). The second term couples the two costs. It
is seen from (5.35) and (5.37) that g = gi minimizes the third term.
Consider the effect that this choice has on the second term. Since ;k—l is
assumed given, and E(xk_l) = ;k—l’ it follows that
E(x_; el ) = 0 | (5.
It can be shown from (5.29), (5.31) and (5.45) that (see (5.35), (5.36)).
T, QEG )= B, g = a & (5.
From (5.37) it is seen that (5.46) vanishes when g, = g;, consequently, if
3£ 4 Sk + %{éi - égigk + ak)ak (5.
where ay A Yk/ak, it follows that ' |
EQ,) = EQ) B - (s.

when 8 = g;.

by (5.28), (5.29), (5.33) and (5.37) as a suboptimum stochastic control.

Equation (5.48) justifies considering the control defined

The cost index (5.47) has two terms. The first term is the cost

t /s N ipn1n o .
¥ (J,k)(Qj+CjRjCj)W(J,k) (5.43)

4t

45)

46)

47)

48)
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" of deterministic control and the second term is a cost associated with
estimation error. Both termé depend on 8y aﬁd conséquently there is a
trade-off between the two costs, with dk representing the trade-off or
weighting factor. This suggests the possibility of choosing = adaptively
within the observer class Og so that there is a decrease»in jk' To
formulate such an adaptive control strategy requires that the parameters
in (5.47) be estimated, as far as this pdssible, from the available

measurements.

From (5.30) and (5.36) it is seen that

a, = Tr(Q, L E (y y)L")
k ko TRk (5.49)
= ' '
E(yp L' Q L yp)
The random variable in (5.49) is always positive and vanishes only when
yk = 0. Since 0y enters (5.47) as a weighting factor, it is reasonable
to replace (5.49) by an instantaneous estimate
o =YL W y (5.50)
'k k 'k “k '
where Wk is a positive definite weighting matrix. Consequently, (5.47)
can be replaced by the instantaneous cost index
To=L2 v ox +ie2-05e +adyl Wy C(5.5D)
k 2% 'k "k 2%k k k'"k "k 'k )
where g is a threshold level determined by off-line computer simulation
(or by on-line tuning).
To prevent erratic gain changes due to the estimation (5.50),
a step size constraint
(g, - g,_)° = s0lg,_)° (5.52)
k k-1 k-1

where 88 is fixed, is imposed. The optimum adaptiﬁe gain is defined to be



the gain that minimizes (5.51) subject to the constraints (5.52) and
(5.34). 1If (5.34) is satisfied, the optimum gain is determined by the

method of steepest descent,which yields

& = gk_.]_[l ~ Gfsgn <Gk-l)] _ - (5.53)
{8 . :
A ._...15. = 1 > i ) _"‘\
85781 - i
= A "
e = 00 D 4G ¥y F Bg LYy (5.55)

If (5.53) violates (5.34), then 8 is replaced by the appropriate upper or
lower bound.
The adaptive nature of g, can be seen from (5.51). If estimation
\ .
error‘becomes excessivey (5{50) increases and more weight is given to
choosing g, to minimize estimation error. As estimation error increases, it
is desirable to place more weight on the use of measurements. This
weighting is done optimally if (5.37) is used. The tﬁreshold can be set
so that gi approaches ék as estimation error increases. On the other
hand, if the estimation error is acceptable, then more weight is given
to choosing gk to minimize the cost of control. This means that, as
long as the estimate is acceptable, a small control effort should be used.
The choiée of W, in (5.54) is go§erned largely by computational

k

convenience. A simple and reasonable choice is W Vk’ where w is a

v

positive number. Another simple possibility is to choose w so that

Cpmq = Yy Vi *+ b senley ;2 )yy) (5.56)

where b is a positive number. The advantage of the adaptive approach is

that explicit evaluation of statistical data is not required. The controller

8(



is "tuned" by off-line computer simulations. The small number of tuning

parameters (two) makes on-line tuning feasible.

5.4 Application - Sirgle Steam Plant

The model of a single steam plant given in Example (5.1),
is used to evaluate the load-frequency control capabilities of the proposed
adaptive controller. The augmented state model has the form (5.24).
It is assumed that frequency and tie-line deviations are the only measure-

ments available so that the measurement matrix in (5.25) has the form

6 0 O O]
1 0 0 0

in (5.24) must be replaced

H = [(1) (5.

The discrete control sequence represented by w

by Ué = (uk, vk)’, where (see (5.17) - (5.19))

u, = +Tw _

k- Yk-1 k-1 (5.

~

- ! _ t . 5
Vie =S For T She1 W (s' pts_1)AP . (5.

The ¢ and D matrices for the augmented model are given by (see Chapter 4,

(4.40), and (5.4)) _ |
' ' A0 %(0,0) = I, (5.

o =
A
D = [D1 D2] (5.
where
T _
D, = f o(T,t) B, ft | (5.
0 ‘ ‘
T
D2 = ;{6 o(T,t) Bé « t ¢ dt (5.

For simulation purposes, the noise vectors W and vy are taken

in the form

(5.

Vi T % Iwk b1 Vk =% Ivk Zk

57)

58)

59)

60)
61)

62)

63)

64)



where (see (4.40)), x =[x AP L . and IV are diagonal matrices

k ok APac kT k

. whose elements are pséudo-random numbets Qithfa uniform distribution between
-1 and +1. The scalars &w énd dv ére used to sgt ?oise level.

It should be noticed that the noise (5.64) is state-dependent.
This occurs, for example, when the system parameters undergo random dis-—
turbances. The control (5.28), with ;k given ﬁy the Kalman filter, whose
gain is based on the Gaussian statistics (5.27), is suboptimum for the
type of noise given by (5.64). Tuniﬁg of the time-varying matrix gain to
improve system performance is impractical. The proposed suboptimum adaptivé
control, however, is easily tuned to a variety of noise statistics, inciuding
those defined by (5.64).

The design of the adaptive control proceeds in three stages.
The first stage is to determine the control gain matrix in (5.28) for the
deterministic system. This has been done in Section (5?2) (Example (5.1)).

The second stage is the design of é deterministic observer with a
éénstant gain L (see (5.33)). The design details are given in Appendix IV

where the result

663 .005  .091 -.128  .364 |
| I

L ‘[007 1935 -.006. ~-.014 -.053] (5.63)
is obtained. The system response for an incremental power demand AP, = 0.1

d

using a suboptimum controller with the observer gain (5.65) is shown in

Fig. (5.2). It is seen that the response meets the specified conditions in
that, as f > +‘w, the frequency deviation and incremental generation approach
.zero and 0.1, respectiveiy. In fhe absence of system noise, it is seen that _
the control (5.28), where ﬁk is the deterministic observer output, gives

acceptable dynamic performance.

8:
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The third stage is the design of the adaptive controller which is
based on changing the scalar gain gk.accordiné.to the strategy given by
(5.53) and (5.56). The stability limits (5;34) for the system under.con-
sideration are easily shown to be B =.0 and By = 2, respectively. Thé step-
sizebparameter'GQ is set equal to 0.2 (see (5.52)). This choice is a
commonly used compromise between using a smali step to meet linearity and
numerical stability requirements and using.a large step to reduce the nuﬁber
of steps. The only parameters which require detailed investigation are b and
g. For the system considered the choice b = 0.2 appeared reasonable after
some preliminary simulation studies. To investigate the effect of different
Valﬁes for the threshold level g, the cost

60

~ ~

84

; 2 '
J= r X + uy) (5.66)
P T T

is investigated and averagéd over ten runs. The initial frequency deviation
is taken to belAw(O) = 2 and all other initial states are set equal to zero.
Figure (5.3) illustrates the average cost as a function of g for different
noise 1e9els. From Fig. (5.3) the best average value is taken to be g = 0.5.
The adaptivé c@ntroller is now "tuned" and its effect on system
performance with different noise levels cén be evaluated. Figure (5.4)
illustrates the resuits for: (a)ﬁ Thevdeterministic observer (gk = 1).

(b) The adaptive observer. It is seen that the adaptive observer results in

a lower cost. The three values chosen for o correspond to random changes in -

the eiements of ¢ and D of 10%, 20%Z and 307, respectively. Heavy measurement
noise (av = 1) could be considered to arise when there are faulty measurements

or faulty data transmission.
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The adaptive observer is a filter whose output is an estimate of
the state of the system. It is of interest to éva1Uate the filtering (or
tracking) capbilities of the adaptivé observer in the presence of system
noise. For the ev;luati@n, an incremental power demand of APd = 0.1 is
assumed and the noise levels are chosen to be &v = 0,2 and dw = 0.1. Figure

_(5.5) illustrates the syétem frequency Aw, the estimated frequency Aw, the

estimated demand AP ., and the control signal u. It is seen from Fig. (5.5)

d!

that the filter output gives a good estimate of the average behaviour of the

states.
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6. CONCLUSIONS

For very éevere disturbances in a power sys»‘tém-,‘ é’n. algorithm is
presented, in Chapter 2, for the evaluation of optimum switching instants
for parameter changes in the network so as to improve system stability. The
method appears to offer practical as well as computational advantages over
the Liapunov function approach, in finding the critical switching time.
On-line implementation seems possible. ?reliminary off-line compu-
tétion could obtain the relationships between optimum switching instants and
initial system states. Efficient numerical curve—fifting methods are:
becoming available which WOuld.make it possible to stdre these relationships
in parametric form which require a limited computer memory. This would
eliminate the necessity for fast on~1ine.solﬁtion of sets of differential
equationé. |
For less sévere distgrbances, digital simulation results show that
system non-linearities and plant interaction must be accounted for. Because
of the large number of state variables, optimal ébntrol of an interconnected
power system is not feasiblé and some fofm.of suboptimai control is essential.
A suboptimum local cdntrol based on a linearized model which neglects
plant intefaction is physicglly feasible but can result in system instaBility.
By introducing the concept‘of twb—léVel control a satisfactory
suboptimal feasible control is obtainable; The local control is augmented
by a second-level intervention control. A feasible on-line method_fbr gener-
“ating this control is given, Off-line céﬁputations'are used to determine
the intervention control in a parametric form as a function éf time and initial
states. When a sysfeﬁ disturbance occurs, a sécond-leVel coordinator can

generate these parameters on-line and transmit them back to the subsystems
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which generate the local intervention control signals.

Because most of the computations are doné off~line; other
controls such as eiciter voltage contfﬁl; and associated system non-linearities
can be accounted for without much difficulty. The multi-level control scheme
with high-level intervention cOntrol.in the parameterized form suggested
here aépears to be apromising feasible approach to the control of interconnected
pdwer systems.

The intervention control is.an open-loop control which augments
the closed-loop local controllers. The composite control results in improved
system performance. Intervention control would only be applied if the sys-
tem disturbances are significant.

The load-frequency control problem, due to routine small distur-
"bances experienced in everyday operation of power syétems, is discussed
in Chapter 4. .Because .incremental power.demand is not .known .a _priori, the
problem of optimal load-frequency control cannot be solved by difect appli-
cation of the optimal linear-state regulator control. A feasible optimal
gontrol is obtainable by a state variable transformation and by identification
of the incremental power demand. Two methods have been shown suitable for
power demand identification. One method is based on differential approxi- -
matioﬁ and is very simple. Impro%ed identification accuracy can be achieved
by the second method which uses a Luenberger observer. A further advantage
of the second method is that it can cope with the situation where not all
the states are measured. The pbéerver is driven by ﬁeasurements of some
of the states and its output is an estimate of the unmeasured states and the

incremental power demand.



In Chapter 5, a suboptimum solution to the problem of sampled
data optimum load—frequency control with unknown détérmiﬁistic incremental
power demand is given; Trédé—off bétWeén éystém response and sampling
rate can be easily studied. The case of random system disturbance is consi-
dered. The optimum stochastic controller is ekcessively complex to be
used in controlling a power system. Furthermore, the statistical data and
accurate models required to achieve optimum performance are generally ﬁot
available. It is essential; therefore, to study suboptimum controllers.

A three stage procedure is given for the design of a suboptimum stochastic
controller. The first stage consists in determining the control gain for a
deterministic optimum control, the second étage consists in the desién of a
class of deterministic observers, the third and final stage consists in
adaptively choosing a scalar observer gain so as to ﬁinimize an instantaneous
cost index. An example is used to illustrate 'the design . procedure. Compara-
tive studies of system performance for différent parameter values show the
effectiveness of the design procedure and the ease with which "tuning'" can

be accomplished.

The proposed load-frequency control discussed in Chapters 4 and 5
is compatible with an EACC-type control. The load-frequency controller is
activated only after the EACC has decided that control action is required.
This preventé the load-frequency contrqller frbm‘attempting to correct for
rapidly changing load fluctuation. An EACC controller could be programmed
to make decisions concerning thé type of control to be uséd., Oﬁe modevéf
load-frequency control would be for . unknown but deterministic disturbances.
The controller for this mode could be of the form discussed in Chapter 4

(or in a sampled-data form as given in Section (5.2)). A second mode of
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control would occur if the disturbances are random. The change from one
mode of control to another is basically very simple. It amounts to setting
8 = 1 in the case of deterministic disturbances and making gk adaptive in

the case of random disturbances.



APPENDIX I )
(Definitions)18’19
1. The term §£§§}8 identifies that part of an interconnected power system
which is to absorb its own load changes. It may be a sinéle company,
responding to its own load changes; it may be part of a company operating to
respond to load changes that occur%in only a given part of the company's

‘network; it may be a whole group of companies pooled together to absorb the

load changes that occur anywhere within their collective boundaries.

2. A gingle area interconnected gystem is one in which load changes are absorbed

by the system as a whole, regardless of where on the system they occur.

No one part of the system is expected to adjust its own generation to absorb

its own load changes. Load changes that occur in any part of the system may

be absorbed elsewhere within the system, in accordance with allocation practices
prevailing at that particular time. Tie-line power flows are, therefore,

neither scheduled nor controlied.

-

3. A multiple area interconnected system is one that consists. of a number of

operating areas, each &f which is expected to adjust its bwn generation to
absorb its own load changes. Tie-line power flows Between areas are .scheduled
and maintained.

.-During our study of the Load—Freduency Coﬁfrol pfoblem (as defined
iater), the term "plant" shall refer to the controlling generating sfation‘in the
area. Two common types of ﬁlants are considered, namely, steam and hydro

piantsf
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4. Megavar-voltage (Q-V) control problem is the prpblem of controlling.the
reactive power in the system. In this problem, the main concern is the voltage
level at the different buses throughout the system. Diue to the relatively

fast action of voltage regulators, it is common practice'to assume that the

bus voltages are maintained at their nominal wvalues. This assﬁmptidn is

adopted in this thesis.

5. Megawatt-Frequency (P-f) control problem is the problem of controlling the

real power. Load-Frequency Cpntrol (LFC) is an alternate term for this parti-
" cular control job. The following definition of the LFC problem is accepted
by the IEEE (AIEE 94, Proposed Definiﬁions, Decembef 1962) :

"Load-Frequency Control is the regulation of the power output of
.electrié generators within a prescribed area in response to changes in system
frequency, tie~line loading, or the relation of these to each other, so as to
maintain the scheduled system frequency and/or the established interchanges

with other areas within predetermined limits." .

6. LFC criteria: Some of the criteria of LFC as generally defined are

given below. Neglecting the contraints on measurements, control,.and system
dynamics, then the ideal "Static" control criteria may be ‘stated as follows19
Minimize (a), (b) or (é) whefe
(a) Area Control Error (ACE) = tie-line deviation + frequency
bias x frequency deviation
(act & ap_ + BAZ > 0], (1.1)
(b) Inadvertent Interchange. (II) = Integral of the line deviation

[11 A fAPt dt = 0], | (1.2)
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(c) Time Deviation (D) = :é% x Integral of frequency deviation

[TD A 616 SAf dt - 0], _ (1.3)

and also mimimize
(d) Area Supplementary Control (ASC) A function of ACE, II, TD.

[asC & £(ACE, 1I, TD) > minimum] | (1.4)



APPENDIX II
The transmission system and local impedance of Fig; (2.1) can be
reduced by Thevenin's thédfém ts é éé%iés'impedaﬁce r, + i X, and an
equivalent infinite bgs v51téée Vg. The electrical péwer; damping co-
efficient and flux linkége eﬁuationé cén be reduced to the form given by
(2.20); (2:215 and (2.22) respecfively29;

The coefficients are defined by the following relations:

¢y a Bl | : C7 4 constant (defined by (2.23))
C2 4 B2 cos B+B3 sin vy : | C8 A A6 cosy

c, & B, cosy-B, sin g | Cy & A siny

c, & 0.5 B, cos(y-8) R

Cs & =B, cos ysin g Cllénl

Cg A B, sin ycos g | ClzéDz

where: |

B & a,(aph, /x) Dy & viGx e /Gt D2
B, & -A VI (A +A /gq) D, & V1% (eyxt) rdo/(_xé+xe)
By &AMV (x] xq)/;;égq o g & Arctan [(x} + x_)/r,]
B, & AA v' (x, ké)/xéiq 4 | v & Arctan [Ge ) /)
where:

A 8 /v +(x‘+x ) )/Al .AS A (x +x )/A1 4

by bxfaxy ' ho & Gegx AV /3y
a8/ r2+(x X )§>/A x, - Ay & (18, /i,

B, 8 (rtx (x, x99 /8%, ey b, & re+<xq+;<e> SRV

In the above definitions:

xd,xq = synchronous reactance in d and q axes, respectively.
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il

n tt —~

do® qo

The values (in pu) of the different parameters are:

Xy = 1.0, xq

1" - 1
T .04, qu

G = .18, Vt

]

= 0,6, x(’i = ..27, x‘c;
.07, x_ = .013, R

1.05, P+JQ = .753

It

022, xy = 0.29,7, =
15, % = .7488, B
3.03.

transient reactance in d and q axes, respectively.

= gubstransient reactance in d and ¢ axes, respectively.

9.0,
.067,

97

= gsubtransient open-circuit time constant in d and q axes, respectively.



APPENDIX IIL

As exﬁiained in Section (3.7), the initial conditions for each
plant are taken to be zerd wifh the'eXCeption of thé frequency deviation.
Consecuently dm(Xo)zfqr eéch of the two plants conéidered,is assumed in the
form | _

dm(xo)=8mo+8m1Awlo+Bm2Aw20+Bmé:Awio+6m4Aw§o+Bm5Awlko2§ | : (III'l).

where the coefficients Bmi,iéo; 1;';.;5 are chosen so that (3.36) is
minimum. The algorithm for finding Smi for one plant is as follows

(1) Find the optimum h*(t) for M different sets of initial -
conditions Gecticn (3.6.2)).

(2) Find the coefficients di,m=l;2;3;4 for each set of initial
conditions k=1,2, ...M.

(3) Fofym=l and k=1, ... M form

g =T ‘ (I1I.2)

m m
 where
1] s
am Bmo
| 2 A
" ?m P r 2 Bml , and
. M . N
“m | | Pms)
' 2 2 1
1 Ay, Buyg Awll By | Awls-AwZO]
w A
[1 Aw Aw sz sz A t-Aw- M
-~ "o 20 lo 20 _wlo 20]
L n




The only unknown in (III.2) is l"m. For M > 6, I‘m is given by30

ro= (W Ly z;m’

(4) Repeat (3) for m=2,3,4.

(I1I.3)

9¢
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APPENDIX IV

The optimum filter gain can be determined by solying the equations

— 1 "'1 .

Kt = Prrr B Ry (1v.1)
o _ ' ' )

Pitr ™ Nt Nerg ' Ny BUR OH Ny (1v.2)
— t .

Ny = @B o +0Q (1v.3)

k+1
recursively; The initial covariance matrix, Po’ and the'matri% sequences
Qk’ Rk (k = O; 1, ...) are éséumed kn&wn: In general; however, the data
P03 Qk; Rk is not availablet However; equations (IV.1), (IV.2) and (IV.3)
still prove useful in determining a constant observer matrix gain L (see
(5.33)). Simulation studies or syétem operating e%perience usually
allow some initial guess tb be made for the unknown parameters; A
reasonable choice is to take cbnstant posi£ive-definite diagonal matrices
Po; Qo and Rb' Baséd oﬁ thiébchoice; (1v.2) and (Iv.é) can be recursively

solved for the steady-state convariance matrix P_. Equation (IV.1)

then yields the steady-state gain matrix and a reasonable choice for L is

to take
L= K u R (1V.4)
For the ekample given in Section (5.4), the choice
Ro=by T s Qu=by T, B =1 (1V.5)
where bl ='b2 = leA, is made. Evaluation of (IV.4) yields (5.65).

An alternative approach is to apply a discrete version of the
method presented in referemnce 35. This alternative approach has been
used in Section (4.5) to determine an observer gain. Equation (IV.4) is

to be preferred if a limited amount of statistical data is available.
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