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* Abstract

Topographic information can be digitized in several ways. Sampling may
be surface-random (points selected according to partially or completely arbitrary
criteria) or surface-specific (points selected according to their topographic
significance). Surface-random sampling includes grids, contours, and randomly-
located points. In this study, grid sampling and surface-specific sampling are
compared. Surfc.:ce behavior between sampled points is assumed to be linear.

All aspects of surface form can be considered to reflect surface roughness.
Horizontal variation includes the concepts of texture and grain, while vertical
variation is discussed under relief. The relationships between these are embodied
in slope and the dispersion of slope magnitude and orientation. The distribution
of mass within the elevation range of a topographic surface is described under
hypsometry. Parameters for investigation are selected from these categories.

The variation of some selected geomorphometric parameters in southern
British Columbia is examined via a stratified random sample consisting of forty-
two 7 x 7 km areas. The values of some of these paramefers are used to group
the samples, and six are chosen for more detailed analysis. The relationships
among the variables are examined using correlation analysis.

For four geomorphometric measures (local relief, mean slope, roughness
factor, and hypsomefrié 'infegral), the theoretical errors involved in estimating
the measures from the two selected ferrain storage methods are discussed. The
surface-specific point samples should produce better results than grids of
reasonable densities. The latter, however, should require less digitization time
and computer storage space per point. For at least local relief and hypsometric

integral, grid error should be a linear function of grid spacing.



Results of empirical comparison of the methods over the six selected
areas are presented. The average surface-specific point aatq set is found to
require some 2.6 times as much digitization time and 3.1 times as much computer
storage space as the 15 by 15 grids used in the comparison. Computed estimates
obtained from both of these data bases are presented for each of the four selected
parameters, together with other estimates (obtained manually) in some cases .

The average errors for the methods are found to differ significantly for local
relief and mean slope but not for the hypsometric integral; for all three measures,
the grids produce larger mean errors. The assumption of a linear relationship
between grid spacing and grid error is used to estimate the grid spacing which
would be required to produce the same average error as the surface-specific
points. For the three parameters used, these hypothetical grids are calculated

to require more computer storage space and digitization time than the surface-
specific point data sefs.

The influence of the density of surface-specific points and of base map
scale appear to be related to the topographic texture. For a reasonably
experienced terrain analyst, the reproduceability of these data sets appears to
be good, although there remains a subjective element in point selection not
present for grids. It is concluded that for a given amount of digitization time
or computer storage space, better estimates of geomorphometric parameters can

be obtained using sets of surface=specific points than using regular grids.
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Preface

When the current ﬁroiecf was begun, it was the writer's intention to
develop a computer system for the analysis and classification of terrain from
topographic map data, with the specific aim of eventually producing a
quantitative physiographic map of British Columbia. Some theoretical and
empirical analyses (reported herein in Chapter 5) revealed that estimating
geomorphometric parameters from a regular grid could introduce considerable
error. The thesis objective was therefore redefined to become an investigation
of the relative merits of grids and of alternative computer terrain storage systems.
The results may be considered to represent a pilot study for the eventual
realization of the original objective.

Throuéhout this study, the writer has benefitted greatly from discussions
with his thesis supervisor, Michael Church. He and J. Ross Mackay read and
commented upon drafts of the entire thesis, while Thomas K. Peucker has
reviewed certain sections. Michael C. Roberts and H. Olav Slaymaker have
also provided helpful advice. Financial support was primarily provided by the
Department of Geography, University of British Columbia, in the form of
Teaching Assistantships. Some support was also obtained from the "Geographical
- Data Structure" project, Geographical Branch, Office of Naval Research,
Project NONR 710-100, principal investigator Thomas K. Peucker, Department
of Geography,- Simon Fraser University. . Computer time was provided through

the Department of Geography, University of British Columbia.



Chapter 1: Introduction

Geomorphometry, which has been defined by Chorley et al. (1957,

p. 138) as the science "which treats the geometry of the landscape,” attempts
to describe quantitatively the form of the land surface; it is a sub-discipline of
geomorphology. Evans (1972, p. 18) distinguished specific geomorphometry,
which measures the geometry of specific types of landforms (see for example the
work of Troeh, 1964, 1965, on "landform equations"), from general geomorpho-
metry, "the measurement and analysis of those characteristics of landforms which

' In much of the geomorphometric

are applicable to any continuous rough surfccé.'
literature, it has been claimed that the drainage basin represents "the fundamental
geomorphic unit" (notably Chorley, 1969; see also Leopold e_f'gl. , 1964;
Williams, 1966). This view was taken to an extreme by Connelly (1968), who
in a discussion of terrain statistics stated that "although it is an oversimplification
it is certainly a valid approximation to attribute all land forms to the fluvial
erosion of uplifted rock masses" (p. 78). He stated that this assumption was
necessary in order to develop "a unified framework for landscape geometry."
Since about one third of the earth's land surface was glaciated during the
Pleistocene (cf. Flint, 1971, p. 19), and as other processes such as fluvial
deposition, or aeolian, volcanic, or periglacial action have also influenced
large areas, it is the writer's opinion that a "unified framework" could only be
produced if no single process is assumed. Furthermore, the specific approach
can only be applied once an area of the earth's surface has been identified as a
drainage basin, an alluvial fan, a drumlin, et cetera.

The object of this study is to investigate the use of computer-stored
topographic information in the evaluation of geomorphometric parameters.
Computers have been widely employed in both geography and the earth sciences,

and geomorphology has not been an exception. A recent book edited by Chorley



-2-

(1972) attests to the fact that spatial aspects of land surface form have received
much attention. While computers have been used in geomorphometry, there
have been few attempts to store topographic surfaces in computers and then to
perform detailed quantitative analyses of land surface form. Exceptions are the
works of Hormann (1969, 1971), who approximated land surfaces with sets of
contiguous triangles, cnd' of Evans (1972), whose work was based on regular
square grids ("altitude matrices"). Neither of these works studied the comparative
accuracy, precision, and efficiency of computer terrain storage methods, the
differences between computer estimates and "standard" methods for estimating
geomorphometric measures, or the relative digitization (data gathering) times
and computer storage requirements. It is the purpose of this study to review
various computer terrain storage systems, and to compare the triangle and grid
methods noted above. The comparison will be based on the estimation of a
group of landform parameters selected after a review of many such measures.
For the reasons cited above, emphasis will be placed upon general geomorpho-
metric parameters, although some attention will be directed toward measures
based specifically upon landforms of fluvial activity, probably the most
important single class of processes which has shaped the earth's surface. All
examples used in the comparisons will be drawn from topographic maps of that
part of British Columbia which lies south of 54 degrees latitude, mostly from
1:50,000 scale maps. Since all topographic data used in this study will be
derived from contour maps, it seems in order to discuss briefly the precision of
topographic map information.

1.1: Precision of Topographic Map Data

Boesch and Kishomoto (1966) expressed elevation errors in terms of
root-mean-square errors, herein designated s_. For example, they stated that

survey s values for triangulation points are generally less than 0.5 m horizontally
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and 0.1 m vertically (pp. 9-10), while root-mean-square errors in map plotting
range from 0.01 to 0.3 mm on the map (p. 12). For a 1:50,000 scale map, this
would represent 0.5 to 15 metres on the ground. Boesch and Kishomoto stated
that contour precision has two aspects: "(1) the positional error of a point on a
contour, and (2) the height error of a point whose elevation is determined (or
read) from the nearest confours by interpolation” (p. 14). They presented a graph
of allowable standard deviations in metres as functions of ground slope for

various countries and map scales (their Figure 2).

Thompson and Davey (1953, p. 40) cited the accuracy specifications of
United States Geological Survey topographic maps as:

. Vertical accuracy, applied to contour maps on all publication
scales, shall be such that not more than 10 per cent of the elevations
tested shall be in error more than one-half the contour interval. In
checking elevations taken from the map, the apparent vertical error
may be decreased by assuming a horizontal displacement within the
permissible horizontal error for a map of that scale.

' They used the 90 per cent criterion in conjunction with a table of ordinates of
the normal curve to estimate the allowable s, value as about 0.3 fimes the
contour interval. The conversion of horizontal errors into vertical ones involves
the tangent of ground slope.

Standards for Canadian fopographic maps do not appear to be as well
defined. W.A. Williamson (pers. written comm., 1972) stated that the
Canadian Surveys and Mapping Branch designs its maps so that "on Class A maps
the contours are accurate to one-half a contour interval." If it is assumed that
this represents a 95 per cent confidence level, the ordinates of the normal
curve can be used to estimate the allowable root-mean-square height error as
0.255 times the contour interval. Williamson also stated that for Canadian

Class A maps, points are to appear within 0.5 mm of their true positions as map

scale -- this would represent 25 m on the ground for 1:50,000 scale maps.
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Following Thompson and Davey's (1954, p. 43) approach, but using this scale
and a 100-foot (30.5 m) contour interval, the root-mean=-square error for the
maps used in this study should be given by:

se="f.(7.8+25.0 tan 3 ) metres (1.1

where 8 is the ground slope.

Another possible source of contour error is the generalization required
when smailler scale maps are compiled from larger scale ones. Pannekoek (1962)
discussed this, and stated that in some cases, contours should be "moved aside"
in some valleys or along coasts in order to "make room" for cultural features
such as roads and railways. This should not be a factor in the present study, as
the map series used herein is now compiled "at publication scale" (Williamson,
pers. comm.), and was formerly compiled for only a 20 per cent reduction.

Errors or inconsistencies in the portrayal of the drainage net on maps
may present problems in estimating drainage parameters. This problem has
received more attention than has the precision of relief estimates (cf. Morisawa,
1957; Giusti and Schneider, 1965; Eyles, 1966; Gregory, 1966a, 1966b;
McCoy, 1971). Most of these writers found that the "extended drainage network’,
that is, the network formed by extending streams along contour crenulations,
was more closely related to the drainage net determined in the field or from
aerial photographs than was the "blue line network" printed on the maps (see
Morisawa, 1957; Eyles, 1966). Other authors (notably Gregory) argued that
the use of the extended network might lead to the inclusion of former channels
not now part of the drainage system, such as "dry valleys" in karst areas or
former glacial meltwater channels. Because drainage net parameters do not form
an important part of the present study, analysis will be simplified through the

use of the "blue line" stream network shown on the topographic maps.



1.2: Notation

Throughout this paper, terms and symbols are defined where they are first
introduced. In addition, a complete listing of all symbols used will be given in
Appendix |. Where there are "standard" symbols for variables, these will be
used unless ambiguity would result. Furthermore, x and y are reserved fo indicate
geographical location, z elevation above sea level, N a number of objects or
occurrences, D a density value, r a correlation coefficient, and s a root-mean-
square valve. The metric system of units is employed throughout, with British
units being given in some instances. - Elevations obtained from the maps were in

feet, but were converted to metres before analysis.
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Chapter 2: Computer Terrain Storage Systems

Topography can be considered to be a continuous surface, and thus even
a small area contains an infinite number of points; the number of points which
can be measured is limited by the resolving power of one's instruments and not
by the surface itself. Since it is generally not possible to specify the land
surface completely, the usual objective of computer terrain storage systems is to
obtain a "satisfactory" representation of the surface which will minimize both the
effort required to obtain the data and the computer storage fequiremenfs, while
at the same time maximizing the efficiency with which some particular type of
processing may be performed. In the present study, the 'processing" involves
the estimation of some geomorphometric parameters. The problem is really two-
fold: one aspect involves the collection of topographic information from maps
or other sources, while the second relates to the storage, retfrieval, and processing
methods employed.
2.1: Digitization

Digitization can be defined as the process by which "analog measures",
such as length or location on a map, are converted into "digital, computer-usable
form" (Peucker, 1972, p.72). Two distinct digitization strategies are available:
one involves sampling at surface-random points or lines, while the other uses

surface=specific points or lines. . In the surface-random approach, the points

sampled are not selected on the basis of surface form but according to some
partially or completely arbitrary set of criteria. - Randomly-located points are
obviously surface-random, but points selected using equal increments in the x-
and y-directions (grid sampling) or equal increments in elevation (contours) are

also generally random with respect to the surface.  When surface-specific points

or lines are used, knowledge of the form of the surface being sampled (usually

obtained by a visual inspection of a contour map or of the land surface itself)
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is used to select points or lines which contain a maximum amount of information.
These include peaks and pits, passes, ridges and course lines, and breaks of

slope.

2.2: Surface-random Sampling: GCrids

The most widely used method for storing and processing three-dimensional
surfaces is probably the square grid, also known as the "altitude matrix" (Evans,
1972, p. 24), or as "both a digital terrain model and a numerical map" (Connelly,
1972, p. 92). Sample points are located at the intersections of two orthogonal
sets of regularly-spaced parallel lines. - Only the altitude of the surface af each
sample point must be measured and stored within the computer -- the geographical
locations are determined by the grid spacing, and are implicit in the sequential
position of the altitude value within the computer storage array. A wide variety
of computer programs for the processing of gridded data is available. Another
advantage lies in the fact that the neighbours of a given data point, which are
often required in the calculation of geomorphometric parameters, can be readily
obtained, once again from the positions of points within the computer array.

The principal disadvantage of the regular grid is its tendency toward
redundancy -- the grid must be made sufficiently dense throughout to portray
the smallest objects which must be shown anywhere within the area covered by
the grid. According to Tobler (1969, p. 243), the sampling theorem states
that "if a function has no spectral components of frequency higher than W, then
the value of the function is completely determined by a knowledge of its values
at points sioc:ced 1/2 W apart." Thus a regular grid with a grid spacing d can
only be expected to depict those variations of the surface having wavelengths
of 2d or more. If the smallest significant wavelength of object one wishes to
detect or portray anywhere within a study area is of size ("wavelength") S, then

the grid spacing everywhere must be 1/2S or less. "Smoother" sub-areas of the
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study area will then contain far more points than are needed to portray their form.
To improve the "resolution” of a grid by a factor f, the grid spacing must be

decreased by this factor -- the total number of data points is increased by a

factor of f2

Tobler and Davis (1968) described a number of regular grid data sets of
various types of terrain which together form a "digital terrain library". Because
of the wide application of this terrain storage method, the larger number of
gridded terrain samples already collected, and the number of computer programs
available, this method will be examined intensively in later chapters.

At least two other grid approaches have been used: one is a "regular

triangular grid", while the other was termed the "variable grid" method by
Boehm (1967, p. 404). The regular triangular grid has some advantages over the
square grid approach. - Each point has six neighbours which form a regular
hexagon, and Mackay (1953) discussed how this form of data collection avoids
the "saddle point problem" which sometimes arises in attempting fo draw
isopleths based on a square grid. The advantage in this regard is probably out-
weighed by the increased complexity involved in indicating geographical
location implicitly in the computer storage allocation. Most of the drawbacks
of the regular square grid would also apply to a regular triangular one.

In the variable grid method, a "master"” regular grid is used, but in
rougher areas, denser regular grids are applied; the redundancy of the denser
grid in smoother parts of the surface is thus avoided. Some preliminary analysis
would be required to determine the areas in which a denser grid should be used,
and how dense it should be. [f the smallest significant terrain wavelength
within each sub-area can be estimated, the sampling theorem discussed above

can be used to determine the required grid spacing. This implies some knowledge

of the surface form before the data are collected, and thus the variable grid
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method is not completely "surface-random", although the exact locations of
the data points remain so.

There is some disagreement as to the relative merits of completely random
sampling of a surface, in which the locations of the sample points are random,
and of the type of "surface-random" sampling represented by regular grids.
Strahler (1956, p. 589-592) considered the "random co-ordinate method" and
the regular grid for sampling surface slope. He stated that:

"It might be supposed that a regularly distributed sample would give

coverage more uniformly representative of the entire area and would

be superior to the random co-ordinate method. According to
statistical principles, however, this grid sample is unsatisfactory

because variance cannot be computed simply." (p. 591)

Since even the regular grid points are random with respect to such surface
characteristics as elevation and slope, the writer cannot understand why the
variance of slopes for 100 gridded points cannot be determined in exactly the
same way as for 100 randomly-located ones. - Strahler also noted that the grid
might produce a systematically-biased sample if the grid lines happen to be
aligned parallel to linear features in the topography, such as ridges or valleys.
This latter argument was also put forward by Haan and Johnson (1966, p. 124)
with reference to the sampling of elevations to be used in the construction of
hypsometric curves. Because of their inherently uneven distribution, however,
randomly-located points might also produce biased sampling, although the bias
will not be systematic —- there will simply be more data points in some parts of
the study area than in others.

W.D. Rase (personal oral comm., 1970; pers. written comm., 1973)
investigated the relative "information contents" of randomly-located and gridded
elevation samples; this unpublished study represents the only quantitative

comparison known to the writer. Three surfaces were first represented by 150 x

150 grids; the surfaces were a plane, a fourth-order polynomial, and a 23.7 km
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square topographic sample from the Lake Louise 1:50,000 scale map sheet
(grid spacing about 160 m). Samples of between about 100 and 500 points were
taken from each of these populations of 22,500 points in three ways -=- random,
"systematic stratified aligned" (regular grid) , and "systematic stratified unaligned"
in which the rows and columns of the grid were nof aligned with the co-ordinate
axes. 50 x 50 grids (2,500 points) were then interpolated from these samples
using the SYMAP program (see section 2.5), and these were compared with the
corresponding points from the original data sets using various simple statistical
measures. Figure 2.1 plots the coefficient of determination against sample size
for each of the nine cases examined by Rase. For each surface, the two systematic
approaches (grids) produced considerably better results than the random co-ordinate
method; the aligned samples tended to give somewhat better results than the
unaligned systematic samples. This evidence strongly suggests that grid samples
provide a "better" representation of a surface than do random co-ordinate
samples, and appears to refute the unsubstantiated claims of Strahler (1956) and
Haan and Johnson (1966). Of course, the actual values of the coefficients of
determination shown in Figure 2.1 are at least in part dependent upon the
particular interpolation model chosen to generate the 50 x 50 grids (see section
2.5). Furthermore, the problem investigated by Rase was not the same as those
investigated by the other authors.

From the point of view of computer storage, the random co-ordinate
approach would have the added disadvantage that all three co-ordinates of each
point must be specified and stored -- the advantages of implicﬁ geographical

location and implicit neighbours which hold true for grids are lost.
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systematic stratified aligned) applied to three surfaces of varying

complexity (after W.D. Rase, unpublished study).
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2.3: Surface-random Sampling: Digitized Contours

Contours represent another way of sampling and storing a terrain surface.
It must be noted that the elevations of the contours are fixed by sea level (or
other datum) and the contour interval, and are thus random with respect to
surf!ace features. On some maps, supplementary contours or spot elevations
are used to provide the map user with additional information. The storage of
topography through the use of digitized contours is of particular interest in light
of recent developments in automated compiling and drafting of topographic maps.
As the contours are determined using stereoplotters and plotted automatically,
the succession of points along the contours could readily be stored on tape and
made available for geomorphometric processing. - Evans (1972, p. 23-27)
discussed the relative merits of digitized contours and of altitude matrices. He
noted that while the former method is superior if one wishes to know the locations
of all pints of a certain height, it is inferior if one wishes to know the elevation
at a given location. Since the latter sort of question arises much more often in
geomorphometric snalysis than the former, it would seem that digitized contours
are less suitable for geomorphometric analysis than are regular grids. More
storage space is required per point, since only the elevation can be indicated
implicitly, and two values per point must be explicitly stored. Boehm (1967)
described a "contour tree ordering method" for storing surface information; this
method is said to be more efficient in problems where "successive specified
points are correlated, such as in line-of-sight calculations” (p. 405) than would
be a storage of contour points sorted by x co-ordinates. Boehm's work will be
discussed further in section 2.7,

Computer programs are available for determining slope steepness and
aspect directly from contour data (see section 3.4.2); routines for producing

contours from grids are widely available, and the inverse process, that is,
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producing grids from digitized contour data, is also possible. These processes
would both involve interpolation, and the choice of the interpolation model
(section 2.5) would influence the results.

2.4: Surface-specific Sampling: Points and Lines

Surface-specific points can be defined as "points which furnish more

information about the surface than only their co-ordinates" (Peucker, 1972,
p. 23). These were termed "significant topographic points" by Hardy (1971,
p. 1907). Surface-specific points include peaks and pits (maxima and minima,
respectively, on the surface), passes or saddle points, stream and ridge junctions,
and points where there are significant changes in the directional trends of surface-
specific lines. (See Figure 2.2.) These lines include ridges, course lines, and
breaks of slope. There has been some work on the relationships among and links
between various types of surface-specific points and lines on continuous,
contihuously-differentiable surfaces. This was begun by Cayley (1859) and
Maxwell (1870), and revived by Warntz (1966, 1968). Since both Peucker
(1972, p. 24) and Woldenberg (1972, p. 327-330) have recently reviewed this
work and as it is not directly relevant to the current research, no summary will
be included herein.

The writer knows of no work on the relative "information contents" of
surface-specific and surface-random points; Peucker (1972, p. 72), however,
claimed that "surface-specific points have a higher information content than

' Fewer of these should be required fo define a surface

surface-random points."

to a given level of precision, but there is no evidence to suggest how many fewer.
Surface specific points require more storage space and digitizing time

than do an equivalent number of grid points, since all three co-ordinates must be

explicitly determined and stored. There is an element of subjectivity in the

selection of surface-specific points and, furthermore, neighbours cannot easily

be determined from the points alone.
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Figure 2.2: Map to illustrate types of surface=specific points and lines.
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2.5: Surface Behavior

However the sample points -are chosen, one must make some assumptions
about the behavior of the surface between the data points. Sometimes these
assumptions are based on a theoretical or empirical knowledge of the actual
surface behavior, but more often they are arbitrary.In this study only interpolating
' surfaces, i.e., surfaces which pass through all the data points, will be considered;
approximating surfaces (known as trend surfaces), which do not necessarily pass
through all the points and which are thus "smoother” than the original data,
have also been applied to topography.  These works have mainly been involved
with attempts to determine the forms of former "erosion surfaces" now represented
only by hilltops (cf. . King, 1969; Monmonier, 1969; Rodda, 1970; Tarrant,
1970). Bassett and Chorley (1971) computed trend surfaces based on 15 x 15
grids of terrain elevations in an attempt to determine different scales of variation
of the topography. Such work, while interesting, is beyond the scope of the
present study.

As mentioned above, interpolation usually involves an arbitrary
assumption about the behavior of the surface between data points.. Robinsoﬁ
(1960, p. 186-7) stated the "standard" cartographic assumption that, in
de’rer;nining the positions of isarithms from control points, linear interpolation
should be used "wher'; no evidence exists to indicate a nonlinear gradient between
control points." Peucker (1972, p. 25) noted that linear interpolation, in
particular the representation of a surface by a contiguous non-overlapping set
of triangular planes, "represents the simplest, fastest, and often the least
misleading interpolation method." Peucker goes on to point out, however, that
such surfaces hdve discontinuities in the first derivative (i.e. ,have"breaks of
slope") which may produce an "unpleasant” appearance in block diagrams or

contour maps. Perhaps for this reason, most computer algorithms for producing
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dense regular grids from a less dense sample of points, (e.g. UBC XPAND;

SYMAP) use an inverse-distance-squared weighted average of the heights of a
number of surrounding data points. Since distance is deferrﬁined using Pythagoras'
Theorem, use of the squared distance in weighting elevations eliminates the

need for a square-root determination, reducing computer processing time. A
surface thus produced is continuous in the first derivative and therefore appears
"smooth". A general interpolation formula may be expressed as:

: 1
5= /D — 2.1)
I [

r4

Cip i i
where z; is the height to be determined, the zi the elevations of neighbouring
points, and c. i the distance between points i and j. For linear interpolation,

B =1, while in the more common interpolation algorithms discussed above,p = 2.
There has been little if any research into the effect of B -values on surface
behavio;'; Figure 2.3 illustrates the influence of these values on the form of a
surface between data points. This diagram suggests that different B -values may
be appropriate for different types of terrain. In the absence of any work on
optimal B -values, the linear assumption, i.e., ap-value of one, will be used
in this study.

If data are in a square grid, triangular planar facets for determining
slope or other parameters can be produced in two different ways. In one
approach, one set of diagonals is arbitrarily inserted. Turner and Miles (1967,
p. 260) determined a roughness parameter for the two orientations of diagonals
and found very little difference in the results. Alternatively, additional points
in the centres of the grid squares may be interpolated by averaging the four

surrounding points and used to form triangles. This is done in some contouring

programs in order to avoid the "saddle point problem" discussed in section 2.2.
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Figure 2.3: Form of the interpolated surface between two data points

(circles) for various exponents in the general interpolation

formula (see equation 2.1).
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2.6: Computer Storage of Terrain Information

There are a number of possible approaches to the storage of numerical
terrain information. Most simply, the data may be stored directly, as a matrix
of elevations for gridded data, as lists of x and y co-ordinates for digitized
contours, or as all three co-ordinates for surface-specific points. The surface
between the points would then be determined during the processing stage after
retrieval. In the case of irregularly-distributed points such as surface-specific
points, however, processing will be much more efficient if the neighbours of
each point are indicated in some way -- as already noted above, this is not
required for gridded data. - This can be achieved in at least two ways. Hormann
(1969, 1971) stored the identification number and co—ordina’reé for each point.
He then listed all the neighbours (by identification number) for some arbitrarily-
chosen starting point. Next, for each of these neighbours, all adjacent points
excluding the starting point are given, and the procedure is continued until
every link between neighbours has been included exactly once. During
processing, the computer forms triangles, beginning at the arbitrary starting
point. If all neighbours of any particular point other than the first one are
required, all previous pointer lists would have to be searched. In the basic
storage system of the Geographical Data Structure | (GDS), all neighbours of
every point are included in that point's pointer list, making it easier to find
any point's neighbours. This makes searching through the data structure easier
than in Hormann's version but requires more storage space as each link appears
in two pointer lists. This storage method is herein termed the "pointer mode"

of the GDS.

1 Geography Branch, Office of Naval Research, Task No. 710-100, Department
of Geography, Simon Fraser University, Burnaby, British Columbia, T.K.
Peucker, principal investigator
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Another approach is to store the point numbers and co-ordinates, and
then to store a list of triangles, each recora containing the triangle number and
the identification numbers of the three points making up its vertices == this is
termed the "triangle mode" of storage. Other characteristics of the triangle
could also be indicated. This form of data organization is somewhat easier to
prepare, and is also more efficient for "triangle-by-triangle" processing
required for most geomorphometric analysis. The triangle mode was used by
Akin (1971), with elevations replaced by precipitation values, in the calculation
of the mean areal depth of precipitation. The triangle mode should be far less
efficient for searching through the data structure than would be the pointer
mode; computer routines for producing one data structure mode from the other
are currently being developed under the GDS project. The project is also
developing methods for determining the neighbours of a set of surface-specific
points given only the boinrs' co-ordinates.

It is possible to produce a regular grid from a set of surface-specific
points by interpolation (equation 2.1). The results will be influenced by the
choice of the B-value; the appropriateness of the P -value of 2 used in most
interpolation algorithms is suspect.

Yet another approach to numerical terrain storage is to find an explicit
mathematical function or set of functions which either interpolate or approximate
the surface. The coefficients of the equations, rather than the points themselves, .
would be stored, and could be based on gridded or non-gridded data. Such |
equations can usually be differentiated, the results being equations of surface
slope over the area. If a constant elevation is subtracted from the equation,
the root of the resulting equation will give the confour of that elevation. Junkins
and Jancaitis (1971) found that this approach was an order of magnitude more

efficient than the method of evaluating the surface equation at a large number of
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grid points and then using "standard" grid contouring methods. The latter
approach was used in fhe. same context by Hardy (1971, 1972). The functions
can also be integrated over the study area to determine the volume under the
surface, which is of geomorphometric interest. Once again, however, there
are often arbitrary assumptions about surface behavior; also, Hardy's method
requires that the data points and one coefficient per point be stored, resulting
in little saving of storage space, although processing may be spleeded up.

2.7: Comparisons of Approaches |

Boehm (1967) compared five methods of surface storage: contour points
sorted in the x-direction (CS), "contour tree ordering" (CT), uniform grid (UG);
uniform grid-differential altitude (UGDA), and variable grid-differential
altitude (VG). "Differential altitude" means that altitude differences between
neighbours rather than absolute altitudes are stored. Boehm presented an
extensive table (his Table 1, p. 410) of "performance estimates" for the various
methods. He H;en applied them to a problem in intervisibility between points
on the surface, determining both storage requirements and processing speed.

The grids were most efficient in terms of processing speed, with the uniform grid
the best, while the variable grid required the least storage. Some other com-
parisons of methods have already been cited above.

2.8: Conclusions

As Boehm (1967, p. 414) stated, "one cannot discuss the relative
efficiencies of tabular represen’ratic;n methods without reference to the problem -
being solved." Thus the results of studies by Rase (see Figure 2.1) and Boehm
(see above) are not directly applicable to the problem considered here, that is,
the estimation of some selected geomorphometric parameters. These parameters
will be selected after a review of many such measures in the next chapter. The
terrain sampling and storage methods compared will be the regular grid (altitude

matrix) and an approach based on surface-specific points. The regular grid is



-21-

representative of various methods of surface-random sampling, and these
two approaches are the only computer terrain storage systems which have
been applied to problems of general geomorphometry (c f. Evans, 1972;
Hormann, 1969, 1971).  As noted above, surface behavior between data

points will in both cases be assumed to be linear.



-22-

Chapter 3: Geomorphometric Parameter

In this chapter, an attempt will be made to review a considerable
number of geomorphomeiric parameters in such a way as to produce a rational
classification of these measures. Atftention will be focussed upon fwo poinfs:
the amenability of the parameters to measurement based upon the computer
terrain storage systems discussed above, and the probable geomorphic
significance of the measures. No attempt will be made fo review papers
approaching landscape analysis through a set of landform "elements", "units",
or "facets" (examples of this approach include: Van Lopik and Kolb, 1959;
Lebedev, 1961; Conacher, 1968; Speight, 1968; Thomas, 1969; Wong, 1969;
Gerenchuk et al., 1970) . In cases where the units were based upon
quantitative landform parameters (e.g. Speight, 1968), only the parameters will
be discussed. Similarly, graphical analysis methods will be reviewed only
. where they are related to important geomorphometric parameters.

Chorley (1969, p. 78) proposed that characteristics of drainage basins
and drainage nets could be divided into geometrical properties, which involve
the relationships among dimensional properties such as elevations, lengths, areas,
and volumes, and topological properties which relate numbers of objects in the
drainage net (for example, the bifurcation ratio). The latter properties will
not be considered herein.

All measures of land surface form can be considered to be in some way
representative of the "roughness" of the surface. This discussion will thus begin
with a discussion of the general concept of roughness before proceeding to actual

geomorphometric parameters.
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3.1: The Concept of "Roughness"

In a general sense, roughness refers to the irregularity of a topographic
surface. Stoné and Dugundiji (1965) and Hobson (1967) observed that roughness
cannot be completely defined by any single measure, but must be represented by
a "roughness vector" or set of parameters. One area may be rougher than another
because it has a shorter characteristic wavelength (finer grain or texture), a
higher amplitude (relief), an irregularity of ridge spacing, or sharper ridges
(see Figure 3.1). Stone and Dugundji, in a study of microrelief profiles, used
" five measures, while Hobson computed 9 other measures based on three different
"roughness concepts".

It is convenient to discuss terrain roughness by analogy with combinations
of periodic functions or specfra of the terrain. Evans (1972, p. 33-36) reviewed
some of the attempts to analyze topography usfng spectral analysis explicitly.

He observed (p. 36) that in practice this has not been very successful, because
valleys often curve, and they converge downstream, while valley spacing within
an area is seldom regular. The general ideas of wavelength and amplitude are
useful, however, and geomorphometric measures will be discussed in this context.

The significant wavelengths of the topography are termed grain or texture, while

the amplitudes associated with these wavelengths correspond to the concept of

relief. The relationship between the horizontal and vertical dimensions of the

topography is embodied in the land slope and the dispersion of slope magnitude

and orientation, while the vertical distribution of mass under the topographic

surface is contained in the concept of hypsometry.
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Figure 3.1: Forms of surface roughness. B, C, D, and E are "rougher"
than A in some respect. B has a shorter wavelength,
C a higher amplitude, D an irregularity in spacing, and

E a "sharper" form.
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3.2: Texture and Grain

Texture and grain are terms which have been used to indicate in some
way the scale of horizontal variations in the topography. These terms have

been used in different contexts, and this difference is preserved if texture is

used fo refer to the shortest significant wavelength in the topography and grain
used for the longest significant wavelength. Texture is related to the smallest
landform elements one wishes to detect, and grain to the size of area over
which one measures other parameters.
3.2.1: Grain

Wood and Snall (1960, p. 1) defined grain as "the size of area over
which the other factors are to be measured. It is dependent on the spacing of

' Grain was

major ridges and valleys and thus indicates texture of topography .
calculated By determining the local relief within concentric circles around a
r.andomly—located point. Relief was plotted against diameter and, according to
the authors, there will generally be a "knick point" in this curve -- the
diameter at this knick point wiil be the grain (G). Wood and Snell used
diameter increments of one mile, and suggested that if there is no knick point,
relief values for the diemeters of circles centred at a number of points should

be determined and averaged; "this téchnique will produce a definite knick
point so that no doubt remains as to the grain size " (p.5). They (p.6) noted
that the method is not very precise, but believed that it was better than
measuring parameters such as relief for a sfcndard.arbifrary area. In the present
study, "grain" is also used less formally to refer to the longest significant
topographic wavelength. Other parameters should be sampled over areas

larger than or equal to the grain size in order to obtain representative

values.
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3.2.2: Texture

As noted above, the term texture is herein applied in a general sense

to refer to the shortest significant topographic wavelength. This should
determine the grid spacing for grid sampling or the size of the triangles for
surface-specific point sampling. The word "texture" has been used for a

specific geomorphometric parameter. . Smith (1950) proposed a texture ratio:

T=N/P (3.1)
where'N is the number of crenulations on the selected contour, and P is the
length of the perimeter of the basin given in miles or fractions thereof" (p. 657).
He "selected" the contour having the most crenulations. . Smith found that the
texture ratio was closely related to drainage density (see below, section 3.2.3)

by the following empirical relationship:

D,=1.658T 11> (3.2)

d
Smith did not give confidence limits for the regression coefficients, but the
closeness of the exponent to one suggests to the writer that the relationship may
in fact be linear. The nearly linear relationship between T and the drainage
density is not surprising, since the inverse of T is closely related to the average
distance between contour crenulations along the selected contour. As each
crenulation represents a stream in the "extended drainage network", the
inverse of T is closely related to the mean distance between channels, which is

in turn the inverse of drainage density.

3.2.3: Drainage Density (Dd)

As already noted, drainage density is closely related to texture.
Drainage density, defined by Horton (1945, p. 283) as the fotal length of stream
channels per unit area, represents a very important geomorphometfric parameter.
It has been found to be closely related to mean stream discharge (cf. Carlston,

1963), mean annual precipitation (cf. Chorley and Morgan, 1962), and
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sediment yield (Abrahams, 1972). It has also been shown to increase with
time on till plains exposed by deglaciation (Ruhe, 1952). Roberts and Klingeman
- (1972) found that the total length of flowing channels at a particular time is
closely related to instantaneous stream discharge. Thus drainage density for
flowing channels only will vary over short periods of time. Evans (1972, p. 33)
suggested that if only high order streams are considered, the inverse of valley
density should provide a useful expression of overall topographic grain, since
the inverse of drainage density is the mean orthogonal distance between chdnnels.
In a method analogous to Wentworth's method for slope estimation
(see section 3.4.1 below), Carlston and Langbein (unpub. 1960; cf. McCoy,
1971) and McCoy (1971) used traverse sampling to obtain a rapid estimate of
drainage density (see section 4.3.4). Other writers have used the numbers of
intersections between the drainage net and fraverse lines directly without
attempting to convert them to drainage density. Peltier (1962) plotted the
number of drainageways per mile against mean slope and showed curves for a
number of climatic or geomorphic regions; all traverse minima were counted,
including closed depressions. Donahue (1972) determined "mean channel spacing”
by counting intersections between the drainage net and a set of randomly-
oriented traverse lines and dividing this into the total length of traverse. He
did not, however, make a correction for the angle of intersection between
traverse line and drainageway (see section 3.4.1). Wood and Snell (1957, 1959,
1960) determined a parameter called "slope direction changes", the total number
of minima and maxima encountered along traverse lines of constant total length.
Since the profile is continuous, maxima and minima must alternate, and the
number of slope diref;:fion changes is twice the number of drainageways, plus or
minus one. It would be possible to convert the data of Peltier, Donahue, and

Wood and Snell to drainage densities for comparison with other studies.
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Another parameter very closely related to drainage density is the
source density (DS), the number of stream sources per unit area (see Mather,
1972, p. 311). Both this and the preceding parameter are very sensitive to the
portrayal of the drainage net. As already noted in section 1.1, there may be
map-to-map inconsistencies in the portrayal of the drainage net, and for this
reason some writers have used the "extended drainage network" formed by
extending stress as indicated by the contour crenulations. This, however,
introduces an element of subjectivity. The quality of the blue-line drainage
net shown on some topographic map from southern British Columbia will be
investigated in the next chapter.

3.2.4: Other Texture Measures

A different measure of surface texture is the number of closed hilltop
contours per unit area, here termed the peak density (Dp). Wood and Snell
(1959) used this as one of their parameters for classifying terrain. They considered
any closed contour (other than a pit) to be a "hilltop". King (1966), in her
application of factor analysis to geomorphometric measures, used two peak
densities: "summit dissection", which was "the number of closed summit or spur
contours" (p. 41), and "valley character”, the number of closed valley contours,
most of which represented drumlins. Swan (1967) mapped "hill frequency" as the
density of hills per square mile. A hill was defined as any summit with two or
more closed contours, or with a difference between top and base elevations of
more than 50 feet (15.2 m). Using a related measure, Ronca and Green (1970)
studied the density and distribution of craters on the lunar surface.

Yet another way of characterizing surface roughness is through an
examination of ridges. Speight (1968) determined ridginess, the total length
of ridge per unit area (analogous to drainage density) and reticulation, which

was a measure of the size of "the largest connected network of crests that
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projected into a sample area” (p. 248). He also used modified two-dimensional
vector anlysis on ridge segments to measure the degree to which the ridges
tended to be parallel.

3.3: Relief Measures

The term relief is used to describe the vertical dimension or amplitude

of topography .. Evans (1972, p. 31-32) noted that the majority of relief
measures depend upon the extreme values of the distribution of elevations, and
would thus be sensitive to rather minor variations in estimations of these heights.
He fhereforé proposed that the standard deviation of altitudes would provide a
more stable measure of the vertical variability of the terrain. He did observe
that "the autocorrelation of altitude admittedly makes range less unreliable

than it is for random variables, since on a continuous surface all intermediate
values between the extremes must be represented " (p. 31), but nevertheless
recommended use of the standard deviation. All of the other papers reviewed
herein have, however, used extreme values to characterize the vertical

dimension.

3.3.1: Local Relief (H)

For any finite area of a surface, the local relief is defined as the

difference between the highest and lowest elevations occurring within that

area. It is important to note that local relief is always defined with respect to
some particular area, and perhaps for this reason has sometimes been termed the |
"relative relief" (cf. Smith, 1935). This measure was apparently introduced by
Partsch (1911), who termed it the reliefenergie, and was first used in the

English language in 1935 in independent papers by Smith and by Huggins (]935).]

1 The former author is generally credited with introducing the concept of local
relief into the English language literature, but Huggins apparently presented
his paper at a professional meeting some months earlier.
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These works, as well as many others (see Table 3.1), determined local
relief for arbitrarily-bounded terrain samples such as squares, circles, or
latitude-longitude quadrangles. In most cases, the size of the sample area was
arbitrary, although Trewartha and Smith (1941, p. 31) stated that "the size of
the rectangle for which relief readings are made appears to need adjustment for
‘the degree of coarseness or fineness of the relief pattern.” They did not
indicate how the appropriate size could be determined. - Wood and Snell (1960)
used a variable sample area size -~ they first determined the "grain" of the
topography (see above, section 3.2.1), and then measured the relief for a
circle with a radius equal to the grain.  Wood and Snell (1957, 1959), Peltier
(1962), and Evans (1972) compared the values of local relief determined over
more than one size of area. Evans (1972, p. 30) pointed out that if the sample
area "is so small (in relation to topographic wavelengths) that it is unlikely to
contain a whole slope, 'relief' becomes simply a measure of gradient;" in order
to make relief "as distinct and non-redundant a variable as possible" (p. 31),
he recommended the use of "fairly large" sample areas. The areas should definitely
be larger than the texture of the topography, and preferably larger than its grain.
- Data from Wood and Snell (1959, p. 9) support Evens' contention -- they found
that the correlation between relief and slope declined as the size of the area
over which they were measured increased. Salisbury (1962) studied the
relationship between relief and slope for glacial deposits, and found the two to
be closely related for older drift sheets, till plains, lake plains, and outwash,
but poorly related on end moraines and sand dunes. This probably reflects the
interaction of sample area size and texture.

In all of the above examples, local relief was determined for arbitrarily-
bounded sample areas; local relief has also frequently been detemined for

drainage basins. The minimum elevation will be the basin mouth, while the
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TABLE 3.1: SIZES OF ARBITRARILY-BOUNDED AREAS OVER WHICH
LOCAL RELIEF WAS DETERMINED BY VARIOUS AUTHORS

_ areg type of # of
authors date (km?) area sizes
Studies using one sample size:
Chen 1947 1.00 square
Harris 1969 1.00 square
Hesler & Johnson 1972 2.59 square
- Swan 1967 3.34 square
Abrahams 1972 7.52 square
Huggins 1935 10.4 square
Donahue 1972 10.4 square
Batchelder 1950 15.0 quad. *
Zakrzewska 1963 23.3 square
King 1966 25.0 square
Kaitanen 1969 25.0 square
Hutchinson 1970 25.0 square
Partsch 1911 32.0 -
Trewartha & Smith 1941 34.0 quad.
Smith 1935 65.5 quad.
Hammond 1964 93.2 square
Spreen 1947 203. circle
Ahnert 1970 400. square
More than one size used:
Gassmann & Gutersohn 1947 0.251028.0  square 13
Evans 1972 0.63to 62.7  square 18
Wood & Snell 1957, 1959  0.81 to 414.  circle 8
Peltier 1962 2.59 & 259. square 2
Wood & Snell 1960 18.3 to 399. circle 7

* quad. = latitude-longitude quadrangle
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maximum is usually, but not always, located on the basin perimeter. Maxwell
(1960, p. 10-11) defermined the "basin relief" as the "elevation difference
between the basin mouth and upper end of the diameter”, where basin diameter
was determined trhough a complicated set of criteria, but was essentially

"the longest dimension of the basin parallel to the principal drainage line".
Since the size of drainage basins will vary, many workers have found it
desirable to determine a dimensionless "relief ratio" or "relative relief number"
by dividing the relief by some other linear dimension of the basin. The latter
have included the basin diameter (defined above), basin perimeter (Melton, 1957)

and square root of basin area (Melton, 1965).

3.3.2: Available Relief (H,)

The concept of available relief was introduced by Glock (1932), and his

definition was rephrased by Johnson (1933, p. 295) to read: "Available relief is
the vertical distance from the former position of an upland surface down to the

position of adjacent graded streams." Johnson pointed out that this could only
be determined where the original upland surface could be identified from
remnants and where there were "graded" streams. The latter involves the
definition of the concept of "grade", which will not be discussed here. Local,
available and drainage relief are illustrated diagrammatically in Figure 3.2.
Glock stressed the importance of available relief in determining the land profile
but, as Johnson noted, other factors such as drainage density and slope must also
be considered.

In order to determine the average available relief, one would have to
construct both the "original" and "streamline" surfaces (see Pannekoek, 1967,

for a review of methods for constructing such surfaces), and to then divide the

difference in the volumes under these surfaces by the area.
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MAXIMUM ELEVATION

MINIMUM ELEVATION &

Figure 3.2:

STREAM AT GRADFE’ O OTHER STREAM

Hypothetical i'opogrophic profile illustrating various relief
measures. H is the local relief for the entire profile,

H, Glock's available relief, and Hd the drainage relief.
Dury's "available relief" would be the mean height of the

shaded portion.
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A different relief measure was discussed by Dury (1951), who
unfortunately also used the term "available relief”; this was defined as "that
part of the landscape which, standing higher than the floors of the main valleys,
may be looked on as available for destruction by the agents of erosion working
with reference to existing base-levels" (p. 339). He then defined the "mean
available relief" as the average height of the land above the streamline surface,

computed as the difference in volumes under the actual and streamline surfaces,

divided by the area. This is clearly not the same as the available relief defined
by Glock (1932) and Johnson (1933). -Dury (1951, p. 342-3) also discussed the depth of
dissection", which is identical to the Glock/Johnson concept of available relief.

3.3.3: Drainage Relief (Hy)

Glock (1932, p. 75) also defined a measure called the drainage relief

as "the vertical distance through which rain water moves over the ground from
the time the water first strikes the surface until it joins a definite stream."
Johnson (1933, p. 301), however, pointed out that Glock later used the term
to refer to the vertical distance between adjacent divides and streams, and
proposed that this latter definition be adopted (see Figure 3.2). If in an area
all the divides are at the elevation of the original upland surface ond all the
streams are "at grade", drainage relief will equal available relief; in contrast
to the latter, however, drainage relief can always be determined. Strahler
(1958, p. 295) stated that "local relief, H, is a measure of vertical distance
from stream to adjacent divide" (i.e., local relief is equivalent to drainage
relief), but this will only be true if the sample areas upon which local relief is
based are large enough fo include adjacent streams and divides and yet not so
large that the slopes of the streams and divides themselves significantly increase
the relief within the sample area. In Figure 3.2, the area over which H is

determined is "large" and H exceeds Hy. Hormann (1971, p. 145) determined
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the mittlere Taltiefe ("mean valley depth") for drainage basins. First, a "roof"

was constructed over the basin by linking points along the basin divide which
were equidistant from the basin mouth by straight lines. The volume between
this surface and the land surface wad divided by the basin area. This measure
is "complementary" to Dury's "mean available relief".

3.3.4: Applications of Relief Measures

Relief has commonly been used in a descriptive way (e.g. Smith, 1935)
or to delimit physiographic regions (e.g. Huggins, 1935), both alone and in
conjunction with other variables. Some studies have, however, related relief
to landscape processes, or to other aspects of physical geography. Schumm
(1954, 1963) found that sediment yield was closely related to the ratio of basin
relief to basin diameter for some small drainage basins in the southwestern
United States. Schumm (1956) also related sediment yield toreliefand slope for
some smaller basins in the Perth Amboy badlands. Maner (1958) investigated
the relctionshipﬁ between sediment yield and a number of basin characteristics,
. and found that the above relief ratio was the one most highly correlated with
the dependent variable. Ahnert (1970) determined average basin relief as the
mean of local relief values for 20 by 20 km squares spread over a number of
drainage basins for which he had information concerning denudation rates. In
the absence of stream incision, denudation will reduce relief; by using the
empirical relationship between denudation rates and relief, Ahnert presented
theoretical curves for relief reduction as a function of time, both with and
without the effects of isostatic compensation. He later (1972) related these

resulfs to theoretical models for slope processes.
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3.4: Slope

Evans (1972, p. 36) stated that "slope is perhaps the most important
aspect of surface form, since surfaces are formed completely of slopes, and
slope angles control the gravitational force available for geomorphic work."
Mathematically, the tangent of the slope angle (tan &) is the first derivative
of qlfifude, and it is as a tangent or per cent slope that this surface parameter
is generally reported. - Strahler (1956) also mapped slope sine, which is
proportional to the downslope component of the acceleration of gravity.
Strahler's (1950, 1956) work suggested that slope tangents had a normal
distribution; Speight (1971), however, found that for a number of areas
investigated, a log-normal distribution provided a better fit.

Unlike relief and most other geomorphometric parameters, which are
only defined for finite subareas of a surface, slope is defined at every point
as the slope of a plane tangent to the surface at that point. In practice,
however, slope is generally measured over a finite distance, especially when
data are obtained from a contour map. The size of area over which slope is
measured will influence the values obtained, and the effect of recording
intervals on slope values was discussed by Gerrard and Robinson (1971). Mean
slope was generally much less sensitive to the recording interval than was
maximum slope.

3.4.1: Average Slope: Line-Sampling Method

A method for estimating average slope proposed by Wentworth (1930) has
been widely applied. The number (N) of intersections between a set of traverse
lines and the contours in the sample area is counted, and the total length of the
traverse lines (L) is measured. L divided by N is the mean horizontal distance
between the contours, as measured along the traverse lines. This will tend to

be larger than the mean orthogonal distance, and therefore a "correction factor"
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must be applied. If the traverse line intersects the contours at an angle 8,

the true inter-contour distance will equal sin 8 fimes the traverse distance.

If one assumes that all values of 8 between 0 and 90 degrees are equally likely,
then the true mean inter-contour distance should equal L/N times the mean
value of sin 8, whichis  2/1 , or 0.6366. The mean slope tangent estimate

is then given by:

tan X = M (3.3)
0.6366

where | is the contour interval in the same units as L. Wentworth presented

the formula for use with L in miles and | in feet as:

I (N/L)

fan & = " 9361

(3.4)

The method gives the mean slope for an area, but has been used to construct
slope isopleth maps by assigning the slope for an area to a point at the area's
centre (cf. Smith, 1939; Calef and Newcomb, 1953; Griffiths, 1964).

Other authors have used the number of contour intersections per length
of traverse directly, without converting to an actual slope value. Wood and
Snell (1957, 1960) used the "contour count” as a "measure of slope" (1957, p. 1),
but in their 1959 paper converted this to slope using Wentworth's formula.
Zakrzewska (1963) determined the "roughness" at a sample point as the number
of confour intersections with the circumference of a circle centred at that point.

3.4.2: Average Slope: Other Methods

Raisz and Henry (1937) mapped average slope by determining areas of
similar contour density (slope) subjectively. The mean slope (in feet per mile)
was determined for each such area, and a choropleth map was produced. - This
approach has also been applied by some other writers (cf . Griffiths, 1964).

Another method which has been widely used depends upon determining the slope
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at a sample of points distributed over the study area; these values may be
averaged (cf. Sirahler, 1956; Coulson and Gross, 1967) or "contoured"
(cf. Strahler, 1956; Speight, 1968).

Ruhe (1950) and Rowan et al. (1971) determined slope for traverse
segments between maxima and minima c_long the traverses. No attempt was made
in either of these studies to correct for the angle between the traverse line and
the contours.

In direct computer applications, a number of writers (Monmonier et al.,
1966; Piper and Evans, 1967, cf. Evans, 1972; Park et al., 1970, 1971)
have described methods for determining surface slope from digitized contour
data. Sharpnack and Akin (1969), as well as Rase (1970, pers. oral cqmm.),
computed both slope and aspect from an altitude matrix.

Griffiths (1964) compared the "subjective method" (essentially the Raisz
and Henry approach), Wentworth method and "point sampling" method. He

concluded that Wentworth's method was most accurate, and that the point

sampling method produced "comparable" results with less efforf .

3.4.3: Other Slope Parameters

Another slope parameter is the rate of change of slope, termed the
"local convexity" by Evans (1972, p. 41). Mathematically, this is the second
derivative of altitude, or the first derivative of slope. Convexity can be
separated into downslope convexity and cross-slope convexity (contour curvature).
Evans suggested that the problem of convexity could be "solved" by fitting
quadratic surfaces to 3 by 3 sections of an altitude matrix.  Convexity could
then be determined by differentiating the resulting quadratic equation twice.
Speight (1968, p. 243) examined both rate of change of slope (which he termed
"sl§pe gradient") and contour curvature. It is also possible to determine higher
derivatives of altitude, but the possible physical meaning of such higher derivatives

is obscure.
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Closely related fo mean slope is Strahler's ruggedness number, which

was defined as HDy by Strahler (1958, p. 289 as a result of dimensional analysis.
In the case of a two-dimensional profile, the relationship among relief, drainage
density, and slope can be easily shown. In Figure 3.3, H is the relief and b
half the distance between channels, which equals half the inverse of Dy.

One thus has the mean slope given by:
tane< = H/b = 2HDy (3.5)

or twice the ruggedness number. - Strahler (p. 295) also introduced average

slope into the ruggedness number, producing the geometry number:

"By (3.6)

fan
If H is a reasonable estimate of the drainage relief and if the two-dimensional
case can be extended to three dimensions, this geometry number should equal
0.5 (see equation 3.5). The theoretical relationship is supported by the fact
that Strahler found that while drainage density for his test basins ranged over
two orders of magnitude, values of the geometry number remained between

0.4 and 1.0.

3.4.4: Application of Slope Measures

| As in the case of relief (section 3.3.4), slope has been widely used in
descriptive work, in physiographic classification, and in military work related
to vehicle trafficability. Slope angle is a result of past or present geomorphic
processes, and will also influence fhe;c,e processes (c f. Ahnert, 1972). Indeed,
the analysis of slope profile form represents an important "sub-discipline of
geomorphology (for example, Institute of British Geographers, 1971; Carson

and Kirkby, 1972; Young, 1972).
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1

Figure 3.3:

Diagrammatic topographic profile illustrating the relationships

among relief, slope, and roughness (see equations 3.5, 3.10,

and 3.11).




41~

3.5: Dispersion of Slope Magnitude and Orientation

In addition to slope steepness, slope aspect or direction may be
considered, either separately or together with slope angle. Evans (1972, p. 41)
proposed that the combined analysis of slope magnitude and orientation would
produce "undesirable hybrid results; it is better to separate variability in
gradient from variability in aspect.” If this is done, the aspect data should
be analyzed using two-dimensional vector analysis (cf.. Curray, 1956).

- While such separation may be desirable in some cases, the distribution of
orthogonals to the land surface (which summarize both types of information)
is essentially three~dimensional, and ifs analysis as such would seem to be
appropriate.

Chapman (1952) presented a potentially useful method for examining
slope steepness and aspect. Both the aspect (orientafion) and slope (dip) of the
land surface were determined for a sample of points on a regular grid. The
points were then plotted on a Schmidt net and contoured in the same way as
other orientation data in the earth sciences are often presented. Chapman
suggested that these diagrams would probably be useful in relating slopes to
structure or the effects of glacier movement, and Newell (1970) successfully
used the technique in this context. One of the computer programs presented
by Hobson (1967, 1972) represents a logical extension of this work, freating
the perpendiculars to slope units as vectors and applying well-established
mathematical approaches to the analysis of three-dimensional orientation data
(cf. Fisher, 1953; Steinmeiz, 1962). Unit vectors orthogonal to triangular
facets formed by inserting diagonals into a regular grid were summed and the
length of the vector sum (R) was determined. Hobson then calculated k
(which is the estimate of the precision parameter k for the spherical normal

distribution of Fisher, 1954) as:
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k= (N-1) / (N-R) (3.7)
As a surface approaches planarity, the vectors will become parallel, R will
approach N (the number of vectors), and k will become very large. Intuitively ,
a plane should have a roughness of zero, and thus the inverse of k would
represent a more "reasonable" roughness measure. Since Hobson's method was
based on a regular grid, all triangles have the same horizontal area and
similar true areas, and hence the use of unit vectors is not unreasonable. If
based upon irregularly-distributed surface specific points, however, there may
be a considerable variation in triangle size. [t would seem appropriate to
weight the vector orthogonal to each triangle by the triangle's true area. If
this is done, however, k and its inverse cannot be determined through equation
3.7. Some manipulation of that equation gives:

L. [ﬁ_] [1 - l};[w](for large N)  (3.8)

k N-1 N 100
where L(%) is 100 (R/N) ,. the vector strength in per cent. For weighted
vectorial analysis, L is defined as 100 times the weighted vector sum divided by
the sum of the weights. It is herein proposed that the best measure of "vector

dispersion” roughness is the roughness factor R, defined by:

R =100 - L(%) (3.9)
In the case of unit vectors and large N, R will approximately equal 100 times
frhe inverse of k.
| - As in the case of slope, the roughness factor can be related to relief
and ridge spacing through reference to Figure 3.3. For R, the vertical
component of each orthogonal vector will equal cos &, while the horizontal

components will cancel out, leaving:

R =100 (1 - cos <) (3.10)
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Substituting the value for cos = gives:

_ b
R-lOO(]-m) (3.11)

Turner and Miles (1967) applied Hobson's (1967) vector program to
twenty-five sample areas; twelve of these were derived from Stone and
Dugundji's (1965) microterrain maps and provide a basis for examining the
relationships among the parameters used by these authors, including R and H.
The other thirteen samples were based on macroterrain from 1:24,000 scale
maps. In addition to k, Turner and Miles determined the local relief (H), and

a variability factor v, the local relief divided by the logarithm of k; the

writer estimated R as the inverse of k. Linear correlation coefficients were
determined among ten roughness measures for the twelve common terrain samples.
In addition, correlations were determined separately among Stone and Dugundji's
six variables(16 cases) and among the four derived from Turner and Miles (25
cases). The only statistically significant correlations based on the common
terrain samples which did not reflect functional relationships were those between
mean and maximum amplitude, and between H and R. The latter pair of variables
were not significantly correlated over the twenty-five Turner and Miles samples.
This is almost certainly due to the difference in scale between the 1:24,000 and
microterrain maps (1 to 2 orders of magnitude). In Figure 3.4, R (as estimated
as the inverse of k) is plotted against H for these 25 samples and for six others
analyzed in Chapter 6. Curves of the form given in equation 3.11 for various
values of b have been plotted in Figure 3.4. These have been fitted "by eye"

to the groups of points for each of the six scales represented. It appears that
each scale has a reasonably consistent "characteristic wavelength" which

influences the relationship between H and R.
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Relationship between local relief and roughness factor.
Open symbols represent micro-terrain from Turner and
Miles (1967). Solid symbols are macro-terrain (circles from
Turner and Miles; triangles from this study). Curves are

based on equation 3.11,
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In a related line of research, Hayre and Moore (1961) determined
theoretical scattering coefficients for terrain, based on autocorrelation functions
determined from contour map data. Hayre (1962) then used observed radar
return rates fo estimate the roughness of the lunar surface.

3.6: Hypsometry
Clarke (1966, p. 237) defined hypsometry as "the measurement of the

interrelationships of area and altitude." Evans (1972, p. 42-48) reviewed
this concept under the heading: "Regional convexity (dissection, aeration).”
Most of these measures, which describe aspects of the distribution of landmass
with elevation, are based upon the hypsometric curve.

3.6.1: The Hypsometric Curve and its Variations

Monkhouse and Wi lkinson (1952, p. 112-115) noted that there are
three common sorts of graphs used to report hypsometric data. These are:

(a) the area-height curve;

(b) the hypsometric (or hypsographic) curve, sometimes called the

absolute hypsometric curve;

(c) . the percentage hypsometric curve.

The first of these methods, the area-height curve, plots the area in a
band at a particular elevation against elevation, and by convention, elevation
is plotted on the y-axis. - If relative area is used, the diagram is a plot of the
probability density function for the heights in the area. The relative frequencies
of elevations are generally more easily seen on this type of curve than on the
hypsometric curves.

The absolute hypsometric curve is a graph of the absolute or relative
area above a certain elevation plotted against that elevation, and is essentially
a cumulative frequency for the elevations. Once again, elevation is conventionally

plotted on the y-axis and area (representing frequency) on the x-axis.
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Clarke (1966, p. 241) pointed out that this curve does not represent an
"average profile", since it does not record the slope between confours. Never-
theless, a section of the curve with a low slope. indicates a larger amount of
the surface at or near a particular elevation; this would generally indicate
gentler slopes near that elevation. Absolute hypsometric curves have been
determined for the earth's surface as a whole, counfries;, natural regions,
islands, and drainage basins. While usually plotted on simple arithmetic
graph paper, various special sacles have also been employed. Tanner (1962),
for example, plotted the percentage of the earth's surface area lying above
certain elevations on log-probability paper, and was able to separate the
curve info four Gaussian components. Chorley (1§58) found that the hypso-
metric curve for a drainage basin he examined plotted as a straight line on
arithmetic=probability paper.

The third and most widely used form of curve is the relative or percentage

. . . 1 .
hypsometric curve, often termed simply the hypsometric curve. It plots relative

area above a height against relative height, and is the graph of the hypsometric
function, here termed a (h) , where h (the relative height) is defined by:
z-z

h= —min (3.12)

z -z .
- max min

where z is the actual elevation, and z and z_. are the highest and lowest
max min

elevations, respectively, within the study area. As in the previous cases, h

is conventionally plotted on the y-axis. It is this form of the hypsometric

curve and function upon which some important terrain parameters are based.

1 This form of the hypsometric curve is often attributed to Strahler (1952) (for
example, see Chorley and Morley, 1959, p. 566); relative hypsometric
curves were presented earlier by Imamura (1937, cf. Evans, 1972, p.42),
Gassmann and Gutersohn (1947), and Langbein and others (1947), only the
latter being cited by Strahler.
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3.6.2: The Hypsometric Integral (H)

The most widely used parameter based on the hypsometric curve is the

hypsometric integral, here designated Hl. This parameter, as defined by

Strahler (1952, p. ]]2|]), is given by:
H = /a(h) dh (3.13)

Strahler pointed out f;mf geometrically, this value is equal to the ratio of the
volume between the land surface and a plane passing through the minimum
elevation to the volume of a "reference solid" bounded by the perimeter of
the area and planes passing through the minimum and maximum points.
Graphically, H can be determined by measuring the area under the relative
hypsometric curve. Strahler (p. 1130) proposed that the value of the hypso-
metric integral fefleci‘s the "stage" of landscape development. Those areas
having H values above 0.6 were considered to be in a "youthful" or equilibrium
phase, while drainage basins in equilibrium should have hypsomerri‘c integrals
between 0.6 and 0.35. Values below 0.35 were thought to characterize a
transitory "monadnock phase" in landscape development.

Pike and Wilson (1971) proved that the elevation-relief ratio (E) of
Wood and Snell (1960) is mathematically equal to the hypsometric integral.
The former is defined by:

zZ -z .

F= — ™0 (3.14)

V4 -z .
max min

where Z is the mean elevoﬁén. From equations 3.12 and 3.14, it can be
seen that E is just the mean relative height (h). - Evans (1972, p. 42) pointed
out that this same parameter was used much earlier by Peguy (1942, p. 462),
and termed the "coefficient of relative massiveness" by Merlin (1965). While

Strahler's (1952) method for determining the hypsometric integral involves much
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laborious use of a planimeter to determine inter-contour areas, the elevation-
relief ratio can be determined much more quickly, with the mean elevation
being determined from a sample of points. Pike and Wilson (1971, p. 1081)
stated that "experience has shown that a sample of 40 to 50 elevations will
ensure accuracy of E to, on the average, 0.01, the value to which area-
altitude parameters customarily are read." It is important that the maximum
and minimum elevations are determined from an inspection of the entire sample
area; gross errors in E can result if the highest and lowest grid values are used
(see section 5.4). Evans (1972, p. 58), however, used only grid values fo
estimate the hypsometric integral for sub-matrices ranging from 3 by 3 (9 points)
to 47 by 47 (2209 points). For the smaller sub-matrices af least, Evans'
estimates of H are probably in serious error.

Other methods for approximating the hypsometric integral or curve
have been proposed. Haan and Johnson (1966) suggested that the elevations of
a sample of randomly-located points could be used to construct hypsometric
curves, with a considerable saving in time. Chorley and Morley (1959)
proposed that the hypsometric integral could be estimated by approximating
the drainage basin by a simple geometric form, "the intersection of a lemiscate
cylinder with an inverted cone, centered at the lemniscate origin” (p. 556).
The accuracy of this method depends upon the degree to which the geometrical
form actually approximates the basin, particularly the fit of the lemniscate
loop to the basin perimeter (Chorley et al., 1957). Chorley and Morley found
that the method produced a systematic error, and proposed a correction factor.
Turner and Miles (1967) used a computer program fo interpolate a dense regular
grid from a sample of points; numbers of grid points falling within altitudinal-
bands were used in producing hypsometric curves. They found that their

method produced results closer to planimetered values than did the corrected
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Chorley and Morley approach. It would seem that the elevation-relief ratio
represents a more accurate and more easily applied approximation to the
hypsometric integral than do the above. Furthermore, the elevation-relief
ratio can be determined for arbitrarily-bounded areas (Wood and Snell, 1960;
Pike and Wilson, 1971), while the Chorley and Morley method can only be
used for drainage.

3.6.3: Other Parameters Related to the Hypsometric Curve

A number of parameters besides the hypsometric integral have been
derived from the hypsometric curve. Strahler (1952, p. 1130) noted that most
hypsometric curves show a characteristic "s-shape", and proposed a parameter
to indicate the sinuosity of the curve. Low values of this parameter indicated
very sinuous curves. - Evans (1972, p. 47-48) found a strong correlation between
the hypsometric integral and the skewness of the distribution of elevations in
cases having the same sinuosity. For any constant value of H, higher skewness
was associated with lower values of Strahler's sinuosity parameter. Tanner
(1959, 1960) suggested that the skewness and kurtosis of the height distribution
function (essentially the hypsometric function) could be used to "characterize
various geomorphic regions" (1960, p. 1525). Examination of Tanner's
diagrams seems to confirm Evans' result that skewness is closely related to the
hypsometric integral, and also suggests that Strahler's sinuosity parameter is
closely related to kurtosis. Sinuosity, as measured by Strahler's parameter or
the kurtosis, has not (to the writer's knowledge) been investigated in detail
or related to other geomorphometric measures.

Gassman and Gutersohn (1947) determined a parameter called the

kotenstreuung. For computation, this has been shown to equal the standard

deviation of the elevations, and was derived from the absolute hypsometric

function. They also determined the relieffactor, which equals twice the
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kotenstreuung divided by the local relief. This is twice the standard

deviation of the relative hypsometric function. Gassman and Gutersohn also
determined the mean elevation by using the hypsometric integral, "reversing"
the use of the elevation-relief ratio proposed above; this method of determining
the mean elevation was employed earlier by Martonne (1941).

3.6.4: Other Parameters Related to Hypsometry

In addition to those related to the hypsometric curve, other parameters
have been proposed to charac:’rerize the relationship between area and altitude,
sometimes also including slope. . None of these have been as widely used as
the hypsometric integral;. since many of these have been reviewed by Clarke
(1966, p. 243-248) and by Evans (1972, .p. 44-45), most will not be reviewed
herein. Hammond (1964, p. 15) combined slope and height in an area-elevation

measure. His general profile character index was defined as the percentage of

gentle slopes (tan e less than 0.08) lying above or below the mean elevation.
Pike and Wilson (1971, p. 1079-80) noted that this index measures a similar
aspect of terrain form to the hypsometric integral. This measure may be
undefined in some areas if there are no slopes gentler than the critical value.

3.6.5: Application of Hypsometric Measures

All or most of the parameters discussed above have been used in a simply
descriptive sense or in physiographic classification. Only the hypsometric
integral, however, has been related fo geomorphic processes.  In most cases,

H has been determined for drainage basins. Strahler (1957, p. 918-920)
listed a number of works between 1952 and 1956 which used this parameter;
none of these studies found any relationship between H and various hydrologic
or sediment yield measures. - Chorley (1957, p. 630) measured hypsometric
integrals for 27 drainage basins, but did not use this parameter in subsequent

analyses nor comment on its omission. Eyles (1969) studied stream long profile
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form, basin relief, and basin hypsometric integral for 410 fourth-order
drainage basins in Mcloysia; He graphed the hypsometric integral against
relief and presented an "approximate curve of best fit drawn 'by eye' "(p. 29).
If one assumes that relief is continuously reduced with time (cf. Ahnert, 1970)
and that space can be substituted for time, Eyles' line suggests a period of
equilibrium, a monadnock phase, and an eventual return to equilibrium. An
initial inequilibrium phase does not appear to be represented in these data.

3.7: Review and Parameters to Be Investigated

In review, the most fundamental concepts of geomorphometry are the
basic horizontal and vertical scales of the topography. Horizontal variations
are encompassed by the concepts of grain (largest significant wavelength) and
texture (shortest significant wavelength); grain will not be investigated
explicitly, but three measures of texture, namely drainage density (Dd), source
density (DS), and peak density (Dp) will be considered in the next chapter.

. Vertical scale is generally termed "relief"; this terrain concept will
be represented in further analyses by the local relief (H), the most widely -
employed relief measure. The relationships between horizontal and vertical
scale will be examined through the mean slope (tan &), while the three-
dimensional interaction of slope steepness and aspect will be studied through
the roughness factor (R).

Relatively independent from horizontal and vertical scales is the
distribution of mass within the vertical range of the topography. This concept
will be investigated through the hypsometric integral (H).

While there may be some redundancy among the parameters noted
above, it is believed by the writer that with the possible exception of grain,
all important terrain information is contained within these parameters. In the

next chapter, the relationships among the measures will be studied.
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Chapter 4:. Terrain Variability in Southern British Columbia, and Relationships

among Variables

Before beginning the comparison of the computer terrain storage systems,
a "pilot study" was conducted. The principal objectives of this were threefold:
(1 to provide information about terrain variability in southern
British Columbia, and thus guide in the selection of terrain
samples for more detailed analysis;
(2 to investigate the relationships among the parameters selected in
the preceding chapter; and
(3) to provide empirical data for the evaluation of some of the
theoretical errors in estimating parameters, which will be
discussed in the next chapter.
Values for a number of geomorphometric parameters were detemined for square
terrain samples using simple techniques not including computer analysis. The
roughness factor (R) could therefore not be examined, but the other important
parameters listed at the end of the preceding chapter were all studied.

4.1: Selection of Sample Areas

In order to obtain a relatively unbiased sample of the terrain of southern
British Columbia, a stratified random sampling design was employed.  From each
of the forty-two 1:250,000 scale map sheets which cover British Columbia south
of 54 degrees latitude, one of the thirty-two 1:50,000 scale maps making up
that sheet was selected with the aid of a table of random numbers. Because
coverage of the area at the larger scale is incomplete, some of the randomly-
selected maps were not available. In such cases, and in instances where the
selected map fell entirely outside British Columbia, another map was picked.

From each map, one 7 by 7 kilometre square of terrain was examined. . If the

Universal Transverse Mercator grid was printed on the map, the sample was
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generally centred at the intersection of the two major ("10th kilomeire") grid
lines closest to the cenire of the map; this would facilitate later location of
the sample areas on the 1:250,000 s ale maps,. if desired. Where the grid did
not appear, the sample square was usually placed over the centre of the map.
Samples were relocated if more than one third of the area contained water
surfaces. The locations of the forty-two samples, together with the major
physiographic subdivisions of the study area, are shown in Figure 4.1; two of
the samples (4, 9) fell in Alberta, although the maps from which they were
drawn were in part in British Columbia.

Since it was not possible to adheré strictly fo the original random
sample, tests were made of the randomness of the terrain samples actually used.
As noted above, each 1:250,000 scale map contains thirty-two 1:50,000 scale
half-sheets (see Figure 4.2). The numbers of these thirty-two "cells" containing
exactly zero, one, two, et cetera, samples were determined and compared to
the frequencies predicted according to the Poisson distribution. A chi-square
test indicated that the two sets of frequencies were not significantly different
at the 95 per cent level.

Of twenty major physiographic divisions of British Columbia given by
Holland (1964), ten occur at least in part south of 54 degrees latitude. These,
together with the sample numbers and respective map-areas falling within each
division, are listed in Table 4.1. The actual distribution of the forty-two
terrain samples among these ten regions was compared with an even distribution
based on the areas of the subdivisions, once again using the chi-square test
(see Table 4.2). The distributions were nof significantly different at the 95
per cent level, The larger than expected number of samples in the first three
subdivisions is probably at least in part due to the coastal locations of these

regions (see Figure 4.1). Since samples falling on the ocean were not accepted,



B5 TOPOGRAPHIC SAMPLE

@ PHYSIOGRAPHIC SUBDIVISION

Figure 4.1:  Physiographic subdivisions of southern British Columbia (see Table 4.1) with locations of stratified

random sample of terrain analyzed in Chapter 4.
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TABLE 4.1: PHYSIOGRAPHIC SUBDIVISIONS OF SOUTHERN BRITISH
COLUMBIA, AFTER HOLLAND (1964), WITH SAMPLE NUMBERS AND
MAP- AREAS FOR TERRAIN SAMPLES ANALYZED IN CHAPTER FOUR

Western System

Quter Mountain Area
Insular Mountains (1)

14: 92C/16E 22: 92L/6W 39: 103C/16E
15: 92E/15E 38: 103B/3E 40: 103F/14E
16: 92F /2W

Coastal Trough
Hecate Depression (2)

35: 1021/9E 37: 103A/8E *41: 103G/16W
36: 102P/9E

Georgia Depression (3)
13: 92B/14W 21: 92K/6W

Coastal Mountain Area
Coast Mountains (4)

17: 92G/9E 20: 92J/3W 30: 93D/7E
19: 921/5E 23: 92M/5E 42: 103H/3E
Cascade Mountains (5)
*18: 92H/2W

Interior System

Central Plateau and Mountain Area
Hazelton Mountains (6)
(no samples)
Rocky Mountain Trench (7)
5: 82K /9E *11: 83D/10W
Southern Plateau and Mountain Area
Interior Plateau (8)

6: 82L/12E 27: 93A /AW 32: 93F/OW
*24: 92N/15E 28: 93B/9W 33: 93G/13W
25: 920/16E 29: 93C/8W 34: 93H/12E
26: 92P/1E *31: 93E/9W
Columbia Mountains (9)
1: 82E/10W © 3:82G/12W *8: 82N /4E
2: 82F/8E 7: 82M/15E

Eastern System

Rocky Mountain Area
Rocky Mountains (10)
4:82J/11E 10: 83C/5W 12: 83E/5W
9: 820/4E '

* indicates sample selected for more detailed analysis
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TABLE 4.2: COMPARISON OF DISTRIBUTION OF 42 TERRAIN SAMPLES
AMONG TEN PHYSIOGRAPHIC DIVISIONS WITH EXPECTED
DISTRIBUTION BASED ON DIVISION AREAS

physiogrdphic per cent expected observed (e-o)2
division of area (e) (o) e
1. Insular Mountains 7.6 3 7 5.33
2, Hecate Depression 4.8 2 4 2.00
3. Georgia Depression 3.2 2 1.00
4. - Coast Mountains 24 .6 10 6 1.60
5. Cascade Mountains 1.5 1 1 0.00
6. Hazelton Mountains 0.5 0 —
7.  Rocky Mountain Trench 1.6 1 2 1.00
8. Interior Plateau 33.8 14 11 0.64
9. Columbia Mountains 15.8 7 5 0.57
10. - Rocky Mountains 6.6 3 4 0.33
Sums 100.0 42 42 X2=12.47%

* not significant at the 95 per cent level
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samples would tend to be "concentrated" in the land areas of map sheets
containing considerable water.

4.2: Data Collection

As stated above, each terrain sample consisted of a 7 by 7 kilometre
square; the selection of this sample area size was arbitrary. Within each area,
a 7 by 7 grid with a one kilometre spacing was used in determining some
terrain measures. At each of the forty-nine grid intersections, the elevation
was determined, and the type of surface at the point (e.g. land, ocean, lake,
or glacier or snowfield) was also noted. The number of intersections between
the grid lines and contours, and also between the grid lines and the "blue
line" stream network were counted. The elevations of the highest and lowest
points within the area, the number of closed hilltop contours, .the total length
of strecﬁns, and the number of stream sources were also determined for each
sample area. |

4.3: Data Analysis

4.3.1: Drainage Density (Dy)

Drainage density was estimated for each sample area by measuring the
total length of blue stream lines on the map, in kilometres, and di\)iding by the
area. The number of intersections between the grid lines and the drainage net
(N) was counted and divided by the total length of traverse (L). Carlston and
Langbein (Unpub,, 1960; cf. McCoy, 1971) developed a theoretical equation
which proposed that the drainage density should be approximated by:

D,=1.57 N/L (4.1)

d

The empirical evidence collected here appedrs to support this equation.
When a histogram of drainage density was prepared (Figure 4.3 a), the
]

observations fended to cluster around 0.6 km-] , but with a number of "outliers'

having values above one. The writer had observed during the data collection
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Figure 4.3: Histograms for six geomorphometric parameters. Triangles

indicate the break points for three of the parameters.
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that some of the older maps appeared to have higher drainage densities fhdn
newer ones. A statistically significant inverse correlation was found between

D4 and the year of map publication.  Drainage density was also significan.fly
correlated with mean annual precipitation at the sites, and it was thought that
this might explain the correlation between map age and drainage density,

since most of the older maps were coastal. The correlation between map date

and precipitation was not statistically significant, however, suggesting that

the variation in the drainage net is at least in part cartographic (see section 1.1).
Because of this problem, and because there were no well marked breaks in the
distribution, drainage density was not used to divide the samples into groups

having similar terrain.

4.3.2: Source Density (D.) and Peak Density (Dg)

The numbers of stream sources and of closed hilltop contours (peaks)
were determined and divided by the land area of the sample areas. Source
density was found to be closely related to drainage density (r2 = 0.847), but
would also be dependent upon the drainage net depicted on the map, and so
was not used in further analysis. A histogram for this parameter is shown in
Figure 4.3b.

| The histogram for peak density (Figure 4.3c) showed poorly developed
breaks at about 0.25 and 0.50 km_z; these were used to classify the terrain

“

samples.

4.3.3: Local Relief (H)

The maximum and minimum elevations within each sample area, as
determined by a visual inspection of the contours, were used to determine the
local relief. This should be within one contour interval of the actual value
and, if the maps are accurate, must be within two contour intervals. The

maximum and minimum of the 49 grid heights were also determined; the
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difference between these was designated H*, the grid estimate of the local
relief. Theoretical aspects of the relationship between the true and grid
values of local relief will be discussed in section 5.1.

Histograms of local relief were drawn for each of seven physiographic
divisions, and for the combined samples (see Figure 4.3d). The latter
contained two "breaks" which were used to divide the data into three relief
classes: "low" relief, less than 500 metres (10 samples); "moderate" relief,
500 to 1,500 metres (25 samples); "high" relief, more than 1,500 metres
(7 samples).

4.3.4: Mean Slope (tan «)

The mean slope for each area was estimated using the Wentworth method
(section 3.4.1). The total length of traverse was 98 kilometres, except where
lakes or ocean.reduced the land area; in these cases, the length of iraverse
was reduced by 2 km for each grid intersection falling on a water surface.

The histogram for average slope (Figure 4.3¢e) shows a rather poorly
defined break at about 0.3. The high correlation between mean slope and
relief for the samples (r2 = 0.679) clearly indicates that these measures are
not independent, and thus mean slope was not used in classifying the sample
areas.

4.3.5: Hypsometric Integral (HI)

The value of the hypsometric integral for each sample was .esi'imcufed
using Wood and Snell's (1960) elevation-relief ratio. The mean of the
elevations of those grid points which did not fall on lakes or the sea was used
as an estimate of the mean height of the terrain. The formula for the elevation-
relief ratio (equation 3.14) involves both the minimum elevation and the local
relief; here, the hypsometric integral was computed fwice: H was based on the

"true" minimum and maximum elevations, while H* was based on the grid



-62-

estimates of these values. Theoretical errors in H* will be discussed in
section 5.4.

Histograms for this parameter were prepared (see Figure 4.3f), but in
this case there were no clear breaks in the distribution. When Strahler’s (1952)
divisions at 0.35 and 0.60 were applied, it was fouﬁd that only one sample had
a hypsometric integral above 0.60 (sample 1:0.602). Thus essentially none of
the areas examined were in the "youthful” or "inequilibrium" stage. Nineteen
of the forty-two samples had Hl values below 0.35 and would fall into Strahler's
"monadnock phase", the remainder being essentially in equilibrium. While the
hypsometric integral for an arbitrarily-bounded terrain sample is not necessarily
the same as those of its constituent drainage basins (see section 5.4), the value
of 0.35 was nonetheless used to divide the samples into low or intermediate
H values.

4.3.6: Relationships among Variables

In order to better understand the relationships among terrain and
related parameters (see Table 4.3), linear correlation coefficients among the
twelve variables listed in Table 4.3 were computed. Table 4.4 indicates all
correlation coefficients which were statistically-significant at the 95 per cent
level. The correlations were then examined using the same approach as Melton
(1958);. Figure 4.4 illustrates the three isolated correlation sets which form
the cores of three variable systems, namely "drainage", "hypsometry"”, and
"relief". Peak density (Dp) was not significantly correlated with any other
variable. Factor analysis was also applied to the data, and produced essentially

the same result .
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TABLE 4.3: VARIABLES INCLUDED IN CORRELATION ANALYSIS

variable
‘number symbol name
1 Dd Drainage density
2 N/L Drainage net intersections
3 D, Source density
4 : Dp Peak density
5 H Local relief
6 H* Grid estimate of local relief
7 tan ee -Average slope tangent
8 Hi Hypsometric integral
9 HI* Crid estimate of H
10 z Mean elevation
11 p Mean annual precipitation
12 t Year of map publication
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TABLE 4.4: STATISTICALLY SIGNIFICANT (95 PER CENT LEVEL) LINEAR
CORRELATION COEFFICIENTS AMONG THE VARIABLES IN TABLE 4.3

Dy N/L D DpH H* tane H  H* z P t

- 0.990 0.921 0.473 -.496 Dy
- 0.927 0.468 -.485 N/L

- 0.554 -.479 D

- D,

- 0.987 0.824 0.419 H

- 0.797 0.364 H*
- 0.323 0.602 tane

- 0.887 0.364 H

- HI*

- -.445 0.33%
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Figure 4.4: Correlation structure among twelve terrain and related

parameters (constructed in the manner proposed by Melton,
1958). The outer boxes enclose isolated correlation sets;

dotted lines indicate inverse correlations.
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4.4: Classification of Samples and Selection of Areas for Further Ahalysis

Three independent terrain variables, namely relief, hypsometry, and
peak density, were used to divide the forty-two samples into groups having
similar terrain. The independence of the parameters is indicated by the fact
that the maximum r2 value among the three pairs was 0.063. The break points
in the distributions of the variables were given above. As there were three
classes each for relief and peak density and two for the hypsometric integral,
there are eighteen possible groups -- of these, fifteen contained at least one
sample (see Table 4.5). An attempt was made to select six samples for further
analysis (in Chapter 6) from among the classes in approximately the same ratios
as the total numbers of samples; a table of random numbers was used to aid in
fHe final selections. The exact values of a number of selected geomorphometric
parameters for the selected areas are shown in Table 4.6, while values for all
forty-two areas analyzed in this chapter are given in Appendix Il .

Using a polar planimeter to determine inter-contour areas, hypsometric
curves were constructed for each of the six selected areas (Figure 4.5); curves
based on the 49-point samples of elevations (cf. Haan and Johnston, 1966)
were similar to those shown. The values used to construct the hypsometric
curve were also used to calculate the hypsometric integral -~ these values will
be used as the "standard" to which estimates of H will be compared in subsequent
sections.

4.5: Description of Areas Selected for Further Ana Iysis]

4.5.1: Sample 8: lllecillewaet Map-area (82N /4E)

The terrain sample from the Illecillewaet map-area is located in the
northern part of the Selkirk Mountains subdivision of the Columbia Mountains’
The minimum elevation of 2880 feet (878 m) occurs in the valley of the

Incomappleux River, while the maximum (9050 feet; 2758 m) is an unnamed

1 Physiography after Holland, 1964
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TABLE 4.5: CLASSIFICATION OF 42 TERRAIN SAMPLES USING LOCAL
RELIEF (H), HYPSOMETRIC INTEGRAL (H), AND PEAK DENSITY (Dp)’
NUMBERS OF OBSERVATIONS IN CLASSES ARE IN PARENTHESES;

- SAMPLES FOR FURTHER ANALYSIS ARE UNDERLINED.

H H D, 0.25(11) 0.25 D 0.50(21) D, 0.50(10)
500m  0.35(7) 25,33 14,24,40 3,29

(10) 0.35(3) 27 28 32
500 to  0.35(10) 4,22,26,35,3%  5,21,31,37,38
‘(52%‘; m o 0.35(15) 1,6,14 2,9,12,15,16, 17,23

18,534,539, 41,42
1500m  0.35(2) 11 20
@) 0.35(5 7,8,19,30 10
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TABLE 4.6: VALUES OF SOME GEOMORPHOMETRIC PARAMETERS FOR

SIX AREAS SELECTED FOR DETAILED ANALYSIS. VALUES FOR R

ARE FROM CHAPTER 6, ALL OTHERS, FROM THIS CHAPTER.

D, D, H tan ‘R H
8 0.555 0.102 1880 0.609 13.8 0.432
1 0.549 0.143 1709 0.395 8.1 0.260
18 1.847 0.286 833 0.396 7.4 0.547
24 0.631 0.383 203 0.065 0.25 0.286
31 0.290 0.553 1195 0.225 3.1 0.355
41 0.882 0.490 869 0.400 7.6 0.395
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Figure 4.5: Hypsometric curves for the six terrain samples selected for

detailed analysis.
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peak just inside the western margin of the sample area. It is essentially an

area of alpine glacial features =- the higher portions show such features as
cirques (two of which contain small glaciers), horns, and aretes, with u-shaped
glacial troughs between. Sample 8 had the highest local relief of the six areas
selected for detailed analysis, and the fourth highest over all.

4.5,2: Sample 11: Ptarmigan Creek Map-area (83D/10W)

Sample 11 contains portions of three major physiographic subdivisions.
The Rocky Mountain Trench, here only 1 to 1.5 km in width, cuts across the
study area from northwest to southeast; it is occupied by the southeast-flowing
- Canoe River, whose elevation ranges from about 2300 to 2280 feet (701-695 m).
To the northeast lies a portion of the Selwyn Range of the Rocky Mountains;
the maximum elevation within the sample area north of the river is 7000 feet
(2134 m) which occurs on an arete of an unnamed peak reaching 8048 feet
(2453 m) just beyond the study area boundary. With the exception of the arete,
the topography north of the Canoe River does not display the angularity
characteristic of intense alpine glacial erosion. Such forms are present within
the sample area in the Malton Range of the Monashee Mountains ( a subdivision
of the Columbia Mountains) which are found to the southwest of the Trench in
this area. A horn with an elevation of 7888 feet (2404 m) represents the
maximum elevation within the sample area. The topography of sample 11 is
not unlike that of the previous one (sample 8), with its high relief and low
. peak density, but is distinguished by a considerably lower hypsometric integral
(0.260) which is a result of a more prominent and level valley floor.

4.5.3: Sample 18: Manning Park Map-area (92H/2W)

This sample lies within the Hozameen Range of the Cascade Mountains.
Once again, this sample area is dominated by forms produced by alpine-type

glacial erosion. Here, however, the summits take on a more rounded appearance
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because they were overridden by ice during the last glacial maximum. Four
summits within the area have elevations of about 6350 feet (1935 m), and most
valley floors are around 4300 feet (1311 m). - Only in the northwest corner, in
the v-shaped valley of the upper Skagit River, does the surface descend below
4000 feet (1219 m) to the minimum elevation of 3450 feet (1052 m). Even so,
the total relief of the area (833 m) is only "moderate", according to the
divisions established in section 4.3.1; the hypsometric integral (0.547) is by
far the highest of the six samples, and the fifth highest of the 42 areas.

4.5.4: Sample 24: Tatla Lake Map-area (92N/15E)

This sample lies near the western margin of the Fraser Plateau subdivision
of the Interior Plateau. At 203 metres, this area has the lowest local relief of
the 42 areas studied in this chapter. The area is primarily a drumlinized till
plain produced by west-to-east moving ice (Tipper, 1971), with elevations of
between 3100 and 3300 feet (945-1006 m); a major meltwater channel traverses
the sample area leading into Tatla Lake itself, at 2985 feet (910 m) the minimum
elevation in the area. This and another lake together cover some 4 per cent of
the sample area. Five maxima, probably bedrock outcrops, rise above the till
plain to altitudes of about 3650 feet (1113 m).

4.5.5: Sample 31: Ghitezli Lake Map-area (93E/9W)

This sample is also from the Interior Plateau, but from the Quanchus
Range of the Nechako Plateau. The area contains Michel Peak, at 7396 feet
(2254 m) the highest point in the Nechako Plateau region. The eastern (lower)
boundary of the latter subdivision was defined by Holland (1964, p. é8) as the
3000 foot (914 m) contour, and since about 5 per cent of the present sample
area is part of Glatheli Lake (elevation 3490 feet; 1064 m), the 7 by 7 km
sample afea contains almost the entire relief of the Nechako Plateau. - Local

relief for the study area (1190 m) is still only in the "moderate" class.
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4.5.6: Sample 41: Oona River Map-area (103G/16W)

Sample 41 is from Porcher Island, and ranges from a maximum
elevation of 2950 feet (899 m) at Egeria Mountain to a minimum of 100 feet
(30 m) near Ogden Channel. The division between the Hecate Depression-and
the Kitimat Ranges of the Coast Mountains is not marked by any prominent
physical feature in this area. Holland (1964, p. 35) stated that "the eastern
boundary of the lowland is arbitrarily taken as a generalized line along the
2000 foot contour." Following this definition, the southwestern half of the
sample area belongs to the Hecate Depression, the northeastern to the Coast
Mountains; in fact, it is probably more appropriate to assign the entire sample
area to a transition zone between the aforementioned physiographic divisions.
The area displays many cirques, some with floors as low as about 500 feet
(152 m), but nowhere are the ridges sharp as in, for example, the Illecillewaet
map-area (sample 8). Probably, cirques were formed during an early "alpine”
phase of glaciation, but later the entire area was overridden by ice. Cirques
may or may not have been re-occupied by local ice after the disappearance

of the Cordilleran ice sheet from the area.
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Chapter 5: Procedures for Analysis and Theoretical Comparisons of Computer

st’rems

In this chapter, the analysis procedures used to estimate the geomorpho-
metric parameters selected for special attenfion will be outlined. - Of the seven
variables examined in the last chapter, drainage and source densities were
excluded from consideration for the reasons cited above. Peak density was
excluded because of computational problems, especially because the correspon-
dence between grid maxima and actual surface maxima may not be great. The
remaining four parameters which are studied in this chapter are local relief (H),
mean slope (tan &), roughness factor (R), and hypsometric integral (H).
Theoretical errors involved in estimating the parameters from a triangular network
of surface-specific points and from a regular grid will be discussed qualitatively,
and in some cases quantitatively. Consideration will also be given fo the
theoretical relationships among these and related geomorphometric parameters,
and to theoretical computer storage requirement. In the discussions which
follow, it will be assumed that topographic maps provide the only available
source of information about the topography .

5.1: Local Relief (H)

In. estimating the "true" value of local relief from a contour map, errors
can arise from a number of sources:
e)) map errors, which will be disregarded in the present discussion;
(2) interpolation errors -- the maximum possible interpolation error
for both the highest and lowest point is one contour interval
(expected error = 1/2 contour interval), and thus the maximum
error in the local relief from this source is two contour intervals

(expected error = one contour interval);
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(3) errors due to misreading the contours -~ this may be one

"ndex"

contour interval, or even five contour intervals if an
contour is misread, for both the maximum and minimum point;

(4) errors due to the mis-identification of either the maximum or
minimum point, or both == for example, a particular summit
may be taken to be the highest point within the study area when
in fact a higher point exists.

- Of these, (3) and (4) are "operator errors", and can be avoided by careful
examination of the map and checking of the results; errors of types (1) and (2)
are generally unavoidable, but are often small when compared to types (3) and
(4).

5.1.1: Local Relief: Surface=-specific Points

In both this and the grid method, the estimate of the local relief is the
difference between the elevations of the highest and lowest sample points. All
four of the sources of error for the "true" value of local relief listed above may
contribute to error in the estimate of H obtained from a set of surface-specific
points. "Type 4" errors should, however, be much less likely in the latter case
than in a visual inspection of the contours. In digitizing an area using surface-
specific points, an attempt is made to include all peaks and pits, as well as all
maxima and minima long the borders of the area. If all are included, the true
maximum and minimum elevations must be among them, and " type 4" errors are
eliminated.  If one assumes that no "avoidable operator errors" (types 3 and 4)
are present in either case, the accuracy of this method should be equal to the
"standard" method (visual inspection). Otherwise, the estimate of local relief
obtained from a sample of surface-specific points should tend to be more
accurate than that obtained from a visual inspection of the contours; of course,
in any particular case, the errors from the various sources may combine to make

the visual estimate closer to the true value.
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5.1.2: Local Relief:. Regular Grid

Considerably larger errors in estimating the minimum and maximum
elevations result when a regular grid is used. As noted in section 2.2, grids
are surface~-random, and it is highly unlikely that a grid point will coincide
with the true maximum or minimum elevation of the study area. Since the
grid maximum cannot exceed the true maximum (unless there are interpolation
errors) and the vgrid minimum will be greater than or equal to the true minimum,
H*, the grid estimate of the relief, will be less than or equal to H. If ¥ is the
average land slope near the maximum point, and c the distance from the maximum
to the nearest grid point, the error in estimating the maximum should be given
by:

e = ctan ¥ (5.1)

max
A similar estimation may be made for e . . As an estimate of the expected
distance from an extreme point to the nearest grid point, one can use the root-
mean-square distance (sd) of all pints from the nearest grid point. . If d is the
grid spacing, and if the origin of the co-ordinate system is located at a selected
grid point, s for all points closer to that grid point than to any other (i.e.,

within the inner box in Figure 5.1) is given by:

11
2 1
s =LL «Z+y)dydx| = || %= 0.408d (5.2
d 42

N | N (N 12
N |~ N o
o TN

J

One can further suppose that § may approximately equal & , the mean ground
slope; estimates of the errors in the maximum and minimum elevations would
then be:

&.=2¢ . =0.408d tan e (5.3)

min ma
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Figure 5.1: IHlustration of the distance (c) from any point (x, y) to the

nearest grid point (open circle). Solid circles indicate

other grid points.
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and thus the expected error in the value of the local relief would be:
eH=O.8]6d’rano< (5.4)

The error in, and accuracy of, the grid estimate of the local relief is theoretically

a linear function of the grid spacing, as proposed by the "sampling theorem"

(see section 2.2). Of course, the mean slope (o< ) may not be a good estimate

of the land slope near the extreme point. In many of the areas examined in

section 4.3, the minimum elevation was on a lake, the sea, or a floodplain, and

the slope near this point (and thus also emin) was near zero . Slopes near the

maxima and the minima of most of the forty-two samples from Chapter 4 (grid

spacing 1 km) were estimated by dividing the elevation diffefences between the

points and the nearest grid points by the horizontal distances; these values

should approximate tan ¥. The mean values of these angles for the maxima

are similar to tan &, in particular cases they may differ by a factor of two or

more; average slope near the minima is only about one third of the mean slope.

As an added complication, the closest grid point to the maximum may not be

the highest grid point, and the same may hold for the minimum. In such cases,

the error in the grid estimate may not be as great as expected. The empirical

relationship between e and tan  for the forty-two samples from Chapter 4

was ‘
ey = 234.1 tan +63.12 (2 = 0.245) (5.5)

where ey, is in metres and d is 1000 m.  This relationship is statistically

significant (95 per cent level); the large amount of "unexplained" variance is

probably a result of the random factor of the actual distance from the extreme

points to l;he nearest grid points, and of the difference between tan § and

tan & ., The ratio of the mean values of ey and tan & , divided by d (1000 m)

is 0.426, still only about half of the theoretical coefficient (equation 5.4).

+
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This is probably because the slope near the minimum was often much less than
the mean slope, and because in some cases the highest (or lowest) grid point
was hiéher (or lower) than the grid point closest to the true maximum (or
minimum). |
5.1.3: Review

In summary, the estimate of the local relief obtained from a set of
surface~specific points should be as accurate as, 6r even more accurate than,
the estimate obtained through a visual inspection of the contours. For regular
grids, errors due to the fact that it is very unlikely that a grid point will
coincide exactly with the minimum or maximum point will tend to be much
larger than interpolation errors. It would appear that the error in estimating H
from a grid will average about 0.4 d tanec , which could be large in areas of
steep slopes if a relatively wide grid spacing is used. Surface-=specific points
should theoretically provide much better estimates of local relief than should
regular grids of "reasonable'densities. Relief error for a given average slope
should be a linear function of grid spacing.

5.2: Mean Slope (tan o¢)

Strahler (1956) determined the "true" mean and standard deviation for
slopes in drainage basins by measuring slope tangent at a large number of points,
drawing lines of equal slope tangent (isotangents), and using a planimeter to
determine the relative frequencies of the various slope classes. Means and
other distributional paramefers were then determined from these frequencies.
Strahler then showed that the distribution of slope measurements at 100 randomly-
located points within one study area was not significantly different from the
"population" values. As noted earlier (section 3.4.2), Griffiths (1964) compared
this'point sampling" method to the "traverse sampling" method (Wentworth, 1930)

and a "subjective" method similar to that described by Raisz and Henry (1937).
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He concluded that the Wentworth method produced the most accurate results

of the three. The "isotangent" method would probably produce the best results,
but as this is very time consuming, as Strahler concluded that the results of
point sampling were not significantly different from this, and as Griffiths
concluded that the Wentworth method was superior to the point sampling
approach, the Wentworth method was used herein fo provide an estimate of .the
"true " mean slope to which computer values will be compared in the next
chapter.

5.2.1: Compufaﬁonal Procedures

For the mean slope and for the subsequent two geomorphometric measures,
the regular grids were first converted to a set of continguous triangular facets by
ins_erting one set of diagonals into the grid; the same analysis procedures were
then used for both. these triangles and the triangles based on the surface-specific
points. For each triangle, a vector orthogonal to it was determined by computing
the cross product of vectors forming two edges of the triangle. The length of this
vector is twice the true area of the triangle, while the z-component of the
orthogonal vector is twice the projected (map) area. Unit orthogonal vectors
were determined by dividing the components by the total length, and the slopes
of the triangles were computed from the z-components of these unit vectors.
.Three average slopes, namely unweighted, weighted by map area, and weighted
by true area, were determined. While the latter may represent the most logical
weighting (cf. Evans, 1972, p. 37), map area has been used by most methods,
including the Wentworth approach discussed above.

The accuracy of the mean slope estimate obtained from a set of triangles
is highly dependent upon how closely the triangles approximate the surface. In
the case of surface=-specific points, the accuracy will depend upon the selection

of the points and the size of the triangles. Pillewizer (1972) noted that the
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triangle method, as applied by Hormann (1971), failed to indicate a slope
asymmetry detected by field surveys and careful analysis of large-scale topo-
graphic maps. Pillewizer attributed this failure to the fact that Hormann's
triangles were too large. For triangles derived from a grid, there will be no
control over the degree to which the triangles approximate the surface, except
through the size, which is a function of grid spacing.

5.3: Roughness Factor (R)

As pointed out in section 3.5, the roughness factor is closely related
to the inverse of k, Hobson's (1967, 1970) vector dispersion factor. The latter
is defined only for unit vectors, and it was argued in section 3.5 that even for
grids, it would be better to weight the vectors by the true areas of the triangles.
In the grid case, the map areas of all triangles are equal, and the use of unit
vectors (cf. Hobson) should not produce results which differ greatly from weighted
vector analysis. For the latter, steeper triangles will be weighted more,
increasing the roughness factor slightly. For triangles based on.surface=-specific
points, the use of unit vectors will be inappropriate, since the sizes of the
triangles may vary considerably. In this study, both weighted and unweighted
analyses were conducted, using the orthogonal vectors noted above. The only
"standard” roughness value to which other methods might be compared would be
Hobson's k (or its inverse), but as proposed in section 3.5, this measure should
be inferior to the value of R obtained from a weighted vector analysis based on
.surface=-specific points. Thus no useful comparisons of the computer estimates
to "true" values can be made as for the preceding parameters.

5.4: Hypsometric Integral (H)

The "true" value of the hypsometric integral was determined by using
a planimeter to measure the areas above various elevations (that is, enclosed

within selected contours); the elevations are converted to relative values by
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subtracting the minimum height and dividing by the local relief, while
relative areas are computed by dividing by the total area. These poinis can
be plotted to produce hypsometric curves (see Figure 4.5), and the hypsometric
integrals can then be determined by measuring the areas under the curves with
a planimeter, or by determining the integrals mathematically. In this study,
the latter approach was used, employing the trapezoidal method for integrating
a function whose values are known at a set of points.

Most research using the hypsometric integral has involved drainage
basins as basic units, although some studies have applied this measure to
arbitrarily-bounded topographic samples as are used in the present work (cf.
Gassmann and Gutersohn, 1947; Wood and Snell, 1960; Pike and Wilson, .]971;
Evans, 1972). None of these works, however, recognized or commented upon
the fact that the shape and orientation of the sample area may influence the
form of the curve and sometimes the value of the integral, or that the hypso-
metric integral for a group of basins may not equal the mean of the basin values.
The former fact can be illustrated by applying a square sample area with two
different orientations and a circle to two simple geometric forms: an inclined
plane, and a square-based pyramid considerably larger than the sample area
with the latter centred at ifs apex. For the inclined plane, the hypsometric
integral for all three samples is 0.5, but the forms of the curves differ (see
Figure 5.2); the circle and the "diagonal square” (the square with a diagonal
parallel to the dip: of the plane) produce "s-shaped" curves which Strahler (1952)
noted were characteristic of higher-order drainage basins at the equilibrium
stage in the absence of structural control. Many such basins have outline forms
similar fo the circle or the diagonal square, and the "characteristic s—shape" is
probably in part due to the influence of outline form. In the case of the pyramid,

both the curve form and the hypsometric integral vary with the shape and
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Figure 5.2: Hypsometric curves for the portions of an inclined plane
‘within 3 sample areas.
A: "parallel" square (see inset, A);
B: "diagonal" square (see inset, B);

C: circle.
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orientation of the sampling area (Figure 5.3). Indeed, the curve and integral
are identical for the plane and the pyramid in the case of the diagonal square
sampling areas. This effect could produce considerable variation in results if
the size of the sampling area is less than or equal to the "texture" of the topo-
graphy in an area. In the present study, however, the sample areas (7 by 7 km)
are considerably larger than the topographic texture of these areas.
- The second consideration in the case of arbitrarily-bounded sample

areas is the relationship between the hypsometric integral for such an area and
the integrals of its constituent drainage basins. As a simplified illustration,
one can consider two adjacent basins of equal areas, minimum elevations of
zero, and hypsometric integrals of 0.5 -- the only difference is that one basin
has a local relief of 500 m, the other 1000 m. The former basin will have a
mean elevation of 250 m, the latter 500 m -~ the mean elevation of the
combined basins will be 375 m. The total relief is 1000 m, and thus the hypso-
metric integral of two basins will be 0.375, twenty~five per cent less than that
of either of the individual basins. Other combinations of relative reliefs,
minima, areas and integrals can produce hypsometric integrals for combined
basins larger than those of the constituent basins. If the minima and hypsometric
integrals are equal, as will be approximately the case in "equilibrium" topography
with a common local base level (the ocean, a lake, or a low-gradient floodplain),
the aggregate integral will always be less than the individual ones. This may in
part explain the relatively large number of the forty-two areas examined in
Chapter 4 which had overall integrals below the lower limit of "equilibrium"
(0.35) proposed by Strahler (1952) for individual basins.

As noted above, the regular grids were converted to sets of triangles
and analyzed using the same methods as employed for triangles based on surface-

specific points. It can be easily shown that the volume between a triangular
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Figure 5.3: As in Figure 5.2, but for a square-based pyramid. Here,

the hypsometric integral varies as well as the curve form,
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plane and the horizontal datum plane is equal to the product of the projected
area of the triangle and the mean elevation of the three corners of the triangle.
These volumes can be summed and divided by the total area to give the mean
elevation of the study area. This can then be used in the elevation-relief
ratio formula (equation 3. 14) to estimate the hypsometric integral.

5.4.1: Hypsometric Integral: Surface-specific Points

It is difficult to determine quantitatively the theoretical precision of
this method. The degree to which the value of H determined as described above
from a set of surface-specific points approximates the true value will depend
upon how closely the land surfaces within the triangles formed from these points
approximate planes. If the person selecting the points is careful to make sure
that the contours within each triangle are approximately parallel and equally
spaced, the method should be reasonably accurate.

5.4.2: Hypsometric Integral: Regular Grid

The mean elevation determined from triangles based on a regular grid
using the volumetric method outlined above will be very close to the arithmetic
mean of the sampled elevation values. - Each point not on the outer boundary
forms a vertex of exactly six triangles, and thus all such points are equally
weighted (the projected areas of the triangles are, of course, equal); points
along the boundaries are in three triangles, while corner points are in one or
two. - Since no aftempt is made to ensure that the areas within each triangle
are even approximately planar, the estimate of the mean elevation derived
from the grid should not be as accurate as that obtained from a set of surface-
specific points. The principal sources of error, however, are errors in the
maximum and minimum elevations used in the elevation-relief ratio formula
(equation 3.14), errors which have been discussed above in section 5.1.2. I[n

the following discussion, € and €nin Ore non-negative error terms, and an

ax



-86-

asterisk (*) is used to denote values determined from the grid alone. If one

defines:
,rcnax = Zmax ~ Cmax (5.6)
z*, =z . +e . (5.7)
min min min
and H* = z - Z*min . (5.8)
* *

It follows that:
H* = » .Zmin+emih) (5.9)

(chx - emax) - (Zmin + emin)

Some algebraic manipulation of this equation yields:

z -z ., - - .
max min ax ax min

e +e . |’ e . zZ -z .
H* |1 - _max_ “min |4+ min - min (5.10)
*m min | “m
The right-hand-side of this equation is the true value of the hypsometric integral

(disregcrding possible errors in Z), and z o " Zmin is H, the true local relief,

giving:

. °H ®min
H=H* |1- v + (5.11)

If H* is to be accurate, H* must equal H, in which case either ey must

equal zero or the following relationship must hold true:

e .
H=H*= D0 (5.12)
°H

The latter ratio may provide a rough estimate of hypsometry, since for the
42 samples examined in Chapter 4 it was significantly correlated with H,

although the r2 value was only 0.345.
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Some further re-arrangement of equation 5.11 yields the following

expression for the relative error in H*:

2]
_ H - H* | _ ®max " Cmin H (5.13)

H , H*

°H

Equations 5.12 and 5.13 imply that if the hypsometric integral is low, the
error in the minimum elevation must be less than that in the maximum if H* is
to be a good estimate of H. .In fact, a low hypsometric integral generally
implies gentler slopes near the minimum elevation than near the maximum
(see section 3.6.1), which in turn implies that €min will be less than € ox

(see section 5.1.2). For high values of H, e . must exceed e to
min max

minimize the error in the grid estimate of the hypsometric integral, and again
this will be the "expected" result. The dependence in part of these error
terms upon Hl should result in errors in H* being somewhat less than equation
5. 13 suggests.

An attempt was made to determine the relationship between the grid
spacing (d) and the theoretical errors in the hypsometric integrals for a square-
based pyramid for grids parallel and diagonal to the pyramid base. The grids
had odd numbers of rows and columns and were centred on the pyramid apex;
meaning that € ax WS Zero. - When the grid minimum was used in the
calculations, ey Wos found to be a linear function of d, once again supporting
the "sampling theorem" noted in section 2.2; when the "true" minimum was
used, the error was proportional to d2. To halve the error in the former case

would require four times as many points, buf in the lafter only twice as many.
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5.4.3: Summar_)_/

It is difficult to assess quantitatively the theoretical accuracy of the
estimate of the hypsometric integral obtained from a set of surface-specific
points. Accuracy will depend upon how closely.fhe triangles formed by these
points approximate the land surface. For regular grids where only the grid
points are used, the error in Hl should tend to be a linear function of the grid
spacing (d), and is sensitive to the values of €max °Nd €. (equation 5.13).

5.5: Possibility of Estimating Other Parameters

In addition to the four measures discussed above, many more of the
geomorphometric parameters reviewed in Chapter 3 might be estimated from
computer-stored terrain information. Among the most useful of these would be
the measures of texture or grain outlined in section 3.2. Most of these measures
depend upon the density of peaks, pits, streams, or ridges, and are thus strongly
related to surfac~especific points and lines. It should be possible to estimate
these parameters rather readily from a set of surface=-specific points; in the
case of grids, the same approach might be applied, but many "false" peaks and
pits will appear in such data, simply because a grid point which falls on a ridge
may be surrounded by grid points on the sides of the ridge and thus appear to
be a "peak" when in fact it is not. The definition of peaks, pits, ridges, and
courses will theoretically be much easier if surface-specific points are stored
in the "pointer mode", rather than the "triangle mode" used in the present
study (see section 2.6). For example, a peak is defined as any point which is
higher than all its neighbours; the neighbours must therefore be known before
elevation comparisons can be made. Once the number of peaks or pits, or the
total length of ridges or courses, is established, it can be used to compute
peak or pit density, ridginess (cf. Speight, 1968) or drainage density. It would

also be possible to compute other roughness measures (cf. Hobson, 1967, 1972),
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distributional parameters for the vectors orthogonal to the land surface other
than R or k, or measures of slope asymmetry (cf. Hormann, 1971, section
4.2.4).

5.6: Theoretical Numbers of Points and Triangles for Triangular Data Sets,

and Theoretical Computer Storage Requirements

"Euler's Law" for a contiguous set of NC cells, NE edges and NV

vertices states that:

Ny + N = Np =1 (5.14)

if the "outside" is not considered to be a cell. If all cells are triangles, there
should be 3N~ sides. Since all edges form sides of two triangles with the

C
exception of those edges forming the outer boundary of the study area, the

total number of edges is given by:

Ng = w | (5.15)

2

where NB is the number of edges (and also the number of vertices) which form
the boundary. Substituting this value in equation 5.14 and solving for NC
yields:

N =2NV -(NB+2) (5.16)

C
Thus the total number of triangles in a data-set will be somewhat less than
twice the number of points.

One can determine the theoretical computer storage requirements of
the regular grid, and of the "pointer mode" and "triangle mode" of the
triangular data-set method. Each integer value requires one half-word of
computer storage allocation, while each "real" or decimal value requires a full
word. To store the three co-ordinates (reals) and the identification number

(integer) of a surface-specific point would thus require 7 half-words of computer
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space, while each grid point needs only 2 half-words of computer storage.

For the surface-specific points, either a set of pointers or a set of triangles

must also be stored. The total number of pointers in a data-set will be

twice the number of edges (NE), since each edge forms a pointer of each of

the vertices at its ends. Using equations 5.15 and 5.16, the total average
requirements for the pointers of a data-set can be shown to be (6Nv -2 (NB+ 3))

half-words, and the total storage for the points and pointers is given by

(]3NV - 2NB - 6) half-words (5.17)

For the "triangle mode", there are required 3 half-words for each triangle,
the number of triangles being given by equation 5.16. The total storage

requirements for the points and triangles should equal:

(13N,, - 3NB - 6) half-words (5.18)

\

which is exactly NB less storage space than needed by the "pointer mode".
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Chapter 6: . Empirical Comparisons and Computational Results

In this chapter, the results of an empirical comparison of the two
computer terrain storage methods discussed above will be reported. To provide
data for the comparison, the analysis procedures outlined in Chapter 5 were
applied to the six tépographic samples described in section 4.5, for both 15 by
15 grids (d = 500 m) and sets of surface=specific points. Figure 6.1 shows one
of the surface-specific point data-sets; maps of the other data-sets are given
in Appendix lllb. Samples 11 and 18 were arbitrarily selected to investigate
the reproduceability of triangular data-sets and the influences of triangle size
and map scale. Each of the regular grids was analyzed-twice, using first
northwest-southeast and then northeast-southwest diogo‘nals. The results of all
the corﬁpufer analyses conducted are given in Appendix. llic.

For the six sample areas, the differences between the computer estimates
and the "standard" estimates for local relief, mean slope, and hypsometric
integral were determined. For each method, the mean and standard deviations
of the "errors" were determined, and the t-statistic was used to test the
probability that the true mean error of each method was zero. If for any method
this probability was 5 per cent or less, it would be concluded that the method of
estimating the parameter being tested was not valid. The mean errors for the
grids and triangular data-sets were compared, and the assumption that grid error
is proportional to grid spacing was used to estimate the grid density which would
be required to produce the precision achieved by the triangular data-sets. The

| hypothetical digitization times and computer storage requirements of these
hypothetical grids were then compared with those of the triangular data-sets

using the time and storage estimates developed in the following section.
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6.1: Digitization Time and Computer Storage

Table 6.1 gives the numbers of points, boundary points, and triangles
for the sets of surface-specific points used in this study. These all conform fo
the theoretical relationship given in equation 5.16.

Tests were made of the lengths of time needed to obtain the data from the
topographic maps. For data to be punched on computer cards, the times cited
are those required to first record the data values on a tape recorder and fo then
play back the tapes, writing the values on computer coding forms. The average
time required to determine the elevation of a point was found to be 8.3 seconds
-- this should be the same for both surface-specific points and grid points.
Drawing the triangular data-sets and numbering the points and triangles required
8.3 seconds per point, while an average of 8.0 seconds was needed to
determine the vertices of each triangle. Measuring the x and y co-~ordinates
used an average of 12.6 seconds per poinf, but it should be possible to
improve this considerably by using a digitizer.

Table 6.1 indicates that the average triangular data-set analyzed
herein contained 114 points and 197 triangles. Digitization of such a data-set
would theoretically require 946 seconds to draw the triangles, 1576 seconds
to determine the vertices of these triangles, and 2382 seconds to digitize the
points, a total of 4904 seconds, or 43.0 seconds per point. For grids, only the
elevations must be determined, and the 15 by 15 grids (225 points) should
require an average of 1867 seconds. This means that the triangular data-sets
required about 2.6 times as long fo prepare as did the grids. The use of a
digitizer in determining locational co-ordinates of surface-specific points should
reduce this ratio somewhat.

Equation 5.18 implies that the average triangular data-set stored in the

"triangle mode", would require 1389 half-words of computer storage allocation;
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TABLE 6.1: NUMBERS OF POINTS (NV), BOUNDARY POINTS (NB)

AND TRIANGLES (NC) FOR DATA-SETS ANALYZED

sample NV NB NC

8 90 25 | 153
1a 81 24 136
18a 119 : 29 207
24 142 32 250
31 114 28 198
41 138 34 240
means 114 29 197
11d 85 25 143
11b, c 29 15 41

18b, ¢ 25 16 32
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the grids would require but 450 half-words. The surface-specific point data-
sets thus require about 3.1 times as much computer storage space as the grids.

6.2: Local Relief (H)

Table 6.2 presents the estimates of local relief obtained from a visual
inspection of the contours ("standard method"), from the 7 by 7 grids (d = 1000 m)
used in Chapter 4, and from the computer analyses of the 15 by 15 grids and the
triangular data-sets. The results confirm those derived theoretically in
section 5.1 -- the triangular data-sets produce results very similar to the visual
inspection method, while grid errors may be rather large. Theoretically,
relief error should be a linear function of the grid spacing (d). For the six
samples given here, the ratio of grid errors was somewhat less than one third
when it should in theory be one half. The difference may be fortuitous due fo
the random factor of distance from the extrema to the nearest grid points which
influences the grid error, and to the small sample size.

The t-tests indicated that none of the average errors were significantly
different from zero, given the small sample size. Paired t-tests were used to
determine whether the errors of the three estimates were significantly different

from each other. All three pairs were significanﬂy different af the 95 per

cent level, meaning that while the grid estimates were not "significantly bad",
the friangular datfa-sets produced errors significantly less than those of the
grids.

6.3: Mean Slope (tan ¢ )

The results of slope estimation using four methods are given in Table 6.3.
Here, the value obtained using the line intersection method of Wentworth (1933)
is the "standard" to which the computer estimates are compared (see section 5.2).
Once again, the t-tests indicated that none of the mean errors differed significantly

from zero. Paired t-tests showed that the triangle and grid estimates were
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TABLE 6.2: ESTIMATES OF LOCAL RELIEF (H), AND ANALYSIS OF
ERRORS IN THESE ESTIMATES |

standard . 7x7 15x 15 triangular
sample method ' grid grid data-set

8 1880 1655 1853 1865
11 1709 1590 1606 1709
18 883 619 823 787
24 203 184 187 203
31 1195 1057 1192 1195
41 869 752 823 869

error (e):

8 ' - 225 27 15
1 - 119 103 0
18 - 264 60 5
24 - 19 16 0
31 - 138 3 0
41 - 117 46 0

é , 147 42.5 3.3
Se 87 36.0 6.1
t 0.689 0.482 0.224

p (5=0) 52% 66% 82%
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TABLE 6.3: ESTIMATES OF MEAN SLOPE (tane«), AND ANALYSIS OF
ERRORS IN THESE ESTIMATES

Wentworth 15 x 15 grid triangular

sample method NW-SE NE-SW data-set
8 0.609 0.523 0.518 0.585
11 0.395 0.344 0.358 0.355
18 0.3%96 0.331 0.335 0.393
24 0.063 0.041 0.039 0.048
31 0.218 0.187 0.185 0.203
41 -0.400 0.324 0.336 0.381
error (e): :

8 - 0.086 0.091 0.024
11 - 0.051 0.037 0.040
18 - 0.065 0.061 0.003
24 - 0.022 0.024 0.015
31 - 0.041 0.033 0.015
41 - 0.076 0.064 0.019
é 0.055 0.051 0.019
Se 0.025 0.025 0.012
f 0.896 0.843 0.639

p (€=0) 42% 44% 56%
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significantly different. As expected, the two slope estimates obtained from
the same grid using different diagonals were not significantly different at the
95 per cent level.

6.4: Roughness Factor (R)

As noted earlier in section 5.3, there exists no useful "standard" value
of the roughness factor to which computer estimates can be compared.
Table 6.4 presents the results of unit vector analysis of grids (the method used
by Hobson, 1967, 1972, and by Turner and Miles, 1967), of weighted vector
analysis of grids, and of weighted vector analysis of triangular data-sets. . The
similarity of columns 1 and 2 (also of 3 and 4) in the Table supports Turner and
Miles' contention that the orientations of the diagonals used to form the
triangles has little effect on the results. In the absence of a standard value,
the claim made above in Chapters 3 and 5, that the weighted analysis of
triangular data-sets should yield the best results, cannot be substantiated
empirically. The five sets of values given in Table 6.4 were not significantly
different from each other.

6.5: Hypsometric Integral (Hl)

Table 6.5 presents the results of hypsometric analysis of the six study
areas using six different methods. The standard values were obtained through
the use of cv. polar planimeter, while the second and third columns report results
obtai ned from grids in Chapter 4. HI, based on the best available estimates
of the minimum and maximum elevations, follows the approach recommended
by Pike and Wilson (1971); H*, as well as the results for the 15 by 15 grids,
used the grid estimates of these quantities. Pike and Wilson claimed (p. 1081)
that 40 to 50 points will generally produce results within 0.01 of the true
values. This claim is supported by the fact that the mean error produced by

their method is 0.006, and in none of the six. cases did the error reach 0.01.
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TABLE 6.4: ESTIMATES OF ROUGHNESS FACTOR (R)

15 x 15 grid
unit vectors weighted vectors triangular
sample - NW-SE NE-SW NW-SE NE=-SW data-set
8 11,36 11.23 11.90 11.85 13.80
11 ' 6.76 6.93 7.23 7.29 8.12
18 5.75 5.79 5.96 5.97 7.37
24 0.13 0.13 0.14 0.13 0.24
31 2.27 2.26 2.4 2.43 2.92
41 5.80 5.82 6.10 6.11 7.61

means 5.35 5.36 5.63 5.63 6.68
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TABLE 6.5: ESTIMATES OF HYPSOMETRIC INTEGRAL (H), AND
ANALYSIS OF ERRORS IN THESE ESTIMATES

standard 7 x 7 grid 15 x 15 grid* triangular

sample  method H Hi* NW-SE NE-SW  data-set

8 0.432 0.428 0.479 0.436 0.436 0.447
11 0.260 0.265 0.284 0.279 0.281 0.263
18 0.547 0.546 0.429 0.566 0.567 0.542
24 0.278 0.271 0.258 0.289 0.297 0.268
31 0.338 0.334 0.278 0.334 0.334 0.337
41 0.395 0.403 0.371 0.420 0.420 0.404

error (e):

8 .- 0.004 0.047 0.004 0.004 0.015
11 - 0.005 0.024 0.019 0.021 0.003
18 - 0.001 0.118 0.019 - 0.020 0.005
24 - 0.007 0.020 0.011 0.019 0.010
31 - 0.004 0.060 0.004 0.004 0.001
4] - 0.008 0.024 0.025 0.025 0.009

g 0.006 0.049 0.014 0.015 0.007
Se 0.002 0.038 0.010 0.010 0.005
t 0.795 0.529 0.559 0.622 0.557
p (=0) 46% 62% 60% 56% 60%

* these estimates are based on grid values only
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The best of the computer estimates, those based upon the triangular data-sets,
had a slightly larger average error, with the grid estimates considerably
poorer.

As in the cases of local relief and slope, the t-tests indicated that
none of the mean errors differed significantly from zero. Unlike those
parameters, however, only one of the 10 paired t-tests indicated a marginally
significant difference in average errors =~ that was between Pike and Wilson's
method and the estimate .ob’rained from the 15 by 15 grids using the northeast-

southwest diagonals.

6.6: Comparison of Errors for Triangular Data-sets and Grids

In Tables 6.2, 6.3, and 6.5, the errors in estimating local relief,
mean slope, and hypsometric integral usingboth regular grids and triangular
data-sets were given. Table 6.6 repeats these error values and gives the ratios
between the estimate errors for the two methods. According to the "Sampling
Theorem" introduced in section 2.2, error should be proportional to the grid
spacing and the relationship should be linear. This was confirmed theoretically
for two of the above three parameters in Chapter 5. If this is applied to the
grid errors noted above, one finds that in order to reduce the grid error in"rhe
estimation of local relief to the level of precision achieved by triangular
data-sets, one would need to reduce the grid spacing from 500 m to 39 m.

This and the values for the other two parameters are listed in Table 6.6, as
are other characteristics of these hypothetical grids. Finally, the values
developed above in section 6.1 are used to estimate the relative digitization
times and computer storage allocation requirements of these grids compared
with those of triangular data-sets.  For all three parameters, it appears that
a given level of precision can be attained with less digitization time and

computer storage space using surface=-specific points than using regular grids. The

contrast is much more dramatic for local relief than it is for the other two parameters.
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TABLE 6.6: EMPIRICAL COMPARISON OF ERRORS FOR TRIANGULAR
.DATA-SETS AND 15 BY 15 GRIDS

H tan ¢ Hl
Mean errors:
15 x 15 grids 42.5 0.053 0.015
triangular data-sets 3.3 0.019 0.007
ratio 12.9 2.8 2.1
Characteristics of grids theoretically
required* to produce same precision as
triangles:
d (metres) 39 179 234
grid size 181 x 181 40 x 40 31 x 31
# of grid points 32,761 1,600 961
Ratios of requirements of such grids to
‘those of triangular data=sets:
digitization time 55.4 2.7 1.6
storage space 47.2 . 2.3 1.4

* assuming a linear relationship between grid error and grid spacing
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6.7: Reproduceability and the Influence of Scale

As noted above, samples 11 and 18 were selected to investigate the
influence of scale. For each area, an additional data-set was derived from
a 1:250,000 scale map of the same area (samples 11b, 18b); next, approximately
the same points were located on 1:50,000 scale maps (11¢c, 18c). Sample 11
was also used to examine the reproduceability of triangular data-sets by
producing another such data-set of that area (sample 11d) with approximately
the same number of points as sample 11a. The number of points and triangles
in all of these data-sets were given in Table 6.1. In separate analyses of
samples 11 (Table 6.7) and 18 (Table 6.8), values of the four selected parameters
were standardized, and the distances between sub-samples in the resulting four-
variable "phase space” were calculated.. For sample 11, the most similar pair
was a and d, the two with similar numbers of points and triangles derived from
the same map. Next were the distances between these and sub-sample ¢,
derived from the same scale of map but using many less points and triangles.
The most "different" data-set was 11b, derived from a smaller-scale map with
a larger contour interval. It seems that for this area, map scale differences
are more important than the number of triangles used. For area 18 (Table 6.8),
the opposite conclusion was reached. In this case, the most similar pair was
b and ¢, the two sub-samples with similar and lesser numbers of points derived
from maps of different scales. The greatest difference was between a and b,
which were from different maps and which also used different numbers of points
and triangles. It would appear that for area 18, the number of triangles, or
perhaps more correctly the mean size of the triangles, is more important than
the differences between the 1:50,000 and 1:250,000 scale maps. Because the
triangles in 18b and 18c were too large, the topography was smoothed and

slopes reduced (see R and tan o values in Table 6.8).
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TABLE 6.7: SIMILARITY AMONG FOUR TRIANGULAR DATA-SETS BASED

ON SAMPLE 11 FOR THE FOUR SELECTED MEASURES

numbers of

H H tan e R points  friangles
Original values:
a 1709 0.263 0.355 8.12 81 136
b 1661 0.285 0.378 8.07 29 41
c 1709 0.265 0.367 7.59 29 41
d 1709 0.262 0.371 8.31 85 143
mean 1697 0.269 0.368 - 8.02
s 24 0.011 0.008 0.306
Standardized values:
a 0.500 -0.550 -1.684 0.326
b -1.500 1.467 1.295 0.163
c 0.500 -0.367 -0.130 -1.404
d 0.500 -0.642 0.389 0.947
Inter-pair differences: distance*  rank
a-b 2.000 2.017 2.979 0.163 4.119 (6)
a-c 0.000 0.183 1.554 1.730 2.333 (2)
a-d 0.000 0.092 2.073 0.621 2.166 (n
b-c 2.000 1.834 1.425 1.567 3.442 (5)
b-d 2.000 2.109 0.906 0.784 3.144 (4)
c-d 0.000 0.265 0.519 2.351 2.422 3)

* this is the distance between the samples in the four-dimensional space whose

axes are the four variables

Sub-samples: a, d =- 1:50,000 scale, sn'iall triangles;

b

Cc

-- 1:250,000 scale, large triangles;
-- 1:50,000 scale, large triangles.
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TABLE 6.8:. SIMILARITY AMONG THREE TRIANGULAR DATA-SETS BASED

ON SAMPLE 18 FOR THE FOUR SELECTED MEASURES

numbers of

H Hi tan R points  triangles
Original values:
a 878 0.542 0.397 7.39 119 207
b 838 0.517 0.257 3.45 25 32
c 823 0.544 0.295 4.53 25 32
mean 846 0.534 0.316 5.12
s 28 0.015 0.072 2.037
Standardized values:
a -1.126  -0.532 -1.119 -1.114
b 0.281 1.130 0.290 0.820
c 0.809  -0.665 0.815 0.295
Inter-pair differences: distance rank
a-b 1.407 1.662 1.309 1.934 3.193 (3)
a-c 1.935 0.133 1.934 1.409 3.080 (2)
b-c 0.528 1.795 0.525 0.525 2.013 (mn

Sub-samples: a -- 1:50,000 scale, small triangles;

b -- 1:250,000 scale, large triangles;

¢ -- 1:50,000 scale, large triangles.
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Because only two areas were investigated, no strong conclusions can
be made regarding the results and the difference between the areas. The
writer proposes the following as a possible explanation for the results obtained.

- First of all, the reduction in the number of triangles was more drastic for
sample 18 than for sample 11 -- sub-samples 11b and 11c had about one third
the number of triangles as did 11a, while 18b and 18¢c had only about one
sixth the number in 18a.. Secondly, the topography of area 18 was more
complex than area 11. This can be seen by a visual inspection of the maps in
Appendix 1ll, and is reflected in the fact that 52 per cent more triangles were
used to characterize sample 18's topography in the basic friangular data-sets
(see Table 6.1). It is proposed that for area 11, the topographic texture was
.sufﬁcien’rly large that the larger triangles in sub-sample 11c were able to
retain most of the "terrain information" present in sub-samples 11a and 11d.
Differences between the map scales due to contour generalization and the
larger contour interval thus predominate, making sub-sample 11b the one most
distant from the others in its terrain paramefers. For area 18, the finer
topographic texture and larger triangles combined to make the influences of
rﬁap scale relatively less important than that of the reduced number of triangles.
These proposals should be tested by further investigations which are beyond the
scope of the present study.

6.8: Summary

Empirical tests were used toestimate the digitization times required for
triangular data-sets and for regular grids. It was estimated that 43. 0 seconds
per point are required for the former and 8.3 seconds per point for the latter.
The average triangular data-set would require about 2.6 times as long to
prepare as the 15 by 15 grids used for comparisons. Theoretical considerations
indicate that the former data-sets would need some 3.1 times as much computer

storage space as would the grids.
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Errors in the estimates of local relief, mean slope, and hypsometric
integral were discussed, and various estimates of the roughness factor were
given. In every case, the triangular data-sets based on surface-specific
points gave better results than the 15 by 15 grids. Triangular data-set errors
for local relief and mean slope were significantly less than those of the grids,
as determined using the t-statistic. For the hypsometric integral, the grids
produced a higher average error but the difference was not significant at
the 95 per cent level.

The hypothetical linear relationship between grid error and grid spacing
was used to estimate the grid spacing required to equal the precision of the
triangular data-set estimates of the three parameters. The digitization times
and computer storage requirements of these theoretical grids were determined,
and for all three parameters the triangular data-sets required less time and
space than did the grids.

An investigation of the reproduceability of triangular data-sets and
the influences of map scale and triangle size was conducted. The reproduceability
was good; the relative importance of map scale and triangle size appears to be
related to the complexity of the terrain. If the triangles are too large, the
topography is smoothed and the effect of map scale becomes less important.

- Further work will be required to test and quantify this proposed relationship.
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Chapter 7: Summary and Conclusions

General geomorphometry is to be preferred over a specific approach
because it does not depend upon any single geomorphic process nor on the
identification of specific types of landforms. It is therefore more applicable
"to arbitrarily-bounded terrain samples stored in an electronic computer.

After a brief discussion of map precision and notation, approaches to
computer terrain storage were discussed. This subject was reviewed in terms of
digitization (data gathering) methods, actual computer storage and retrieval
techniques, and assumptions about the behavior of the land surface between
data points. In surface=specific sampling, points are selected which have
particular significance in the topographic form -- these include peaks, pits,
and passes, and points along ridges and valleys. In the surface-random approach,
the points are selected according to criteria independent of the surface; usually
either the locations of the points are determined by some type of grid, or the
elevations of the points fo be recorded are defined (contour sampling).

. Completely random sampling does not appear to produce as good a.representation
of a surface as does the stratified random approach represented by a grid.
Generally, grids require much less computer storage allocation, since only one
co-ordinate (the elevation) must be stored for each point. - Digitized confour
points require two co-ordinates, while for surface-specific points all three must
be specified. In addition, the neighbours of a grid point are implicit in its
position within the computer array, while these must be explicitly indicated for
surface-specific points, requiring still more computer space. An arbitrary
assumption about the behavior of the land surface between points is usually
made; in the absence of evidence to the confrary, the linear assumption is
generally the most reasonable. In the present study, the surface-specific point
and regular grid approaches to computer terrain storage were compared with reference

to the problem of estimating some selected geomorphometric parameters.
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A large number of landform measures were reviewed, and were found to
belong to a number of basic groups. These were texture and grain, relief, slope,
dispersion of slope magnitude and orientation, and hypsometry. It was decided
to select one parameter from each of these classes, but none of the grain and
texture measures were readily adaptable to the computer methods used. Texture
and grain were implicit in the sample area size and the density of sample points.
The four parameters examined explicitly were local relief (H), mean slope (tanex),
roughness factor (R), and hypsometric integral (HI).

In order to select some areas for detailed analysis and to provide data for
assessing the theoretical errors in the estimates of some parameters, forty-two
7 by 7 km squares were selected from 1:50,000 scale maps of southern British
Columbia using a stratified random sampling design. For each of these areas, local
relief, hypsometric integral, mean slope, drainage density, stream source density,
and peak density were estimated using manual methods. Relationships among these
variables and their estimates were examined during correlation analysis. Relief,
hypsometric integral, and peak density were used to divide the forty-two samples
into fifteen "terrain types". A stratified random sample of six areas was derived
from these to provide a basis for the comparison of the computer methods, and the
geomorphology of each of the six areas was briefly described.

Theoretical errors involved in estimating the four selected parameters
both from the triangular networks based upon surface-specific points and from
regular grids were discussed, as were the actual analysis procedures employed.

For local relief and the hypsometric integral at least, the precision of the grid
estimates should be linearly related to the grid spacing; this probably holds true for
the other measures also. The possibility of estimating other parameters, the relation-
ships among the selected variables and between the numbers of points and triangles,

and the theoretical computer storage requirements of the methods were also reviewed.
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Finally, the results of the analysis of the topography of the six samples
using the two approaches were reported. Sample 11 was used to investigate the
reproduceability of the surface-specific sampling,and this and sample 18 used to
study the effects of the numbers of points and the scale of the maps used. It was
found that the relative importance of map scale and triangle size appears to
depend upon the topographic texture. For coarse texture, map scale is more
important, while for finer texture, the size of triangles used becomes dominant.
This hypothesis should be tested by further research.

The triangular data-sets were found to produce better estimates of the
parameters than the regular grids, even though the latter averaged more than
twice as many points. The average surface-specific point data-set required
some 2.6 times as much digitization time and 3.1 times as much computer storage
space as did the 15 by 15 grids. The theoretical linear relationship between
grid error and grid spacing was used to estimate the grid density required to
equal the precision of the triangular data-sets. These hypothetical grids would
require much more time and storage space than would the data-sets based on
surface-specific points (see Table 6.6).

In conclusion, it appears that superior estimates of geomorphometric
parameters can be obtained from triangular data-sets based on surface-specific
points. Grids which would produce a comparable level of precision would
theoretically require more digitization time and computer storag.e space. For
a reasonably experienced terrain analyst, the triangular data-sets appeared to
show good reproduceability; further investigation will be required to determine
whether comparable results can be obtained using workers with less training
and background. Such workers should be able to produce good results using
grid sampling, since this abproach lacks the subjective element involved in the

selection of the surface-specific points.
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Appendix |: Notation

In this appendix, all variables and symbols used in the text are listed,
together with their meanings or definitions. Exceptions are standard
abbreviations (such as "M" for metres) which are not listed. For each eniry,

the fext section where the sumbol first appeared is indicated in parentheses.

a(h) the relative hypsometric function (3.6.1)

b average distance between adjacent ridges and valleys (3.4.3)
c a distance measure (2.5)

D a density value (1.2)

Dy drainage density (3.2.2)

Dp peak density (3.2.4)

D, stream source density (3.2.3)

d grid spacing (2.2)

E elevation-relief ratio (3.6.2)

ey error in the grid estimate of local relief (5.1.2)

eH relative error in the grid estimate of the hypsometric integral (5.4.2)
e ax Error in the grid estimate of the maximum elevation (5.1.2)
€min error in the grid estimate of the minimum elevation (5.1.2)
f factor by which one wishes to improve grid accuracy (2.2)
G grain of topography (3.2.1)

H local relief (3.3.1)

H* grid estimate of local relief (4.3.3)

Hc available relief (3_.3.2)

Hd drainage relief (3.3.3)

Hi the hypsometric integral (3.6.2)

H* grid estimate of the hypsometric integral (4.3.5)

h relative height (3.6.1)

h mean relative height (3.6.2)
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the contour interval (3.4.1)

the vector dispersion factor (3.5)

total length of traverse lines used in line sampling estimates of slope
(3.4.1) or drainage density (4.3.1)

vector strength in per cent (3.5)

number of objects or occurrences (1.2)
number of cells or triangles in network (5.6)
number of edges in network (5.6)

number of vertices or points in network (5.6)
length of drainage basin perimeter (3.2.2)
mean annual precipitation (4.3.6)

length of vector sum (3.5)

roughness factor (3.5)

correlation coefficient (1.2)

size or wavelength of smallest features one wishes to detect (2.2)
a root-mean-square value (1.2)
root-mean-square distance (5.1.2)
root-mean-square error (1.1)

texture ratio (3.2.2)

year of map publication (4.3.6)

volume of landmass (3.2.4)

variability factor (3.5)

highest frequency present in a function (2.2)
geographic location co-ordinates (1.2)
altitude above sea level (1.2)

mean elevation (3.6.2)

maximum elevation (3.6.1)
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grid estimate of z 5.4.2)

max (
minimum elevation (3.6.1)

grid estimate of z o (5.4.2)

mean ground slope (3.4.1)

exponent in the general interpolation formula (2.5)

slope near the maximum or minimum point (5.1.2)

land slope at a point (1.1)

-angle of intersection between a traverse line and a contour or stream

(3.4.1)

precision parameter for Fisher's spherical probability distribution (3.5)
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Appendix 1l: Topographic and Related Variables for 42 Areas in Southern

British Columbia

In the following Table, the values for twelve terrain and related
variables from the forty-two 7 by 7 km topographic samples examined in
Chapter 4 are given. The parameters were listed in Table 4.3, and are also
included in Appendix I. The six areas analyzed in detail in Chapter 6 are
indicated by the symbol "#", while the Highes’r and lowest value for each
parameter are marked with the symbols "+" and "-", respectively. The mean
and standard deviation for each variable, and the units of measurement, are
indicated at the bottom of the Table.

All of the values reported in this Table are based on the exclusion of water
surfaces from the calculations. If these were included, mean slope would be
reduced for those areas including lakes or the ocean, and the values of some of

the other parameters would also be influenced.
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Area Dy N/L Ds Dp H H*  tan o H H* z p t
1 0.388 0.296 0.102 0.163 1247 884 0.167 0.602 0.540 1650 40 64
2 0.661 0.418 0.388 0.408 963 643 0.405 0.568 0.552 1818 40 61
3 0.292 0.184 0.041 0.6%94 329 235 0.091 0.343 0.481 951 15 31-
4 0.639 0.368 0.055 0.417 1268 1113 0.462 0.240- 0.259 1965 45 62
5 0.840 0.562 0.224 0.653 835 728 0.169 0.299 0.343 1046 16 62
6 0.482 0.28 0.000- 0.184 939 820 0.241 0.364 0.339 1113 20 58
7 0.776 0.459 0.224 0.122 1694 1636 0.445 0.352 0.361 1143 55 60
8f 0.555 0.347 0.102 0.102 1880 1655 0.609 0.428 0.479 1683 80 61
9 0.586 0.388 0.163 0.326 1387 1159 0.527 0.405 0.451 2077+ 30 59
10 0.508 0.306 0.167 0.333 1740 1423 0.504 0.377 0.458 1967 70 66
11# 0.549 0.347 0.122 0.143 1709 1590 0.395 0.265 0.284 1148 30 65
12 0.476 '0.317 0.102 0.408 1405 1207 0.460 0.512 0.434 1786 40 60
13 0.714 0.510 0.250 0.333 375 287 0.110 0.242 0.233 91- 40 51
14 °1.231 0.837 1.089 0.122 1012 938 0.381 0.494 0.526 661 100 38
15 0.937 0.581 0.583 0.250 1326 1201 0.594 0.417 0.445 554 140 39
16 1.510 - 1.020 1.510+ 0.306 1015 991 0.403 0.539 0.533 546 130 47
17 0.492  0.337 0.265 0.796 1408 1143 0.694+ 0.529 0.562 1169 120 62
187 - 1.847 1.163 1.429 0.286 883 619 0.395 0.546 0.429 1534 50 57
19 0.676 0.378 0.163 -0.163 1905 1814 0.496 0.513 0.513 1129 18 58
20 0.684 0.459 0.061 0.408 1945 1610 0.601 0.314. 0.380 754 130 65
21 0.563 0.357 0.250 0.568 686 567 0.299 0.251 0.272 172 70 49
22 1.322 .0:837 ~-0:821 0.359 1175 -1128 -0.376 -0.286 -0.297 426 120 34
23 0.720 0.398 0.291 0.521 920 832 0.342 0.371 0.365 341 90 60
24% 0.631 0.459 0:191 0.383 203- 174~ 0.064 0.281 0.270 967 16 58
25 0.043- 0.031- 0.000- 0.041- 366 262 0.042 0.309 0.233 1021 14 65
26 0.408 0.235 0.020 0.306 773 585 0.262 0.343 0.450 635 20 61
27 0.478 0.286 0.163 0.184 287 214 0.056 0.494 0.607+ 968 16 65
28 0.724 0.439 0.184 0.367 274 183 0.042- 0.540 0.492 831 12- 55
29 0.637 0.368 0.102 0.531 296 269 0.060 0.243 0.227- 1201 15 60
30 0.819 0.480 0.653 C.224 2122 1972+ 0.607 0.562 0.601 1220 40 6!
314 0.290 0.255 0.106 0.553 1195 1054 0.225 0.348 0.392 1480 23 68+
32  0.657 0.459 0.104 0.521 338 329 0.101 0.562 0.559 1141 15 67
33 0.326 0.194 0.041 0.204 272 192 0.043 0.272 0.302 799 17 60
34 0.735 0.500 0.490 0.429 854 707 0.257 0.409 0.485 1187 47 60
35 2.051+ 1.316+ 1.408 0.306 613 471 0.256 0.268 0.344 176 105 36
36 0.657 0.418 0.125 0.271 738 643 0.157 0.252 0.280 186 90 61
37 1.420 1.023 0.256 0.977+ 716 . 550 0.393 0.334 0.382 239 125 61
38 0.531 0.357 0.267 0.511 655 559 0.373 0.322 0.374 2N 70 64
392 0.496 0.306 0.167 0.479 1012 850 0.582 0.386 0.430 400 70 64
40 0.661 0.398 0.286 0.286 495 464 0.200 0.347 0.349 182 70 64
41% 0.882 0.531 0.673 ~-0.490 869 752 0.400 0.403 0.371 380 100 61
42  0.569 0.316 0.467 0.422 968 741 0.519 0.434 0.456 420 160+ 61
"mean 0.725 0.465 0.360 0.370 978 838 0.329 0.390 0.408 937 60 58
s 0.401  0.265 0.413 0.195 526 488 0.189 0.109 0.107 566 42 9
units |<m-l km-] l<m"2 km”2 m m m inches yr
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Appendix llla:  Computer Program

In this appendix, the FORTRAN IV program listing for the computer
program used in this study (program GEOTRI) is given. Requirements for the

input data are contained in comments at the beginning of the program listing.
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ORTRAN IV G COMPILER MATMN 0¢-06-74 19:19:32 _ PAGE 000}

Che ook bkl ok ke ok el e ke ke ek ol e koo e deofe e o e ok Yoo e i kel o ok

pPRN~PAM: GEATO!
P1JIPNSE; TN NETEPVIME SE(ITTEN AINMARPHAMETRIC PARAMETEPS RY

AMALYSIS OF TPIAMGULAR FACFTS WHICH £20JXIVATS THE SUrFACE,
POSSIsLY BASEN OM SRID DATA
WRITTEN: NAVID Mo MEPK, GID5RAPAY, UaB800.4 1973 —

INPUT: EACH J0O8 REQUIRCS & JN8 CARPD AND A TITLE CARD, FOLLOWED BY
THE DATA TF 280072 CH =MD THE )39,

JOB CARMY: COL 3-5 ITY2E=Q: PFE-TRIANMGULATED DLTA.
’ =1: RPID DATA
=92G: EMD 0% PUN (FOLLWS_LAST J02)y |

10 NEW2=0: READ NF4 DATA POINTS
=1t USE SAME POINTS AS PREVINIS JOR
18 NZWT=0: 2£AN 15 ~OVDYUTE NEY TETAMNGLES

JSE SAME TRIANGLES AS PRAEVINUS 308
NUMBEP NE METRES IN INF HNIT 1N
X=PTRECTION, IR COLgMN PﬁTI“G IS

16-27 XSCALE

GRIN NATA, DESAULTS T2 1,0 IF NOT
o " SPECIFIEN, SNOAMAT: F}2°5
23-30  YSCALF: AS ARIVE, FOF Y=DN[REZTIQN o=

- - EOW SPACING, NEFAULTS TN XSCALE,
40-51 ISCALF: MUMRER OF METRES IN TNME MIT IN
7~NITECTION, DEFAULTS TR 1,0 .

ENELYZE ALL TRIAMGLES.
EXCLUDE. LAKSE AND QOCZANM TRIZMGLES,
OMIT TRIANZLE LIST,

56 . LAKE

&1 ITe1=0:
=12 LIST PASAMETEQS FNO EACH TPTANAL G,

) - A  IDIAG=0D: USE NMW-St DTAGTMALS TG PFNDYUCE

- : TPIANGLES FROM GRID,

=1: USE NE=SW NIAGOMALS,
£7-71 N33 NUMIER Qf 2nNWS IN MATRIX,
72-76 NC: MUMBEP NF COLUMNS TN MAT2TY

TITLE CARD: TITLE, MAXIMUM NF T4 CHARACTERS, IF MO TITLE IS
NESIRFD, A RLANK CARD MYST RBRE JTMSERTED,

DATA:
POE-TRIAMGULATF™ DATA (ITYOPE=Q):

-DATA POINTS, TF RENUIREN, EACH CAID HAVING POINT
NMUMBER AMD X, Y, AMD Z-CO-0RNDIMATES,{FOIVAT AS WRITTEMN
1S 15,72F6.0)

“LAST DATA POINT MUST RF FOLLCWEN RY A RLANK (AGNH
~TRIAMGLES, IF FZINUI2ED, EACH CAOD HAVIN3 TOIANGLE
MUMARED , POTNT NUMRESS OF THEES VERTICES, &MY nw,

WHICH ENNALS 1 TF T4C TITAMGLF [S ON A LAKE N2 THE
OCEAM, 7EF7 NTHECWISE, (FO2MAT AS WRPITTEN, S5IF)
~LAST TRTAVSGLE MUST 3F COLLOWED BY_ A BLANC CAFD_ .

GRID DATA (ITYDPE=1}:
-EACH 20W NN A SSEPARATE CAPD, (FORMAT AS 42 [TTeN: 3X,
1528, 00, " M2 AWANK TAPN 1S INCLYNIN, SINCE MyMPED OF

QOWS (NR) S SOECIFIED ON THE 4028 CARD,

AS NOTED ARQVE, LAST J28 IS _FCLLOWEN_RY_A _CARD _MWITH "acar TN

CCLUMNS 3-5 TO END THE UM,

RO oohoohoonoabooheahooPoabhoohoophoo DO PONOOPAONONNhON

RESTATCTIONS: AS WEITTEM, TALCRE ARF THFE FOLYQWING RESTRPICTITMS:


http://_1_9.I1
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ORTRAN IV G COMPILER

0044

VEC23=2(KVIIV)=201Vv (]

MAIN 02-04-T74 10:19:32 PAGE 0002
c =AY IMUM NUM3IZE Of OTINTS (NP) (S 5003
c SMAXIMUM NUMAED a5 TITANALSS (MT) IS 19n0:
c ~MATRIX MAY VMIT WAVE MIRE THAN 20 ROWS (NR) 32 185 £ JuNS
C (M2
c =IF DIMENSIDING A3 TNCTEASI), KEFO [N MIND THAT:
o =(NR=1}%(NC=1) CANNDT EXCEED MD;
c S NT_SHQULD 8 JIVENSIOM TD N0y oo
g***t#&t*ﬁ*k**&**:**!#tﬁt:‘:ti:“,{**::ﬁ&*1‘1*****:‘(****:{:**********tt**\k*****t!i_'::‘:t*
- _
09391, DIMENSION X{507),Y(500),2(520),IT(1000),1V(1070),JV(1C0D),KV{]OnD)
1,LVI1000Y , TITLE(12),SM(12) |
0002 COAMMON Xy Ve 2y IT IV, Yy KYyL Y,y TITLE, NP, NT,LAKE, ITRI R
0093 RAN=0,017453293 :
0C04 Jn8s=9
2008 33 CALL REFEANFR
2006 “IF(LAKZ.FEN,029) GO TQ 939
0007 ALAXE=0, :
27018 ML=0 _ e
0009 7*AX=-9929a,
0010 ZMIM=32999,
2211 T7MAX=9
0012 1ZMIN=D |
0013 20 3 I=1,12
214 LSUMOTIN =0, -
0715 3 CANTINUE :
0016 IF(ITRTILEN,0) A0 TO 94
1917 WRITS(6,252) (TITLE(TIT),I1=1,19)
0018 152 FNQUAT(*11,1004,//) .
0019 WRITE(%,500)
0029 593 FNRYAT(*_ NOo croneeS L 7M1y 10X, "MAP AFEA Tz
. ‘ 1 ARTA . SLePEt, /) .
0021 . - 9% DO & T=1,NT
0072 TR(ZUIVITIN) o LE, ZMAX) Gn T2 ¢0
0023 IMAX=Z(IV(]))
0074 [ZMax=1v( 1)
0025 50 IF(Z(JV(I))GLEQZ“AX) Gﬂ TJ 41 L L
0026 IMAX=Z(IV(1)) - '
0027 IIMAX=JVIT) :
2028 51 57 (KVIT))o1E, 748X) G0 TY 42
0029 CZMAX=Z(MVI(T))
7030 TZMAX=K Y[ 1)
0921 62 IF(70IVIT 1) RE. ZMINY G T2 «13 e
0022 ZHIM=7(IV(]))
0033 TZMIN=IVI])
2924 63 IF(Z(IVIT)}o0BEa7"TIN) GO T £4
0025 IMIN=Z{JV(I))
0036 [ZMTN=JV(T)
02037 44 IE TV (T))eBELZMIN) GO T2 55 SR
0028 IMIM=T(KY(])
00139 I12MIN=KVY( 1)
0240 £5 CONTINYE
0041 VECI1=X(JVLIV)=X(TV(T))
0042 VECTI 2=Y(JYIT) ) =-Y{IVL(I))
0943 VECI2=2(av(I))I-Z2(Iv{1)) _ e
0044 VEC21=XIKVIIN)=X(IV(I})
02345 VEC22=Y(KVIT))=Y(IVI(T))
1)
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OO

‘IRTRAN IV G COMPILE® MATN 02-056=-T74 10:19:32 PAGF 00072
c VECT AND VEC2 ARE VYELTORS ALNNA 2 SIDES OF THS TPTANGLE
0047 U= Z0IVITI I +Z 0V TN+ ZUvy (1) )17 3,
c 4 1§ THE MZAN ELIVATICN OF THE TPTANGLE
0048 Y1 =y=ECH 7*'\/_1(:_'7‘2-\/?{‘_‘,_ 3:‘:\‘/:(‘:‘;
2049 V2 =yCo13HyYS(2) ~VELT 1wy ErDs
0050 V3I=yECII*YES22-VEI 1 2%y 50 20
c VI3 TH= CRNSS_PRONUCT _QF VENY AND VEC?, AND 1S THE D2THRGINMAL 77
c THE TRIANGLF
2051 1E(V3,GEaDe30) 53 T 4
0082 Vi=(=1g)=
LLER Y2=(=1,)%y?2
0954 Viz(=1,)%Vv3
0055 e CONTINIE o . —
o THIS 4AKES THE VECTCR POINT "iypw
956 ’ VL =SQRT(V1XVI+Y 25y 24V 3%y 2)
0057 AT =Y /2,
C THE LENGTHY OF V IS TWICE THI TEUS ARFA DF THE TRIANGLE, AT
0058 Ut =visvi '
0059 G- WAV N ' v I
0060 J3=V3/VL
9351 A=V2/2,
o THE MMADT 0P DONJFCTRED AFSA 1S HALE THE 7-CNMPOMENT F V
0062 DIP=1,5707963-ACSIN(1J2) .
00632 S=TAN(DIP)
o S IS THE SUAPS TANGEMT
c YITE: I€ OTHES CHARACTZAISTICS NF IMNIVIDUAL TRIAMGLES ARE NESI2en
c THE ADPZIPYIIATE STATEMENTS SHOYLN BE TNSERATED HECE AND THE
. r WRITE STATEYCMT CHAMGED, FGe: CPIENTATINN NF TPIANGLE,
00t 4 “IF(ITRILFN.0) 50 T2 ©0 '
DOE5 HRITE(6,200) IT(I)yIV(I).JV(I);‘V(‘\pLV(I),ZM AyAT,S
0066 ___ 23] _FORMAT(S51546€15,.8)
oneT 993 CONT INUE -
0968 IF(LVIT)aNE,1) GN TQ 7
0059 ALAYCS=ALAKE +A
0070 NL=NL4+Y
- c ALAKE IS THE TNTAL ADEA NE LAKES 4+ DCEAN; NL IS THE NUMSSE OF
g TRIANAGLES FALLING ON WATE? : ' e
0071 IT{LAKE,EAL,C) 30 T 7.
0072 IF(IT2IoMEs0) WRTITES,300) IT : .
0072 330 SORVAT(Y TOTAMAGLE 4 ¢,12,0 1§ NN A LAKE 0o THE DCEAN AND IS EXCIVD
1E01) o '
<0074 G0 TN 6
007k 7.SUMI L) =SUM( 1)+ - . -
D075 SHM{2)=SUM(2) +AT
0077 SUMI3)=SUM(2) ¢ 2M%A
Qo718 SHM{ 4V =S &1+
0079 SUM(5) =SUM(5) +S%4A
0080 SUM{5) =SUM{6) +SXAT
- 9391 SUMLTI=SUM( )+ B O
0022 SHUM{]) =SUM(R) +J2
00213 SUMIQY=StiM(0) +1)3
0184 suwuo)zsn-'(wnvuvn
0035 SUM{IL)=SuUM(11)+v2/2
0086 SUM{12)=SUM(12)+V3/2
nae1 S CONTIMUE . e

THE FOLLOWING SECTICN CPMOUTES GEQMORPHOMETRPIC PADAMETEPRS
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ORTRAN IV G COMPILER . MAIN 02-06~7¢ ' 10:10:32 PAGE 0006

0c23

TF{LAKS) 18,19,18

0099 13 ATOT=SUY(1) +ALAKE
0030 MT A=NT=NL
00971 - 50 TO 29
09332 13 ATOT=SUM(1)
0093 © NTA=NMT
0004 20 CANTIMIE o o
c ATOT 1S THE TOTAL AREA, ~4I_E SUM{1) IS THE ANALYSIS AFEa, WHICH
c MAY EXCLIDE LAXES,
C NT IS THE TNATAL AMJVREZ NF TS TAMSLES, NTA THE NIMRER F(P ALALYSIS
0095 - OLAKE=1004,%ALAKE/ATOT
0196 a CONTINUE
0037 TH=FLAAT(MTA)
0798 TM=SUM (1) /SUM(T) ) B
0099 SMI=SUMI4) /TN
0120 SM2=SHM{5) /SUM(1)
01 01 SHMI=SUMLE }/SUM(2)
c THE SMtS ARE MEAM SLNPES: SUTLoUNWSTRHTEN; SU2,.WTH PY A5 SU2,,nV
21932 H= IMAX-TMIN AT,
0103 HYDS =(Z9=7MIN) /H ~ ' '
. c CHYPS IS THE HYPSOMETRIC IMT=GPAL
2104 ARATIN=SUMI2) /Sy 1)
0105 AMT2 I=StM(1 ) /TN
: c AMTE T IS THE MEAN ARFA OF THE TRIANMGLES ANALYZED
C . :
I THTIS SECTINN IS F70 VZrTN 1AL ANALYSISe. VARIABLES RELATED T2 UNTIT
T C {UNAEIGHTED ) VECTI? ANALYSTS TMCLUSS "uv IN NAMES, THOSE PELATED
c TO WEIGHTED ANALYSIS INCLJDE mun,
c R=VECTOR LENGTH, K=DPEL1SICN PAGAWETER, K1=703/K,L=VErTAs STRENATH
c {2y, RF=RNSHNESS FACTOR, 2=NRIZMTATION, D=)IP CF MEAN VECTOZ
(‘ .
0105 RU=SORTISUM (T XX+ SUA( 3) 250+ SUM( O ) %D ) B
2107 Rv—\QQT(SUM(‘O)**7+<U“(1])**7+<UM(1 ET )
0109 NK=(TN=1o 1/ (TN=-5U1)
0109 YKI=190e /LK
2110 HL=1004*RUI/TN
D111 VL =1 00, *RV/SUM(2) B
Q112 RF U= 100. UL
0113 . RFV=100,-VL :
C UL: VECTAR STRENMATH, UNIT VYECTNRS: VL: WRIGHTED BY AT,
0114 AUY=StA{T) /RU
0115 ay=Sy4u(a) /Ry
0116 y=cuyMia) /U e e
-.9117 AV=S111(10) /Y
01189 RV=SUM{11)/3Y
Q19 CV:CU‘HI?)/Q\/
0120 IF{RYNELF,0) 30 TD 10
0121 IF(AYI111,12,12
0122 11 2U=270s . ___ - : : e e
0123 GO TO 24
‘o124 12 0U=2,0
n12s 50 19 24
0125 13 9y=°0,
0127 GN TO 24 :
o128 10 ZONTINYE e : e e
0129 JU=ATAN(AU/B1)/RAD
0130 IF())23,25,25
0111 35 _1F(A1])32,24,7%4
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"ORTRAN IV G COMPILER VAT ’ 02~06&-T4 10:19:32 PAGE 0005

0122 23 [€(a1y)22,32,32
0133 32 NyY=12)4+0Y
0124 33 My=D1y+l 00,
n13s5 24 TANTINMYS
0125 N=ARS TN G /240
0137 IF(RVLNE,D,N) GN T 14
01219 I=02y) 19,14,17 — _
91129 15 V=279, o
0140 6N TN 4
a1l 16 Ay=0,1 .
0142 63 TN &4
0143 17 2v=20,
AR 2070 44
0145 14 CONT INUE
0146 OV =ATAN(AV/RY)/0AD
0147 15 (nNY)142,45,45
0148 45 IF(3V)53, 4bysl
0149 43 IF(aV)&3,52,52
2150 52 OV=NV+190,
2151 53 OV=1v+1390,
0152 4% CONTINUS
0153 DV =ARSIMI{CV)/2AN
C -
c . THE ECLLNWING SECTION PRINTS NUT RESULTS
c
2154 : WRITE(6,152) (TITLE(TT),[1=1,19) T
0155 WRITE(A 50D} MO, MT ATOT,PLACE ,NTA, SUM{ 1), AMTR]
0156 6527 SNRMAT (¢ GENTOAL: "o/ /P MUIMRED OF POINTS =9 ,10X, 15, /, 'NIIVACED
1 0F TRIANGLES= 1,304 1 4/ TOTAL ADER =1, F15,3,/,'0E30FNT (.
2AKES + SEA=',9X,F7,2,,, 'NJMRER S22 AMLLYSIS=?,10X,[5,/,'4BC4 FOR A
INALYSIS _='4815:F,/,""2AN TOTANGLE AFEA =1,815,2,//) :
0157 WRITE(6,601 1 ZVMIN, 17MI8, 7MAX I7Y9EX 5 HYP S, SM] , SM2,Su3  ARRTT A
0158 601 FIRMAT(' GEOQMNRDHOMETRY:',// ,tMIMTMWIM ELEVATIIN =1,80,2,0 LD
‘ . QCATED AT 9)IMT NUMRCEO ¢ [4, / tHAYIMIN ELEYATIAN  ° =t Fa_2 0 |ar
] LATEN AT O0IMT MUMRER ', 14,/, ' LOCAL FELTEF =Y FR, 210Xy /¢
24YPSOMETRIC INTEQGRAL  =',F3,5,/,'MCAN SLOPE2?,/,' JNWEIGHTZN
3 _ = 9F8eSe/y !t MEISATIN BY MAP ARCA  =',FR,85,/,' WEIGHTED R
4Y TPUF ADREA =¢,59.,5,/, 1ARTA RATID =v,Fa, 5,/ T
0159 WRITE(6,602) 01yN I, L, UK, KT P FU, DV, PV, VL ,REY
0140 632 FORMAT(Y VECTIR ANALYSIS:®, //,"UNWETISHTEN(UNIT VECTNRCS) 29,/7,7 nEtT
1ENTATIGN =0, FR,2,/,' NIp SV, FR.2,/," LT
2 =V ,F8,2,/,' X =1 ,F8,2,/,' 100/¥ =,
2E3e29 /0t _ROUGHNESS FACTI=' 4 FR32,//4"WEIGHTED BY TRJF AQEAzt,/,*
] &4 OQRIENTATION =1 ,FR,24/ 4! DIP ‘ =V, FR.2, /7,0 L(%)
. 5 =20,F8,2,/," ROUYIHMNESS FACTAR=' ,FR,2)
0151 JAR<= JNRC #]
0162 GO TN 99
0163 999 WRITE(6,919) JIRS
0164 920 FIRMAT ('8, 1580 OF SN, _THIS BUN_IMZLUDFER_ *,13,% J223Se")
. 0165 sTOo
0166 END

TOTAL MEMJRY RIVYIREMEMTS 0013A5 RYTES

~COMPILE TIME = 1.0 SECONIS | o
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MIRTRAN 1V 6

COMPILER

READER 02-06-74 10219335 PAGE 0001

0001 $1J3301JTINE REANEC
0002 0T ASNS TNy X(SO7),Y(SOJ),7(=30),!*(10“0),[V(10ﬁ0),JV(‘HOO),VV(IO“O)
' 1,LVIE1200) ,TITLE(LI),ALT(2), 0),10vlvo 20)
0093 TAMMON_ Xa ¥, 7, 1T, TV IV, XV, LY, TITLE M0, MT | AKE, TTR
0224 R?A?(B,lCD)I?YDE.VFw”yHE#T,XSCAL?,YSCALF,ZSCALEyLAK?.ITFI,I)IAG,VC
1,0
0905 1090 CJRMAT(215,3512,5,515) e
00956 IF(TTYDELNE,9232) 4] T )
0007 LiKE=coaq
agns AT TN
SEEE) 1 CREAD(S5,102) (TITLE( ), 1=1,16) .
0010 103 EAQUAT(1024) :
0011 [E(XSTALS 062600 0) XSCALF=1,D —
0012 [S(YSCALE,57,0,0) YSCALEZXSCALE
0013 TF(ZISCALEaEReD,0) ZSCALE=1,D
0014 IF(ITYPFLFN,1) 52 TN &9
00t s IF(ME4D,EN,1) 50 TN 3
0016 ND =) '
001 2. READIS, YOV I, XCT YOI} 4701
001 8 191 FORMAT (18 ,2F4,0)
2019 xF(r,EQ.nv 57 T0 2
9720 X{I)=X{T1)*XSCALE
no21 Y(I)=Y(T)=YSCALE
0022 Z(I)—Z(T)*7SCALE
0023 NP=NP+)
0024 Gn TO 2
0025 3 IE(NEWT4EQe1) 50 TO 5%
0326 ' NT=1 ' '
0027 4 nFAw(S.Jo>)xT(u*).XV(MT).JV(MT).KV(MT).(V(NT)
0723 7102 CFORVATESTS) -
092e IFLITAINT) ,_Qg Q)_6n 70 5
0020 NT =T+
0021 63 TO 4
0922 5 NT=\MT=1
0033 55 WRITE(6,200)(TITLE(I),I=1,12)
3334 200 FORMAT( 21,1004, /)
0035 WRITE(A ,201) MO, MT e e
0036 201 EORMAT(' THIS DATA ST WAS ’RIANCULATFD MAMJALLY; IT CONTAINS 9,12
: : 1, POINTS. AND ¢, 13, TYTANGLES.',//*NPTIDNS: 1)
0037 TF{MENDLENa1) WRAITE (5, 207)
- .00328 202 FIRMAT(* -USES SAME DOINTS AS PRECEDING DATA SET*)
. 0029 TIE(MEATGEDG L) WAITEL6,202)
0040 203 FOPMAT( __-USES SAME TPIANSLES AS _PRECED] MG _DATA SET) R
0041 IFIXSTALE ¢ NEo1,0) WRITE(4,7204) XSCALE
3342 - 204  FORMAT (" ~XSCALE=1,F12,8)
0ne3 TE{YSCALFaMEa1a0) WRITF(4,7205) YSCALS
N044 205 FORMAT(* ~YSCALE="',E12,°)
0045 IF(ISCALELMSe160) WOITE(4,296) Z2SCALE
D246 206 FORMAT(® -7SCALF=',E17,5)
2347 IFILAK ¢ EQe1) NRAILITELA,297)
0048 207 FORVAT (¢ ~LAKESS A2F ZXCLJDSED F9IM THE AMALYSIS')
Qo049 Q= TioYy
02950 50 IFIMEYPLEN.1) GI TO &1
0051 : D3 650 [=1!,NO
‘QCSZ.__~____50-_~NRCA?(5.15))(ALTLI.J).J=1.NC)M__.A R R
9953 159 FORMAT (2X,1555,0)
005 4 NP =rP % NC
0055 NR1=MR=1
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OPTRAN 1V G COMPILER READER 02-06-74 10:19:35 PAGE 0QO0Q2
0056 NC1=NS -1
0257 NT=2 %NR1=MN(C1
0058 D0 51 I=1,NR
QAas59 N8 J=1,N7
0350 IN=(1=1)1=NC+y
00¢1 INM(I,)=1n
0052 X{IDN=CLDAT (= VX SCALE —
0353 YUID)=CLOAT(NR~T)&.YSCALS
0064 ZOID)=ALT(1,J)=25CALE
0065 51 CANTIMUE -
0056. 61 CONT INYE
0067 INT=1
00458 N0 52 T=1,N02Y
0049 NN 82 J=1,N01
0070 IS(IDIAG) 53,52, 58
Q271 g3 [T(INMT)=TNT
0072 IVIIMNTY=InM(T1,J)
0073 JVIINT)I=IOM({I+],9)
0074 KVAIMTI=INM(T+Y, 041 )
0075 LVIINT) =0
. 0N7A INT=INT+?
"0077 IT(INT)I=TINT
0078 IVIINT)=IOM( T, )
0079 CUVUINTI=IOM(T ,J+1)
0220 KVLINT)I=IDM{T+1,)+1) ..
0081 LVIINT)=0 _
0082 INT=INT+1
01793 60 _ 10 52
0084 E4 ITCINT)Y=INT
"0085 R IVUINTISIDM(L, )
093136 JYALINT )=, 04}
. 0087 KVIINT)I=IO"(I41,J)
0083 LV{INT)=0 ‘ :
Q099 INT=INT+)
" 0090 - IT(INTY=INT
0091 IVUINT)=INM(T,341)
0092 JYCINTY=IDMU(I+1,])
0093 KVIINT)I=IDM(I+1,4+1)
0094 LVIINTI=0
0oas INT=INT+)
- 0095 52 CONTINUF
0997 INT=INT-1
00e8: wRIIE(6,200)LI1TLF(I)LIFl,la)umm e
00ng9e IF{INT,NEJNT) WRITE(6,200) INT,NT
- 01920 300 FORMAT (* INT=1,74,',8T NT=¢,14,/)
2101 WRITZ({6,301) NR,NZ ND NT
0102 301 FORMAT(" THIS DATL SET TS 2SS0 ON A ¢ ,13,9 RY ¢, [2,0 ALTITURE wAT
LRIX5 'y /7y IT COMTAINS ', 12,¢ POINTS ANMD 0,13,0 TRIANGUES® ,//,*'N0T]
- 2ONS2 ) e e
0103 ISINEWPENG L) WPITE (4, 200}
0194 IF(NEWTLFQa 1) WPITE(4, 207)
2108 : TE(XSCALS,EQ YSCELEYWOITFR(4,2302) XSCALF
0106 302 FIRMAT(* -3QUARE SRIN, GITD SPACINA=Y ,F1Z,5,¢ METPESY)
oL07 IF(XSCALE,NE,YSCALE ) W2ITE(4,20%) YQCALE, YSTALE
2198 303 FOR“ATJJ__:ﬁﬂLy?NuizACJHE?LLELZoi:WWXEIEES;MRDN”SBAQING%LJFLZa59'
IMETFESY)
0109 IF(INTAGLENGO) WRITF(4,20%)
0110

304 FJRWAT(! ~USEN NIRTHWEST=-SINTHEAST NIAGANALSY)
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‘ORTRAN IV G CO"PILER REACE® 02-06-74 . 1.0:19:35 © . PACE 0CO2
o111 IF(IDIAG.ENL)) WOITE(£,205)
o112 305 FARMAT(* —1JSED NISTHREAST-SIUTHWEST "TAGAMALSY)
0113 - - TF(ZSCALEWNS.2,0) w?I[TE(R,22&) ISCALF
0114 RE TLRN
0115 END

TOTAL MEMDIY REQUIPCMENTS 091320 8YTSS_

C COMPILE TIME = 0e5 SECCNNS
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Appendix lllb: Triangular Data-sets

Maps of all the triangular data-sets analyzed in this study are given,
with the exception of sample 11a which was illustrated in Figure 6.1. These
maps are all at the scale of 1:50,000; 1:250,000 scale maps of the same

areqas are given in insets.
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Appendix [llc: Computer Results

This appendix includes the computer output for the thirteen triangular
data-set analyses and fourteen grid analyses upon which the comparisons

reported in Chapter 6 were based. The titles of these output sheets are self-

explanatory.



TOTAL
PERCE
VLJ”'SC FOR

MELN

AREA

IJ\LY315
MALYSIS

WT LAKES + SEA

= Ne43CI32G565% 38
= Jo )
= lca,
= 0,4302929535 08

IEEIRRE

Jo 320255681 = 04

CILLECTILEWAET (Sawo s ) T T e o
GEMERAL

NJMBER CF OGINTS = 20 - —
NUMBEX OF TR IAMGLE 5= 153

TRTANGLE AREA

e GEOMNRPHCMETRY e o
i _ S
| MINIMIM ELEVATICN = 377,22 LOCATED AT POINT NUMBER 83
§ MAXTHAUM ELEVATICH 2742620 LOICATED AT POINT NUMBER 53 .
| LOCAL RELIEF = 18435033 ‘
§ HYPSUMETRIC INTEGRAL = 004456351
| VEAN SLOPE:
g UNWET GHTED = 0,582C2
! WETGHTED BY MAP AREA = (0,585 37
! WEIGHTED BY TRUE AREA = 0,55797 o
! AREA RATIO = J.16941
!
T UVECTOR ANALYSISET T
UNWETIGHTED(UNIT VECTORS):
ORTEMTATION 102,50
DIpP = 31,70
K = 759
100/K = 13.18
ROUGHNESS FACTNR= 13,09
WEIGHTED BY TRUE AREA:
 DRIENTATIGN = 115,53
+ DIP = 33,18 - B
L{2) = 86020
! ROUGHNESS FACTAOR= 13,30
%
i .
! !
| e+ o o S — e e
{ ,
i‘
i -
i
;\
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PTARMIGAN CF BFK (5a10LE 11405 ALL PAIMTS
| GENERAL :
N NUMaEE gF POINMTS = 31 - o
( NUMBER 0OF TRIANGLES= 136 " N
: TOTAL AREA = 0,487097223E 03
PERCENT LAKES + SEA= S 0a D)
| NUMAEX FOR AMALYSTS= 135
? AREA FOR ANALYSIS = 0,43099323% 93
é MEAN TRIANGLE AREA = 0, 26923G12E8 06 B -
| ]
I GEOMURPHOMETRY: e
MINIMUM ELEVATICON = 593,00 LOCATED AT POINT NUMBER 79
! MAXIMUM ELEVATICYN = 2404000  LOCATED AT POINT NUMBRER 68
! LNCAL RELIEF = 170%.¢0 7
’ HYPSOMETRIC INTEGRAL = 0,26341
B VEAN SLOPE:
| UNWEIGHTED — = 0,41433
i WETGHTED BY AP AREA = 0.35537
j WEIGHTED RBY TRYUE AREA = 0,378
AREA RATID = loC8917 o
T VECTOR ANALYSIS: T
UNWETGHTEDIUNIT VECTORS):
CRIENTATION = 21,26
nip = 85,76
Lz = 90697
K = 11,00 T T
100/K = 3,09
POUGHNESS FACTOR= 2,03
WEIGHTED BY TRUE AREA:
I DRIENTATION = 50,35
| DIP 37,67 o i )
3 Lez) = 1,88
ROUGHNESS FACTAR= 3,12
|
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; PTARMIGAN OPEEC (SAIPLE 11B): FRCM ':780,000 Map 77 T
GEMEPAL @
N NUMBFR OF POTTS = 29 o
4 NUMRER CF TR IAUGLES= 41
! TOTAL AREA = 0,4 36S57T4E 08
b PERCENT LEKES + 5%A= e
i NUMBER FOR ANALYSIS= 41
ARE A rﬂx fMALY<IS Do 43CGGTT6E 08
5 MEAN TRIANMGLE AREA = 0,119811605 07 ) .
b GECHMORPHOME e - -
|
| MINIMIM ELEVATION = 731,04 LOCATED AT POINT NUMRBER 29
§ MAXTMUM ELEVATICH = 2362,20 LOCATED AT POINT MIMBEP 19 -
; LOCAL RELIEF = et 16
! HYPSOMETRIC S5RAL = 0526530
| MEAN SLOPE: o ,
: UNAEIGHTED = 0637283
| WEIGHTED RY MA® AREA = 0,378343
' WEIGHTED BY TRUE AREA = 0,36384
AREA RATIOD = 1,08822
VECTOR ANALYSIS:
UNWEIGHTED(UNIT VECTORS) :
; ORIFNTATION = 34)043
nip = 87429
e LLR) = 92024 e — — ) e
K = 12 o ) 7
100/K = 7095
| ROUGHNESS FACTOR= To76
WEIGHTED BY TRUE AREA:
 ORIENTATION = 13,86
DIP = 83646 ) o
! L(Z) = 916953
| ROUGHNESS rACTn<— 3,07
t
|
|
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GENFERAL:

nFE PRTNTS

IR EY IF
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ADDR )X,

SAMT POIMTS A

Wi
St

-y

T

l ')O 00

_NUMBER = 29 ) i )
j NUMAER OF TR IAMGLES= 41
; TOTAL ARFA = 0,43¢538400 93
b PERCENT LAKES + 5EA= e
g NUMBER FQR ANALYSTS= 41
| AREA FOE ANALYSIS = oo+8‘rfsqc’ 03
! MEAN TR IANGLE AREA = 0,1155113CE ¢7 _ i
b GEOMORPHAMETRY i . R
MINIMUM ELEVATIC A = 694,54 LOCATED AT POINT MUMBER 17
MANTMUM FLEVATION = 'w‘g)ao;.)f, LOCATED AT POINT NUMBER 2 ~
! LOCAL RELIFF = 1706, ' -
HYPSOMETRIC TMTEGRAL = 0,25517
3 S MEAN SLAPE: B
UNWET GHTED = 0,374£20
WEIGHTED BY MAD A2EA 0035654
WEIGHTED RY TRUE AREA = (o3£063
ARFA RATIN = 1,08241 o
- VECTOR ANALYSTS: -
UNWETGHTED(UNIT VECTORS):
ARTENTATION = 18033
DIP = 30 20
i LE®) = _.92.17 -
K = Lz 46 o - ’
109/K = 3002
ROUGHNESS FACTOR= 7.83
WEIGHTED BY TRUZ AREA:
ORIENTATION = 30,659
DIP = 33,05 - T i T
L{Z) = 92041
ROUGHNESS FACTOR= 7652
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; PTARMIGAN CREEK (SAMPLE 1Ip): ALL »2c16Ts -
CENERAL

. NUMRER OF PGINTS = 25 L

[ NUMBZR 0F TR IANGLES= 143

; TOTAL AREA = 0,4397324438 08

. PERCENT LAKES + SFa= 00,15

; NUMBES FOR ANALYSIS= 143

; AREA FOR AMALYSIS = 0.42$99249% 0R

; MEAM TRIANGLE ARTA = 00342652065 04

| S -

e _GEOMORPHMCOMETRY: B

MINIMUM ELEVATION = 594,54 LOCATED AT POINT NUMBER 35
MAXIMUM ELEVATION = 2404025 LOCATED AT POINT NUMBER 70
! LOCAL RFELIEF = 170G, 32
| HYPSOWETRIC INTEGRAL = 0,2€1€5
P MEAN SLGPE: - _
UNWE T GHTED = 0,33115%
WEIGHTED BY MAP AREA = 2,37070

|

i WEIGHTED BY TRUE AREA = 0,392093

| AREA RATID = 1,0G146

i VECTOR ANALYSIS: T T

}

? UNWETGHTED(UNIT VECTORS):
ORIENTATICN = 41,05
DIP = 84064

e B LR) = 32,05 R
K = 12,49 ] T
100/K = 8,C1
RJUGHNESS FACTOR= 7655
]
WEIGHTED BY TRUE AREA:

ORIENTATION = 49,65

I 5 8 = 87,33 T
L(2) = 9159
ROUGHNESS FACTOR= 8021

|

1

|
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MANNING PARK (SA4PLE

CENECGRAL =

1:5C,0C0 SCALE YHIGH RFESCLUTICNY

\ NUMBER CF PCINIS = 119 .. e e
{ NUMRER CF TRTANGLFS= C7
; TCTAL ARER = D.43999CT72E €8
.. .. PERCENT LAKES # SEA= 0.0
| NUMBER FOR ANALYSIS= 07
; AREA FCR ANALYSIS = 0.48099C72f C8
: MEAN TRIANGLE AREA = 0,23671 C44F D6 e
e GECMORPHCMETRY — e e e e ) .
| MINIMUM EL EVAT [N = 1057.66 LOCATED AT PGINT NUMBER 2
i NAXIMUM ELFEVATICH = 1935,43  1LOCATEC AT POINT NUMRER 1S
i LICAL RELIEF = E£77.82
: KYPSOMETRIC INTEJRAL = 0,542:6
e MEAN_SLCPE: o R
UNWE TGHTED = 0,3€9372
i WEIGHTEC BY MAP AREA = 0,3¢215
3 WEIGHTED BY TRUE AREA = 0,3¢747 -
| AREA RATIO = 1.C75¢€4
VECTOR ANALYSIS:
UNWEIGHTEL{UNIT VECTORS ):
ORIENTATION = 24,16
oie = 89.27
L{3) = 92.75 e
[ K = 13.72
i 100/K = 7.29
x ROUGHNESS FACTOR= 7.25
|
; WEIGHTED BY TRUE AREA:
o GRIENTATICN = 351.01 _ y e
i DIP = 89,52
i L({2%) = 92.61
ROUGHNESS FACTOR= 7 .39
|
|
1
|
1
i
L
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NAFJIV( PADK(SAﬁqL“ Ll) - 1135( CCO SCALE VAP

d

GEMERAL =

~ NUMBER CF POINTS = ) 25 .
4 NUMBER CF TRIANGLES= 22

o

©

TOT AL AREA = 0.43S9GSC4E (8
- S PERCENT _LAKES + SEA= B
NUMBER FDR ANALYSIS= 2

AREA FOR ANALYSIS = 0,43CGCCl4F CQ
MEAN_TRIANGLE ARFA = 0 ,15212470F (7 ) N
' GECMORPHGMETRY: e

i MIMIMUM ELEVATICN = 1866.£0 LOCATELD AT POINT ANUMRER 2

f MAXIMUSM ELEV AT 10N = 19C5,.,C0 LAOCATED AT POINT NUMBRER 3 o
LOCAL RELIEF = 938,20
HYPSCMETRIC IMTEGRAL = g0.51721

e MEAN SLOPE: e e e e e e
| UNAEIGHTED ' T
f WFIGHTED BY MAP ARFA
WEIGHTED BY TRJE ARFEA -

AREA RATIO

hdion
Lol (S R W)
u(\)F\)f\)
Vil o O

(SR SR
NSy o

Wlhnin ™

CVECTOR ANALYSIS:

UNWETIGHTED(UNIT VECTORS):
ORIENTATICN = 39 .82
DIP = 83.27

L(%) = 96.41

K = 26.97 T
100 /K = 3.71
ROUGHNESS FACTOR= 3.59
|
WEIGHTED BY TRUE AREA:
ORIENTATION = 37.29 . e o

DIP = 37 .39
L) =
ROUCHNESS FACTOR= 3,45

H

i

1

i

P

i

;

{ =
i

|

{

i

- — e e s e e e o+ e e e — e -
i

!

4
§
i
|
4
i
i
i
1
i
i
i
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MANNTHG PARK{SAMPLE 18): G- L:SC,0C0 SCALE, APPROX. SAME PCINTS AS 10§

GENERAL:

NUMBER OF POINTS

\ = kS
. NUMBER CF TRIANGLES= 27
; TOTAL AREA = 0,43C50G6C4E (3
I PERCENT LAKES + SEA= . . _ C.0 )
; NUMBER FGR ANALYSIS= 32
i AR EA FOR ANALYSIS = 9,4365SS04F (8
; MEAN TRIANGLE AREA = 0.1521247CE C7. .
!
LCECMORPHOMETRY : . e e et e e e N

5 MINIMUM ELEVATION = 1066489 LCCATEL AT POINT NJMRER 2
i MAX IMUM FEL EVAT ICN =_188%.76 LOCATEL AT POINT NUMRER 3
LOCAL RELIEF = 827.96
HYPSOMETRIC INTESGRAL = 0.543¢2
_NEAN_SLOPE: _ e e e .
LNWEI GHTED = 0.3C€E52
WEIGHTED BY MAP AWA = 0,2€546
! WEIGHTED BY TRUE ARFA = 0,.2¢p¢2 B
i AREA RATIC = 1.C4746
VECTOR ANALYSIS:
! UNWEIGHTEC(UNLT VECTORS): o ~
; ORIENT AT ION = 355 .51
DIP = B88.74
L{3) = 55.18 -~ I e
K = 20.11
100/K = 4497
, ROUGHNESS FACTOR= 4,82
i WEIGHTED BY TRUE AREA:
i ORIENTATION = 10.61 - o
| DIP = 83 .32
i L) = 95 .48
| ROUGHNESS FACTOR= 4,52
!
' e e e e et e e e
]
|
t
|
{
Il



http://-GE0.MJBPH0Mr3T.B_Y_

~153-

C TATLA LAKE (SAADLE 240: INMELOAING

GENERAL @

\ NUMBER F POINTS

7

142

l/’(‘k T T

{ NUMABER GF TR TANGLES
; TOTAL AREA
| . PERCENT LAKES +.

R pSven—— et

NUMBER FOR ANALYSI:
| AREA FOR AHALYSIS
] MEAN TRIAMGLE AREA

nm

%] ?V

259

Do 4 3¢2RC2 9%

3o

08
76

250

0o 4859352 8¢%
0o 195635658

c8
06

; _ GECMORPHEOMETRY:

TVECTOR ANALYSTS:

UNWEIGHTED(UNIT VECTORS):

MINTHUM ELEVATION = 90S.£3 LOCATED AT POIMT NUMBER 7
MAXTHMUM ELEVATION = 111252 LOCATED AT POINT NUMBRER 126
LOCAL RELIEF = 202,69
HYPSOMETRIC INTEGRAL = 0,26739
. MEAN SLOPE: S
UNWETGHTED = 007470
WEIGHTED BY MAP AREA = 0,04772
WEIGHTED 8Y TRUS AREA = 2,04303
AREA RATIO = 1,00246

DRIENTATION =
DIp
L%

4_)oa2
89064
99,41

Wb

K 167099 ST i -
100/K 0660
ROUGHMESS FACTOR= 3,59
WEIGHTED BY TRUE AREA:
ORIENTATION = 341459
nip = 89,77 T T
L(3) = 99,76
ROUGHNESS FACTHR= 0024
| J— et e [
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C TATUA LAKE (SAMPLE 2471 EXCLUD LAKES

GENFRAL:

\ NUMBED OF PAINT = ~ 142 B
4 NUMREK CF TRIAV L35 250
‘ TOTAL AREA = J,489092C3% (08
e . PERCEMT LAKES + 524= 32,76
g NUMBZR FOR ANALYSIS= 233
3 AREA FOR ANALYSIS = 0,471523C08E5 017
; MEAN TRIANGLT AREA = 0,138147C4E 06
o GEOMOPPHOMETRY: e _
; MINIMUM ELEVATION = 905,33 LOCATED AT FOINT NUMRER 7
i MAXIMUM ELEVATION = 1112652 LOCATEDR AT PGINT NUMBER 126
' LOCAL RELTEF = 202,69
HYPSCMETRIC INTZGRAL = 0.27530
— JMEAN StgpE: o
UNWETGHTED = 0.C78456
; WEIGHTED BY MAP AEA = 0,04558
| WEIGHTED BY TRUE AREA = 0,04990
| AREA PATIC = 1,002%5
VECTOR ANALYSIS
i UNWEIGHTED(UNIT VELTORS): B
ORIENTATION = 43452
n1p = 89,63
A N 2 = €3.33 - i -
K = 159,52 B T
100/K = Ne63
ROUGHNESS FACTOR= Nok2
WEIGHTED RY TRIJE AREA:
~ ORIENTATION = 341459
DIP - = 533,76 ’ o T
L{2Z) = 99,75
ROUGHNESS FACTOR= 0025
i
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O CHITEZLT LAKE (SAMOLT 21): INCLUDING 1LAKES )
f GENERAL:
< NUMBER CF PUINTS 114 - .
/ NUMBER 0OF TR IANGLES= 1e8
! TOTAL AREA = 0,43%693135E GS
o = PERCENT LAKES # S%A= . 4.78
} NUMBER FOR ANALYSIS= 98
; AREA FOR ANALYSIS = D,43¢32134E 08
: MEAN TRIANGLE AREA = 0,24747C2T7E 06 L
GEOMOF PHOMETRY: e o
MINIMUM ELEVATION = 1043,75 LOCATED AT POINT MNUMBRER 2
MAXTHUM FLEVATICN = 2208057  LNACATED AT POINT NUMBER 72
LOCAL RELIEF = 119482
HYPSOMETRIC INTEGRAL = Do,33723
— CMEAN SLOPE: L.
UNWEIGHTED = 0,27514
WEIGHTED BY MAP AREA = 0,238259
WEIGHTED BY TRUE ARFA = 0,21590 ~
AREA RATIOQ = 1,03331
) VECTOR ANALYSIS: e ’
UNWEIGHTED(UNIT VECTORS) :
ORTIENTATION = 7,02
DIpP = 83,29
K = 22088
100/K = 4037
ROUGHNESS FACTOR= 4435
WEIGHTED BY TRUE ARFA:
) _ORIENTATICN = 583 e N

DIp
L{7%)
ROUGHNESS FACTOR=

85049
9708

2252

v




GENERAL:

CGHITEZLT LAY (5

D . _T_]5>6.'A e e e e e ot e e e e e+ e
YIS 21 EXCLUDING LAKES

N NUMREF 0OF POIMTS = 114
{ NUMRER OF TRIANGLES= 163 T
i TNTAL AREA = 0.43%39132E 08
e °F°br¥¢mkﬁffg  5EA= %078
; NU¥BER FOR ANALYSIS= 7 Tiss
j AREA FOR ANALYSIS = 0,4(6534CEE 08
: MEAM TOTANGLE AREN = D,287191378 04
! CENHDRPHOMETRY :
{
; MINIMUM ELEVATICGN = 1063,75 LOCATER AT POINT NUMBRER 2
| MAXTMUM ELEVATION = 2252,587 LOCATED AT POINT MUMBER 72
| LOCAL RELIEF = 11%4,E2
; HYPSOMFTRIC IMTEGRAL = 0035418
P MEAN SLOPE:
; UNANETGHTED = 0,2¢448
z WEIGHTED 8Y MAP ARFA = 0,21277
| WEISHTED BY TRUE AREA = 0,22¢€38
§ AREA RATIO = 1,032453
i
b e i
| VECTNOR ANALYSIS:
UNWEIGHTED(UNIT VELTORS):
@ ORIENTATION 7002
DIP = 32
S 8 %2 e = q>o40 e
K = Lioél """" B - )
100/K = 4463
ROUGHNESS FACTOR= 4060
WEIGHTED BY TRUE AREA:
ORIENTATIGN = 50893
nio = 85427 B T
L(2) = 96065
ROUGHNESS FACTAR= 3,05
|
i
i
K\




7 OONA RIVER (SAYDLE 47 )
. GEMERAL: -
| NUMBER NF PHINTS = 128 e
! NUMBER NF TR TANGLESS 240 '
| TOTAL AREA = Do #39C]94CF 03
- _ PERCEMT LAKES + 58A= 060
| NUMBER FOR AMALYSIS= 2490
; AREA FOR ANALYSIS = J0&3G6R960E 08
: MEAN TRIANGLE ARCA = 0,20416231F 056
i:
 GEOMORPHCMETRY: N o
E MINIMUM ELEVATION = 3Ce 48 LOCATED AT PGINT NUMBER 131
| MAXIMUM. ELEVATION = 3GG,16 LDCATED AT POINT MUMBER 72
LOCAL RELIEF , = BH8, 58
HYPSOMETRIC INTGRAL = 0,4C330
] MEAN SLOPE:
UNWETGHTED = 0,3%144
WEIGHTED BY MaAD AREA 0s 28050
WEIGHTED BY TRYE AAFA = 0,36122
AREA RATIOD = 1,C£260
VECTOR ANALYSIS: o
UNWEIGHTED(UNIT VECTNORS):
ORIENTATION = 320,17
DIP = 38,09
Lz = 92642 o ~
K = 13,14 T T
100/K = Tob1
ROUGHNESS FACTOR= 7258
WEIGHTED RBY TRUE ARFA:
"ORIENTATIONM = 260,69
- niov = 43,72 T T e
L(3) = 92,32
{ ROUGHNESS FACTOR= 7061
i
|
i
]
|

e e
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4 TLLECILLEWAET (SAMPLE 3): BRIND, NW-SE DIASONALS
CEMERAL :
N NUMBER CF POINTS = 225 . .
. NUMBER OF TRIANGLES= 29z i
% TOTAL AREA = 0o 4B997935E 08
' PERCENT LAKES + SEA= 0.0
; NIUMBER FOR ANALYSIS= 297
g AREA FOR AMALYSIS = 0043997S36F 08
: MEAN TRIANGLE AREA = 0,1245G459E 06
|
o GEGHMDRPHOMETRY: B e
! MINIMUM ELEVATION = 890,02 LOCATED AT POINT NUMRER 207
! MAXIMUM ELEVATIUN = 2743,20 LOCATED AT POINT NUMBER 92
; LOCAL RELIEF = 1852, 18
i HYPSOMETRIC INTEGRAL = 0642536
 MEAN SLOPE: s o
UNWETGHTED = 0052344
WEIGHTED BY MAP AREA = 0,52345
WEIGHTED BY TRUE AREA = 0,52900
AREA RATIO = 1,143C7
VECTOR ANALYSIS: ST e e )
UNWEIGHTEG(UNIT VECTORS):
ORIENTATION = 114094
DIp = 83,17
. L) = 88064 -
K : B 8,78 T ) e T
100/K = 11,39
ROUGHNESS FACTOR= 11,36
WEIGHTED BY TRUE AREA:
 ORIENTATION = 115,07
DIP = 83,23 77T T e e
L(2) = 88,10
ROUGHNESS FACTOR= 11,90
i
|
i
{
|
: . . e .
.
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7 TLLECTULLEWAET (SAMPLE 8): BRID, NE-SW NTAGSNALS i )
GENERAL:
- NUMBER OF POINTS = 225 e
/ NUM3ER OF TRIANGLES= 392
TOTAL AREA = 00439975258 0OR

PERCENT LAKES + SeA= 0.0

‘ © NUMBER FOR ANALYSIS= 392 R “
AREA FOR ANALYSIS = 0,489975346E 08
MEAN TRIANGLE AREA = 0,12499459F 06
Deeeee. GEQMDRPHOMETRY ¢ e et B e oo e e e e e e

: MINIMUM ELEVATICN = 890,C2 LOCATEND AT PQINT NUMBER 207
s MAXIMUM ELEVATIOHN = 27432,20 LOCATED AT POINT MNUMBER 92
j LOCAL RELIEF = 1853,18
: HYPSGMETRIC INTEGRAL = 043576
{ .. MEAN SLOPE:
i UNWEIGHTED = 0,51843
i WEIGHTED BY MAP AREA = 0.51844
i WEIGHTED BY TRUZ AREA = 0,53654
: AREA RATIO = 1,14237
!
i VECTOR ANALYSIS: o b
|
i UNWEIGHTED(UNIT VECTORS):
' ORIENTATION = 113,.C5
DIP = 83,22
2 L(Z) = 88,77
K = 8,38 T o
100/K = 11.26
ROUGHNESS FACTOR= 11.23
WEIGHTED BY TRUE AREA:
_ ORIENTATION = 115,07
DIP = 83,23 o o - B -
L(%) = 88415
ROUGHNESS FACTOR= 11,85
I
{
}
H




GEMERAL:

NUMAER CF_POINTS

PTARMIGAN CREEX (3A4PLE 11): GRID,

-160-

1:80,0C0, MW-SF DIAGONALS

225

. -
. NUMBER OF TRIANGLES= 192 -
; TOTAL AREA = 0,43597535F 08
| ... PERCENT LAKES + SEA= 060 ]

NUMBER FOR ANALYSIS= 392

AREA FOR ANALYSIS = 0.439)7636E 08
. MEAN TRIANGLE AREA = 0,124594695 06
:  GEQMORPHCMETRY: o e L

o e <

MINIMUM ELEVATIOHN = 594,54 LOCATED AT POINT MNUMBER 225
, MAXIMUM ELEVATION = 2321024 LOCATED AT POINT NMUMBED 109
| LOCAL RELIEF = 15C6,e 30
HYPSOMETRIC INTEGRAL = 0,27922
. VMEAN SLGPE: e
UNWEIGHTED = 0,34357
WEIGHTED BY MAP AREA = 0,34389
WEIGHTED RY TRUE AREA = 0,260339
AREA RATIO = 1,07858
VECTOR ANALYSIS: T T
5 UNWEIGHTED{UNIT VECZTORS):
5 ORIENTATION =" 58,92
DIP = 88049
ouex = 93.24
K = 14o75 ) - ) - T
100/K = 6,78
ROUGHNESS FACTOR= 6076
WEIGHTED BY TRUFE AREA:
»  ORIENTATION = 55062 L

DIP
L(3)
ROUGHNESS FACTOR=

[Tt

ET7094
32,77
7023
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" PTARMIGAN CREEK (SAMPLE 110t GRID, 1:50,009, ME-SW DIAGIMNALS
GENERAL
N NUMBER (OF POINTS = 22¢ e
{ NUMBER OF TRIANGLES= 392
: TOTAL AREA = 0.43¢97525F 08
.. PERCENT LAKES + SEA= 00
NUMBER FOR ANALYSIS= 362
AREA FOR ANALYSIS = 0,43%C7G36E 08
MEAN TRIANGLE AREA = 0,124%9465F 06 .
i GEOMORPHCMETRY: e i
: MINIMUM ELEVATION = 654,94 LOCATED AT POINT MUMRER 225
| MAXIMUM ELEVATICHN = 2301024 LOCATED AT PGINT NUMBER 1°9
LOCAL RELIEF = 1506, 30
HYPSOMETRIC INTEGRAL = 0.28054
MEAN SLOPE: . S
UNWETGHTED = 0035836
WEIGHTED BY MAP AREA = 0,35837
WEIGHTED RY TRUE AREA = 0,37152
AREA RATIO = 1.C71932
VECTOR ANALYSIS: o T oo
UNWEIGHTED(UNIT VECTORS):
ORIENTATION = 58064
DIP = 88,39
Lz =.....23.07 — N ]
K = 14,40
100/K = 6055
ROUGHNESS FACTOR= 6693
WEIGHTED BY TRUE AREA:
~ _ DRIENTATION = 55,62 o S o
DIP = 87,94 ‘
L (%) = 92,71
ROUGHNESS FACTQR= 7029
i L]
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PTARMIGAN CREEK (SAMPLE 11):

CENERAL:

GRID, 1:250,000, NW-SE DLAGONELS

N NUMBER QF POINTS = 225 B ]
[ NUMBER GF TRIANGLES= 392 B
§ TOTAL AREA = 0,48%37S3AE 08
S PERCENT LAKES + SEA= 2900
; NUMBER FOR ANALYSIS= 352
. AREA FOR ANALYSIS = 0,489%7635F 08
MEAN TRIANGLE AREA = 0,12499459F 056 )
b e GEOMORPHGMETRY : e
i MINIMUM ELEVATION = 701.C4 LOCATED AT POINT MUMRER 225
; MAXIMUM ELEVATION = 2362,20 LOCATED AT FUINT NUMBER )¢9
LOCAL RELIEF = 1661, 16
HYPSOMETRIC INTEGRAL = 027464
. MEAN SLOPE:
UNWEIGHTED = 0o354€8
WEIGHTED BY MAP AFA = (0,35460
5 WEIGHTED BY TRUE ARFA = 0,37275
AREA RATIO = 1,08165
VECTOR ANALYSIS: - T
UNWEIGHTED(UNIT VECTORS):
ORIENTATION = 53,01
DIP = 88665
Lz = D300
K = 14026 e T
100/K = 7,01
ROUGHNESS FACTOR= " 6099
WEIGHTED BY TRUE AREA:
 DRIENTATION = 51,01
DIP = 88,04 o T T
L) = 92,48
ROUGHNESS FACTOR= 7052
|
i




CPTARMIGAN CREFK (5A4P

GENERAL?

LE 110

- =163= . .

SRINy 1:250,600, NE-SW DIAGONALS

NUMBER OF POINTS = 225
NUMRER OF TRTANGLES= 292
‘ TOTAL AREA = 0,43G27636E 08
oo .. PERCENT _LAKES + SEA= 0.0
; NUMBER FDR ANALYSIS= 252
AREA FOR ANALYSIS = 0,439575255% 08
MEAN TRIANGLE AREA = 0,12459469E 06
; MINIMUM ELEVATICN = T01,C4 LOCATcD AT POINT NUMBER 229
: MAXTIMUM ELEVATICN = 2362,20 LOCATED AT POINT NUMBER 199
LOCAL RELIEF = 161,16
; HYPSOMETRIC INTEGRAL = 0,27533
UNWEIGHTED = 0,36763
WEIGHTED BY MAP ARCA = 0,36769
WEIGHTED BY TRUE AREA = 0,3€229 B
AREA RATIO = 1,C8274
§‘~”' VECTOR ANALYSIS: e T o
UNWEIGHTED{(UNIT VECTORS )3
ORIENTATION = 53230
DIP = 88652
L(3%) = 92,33
100/K = 719
ROUGHNESS FACTOR= Tol7
WEIGHTED BY TRUE AREA:
~ ORIENTATION = 51,01
e 0 e .
L(%) = 92641
ROUGHNESS FACTOR= 7059
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(T MANNING PARK (SAYBLE 18): SRIN, NW=SE DIAGOMALS

........ ~164-

GENERAL:

NUMBER (OF POINTS

N = 225 )
. NUMBEKR CF TRIANGLES= 392

i TOTAL AREA = 0,43C27G345E Q8

oo .. PERCENT LAKES + SEA= 0,0 .

| NUMBER FOR ANALYSIS= 392

j AREA FOR ANALYSIS = 0,43997S526F 08

; MEAN TRIANGLE AREA = 0,12499465E 06

_GEOMORPHCMETRY: - A

; MINIMUM ELEVATION = 1066,80 LOCATED AT POINT MNUMBECP 2
i MAXIMUM ELEVATICN = 1835,75 LOCATED AT PUINT NUMBER 8
% LOCAL RELIEF = 822,96

3 HYPSOMETRIC INTEGRAL = 0,556589

. MEAN SLOPE:

; UNWEIGHTED = 0,23108

; WEIGHTED BY MAP AREA = 0,32109

; WEIGHTED BY TRUE AREA = 0,32845

! AREA RATIO = 1,06347

| "VECTOR ANALYSIS: T B

|

| UNWEIGHTED(UNIT VECTORS):

: ORIENTATION = 343,67

| DIP = 89,39

L R E 1 = 94025

é K ) T 17,33 777 - oo i
§ 100/K = 5677

; ROUGHNESS FACTOR= 5,75

| :

| WEIGHTED BY TRUE AREA:

) _ ORIENTATION = 359,60

§ - DIP = B9, 3% T -
| L(Z) = 94,04

| ROUGHNESS FACTOR= 50656

H
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TUMANTTNG PARK (SAMALE

GENERAL:

19): GRI1D, NE=SW OIAGOMALS

N NUMBER 0OF POINTS = 225
’ NUMBER OF TKIANGLES= 392 i
f TOTAL AREA = 0,485¢TS36E 08
oo PERCENT LAKES + SEA= ST LY S ]
| NUMBER FOR ANALYSIS= 362
: AREA FOR ANALYSIS = 0o48SS763¢E 08
MEAN TRIANGLE AREA = 0,12439469F 06
i
e, CECMORPHGMETRY e

! MINIMUM ELEVATICN = 1064080 LOCATED AT POINT MNUMSBED 2
| MAXIMUM ELEVATICN = 1889, 76 LOCATED AT POINT NUMBEPR £
' LOCAL RELIEF = 322,96
HYPSOMETRIC INTEGRAL = 0,56691
S MEAN SLOPE: }
! UNWEIGHTED = 0,33473
| WEIGHTED BY MAP AREA = 0,32475
WEIGHTED BY TRYE AREA = 0,34135
AREA RATIO = 1.063¢€1
VECTOR ANALYSIS: T i - o i
UNWEIGHTED(UNIT VECTORS):
ORIENTATION = 351,72
pIP = 89,36
o) = 94021
K = 17.23 o T )
100/K = 5. 80
ROUGHNESS FACTOR= 5679
WEIGHTED BY TRUE AREA:
i} ORIENTATION = 350,60
o DI T = 89,34 T )
L(3) = 94,03
ROUGHNESS FACTOR= 506G7
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- TATLA LAKE (SAMPLE 24): GRID HNW-SE DIAGINALS
GENERAL:
NUMBER 0OF POINTS = 225 )
NUMRBER OF TR JANGLES= 392
TOTAL AREA = 0,48%97536E 08
e PERCENT LAKES # SEA= 00 ; )
NUMBER FOR ANALYSIS= 292
AREA FOR ANALYSIS = 0,43997534F 08
MEAN TRIANGLE ARFA = 0,12453465F 04
b GEOMORPHOMETRY: _ e e -
§ MINIMUM ELEVATIGN = 306,33 LOCATEC AT POINT NUMBER 20
i MAXIMUM ELEVATION = 1097.28 LICATED AT POINT MUMBER
* LOCAL RELIEF = 187,45
: HYPSOMETRIC INTEGRAL = 0,25219
S MEAN SLOPE:
! UNWEIGHTED = 0,04C31
: WEIGHTED BY MAP AREA = 0,04081
f WEIGHTED BY TRUE AREA = 0,04CE&7
5 AREA RATIC = 1,00130 -
VECTOR ANALYSIS: T T ) B
UNWEIGHTED{(UNIT VECTORS):
ORIENTATION = 348,38
| DIP = 39,80
§ Leg)y = 69,87 ,
I K T =TT Te0,08 0 T T o
100/K = 0ol4
ROUGHNESS FACTOR= 0,13
! WEIGHTED BY TRUE AREA:
ORIENTATINN = 348,59
; T pIe = 789,79 e -
: L) = 99,87
: ROUGHNESS FACTOR= 0013




T e

{

. e =1
TATLA LAKE (SAMPLE 24): GRID ME-

GENERAL:

67-
SW DITAGIONALS

N NUMBER 0OF POINTS = 225 i
( NUMBER OF TRIANGLES= 392
i TOTAL AREA = 0, 4899762 4F. OB
{ e .. PERCENT LAKES + SEA= 000 _
E NUMRER FOR ANALYSIS= 2972
‘ AREA FOR ANALYSIS = 0,4R3€97S5265 03
MEAN TRIANGLE AREA = 0,1249G469F 06
e e GEOMORPHOMETRY ! e e N
MINIMUM ELEVATION = 90G,83 LOCATED AT POINT NUMBER 320
MAXIMUM ELEVATION = 1067628 LOCATED AT O0INT NUMPREE 1
LOCAL RELIEF = 187045
HYPSOMETRIC INTEGRAL = 06256890
- . MEAN _SLOPE: e _
| UNWEIGHTED = 0,03935
| WEIGHTED BY MAP AREA = 0,02935
! WEIGHTED BY TRUF AREA = 0,03941
AREA RATIOQ = 1,00130
o e e e e e e e e e e .
i VECTOR ANALYSIS:
UNWEIGHTED(UNIT VECTORS):
ORIENTATION = 348,33
nie = 89,79
B ¢ 1 N = 92,37
K i = 743,82 B R T
100/K = .13
ROUGHNESS FACTOR= Nol3
WEIGHTED BY TRUE AREA:
L ORIENTATION = 348,59
— 515 L - TS e e e -
L(2) = 99,867
ROUGHNESS FACTOR= 0,13
it
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TUGHITEZUT LAKE (SAMPLE 210): GRIN, Nw=SF DIAGINALS

GENERAL:

NUMBER OF POINTS = 225 . o
NUMBER OF TRIANGLES= 332

TATAL AREA = 064BSG7926E 08

PERCENT LAKES + SEA= 9,0

NUMBER FOR ANALYSTS= 392

AREA FOR ANALYSIS = 0048SG7G36E 08

MEAN TRIANGLE AREA = Do124GG469E 06

_GEOMORPHOMETRY:

" VECTOR ANALYSIS:

UNWEIGHTED(UNIT VECTORS):®

MINIMUM ELEVATION = 1962 LOCATED AT PLZINT MUMBER 17
MAXIMUM ELEVATICN = 2255,52 LOCATED AT POINT NUMBEFR 152
LOCAL RELTIEF = 119177
HYPSOMETRIC INTEGRAL = 0632395
- NF:AN SLDPE‘ b rmma snn s veamiie me samon et s mmmrn e o mee e P -
. UNWETGHTED = 0.186€5 o
| WEIGHTED BY MAP AREA = 0,18686
WEIGHTED 8Y TRYUE AREA = 00154356
AREA RATIC = 1.02803

ORTENTATICN = 2244
DIP = 85,89
- LZ) = 97e13 . .
K = w39 T T
100/K = 2,27
ROUGHNESS FACTOR= 2,27
WEIGHTED BY TRUE AREA:
 DRIENTATION = 2026
Dip =TTTE5.58
L(2) = 97,56
ROUGHNESS FACTOR= 2044
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7 T UGHITEZUL LAKE (SAADLE 31): Gafé} NE-SW DIAGONALS
GENERAL:
N NUMBER DOF POINTS = o 225
! NUMBER OF TR IANGLES= 362
; TOTAL AREA = 0,48657G26F 08
R PERCENT _LAKES + SgidA= 960 .
NUMBER FOR ANALYSIS= 192
AREA FOR ANALYSIS = 0,43¢G7G34E 08
MEAN TRIANGLE AREA = 0,12453469F 064 B
‘o __GEDMORPHOMETRY: o e o
i MINIMUM ELEVATIIN = 1063,75 LOCATED AT POINT NUMBER 17
; MAXIMUM ELEVATION = 2255,52 LOCATED AT POINT MNUMBER (52 i
| LOCAL RELIEF = 1191.77
| HYPSOMETRIC INTEGRAL = 0,23431
N MEAN SLOPE: e
§ UNWEIGHTED = 0.,18474
; WEIGHTED RY MAP AREA = 0,18475
' WEIGHTED BY TRUE ARSA = 0,19240
i AREA RATIO = 1,02801
T VECTOR ANALYSIS: T T o T
UNWEIGHTED(UNIT VECTORS):
ORIENTATION = 2082
pIP = 85,88
LB = S7o14 - } o e
K = 44,08
100/K = 2627
; ROUGHNESS FACTOR= 2,26
WEIGHTED BY TRUE AREA:
 _ORIENTATION = 2026 ] ) ‘
DIP = 85,53 - T T
; L(Z) = G757
; ROUGHNESS FACTOR= 2043
. -
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OONA RIVER (SAMPLE 41): GRID, NW-SE NDIAGCHNALS

P

CENERAL:

\ NUMBER OF POINTS _ = 225

[ NUMBER OF TRIANGLES= 392
TOTAL AREA = 0,43997925E 08
PERCENT LAKES * S58A= 60
NUMBER FOR ANALYSIS3= 392
AREA FOR ANALYSIS = 0,48997534E 08
MEAN TRIANGLE AREA = 0,124G3453E 06

. GEQMORPHCMETRY:

MINIMUM ELEVATION = 3Co 48 LOCATED AT PRINT MNUMREQ 27
MAXIMUM ELEVATICN = 853,44 LOCATED AT PUINT NUMRER 1
LOCAL RELIEF = 822,95

HYPSOMETRIC INTEGRAL = 0041974

MEAN SLOPE:

 UNWEIGHTED TR 0,32444
WEIGHTED BY MAP AREA = 0,32445
WEIGHTED BY TRUE AREA = 0033495

AREA RATIO = 1,06524

T U TVECTOR ANALYSIS:

UNWEIGHTEC(UNIT VECTORS):

ORIENTATION = 256,80
DIP = 88,77

L(3) = 94,20

SRR DE g g e e e

100/K = 5081

ROUGHNESS FACTOR= 5080
WEIGHTED RY TRUE AREA:

ORIENTATION = 263480

) = 33,30 T B T

Lz = 93,90

ROUGHNESS FACTOR= 5010
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CENERAL:

OONA RIVER (SAMPLE 41): GRID, NE-SW DIAGCNALS
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. NUMBER OF PO INTS = 225
( NUMBER (OF TRIANGLES= 332

TOTAL AREA = 0o43€97S26E 08
... PERCENT LAKES + SEA= LDe0
‘ NUMSER FOR ANALYSIS= 392
AREA FOR ANALYSIS = 0,48C¢79346% 08
MEAN TRIANGLE AREA = 00124G9469F 06 B
i
5 GEOMOR PHCMETRY: - e e e
i
i MINIMUM ELEVATION = 3Ce 48 LNCATED AT POINT NUMBER 225
: MAXIMUM ELEVATICN = 853,44 |QCATED AT POINT MNUMBER 113
! LOCAL RELIEF = 322,96
g HYPSGMETRIC INTEGRAL = 0,420C2
. MEAN SLOPE: _ e e
| UNWEIGHTED = 0,32632
! WEIGHTED BY MAP AREA = 0,32¢34
i WEIGHTED BY TRUE AREA = 0.,33638
ARPEA RATIO = 1,06533
VECTOR ANALYSIS: T T T T
UNWEIGHTED(UNIT VECTORS):
DRIENTATION = 263692
DIP = 88,80
Lz L= 94018 .
K = 17,13 o
100/K = 5084
ROUGHNESS FACTOR= 5082
WEIGHTED BY TRUE AREA:
 ORIENTATION = 263,80
=5 = T e e e e e e
L(2%) = 33,89
: ROUGHNESS FACTOR= 6011




