SPACES USED BY COMMUNITY THEATRE GROUPS IN BRITISH COLUMBIA

by

GORDON ARTHUR LONG

B.A., University of British Columbia, 1970

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ARTS

in the department of
THEATRE

We accept this thesis as conforming to the required standards.

THE UNIVERSITY OF BRITISH COLUMBIA

October, 1974
In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Theatre

The University of British Columbia
Vancouver 8, Canada

Date October 9, 1974
ABSTRACT

This thesis comprises a description and analysis of selected theatre spaces used by community theatre groups in British Columbia.

Following preliminary research, sixteen examples were chosen from the approximately one hundred spaces used by these groups, as being a typical cross-section of the available facilities. These examples were surveyed by the author and, where possible, interviews were conducted with those people responsible for their design and/or operation.

For purposes of analysis, theatre spaces were divided into five classifications: 1) found space, 2) conversion, 3) gymnasium box, 4) multi-purpose auditorium, and 5) buildings designed exclusively for theatrical production. In the final stage of investigation one example was chosen from each category for a more intensive survey. These five spaces were then analyzed as to their suitability for amateur production. The method used was comparison of the data as surveyed with criteria established by: 1) literature on theatre architecture, 2) professional theatre personnel, and 3) community theatre personnel who had worked in the sample building.

It was possible to reach, from this research, some general conclusions regarding spaces used by community theatre
groups. The general conclusion was that, in most cases, the spaces used were not suitable for theatrical production. This problem was attributed to a lack of funds and to a lack of theatrical knowledge on the part of designers of these spaces.

A corresponding factor which was found to influence the quality of community theatre production was the improper use of the spaces available. Again the problem could be traced to lack of knowledge of alternatives.

From the information gathered, it was possible to make general recommendations for those wishing to improve their theatre space or to construct a new building, and also for government agencies wishing to be of assistance to community theatre groups.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>iv</td>
</tr>
<tr>
<td>CHAPTER I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER II. CLASSIFICATION</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER III. FOUND SPACE</td>
<td>12</td>
</tr>
<tr>
<td>General Characteristics (12)--Old St. Stephen's Church, West Vancouver (15)</td>
<td></td>
</tr>
<tr>
<td>CHAPTER IV. CONVERSIONS</td>
<td>22</td>
</tr>
<tr>
<td>General Characteristics (22)--The Powerhouse Theatre, Vernon (25)</td>
<td></td>
</tr>
<tr>
<td>CHAPTER V. GYMNASIUM BOX</td>
<td>46</td>
</tr>
<tr>
<td>General Characteristics (46)--Cypress Room, West Vancouver Community Centre (49)</td>
<td></td>
</tr>
<tr>
<td>CHAPTER VI. MULTI-PURPOSE AUDITORIUMS</td>
<td>63</td>
</tr>
<tr>
<td>General Characteristics (63)--Kelowna Community Theatre, Kelowna (65)</td>
<td></td>
</tr>
<tr>
<td>CHAPTER VII. BUILDINGS DESIGNED EXCLUSIVELY FOR THEATRICAL PRODUCTION</td>
<td>80</td>
</tr>
<tr>
<td>General Characteristics (80)--The York Theatre, Vancouver (81)</td>
<td></td>
</tr>
<tr>
<td>CHAPTER VIII. CONCLUSION</td>
<td>95</td>
</tr>
<tr>
<td>Utilization of Space (95)--Existing Facilities (95)--Building Design (99)--Recommendations (103)</td>
<td></td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>106</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>107</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>112</td>
</tr>
<tr>
<td>LIST OF ARCHITECTURAL SURVEYS</td>
<td>115</td>
</tr>
<tr>
<td>LIST OF LITERARY SOURCES</td>
<td>116</td>
</tr>
<tr>
<td>LIST OF INTERVIEWS</td>
<td>117</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

Illustration

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III-1</td>
<td>Old St. Stephen's Church</td>
<td>17</td>
</tr>
<tr>
<td>III-2</td>
<td>Old St. Stephen's Church</td>
<td>20</td>
</tr>
<tr>
<td>III-3</td>
<td>Old St. Stephen's Church, basement</td>
<td>21</td>
</tr>
<tr>
<td>III-4</td>
<td>Old St. Stephen's Church, proscenium section</td>
<td>21</td>
</tr>
<tr>
<td>IV -1</td>
<td>Powerhouse Theatre, lobby</td>
<td>38</td>
</tr>
<tr>
<td>IV -2</td>
<td>Powerhouse Theatre, lobby entrance</td>
<td>38</td>
</tr>
<tr>
<td>IV -3</td>
<td>Powerhouse Theatre, ticket office and washrooms</td>
<td>39</td>
</tr>
<tr>
<td>IV -4</td>
<td>Powerhouse Theatre, auditorium</td>
<td>39</td>
</tr>
<tr>
<td>IV -5</td>
<td>Powerhouse Theatre, cross section</td>
<td>44</td>
</tr>
<tr>
<td>IV -6</td>
<td>Powerhouse Theatre, lower level plan</td>
<td>44</td>
</tr>
<tr>
<td>IV -7</td>
<td>Powerhouse Theatre, upper level plan</td>
<td>45</td>
</tr>
<tr>
<td>V -1</td>
<td>Arbutus Room, grid substitute system</td>
<td>56</td>
</tr>
<tr>
<td>V -2</td>
<td>Arbutus Room</td>
<td>57</td>
</tr>
<tr>
<td>V -3</td>
<td>Arbutus Room</td>
<td>57</td>
</tr>
<tr>
<td>V -4</td>
<td>Cypress Room</td>
<td>62</td>
</tr>
<tr>
<td>VI -1</td>
<td>Kelowna Community Theatre, stage area</td>
<td>78</td>
</tr>
<tr>
<td>VI -2</td>
<td>Kelowna Community Theatre, auditorium</td>
<td>79</td>
</tr>
<tr>
<td>VII-1</td>
<td>York Theatre</td>
<td>93</td>
</tr>
<tr>
<td>VII-2</td>
<td>York Theatre, basement</td>
<td>94</td>
</tr>
<tr>
<td>VII-3</td>
<td>York Theatre, balcony and dressing rooms</td>
<td>94</td>
</tr>
</tbody>
</table>

Fact Sheet

1. Old St. Stephen's Church, West Vancouver............ 18
2. The Powerhouse Theatre, Vernon........................ 40
3. Cypress Room, West Vancouver Community Centre...... 58
4. Kelowna Community Theatre, Kelowna................. 75
5. The York Theatre, Vancouver.......................... 90
Fountain!

A drinking fountain?

There's only one thing his theater needs.

I'm impressed.

Doesn't he? I'm very put on a good show.

Stretch our legs? Around a bit? Maybe use a drink first.

That was a long first intermission!
CHAPTER I

Introduction

Man's activities fall into two categories: those he performs in order to provide himself with the necessities of life, and those he performs purely for enjoyment. The latter, although not of primary importance, shape his life and that of his family in many ways. This type of activity is called recreation. The importance of recreational activities to the individual and the community has been recognized for a long time, and is evidenced by the fact that government agencies have been set up to encourage these functions (e.g., the British Columbia Community Recreation Branch). Modern social scientists have defined recreation in various ways, but all seem to concur in these respects: 1) the activity is done in leisure time, and 2) it is motivated by personal enjoyment of the activity itself. In trying to place qualitative judgement on recreation (to decide which activities should be encouraged) a third part is added to the definition; recreation must lead to growth and development of the individual taking part.¹

One recreational activity which fulfills all three of these criteria is community theatre. Community theatre is a

leisure time activity, from which both those participating in production and those in the audience receive pleasure. In turn, both are given the benefit of a cultural experience, providing growth and development for the individual.

Another way in which community theatre aids personal growth is in the experience of cooperation which stems from the nature of the theatrical enterprise. Theatre is unique among recreational activities, be they sports or arts oriented, in the number of diversified talents, skills, and aspirations encompassed in its realization. The community theatre provides a meeting place for people from many levels and segments of society, (e.g., school teachers, carpenters, housewives, children, and senior citizens) allowing these people to work together towards a single goal—the theatrical show.

Although perhaps the theatre experience is not dependent on a theatre building, the community theatre groups, because of the demands of audiences, plays, and business arrangements, find themselves in the position of needing a specific space. Thus it is highly desireable for the community theatre group to work in a theatre. My research indicates that an ideal building for many groups would be a two hundred seat proscenium theatre, with a raked auditorium, adequate front of house services, a flying system, and fairly extensive production services.

There are over 20,000 people involved in producing plays at the community theatre level in British Columbia, residing in 70 towns throughout the province. About 400 productions
are staged each year, attracting an audience of over 280,000.¹

There can be little doubt, then, as to the number of people and the reserve of talent and enthusiasm available to the community theatre movement. However, the facilities available in which to house theatrical activities are, for the most part, woefully inadequate. Of the over 100 community theatre groups in B.C., only 2 are able to use facilities built specifically as theatres. Buildings converted to theatres from other uses account for 6 more, while the vast majority struggle along in community halls, high school gymnasiums, or any other spaces available to them. Only 9 of the total 100 completely control their theatre space and the number which actually own their premises is even less.² New theatres being built by municipal and educational authorities do little to alleviate this situation, because the interests of other groups cause the resulting buildings to be unsuited for the work of the community group.

Although some research has been done into the types of spaces used by these groups,³ no in-depth study has yet been made of the architectural design of these buildings. The intent of this study is to investigate the problems presented to community theatre groups by the spaces they use. To

³Idem, "British Columbia Community Theatre Questionnaire", unpublished. For a reproduction of this questionnaire, see Appendix A.
this purpose, I will analyze these spaces in terms of how they facilitate the construction, rehearsal, and performance of a community theatre production.

Community Theatre

The term "community theatre" as used in this paper is perhaps best defined by Paddy Malcolm English, former B.C. Drama Consultant.

The term 'non-professional community theatre' could be defined as an art form practiced for pleasure and not for financial gain, but rather as a community service and therefore essential in the cultural growth of the people of this Province.¹

This definition, it should be noted, excludes professional groups, semi-professional groups (e.g., those partly financed by Opportunities for Youth and other government agencies, and those which pay some actors and technicians), and educational theatre (either within the school curriculum, or extra-curricular theatre under school supervision).

The organizations performing community theatre term themselves variously as clubs, workshops, theatres, little theatres, guilds, and groups. For simplicity, I shall use the term "group" in this study.

It is pertinent to note that the members of community theatre groups work on productions for recreational purposes, and that a vast majority of them have full time jobs. Thus their motivation is not the same as that of a professional,

and neither is their working potential. The fact that these people have already worked a full day makes it difficult for them to spend the long, hard hours necessary for the rehearsal, construction, and promotion of a large theatrical production. In such a situation, the efficiency of the theatre space in which they work is doubly important. In addition, these amateur artists and technical people often lack the experience and training which would enable them to cope effectively with less than ideal facilities. I experienced an example of this at Festival '74 in Kelowna, where groups from various parts of the province were performing on the very wide stage of the Kelowna Community Theatre. The fact that the technicians did not know how to successfully deal with this width placed the actors in the awkward position of playing in a setting of different dimensions from that used for previous rehearsals or performances. They were often unable to adapt gracefully.

Theatre Space

The term "theatre space" could be broadly defined as any area used by the community theatre group for any theatrical function (e.g., performance, rehearsal, non-performance oriented theatre such as workshops and developmental drama, construction and technical work, and storage of theatrical equipment). The buildings which I have surveyed and chosen as examples are either spaces which are currently being used by community theatre

1 Idem, interview at Festival '74, Kelowna, June 1974.
groups, or, if not actually in use, are characteristic of building types which are often used.

These five buildings will be analyzed by comparison with criteria established through research of sources of technical theatrical knowledge. For a summary of these criteria, see Appendix B, page 107 below.
CHAPTER II
Classification
Architecture

In her "British Columbia Community Theatre Questionnaire", sent to all community theatre groups in the province, Mrs. English asked various questions regarding "work area". From the answers obtained, it is possible to divide the spaces used into five general types: found space, gymnasium box, multi-purpose auditorium, conversion, and theatre. This division is made strictly on the basis of the architectural nature of the space.

Found Space

A found space is, as its name would imply, a space that is used as it is found, and not changed in any major way to facilitate theatrical production. It has not been designed with theatre production in mind, but was originally intended for some other purpose. A technician building a flat in his own basement, a director holding a rehearsal in his living room, or a school classroom used as a dressing room, would all classify as use of found space. In this sense, probably all amateur groups in the province use found space in some way.

Another aspect, however, is the group that uses found space as a performance area. A group that performs children's

1English, "Community Theatre Questionnaire".
theatre in a kindergarten classroom or a group that performs in an art gallery are also using found space. These groups are in a minority, being only seven out of the fifty-five groups who responded to the English questionnaire. For example, the Kitimat Community Theatre sometimes performs in an open area in the Municipal Museum. One of the Victoria groups, the Gallery Players, performs in the lecture hall of the Provincial Museum.¹

Gymnasium Box

The gymnasium box is by far the most frequently used of all the types, not because of its excellence as a theatrical space, but because of its availability. There are innumerable schools as well as many municipalities in the province which have this type of facility. An exact number is unavailable.²

This style of building is designed primarily as a general purpose hall, for sports, meetings, and banquets. It has a box stage added at one end or perhaps one side to expand its facilities. In some small towns, this is the only space available with any theatrical potential at all, and in others rental of alternatives is too costly.³ Of the groups surveyed, 40 per cent use a gymnasium box stage for all their productions, and

¹English, to Eric Broom.

²Mrs. Van Bassen, Secretary to Mr. Simpson, Director of School Planning Facilities, Department of Education, Victoria, telephone, August 29, 1974.

³English interview.
a number of others use one on occasion.\(^1\) I might point out that, despite this heavy usage, everyone questioned condemns this type of building as being antagonistic to almost any theatrical endeavour.\(^2\)

Multi-Purpose Auditorium

Another classification of building which is designed to fulfill as many functions as possible is the multi-purpose auditorium. Unlike the gymnasium, this type is designed specifically for functions which attract an audience. It has permanent seats, a raked floor, and a better designed stage. In this case also, community theatre productions are not catered to, because design accent is placed on audience space, and not on the proscenium and behind it. These buildings are usually owned by civic or educational authorities.\(^3\) Only five groups in the province use a building of this type with regularity, one example being Theatre Kelowna.

Conversion

A very few community theatre groups have been able to improve their facilities a great deal by finding a building which would originally classify as found space, but which they have re-designed and changed in major ways to adapt it to theatrical

\(^1\) Idem, to Eric Broom.

\(^2\) English interview; Doug Huggins interview, Festival '74, Kelowna, 1974; Philip Silver interview, Festival '74, Kelowna, 1974.

\(^3\) English interview.
performance. Walls may be removed, a stage added, auditorium floor raked, ceiling raised, and doors added; renovations vary depending on the original design of the building and the needs of the group. Because this kind of project requires a large monetary outlay and considerable organization and support, only the more advanced groups are able to consider a conversion, and only six full conversions exist, the Vagabond Theatre of New Westminster and the Langham Court Theatre of Victoria being examples. A few other groups, such as the Surrey Little Theatre, have partially converted buildings.\footnote{Idem, "Community Theatre Questionnaire".}

Buildings Designed Exclusively for Theatrical Production

This classification is distinguished from other categories, in that it is designed specifically with theatrical production in mind. It usually takes the form of a smaller (compared to the multi-purpose auditorium) proscenium theatre, with raked auditorium, permanent seating, front of house services, a flying system, dressing rooms, and sometimes construction facilities.

This type is also distinguished by being the smallest classification. Only two buildings out of the total surveyed fall into this category: one in Prince George, and the other, the York Theatre, in Vancouver. The North Vancouver Centennial Theatre is so well designed as a theatre as to almost meet the qualifications of this classification. Because of its size and its intended function, it will be considered a multi-purpose
auditorium for the purposes of this study.

Business

Buildings can also be classified in terms of their business operation, the pertinent factor being control of the building, or, more specifically, who is in charge of operation and scheduling. In this study, a simple division is made, decided by whether the building is operated by the community theatre group or by another body. The actual ownership is not always a factor. Often the building is owned by the municipality, and leased or donated to the group, who then operate as if it were their own. For example, the Prince George Theatre Workshop started to build their own theatre, but were unable to finish it for financial reasons. The civic government has finished the project, and allows the group to run the building. Both the Vagabond Theatre in New Westminster and the Powerhouse Theatre in Vernon are technically owned by their respective cities, but are operated by the community theatre groups. The Kelowna Community Theatre and the James Cowan Theatre of Burnaby are both owned and controlled by civic governments.¹

Both Doug Huggins, Designer of the Powerhouse Theatre, and Mrs. English consider control of the space an extremely important factor in the operation of a community theatre group.²

¹English, to Eric Broom.
²Huggins interview; English interview.
CHAPTER III

Found Space

General Characteristics

Found space is, by definition, a space which is non-theatrical in design, but is used in its original state by the community theatre group for a theatrical purpose. It differs from "found space" in the usual theatrical sense of the word, in that the space is not chosen because of any intrinsic value of its atmosphere, which would benefit the performance of a specific play. The found spaces used by community theatre groups are chosen because of their availability, and any artistic benefits resulting from the nature of the space are rare. The typical atmosphere of the community theatre found space is at best neutral, at worst detrimental, to the theatrical performance. Found space is distinguished also from conversion space, (see Chapter IV below) in that the conversion is a building of non-theatrical design which is adapted in major ways to make it suitable for theatrical performance. Found space is used without significant adaptation. For example, moving the desks in a classroom to make a central performance area would be utilization of found space; adding a raked auditorium floor to a church hall would be considered conversion.

Of all the spaces used by theatre groups in British Columbia, the found space classification includes the most varied forms, because it includes any space found useful by the
group for any theatrical purpose. Such diverse spaces as garage workshops, school classrooms, art galleries, city parks, basements, living rooms, and streets are used by community theatre groups for the various activities included in the production of their plays. Because of this diversity, I will disregard spaces not used for the three major functions of theatre: rehearsal, construction, and performance.

The most prevalent feature of these spaces is their non-theatrical nature. Because of this, they are restricted in equipment of all types—lights, sound, flying systems—and in space for actors, sets, and audience. Lighting is usually general area illumination, sound equipment is non-existent and acoustics bad, and seating is temporary, often wooden or metal stacking chairs.¹

It is difficult to generalize on ownership and organization of found spaces, because the types of buildings differ so greatly. Homes of group members are often used. For example, in Williams Lake, flats are stored in a club member's basement. These spaces are, as a rule, free of charge. The Old St. Stephen's Church is owned by the West Vancouver Municipality, and is available for rent. The Kitimat group performs in an open area in the Provincial Museum. The main business characteristic of these spaces is that it seems, from information gathered by Mrs. English, that many groups find even these minimal

¹English, to Eric Broom.
accommodations difficult to obtain and expensive to finance.1

For most classifications of spaces it is not difficult to find a building which is representative of the type. In the found space category the diversity of forms makes it of use to note a few general examples. A specific example, which will be fully analyzed, is also included.

Williams Lake

The Williams Lake Players use a portable classroom which is owned by the town council. This building is also used by several other community groups, for activities as varied as square dancing, pottery, music, and painting. The space is 24-by-24 feet, with an 8 foot ceiling. Lighting equipment consists of two 500 Watt Fresnel spotlights and eight 150 Watt household floodlights. Dimming of the lighting is provided by six 500 Watt, solid state household dimmer switches on the wall by the entrance door. For performance, 120 people can be seated on stacking chairs borrowed from a nearby school.

Each year, the Williams Lake Players rehearse and perform 4 "workshop" plays in this building. These plays are produced as an exercise for group members and are not strongly performance oriented. Once a year the group produces a full-length play which is rehearsed in the found space area and performed in a school gymnasium or church hall. This production runs 3 nights, usually on Thursday, Friday, and Saturday.2

1Idem, "Report on Non-professional Theatre".
2Harold Giles, telephone interview, July 26, 1974.
Kelowna

Theatre Kelowna is much better equipped, having the Kelowna Community Theatre in which to perform, and renting a former Forest Service complex for rehearsal and other auxiliary space. This complex consists of 3 buildings: an office building, a storage area, and a garage, each approximately 34-by-40 feet. The office has 4 rooms, including a kitchen with no sink. The former storage building has one room approximately 26-by-30 feet which the group uses as a green room and rehearsal space. There is also a washroom, with a sink, and an attic storage space in this building. The garage building has 4 vehicle bays, 10-by-30 feet each, 2 of which are used as a scene shop, and 2 of which are storage. The group is charged no rent for this facility, but must pay $1,600 taxes per year. This cost, plus most of their other expenses, is usually covered by the profits from one musical comedy which they produce each year. This runs 5 days and attracts large audiences. They also produce 4 dramas per year which run 3 days each, and do not always pay for the cost of their own production.\(^1\)

Old St. Stephen's Church, West Vancouver

This building is a former church, now desanctified and owned by the Municipality of West Vancouver as part of their recreation complex. It is used for various functions, including art showings, Red Cross instruction, Senior Citizens meetings, and

\(^1\) Mark Vaughan interview, Kelowna, August 16, 1974.
and the community Youth Theatre Program. The design of the building is partially performance oriented, in that it contains an area with a flat floor for audience seating, facing a vestigial proscenium arch with a one foot raised stage behind it. The remainder of the building is taken up by auxiliary rooms. For complete architectural information see Fact Sheet 1.

The Old St. Stephen's Church is one example of a number of buildings with good theatrical potential which are in existence, but are not necessarily always available to theatre groups. The West Vancouver Little Theatre has tried to obtain complete control of this building to use exclusively as a theatre, but has to this date been unsuccessful.

The main quality which recommends this building to the theatre technician is the large amount of auxiliary space available, consisting of a complete wing of two floors, plus understage storage space. Another advantage this building has over many found spaces is the "feel", or atmosphere of the interior. The white plaster walls and dark wood floor, panelling, and beams seem to make a restful, comfortable impression on the audience member, adding to the atmosphere of "special place" needed in a theatre (see illustration 1).¹

This building does not conform to Mr. Huggins' definition of a "building with potential", which in his opinion would be approximately 50 feet square, with "good height".² It also

¹Ian Pratt interview, Frederic Wood Theatre, University of British Columbia, August 1974.

²Huggins interview.
has other deficiencies. For example, as Mr. Wilcox pointed out, the white walls would detract from focus of audience attention. Therefore, this building would probably not be useful for a group desiring to perform full-size productions, with sets and elaborate lighting. However, it would be a sufficient space to perform theatre of a limited form, such as workshop and experimental performances. It would also be very good space for a group to use as rehearsal and construction space. They could produce their full-scale performances in a more suitable theatre.

1Richard Kent Wilcox interview, Frederic Wood Theatre, University of British Columbia, August 1974.
FACT SHEET 1

Old St. Stephen's Church, West Vancouver

Style

1. Proscenium

Stage

1. Proscenium; 24 feet wide, a Gothic-style arch 12 feet high at centre, 8 feet at sides
2. Stage height; 1 foot
3. Stage depth; 16 feet 6 inches
4. Wing space; 2 feet 6 inches each side
5. Height of ceiling; 15 feet at centre, 10 feet at sides
6. Floor; varnished fir, no nails or screws allowed

Standard Masking

1. None

Lighting

1. Regular 110 volt light fixtures on proscenium arch, switch on stage left proscenium

Sound

1. No equipment

Loading and Storage

1. Loading; up 4 feet of stairs, through house door, through vestibule, and through house
2. Storage; 11-by-19 feet against upstage wall, lockable

Dressing Rooms

1. None specific; space available downstairs
FACT SHEET 1—Continued

2. 2 toilets with sinks; off downstairs hallway
3. Red Cross room; could be Greenroom

Wardrobe
1. Space available downstairs

Properties
1. No specific area; storage in upstage wall

Scene shop
1. None

House
1. 150 temporary seats
2. 45-by-29 feet; flat floor
3. Floodlights; provided for art showings, switch on
door near main entrance, do not dim
4. Large number of windows

Front of House Services
1. 6-by-14 foot vestibule
2. Red Cross room could be used as lounge
3. Kitchen for concessions across hallway from Red
Cross Room
4. 2 washrooms off upper hallway; 1 toilet and 1 sink
in each

Performance Operation
1. Stage Manager; on stage left
2. Access to acting area; stage left only
Illustration III-2
Old St. Stephen's Church

Vestibule, 6' X 10'

Auditorium, 45' X 29'

Red Cross Room, 21' X 24'

Stage, 16½' X 29'

Washrooms
Kitchen
Storage, 11' X 19'

1" = 10'
Illustration III-3 Old St. Stephen's Church, basement

Illustration III-4 Old St. Stephen's Church, proscenium section
CHAPTER IV

Conversions

General Characteristics

Examples of theatres formed by the conversion of formerly non-theatrical spaces may be found in several British Columbian communities. Six of the groups surveyed have completely converted buildings into theatres, and several more have made significant steps in that direction. Full conversions are: the Powerhouse Theatre in Vernon, the Langham Court Theatre in Victoria, the Vagabond Playhouse in New Westminster, the White Rock Little Theatre in White Rock, and the James Cowan Theatre in Burnaby. Other less developed conversions are used by the Surrey Little Theatre, which performs in an old church hall, and the St. Luke's Players in Victoria, which owns a former church.

The typical conversion surveyed is a multi-purpose hall, modified by simply expanding its facilities to make a theatre. The Langham Court, the James Cowan Theatre, and the Surrey Little Theatre are of this sort. The Powerhouse Theatre is unique, in that it was converted from a completely non-theatrical space, namely an old power station.

The process of conversion is usually a gradual one, as the group obtains enough money to do a small amount of renovating at one time. It is probable that the Surrey Little Theatre and the St. Luke's Players are at an earlier stage of development at this time, and could be fully converted in the future. For
example, the Powerhouse Theatre was first opened in 1963, then redone in 1973. The Vagabond Playhouse has also had a recent updating of a former conversion.¹

The steps usually taken to render these spaces more performance oriented are: to rake the house floor, usually in levels, and provide permanent seating; to build a stage if no stage exists; to install a proscenium arch; to install a flying system of some sort; to provide some theatrical lighting; and to provide or remodel the lobby space, dressing rooms, shop space, kitchen and concessions, and costume, prop and scenery storage spaces. These are accomplished in different degrees of completeness, depending on the group's priorities.

The final product of this is usually a theatre seating just under two hundred patrons, (one exception is the James Cowan Theatre, which was built by civic authorities, and does not conform to some of the standards of community theatres). There are certain restrictions in efficiency stemming from the conversion process, but I would say the result is a better plant than most groups in the province possess.

There are certain architectural problems which are common to most conversions. Because of a stage being added at one end of a hall, stage walls are only as wide as the seating area, thus giving extremely restricted wing space. Not one group has followed the recommendations of Bell et al.,² who show a

¹ Mrs. H. Cliff interview, Vagabond Theatre, June 27, 1974.
converted hall with expanded wing space and fly loft. The fly loft is often left low because of insufficient height in the original building and thus the increased cost of providing it. The loading area also suffers because of reluctance to cut new doors in the building when semi-sufficient ones already exist. In total, then, this usually results in a building with all the facilities needed for a small theatre, but restricted in size. This is not altogether bad. A small auditorium is considered by some to be a desirable feature for the use of an amateur group. However, it is very restricting in other areas, such as dressing rooms.

These theatres are usually run by the community theatre group, although often owned by the city. Again, the James Cowan Theatre is the only exception, being both owned and run by the city of Burnaby. Once a group has a converted space, they tend towards producing more ambitious seasons of plays. I suppose this is natural, since they have, first, the facilities required for full-scale productions, and second, the well developed business organization necessary to cope with the ownership situation. The control of a good theatre gives these groups another advantage—the longer running show. These groups are able to mount large productions which, because of scheduling ability, usually run seven to ten days. The average of all groups in the province is six days run per play, many groups performing three days or less.

1 English interview; Huggins interview.

2 English, "Report on Non-professional Theatre".
The Powerhouse Theatre, Vernon

I have chosen the Powerhouse Theatre of Vernon for my example not because it is typical, but as a demonstration of what can be achieved in the line of converted spaces. Many groups in British Columbia today exist in similar circumstances to those experienced by the Vernon Little Theatre group in 1962; they owned no building, and were looking for a clubhouse or rehearsal space to use. They stored their equipment in one room of the Scout Hall, and performed in a school gymnasium.

They acquired the old Vernon Power Station, and invested $25 thousand in a conversion project. The Powerhouse Theatre first opened in November of 1963. It contained a 150-seat raked auditorium, a foyer, a clubroom, costume storage, a stage tower, and a scene shop. Equipment included a lighting system and a flying system of 18 rope sets. In 1973, with a further $15 thousand and more work by volunteers, the building was expanded. They extended the foyer, stage and shop, and added 41 seats, dressing rooms, and a new costume area. New lighting equipment, a new flying system, and a portable revolve were also added. For full information, see Fact Sheet 2.

This theatre is city owned, but leased to the theatre group for the nominal fee of one dollar per year; thus it is completely controlled by the group. However, this is not officially a unified theatre club. For business purposes it is divided into two sections: 1) the Theatrical Arts Centre Society, and 2) the Vernon Little Theatre Association. The Theatrical Arts Centre Society is a non-profit organization formed strictly
for the purpose of operating the theatre building. This group is composed of volunteer directors, usually town businessmen. The Vernon Little Theatre Association is responsible solely for the production of plays in the theatre. Technically, they must rent the building from the Theatrical Arts Centre Society when they wish to use it. In practice, however, membership in the two societies overlaps considerably, and the Vernon Little Theatre, of course, gets top priority when scheduling building rentals.

The usual season consists of three major plays, averaging nine nights run. Any profits from these go to the Theatrical Arts Centre Society to pay for upkeep of the building, renovations, and new equipment. Upkeep averages $3,000 per year. All construction and artistic work is done by volunteer labour from the club members, excepting one part-time janitor, a club member, who is paid $80 per month. The only financial assistance received by the group is in the form of a waiver of taxes from the city.

A major source of income is rental of the building for non-theatrical uses. These include: ballet, films, church services, seminars, chamber music concerts, fashion shows, lectures, and discussions. These functions pay $30 to $50 per night, depending on the nature of the group and the day of the week on which they use the building.

Mr. Huggins, who is one of the architects who designed the conversion, feels that the optimum size of a building
considered for conversion would be 50-by-50 feet, with "a good height". The power station, before conversion, was 28-by-45 feet, and 29 feet high, and thus imposed some restrictions on the resulting theatre. The structural strength of the building was an asset, as was its central location. The disadvantage of the location is that a railway track runs beside the building. Although they run infrequently, the trains can cause considerable disturbance during a performance.¹

Stage and Stage Machinery

The proscenium of this theatre is 24 feet, 2 feet narrower than the minimum prescribed by Burris Meyer and Cole. I am inclined to believe that they are not speaking strictly of community theatre when they say 26 feet.² Mr. Wilcox would allow a 24 foot minimum for regular drama, but not for opera or musicals.³ Bell et al. consider 18 feet possible for a community group,⁴ while Corry says 24 feet "is desirable". Proscenium height is only 6 inches less than the 12 feet recommended by Corry,⁵ but Mr. Huggins pointed out that the structural concrete

¹ Huggins interview.
³ Wilcox interview.
⁴ Bell, Marshall, and Southern, p. 27.
beam which forms the top of the arch restricts the throw of light from the #1 F.O.H.¹

The depth of inner stage, 28 feet, exceeds all minimum recommendations. Mr. Wilcox suggests that the minimum depth of a set for regular drama is 14 feet.² Burris-Meyer and Cole caution that at least 6 feet must be allowed for crossover and lighting behind the set. This means that at least 20 feet must be available. However "very few plays can be performed in sets as meager as this...".³ Corry allows for a minimum of 24 feet.⁴ The wing space of the Powerhouse Theatre, completely restricted by the original walls of the structure, totals only 10 feet. Most sources prefer a total of at least the width of the proscenium in wing space, plus a few feet for masking.⁵ Even Corry, who seems to allow for a smaller theatre than most others, would like a minimum of 8 feet on each side.⁶

Although the 10 foot wide door upstage centre allows for

¹Huggins interview.
²Wilcox interview.
⁴Corry, p. 3.
⁵Bell, Marshall, and Southern, p. 36; Pratt interview.
⁶Corry, p. 3.
use of some wagons and large set pieces which can be stored in the scene shop when not in use, most of the set changes must be done by flying. This is unfortunate, as the height of the fly loft is minimal. In fact, Mr. Huggins stated that if he were to re-design the building, one of the first priorities would be to extend the height of the loft.1 Corry states that a fly loft must be \(2\frac{1}{2}\) times the height of the proscenium for good flying,2 while Bell et al. would prefer 3 times proscenium height.3 While the 30 feet in this building does just total \(2\frac{1}{2}\) times the proscenium height, the system is only what Bell et al. call a "grid substitute"4—pulleys bolted to beams—which is not as efficient as a complete grid system. There is also no access to this area except by setting up a scaffold. The fly galleries are 14 feet—just high enough to allow for the storage of standard masking flats.

Mr. Huggins considers the lighting equipment of this theatre quite sufficient, and indeed it far surpasses the minimum stated by both Mr. Norman Young, Technical Director of the Frederic Wood Theatre, and Mr. Pratt.5 The only flaw, an

\begin{itemize}
\item 1Huggins interview.
\item 2Corry, p. 3.
\item 3Bell, Marshall, and Southern, p. 47.
\item 4Ibid, p. 52.
\item 5Norman Young interview, Frederic Wood Theatre, University of British Columbia, May 13, 1974; Pratt interview.
\end{itemize}
absence of a patch panel, will be rectified in the near future. Sound equipment is good, mostly new, and acoustics are excellent, partially due of course, to the small size of the house.¹

Because of light reflecting properties, the canvas-covered flats which are used for standard masking in this theatre are not as good as cloth drapes.² Their advantages are that their shape and color can be changed easily, and that they are initially less expensive to construct.

The portable revolve is a great asset to this theatre, as it allows set changes which do not need much wing space. The possibility of thrust or end staging adds versatility, but these forms are seldom used.

The stage floor construction is heavy plywood, covered by a canvas ground cloth. This is not as good as softwood planking, because the floor gives under loads, allowing the cloth to bunch and tear. The stage also tends to sound hollow under the actor's feet. However cost is a factor, and this type of floor is quite inexpensive.³

Another factor to be considered in the design of the stage is its height above street level. Bell et al. say that the stage should be at street level,⁴ but Mr. Pratt points out the advantage of having the loading bay at the level of a truck

¹Huggins interview.
²Wilcox interview.
³Pratt interview.
deck, which is about 4 feet,\(^1\) and the great advantage of having a level path to the stage from the loading area.\(^2\) Burris-Meyer and Cole also prefer this height.\(^3\) The stage of the Powerhouse Theatre is 4 feet from the ground.

Auditorium and Sightlines

Stage height is also a consideration, as it affects sightlines, combining with the angle of auditorium rake to determine audience visibility. Burris-Meyer and Cole recommend a height of 3 feet 6 inches above floor level at the first row, and an angle of rake calculated by raising each row 5 inches above the sight line over the preceding row.\(^4\) Corry would prefer a minimum of 3 feet 8 inches stage height.\(^5\) In either case the 2 foot 3 inch stage of the Powerhouse Theatre, combined with a rake of 5 inches per row of seats, provides less than minimum comfortable visibility. Mr. Huggins stated that he would like to see the stage even lower, with an increased rake. Consideration of a cross section, however, (see Illustration IV-5) shows the difficulty of adding rake angle, because of the low ceiling, and I have serious doubts as to whether the expense would be worth it.

\(^1\) Telephone interview with an unidentified employee of Tilden Truck Rentals, September 2, 1974.

\(^2\) Pratt interview.

\(^3\) Burris-Meyer and Cole, p. 164.

\(^4\) Ibid, p. 69.

\(^5\) Corry, p. 3.
The aisles in the auditorium are on the sides, a position recommended by Burris-Meyer and Cole. Rows are 36 inches apart, 2 inches more than the "marginal comfortable spacing".\(^1\) The chairs were acquired from an old movie house, and are constructed of wood and metal with padded seats and backs. I found them quite comfortable.

Front of House Services

The lobby easily conforms in size to the minimum of 500 square feet required according to Burris-Meyer and Cole.\(^2\) However the lack of foyer and lounge space means that during intermissions the lobby becomes crowded. Because the entrance, ticket booth, coat check, toilets, and entrance to house are all at one end of the narrow lobby, the traffic pattern is not good. Another problem with the ticket booth is that the telephone bell is quite audible in the auditorium, and the receiver must be lifted during performance. The coat check area is small, as are the washrooms and the marquee. This is a result of the restrictions of the original structure, and its proximity to the street.

Adequate parking is provided near the theatre.

Actor Spaces

Calculated by the statistical procedures used by Burris-Meyer and Cole, the main dressing room provides space for 18

\[^1\text{Burris-Meyer and Cole, p. 110.}\]
\[^2\text{Ibid, p. 51.}\]
actors, but makeup facilities for only 8. The auxiliary dressing room provides for 13 more actors, but the position of this dressing room over the auditorium detracts from its usefulness. The adjacent toilets cannot be used during performance because of noise. The washroom in the main dressing room adjoins a house wall, although in this case the noise is minimized by the thickness of the wall. A more serious problem with the dressing rooms is access to the stage, which Burris-Meyer and Cole suggest should be 5 feet wide, with no stairs. On both points this theatre falls short, because the only access is a narrow staircase.

The greenroom is larger than the 300 square foot minimum required by Burris-Meyer and Cole. Its alternate function as a dance rehearsal area makes it a very useful space.

Production Services and Operation

This building has a scene shop, a facility with which few of the spaces surveyed were provided. The group owns no tools, but depends on group members to provide their own. Conditions are similar in the costume area. A large, well lighted space is provided for work and storage, and the persons constructing costumes provide their own equipment. One point I noticed, however, was that the extra lighting provided for

1 Burris-Meyer and Cole, p. 156.
2 Ibid, p. 158.
3 Ibid.
the costume area is fluorescent. This can be a problem, because fabric colour is altered under different types of light. This is a factor of which the designer must be aware when working in these conditions.

There is little space for properties construction in this building, only a storage area. I assume that most small properties are constructed in members' homes, larger ones in the scene shop. Another disadvantage is a lack of kitchen facilities, which are desirable in a properties room.¹

Storage space for scenery is small, mostly space in the scene shop which would probably be better used for construction purposes. Standard masking flats store under the fly galleries on stage, but this restricts the small wing space available.

The positions for operation of a performance seem to be well situated. Lighting and sound operators have a good view of the stage. Entrances to the acting area are restricted to stage left, but this means that the stage manager, who is situated down left, has visual control of all entrances. It is also convenient that actors can reach both lobby and house from back stage without going outside the building. Communications to all work areas, plus monitor speakers in dressing rooms and the lobby are also an asset.²

¹ Mrs. Sherry Darcus interview, Frederic Wood Theatre, University of British Columbia, May 15, 1974.
² Pratt interview.
Aesthetics

One of the more important aspects of this theatre, one which is frequently ignored by community building designers, is the décor. Both the lobby and the auditorium of the Powerhouse Theatre have been decorated tastefully, to give that important feeling that this is not just any building, but a "special place" for theatre.¹ (See Illustrations IV-1 to IV-4).

Summary

This theatre is one of the foremost achievements of community theatre in British Columbia. Of the buildings surveyed, it best fulfills the needs of amateur production. The only major disadvantage is a lack of space imposed by the dimensions of the original building. However, considerable ingenuity has been shown in utilizing the existing space, demonstrating what can be accomplished in conversions.

The proscenium dimensions are adequate, but would be improved by added height. This would facilitate better lighting and create a more aesthetically pleasing proscenium opening. The stage provides sufficient acting area for the type of productions staged by this group. It does not allow adequate shifting and storage space for scenery. This deficiency is due to a lack of wing space and fly space. The problem is partially offset by the large upstage centre door leading to the scene shop, and the portable revolving stage.

¹Pratt interview.
The sight lines in this building are not optimal, due to the shallow rake of the auditorium and the low stage. Otherwise the auditorium is comfortable and pleasing to the eye.

The lobby area is much too small to provide foyer and lounge space, and the construction of patron services at one end causes congestion. Again the décor is pleasant, evidence of serious thought and attention on the part of the builders.

A minor problem of this theatre is due to noise. The combination of trains, telephone bells, and actors moving in the auxiliary dressing room is almost sure to cause a disturbance at some time during performance.

This theatre is well provided with production service areas by community theatre standards. The scene shop, costume room, and greenroom/dance rehearsal area are quite sufficient for the productions staged here.

This theatre is also much better equipped than most of the others surveyed. Lighting and sound equipment are mostly new and of good quality. Communications between the stage and other parts of the building are good. The lack of a full flying system is one notable deficiency.

It should be noted that some of the success of this theatre is due to efficient business practices. The theatre club shows a profit every year. This is due to a very active group, and also to a great number of non-theatrical uses of the building. The division of the club into business and artistic sections also seems to work well, as the business is handled by businessmen, and the artistic and technical work is left to those whose
talents lie in those areas.

In Mr. Huggins' opinion, the efficiency of the building is strongly tied to the quality of production. He finds it easy, for example, to attract technical workers, because of the quality of the equipment and spaces with which they can work. Control of the building is also a factor, because it facilitates scheduling of rehearsals, set construction hours, and long-running shows. He feels that the presence of a successful theatre in the town builds both the group and its audience. For example, for the opening night in 1963 it required a personal campaign to sell the tickets. In 1973 the opening night was sold out immediately at $10 per seat.¹

¹Huggins interview.
Illustration IV-1 Powerhouse Theatre, lobby

Illustration IV-2.
Powerhouse Theatre, lobby entrance
Illustration IV-3. Powerhouse Theatre, ticket office and washrooms

Illustration IV-4. Powerhouse Theatre, auditorium
FACT SHEET 2

The Powerhouse Theatre, Vernon

Style

1. Designed for end staging, most frequently used as proscenium, conversion to thrust stage possible.

Stage

1. Proscenium; 24 feet wide, end staging; 32 feet wide
2. Proscenium height; restricted to 11 feet 6 inches by structural beam
3. Stage height; 27 inches, floor; ¾ ply covered with canvas
4. Forestage; 8 feet deep
5. Inner stage; 28 feet deep
6. Wing space; 6 feet stage right, 4 feet stage left downstage, tapering to nothing upstage because of shape of building
7. Grid; 30 feet high, with 20 rope sets tied off to fly galleries 14 feet high on either side
8. Revolve; hand powered, portable, 24 feet in diameter, and cost $200 to build, labour being volunteer
9. Upstage wall; covered by a 27 foot curved cloth cyclorama
10. Projection screen hung downstage

Standard Masking

1. Borders; cloth
2. Legs; canvas covered painted flats
3. Front curtain; velour

Lighting

1. Strand JTM 20 circuit 2 preset board
2. No patch panel--one is being installed in #2 F.O.H. area
FACT SHEET 2--Continued

3. 2 F.O.H. pipes with power lines, one small pipe on ceiling of house with no power lines
4. 3 upstage light pipes with power lines, flown
5. 2 follow spot positions in #2 F.O.H.
6. No permanent catwalk
7. House lights dimmable
8. Instruments; all 500 Watt. 20--Strand PATT. 123 Fresnel spotlights; 10--Strand PATT. 23 profile spotlights; 8--Strand PATT. 60 flood lights

Sound
1. 2 tape decks, turntable, 6 channel mixing board
2. Intercommunications from Stage Manager to light control, sound control, both fly galleries
3. Monitor speakers from stage microphone to dressing room, sound both, foyer

Loading and Storage
1. Loading into scene shop through 8 foot high-by-7 foot wide door
2. Scene shop to stage through 10-by-10 foot door, centered in upstage wall
3. Flat storage on stage and in scene shop
4. Prop storage downstairs, in shop

Scene shop
1. 25-by-25 feet
2. No tools, but bench space, flat storage space
FACT SHEET 2—Continued

Dressing rooms

1. Main dressing room over foyer, doubles as club room
2. 8 mirrors with lights, one sink, 20 feet of makeup table
3. One toilet, one washroom off the main dressing room
4. Auxiliary dressing room over rear of house, 13 mirrors with lights, 2 washrooms

Greenroom, Rehearsal facilities

1. Greenroom under stage, doubles as rehearsal space and dance practice space—practice bars, 2 full mirrors, hardwood floor

Costumes Area

1. 25-by-25 feet
2. Fluorescent lighting, large number of electrical outlets
3. Sewing tables
4. Rolling costume racks
5. Large supply of costumes

Properties

1. No special area, minimal kitchen facilities

Auditorium

1. 191 seats
2. 5 foot total rake
3. 4 foot aisle at either side
FACT SHEET 2--Continued

4. Back row 38 feet from stage, front row 3 feet 6 inches¹

Front of House Services

1. Foyer, 500 square feet
2. Concession stand/ticket office in lobby
3. Coat check under stairs
4. 2 small washrooms
5. Marquee 4-by-14 feet, covered

Performance Operation

1. Stage Manager; stage left
2. Crossover; behind cyclorama
3. Access to lobby or house; through scene shop and downstairs, or through upstairs main dressing room
4. Sound and light control; in booth at rear
5. Access to acting area; SL only, or one door to front of house SL.
6. Path for loading in; through scene shop to stage

¹Measurement is from the front edge of the forestage to the back of the seat.
Illustration IV-5 Powerhouse Theatre, cross section

Illustration IV-6 Powerhouse Theatre, lower level plan
Illustration IV-7 Powerhouse Theatre, upper level plan
CHAPTER V

Gymnasium Box
General Characteristics

The gymnasium box stage is designed in an attempt to create a multi-purpose space. It is intended to house many community recreational activities: sports, meetings, receptions, banquets, concerts, and, in a minimal way, theatre.

The primary architectural characteristic of this type of space is, as the term "box" would indicate, its rectangular nature. This shape is used for various reasons: 1) within the scope of community facilities, a rectangular shape is the least expensive way to enclose the largest space, 2) to meet the requirements of sports and banquets, the building must have an uninterrupted flat floor area,¹ and 3) for sports such as volleyball and badminton, it is necessary to have a high ceiling, smooth walls, and a polished floor. This box must also be of large dimensions if it is to contain a basketball court, minimum dimensions of which are 74-by-50 feet, with at least 3 feet of clear space all around the court.² The stage is usually in the end wall but sometimes is situated along one side of the gymnasium. It is usually high in order to provide storage underneath

¹In its theatrical mode this area becomes the auditorium.
²Ralph Ferstay interview, Centre Director, West Vancouver Community Centre, by telephone, August 28, 1974.
for chairs and athletic equipment, and to attempt to alleviate the bad sightlines caused by the flat floor.

Because theatrical considerations play a small part in the original planning of such buildings, the amount of theatrical equipment is small. Lighting is considered sufficient if it illuminates the stage. The flying system is minimal or non-existent. The sound system is designed for public address, consequently requiring only close range microphones. These disadvantages, when all added together in the same building, cause a serious hindrance to theatrical production.

One possible advantage of this type of space is that in some cases, due to the width of the gymnasium or to the placement of the stage in a side wall, there is sufficient room to provide good wing space. This is true of the Arbutus Room in the West Vancouver Community Centre. However, this space is often used to facilitate a wider proscenium. The possible advantage is thus negated, and the result is the disadvantage of an overly wide acting space.

Another advantage is that usually these spaces are part of a larger complex, either a community centre or a school, and are provided with a large number of auxiliary spaces. These spaces can be used for dressing rooms, storage, and front of house services. Often gymnasiuums have large dressing rooms, although they may be short on makeup spaces. Often a full kitchen is available and parking is provided for. Sometimes,

1 English, to Eric Broom.
in schools, complete shop facilities exist.

These buildings are almost invariably owned and operated by a local government body—either the school board or the municipality. If it is a civic building, then its original intention is for use as a recreational space. Community theatre is considered a recreational activity, so the space is available to the group, if they can overcome the scheduling problems which often exist.\(^1\) The official policy of the British Columbia Department of Education is that school buildings should be available for public recreational purposes.\(^2\) This policy is undermined by the fact that school activities have first priority, and also that the decision to allow use of facilities is left to the school board of each individual district. This results in varying policies towards community theatre groups throughout the province.\(^3\) For example, in Quesnel, where teachers are prominent members of the theatre group, there is a minimum of difficulty. In other areas this is not the case. High rent is often the prohibiting factor, as it is in Dawson Creek.\(^4\)

The main scheduling problem stems from the theatrical season followed by most groups, which consists of four plays

\(^1\)Ibid.

\(^2\)Van Bassen interview.

\(^3\)English interview.

\(^4\)Idem, to Eric Broom.
spread through the winter months.\(^1\) This means that the group needs the space for several consecutive nights, to cover technical setup, dress rehearsal, and performances. However, this only happens at widely spaced times throughout the year. Since most other recreational groups schedule their use of space for the same night every week, a scheduling conflict occurs whenever the theatre group puts on a show. For example, if the theatre group requires Thursday through Saturday to run each production, the square dance club meets every Thursday night, and the bridge club plays each Friday, the latter two clubs will be turned out of their space each week the theatre group performs. This problem is one of the factors which restricts groups using this type of facility to a very short run for their shows. Although this problem may be partially circumvented by holding only weekend performances, other problems arise, such as the need to take down the set for the intervening time.\(^2\)

Cypress Room, West Vancouver Community Centre

West Vancouver has a large community centre, with many facilities: a hockey rink, two gymnasiums, a playground, a lapidary and silversmithing room, an art room, and a large number of teneral activity rooms.\(^3\)

This whole complex is constructed of cement blocks. Glue-laminated wood beams provide structural support for the

\(^1\)Idem, to Eric Broom.

\(^2\)Ferstay interview.

\(^3\)Ferstay interview; Personal survey.
roof. The Arbutus Room is a full-size gymnasium and the Cypress Room, which is used for production by the West Vancouver Little Theatre, is a gymnasium of about half size. However, the theatrical equipment in the centre is divided between these two rooms. To present an adequate picture of the usual facilities of a gymnasium box stage, it will be necessary to mention the Arbutus Room often in the course of this analysis.

This complex is city owned, and operated by a full time Centre Director, with a staff of assistants, secretaries, and janitors. It provides a full slate of recreational activities, including a Teen Drama program. The Cypress Room can be rented by any outside group (such as the West Vancouver Little Theatre) for $100 per night, or $10 per night for an extended period. As a concession to the theatre group, when weekly scheduling is taking place for the winter season, Thursdays and Fridays are left free. Then the group is asked to state which weeks they will be performing, and the days they are not using are then scheduled. Apart from this advantage, the theatre group is treated like any other group which rents the facilities.¹

This seems to be a well-run, well-equipped complex. However, as far as theatre is concerned, it only provides a space in which to work. There is little equipment to work with, and the space is not designed with theatre in mind. Given these disadvantages, the West Vancouver Little Theatre would be better advised to work in the Old St. Stephen's Church (see Chapter III).

¹Ferstay interview.
Stage and Stage Machinery

The proscenium of this room is 24 feet wide and 12 feet high. This is small according to most sources. It is restricted further by a permanent border and by the front curtain, which does not retract fully when open. I do not feel, however, that a slightly smaller proscenium is a great disadvantage to community theatre.

The 20 foot depth of the inner stage is a bare minimum, and most sources would prefer 24 feet. Wing space is only 5 feet on either side; this is less than half of what is recommended. Note that the Arbutus Room, with a 30 foot proscenium in a 62 foot wide hall, provides 16 feet of wing space on each side. This is approximately the amount needed for good scenery shifting. The forestage is just wide enough to allow for side access steps, which add some versatility to the stage. A deeper forestage would be destructive to the intimacy on which community theatre thrives.

There is no flying system in the Cypress Room, and the "grid substitute" in the Arbutus room (see Illustration V-1) is also minimal, as well as being too low for anything except

1Corry, p. 3; Burris-Meyer, and Cole, p. 71; Wilcox interview.
2Corry, p. 3; Bell, Marshall, and Southern, p. 36; Pratt interview.
3English interview.
4Bell, Marshall, and Southern, p. 52.
basic masking.¹

Windows in the stage walls make a blackout impossible. Lack of a flying system causes a certain disadvantage in the hanging of masking legs, but this problem has been solved in this building by construction of cloth covered flats. These do not look quite the same as drapes, but with fullness sewn in during construction, they are considerably better than painted flats. The traveller curtain upstage provides a crossover and a background to substitute for a cyclorama or a plastered upstage wall.

Lighting and sound are areas where this building reveals its lack of equipment. There are only two lighting pipes, with no electric cables to them. The theatre group must provide all their own lighting and sound equipment. Because of the shape and texture of the walls, floor and ceiling, acoustics are not good, in spite of the relatively small area enclosed.

The stage floor is made of varnished hardwood. This material is not good for any theatrical sets which need to be screwed to the floor, or for dancing, for which the varnish is too slippery.²

Auditorium and Sightlines

The stage in the Cypress Room is 4 feet high. This is

¹Corry, p. 4.
higher than any of my sources recommend by at least 4 inches.1

Any supposition that a flat auditorium floor may be compensated for by building a very high stage, up to 4 feet 6 inches and more, is ill-founded. The remoteness of the perched-up players is unsatisfactory, and the acuteness of the angle seriously tires the neck-muscles of nearer spectators.2 Too high a stage is possibly worse than too low.

The windows along the walls, even though high up and small, prevent a complete blackout of the house. The stacking chairs are not as comfortable as could be desired.

\textbf{Production Services and Operation}

Loading into the Cypress Room is through the auditorium side doors, which are just above street level, and up over the front of the stage. This restricts loading to the size of object that can be brought through a 5-by-7 foot door, and to the weight of object that can be raised to the 4 foot stage height. The stage door is restricted because it is up a flight of stairs from the hallway, which is not good.3 The large door in the centre of the upstage wall of the Arbutus Room is near truck deck height, but its position destroys the possibility of a plaster back wall or a permanent cyclorama. Both storage spaces, the basement of the Arbutus Room and the storage room behind the Cypress Room, are hampered by small access doors.

1Burris-Meyer and Cole, p. 69; Corry, p. 3.
2Bell, Marshall, and Southern, p. 26.
3Burris-Meyer and Cole, p. 158.
There is no equipment for the operation of a theatrical production. There is no communications system, and no place for lighting and sound operators except in the already minimal wing space. Work light switches and house light switches are stage right, but the only stage access door is stage left. This leaves the stage manager a choice of positions, neither of them ideal. The only advantage I can find is easy access to both lobby and house from backstage.

Aesthetics

The size and shape of this gymnasium do not lend themselves to the atmosphere which one would associate with theatre. The large, bare, surfaces of the walls are not restful to the eye, and would not assist in focusing the audience's attention on the stage. Of the buildings that I surveyed, I found that generally those decorated in the warmer, darker colors were most conducive to good atmosphere. Illustration V-2 shows the type of décor experienced in this building.

Summary

This building is not a good proscenium theatre. Even with a large expenditure on equipment, it would still have basic design problems which would render theatrical production difficult at best. While proscenium and acting area dimensions are adequate or slightly small, there is almost no provision for the shifting and storage of scenery. Both wing space and
upstage space are so small as to allow little more than masking of the stage walls. Lack of a flying system means that there is almost no space in any direction to move scenery away from the audience view.

Sightlines in the auditorium are bad because the floor is flat and the stage is too high. The chairs provided are not comfortable and the decor leaves much to be desired. Because of the shape of the gymnasium area, acoustics are also bad.

Production services and actor spaces must be served by a few rooms adjoining the Cypress Room, none of which are designed or equipped to be scenery construction or storage areas, dressing or makeup rooms, or rehearsal spaces.

The building is well supplied with front of house services. Washroom facilities, lobby and foyer space, coat check, kitchen, and ticket office all exist.

The Cypress Room is especially deficient in theatrical equipment. There is no lighting system, no sound system, no communications system, and no flying system. The extra expense of providing necessary equipment must be considered when budgeting for a production in this building.

The scheduling procedure which allows the community theatre group priority is an advantage, and should be repeated in other parts of the province. Because this policy can cost the owner revenue, a positive attitude towards theatre is required on

1Ferstay interview.
the part of the operator of such spaces. This seems to be the case in West Vancouver, and in this way the scheduling problems inherent in the community centre situation have been solved by this group.

This space could also be improved by the installation of theatrical equipment, but the structural inadequacies, which are the main problems of the building, still remain. This space, in its present form, plays an important role in the non-theatrical functions of the community centre. Therefore, the Cypress room is not a candidate for conversion. In the light of this problem, the West Vancouver Little Theatre group would perhaps be better advised to change their production mode to suit the space, or to find another space in which to work.

Illustration V-1. Arbutus Room, grid substitute system

\[\text{Illustration V-1. Arbutus Room, grid substitute system}\]
Illustration V-2. Arbutus Room

Illustration V-3. Arbutus Room
FACT SHEET 3
Cypress Room, West Vancouver Community Centre

Style

1. Proscenium

Stage

1. Proscenium; 23 feet wide, 12 feet high, but limited by permanent drapes to 19-by-10 feet
2. Forestage depth; 4 feet
3. Inner stage depth; 20 feet
4. Stage height; 4 feet
5. Stage material; varnished hardwood, no traps, no screws allowed
6. Wing space; 5 feet each side. Arbutus Room has 16 feet each side on a 30 foot proscenium
7. Ceiling; 20 feet high, glue-laminated beams, no fly system. Arbutus Room has "grid substitute" system, with pulleys tied to beams, rope sets
8. Back wall of stage; cement, covered by drape
9. Only obstruction backstage is the chimney in upstage left corner

Standard Masking

1. Front curtain material; rep, traveller at rear also rep
2. Legs; flats with cloth covering
3. Borders; cloth, dead hung to ceiling

Lighting

1. 1 F.O.H. pipe on ceiling beam with power cable
2. 1 upstage light pipe, no power cable

1 Bell, Marshall, and Southern, p. 52.
FACT SHEET 3--Continued

3. Follow spot positions; none

4. Trees; 2 available

5. No dimmers, no patch panel, 7 circuits

6. House; not dimable

7. Instruments; none. Arbutus Room has 8--500 Watt Fresnell spotlights, 2--500 Watt elipsoidal reflector spotlights, 5--R40 floodlights

Sound

1. No equipment. Arbutus Room has 2 amplifiers, 5 microphones, 4 microphone outlets downstage centre, 1 large speaker system

Loading and Storage

1. Loading; through auditorium doors, 5 feet wide-by-7 feet high

2. Arbutus Room has 10 foot 6 inches wide-by-7 foot high door upstage centre, at 5 feet above ground outside. No platform or cover over loading area, but paved road

3. Storage area; 168 square foot room, 10 feet high

4. Arbutus Room has basement under stage, 30 feet square, 10 feet deep; entrance through trap door, upstage right

Dressing Rooms

1. One room 25 feet-by-20 feet across hall from stage, maple room

2. One sink, one closet

3. Other rooms in building, also many toilets with sinks, but none adjacent to stage

4. Mirrors, makeup lights; none
FACT SHEET 3--Continued

Greenroom, Rehearsal facilities

1. None, but space available

Costumes

1. None, but space available

Properties

1. None, but space available
2. Full kitchen facilities

Scene shop

1. None

Auditorium

1. Dimensions; 50 feet long, 35 feet wide, flat floor
2. Seating; about 200 temporary seats, stacking chairs made of wood and metal
3. Windows; cannot be blacked out

Front of House Facilities

1. Lobby; 12 feet-by-50 feet
2. Foyer; 25 feet square
3. Coat check; room available
4. Large ticket office, but not available--must set up a temporary table
5. Art room nearby for displays

Performance Operation

1. Stage manager; either side
2. Work light switches; stage right
3. Crossover; behind rear curtain

4. Access to stage; one door, centre stage left wall, up stairs from hallway

5. Access to lobby and house; through hallway

6. Communication system, cue lights, lighting; none
CHAPTER VI

Multi-purpose Auditoriums

General Characteristics

Many communities have built auditorium facilities hoping to meet a wide spectrum of recreational needs. These buildings are intended to be used for meetings, rallies, presentations, lectures, recitals, speeches, and theatre. These functions all have similar basic needs in terms of the building they occupy: 1) seating of some sort, 2) a performance area visible to the seated audience, and 3) a focus of the audience on that performance area. Because of this similarity, the multi-purpose auditorium will have certain features in common with the building designed exclusively for theatrical production. In both cases the basic needs are answered by a raked auditorium with permanent seating facing a raised stage. However, because of the difference in the nature of the theatrical production from that of the other functions mentioned above, the similarity between the two types ends at this basic level.

The accent in the theatrical show is on the show itself. Usually a large number of actors are involved, with scenery, costumes, properties, and stage crew. Because of this, in a building designed for theatre, a greater accent is placed on the design of the stage area. Most of the functions the multi-purpose auditorium serves are more concerned with the audience, with comparatively little physical preparation required for those involved in what could loosely be called the performance.
In the multi-purpose auditorium, the accent in design is on the seating area, to the detriment of the stage area, and consequently on the ability of the building to house theatrical productions. The seating capacity is usually quite large, (e.g., the Kelowna Community Theatre; 863 seats, the Vernon Community Centre; 1,070 seats, the North Vancouver Centennial Theatre; 718 seats) as is the proscenium (Kelowna; 48 feet, Vernon; 50 feet, North Vancouver; 36 feet).\(^1\) Because of the expected large audiences, front of house services are provided, such as lobby space, ticket office, coat check, concessions, and washrooms. Stage space is typically short of flying equipment, wing space, and auxiliary rooms. For example, the Vernon Community Centre has no wing space at all, and only 6 rope sets in its flying system. These buildings usually have a polished hardwood stage floor, and do not allow stage screws or nails to be driven in.

The reason these buildings are designed to accommodate so many activities is that they are often built by municipal and educational authorities. Because they are owned and operated by the same authorities as the gymnasium box, and are intended for somewhat the same purposes, the same scheduling problems arise (see Chapter V, p. 47f). Rentals are even higher than for the gymnasium box, although they vary throughout the province. In Dawson Creek, the high school has a very good multi-purpose auditorium, but the local theatre group

\(^1\) Personal surveys.
has trouble obtaining it for performances, and finds the rent very high.¹

Kelowna Community Theatre, Kelowna

This building was built in 1962 as a combined project of the local theatre group and the civic council. In 1964 an addition provided dressing rooms and storage space. It is a large auditorium by community theatre standards, with "raked floor, good sight lines, excellent acoustics, and the necessary minimum of dressing rooms and rehearsal space".² It houses many community activities, from community theatre one-acts to visiting rock singers.

Although it works well for musical theatre and a Christmas pantomime, this building is not really suited for normal community theatre productions, due to its size and lack of equipment.

Stage and Stage Machinery

The proscenium in this auditorium is 48 feet wide. This is 8 feet more than Burris-Meyer and Cole consider a reasonable maximum, and they are speaking of professional theatre. Corry gives a maximum of 28 feet, while Mr. Wilcox considers over 32 feet too large for regular drama.³

¹English, to Eric Broom.

²"Blueprint for a Community Theatre", Performing Arts in Canada Vol. 6 No. 1, p. 28f.

³Burris-Meyer and Cole, p. 71; Corry, p. 2; Wilcox interview.
The 35 foot inner stage depth is more than sufficient, according to all my sources. The usual minimum given is 24 feet, with 20 feet the absolute lower limit.\(^1\) This depth makes up for the lack of wing space to some degree, but does not eliminate the problem. Wing space is 16 feet on each side. This total of 32 feet is much less than the width of the proscenium. For comfortable scene shifting, the width of the proscenium plus a few feet for masking is the total recommended.\(^2\)

The forestage is very deep; an actor standing on the proscenium line is 13 feet from the nearest spectator. This makes actor-audience intimacy almost impossible.\(^3\)

The grid height is 39 feet, only twice that of the proscenium. However, if the proscenium were masked down to a workable height of about 12 feet\(^4\) the grid height would then be over the amount Bell et al. require, which is 3 times the proscenium height.\(^5\) The flying system, which is what Bell et al. call "grid substitute" is a half measure which is restricting.\(^6\) The winches used to supplement the rope sets by handling the lighting pipes

\(^1\)Burris-Meyer and Cole, p. 71; Bell, Marshall, and Southern, p. 36; Corry, p. 3; Wilcox interview.

\(^2\)Bell, Marshall, and Southern, p. 36; Corry, p. 3; Pratt interview.

\(^3\)English interview.

\(^4\)Corry, p. 3.

\(^5\)Bell, Marshall, and Southern, p. 47.

\(^6\)Ibid, p. 52.
are some help, but again are a half measure. Since the width of the stage means heavy scenery which makes rope sets awkward, a complete change to counterweights is indicated here.¹

The lighting system is much more elaborate than the minimum required to light a simple show,² but this does not mean that it is sufficient to light a stage area of almost 5,000 square feet. The patch panel has been wired so that each dimmer connects to only two outlets instead of four, halving the number of instruments which can be connected to each circuit. This is to guard against inexperienced technicians overloading circuits. Another problem, for which there seems no solution, is difficult access to the F.O.H. lighting positions.³

The sound system is quite workable for public address, but is not of the type useful for amplifying actors on stage. The acoustics in this auditorium are surprisingly good, considering its size.⁴

The stage floor is constructed of softwood, and stage screws may be used if necessary, although the practice is discouraged. Most of my sources consider softwood the best material, but Roderick Ham points out the superior wear resistance

¹Pratt interview.
²Pratt interview; Young interview.
³Lloyd Hooper interview, Kelowna Community Theatre, August 17, 1974.
⁴English interview.
of hardwood.1

The standard masking in this auditorium is good. The corduroy material of the legs is sufficiently light absorbing, and the hanging positions allow complete masking for sightlines from all parts of the auditorium.

Auditorium and Sightlines

The stage height, 3 feet 4 inches, is slightly lower than the minimum 3 feet 6 inches recommended.2 This height, combined with a minimal rake of auditorium, (11 feet in 26 rows of seats) creates poor visibility in the rear half of the house.3

Adding to this problem is the extreme depth of the auditorium. It is 87 feet from the last row of seats to the curtain line. Burris-Meyer and Cole prefer a 50 foot depth of house, and say 75 feet is maximum. They are considering professional theatres, with presumably better designed acoustics and actors with trained voices. "Details of actors' makeup and facial expression are not plainly recognizable at distances of more than 50 feet from the stage".4 Thus an audience member in the last row of the Kelowna Community Theatre could neither hear nor see the performance of even a good professional actor on the stage.

1Ham, p. 70.

2Corry, p. 3; Burris-Meyer and Cole, p. 70.

3Burris-Meyer and Cole, p. 70f.

4Ibid, p. 67.
Another visual problem is due to the height of the orchestra pit floor. By calculations based on the methods of Burris-Meyer and Cole, in this auditorium a conductor would cause an obstruction of audience view unless he was under 5 feet tall.¹

Seating is permanent. Chairs are constructed of metal with fabric upholstery. Rows are 34 inches apart. This is equal to the minimum distance recommended by Burris-Meyer and Cole.²

Front of House Services

Lobby space is much smaller than the amount required for an auditorium of such large capacity. By calculations from Burris-Meyer and Cole, this building should have a combined lobby, foyer, and lounge space of 8,630 square feet.³ The existing 1,040 square feet is supplemented in summer by an outdoor lawn space, but in winter freezing weather keeps patrons inside. There are no permanent concessions, ticket taking, or box office facilities, and all these activities must take place at temporary tables, which congest the small lobby space further.

The central location of this building is very good.⁴ The community centre complex of which it is a part provides

¹Ibid, p. 144.
³Ibid, p. 53.
⁴English interview.
sufficient parking nearby.

Actor Spaces

Burris-Meyer and Cole recommend 16 square feet of dressing room space per actor. At this rate, the Kelowna Community Theatre can accommodate a cast of 22. Toilets must be one to every 6 persons, and this limits comfortable cast size to 24.\(^1\) The division of dressing rooms by removable partitions seems to be a good idea. This compares favorably to many buildings surveyed which had only a single room for all actors to dress in.

Access to the stage is bad by Burris-Meyer and Cole's standards, as they would prefer a 5 foot wide access with no stairs.\(^2\) In this building actors must descend a stairway 3 feet wide.

There is a room beside the dressing rooms which can be used as a green room, but it is much smaller than the minimum 300 square feet required.\(^3\)

Production Services and Operation

The lack of scene shop is a distinct disadvantage, as is the lack of costumes and properties areas.

There is only one room that must be situated immediately adjacent to the stage and at stage level—the property-room, being as it is the only stage office which is

\(^1\)Burris-Meyer and Cole, p. 156f.

\(^2\)Ibid, p. 158.

\(^3\)Ibid, p. 158.
continually in use during the performance. Its minimum dimensions may be set at 12 ft. square. It must contain its own gas or electric point, running water and a sink, and ample shelf space.¹

Not one space surveyed had a properties room which fulfilled these specifications, and the Kelowna Community Theatre was no exception.

It would be impossible to put all the facilities not provided into the undesignated rooms available. This building seems very poorly equipped with production services.

Storage facilities in this building seem to have been designed with other than theatrical purposes in mind. A certain amount of storage is available, but it is restricted to the size of object that can pass through the access door, 7-by-7 feet. This is fine for chairs and tables, but would be a great hindrance to large flats or set pieces. Loading doors are also not large, only 7 feet wide. Burris-Meyer and Cole recommend 8-by-12 feet.² The stage is at ground level, and the loading area is not covered or paved, both of which are disadvantages.³

When operating a show, the stage manager stands stage right, and has visual control of one entrance and the flying system operator. The patch panel is beside him, which is handy in case of emergencies, but takes up wing space. The lighting

¹Bell, Marshall, and Southern, p. 87.
³Bell, Marshall, and Southern, p. 24; Burris-Meyer and Cole, p. 164; Pratt interview.
operator may be either in the booth at the rear of the house, or beside the stage manager, because the lighting console is portable. This is an advantage, because it adds versatility. The intercommunication system is useful, as are the monitor speakers in the dressing rooms and backstage. Access to the stage is good, because of the two doors in the ends of the upstage wall, and the double proscenium doors. Crossover space is available, either behind the set, behind the back wall, or through the upstairs dressing room area. Access to house or lobby must be achieved by leaving the building and walking around to the front, which is a disadvantage.¹

Aesthetics

This building is situated near a lake, and the view from the lobby is quite pleasant. The interior, although mostly cement block, is decorated in browns and oranges, and gives a "delightful atmosphere as well as a warm acoustics sense."² However the great size of the auditorium and proscenium do not allow for any sense of intimacy with the performers, and must be very intimidating to the amateur actor.

Summary

This auditorium is just too big for the average community theatre group. Inexperienced actors will have difficulty projecting in such a large auditorium. Technicians will have difficulty

¹Pratt interview.
²"Blueprint for a Community Theatre".
with such a large stage, and the cost of filling such a stage with scenery will probably be too high.

The proscenium is too wide by all practical standards, and is also poorly proportioned. The good depth of stage is counterbalanced by a deficiency of wing space and fly tower height, making scenery shifting difficult. The forestage is overly deep.

The stage is too low and the auditorium rake too gradual to provide good sightlines. This factor, combined with the depth of the house, means that visibility from the rear of the auditorium is poor. Otherwise the auditorium is fairly comfortable and pleasant, and the good acoustics compensate somewhat for its large size. The lobby is much less enjoyable. It is aesthetically pleasing but is much too small. The washrooms are the only front of house services which are adequate.

The 1964 addition to the building has provided adequate dressing rooms and some storage space, but other facilities are lacking. There is no scene shop, properties area, costumes area, or rehearsal space.

This building is not equipped to optimum standards. The lighting system is better than most available to community theatre groups, although barely adequate for such a large stage. The sound system is of good quality, but not adaptable to theatrical use. The flying system is inadequate.

This building is owned by the City of Kelowna, but the theatre group was strongly involved with the initial building project. Because of this history of close cooperation, general
business dealings are smooth. However, the group finds rental so high as to make it impossible to rent for more than the final rehearsals and the performances.

The main problem in the design of this building is one of original concept. In an attempt to construct a building which would hold as large an audience as possible, and yet cost as little as possible to build, they neglected most theatrical requirements. They did not realize that

"...an auditorium almost never succeeds in remaining only an auditorium. Sooner or later, somebody uses it for a theatre and its effectiveness as a theatre is the ultimate measure of its usefulness."

What they constructed was not a theatre, but an auditorium of restricted usefulness, especially where community theatre is concerned. If Theatre Kelowna had no other space to use for rehearsal and construction, their production process would be hindered. As it is, their performance conditions are still far from ideal.

FACT SHEET 4

Kelowna Community Theatre

Style

1. A large proscenium theatre

Stage

1. Proscenium; 48 feet wide, 18 feet 6 inches high
2. Forestage depth; 5 feet plus 10 foot orchestra cover when raised
3. Stage height; 3 feet 4 inches
4. Orchestra pit; 51 feet wide, 5 feet below stage level when lowered
5. Inner stage depth; 35 feet 6 inches
6. Wing space; 16 feet each side
7. Obstructions; pin rail 2 feet off stage right wall, patch panel on stage right proscenium wall
8. Grid height; 39 feet 6 inches
9. Flying system; 20 sets of steel cables, 4 winches, no counterweights, no grid, just pulleys bolted to beams.
10. Stage floor; softwood, screws allowed if necessary
11. Cyclorama; cloth
12. Basement; none
13. Proscenium doors; 2 on each side, masked by movable flat

Standard Masking

1. Full set of black legs and borders of corduroy
2. Front curtain of velour

Lighting

1. Board; 12 circuit, 2 preset Scrimmer, 8 non-dims, portable
FACT SHEET 4—Continued

2. Patch; on stage right proscenium wall
3. 1 F.O.H. pipe on a beam over the house, 18 circuits
4. 2 upstage pipes with 8 circuits on each
5. 1 proscenium pipe, 4 circuits
6. 2 Trouperette follow spots in lighting booth
7. Instruments; 48, mostly spotlights

Sound
1. Control; stage right
2. Equipment; 100 Watt amplifier, mixer, 4 microphones

Loading and Storage
1. Loading door; 11 feet high, 7 feet wide
2. Level with ground; parking lot, gravel
3. Storage room; backstage, 14-by-36 feet

Dressing Rooms
1. Upstairs, 2 private, one with removable partitions
2. Total 354 square feet
3. All with mirrors and counters, closet space
4. Green room; 15-by-15 feet
5. Access to stage; on both sides, down a stairway

Scene shop, Properties, Costumes
1. No specific space

Auditorium
1. Seats; 863, permanent, cloth upholstered
2. Rake; 11 feet 6 inches over 72 foot depth of house

Front of House Services

1. Lobby; 1,040 square feet
2. Cloak room, no ticket office
3. Materials; glass and wood, some cement block showing
4. View; yacht club, lake
5. Washrooms; large, 4 sinks, 4 toilets
6. Concessions, kitchen; none

Production Operation

1. Stage Manager; stage right
2. Intercommunications to stage left, orchestra pit, lighting booth
3. Monitor speakers; backstage, upstairs, and downstairs
4. Crossover; through storage area backstage or through dressing rooms upstairs
5. Access to house; through proscenium doors only
6. Access to lobby; outside building only
Illustration VI-1 Kelowna Community Theatre, stage area

1964 addition, 14' X 73', second floor

first floor

Storage, 14' X 36'

Stage, 36' X 80'

Proscenium, 48'

Orchestra

1" = 12'
Illustration VI-2 Kelowna Community Theatre, auditorium

Stage

Orchestra

Up

Auditorium, 72' x 96'

Storage Lighting Booth Coat Check

Washroom Washroom

Lobby, 1,040 Square Feet

1" = 16'
CHAPTER VII

Buildings Designed Exclusively for Theatrical Production

General Characteristics

Only two community theatre groups in this province are fortunate enough to work in a building which could be classified as a legitimate theatre. These groups are: 1) the Vancouver Little Theatre Association, which owns the York Theatre, and 2) the Prince George Theatre Workshop, which has recently finished construction of its own building.

As there are only two buildings in this category, and the Prince George building is not completely finished, it is difficult to generalize on physical characteristics. However, because of the intention of the design, it is possible to compare these buildings to theatres designed for non-amateur use, such as the Playhouse Theatre, in Vancouver, or the Frederic Wood Theatre, at the University of British Columbia. These buildings are typified by raked auditoriums, permanent seating, front of house facilities, a proscenium stage, flying system, and a certain amount of space for production services.

It may be noted that these characteristics are the same as those of the multi-purpose auditorium, (see Chapter VI above). The difference lies in that the designer of the multi-purpose auditorium concentrates on the audience space, while the theatre designer understands the necessity to provide sufficient
space and equipment for performance and related operations.

Both the York Theatre and the Prince George Theatre Workshop are controlled by the community theatre group. The York Theatre is owned outright by the Vancouver Little Theatre Association. The Prince George Theatre Workshop started to construct their own building, but ran out of funds before completion. The civic government finished the project and now owns the building, but it is operated by the theatre group. For both groups, extra income to cover upkeep of their building is obtained by renting to other groups and to non-theatrical functions. Because of this, such facilities as a movie screen and projection booth are a great asset.¹

The York Theatre, Vancouver

The York Theatre was built in 1912 as a burlesque and vaudeville house. Legend has it that a miner who made his fortune at Barkerville built it for his favorite burlesque queen to perform in. Unfortunately, his wife appeared on the scene and spoiled all his plans. Perhaps this is the reason the theatre was used for armament storage during World War I, and was in an unfinished state when the Vancouver Little Theatre obtained it in 1923. The original dirt floor of the auditorium was properly covered during World War II when the theatre group, for lack of male actors, stopped producing and rented the building for the showing of films. In the early 1950's

¹Richard Spenser telephone interview, September 21, 1974; Ellen Poole telephone interview, September 20, 1974.
the boiler room under the stage was made into dressing rooms and storage space, and staircases were built down to that area. At some time the proscenium has been narrowed by approximately 4 feet.\(^1\) A recent addition has provided an extended lobby, a greenroom, and a large storage room.

Stage and Stage Machinery

The proscenium width of the York Theatre is 24 feet. This is 2 feet smaller than Burris-Meyer and Cole recommend. Mr. Wilcox allows a 24 foot absolute minimum.\(^2\) The arch height is masked to 14 feet, which is just higher than Corry wishes.\(^3\) The 20 foot depth of the inner stage is again just sufficient, using the calculation of a 14 foot depth of set and a 6 foot space behind it.\(^4\) Corry would suggest a 24 foot minimum.\(^5\) Wing space totals the width of the proscenium exactly. This leaves no space for masking if wagons containing a set the full width of the stage are to be stored during performance. The patch panel stage right causes an obstruction. Forestage depth of 9 feet helps to overcome the problem caused by the shallow inner stage, but tends to alienate the audience. It is 18 feet from the first row of seats to the proscenium line.

\(^1\)Ibid.

\(^2\)Burris-Meyer and Cole, p. 71; Wilcox interview.

\(^3\)Corry, p. 2.

\(^4\)Burris-Meyer and Cole, p. 71; Wilcox interview.

\(^5\)Corry, p. 3.
The York Theatre was one of the few buildings surveyed which contained a full grid system. The 35 foot clear height under the grid is exactly $2\frac{1}{2}$ times the proscenium height, the absolute minimum efficient height.\(^1\) Rope flying systems are versatile, and in this building the ropes are supplemented by counterweights for the lighting pipes, which is helpful.\(^2\) The 16 foot fly galleries are exactly minimum, because a 14 foot proscenium needs 16 foot flats to mask properly.\(^3\)

The plaster upstage wall is the next best substitute for a plaster cyclorama, especially in this shallow stage, where there is no room for a backstage crossover.

The new lighting system now being installed is quite sufficient to light a simple show. However, we must remember that this is a fairly large theatre, in a large city, where audiences have other entertainment to choose from. Due to this competition production standards must be higher and this applies to lighting. The number of pipes available for hanging lights is sufficient, and most are equipped with power cables. The lighting bridge behind the proscenium is an asset which not many of the buildings surveyed have. The group owns 30 lighting instruments. This number is subject to the same qualifications as the other lighting equipment; it is only sufficient for

\(^1\)Corry, p. 3; Bell, Marshall, and Southern, p. 47.

\(^2\)Pratt interview.

\(^3\)Bell, Marshall, and Southern, p. 48.
minimum standards of lighting.¹

There is no sound equipment in this theatre. Equipment required is either borrowed or rented. Acoustics seem good, although I did not experience the sound quality with a full audience.

The stage floor is made of plywood with a groundcloth cover. This causes similar problems to those found in the Powerhouse Theatre (see p. 30 above).

Auditorium and Sightlines

Sightlines are not good in this theatre. The stage is 4 feet high, and the auditorium rake is only 3 feet over 14 rows. To give minimum acceptable sightlines, the stage should be 4 inches lower at least, and the rake should be over 5 feet.² Balcony rake is 9 inches per row, but this is required because of its elevation above the stage. The narrow proscenium, combined with the relatively wide house, produces sightlines which narrow the acting area upstage (see Illustration VII-1).

The aisles are aligned perpendicular to the proscenium opening. This is not recommended by Burris-Meyer and Cole, who prefer radial aisles.³

Seats in this theatre are comfortable, but are in rows only 33 inches apart, one inch less than that recommended for

¹Pratt interview.

²Bell, Marshall, and Southern, p. 26; Burris-Meyer and Cole, p. 69; Corry, p. 3.

³Burris-Meyer and Cole, p. 66.
marginal comfort. The total depth of the house, 46 feet, is under the 50 foot comfortable maximum allowed, but the 9 foot forestage makes the total over that amount. If an orchestra is used, the conductor will be a sight obstruction because of lack of depth of the orchestra area.

Front of House Services

The lobby of this theatre provides less than one square foot of floor space per seat. The new greenroom, if used as a lounge, would add 800 square feet to this. The double set of entrance doors helps establish a good flow of traffic, but congestion is probably experienced around the concession stand/coat check. This booth is directly between the entrance to the green room and the stairs to the balcony and washrooms.

The men's washroom is very small, only 60 square feet, and the number of urinals and toilets is far below the number recommended for a house this size. The women's washroom also has too few toilets, but a small powder room is added.

Parking is a great problem for this theatre, because there are no parking lots in this residential district.

Actor Space

Although it is not mentioned specifically in my sources,

1Ibid, p. 110.
2Ibid, p. 66f.
3Ibid, p. 53.
4Ham, p. 224.
I suspect that there is some disadvantage in having a single dressing room for all performers, male or female, star, or extra. The 427 square feet available in this theatre should accommodate 25 actors at 16 square feet per person. However there is only makeup space for 8, if 30 inches of table per person is allowed.\(^1\) The absence of costumes area suggests that the dressing room is used for this function also, restricting it further. The greenroom is good for a lounge, but as a waiting area for actors it is not useful, because there is no access provided between that area and the stage.

Production Services and Operation

There is no scene shop in this theatre, and sets must be built and stored on the stage. The properties room is not as close to the stage as Bell et al. would like, and it is not large enough. However, it does have bench space, a sink, and good lighting.\(^2\)

The loading door is in a good position, at one end of the upstage wall, but it is only half the size it should be.\(^3\) Loading and stage are at ground level. The newly built storage space is a good idea, but it is restricted by having only a 5 foot wide door for access.

The stage manager operates from stage right. He is in a

\(^2\) Bell, Marshall, and Southern, p. 87; Darcus interview.

\(^3\) Burris-Meyer and Cole, p. 164.
good position, close to the patch panel, one stage entrance, and the loading door.\(^1\) Lack of intercommunications must be a serious problem in this theatre, especially with cueing of operators on the fly galleries.

The only crossover space is through the dressing rooms, necessitating the use of two narrow flights of stairs, which is a hindrance. Burris-Meyer and Cole would prefer a 5 foot wide passage from dressing rooms to stage.\(^2\)

One area in which this theatre is well supplied is access to the acting area from backstage. There are 2 proscenium doors on each side, one at audience floor level, and one just above stage level.

Aesthetics

The original design of this building provides very little decoration, exterior or interior, excepting a small amount of relief work on the proscenium. The Vancouver Little Theatre Association has done some recent decorative work, and the lobby is now quite pleasant, although some of the new concrete block structure still shows. A few theatrical posters and pictures help the atmosphere.

Summary

The York Theatre compares favourably with most spaces used by community theatre groups, the reason being that it was

\(^1\) Pratt interview.

\(^2\) Burris-Meyer and Cole, p. 158.
originally designed as a theatre. Its main problem is that many of its dimensions are minimal.

The proscenium dimensions are adequate, but the depth of stage is the absolute minimum. Wing space is almost sufficient for good scenery shifting. The fly tower is exactly the minimum allowable height.

Sightlines are not good, because a high stage has been constructed to compensate for a shallow auditorium rake. The balcony complicates the sightline problem. The main floor rake cannot be increased, as the balcony would then interfere with the sightline from the rear of the house to the proscenium top. However, the balcony is an advantage.

"The most important advantage of a multi-tier auditorium is that the number of seats can be increased without increasing unduly their distance from the stage."

Seats in this theatre are comfortable, but the rows are too close together to provide enough leg room.

Front of house services are not sufficient, due to lack of space. The lobby is too small, the washrooms are minute, and the audience traffic pattern is poor.

Production services suffer greatly from lack of space. The new addition of storage space is of some help, but a scene shop and a separate costume room would be a great asset.

This theatre lacks equipment. The new lighting system will help this situation, but the lack of sound equipment and intercommunication system is not good.

1 Ham, p. 26.
I think the main point to be made about the Vancouver Little Theatre Association is that, although fluctuating in size and enthusiasm, this group has survived for fifty-three years. The ownership of a theatre in which to work has definitely contributed to this longevity.¹

¹Mrs. C. Roberts interview, July 28, 1974.
FACT SHEET 5

The York Theatre

Style

1. Proscenium

Stage

1. Proscenium width; 24 feet, height; 16 feet permanently masked to 14 feet
2. Forestage depth; 9 feet at centre, 6 feet at sides
3. Stage height; 4 feet
4. Inner stage depth; 20 feet
5. Wing space; 12 feet each side
6. Grid height; 35 feet
7. Flying system; 20 rope sets, 3 counterweight sets
8. Back wall; plaster
9. Projection screen; hung downstage
10. Floor; plywood with cloth cover
11. Obstructions in wings; patch panel, 4 feet square downstage right

Standard Masking

1. House curtain; red velour
2. Wings and borders; black velour
3. Traveller; black velour

Lighting

1. Board; a new 12 circuit board being installed, 6 circuit auxilliary
2. F.O.H. area; one pipe with power cables, 2 pipes on walls with no cables
FACT SHEET 5—Continued

3. Upstage; 3 light pipes with power cables, 1 permanent lighting bridge
4. Control; in booth at rear of house above balcony
5. Follow spot; one position in booth
6. Instruments; 8 floodlights, 8 Fresnel spotlights, 14 other spotlights. Mostly 500 Watt
7. House lights; dimmable

Sound

1. No equipment

Loading and Storage

1. Loading; 7 foot high-by-6 foot wide door in stage right rear wall
2. Door at street level, outside not paved or covered
3. Storage; 30-by-20 foot room adjacent to stage
4. Properties and Lighting storage; downstairs

Dressing Rooms

1. One large room; 24 feet of mirror and table space, closet space
2. Toilets; 2
3. Sinks; one in kitchen
4. Greenroom/lounge under construction adjacent to lobby

Scene shop

1. None

Properties

1. Space; 8-by-6 foot room, sink and shelf space, electrical outlets
FACT SHEET 5--Continued

Costumes

1. No space specifically provided

House

1. 451 seats, 14 rows, rows on 33 inch centres
2. Rake; 3 feet total
3. Balcony rake; 9 inches per row, 10 rows
4. Seats; wood, upholstered
5. Balcony; starts 16 feet from edge of stage

Front of House services

1. Lobby; 300 square feet
2. Small coat check facility under stairs to balcony
3. Concessions; with sink and Coke machine, but small
4. Ticket office; by door, 4-by-6 feet
5. Washrooms; upstairs, men's; 5-by-12 feet, one toilet, 2 urinals; women's; 5-by-8 feet, 2 toilets, powder room; 9-by-8 feet

Performance Operation

1. Stage manager; stage right
2. Intercommunication to basement only
3. Monitor speakers; none
4. Crossover; through basement, or behind traveller at rear
5. Access to lobby; none inside building
6. Access to acting area; 2 proscenium doors 3 feet above stage level, 2 proscenium doors at auditorium floor level, 2 doors upstage on either side
Illustration VII-1 York Theatre

Stage, 48' X 20'
Proscenium, 24'

Auditorium, 46' X 48'

Balcony Over

Storage

Greenroom

Coat check

Concession

Tickets

Lobby
350 Square Feet

1" = 10'

Illustration VII-2 York Theatre, Basement of stage.

Illustration VII-3 York Theatre, Balcony and dressing rooms.
CHAPTER VIII

Conclusions

Utilization of Space

An interesting fact which became clear from the information gathered in this survey is that the mode of production of virtually all community theatre groups in British Columbia is performance oriented in the proscenium style. This restrictive practice will undoubtedly have an effect on any conclusions reached as to the efficiency of the spaces used by these groups.

From my survey of the representative sample of 16 community theatre spaces and from other research, one fact becomes clear. A high percentage of the spaces used by community theatre groups in this province are not satisfactory. This opinion is generally held by those working in community theatre and is substantiated by my research.

Existing Facilities

Found spaces are used by all groups, for such activities as properties and costume construction and early rehearsals. However, 7 out of the 55 groups from which I have information, or about 15%, use found space exclusively, including rehearsal, construction, and performance.¹ Most groups consider found

¹Although there are over 100 theatre groups, the letter from Mrs. English to Eric Broom only deals with 55.
space disadvantageous as a performance space. These buildings usually have little in the way of theatrical equipment or auxiliary space, and are often unsuitable in size, shape, or for aesthetic reasons. However, these problems can be overcome by careful planning of the mode of production to suit the space. This can, in fact, become an advantage to the imaginative theatre group. For example, a children's theatre group intentionally molding their production to be performed in school classrooms will account for the theatrical inadequacies of those rooms during their rehearsal time. The spaces used will then not affect the quality of production.

As found spaces are not usually owned by the theatre group, scheduling is often a problem. The better spaces present the worst scheduling problems, as they are in demand by other community groups. Scheduling which causes a frequent change of performance location causes many problems, one of the worst being a publicity disadvantage. It is better, from the point of view of attracting an audience, to hold every performance in the same place.¹

Because of its inclusion in so many school and recreational facilities, the gymnasium box is the space most available to theatre groups in the province. It is used by 20 groups, approximately 40% of the total of 55 from which I have information. The fact that it resembles a proscenium theatre invites attempts at proscenium style productions. Actually, used as

¹English interview.
a proscenium theatre, the poor acoustics, flat auditorium floor, high stage, and lack of production services, (although these are usually better than those provided by found space) pose problems which are almost insurmountable to the amateur group.

The multi-purpose auditorium classification contains a variety of buildings. These buildings are almost all better suited to performance than the gymnasium boxes. This is mainly because they provide more comfortable audience space and better sightlines. Although there are some exceptions, buildings of this type have certain failings in common. The auditorium area, although comfortable, is too large to suit the needs of the community theatre group. Stage facilities are less than adequate for any but the most simple productions, due to lack of wing space, flying equipment, and production services. Because these buildings are community owned, scheduling is difficult. Of the groups surveyed, 5 used this type of building as performance space. This is about 10% of the total.

The only buildings which come reasonably close to providing an efficient space for theatrical productions are those designed specifically as theatres, or those converted to theatres from other spaces.

The significant advantage in the conversion of an existing building to a theatre by the community theatre group is that the ultimate users of the building are in control of the design. This will result in a building more amenable to theatrical production than the facilities used by the majority of community theatre groups. The reason the theatre groups
are able to finance these operations completely is that, due to the existence of a basic structure, costs are considerably lower than in the building of a new structure. Even so, only the more affluent groups can afford this process, and even these are hampered by lack of funds. They will often encounter a problem in finding a building suitable for conversion. Often remodeling must be done in stages and by amateur labour. Because of these problems, some of the restrictions of the original structure may remain. Only 5 full conversions exist, meaning that 10% or less of the groups surveyed use this type of space.

The theatre which was built with no other functions in mind is the best space, but only 2 of these are used by community theatre groups.\(^1\) An interesting point is that one of these buildings is over 60 years old. The other was started by the community theatre group, but they were unable to finance its completion. This means that no community theatre group in the province has succeeded in constructing its own theatre in the last half century. Even the theatres that exist are less than ideal, due to lack of funds and to a lack of theatrical expertise on the part of the builders. Unfortunately, the shortcuts which often must be taken prove costly to rectify at a later date. Even the best theatre spaces available to community theatre groups have insufficient wing space, fly space, and production services.

\(^1\) English, to Eric Broom.
Building Design

While the reason often given for the lack of good theatre spaces is a lack of funds, inadequacies in planning and design are contributing factors. A building which is properly designed can often be constructed for the same price as a poorly designed structure, and the better design provides a more efficient space. For example, the Powerhouse Theatre is a much better space for community theatre than the Kelowna Community Theatre. The total cost of the Powerhouse Theatre was less than half that of the Kelowna building.¹ This is not to say that the Kelowna Community Theatre is not a useful building—only that it is not a good space for community theatre groups.

Naturally there are many problems involved in the design of such a complex structure as a theatre. These problems are compounded in the case of a community-built project in which most of the people involved will be participating in such a project for the first time.

There are probably few architects in this province who are experienced theatre designers. Because a local architect is usually chosen for a community project of this sort, it is even less likely that he will have designed many theatres before. Because of his inexperience, the average architect is unable to provide the required guidance for his client. In such areas as ventilation, insulation, and wiring, the architect has little difficulty. In these requirements, theatres

¹Huggins interview; "Blueprint for a Community Theatre".
are similar to other buildings. It is in the specifically theatrical areas, those dealt with in this study, that the architect's inexperience proves a disadvantage.

The client, who is often a representative of the municipal or provincial government, is likewise not an expert on theatre design. The average town councilor or school trustee is limited in his theatrical knowledge to the experience of being a member of the audience. In his conception, a theatre is a large seating area with a stage for performers and washrooms and a lobby outside for the audience. His first problem, when he tries to design what he fully intends to be a theatre, is one of priorities. First, he wants a building which will seat a certain number of people. Any extra space which can be afforded becomes a stage. He has no concept of backstage requirements, so he neglects them.

A second conceptual mistake is what Burris-Meyer and Cole term the "psychology of minima".¹ This is a tendency to design the smallest dimensions allowable, and buy for the lowest price available, to the exclusion of almost all other considerations. Lack of experience in theatrical work makes the designer blind to the problems he is creating.

Another misconception is the belief that "theatre" means "proscenium theatre". This is not necessarily a universal truth, but community building designers in this province seem to think it is. Every building I surveyed had some kind of proscenium,

except for some found spaces, which were not designed as theatres.

A fourth problem is the desire to design a building which will fulfill as many community recreational needs as possible. A building designed with a multitude of uses, as well as theatre, in mind will probably not be a good theatre, and will not function well for many of the other purposes for which it was intended. The Cypress Room is a good example of this. It is a very poor proscenium stage, and does not function well for meetings and presentations, because of the poor acoustics and the uncomfortable temporary seating. If the two gymnasiums in this complex had been designed without stages, they would have been less expensive to build. If the money thus saved had been used to build a small theatre, the complex would be very well equipped, both for theatre and for its other functions.

Thus we see that from the outset the design of buildings conceived in such a manner is not adequate. The result is usually a building with inadequacies of space and equipment, ill suited to the needs of community theatre groups.

Sometimes, because of their superior theatrical experience, community theatre personnel are invited to assist in the design process. The experience of these people is often limited to community theatre, or to observing professional proscenium theatre. For them, the same problems arise as for civic leaders. Even if the community theatre representative knows what is required for a theatre, his lack of knowledge of the priorities defeats him. He does not know the point at which it is necessary to stand fast, and demand that a certain area be made no smaller.
He does not know where it is possible to cut corners and save money without seriously damaging the efficiency of the building.

If the theatre group is active and fortunate enough to be able to finance the building process, and thus be in complete control of the designing, they have a great advantage. This is borne out by the fact that some of the better spaces used are conversions designed and carried out by the groups themselves, while very few government-constructed buildings were found to be good theatres. However, even in this case a lack of theatrical expertise can cause a waste of funds and effort.

It is interesting to note that the buildings which are theatrical in design (e.g., good conversions, theatres) tend to be the ones which make the most revenue from non-theatrical uses. Superior administration is, of course, partially responsible for this, but building design is important. The Powerhouse Theatre in Vernon is a good example of such a building, and the Centennial Theatre in North Vancouver is another. Although I have classified the Centennial Theatre as a multipurpose auditorium, and it was designed to house many functions, its original design concept was influenced strongly by theatrical needs. The result is that almost every community theatre group in the Vancouver area wants to use the Centennial Theatre. Its acoustics are good enough that CBC Radio often rents the space for use as a musical recording studio.

A building well designed as a theatre will be efficient, allowing the theatre group to spend more time and effort on improving the quality of production. Better productions attract
larger audiences, and the increased revenue obtained can be turned back into better equipment and better productions. In this way, a good theatre builds both the community theatre group and community theatre audience, and is a great asset to the recreational facilities of any community.

The conclusion I draw from this is, that if a building is required for many performance-type uses, it is best to design with theatrical production as a top priority. The resulting building, if it satisfies theatrical needs, will satisfy most of the other functions as well.

Recommendations

Interviews with community theatre personnel indicate that improvement of their theatre facilities is high on their list of priorities. To date there is no central source of expert information that would assist these groups. The Community Programmes Branch Library has very little information on the technical aspects of theatre. Most of the source material available through this library predates 1950. It would be of great benefit to theatre groups if the provincial government were to establish a central information source which might provide guidelines in the various areas of technical theatre, including: 1) the design and construction of new theatres, 2) the adaptation or conversion of existing space, and 3) alternative ways of utilizing inefficient spaces such as the gymnasium box. In addition, community theatre groups interested in improving their facilities would find it helpful to investigate other outside sources of information. Other community theatres have been built, and their builders
and users will have opinions as to the problems incurred. Professional theatre workers and literature on theatre architecture are both good sources of information on needs and priorities. It is not enough to look at another building and copy its design features; it is also necessary to obtain information on the shortcomings of the building. This information can come from personnel who have worked in the building. For example, the Vernon Little Theatre Association mounts ambitious productions in the Powerhouse Theatre, which has only 10 feet of wing space. To assume from this that 10 feet is sufficient wing space for a theatre would be a mistake.

Even those groups unable to finance more adequate facilities at this time could upgrade the quality of their productions through more imaginative use of their present facilities. Developmental drama, mime, and productions of experimental works can be good recreational activities, and it is often possible to stage them in spaces completely unsuited to proscenium theatre. Even a simple break from the proscenium style could be helpful. For example, a group working in a gymnasium box might be better off to ignore the stage, and use only the flat floor area. They could set up a thrust stage, or theatre in the round, and solve many of the visual, acoustical, and financial problems inherent in the gymnasium box building. I have seen this procedure work successfully for professional touring shows, and especially for children's theatre. It would not even be necessary to change the type of drama chosen. To the best of our present knowledge, Shakespeare did not write for the proscenium stage.
To accomplish a proscenium style performance, especially in a building which is not a good proscenium theatre, requires an extra expense of time and money. For a community theatre group, which has neither time nor money to waste, this can have a detrimental effect on the quality of performance. The conclusion I draw from this is, that although the spaces available are below standard, better productions could be achieved by a versatility of production style. This is another area in which the provincial government could set up a central information source which could be used to good advantage.

This study clearly shows that the spaces used by community theatre groups in this province are not sufficient, but that some of the problems which arise because of this could be solved by a better command of theatrical technical knowledge, combined with a versatility of production style. It can only be hoped that builders of future community theatre spaces will follow some of the recommendations made in this paper, and avoid some of the mistakes which have been revealed in existing buildings. This will do much to improve the spaces available to community theatre groups in the future.
BRITISH COLUMBIA COMMUNITY THEATRE QUESTIONNAIRE

Please fill in (in pencil) as much as you can.
The consultant will help you complete information and add additional data on first visit to your area.

TECHNICAL INFORMATION

Theatre Company or Group's Work Area. PLEASE answer Yes or No.

<table>
<thead>
<tr>
<th>Your own quarters?</th>
<th>Rented working area?</th>
<th>Rehearsal Area?</th>
<th>Meeting room?</th>
<th>Hall?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

School auditorium? School classroom? College? City or town building? Members house? Others:

Availalibility (specify)

STAGE AREA

<table>
<thead>
<tr>
<th>Size</th>
<th>Elevated</th>
<th>Proscenium</th>
<th>Apron</th>
<th>Thrush</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flexible Other

Proscenium Curtain | Wing Space | Cyclorama | Fly Area | Borders | Floor Cloth
Workshop Area Storage Costume Dept.

SOUND

<table>
<thead>
<tr>
<th>Turntable</th>
<th>Speakers</th>
<th>Tape Deck</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIGHTING

<table>
<thead>
<tr>
<th>Control Panel</th>
<th>Dimmers</th>
<th>No. of Circuits</th>
<th>No. of Outlets</th>
<th>No. of Lights</th>
<th>Floods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Battens | Spots(size) Tresnels | Dressing Room(s) | Other Areas |
Use of B.C.D.A. Lighting Equipment How Often
Appendix B. Architectural Criteria for a Community Theatre

These criteria were established from information gathered from three sources: 1) literature on theatre architecture, 2) professional theatre personnel, and 3) community theatre personnel. This information was used as a basis for the analysis of the theatre spaces surveyed.

Style

1. A 200-seat proscenium style theatre would best serve most groups

Stage

1. Proscenium; maximum width; 32 feet, maximum height; 16 feet, minimum width; 24 feet, minimum height 10 feet. Proportions should be pleasing to the eye

2. Stage height; most sources agree to 3 feet 6 inches

3. Floor material; edge grain softwood is probably best. Plywood with canvas groundcloth is a cheaper alternative

4. Forestage depth; maximum; 4 feet, no minimum

5. Inner stage depth; minimum; 20 feet, no maximum

6. Wing space; optimum total equal to proscenium width plus a few feet each side for masking, no maximum

7. Grid height; minimum; 2½ times proscenium height, optimum; 3 times proscenium height

8. Flying system; minimum; 20 rope sets. Counterweights are desirable

9. Note that scenery shifting and storage spaces are interdependent (e.g., an extra depth of stage would allow for less wing space.)

10. Cyclorama; a permanent plaster cyclorama with a crossover behind it is good, but cloth is more versatile, and less expensive.

11. Projection screen is an advantage, should be flown downstage

12. It is desirable to have no obstructions in the wings
Standard Masking

1. Borders, wings, and a front curtain are desirable
2. Material; velour is good, corduroy next best

Lighting

1. Lighting needs are variable, depending on uses of the building and finances of the builder. Such factors as electrical service to the building, the installment of permanent or temporary wiring for the circuits, and city bylaws must all be considered. A lighting control board such as the Strand JTM, which has 20 dimmers and a two scene preset, seems adequate for community theatre lighting.
2. Patch panel; desirable, but not necessary. Should be easily accessible in case of emergencies
3. F.O.H. pipes; 2 desirable, with power lines
4. Upstage light pipes; 3 desirable, flown, with power lines. A permanent lighting bridge just upstage of the proscenium is an advantage
5. Follow spot positions; 2 desirable
6. House lights; dimmable
7. Instruments; minimum of 15 for a simple production in found space. For a proscenium theatre, minimum of 30, more would be desirable. An assortment of Fresnel spotlights, elipsoidal reflector spotlights, and floodlights

Sound

1. A tape recorder connected to a loudspeaker system is a workable minimum. A tape deck, turntable, and a 4 channel mixing board would be good

Loading and Storage

1. Optimum loading is into the scene shop through an 8-by-12 foot door, and from the scene shop to the stage by the same size door, or larger. Minimum size of loading doors is 6-by-7 feet
2. Flat storage should be close to the stage area, but not obstructing the wing space
3. Properties storage; should be lockable. Minimum of 5-by-7 foot door for access
4. As much storage space as can be afforded should be provided

5. Stage and shop floor should be 4 feet above ground level

6. Loading area should be paved and covered

Scene Shop

1. Minimum; 500 square feet, no maximum

2. Bench space should be provided

3. A large number of electrical outlets should be spread evenly around the room

Properties

1. Minimum; 100 square feet, no maximum

2. At least one large table, shelf space, some locking cupboards

3. Kitchen facilities desirable; stove, refrigerator

4. Sink necessary

5. Flammables storage and disposal desirable

6. Good ventilation necessary

Costumes Area

1. Minimum; 400 square feet, no maximum

2. Bright lighting, preferably incandescent

3. Two large tables desirable

4. A large number of electrical outlets desirable

Dressing Rooms

1. At least 2. Optimum; 16 square feet for each actor—total approximately 320 square feet

2. Dressing tables with mirrors, optimum; 30 inches for each actor—total 40 feet
3. Washrooms; at least 2, with toilets, mirrors, and basins. Two showers desirable

4. Dressings rooms should be near the stage, at stage level

Greenroom, Rehearsal Facilities

1. Greenroom; between dressing rooms and stage, 300 square feet desirable

2. Greenroom can be a rehearsal space

Auditorium

1. Approximately 200 seats

2. Rows; should be a minimum of 34 inches apart

3. Seats; should be upholstered, permanently fixed to the floor, minimum; 20 inches wide

4. Aisles; should be at the sides of the auditorium, minimum; 4 feet wide

5. Minimum rake for the house should be 5 inches per row of seating

Front of House Services

1. Optimum lobby, foyer, and lounge space; 1600 square feet

2. Concession stand, coat check, ticket office; desirable

3. Patron services should be spread around lobby area to provide smooth traffic flow

4. Washrooms; 2, with a minimum of one toilet, 2 urinals in the men's, 2 toilets in the women's. One sink per toilet should be provided. Check city bylaws for regulations

Performance Operation

1. A stage manager's position should be provided, on the side of the stage which controls as many entrances to the stage area as possible. Work lights should be controlled from here as well as from the lighting booth
2. Crossovers; at least one, preferably outside the stage area, but behind the cyclorama if necessary

3. Sheltered access to the lobby and the house from backstage is desirable

4. Sound and light control booth should be provided, preferably at the rear of the house, with a good view of the stage

5. At least 2 access doors to the stage area are necessary, with a clear path from the dressing rooms, optimum width; 5 feet, no stairs

6. Intercommunications between stage manager and lighting necessary, between stage manager and dressing rooms desirable

7. Monitor speakers; in greenroom, dressing rooms, and lobby desirable
Glossary

AUDITORIUM: Area where audience sits. Also House. Not to be confused with multi-purpose auditorium, Chapter VI.

BACKSTAGE: Behind the proscenium, outside the acting area.

BORDERS: Material used to mask the upper part of the stage from the view of the audience.

COUNTERWEIGHT: Permanent system to allow weight to be added to the offstage end of the flying ropes to offset the weight of the scenery.

CURTAIN LINE: Line marking position of curtain when closed. Also Proscenium Line.

CYCLORAMA: A backdrop, either permanent or temporary, used to simulate the sky.

DEAD HUNG: Tied off to grid, not able to be raised or lowered.

DEPTH: Horizontal distance in the upstage to downstage direction.

DIMMER: Device which controls the amount of power reaching a lighting instrument.

END STAGING: Staging in which there is no proscenium, so the walls of the house continue into the walls of the set.

FLAT: A unit of scenery of two dimensional nature, consisting of a frame of wood or metal covered by a flat material such as cloth.

FLY GALLERY: A platform above the stage floor level used for operation of the flying system.

FLYING SYSTEM: Equipment used to raise scenery from above. Usually consists of ropes or wires running over pulleys, sometimes with counterweights.

F.O.H. PIPES: Lighting pipes hung in front of the proscenium. Numbered starting at the proscenium, moving towards the rear of the house, e.g., #1 F.O.H.

FORESTAGE: The part of the stage in front of the curtain line. Also Apron.

FOYER: Area where audience member buys ticket, waits for friends. Separated from lobby by door where tickets are taken.

FRONT OF HOUSE SERVICES: Facilities which provide for the comfort and service of the audience.
GREENROOM (GREEN ROOM): Actors' lounge, for waiting between cues or receiving guests.

GRID: Structural framework near the top of the stage house for supporting the flying system.

HOUSE: see Auditorium.

INNER STAGE: That part of the stage area behind the curtain line.

INTERCOMMUNICATION SYSTEM: Telephone allowing communication between production technicians and staff and stage manager. also Intercom.

LEGS: Flats or drapes hung parallel to the curtain line to mask the wing space from audience.

LIGHTING BOOTH: Room for operator of lighting control board.

LIGHTING CONTROL BOARD: A panel with individual controls for each dimmer in the lighting system.

LIGHTING INSTRUMENTS: Lamps used to illuminate the stage.

LIGHTING SYSTEM: Electrical system allowing illumination and control of illumination of the theatre, especially the stage.

LIGHT PIPE: A metal bar, usually horizontal, used to mount lighting instruments.

LIGHT TREE: Vertical metal bar with a floor stand, used to mount lighting instruments.

LOBBY: Area where patron waits to enter auditorium after giving his ticket to the ticket taker.

LOUNGE: Area where patron relaxes during intermission. May have bar facilities. In a small theatre, this is often the same space as the lobby.

MARQUEE: Covered area outside theatre door.

MONITOR SPEAKERS: Loudspeakers connected to a stage pickup microphone to allow sound from the stage to reach back-stage areas.

OFFSTAGE: Away from the acting area.

ONSTAGE: Towards the acting area.

PATCH PANEL: A panel which allows interconnecting of outlets and dimmers of lighting system.
PRODUCTION SERVICES: Spaces and equipment which are used for the construction and preparation of the theatrical show.

PROPERTIES: Stage furniture, set dressing, and all articles used by actors.

PROSCENIUM: The frame separating stage from auditorium.

REVOLVE: A stage floor constructed like a turntable to allow the quick substitution of one set for another.

ROPE SET: One unit of a flying system which uses ropes for lifting scenery. Usually consists of at least two ropes with the necessary pulleys.

RUN: The number of days on which a play is performed.

SEASON: The annual period when the theatre is most active.

SOUND BOOTH: Room occupied by the operator of the sound system.

SOUND SYSTEM: System for amplifying sounds made on stage, either actors' voices or sound effects or both.

STAGE DIRECTIONS:
Downstage; towards the audience.
Stage Left, Right; towards the left and right, respectively, of an actor facing the audience.
Upstage; away from the audience.

THRUST STAGE: A stage with a very deep forestage, which extends into the audience so they view it from three sides.

TRUCK DECK: The part of a truck upon which the load rests, or the floor of the box of a van.

WIDTH: Horizontal measurement parallel to the curtain line.

WING SPACE: Stage floor areas offstage of the acting area to the left and right. Also Wings.
List of Architectural Surveys

A. By the Author

The Arbutus Room, West Vancouver Community Centre.
The Beaconsfield Elementary School Gymnasium, Vancouver.
The Centennial Theatre, North Vancouver.
The Cypress Room, West Vancouver Community Centre.
The Gladstone Secondary School Auditorium, Vancouver.
The James Cowan Theatre, Burnaby.
The Kelowna Community Theatre, Kelowna.
The Lakes District Secondary School Gymnasium, Burns Lake.
The Langham Court Theatre, Victoria.
The Old St. Stephen's Church, West Vancouver.
The Powerhouse Theatre, Vernon.
The Vagabond Theatre, New Westminster.
The Vernon Community Centre, Vernon.
The Williams Lake Secondary School Gymnasium, Williams Lake.
The Williams Lake Community Art Room, Williams Lake.
The York Theatre, Vancouver.

B. From Other Information

The Prince George Community Theatre, Prince George. from Richard Spenser of Prince George. Telephone interview.
List of Literary Sources

Auditorium and Stage. Community Drama (Dept. of Education) Victoria.

"Blueprint for a Community Theatre". Performing Arts in Canada. Vol. 6, No. 1, 28f.

"Theatre Survey Form". Presentation Committee of the U.S. Institute for Theatre Technology. (photostat)

List of Interviews

Ferstay, Ralph. Centre Director, West Vancouver Community Centre. by telephone. August 28, 1974.

Poole, Ellen. of the Vancouver Little Theatre Association.

Pratt, Ian. Associate Technical Director, Frederic Wood Theatre.

Ray, Bruce. Recreational Superintendent, North Vancouver

Roberts, Mrs. C. of the Vancouver Little Theatre Association.

Silver, Phil. Scene Designer, Citadel Theatre of Edmonton.

Scott, Miss Mary Jane. President, Victoria Theatre Guild.

Tilden Truck Rentals. unidentified employee. by telephone.
September 2, 1974.

Talman, Mrs. Susan. Secretary, Saltspring Island Players.

Van Bassen, Mrs. Secretary to Mr. Simpson, Director of School
Planning Facilities, Department of Education. by telephone.
August 29, 1974.

Vaughan, Mark. Past President of Theatre Kelowna. Kelowna.
August 16, 1974.

University of British Columbia. August 20, 1974.