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Abstract

The purpose of this thesis is to develop a forecasting model to
.predict.demand deposits,gnd term depbsits_of créditvunions. It Begins with
a survey of the literature on demand functions for liquid assets. Both single
equation models and simultaneous equation systems are summarized. The ﬁypo-
thesis.for a likely structural model of éredit union financial behaviou; is
also présented. Howéver, a structural model cannot be estimated because
there are no published data on creait uﬁionsf interest ratesand there is a
“limited number of‘obéervations for the dependent variable.
| The forecasting technique that is being developed in this‘thesié is an
application of time series analysis. The baéic idea behind this approach is
to express the fime series'of_demand deposits and of term deposits as a
weighted sum of the past values of deposits. The”weigﬁtsvin the sum are de-
terminéd‘so as fo achiéVe the greéteét-predic;ive powér'by minimiziﬁg the mean
square error of the forecasts.  The data are quarterly time series for aemand
 deposits and for term deposits for each of three credit unions in the Van-
couver Regién in Britistholumbié from the second quarter of 1962 to the
fourth quarter of 1974. The data are printed in the Appendix.

The strength éf‘the mixed autoregressive moving‘average process (ARIMA)
as a forecééting tool for finéncial intérmediaries such as a‘credit union is
evaluated by uéing a iarge sample'df moﬁthly.daté of personal demand deposits
and personal term deposits of Canadian chartered banks. The best models for
each creditvunion'é demand - deposits and term deposits are matched against
. the naive model of a randqm walk pfocess. Théy'are compared with'réspect to

their minimum mean square error of prediction for the four quarters of 1974.
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" For both the three credlt unions and the chartered banks, in all cases

the best ARTMA model outperformed all other candidates.
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I. Introduction

Financial intermediaries are fi:ms tﬁat afe primarily‘eﬁgaged in bor—b
rowing funds (savings) from households and businesses and iﬁ leﬁding funds
(loans) tq'other househélds and businesses. in(the process‘of carrying out
these transaétions they face the likelihood of Qithdrawélsxbf:savings énd
" the risk of default on loans. The old approach to this liquidity prqbleml-
‘was to baianée the expgcted!turnover in liabilities with the maturity 6f
assets. The percentages of total fqnds held in short—term‘ioans,jéonsumer

1oans.and mortgageé would then be similar to tﬁe pércéntages:of liabiiities
in savings deppsité, term deposits and capitalvfunds respectively. This
method neither maximizes the return én invested funds nor takes advanfage
of diversification in the savings PPrtf01iO~
To benefit from both factors thé institution must'éngage in a dynamic
financial management process similar to the one illustrated invFigureblzl
(Cramer and Miller (1973)). Using statistical information:on inferest rates,
demand for loans,‘and demand for saQihgs deposits and share éapital,-the de-
cision maker would apply an?ptimization technigué to:decide.on the bestbmix
of loans to issue and on the least cést combination of éavings to attract;
The decisibns to commit'funds today for one, five, or ten years hence are
based on forecasts of interest rates,:loan demand,.and deposit levels. To
forecast each of these fhree factors‘fér a particulér fiﬁancial intermediary»
. involves é sizeable study of time sefies, modelé and techniques. In fhis
thesis we will focus‘our attention 6n;the development of é foreéasting'tech—

nique to predict the demand for deposits for credit unions.



A credit union is a cooperative institution that pfovides finéncial
services similar to those of other financial iﬁtermediariés such ésvchar—
tered banks énd trust companies. It operates aé an autonomousvuﬁit that
has few branch operatioﬁs and deals only with its.members; The borrowérs
and the léndérs are the shareholders and owneré of the assets. Tﬁebcfédit
union faces the same liquidity problem of financial intermediation and an |
optimal allocatioﬁ of the credit union's resources is made thrbugh the
Same dynamié-financial management process (Figure I.1). Although the
essential difference between a credit‘union and other financial institutions
is the former's cooperative philosophy, they all have thé fofecasting:pro—
blem of estimating future levels of Both demand and term deposits.

The traditional approach to the development of a forecasting'model for
deposits is to use economic theory of demand for liquid assets in order to
formulate their demand eqﬁations. This is called a structural equatioﬁ bedi
cause it uses ﬁredetermined variables’represenfing price of deéosits,vin-
comes of consumers; fastes and preferences of consumers, and prices of sub-
stitutable liquid assets. Whereas this demand eQuatibn ﬁodeié the Behéﬁiour
of households, the single equation approach does not hold'for finéncial in-
étitutions.' The latter has control over the pricé.of-deposifs causing'fhe
structﬁral equation to have a current endogenous variable and the demand for
deposits can no longer be éstimated by a single equation.

The étructural model must be expanded into two or more~equations_in or-.
der to capture the two-step decision making proéeés of a financialvintérme—
diary (a credit unién). .In4the‘first step, the credit Unién sets the interest

rates on demand and term deposits. In the second step, there is a stochastic
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movement in the level of deposits in response to the'new‘interest rates.
This adjustment in the liabilities will create a feedback to the decisions
“taken in the‘first stage; The interest rates may have'to'chenge again &e—
pending on competitive market conditions, consumer preferences, or because
an unfavourable portfollo structure warrants it (1 e. unfavourable 11qu1d1ty
Ap031t10n whereby ‘interest payments are rising faster than 1nterest revenues)
'In other words .the 1nterrelat10ns among the interest rates of the eredlt
union and-the level of dep031ts must be expressed as a system'of 51mu1taneous
-equatlons. |

The strength of either the 31ngle equation model.or the slmultaneous
equatlon system can enly be evaluated emplrlcally To test the hypothes1sed
models, one must have a suff1c1ent number of observations and time series
for all variables. However, the only data available at the tine of this‘
study are quarterly series on deposits from 1962 to 1974.4 There are no pubf
lished quarterly data on credit unions' interest rates and there arebno prexf
ies for interest rates paid on credit unions"demand and.term deposits for’
the 1962-1966 period. Therefore we cannot meaningfully testvthe structural
approach because ot missiné data and limited number of degrees ot‘freedom.

Another approach is to use time.series analysis to fermulate‘a‘forecast;_
ing model for‘eredit unions’ deposits.‘ The method is data orlenteu because
it 1ncorporates economic information through subJectlve dec131ons.made in
'modelllng the time series of deposits. We essumenthat there exists a basic
underlying pattern for the series of demand deposits and term deposlts;
ThlS pattern is expressed as a weighted sum of pest values of these Varlables
where the weights in the sum.are determined so as to echieve the greatest

predictive power (i.e. minimize the forecasting error).



TheAanalysis involves three stages: (1) identify the series as a-
stationary autoregressive process, a moving average process or a mixed .
autoregressive moving average process;-(ii) estimate the parameters in
the model just identified and venify if it is adequate' and (iii) forecast
future values for the series of depos1ts. The data are quarterly time,.
:series for demand deposits and for term deposits for each of three credit
.unions in the Vancouver Reglon of British Columbia from the second quarter
of 1962 to the fourth quarter of 1974. The best models for each credit’ |
union's demand deposits and term deposits are matched against the naive
" model of a random walk process. They are all compared with respect to the
‘minimum mean square error of prediction for the four quarters of 1974.

To‘obtain 'a priori" identification of credit union's series,lbut more
' important to evaluate the strength of the time series'method used, we also
examined a larger sample of monthly data for personal demand deposits and
personal term deposits held in chartered banks in Canada (1967:9 - 1974:11,
87 observations). | | |

The thesis begins with a survey of the literature on demand.functions
for'liquid assets. The hypothesis for a likely structural model of credit .
" union financial behaviour is also presented Time series analysis is de-
veloped theoretically in Chapter III using the notation of hox and Jenkins
(1970) for a mixed autoregressive integrated moving average process. In
Chapter IV the data for demand deposits and term deposits of the three credit
unions and for personal deposits of chartered banks are discussed and the
models are estimated and evaluated. éome concluding remarks areApresented
in Chapter_V. Finally the Appendix;Data lists the natural logarithms and

the raw data for the deposits of both credit unions and chartered banks.
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II. Survey of the Literature

There are various‘representations.of the demand for demand denosits
and term deposits'and,they depend upon the assumptions made about economic
- behaviour of inlelduals (ox institutlons) and the level of aggregatlon in
the data.~ The 11terature is grouped 1nto (a) single equatlon models, and
(b) 31multaneous equatlon systems, and analysed with respect to the economlc
theory, appllcablllty of structural equatlons to flnanclal rntermedlatron

in Canada, and problems- w1th the data and estimation.

- A. Single Equation Models

Cla351cal demand theory states that the demand for a good or a service
is determined by: its own price, consumers 1ncomes, consumerst tastes and
preferences, and prices of substitute goods or services. Feigev(i964) uses
this hypothes1s to estimate the demand for "demand dep031ts, a non-pecuniary
flow of serv1ces that prov1de the owner with llquidlty, salablllty, safety
and convenience. Slnce the value of the stream of services cannot be observed
'the value of the stock rs used as a proxy The assumption is made that there
‘exists a fixed relatlonshlp between the stock and the flow'of serV1ces ren—.
.dered by a given stock of demand dep031ts and hence the demand for.non—pre—
cuniary services is equivalent to the demand for demand dep031ts. | |

Its own price (Rdazis.the sum of the nominalvinterest rate (zero) and
“the positive service charges. Rdd is neéative and is defined as total service
charges divided by the average balance of demand deposits. .Consumers' incomes
are a weighted averaée of past and present values of personal 1ncome, where
meights are those developed by Frledman (1957) to represent permanent personal

income (YP).~ Tastes are assumed to be glven and to remain constant over time



But preferences are proxied by the per capita.number oonffices of financial
institutions (#/Pop) to measure convenience (time-space utility providéd by
lotation); Finally,.the prices of substitutes are the actual.interest rates
paid on: commercial bank time deposits (th); savings and loan association
shares (Rs)'and on mdtudl savings bank deposits (Rm). The_actualdrate'is
definéd as total interest paid divided byvthe average size of assets and it
represents the true.opportuhity cost faced by the holder of wealth.

Using a linear form, the demand function for demand dep031ts is estima-

dad’

#/Pop are positive, while the expected signs for the coefficients of substi-

ted by using ordinary least squares. The expected signs for R Yp; A, and

tues are negative, The data is a pooling of cross-section and time series
observations from 1949 to 1959 (U.S.). In the best equation (2.1) Feige

found Rdd’ Yp and th to be significant and to have the expected sign whefe

DD
Pop

(Feige, 1964, p. 24).

» the dependent variable, is per capita commercial bank demand deposits

DD

(2.1) Pop = 535R.dd + .365Yp - 35th‘+ 53R,S + 25Rm +»regiqgal dummies
(48) (.080) (13) (13) (15) R™ = ..98
v m N _ . .
(2.2) Pop 101Rdd + .122Yp + 76Rtd 44RS .82Rm + reglo;al dummies
(87) (.037) (10) (10) (11) R™ = .94
. . . , (TD) . .
For per capita commercial bank time deposits 555—-, Rdd is now a price

of a substitute (expected sign negative) and th is the own price (expected
sigﬁ positive). In this equation (2.2) all coefficientsbatedgtatistically
significant and have the rlght sign.

In a more recent study, Boyd (1975) uses the same theory but makes an

explicit assumption about imperfect competition: that there exists product



differentiation among deposits of various financial‘intermediafies'because
of;minimum balances and minimum terms to earn interest.' In his study of
Saﬁings and loan associations,‘advertising.ié now intrqdueed aldng'with the
classical determinants of demand. The-functional form essumesithet each
variable affects per capita demand depdeits as an exponential growthv(decaf)
end that "given a change in the desired level of'depoeits, (individuai) B
savers will quickly adjust their account balance to the:new equilibrinmﬁ;':

- (Boyd, 1973, p.v746>. The: results for the cross-section semplevfor Januery.
1969, using semi-annual data, are presented beiow in equations (2.3) and
(2.4) where DD/Pop, demand dep031ts per capita; Rdd average DD 1nterest rate;

‘_Y/Pop, 12 month average of per capita personal dlsposable income; A/Pop, per

foffa
foffc?

to number of competitors' branches; Rfd’ average rate on term deposits; Rb,

capita promotional expenses; ratio of number of assoc1ations? branches

' average competitor's savings rate (banks); and TD/Pop, term deposits per

capita.
(2.3)1-DD = 5.8 + 3.50 Lok, + .51 1n¥__ - 3.33 1nR_, + .57 In A
« Pop (1.24) (36 PP 3,73y (:10). Por
‘ Hoffa o
.55 1n Toffe ~ 2.22 1an + reglonal dummies

(.24) © (1.66) R2= .60
(2.4)1n ID = -15.93 - 4.92 1nR,, + 17.78 1nR . + .69 In A _+ regional dummies
' Pop - . (3.20) (7.00) (.17)  Pop 2 ‘

R® = .67

In the demand deposit equatlon all the coeff1c1ents have the expected 31gn

and only own price (Rdd), tastes and preferences (zogga), and advertlslng
( Pop ) are signifieant determinants. ‘In the cross—sectlon equatlon for TD/Pop

th and A/Pop are statlstically 51gn1f1cant The other variables were used

but they never entered 51gn1f1cantly in (2.4) and their estimates were not



published;‘unfortunately,’because Boyd (1973, p..74l) admits that Rb was

of the wrong sign and signlficant (prohably due to misspeciflcation bias).
Finally, Boyd tests his hypothe81s ‘that consumers. instantaneously

adJust thelr dep031ts to changes in deposlt rates If transaction costs,

imperfect 1nformat10n, etc., 1nvalldate that assumpt1on, the.regre351on model

dls misspecified and empirical estimates may be biased." (Boyd 1973, P- 746).

’Five year averages are calculated for the independent variables. They are

. then added as additional variables into- the orlglnal equatlon for the reason

is that if demand for deposits adjusts partlally over time then'the averages
should be signifiCant because they represent the values of the independent
variables over time;.vThe results for demand»deposits’and term deposits are'
not impressive as only the new averaée of advertising per capita proves to
be signifieant'and sone variables have the wrong sign (probably due to multi-
eollinearity caused hy his specification). Thus Boyd concludes that depositors:
respond fully tovthe changes in theleconomic environment that take placevwithin
the six month interval of his data (sem1—annual observatlon polnts)

In a paper by Motley (1970) he assumes that households are unable or
unw1lling to adjust asset holdlngs 1nstantaneously to de31red long—run levels.
The desired asset level is a functlon of expected income (Y*), rates of return

on all assets (vector R), and the" 1mp11c1t rentals on durable goods (u)

. * ‘
(2.5) TD = f(Y » Regs Rygs Roseenesw)

The form of the function is linear in the logarithms and the demand for assets
(at constant prlces) is homogeneous of degree zero in general price level and

unit elastlc with respect to population

=

: * *
(2.6) log TD = o + al log Y. + a,., log Rj

- d

i ™
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"A constant proportion of any relative'divergeﬁce between actual and desired
stock of (term deposits) is corrected in each period (and) may be approximated

by" (Motley, 1970, p. 236)

_ < A
2.7 ™™, _ | ID A >0
D, _; D,

Where A, the desired rate of adjustment, dépends upon the'change'in stock‘of
both term deposits and all other éssets in the’ﬁdrtfolio, ratio of_current to
expected income and some non-quantifiable liquidity preferénce_and expectations -
parameter. For example more luérative interest rates on terﬁ deposits will in-
crease the demand and levél of TD*. This will draw funds away from securities-
that are spbstitutes and it.willAaffect'the latter's market equilibrium (their
market interest rates and their quantitieé held). The readjustingrin the port-
folio is depicted by the following adjustment proéess: |
| n

+

' *
= A(log TD,-log TD
t t i=1

(2.8) log TDt—lég TDt_l _1)‘ Aj(log Sjt—log Sjt-l)

' . *
+ ui(log th log Yt)

’ . : % % S
Substituting for desired levels of assets (TD , Si) in (2.8), we obtain n

seemingly unrelated equations.

. .
2 (2.9) log St = A + Blog Yt + Tlog Rt—(IfA) log St—l

+ M log (Yt— Y:)

where A, B, and M are n-vectors and I', A are nxm matrices and in pérficular

the equatipn for term deposits is: |
n 'j n

. % . on .
+ ?»Aj allog Yt + ? Aj E o

ik

J - .
2 log Rkt + (} M) log TDt_l .

LI IS

(2.10) 1log D, = o,

% : Tk
- + -
| j;%ileg Sjt—l u(lgg Y -logY)

The coefficients are estimated using non-linear techniques with only four other
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assets (i.e., n = 4). They are: money (M), savings deposits (TD), debt (D),
and.real assets (RA). Expected income Y ) is deflned as a geometrically
Welghted average of personal disposable income where the weights are those
used by Friedman (1957). The significant determinants of savings deposits -

* B -
in (2-11) are: transitory income (Y-Y )t,.and la gged holdings (TD These

t—l)'

- results illustrate the partial adjustment process but not the reallocation of -

funds in the portfolio, for quarterly U.S. data between 1953 and 1965.

» . : % ' .
(2.11) log TD, = 5.72 + .14 log Y. + .03 log R ~ .36 log TD, .- 00 log M_ .
X t (.30) t(.04) tdst " 13) tlcony ot
- .23 log D, - .14 log RA_, + .28 log (Y-—Y ),
(.13) (.40) _ (08) :

Batra (1973) uses the same formulation as Motley.  The assets are interdependent
inasfar as they compete with one another in the financial portfolio. Changes in
the portfolio at any point in'time are also affected by the capital gains (losses)
lnourred. Adjustments to the desired levels of assets are made in.some oropor—
‘tion in a given quarter.

n

* A * S v -
. - = _ . r - YT
(2.12) 'TDt » TDt—l ,A(TDt (TDt + Gt)) + §~Aj“3jt (Sjt-l + Gjt)]g
where G,  is the capital gains on jth financial asset. The demand for the

jt

desired stock of term dep051ts is a function of expected 1ncome (Y ), expected

capital gains (G ), past preferences and hablts (S pt— l)’ its own price (th)

~and those of substitutes <Rdd" S,._..).» Assuming a linear function
v * o R+ oyt *+a, s +; |
(2.13) TDt = 0 + ay th + e, f g G B e, pt-1 : Cp Ri

Expected income is defined as a linear function of current income. Expected
capital gains are assumed to be a linear function of current capital gains.

Capital gains on asset i are defined as:
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c RSt Rie-18ie-1

it = C.R.L._ T C.P.I._

where C.P.I., implicit price deflator of personal consumption expenditure. By

n

- \ . * .
simplifying I Aj [Sjt - (Sj't_1 + Gjt)] ;o‘}eka and substltutipg for TD in
(2.12) we get (2.14): '

. ’ . * . ) ’ ! B ) .
(2.14) TDt - TDt—l = 60 + 61 Yt +»52 Gt + 63 Spt;l+ GAth + 65R0_+ SGTDt_l+ 67Dk

: . * : ' -
(2.15) ATD, = -7861 + 6922 R, + .098Y -~ .49 TD 1t 85648 .03D :

t 2100 *¢ (03)  (15) Y (2300)Pt -1 01)k 2 - 9

The empirical results are given after elimination of all nonsignificant varia—
bles. Data sources for thé 1947-1969 time series;are nét listed but éapital
'gains (Gt) and the price of substitutes (Ro) did nét prove to be significant.
Since Batra does not ;tate what assets are included in Dk and does not explain
what services are megsured by Spt_l,'it is difficult to conclﬁde that Motley's

hypothesis of interdependence is statistically important for savings deposits.

"B, Simultaneous Equation Systems

In the érevious‘segtion, the single equation approach assumed that tﬁe
vgriables'on the right hand side of the model are pre&etermined—exogenous; or ; f
légged endogenous— and hence they arevall indepéndent of the error term aﬁd'
ordinary least squares cén give consistent estimates. This aésumption is true
for the behaviour of individuals but it cannot bebméde for financial institu-
tions, especially at the macrpeconomic.level bégause interest rates on deposits
are decision variables in the management of financial intermédiaries; the ownb
price becomes a current endogenous variable and single_equation least.squarés
will no longer result in consistent estimates for the éoefficients. The econo-

metrics of the situation requires that the determinants of own deposit rates
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be specified and the equations be estimated simultaneously;

Cohan (1973) applies a recursive_system to determine the interest rates
on certlflcates of deposit issued to (a) corporatlons.and (b) households, and.'
the level of these certificates acquired by (a) and (b). The desired dep031t:-
rate on certlflcates issued to corporations (R ) is influenced by. (l) -anti-
cipated strength in loan demand (dd) ylelds on loans, (111) ylelds on compe— f:
tit1ve assets (i.e. Treasury Bills R b)’ and constralned by (1V) ce111ng rateé

restrictions (Rq). A partial adJustment process is assumed to explain movements

in Rcd'
(2.16.1) MRea,e = *Reg e 7 Req,e1)

o | e - |
(2.16.2) Rear = Rg = YR /R,) o

where Rq/Rtb approximates a cost mark-up factor for financial intermediation .
% - *

‘(1im R /R + 0 =>R = Rq).’ Assuming that 0< A< 1 substitute for R d i

(2.16. l) and the following equation is estimated using quarterly data (1961~

1967) for U.S. commerc1al banks.

(27 R, = 2,88+ B3R - 2.64 R + 15 R oL

cd,t (.05)%  (.20)=L (.05) ¢d-t-1 o R? - 99
th 7

(2.18) R, = ~4.34 +.89R . + 83R_ + .15R . + .20 : _
" 1S (1S (.06) (. oeRb . %= 98

The supply price for personal certificates of deposits.(Rp) is determined
by the same factors as R od 28 well as returns on competitive liquid assets,
RCd is a proxy for the above factors affectlng de51red depo81t rate and the
price of substitutes are: de, savings and loan savings deposit rate; Rs,-

bank's savings deposit rate; Rb’ short term bank lending rate ' Whereas the

author assumed a partlal adjustment process for R cd? R is assumed to adJust
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fully once RCd is set and‘competitors' prices_are'known. The'linear functional .
: forms are estimated by tmo stage leastlsquares and all the coefficients proved
to be significantly different from zero. The structure of equation (2 17) is

- not applicable to the Canadian financ1a1 system ‘because of the absence of a |

legal ceiling rate.

‘The demand function for certificates of dep081t (CD) is based upon the .
traditional demand theory. The dependent variable 1s-defined as the ratio of
Cb to liquid assets (LA) held by corporations and individuals;_ Liquid assets
consist of corporate and individual holdings of demand deposits and‘currency,A
savings and time dep031ts at commercial banks and at sav1ngs institutions, short
termvtreasury securities and commercial and finance company paper, and short
- term U.S. government securities. To avoid the high correlation among 1nterest

.rates the spread between own price and a substitute is used. The.estimated

demand curve is linear and assumes instantaneous adjustmentsto'exogenous factors.

CD : o .
—_ =" 7 63 + 42(R ) + 46(R - R ) +7. 61 Y = .03(AY-k) + sea-
(2.19)  I&" (2 ed ~ Rep 20) ® %y P (o) sonals
| 7 R% = 99
where Yp’ wealth measured weights adopted from Friedman's permanent income
11 .
theory YP = 139 T (. 9) i’ and (AYfk) is the change in GNP less the .
1 » . . .

-average‘quarterly grovth‘in GNP.. This variable is intended‘totmeasure the-
:effects of transitory income. "This type of income’is likely to he held in
temporary money balances rather than being shifted into an interest yielding
liquid asset. '[It] is expected to be inversely related to the CD's" fCohan f
(1973), p. 107].  The spread between interest rates (al,az) are of marginal

statistical s1gn1f1cance and only Yp proves to be significant.

Cohan's three equation model is a block recursive system: two equation



15

supply block (estimated by ZSLS) and a unique demand equation (estimated'by
OLS). The two deposit rates are set 1nterdependently and then they are part
of the final determlnants for CD's "[The] institutional arrangements in this
market are such that the determlnatlon of supply and demand may be cons1dered
sequentialArathervthan simultaneous in nature" . (Cohan, (1973), . p 109)
DeLeeuw's paper (1965) was the first simultaneous analysis of the monetary
-sector. It 1s a model of financ1al behav1our in the many financial markets in
. the U,S. At this level of aggregation the market interest rates and the quan-
tities of 11quid assets held are interdependent. Of the nineteen equations
that make-up the complete model only three equations will.be.discussed Below;
They are: demana deposit holdings; time dep031t holdings, and 1nterest'rate on
time deposits. The model is based upon four assumptions: (i) There exists a
"desired" relationship between portfollo composition and interest'rates The
consumer maximizes net worth and will choose those combinations of assets that'
will give him the highest risk—return utility. (11) At any periodlthere is a
partial adjustment to the."desired" portfolio. Adjustments are not immediate-
» because lags inkinﬁormation,,decision makiné and planvexecution. (iii) There
" are short-run constraints that limit behaviour by both consumers and’financial
intermediaries. These refer to total sav1ngs, current 1ncome, liqu1d1ty con-
siderations and reserve requirements (1v) The final assumption states that
all relationshlps are homogeneous of degree one in all dollar magnitudes.,*
The change in the level demanded_of asset x is a function of its ‘stock
in the previous period; rates of return Sits own and those of substitntes)

(RX, Rl’ R2, ...,'Rﬁ) and current and lagged short run constraints. (f(x)t,

A(x) o x L . . f(x) - f(x)
t _ ' t-1 : t t~1
. (2.ZQ)A =agt o g +a, rxf a3R1 + ..+ o ¥ tony

t-1 t-1 t-1 t-1
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The changes 1in the QUantitieé demanded'afe expressed as a percentage of total -
demand in the sector. The latter is measured by the PTOXy thl = 0.114 ;io(o.é)i
. GNP_i.' It is 1égged one periodrto facilitate simulétibn. Any measure;;nt
error arising ffom Yt-l insfead.of Yt is gssuméd to be negligiﬁle.‘ The inter_
' est rates are nominal rates expreésed aé percentages; The éonstraints are
partiéularvté the demand equation. |

4.In DeLeeuwﬁsfcondensed model (1969),'the.cﬁange iﬁ demand deposits is
dgtermined By its previous éfock (DDt—i)’ average yield on.U.S. sécﬁrities
maturing or ca}léble in ten years or more'(Rgbl), yield in commertial bank time
deposits (th), personal disposable incdme (Yd), aﬁd business gross invéétment
in plaﬁthéhd equipment (Ib) plus.brivaté ngqbusiness, ﬁoﬁresidential construc—‘
fion (Ic). The lat?er two variables serve as a proxy for the expected return
on capital goodé. Current and lagged values of disposable iﬁcoﬁe represenf
 ‘sources of fuﬁds to households. One is struck by thé absence of "own" price
~in the above hypotﬁesis. This is because DeLeeuw assumes that the dgménd de-
posits have theif interest rates fixed at zero and his model does ﬁét deal ﬁith'f
éérvice charges..

| The fesu1£§-of'ZSLS'using U.S. quartérly.datavfor the 1948-1962 time
périod are presentéd in eqﬁation (2.21).aﬁd the coefficiehté of‘DD:;i; Rébi’

-Yd’ and IIb+Ic) have the right sign and statistical significance.

DD - L07Y

(2.21) %92- = -.003 - .11 t=1 _ oosr by ~ -002R . + :—§741
t-1 (.04)'e-1  (.002)8°"  (.002) S X
I (.03)

+.03 Ya,t-1 -.20 L)

(.02) Yep (OB Y.,
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ATD _ ™, ., _. ; Y “;
(2.22) - Canie -.002 12 t-1 .003 Rtb + .006 th + 702 d,t-1
t-1 (.03) Yt—l (.000). (.001) (.OOS)Yt‘_2

For changes in term deposits the functional form is the same as that of

ADD and the determinants are last period ‘stock of term dep051ts (TDt l), ‘e-

three month treasury bill rate (R b) the average yield on bank term deposits;~

(th), and disposable income (Yd). All estlmates 1n.(2.22) are s;gnlflcant. |
The change in the interest rate on term deposits is a reéuit“of‘adjﬁstiﬁg 

‘the financial intermediaries' present portfolios toward their desired port-

folios. The quarterly change in R

td is assumed to depend on the desired rate

and last quarter's actual rate. The desired rate depends upon U.S. security
- yields maturing or callable in ten years or more (Rgbl)’ on ceiling restric-—

tions (R

obl —-Rq 4+ 1), and on the ratio of loans to total deposits (TL/(DD{ID))
(2.23.1) Reg,t = _ (th,t - th,t-—l)
_ * - C TL'
(2.23.2) o R = f(Rgbl’ Rgbl f.Rq + 1, DD_+.TD‘)

td,t

The following equation (2.24) approximates this behaviour. A1l the coefflcients
fproved to statistically 51gn1f1cant by ZSLS Again the absence of legal celllngs A

in Canada on th limits any dlrect app11cat10n of (2 24) to our context.

o R
(2.26) BR ;= -1.26 ~ 39 R,y )+ L4R ). 33Rq + 1. 02 (————DD ¥,

A simultaneous model at the microletel is the Dﬁrymesband iaubman (19§§)
study of the éavings and loan associatioﬁs in the U.S. Eéch firm wiil set f
- deposit and loan interest rates to altér the deménd for theirvéssets and 1ia- o
bilities such thét profits are maximized”in‘each time period. Bﬁt thé actual
changeé_in aeposits and shares may fall gﬁort'ofithe expected ievels énd'this

may force the financial manager to further readjust interest rates. The changes
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in interest rates and in deposits and loans are interdependent and are deter-
mined in each time period simultaneoesiy. Their underlying theory is the par;
tial adjustment process in a competitive frameworkaériables such es advertis—
ing per capita and number of S & L offices per capita reflect consumere ' tastes -
land preferences rather than product dlfferentlatlon. |
The S & L have only one type of deposlt and the desired 1evel of term de; :
vp031ts is a functlon of own interest rate, permanent per caplta-lncome (Y/Pop)
»‘number of S & L offices per caplta (#/Pop), and prices of substltutes (treasury
bill rate Rtb and a regional rate- Re). For a district, the estlmatesllnear 1n'
natural logs using quarterly data (1958-65) show logged stock,ith; end eon—
»bvenieqce to be significant.: However, the presence of TDt—l biaseS’the Durbin-
Watson statistic and the eoefficients estimated may be inconsistent. Coeffi-

cient on income is significantly of the wrong sign.

(2.25) 1n %—13 = .37 + .20 In R, - .06 15%— + .04 1n Fﬁ‘” ~ .02 1In Rtb
: (.06) (.01) P(.006) P (.014)
- .151n R, + .93 In (Ig)t—l + seasonals ,
(.14) (.005) 0 L R® = .95
:(2.26) R, = ;21 + .94 R 4+ .02R, + .01 G—— ) + regional dummiee g
td S o) EBEL ¢ go7y _tb (.02) Dp_ 2 :

R _=‘.91

The adjustment in the interest rate on term depqsits is also expeeted.to ?
felloﬁ a partial adjustment process to the optimal levelﬁl It is'determined by
.competitive rate (three month treasury bill‘rate Rtb)_and the demand for.owp
mortgages (AM).. The latter variable illustrates that an-excess demand for
assets will put pressure on § & L firms to attract additional sayingslthat they .

can channel into higher»yielding ioans,.however it did not prove to be significant
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in the 1960~66 period.

C. Structural Model

The thrust of the literature and researchAsurveyed is to model a simul—.
taneous structural system of equations for the behav1our of financial 1nter—.
medlaries. The motivation for this approach rests w1th the fact that the firm
has a number of'policy variables at its discretioh and the manager wants to
know.the varioos“responses to those parameters (i.ef elasticitiee of demand
with respect to interest rates, advertising, and exogenous interest rates,‘in—
comes or wealth). A hypothesis for such a modei for demand deposits and term
deposits, and the respective-interest rates for a credit union is develope&
below. The discussion is divided into two parts: (i) Consumer Behaviour; and
(ii) Financial Behaviour of a Credit Union. As usual the viability of this.

approach depends on the availability of a large number of observatlons.

(i) Consumer Behaviour

The consumer is expected to maximize‘his net worth ih a world where there.
exists limited information and a time iag»in realizations. In particular the
consumer is expected to maxiﬁize risk-return utility for‘his portfoiio of
securities. We will consider his demand for only t&o such securities: demand
deposits and term deposits. vThe demand for.demand deposits stems from the de-
sire to hoid liquid assets. These assets provide the individual with liquidity,
salability, safetj, convenience and chequing facilities. It dis these services-
that the 1nd1v1dual purchases when he acqu1res demand depos1ts. The'stock of
demand deposits will serve as a proxy for the aﬁount of services purchased.

On the other hand, the consumer purchases a term deposit in order to re-

ceive a positive rate of return. OptimiZLng over time,_the‘consumer attempts
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to reconcile his earned income stream with his desired consumptioh pattern
in ‘every period. He may have’ surplus funds to invest in financial securities
if hlS expected income is greater than his desired consumption of if the return
from purchasing f1nanc1al 1nstruments is greater than the return from consump—
tion of durable and non-durable goods. The stock of term deposits is»tﬂe mea-—
sure for quantity purchased.

Limited information iﬁplies~that the consumer does not know all the oppor-
tunities available to him and their costs or profits, so his Behaviour does

-not attain the optimum solution in every time period. There is a time lag in
executing decisions due to delays in communicatioﬁs and due to uncertain ex—
pectations about the future (i.e. lagged responsé in depoéit accounts in answer
to changes in interest rates; lagged updating of expected income). Thus house- -
holds are unable or unwilling to adjust asset holdings to long~run desiréd
levels instantaneously.

Tastes and preferences are influenced by advertising and convenient loca-
tion. There exist many substitutes among durable goods and financial instruments.
The prices of substltutes are also expected to explain the size and nature of
(dis)equilibrium in the respective markets of these assets in the portfollo.

We adopt the assumption that "the demand_for assets (at constant prices) is
homogeneous of degree zefo in general pfice‘level and unit-elastic with respect
to popuiation.” (Motley, 1970, p. 236). Consumers' income is an exogenous
variable in the model. Permanent income is estimated by adapting the weights
developed by Friedman (1957) in his consumption study. Trénsitory income is(
expected to have a significant effect'on‘both types of purchases of liquid

assets,
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Therefore the demand for a liquid assef is hypothesized fo be an adjust-
ment bétween this period's desired stock and last pefiod's actual stock. The
desired stock is dete%ﬁined by its own price by the size of the consumers'
budget (permanent income and transitory income), by per capita.advertising"

expenditures and number of offices per capita, and by prices of substitutes.

(ii) Finaﬁcial Behaviour of a Credit Union

The éredit.union sets interest rates on demand and term deposits to

alter their réépective levels such thét the surplus of revenues minus costs

is maximized in each time period. The decision maker has a desired rate but
because of a lag in’decisioﬁ—making or an unfavourable liquidity position he

is unable to reach the desired rate instantaneously. The desired rate'én demand‘
"deposits is determined by: .service charges (Se); competitors' rates (Rdd)g
credit unioq's demand for demand deposits (DD); the mortgage rafe (Rm),
liquidity constraint); and ﬁhe desired fate on credit union terﬁ deposits

(joint decision making on the two rates). The desired rate on‘tefm deposits

is defermined by: competitoré' rates; credit union's demand for term deposits;
thé mortgage rate; the desired rate on credit union aemand deposits; and the
.demand for.term deposits. _To maintain the desired distribuﬁion‘of low cost
~funds, we poétulate'a constant relationship bétween desired demand'depésit rate
and desired term deposit rate. To keep attracting funds into noﬁchequable sav-
ings rather than into higher cost term deposits an adaptive expectétions equa-

tion is used. (2.27.1).

' * 4 *
(2.27.1) Raa = Rag-1 =7 Req = Rygq)
' v % . % .
(2.27.2) Rdd (A-(1-v)L) = %M(l—§L) = Yth where L, lag éperator
. |
(2.27.3) R, = —— R
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Partial adjustment model for term deposit rates (th)

o
(2281 AR = ARG - R )
* B »*

ra = 0 Rig> Ry Rygo

. , .
Substituting for th in (2.28.1) and using the result of (2.27.3)

(2.28.2) R

TD)

(e X R
(2.28.3) AR, = MR TRt T Reg tTD - Ry g-1)

which simplifies to (2.28.4)

R e T o
(2.28.4) Rpq = oq Reg =@y Regg * g Ry =0y Ry g + a5 T = of T

+ R

a7 Rigog tog Rig o

Partial adjustment model for demand deposit rate (Rdd)

LK
(2.29.1) ARy, = X, (Ry,

dd - Rya-1)

%
B R, R

_ .
(2.29.2) Ry, = £, (S_,Ryys R, ROy

aa = T2 DD)

Substituting the result of (2.27.3) in (2.29.l) and bring Rig_1 o the right -

hand side

(2.29.3). R, = 2 Ry -2, Ry,

C(2.29.8)  Rgy = Aoy Rig t Oumv) Ry g+ (-1 AR Rdd—ZY-v

From consumer behaviour the demahd demand deposits (DD) and term deposits
(TD) can be written with (2.28.4) and (2.29.4),to form the complete struc-

tural model of four simultaneous equations.

: _ | - B A, foff |,
(2-30) DD = a39Rgq ¥ a39Req * a13Raq ¥ 14 Pop T 015 Pop Tt U16%p

+ al7(Y~Yp) + 1 gDD=y
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B A o  Foff

(2.31) D =) Ry + %50k g T *23%a ¥ %24 Fop * %25 Pop
+'.'926Yp oy (YY) A o gD |

(2.32) Ryy= 3R t d32Rdd—l + R

(2.33) R4 - 1Ry F %Ry * ‘°‘43th'—1 +'°"44Rt5-2 + a-;;Sde + 4R o1
+ o, D —~d48TD_ | H

All the equations are orer identified but  they ﬁeet the rank conditien
(necessary and sufficient cendition for identification) This condltlon
states that the structural equatlon is 1dent1f1ed if and only if the rank
of the matrlx formed by the excluded variables is equal to  the number of
‘equations less ene. |
Unfortunately for the development ef this hypothesis, data constraints
are severe. There is ‘no publlshed quarterly 1nformat10n on credit unloa
interest rates and hence the critical parameters of the model are unobser—v

vable
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_iII Theoretical Development of Time Series Analysis

'This method of forecasting ié data oriented as it incorporates eco-
nomic information through:subjective decisions made in model spegifica—j
tion. We assume that there éxists”anbasic underlying pattern for the
series that is represeéted by historical_data and this pattern/canvbé ‘
expressed aé a weighted sumvof past values of the'data.‘ The weighté in
the sum are determined so as to achieve the greatest possible predictive
power. This analysié involves three stages and n iterations on thesej‘.
stages, (illustrated below in Figure III; Box and Jenkins (1970,‘p. 19).

6ur concern is to fit a stationary model for the series of demand
deposits and the series of term deposits of credit unions that will be -
used tovforecast their respective values, We optimize the pattern of
a set of data by minimizing its forecasting error. The components of.the
time series model are: (i) autoregressive process where there‘exiéts'an
associatioﬁ éﬁong values of fhe same variable but at different time peri-
ods (éerial or seasonal); (ii) moving average process where there exists

:some mutuélvcofrespondence'among successive values of résiduals (tfends'
or seasonal); and (iii) a mixture of.the above ﬁentionéd processas,Each

is presented below.

A. General Class of Models
Stationary process. A time series Zt is considered to be station-

ary if it has an equilibrium point about a constant mean and if the vari-~

ances of the observations are the same (i.e. E(zt) = E(Zt+n) and E(ii) -

2 2 2
'E(zt) = E(zt+n) - Eﬁat+ )

0 ). A nonstationary process has no natural

mean and it is assumed that some suitable difference équationlwill re-
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present the process as being stationary. We introduce V as the backward

iy . . . ok
difference operator which can be written in terms of B where B,, = Zex
. B "';,.: t A bt

‘(3.1.1) Vzt =2z, -2z, 4= (1'—-3) z,

. . : d T
1 + ... + (—l) Z

. ) - % _ _ .. . )
(3.1.2) . v F:'zt - dz -2 a .-

+1/2 d@d - 1) z,

Autoregressive process. Consider a time series z with observations

from 1 to T. Assume that it is stationary and can be written as"'

(3.2.1) z, = ¢1 Z. 4 + ¢2 Z_y LA ¢p zt—p +‘at.

~where z s is a random observation at period t; ¢t is an adjustable weight,
and a, is a series of random shocks (''white noise"). Introducing the

autoregressive operator ¢(B) we now write

) o i i
- e - ¢pB ) z, = ¢(B)zt =

| | L
(3.2.2) (1= ¢;B" - ¢,B “t

Moving average process. The time series z is stationary and can '

be written as (3.3.2) where 6(B) is moving average operator

t-1 " %2 B T e T8 3

) . B .
(1 - elB - 62B - ... GqB ).at = §(B) a,

fl
o)

1
<D
o8]

|
[as]

' (3.3.1) oz

(3.3.2) oz,
Mixed autoregressive-moving average (ARMA) model is ¢(B)zt = 6(B) at 
where ¢ (B) and 6 (B) are polynomials of degree p and q respectivély.'.

This process is referred to as an ARMA (p,q) process (assumed to be sta-

tionary)..(Box—Jenkins (1970), p. 74).

(3.4.1) z, = ¢1Zt—l + ¢22t—2 + ...+ 9 + a, - 62a - «v. -0 a

plt-p t

-

A complete model is called the autoregressive integrated moving o
 average process with a pth autoregressive scheme, a dth stationary differ-

ence, and a gqth moving average: ARIMA (p,d,q)
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(3.4.2) ‘¢(B5det - o @) a,

An'example of a (1.1.1) process is:

(3.5.1) (L - ¢,B) Vz_ = (1 - 6,B) 'at

(3.5.2) o Vzt - ¢l Vzt_l = a, ~ el'at;l

. An example of a (0, 2, 2) process is:

(3.6.1) Viz, = (1 - 61

2
B - 62B ) at
(3.6.2) _ Tz ;.ZZ + z =a -8

Seasonal ARIMA process ,Assume that zg is a monthly series and that we
intend to link current behaviour for month t with behavi;qr for the month
in the pfeviOUS year t-12 and so on for each of the twelve ménthé. Thé
series can be written as a étationary prdcess by diﬁferepéing itkD times.
The seasonal autoregressive process of level P is represented by the poly-
nomial (3.7.1) and the seasonal moving average process of levél Q is répre—
sented by the polynomial (3.7.2), where the seasonal length ié denoted by
s = 12 (in §ur example of a monthly series). | o

, . 2 R -
(3.7.1) . 4B;,) = 1-9B, - 0B85 — ... = §B .,

- _ L2
~(3.7.2) ’O(Blz) = L—%_BIZ —-‘(‘QB12 'r.. %'B12

It is assumed that the parameters ¢ and é éontained in thié ﬁonthly modél
is approximatelyvtﬁe same for each month and thgt the efrorS'ag's are
random. The seasonal ARIMA can thus be written:asv(P,D,Q)s model spécified
in (3.9.3) | |

D | .
(3.7.3) ® p(BS) VS z, = ()Q(Bs)a.t
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Multiplicative model. 1In our seasonal series discussed above, we
relax the assumption -about the errors and now allow<at,‘dt_l, at—2’ .o
to be correlated, represented by (3.8.1)

(3.8.1) ¢ (B)Vo: = .8(B) a,

where a is white noise. Substitute (3.8.1) in (3.7.3) and premultiplying.

the latter by ¢ (B) ' yields (3.8.2) - the (p,d,q) X (P,D,Q)s model.

(3.8.2) ,'¢‘(B) éP () vdethv= 6 (_B).. 04 (B) a;

This type of specification differs from the fraditional approach to
treat éeasonality as an additive component'in a time’series. As Nelson
(1973) éoints'out such methods as dummy variables aséume deterministic
seasonality wﬁereés it is more plausible to conceive of.fhe pattérn and.
intensity of séasonél variations as undergoing chénge over time. ’We con-
sider instead a ﬁarticular ciass of linear stochastié processes that dis—‘
'ﬁlay seasonal behaviour as the basis for models dfbseasonal time series
(Nelson - (1973) p. 169). | .

An exampié of a (0,1,;5 X (0,1,1)12 model is presentedlbelow(for a
ponthly séries.; To link the monthlyvzt's one year apart we_write:(3;9.l)
; and to link theicorrelatéd‘at's one month apart we‘Qrite (3.9.2); -The

multiplicative model is presented by (3.9.3).

(3.9.1) Yz = - eBlz)qnt

(3.9.2) th = (1 - €eB) at,-

(3.9.3) ." VviZZt = (1 - QB)(l—;}?Blz) a =a ‘ife,at'l~ O'at_l2
+ 6 0 a

t-13
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The'moving average operator is ﬁow of order q + sQ = 13 and we
have thirteen adjustable coefficients (i.e. twelve monthly‘contfibutions
and one yearly cbntribution). We: observe thatrthe seasonal behaviour is
picked‘ﬁp_by the weighted error terms on the right hand sidé pf equation

(3.9.3)

B. Ideﬂtification of a Model

The individual time series of deposits will be identified as an ARIMA
(p;d,d) or multiplicative ARIMA (p,d,q) X (P,D,Q)s. Thé idenfificafion
is broken up into three stages: (i) to identify the degree of differenpihg
to obtain‘a stétionary series expressed as a £ransform of the briginall
series z.3 (ii) to identify tﬁe resultant stafionary series.as"an.ARMA prb_
cess, and (iii) to identify the absence or presence of seasonality in thg
ARTMA.

If the thgoreticél autocorrelation‘functioﬁ defined bélow ih»(3.10)
does not die out fairly rapidly for the raw data, then one may qonsider
Vz, , or some higher differépce. "It is assumedjthat the degfee of differ;',
enéing d,!necessary to achie&é stationarity,‘haé been reached.ﬁhen the
. autocorrelation function Py of.Vd;t diéé out»fairly quickly. - In practise
d is normally either 0, 1 or 2 ...:" (Box~-Jenkins (1970),’p.>l75).

The autocor#elation for z, = ¢l zt_%éé at lag k is |

ElGz, = u) (2 = )

Py 2
. o
A

(3.10)

The stationary AR process of order k ¢ (B) z, = a,, premultiplied by Zeg

can be expressed as (3.11.1), and taking expectations and dividing through‘f



~ﬁautocorrelat10ns és deflned by (37 10)
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by(ii we get an equation (3.11.2) that presents the kth autocorrelation

P 3S 2 weighted sum of ¢''s and k-1 autocorrelations.

(3.11.1). zt-kzt = ¢lzt-kzt-l C+ ¢22t—kzt—2 + ...+ cbkzt__kzt_k

(3.11. 2)  p P ¢1pk1—i ¢2pk2 ...+¢k

g'To estlmate the autocorrelatlon functlog,lreplace the p's by the estlmated

:can wrlte k- ‘linear- equatlons for

‘the pks 1n terms ot ¢ ke and p s..They are glven by the Yule—Walker equatlons

(3 12) where the kth equatlon is 51mply (3. 11 2). (Boy and Jenklns (1970)
p. 54_55) s ‘

(3.12) P17 ¢y hdgey . ¢kpk-l

PpT Oy byt by 2

P ®1Ppp T PPk T -ee

We have assumed that the AR process is of order k and hence can be expressed

in terms of k non-zero autocorrelation parameters. To be sure of the length

of the AR polynomial we examine the pertial autoéorreldtidn parameters in
equations (3.12) - the kth ¢ in the kth equatlon of (3.12) is called

¢kk’ partial autocorrelation. These ¢ .coefficients are found by solv1ng
the Yule Walker equationedfor j ;_1,2, ;.., k. Should»the ¢k+l in_the K+1
equation of an AR(k+l) be zero (¢k+l,k+l = 0), then wevconclude that pkvhes
at cut-off point at k+1l and the process is of lehgth k. This is our iden;

tification rule for an AR(p) process: if the autocorrelation function tails

off and the partial autocorrelations have a cut-off point after'lag p then

p is the expected order of the autoregressive process.

For the MA processof order g z, = e (B) acs its variance and auto-

covariances are given by (3.13.1) and (3.13.2) respectively; _leen that
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E(éta£+k) =0 k# is obvious that the autocovariance Yy is zero for all

k greater than the length of the polynémial q.

2 -

(3.13'1) | -YO = E [(at ’—.:_@lat—l e ee = ant_q)]
_ 2 2 62 :
—oa (1:» el+...+.oq) ,
'(3>.13.2)‘ vy = E [(a, - @42 5 = weo = eqat_q) (at}_k = @Ay g
Oqat_k_q)] v
2, Ca
=0 (- 0+ GOyt .+ 0 4 00) k<gq

Using our definition of autocorrelation (3.10) we define the autocorrelation

fuﬁction for the MA(q) process by (3.14)

=1 T%F 91Ot 09y k=12..q
T+ 62 + ...+ e(?i .
. : . k> gq

(3.14) N

This result yields an obvious identification rule for.the MA(q) procéss for‘
if the autocorrelation has a cut-off point aftef lag q and thé‘partial
‘autocorrelation function taiis off, then q is the expected order of the
moving average process. o ' _ S : .

" A mixed procesé ARMA (p;q) is-suggestea if both fhe autocofreiafion
 function Aﬁd the partial'autdregreésive fﬁnction tail off. The aﬁtocofre-
lation function has an irregular pattern;at Bes 1bthrough q, fhenbit tails
off according fo its funcfional values. Conversely the paftial aﬁtocérfe—
lation function is doﬁinated by an irregular paftern at 1&25 pP—q aﬁd on-—
ward.

The presence of any seasonal influence ir the data can bé'observed by

searching for peaks in the autocorrelation function and in the partial
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autocorrelation function that appear at regular intervals. The length
of - the seasonal 1s suggested by the definition of the data (1 e., monthly,
quarterly, etc) and the 1evels of (P,D,Q) will be those in which the

spikes at t-s lag die out quickly for both functions.

- C. Estimation of Parameters and Diagnostic Checking

Once ve.have identified the seriesbaS'an ARIMA (p,d,q) X.(P;D,Q)s,
the next step is to'estimate the p autoregressive parameters, P seasonal
autoregressive parameters, q moving average parameters and Q seasonal
movinglaverage parameters. The criterion for efficient estimation is‘to.
minimize the squared ! dfference between the actual value of z, and its  5
estlmated value zt We proceed to maximize the llkelihood function of the
joint normal d1str1bution of p(V V z / ¢, @9 Op )} in the multipllcatlve'
‘model. “Thusﬁwejtry,out all.combinations“otlvectors o , ,6,’ e and o}
such that they maximize the likelihood'of these“oarameters by minimizing

- the sum of squares in (3.15).
L v al 6. 0.6, 0.219
(3.15) exp [ -y=p L la,/ ¢, 2,0, 0,z

' To begin the estimation procedure‘we must give start~up values to the para-
'meters.in_thebfour polynomials and to get the algorithm started we must
'calculate the at g Wthh spec1fy the mOV1ng average part of the model

The values are estimated by using the given parameters by back forecasting
on (or its differenced level) (see Box and Jenkins, 1970, p ©212-220).
Assume that the model is an ARMA (()O l), initialize the value of ©and

express the model in terms of the forward shift operator ?zwhere Fet=et+l
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(3.16) z, = (1-063B) a, and z, = (l'-—GF)et okl

tl_= 0 and solve for z, by back'fbrecaSting.

SetvE[eTgi_O,z

 Elegloz 1= E [z] + OFE [e, 10,21 =z
(3.17) | T '™ F ) ? “>'T+1 t | T
E[eT_l' | -'.'.G))zt] =‘ E [zT_l] + OE [eT ‘I O7zt] = Zo g + 0 Zy
Ele_ | 0,21 =Elz 1 + eE [ e :_l 0z.] =0
This last equation in (3.17) gives us an initial value for E [zo] =—@¥{§1L'" :

eft] from which we can start our forWardvforecasting for a's conditional
on‘leand Z. - Recall that E [a_ll e, zt]7= 0 since it is distributed in-

dependently of z,

| Efa | © 2] = ¢Elz] + CEla | 0,2] =E [z] -
(3.18) E lay | @ez,] = E[z] + ©E[a | 0,2] =E [z;] +0E[z]
E [aT'l 0,21 = E [zp] + ©Ellag_;10,2] = E [zijv+e E'[:ziT_l]'

" Our inputs are now complete and we éan_start ﬁhéiiterations for #he»ndn—
1inear‘estimation of the parameters that will‘ﬁiﬁimizé.fhe sﬁm df équaresv
- function. Thé algorithm used in the cémputer prog?am ié Marquandt's itef;'
ative procedure which is a compromise‘between the methods éf Gausstewton )
and steepest descent (Nelson (1974), p; 8). o

The estimated coefficients are then examined for their siénificance
- levels and tﬁe mddel is diagnosed with respect té the‘eétimated residﬁalé.‘
The former is done by téstingbthe hypotﬁesis that any paraméter is different

from zero (t-test).. In particular the hypothesis that»¢ = 1 is a test for
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non-stationarity and should we accept the null hypothésis we would take

first differences of the data and test if ¢ =1 in ¢ Vzt_l,

‘etc.: If‘
the constant term of the raw data is signifiqantly non-zero theﬁ we'also
concludé‘that there is a drift in the.series ;nd that its méah is not
independent of'tiﬁe. :The ﬁresence of seaSonality can be asgribed.to the
significance of either autoregressive or moving average cbefficients 6f
order P and Q respecti&ely. |

The estimation programs glso yieldvtwo modéi éharacteristics; The
firs? is the hypothesis that the population represeﬁtedvby.the ﬁodel‘and
;he pobulation illustrated by the data come from the samé populafion.:‘This
non-parametric test is the Kolmogorov-Smirnov Statistic which gives con-
fidence bands for the differences between the distribufion function of béth
" populations. The second is the hypothesis.that we have redﬁced the model
to white noise; “This is a chiﬁsquare'tést known as fhe Béx—Piercé Statis;
tic and if the sum of the first k sampie autoéor?elafions of ﬁhé errofs is
less than the chi-square value with (k-p-q-P-Q) degrees of freedom, then
the residuals are said to be random. o o |
D. " Forecasting | - .

' The concern for‘efficiency in estimation. and signifieéncelof.coeffi—
cients stems from the desire to ha&e efficient.fofecasfs fo? the series
Zis1 where 1 is.some périod into the future. Efficiency is_éefined here
in the same'way as in estimation: minimize the mean square é:ror. _when
the model is identified and barameter estimates~aré obtained, the élgorithm
once again_gegefapes the disturbance terms (at’s) and we:Can:egsi;y foré;ast
| ‘ ‘ conditional on thisiﬁeriod's autorégreésive )

o . .
next period's value for Zq
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parameters and moving average terms. It should be noted that 1f the
raw-data has been transformed to natural logarithms then the forecasts
are log normally distributed and the antllogs must be adjusted based on

the log—normal dlstrlbutlon (Nelson (1973), »p. S 161- -163).

E.  Transfer Funerion

Throughout this chapter we have shown that 5 perticuiar times>series
can be represented by an ARIMA process but it>may also be sensitive to
- some external shocks. If our series z, is dependent on the current exoge~-
. nous variable Xt or its past values X -1 's then equation (3 19) is the

transfer function for z, (i. e. a structural equatlon)

(3.19) - z, =ralXt +&a2 Xt—i + ... + ar Xt—n + a_ = . (B) th¥ a,
In our context of time series for deman& deposits aﬁd term deposits, the
economic theorj reviewed by Chapter II suggest likely candidates for the
X's._ In particular for term deposits the most likely iodependent variable
is the interest rate on term deposits. The empirical part of thié study
w1ll examine the significance of this variable and the equatlon spec1f1ed
in (3.19), will be compared with the ARIMA models for its power to predlct‘

future values of time deposits. . The former is measured by the t- test and

the latter is measured by the mean square error.
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.IV | Data and Empirical Results
| A, Data

A credit union is a financial intermediary that is an autonomous
‘entity It has its own operating- charter, its own Board of Directors
" and management‘ and its own borrowing and lending polic1es. The common
'boqd7 of association may vary from employees in one firm to a COmmunlty
of a million people. The most homogeneous credit_unions were to be con--
sidered in order to compare the estimated ARIMA models. The credit unions
that had the longest history of providing both demand deposits and term
A deposits -to thelr “members would prov1de the largest number of observations
to evaluate forecasts. The intersection of these two criteria resulted‘
in the choice of three of the largest credit unions in the Vancouver Metro-
" politan Region in British.Columbia and they had the following characteris—'
tics: (i) they face the same external market; (ii) they have - the same.comf’
mon bond of community association; (iii) they are multi—branch operations,"
and (iv) they each have over thirty-million dollars in assets; and both
demand deposits and term deposits are offered to ‘their members: -

The two accounts examined are total demand depositsland.total term d;i
deoosits. The credit unions primarily deal with non-corporate bodies and
‘economic theory suggests two different behaviours‘by consumers‘to the tuo
types of deposits; (i) demand deposits are purchased by indiuiduals for
liquidity and convenience in carrying out transactions; and (ii) term de- -
fposits are purchased as an investment.of savings in low risk securities.
The data are gathered quarterly and date back to the second quarter of

1962. From 19622to 1974:4 we have 52 observations for demand deposits and



no less than 36 observations for term deposits (some credit unions did
not start to offer these‘services until 1966). The three credit unions -
examined below are referred to as C.U.1, C.U.2 and C.U.3 and they are
orderedfnith respect to theirbssset'size‘(This data series are listed in

Appendix:Data):

B. Model.for CharteredkBanks' Deposits

To obtainA"a priori" identification of the credit unions' serlesl
but more important to evaluate the strength of the time series method to
be used, we first look at the behaviour of demand deposits and term deno—_
sits for-a similar financial intermediary for which we have e:iarger nnm—
ber of data points.. The time series are the total of personai demand de—-
posits and of.perSOnal term deposits held in chartered banks in'Canade as
V;publlshed monthly in the Bank of Canada Statistical Review (1967 9 - 1974
| 11, 87 observatlons)

The Box and Jenkins technique suggests a monthly seasonal model for
demand dep031ts. The simplest model whose coefficients proved tobbe sta-
tistically 51gn1f1cant is (0,1,0) x (0, l l) 12 multlpllcatlve model where‘
h'the data has been transformed to natural logarithms. This model 1nd1cates
v'that'the series is stationary after first differences have been taken‘and
that there is a significant seasonai moving average term that determines.
the level of demand deposits in banks Indeed this accurately depicts the
seasonal.troughs of June and December when the absolute levels of these
dep051ts decrease w1th respect to the balance held in the prev1ous month

The Kolmogrov—Snlrnov Statistic and the Box-Pierce Statlstlc both suDgest
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that the fitted model édequately'represents the data (equation 4.1)
(4.1)  VIn.DD_ - Vln DD_ ., =. .008 + .128 a__ B&P = 23 n-k.= 22
: S t-12 ¢.001) (.012) t-12 , \
The transformed series of term deposits was identified to be (1,1,1)

ﬁbdel (data transformed to loge) and the diagnostic checks suggest that

the residuals. are white noise (Equation 4.2).

(4.2) Vin TDt = _.87Vin TDt—l - .34'at_l

B& = 13 n-k = 22
(.06) (.12) ,

The tranéfér‘function was also tested for term‘deposits (TD), where the
exogenbus Variabl;s were iﬁterest rate on 90 day bank term deposits (R) and
‘time (T). Both coefficients had the right sign and were f:  significant
‘statistically (although the standard errors are underestimated due to high
serial autocorrelatlon, it is unllkely that they are not 31gn1f1cant) For
the equation with R and TD la-gged one perlod the monthly model again re-
vealed the expected signs and 81gn1f1capce, however, the Durbln—Watson
Statisticlindicates autocorrelation among the residuals -

ot

7.05 + .O7R + ..02T " D.W. = .07 R° = .93
(.07)  (.01)  (.001)

(4.3.1) 1nTD

(4.3.2)  I1nTD = .20 + .01R + .97 1nTD D.W. = .54 R? = .99

(.04)  (.002) - (.005) "L

Thus our digression on banks has confirmed our "a priori" behaviours
of the two series in relation to consumers' choices and preférences, it has
suggested an order of differencing for the model and the significance of

transfer functions, and the time series analysis has been shown to fit the

_data.
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C. Demand for‘Credit Unions' Demand Deposits

- Upon inspectioﬁ of the quarterly series from 1962—1974 for each of
the thrée credit unions it‘was evident that there is én‘expéneﬁtiél.
growth trend‘inlthe data.. The best model of demand deposits of ﬁC.U. 1
and C.U.3 (transfofmed into ﬁatural lqgarithms) was the secénd Aifference

first order moving average model, for C.U.2 there were two models, not quite

. comparable, whose coefficients were significantly different from zero: (i)

seasonal model (1,1,1) x (0,1,1)4; and (ii) second difference model (0,2,1).

The study of banks' personal demand depositsAshowed a significant seasonal

trough at the end of the sixth and twelfth months (identical‘to our Second

‘and fourth quarter observations), and we expect a similar seasonal pattern

for demand deposits of credit unions. However, if one is using quarterly

data as we are it is not obvious that tﬁe observations suggést a seasonal
pattern. As Figure IV.lshows, the dotted line is the expected monthly level
with June and December being significantly lower tﬁén May and ﬁovember kre-
spective month prior). Whereas the monthly data suggest th;t'DD12<DDll aﬁd

DD6 <DD5, they do not suggest that DD12 (4th quarter) <;DD9 (3rd quarter) .

or that DD6 (2nd quarter < DD3 (1st quarter), so that our quarterly data

does not pick up the seasonal demand for credit union demand deposits-—ex-—
cept in the case of C.U.2.
The best equations and their parameters are listed below in Table 4.1.

We are satisfied that‘the unexplained variance in these models is white

‘noise.
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TABLE 4.1

ARIMA MODELS FOR DEMAND DEPOSITS OF CREDIT UNIONS

(0,2,1)'A - VInDD_~ VInDD ., = a

1 -1 | ‘
c.U.1 6= .81 g =.09  B& =22 nk =23
C.U.2 ' 8= .88 o= .07 "B&P = 17 n-k = 23
c.U.3 - 6= .84 o=.09  B& =11 n-k = 23
(1,1,1)%(0,1,1)4 ~VinDD, — VInDD. ,= -3VIADD,_ .+a, -6 8a ., B8%
»1,1)x(0,1,1)4 =VInDD, - VInDD, ,=-¢VinDD,_,+a —6fa, 4= Oa, , 004 4
c.U.2. ® =-.77 . o = .05 "B&P = 26 n-k = 21
- B = .46 o = .14 o - :
0= ~1.10 g = .05

'D. Demand for Credit Unions' Term Deposits

The series are'traﬁsformed to natural 1ogariﬁhms and the'first dif-
ferenge first order autoregressive scheme is the best mddel with ﬁhe
smallest number of coefficients for C.U.l1 and C;U.Z (Thé 845 are signifi- '
cantly different‘from zero and one). For C.U.3 (1,1,1) model is signifi-
.cant andnthe residuals of this model are less cofrelatéd than thosé in
(1,1,0) model for the time series...Since the éutoregressivé barameteg in
‘the former model is .92 - significantly different ffoﬁ zero buf.lieing |
jhst within the 95% confidence interval (one-tail test) =~ the‘second dif-
ference model was fitted. The (0,2,1) specification was significant and
' theAevaluation of the:three models for C.U.3 is postpbned until the later
section on prediction. The estimated ARIMA equétiohg are lisgea below in

Table 4.2
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TABLE 4.2

ARIMA MODELS FOR TERM DEPOSITS OF CREDIT UNIONS

~(1,l,0) : VlnTDt e ¢VlnTDt_l + a,

. A : . ' o o
c.u.1 b = .62 o =.06 - B& =28  n-k = 23
C.U.2 b= .32 o =.09 B&P = 16 n-k = 23
C.U.3 ¢ = .64 | o = .12 B&P = 23 n-k = 23

| (1,1,1) VlnTDt = ¢VlnTDt_1 +_at + Gat_l ' o
C.U.3 6 =.92 o = .04 B&P = 18 . n-k = 22
=70 o = .13
(-,2,1) | VlnTDt -y 1n*"I‘Dt__l = a, + eat_l
C.U.3 B = .64 o =.14 B& =18  n-k = 23

The transfer function for demand for credit unions' term deposlts

was also fltted Recall that in the example for chartered banks the explana—_ =

tory variables were the interest rate on 90 day term dep031ts (R) and
time (T). The approprlate interest rate for the time series of credit
unions is the rate pald by credit unlons on a comparable securlty How—

ever, as stated in Chapter IT the 1nterest ‘rates pald by credlt unions arev

not published on a quarterly basis hence the rate paid by chartered banks
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S

is used as a proxy. Ordinary least squares was used to estlmate the
significance of R and T. For each of the three credlt unions the former
Varlable was not 31gn1f1cantly different from zero (see Table 4 3)

Again it is 1nterest1ng to speculatehas to why.thls result is so dlfferent
from that of the chartered banks. Either there has been a structural |
change in promotion and preference of term deposlts in the 1962 1966 and '
1967-1974 perlods or that in the quarterly data the changes in R may be
too discrete to be positively correlated with the new levelfgfvterm de—.

posits.

TABLE 4.3
0.L.S. RESULTS FOR TRANSFER FUNCTION OF TERM DEPOSITS

. OF CREDIT UNIONS

oy

7v]

+
%

-

¢ 1 4, |
c.U.1 1249 el 12 py - g9 72 - g7
(.16) ‘.04) - (.004) =
C.U.2 . 11.18 ~.02 - .13 D.W. = .59 R? = 97
(.18) (.04) - (.005)
C.U.3 - ' 8.53 -.03 .18 D = .26 RZ = .98
(20 (.03) (.005) T

“E, Forecast'Evaluation 1974:1—1974:4

The best ARIMA model for the demand for demand deposits of credlt

unlons is evaluated against a naive random walk model (zt =_ezt;l +‘at)
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and agalnst any other models that proved to be significant in. the estlma—‘
tion stage Table A presents the results and the ARTIMA outperform the
random walk, The (0,2,1) model is the best specification for'forecasting

credit unions' demand deposits.

- TABLE 4.4

PREDICTION ERRORS, DEMAND DEPOSITS- OF CREDIT UNIONS
’ 1974:1 - 1974:4 PREDICTIONS

Average Root Mean

Absolute Error ~ Square Error
c.U.1 ’ ‘ 4 ‘
(0,2,1) : 0.29 - 0.30
(1,0,0) 0.33 ‘ 0.39
c.u.2 - ‘ :
(0,2,1) ' 0.07 0.09
(1,1,1)x(0,1,1)4 . 0.09 - 0.11
(1,0,0) ’ 0.12 : - 0.20
C.U.3 ' . : . _
’ (0,2,1) - 0.15 -+ 0.21
(1,0,0) - 0.51 - 0.80

‘ . 1 . |

note: the root-mean square-error is {Za”/n)?, where a's are the errors,
the summation is over all observatlons, and n is the number of
observatlons

Similarly the various models of term deposits series are evaluated
with respect to the minimum mean square error criteria for the quarterly
forecasts in 1974. 1In all cases the ARIMA models outperformed the transfer

functions and the random walk equation (Table 4.5) illustrates that the

best models for demand of credit unions' TD are the (l,l,O) model for
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c.u.1 and.C.U.Z and (1,1,1) model for C.j.3. Figure IV2 shows the plot
of the calculated and actual values of demand deppsits and term dépositg
for tﬁe forecast intervél.. In almost all the cases our forecaété were
too optimistic, ovérstating the actﬁal’balaﬁces.éf aeﬁoéifs.held b§4C.U.l;

C.U.2 or C.U.3.

- TABLE 4.5

. PREDICTION ERRORS, TERM DEPOSITS OF CREDIT UNIONS
1974:1 - 1974:4 PREDICTIONS

Average - . .  Root Mean

Absolute Error o Square Error -

- C.U.L ‘ : : . o
(1,1,0) 0.23 . 0.23
(1,0,0) .32z . -~ - 0.35
f(R,T) 0.26 - ©0.27 .

. C.U.2 , : - :

' (1,1,0) 0.09 : 0.11
(1,0,0) _ : 0.38- - 0.44
f(R,T) . 0.61 L ' 0.65

C.U.3 : S - S
(1,1,1) RN 0.11r : ‘ - 0.11
(L,1,00° o 0.12 . ' - .0.18
(0,2,1) o 0.28 - L - .- 0.30
(1,0,0) : 0.37 ... .. . 0.41
f(R,T) , ' - 0.67 ' ‘ 0.69

note: see note in table 4.4; f(R,T) is the transfer function where
R is . the interest rate and T is time as defined above -
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V. Concluding Remarks

We have found that thevARIMA models furnish the best forecasts.for
demand deposits and.term deposits.of“credit unions and for nersdnal'demand
deposits and term deposits4of chartered banks{ For demand deposits, the
(0,2,1) model best describes the demand for credit unions"deposits and tﬁe7
(O 1,0) x (O, 1 ,1) 12 process is the one we 1dent1f1ed for chartered banks.l
For term deposits, CUgl and CU.2 data follow a (1,1 O) process whlle the
(1,1,1) model is the best formulatlon for CHc3 and chartered banks. In all
the cases we are satlsf;ed that the unexplained variation in the'seriesvof’
demand deposits or term deposits is wnite ncise. |

The predictions for 1974 proved to Ee too optimistic. This suggests
that constant feedback must be malntalned in order to update the forecasts
and to monitor tne turning p01nts in the serdes. It is 11ke1y that the
values of the parameters may change as tﬁese 'ARIMA models are fitted to new
data points. Future research should try to- useymonthly data because there
" is a likely seasonal pattern that is not belng plcked up by the quarterly
data. Thls w1ll also give more observatlons to the time series and strength—d'
“en the model 1dent1f1cat10n and estlmatlon.

- There’is another nroblem with having used the quarteriy series for the
years between 1962 and 1974. This period'is by no means a.hOmogeneous one
for financial intermediation in Canada or for credit unions in British Co-
lumbia. The:market structure was quite different pricr to‘1967.at.which»time
the Bank Act was changed and chartered banks increased their’activities in
the consumer market. There has been a marked shiftvin the érqwth;rate cf.‘j
credit unions"assets in British»Colunbia since 1970 and perhaps'the'under—

lying pattern of the data is not the same as for the 1962-69 period. If.
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this shift should be significant then our 1962—74‘ARIMA models may»have‘
_introdqced~an_archa%c pattern into the model and into thé forecaéts} As. /
‘the number of observations will increaée»with time it will be possibie to
test the homogéneity of the time series fof credit union deposits.

Thus.our thesis has'successfuliy ﬁodelled the time series for demand
;deposits and-ferm deposits of a credit union. The financial ﬁanager in a -
_credit unioq'can generate the forecasts for deposits using éﬁr‘ARIMA models

-and with forecasts of interest rates and of loan demand he can implement

them in an optimization technique.

LS
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18.616°

18.604

18.693

AFERDIX : DATA
DEMAND DEPOSITS C.U.1
283728. 288410. 277601. - 290200.
328629.  397636. 483302. 579923.
670283, 664819, 700115. 859983.
1145867. 1286335. 1168532. 1315540.
1570730. 1361218. 1561367. 1623500.
1976460. 2667036. 2467194, 3069123.
3451364. 3778215. 4433987. 4638152.
'5338262. 6508993. 6116369, 6064195,
6573045. 7T7154165. 8641735. 9423604.
13240078. 16313127. 17623152. 19440843.
21584896. 24559728. 27228336. 32179760.
38420704. 37876336. 32794640. 35345552.
32716080. 30331968. 29406736." '
DEMAND DEPOSITS LN - C.U.1
12.556 12.572 12.534 12.578"
12.703 12.893 13.088 13.271°
13.415 13.407 13.459 13.665
- 13.952 14.067 . 13.971 14.090
14.267 14.124 14.261 '14.300
14.497 14,796 14.719 14.937
15.054 15.145 15.305 15.350
15.490 15.689 15.626 15.618
15.698 15.783 15.972 16.059
16.399 16.607 16.685 16.783
16.887 17.017 17.120 17.287
17.464 17.450 17.306 17.381
' 17.303 17.228 17.197
TERM DEPOSITS C.U.1 ~
' l. 85500. 231000. 390500.
'507000. 616500. 695000. 800000,
863500. 949723. 1130535. 1278997.
1591329. 1727357. 2198997. 2412211.
2568230. 3113829. 3496095. 3946960.
4101678. 4466207. 5006250. 5546293.
5940851. 6321382. 6540961. 7158364,
7795252. 8087713. 8395023. 8454867.
9291387. 10108465. 13068507. 15679535,
19320080. 21975056. 29106528. 32807952.
'35523872. 40226720. 49773856, 58248880.
66961040. 76191184.1C4511584.107059568.
121612864.120154240.131267616.
TERM. DEPDSITS LN C.U.1
0.0 11.356 12.350 12.875
13.136 13.332 13.452 13.592
13.669 13.764 13.938 14.062
14.280 14.362 14.604 14.696
14.759 14.951 15.067 15.188
15.227 15.312 15.426 15.529
15.597  15.659  15.694 15.784
15.869 15.906 15.943  15.950
16.045 16.129 16.386 16.568
16.777 16.905 17.186 - 17.306
©17.386 17.510 17.723 17.880
18.020 18.149 18.465 18.489
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DEMAND DEPOSITS

C.U.2 :

42566, 41730, 49070. 48420,
8l171. 94573, ~112242. 125489.
113742, 125952, 147022. 167439,

- 210250. 271566. 263801. 444177,
493942 . 378563. 626290. 632440.
782152, 882650. 1054217. 1272136.
1465475. 1468787. 1783469. 1930989.
2200238. 2257850. 2234457. 2313589.
2615548. 2710551. 2880538, 3182165.
4333078. 4990218. 6097890. 6852933.
7941170. 9464295. 9860277. 11098798.
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14047351 . 16122663, 15874823. 16234764,
23868592. 22500016. 25584384. . L
' DEMAND- DEPOSITS LN C.U.2

10.659 - 10.639 10.801 10.788
11.304 11.457 11.628 11.740°
11.642 11.744 11.898 12.028
12.256 12.512 12.483 13.004
13.110 12.844 13.348 13.357
13.570 13.691 13.868 14.056
14.198 14.200 14.394 . 1l4.474
14.604 14.630 14,620  14.654
14.777 14.813 14.873 14.973
15.282 15.423 . 15.623 15.740
15.888 - 16.063 - 16.104 16.222
16.458 16.596 16.580 16.603
16.988 16.929 . 17.057
: TERM DEPOSITS C.U.2 g
1. 1. 1. 1.
l. 1. 34800. 135900.
204200. 250900. 316375.- 375375,
411908. 447175. 501977. 361300.
449200, 846244, 729636. 834899.
991779. 1214559. 1395449. 1493096.

- 1796670. 2141400. 2566803. 2808933,
3575329. 3928884. 4180953, 4638880.
5071935. 5619708. 6515980, 7376612.
8505891. 9221807. 9992905. 10870671.

11891481, 12879057, 14714702, 16288378. -
- -17563008. 18394128. 23261632. 28583872.
22601120. 23471504. 26045296, .
. TERM DEPOSITS LN C.U.2
0.0 - 0.0 6.0 0.0

0.0 0.0 10.457 11.820
12.227 - 12.433 12.665 12.836

©12.929 13.011 13.126 12.797
13.015 13.649 13.500 13.635
13.807 14.010 14.149 14.216
14.401 14.577 14.758 14.848
15.090 15.184 15.246 15.350
15.439 C15.542 "15.690 15.814 .
15.956 16,037 16.117 T 16.202
16.291 16.371 ~  16.504 16.606

" 16.681 16.728 16.962 17.168

16.934 16,971 17.075




DEMAND DEPOSITS
29922. .

30211.
47415.
54238.
. T0655.
104508.
247533,
470602,
890417,

1489363 .

. 3401836,
7983876.

40146,
50398.
102755,
129995.
286000.
486069.
948713.
1501195.
3854162,
8676195.

C.Us3

3507 6. 36119.
54531. 58095.
61514, 67321.
85070. 83590.
145659.  193789.
300776.  373105.
588993.  719561.
969893. 1210128.
2063821. 2392084. -
4818345, 5859625,
10504561. 12132317.
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15228363. 15218569. 13645977. 15597718.
17014160. 16019679, 15431547, o
DEMAND DEPOSITS LN C.U.3

10.316 10.306 = 10.465 10.495
10.767 10.600 10.907 10.970
10.901 10.828 11.027 - 11.117
11.166 11.540 . 11.351 11.334
11.557 11.775  11.889 12.175
12.419 12.564 12.614 - 12.830
13.062 13.094 13.286 13.486
13.699 13.763  13.785 14.006
14.214 14.222 14.540 14.688
15.040 15.165 15.388 15.584
15.893  15.976 16.167 - 16.311
16.539  16.538 16 .429  16.563
"16.650 = 16.589 16.552 :

e TERM DEPOSITS C.U.3 .

1. "l. 1. 1.

| S 1. 1.

l. 1. 1. ' 1. .

© ol 1. l. 1.
59000. 97000, 113500, 132500.
176500. 186000. 205500. 363500,
419500. 569700. 858700. 1013400.
1470231. 1607531. 1696131. 1835406.
2150876. 2425786. 2932926. - 3343537.
4428624, 5866774. 71293652. B8168730.
8880908. 9554125, 11617550. 12667943.

14149311. 17151568. 22396832. 23459472,
26597312. 29519456. 30429056,

0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
6.0 0.0 0.0 0.0
0. 0.0 0.0 6.0
10.985 11.482 11.640 11.794 -
12.081 12.134 12.233 12.804
12.947 13.253 13.663 13.829
14.201 14.290 l4.344 14.423
14.581 14.702 14.892 15.023
15.304 15.585 15.803 15.916
15.999 16.072 16.268 16.355
16.465 16.658 16.924 16.971
17.231 g

17.096

17.201

- TERM DEPOSITS LN C.U.3



DEMAND DEPOSITS

1040.
1506.
2450.
2875.
‘3508.
3781.
4391.
4706 .
4182.
4416 .
5058.
5675.
7034.
9785.
12739.
DEMAND
6.947

7.317
7.804

T.96%
"8.163
8.238
8.387
8.457
8.339
8.393
8.529
8,644
8.859
9.189
9.452

-X10#%*%6* CANADIAN

1083. 1174. 1261. 1326.
1640. 1853, 2099. 2293.
2487. 2502. 2539. 2634.
2950. 3048, 3140. 3243.
3570. 3579. 3594. 3636,
3873. © 4005. 4104. 4202.
4428.  4465. 4481. 4551.
4602, 4442, 4328, 4235,
4207. 4150. 4127. 4234.
4493, 4595, 4697. 4788.
5130. 5114. 5191. 5349.
5789. 5989. 6273. 6537.
7384. 8117. - 8579. 8987.
10000. 10504. 11170. 11751.
13038. 12490. . |
DEPOSITS LN X10%%6 CANADIAN
6.987 T7.068 7.140. 7.190
7.402 7.525 T7.649 7.738
7.819 7.825  7.840  7.876
7.990 8.022 8.052 8.084
8.180 8.183 8.187 8.199
B.262 8.295 8.320 8.343
8.396 8.404 8.408 8.423
8.434 8.399 8.373 8.351
8.345 8.331 B8.325 8.351
8.410 8.433 8.455 8.474
8.543 8.540 8.555 8.585
B.664 8.698 8.744 8,785
8.907 9.002 9.057 9.104
9.210 9.260 9.321 9.372
9.433

9.476

BANKS
1400.
- 2408.
2772.
3389.
3711.
4306.
4648.
4198.
4324,
4922.
5544,
6796.
9457.
12360.

BANKS

T.244
T1.187
1.927

8.128

8.219
8.368

8.444

84342
8.372
8.501
8.620
8.824
9.155

9.422
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TERM
10443.
10587.
- 10865.
11136.
- 11426.
11543 .
12002.
12367.
13879.
14161 .
14791.
15016.
15829.
16204.
17343,

TERM
9.254
9,267
9.293
9.318
9.344
9.354
9.393
9.423
9.538
. 9.558
9.602
9.617
9.670
9.693
9.761

DEPOSITS

10535,
10694.
11031.
11281.
1'1516.
11696.
12125.
12782.
14075.
14301,
14962.
15214.
15966.
16601.
17625.

10532,
10767.
11038.
11302.

11473..

11871.
12101.
12945.
13655.
14408.
14797.
15323.
15834.
16940.
17562.

10367.
10702.
16979.
11296,
11297.
11742.
11987.
13156.
13406.
14379,

14540,

15381.
15699.
16860.

X10*%6 CANADIAN.

10461,
10768.
11021.
11357,
11355.
11716.
12106,
13418,
13625.
14531,
14781.
15589.
15867.
17043.

DEPOSITS LN X10%%6 CANADIAN

9.262
9,277
9.308
9.331
9.351
9.367
9.403
9.456
9.552
9.568
9.613

" 9.630

9.678
9.717

9Q.777

9.262
9,284

9.309"

9.333
9.348
9.382
9.401
9.468
9.522
9.576
9.602
F.637
9,670
9.737
9.7173

9.246
9.278
9.304
9.332
9.332
9.371
9.392
9.485
9.503
9,574
9.585
9.641
9,661
9.733

9.255
G.284%
9.308
9.338
9.337
9.369
9.401
9.504
9.520
9.584
9.601
9.654%
9.672
9. 743

BANKS

10539.
10200.
11077.
11394,
11463,
11888.
12239,
13654.
13834.
14625,
14932,
15742,
16029,
17167.

BANKS - -

9.263
9.230
9.313
9.341
9.347
3.383
9.412
9.522
9,535
9.590
9.611
9.664
9.682
9.751
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