
£ • t 

A COMPARISON OF COMPUTER-BASED TERRAIN STORAGE METHODS WITH 

RESPECT TO THE EVALUATION OF CERTAIN GEOMORPHOMETRIC MEASURES 

by 

DAVID MICHAEL MARK 

B.A. , Simon Fraser University, 1970 

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF ARTS 

in the Department 

of 

Geography 

We accept this thesis as conforming to 

the required standard 

THE UNIVERSITY OF BRITISH COLUMBIA 

February, 1974 



In p resent ing t h i s thes is in p a r t i a l f u l f i l m e n t o f the requ i remen rs f o r 

an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that, 

the L i b r a r y sha l l make i t f r e e l y a v a i l a b l e f o r reference and s t u d y . 

I f u r t h e r agree t h a t permission fo r ex tens ive copying o f t h i s thes is 

f o r s c h o l a r l y purposes may be granted by the Head of my Department: o r 

by h is rep resen ta t i ves . I t is understood that copying or p u b l i c a t i o n 

of t h i s t hes i s f o r f i n a n c i a l gain sha l l not be al lowed wi thout my 

w r i t t e n permiss ion . 

Department of Geography 

The U n i v e r s i t y o f B r i t i s h Columbia 
Vancouver 8, Canada 

D a t e March 11, 1974 



Abstract 

Topographic information can be dig i t ized in several ways. Sampling may 

be surface-random (points selected according to part ial ly or completely arbitrary 

criteria) or surface-specific (points selected according to their topographic 

signif icance). Surface-random sampling includes grids, contours, and randomly-

located points. In this study, grid sampling and surface-specific sampling are 

compared. Surface behavior between sampled points is assumed to be l inear. 

A l l aspects of surface form can be considered to reflect surface roughness. 

Horizontal variation includes the concepts of texture and gra in , whi le vert ical 

variation is discussed under re l ief . The relationships between these are embodied 

in slope and the dispersion of slope magnitude and or ientat ion. The distribution 

of mass wi th in the elevation range of a topographic surface is described under 

hypsometry. Parameters for investigation are selected from these categories. 

The variation of some selected geomorphometric parameters in southern 

British Columbia is examined via a stratif ied random sample consisting of fo r ty -

two 7 x 7 km areas. The values of some of these parameters are used to group 

the samples, and six are chosen for more detailed analysis. The relationships 

among the variables are examined using correlation analysis. 

For four geomorphometric measures (local re l ie f , mean slope, roughness 

factor, and hypsometric integral) , the theoretical errors involved in estimating 

the measures from the two selected terrain storage methods are discussed. The 

surface-specific point samples should produce better results than grids of 

reasonable densities. The latter, however, should require less digi t izat ion time 

and computer storage space per point. For at least local rel ief and hypsometric 

integral , grid error should be a linear function of grid spacing. 



Results of empirical comparison of the methods over the six selected 

areas are presented. The average surface-specific point data set is found to 

require some 2 .6 times as much digi t izat ion time and 3.1 times as much computer 

storage space as the 15 by 15 grids used in the comparison. Computed estimates 

obtained from both of these data bases are presented for each of the four selected 

parameters, together wi th other estimates (obtained manually) in some cases . 

The average errors for the methods are found to differ signif icantly for local 

rel ief and mean slope but not for the hypsometric integral; for a l l three measures, 

the grids produce larger mean errors. The assumption of a linear relationship 

between grid spacing and grid error is used to estimate the grid spacing which 

would be required fo produce the same average error as the surface-specific 

points. For the three parameters used, these hypothetical grids are calculated 

to require more computer storage space and digi t izat ion time than the surface-

specific point data sets. 

The influence of the density of surface-specific points and of base map 

scale appear to be related to the topographic texture. For a reasonably 

experienced terrain analyst, the reproduceabi l i ty of these data sets appears to 

be good, although there remains a subjective element in point selection not 

present for grids. It is concluded that for a given amount of digi t izat ion time 

or computer storage space, better estimates of geomorphometric parameters can 

be obtained using sets of surface-specific points than using regular grids. 
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Preface 

When the current project was begun, i t was the writer 's intention to 

develop a computer system for the analysis and classification of terrain from 

topographic map data, wi th the specific aim of eventually producing a 

quanti tat ive physiographic map of British Columbia. Some theoretical and 

empirical analyses (reported herein in Chapter 5) revealed that estimating 

geomorphometric parameters from a regular grid could introduce considerable 

error. The thesis objective was therefore redefined to become an investigation 

of the relative merits of grids and of alternative computer terrain storage systems 

The results may be considered to represent a pi lot study for the eventual 

realization of the original object ive. 

Throughout this study, the writer has benefitted greatly from discussions 

wi th his thesis supervisor, Michael Church. He and J . Ross Mackay read and 

commented upon drafts of the entire thesis, whi le Thomas K. Peucker has 

reviewed certain sections. Michael C. Roberts and H. Olav Slaymaker have 

also provided helpful advice. Financial support was primarily provided by the 

Department of Geography, University of British Columbia, in the form of 

Teaching Assistantships. Some support was also obtained from the "Geographica 

Data Structure" project, Geographical Branch, Of f ice of Naval Research, 

Project N O N R 710-100, principal investigator Thomas K. Peucker, Department 

of Geography, Simon Fraser University. Computer time was provided through 

the Department of Geography, University of British Columbia. 
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Chapter 1: Introduction 

Geomorphometry, which has been defined by Chorley et a l . (1957, 

p. 138) as the science "which treats the geometry of the landscape," attempts 

to describe quanti tat ively the form of the land surface; i t is a sub-discipline of 

geomorphology. Evans (1972, p. 18) distinguished specific geomorphometry, 

which measures the geometry of specific types of landforms (see for example the 

work of Troeh, 1964, 1965, on "landform equations"), from general geomorpho­

metry, "the measurement and analysis of those characteristics of landforms which 

are applicable to any continuous rough surface." In much of the geomorphometric 

l i terature, i t has been claimed that the drainage basin represents "the fundamental 

geomorphic uni t" (notably Chorley, 1969; see also Leopold et a l . , 1964; 

Wil l iams, 1966). This view was taken to an extreme by Connelly (1968), who 

in a discussion of terrain statistics stated that "although i t is an oversimplif ication 

i t is certainly a val id approximation to attribute al l land forms to the f luvial 

erosion of uplif ted rock masses" (p. 78). He stated that this assumption was 

necessary in order to develop "a unif ied framework for landscape geometry. " 

Since about one third of the earth's land surface was glaciated during the 

Pleistocene (cf. F l int , 1971, p. 19), and as other processes such as f luv ia l 

deposition, or aeol ian, vo lcanic, or periglacial action have also influenced 

large areas, i t is the writer's opinion that a "unif ied framework" could only be 

produced i f no single process is assumed. Furthermore, the specific approach 

can only be applied once an area of the earth's surface has been identi f ied as a 

drainage basin, an a l luv ia l fan, a drumlin, et cetera. 

The object of this study is to investigate the use of computer-stored 

topographic information in the evaluation of geomorphometric parameters. 

Computers have been widely employed in both geography and the earth sciences, 

and geomorphology has not been an except ion. A recent book edited by Chorley 
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(1972) attests to the fact that spatial aspects of land surface form have received 

much at tent ion. Whi le computers have been used in geomorphometry, there 

have been few attempts to store topographic surfaces in computers and then to 

perform detailed quantitative analyses of land surface form. Exceptions are the 

works of Hormann (1969, 1971), who approximated land surfaces wi th sets of 

contiguous triangles, and of Evans (1972), whose work was based on regular 

square grids ("alt i tude matrices"). Neither of these works studied the comparative 

accuracy, precision, and eff iciency of computer terrain storage methods, the 

differences between computer estimates and "standard" methods for estimating 

geomorphometric measures, or the relat ive dig i t izat ion (data gathering) times 

and computer storage requirements. It is the purpose of this study to review 

various computer terrain storage systems, and to compare the triangle and grid 

methods noted above. The comparison w i l l be based on the estimation of a 

group of landform parameters selected after a review of many such measures. 

For the reasons cited above, emphasis w i l l be placed upon general geomorpho­

metric parameters, although some attention w i l l be directed toward measures 

based specif ical ly upon landforms of f luvial ac t i v i t y , probably the most 

important single class of processes which has shaped the earth's surface. A l l 

examples used in the comparisons w i l l be drawn from topographic maps of that 

part of British Columbia which lies south of 54 degrees lat i tude, mostly from 

1:50,000 scale maps. Since al l topographic data used in this study w i l l be 

derived from contour maps, i t seems in order to discuss brief ly the precision of 

topographic map information. 

1 .1 : Precision of Topographic Map Data 

Boesch and Kishomoto (1966) expressed elevation errors in terms of 

roof-mean-square errors, herein designated s_. For example, they stated that 

survey s e values for triangulation points are generally less than 0.5 m horizontally 
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and 0.1 m vert ical ly (pp. 9-10), whi le root-mean-square errors in map plott ing 

range from 0.01 to 0 .3 mm on the map (p. 12). For a 1:50,000 scale map, this 

would represent 0.5 to 15 metres on the ground. Boesch and Kishomoto stated 

that contour precision has two aspects: "(1) the positional error of a point on a 

contour, and (2) the height error of a point whose elevation is determined (or 

read) from the nearest contours by interpolat ion" (p. 14). They presented a graph 

of al lowable standard deviations in metres as functions of ground slope for 

various countries and map scales (their Figure 2) . 

Thompson and Davey (1953, p. 40) ci ted the accuracy specifications of 

United States Geological Survey topographic maps as: 

Vert ical accuracy, applied to contour maps on al l publication 
scales, shall be such that not more than 10 per cent of the elevations 
tested shall be in error more than one-half the contour interval . In 
checking elevations taken from the map, the apparent vert ical error 
may be decreased by assuming a horizontal displacement wi th in the 
permissible horizontal error for a map of that scale. 

They used the 90 per cent cri terion in conjunction wi th a table of ordinates of 

the normal curve to estimate the al lowable s e value as about 0.3 times the 

contour in terval . The conversion of horizontal errors into vert ical ones involves 

the tangent of ground slope. 

Standards for Canadian topographic maps do not appear to be as wel l 

def ined. W . A . Williamson (pers. wri t ten comm., 1972) stated that the 

Canadian Surveys and Mapping Branch designs its maps so that "on Class A maps 

the contours are accurate to one-half a contour i n te rva l . " If i t is assumed that 

this represents a 95 per cent confidence leve l , the ordinates of the normal 

curve can be used fo estimate the al lowable root-mean-square height error as 

0.255 times the contour in terval . Will iamson also stated that for Canadian 

Class A maps, points are to appear wi th in 0.5 mm of their true positions as map 

scale — this would represent 25 m on the ground for 1:50,000 scale maps. 
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Following Thompson and Davey's (1954, p. 43) approach, bur using this scale 

and a 100-foot (30.5 m) contour in terva l , the root-mean-square error for the 

maps used in this study should be given by: 

s e = t ( 7 . 8 + 25.0 tan 3 ) metres (1.1) 

where o is the ground slope. 

Another possible source of contour error is the generalization required 

when smaller scale maps are compiled from larger scale ones. Pannekoek (1962) 

discussed this, and stated that in some cases, contours should be "moved aside" 

in some valleys or along coasts in order to "make room" for cultural features 

such as roads and railways. This should not be a factor in the present study, as 

the map series used herein is now compiled "at publication scale" (Wil l iamson, 

pers. comm.), and was formerly compiled for only a 20 per cent reduction. 

Errors or inconsistencies in the portrayal of the drainage net on maps 

may present problems in estimating drainage parameters. This problem has 

received more attention than has the precision of rel ief estimates (cf. Morisawa, 

1957; Giusti and Schneider, 1965; Eyles, 1966; Gregory, 1966a, 1966b; 

McCoy, 1971). Most of these writers found that the "extended drainage network" 

that is, the network formed by extending streams along contour crenulations, 

was more closely related to the drainage net determined in the f ie ld or from 

aerial photographs than was the "blue line network" printed on the maps (see 

Morisawa, 1957; Eyles, 1966). Other authors (notably Gregory) argued that 

the use of the extended network might lead to the inclusion of former channels 

not now part of the drainage system, such as "dry valleys" in karst areas or 

former glacial melrwater channels. Because drainage net parameters do not form 

an important part of the present study, analysis w i l l be simplif ied through the 

use of the "blue l ine" stream network shown on the topographic maps. 
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1 .2 : Notat ion 

Throughout this paper, terms and symbols are defined where they are first 

introduced. In addit ion, a complete listing of a l l symbols used w i l l be given in 

Appendix I. Where there are "standard" symbols for variables, these w i l l be 

used unless ambiguity would result. Furthermore, x and y are reserved to indicate 

geographical locat ion, z elevation above sea leve l , N a number of objects or 

occurrences, D a density value, r a correlation coeff ic ient , and s a root-mean-

square value. The metric system of units is employed throughout, wi th British 

units being given in some instances. Elevations obtained from the maps were in 

feet, but were converted to metres before analysis. 
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Chapter2: Computer Terrain Storage Systems 

Topography can be considered to be a continuous surface, and thus even 

a small area contains an inf ini te number of points; the number of points which 

can be measured is l imited by the resolving power of one's instruments and not 

by the surface itself. Since i t is generally not possible to specify the land 

surface completely, the usual objective of computer terrain storage systems is to 

obtain a "satisfactory" representation of the surface which w i l l minimize both the 

effort required to obtain the data and the computer storage requirements, whi le 

at the same time maximizing the eff ic iency wi th which some particular type of 

processing may be performed. In the present study, the "processing" involves 

the estimation of some geomorphometric parameters. The problem is really two­

fo ld : one aspect involves the col lect ion of topographic information from maps 

or other sources, whi le the second relates to the storage, re t r ieval , and processing 

methods employed. 

2 . 1 : Digi t izat ion 

Digi t izat ion can be defined as the process by which "analog measures", 

such as length or location on a map, are converted into "d ig i t a l , computer-usable 

form" (Peucker, 1972, p.72). Two distinct d ig i t izat ion strategies are avai lable: 

one involves sampling at surface-random points or lines, whi le the other uses 

surface-specific points or lines. In the surface-random approach, the points 

sampled are not selected on the basis of surface form but according to some 

part ial ly or completely arbitrary set of c r i te r ia . Randomly-located points are 

obviously surface-random, but points selected using equal increments in the x -

and y-directions (grid sampling) or equal increments in elevation (contours) are 

also generally random with respect to the surface. When surface-specific points 

or lines are used, knowledge of the form of the surface being sampled (usually 

obtained by a visual inspection of a contour map or of the land surface itself) 
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is used to select points or lines which contain a maximum amount of information. 

These include peaks and pits, passes, ridges and course lines, and breaks of 

slope. 

2 . 2 : Surface-random Sampling: Grids 

The most widely used method for storing and processing three-dimensional 

surfaces is probably the square g r id , also known as the "alt i tude matrix" (Evans, 

1972, p. 24) , or as "both a digi ta l terrain model and a numerical map" (Connelly, 

1972, p. 92). Sample points are located at the intersections of two orthogonal 

sets of regularly-spaced parallel lines. On ly the alt i tude of the surface at each 

sample point must be measured and stored wi th in the computer — the geographical 

locations are determined by the grid spacing, and are impl ic i t in the sequential 

position of the alt i tude value wi th in the computer storage array. A wide variety 

of computer programs for the processing of gridded data is avai lable. Another 

advantage lies in the fact that the neighbours of a given data point, which are 

often required in the calculat ion of geomorphometric parameters, can be readily 

obtained, once again from the positions of points wi th in the computer array. 

The principal disadvantage of the regular grid is its tendency toward 

redundancy — the grid must be made suff iciently dense throughout to portray 

the smallest objects which must be shown anywhere wi th in the area covered by 

the gr id . According to Tobler (1969, p. 243), the sampling theorem states 

that " i f a function has no spectral components of frequency higher than W, then 

the value of the function is completely determined by a knowledge of its values 

at points spaced 1/2 W apar t . " Thus a regular grid wi th a grid spacing d can 

only be expected to depict those variations of the surface having wavelengths 

of 2d or more. If the smallest signif icant wavelength of object one wishes to 

detect or portray anywhere wi th in a study area is of size ("wavelength") S, then 

the grid spacing everywhere must be 1/2 S or less. "Smoother" sub-areas of the 
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study area w i l l then contain far more points than are needed to portray their form. 

To improve the "resolution" of a grid by a factor f , the grid spacing must be 

decreased by this factor — the total number of data points is increased by a 

factor of f^. 

Tobler and Davis (1968) described a number of regular grid data sets of 

various types of terrain which together form a "digi ta l terrain l ibrary" . Because 

of the wide application of this terrain storage method, the larger number of 

gridded terrain samples already col lected, and the number of computer programs 

avai lable, this method w i l l be examined intensively in later chapters. 

At least two other grid approaches have been used: one is a "regular 

triangular g r i d " , whi le the other was termed the "variable gr id" method by 

Boehm (1967, p. 404). The regular triangular grid has some advantages over the 

square grid approach. Each point has six neighbours which form a regular 

hexagon, and Mackay (1953) discussed how this form of data col lect ion avoids 

the "saddle point problem" which sometimes arises in attempting to draw 

isopleths based on a square gr id . The advantage in this regard is probably out­

weighed by the increased complexity involved in indicating geographical 

location impl ic i t ly in the computer storage a l locat ion. Most of the drawbacks 

of the regular square grid would also apply to a regular triangular one. 

In the variable grid method, a "master" regular grid is used, but in 

rougher areas, denser regular grids are appl ied; the redundancy of the denser 

grid in smoother parts of the surface is thus avoided. Some preliminary analysis 

would be required to determine the areas in which a denser grid should be used, 

and how dense it should be. If the smallest significant terrain wavelength 

wi th in each sub-area can be estimated, the sampling theorem discussed above 

can be used to determine the required grid spacing. This implies some knowledge 

of the surface form before the data are co l lected, and thus the variable grid 
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method is not completely "surface-random", although the exact locations of 

the data points remain so. 

There is some disagreement as to the relat ive merits of completely random 

sampling of a surface, in which the locations of the sample points are random, 

and of the type of "surface-random" sampling represented by regular grids. 

Strahler (1956, p. 589-592) considered the "random co-ordinate method" and 

the regular grid for sampling surface slope. He stated that: 

" I t might be supposed that a regularly distributed sample would give 
coverage more uniformly representative of the entire area and would 
be superior to the random co-ordinate method. According to 
statistical principles, however, this grid sample is unsatisfactory 
because variance cannot be computed s imply." (p. 591) 

Since even the regular grid points are random wi th respect to such surface 

characteristics as elevation and slope, the writer cannot understand why the 

variance of slopes for 100 gridded points cannot be determined in exactly the 

same way as for 100 randomly-located ones. Strahler also noted that the grid 

might produce a systematically-biased sample i f the grid lines happen to be 

aligned parallel to linear features in the topography, such as ridges or valleys. 

This latter argument was also put forward by Haan and Johnson (1966, p. 124) 

wi th reference to the sampling of elevations to be used in the construction of 

hypsometric curves. Because of their inherently uneven distr ibution, however, 

randomly-located points might also produce biased sampling, although the bias 

w i l l not be systematic — there w i l l simply be more data points in some parts of 

the study area than in others. 

W . D . Rase (personal oral comm., 1970; pers. wri t ten comm., 1973) 

investigated the relative "information contents" of randomly-located and gridded 

elevation samples; this unpublished study represents the only quanti tat ive 

comparison known to the wr i ter . Three surfaces were first represented by 150 x 

150 grids; the surfaces were a plane, a fourth-order polynomial, and a 23.7 km 
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square topographic sample from the Lake Louise 1:50,000 scale map sheet 

(grid spacing about 160 m). Samples of between about 100 and 500 points were 

taken from each of these populations of 22,500 points in three ways — random, 

"systematic stratif ied al igned" (regular grid) , and "systematic stratif ied unaligned" 

in which the rows and columns of the grid were not aligned with the co-ordinate 

axes. 50 x 50 grids (2,500 points) were then interpolated from these samples 

using the SYMAP program (see section 2 . 5 ) , and these were compared with the 

corresponding points from the original data sets using various simple statistical 

measures. Figure 2.1 plots the coeff icient of determination against sample size 

for each of the nine cases examined by Rase. For each surface, the two systematic 

approaches (grids) produced considerably better results than the random co-ordinate 

method; the aligned samples tended to give somewhat better results than the 

unaligned systematic samples. This evidence strongly suggests that grid samples 

provide a "better" representation of a surface than do random co-ordinate 

samples, and appears to refute the unsubstantiated claims of Strahler (1956) and 

Haan and Johnson (1966). O f course, the actual values of the coefficients of 

determination shown in Figure 2.1 are at least in part dependent upon the 

particular interpolation model chosen to generate the 50 x 50 grids (see section 

2 .5 ) . Furthermore, the problem investigated by Rase was not the same as those 

investigated by the other authors. 

From the point of view of computer storage, the random co-ordinate 

approach would have the added disadvantage that a l l three co-ordinates of each 

point must be specified and stored — the advantages of impl ic i t geographical 

location and impl ic i t neighbours which hold true for grids are lost. 
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Figure 2 . 1 : Coefficients of determination as functions of sample size for three 

sampling designs (random, systematic stratif ied unaligned, 

systematic stratif ied aligned) applied to three surfaces of varying 

complexity (after W . D . Rase, unpublished study). 
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2 .3 : Surface-random Sampling: Digi t ized Contours 

Contours represent another way of sampling and storing a terrain surface. 

It must be noted that the elevations of the contours are f ixed by sea level (or 

other datum) and the contour in terva l , and are thus random with respect to 

surface features. On some maps, supplementary contours or spot elevations 

are used to provide the map user with additional information. The storage of 

topography through the use of digi t ized contours is of particular interest in light 

of recent developments in automated compiling and drafting of topographic maps. 

As the contours are determined using stereoplotters and plotted automatical ly, 

the succession of points along the contours could readily be stored on tape and 

made available for geomorphometric processing. Evans (1972, p. 23-27) 

discussed the relative merits of d igi t ized contours and of al t i tude matrices. He 

noted that whi le the former method is superior i f one wishes to know the locations 

of a l l pints of a certain height, it is inferior i f one wishes to know the elevation 

at a given locat ion. Since the latter sort of question arises much more often in 

geomorphometric snalysis than the former, i t would seem that d ig i t ized contours 

are less suitable for geomorphometric analysis than are regular grids. More 

storage space is required per point , since only the elevation can be indicated 

imp l i c i t l y , and two values per point must be expl ic i t ly stored. Boehm (1967) 

described a "contour tree ordering method" for storing surface information; this 

method is said to be more ef f ic ient in problems where "successive specified 

points are correlated, such as in l ine-of-sight calculations" (p. 405) than would 

be a storage of contour points sorted by x co-ordinates. Boehm's work w i l l be 

discussed further in section 2 . 7 . 

Computer programs are available for determining slope steepness and 

aspect direct ly from contour data (see section 3 .4 .2 ) ; routines for producing 

contours from grids are widely avai lable, and the inverse process, that is, 
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producing grids from digi t ized contour data, is also possible. These processes 

would both involve interpolat ion, and the choice of the interpolation model 

(section 2.5) would influence the results. 

2 . 4 : Surface-specific Sampling: Points and Lines 

Surface-specific points can be defined as "points which furnish more 

information about the surface than only their co-ordinates" (Peucker, 1972, 

p. 23). These were termed "signif icant topographic points" by Hardy (1971, 

p. 1907). Surface-specific points include peaks and pits (maxima and minima, 

respectively, on the surface), passes or saddle points, stream and ridge junctions, 

and points where there are significant changes in the directional trends of surface-

specific lines. (See Figure 2 . 2 . ) These lines include ridges, course lines, and 

breaks of slope. There has been some work on the relationships among and links 

between various types of surface-specific points and lines on continuous, 

contihuously-differentiable surfaces. This was begun by Cayley (1859) and 

Maxwell (1870), and revived by Warntz (1966, 1968). Since both Peucker 

(1972, p. 24) and Woldenberg (1972, p. 327-330) have recently reviewed this 

work and as i t is not direct ly relevant to the current research, no summary w i l l 

be included herein. 

The writer knows of no work on the relative "information contents" of 

surface-specific and surface-random points; Peucker (1972, p. 72) , however, 

claimed that "surface-specific points have a higher information content than 

surface-random points." Fewer of these should be required to define a surface 

to a given level of precision, but there is no evidence to suggest how many fewer. 

Surface specific points require more storage space and dig i t iz ing time 

than do an equivalent number of grid points, since al l three co-ordinates must be 

exp l ic i t l y determined and stored. There is an element of subject ivi ty in the 

selection of surface-specific points and, furthermore, neighbours cannot easily 

be determined from the points alone. 
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Figure 2 . 2 : Map to i l lustrate types of surface-specific points and lines. 
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2 . 5 : Surface Behavior 

However the sample points are chosen, one must make some assumptions 

about the behavior of the surface between the data points. Sometimes these 

assumptions are based on a theoretical or empirical knowledge of the actual 

surface behavior, but more often they are arbitrary. In this study only interpolating 

surfaces, i . e . , surfaces which pass through al l the data points, w i l l be considered; 

approximating surfaces (known as trend surfaces), which do not necessarily pass 

through a l l the points and which are thus "smoother" than the original data, 

have also been applied to topography. These works have mainly been involved 

with attempts to determine the forms of former "erosion surfaces" now represented 

only by hil ltops (ct\ • K ing, 1969; Monmonier, 1969; Rodda, 1970; Tarrant, 

1970). Bassett and Chorley (1971) computed trend surfaces based on 15 x 15 

grids of terrain elevations in an attempt to determine different scales of variation 

of the topography. Such work, whi le interesting, is beyond the scope of the 

present study. 

As mentioned above, interpolation usually involves an arbitrary 

assumption about the behavior of the surface between data points. Robinson 

(1960, p. 186-7) stated the "standard" cartographic assumption that, in 

determining the*positions of isarithms from control points, linear interpolation 

should be used "when no evidence exists to indicate a nonlinear gradient between 

control points." Peucker (1972, p. 25) noted that linear interpolat ion, in 

particular the representation of a surface by a contiguous non-overlapping set 

of triangular planes, "represents the simplest, fastest, and often the least 

misleading interpolation method." Peucker goes on to point out , however, that 

such surfaces have discontinuities in the first derivative (i .e . ,have "breaks of 

slope") which may produce an "unpleasant" appearance in block diagrams or 

contour maps. Perhaps for this reason, most computer algorithms for producing 
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dense regular grids from a less dense sample of points, (e.g. UBC XPAND; 

SYMAP) use an inverse-distance-squared weighted average of the heights of a 

number of surrounding data points. Since distance is determined using Pythagoras' 

Theorem, use of the squared distance in weighting elevations eliminates the 

need for a square-root determination, reducing computer processing t ime. A 

surface thus produced is continuous in the first derivative and therefore appears 

"smooth". A general interpolation formula may be expressed as: 

where z. is the height to be determined, the z. the elevations of neighbouring 

points, and c. . the distance between points i and j . For linear interpolat ion, 

jJ = 1 , whi le in the more common interpolation algorithms discussed above,0 - 2. 

There has been l i t t le i f any research into the effect of 0 -values on surface 

behavior; Figure 2 .3 illustrates the influence of these values on the form of a 

surface between data points. This diagram suggests that different P -values may 

be appropriate for different types of terrain. In the absence of any work on 

optimal 0-values, the linear assumption, i . e . , a -value of one, w i l l be used 

in this study. 

If data are in a square g r id , triangular planar facets for determining 

slope or other parameters can be produced in two different ways. In one 

approach, one set of diagonals is arbitrar i ly inserted. Turner and Miles (1967, 

p. 260) determined a roughness parameter for the two orientations of diagonals 

and found very l i t t le difference in the results. A l ternat ive ly , addit ional points 

in the centres of the grid squares may be interpolated by averaging the four 

surrounding points and used to form triangles. This is done in some contouring 

programs in order to avoid the "saddle point problem" discussed in section 2 . 2 . 

1 I 

(2.1) 
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Figure 2 .3 : Form of the interpolated surface between two data points 

(circles) for various exponents in the general interpolation 

formula (see equation 2 . 1 ) . 
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2 . 6 : Computer Storage of Terrain Information 

There are a number of possible approaches to the storage of numerical 

terrain information. Most simply, the data may be stored d i rect ly , as a matrix 

of elevations for gridded data, as lists of x and y co-ordinates for digi t ized 

contours, or as al l three co-ordinates for surface-specific points. The surface 

between the points would then be determined during the processing stage after 

ret r ieval . In the case of irregularly-distr ibuted points such as surface-specific 

points, however, processing w i l l be much more eff ic ient if the neighbours of 

each point are indicated in some way — as already noted above, this is not 

required for gridded data. This can be achieved in at least two ways. Hormann 

(1969, 1971) stored the identi f icat ion number and co-ordinates for each point. 

He then listed a l l the neighbours (by identi f icat ion number) for some arb i t rar i ly -

chosen starting point. Nex t , for each of these neighbours, a l l adjacent points 

excluding the starting point are g iven, and the procedure is continued unti l 

every link between neighbours has been included exactly once. During 

processing, the computer forms triangles, beginning at the arbitrary starting 

point. If al l neighbours of any particular point other than the first one are 

required, a l l previous pointer lists would have to be searched. In the basic 

storage system of the Geographical Data Structure^ (GDS), a l l neighbours of 

every point are included in that point's pointer l ist, making it easier to f ind 

any point's neighbours. This makes searching through the data structure easier 

than in Hormann's version but requires more storage space as each link appears 

in two pointer lists. This storage method is herein termed the "pointer mode" 

of the GDS. 

1 Geography Branch, Off ice of Naval Research, Task N o . 710-100, Department 
of Geography, Simon Fraser University, Burnaby, British Columbia, T . K . 
Peucker, principal investigator  
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Another approach is to store the point numbers and co-ordinates, and 

then to store a list of triangles, each record containing the tr iangle number and 

the identi f icat ion numbers of the three points making up its vertices — this is 

termed the "tr iangle mode" of storage. Other characteristics of the triangle 

could also be indicated. This form of data organization is somewhat easier to 

prepare, and is also more eff ic ient for " t r iangle-by- t r iangle" processing 

required for most geomorphometric analysis. The triangle mode was used by 

Akin (1971), wi th elevations replaced by precipitation values, in the calculat ion 

of the mean areal depth of precipi tat ion. The triangle mode should be far less 

eff ic ient for searching through the data structure than would be the pointer 

mode; computer routines for producing one data structure mode from the other 

are currently being developed under the GDS project. The project is also 

developing methods for determining the neighbours of a set of surface-specific 

points given only the points' co-ordinates. 

It is possible to produce a regular grid from a set of surface-specific 

points by interpolation (equation 2 .1 ) . The results w i l l be influenced by the 

choice of the P-value; the appropriateness of the 0 -value of 2 used in most 

interpolation algorithms is suspect. 

Yet another approach to numerical terrain storage is to f ind an expl ic i t 

mathematical function or set of functions which either interpolate or approximate 

the surface. The coefficients of the equations, rather than the points themselves,! 

would be stored, and could be based on gridded or non-gridded data. Such 

equations can usually be di f ferent iated, the results being equations of surface 

slope over the area. If a constant elevation is subtracted from the equation, 

the root of the resulting equation w i l l give the contour of that e levat ion. Junkins 

and Jancaitis (1971) found that this approach was an order of magnitude more 

eff ic ient than the method of evaluating the surface equation at a large number of 
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grid points and then using "standard" grid contouring methods. The latter 

approach was used in the same context by Hardy (1971, 1972). The functions 

can also be integrated over the study area to determine the volume under the 

surface, which is of geomorphometric interest. Once again, however, there 

are often arbitrary assumptions about surface behavior; also, Hardy's method 

requires that the data points and one coeff icient per point be stored, resulting 

in l i t t le saving of storage space, although processing may be speeded up. 

2 . 7 : Comparisons of Approaches 

Boehm (1967) compared f ive methods of surface storage: contour points 

sorted in the x-d i rect ion (CS), "contour tree ordering" (CT), uniform grid (UG) , 

uniform gr id-di f ferent ia l al t i tude (UGDA) , and variable gr id-di f ferent ial 

alt i tude ( V G ) . "Dif ferential a l t i tude" means that alt i tude differences between 

neighbours rather than absolute altitudes are stored. Boehm presented an 

extensive table (his Table I I , p. 410) of "performance estimates" for the various 

methods. He then applied them to a problem in intervisibi l i ty between points 

on the surface, determining both storage requirements and processing speed. 

The grids were most ef f ic ient in terms of processing speed, wi th the uniform grid 

the best, whi le the variable grid required the least storage. Some other com­

parisons of methods have already been ci ted above. 

2 . 8 : Conclusions 

As Boehm (1967, p. 414) stated, "one cannot discuss the relative 

efficiencies of tabular representation methods without reference to the problem 

being solved." Thus the results of studies by Rase (see Figure 2.1) and Boehm 

(see above) are not direct ly applicable to the problem considered here, that is, 

the estimation of some selected geomorphometric parameters. These parameters 

w i l l be selected after a review of many such measures in the next chapter. The 

terrain sampling and storage methods compared w i l l be the regular grid (altitude 

matrix) and an approach based on surface-specific points. The regular grid is 



- 2 1 -

representative of various methods of surface-random sampling, and these 

two approaches are the only computer terrain storage systems which have 

been applied to problems of general geomorphometry (c f. Evans, 1972; 

Hormann, 1969, 1971). As noted above, surface behavior between data 

points w i l l in both cases be assumed to be l inear. 
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Chapter 3: Geomorphometric Parameter 

In this chapter, an attempt w i l l be made to review a considerable 

number of geomorphometric parameters in such a way as to produce a rational 

classification of these measures. Attent ion w i l l be focussed upon two points: 

the amenability of the parameters to measurement based upon the computer 

terrain storage systems discussed above, and the probable geomorphic 

significance of the measures. No attempt w i l l be made to review papers 

approaching landscape analysis through a set of landform "elements", "un i ts" , 

or "facets" (examples of this approach include: Van Lopik and Kolb, 1959; 

Lebedev, 1961; Conacher, 1968; Speight, 1968; Thomas, 1969; Wong, 1969; 

Gerenchuk et a l . , 1970) . In cases where the units were based upon 

quantitat ive landform parameters (e.g. Speight, 1968), only the parameters w i l l 

be discussed. Similarly, graphical analysis methods w i l l be reviewed only 

where they are related to important geomorphometric parameters. 

Chorley (1969, p. 78) proposed that characteristics of drainage basins 

and drainage nets could be divided into geometrical properties, which involve 

the relationships among dimensional properties such as elevations, lengths, areas, 

and volumes, and topological properties which relate numbers of objects in the 

drainage net (for example, the bifurcation rat io). The latter properties w i l l 

not be considered herein. 

A l l measures of land surface form can be considered to be in some way 

representative of the "roughness" of the surface. This discussion w i l l thus begin 

wi th a discussion of the general concept of roughness before proceeding to actual 

geomorphometric parameters. 
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3 . 1 : The Concept of "Roughness" 

In a general sense, roughness refers to the irregularity of a topographic 

surface. Stone and Dugundji (1965) and Hobson (1967) observed that roughness 

cannot be completely defined by any single measure, but must be represented by 

a "roughness vector" or set of parameters. One area may be rougher than another 

because i t has a shorter characteristic wavelength (finer grain or texture), a 

higher amplitude (re l ief ) , an irregularity of ridge spacing, or sharper ridges 

(see Figure 3 .1) . Stone and Dugundj i , in a study of microrel ief profi les, used 

five measures, whi le Hcbson computed 9 other measures based on three different 

"roughness concepts". 

It is convenient to discuss terrain roughness by analogy with combinations 

of periodic functions or spectra of the terrain. Evans (1972, p. 33-36) reviewed 

some of the attempts to analyze topography using spectral analysis exp l ic i t l y . 

He observed (p. 36) that in practice this has not been very successful, because 

valleys often curve, and they converge downstream, whi le val ley spacing wi th in 

an area is seldom regular. The general ideas of wavelength and amplitude are 

useful, however, and geomorphometric measures w i l l be discussed in this context. 

The significant wavelengths of the topography are termed grain or texture, whi le 

the amplitudes associated wi th these wavelengths correspond to the concept of 

re l ief . The relationship between the horizontal and vert ical dimensions of the 

topography is embodied in the land slope and the dispersion of slope magnitude 

and or ientat ion, whi le the vert ical distribution of mass under the topographic 

surface is contained in the concept of hypsometry. 
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Figure 3 . 1 : Forms of surface roughness. B, C, D, and E are "rougher" 

than A in some respect. B has a shorter wavelength, 

C a higher amplitude, D an irregularity in spacing, and 

E a "sharper"form. 
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3 .2 : Texture and Grain 

Texture and grain are terms which have been used to indicate in some 

way the scale of horizontal variations in the topography. These terms have 

been used in different contexts, and this difference is preserved i f texture is 

used to refer to the shortest significant wavelength in the topography and grain 

used for the longest signif icant wavelength. Texture is related to the smallest 

landform elements one wishes to detect, and grain to the size of area over 

which one measures other parameters. 

3 . 2 . 1 : Grain 

Wood and Snail (1960, p. 1) defined grain as "the size of area over 

which the other factors are to be measured. It is dependent on the spacing of 

major ridges and valleys and thus indicates texture of topography." Grain was 

calculated by determining the local rel ief wi th in concentric circles around a 

randomly-located point. Relief was plotted against diameter and, according to 

the authors, there w i l l generally be a "knick point" in this curve - - the 

diameter at this knick point w i l l be the grain ( G ) . Wood and Snell used 

diameter increments of one mi le , and suggested that i f there is no knick point, 

rel ief values for the diemeters of circles centred at a number of points should 

be determined and averaged; "this technique w i l l produce a definite knick 

point so that no doubt remains as to the grain size " (p .5) . They (p.6) noted 

that the method is not very precise, but believed that it was better than 

measuring parameters such as rel ief for a standard arbitrary area. In the present 

study, "gra in" is also used less formally to refer to the longest signif icant 

topographic wavelength. Other parameters should be sampled over areas 

larger than or equal to the grain size in order to obtain representative 

values. 
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3 . 2 . 2 : Texture 

As noted above, the term texture is herein applied in a general sense 

to refer to the shortest significant topographic wavelength. This should 

determine the grid spacing for grid sampling or the size of the triangles for 

surface-specific point sampling. The word "texture" has been used for a 

specific geomorphometric parameter. Smith (1950) proposed a texture rat io: 

T = N / P (3.1) 

where"N is the number of crenulations on the selected contour, and P is the 

length of the perimeter of the basin given in miles or fractions thereof" (p. 657). 

He "selected" the contour having the most crenulations. Smith found that the 

texture ratio was closely related to drainage density (see below, section 3 .2 .3) 

by the fol lowing empirical relationship: 

D d = 1.658 T 1 ' - 1 1 5 (3.2) 

Smith did not give confidence limits for the regression coeff icients, but the 

closeness of the exponent to one suggests to the writer that the relationship may 

in fact be linear. The nearly linear relationship between T and the drainage 

density is not surprising, since the inverse of T is closely related to the average 

distance between contour crenulations along the selected contour. As each 

crenulation represents a stream in the "extended drainage network", the 

inverse of T is closely related to the mean distance between channels, which is 

in turn the inverse of drainage density. 

3 . 2 . 3 : Drainage Density (Dd) 

As already noted, drainage density is closely related to texture. 

Drainage density, defined by Horton (1945, p. 283) as the total length of stream 

channels per unit area, represents a very important geomorphometric parameter. 

It has been found to be closely related to mean stream discharge (cf . Carlston, 

1963), mean annual precipitation (c f . Chorley and Morgan, 1962), and 
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sediment y ie ld (Abrahams, 1972). It has also been shown to increase with 

time on t i l l plains exposed by deglaciation (Ruhe, 1952). Roberts and Klingeman 

(1972) found that the total length of f lowing channels at a particular time is 

closely related to instantaneous stream discharge. Thus drainage density for 

f lowing channels only w i l l vary over short periods of t ime. Evans (1972, p. 33) 

suggested that i f only high order streams are considered, the inverse of val ley 

density should provide a useful expression of overall topographic gra in , since 

the inverse of drainage density is the mean orthogonal distance between channels. 

In a method analogous to Wentworth's method for slope estimation 

(see section 3 .4 .1 below), Carlston and Langbein (unpub. 1960; c f . McCoy, 

1971) and McCoy (1971) used traverse sampling to obtain a rapid estimate of 

drainage density (see section 4 . 3 . 4 ) . Other writers have used the numbers of 

intersections between the drainage net and traverse lines direct ly without 

attempting to convert them to drainage density. Peltier (1962) plotted the 

number of drainageways per mile against mean slope and showed curves for a 

number of cl imatic or geomorphic regions; a l l traverse minima were counted, 

including closed depressions. Donahue (1972) determined "mean channel spacing" 

by counting intersections between the drainage net and a set of randomly-

oriented traverse lines and dividing this into the total length of traverse. He 

did not, however, make a correction for the angle of intersection between 

traverse line and drainageway (see section 3 . 4 . 1 ) . Wood and Snell (1957, 1959, 

1960) determined a parameter called "slope direction changes", the total number 

of minima and maxima encountered along traverse lines of constant total length. 

Since the profi le is continuous, maxima and minima must al ternate, and the 

number of slope direction changes is twice the number of drainageways, plus or 

minus one. It would be possible to convert the data of Peltier, Donahue, and 

Wood and Snell to drainage densities for comparison wi th other studies. 
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Anorher parameter very closely related to drainage density is the 

source density ( D s ) , the number of stream sources per unit area (see Mather, 

1972, p. 311). Both this and the preceding parameter are very sensitive to the 

portrayal of the drainage net. As already noted in section 1 . 1 , there may be 

map-to-map inconsistencies in the portrayal of the drainage net, and for this 

reason some writers have used the "extended drainage network" formed by 

extending stress as indicated by the contour crenulations. This, however, 

introduces an element of subject iv i ty. The qual i ty of the b lue- l ine drainage 

net shown on some topographic map from southern British Columbia w i l l be 

investigated in the next chapter. 

3 . 2 . 4 : Other Texture Measures 

A different measure of surface texture is the number of closed hi l l top 

contours per unit area, here termed the peak density (Dp). Wood and Snell 

(1959) used this as one of their parameters for classifying terrain. They considered 

any closed contour (other than a pit) to be a " h i l l t o p " . King (1966), in her 

application of factor analysis to geomorphometric measures, used two peak 

densities: "summit dissection", which was "the number of closed summit or spur 

contours" (p. 41), and "val ley character", the number of closed val ley contours, 

most of which represented drumlins. Swan (1967) mapped "h i l l frequency" as the 

density of hil ls per square mi le . A h i l l was defined as any summit wi th two or 

more closed contours, or wi th a difference between top and base elevations of 

more than 50 feet (15.2 m). Using a related measure, Ronca and Green (1970) 

studied the density and distribution of craters on the lunar surface. 

Yet another way of characterizing surface roughness is through an 

examination of ridges. Speight (1968) determined ridginess, the total length 

of ridge per unit area (analogous to drainage density) and ret icu lat ion, which 

was a measure of the size of "the largest connected network of crests that 
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projected into a sample area" (p. 248). He also used modified two-dimensional 

vector an lysis on ridge segments to measure the degree to which the ridges 

tended to be para l le l . 

3 .3 : Relief Measures 

The term rel ief is used to describe the vert ical dimension or amplitude 

of topography. Evans (1972, p. 31-32) noted that the majority of rel ief 

measures depend upon the extreme values of the distribution of elevations, and 

would thus be sensitive to rather minor variations in estimations of these heights. 

He therefore proposed that the standard deviation of altitudes would provide a 

more stable measure of the vert ical var iabi l i ty of the terrain. He did observe 

that "the autocorrelation of al t i tude admittedly makes range less unreliable 

than i t is for random variables, since on a continuous surface a l l intermediate 

values between the extremes must be represented " (p. 31), but nevertheless 

recommended use of the standard deviat ion. A l l of the other papers reviewed 

herein have, however, used extreme values to characterize the vert ical 

dimension. 

3 . 3 . 1 : Local Relief (H) 

For any f in i te area of a surface, the local rel ief is defined as the 

difference between the highest and lowest elevations occurring wi th in that 

area. It is important to note that local rel ief is always defined with respect to 

some particular area, and perhaps for this reason has sometimes been termed the 

"relative re l ie f " (cf. Smith, 1935). This measure was apparently introduced by 

Partsch (1911), who termed it the rel iefenergie, and was first used in the 

English language in 1935 in independent papers by Smith and by Huggins (1935). 

1 The former author is generally credited wi th introducing the concept of local 
rel ief into the English language l i terature, but Huggins apparently presented 
his paper at a professional meeting some months earl ier. 
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These works, as wel l as many others (see Table 3 .1 ) , determined local 

rel ief for arbitrari ly-bounded terrain samples such as squares, c irc les, or 

lat i tude-longitude quadrangles. In most cases, the size of the sample area was 

arbitrary, although Trewartha and Smith (1941, p. 31) stated that "the size of 

the rectangle for which rel ief readings are made appears to need adjustment for 

the degree of coarseness or fineness of the rel ief pat tern. " They did not 

indicate how the appropriate size could be determined. Wood and Snell (1960) 

used a variable sample area size — they first determined the "grain" of the 

topography (see above, section 3 . 2 . 1 ) , and then measured the rel ief for a 

circle wi th a radius equal to the grain. Wood and Snell (1957, 1959), Peltier 

(1962), and Evans (1972) compared the values of local rel ief determined over 

more than one size of area. Evans (1972, p. 30) pointed out that i f the sample 

area "is so small (in relation to topographic wavelengths) that i t is unl ikely to 

contain a whole slope, ' r e l i e f becomes simply a measure of gradient;" in order 

to make rel ief "as distinct and non-redundant a variable as possible" (p. 31), 

he recommended the use of " fa i r ly large" sample areas. The areas should def ini tely 

be larger than the texture of the topography, and preferably larger than its gra in . 

Data from Wood and Snell (1959, p. 9) support Evens' contention — they found 

that the correlation between rel ief and slope declined as the size of the area 

over which they were measured increased. Salisbury (1962) studied the 

relationship between relief and slope for g lacia l deposits, and found the two to 

be closely related for older dri f t sheets, t i l l plains, lake plains, and outwash, 

but poorly related on end moraines and sand dunes. This probably reflects the 

interaction of sample area size and texture. 

In a l l of the above examples, local rel ief was determined for arb i t rar i ly -

bounded sample areas; local rel ief has also frequently been determined for 

drainage basins. The minimum elevation w i l l be the basin mouth, whi le the 
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TABLE 3 . 1 : SIZES OF ARBITRARILY-BOUNDED AREAS OVER WHICH 

LOCAL RELIEF WAS DETERMINED BY VARIOUS AUTHORS 

area type of * of 
authors date (km^) area sizes 

Studies using one sample size: 

Chen 1947 1.00 square 
Harris 1969 1.00 square 
Hesler & Johnson 1972 2.59 square 
Swan 1967 3.34 square 
Abrahams 1972 7.52 square 
Huggins 1935 10.4 square 
Donahue 1972 10.4 square 
Batchelder 1950 15.0 quad . * 
Zakrzewska 1963 23.3 square 
King 1966 25.0 square 
Kaitanen 1969 25.0 square 
Hutchinson 1970 25.0 square 
Partsch 1911 32.0 -
Trewartha & Smith 1941 34.0 quad. 
Smith 1935 65.5 quad. 
Hammond 1964 93.2 square 
Spreen 1947 203. circle 
Ahnert 1970 400. square 

More than one size used: 

Gassmann & Gutersohn 1947 
Evans 1972 
Wood & Snell 1957, 1959 
Peltier 1962 
Wood & Snell 1960 

0.25 to 28.0 square 13 
0.63 to 62 .7 square 18 
0.81 to 414. circle 8 
2.59 & 259. square 2 

18.3 to 399. c i rc le 7 

* quad. = lat i tude-longitude quadrangle 
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maximum is usually, but not always, located on the basin perimeter. Maxwel l 

(1960, p. 10-11) determined the "basin re l ief" as the "elevation difference 

between the basin mouth and upper end of the diameter", where basin diameter 

was determined trhough a complicated set of c r i te r ia , but was essentially 

"the longest dimension of the basin parallel to the principal drainage l i ne " . 

Since the size of drainage basins w i l l vary, many workers have found i t 

desirable to determine a dimensionless "rel ief rat io" or "relat ive rel ief number" 

by dividing the rel ief by some other linear dimension of the basin. The latter 

have included the basin diameter (defined above), basin perimeter (Mel ton, 1957) 

and square root of basin area (Mel ton, 1965). 

3 . 3 . 2 : Avai lable Relief (H n ) 

The concept of available rel ief was introduced by Glock (1932), and his 

defini t ion was rephrased by Johnson (1933, p. 295) to read: "Avai lable rel ief is 

the vert ical distance from the former position of an upland surface down to the 

position of adjacent graded streams. " Johnson pointed out that this could only 

be determined where the original upland surface could be identi f ied from 

remnants and where there were "graded" streams. The latter involves the 

definit ion of the concept of "grade", which w i l l not be discussed here. Local, 

available and drainage rel ief are il lustrated diagrammatically in Figure 3 . 2 . 

Glock stressed the importance of available rel ief in determining the land profi le 

but, as Johnson noted, other factors such as drainage density and slope must also 

be considered. 

In order to determine the average available re l ief , one would have to 

construct both the "or ig ina l " and "streamline" surfaces (see Pannekoek, 1967, 

for a review of methods for constructing such surfaces), and to then divide the 

difference in the volumes under these surfaces by the area. 
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M A X I M U M E L E V A T I O N 

• S T R E A M ' A T G R A D E ' O O T H E R S T R E A M 

Figure 3 .2 : Hypothetical topographic profi le i l lustrating various rel ief 

measures. H is the local rel ief for the entire prof i le , 

H q Glock's available re l ie f , and the drainage re l ief . 

Dury's "avai lable rel ief" would be the mean height of the 

shaded port ion. 



- 3 4 -

A different rel ief measure was discussed by Dury (1951), who 

unfortunately also used the term "avai lable re l ie f " ; this was defined as "that 

part of the landscape wh ich , standing higher than the floors of the main valleys , 

may be looked on as available for destruction by the agents of erosion working 

with reference to existing base-levels" (p. 339). He then defined the "mean 

available re l ief" as the average height of the land above the streamline surface, 

computed as the difference in volumes under the actual and streamline surfaces, 

divided by the area. This is clearly not the same as the avai lable rel ief defined 

by Glock (1932) and Johnson (1933). Dury (1951, p. 342-3) also discussed the depth of 

dissection", which is identical to the Glock/ johnson concept of available re l ief . 

3 . 3 . 3 : Drainage Relief (H-j) 

Glock (1932, p. 75) also defined a measure called the drainage rel ief 

as "the vert ical distance through which rain water moves over the ground from 

the time the water first strikes the surface unti l i t joins a definite stream." 

Johnson (1933, p. 301), however, pointed out that Glock later used the term 

to refer to the vert ical distance between adjacent divides and streams, and 

proposed that this latter def ini t ion be adopted (see Figure 3 .2 ) . If in an area 

al l the divides are at the elevation of the original upland surface and al l the 

streams are "at grade", drainage rel ief w i l l equal available rel ief; in contrast 

to the latter, however, drainage rel ief can always be determined. Strahler 

(1958, p. 295) stated that " local re l ie f , H, is a measure of vert ical distance 

from stream to adjacent d iv ide" ( i . e . , local rel ief is equivalent to drainage 

re l ie f ) , but this w i l l only be true i f the sample areas upon which local rel ief is 

based are large enough to include adjacent streams and divides and yet not so 

large that the slopes of the streams and divides themselves signif icantly increase 

the rel ief wi th in the sample area. In Figure 3 . 2 , the area over which H is 

determined is " large" and H exceeds H j . Hormann (1971, p. 145) determined 
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the mittlere Taltiefe ("mean val ley depth") for drainage basins. First, a "roof" 

was constructed over the basin by l inking points along the basin divide which 

were equidistant from the basin mouth by straight l ines. The volume between 

this surface and the land surface wad divided by the basin area. This measure 

is "complementary" to Dury's "mean available re l ie f " . 

3 . 3 . 4 : Applications of Relief Measures 

Relief has commonly been used in a descriptive way ( e . g . Smith, 1935) 

or to del imit physiographic regions ( e . g . Huggins, 1935), both alone and in 

conjunction wi th other variables. Some studies have, however, related rel ief 

to landscape processes, or to other aspects of physical geography. Schumm 

(1954, 1963) found that sediment y ie ld was closely related to the ratio of basin 

rel ief to basin diameter for some small drainage basins in the southwestern 

United States. Schumm (1956) also related sedimentyield to rel ief and slope for 

some smaller basins in the Perth Amboy badlands. Maner (1958) investigated 

the relationships between sediment y ie ld and a number of basin characteristics, 

and found that the above rel ief ratio was the one most highly correlated wi th 

the dependent var iable. Ahnert (1970) determined average basin rel ief as the 

mean of local rel ief values for 20 by 20 km squares spread over a number of 

drainage basins for which he had information concerning denudation rates. In 

the absence of stream incision, denudation w i l l reduce rel ief; by using the 

empirical relationship between denudation rates and re l ief , Ahnert presented 

theoretical curves for rel ief reduction as a function of t ime, both wi th and 

without the effects of isostatic compensation. He later (1972) related these 

results to theoretical models for slope processes. 
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3.4 : Slope 

Evans (1972, p. 36) stated that "slope is perhaps the most important 

aspect of surface form, since surfaces are formed completely of slopes, and 

slope angles control the gravitational force available for geomorphic work . " 

Mathematical ly , the tangent of the slope angle (tano<) is the first derivative 

of a l t i tude, and i t is as a tangent or per cent slope that this surface parameter 

is generally reported. Strahler (1956) also mapped slope sine, which is 

proportional to the downslope component of the acceleration of grav i ty . 

Strahler's (1950, 1956) work suggested that slope tangents had a normal 

distr ibution; Speight (1971), however, found that for a number of areas 

investigated, a log-normal distribution provided a better f i t . 

Unlike rel ief and most other geomorphometric parameters, which are 

only defined for f in i te subareas of a surface, slope is defined at every point 

as the slope of a plane tangent to the surface at that point. In pract ice, 

however, slope is generally measured over a f in i te distance, especially when 

data are obtained from a contour map. The size of area over which slope is 

measured w i l l influence the values obtained, and the effect of recording 

intervals on slope values was discussed by Gerrard and Robinson (1971). Mean 

slope was generally much less sensitive to the recording interval than was 

maximum slope. 

3 . 4 . 1 : Average Slope: Line-Sampling Method 

A method for estimating average slope proposed by Wentworth (1930) has 

been widely appl ied. The number (N) of intersections between a set of traverse 

lines and the contours in the sample area is counted, and the total length of the 

traverse lines (L) is measured. L divided by N is the mean horizontal distance 

between the contours, as measured along the traverse lines. This w i l l tend to 

be larger than the mean orthogonal distance, and therefore a "correction factor" 
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must be appl ied. If the traverse l ine intersects the contours at an angle 0 , 

the true inter-contour distance w i l l equal sin 0 times the traverse distance. 

If one assumes that a l l values of 0 between 0 and 90 degrees are equally l i ke ly , 

then the true mean inter-contour distance should equal L /N times the mean 

value of sin 0 , which is 2/TT , or 0.6366. The mean slope tangent estimate 

is then given by: 

,an« - i _ _ (3.3) 
0.6366 

where I is the contour interval in the same units as L. Wentworth presented 

the formula for use wi th L in miles and I in feet as: 

I ( N / L ) 
tan oc = 3 3 6 1 (3.4) 

The method gives the mean slope for an area, but has been used to construct 

slope isopleth maps by assigning the slope for an area to a point at the area's 

centre (c_f_. Smith, 1939; Calef and Newcomb, 1953; Gr i f f i ths, 1964). 

Other authors have used the number of contour intersections per length 

of traverse d i rec t ly , without converting to an actual slope value. Wood and 

Snell (1957, 1960) used the "contour count" as a "measure of slope" (1957, p. 1), 

but in their 1959 paper converted this to slope using Wentworth's formula. 

Zakrzewska (1963) determined the "roughness" at a sample point as the number 

of contour intersections wi th the circumference of a circle centred at that point. 

3 . 4 . 2 : Average Slope: Other Methods 

Raisz and Henry (1937) mapped average slope by determining areas of 

similar contour density (slope) subject ively. The mean slope (in feet per mile) 

was determined for each such area, and a choropleth map was produced. This 

approach has also been applied by some other writers (c f . Gr i f f i ths, 1964). 

Another method which has been widely used depends upon determining the slope 
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at a sample of points distributed over the study area; these values may be 

averaged (c f . Strahler, 1956; Coulson and Gross, 1967) or "contoured" 

(c f . Strahler, 1956; Speight, 1968). 

Ruhe (1950) and Rowan et_aL (1971) determined slope for traverse 

segments between maxima and minima along the traverses. No attempt was made 

in either of these studies to correct for the angle between the traverse line and 

the contours. 

In direct computer applications, a number of writers (Monmonier et a l . , 

1966; Piper and Evans, 1967, c f . Evans, 1972; P a r k e t a L , 1970, 1971) 

have described methods for determining surface slope from digi t ized contour 

data. Sharpnack and Akin (1969), as wel l as Rase (1970, pers. oral comm.), 

computed both slope and aspect from an alt i tude matr ix. 

Griff i ths (1964) compared the "subjective method" (essentially the Raisz 

and Henry approach), Wentworth method and "point sampling" method. He 

concluded that Wentworth's method was most accurate, and that the point 

sampling method produced "comparable" results wi th less e f fo r t . 

3 . 4 . 3 : Other Slope Parameters 

Another slope parameter is the rate of change of slope, termed the 

" local convexity" by Evans (1972, p. 41). Mathematical ly, this is the second 

derivative of a l t i tude, or the first derivative of slope. Convexity can be 

separated into downslope convexity and cross-slope convexity (contour curvature). 

Evans suggested that the problem of convexity could be "solved" by f i t t ing 

quadratic surfaces to 3 by 3 sections of an alt i tude matr ix. Convexity could 

then be determined by differentiating the resulting quadratic equation tw ice . 

Speight (1968, p. 243) examined both rate of change of slope (which he termed 

"slope gradient") and contour curvature. It is also possible to determine higher 

derivatives of a l t i tude, but the possible physical meaning of such higher derivatives 

is obscure. 
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Closely related to mean slope is Strahler's ruggedness number, which 

was defined as HD^ by Strahler (1958, p. 289)as a result of dimensional analysis. 

In the case of a two-dimensional pro f i le , the relationship among re l ie f , drainage 

density, and slope can be easily shown. In Figure 3 . 3 , H is the rel ief and b 

half the distance between channels, which equals half the inverse of D^. 

One thus has the mean slope given by: 

t a n * = H/b = 2 HD D (3.5) 

or twice the ruggedness number. Strahler (p. 295) also introduced average 

slope into the ruggedness number, producing the geometry number: 

HDJ 
— 2 - (3.6) 
tan o( 

If H is a reasonable estimate of the drainage rel ief and i f the two-dimensional 

case can be extended to three dimensions, this geometry number should equal 

0.5 (see equation 3 .5 ) . The theoretical relationship is supported by the fact 

that Strahler found that whi le drainage density for his test basins ranged over 

two orders of magnitude, values of the geometry number remained between 

0 .4 and 1.0. 

3 . 4 . 4 : Appl icat ion of Slope Measures 

As in the case of rel ief (section 3 . 3 . 4 ) , slope has been widely used in 

descriptive work, in physiographic classif icat ion, and in mi l i tary work related 

to vehicle t ra f f icab i l i t y . Slope angle is a result of past or present geomorphic 

processes, and w i l l also influence these processes (c f. Ahnert , 1972). Indeed, 

the analysis of slope profi le form represents an important "sub-discipline of 

geomorphology (for example, Institute of British Geographers, 1971; Carson 

and Kirkby, 1972; Young, 1972). 
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Figure 3 .3 : Diagrammatic topographic profi le i l lustrating the relationships 

among re l ie f , slope, and roughness (see equations 3 . 5 , 3 .10 , 

and 3.11) . 



3.5: Dispersion of Slope Magnitude and Orientation 

In addition to slope steepness, slope aspect or direction may be 

considered, either separately or together wi th slope angle. Evans (1972, p. 41) 

proposed that the combined analysis of slope magnitude and orientation would 

produce "undesirable hybrid results; i t is better to separate var iabi l i ty in 

gradient from var iabi l i ty in aspect." If this is done, the aspect data should 

be analyzed using two-dimensional vector analysis ( c f . Curray, 1956). 

While such separation may be desirable in some cases, the distribution of 

orthogonals to the land surface (which summarize both types of information) 

is essentially three-dimensional, and its analysis as such would seem to be 

appropriate. 

Chapman (1952) presented a potent ial ly useful method for examining 

slope steepness and aspect. Both the aspect (orientation) and slope (dip) of the 

land surface were determined for a sample of points on a regular gr id . The 

points were then plotted on a Schmidt net and contoured in the same way as 

other orientation data in the earth sciences are often presented. Chapman 

suggested that these diagrams would probably be useful in relating slopes to 

structure or the effects of glacier movement, and Newel l (1970) successfully 

used the technique in this context. One of the computer programs presented 

by Hobson (1967, 1972) represents a logical extension of this work, treating 

the perpendiculars to slope units as vectors and applying well-established 

mathematical approaches to the analysis of three-dimensional orientation data 

(c f . Fisher, 1953; Steinmetz, 1962). Unit vectors orthogonal to triangular 

facets formed by inserting diagonals into a regular gr id were summed and the 

length of the vector sum (R) was determined. Hobson then calculated k 

(which is the estimate of the precision parameter K for the spherical normal 

distribution of Fisher, 1954) as: 
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k = ( N - l ) / ( N - R ) (3.7) 

As a surface approaches planari ty, the vectors w i l l become para l le l , R w i l l 

approach N (the number of vectors), and k w i l l become very large. Intui t ively , 

a plane should have a roughness of zero, and thus the inverse of k would 

represent a more "reasonable" roughness measure. Since Hobson's method was 

based on a regular g r id , al l triangles have the same horizontal area and 

similar true areas, and hence the use of unit vectors is not unreasonable. If 

based upon irregularly-distr ibuted surface specific points, however, there may 

be a considerable variation in triangle size. It would seem appropriate to 

weight the vector orthogonal to each triangle by the triangle's true area. If 

this is done, however, k and its inverse cannot be determined through equation 

3 . 7 . Some manipulation of that equation gives: 

100 - L(%)| _1_ 

k 

N 

N - l 

_R_ 

N 100 
(for large N) (3.8) 

where L(%) is 100 ( R / N ) , the vector strength in per cent. For weighted 

vectorial analysis, L is defined as 100 times the weighted vector sum divided by 

the sum of the weights. It is herein proposed that the best measure of "vector 

dispersion" roughness is the roughness factor R, defined by: 

• R = 1 0 0 - L ( % ) (3.9) 

In the case of unit vectors and large N , R w i l l approximately equal 100 times 

the inverse of k. 

As in the case of slope, the roughness factor can be related to rel ief 

and ridge spacing through reference to Figure 3 . 3 . For R, the vert ical 

component of each orthogonal vector w i l l equal coso<, whi le the horizontal 

components w i l l cancel out, leaving: 

R = 100 (1 - coso<) (3.10) 



- 4 3 -

Substituting the value for cos * gives: 

R = 100 (1 - b ) (3.11) 
V H 2 + b 2 

Turner and Miles (1967) applied Hobson's (1967) vector program to 

twenty- f ive sample areas; twelve of these were derived from Stone and 

Dugundji's (1965) microterrain maps and provide a basis for examining the 

relationships among the parameters used by these authors, including R and H. 

The other thirteen samples were based on macroterrain from 1:24,000 scale 

maps. In addition to k, Turner and Miles determined the local rel ief (H) , and 

a var iabi l i ty factor v , the local rel ief divided by the logarithm of k; the 

writer estimated R as the inverse of k. Linear correlation coefficients were 

determined among ten roughness measures for the twelve common terrain samples. 

In addi t ion, correlations were determined separately among Stone and Dugundji's 

six variables(16 cases) and among the four derived from Turner and Miles (25 

cases). The only statistically significant correlations based on the common 

terrain samples which did not reflect functional relationships were those between 

mean and maximum amplitude, and between H and R. The latter pair of variables 

were not signif icantly correlated over the twenty- f ive Turner and Miles samples. 

This is almost certainly due to the difference in scale between the 1:24,000 and 

microterrain maps (1 to 2 orders of magnitude). In Figure 3 . 4 , R (as estimated 

as the inverse of k) is plotted against H for these 25 samples and for six others 

analyzed in Chapter 6 . Curves of the form given in equation 3.11 for various 

values of b have been plotted in Figure 3 . 4 . These have been f i t ted "by eye" 

to the groups of points for each of the six scales represented. It appears that 

each scale has a reasonably consistent "characteristic wavelength" which 

influences the relationship between H and R. 
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H (metres) 

Figure 3 .4 : Relationship between local rel ief and roughness factor. 

Open symbols represent micro-terrain from Turner and 

Miles (1967). Solid symbols are macro-terrain (circles from 

Turner and Mi les; triangles from this study). Curves are 

based on equation 3 . 1 1 . 
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ln a related line of research, Hayre and Moore (1961) determined 

theoretical scattering coefficients for terrain, based on autocorrelation functions 

determined from contour map data. Hayre (1962) then used observed radar 

return rates to estimate the roughness of the lunar surface. 

3 .6 : Hypsometry 

Clarke (1966, p. 237) defined hypsometry as "the measurement of the 

interrelationships of area and a l t i t ude . " Evans (1972, p. 42-48) reviewed 

this concept under the heading: "Regional convexity (dissection, aerat ion) . " 

Most of these measures, which describe aspects of the distribution of landmass 

with e levat ion, are based upon the hypsometric curve. 

3 . 6 . 1 : The Hypsometric Curve and its Variations 

Monkhouse and Wilkinson (1952, p. 112-115) noted that there are 

three common sorts of graphs used to report hypsometric data. These are: 

(a) the area-height curve; 

(b) the hypsometric (or hypsographic) curve, sometimes cal led the 

absolute hypsometric curve; 

(c) . the percentage hypsometric curve. 

The first of these methods, the area-height curve, plots the area in a 

band at a particular elevation against e levat ion, and by convention, elevation 

is plotted on the y-ax is . If relat ive area is used, the diagram is a plot of the 

probabil i ty density function for the heights in the area. The relative frequencies 

of elevations are generally more easily seen on this type of curve than on the 

hypsometric curves. 

The absolute hypsometric curve is a graph of the absolute or relative 

area above a certain elevation plotted against that e levat ion, and is essentially 

a cumulative frequency for the elevations. Once again, elevation is conventional 

plotted on the y-axis and area (representing frequency) on the x -ax is . 
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Clarke (1966, p. 241) pointed out that this curve does not represent an 

"average p ro f i l e " , since i t does not record the slope between contours. Never­

theless, a section of the curve wi th a low slope indicates a larger amount of 

the surface at or near a particular elevat ion; this would generally indicate 

gentler slopes near that elevat ion. Absolute hypsometric curves have been 

determined for the earth's surface as a whole, countries, natural regions, 

islands, and drainage basins. While usually plotted on simple arithmetic 

graph paper, various special sacles have also been employed. Tanner (1962), 

for example, plotted the percentage of the earth's surface area lying above 

certain elevations on log-probabi l i ty paper, and was able to separate the 

curve into four Gaussian components. Chorley (1958) found that the hypso­

metric curve for a drainage basin he examined plotted as a straight line on 

ar i thmetic-probabi l i ty paper. 

The third and most widely used form of curve is the relative or percentage 

hypsometric curve, often termed simply the hypsometric curve. ^ It plots relat ive 

area above a height against relative height, and is the graph of the hypsometric 

funct ion, here termed a (h) , where h (the relat ive height) is defined by: 

z - z . 
max mm 

where z is the actual e levat ion, and z and z . are the highest and lowest 
max mm ° 

elevations, respectively, wi th in the study area. As in the previous cases, h 

is conventionally plotted on the y-ax is . It is this form of the hypsometric 

curve and function upon which some important terrain parameters are based. 

1 This form of the hypsometric curve is often attributed to Strahler (1952) (for 
example, see Chorley and Mor ley , 1959, p. 566); relative hypsometric 
curves were presented earlier by Imamura (1937, cf . Evans, 1972, p.42) , 
Gassmann and Gutersohn (1947), and Langbein and others (1947), only the 
latter being ci ted by Strahler.  
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3 . 6 . 2 : The Hypsometric Integral (H) 

The most widely used parameter based on the hypsometric curve is the 

hypsometric in tegra l , here designated HI. This parameter, as defined by 

Strahler (1952, p. 1121), is given by: 
i 

HI = / a ( h ) dh (3.13) 

Strahler pointed out that geometr ical ly, this value is equal to the ratio of the 

volume between the land surface and a plane passing through the minimum 

elevation to the volume of a "reference sol id" bounded by the perimeter of 

the area and planes passing through the minimum and maximum points. 

Graphica l ly , HI can be determined by measuring the area under the relative 

hypsometric curve. Strahler (p. 1130) proposed that the value of the hypso­

metric integral reflects the "stage" of landscape development. Those areas 

having HI values above 0.6 were considered to be in a "youthful" or equil ibrium 

phase, whi le drainage basins in equil ibrium should have hypsometric integrals 

between 0.6 and 0 .35 . Values below 0.35 were thought to characterize a 

transitory "monadnock phase" in landscape development. 

Pike and Wilson (1971) proved that the elevat ion-rel ief ratio (E) of 

Wood and Snell (1960) is mathematically equal to the hypsometric integral . 

The former is defined by: 

E = Z " Z m ? n (3.14) 
z - z . 

max mm 

where z is the mean elevat ion. From equations 3.12 and 3 .14 , i t can be 

seen that E is just the mean relative height (h"). Evans (1972, p. 42) pointed 

out that this same parameter was used much earlier by Peguy (1942, p. 462), 

and termed the "coeff ic ient of relat ive massiveness" by Mer l in (1965). While 

Srrahler's (1952) method for determining the hypsometric integral involves much 
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laborious use of a planimeter to determine inter-contour areas, the e levat ion-

rel ief ratio can be determined much more qu ick ly , with the mean elevation 

being determined from a sample of points. Pike and Wilson (1971, p. 1081) 

stated that "experience has shown that a sample of 40 to 50 elevations w i l l 

ensure accuracy of E to , on the average, 0 . 0 1 , the value to which area-

alt i tude parameters customarily are read. " It is important that the maximum 

and minimum elevations are determined from an inspection of the entire sample 

area; gross errors in E can result i f the highest and lowest grid values are used 

(see section 5 . 4 ) . Evans (1972, p. 58), however, used only grid values to 

estimate the hypsometric integral for sub-matrices ranging from 3 by 3 (9 points) 

to 47 by 47 (2209 points). For the smaller sub-matrices at least, Evans1 

estimates of H are probably in serious error. 

Other methods for approximating the hypsometric integral or curve 

have been proposed. Haan and Johnson (1966) suggested that the elevations of 

a sample of randomly-located points could be used to construct hypsometric 

curves, wi th a considerable saving in t ime. Chorley and Morley (1959) 

proposed that the hypsometric integral could be estimated by approximating 

the drainage basin by a simple geometric form, "the intersection of a lemiscate 

cyl inder wi th an inverted cone, centered at the lemniscate or ig in" (p. 556). 

The accuracy of this method depends upon the degree to which the geometrical 

form actual ly approximates the basin, part icularly the f i t of the lemniscate 

loop to the basin perimeter (Chorley et a l . , 1957). Chorley and Morley found 

that the method produced a systematic error, and proposed a correction factor. 

Turner and Miles (1967) used a computer program to interpolate a dense regular 

grid from a sample of points; numbers of grid points fal l ing wi th in al t i tudinal 

bands were used in producing hypsometric curves. They found that their 

method produced results closer to planimetered values than did the corrected 
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Chorley and Morley approach. It would seem that the elevat ion-rel ief ratio 

represents a more accurate and more easily applied approximation to the 

hypsometric integral than do the above. Furthermore, the elevat ion-rel ief 

ratio can be determined for arbitrari ly-bounded areas (Wood and Snel l , 1960; 

Pike and Wilson, 1971), whi le the Chorley and Morley method can only be 

used for drainage. 

3 . 6 . 3 : Other Parameters Related to the Hypsometric Curve 

A number of parameters besides the hypsometric integral have been 

derived from the hypsometric curve. Strahler (1952, p. 1130) noted that most 

hypsometric curves show a characteristic "s-shape", and proposed a parameter 

to indicate the sinuosity of the curve. Low values of this parameter indicated 

very sinuous curves. Evans (1972, p. 47-48) found a strong correlation between 

the hypsometric integral and the skewness of the distribution of elevations in 

cases having the same sinuosity. For any constant value of HI, higher skewness 

was associated wi th lower values of Strahler's sinuosity parameter. Tanner 

(1959, 1960) suggested that the skewness and kurtosis of the height distribution 

function (essentially the hypsometric function) could be used to "characterize 

various geomorphic regions" (1960, p. 1525). Examination of Tanner's 

diagrams seems to confirm Evans' result that skewness is closely related to the 

hypsometric in tegral , and also suggests that Strahler's sinuosity parameter is 

closely related to kurtosis. Sinuosity, as measured by Strahler's parameter or 

the kurtosis, has not (to the writer's knowledge) been investigated in detai l 

or related to other geomorphometric measures. 

Gassman and Gutersohn (1947) determined a parameter called the 

kotenstreuung. For computation, this has been shown to equal the standard 

deviation of the elevations, and was derived from the absolute hypsometric 

funct ion. They also determined the rel ieffactor, which equals twice the 
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kotenstreuung divided by the local re l ief . This is twice the standard 

deviation of the relat ive hypsometric funct ion. Gassman and Gutersohn also 

determined the mean elevation by using the hypsometric integral , "reversing" 

the use of the elevat ion-rel ief ratio proposed above; this method of determining 

the mean elevation was employed earlier by Martonne (1941). 

3 . 6 . 4 : Other Parameters Related to Hypsometry 

In addition to those related to the hypsometric curve, other parameters 

have been proposed to characterize the relationship between area and a l t i tude, 

sometimes also including slope. None of these have been as widely used as 

the hypsometric integral; since many of these have been reviewed by Clarke 

(1966, p. 243-248) and by Evans (1972, p. 44-45) , most w i l l not be reviewed 

herein. Hammond (1964, p. 15) combined slope and height in an area-elevation 

measure. His general profi le character index was defined as the percentage of 

gentle slopes (tan « less than 0.08) lying above or below the mean elevat ion. 

Pike and Wilson (1971, p. 1079-80) noted that this index measures a similar 

aspect of terrain form to the hypsometric integral . This measure may be 

undefined in some areas i f there are no slopes gentler than the cr i t ica l value. 

3 . 6 . 5 : Appl icat ion of Hypsometric Measures 

A l l or most of the parameters discussed above have been used in a simply 

descriptive sense or in physiographic classif ication. Only the hypsometric 

in tegral , however, has been related to geomorphic processes. In most cases, 

HI has been determined for drainage basins. Strahler (1957, p. 918-920) 

listed a number of works between 1952 and 1956 which used this parameter; 

none of these studies found any relationship between H and various hydrologic 

or sediment y ie ld measures. Chorley (1957, p. 630) measured hypsometric 

integrals for 27 drainage basins, but did not use this parameter in subsequent 

analyses nor comment on its omission. Eyles (1969) studied stream long profi le 
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form, basin re l ie f , and basin hypsometric integral for 410 fourth-order 

drainage basins in Malaysia. He graphed the hypsometric integral against 

rel ief and presented an "approximate curve of best f i t drawn 'by eye' " (p . 29) . 

If one assumes that rel ief is continuously reduced wi th time (cf. Ahnert , 1970) 

and that space can be substituted for t ime, Eyles1 line suggests a period of 

equi l ibr ium, a monadnock phase, and an eventual return to equi l ibr ium. An 

in i t ia l inequil ibrium phase does not appear to be represented in these data. 

3 .7 : Review and Parameters to Be Investigated 

In review, the most fundamental concepts of geomorphometry are the 

basic horizontal and vert ical scales of the topography. Horizontal variations 

are encompassed by the concepts of grain (largest significant wavelength) and 

texture (shortest signif icant wavelength); grain w i l l not be investigated 

exp l i c i t l y , but three measures of texture, namely drainage density (D^)/ source 

density ( D s ) , and peak density (D^) w i l l be considered in the next chapter. 

Vert ical scale is generally termed " re l ie f " ; this terrain concept w i l l 

be represented in further analyses by the local rel ief (H), the most widely 

employed rel ief measure. The relationships between horizontal and vert ical 

scale w i l l be examined through the mean slope (tan o<), whi le the three-

dimensional interaction of slope steepness and aspect w i l l be studied through 

the roughness factor (IR). 

Relatively independent from horizontal and vert ical scales is the 

distribution of mass wi th in the vert ical range of the topography. This concept 

w i l l be investigated through the hypsometric integral (HI). 

While there may be some redundancy among the parameters noted 

above, i t is believed by the writer that wi th the possible exception of gra in , 

a l l important terrain information is contained wi th in these parameters. In the 

next chapter, the relationships among the measures w i l l be studied. 
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Chapter 4: Terrain Var iabi l i ty in Southern British Columbia, and Relationships 

among Variables 

Before beginning the comparison of the computer terrain storage systems, 

a "p i lo t study" was conducted. The principal objectives of this were threefold: 

(1) to provide information about terrain var iabi l i ty in southern 

British Columbia, and thus guide in the selection of terrain 

samples for more detailed analysis; 

(2) to investigate.the relationships among the parameters selected in 

the preceding chapter; and 

(3) to provide empirical data for the evaluation of some of the 

theoretical errors in estimating parameters, which w i l l be 

discussed in the next chapter. 

Values for a number of geomorphometric parameters were determined for square 

terrain samples using simple techniques not including computer analysis. The 

roughness factor (IR) could therefore not be examined, but the other important 

parameters listed at the end of the preceding chapter were al l studied. 

4 . 1 : Selection of Sample Areas 

In order to obtain a relat ively unbiased sample of the terrain of southern 

British Columbia, a stratif ied random sampling design was employed. From each 

of the for ty- two 1:250,000 scale map sheets which cover British Columbia south 

of 54 degrees lat i tude, one of the th i r ty - two 1:50,000 scale maps making up 

that sheet was selected wi th the aid of a table of random numbers. Because 

coverage of the area at the larger scale is incomplete, some of the randomly-

selected maps were not avai lable. In such cases, and in instances where the 

selected map fe l l entirely outside British Columbia, another map was picked. 

From each map, one 7 by 7 kilometre square of terrain was examined. If the 

Universal Transverse Mercator grid was printed on the map, the sample was 
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generally centred at the intersection of the two major ("10th kilometre") grid 

lines closest to the centre of the map; this would fac i l i ta te later location of 

the sample areas on the 1:250,000 s ale maps, i f desired. Where the grid did 

not appear, the sample square was usually placed over the centre of the map. 

Samples were relocated i f more than one third of the area contained water 

surfaces. The locations of the for ty- two samples, together wi th the major 

physiographic subdivisions of the study area, are shown in Figure 4 . 1 ; two of 

the samples (4, 9) fe l l in A lber ta , although the maps from which they were 

drawn were in part in British Columbia. 

Since i t was not possible to adhere str ict ly fo the original random 

sample, tests were made of the randomness of the terrain samples actual ly used. 

As noted above, each 1:250,000 scale map contains th i r ty - two 1:50,000 scale 

half-sheets (see Figure 4 . 2 ) . The numbers of these th i r ty- two "cel ls" containing 

exactly zero, one, two , et cetera, samples were determined and compared to 

the frequencies predicted according to the Poisson distr ibution. A chi-square 

test indicated that the two sets of frequencies were not signif icantly different 

at the 95 per cent level . 

Of twenty major physiographic divisions of British Columbia given by 

Holland (1964), ten occur at least in part south of 54 degrees lat i tude. These , 

together wi th the sample numbers and respective map-areas fa l l ing wi th in each 

div is ion, are listed in Table 4 . 1 . The actual distribution of the for ty- two 

terrain samples among these ten regions was compared wi th an even distribution 

based on the areas of the subdivisions, once again using the chi-square test 

(see Table 4 . 2 ) . The distributions were not signif icant ly different at the 95 

per cent leve l . The larger than expected number of samples in the first three 

subdivisions is probably at least in part due to the coastal locations of these 

regions (see Figure 4 . 1 ) . Since samples fa l l ing on the ocean were not accepted, 



Figure 4 . 1 : Physiographic subdivisions of southern British Columbia (see Table 4.1) with locations of stratif ied 

random sample of terrain analyzed in Chapter 4. 
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TABLE 4 . 1 : PHYSIOGRAPHIC SUBDIVISIONS OF SOUTHERN BRITISH 

COLUMBIA, AFTER HOLLAND (1964), WITH SAMPLE NUMBERS A N D 

MAP-AREAS FOR TERRAIN SAMPLES ANALYZED IN CHAPTER FOUR 

Western System 

Outer Mountain Area 
Insular Mountains (1) 

14: 92C/16E 22: 92L/6W 
15:92E/15E 38: 103B/3E 
16: 92F/2W 

Coastal Trough 
Hecate Depression (2) 

35: 102I/9E 37: 103A/8E 
36: 102P/9E 

Georgia Depression (3) 
13:92B/14W 2 l : 9 2 K / 6 W 

Coastal Mountain Area 
Coast Mountains (4) 

17: 92G/9E 20: 92J/3W 
19: 92I/5E 23: 92M/5E 

Cascade Mountains (5) 
*18: 92H/2W 

39: 103C/16E 
40: 103F/14E 

* 4 1 : 103G/16W 

30: 93D/7E 
42: 103H/3E 

Interior System 

Central Plateau and Mountain Area 
Hazelton Mountains (6) 

(no samples) 
Rocky Mountain Trench (7) 

5: 82K/9E *11 :83D/10W 
Southern Plateau and Mountain Area 

Interior Plateau (8) 
6: 82L/12E 27: 93A/4W 32: 93F/9W 

*24 :92N/15E 28:93B/9W 33: 93G/13W 
25: 920/16E 29: 93C/8W 34: 93H/12E 
26:92P/1E *31:93E/9W 

Columbia Mountains (9) 
1:82E/10W 3: 82G/12W * 8 : 82N/4E 
2: 82F/8E 7: 82M/15E 

Eastern System 

Rocky Mountain Area 
Rocky Mountains (10) 

4: 82J/1 IE 10:83C/5W 12: 83E/5W 
9: 820 /4E 

* indicates sample selected for more detailed analysis 
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TABLE 4 . 2 : COMPARISON OF DISTRIBUTION OF 42 TERRAIN SAMPLES 

A M O N G TEN PHYSIOGRAPHIC DIVISIONS WITH EXPECTED 

DISTRIBUTION BASED O N DIVISION AREAS 

physiographic 
division 

per cent 
of area 

expected c 
(e) 

ibserved 
(o) 

( e - o ) 2 

e 

1 . Insular Mountains 7.6 3 7 5.33 

2 . Hecate Depression 4 . 8 2 4 2.00 

3. Georgia Depression 3.2 1 2 1.00 

4 . Coast Mountains 24.6 10 6 1.60 

5. Cascade Mountains 1.5 1 1 0.00 

6. Hazelton Mountains 0 .5 0 0 

7. Rocky Mountain Trench 1.6 1 2 1.00 

8. Interior Plateau 33.8 14 11 0.64 

9. Columbia Mountains 15.8 7 5 0.57 

10 Rocky Mountains 6 .6 3 4 0.33 

Sums 100.0 42 42 X 2 = 12.47* 

* not significant at the 95 per cent level 
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samples would tend to be "concentrated" in the land areas of map sheets 

containing considerable water. 

4 . 2 : Data Collect ion 

As stated above, each terrain sample consisted of a 7 by 7 kilometre 

square; the selection of this sample area size was arbitrary. Wi th in each area, 

a 7 by 7 grid wi th a one kilometre spacing was used in determining some 

terrain measures. At each of the forty-nine grid intersections, the elevation 

was determined, and the type of surface at the point ( e . g . land, ocean, lake, 

or glacier or snowfield) was also noted. The number of intersections between 

the grid lines and contours, and also between the grid lines and the "blue 

l ine" stream network were counted. The elevations of the highest and lowest 

points wi th in the area, the number of closed hi l l top contours, the total length 

of streams, and the number of stream sources were also determined for each 

sample area. 

4 . 3 : Data Analysis 

4 . 3 . 1 : Drainage Density (DA) 

Drainage density was estimated for each sample area by measuring the 

total length of blue stream lines on the map, in kilometres, and dividing by the 

area. The number of intersections between the grid lines and the drainage net 

(N) was counted and divided by the total length of traverse (L). Carlston and 

Langbein (Unpub., 1960; c f . McCoy, 1971) developed a theoretical equation 

which proposed that the drainage density should be approximated by: 

D d = 1 . 5 7 N / L (4.1) 

The empirical evidence col lected here appears to support this equation. 

When a histogram of drainage density was prepared (Figure 4 .3 a ) , the 

observations tended to cluster around 0.6 km \ but wi th a number of "outl iers" 

having values above one. The writer had observed during the data col lect ion 



Figure 4 .3 : Histograms for six geomorphometric parameters. Triangles 

indicate the break points for three of the parameters. 
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that some of the older maps appeared to have higher drainage densities than 

newer ones. A statist ically significant inverse correlation was found between 

and the year of map publ icat ion. Drainage density was also signif icantly 

correlated wi th mean annual precipitation at the sites, and i t was thought that 

this might explain the correlation between map age and drainage density, 

since most of the older maps were coastal. The correlation between map date 

and precipitation was not statistically signif icant, however, suggesting that 

the variation in the drainage net is at least in part cartographic (see section 1.1). 

Because of this problem, and because there were no wel l marked breaks in the 

distr ibut ion, drainage density was not used to divide the samples into groups 

having similar terrain. 

4 . 3 . 2 : Source Density (D,.) and Peak Density (Dp) 

The numbers of stream sources and of closed hi l l top contours (peaks) 

were determined and divided by the land area of the sample areas. Source 

2 

density was found to be closely related to drainage density (r = 0 .847) , but 

would also be dependent upon the drainage net depicted on the map, and so 

was not used in further analysis. A histogram for this parameter is shown in 

Figure 4 . 3 b . 

The histogram for peak density (Figure 4 . 3 c ) showed poorly developed 
_2 

breaks at about 0.25 and 0.50 km ; these were used to classify the terrain 

samples. 

4 . 3 . 3 : Local Relief (H) 

The maximum and minimum elevations wi th in each sample area, as 

determined by a visual inspection of the contours, were used to determine the 

local re l ief . This should be wi th in one contour interval of the actual value 

and, i f the maps are accurate, must be wi th in two contour intervals. The 

maximum and minimum of the 49 grid heights were also determined; the 
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difference between these was designated H* , the grid estimate of the local 

rel ief . Theoretical aspects of the relationship between the true and grid 

values of local rel ief w i l l be discussed in section 5 . 1 . 

Histograms of local rel ief were drawn for each of seven physiographic 

divisions, and for the combined samples (see Figure 4 . 3 d ) . The latter 

contained two "breaks" which were used to divide the data into three rel ief 

classes: " low" re l ie f , less than 500 metres (10 samples); "moderate" re l ie f , 

500 to 1,500 metres (25 samples); "h igh" re l ie f , more than 1,500 metres 

(7 samples). 

4 . 3 . 4 : Mean Slope (tan «K) 

The mean slope for each area was estimated using the Wentworth method 

(section 3 . 4 . 1 ) . The total length of traverse was 98 kilometres, except where 

lakes or ocean reduced the land area; in these cases, the length of traverse 

was reduced by 2 km for each grid intersection fa l l ing on a water surface. 

The histogram for average slope (Figure 4 .3e ) shows a rather poorly 

defined break at about 0 . 3 . The high correlation between mean slope and 

2 

rel ief for the samples (r = 0.679) clearly indicates that these measures are 

not independent, and thus mean slope was not used in classifying the sample 

areas. 

4 . 3 . 5 : Hypsometric Integral (HI) 

The value of the hypsometric integral for each sample was estimated 

using Wood and Snell's (1960) elevat ion-rel ief ra t io . The mean of the 

elevations of those grid points which did not fa l l on lakes or the sea was used 

as an estimate of the mean height of the terrain. The formula for the e levat ion-

rel ief ratio (equation 3.14) involves both the minimum elevation and the local 

rel ief ; here, the hypsometric integral was computed twice: H was based on the 

" true" minimum and maximum elevations, whi le H * was based on the grid 
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estimates of these values. Theoretical errors in HI* w i l l be discussed in 

section 5 . 4 . 

Histograms for this parameter were prepared (see Figure 4 . 3 f ) , but in 

this case there were no clear breaks in the distr ibution. When Strahler's (1952) 

divisions at 0.35 and 0.60 were appl ied, i t was found that only one sample had 

a hypsometric integral above 0.60 (sample 1:0.602). Thus essentially none of 

the areas examined were in the "youthful" or " inequi l ibr ium" stage. Nineteen 

of the for ty- two samples had HI values below 0.35 and would fal l into Strahler's 

"monadnock phase", the remainder being essentially in equi l ibr ium. While the 

hypsometric integral for an arbitrari ly-bounded terrain sample is not necessarily 

the same as those of its constituent drainage basins (see section 5 . 4 ) , the value 

of 0.35 was nonetheless used to divide the samples into low or intermediate 

HI values. 

4 . 3 . 6 : Relationships among Variables 

In order to better understand the relationships among terrain and 

related parameters (see Table 4 . 3 ) , linear correlation coefficients among the 

twelve variables listed in Table 4 .3 were computed. Table 4 . 4 indicates a l l 

correlation coefficients which were stat ist ical ly-signif icant at the 95 per cent 

leve l . The correlations were then examined using the same approach as Melton 

(1958); Figure 4 .4 illustrates the three isolated correlation sets which form 

the cores of three variable systems, namely "drainage", "hypsometry", and 

!"rel ief" . Peak density (D ) was not signif icantly correlated wi th any other 
P 

variable. Factor analysis was also applied to the data, and produced essentially 

the same result . 
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TABLE 4 .3 : VARIABLES INCLUDED IN CORRELATION ANALYSIS 

variable 
number symbol name 

1 D d 
Drainage density 

2 N / L Drainage net intersections 

3 D 
s 

Source density 

4 D 
P 

Peak density 

5 H Local rel ief 

6 H* Gr id estimate of local rel ief 

7 ran <* Average slope tangent 

8 HI Hypsometric integral 

9 HI* Grid estimate of H 

10 z Mean elevation 

11 P Mean annual precipitation 

12 t Year of map publication 
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TABLE 4 . 4 : STATISTICALLY SIGNIFICANT (95 PER CENT LEVEL) LINEAR 

CORRELATION COEFFICIENTS A M O N G THE VARIABLES IN TABLE 4 .3 

D, N / L D D H H* ran* HI H* z p r 

0.921 0.473 - .496 

0.927 0.468 - .485 N / L 

- 0.554 - .479 D 
s _ D 
P 

- 0.987 0. .824 0.419 H 

0. .797 0.364 H* 
- 0. 323 0.602 tan- f 

- 0. 887 0.364 HI 

- HI* 

- - . 445 0.336 z 

- P 

- r 
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Figure 4 . 4 : Correlation structure among twelve terrain and related 

parameters (constructed in the manner proposed by Me l ton , 

1958). The outer boxes enclose isolated correlation sets; 

dotted lines indicate inverse correlations. 
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4 .4 : Classification of Samples and Selection of Areas for Further Analysis 

Three independent terrain variables, namely re l ie f , hypsometry, and 

peak density, were used to divide the for ty- two samples into groups having 

similar terrain. The independence of the parameters is indicated by the fact 

2 

that the maximum r value among the three pairs was 0.063. The break points 

in the distributions of the variables were given above. As there were three 

classes each for rel ief and peak density and two for the hypsometric integral , 

there are eighteen possible groups — of these, f i f teen contained at least one 

sample (see Table 4 . 5 ) . An attempt was made to select six samples for further 

analysis (in Chapter 6) from among the classes in approximately the same ratios 

as the total numbers of samples; a table of random numbers was used to aid in 

the f inal selections. The exact values of a number of selected geomorphometric 

parameters for the selected areas are shown in Table 4 . 6 , while values for a l l 

for ty- two areas analyzed in this chapter are given in Appendix II . 

Using a polar planimeter to determine inter-contour areas, hypsometric 

curves were constructed for each of the six selected areas (Figure 4 .5 ) ; curves 

based on the 49-point samples of elevations (cf. Haan and Johnston, 1966) 

were similar to those shown. The values used to construct the hypsometric 

curve were also used to calculate the hypsometric integral — these values w i l l 

be used as the "standard" to which estimates of H w i l l be compared in subsequent 

sections. 

4 . 5 : Description of Areas Selected for Further Analysis^ 

4 . 5 . 1 : Sample 8: l l lec i l lewaet Map-area (82N/4E) 

The terrain sample from the l l lec i l lewaet map-area is located in the 

northern part of the Selkirk Mountains subdivision of the Columbia Mountains. 

The minimum elevation of 2880 feet (878 m) occurs in the val ley of the 

Incomappleux River, whi le the maximum (9050 feet; 2758 m) is an unnamed 

1 Physiography after Hol land, 1964 
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TABLE 4 .5 : CLASSIFICATION OF 42 TERRAIN SAMPLES USING LOCAL 

RELIEF (H) , HYPSOMETRIC INTEGRAL (HI), A N D PEAK DENSITY (D ) . 
P 

NUMBERS OF OBSERVATIONS IN CLASSES ARE I N PARENTHESES; 

SAMPLES FOR FURTHER ANALYSIS ARE UNDERLINED. 

H HI D 0 .25(11) 
P 

0.25 D 0.50(21) 
P 

D 0.50 (10) 
P 

500 m 0.35 (7) 25,33 14,24,40 3,29 

(10) 0.35 (3) 27 28 32 

500 to 0.35 (10) 4 ,22 ,26 ,35 ,36 5,21 ,32,37,38 
1500 m 
(25) 

0.35 (15) 1,6,14 2 , 9 , 1 2 , 1 5 , 1 6 , 
] 8 , 3 4 , 3 9 , 4 1 , 4 2 

17,23 

1500 m 0.35 (2) 11 20 
(7) 0.35 (5) 7 ,8 ,19 ,30 10 
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TABLE 4 .6 : VALUES OF SOME GEOMORPHOMETRIC PARAMETERS FOR 

SIX AREAS SELECTED FOR DETAILED ANALYSIS. VALUES FOR R 

ARE FROM CHAPTER 6, ALL OTHERS, FROM THIS CHAPTER. 

P 

8 0.555 0.102 1880 0.609 13.8 0.432 

11 0.549 0.143 1709 0.395 8.1 0.260 

18 1.847 0.286 833 0.396 7 .4 0.547 

24 0.631 0.383 203 0.065 0.25 0.286 

31 0.290 0.553 1195 0.225 3.1 0.355 

41 0.882 0.490 869 0.400 7.6 0.395 
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Figure 4 .5 : Hypsometric curves for the six terrain samples selected for 

detailed analysis. 
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peak just inside the western margin of the sample area. It is essentially an 

area of alpine glacial features — the higher portions show such features as 

cirques (two of which contain small glaciers), horns, and aretes, wi th u-shaped 

glacial troughs between. Sample 8 had the highest local rel ief of the six areas 

selected for detailed analysis, and the fourth highest over a l l . 

4 . 5 . 2 : Sample 11: Ptarmigan Creek Map-area (83D/10W) 

Sample 11 contains portions of three major physiographic subdivisions. 

The Rocky Mountain Trench, here only 1 to 1.5 km in w id th , cuts across the 

study area from northwest to southeast; i t is occupied by the southeast-flowing 

Canoe River, whose elevation ranges from about 2300 to 2280 feet (701-695 m). 

To the northeast lies a portion of the Selwyn Range of the Rocky Mountains; 

the maximum elevation wi th in the sample area north of the river is 7000 feet 

(2134 m) which occurs on an arete of an unnamed peak reaching 8048 feet 

(2453 m) just beyond the study area boundary. With the exception of the arete, 

the topography north of the Canoe River does not display the angularity 

characteristic of intense alpine glacial erosion. Such forms are present wi th in 

the sample area in the Malton Range of the Monashee Mountains ( a subdivision 

of the Columbia Mountains) which are found to the southwest of the Trench in 

this area. A horn wi th an elevation of 7888 feet (2404 m) represents the 

maximum elevation wi th in the sample area. The topography of sample 11 is 

not unlike that of the previous one (sample 8 ) , wi th its high rel ief and low 

peak density, but is distinguished by a considerably lower hypsometric integral 

(0.260) which is a result of a more prominent and level valley f loor. 

4 . 5 . 3 : Sample 18: Manning Park Map-area (92H/2W) 

This sample lies wi th in the Hozameen Range of the Cascade Mountains. 

Once again, this sample area is dominated by forms produced by alpine-type 

glacia l erosion. Here, however, the summits take on a more rounded appearance 
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because they were overridden by ice during the last glacial maximum. Four 

summits wi th in the area have elevations of about 6350 feet (1935 m), and most 

val ley floors are around 4300 feet (1311 m). On ly in the northwest corner, in 

the v-shaped val ley of the upper Skagit River,does the surface descend below 

4000 feet (1219 m) to the minimum elevation of 3450 feet (1052 m). Even so, 

the total rel ief of the area (833 m) is only "moderate", according to the 

divisions established in section 4 . 3 . 1 ; the hypsometric integral (0.547) is by 

far the highest of the six samples, and the f i f th highest of the 42 areas. 

4 . 5 . 4 : Sample 24: Tatla Lake Map-area (92N/15E) 

This sample lies near the western margin of the Fraser Plateau subdivision 

of the Interior Plateau. A t 203 metres, this area has the lowest local rel ief of 

the 42 areas studied in this chapter. The area is primarily a drumlinized t i l l 

plain produced by west-to-east moving ice (Tipper, 1971), wi th elevations of 

between 3100 and 3300 feet (945-1006 m); a major meltwater channel traverses 

the sample area leading into Tatla Lake i tself , at 2985 feet (910 m) the minimum 

elevation in the area. This and another lake together cover some 4 per cent of 

the sample area. Five maxima, probably bedrock outcrops, rise above the t i l l 

plain to altitudes of about 3650 feet (1113 m). 

4 . 5 . 5 : Sample 3 1 : Ghi tez l i Lake Map-area (93E/9W) 

This sample is also from the Interior Plateau, but from the Quanchus 

Range of the Nechako Plateau. The area contains Michel Peak, at 7396 feet 

(2254 m) the highest point in the Nechako Plateau region. The eastern (lower) 

boundary of the latter subdivision was defined by Holland (1964, p. 68) as the 

3000 foot (914 m) contour, and since about 5 per cent of the present sample 

area is part of Glathel i Lake (elevation 3490 feet; 1064 m), the 7 by 7 km 

sample area contains almost the entire rel ief of the Nechako Plateau. Local 

rel ief for the study area (1190 m) is st i l l only in the "moderate" class. 
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4 . 5 . 6 : Sample 4 1 : Oona River Map-area (103G/16W) 

Sample 41 is from Porcher Island, and ranges from a maximum 

elevation of 2950 feet (899 m) at Egeria Mountain to a minimum of 100 feet 

(30 m) near Ogden Channel. The division between the Hecate Depression and 

the Kit imat Ranges of the Coast Mountains is not marked by any prominent 

physical feature in this area. Holland (1964, p. 35) stated that "the eastern 

boundary of the lowland is arbitrar i ly taken as a generalized line along the 

2000 foot contour. " Following this def in i t ion , the southwestern half of the 

sample area belongs to the Hecate Depression, the northeastern to the Coast 

Mountains; in fac t , i t is probably more appropriate to assign the entire sample 

area to a transition zone between the aforementioned physiographic divisions. 

The area displays many cirques, some wi th floors as low as about 500 feet 

(152 m), but nowhere are the ridges sharp as i n , for example, the l l leci l lewaet 

map-area (sample 8). Probably, cirques were formed during an early "a lp ine" 

phase of g lac ia t ion , but later the entire area was overridden by ice . Cirques 

may or may not have been re-occupied by local ice after the disappearance 

of the Cordil leran ice sheet from the area. 
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Chaprer 5: Procedures for Analysis and Theoretical Comparisons of Computer 

Systems 

In this chapter, the analysis procedures used to estimate the geomorpho­

metric parameters selected for special attention w i l l be out l ined. O f the seven 

variables examined in the last chapter, drainage and source densities were 

excluded from consideration for the reasons cited above. Peak density was 

excluded because of computational problems, especially because the correspon­

dence between grid maxima and actual surface maxima may not be great. The 

remaining four parameters which are studied in this chapter are local rel ief (H) , 

mean slope (tan o<), roughness factor (R) , and hypsometric integral ( H ) . 

Theoretical errors involved in estimating the parameters from a triangular network 

of surface-specific points and from a regular grid w i l l be discussed qua l i ta t ive ly , 

and in some cases quant i tat ively. Consideration w i l l also be given to the 

theoretical relationships among these and related geomorphometric parameters, 

and to theoretical computer storage requirement. In the discussions which 

fo l low, it w i l l be assumed that topographic maps provide the only available 

source of information about the topography. 

5 . 1 : Local Relief (H) 

In estimating the "true" value of local rel ief from a contour map, errors 

can arise from a number of sources: 

(1) map errors, which w i l l be disregarded in the present discussion; 

(2) interpolation errors — the maximum possible interpolation error 

for both the highest and lowest point is one contour interval 

(expected error = 1/2 contour interval ) , and thus the maximum 

error in the local rel ief from this source is two contour intervals 

(expected error = one contour interval); 
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(3) errors due to misreading the contours — this may be one 

contour in terva l , or even f ive contour intervals i f an " index" 

contour is misread, for both the maximum and minimum point; 

(4) errors due to the mis- ident i f icat ion of either the maximum or 

minimum point , or both — for example, a particular summit 

may be taken to be the highest point wi th in the study area when 

in fact a higher point exists. 

O f these, (3) and (4) are "operator errors", and can be avoided by careful 

examination of the map and checking of the results; errors of types (1) and (2) 

are generally unavoidable, but are often small when compared to types (3) and 

(4). 

5 . 1 . 1 : Local Relief: Surface-specific Points 

In both this and the grid method, the estimate of the local rel ief is the 

difference between the elevations of the highest and lowest sample points. A l l 

four of the sources of error for the "true" value of local rel ief listed above may 

contribute to error in the estimate of H obtained from a set of surface-specific 

points. "Type 4" errors should, however, be much less l ikely in the latter case 

than in a visual inspection of the contours. In d ig i t iz ing an area using surface-

specific points, an attempt is made to include a l l peaks and pits, as wel l as a l l 

maxima and minima long the borders of the area. If a l l are included, the true 

maximum and minimum elevations must be among them, and " type 4" errors are 

el iminated. If one assumes that no "avoidable operator errors" (types 3 and 4) 

are present in either case, the accuracy of this method should be equal to the 

"standard" method (visual inspection). Otherwise, the estimate of local rel ief 

obtained from a sample of surface-specific points should tend to be more 

accurate than that obtained from a visual inspection of the contours; of course, 

in any particular case, the errors from the various sources may combine to make 

the visual estimate closer to the true value. 
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5 . 1 . 2 : Local Relief: Regular Grid 

Considerably larger errors in estimating the minimum and maximum 

elevations result when a regular grid is used. As noted in section 2 . 2 , grids 

are surface-random, and i t is highly unl ikely that a grid point w i l l coincide 

wi th the true maximum or minimum elevation of the study area. Since the 

grid maximum cannot exceed the true maximum (unless there are interpolation 

errors) and the grid minimum w i l l be greater than or equal to the true minimum, 

H* , the grid estimate of the re l ie f , w i l l be less than or equal to H. If t is the 

average land slope near the maximum point , and c the distance from the maximum 

to the nearest grid point , the error in estimating the maximum should be given 

by: 

e .= c tan 1 
max (5.1) 

A similar estimation may be made for e . . As an estimate of the expected 
' mm r 

distance from an extreme point to the nearest grid point , one can use the root-

mean-square distance (s^) of a l l pints from the nearest grid point. If d is the 

grid spacing, and i f the origin of the co-ordinate system is located at a selected 

grid point , s^ for a l l points closer to that grid point than to any other ( i . e . , 

wi th in the inner box in Figure 5.1) is given by: 

(x + y ) dy dx 

-, I 

= 0.408 d (5.2) 

One can further suppose that H may approximately equal o< # the mean ground 

slope; estimates of the errors in the maximum and minimum elevations would 

then be: 

e . = e = 0.408 d tan <* (5.3) 
mm max v ' 
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Figure 5 . 1 : Il lustration of the distance (c) from any point (x, y) to the 

nearest grid point (open c i rc le) . Solid circles indicate 

other grid points. 
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and thus the expected error in the value of the local rel ief would be: 

e H = 0.816 d tan <x (5.4) 

The error i n , and accuracy of , the grid estimate of the local rel ief is theoretica 

a linear function of the grid spacing, as proposed by the "sampling theorem" 

(see section 2 . 2 ) . Of course, the mean slope (o< ) may not be a good estimate 

of the land slope near the extreme point. In many of the areas examined in 

section 4 . 3 , the minimum elevation was on a lake, the sea, or a f loodpla in, an 

the slope near this point (and thus also e

m j n ) w a s near zero . Slopes near the 

maxima and the minima of most of the for ty- two samples from Chapter 4 (grid 

spacing 1 km) were estimated by dividing the elevation differences between the 

points and the nearest grid points by the horizontal distances; these values 

should approximate tan }f. The mean values of these angles for the maxima 

are similar to tan OC, in particular cases they may differ by a factor of two or 

more; average slope near the minima is only about one third of the mean slope. 

As an added compl icat ion, the closest grid point to the maximum may not be 

the highest grid point , and the same may hold for the minimum. In such cases, 

the error in the grid estimate may not be as great as expected. The empirical 

relationship between e ^ and tan for the for ty- two samples from Chapter 4 

was 

e H = 234.1 tanoc + 63.12 ( r 2 = 0.245) (5.5) 

where e ^ is in metres and d is 1000 m. This relationship is stat ist ical ly 

signif icant (95 per cent level); the large amount of "unexplained" variance is 

probably a result of the random factor of the actual distance from the extreme 

points to the nearest grid points, and of the difference between tan I and 

tan o< . The ratio of the mean values of e ^ and t a n * , divided by d (1000 m) 

is 0 .426, st i l l only about half of the theoretical coeff icient (equation 5 .4 ) . 
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This is probably because the slope near the minimum was often much less than 

the mean slope, and because in some cases the highest (or lowest) grid point 

was higher (or lower) than the grid point closest to the true maximum (or 

minimum). 

5 . 1 . 3 : Review 

In summary, the estimate of the local rel ief obtained from a set of 

surface-specific points should be as accurate as, or even more accurate than, 

the estimate obtained through a visual inspection of the contours. For regular 

grids, errors due to the fact that i t is very unl ikely that a grid point w i l l 

coincide exactly wi th the minimum or maximum point w i l l tend to be much 

larger than interpolation errors. It would appear that the error in estimating H 

from a grid w i l l average about 0 .4 d ran©< , which could be large in areas of 

steep slopes i f a relat ively wide grid spacing is used. Surface-specific points 

should theoretical ly provide much better estimates of local rel ief than should 

regular grids of "reasonable"densities. Relief error for a given average slope 

should be a linear function of grid spacing. 

5 .2 : Mean Slope (tan <x) 

Strahler (1956) determined the " t rue" mean and standard deviation for 

slopes in drainage basins by measuring slope tangent at a large number of points, 

drawing lines of equal slope tangent (isotangents), and using a planimeter to 

determine the relat ive frequencies of the various slope classes. Means and 

other distributional parameters were then determined from these frequencies. 

Strahler then showed that the distribution of slope measurements at 100 randomly-

located points wi th in one study area was not signif icantly different from the 

"populat ion" values. As noted earlier (section 3 . 4 . 2 ) , Griff i ths (1964) compared 

this'point sampling" method to the "traverse sampling" method (Wentworth, 1930) 

and a "subjective" method similar to that described by Raisz and Henry (1937). 
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He concluded that the Wentworth method produced the most accurate results 

of the three. The "isotangent" method would probably produce the best results, 

but as this is very time consuming, as Strahler concluded that the results of 

point sampling were not signif icantly different from this, and as Grif f i ths 

concluded that the Wentworth method was superior to the point sampling 

approach, the Wentworth method was used herein to provide an estimate of the 

" t rue" mean slope to which computer values w i l l be compared in the next 

chapter. 

5 . 2 . 1 : Computational Procedures 

For the mean slope and for the subsequent two geomorphometric measures, 

the regular grids were first converted to a set of continguous triangular facets by 

inserting one set of diagonals into the gr id ; the same analysis procedures were 

then used for both these triangles and the triangles based on the surface-specific 

points. For each t r iangle, a vector orthogonal to i t was determined by computing 

the cross product of vectors forming two edges of the tr iangle. The length of this 

vector is twice the true area of the t r iangle, whi le the z-component of the 

orthogonal vector is twice the projected (map) area. Unit orthogonal vectors 

were determined by dividing the components by the total length, and the slopes 

of the triangles were computed from the z-components of these unit vectors. 

Three average slopes, namely unweighted, weighted by map area, and weighted 

by true area, were determined. While the latter may represent the most logical 

weighting (cf. Evans, 1972, p. 37), map area has been used by most methods, 

including the Wentworth approach discussed above. 

The accuracy of the mean slope estimate obtained from a set of triangles 

is highly dependent upon how closely the triangles approximate the surface. In 

the case of surface-specific points, the accuracy w i l l depend upon the selection 

of the points and the size of the triangles. Pil lewizer (1972) noted that the 
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triangle method, as applied by Hormann (1971) , fai led to indicate a slope 

asymmetry detected by f ie ld surveys and careful analysis of large-scale topo­

graphic maps. Pil lewizer attributed this fai lure to the fact that Hormann's 

triangles were too large. For triangles derived from a g r id , there w i l l be no 

control over the degree to which the triangles approximate the surface, except 

through the size, which is a function of grid spacing. 

5 .3 : Roughness Factor (R) 

As pointed out in section 3 . 5 , the roughness factor is closely related 

to the inverse of k, Hobson's (1967, 1970) vector dispersion factor. The latter 

is defined only for unit vectors, and it was argued in section 3.5 that even for 

grids, i t would be better to weight the vectors by the true areas of the tr iangles. 

In the grid case, the map areas of a l l triangles are equal, and the use of unit 

vectors (cf. Hobson) should not produce results which differ greatly from weighted 

vector analysis. For the latter, steeper triangles w i l l be weighted more, 

increasing the roughness factor s l ight ly. For triangles based on surface-specific 

points, the use of unit vectors w i l l be inappropriate, since the sizes of the 

triangles may vary considerably. In this study, both weighted and unweighted 

analyses were conducted, using the orthogonal vectors noted above. The only 

"standard" roughness value to which other methods might be compared would be 

Hobson's k (or its inverse), but as proposed in section 3 .5 , this measure should 

be inferior to the value of R obtained from a weighted vector analysis based on 

surface-specific points. Thus no useful comparisons of the computer estimates 

to "true" values can be made as for the preceding parameters. 

5 .4 : Hypsometric Integral ( H ) 

The " t rue" value of the hypsometric integral was determined by using 

a planimeter to measure the areas above various elevations (that is, enclosed 

wi th in selected contours); the elevations are converted to relat ive values by 
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subtracting the minimum height and dividing by the local re l ie f , whi le 

relative areas are computed by dividing by the total area. These points can 

be plotted to produce hypsometric curves (see Figure 4 . 5 ) , and the hypsometric 

integrals can then be determined by measuring the areas under the curves wi th 

a planimeter, or by determining the integrals mathematically. In this study, 

the latter approach was used, employing the trapezoidal method for integrating 

a function whose values are known at a set of points. 

Most research using the hypsometric integral has involved drainage 

basins as basic units, although some studies have applied this measure to 

arbitrari ly-bounded topographic samples as are used in the present work (cf . 

Gassmann and Gutersohn, 1947; Wood and Snel l , 1960; Pike and Wilson, 1971; 

Evans, 1972). None o f these works, however, recognized or commented upon 

the fact that the shape and orientation of the sample area may influence the 

form of the curve and sometimes the value of the in tegral , or that the hypso­

metric integral for a group of basins may not equal the mean of the basin values. 

The former fact can be il lustrated by applying a square sample area wi th two 

different orientations and a circle to two simple geometric forms: an incl ined 

plane, and a square-based pyramid considerably larger than the sample area 

wi th the latter centred at its apex. For the incl ined plane, the hypsometric 

integral for a l l three samples is 0 . 5 , but the forms of the curves differ (see 

Figure 5 .2 ) ; the c i rc le and the "diagonal square" (the square wi th a diagonal 

parallel to the dip of the plane) produce "s-shaped" curves which Strahler (1952) 

noted were characteristic of higher-order drainage basins at the equil ibrium 

stage in the absence of structural control . Many such basins have outl ine forms 

similar to the circle or the diagonal square, and the "characteristic s-shape" is 

probably in part due to the influence of outl ine form. In the case of the pyramid, 

both the curve form and the hypsometric integral vary wi th the shape and 



- 8 2 -

Figure 5 . 2 : Hypsometric curves for the portions of an incl ined plane 

wi th in 3 sample areas. 

A : "para l le l " square (see inset, A ) ; 

B: "diagonal" square (see inset, B); 

C: c i rc le . 
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orientation of the sampling area (Figure 5 . 3 ) . Indeed, the curve and integral 

are identical for the plane and the pyramid in the case of the diagonal square 

sampling areas. This effect could produce considerable variation in results i f 

the size of the sampling area is less than or equal to the " texture" of the topo­

graphy in an area. In the present study, however, the sample areas (7 by 7 km) 

are considerably larger than the topographic texture of these areas. 

The second consideration in the case of arbitrari ly-bounded sample 

areas is the relationship between the hypsometric integral for such an area and 

the integrals of its constituent drainage basins. As a simplif ied i l lustrat ion, 

one can consider two adjacent basins of equal areas, minimum elevations of 

zero, and hypsometric integrals of 0.5 — the only difference is that one basin 

has a local rel ief of 500 m, the other 1000 m. The former basin w i l l have a 

mean elevation of 250 m, the latter 500 m — the mean elevation of the 

combined basins w i l l be 375 m. The total rel ief is 1000 m, and thus the hypso­

metric integral of two basins w i l l be 0 .375, twenty- f ive per cent less than that 

of either of the individual basins. Other combinations of relat ive rel iefs, 

minima, areas and integrals can produce hypsometric integrals for combined 

basins larger than those of the constituent basins. If the minima and hypsometric 

integrals are equal , as w i l l be approximately the case in "equi l ibr ium 1 1 topography 

wi th a common local base level (the ocean, a lake, or a low-gradient f loodplain) , 

the aggregate integral w i l l always be less than the individual ones. This may in 

part explain the relat ively large number of the for ty- two areas examined in 

Chapter 4 which had overall integrals below the lower l imit of "equi l ibr ium" 

(0.35) proposed by Strahler (1952) for individual basins. 

As noted above, the regular grids were converted to sets of triangles 

and analyzed using the same methods as employed for triangles based on surface-

specific points. It can be easily shown that the volume between a triangular 
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Figure 5 .3 : As in Figure 5 . 2 , but for a square-based pyramid. Here, 

the hypsometric integral varies as wel l as the curve form. 
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plane and the horizontal datum plane is equal to the product of the projected 

area of the triangle and the mean elevation of the three corners of the t r iangle. 

These volumes can be summed and divided by the total area to give the mean 

elevation of the study area. This can then be used in the elevat ion-rel ief 

ratio formula (equation 3.14) to estimate the hypsometric integral . 

5 . 4 . 1 : Hypsometric Integral: Surface-specific Points 

It is d i f f icu l t to determine quanti tat ively the theoretical precision of 

this method. The degree to which the value of HI determined as described above 

from a set of surface-specific points approximates the true value w i l l depend 

upon how closely the land surfaces wi th in the triangles formed from these points 

approximate planes. If the person selecting the points is careful to make sure 

that the contours wi th in each triangle are approximately parallel and equally 

spaced, the method should be reasonably accurate. 

5 . 4 . 2 : Hypsometric Integral: Regular Gr id 

The mean elevation determined from triangles based on a regular grid 

using the volumetric method outl ined above w i l l be very close to the arithmetic 

mean of the sampled elevation values. Each point not on the outer boundary 

forms a vertex of exactly six tr iangles, and thus al l such points are equally 

weighted (the projected areas of the triangles are, of course, equal); points 

along the boundaries are in three triangles, whi le corner points are in one or 

two. Since no attempt is made to ensure that the areas wi th in each triangle 

are even approximately planar, the estimate of the mean elevation derived 

from the grid should not be as accurate as that obtained from a set of surface-

specific points. The principal sources of error, however, are errors in the 

maximum and minimum elevations used in the elevat ion-rel ief ratio formula 

(equation 3 .14) , errors which have been discussed above in section 5 . 1 . 2 . In 

the fol lowing discussion, e and e . are non-negative error terms, and an a ' max mm a ' 
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asterisk (*) is used to denote values determined from the grid alone. If one 

defines: 

z * = z - e 
max max max (5.6) 

2 = 2 ~f" 6 
min min min 

(5.7) 

and H* = mm 
• * - z * 
max min 

(5.8) 

It follows that: 

HP 
z - (z . + e . ) 

mm mm' 
(z - e ) - (z . + e . ) v max max' x mm mm' 

(5.9) 

Some algebraic manipulation of this equation yields: 

e 
HI* 

e + e 
] _ max min 

z - z . 
max min 

+ mm 
z - z . 

max mm 

z - z 
mm 

z - z . 
max mm 

(5.10) 

The right-hand-side of this equation is the true value of the hypsometric integral 

(disreqarding possible errors in z ) , and z - z . is H, the true local re l ie f , v 3 * r " max mm 

giv ing: 

HI = HI* 1 - Ltt 
H 

+ mm 

H 
(5.11) 

If HI* is to be accurate, H * must equal H , in which case either e ^ must 

equal zero or the fol lowing relationship must hold true: 

H = H* = e . 
mm (5.12) 

H 

The latter ratio may provide a rough estimate of hypsometry, since for the 

42 samples examined in Chapter 4 i t was signif icantly correlated wi th H , 

although the r value was only 0 .345. 
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Some further re-arrangement of equation 5.11 yields the fol lowing 

expression for the relative error in H * : 

E H T 

' 1 - HI I 
HI - HI* e - e . 

max mm 
L H J 

H H* 
(5.13) 

Equations 5.12 and 5.13 imply that i f the hypsometric integral is low, the 

error in the minimum elevation must be less than that in the maximum i f HI* is 

to be a good estimate of H . In fac t , a low hypsometric integral generally 

implies gentler slopes near the minimum elevation than near the maximum 

(see section 3 . 6 . 1 ) , which in turn implies that e . w i l l be less than e x " r mm max 

(see section 5 . 1 . 2 ) . For high values of H , e . must exceed e to x " min max 

minimize the error in the grid estimate of the hypsometric integral , and again 

this w i l l be the "expected" result. The dependence in part of these error 

terms upon HI should result in errors in H * being somewhat less than equation 

5.13 suggests. 

An attempt was made to determine the relationship between the grid 

spacing (d) and the theoretical errors in the hypsometric integrals for a square-

based pyramid for grids parallel and diagonal to the pyramid base. The grids 

had odd numbers of rows and columns and were centred on the pyramid apex; 

meaninq that e was zero. When the grid minimum was used in the 
* max - — 

calculat ions, e ^ was found to be a linear function of d , once again supporting 

the "sampling theorem" noted in section 2 . 2 ; when the " t rue" minimum was 

2 

used, the error was proportional to d . To halve the error in the former case 

would require four times as many points, but in the latter only twice as many. 
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5 . 4 . 3 : Summary 

It is d i f f icu l t to assess quanti tat ively the theoretical accuracy of the 

estimate of the hypsometric integral obtained from a set of surface-specific 

points. Accuracy w i l l depend upon how closely the triangles formed by these 

points approximate the land surface. For regular grids where only the grid 

points are used, the error in HI should tend to be a linear function of the grid 

spacing (d), and is sensitive to the values of e and e . (equation 5 .13) . r » w m a x m i n \ - i / 

5.5 : Possibility of Estimating Other Parameters 

In addition to the four measures discussed above, many more of the 

geomorphometric parameters reviewed in Chapter 3 might be estimated from 

computer-stored terrain information. Among the most useful of these would be 

the measures of texture or grain outl ined in section 3 . 2 . Most of these measures 

depend upon the density of peaks, pits, streams, or ridges, and are thus strongly 

related to surfac-especific points and lines. It should be possible to estimate 

these parameters rather readily from a set of surface-specific points; in the 

case of grids, the same approach might be appl ied, but many "false" peaks and 

pits w i l l appear in such data, simply because a grid point which falls on a ridge 

may be surrounded by grid points on the sides of the ridge and thus appear to 

be a "peak" when in fact it is not. The def ini t ion of peaks, pi ts, ridges, and 

courses w i l l theoret ical ly be much easier i f surface-specific points are stored 

in the "pointer mode", rather than the "tr iangle mode" used in the present 

study (see section 2 . 6 ) . For example, a peak is defined as any point which is 

higher than a l l its neighbours; the neighbours must therefore be known before 

elevation comparisons can be made. Once the number of peaks or pits, or the 

total length of ridges or courses, is established, it can be used to compute 

peak or pit density, ridginess (cf. Speight, 1968) or drainage density. It would 

also be possible to compute other roughness measures (cf. Hobson, 1967, 1972), 
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distributional parameters for the vectors orthogonal to the land surface other 

than R or k, or measures of slope asymmetry (cf. Hormann, 1971, section 

4 . 2 . 4 ) . 

5 .6 : Theoretical Numbers of Points and Triangles for Triangular Data Sets,  

and Theoretical Computer Storage Requirements 

"Euler's Law" for a contiguous set of N^. cel ls, N - edges and N y 

vertices states that: 

N v + N c - N - = 1 (5.14) 

i f the "outside" is not considered to be a c e l l . If a l l cells are triangles, there 

should be 3N^~. sides. Since a l l edges form sides of two triangles w i th the 

exception of those edges forming the outer boundary of the study area, the 

total number of edges is given by: 

3 N r + N R 

N - = — 5 = - (5.15) 

b 2 

where N D is the number of edges (and also the number of vertices) which form 

the boi 

yields: 

the boundary. Substituting this value in equation 5.14 and solving for N^. 

N c = 2 N y - ( N B + 2 ) (5.16) 

Thus the total number of triangles in a data-set w i l l be somewhat less than 

twice the number of points. 

One can determine the theoretical computer storage requirements of 

the regular g r i d , and of the "pointer mode" and "tr iangle mode" of the 

triangular data-set method. Each integer value requires one half-word of 

computer storage a l locat ion, whi le each " rea l " or decimal value requires a fu l l 

word. To store the three co-ordinates (reals) and the ident i f icat ion number 

(integer) of a surface-specific point would thus require 7 half-words of computer 
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space, whi le each grid point needs only 2 half-words of computer storage. 

For the surface-specific points, either a set of pointers or a set of triangles 

must also be stored. The total number of pointers in a data-set w i l l be 

twice the number of edges ( N r J , since each edge forms a pointer of each of 

the vertices at its ends. Using equations 5.15 and 5 .16 , the total average 

requirements for the pointers of a data-set can be shown to be ( 6 N y - 2 ( N g + 

half-words, and the total storage for the points and pointers is given by 

( 1 3 N y - 2 N B - 6) half-words (5.17) 

For the "tr iangle mode", there are required 3 half-words for each t r iangle, 

the number of triangles being given by equation 5 .16 . The total storage 

requirements for the points and triangles should equal: 

( 1 3 N y - 3 N g - 6) half-words (5.18) 

which is exactly N R less storage space than needed by the "pointer mode". 
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Chapter 6: Empirical Comparisons and Computational Results 

In this chapter, the results of an empirical comparison of the two 

computer terrain storage methods discussed above w i l l be reported. To provide 

data for the comparison, the analysis procedures outlined in Chapter 5 were 

applied to the six topographic samples described in section 4 . 5 , for both 15 by 

15 grids (d = 500 m) and sets of surface-specific points. Figure 6.1 shows one 

of the surface-specific point data-sets; maps of the other data-sets are given 

in Appendix 1Mb. Samples 11 and 18 were arbitrar i ly selected to investigate 

the reproduceability of triangular data-sets and the influences of triangle size 

and map scale. Each of the regular grids was analyzed tw ice , using first 

northwest-southeast and then northeast-southwest diagonals. The results of a l l 

the computer analyses conducted are given in Appendix l l l c . 

For the six sample areas, the differences between the computer estimates 

and the "standard" estimates for local re l ie f , mean slope, and hypsometric 

integral were determined. For each method, the mean and standard deviations 

of the "errors" were determined, and the t-statistic was used to test the 

probabil i ty that the true mean error of each method was zero. If for any method 

this probabil i ty was 5 per cent or less, i t would be concluded that the method of 

estimating the parameter being tested was not va l id . The mean errors for the 

grids and triangular data-sets were compared, and the assumption that grid error 

is proportional to gr id spacing was used to estimate the grid density which would 

be required to produce the precision achieved by the triangular data-sets. The 

hypothetical d ig i t izat ion times and computer storage requirements of these 

hypothetical grids were then compared with those of the triangular data-sets 

using the time and storage estimates developed in the fol lowing section. 



Figure 6 . 1 : Sample 1 l a , an example of a triangular data-set from the 

Ptarmigan Creek map-area. 
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6 . 1 : Digi t izat ion Time and Computer Storage 

Table 6.1 gives the numbers of points, boundary points, and triangles 

for the sets of surface-specific points used in this study. These a l l conform to 

the theoretical relationship given in equation 5 .16 . 

Tests were made of the lengths of time needed to obtain the data from the 

topographic maps. For data to be punched on computer cards, the times cited 

are those required to first record the data values on a tape recorder and to then 

play back the tapes, wri t ing the values on computer coding forms. The average 

time required to determine the elevation of a point was found to be 8.3 seconds 

— this should be the same for both surface-specific points and grid points. 

Drawing the triangular data-sets and numbering the points and triangles required 

8.3 seconds per point , whi le an average of 8.0 seconds was needed to 

determine the vertices of each tr iangle. Measuring the x and y co-ordinates 

used an average of 12.6 seconds per point , but if should be possible to 

improve this considerably by using a d ig i t izer . 

Table 6.1 indicates that the average triangular data-set analyzed 

herein contained 114 points and 197 triangles. Digi t izat ion of such a data-set 

would theoretical ly require 946 seconds to draw the tr iangles, 1576 seconds 

to determine the vertices of these triangles, and 2382 seconds to d ig i t ize the 

points, a total of 4904 seconds, or 43 .0 seconds per point. For grids, only the 

elevations must be determined, and the 15 by 15 grids (225 points) should 

require an average of 1867 seconds. This means that the triangular data-sets 

required about 2 . 6 times as long to prepare as did the grids. The use of a 

digi t izer in determining locational co-ordinates of surface-specific points should 

reduce this ratio somewhat. 

Equation 5.18 implies that the average triangular data-set stored in the 

"tr iangle mode", would require 1389 half-words of computer storage al locat ion; 
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TABLE 6 . 1 : NUMBERS OF POINTS BOUNDARY POINTS ( N B ) 

A N D TRIANGLES ( N c ) FOR DATA-SETS ANALYZED 

sample N V N B N C 

8 90 25 153 

11a 81 24 136 

18a 119 29 207 

24 142 32 250 

31 114 28 198 

41 138 34 240 

means 114 29 197 

l i d 85 25 143 

l i b , c 29 15 41 

18b, c 25 16 32 
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the grids would require but 450 half-words. The surface-specific point data-

sets thus require about 3.1 times as much computer storage space as the grids. 

6 . 2 : Local Relief (H) 

Table 6.2 presents the estimates of local rel ief obtained from a visual 

inspection of the contours ("standard method"), from the 7 by 7 grids (d = 1000 m) 

used in Chapter 4 , and from the computer analyses of the 15 by 15 grids and the 

triangular data-sets. The results confirm those derived theoretical ly in 

section 5.1 — the triangular data-sets produce results very similar to the visual 

inspection method, whi le grid errors may be rather large. Theoret ical ly, 

rel ief error should be a linear function of the grid spacing (d). For the six 

samples given here, the ratio of grid errors was somewhat less than one third 

when i t should in theory be one hal f . The difference may be fortuitous due to 

the random factor of distance from the extrema to the nearest grid points which 

influences the grid error, and to the small sample size. 

The t-tests indicated that none of the average errors were signif icantly 

different from zero, given the small sample size. Paired t-tests were used to 

determine whether the errors of the three estimates were signif icantly different 

from each other. A l l three pairs were signif icantly different at the 95 per 

cent leve l , meaning that whi le the grid estimates were not "signif icantly b a d " , 

the triangular data-sets produced errors signif icantly less than those of the 

grids. 

6 .3 : Mean Slope (tan c< ) 

The results of slope estimation using four methods are given in Table 6 . 3 . 

Here, the value obtained using the line intersection method of Wentworth (1933) 

is the "standard" to which the computer estimates are compared (see section 5 .2 ) . 

Once again, the t-tests indicated that none of the mean errors differed signif icant ly 

from zero. Paired t-tests showed that the tr iangle and grid estimates were 
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TABLE 6 .2 : ESTIMATES OF LOCAL RELIEF (H), A N D ANALYSIS OF 

ERRORS I N THESE ESTIMATES 

standard 7 x 7 15x 15 triangular 
sample method grid grid data-set 

8 1880 1655 1853 1865 

11 1709 1590 1606 1709 

18 883 619 823 787 

24 203 184 187 203 

31 1195 1057 1192 1195 

41 869 752 823 869 

error (e): 

8 - 225 27 15 

11 - 119 103 0 

18 - 264 60 5 

24 - 19 16 0 

31 - 138 3 0 

41 - 117 46 0 

e 147 42.5 3.3 

s e 
87 36.0 6.1 

t 0.689 0.482 0.224 

p ( e = 0) 52% 66% 82% 
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TABLE 6 . 3 : ESTIMATES OF MEAN SLOPE ( t a n t * ) , A N D ANALYSIS OF 

ERRORS IN THESE ESTIMATES 

sample 
Wentworth 

method 
15 

NW-SE 
x 15 grid 

NE-SW 
triangular 
data-set 

8 0.609 0.523 0.518 0.585 

11 0.395 0.344 0.358 0.355 

18 0.396 0.331 0.335 0.393 

24 0.063 0.041 0.039 0.048 

31 0.218 0.187 0.185 0.203 

41 0.400 0.324 0.336 0.381 

error (e): 

8 - 0.086 0.091 0.024 

11 - 0.051 0.037 0.040 

18 - 0.065 0.061 0.003 

24 - 0.022 0.024 0.015 

31 - 0.041 0.033 0.015 

41 - 0.076 0.064 0.019 

e 0.055 0.051 0.019 

s 
e 

0.025 0.025 0.012 

t 0.896 0.843 0.639 

P (e = = 0) 42% 44% 56% 
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signif icantly di f ferent. As expected, the two slope estimates obtained from 

the same grid using different diagonals were not signif icantly different at the 

95 per cent level . 

6 .4 : Roughness Factor (IR) 

As noted earlier in section 5 . 3 , there exists no useful "standard" value 

of the roughness factor to which computer estimates can be compared. 

Table 6 .4 presents the results of unit vector analysis of grids (the method used 

by Hobson, 1967, 1972, and by Turner and Mi les , 1967), of weighted vector 

analysis of grids, and of weighted vector analysis of triangular data-sets. The 

similarity of columns 1 and 2 (also of 3 and 4) in the Table supports Turner and 

Mi les ' contention that the orientations of the diagonals used to form the 

triangles has l i t t le effect on the results. In the absence of a standard value, 

the claim made above in Chapters 3 and 5, that the weighted analysis of 

triangular data-sets should y ield the best results, cannot be substantiated 

empir ical ly. The f ive sets of values given in Table 6 .4 were not signif icantly 

different from each other. 

6 .5 : Hypsometric Integral (HI) 

Table 6.5 presents the results of hypsometric analysis of the six study 

areas using six different methods. The standard values were obtained through 

the use of a polar planimeter, whi le the second and third columns report results 

obtai ned from grids in Chapter 4 . HI, based on the best available estimates 

of the minimum and maximum elevations, follows the approach recommended 

by Pike and Wilson (1971); HI* , as wel l as the results for the 15 by 15 grids, 

used the grid estimates of these quantit ies. Pike and Wilson claimed (p. 1081) 

that 40 to 50 points w i l l generally produce results wi th in 0.01 of the true 

values. This claim is supported by the fact that the mean error produced by 

their method is 0 .006, and in none of the six cases did the error reach 0 . 0 1 . 
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TABLE 6 .4 : ESTIMATES OF ROUGHNESS FACTOR (R) 

sample 

15 x 
unit vectors 

NW-SE NE-SW 

15 grid 
weighted vectors 

NW-SE NE-SW 
triangular 

data-set 

8 11.36 11.23 11.90 11.85 13.80 

11 6.76 6.93 7.23 7.29 8.12 

18 5.75 5.79 5.96 5.97 7.37 

24 0.13 0.13 0.14 0.13 0.24 

31 2 .27 2.26 2 .44 2.43 2.92 

41 5.80 5.82 6.10 6.11 7.61 

means 5.35 5.36 5.63 5.63 6.68 
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TABLE 6 .5 : ESTIMATES OF HYPSOMETRIC INTEGRAL (HI), A N D 

ANALYSIS OF ERRORS IN THESE ESTIMATES 

sampl 
standard 

e method 
7 x 

H 
7 grid 

HI* 
15x 

NW-SE 
15 g r id* 

NE-SW 
triangular 
data-set 

8 0.432 0.428 0.479 0.436 0.436 0.447 

11 0.260 0.265 0.284 0.279 0.281 0.263 

18 0.547 0.546 0.429 0.566 0.567 0.542 

24 0.278 0.271 0.258 0.289 0.297 0.268 

31 0.338 0.334 0.278 0.334 0.334 0.337 

41 0.395 0.403 0.371 0.420 0.420 0.404 

error (e): 

8 - 0.004 0.047 0.004 0.004 0.015 

11 - 0.005 0.024 0.019 0.021 0.003 

18 - 0.001 0.118 0.019 0.020 0.005 

24 - 0,007 0.020 0.011 0.019 0.010 

31 - 0.004 0.060 0.004 0.004 0.001 

41 - 0.008 0.024 0.025 0.025 0.009 

e 0.006 0.049 0.014 0.015 0.007 

s 
e 

0.002 0.038 0.010 0.010 0.005 

t 0.795 0.529 0.559 0.622 0.557 

P (e = 0) 46% 62% 60% 56% 60% 

* these estimates are based on grid values only 
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The best of the computer estimates, those based upon the triangular data-sets, 

had a sl ightly larger average error, wi th the grid estimates considerably 

poorer. 

As in the cases of local rel ief and slope, the t-tests indicated that 

none of the mean errors differed signif icantly from zero. Unlike those 

parameters, however, only one of the 10 paired t-tests indicated a marginally 

significant difference in average errors — that was between Pike and Wilson's 

method and the estimate obtained from the 15 by 15 grids using the northeast-

southwest diagonals. 

6 .6 : Comparison of Errors for Triangular Data-sets and Grids 

In Tables 6 . 2 , 6 . 3 , and 6 . 5 , the errors in estimating local re l ie f , 

mean slope, and hypsometric integral using both regular grids and triangular 

data-sets were g iven. Table 6.6 repeats these error values and gives the ratios 

between the estimate errors for the two methods. According to the "Sampling 

Theorem" introduced in section 2 . 2 , error should be proportional to the grid 

spacing and the relationship should be l inear. This was confirmed theoretical ly 

for two of the above three parameters in Chapter 5 . If this is applied to the 

grid errors noted above, one finds that in order to reduce the grid error in the 

estimation of local rel ief to the level of precision achieved by triangular 

data-sets, one would need to reduce the grid spacing from 500 m to 39 m. 

This and the values for the other two parameters are listed in Table 6 . 6 , as 

are other characteristics of these hypothetical grids. F inal ly , the values 

developed above in section 6.1 are used to estimate the relative digi t izat ion 

times and computer storage al location requirements of these grids compared 

with those of triangular data-sets. For a l l three parameters, i t appears that 

a given level of precision can be attained with less digi t izat ion time and 

computer storage space using surface-specific points than using regular grids. The 

contrast is much more dramatic for local rel ief than it is for the other two parameters. 
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TABLE 6 .6 : EMPIRICAL COMPARISON OF ERRORS FOR TRIANGULAR 

DATA-SETS A N D 15 BY 15 GRIDS 

H tan <x HI 

Mean errors: 

1 5 x 1 5 grids 

triangular data-sets 

ratio 

Characteristics of grids theoretical ly 
required* to produce same precision as 
triangles: 

d (metres) 

grid size 

^ of grid points 

Ratios of requirements of such grids to 
those of triangular data-sets: 

d ig i t izat ion time 

storage space 

42.5 0.053 0.015 

3.3 0.019 0.007 

12.9 2 .8 2.1 

39 179 234 

181 x 181 40 x 40 31 x 31 

32,761 1,600 961 

55 .4 2 .7 1.6 

47.2 2 .3 1.4 

* assuming a linear relationship between grid error and grid spacing 
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6 .7 : Reproduceability and the Influence of Scale 

As noted above, samples 11 and 18 were selected to investigate the 

influence of scale. For each area, an additional data-set was derived from 

a 1:250,000 scale map of the same area (samples l i b , 18b); next, approximately 

the same points were located on 1:50,000 scale maps (11c, 18c). Sample 11 

was also used to examine the reproduceability of triangular data-sets by 

producing another such data-set of that area (sample 1 Id) wi th approximately 

the same number of points as sample 1 l a . The number of points and triangles 

in a l l of these data-sets were given in Table 6 . 1 . In separate analyses of 

samples 11 (Table 6.7) and 18 (Table 6 . 8 ) , values of the four selected parameters 

were standardized, and the distances between sub-samples in the resulting four-

variable "phase space" were calculated. For sample 11 , the most similar pair 

was a and d , the two with similar numbers of points and triangles derived from 

the same map. Next were the distances between these and sub-sample c , 

derived from the same scale of map but using many less points and triangles. 

The most "di f ferent" data-set was 1 l b , derived from a smaller-scale map wi th 

a larger contour in terval . It seems that for this area, map scale differences 

are more important than the number of triangles used. For area 18 (Table 6 . 8 ) , 

the opposite conclusion was reached. In this case, the most similar pair was 

b and c, the two sub-samples wi th similar and lesser numbers of points derived 

from maps of different scales. The greatest difference was between a and b, 

which were from different maps and which also used different numbers of points 

and triangles. It would appear that for area 18, the number of triangles, or 

perhaps more correctly the mean size of the triangles, is more important than 

the differences between the 1:50,000 and 1:250,000 scale maps. Because the 

triangles in 18b and 18c were too large, the topography was smoothed and 

slopes reduced (see R and tan o< values in Table 6 .8 ) . 
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TABLE 6 . 7 : SIMILARITY A M O N G FOUR TRIANGULAR DATA-SETS BASED 

O N SAMPLE 11 FOR THE FOUR SELECTED MEASURES 

numbers of 
H HI tan o< R points triangles 

Or ig inal values: 

a 1709 0.263 0.355 8.12 81 136 

b 1661 0.285 0.378 8.07 29 41 

c 1709 0.265 0.367 7.59 29 41 

d 1709 0.262 0.371 8.31 85 143 

mean 1697 0.269 0.368 8.02 

s 24 0.011 0.008 0.306 

Standardized values: 

a 0.500 -0 .550 -1 .684 0.326 

b -1 .500 1.467 1.295 0.163 

c 0.500 -0 .367 -0 .130 -1 .404 

d 0.500 -0.642 0.389 0.947 

Inter-pair differences: distance* rank 

a-b 2.000 2.017 2.979 0.163 4.119 (6) 

a-c 0.000 0.183 1.554 1.730 2.333 (2) 

a-d 0.000 0.092 2.073 0.621 2.166 (1) 

b-c 2.000 1.834 1.425 1.567 3.442 (5) 

b-d 2.000 2.109 0.906 0.784 3.144 (4) 

c-d 0.000 0.265 0.519 2.351 2.422 (3) 

* this is the distance between the samples in the four-dimensional space whose 

axes are the four variables 

Sub-samples: a , d — 1:50,000 scale, small triangles; 

b — 1:250,000 scale, large triangles; 

c — 1:50,000 scale, large triangles. 
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TABLE 6 .8 : SIMILARITY A M O N G THREE TRIANGULAR DATA-SETS BASED 

O N SAMPLE 18 FOR THE FOUR SELECTED MEASURES 

numbers of 
H HI tan °< R points triangles 

Original values: 

a 878 0.542 0.397 7.39 119 207 

b 838 0.517 0.257 3.45 25 32 

c 823 0.544 0.295 4.53 25 32 

mean 846 0.534 0.316 5.12 

s 28 0.015 0.072 2.037 

Standardized values: 

a -1 .126 -0.532 -1 .119 -1 .114 

b 0.281 1.130 0.290 0.820 

c 0.809 -0 .665 0.815 0.295 

Inter-pair differences: distance rank 

a-b 1.407 1.662 1.309 1.934 3.193 (3) 

a-c 1.935 0.133 1.934 1.409 3.080 (2) 

b-c 0.528 1.795 0.525 0.525 2.013 (1) 

Sub-samples: a — 1:50,000 scale , small triangles; 

b — 1:250,000 seal e , large triangles; 

c — 1:50,000 scale , large triangles. 
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Because only two areas were investigated, no strong conclusions can 

be made regarding the results and the difference between the areas. The 

writer proposes the fol lowing as a possible explanation for the results obtained. 

First of a l l , the reduction in the number of triangles was more drastic for 

sample 18 than for sample 11 — sub-samples l i b and 11c had about one third 

the number of triangles as did 11a, whi le 18b and 18c had only about one 

sixth the number in 18a. Secondly, the topography of area 18 was more 

complex than area 11 . This can be seen by a visual inspection of the maps in 

Appendix I I I , and is reflected in the fact that 52 per cent more triangles were 

used to characterize sample 18's topography in the basic triangular data-sets 

(see Table 6 .1 ) . It is proposed that for area 1 1 , the topographic texture was 

suff iciently large that the larger triangles in sub-sample 11c were able to 

retain most of the "terrain information" present in sub-samples 1 la and 1 I d . 

Differences between the map scales due to contour generalization and the 

larger contour interval thus predominate, making sub-sample l i b the one most 

distant from the others in its terrain parameters. For area 18, the finer 

topographic texture and larger triangles combined to make the influences of 

map scale relat ively less important than that of the reduced number of triangles. 

These proposals should be tested by further investigations which are beyond the 

scope of the present study. 

6 .8 : Summary 

Empirical tests were used to estimate the digi t izat ion times required for 

triangular data-sets and for regular grids. It was estimated that 43 .0 seconds 

per point are required for the former and 8.3 seconds per point for the latter. 

The average triangular data-set would require about 2 . 6 times as long to 

prepare as the 15 by 15 grids used for comparisons. Theoretical considerations 

indicate that the former data-sets would need some 3.1 times as much computer 

storage space as would the grids. 
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Errors in the estimates of local re l ie f , mean slope, and hypsometric 

integral were discussed, and various estimates of the roughness factor were 

g iven. In every case, the triangular data-sets based on surface-specific 

points gave better results than the 15 by 15 grids. Triangular data-set errors 

for local rel ief and mean slope were signif icantly less than those of the grids, 

as determined using the t-stat ist ic. For the hypsometric integral , the grids 

produced a higher average error but the difference was not significant at 

the 95 per cent level . 

The hypothetical linear relationship between grid error and grid spacing 

was used to estimate the grid spacing required to equal the precision of the 

triangular data-set estimates of the three parameters. The digi t izat ion times 

and computer storage requirements of these theoretical grids were determined, 

and for a l l three parameters the triangular data-sets required less time and 

space than did the grids. 

An investigation of the reproduceability of triangular data-sets and 

the influences of map scale and triangle size was conducted. The reproduceability 

was good; the relative importance of map scale and triangle size appears to be 

related to the complexity of the terrain. If the triangles are too large, the 

topography is smoothed and the effect of map scale becomes less important. 

Further work w i l l be required to test and quantify this proposed relationship. 
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Chapter 7: Summary and Conclusions 

General geomorphometry is ro be preferred over a specific approach 

because i t does not depend upon any single geomorphic process nor on the 

ident i f icat ion of specific types of landforms. It is therefore more applicable 

to arbitrari ly-bounded terrain samples stored in an electronic computer. 

After a brief discussion of map precision and notat ion, approaches to 

computer terrain storage were discussed. This subject was reviewed in terms of 

digi t izat ion (data gathering) methods, actual computer storage and retrieval 

techniques, and assumptions about the behavior of the land surface between 

data points. In surface-specific sampling, points are selected which have 

particular significance in the topographic form — these include peaks, pits, 

and passes, and points along ridges and val leys. In the surface-random approach, 

the points are selected according to cr i ter ia independent of the surface; usually 

either the locations of the points are determined by some type of g r i d , or the 

elevations of the points to be recorded are defined (contour sampling). 

Completely random sampling does not appear to produce as good a representation 

of a surface as does the stratif ied random approach represented by a g r id . 

General ly , grids require much less computer storage a l locat ion, since only one 

co-ordinate (the elevation) must be stored for each point. Digit ized contour 

points require two co-ordinates, whi le for surface-specific points a l l three must 

be specif ied. In addi t ion, the neighbours of a grid point are impl ic i t in its 

position wi th in the computer array, whi le these must be exp l ic i t l y indicated for 

surface-specific points, requiring st i l l more computer space. An arbitrary 

assumption about the behavior of the land surface between points is usually 

made; in the absence of evidence to the contrary, the linear assumption is 

generally the most reasonable. In the present study, the surface-specific point 

and regular grid approaches to computer terrain storage were compared wi th reference 

to the problem of estimating some selected geomorphometric parameters. 
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A large number of landform measures were reviewed, and were found fo 

belong to a number of basic groups. These were texture and gra in , re l ief , slope, 

dispersion of slope magnitude and or ientat ion, and hypsometry. If was decided 

to select one parameter from each of these classes, but none of the grain and 

texture measures were readily adaptable to the computer methods used. Texture 

and grain were impl ic i t in the sample area size and the density of sample points. 

The four parameters examined exp l ic i t ly were local rel ief (H), mean slope (tan<x), 

roughness factor (R) , and hypsometric integral (HI). 

In order to select some areas for detailed analysis and to provide data for 

assessing the theoretical errors in the estimates of some parameters, for ty- two 

7 by 7 km squares were selected from 1:50,000 scale maps of southern British 

Columbia using a stratif ied random sampling design. For each of these areas, local 

re l ie f , hypsometric integral , mean slope, drainage density, stream source density, 

and peak density were estimated using manual methods. Relationships among these 

variables and their estimates were examined during correlation analysis. Relief, 

hypsometric integral , and peak density were used to divide the for ty- two samples 

into f i f teen "terrain types". A stratif ied random sample of six areas was derived 

from these to provide a basis for the comparison of the computer methods, and the 

geomorphology of each of the six areas was brief ly described. 

Theoretical errors involved in estimating the four selected parameters 

both from the triangular networks based upon surface-specific points and from 

regular grids were discussed, as were the actual analysis procedures employed. 

For local rel ief and the hypsometric integral at least, the precision of the grid 

estimates should be l inearly related to the grid spacing; this probably holds true for 

the other measures also. The possibility of estimating other parameters, the re la t ion­

ships among the selected variables and between the numbers of points and triangles, 

and the theoretical computer storage requirements of the methods were also reviewed. 
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Final ly , the results of the analysis of the topography of the six samples 

using the two approaches were reported. Sample 11 was used to investigate the 

reproduceability of the surface-specific sampling,and this and sample 18 used to 

study the effects of the numbers of points and the scale of the maps used. It was 

found that the relative importance of map scale and triangle size appears to 

depend upon the topographic texture. For coarse texture, map scale is more 

important, whi le for finer texture, the size of triangles used becomes dominant. 

This hypothesis should be tested by further research. 

The triangular data-sets were found to produce better estimates of the 

parameters than the regular grids, even though the latter averaged more than 

twice as many points. The average surface-specific point data-set required 

some 2.6 times as much dig i t izat ion time and 3. 1 times as much computer storage 

space as did the 15 by 15 grids. The theoretical linear relationship between 

grid error and grid spacing was used to estimate the grid density required to 

equal the precision of the triangular data-sets. These hypothetical grids would 

require much more time and storage space than would the data-sets based on 

surface-specific points (see Table 6 .6 ) . 

In conclusion, i t appears that superior estimates of geomorphometric 

parameters can be obtained from triangular data-sets based on surface-specific 

points. Grids which would produce a comparable level of precision would 

theoretical ly require more digi t izat ion time and computer storage space. For 

a reasonably experienced terrain analyst, the triangular data-sets appeared to 

show good reproduceabil i ty; further investigation w i l l be required to determine 

whether comparable results can be obtained using workers wi th less training 

and background. Such workers should be able to produce good results using 

grid sampling, since this approach lacks the subjective element involved in the 

selection of the surface-specific points. 
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Appendix I: Notat ion 

In this appendix, a l l variables and symbols used in the text are l isted, 

together wi th their meanings or definit ions. Exceptions are standard 

abbreviations (such as " M " for metres) which are not l isted. For each entry, 

the text section where the sumbol first appeared is indicated in parentheses. 

a(h) the relative hypsometric function (3.6.1) 

b average distance between adjacent ridges and valleys (3 .4 .3) 

c a distance measure (2.5) 

D a density value (1.2) 

D d 
drainage density (3 .2.2) 

D 
P 

peak density (3 .2.4) 

D 
s 

stream source density (3.2.3) 

d grid spacing (2.2) 

E elevat ion-rel ief ratio (3 .6.2) 

e H 
error in the grid estimate of local rel ief (5 .1.2) 

e HI 
relat ive error in the grid estimate of the hypsometric integral (5 .4 .2) 

e 
max 

error in the grid estimate of the maximum elevation (5.1.2) 

e . 
mm 

error in the grid estimate of the minimum elevation (5.1 .2) 

f factor by which one wishes to improve grid accuracy (2.2) 

G grain of topography (3.2.1) 

H local rel ief (3 .3 .1) 

H* grid estimate of local rel ief (4 .3.3) 

H 
a 

available rel ief (3 .3.2) 

H d 
drainage rel ief (3 .3.3) 

HI the hypsometric integral (3 .6 .2) 

H * grid estimate of the hypsometric integral (4 .3 .5) 

h relative height (3 .6.1) 

h mean relative height (3 .6 .2) 
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I the contour interval (3 .4 .1) 

k the vector dispersion factor (3.5) 

L total length of traverse lines used in line sampling estimates of slope 

(3 .4 .1 ) or drainage density (4 .3 .1) 

L(%) vector strength in per cent (3.5) 

N number of objects or occurrences (1 .2) 

N^. number of cells or triangles in network (5.6) 

N - number of edges in network (5.6) 

N y number of vertices or points in network (5.6) 

P length of drainage basin perimeter (3 .2 .2) 

p mean annual precipitation (4 .3 .6) 

R length of vector sum (3.5) 

IR roughness factor (3.5) 

r correlation coefficient (1.2) 

S size or wavelength of smallest features one wishes to detect (2.2) 

s a root-mean-square value (1.2) 

Sj root-mean-square distance (5 .1 .2) 

s g root-mean-square error (1.1) 

T texture ratio (3 .2 .2 ) 

t year of map publication (4 .3 .6) 

V volume of landmass (3 .2 .4) 

v variability factor (3.5) 

W highest frequency present in a function (2.2) 

x, y geographic location co-ordinates (1 .2) 

z altitude above sea level (1 .2) 

z mean elevation (3 .6 .2) 

z maximum elevation (3 .6 .1) 
max 
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z* grid estimate of z (5 .4 .2) 
max max 

z . minimum elevation (3.6.1) 
mm ' 

z* . grid estimate of z . (5 .4 .2) 
mm mm 

oc mean ground slope (3 .4 .1) 

p exponent in the general interpolation formula (2.5) 

t slope near the maximum or minimum point (5.1 .2) 

% land slope at a point (1.1) 

9 angle of intersection between a traverse line and a contour or stream 

(3 .4 .1) 

K precision parameter for Fisher's spherical probabil i ty distribution (3.5) 
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Appendix I I : Topographic and Related Variables for 42 Areas in Southern 

British Columbia 

In the fol lowing Table, the values for twelve terrain and related 

variables from the for ty- two 7 by 7 km topographic samples examined in 

Chapter 4 are g iven. The parameters were listed in Table 4 . 3 , and are also 

included in Appendix I. The six areas analyzed in detail in Chapter 6 are 

indicated by the symbol whi le the highest and lowest value for each 

parameter are marked wi th the symbols "+ " and " - " , respectively. The mean 

and standard deviation for each var iable, and the units of measurement, are 

indicated at the bottom of the Table. 

A l l of the values reported in this Table are based on the exclusion of water 

surfaces from the calculations. If these were included, mean slope would be 

reduced for those areas including lakes or the ocean, and the values of some of 

the other parameters would also be inf luenced. 

i 



- 1 2 5 -

Area 
D d 

N / L D 
s 

D 
P 

H H * tan « H H* £ P t 

1 0 . 3 8 8 0 . 2 9 6 0 . 1 0 2 0 . 1 6 3 1247 8 8 4 0 . 1 6 7 0 . 6 0 2 0 . 5 4 0 1650 4 0 6 4 
2 0 . 6 6 1 0 . 4 1 8 0 . 3 8 8 0 . 4 0 8 9 6 3 6 4 3 0 . 4 0 5 0 . 5 6 8 0 . 5 5 2 1818 4 0 6 1 
3 0 . 2 9 2 0 . 1 8 4 0 . 0 4 1 0 . 6 9 4 329 2 3 5 0 . 0 9 1 0 . 3 4 3 0 . 4 8 1 9 5 1 15 3 1 -

4 0 . 6 3 9 0 . 3 6 8 0 . 0 5 5 0 . 4 1 7 1268 1113 0 . 4 6 2 0 . 2 4 0 - 0 . 2 5 9 1965 4 5 6 2 
5 0 . 8 4 0 0 . 5 6 2 0 . 2 2 4 0 . 6 5 3 835 7 2 8 0 . 1 6 9 0 . 2 9 9 0 . 3 4 3 1046 16 6 2 

6 0 . 4 8 2 0 . 2 8 6 0 . 0 0 0 - 0 . 1 8 4 9 3 9 8 2 0 0 . 2 4 1 0 . 3 6 4 0 . 3 3 9 1 1 1 3 2 0 5 8 
7 0 . 7 7 6 0 . 4 5 9 0 . 2 2 4 0 . 1 2 2 1694 1636 0 . 4 4 5 0 . 3 5 2 0 . 3 6 1 1 1 4 3 5 5 6 0 
8 # 0 . 5 5 5 0 . 3 4 7 0 . 1 0 2 0 . 1 0 2 1880 1655 0 . 6 0 9 0 . 4 2 8 0 . 4 7 9 1683 8 0 6 1 
9 0 . 5 8 6 0 . 3 8 8 0 . 1 6 3 0 . 3 2 6 1387 1159 0 . 5 2 7 0 . 4 0 5 0 . 4 5 1 2 0 7 7 + 30 5 9 
10 0 . 5 0 8 0 . 3 0 6 0 . 1 6 7 0 . 3 3 3 1740 1423 0 . 5 0 4 0 . 3 7 7 0 . 4 5 8 1 9 6 7 7 0 6 6 

n' 0 . 5 4 9 0 . 3 4 7 0 . 1 2 2 0 . 1 4 3 1709 1590 0 . 3 9 5 0 . 2 6 5 0 . 2 8 4 1148 30 6 5 
12 0 . 4 7 6 0 . 3 1 7 0 . 1 0 2 0 . 4 0 8 1405 1207 0 . 4 6 0 0 . 5 1 2 0 . 4 3 4 1786 4 0 6 0 
13 0 . 7 1 4 0 . 5 1 0 0 . 2 5 0 0 . 3 3 3 3 7 5 2 8 7 0 . 1 1 0 0 . 2 4 2 0 . 2 3 3 9 1 - 4 0 51 
14 1 . 2 3 1 0 . 8 3 7 1 . 0 8 9 0 . 1 2 2 1012 9 3 8 0 . 3 8 1 0 . 4 9 4 0 . 5 2 6 6 6 1 100 3 8 
15 0 . 9 3 7 0 . 5 8 1 0 . 5 8 3 0 . 2 5 0 1326 1201 0 . 5 9 4 0 . 4 1 7 0 . 4 4 5 5 5 4 140 3 9 

16 1 . 5 1 0 1 . 0 2 0 1 . 5 1 0 + 0 . 3 0 6 1015 9 9 1 0 . 4 0 3 0 . 5 3 9 0 . 5 3 3 5 4 6 130 4 7 
17 0 . 4 9 2 0 . 3 3 7 0 . 2 6 5 0 . 7 9 6 1408 1143 0 . 6 9 4 + 0 . 5 2 9 0 . 5 6 2 1169 120 6 2 

18' 1 . 8 4 7 1 . 1 6 3 1 . 4 2 9 0 . 2 8 6 8 8 3 6 1 9 0 . 3 9 5 0 . 5 4 6 0 . 4 2 9 1 5 3 4 5 0 5 7 
19 0 . 6 7 6 0 . 3 7 8 0 . 1 6 3 0 . 1 6 3 1905 1 8 1 4 0 . 4 9 6 0 . 5 1 3 0 . 5 1 3 1129 18 5 8 
2 0 0 . 6 8 4 0 . 4 5 9 0 . 0 6 1 0 . 4 0 8 1945 1610 0 . 6 0 1 0 . 3 1 4 0 . 3 8 0 7 5 4 130 6 5 

2 1 0 . 5 6 3 0 . 3 5 7 0 . 2 5 0 0 . 5 6 8 6 8 6 5 6 7 0 . 2 9 9 0 . 2 5 1 0 . 2 7 2 172 7 0 4 9 
2 2 1 . 3 2 2 0 , -837 - O r 821 0 . 3 5 9 1175 - 1 1 2 8 - 0 . 3 7 6 0 . 2 8 6 0 . 2 9 7 4 2 6 120 3 4 
2 3 0 . 7 2 0 0 . 3 9 8 0 . 2 9 1 0 . 5 2 1 9 2 0 8 3 2 0 . 3 4 2 0 . 3 7 1 0 . 3 6 5 3 4 1 9 0 6 0 
2 4 # 0 . 6 3 1 0 . 4 5 9 0 . 1 9 1 0 . 3 8 3 2 0 3 - 1 7 4 - 0 . 0 6 4 0 . 2 8 1 0 . 2 7 0 9 6 7 16 5 8 
2 5 0 . 0 4 3 - 0 . 0 3 1 - 0 . 0 0 0 - 0 . 0 4 1 - 3 6 6 2 6 2 0 . 0 4 2 0 . 3 0 9 0 . 2 3 3 1021 14 6 5 

2 6 0 . 4 0 8 0 . 2 3 5 0 . 0 2 0 0 . 3 0 6 7 7 3 5 8 5 0 . 2 6 2 0 . 3 4 3 0 . 4 5 0 6 3 5 2 0 6 1 
2 7 0 . 4 7 8 0 . 2 8 6 0 . 1 6 3 0 . 1 8 4 2 8 7 2 1 4 0 . 0 5 6 0 . 4 9 4 0 . 6 0 7 + 9 6 8 16 6 5 
2 8 0 . 7 2 4 0 . 4 3 9 0 . 1 8 4 0 . 3 6 7 2 7 4 183 0 . 0 4 2 - 0 . 5 4 0 0 . 4 9 2 8 3 1 1 2 - 5 5 
2 9 0 . 6 3 7 0 . 3 6 8 0 . 1 0 2 0 . 5 3 1 2 9 6 2 6 9 0 . 0 6 0 0 . 2 4 3 0 . 2 2 7 - 1201 15 6 0 
3 0 0 . 8 1 9 0 . 4 8 0 0 . 6 5 3 0 . 2 2 4 2 1 2 2 1972+ 0 . 6 0 7 0 . 5 6 2 0 . 6 0 1 1 2 2 0 6 0 6 1 

31' 0 . 2 9 0 0 . 2 5 5 0 . 1 0 6 0 . 5 5 3 1195 1 0 5 4 0 . 2 2 5 0 . 3 4 8 0 . 3 9 2 1480 2 3 6 8 + 
3 2 0 . 6 5 7 0 . 4 5 9 0 . 1 0 4 0 . 5 2 1 3 3 8 3 2 9 0 . 1 0 1 0 . 5 6 2 0 . 5 5 9 1141 15 6 7 
33 0 . 3 2 6 0 . 1 9 4 0 . 0 4 1 0 . 2 0 4 2 7 2 192 0 . 0 4 3 0 . 2 7 2 0 . 3 0 2 7 9 9 17 6 0 
3 4 0 . 7 3 5 0 . 5 0 0 0 . 4 9 0 0 . 4 2 9 8 5 4 7 0 7 0 . 2 5 7 0 . 4 0 9 0 . 4 8 5 1 1 8 7 4 7 6 0 
3 5 2 . 0 5 1 + 1 . 3 1 6 + 1 . 4 0 8 0 . 3 0 6 6 1 3 471 0 . 2 5 6 0 . 2 6 8 0 . 3 4 4 176 105 36 

3 6 0 . 6 5 7 0 . 4 1 8 0 . 1 2 5 0 . 2 7 1 7 3 8 6 4 3 0 . 1 5 7 0 . 2 5 2 0 . 2 8 0 186 9 0 6 1 
3 7 1 . 4 2 0 1 . 0 2 3 0 . 2 5 6 0 . 9 7 7 + 7 1 6 5 5 0 0 . 3 9 3 0 . 3 3 4 0 . 3 8 2 2 3 9 125 6 1 
3 8 0 . 5 3 1 0 . 3 5 7 0 . 2 6 7 0 . 5 1 1 6 5 5 5 5 9 0 . 3 7 3 0 . 3 2 2 0 . 3 7 4 2 1 1 7 0 6 4 
3 9 0 . 4 9 6 0 . 3 0 6 0 . 1 6 7 0 . 4 7 9 1012 8 6 0 0 . 5 8 2 0 . 3 8 6 0 . 4 3 0 4 0 0 7 0 6 4 
4 0 0 . 6 6 1 0 . 3 9 8 0 . 2 8 6 0 . 2 8 6 4 9 5 4 6 4 0 . 2 0 0 0 . 3 4 7 0 . 3 4 9 182 7 0 6 4 

41' 0 . 8 8 2 0 . 5 3 1 0 . 6 7 3 - 0 . 4 9 0 869 7 5 2 0 . 4 0 0 0 . 4 0 3 0 . 3 7 1 3 8 0 100 61 
4 2 0 . 5 6 9 0 . 3 1 6 0 . 4 6 7 0 . 4 2 2 9 6 8 741 0 . 5 1 9 0 . 4 3 4 0 . 4 5 6 4 2 0 160+ 6 1 

mean 0 . 7 2 5 0 . 4 6 5 0 . 3 6 0 0 . 3 7 0 9 7 8 8 3 8 0 . 3 2 9 0 . 3 9 0 0 . 4 0 8 9 3 7 6 0 5 8 

s 0 . 4 0 1 . 0 . 2 6 5 0 . 4 1 3 0 . 1 9 5 5 2 6 4 8 8 0 . 1 8 9 0 . 1 0 9 0 . 1 0 7 5 6 6 42 9 

unite km ^ km ' km ^ km m m m inches y 
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Appendix I l i a : Computer Program 

In this appendix, the FORTRAN IV program listing for the computer 

program used in this study (program GEOTRI) is g iven. Requirements for the 

input data are contained in comments at the beginning of the program l ist ing. 
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:ORTRAN IV G COMPILER MAIM 02-06-74 1 0 : 1 9 : 3 2 P A G E 0001 

r j * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

c 
C P R O G R A M : G E O T ° I 

£ p ; [gon<;c; T I npTPP^ I N E S F L E T T E ™ n M p p P H p M P T gT C P A R A " C T F P S " V  

C A N A L Y S I S O c T s I AMCLiL ^ 9 F A C E T S W H I C H A 3 0 R D X I ^ A T E T H E S U R F A C E * 

C P O S S I B L Y BfiS cn O N G R I D 0*.TA 

C W R I T T E N : D A V I D M 0 „ . M Ap-K T . . _ C E^3^ A P H Y , „ U » B . C » . i _1_9.I1  
C 
C. T N P L ' T : E A C H J O B R E Q U I R E S ft J O B C A P O A N D A T I T L E C A R D , F O L L O W E D B Y 
C T H E Di T S T P | T ; e g : n ; T H E ,113,  
C JOB C A R T : C O L 3-5 I T Y 3 F = 0 : P F E - T R I A N G U L A T E O D A T A . 

C = 1 : o p I P P A T A 

C = 9?..9..:._E.ND.0- . p U N ,...(F .DLL nWS_LAST..JOB) 

C 10 N E W 3 = 0 : R E A P NFrf P * T A P O I N T S 
C =1: U S E S A ' - ' E P O I N T S A S P R E V I O U S J O B 

C 15 » . ! = W T ^ Q : J F » n l R " p y f U T F N E W T C I A N G L E S  

C =1: U S E S A M C T P . I A M G L E S A S P R c V I " i ! , ' S J C 8 

C 16-27 X S C A L E : N U " B E P O c U E T P E S I N O N F M N I T I N 

C ' . : . X - ° n E C T I . O S ! , _ R C . P L ' J M N . S P A C I N G . F ^ R 

C O R 10 D A T A . D E F A U L T S T P i _ o I F M C T 

C S P E C I F I E D . ^ r io M A T : F J ? o 5 

r. ? 8 - 3 ° Y S C & L E : A S A B O V E , C H P . Y-D I R c : T T Q\J n g  

C - R O W S P A C I N G , D E F A U L T S T n X S C A L E * 

C 40-51 - S C A L E : M U M P E R O C M E T R E S IN " N E U N I T IN 
C : Z - 0 . H . . E C . T I O N o . 3 E = A ' J L T S . . . T ? . . . I , C 

C 56 . L A K E = 0 : A N A L Y Z E A L L T R I A N G L E S . 
C .. . =1: E X C L U D E L A K E A M D O C E A N T P I A N G L E So 
£ 6T I T R T ^ Q ; O M I T T P , I _ N ~ L E L I S T ,  
,.C =•-" . . L I S T P A R A M E T E R S F Q D E A C H T R I A N G L E . 
C 66 I _ H G = 0: U S E N W - S E D I A G O N A L S T O P R O D U C E 

' C : T P J A N G L E S P P D M G R I D , . 
C =3: U S E N E - S W D I A G O N A L S , 
C 67-71 N'> : N U M B E R O C R O W S I N M A T R I X . 

. r_ 77-^6 N C t N U ' - ' B E P H F C O L U M N S I N M A T ? I X  

C 
C T I T L E C A R T : T I T L E , M A X I M U M O F 76 C H A R A C T E R S . I C N O T I T L E IS 
C Q g S I P E P , A B L . A N < C A R P MUST Be J.MJ_EJ_T.ED_»_ 
C 
C DATA: 

. C P QE - T P I A N G M L A T F ^ D A T A ( I T V O E = 0 ) :  
C - D A T A P O I N T S , I R R E Q U I R E D , E A C H C A * 0 H A V I N G P O I N T 

C N U M B E R A N D X , Y , A N D Z - C O - O R D I M A T E S . i F O R M A T A S W R I T T E N 

C LS.....U., 7.E.6. 0)_ _.__ 
C - L A S T D A T A P O I N T M U S T <*E c O L L C W E D BY A B L A N K r. A<? n 
C — T P I A N G L E S , I C F E D U I ' - E O , E A C H C A R D H A V I N G T P I A N G I . E 

C M t j M q c o t P p r ^ T MijM^rjc p c T H R E E V E R T I C E S , A N D " L " , . 

C W H I C H E Q U A L S \ I F T ^ c T = i A M G t . E I S O N A L A K E O 3 T H E 

C O C E A N , 7.F0 O T H E R W I S E . ( F O P M A T A S W R I T T E N , 515) 
£ - L A S _ T _ T R I A B L E M A 1 S I . B E . _ _ Q L L O W E D B Y _ _ A _ B_L A N < C A F D 

C G R I D D A T A ( I T Y ? E = ? 1: 

C - E A C H =0W O N A S r P A F . A T P C A P O , ( F O R M A T A S 4 ' I T T r . v ; 3 x , 

£ 1 5= c, 01 n • a L M K Z * R N T S ? M C L U P r P , S I N C F M ' ) " p r ? p p 

C R O W S ( N R ) I S S o r C I F I E O O N T H E J O B C A R D . 

C 
£1 A5_ J lQT£0 _AeDVE . . , L A S T . J ? B . I . _ F r L ! OWED. . . "Y_.A__C A.RD..W I . T H _ _ « o o ? " _ _ T . M . . 

C CCLU M NS 3 - 5 T O E N D T H E R U N , 
C 
r. R F ^ T R T C T T O N S : A S WF. T T T O I . . T H F P F A R F T H F F O L L O W I N G R E S T R I CT\ " » y ^ ; 

http://_1_9.I1
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ORTRAN IV G C Q M ° I L E R MAIN 0 2 - 0 6 - 7 4 : 1 0 : 1 9 : 3 2 PAGE 0 0 0 2 

C -MAXIMUM Nl . iM?E c 0 C " " I V T C (\<p) i< CQO; 
C -MAXIMUM N i . l ' ^ E ' 0- T3 IA NGl.r S (NT ) T C iQOO; 
C —M ATP i x MAY NOT NAVE ' O R E THAN ?Q ROWS (NR) 3? ' 5 COLUMNS 

j _ _ ( • ' . ) :  
C - I F D IMENS IONS ' ^ E I N C - E A S E 3 , K F F D IN MI \j D T H A T : 
C - (NR-1 ) * (VC-1 ) CANNOT E X C C F Q MO; 
£ _NT_ SHOULD f*E ? I U E N $ I O N TH 2 * N P » 
C " ~ " 
£********* ************************ *^ ************ ™ 

OOOl. D I M E N S I O N X ( 5 0 0 ) , Y ( ? 0 0 ) , I ( 500 ) , I T ( ? 0 0 0 ) , I V < 1 0 0 0 ) , J V ( 1 CO 0) ,KV (1 0 0 0 ) 
1 , L V ( 1 0 0 0 > , T I T L E ( 1 3 ) , S U « ( 1 2 ) 

0 0 0 2 CT 'MON. .X , Y , Z, I T fiy.j J V . K V . L V , T I T L E ,NP,NT, L A K E , I TR I 
0 0 0 3 RAT-O,01 " ^ 5 3 2 9 3 
0 0 0 4 J T ? S = 0 
0 0 0 5 99 C A L L REAPER  
0 0 0 6 I F ( L AK Eo EQ« 999) GO TO 999 
0 0 0 7 A L A K E = 0 . 
0 0 0 S N L = 0 : . , 
0 0 0 9 Z M AX=-99^90„ 
0 0 1 0 ZMIN=99999. 
0 011 T?MAX=3 :  

0 0 1 2 IZMIM=0 . 
0 0 1 3 DO 3 1 = 1 , 1 2 
001 4 . S 'J M ( I..) = 0 o . . . 
0 0 : 5 3 CONT IN', jc 

0 0 1 6 I PI I TRT , E 0 . 0) r,0 TO 94 
001 7 W R I T E ( 6 • 1 52 ) ( T I T L E ( I ! ) t I T = ) , 1 9 )  
0 0 1 8 152 F O R M A T ! • 1. • r l ° A 4 , / / ) 
0 0 1 9 W R I T E ( 6 , 5 0 0 ) 
0 0 2 0 5 0 0 F Q R" AT ( ' N O , CORNERS L 7.M ' t I PX t ' MAP T.rilS. 

1 A R r A S L O P E ' ,/) 
0 0 2 1 . 9 4 DO f- I = i , NT 
0 0 7 ? I F ( Z ( ! V ( I n . L E o Z V f t X ) GO T_ 6 0 ; • 
0 0 2 3 Z MAX= Z( I V ( I ) ) 
0 0 2 4 I Z M » . X = I V ( I ) 
002 5 5 0 I.EIOJ.V.U. M • LE ...Z MAX ) S O T ] 61 
0 0 2 6 Z M A X = Z ( .)V ( I ) ) 
0 0 2 7 I Z M A X = J V ( I ) 
0 0 2 8 S i T c ( 7 t K V ( ! ) ) _ L E _ ZM-X ) G O T ' > 62  
0 0 2 9 ZMAX = Z ( K V ( I ) ) 
0 0 3 0 IZM/>x=K V( I I 
.0011 62 I F (.7 ( IV (I ) j , GEo Z M I N L ^ 0 . _ . T . : L 3 . 
0 0 3 ? Z MIV •= Z ( IV (I )) 

• 0 0 3 3 " I Z M I N = I V < I ) 
______ f>3 TP (7 1.IV(T))_r , E . 7 'TNH G " T 0 6 4 ; 
0 0 3 5 ZMIV = Z ( J V ( I )) 
0 0 3 6 I Z M T N = J V ( I ) 

. 0 0 3 7 ' 6„ I c (I (KV ( I ) ) . OG .ZM I.M..) ...G.0._I?...3_5. . . : _ . 
003 3 ZMIN = Z ( K V ( I U 
0 0 3 9 I ZM IN = KV( I ) 
Q 0 4 0 6 5 CONT IN') F 
0041 VFC1 1 = X ( J V ( I ) ) - X ( I V ( I ) ) 
0 0 4 2 V F C i 2=Y( J V ( ! ) )-Y( I V( I) ) 
Q043L V E C 1 3 = Z ( J V ( 11 J.- Z ( IV I I ) ) _ . 
O C - 4 V £ C 2 1 = X ( K V ( I) ) - X ( I V ( ! ) ) 
0 0 4 5 V E C 2 2 = Y ( * V ( I ) ) - Y ( I VI I ) ) 
J3Q4_6 __FC? 3 =7 [ KV \ I ) . , ) .-LIV LI) ) : . 
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0 2 - 0 6 - 7 4 1 0 : 1 9 : 3 2 P A G E O O P 1 

0 0 4 7 

0 Q 4 _ 

0 0 4 9 
0 0 5 0 

0 0 5 1 
J 3 _ 5 _ 2 _ 

C 

C 

V E C 1 A N D V E C 2 A R E V C C T P R S 
Z M = ( Z ( I V ( ! ) ) + Z ( J V < I ) ) + ? ( " V U 

- - T H E M = A M F L ; V A T I C N O F 
, * V C C 2 3 - v ? * . 3 - v ~ c 7 " > 

ZM I S 
_ y j _ = y _ F C i 

P N G 2 SI P E S P F T H E T ° I A N G L E 
) ) ) / 3 . 
T H E T R I A N G L E 

v _ = V E C I 3 * V C C ? l . - V E C 5 1 " * V C C _ 3 

V ? = V E C 1 1 * V E C 2 2 - V E . I 2"*V E C 2 1 

v I j T H ~ C R c s S . . O O " T J c~. o E 

T H E TR [ A N G L C 

I F ( V 3 . G E . 0 . 0 ) G O T P 4 

V I = ( - 1 . )*'P . 

_y F_C 1 A N P . . X E C ? • A N D I S . . T H P P = T H I G ? _ N A L .J 

O P * 3-
0 0 5 4 

H Q 5 . 5 . 

0 0 5 6 
OQ5 7 

V 2 = < - 1 . ) * V 2 
V 3 = ( - 1 . ) * V 3 

S.P N T . I .N ' J E 
T H I S M A K E S T H F V E C T O R P O I N T 
V L = S Q R T ! V 1 * V ? + V 2 * V 2 + V 3 * V ? ) 
a T = V L / 2 - 

' I J P ' 

0 0 5 B 
D 0 5 9 _ 
0 0 6 0 
0 0 6 1 

OF V I S T W I C E T H E T R U E A R E A OF T H E TP I A N G L E , AT T H E L E N G T H 
U 1 = V 1 / V L 
'J2 = V Z / V L _ . L :  

U 3 = V 3 / V L 
A = V 3 / 2 . 
T H F I I M H O " QP P Q Q J F C T E O A R E A I S H A L F T H E 7 - C Q M p 0 M E N ! T O F V 

0 0 6 2 
0 0 6 3 

C 
c 
r 

O I P = 1 . 5 7 0 7 9 6 3 - A F S I N ( U ? ) 
S = T A N ( 0 1 P ) 

_S S _ T _ H E . . _ . S L O P E . _ T A N G F . N T _ 
N 1 T E : I F O T H E R CHAR. A C T E R I S T ! 

THF A P p p p p ^ i A T F ST*TE'-1 
' W R I T E S T A T E M E N T C H A N G E 

C S P F I N D I V I D U A L T R I A N G L E S A R E D E S I : 

E M S S H O U L D B E T N S E R T E D H F ^ E A N D T H E 
D o cr. , : O R I E N T A T T P N P F T F I A M G L E . 

0 0 6 4 
0 0 6 5 
0 0 6 6 . . 
0 0 6 7 
0 0 6 8 
0 0 6 9 

I F ( I T R I . F Q . Q ) ~,n T O 90 
W R I ' E ' 6 , 2 0 0 ) I T I I ) , I V l I ) • J V ( 

..2.00 _ F O R M A T (5.I.5.»_4F.i 5,o,.e_.L . 
9 0 C O N T I N U E 

I F ( L V ( D o N E , 1 ) GO T O 7  

A L AKE=ALAK£ + A  

I ) , * V ( I ) , L V ( I ) , Z M , A , A T , S 

0 0 7 0 

0 0 7 1 
- 0 0 7 2 
0 0 7 ? 

N L = \ ' L + ! 
A L A K E I S T H E T O T A L A R E A p c 

_ T R T A N G L E S F A L L I N G O N . W A T E ? 
I c ( L A K E oE Go C) GO TO 7 
I F ( I T R I . M E . 0 ) W R I T E ( 6 , 3 0 0 ) I 
= 0 R v A T ( 1 T R I A N G L E H ' , 1 3 , ' I 

L A K E S + O C E A N ; N L I S T H E N U M B E R PF 

S P N A L A K E OR T H E . O C E A N A N D I S E X C H ' P 

0 0 7 4 
00.7.5... 
0 . 0 7 6 
0 0 7 7 
0 Q 7 P 

1 E 0 * ) 
GO T O 6 

' ._ .S ' JM( D = S U M ( 1. ) + A 
S U M ( 2 1 - S U M ( 2 ) • A T 
S U M ( 3 ) = S U M ( 3 ) + Z M * A 
<j\)'A{ 4) = S U ' M 4 ) * S 

0 0 7 9 
O O B O 

0 0 " 2 
0 0 3 3 
0 Q P 4 
0 0 B 5 
0 0 P 6 

S ! J M ( _ ) = S L ' M ( 5 ) + S * A 
S U M ( 6 ) = S U ' M 6 ) + S * A T 
..SUM! .7.) = SUM ( 7) +1)1 

< ; I J M ( q ) = S U M ( P ) + J ? 

S U M ( 9 ) = S H ' M O ) 4.II-J 
v i M m ) = s u ' ' P Q ) » v i / ? o 
S U y < 1 1 ) = S U " M ) 1 ) + V . / 2 . 
S'JM( 1 2 ) = S ' J M ( 1 2 ) + V 3 / 2 < 

i__ONT...LNUE___ 
r 
C T H E F O L L O W I N G S E C T I C N C n " ° U T E S . G E O w r > R P H P M F T P T C PA°A«ETEPS 



ORTRAN IV G C O M ° I L E R MAIN 
- 1 3 0 -

1 0 : 1 ° : 3 2 PAGE 0 0 0 4 

0 0 ? 1 
0 0 9 9 

0 0 9 0 

0 0 ° 1 

I F ( L AKE) 1 3 , 1 9 , 1 8 
13 AT0T = S U M ( 1 ) * A L A K E 

NT A-NT-ML 
GO TO ?0  

03=52 
0 0 9 3 
0 0 ° 4 

15 A T O T = S U M m 
N T A = N T 

? 0 C O M X ! N _ M E 

C 
c 
c 

: A , > M I : S U X ( I ) I S THE ANALYSIS A<?EA, WHICH 

S I S 

AT OT I S THE T 0 T A L 
MAY E X C L U D E LAKES, 
NT I S THE' T O T A L N'_P">EC O c ^ T A N G L E S , NTA t H E NilMQER F0? ALALY 

0 0 9 5 
0 D 9 6 
00 9 7_ 
0 0 9 8 
0 0 9 9 
0 1 0 0 

° L A K E = ! 0 ' 0 . * A L A K E / A T O T 

CONTINUE 
TN=f=LOAT( NTA1 
ZM=SUM(3) /SUM( 1 ) 
SM1 = SU M ( 4 ) / T N 
S M 2 = S ' l » t 5 ) /SUM( 1 )  

0 1 0 1 

J_ 0 2_ 
0 1 0 3 

3 1 0 4 

S M 3 = S U M ( 6 ) / S U M { ? ) 

T H E S M ' S A R E M E A N S L O P E S : SM I . _ MVWFT G H T E O ; S M 2 0 0 W T D f?Y A ; S M 3 . o n v 

_H._I_ AX.r £H_N . . . AT... 
H Y ? S = ( Z'*~ 7. M I V ) / H 

H Y P S I S T H E H Y P S O M E T R I C I N T E G R A L 

AR AT I O = S U M 1 2 ) / S J * ( 1 )  
0 1 0 5 

C 
_r_ 
C 
C 
c 

A M T ? I - S U M M ) / T M 

A M T C I IS T H E M E A N A R E A OF T H E T R I A N G L E S A N A L Y Z E D 

T H I S SECTION IS FOR 
(UNWEIGHTED) VECTOR 
TO W = 1GMTED AMAI.YSI 

VECTORIAL A N A L Y S I S . V A R I A B L E S RELATED TO 
ANALYST^ INCLUDE "V" IN NAMES, THOSE P E L A 

TNCLJPE "V" 'o 

UN I T 

T C 0 

0 1 0 6 
3 1 0 7 
0 1 0 8 

C 
C 

__ 

R = VECT3R L E N G T H , K = D R E C ! S I C ' N P A R A M E T E R , K. T =J 0 0 / K , L = 7 C G T O R S I R ! 
( - ) , RF = RO:.'GHNESS F A C T O R , 0= OR I E NT ATT ON, D = O I P OF MEAN V E C T O R 

R U = S O R T ( S U M ( 7)**2 * S U M ( 3 )**2 + S U V ( ° ) * * 2 ) 
RV = S0RT(SUM ( 1 3 ) **2 + S'JM ( 11 ) **2+?UM( 1 2 1 * * 2 ) 
! jK> ( TN-1 . ) / ( T N-RU)  

0109 
0110 

J? 1 JJL 
0112 
0113 

U K I = 1 0 0 . / U K 

U L = 3 0 0 . * P U / T N 

_ V L =< 0 0 . * R V / S U M ( 2 ) '  

R F U = 1 0 0 . - U L 

R F V = 1 0 0 . - V L 

U L : V E C T O R S T R E N G T H , U N I T V I C T O R S : VI. WEIGHTED BY A T e 

0114 
0115 
.01L6_ 
,0117 
OU 8 

O ' .i q 

A U = S U M ( 7 ) / R U 

9 U = S U M ( P . ) / R U 

__J=FUM( ?.iyp.u_ 
A V = S U M ( 1 0 ) / R V 

B V = S U M ( 1 1 ) / < ? V 
C V = C U M P 2 ) / R V 

0 1 2 0 

0 1 2 1 
_!Z2_ 
0 1 2 3 
0 1 2 4 

012 5 

I F ( P U . N E . O . O ) GO 
I F ( A ' j ) l l , 1 2 , 1 3 

_1L_0U-? TO. 
GO TO 2 4 

12 O U = 0 . 0 
GO T O ?4  

TO 1 0 

0 1 2 6 
01 2 7 

_ _ 2 8 . . 
0 1 2 9 
013 0 
01 3 1 

13 0 U = ° 0 . 
GO TO 2 4 

___._.._ NT I NUE. 
3 U = A T A N ( A U / B U ) / P A O 
I P C U ) 2 3 , 2 5 , 2 5 

?5 TF ("111 3"*, ? 4 . " > 4 
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"ORTRAN IV G COMPILER M A I N 0 2 - 0 6 - 7 4 1 0 : 1 9 : 3 2 P A G E 0 0 0 5 

0 1 3 ? 

0 1 3 3 

0 1 3 4 

01 3 5 

0 1 3 6 

0 1 3 7 

_ 0 I _ 5 L 
0 1 3 9 

0 1 4 0 

0 1 4 1 

23 I C ( Q U > 3 3 , 3 2 , 3 2 
3? 0U = ? 8 0 . + O U 
33 0 U = O U - t-l Q 0 . 
?4 C O N T T M H C 

OiJ=A"» ^ TN( GUI / ' i D 
I c ( R V . N E . O o O ) GO TO 14 
I.~(A.Vt 1 5 , 1 6 , 17 

15 0 V = 2 7 0 o 

GO TO 4 4 

16 py=o, 0 . • 
0 1 4 2 

0 1 " - 3 

_Qi.4_4_ 
0 1 . 4 5 

0 1 4 6 

0 1 4 3 

0 1 4 9 

J X L ? J _ 
01 5 1 
01 5 2 
01 

r,o TO ^ 4 

17 3 V = ^ 0 . 
_n . _ T 0 . . 4 4 

14 C O N T I N U E 

O V = A T A N { A V / B V ) / ° A 0 

45 I F ( ? V ) 5 3 , 4 4 , _ 4 
43 I c ( « V ) f 3 , 5 2 , 5 2 

_ 5 . „ . 0 V = ^ V « - 1 8 0 , 
53 O V = . V + l t » 0 . 
44 CONTINUE 

Q V - A P . S I M ( C V ) 1 ° A n 

0 1 5 4 

0 1 5 5 

0 1 ^ 6 

C 
c THE c O L L O W I N G S E C T I O N PRINTS OUT RESULTS 

W R I T E ( 6 , 1 5 2 ) ( T T ~ L C ( I T ) , 1 1 = 1 , 1 9 ) 
WRITE ( 6 ,6 03 ) *!° , N T , A T O T , PL A < E »NT A , S I !M ( i ),AMTR I 

6 3 3 = O R M A T ( « GENgoft t : ' , / / , ' M I I M R F P OF POINTS = ' , 1 0 X , 1 5 , / , ' \ " v a <ro 

0 1 5 7 

0 1 5 8 

0 1 5 9 

Ql 6 Q 

XLL6_1_ 
0 1 6 2 

0 1 6 3 

._16.4_ 
0 1 6 5 

0 1 6 6 

- - , - / • • • T_> T AL * 3 E A = »,-i=.15-, / , ' D t - C F V T L 

' = . ' A V A L Y S I S = ' , 1 0 X , 1 5 , / , ' A R F A F O R A 

' E A M T O T A N G L E 4 C C A = • , E l 5 . 2 , / / ) _ _ _ _ _ 

M R I T E ( 6 , 6 01 ) 7 M I N , ! 7 M I M , 7.M A X , I Z 7 4 X , H , H YP S , S M 1 , S M 2 ,"sM 2 , A R ATf'o""" 
6 0 1 F O R M A T . ' G E 0 M 0 ' D H C M E T R Y : ' , / / , * M I N I M ' J M E L E V A T I O N = ' , c 8 _ 2 , ' L O 

9CATED AT P O T NT NU^B " ' , I 4 , / , ' " i x i m . ' M E L ^ V A T ^ O N = ' , f q - > 2 , ' '. 0 r 

1 O c TR IAN Gl-F S = , } 0 X , ! 
2AKES SEA = ' , 3 X , F ? . 

. 3 N A L Y S I S _ = «_, E 1 5_ P , / , • 

1ATE0 A T O Q I N T M JMf} E~ • , ! 4 , / , ' L O C A L P E L T F F = « , F P S 2 , 1 O X , / , 

2 H Y P S OMETR. I C I N T E G R A L = ' , F ? „ 5 , / , ' M C A N S L O P E : ' , / , • J N W E I G H T F O 

- P . ? , ? , / , ' . >'F I GH T : 0 BY MAP AREA 
, = P 0 5,7", •ARE A RATIO 

c 9 . 5 , / , ' „ . W E I ; 
= ' , F 8 , 5 , / / ) 

HT E I 
4Y T p U F AREA 

W R I T E ( 6 , 6 0 2 ) O U , n j , U L , U K , J K l , P F U , O V , O V , V L , » R V 

6 - ) 7 Fnc.»j)_T(» yc CTQR ANALYS I S : ' , / / , ' U N W E I GHT=0 ( U N I T VECTORS ) : ' , / , ' 
I E N T A T I O N = ' , F ? o 2 , / , » OTP = ' , F 8 o 2 , / , ' L I ? ) 
2 = ' , F 3 . 2 , / , ' K = ' , F 3 . 2 , / , ' J 0 0 / K 
3 F 3 . ? , / . • ROUGHNESS. FA CT0.'_5' , F f l , 2 , //_, • VE T G.1TED_ BY T " J F._AP F,A : • , / 
4 O R I E N T A T I O N = ' , F 8 . 2 , / , ' ^ 1 P = » , F e . 2 , 7 t * L ( « ) 
5 = ' , F 8 . 2 , / , ' ROUGHNESS FACTOR = ' , F 8 . 2 > 

j QQ<; _ J flRC » i  

n e T 

GO T 0 9 9 
9 9 9 WR I T E ( 6 , ° 0 0 ) JO^S 
033 FORMAT ( M ' , "=N"i OF... P I IN- __ THI 5. 

ST 0 ° 
END 

.D_UN_I.'-'.CJL_UDFO__j I 3 i l . .J0 .3S. . ' )_._ 

TOTAL MEMORY REQUIREMENTS 0 0 1 3 A 5 BYTES 

X f lMJ - lLF . ULME = !_,___. SE C fJ.N I S 



- 1 3 2 -
:0.R TR AN IV G COM PI L E R R E A D E R 02-06 - 7 4 10:19:35 P A G E 0001 

0001 S'B'O'JTINE RE I D E C 

0002 D H E N S I O N X ( 5 0 D ) , Y ( 5 0 3 ) , 7( 5 0 0 > , I T ( 1 Q O O ) , I V ( 1 ODD) , J V ( 1 0 0 0 ) ,KV(1. 0 0 0 ) 
1 , L V ( 1 D 0 0 > , T I T L E ( 1 ? ) , A L T ( 2 0 ,2 0 ) , I D M f ? 0 , 2 0 ) 

0003 t O M v , n \ j X, Y , 7., I T , T V , J V , KV , L V» T I T l . F , V O
T

M T , L A * C , I T R I 
0004 R = A ^ ( 5 , I C O ) I T Y = E , N F W " , N E . ^ T , X S C A L E , Y S C A L F , Z S C A L F , L A K E , I T P I , I D I A G , V P 

I ,NC 
0005 1 00 C 0 R * - * A T ( _ I 5 » 3E 1 2 , 5 , 5 1 5 ) 
0006 I p ( T T Y P E , N E . 9 3 0 ) G O T O I 
0007 L» <" =opo 
000* 3 = T U R N 

0009 1 R E A D ( 5 , 1 0 3 ) ( T I T L C ( I ) , 1 = 7 , 1 9 ) 
0010 103 C O R ' J A T ( i o > 4 ) 
0011 I C ( x S O A L E „ F o, 0, 0 ) X SC A L F =' , 0 
0012 I C ( Y S C A L E _ E O - , 0 , 0 ) YS C . A L E = X S C AL E 0013 I F ( 7 S C A L E . E C . 0 , 0 ) Z S C A L E = 1.0 
00 T 4 I F ( I T Y P E . F O . l ) G O T R I =0 
00' 5 I F { > ' E . y P O F 0 . 1 ) G O T O 3 
0016 NP=o 
0 0 1 7 •> R E A 0 ( 5 , 7 0 1 ) I , X ( ! ) , Y ( I) , 7 ( I ) 
0 0 1 8 101 F O R M A T ! 15 , ? , F 6 o 0 ) 
0019 I F ( T , 5 0 . 0 ) G O T O 3 
0020 X ( I ) = X ( I ) * X S C A ! F 
0021 Y ( I ) = Y ( T ) * Y S C A L E 
0022 Z< I ) = Z ( T ) * Z S C A L E 
0023 NP=N'P+1 
0024- GO TO 2 
00 2 5 3 I F M E W T . E Q . U GC TO 5 5 
0 0 2 6 NT = 1 
0027 4 RE A D ( 5 , 1 0 2 ) I T ( M T ) , I v ( N T ) , J V ( N T ) , K V ( N T » , 1 V ( N T ) 
0023 102 "F0R^ ATr5T5 :) 
002<3 I F ( I T ( N T ) «.EOoOJ G O TO 5 
0030 NT=NT«-1 
0031 . GO T0 4 
003? 5 \jT=VT_i 
0033 55 W R I T F ( 6 , 2 0 0 ) ( T I T L E ( I ) , 1 = 1 , 1 ^ ) 
0034 200 FO R U A T ( ' 7 ' , 1 ° A 4 , / ) 
00*5 W R I T F ( 6 ,201) N», NT 
0036 201 C O R V A T ( • T H I S DATA S E T W A S T R I A N G U L A T E D MAN ( A L L Y ; i f " ' ? : O N T A T N S ~ " » ,T3 

1,' P O I N T S . AND ' , 1 3 , ' T ' I A M G L E S , ' , / / ' O P T I O N S : • I 
003 7 I F ( M EW° « E 0,1) W R I T = ( 6 , ? 0 Z ) 
0038 2 02 F D R « A T ( ' - U S E S S A ^ E P O I N T S AS P R E C F D I N G DATA S E T ' ) 
0039 I F ( V E W T . F O . 1) WP.ITE( 6, 2 0 3 ) 
004.0 20"* F_RMAT(«. .-USES. ..SA'-'E T P I A N . G L ES AS P R E C E D I N G D A T A S E T ' ) 
0041 I F ( X S C A L E . N E . l . O ) W R I T E ( 6 , i ? 0 4 ) X S C A L E - - - -
0042- 204 F O R « A T ( » - X S C 4 L E = • , E 1 2 . 5) 
0 0 4 3 I - E ( Y S C A L E , N E , 1 , 0 ) WRlTP(f,,?r>5) Y S C A L = 

0044 205 F O R M A T ( * - YSC A L E = ' , E 1 . 2, 5) 

0045 IF ( 7 S C A L E . M E . 1,0 ) W R r T F ( 6, 206) Z S C A I E 
.004.6 20 6. F O R M A T ( • . . - Z S C A L E - ' , F I ; „ 5 | 
0047 I F ( L A K . E Q . l ) W3 I T _ ( A , ? _ 7 ) 
0048 207 FO R W A T ( * - L A K E S A R E E X C L J P E D F 3 D U T H E A N A L Y S I S ' ) 
0 0 4 P p= T"PN 
0050 50 IF(NEWP.EO.1) G O TO 61 
0051 DO 6 0 I = 1 , N » 
0052 .60 ._ — R.E AD I 5 ,15 D) ( A LT (.1 • J ) , J=l, NC ) 
0053 150 F O R M A T ( 3 X , 1 5 C 5 . 0 ) 
0054 NP=NP.*NC 
0055 NR. 1= MR-7 



OP TR AN IV G COMPILER READER 
-133-
02-06-74 10:19:35 

0056 
00 5 7 
0058 
0059 
0060 
006 1 
0Q6 ?_ 
006 3 
0064 
006 5 
0066 
0067 
J2Q.6 8_ 
0069 
0070 
00 7 T 

0072 
0073 
.0074 
0075 
0076 
0 Q 7 7 

0078 
0079 

0081 
0082 
008 3 
0034 
0085 
_036_ 
0087 
008 8 
0039 
0090 
0091 
_00.?__ 
0093 
0094 
0095 
0096 
0397 
___L8_ 
0099 
0130 
0 1 0 7 . 
0102 

0103 
0104 
31Q5_ 
0106 
0107 

0 1 0 9 

0 1 1 0 

PAGE 0002 

51 
61 

54 

301 

NC1=NC-1 
N T = 2 *NR1*NCI 
00 c l 1 = 1 , N R 

00 51 J=liNC 
10= ( I-I )"NC«-J 
IDMf _,.)) = i o 

_X'.J? _! = c - OA T.I.Jt *v SC ALE 
Y{ 10 } = CL0 AT (NP-! )"Y SCALE" 
Z( I 3 ) = ALT ( I , J ) -*ZSC ALE 
CONT INiIE 
CONTINUE 
INT = 1 
DO 5 2 1 = 1 
00 52 J=1,NC1 
1 c(TDIAG) 53, 53, 5^ 
IT( I N T ) _ T : ' ) T 
I VUNT ) = IGM( I , j ) 
JV(INT)=IOM(i+i,j) 

_ YJ INT ) = I DMJJ. + 1 J t l L 
LV(INT)=0 
INT=INT+1 
IT(INT)-TNT 
IV(I NT)=I DM( I,J) 
JVUNTJ=TDM(I ,J + 1) 
J<V.UNI.)=IDM{I+1. J4-1.) 
LV(INT)=0 
INT= INT+1 
GO TO 52 
IT(INT)=INT 
IV(INT)=TDM(I ,J) 

_J.VJ.LN_T" ».= i y (I _l_+l > 
KV(INT)=IDM(H-1,J) 
LV<INT)=0 
INT=INT»i  
IT(INT)=INT 
IV( INT) = IDM(I, J4-1) 

_J V (TNT ). = I D M ( I+1,J ) 
KV(INT)=IDM(I+1, 
LV(INT)=0 
INT=INT ».  

5 2 C O N T I N U F 

I N T = I N T - 1 

H P I T E { 6 , ? 0 0 . ) ( . T I T I . E ( . I ) , 1 = 1,19) 
I F ( I N T , N E . N T ) W R I T E ( 6, 300) I N T E N T 

303 F O R M A T ( • I N T = • , I ' , B U T N T = • , I 4,/) 
W R I T=(6.301) N R , M : . N Q , M T 

3 0 2 

FORM AT( ' THIS DATA SET IS P.-VŜ O ON A ',13,' BY 
1R IX; •, /, ' IT CONTAINS i , n , i POINTS AMn 

_2.0NS: '.).. -._•.: _ 
IS(VEWPoEO.1) WPITE(6, 202) 
IF(NEWT.EQ.l) WPITEI6,20?) 

_-J-EJ_X_SCALE, EO. YSCAl E ) WD IT F( 6 , ? 02 ) XSCALF 
FORMAT.' -SOUA^E GPIO. G'TO S P /* C I NG = • , F1 2, 

',13,' ALT IT'JOE M . T 
TRIANGlFS',//,»0PTI 

,_, „„ - - .5, • MFTPFS') 
IF (XSCALF.NE.YSCALE ) W RITE ( 6 , ?0 : ! J XSCALF, YS~ A L p 

-3^-3 rOR>VAL(.L_._.r_COL.UMN..SfiACIMjG=' , El 2, 5, • V«=TRFS ; ~R_tw SPAC ING=•,c1?_ <=. • 

304 

1MET-ES * ) 
IF(IOIAG.EO.O) WPITE(6,?04) 
P Q ^ " > T ( „. -USEO N3RTHWPST-SPUT(-FA.ST 01 AGONAL S ' ) 

http://_J.VJ.LN_T


- 1 3 4 - • • . •• , 
:QRTPAN IV G COMPILER REACE° 02-06-74 1,0:19:35 : •'' PAGE 0003 

0111 IF (10 I AG. EO.n WPITF(6,'05» 
0112 305 FORMAT ( • -'JSEO NO-. TMC * S T- F 3 UTHWE S T ! A G 0 NA L S * ) 
0113 IP(ZSCALE.NE.l.O) W ' I' E ( 6, 2 0 6 ) Z S C AL F 
0114 R c TURN  
0115 END 

TOTAL MEMORY REQUIREMENTS 001B2C BYTES 

COMPILE TIME = 0.5 SECONDS 
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Appendix 1Mb: Triangular Data-sets 

Maps of a l l the triangular data-sets analyzed in this study are g iven, 

wi th the exception of sample 11a which was il lustrated in Figure 6 . 1 . These 

maps are al l at the scale of 1:50,000; 1:250,000 scale maps of the same 

areas are given in insets. 
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Sample l i d , Ptarmigan Creek map-area (83 D/10W) 



Sample 18a, Manning Park map-area (92 H/2W) 
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Appendix I l ie: Computer Results 

This appendix includes the computer output for the thirteen triangular 

data-set analyses and fourteen grid analyses upon which the comparisons 

reported in Chapter 6 were based. The tit les of these output sheets are self-

explanatory . 



. _ _ -J_45-
I L L E C 11 L E W A t T ( S A ^ L E 3 ) 

GENERAL: 

A i J M ' ^ F K CF P O I N T S _= 9_0_ 

NUMBER OF TR I ANGLE S= IS 3 
TOTAL AREA = 0 o 4 3 C 9 92 9 6 ~ 03 
PERCE NT_ L..KI. S.. + ..SEA=_ 0 .3 
NUMBER FOR ANALYSIS= i f 3 
AREA FOR ANALYSIS = 0, 439 V->29 6S 08 

.HE__N TRIANGLE AREA = Oo3202S661E 06 

G E Q M r ' R f M H G M F X R Y _ L 

MINIM'JM ELEVATICN = 377 . 82 LOCATED AT POINT DUMBER 83 
MA XI MUM E LE VATICM _ 2 74 3 ,20 LOCATED AT POINT NUMBER 53_ 

"LOCAL RELlFF ' = m 6 5 o ' 3 3 
HYPSOMETRIC INTEGRAL = 0 .44691 
VFAN SLOPE: 

UNWE I GHT FO = 0. 5 3 3 C2 
WEIGHTED BY MAP AREA = Co 58537 
WEIGHTED BY TRUE AREA = 0 .5 97 97 

AREA RATIO = 1,1634 1 

VECTOR ANALYSIS : 

UNWEIGHTED(UNIT VECTORS ) : 
ORIENTATION = 102 ,50 
DIP = 3 1 , 7 0 

= 3 6 . 9 1 _ 

K. ~ ~ = 7 . 59 
100/K = 13 .18 
ROUGHNESS FACTOR^ 13 .09 

WEIGHTED BY TRUE AREA: 
0IR I Fj>l TAT ION 115 ,53 

" 'DIP • = 33 .18" 
L U ) = 3 6 . 2 0 
ROUGHNESS F ACTQR= 13 .30 
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PTARM I G A N C P E E K ( S A ' 1 P L E 1 1 A ) : A L L P 0 1 M 1 S 

G E N E R A L : 

N U _ 3 J _ J J E _ P O I N T S = 

KiJM rj P R 0 F " T R I A~\) G L E S ~ " ' ~ 1 3 6 

T O T A L A R E A = 0 . 4 3 ° 9 Q 3 2 3 E 0 8 

P E R C E N T L A K - S__ + G E \ - - _ 0 , 0 

N U M B E R F O R A N A L Y S I S = 1 3 6 

AREA F O R A N A L Y S I S = 0 , 4 3 C 9 9 3 2 3 E 0 3 

W E A N T R I A N G L E A R E A = 0 , 3 6 0 . 8 9 1 2 6 0 6 

G E O M O R P H O M E T R Y : 

MINIMUM E L E V A T I C ' N = 393.00 LOCATE 0 AT P O I N T N U M B E R 79 
M A X I M U M E LEV ATI r N = 2 4 0 4 , 0 0 L O C A T E D AT_ P O I N T NUMBER 68 
L O C A L R E L I E ' F " " = l ^ o 9 . 0 0 " " ' 

H Y P S O M E T R I C I N T E G R A L = 0 , 2 6 3 4 1 

MEAN S L O P E : 

U N W E I G H T E D " " = 0 , 4 1 4 5 3 

W E I G H T E D B Y M A P A \E A = 0 , 3 5 5 3 7 

W E I G H T E D B Y T R U E A R E A = 0 3 3 ? 8 C 0 

A R E A R A T I O ' = I , C 8 9 1 7 ~ 

VECTOR A N A L Y S I S : 

U N W E I G H T E O ( U N I T V E C T O R S ) : 

O R I E N T A T I O N = 3 1 , 8 6 

D I P = 8 5 , 7 6 

H%)__ = 9 0 , 9 7 

'k' ~ ' = 1 1 . 0 0 

100 / K = 3 , 0 9 

R O U G H N E S S FACTOR= 9 . 0 3 

W E I G H T E D B Y T R U E A R E A : 

_0 R I E N J £ n O N_ ^_ 6 0o35 
" DTP~ •' • = a y 0 e 7 

L I S ) = 9 1 , 3 8 

R O U G H N E S S E A C T O R - 3 , 1 2 



- 1 4 7 - _ _ _ _ _ 
P f A i > • 1 1 0 A N C P S V H ; L E 11 8 ) : F R 0 M " l : ? 5 0 , 0 0 0 •• ' •AP 

G E N E R A L : 

N U M B E R 0 F P Q I ' l T S _f 2 _ 9 

N U M B E R CP T R " l V > I G L S S = " 4 1 

T O T A L i R E A = 0 „ 4 ) r > 9 9 7 7 6 E O S 

P e R C E N J . _ L f e K E S . . . t _S = A = _ . 0.0 

N U M B E R F O R A M A L Y S I S = 4 1 

A Q E A, F O P A N A L Y S I S = O 0 4 '.<"• 9 9 7 7 6 E 0 3 

M E A N T R I A N G L E A R E A ~ 0 . 1 1 9 , 3 1 6 0 E 0 7 

G E Q M 3 R P H 0 M F T R Y : 

M I N I M U M E L E V A T I O N = 7 3 1 , 0 4 L O C A T E D A T P O I N T N U M B E R 2 9 

M A X I M U M E L E V A T I O N -= 2 3 6 2 o . 1 0 L O C A T E D A T P O I N T N U M 3 E P 1 9 

L O C A L R E L I E F = 1 6 6 L . 1 6 

H Y P S O M E T R I C I N T E G R A L = 0 . 2 6 5 3 0 

M E A N S L O P E : 

U N W E I G H T E D " ~ " = 0 . 3 7 3 8 3 

W E I G H T E D R Y M A ° - A R E A - 0 » 3 7 8 4 3 

W E I G H T E D B Y T R U E A R E A = 0 , 3 9 3 6 4 

A R E A R A T I O = 1 . 0 8 3 2 2 

I 
i 
i U N W E I G H T E D ( U N I T V E C T O R S ) : 

O R I E N T A T I O N = 3 4 J . 4 3 

D I P 8 7 , 2 9 
L ( % ) _ 9 2 . 2 4 

K ~ • ' " = 1 2 . 5 7 

100/K = 7 0 9 r > 

R O U G H N E S S F A C T O R = 7 « 7 6 

W E I G H T E D B Y T R U E A R E A : 

O R I E N T A T I O N 1 3 . 3 6 

" D I P - - - 8.3 c/+6 
Lit) = 9 1 . 9 3 

R O U G H N E S S F A C T O R = 8 o 0 7 



PTARMIGAN C.K ?f_K ( S A' 1 •' L r J l C l 
-148 - _ 
A "OR )X'„ SAM" POINTS AS CUT 1 :5 0 ,00 

GENERAL 

(VUM3F P. OF POINTS ? 9 
NUMBER OF TP I ANGLES= 4 3. 
TOTAL A R F A = 0 o 4 39 99 64 0?: 0 8 
PERCENT LAKES + SE\=_ 0 o 0 
NUMBER FOR ANAL YSI S= " 4 1 
AREA FOR ANALYSIS = 0, 48999 B4GE 0 3 
MEAN TRIANGLE AREA = 0,3. 1951 13CE C7 

GEOMOR°H 0 M E T R Y : 

MINIMUM EI.EVATIC.-. 
MAXIMUM ELEVATION 
LOCAL RELIEF = 1709 ,32 
HYPSOMETRIC INTEGRAL = 0 ,26517 
V E AN SLOPE: 

U N W E I G H T E D " = 0 o 3 7 6 ? 0 

WEIGHTED BY MAP A <E A = 0 . 3 6694 
WEIGHTED RY TRUE AREA = 0 .38063 

6 9 4 , 94 LOCATF 0 AT POINT NUMBER 17 
2404 ,26 LOCATED AT POINT NUMBER 19 

AREA RATIO l . o a 2 a i 

VECTOR ANALYSIS 

UNWEIGHTED? UNIT VECTORS ) 
ORIENTATION = 18 ,33 
DIP = 39 o 2 0 
LJ •*)_ = 9 2 ,17 
K " " " " = 12746" 
100/K = 3 .02 
ROUGHNESS FACTOR^ 7,83 

WEIGHTED BY TRUE AREA: 
ORIENTATION - 30 ,5 9 
DI P 
LiZ) 
ROUGHNESS FACTOR: 

"38,0 5" 
92 ,41 

7 ,59 



- 1 4 9 -
P T A R M I G A N C R E E K ( S A M P L E lij>) : \LL P O I N T S 

G E N E R A L : 

N U M B E R O F P O I N T S 

N U M B > ; R O E TRI A N G L E S = " " ' " " ' 1 4 3 

TOT A L A R E A = 0 . 4 8 0 9 92 4 3 6 0 8 

PERCENT L A K E S + S E A _ . 0 . 1 5 

N U M 3 E k ' E 0 R A N A L Y S I S = 1 4 3 

A R E A F O R A N A L Y S I S = 0 , 4 3 9 ' " > 9 2 4 8 E 0 8 

M E A N T R I A N G L E A R E A = 0 , 3 4 2 6 5 2 0 6 E 0 6 

G E O M O R P H C M E T R Y 

M I N I M U M 

M A X I M U M 

E L E V A T I O N 

E L E V A T I O N 

6 9 4 o " 5 4 L O C A T E 0 A T P O I N T N U M B E R 3 5 

2 4 0 4 o 2 4 L O C A T E D A T P O I N T N U M B E R 7 0 

L O C A L R E L I E F 

H Y P S O M E T R I C 

M E A N S L O P E : 

U N W E f 3 H T E 0 ' 

W E I G H T E D B Y 

W E I G H T E D B Y 

I N T ! AL 

M A P A R E A 

T R U E A R E A 

1 7 0 < 3 0 3 2 

0 , 2 6 1 6 5 

0 , 3 3 1 1 6 

D . 3 7 0 7 0 

G o 3 9 0 5 3 

A R E A R A T I O 1 , 0 9 1 4 6 

V E C T O R A N A L Y S I S 

U N W E I G H T E D ( U N I T V E C T O R S ) : 

O R I E N T A T I O N 

D I P 

L ( % ) = 

K ~ ' = 
100/K 
R O U G H N E S S F A C T O R ^ 

4 1 o 0 5 

8 4 , 6 4 

9 2 , 0 5 

1 2 

8 , 

4 9 

CI 

W E I G H T E D BY T R U E A R E A : 

O R I E N T A T I O N = 4 9 , 6 5 

D I P 

L ( % ) 

R O U G H N E S S F A C T O R : 

3 7 . 3 3 

9 . 1 . 6 9 

3 , 3 1 



- 1 5 0 -

MANN f N G P A R K ( S A M PL 11 l«) ) : A - 1 : .C ,CC'J S C A L E " H I G H R r SC L L T I E N " 

G E N E R A L : 

S LUMEiLJJ QE P C I i l l S . = 115. 
f NUMBER C F T R I A N G L E S = 2 C 7 

i T O T A L A R E A = 0 . 4 3 « 9 9 C 7 2 E C 8 

I .... P E R C E N T . L A K E S .+ . .SEA-.. . . . 0 . 0 

i NUM13ER FOR AN AL Y 3 I S= 2 C 7 

A R E A FOR A N A L Y S I S = 0 . 4 3 ° 9 9 C 7 2F C 8 

! M E A N T R I A N G L E A R E A •= 0 . 23 6 71 C4_t_F_ 06 

.._ GEC.M0R_PH CM£I_R_Y_:_ _. _ 

M I N I M U M E L E V A T I O N = 1 0 5 1 . 6 6 L O C A T E D A T P O I N T NUMBER 2 

M A X I M U M E L E V A T I O N - 19 3 5 . ^ 3 LJJ^I J:I.._AT_ j _ 0 j N T N U M B E R __15 

L O C A L R E L I E F = . 7 7. S 2 

H Y P S O M E T R I C I N T E G R A L = 0 . . < 2 2 6 

. .NEA.N..S.LC.P.E .... . 

U N W E I G H T E D = 0 . 3 £ 9 . 2 

W E I G H T E D BY MAP A R E A = 0 . 3 9 3 15 

W E I G H T E D BY T R U E A R E A = 0 . 3 . 7 4 7 

A R E A R A T I O - 1 . C 7 9 S 4 

V E C T O R A N A L Y S I S : 

U N W E I G H T E C ( U N I T V E C T O R S ) : 

O R I E N T A T I O N 

D IP 

L m 

2 4 . 1 6 

8 9 . 2 7 

9 2 . 7 5 

K 

1 0 0 / K 

R O U G H N E S S F A C T O R -

1 3 . 72 

7 . 2 9 

7 . 2 5 

W E I G H T E D BY T R U E A R E A : 

O R I E N T A T I O N = 3 5 1 , 0 1 

DI P 

L ( ? ) 

R O U G H N E S S F AC TOR -

3 9 . 5 2 

9 2 . 6 1 

7 . 3 9 



•151 
M A N N I N G P A R K I S A M P L E 1 8 ) : M— l : ? 5 C , C C 0 S C A L E M A P 

G E N E R A L : 

N U M B E R CF P O I N T S i l _ 5 . 

N U M B E R E E T R I A N G L E S ^ 22 

T O T A L A R E A = 0 . 4 3 9 9 9 9 C H E C 8 

P E R C E N T ....L A K E S . + ...S E \ = 0 , 0 . . 

N U M B E R F O R A N A L Y S I S - 3 2 

A R E A F O R A N A L Y S I S = 0 . 4 R 9 5 c c c 4 E C 8 

_ M E A N T R I A N G L E A R E A = 0 . 1 3 3 1 2 4 7 0 E C 7 

- G E C M . G R £ H C M E 0 L ! 1 _ 

M I N I M U M E L E V A T I O N = 1 0 6 6 . £ 0 L O C A T E E A T P O I N T M J M P E R 

N A X I M U M E L E V A T I O N - 1 9 C 5 . C O L O C A T E 0 A T P O IN T N U M B E R _ 

L O C A L R E L I E F = 8 3 8 . 2 0 

H Y P S O M E T R I C I N T E G R A L = 0 . 5 1 7 3 1 

_ . f ' E . A N . „ S . L O P . E j L . _ 

UNWEIGH TEO = 0 . 2 6 0 1 5 

W E I G H T E D B Y M A P A R E A •= C . 2 r : 5 1 9 

W E I G H T E D B Y T R U E A R E A = 0 . 2 T 7 2 6 

A R E A R A T I O = 1 . 0 3 5 8 2 

J V E C T O R A N A L Y S I S : 

i U N W E I GHTE 0 ( U N I T V E C T O R S ) : 

O R I E N T A T I O N = 3 9 . 8 2 

D I P - 3 9 . 2 7 

L . ( J . ) = 9 6 . 4 1 

K = 2 6 . 9 7 

1 0 0 / K •= 3 . 7 1 

A O U GHNESS F A C T O R = 3 . 5 9 

W E I G H T E D BY T R U E A R E A : 

ORIENTATION = 3 7 . 2 9 
D I P = 3 9 . 3 9 

L I S ) - 9 6 . 5 5 

R O U G H N E S S F A C T O R = 3 . 4 5 



M A N N I N G P A R K ( S A M i > l . f i 1 . 8 ) : C - l . : . C , G C O S C A L E , A P P R O X . S A M F P > ' . N T S A S 1 8 6 

G E N E R A L 

J>JJjM.'3_E R O F P Q I v| T S 

N U M B E R C F T R I A N G L E S ^ 2 2 

T O T A L A R E A = 0 . 4 3 9 9 < > 9 C 4 E C 3 

PERCENT . L_AK ES.__+_ S E A " C O 
N U M BE R FOR A N A [ Y S I S = " " ' 3 2 

A R E A F O R A N A L Y S I S = 0 . 4 3 9 9 9 9 0 4 E C S 

M E A N T R I A N G L E A R E A = 0 . 1 5 3 1 2 A 7 C E C 7 

.-GE0.MJBPH0Mr3T.B_Y_ 

M I N I M U M 

J i A X j _ _ _ U M _ 

E L E V A T I O N 

E L E V A T I O N 

L M W E I G H T E D 

W E I G H T E D B Y 

W E I G H T E D B Y 

1 C 6 6 . 3 0 

1 8 3 9 . 7 6 

L O C A L R E L I E F = 8 2 2 . 9 6 

H Y P S O M E T R I C I N T E G R A L •= 0 . 5 4 3 . 2 

X E A J S L S k Q P f : 

M A P A ^ F A 

T R U E A R E A 

= 0 . 3 C E 5 2 

- 0 . 2 9 5 4 6 

= 0 . 2 9 8 5 2 

A R E A R A T I C 1 . C 4 7 4 6 

L O C A T E C 

L O C A T E D 

A T 

Al. 
P 0 I N T 

P O I N T 

N O M E E R 

N U M B F R 

2 

3 

V E C T O R A N A L Y S I S 

U N W E I G H T E C ( U N I T V E C T O R S ) 

O R I E N T A T I O N 

D I P 

. L U L L 

3 5 5 . 5 1 

8 3 . 7 4 

_ _ 9 5 _ . 1 8 _ 

K 
1 0 0/K 
R O U G H N E S S F A C T O R -

2 0 . 1 1 

4 . 9 7 
4 . 3 2 

W E I G H T E D B Y T R U E A R E A 

O R I E N T A T I O N = 

D I P 

L(*) 
R O U G H N E S S E A C T O R -

1 0 - 6 JL 
8 9 . 3 2 

9 5 . 4 3 

http://-GE0.MJBPH0Mr3T.B_Y_


- 1 5 3 -
T A T L A L A K E ( S A M P L E 2 4 ) : ' i N C L U O T N G L A K E S 

G E N E R A L : 

N U M B E R O F P O I N T S j 4 ? 

N U M B E R O F T R I A N G L E S = " 2 5 0 

T O T A L A R E A = 0 o 4 3 9 9 B 9 2 n E 0 8 

R E K C E N T . L A K E S . ± _ . S E A = _ . . 3 . 7 6 

N U M B E R F U R A N A L Y S I S ^ 2 5 0 

A R E A F O R A N A L Y S I S = 0 . 4 3 9 9 3 9 2 S E C 8 

M E A N T R I A N G L E A R E A = 0 . 1 9 5 5 9 5 6 9 E 0 6 

. G E O M O R P H O M E T R Y : 

M I N I M U M 

M A X I M U M 

E L E V A T I O N 

E L E V A T I O N 

9 0 9 c S 3 

1 1 1 2 . 5 2 

A R E A R A T I O = 1 . 0 0 2 ' » 6 

L O C A T E O 

L O C A T F 0 

L O C A L R E L I E F = 2 0 2 . 6 9 

H Y P S O M E T R I C I N T E G R A L = 0 . 2 6 7 3 9 

M E A N S L O P E : 

U N W E I G H T E D " ' " = ' 0 . C 7 4 7 0 

W E I G H T E D B Y M A P A R E A = 0 . 0 4 7 7 2 

W E I G H T E D B Y T R U E A R E A = 0 . 0 4 3 C 3 

A T 

A T 

P O I N T 

P O I N T 

N U M B E R 

N U M B E R 

V E C T O R A N A L Y S I S : 

U N W E I G H T E D ( U N I T V E C T O R S ) : 

O R I E N T A T I O N 

D I P 

I C S ) 

4 5 . 5 2 

8 9 . 6 4 

9 9 . 4 1 

K " = 1 6 7 . 9 9 

J.OO/K = 0 . 6 0 

R O U G H N E S S E A C T O R = 0 . 5 9 

W E I G H T E D B Y T R U E A R E A : 

O R I E N T A T I O N 3 4 1 . 5 9 

D I P " = """ 8 9 . T 7 

L ( 3 5 ) = 9 9 . 7 6 

R O U G H N E S S F A C T O R = 0 . 2 4 



.. - 1 5 4 -
TATLA LAKE (SAMPLE 2 4) : EXCLUD ING LAKES 

GENERAL: 

NUMBER OF POINTS • \.±Z 
NUMBER CF" 1'RIANGLE S = " 250 
TOTAL AREA = 0, 4 39° 9C C 8E 0 5 
PERCENJ L A K E S +_ 5CA.. . . __ 3, 76 
N U M3 E R F 0 R A MALY S I S= 2 3 8 
AREA FOR A N A L Y S I S = 0, 47159CC8E 0 3 
MEAN T R I A N G L E AREA = 0 O 1 9 3 1 4 7 C 6 E 06 

GEOMORPHOMETRY 

MINI MUM 
MAXIMUM 

EL E V A T I O N 
E L E V A T I O N 

9 0 9 0 3 3 
1 1 1 2 , 5 2 

L O C A L R E L I E F = 20 2,69 
H Y P S O M E T R I C INTEGRAL = 0 , 2 7 5 3 0 
M E A N SLOPE: 
UNWE T GHTED * = 0 , C 7 3 46 
WEIGHTED B Y MAP AREA = 0,045 58 

- J l L l i L L T ED B Y TR i JE AR E A = 0 , C 49 90 

LOCATED 
LOCATED 

AT 
AT 

P 0 I N T 
"01 NT 

NUMBER 
NUMBER 1 

7 
'6 

AREA P A T I O 1,0 02 55 

VECTOR A N A L Y S I S : 

UNWEIGHTED(UNIT VECT0 R S) 
OR I EN TAT ION 
DIP 
L m 
K 

1 0 0 / K 
R O U G H N E S S 

4 5 , 5 2 
3 9 » 6 3 
9 9 , 3 3 

F ACTOR: 

1 5 9 , 9 2 
0,63 
0,62 

WEIGHTED BY TRUE 
ORIENTATION 

ARE A: 
= 3 41,5 9 

D I P = 3 9 , 7 6 
L.S) = 9 9 , 7 5 
ROUGHNESS F AC TO R= 0,2 5 

! 



G U I T E 7. L I L A K E ( S A M ' L E E I ) 

-155 -
I N C L U D I N'.. L A K E S 

G E N E R A L 

N U M B E R C E P U I N T S 1 1 4 

N U M B E R O F T R I A N G L E S 1 

T O T A L A R E A 

P E R C E N T _ L A K E S _ _ j S E A = 

3, 
N U M B E R F O R A N A L Y S I S -

A R E A F O R A N A L Y S I S = 0 , 

M E A N T R I A N G L E A R E A = 0 , 

19 6 

4 8 9 9 9 1 3 6 E O S 

4 o 7 8 
1 9 8 

4 8 9 9 9 1 3 6 E 0 3 

2 4 7 4 7 C 3 7 E 0 6 

G E O M O R P H O M E T R Y : 

M I M I M U M 

M A X I M U M 

E L E V A T I O N 

E L E V A T I O N 

1 0 6 3 0 7 5 

2 2 ~> e. , 5 , 7 

L O C A T E D 

L O C A T E D 

A T 

A T 

P O I N T 

P O I N T 

L O C A L R E L I E F = 1 1 9 40 3 2 

H Y P S O M E T R I C I N T E G R A L = 0 .3 3 7 23 

M E A N S L O P E : 

U N W E I G H T E D " " ~ ~ = 0 , 27 5 1 4 

W E I G H T E D B Y M A P A R E A - 0 o 2 G 2 5 9 

W E I G H T E D B Y T R U E A R E A = 0 , 2 1 5 9 0 

NI.J M B E R 

N U M B E R 

2 

7 2 

A R E A R A T I O l o 0 3 3 3 1 

V E C T O R A N A L Y S I S : 

U N W E I G H T E D . U N I T V E C T O R S ) 

O R I E N T A T I O N 

D I P 

L ( % ) 

7 . 9 2 

8.3, 2 9 

9 5 , 6 5 

K = 22,88 
100/K •= 4.37 
R O U G H N E S S F A C T O R - 4 . 3 5 

W E I G H T E D B Y T R U E A R E A : 

O R I E N T A T I O N = 5 , S 3 

D I P 

L ( % ) 

R O U G H N E S S F A C T O R -

8 5 . 4 9 

9 7 , 0 8 

2 . 9 2 



GH i TF 7 I. [ I.AK E ( S V -1 H. E i 1 ) 
-156 -

E X C L U U I N'' LAKES 

GENERAL: 

NUMRcf QF POINTS 1 1 4 

N U M B E R OF T R I A N G L E S - 1 9 3 

T O T A L A R E A - 0 0 4 3 9 9 9 I 5 2 E 0 3 

P F R C E N T L AK E S + _SE A = 

NU V -3E"R " F O R " AN A L Y S I S ~ 

A R E A F O R A N A L Y S I S = 

MEAN T R I A N G L E AREA = 

4, 7 8 
18 5 

0.4<!6554CcE 08 
0 . 2 5U913 7 E 06 

G E O M O R P H O M E T R Y : 

M I N I M U M 
M A X I M U M 

ELEVATION 
ELEVATION 

1 0 6 3 0 7 5 

2 2 5 E o 5 7 

A R E A R A T I O l o 0 3 4 9 3 

L O C A T E D 

L O C A T E D 

AT 
AT 

L O C A L R E L I E F = 1 1 9 4 . S 2 

H Y P S O M E T R I C I N T E G R A L = 0 . 3 5 4 1 3 

M E A N S L O P E : 

UNWErGHT E D " " " ' " " ~ = 0 . 2 9 4 4 8 

W E I G H T E D 3 Y MAP A R E A - 0 . 2 1 2 7 7 

W E I G H T E D BY T R U E A R E A = 0 . 2 2 6 3 8 

P O I N T 

P O I N T 
N U M B E R 

N U M B E R 

2 

7 2 

V E C T O R A N A L Y S I S : 

U N W E I G H T E D ( U N I T V E C T O R S ) : 

OR I EN T AT I O N 

D I P 

L ( % > 

7 . 0 2 

8 2 . 7 9 

9 5 . 4 0 

K = 2 1 . 6 1 

100 / K - 4 . 6 3 

R O U G H N E S S F A C T O R - 4 . 6 0 

W E I G H T E D BY T R U E A R E A : 

0 R_I EM T A T I O N = 5 . 8 3 

" D I D " ~ " = 3 5 , 2 7 

- 9 6 . 9 5 

R O U G H N E S S F A C T O R - 3 . 0 5 



O C N A K I V E P . ( S A M P L E 4 1. ) 

G E N E R A L : 

-10/-

N U M B E R GIF P H I N T S 

N U M B E R n E T R T A N G L E S 1 

T O T A L A R E A 

p E R C E N T L A K E S . *.._S.:.-.V 
N U M B E R F O R A N A L Y S I S r 

A R E A F Q » ? A N A L Y S I S --

M E A N T P I A N G L E A R E A = 

. 1 3 . 8 . 

2 4 0 

0 o 4 3 9 c B 0 6 C E O B 

_ Q . Q 

2 4 0 

0 . 4 8 9 9 8 * 6 3 E 0 8 

0 . 2 0 4 1 6 2 3 I E 0 6 

- G E . 0 M J 3 R f H_0 M E T R Y_ 

M I N I M U M 

M A X I M U M . 

E L E V A T I O N 

E L E V A T I O N 

3 C o 4 3 

3 9 9 o 1 6 

L O C A T E D 

L O C A T E D 

A T 

A T 

POINT 
POINT 

N U M B E R 1 3 1 

N U M B E R 7 3 

L O C A L R E L I E F . = 8 6 8 . 5 3 

H Y P S O M E T R I C I N T E G R A L = 0 . 4 C 3 3 0 

M E A N S L O P E : 

U N W E I G H T E D * = 0 . 3 9 1 6 4 

W E I G H T E D B Y M A P A R E A = 0 . 3 8 0 9 0 

W E I G H T E D B Y T R U E U 2 A = 0 . 3 9 1 2 2 

A R E A R A T I O 1 . C 8 2 6 0 

V E C T O R A N A L Y S I S : 

U N W E I G H T E D ( U N I T V E C T O R S ) : 

O R I E N T A T I O N 

D I P 

L ( S) 

2 2 0 . 1 7 

3 8 . 0 9 

9 2 . 4 2 

K 

100/K 
R O U G H N E S S F A C T O R ^ 

1 3 . 1 4 

7.61 
7 . 5 3 

W E I G H T E D B Y T R U E A R E A : 

' O R I E N T A T I O N = 2 6 0 . 6 9 

DI P 
L I %) 
R O U G H N E S S F A C T O R ^ 

8 3 . " 7 2 

9 2 . 3 9 

7 . 6 1 



I L L E C I L L E W A E T ( S A M P L E ^ 3 ) G P.To , N W - S E 7)1 'AGON A'fs 

G E N E R A L 

N U M B E R C F P O I N T S 2 2 5 

N U M B E R GF T R I A N G L E S = 3 9 2 

T O T A L A R E A = 0 . 4 3 9 9 7 9 3 6 E 0 8 

P E R C E N T L A K E S _ _ SEA = _ _ 0 O 0 

NUMBER" F O R " A~NALYS"I 'S= " 3 9 2 " 

A R E A F O R A N A L Y S I S = 0 . 4 3 9 - 9 7 9 3 6 E 0 8 

MEAN T R I A N G L E A R E A = 0 . 1 2 4 9 9 4 6 9 E 0 6 

G E O M O R P H O M E T R Y 

M I N I M U M E L E V A T I O N 

M A X I M U M E L E V A T I O N 
= 3 9 0 . 0 2 L O C A T E D A T P O I N T N U M B E R 2 0 7 

= 2 7 4 3 o 2 0 L O C A T f D A T P O I N T N U M B E R 9 2 

L O C A L R E L I E F = 1 8 5 3 . 1 8 

H Y P S O M E T R I C I N T E G R A L = 0 . 4 3 5 3 6 

MEAN S L O P E : 

U N W E I G H T E D = 0 . 5 2 3 4 4 

W E I G H T E D BY MAP A R E A - 0 . 5 2 3 4 5 

W E I G H T E D B Y T R U E A R E A = 0 . 5 2 9 0 0 

A R E A R A T I O = 1 . 1 4 3 C 7 

V E C T O R A N A L Y S I S 

U N W E I G H T E D ( U N I T V E C T O R S ) : 

O R I E N T A T I O N = 1 1 4 . 9 4 

D I P = 8 3 . 1 7 

Lit) _= § 8 . 6 4 _ 

K " " = ~ 3 . 7 8 

1 0 0 / K - 1 1 . 3 9 

R O U G H N E S S F A C T O R = 1 1 . 3 6 

0 7 

W E I G H T E D BY T R U E A R E A : 

OR I E N T A T_I_0N = _ 1 _ 1 5 , 

D I P " =" " 3 3 . 2 3 

l i t ) = 8 3 . 1 0 

R O U G H N E S S F A C T O R = 1 1 . 9 0 



. - 1 5 9 -
I L L E C I L L E W A E T ( S A M P L E 3 ) : G R I D , N E - S W D I A G O N A L S 

G E N E R A L : 

N U M B E R O F P O I N T S - 111 

N U M B E R O F T R I A N G L E S - 3 9 2 

T O T A L A R E A = 0 o 4 - 3 9 9 7 9 3 6 E 0 8 

P E R C E N T L A K E S _ + _ . S E A - _ ...... 0 » 0 

N U M B E R F 0 R A N A L Y S I S - 3 9 2 

A R E A F O R A N A L Y S I S - 0 . 4 8 9 9 7 9 3 6 E 0 8 

M E A N J R i A N G L E _ A R _ E A - 0 . 1 2 4 9 9 4 6 9 E 0 6 

G E O M O R P H C M E J . R Y : 

M I N I M U M E L E V A T I O N - 8 9 0 . 0 2 L O C A T E D A T P O I N T N U M B E R 2 0 7 

M A X I M U M E L E V A T I O N = 2 7 4 3 . 2 0 L O C A T E D A T P O I N T N U M B E R 9 2 

L O C A L R E L I E F = 1 8 5 3 . 1 3 

H Y P S O M E T R I C I N T E G R A L = 0 . 4 3 5 7 6 

N E A N S L O P E : 

U N W E I G H T E D " • " = 0 . 5 1 8 4 3 

W E I G H T E D B Y M A P A R E A - 0 . 5 1 8 4 4 

_ W E I G H T E D B Y T R U E A R E A = 0 . 5 3 6 5 4 

A R E A R A T I O = 1 . 1 4 2 3 7 

V E C T O R A N A L Y S I S : 

U N W E I G H T E D ^ U N I T V E C T O R S ) 

O R I E N T A T I O N = 1 1 3 . 0 5 

D I P = 8 3 . 2 2 

L m _ - 83.77 
K ~ " " " " " " = ' ' 8 . 3 8 ' 

1 0 0 / K - 1 1 . 2 6 

R O U G H N E S S F A C T O R - 1 1 . 2 3 

W E I G H T E D B Y T R U E A R E A : 

O R I E N T A T I O N _ _= 1 1 5 ^ 0 7 _ 

D I P " ~ ~ = 8 3 . 2 3 

L ( 5 g ) = 8 8 . 1 5 

R O U G H N E S S F A C T O R - 1 1 . 8 5 



_ - 1 6 0 -

f P T A R M I G A N CREEK (3V-1PLE 11 T? GRT6 , ~ T : ^ 0 . OI&^HNW-SF >^TAC('NTLS 

! GENERAL: 
! 

> NUMBER CF POINTS ?2 5_ 
( NUMBER OF TRI ANGLE S= 392 
i TOTAL AREA = 0.43997936E 03 
I P ERCENJ . LAKES.* SEA= ... .0 .0 
I NUMBER FOR ANALYSIS= 392 

AREA FOR ANALYSIS = 0.439}7936E 08 
. MEAN TRIANGLE AREA = 0.12499469E 06 

G E O M O J R P H _CM E L R U 

MINIMUM ELEVATION 6 9 4 . 9 4 L O C A T E D A T P O I N T N U M B E R 22 5 
MAXIMUM ELEV ATI O N — 2 3 0 l o 24 L O C A T E D AT P O I N T N U M B E R 1. ° o 

LOCAL RELIEF — 1 6 C 6 . 3 0 

HYPSOMETRIC INTEGRAL 0 , 2 7 9 2 2 

MEAN SLOPE: 
UNWEIGHTED — 'bo~3 4 3S7 
WEIGHTEO BY MAP AREA 0 . 3 43 6 9 

WEIGHTED BY T R U E AREA 0 . 3 6 0 39 

AREA RATIO = 1 . 0 78 58 

VECTOR ANALYSIS: — — -

UNWEIGHTEDIUNIT VECTORS): 
ORIENTATION = 5 3 . 9 2 

DIP = 8 8 . 4 9 
l(%) = 9 3 , 2 4 

K = 14.75 
100/K = 6.78 
ROUGHNESS FACTOR= 6.76 

W E I G H T E D BY T R U E A R E A : 

O R I E N T j A T _ I O N = 5 5 _ . _ 6 2 

" D l P " " ~ ' ="87.94 
LIZ) = 92.77 
R O U G H N E S S F A C T O R = 7.23 

V. 



- 1 6 1 -

P T A R M I G A N C R E E K ( S A M PLE 3 1 ) : G R I D , 1 : 5 0 , 0 0 0 , NE-SW DIAGONALS 

G E N E R A L : 

v N U M B E R O F P O I N T S 2 2 5 
f NUM1 3ER O F T R I A N G L E S - 3 9 2 

T O T A L A R E A 0 . 4 3 9 9 7 9 3 5 E 0 8 

P E R C E N T L A K E S +• S E A - 0 • o. 
N U M B E R F O R A N A L Y S I S - 3 9 2 

A R E A F O R A N A L Y S I S - 0 . 4 3 9 9 7 9 3 6 E 0 8 

M E A N T R I A N G L E A R E A = 0 . 1 2 4 9 9 4 6 9 E 0 6 

G E O M O R P H O M E T R Y : 

M I N I M U M E L E V A T I O N = 6 9 4 . 9 4 L O C A T E D AT POINT N U M B E R 2 2 5 

M A X I M U M E L E V A T I O N = 2 3 0 1 . 2 4 L O C A T E D A T POINT N U M P F R 1 ° 9 

L O C A L R E L I E F = 1 6 0 6 . 3 0 

H Y P S O M E T R I C I N T E G R A L = 0 . 2 8 0 5 4 

M E A N S L O P E : 

U N W E I G H T E O - 0 , 3 5 8 3 6 

W E I G H T E D B Y M A P A R E A - 0 . 3 5 8 3 7 

W E I G H T E D B Y T R U E A R E A = 0 . 3 7 1 5 2 

A R E A R A T I O = 1 . C 7 9 3 2 

V E C T O R A N A L Y S I S : 

U N W E I G H T E D . U N I T V E C T O R S ) : 

O R I E N T A T I O N 5 8 . 6 4 

D I P 8 3 . 3 9 

L m 9 3 . 0 7 

K 1 4 . 4 0 

100/K 6 . 9 5 

R O U G H N E S S F A C T O R - 6 . 9 3 

W E I G H T E D B Y T R U E A R E A : 

O R I E N T A T I O N 5 5 , 6 2 

D I P 8 7 , 9 4 * 

L U ) 9 2 , 7 1 

R O U G H N E S S F A C T O R - 7 , 2 9 

i • 

V. 



_ - 1 6 2 -
"PTARMI G A N ~CR E E K " ( S V I P ' t E T l V T OR I 6 7 " I : 2 50,"o 0 0 ~ ~~NW^S E D f > ^ G 0 > « A l ' . " S 

G E N E R A L 

N U M B E R O F P O I N T S 2 2 5 

N U M B E R O F T R I A N G L E S 1 

T O T A L A R E A 

P E R C E _ N J L A K E S , +__S_E A j 

N U M B E R F O R A N A L Y ST S= 

A R E A F O R A N A L Y S I S = 

M E A N T R I A N G L E A R E A = 

3 9 2 

0 . 4 3 9 9 7 9 3 6 E 0 8 

0 • 0 

" 3 9 2 

3 . 4 8 9 9 7 9 3 6 E 0 3 

0 . 1 2 4 9 9 4 6 9 E 0 6 

G E O M O R P H G M E T R Y : 

M I N I M U M E L E V A T I O N 

M A X I M U M E L E V A T I O N 

7 0 l o C 4 

2 3 6 2 o 2 0 

L O C A T E D 

L O C A T E D 

AT 
AT 

P O I N T 

P U I N T 

N U M B E R 

N U M B E R 

2 2 5 

1 9 9 

L O C A L R E L I E F = 1 6 6 1 . 1 6 

H Y P S O M E T R I C I N T E G R A L = 0 . 2 7 4 6 4 

V E A N S L O P E : ____ _ 

U N WE I G H T E D " " " - — 

W E I G H T E D B Y M A P A R E A •= 0 . 3 5 4 6 0 

W E I G H T E D R Y T R U E A R E A = 0 . 3 7 2 7 5 

A R E A R A T I O 1 . C 8 1 9 5 

V E C T O R A N A L Y S I S : ' 

U N W E I G H T E D I U N I T V E C T O R S ) : 

O R I E N T A T I O N = 5 3 . 0 1 

O I P = 8 8 . 6 5 

_ _ = 9 3 . 0 1 

K " ~ = 1 4 . 2 6 

1 0 0 / K = 7 . 0 1 

R O U G H N E S S F A C T O R = 6 . 9 9 

W E I G H T E D B Y T R U E A R E A : 

0 R I E N T A T I O N = _ _ 5 1 .JU 

D I P - ~ ~ ' 8 3 . 0 4 

L ( ^ ) = 9 2 . 4 8 

R O U G H N E S S F A C T O R = 7 . 5 2 



P T A R M I G A N C R E E K ( S A M P L E 1 1 

. - 1 6 3 - _._ ... .. 
G R I D , 1 : 2 5 0 , 0 0 0 , N E - S W D I A G O N A L S 

G E N E R A L : 

. N U M B E R O F P O I N T S 221. 
N U M B E R O F T R I A N G L E S -

T O T A L A R E A 

P E R C E N T L A K E S S E A ; 

N U M B E R F O R A N A L Y S I S ^ 

A R E A F O R A N A L Y S I S = 

_ M E A N T R I A N G L E A R E A ; 

3 9 2 

0 . 4 3 9 9 7 9 3 6 E 0 8 

O o O 

3 9 2 

0 . 4 3 9 9 7 9 3 6 E 0 8 

0 . 1 2 4 9 9 4 6 9 E 0 6 

G E O M q R P H C . M E T . R Y _ 

M I N I M U M E L E V A T I O N 

M A X I M U M E L E V A T I O N 

7 0 l o G 4 

2 3 6 2 . 2 0 

L O C A T E D 

L O C A T E D 

A T 

AT 
P O I N T 

P O I N T 

N U M B E R 

N U M B E R 

225 
199 

L O C A L R E L I E F 

H Y P S O M E T R I C I N T E G R A L 

M E A N S L O P E _ : 

' U N W E I G H T E D 

W E I G H T E D B Y M A P A R E A 

W E I G H T E D B Y T R U E A R E A 

1 6 6 1 o 1 6 

0 . 2 7 5 3 9 

0 7 3 6 7 6 3" 

0 . 3 6 7 6 9 

0 . 3 8 2 2 9 

A R E A R A T I O = 1 . 0 8 2 7 4 

V E C T O R A N A L Y S I S : 

U N W E I G H T E D ( U N I T V E C T O R S ) : 

O R I E N T A T I O N = 5 3 . 3 0 

D I P - 88.52 
Li%) _____ _ = 9 2 .83 
K ~ = 1 3 . 9 2 

1 0 0 / K = 7 . 1 9 

R O U G H N E S S F A C T O R - 7 . 1 7 

W E I G H T E D BY T R U E A R E A : 

O R I E N T A T I O N _ = 5 1 * 0 1 _ 

D I P ~ " " = " 8 3 . 0 4 

l i t ) = 9 2 . 4 1 

R O U G H N E S S F A C T O R - 7 . 5 9 

http://MqRPHC.MET.RY_


M A N N I N G P A R K ( S A M P L E 1 3 ) 

. - 1 6 4 - ........ 
i n , N W - S E D I A G O N A L S 

G E N E R A L : 

N U M B E R O F P O I N T S 2 2 5 

N U M B E R C F T R I A N G L E S ^ 

T O T A L A R E A 

P E R C E N T L A K E S _ - t - _ S E A = 

N U M B E R F O R A N A L Y S I S " : 

A R E A F O R A N A L Y S I S = 

M E A N T R I A N G L E A R E A = 

3 9 2 

0 , 4 8 9 9 7 9 3 6 E 0 8 

O o O 

3 9 2 

0 , 4 3 9 9 7 9 3 6 E 0 8 

0 , 1 2 4 9 9 4 6 9 E 0 6 

G E O M O R P H C M E T R Y : 

M I N I M U M E L E V A T I O N _ 
1 0 6 6 o 3 0 L O C A T E D A T P O I N T N U M B E R 2 

M A X I M U M E L E V A T I O N 1 8 8 9 o 7 6 L O C A T E D A T " H I N T N U M B E R 8 
L O C A L R E L I E F - = 8 2 2 o 9 6 

H Y P S O M E T R I C I N T E G R A L = 0 , 5 6 5 8 9 

M E A N S L O P E : 

U N W E I G H T E D — 0 , 3 3 1 0 3 " 

W E I G H T E D B Y M A P A R E A 0 , 3 2 1 0 9 

W E I G H T E D B Y T R U E A E A = 0 , 3 3 3 4 5 

A R E A R A T I O — 1 , 0 6 3 4 7 

V E C T O R A N A L Y S I S : 
— — - • • — — - -

U N W E I G H T E O f U N I T V E C T O R S ) : 

O R I E N T A T I O N - 343,67 
D I P = 8 9 , 3 9 
L(%) = 94,25 
K " = 17,33 
100 /K = 5,77 
R O U G H N E S S F A C T O R - 5,75 

W E I G H T E D B Y T R U E A R E A : 

0R I E N T A T I O N - 3_50, 60 

D I P " " = " " " " 

L ( % ) 

R O U G H N E S S F A C T O R -

8 9 , 3 4 

9 4 , 0 4 

5 , 9 6 

V. 



f 

G E N E R A L : 

N U M 3 E R O F P 0 I N T _ _ S _ _ _ = 2 2 _ 5 

N U M 3 E R O F T R I A N G L E S = " ' ~ " " 3 9 2 

T O T A L A R E A = 0 . 4 3 9 9 7 9 3 6 E 0 8 

P E R C E N T L A K E S + _ S E A = _ 0 o 0 

N U M B E R " F O R ' A N A L Y S I S = " 3 9 2 

A R E A F O R A N A L Y S I S . = 0 . 4 3 9 9 7 9 3 6 E 0 8 

M E A N T R I A N G L E A R E A = 0 0 1 2 4 - 9 9 4 6 9 E 0 6 

G E O M O R P H O M E T R Y : 

M I N I M U M E L E V A T I O N 

M A X I M U M E L E V A T I O N 

1 0 6 6 . 3 0 L O C A T E D A T P O I N T N U M B E R 2 

1 8 3 9 „ 7 6 L O C A T E D A T P O I N T N U M B E R 8 
L O C A L R E L I E F 3 2 2 o 9 6 

H Y P S O M E T R I C I N T E G R A L = 0 . 5 6 6 9 1 

M E A N S L O P E : 

U N W E I G H T E D 0 . 3 3 4 7 3 

W E I G H T E D B Y M A P A R E A 0 , 3 3 4 7 5 

W E I G H T E D B Y T R U E A R E A — 0 . 3 4 1 3 5 

A R E A R A T I O 1 . 0 6 3 6 1 

V E C T O R A N A L Y S I S : 

U N W E I G H T E D ( U N I T V E C T O R S ) 

3 5 1 . 7 2 

8 9 , 3 6 

9 4 . 2 1 

O R I E N T A T I O N 

D I P 

Li%) 
K = " ~ 1 7 . 2 3 

1 0 0 / K = 5 , 8 0 

R O U G H N E S S F A C T O R = 5 . 7 9 

W E I G H T E O B Y T R U E A R E A : 

O R I E N T A T I O N = 3 5 0 . 6 0 

" D I P - ~ _ ~ ~ " = " 8 9 . 3 4 

Ll%) •= 9 4 . 0 3 

R O U G H N E S S F A C T O R = 5 . 9 7 

V. 



. .._ -166 -
T A T L A L A K E ( S A M P L E 2 4 ) : O R 1 0 N W - S E O I - A O O N A L S 

G E N E R A L 

N U M B E R O F P O I N T S 

N U M B E R O F T P I A N G L E S = 

T O T A L A R E A 

P E R C E N T L A X E S t S E \ = 

N U M B E R F O R A N A L Y S I S = 

A R E A F O R A N A L Y S I S = 

M E A N T R I A N G L E A R E A = 

3 9 2 

0 , 4 3 9 R 7 9 3 6 E O B 

0 . 9 

3 9 2" 

0 . 4 3 9 9 7 S 3 6 E 0 8 

0 . 1 2 4 9 9 4 6 9 E 0 6 

G E O M 0R P HOME_TR11 

M I N I M U M E L E V A T I O N = J O 5 . 3 3 L O C A T E D A T P O I N T N U M B E R 3 0 

M A X I M U M E L E V A T 1 0 N = 1 0 9 7 , 2 8 j E j O j C A T E D A T P O I N T N U M B E R l_ 

L O C A L R E L I E F " - 1 8 7 , 4 5 

H Y P S O M E T R I C I N T E G R A L = 0 . 2 9 8 1 0 

M E A N SLOPE:_ _ 
U N W E I G H T E D " " " " " ' " " ' " ' " = " 0 . ' 0 4 0 8 1 " 

W E I G H T E D B Y M A P A R E A = 0 , 0 4 0 8 1 

W E I G H T E D B Y T R U E A R E A = 0 , 0 4 C 8 7 ' 

A R E A R A T I O = l . O C l l o " 

V E C T O R A N A L Y S I S : 

U N W E I G H T E D . U N I T V E C T O R S ) : 

O R I E N T A T I O N = 3 4 3 . 3 8 

D I P 3 9 . 3 0 

L ( %) 9 9 . 8 7 

K = 7 4 0 . 0 8 

1 0 0 / K 0 . 1 4 

R O U G H N E S S F A C T O R = 0 . 1 3 

W E I G H T E D B Y T R U E A R E A : 

O R I E N T A T I O N _34_8o 5 9 

D I P ~ " =' " 3 9 . 7 9 

= 9 9 . 6 7 

R O U G H N E S S F A C T O R 3 0 . 1 3 



; - 1 6 7 -
T A T L A L A K E ( S A M P L E 2 4 ) : G R I D N E - S W D I A G O N A L S 

I G E N E R A L : 

v N J J M B E R O F P O I N T S = 2 2 5 . 

N U M B E R O F T R I A N G L E S - 3 9 2 

i T O T A L A R E A = 0 , 4 S 9 9 7 9 3 6 E . 0 8 

P E R C E N T L A K E S + _ S E A _ = _ _ 0 . 0 . 

I ' N U M B E R F O R A N A L Y S I S - 3 9 2 

A R E A F O R A N A L Y S I S = 0 . 4 3 ' - 9 7 9 . 3 6 F 0 8 

M E A N T R I A N G L E A R E A = 0 „ 1 2 4 9 9 4 6 9 E 0 6 

G E O M O R P H O M E T R Y : 

M I N I M U M E L E V A T I O N 9 0 9 c 8 3 L O C A T E D AT r > 0 1 NT N U M B E R 3 0 

M A X I M U M E L E V A T I O N 1 0 9 7 . 2 8 L O C A T E D AT ° Q I NT N U M B E R 1 

L O C A L R E L I E F zz 3 . 8 7 . 4 5 

H Y P S O M E T R I C I N T E G R A L = 0 . 2 9 6 3 0 

M E A N S L O P E : 

U N W E I G H T E D zz " O . C 3 9 3 5 

W E I G H T E D B Y M A P A R E A = 0.0 3 9 3 5 

W E I G H T E D B Y T R U E A R E A zz 0 . 0 3 9 4 1 

A R E A R A T I O — 1.001-30 

V E C T O R A N A L Y S I S : 

_ - -- — -•• -
U N W E I G H T E D ( U N I T V E C T O R S ) : 

O R I E N T A T I O N = 3 4 3 . 3 3 

D I P = 8 9 . 7 9 

L ( 2 ) = 9 9 . 8 7 

K ~ ~ - 7 4 3 . 5 2 

100/K = 0.13 
R O U G H N E S S F A C T O R - 0.13 

W E I G H T E D B Y T R U E A R E A : 

O R I E N T A T I O N - 3 4 8 . 5 9 

D I P = 3 9 . 7 9 

LiZ) - 9 9 . 8 7 

R O U G H N E S S F A C T O R - 0 . 1 3 

v. 



( G H I TF.TL"i L A K E " ( " S A M P T ' E " 3 1 ) ~ : ~ ~ G R i 0, " NW- sTTTTlA G O K A L S 

G E N E R A L : 

N U M B E R O F P O I N T S = 22_5 

N U M B E R " O F T R I A N G L E ' S - " " ~ 3 9 2 

T O T A L A R E A = 0 . 4 8 9 9 7 9 3 6 E 0 8 

P E R C E N T L A K E S + S E A = _ _ 0 . 0 

N U M B E R F O R A N A L Y S I S - ' ~ ' 3 9 2 

A R E A F O R A N A L Y S I S = 0 . 4 3 9 9 7 9 3 6 E 0 8 

M E A N T R I A N G L E A R E A - 0 . > 4 9 9 4 6 9 E 0 6 

G E O M O R P H O M E T R Y : 

M I N I M U M E L E V A T I O N 
_ 1 0 6 3 . 7 5 L O C A T E D A T P O I N T N U M B E R 1 7 

M A X I M U M E L E V A T I O N zz 2 2 5 5 , 5 2 L O C A T E D A T P O I N T N U M B E R 1 5 2 

L O C A L R E L I E F = 1 1 9 1 . 7 7 

H Y P S O M E T R I C I N T E G R A L zz 0 . 3 3 3 9 5 

M E A N S L O P E : 

U N W E I G H T E D — 0 . 1 8 6 8 5 

W E I G H T E D B Y M A P A R E A = 0 . 1 8 6 8 6 

W E I G H T E D B Y T R U E A R E A .zz 0 . 1 9 4 3 6 

A R E A R A T I O zz 1 . 0 28 03 

VECTOR AN A L Y S I S : 

U N W E I G H T E D I U N I T V E C T O R S ) : 

O R I E N T A T I O N - 2 . 4 4 
DIP = 8 5 . 8 9 

L( %) 9 7 . 7 3 
K ' = "43,96 
1 0 0 / K = 2 . 2 7 
ROUGHNESS F A C T O R - 2 . 2 7 

W E I G H T E D B Y T R U E A R E A : 

n R I E N T j A J ) _ O N _ = 2 . 2 6 
. ^ - p - —-- 5 g 

Lit) = 9 7 , 5 6 

R O U G H N E S S F A C T O R - 2 . 4 4 



G H I T E Z L I LAKE 

- 1 6 9 -
3 1 ) : GRTOY NE-'SW" DTAGONALS" 

G E N E R A L : 

N U M B E R O F P O I N T S 2 2 5 
N U M B E R O F T R I A N G L E S -

T O T A L A R E A 

P E R C E N T _ L A K E S + _ S E A = 

N U M B E R F O R A N A L Y S I S ^ 

A R E A F O R A N A L Y S I S = 

M E A N T R I A N G L E A R E A = 

3 9 2 

G o 4 3 9 9 7 9 3 6 E 0 3 

_ ) o 0 

3 9 2 

G o 4 3 9 9 7 r o 6 E 0 8 

0 . 1 2 4 9 9 4 6 9 E 0 6 

G E O M O R P H O M E T R Y : 

MINIMUM 
MAXIMUM 

E L E V A T I O N 

E L E V A T I O N 

1 0 6 3 o 7 5 LOCATED AT POINT NUMBER 1 7 

2 2 5 5 . 5 2 LOCATED AT POINT NUMBER 152 
L O C A L R E L I E F 

H Y P S O M E T R I C I N T E G R A L 

M E A N S L O P E : 

U N W E I G H T E D 

W E I G H T E D B Y 

W E I G H T E D B Y 

M A P A R E A 

T R U E A R E A 

1 1 9 1 . 7 7 

0 . 3 3 4 3 1 

0 . 1 8 4 7 4 

0 . 1 8 4 7 5 

0 . 1 9 2 4 0 

A R E A R A T I O 1 . 0 2 8 0 1 

V E C T O R A N A L Y S I S : 

U N W E I G H T E O ( U N I T V E C T O R S ) 

O R I E N T A T I O N = 2 . 8 2 

D I P = 8 5 . 8 8 

L I S ) _ = 9 7 . 7 4 

K " * ~ = 4 4 o " G 3 

100/K = , 2 . 2 7 

R O U G H N E S S F A C T O R * 2 . 2 6 

W E I G H T E D BY T R U E 

O R I E N T A T I O N _ 

" D I P 

L m 

A R E A : 

_= 2.26 
- 35Y53 

9 7 . 5 7 

R O U G H N E S S F A C T O R ^ 2 . 4 3 



_ _ - l / U -

0 C 1 N A R I V E R ( S A M P L E 4 1 ) : G R I D , N W - S E D I A G G N ' A T S 

G E N E R A L : 

V, N U M R E R O F P O I N T S =_ . ? _ 2 5 

( " ' N U M B E R O F T R I A N G L E S * 3 9 2 

T O T A L A R E A = 0 . 4 3 9 9 7 9 2 6 E 0 3 

' _ P E R C E N T L A K E S +•_ S . E ; \ = 0 . 0 

j N U M B E R F O R A N A L Y S I S * 3 0 2 

: A R E A F O R A N A L Y S I S = 0 . * 8 9 9 7 9 3 6 E 0 3 

; M E A N _ T R _ I A N G L E A R E A = 0 . 1 2 4 9 9 4 6 9 E 0 6 

G E 0 M O R P_HC M E X R Y J 

M I N I M U M E L E V A T I O N = 3 0 . 4 8 L O C A T E D A T P O I N T N U M B E R 2 2 5 

M A X I M U M E L E V A T I I N = 8 5 3 . 4 4 L O C A T E D A T P O I N T N U M B E R 1 1 3 

L O C A L R E L I E F 3 2 2 o 9 6 

H Y P S O M E T R I C I N T E G R A L = 0 . 4 1 9 1 4 

M E A N S L O P E : 

U N W E I G H T E O * " 0 7 3 2 4 4 4 " 

W E I G H T E D B Y M A P A R E A = 0 . 3 2 4 4 5 

W E I G H T E D B Y T R U E - A R E A - 0 . 3 3 4 9 5 

A R E A R A T I O = 1 . 0 6 5 2 4 

V E C T O R A N A L Y S I S : 

U N W E I G H T E C I U N I f V E C T O R S ) : 

O R I E N T A T I O N 

D I P * 

11%) 

K ' " " " ' " ~ " " " ~ = 

1 0 0 / K 

R O U G H N E S S F A C T O R * 

W E I G H T E D B Y T R U E A R E A : 

O R I E j N T A T I Q N _ = _ 2 6 3 _ . 8 0 

D I P ' ~ ~ ~ " ~ = " 8 3 . 3 0 ' 
11%) = 9 3 . 9 0 

R O U G H N E S S F A C T O R * 6 . 1 0 

2 6 6 . 8 0 

8 8 . 7 7 

_ 9 4 ° 2 0 

1 7 . 2 0 

5 . 8 1 

5 . 8 0 



OON A R I V E R ( S A M P L E 4 1 ) : O R I ! . ) , 

- 1 7 1 -
N E - S W D I A G O N A L S 

G E N E R A L 

NUMBER O F P O I N T S 2 2 5 

0, 
NUMBER O F T R I A N G L E S = 
T O T A L A R E A 
P E R C E N T L A K E S_ + _SEA_=_ _ 
N U M BE R " F O R "A N A L Y S I 3 = " " 
A R E A FOR A N A L Y S I S = 0 
MEAN T R I A N G L E A R E A = 0 

3 9 2 
4 3 9 9 7 9 3 6 E OS 

0 . 0 
39 2' 

4 8 C 9 7 9 3 6 E 0 3 
1 2 4 9 9 4 6 9 E 0 6 

G E O M O R P H C M E T R Y : 

M I N I M U M E L E V A T I O N 
MAXIMUM E L E V A T I O N 

3C< 
95 3, 

A3 
44 

L O C A T E D 

L O C A T E D 

A T 

A T 

P O ! NT 

P O I N T NUMBER 1 1 3 

L O C A L R E L I E F 
H Y P S O M E T R I C I N T E G R A L 
MEAN S L O P E : 

U N W E I G H T E D 
W E I G H T E D BY MAP A R E A 
W E I G H T E D BY T R U E A R E A 

3 2 2 . 9 6 
0 . 4 2 C C 2 

0 . 3 26 32 
0 , 3 2 6 3 4 
0 . 3 . 3 6 3 8 

A R E A R A T I O 1 . 0 6 5 33 

V E C T O R A N A L Y S I S : 

U N W E I G H T E D . U N I T V E C T O R S ) : 
O R I E N T A T I O N = 2 6 3 . 9 2 
D I P 8 8 . 3 0 
LIZ) 9 4 . 1 8 
K 1 7 . 1 3 
1 0 0 / K 5 . 8 4 
R O U G H N E S S F A C T O R * 5 . 8 2 

W E I G H T E D BY T R U E A R E A : 
O R I E N T A T I O N =_ 26_3_.3_0 
DI P " • = . 3 8 . 3 0 
11%) = 9 3 . 8 9 
R O U G H N E S S F A C T O R * 6 . 1 1 


