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Abstract

The Derrick-Blatt expansion of the He3 wave function is used
to derive an expression for the magnetic moment form factor for
Hes. The symmetric and mixed symmetric S states and all the D

states of the expansion are retained in the calculation.
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1 Introduction

By studying light nuclei one hopes to gain informétipn
about the nuclear force. Thé natural starting point in. this
study is of course the deuteron, being the simplest nucleus.
Indeed amuch has been learned from the study of the deuteron. For
example, the nonzero gquadrupole moment of the deuteron implies
the existence of the nuclear tensor force.

The next step in complexity thén is the study of the three-
nucleon nuclei, that is, the triton or Hea. ‘The three-nucleon
system 1is in many ways Dbetter 'suited <for the study of the
nuclear force,.being for.example more tightly Dbound than the
deuteron allowing on=2 to probe the nucl=ar force more closely.

Derrick aund Blatt (1958) havé contributed significantly to
the understanding of the three-nucleon system, constructing a
complet> s=t of states in terms of which the three-nucleon wave
functién may be expanded. The construction is analogous to the
construction of the deuteron wave function found in Blatt and
Weisskopf (1952). Further, Derrick (1960a,b) has derived a set of
sixteen coupled partial  differential eguations in: three
variablas for the expansion coefficients (tﬁe so-called internal
wave functions). Ther2 has since been a great deal of work on
the numerical calculations of thes2 in&ernal wave fgnctions.

Investigation of the elecfromagnetic form factors provides
one means of testing a given set of internal wave functions.
Best (1960) has calcuiated an =2xpression for the charge form
factor for the triton using the Derrick-3Blatt expansion of the

wave function. Best retained in his calculation the symmetric
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and mixed-symmetric $ states and all the D states. Derrick and
Biatt haQe shown that the remaining states do not contribute
significantly to the ground state wave function. Best also
obtained some numerical results using a mnodified Feshbach-
Rubinow (1955) approach to approximate the internal vave
functions. In this work we <calculate an expression for the
magnetic moment form factor for Hé3, again wusing the Derrick-
Blatt <expansion of the wave function. Like Best we retain the
symmetric and mixed-symmetric S states and all the D states.
Unlike tne charge form factor, however, the magnetic moment férm
factor contains cross terms betﬁeen S and D states. Tha=se arise
because of the appearancelof the spin operator in _the magnetic
ﬁoment density operator. Thus the magnetic moment form factor
can be sensitive to the presence of the D states.

Schift (1964) and Gibson(1965) have also carried out a

. - 3 . " -
calculation of the He magnetic moment form factor. They,

1]

however, have used the Sachs(1953) expansion of the wave

function, which is 1less  convenient to york with since the
angdlar momentum states are not orthogonal, wheras the angular
momentum states in the Derrick-Blatt expansion are orthogonal.
Also the Gibson and Schiff calculation lacks the generality of
our <calculation as their expression is based on a particular
assuned form of the internal wave functions. No partichlar form
is assuwmed in our calculation.

Numerical results may be obtained by evalunating the three-
dimensional integrals included in our final expression using any

one of the available sets of internal wave functions.



-2 The Magqnetic Moment Form Factor of He®

Consider the elastic'scattering of an electron with.inifial
: mqmeﬁtum g? from H;) having initial nmomentunm P, . After. the
e sd;ttering takes place the electron emerges with finél mdménﬁum_
_Ei énd.the He tecoils with final momentum P..

transfer g of the electron and the change K in momentum of the

The 'momentum

Hg are defined as
o= (e -¥)) /% en

k=(2-P)/ %™

(2.2)

These_terms are shown pictorially below:

B L F
¢ 3
/’//
fo=-Thk
_— P
E;_ 77 B -

. - 2 .
The magnetic moment form factor for He is taken by

Schiff (1964) to be the Fourier transform of the expectation



value of the magnetic woment density operator

pOGT )= (e oy &

(2. 3)

vhere the magnetic moment density operator is

s

-1 g e " (%
Quag™ 3 \EG\R%MJF r“"a\/x\’{“‘“é& ?“MG;%(\'T‘“? o {“(&1 S‘;} © (2.4)

The cr; and'T; are the unit amplitude Pauli matrices operating
on thne spin and isospin functions respectively. The ?IS are the
spatial distribution functions for the moment densities about
the centres of the nucleons, while the }LE are the static

magnetic moments of the nucleons. The variables X, L , L.s and

\
L, are shown in figure (1).

The Derrick-Blatt wave function described in appendix A
includes only the internal coordinates of Eﬂ;. For the
calculation of the magnetic moment form factor, however, we need
to include the <centre of mass coordinates of the nucleus.
Defining the centre of mass wave nuﬁber to be K. and the centre

of mass position vector to be R_ the centre of mass wave

function may be written as

I clgr B
X - —‘_—\3/1 e G
() (2.5)

and the total wave function for He* including all coordinates is



Figure 1 - The vectors), r , r , and 1.



then

P=XY

" The form factor may then be written

N 3 o - # | | ' ’ ‘
I, (HE) = SL (Yevty [Gh.}-&\*ﬂ’K;/xp?:ag?‘-’ £

* R,&(\-T}\%\ﬁhﬁ:&%‘? % ? Jvdix e

where

e ey e ded,

{2.8)
Defining the respective nautron and proton magnetic moment
form factors as
F N (\\ e"_,}:.\_‘}_ Qn ! L/_\\\ 2
hamil rA
Y'\o*o}' \3 YV‘\()\‘:«‘Q‘ a k_)_\ (2' 9)

and

(2.10)
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‘and making the change of variables y =X - r, enables one to
write the form factor as

g el‘*'(_‘k %’% [6;%(‘* Tké\] &Ld\/

\

—~ R
/-k(H@})FmM,&Hc) = %NPFMO%E

<+

/A“E:a%z_:

1

\

S ég‘.gk ﬁb*[@‘”"}(,-n‘%ﬂ ? dV. (2.11)

#ith the additional change of variables gk = R_+ [, as shovwn

in figure (2), we may write

~ 3 L gyl - R
e, (0= gwe & IR

: g-‘:& M?\-’:Q%Z % é‘%«i y*[o’{w(“ T@X Y d S
v 5 He Ry, i\ % éﬂ'm %*[@%(\-Tkj W dg}

o= gﬁc\*\;‘-\, //L(‘r\e?’) Fm%(*\ﬂ (2.12)

where we have defined



Figure 2 - The change of variables r,_=R. + 1



and where

T T v o0 oo r\'b*cl;b'
S as = gad‘SAXSSLM%A%SA% A, STt P P
SRR (2.14)
, © © \V\g"cu\

The angles o , @ , and ¥ are the three Euler angles reguired to
specify the spatial orientation of the triangle.?

The calculations of the matrix elemants W*(Gkét-G;%W};)%
and the 4integrations over the Euler angles may be done
analytidaly. Wwriting the wave <function as a sum .of angular

momentum sStates enables one to perform the calculations term by

term, that is

TKQ (71/ ’

£ 7 (2.15)

% ' ¥

+ - *

AN S TIEIN I A C Y
L/’J
where the Vﬂ are defin=ad in equation (A.7.2). To illustrate how
each of these terms 1is calculated we will determine here the
*

. -+ .y - . ..
‘terms V{(Gk{~ﬁkﬁﬁk;)y’. All other terms are found 1in a 51m11ar
" .
fashion. To simplify calculations each of the terms % G}étPeand
(P*G; "Vk q% are determined separately, then the sums and

R S

differences are fouud.

1 See appendix A.2 for more details.
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Now !
3 PRy
4 ' w #* _
é &@ | R
25 \r:L( 8\%%\ £8J1(é/8>>ag . (2.16)
=\
Lo Ty Y \ ‘
We will calculate first the termn i: e g \% TE,QBAK%QMl_.

o~ Wz
Now h‘\Kt(t”> w9 M;nggk,-z ) is zero unless M; = My sOo We

may wrlte

\“\ Se“ﬂr“k g;(t\g\ué WK,&U%BLAS

Lot P .
Al Q\Q&\\{ﬁs,og‘/ 7T Y (50 \/‘ﬁ\ﬁq W\ ‘—;JW 3dS

\,3

_—_Z/mg g v QQE,\\ (SO\V (5,9) Z’» As i

(2.18)

Making use of the permutation properties'of the functions we now
eliminate the sum by changing the variables of integration to
g;. Q; p \V:<3ﬁ», Yg(gfj), and CRS are all s{mmetric under
permutations while QEA belongys to the first row of the mixed
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. . L ! ’ .
representation. Permuting the variables L, and L, results int

) | NG
(\35 3;8\: '.li&;g\- —EQ

! ! (S B, _ .
(2.19)
and permuting the variables r; and r; results in
\ NE! ;" ‘
K = -3 r =
kl 5) g%,\ 1:8,\ [ (2.20)

Hence equation (2.17) beconmes

£ €70 vl o & B Rl 20 ?1&3

= ‘f\%g e’“‘t'vg y:*(s,o) y;' (s,0) {, Qé,\

1

% @L%Q ¢ (;%'\ D:o (R) dv dNL

\6 wt
(2.21)
vhere
0% Ty :
%d’]’ = o\V\q g szb 8 C\‘(\\L ‘(\\Dv";\(\\L (2.22)
J .
ILPCAVA ,
and

1 See appendix A.3.



(2.23)

and where we have written -

Vo (5,0) = Y*/ux 2. 20

Vo0 = Violun D (R) |

(2.25)

We use here the argument R to denote the Euler angles (q,@,%).
To perform the inteqration over the Euler angles we need to

. ¢
consider the Euler angle dependence of ew“3 .1 expanding the

exponential we have

6%;23 = 4T i i M(O\V'&)\(&W\(qr\\(&mﬁ}:)
R,m

(2.26)

. . - . . !
where the %ﬁ'g are the spherical Bessel functions and the XQM S
. . : N Q
are the spherical harmonlics. Furtnermore (¥ and §3 denote the

spherical polar angles that Q and €, respectively, make with

! The Euler angle dependence of the exponantial s=ems "to have
been overlooked by Best(1966), but his final results 1in
equations (5.23) and (5.35) are correct.



the space fixed coordinate systan.
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The Euler angles represent a rotation of the body fixed

system into the space fixed systenm.

hx Y= E;D (Wf% (,

SO

where now KQW,

respect to the pody fixed system.?

Eguation

a%%i

V2 1%

where we have

:W‘W\
(- Y is a function

(2.21) now becones

3ae) Y, () N

From Wigner (1959) we find!

. * ~
= Z D:M(R\\(M,{YD (2.27)

a$§V(®Y &)D., (8

(2.28)

of the angles of [, with

¥ X .
MQQWMDAQQQ@S

-\(10(?\ S /gz(c\vé\\(u(@f\ Q\Xfe’\ d 2.29)

made use of the 2guation3

1 {e show in appendix C.the relationship between the rotational
representation coefficients of Wigyner and of Derrick and Blatt.

2 Se=2 appendix B. :
3 See Wigner (1959).
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Famg

' - ’Z'.';x - . A, .
N0 R B (@) DYL(R) A0
_o8T | |

.'—L—;:'\- \ é/,M-s/Jk.l',;.ng\sml'm5</’?\;)31_'I‘J\I}J\»,_\ﬁ)&»\b(ﬁhQ’L’W\\I‘(‘/\(\J\z'\(\f\> .

(2. 30)

The =2z axis of our space fixed coordinate system lies
perpendicular to the scattering plane, hence q lies in the x-y

plane. We can thus write

A _ > g
\(Lo<qr\ -7 “«\):; (2.31)

so that equation (2.29) becomes
U5 V@ Jaan 88, av
\0 1ot =2 FNAT) T Y . (2.32)
By a similar calculation we find that
3 T .
- Vew™ Y
w =\ : gi Qg%l Af21 g%\ GX<A QSBA C; S
a

= -f-\'_‘_g "\/w(’(i) g Ko lq 04 ) ?\ le\ ar (2.33)

so that



(2. 34)

Also one can show that

*

lqr. f'\: :
Z—- e L//x Crkfé Tk/é_ SVB

- '(ﬁg Vzg<’§ \% ;?I'L(C\(\;v ’(;\ g\e,\ 0T .39

il

3 . ,
Lq_-gk #*
j{; S;fi'» ¢1 <Q§KQ)* Q;K%:7:<%> 9%3 CJ S
= -40h Ya O\ ada) £8, dr e

and
2 PN
G "‘*( | . e —
S\;\Xe Voo, ) s = 00,

Ticn Tk, are Hermitian and since the matrix elements
< ‘

Since and YT
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#*
\t\ \\ck( )) K/' ‘J\ \ (? T <. >and \'/Y'\ \\ ( 'l f \G f\ \j\r\ ‘-\ \_‘( t|_\.,t.)'>

are real we see that

< 0 ofate .
?R_:_\g € ¥ (G’k%t Gt% 71%) Y, d S
3 L,
L.C_i_'(_‘K . .
z:\ g 6 % (qut Gk

/7',(,)?”, ds (2.38)

Hence the contribution to the magnetic moment form factor

from the cross terms of ¥, and 4% is
GE AR

% Mp P % S T A Q—\SMCM@ .e\dﬁ

(2.39)

From appendix B we have that

(2.40)

so that we may write
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'

32~ tat *'
Z&e ) # <Q_K@*G\<Q}T\<Q%&C{S

K=y

- \/:Z\/L\ g /éz(d\vé\) Q\‘g\jgl\ C\T

{(2.41)

. The Derrick-Blatt wave function has been approximated by
using only the symmetric S, mixed symmetric S, and mixed
symmetric D states of the total wave function. Table (1) 1lists

all the terms calculated. The notation used in table (1) 1is

. o o
(840, = 2_ S o i 7oA, (,bé ds

(2.42)

where A denotes G, or T _G... The functions and U are defined

in appendix B.
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(0 = Sdr 4oqe) &

(D), = VT §aT e (am §.8,

(\,%Xy - ﬁ/q SdT A (at) § e,

(o= w22 T 34T 4.4qm) §8,,

(oY, e L % AT Q) & (T\“’"*
3= 5 Sdr iulqr) (85, +50)

(3,8)e = =Y VAT ALY (5, 86,- §,. 5 )
G o= TS AT (6,80 5 60

. (’%)\O}Q\_:l \/LW_S 2 S d-r ;\1((\?;\(%\3‘\?\0'1-& QB,LQ‘OIJ

2 - ! .
Table 1 - The terms i‘ ge"%{ c’*‘ ‘f:‘:A\(kkj C_\S
=
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(8,9)¢ = - YuddT 4t (5 E2 )

- Vi A lge (S2,+ 67 )
‘(&ﬂq = \E;/z v % A ’.é" LC\T":\ (EV\B.\Q‘\A ¥ QS.-LQ‘\.L\
(8'\O\W:: ﬁ/1 \— g d"r;%z_(c\\\é> <¥S‘LQ\°|\_ g\&\&;\o'?j
(@)= " ST 3lqe) (83,482

Ve Sdoy 3.t (8, + §1,)
(C\,\OBQ‘ = O |
(\O,\Q\W = \/L\gaf\” ,%.L(C\V;> (Q\zo,\ v :\le_\

+\/1SC\T );wﬁc\v-ﬁ @i,\ W\ ;Q

Table 1 - continued
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- (er = - (1))
(.= O }
(,8)en = (1,8)4
0= (e
(0o~ = (1,106
(39 = = Vo §dv golqrd (87- 257
B8) = T IAT AT 6 03 £ 80
(580 = -V T 04T 4uqrd(B 8, o3 8,00

(3105 = Zarms T N7 2lqmd (5,8, - 56, L)

Table 1 - continued
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(B8 er = ~Vu ST a4 (87 - 4 £2)
e Sdr il qe (a7, -y S
(B er = AT JAT 3uqr (8, 80,0 3 84180
(810)e =~ LS A6, Gt 5 80 B
@Ay = S gl (832557 )
s gd‘w;c(o\vfﬂ B2,- 5 Ca)
(A0)g+ = O

(o) = Yy Sdvautard (85 -5 6%)

. et % vV ‘)
'\'\/L S AYv )%Q(‘f‘\\ 3) ((;w\h— 3 &\' \a\

Table 1 - continued



22

With the aid of table (1) the magnetic moment form factor

for Hé3 may be written as:

/LL(hf’ ) E. U\e‘”}

1AY o.%

ST A A R AR LA

where

ﬂ
i
ﬂ
o
’.v”‘
_f-
ot
ﬂ
g
17,

and

(2.43)
R wild
(2.44)



23

E. =R @.@g,‘«f EANRONERER IS S
Fro = 10 4L he o €0, 50) +03 T (B 080,
TR L8, fu 0,002
g,a (Qg\+ A o Y J
- S U8 B0 B B0, -6

FDD - ‘ff S’ALEV(*Q\ "\!J"S;BLQC\?J+2<‘C8LQ\%\ Qe\!‘\\c L%

_0. ¢y
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R L MO EERE A CAEE N
SR S N G S S R R
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and where

%%QES a7 i, (o) (2.46)

The form factor «could be calculated numerically using, for

example, the internal wave functions of McMillan(1970).1

1 The internal wave functions of McMillan actually correspond to
somewhat different D states than ours. The relationship between
the D states used by McMillan and the D states we use is given
by Derrick (1960b).
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3 Conclusions

Using the wave function expansion of Derrick and
Blatt (1958) we have calculated aﬁ expression for the magnetic
moment form factor of Ha2 . The symmetric and nixed-symmetric S
states and all the D states were retained in the calculation.
The exchange moment contribution to th2 magnetic moment forn
factor has not been included here.

A similar calculation of the <charge form factor of the
triton has bezen doné by Best(1966) some time ago.

our caléulation is more yeneral than the calculation of the
magnetic moment form factor of He by échiff(196u) and
Gibson (1965). The Gibson and Schiff calculation is based on a
particular form of the internal wave functions, whereas no such
choice is made in our calculation.

Uniike the charge form factor, the magnstic moment form
factor contains cross terms between S and D states. This 1s a
conseyu=nca of the spin operator appearing 1in the magnetic
moment denslity op=rator. Through the SD cross tarms the D state
thus can wmake a wmore 1important contribution to the magnetic
moment form factor than to the charge from factor.

As pointed out by #McMillan and Landau(1974), an analogous
situation nolds for the scatteriny of low energy pions by Hés.
That 1s, terms similar to the charge form factor terms arise
from the non-spin £lip part of the pion-nucleon interaction, and
terms similar to the wmagnetic moment form factor terms arise
from the spin-flip part of the pion-nucl=zon interaction. Indeed,

many of the results derived hsre and by Best can be carried over
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. . . . 3 . .
quite directly to give the pion-He elastic scattering <c¢ross
section in the single-scattering form factor approximation. Work

in this direction is, howaver, beyond the scope of this thesis.
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~  APPENDIX A The Derrick-Blatt Wave Function

‘Derrick and Biatt .(1958) have classified Ail ’angular
moméntﬁm—isobaric épin .functions which éan be present:in'#he
" ground state wave funption of H& . If the nuclear interaction
was central only, each of the orbital angular momentum'gﬂand
spin angular momentum S would be good quantum numbers ‘and the
ground state wave.functiod of Hé; would bé_; =0 only. Hokéver
v'withl the. iﬁclusion of non—éentrél vafC@S in the nucledr
iﬁfefaction only the éum 'g = L + S remains a good guantum:'
number, and the groﬁnd state wave function must be written as a
nixture of several angular momentum sfates.

Derrick and Blatt write the He ground state wave funcﬁion

as a sum of products:

V=2t .

(a.1.1)

The functions &&x are total angular momentum-isobaric spin
functions, each with the experimentalyy obsarved J =‘/L, 2.2\/10
even parity, and definite Qalues of L and §, while the functions
g;; are functions of the three interparticle distances. Each of
the functions\%x is in turn written as a sum of products;' each
product contaihing two factors:

1) a factor Vy depending on the Euler angles which specify.the

orie ntatlou of the triangle in space,
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2) a factor V depending on the spins and isobaric spins of the.
three particles.
The three Euler angles and the three interparticle distances are
the six coordinates required to specify the spatial positions of
the three particles after separating out the centre of mass
coordinates.

To be consistent with charge independence of the nuclear
force each of the functions‘y ,\/ ,Q&; and Q are required to
have a definite permutation symmetry, that 1is, each transfofms
according to one of the three irreducible representations of the
symmetric group S(3). The functions are then combiﬁed.so that
each of the products $1H§Kis overall antisypmetric with respect

to permutation of any two particles.

In order to specify the orientaﬁion in space of the
triangle formed by the three pérticles, Derrick and Blatt first
specify a bodf fixed coordinate system. The spatial orientation
of the triangle is then determined by the set of thtee Euler
angles reguired to rotate the body fixed.ftame into the space
fixed frame.! the body fixed coordinate system is chosen as
follows:

1) The triangle will lie in the x-y plan=2 with the centre of
gravity being the origin.

2) the x axis will be chosen as the principal axis associatad

1 perrick and Blatt refer to this as rotating the triangle fron
its “"normal" position to its actual position.
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with the largest moment of inertia. Tahis does not wuniquely
specify & direction vfor the x axis so that some of the Euler
angle wave functions could be double valued, however it turns
out that wave functions of even parity are necissarily single
valued so there is no ambiguity.

3) the z axis is chosen such that walking a path from particle
1 to 2, then to 3 and back to 1 would amount to a
counterclockwise walk around the z axis.
4) once the direction of the x axis is chosen the y axis 1is
chosen such that the coordinate system is right handed.
We will go into mnore detail of this coordinate.system in
app=ndix B.

#e choose the space-fixed coordinate system to be a right-
handed system with origin at the centre of gravity, with x-axis
in the direction of the initial electron momentum, and 2z-axis

perpendicular to the scattering- plane.

he Symmetric Group S(3)

4s the conrnstituent wave functions of the total He3 wave

function are required to have definite permutation symmetries it
is useful here to summarize some of t@e important properties of
the group S(3) of permutations on three objects.

There are six elewments in the group S(3). In the cyclic
notation of Wigner (1959) these are (1), {(132), (123), (12),
(31), and (23). The first three of these are =2ven permutations
while the last three are odd. There are three ir;educible

representations of this Group. One, tha symmetric
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representation, represents each gyroup element by 1. Another
reresentation, the antisymmetric representation, represents the
even group elements by 1 and the odd group elements by -1. The
remaihing irreducible representation is two dimensional and of
mixed symmetry. The mixed symmetric irreducible representation

represents the group elements in the above order as:

\ © LAJR Waks ) AN \ 3

{
o\ \Ea ) ANE A o4 | 2@\ Z\JT
’ / / / )
. Pa .

Now suppose a function Q)ka(\,zjg transforms according to

the kgb row of the P, irreducible representation of S(3), and
. P C . 1,

another function @41(\2123’> transforms according to the kg
row of the P, irreducible representation of $(3). One may ask
how the product functions transform under joint permutation of
the indicies (1,2,3) and (1',2',3/). In analogy to the Clebsch-
Gordan coefficients of the rotation group, there are addition
cogfficients for combhining base functions of S{3). Sums of

products can be formed like

LS. % (A.3.1)
. . Y . :
which transform accordiun to the Kk row of the P irreducible

g .
representation of S(3). The parmutation addition coefficients
PO, P . . \ . .
k kbk are unique apart from arbitrary phase factors which one

chooszs to make all the coefficients real. All non-zero

permutation addition coafficients are 1listed in table (A.1).



Table (A.1) - The non-zero permutation addition coefficients.

32



* 33

~table (A.2) lists the sixteen possible direct product tunctlons.

" "The Euler angle vave functions whichAdescribe’ the:lénéuiar
dependéhce of the He® | wave function are simply the
representation coefficients of the irreducible representétions
of the rotation group. These are! ) ' | "

D'(apy), = ¥ oot L0 (el (e m (ono
- A (L) 6 (eapa- 1)

“p 1L*“L U (A- 4.1
X e oS M ‘@ N U‘*P‘ ﬂ‘-\g e"‘MLY .
where L is the orbital angular momentum with z component M, and
body z component M. The experimentally observed total angular
momentum for the ground state of H-e3 is g =‘ﬁL,‘so with a
maximum possible spin of S = %/, the orbital angular momentum L

cannot exceed 2. Also it can be shown that the parity operator W

applied to the Eular angle function DL(“ﬁﬁﬂpw“Lgives

T D tt)pm, = YD WWB

(A.4.2)

so that only functions with even /M have the required even

parity. Requiring the Euler angle wave functions  to be

1 See appendix C.
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s s s’
CD = @\ @\I
ads o a’
Symmetric d?| - CQ‘ CP”
1] . ™
@ : = \/\[—i\ % C{)xm @\'

AR

sl

dP\ = dpfk CQ\'

o i .

Antisymmetric q)‘ L= ©\ CQ\'
®

!
.' M
mrr = e SO @ -

OF P 3

Mixed

Symmetric @ ™
\

+
S™moyn

) w/

P = D
'

O "2 @7 Dy
(QCA_W\VV\ = __(D q)

o m W o 2
CQ'L :"CQ\ q)\'

Table (A.2) - The direct product functions.
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orthonormal and real wunder time reversal yields the following

five functions:

\/:<5,0) = \ri\/q_“_
Yol = VE/um D, (au)

Yo 5,00 = Vi%um DI, (%vy) -

Ve (8,9)

R [D:M (A@Y) + Dfm (o m)}
“lo 2 - - 2 T '
YM \0\.(> -l L\/‘S:\/L,\“ [ Dl."‘ (o'\ Qa\g\ - D—t,v\ (oQ Q)\g)}

2 a ~ } r L = v N .
We use here the notation \%M(§k4\VX> for an Euler angle wave
function with permutation symmetry Pe.
As a consequence of the highly symmetric choice of the body
fixed «coordinate system each of the Euler angle wave functions

is either symmetric or antisymmetric; the wmixed representation

do2s not occure.

The spin functions for a threse ©particle system may be

calculated using th2 double Clehsch~-Gordan series:

Lon & K)oz

- —_— ., . :
Z«\—‘ E\ z\f S\SI‘W\.YY\.L\ S ><S’S3(‘\'\’ 0 3\ S‘\/\S>\S\W\b‘\g?_m'bz\g's‘({.\bg (A.5. 1)

th

. T .
whare the\g;vq1§i are the eigenstates of S5, and S of the 1~

L
. ; SHR . ,‘1
particls, and the \SMyP.'w.) are the eigenstates of S-S5 = S and
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Sa = S. * S,

A + S,
Y s

- a of the three particle system. kg and Py
denote the row number and irreducible representation to which
the eigenstate belongs. There are eight possible eigenstates
\SMsP{Ks for § = 'lv or §.=?71. These are listed in table (A.3),
where we have set &ld) = \iL): and B ==\§-{>C.

The 1isospin wave functions are constructed in a completely
analogous way. With the assumption the the ground state of He-3

is T = \/L orly and sstting TS =\/1, two isospin functions are

obtained:

P, = YN [V M) T3y + 77(')\)('072‘(3)-z7r(l)77(23\)(3)] (B-3-2)

Po= A2 POTETE) - 70 v 7 (5))
’ . (A.5.3)

. VAN - ’ - N\ .
where (i) = \a_;7L represents a proton and “DLL\ = \{-;}L
represents a neutron.

From the eight spin functions and two isospin functions we
can formn sixteen linearly independent sums of products of spin
and isospin functions. The sixtsen spin-isospin functions,

\ . .
denoted byvhymé?tﬁ"fi) , are listed in table (A.U4). Py and Xg
denote the irreducikle representation and corresponding row

number to whichk the function bhelongs.
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a, = lise =g Iﬁb(_\)d\(i)o‘(b) T () B (2) - 2 (\\och)‘w)]_
‘qf %;a} /\me\)owa%M\B (1) dl3) & o (1) B2 \dkiﬁ
Gu=li-tmd = 'y E«,\(\Wuwm +%§<.\\o«(z)§5§33 - z%kﬁis(z&((ﬂ]
Qrg:\i“‘“@ /\T‘KOH\\ R BG) = ) «( QQ(:}}

qr; =113s0) = A «E)

G.=13-1s1) = \/@E\b(\)@ﬂv’d’s\ﬁo{(\WO\)@\(B\, + Ké(\‘;d\(ﬁ\&@ﬁ

.= 12725 = ROk

Table (A.3) - The spin eigenstates.



\/ _\(

Li
T

V,

(S l

510 = \/\fz‘[%\vw%@] |
\/\_L\_z-\(q,‘—v‘s) = \/\/—aial?\f%\p:}

NRTSAE =‘/@{qu\5h-q.\>]

| \/‘_szm'?‘ \/\[‘\qut\) «—q_\?]
Voo (8 /\J—\IO'\-”\\)‘-\—CJ: P-|

My L) = /\f"{% P\*qu‘} |

Table (A.4)

- The spin-isospin functions.




Making use of the permutation group addition coefficiants
pc\‘\jbp d Cl b } < d ) ff . t - 1 .
G} - eff S -

Ky K an ebsch-Gordan coefficien (S\SLW\JWL\Sxﬂ> , the spin

isospin functions‘v“skw(?trv,§> are now combined with the Euler

~angle functions y; (Pe,\H\ to obtain total angular momentum-

isospin functions. These are

\éHST}K<S,L,S‘P,&iF1)P) |

M Mg X

o P P P '
P
t v . ot

(A.6.1)
Wwith J =Vg ’ M3~=V1', T =‘vz, and Ta, =\/L we obtain ten distinct
states. These are listed in table (A.5). The notation us=24 in
table (A.5) 1is that of Derrick(1960). Each pair of mixed
symmetric functions 1s counted as one distinct state as both
funcfions must be cowmbined linearly to obtain one conplete
function.

From table (A.5) one sees that \4"(%1' and (%%\ﬁ%ﬁl)

!

v
represent 5 tates;\%q,\és, and (%6“ %e@) reprasant 'P states;
i L ¢

U2

3
epresents R I {
(%?‘\,L{-}?:L) represents a “P state; and (%,a,\l%%’l)n (%q,\l%c\'l)l
3
and (%wnﬂémz) represent D states.
t

A.7 The Total #ave TFunction

The total angular momentuwm-isospin functions \} are now

combined with the internal wave functions to yield an overall

wave function tor the ground state of lle . We denots the



- 40

o = Vv B YL @OV, (SR -V a0V 5,4.4)3
s = A TRV eV (o D-Vole @ Ny (8, 5,43
Gor = UE STV () Vg 2 2 = Yo (6 0 Vi (m, 53

Gen= - SIR Y a oV, (i b =Ye (@) Ny 1 o, 4, 43 |
= WE 0 YOk 1 (32 TV (0N 2=t @) Vi L 203
= B B YA 0N 30 DR Y N A Y ) Wy (i S

~"

o= U TR ONG 782 -y N {5 D+ R VsV A D SNy 3 (1 )

) ‘7.\11(‘“\“' \F\IOKSQ\]\\ kM,;},_}"V (s,oN :_L'%% IL;?‘}%
\aa.\=‘/m§z\/':<e‘v._.aLw‘-u%-m‘asw.\. (105, D AN 0 DS N 3 (o, 5 28

= l\f\_aé_z\[z \_1‘ (oY BJ’\\{ (SQV‘ ) (W‘l\l.‘z\ w7 Yb(g \\/\ N (“‘:\Ln) kSI\[ z(\‘ ey 113
%\of e s SN s Do Nl Dy 0 N 3 8 3]

- 7 (o V 3\
\é\m /\A’a%l\/l(ql)V\ 3 -,\; - 3\{ {ax g\\/\ v (W\, L,j Jz\l“(q‘z’\/‘;li\(m'\‘lug'\{.\m.‘q\}‘{i\\mﬂ»gj

Yo 2 LA EA-F VN

Table (A.5) - The total angular momentum-isospin functions.
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’

. . ) ? ,
~internal wave functions by Qg(wgrnlvn,vlb , where k’ and P’ are

’the row number and irreducible representation to which the

““function f belongs, and I denotes any of thé_ten possible values

of LS;L}S,?,?Q'?t,PQ . Using the permutation group addition

coefficients and requiring that the overall wave function be

antisymmetric, the overall wave function is written

P 2 (P P o\j S (1,5, S, Ty ud\ y \<b<>-

(A.7.1)

Using the notation of Derrick (1959) the total wave function may

be written

T NNV T CTIRE e
Rl s Sy o v em (B Baem So g
AR (50 ) YR (e Ste)
N2 (5 e $an ) + ' (B o Sty )

IO CI CI AT AN S AR A A WY

Some important properties of each of the ten states are

summarized in table (A.6).



Permutation Symmetry
L s \/u\
' Internal Euler Angles!Spin-Isospin

0 L s [ a 0
0 L a s S 0
0 i m S m 0
1 L s a s 0
1 L a a a 0 %
1 L m a m 0
1 31 m a m 0
2 A m s m 0
2 3 m s m 2

S f
2 ¥, m a m 2

Table (A.6) - Permutation properties of the wave function.
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For the purpose of further approximation it is of 1interest
here to estimate which of the ten functions are likely to be
dominant. In the absence of non-centfal forces the ground state
vould be S ~only. Furthermore if the intsraction is spin
independent the symmetry of th2 internal wave function is a good
quantun nuﬁbe:.

Now a symmetric internal wave function need not be zero for
any shape of the triangle. A pair of mixed symmetric functions
is necessarily zero whenever the triangle is eguilateral, that
is, whenever r, = I3 = I,, . An antisymmetric function must be
zero whenever the triangle is isosceles, that is, whenever

Ty, = L4 s Ty =T

2 . OL Ty, = L,,. The more zeros a function

vy 23

possesses, the more it is forced to change, hence the highei its
derivatives, and hence the higher its kinetic energy. Thus a
purely symmetric function has the lovest kKinetic enerqy
associated with it. In the absence of non-central and spin-
dependent forces the ground state would then be symmetric s ,
that is, the wave function would bhe of the type ¥ .

#ith the inclusion of non-central and spin-dependent forces
the symmetric S state is still expected to dominate. The next
most important states are those which couple in the first order
to Vﬁ under the intecaétion. Derrick (1959) has snown that the
spin exchange operator couples the mixed symm2tric S state ¢g
directly to 91 , while the tensor operator couples the three
mixed symmetric D states Ye o Wq , and W\D directly to *, .

Finally the L +$ forces couple the P states ‘Y, %A, and 4@



by
“directly to Y, , but these are considered unimportant as the L - 3
force is beliseved to be of very short range.

With the inclusion of tensor and spin-dependent forces then
the most 1important states present in the ground state will be
?., ?g; %g, Qg, and *m . The least dowinant states will be those
with antisymmetric internal wave functions as those states are

associated with very high kinetic energy.
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APPENDIX B The Magnitude and Angles of r, in the Body-Fixed

Consider the triangle formed by the three particles with

sides ., =L, - L,» I, = I, - L, and L, = L, = Lu- Define
the vactors r = r,, and %= L,y *+ L,; as shown in figure (B.1).

It is easily shown that

g = (i« ony -an)"
(B. 1)

Now letting the centre of mass position vector be

Ry = {;(r\l+ L.+ L) ve have

S\____S\_R :13-<z§\_\:_&.—\_‘3\>: %(g*%:) (B.2)


http://Ha.qnit.ude

Figure (B.1) - The vectors T and%.

Lo
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. . ’ .
Thus the magnitude of L, 1S

. \
_\ 2 3 N\ /2
TN A Y A o Vi (B.5)

Now consider a coordinate system with origin at the centre
of mass, 2 axis perpendicular to the plane of the triangle, and
particle 3 on the X axis. The direction of the Z axis is chosen
.such that walking a path from particle 1 to 2, then to 3 and
back to 1 would amount to a counterclockwise walk around the 2
axis. This coordinate system is shown in figure (B.2). We have
also defined'7 as the angle (%,g), which written in terms of the

triangle sides is

ey = (% -58)/ v

(B.6)

It can also be shown that

I 1 74

Sun n o= E(V\L*-\\\B srt‘\\z*\\\’ ") <(\“ Vb*v\ RS&/TQ (B.7)
B,

The coordinates of r and g in this coordinate system are



&S
| %4
<

\
N
\\\
r .
S~ -
\\\\\
\\\ .
S
Q _____ /b\// \\3 £
% / )
./’/
//’/ /‘.// ///,/
/ T
"

Figure (B.2) - The coordinate system with origin at the
Z axis perpendicular to the plane of the

-

particle 3 on the X axis.

centre of mass,

triangle, and

48



l(\x':. '?(0377
w,= O.3wY (B.8)
¢, = O

(B. 9)

Suppos2 now the

coordinate system is rotated about the 2z

Q in this new coordinate system are

The

axis by an angle §, as in figure (B.3). The coordinates of r and

?X = =0 Cos (77 *:’)
- N - B.10)
A R A ®
t, = O
- - cCasT
R¥ = 7R
Q. = bwg
Q S Qi _ (B.11)
Ry = © |
coordinates of r’. in this coordinate system are hence
? ]
Gy = G4 ces ¥
’ ! . >
\_‘3% - ‘\3 S\Jﬂ N (B"‘Z)
’
0, = O
<

49



\3.

Figure (B.3) - The body fixed coordinate system.




W
—

In particular suppose that the axes of the rotated systeh are
the principal axes, the x axis being associated with the larger
principal moment of inertia. This new system then coincides with
the body-fixed system described in appendix A.2. In this

coordinate system the products of inertia must vanish:

Now IX% and I%%‘are identicaly zero since zy = 0, but I, = 0 is

an equation fory :

= “sz\éL“W\KX\é Yo, \él*\k Lévx

Y\(%*m R+3e), + *(2-21), (2-3¢) \
e Y_EQX Ry ~ '8 % v%l

™ . o
E;"G K‘6QZ~S\J‘¢\§ CC)SS >~ \®] ?LCQS(')? +§) SW(/)?-{-?)*X

- ﬂﬂ

il

i

Y‘\ S LE + 30T Swm 1U7+§\J (B. 14)

Solving the equation

Q\“ 5w 2T 1 30T sw 2 \TY = O (8.15)
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2» /\\
(B.16)
where we have defined
VA
\ s © N\ . . . ] e 7
- * = : < RN
[\ 2 [(Q > ’BT e 177) ks kJQ Y. ,// !,} ‘X . (B. 17)
From equations (B.15) and (B.168) one can snow that
| (¥~ 2 e 7))
c oS 1‘§‘ —- X e e :
WL AN (B. 13)

If the sign of sin(2%) is (+) then the =ign of cos(2¢) must be
(=), while if the sign of sin(2%) iz (=) then the sign of
cos{2¢) must be (+).

To determine the signs of sin(27) and cos(27) we calculate

the moments of inertia I,, and I‘t:"c’ and ilmpose the condition

€=y
= 5 &= (geny) *(g-ve) - (4-3), *“Ql‘“‘ﬁiz]
- 23 lz(\‘+3vﬂ-_é%Qﬂmba§ &931(W*§3%] (B. 19)



By a similar calculation we find

(RN e3eY) Lo el 2 2 o 1(%2’\%}

(B.20)

From egquations (B.19) and (B.20) we see that Ixx\> I%% implies

that

Ql ces 28+ 3T cas 2(P+e) < O (B.21)

‘Now

Qz Cos 2 + B3Pt cosg 1(7/ pg\ _

| o K_ - (O'L Lo . LN Y ‘ {'
= 2n 3R R oy ) 3 an o1 e cos2n) T (3cks :N\—?ﬂ}\))
-\ “ w1 |
X = YOQ T coszp + ) = 3
TR Q ST+ ] + CA (B. 22)

Aence in order that equation (B.21) be satisfied the above

sign
in eaquations (B.1%) and (B.18) must hold, that 1is
i . 3\\-1~ S L}r\ -Z'
Swa LT = I (B.23)
A

and -
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’(R%**beLL031U> ‘

Cos 2t

now the

Consider following

Derrick (1960b):

S -~ X
\/(—; Q(\\s ¥ U 1T\LX

T « T
V\ = \\'\L * V\-b

TN

“ \f [ .
K((\\z_ *Y\-‘; N \\\'z.-s}{\\\w\* AR ?l%\k\‘f

(B.24)

four variables as defin=d by

{B.25)

(B.26)

(B.27)

\

‘(‘\3 N T?\_b (— ‘C\?\ x \"‘\_5 3 (‘2:3}

v

(B.28)



With these variables w2 may write

- —\ AG :
I\\QL (B. 29)
and
_ . = o
cesqe = ~ (N rVE FR

/\QL (B.30)

Note that Derrickt!s definition ofta differs somewhat from ours.

In equation ({2.27) we introduced‘(mmtg) . From the above it

follows that

~ 4 | T -
NWQWN(§35 = “\<M“<~/L) Ej
(B.31)
so that

NIRCARRE LY

70 (B.32)

o

% " ~n ' \\'L
NoE Y E) = 3T cosar

(B.33)



It is also useful to define

Y = Sw el

oS L §

—
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(B.34)

(B. 35)

(B.36)
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APPENDIX C The Repressntation Coefficients D7{%6,9)um,

Derrick's and Blatt's LBuler angles Ux,% ¥ ) actually are
the angles (¢, 86 ,@ ) of Goldstéin's(1950) Euler' angle
convention.. We wish to show here that the representation
coefficients Cf(¥:8,¢m#uﬂu given by Derrick and eguation (A.4.1)

of this work are equal to those given by Wigner (1959), who wuses

a different fuler angle convention, that 1is,

D600 DR,

(C. 1)

. .. . . L .
where i)(d,$,5>iw“_ is the representation coefficlient given by

Wigner.
Wigner writes o' o= Rr, whare
cosk smdk 0\ /COSR O -smg oS Sw¥ O
R = _Sl/fﬁ'\ CoSAh © @) \ o -Suwn ¥ oS ¥ O

© ©  V/\swR o cosp o o

COTRCOSE COSY - SmaSimy  COSATOSEH SMY + sinicosy = COSXSun
= [-SnA CoSE CosY = COSKSmY = Simat CoofSmd > COSKCOSYE  Sn& Sum
SRR e ¥ “ost

(C.2)

and where



Za
e
~
N
=
a
‘»‘J

O ¢ O R O

!

/7

. . . /
Goldstein writes r = Ar, where

cos® swW® o '\ O o CQSCQ Sum d? O
AE e ¥ cosy ol O cosd s B -sm®@ cos ® O
o o \ O “-SLn B CoS6 o o \

COSW CosP-SmPeosBsm®  CosW s SimWtos®cosd  Sm¥ sum®
o [n X oL @ - COTWCOSEH Sad =SMWSU AR HCOSY C03BCos® Cosy S B

Sum O sbn @ - S BTes® ces ©

(C.4)
and where
! ' (C. 5)

Now clearly R and A are egqual if their respective matrix
elements are equal. This gives us equations to determine

relations betwean («, % ,¥ ) and (¥ &,4). In particular

i@l
0
I
/1”,':
if
)
o
o
a
i
\
L
¢
D
a
(62
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Also

S By = CasY Sua O =% Swn B o= Cat (C.7)
\

-C oS K S.w\\}\‘ z= 3w S & = —C oS = S W ©. 8)
Combining =guations (C.7) and (C.8) yields
Sorah S um W *r CoSPlCasy = oS {w- Y= O (©. 9)
sod =¥ + W or o = ¢ +3T,. Houwsver & =W +°3T/ does not satisry
equations (C.7) and (C.8) so- we wmust have O = Wy 4+1V1.
Furthermore

SUABL IR = =SB Cosd = Sun¥ = -cold (C.10)
Tmn P Cas¥ = SLaBsiad = CosSY = Sua @

' (C.11)

Combining equations (C.10) and (C.11) yields
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S Sen® + coSY cos d = 605(@_\5\ = O
| (C.12)
50 ® =¥ + Mo or € =¥ A However d =X +5%/, does not satisfy

equations (C.10) and (C.11) so we must have @’="K +“71. Finally

then we have the relations

A =Y .W/L (C. 13)

(C. 14)

X = P - XT/Z\
(C. 15)

That is, Wigner's (d,Q ,¥ ) and Goldstein's (§, ©,9) represent
the same rotation if equations {(C.13), (C.14), and (C.15) hold.

Wigner writes

T - N [(vm\.(w}\.(umm(bm\\]
e - -\
3 (y& C>/"\"\k >T€( 3 (L—,‘A"\i\\'(\‘a' W\\f\\»\. <t (\( . pA ML\\.

X~t§#“ L= U Ve phm T Cen X
)

) ?@'S‘W\ .:L@ o (C. 16)



61

With the aid of equations (C.13), (C.14), and (C.15) we have

" TR L
e“#“‘\.: elw* ) - e'\* s (C.17)
and
e X ;méé-“hﬁ Lm @ A\ M
GE - = Ei_ (‘ L) (C.18)
NQw
RoAF, AN . e - . -
AP« N e e

Combining egquations (C.16), (C.17), (C.18), and (C.19) we have

T (oo - g AR AR UL+4»~‘>‘.L\.-M\.{qu}\(L-mQ\l |
R (L)t (L WL R (el

LY TirM - M- e LW A=A L
X el Cas - LBeSum ~ “‘;\g.emk@

\. e
= {) (¥tea%%/xwm

(C.20)

as stated.



