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ABSTRACT 

Insulin resistance, clinically defined as a defect of insulin action, is closely linked to an 

increased incidence of cardiovascular disease. Although metabolic abnormalities have been 

known to initiate heart failure, the relationship between insulin resistance and cardiac 

metabolism is currently unclear. In my initial study, acute effects of dexamethasone (DEX) 

on rat cardiac metabolism were examined. A single dose of D E X leads to whole-body 

insulin resistance. Moreover, in hearts from these animals, glucose oxidation is 

compromised due to augmentation of pyruvate dehydrogenase kinase (PDK4), whereas 

amplification of LPL increases lipoprotein triglyceride clearance, likely providing the heart 

with excessive F A that are then stored as intracellular triglyceride. In the heart, AMP-

activated protein kinase (AMPK) is an important regulator of both lipid and carbohydrate 

metabolism. Once stimulated, A M P K inhibits acetyl-CoA carboxylase (ACC), which 

catalyzes the conversion of acetyl-CoA to malonyl-CoA. This decreases malonyl-CoA, 

minimizes its inhibition of FA oxidation, and FA utilization increases. Cardiac palmitate 

oxidation in DEX treated hearts was. higher compared to control, and was coupled to 

increased phosphorylation of ACC280- Measurement of polyunsaturated F As demonstrated a 

drop in linoleic and gamma linolenic acid, with an increase in arachidonic acid after acute 

DEX injection. Given the detrimental effects of compromised glucose utilization, high FA 

oxidation, T G storage, and arachidonic acid accumulation, our data suggests that these 

effects of D E X on cardiac metabolism could explain the increased cardiovascular risk 

associated with chronic glucocorticoid therapy. Although a small portion of the patient 

population exhibits glucocorticoid-induced insulin resistance, the primary cause of this 
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syndrome is excessive circulating FA, usually associated with obesity. The concluding 

study in my PhD project was to explore the effects of acute high F A induced insulin 

resistance on LPL at the coronary lumen. Acute IL infusion augments plasma LPL, and this 

was associated with reduced LPL activity at the coronary lumen, but increased enzyme 

within endothelial cells and subendothelial space. It is likely that these effects are a 

consequence of F A releasing LPL from apical endothelial HSPG, in addition to augmenting 

endothelial heparanase, which facilitates myocyte HSPG cleavage and transfer of LPL 

towards the coronary lumen. These data suggest that the control of cardiac LPL is complex, 

and insulin resistance, in the presence or absence of high F A have differential effect on the 

enzyme. 
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Chapter 1: Introduction 

1. INTRODUCTION 

1.1 INSULIN R E S I S T A N C E 

1.1.1 Understanding insulin resistance 

In the body, blood glucose levels are mainly determined through the balance between 

insulin-dependent processes like hepatic glucose production and muscle glucose utilization. 

Insulin resistance is a condition in which normal insulin secretion from the pancreas is 

insufficient to induce a biological response in these peripheral tissues. Once this disorder 

occurs, excess insulin is secreted from pancreas in order to maintain blood glucose. Insulin 

resistance is associated with a large number of risk factors that also contribute towards the 

incidence of Type 2 diabetes (1). These include a family history of diabetes or gestational 

diabetes (2), sedentary lifestyle (3), high circulating fatty acid (4), reduced physical activity, 

aging (5), tobacco smoking (6), or drugs such as steroids (7). In general, insulin resistance 

does not exist as a single symptom but is usually coupled to other metabolic abnormalities 

like dyslipidimia and obesity. This cluster of metabolic abnormalities has been defined as 

the "metabolic syndrome" (8), which is widely prevalent, and estimated to afflict 

approximately 150 million people worldwide (9). Although components of the metabolic 

syndrome strongly interact with each other, not all of them appear concurrently in the same 

individual. In addition, in majority of people with the metabolic syndrome, insulin 

resistance remains the dominant symptom. Clinically, unlike.diabetes, insulin resistance is 

not always easily diagnosed. In conditions like obesity and hypertriglyceridemia, high 

insulin secretion rates make the identification of insulin resistance straightforward (10). 

However, in patients without obesity or obvious hyperinsulinemia, insulin resistance is 
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Chapter 1: Introduction 

difficult to recognize. The clinical "gold standard" for the diagnosis of insulin resistance is 

the euglycemic hyperinsulinemic clamp, but this technique is complicated, and expensive to 

do as a regular test. 

1.1.2 Cellular mechanism of insulin resistance 

Impaired insulin signaling at target tissues like skeletal muscle, liver and adipose tissUe has 

been viewed as the major cellular mechanism for insulin resistance. In normal physiology, 

insulin by binding to its tyrosine kinase receptor, initiates a cascade of intracellular signal 

pathways, and eventually facilitates glucose transport, glycogen and lipid synthesis, and 

gene expression (11). Any abnormality in the insulin receptor or its signaling cascade would 

lead to insulin resistance. Although insulin resistance could occur as a consequence of 

modifications in the insulin receptor due to genetics (Rabson-Mendenhall syndrome) (12-

14), aging (15) and obesity (16), the majority of insulin resistance is still believed to be 

associated with post-receptor mechanisms. Currently, many investigations have focused on 

examining the insulin receptor substrate (IRS) family of proteins. Following insulin binding 

to its receptors, IRS as an adapter protein is tyrosine (Tyr) phosphorylated, and plays a key 

role in signal transmission (11) (Fig. 1-1). Serine (Ser) phosphorylation of IRS on the other 

hand uncouples insulin signal transduction, and provides the molecular basis for insulin 

resistance (11; 17; 18) (Fig. 1-1). Altered Ser/Tyr phosphorylation is observed in both 

human and animal models of insulin resistance and Type 2 diabetes (18-21). Ser 

phosphorylation of IRS has been positively linked to PKC activation (22), TNF alpha (23), 

fatty acids (FA) (18) and chronic hyperinsulinemia. The Ser phosphorylation regulated by 

TNF alpha and FA involves the activation of serine kinases, for example, c-Jun N-terminal 

kinase (JNK) (24) (Fig. 1-1). Currently, JNK is considered to be a key molecule related to 
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Chapter 1: Introduction 

insulin resistance and Type 2 diabetes (25). In obesity, insulin sensitive target tissues (liver, 

adipose tissue and skeletal muscle) show a significant increase in JNK1 activity, and 

knockout of JNK1 effectively protects ob/ob mice from developing obesity (25). Inhibition 

of Ser phosphorylation is observed with activation of AMP-activated protein kinase (26), 

and protein kinase B (27). 

Following IRS phosphorylation, two major signaling pathways, phosphatidylinositol-3'-

kinase (PI3 kinase) and mitogen-activated protein (MAP) kinase are activated. The PI3 

kinase pathway plays a key role in mediating the metabolic effects of insulin, like glucose 

transporter (GLUT4) translocation (28) (Fig. 1-1). Activation of MAP kinase is associated 

with cell proliferation and GLUT4 activity (29-31) (Fig. 1-1). During insulin resistance, 

these two pathways can exist unrelated, and independent of each other. For example, insulin 

stimulated MAP kinase activity is unchanged in isolated muscle from Type 2 diabetic 

patients, even though the PI3 kinase pathway was attenuated, leading to a decreased glucose 

transport (32). As GLUT4 gene expression remains unaltered in patients with Type 2 

diabetes or obesity, the decreased glucose uptake must be due to changes in upstream insulin 

signaling (33). Nevertheless, changes in other downstream enzymes like pyruvate 

dehydrogenase kinase (PDK), which directly affects glucose utilization, may also contribute 

to insulin resistance (34; 35). 

1.1.3 Measurement of insulin resistance 

Insulin resistance is assessed through measurement of peripheral glucose clearance and 

output in response to insulin. Currently, a large number of methods have been developed 

and used in both animal and human experiments, and include either intervention approaches 

(administration of glucose, insulin and tolbutamide), or "steady-state" methods (fasting) 
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Chapter 1: Introduction 

(36). Examples of the former include the euglycemic hyperinsulinemic clamp, 

hyperglycemic clamp, and insulin tolerance (ITT), oral glucose tolerance (OGTT), and 

intravenous glucose tolerance (IVGTT) tests. The latter consists of homeostasis assessment 

model (HOMA) and the quantitative insulin-sensitivity check index (QUICKI). All of these 

techniques have their own benefits and shortcomings (37). In the first category, the 

euglycemic hyperinsulinemic clamp is considered the "gold standard",for the measurement 

of insulin sensitivity, and is performed by varying glucose infusion against a constant rate of 

insulin infusion. During the clamp, blood glucose is maintained at a euglycemic level. This 

method has been extensively used in both animal and human experiments, but. is 

unphysiological, and needs dedicated equipment and trained personnel. Although IVGTT is 

simple to perform, and is physiological, this method is insensitive to conditions with 

inappropriate endogenous insulin secretion, such as Type 2 diabetes and severe insulin 

resistance. Like IVGTT, ITT is also easy, but this test has a high risk to cause 

hypoglycemia. OGTT is traditionally used for the diagnosis of diabetes. Although it can 

also play a role in the assessment of insulin resistance, a direct glucose-insulin relationship 

is difficult to determine due to issues like gastric emptying and absorption (36). The 

hyperglycemic clamp is not widely used for the assessment of insulin resistance. In the 

second category, H O M A and QUICKI are two mathematical models that are generally used 

in human epidemiological studies with a large number of samples, and over long periods of 

time. These methods are quite effective in assessing the change in insulin resistance with 

time, during a physiological condition (fasting) (36). 
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Chapter 1: Introduction 

1.1.4 Experimental models of insulin resistance 

To study insulin resistance, numerous animal models have been developed and described 

over the years. The frequently used mouse models for insulin resistance include genetic 

leptin-deficient (ob/ob) and leptin-resistant (db/db) mice (38). The ob/ob mouse contains a 

mutation of the ob gene that was identified to regulate leptin synthesis (39). Leptiri is an 

adipose tissue hormone that regulates food intake and increases energy expenditure. In 

ob/ob mice, a recessive mutation in the leptin (ob) gene causes severe obesity, plasma leptin 

deficiency, insulin resistance and moderate hyperglycemia. The db/db mouse is another 

model of obesity and insulin resistance, but with more severe hyperglycemia. The db gene 

is expressed to code the leptin receptor and its mutation leads to leptin resistance. This 

model closely mimics the pathogenesis. of insulin resistance, increased insulin secretion, 

secretory defects in [3-cells, and eventual hyperglycemia that is observed in patients with 

Type 2 diabetes (40-42). In addition to mouse models, insulin resistance has also been 

developed in rats based on the fa genes (Zucker rats). The Zucker rat does not display 

hyperglycemia when fed ad libitum (41), but it demonstrates reduced glucose tolerance and 

other indications of insulin resistance (43). The Zucker Diabetic Fatty rat (ZDF) is 

developed through selective inbreeding from hyperglycemic Zucker obese rats. This model 

is characterized by a mutation of the leptin receptor (44). ZDF rats have progressive^ 

obesity, hyperlipidemia, insulin resistance, and hyperglycemia. A genetic rat model, 

JCR:LA-cp rat has recently been used in insulin resistance studies. This model, 

homozygous for the autosomal recessive cp gene, shows obesity, hyperinsulinemia and 

hypertriglyceridemia (45). Although genetic models for insulin resistance are commonly 

used, they have yet to answer all of the research questions related to insulin resistance. To 
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Chapter 1: Introduction 

overcome this problem, many investigators use insulin resistance models induced by high fat 

diets. Currently, many of these nutritional studies use high saturated fatty acid (palmitic 

acid) diets. Our laboratory has also reported that a diet rich in polyunsaturated fatty acid 

(20% linoleic acid), induces insulin resistance following one month of feeding (46). Insulin 

resistance can also be induced by exogenous administration of glucocorticoids. In this 

model, insulin resistance is induced, either through injection of the synthetic glucocorticoid 

dexamethasone (47; 48) or through augmentation of local glucocorticoid activity by 

overexpression of 11 p-HSDl (49). 

1.2 G L U C O C O R T I C O I D S 

1.2.1 Secretion, regulation and metabolism 

Historically, glucocorticoids were defined as a group of hormones released from the cortex 

of the adrenal gland. Secretion into the peripheral circulation occurred in a circadian fashion 

(~ 800 nM in the morning and ~ 200 nM at midnight) (50). In the human body, the main 

endogenous glucocorticoid is Cortisol and its basal daily secretion is approximately 6-8 

mg/m2. In response to stress, C o r t i s o l release is increased up to 10 fold of the basal value 

(51). Endogenous glucocorticoid synthesis and release is regulated by pituitary and 

hypothalamus. This regulatory system is termed as the hypothalamo-pituitary-adrenal 

(HPA) axis (51). Under physiological conditions, the neuroendocrine neurons in the 

hypothalamus synthesize and secrete corticotrophin-releasing hormone (CRH), which 

subsequently acts on the pituitary gland, causing release of adrenocorticotrophic hormone 

(ACTH). A C T H is transported to the adrenal gland where it stimulates secretion of 

glucocorticoids (Fig. 1-2). Increased glucocorticoids can negatively feedback and inhibit the 

hypothalamus and pituitary (51). 
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Following HPA-mediated release, glucocorticoids undergo a further intracellular 

conversion in peripheral tissues (52) (Fig. 1-2). In this process, active Cortisol is converted 

to its inactive form, cortisone; cortisone can also be converted to C o r t i s o l (Fig. 1-2). This 

conversion mediates the tissue-specific actions of glucocorticoids. 11 (3-hydroxysteroid 

dehydrogenase (11 p-HSD), a family of microsomal enzymes, plays a crucial role in this 

transformation (53). Two separate isoforms that belong to 11 p -HSD have been identified 

from mammalian tissues (52). Ilf3-HSD2 is highly expressed in classical aldosterone-

selective target tissues, such as the kidney. This enzyme shows a high NAD-dependent 

dehydrogenase activity, which rapidly inactivates glucocorticoids, and thus allows 

aldosterone access to mineralocorticoid receptors (54; 55). Unlike 11P-HSD2, 1 l p - H S D l is 

widely expressed in insulin-target tissues such as liver, adipose tissue, and central nervous 

system (56). Although 11 P-HSD 1 shows both dehydrogenase and reductase activities in 

vitro (57), in vivo experiments only demonstrate its reductase action (58), which converts 

intracellular cortisone to C o r t i s o l in the human body and 11-dehydrocorticorsterone to active 

corticosterone in rodents (52). 

The biological action of Cortisol occurs when it is in the free form. However, the 

majority of Cortisol in the circulation is bound with corticosteroid-binding globulin (CBG, 

90%) and albumin (6%) (59; 60) (Fig. 1-2). C B G is a 383-amino acid glycoprotein, not only 

present in the blood but also in tissues (61). Intracellular C B G can be localized in the cells 

through transmembrane uptake by a membrane C B G receptor, or it can be synthesized in 

extra-hepatic organs, like lung, ovary and endometrium (61). The binding of Co r t i so l to 

C B G restricts the access of this glucocorticoid to target cells (plasma CBG), or serves to 

mediate intracellular Cortisol action (intracellular CBG) (61). Both Cortisol and its inactive 
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Chapter 1: Introduction 

form, cortisone are metabolized by the A-ring reductases and eventually form 5 a - and 5 [3-

tetrahydrocortisol (5 a- and 5 (3-THF) and 5 (3-tetrahydrocortisone (THE) (62) (Fig. 1-2). 

The kidney excretes 95% of these metabolites and the gut eliminates the remainder (63). 

Normally, the total urinary metabolites (THF and THE) are used to predict glucocorticoid 

activity and metabolism in the body. In some experiments, the ratio of THF/THE is also 

viewed as an indicator of 11 (3-HSD activity (64). 

1.2.2 Cellular mechanism of glucocorticoid action 

The molecular mechanisms of glucocorticoids have been extensively studied (65). 

These hormones can readily across cellular membranes and bind with glucocorticoid (GR) 

or mineralocorticoid receptors (MR) in the cytosol. GR is a ligand-activated transcription 

factor, which is associated with "accessory proteins", for example heat shock proteins (HSP-

90, p60/Hop, HSP-70), and other chaperone molecules, to form a protein complex in the 

absence of ligand binding (66). Following binding with glucocorticoids, GR is activated 

through a conformational shift and dissociation of HSPs. The complex of receptor and 

hormone subsequently migrates into the nucleus and interacts with a specific sequence on 

the promoter of its target gene, which is usually called glucocorticoid response elements, 

causing an increase or decrease in gene expression (63). In addition to their transcriptional 

effects, glucocorticoids are also known to induce a non-transcriptional effect through 

interacting with some protein factors. This may play a key role in their anti-inflammatory 

effects (67). 

1.2.3 Therapeutic action of exogenous glucocorticoids 

As a family of therapeutic drugs, glucocorticoids, have widespread use in nonendocrine 

and endocrine diseases (63). Their therapeutic actions were recognized as early as 1898. 
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However, until 1949, glucocorticoids were still /lightly used as replacement therapy in 

patients with primary or secondary adrenal insufficiency, such as Addison's disease. In 

1949, Dr. Hench and his colleagues reported that small doses of cortisone dramatically 

improved the symptoms of rheumatoid arthritis. This discovery earned Hench's team the 

Nobel Prize for physiology and medicine in 1950. As this information was transmitted 

worldwide and more powerful synthetic chemicals were developed, the therapeutic 

applications of glucocorticoids have widened immensely (68). Today, glucocorticoids are 

used in a broad spectrum of anti-inflammatory and immunosuppressive therapies, which 

include allergic and hematological disorders, and renal, intestinal, liver, eye and skin 

diseases. Rheumatic diseases and bronchial asthma are main indications of long-term 

therapy with these hormones (69). In addition, glucocorticoids are also used in the 

suppression of the host-versus-graft or graft-versus-host reactions following organ 

transplantation surgery (70). With this continuous rise in clinical glucocorticoid use, 

epidemiological data now suggest that approximately. 1% of the adult population in U K is 

taking oral glucocorticoids, and this number increases to 2.4% in older people (70-79 years). 

In Canada, more than 120,000 Canadians are estimated to receive daily doses of steroids. 

Recent data published by the American Rheumatism Association in 1998 indicated that 50% 

of patients who suffered rheumatoid arthritis were on long-term glucocorticoid therapy (71). 

1.3 G L U C O C O R T I C O I D S A N D INSULIN R E S I S T A N C E 

Glucocorticoids, as endogenous hormones, and prevalent anti-inflammatory and 

immunosuppressive drugs, have been noticed to induce Cushing's syndrome, which is 

characterized by central obesity and insulin resistance (63). Some more recent observations 

also indicated that endogenous glucocorticoid hormone plays a key role in the incidence and 
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development of the metabolic syndrome (49; 72). Chronic treatment with synthetic 

glucocorticoids, for example, dexamethasone (DEX) has been associated with 

hyperinsulinemia in both animal and human research (73; 74). Glucocorticoid receptors 

(75) and glucocorticoid binding proteins (76; 77) also play roles in the incidence and 

progression of whole-body insulin resistance. Blockade of glucocorticoid receptors by a 

specific inhibitor, RU486, was able to abolish high fat induced insulin resistance (78). 

1.4 GLUCOCORTICOIDS AND PERIPHERAL TISSUE METABOLISM 

Glucocorticoid induced whole-body insulin resistance is tightly correlated to its metabolic 

effects in individual organs. Currently, most investigations on glucocorticoids and 

peripheral metabolism have targeted skeletal muscle, liver and adipose tissue. The 

metabolic events that occurred in these tissues, for example, decreased glucose utilization 

and increased glucose output and lipogenesis, play a key role in the incidence of whole-body 

abnormalities in the metabolic syndrome. This section will highlight the mechanisms of 

glucocorticoid effects on skeletal muscle, liver and adipose tissue metabolism. 

1.4.1 Skeletal muscle 

Skeletal muscle accounts for 80% of insulin-induced glucose disposal in the human body 

and thus, it is a major target for glucocorticoid-induced insulin resistance. In skeletal 

muscle, insulin stimulates glucose uptake, utilization and storage. As Cortisol administration 

did not alter the number of insulin receptors in skeletal muscle (79), it is likely that 

glucocorticoids alter glucose metabolism through its post-receptor effects on downstream 

insulin signaling or glucose utilization. Following chronic D E X treatment, even though its 

gene expression is unchanged, the phosphorylation of Akt/protein kinase B (PKB) induced 

by insulin significantly decreases (73). This reduction in insulin signal is paralleled with a 
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decreased glucose uptake and disposal (73; 80; 81). The decreased PKB phosphorylation 

may be attributed to a decreased insulin receptor tyrosine phosphorylation and insulin 

receptor substrate (IRS) protein expression (82). Interestingly, the reduction of glucose 

uptake in skeletal muscle was unrelated to alteration of glucose transporters, GLUT1 and 

GLUT4 (83). Both total mRNA and content of GLUT1 in skeletal muscle remained 

unchanged following D E X (83). With GLUT4, although total protein and its functional 

fraction at the plasma membrane have been demonstrated to be normal or even increased 

(84-86), insulin-stimulated GLUT4 transport in soleus muscle decreases following DEX 

treatment (80; 87). These results suggest that glucocorticoids decrease glucose transport in 

skeletal muscle through a lowering of insulin stimulated GLUT4 translocation. With 

regards to glycogen synthesis, both an increase and decrease in skeletal muscle has been 

reported following D E X (73; 80; 88). 

Pyruvate dehydrogenase kinase 4 (PDK4) is known to inactivate pyruvate 

dehydrogenase (PDH), a key enzyme that regulates pyruvate uptake into mitochondria, 

followed by oxidation (89). Glucocorticoid treatment in mice induced gene expression of 

forkhead-type transcription factor (FOXO) in skeletal muscle, which potentially upregulates 

PDK4 and decreases glucose oxidation (90). Decreased glucose metabolism is also 

correlated with elevation in FA metabolism. The increased FA oxidation disrupts glucose 

utilization through its inhibition of phosphofructokinase and PDH (91). Although 

glucocorticoid treatment significantly increases FA oxidation and oxidative capacity in 

diaphragm muscle (92), its effect in controlling skeletal F A metabolism has yet to be 

completely determined. 

1.4.2 Adipose tissue 
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Similar to skeletal muscle, glucose utilization in adipose tissue also affects whole-body 

glucose disposal. In this tissue, decreased insulin sensitivity following glucocorticoid 

treatment was attributed to postreceptor signaling defects (93). Thus, incubation with DEX 

significantly inhibits total mRNA and tyrosine phosphorylation of IRS-1 (93; 94). The 

decreased IRS-1 reduces activation of phosphatidylinositol 3-kinse (PI3 kinase), which plays 

a key role in the regulation of GLUT4 transport (93). Although total amount of GLUT4 

protein in 3T3-L1 adipocytes was unchanged, basal and insulin induced transport of GLUT4 

decreased following D E X (93). Total GLUT1 protein decreased in this experiment (93). 

Interestingly, even though IRS-1 and PI3 kinase were normalized via IRS-1 overexpression, 

insulin-induced impairment of glucose uptake by DEX did not significantly improve (93). 

The authors concluded that glucocorticoids might decrease glucose uptake through their 

inhibition of glucose transport rather than insulin signal transduction. A more recent 

investigation extended this research and found that DEX probably inhibits the activation of 

GLUT4 in the plasma membrane through a p38 M A P K process (95). 

In addition to affecting glucose metabolism, glucocorticoids also play a key role in 

regulating lipid metabolism in adipose tissue. Glucocorticoids stimulate adipose 

differentiation and increases body fat mass. Thus, Cushing's syndrome is normally 

characterized by central obesity. This increased visceral fat could indirectly increase 11 -(3 

HSD and reinforce local metabolic effects of glucocorticoids. As an early marker of 

differentiation and an important determinant of T G storage in adipose tissue, lipoprotein 

lipase (LPL) catalyzes circulating lipoprotein hydrolysis and facilitates uptake of FA into 

adipose tissue (96), which is eventually reesterified and stored as TG. Following DEX per 

se or DEX plus insulin treatment, both total mRNA and activity of LPL significantly 
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increased in animal and human adipose (97; 98). Adipose tissue from prednisolone-treated 

patients also indicated that the increased LPL activity following glucocorticoids might be a 

result of inhibiting degradation of the active-dimeric form (99). It should be noted that 

v increased LPL in adipose tissue is not always found consistently, and opposite effects are 

observed in both intact animal and isolated cells (100). T G content in adipose tissue is also 

dependent on T G assembly from acylCoA and glycerol, a process mediated by acylCoA' 

carboxylase (ACC) and fatty acid synthase (FAS) (101). Following D E X treatment, FAS 

expression, activity and gene transcription rate were significantly enhanced in human 

adipose tissue (102). However, this de novo lipogenesis is minor compared with FA uptake 

derived from plasma lipoprotein (103). Under physiological conditions, insulin decreases 

lipolysis in adipose tissue through the inhibition of hormone sensitive lipase (HSL) (104). 

HSL can be phosphorylated and activated through stimulating a cAMP-dependent protein 

kinase (105). However, D E X is known to increase HSL activity in rat adipocytes through an 

increase in mRNA (106). This increase in HSL augments lipolysis, which could contribute 

to the development of insulin resistance, hypertension and hyperlipidemia. 

1.4.3 Liver 

Liver is a key organ that contributes to whole body insulin resistance through increasing 

glucose output. The liver is also the primary metabolic target of glucocorticoid action. A 

positive relationship has been proposed between glucocorticoid effects in the. liver and 

whole body insulin resistance. Specific inactivation of hepatic glucocorticoid receptors 

reduces elevated glucose output and improves hyperglycemia and hyperlipidemia in Type 2 

diabetic animal models (107; 108). Unlike other tissues, altered hepatic glucose metabolism 

following glucocorticoids involves the enhancement of glucose output and reduction of 
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glucose utilization (109). D E X treatment does not change insulin receptor and IRS1 (110), 

but it decreases PI3 -kinase activity in the liver. Whether this decreased PI3 -kinase 

contributes to a reduction of GLUT4 is currently unknown. Following glucose uptake and 

glycolysis, the pyruvate dehydrogenase complex (PDC) facilitates entry of pyruvate into the 

mitochondria for subsequent oxidation. The pyruvate dehydrogenase kinase (PDK) 

inactivates PDC through phosphorylation of this enzyme. In cultured hepatoma cell lines, 

DEX treatment significantly increases PDK4 gene and protein expression, which can be 

reversed by insulin (111). This inactivated PDC through PDK inhibits glucose utilization, 

and switches the liver to synthesize glucose and store glycogen. Indeed, in vivo 

experiments, D E X treatment increases glycogen in the liver (112). The elevated hepatic 

gluconeogenesis is associated with the effects of glucocorticoids on the rate-limiting 

enzymes, like phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase 

(G6Pase) (113; 114). Glucocorticoids enhance the gene expression of PEPCK and G6Pase, 

resulting in increased glucose output from the liver, which contributes to whole-body insulin 

resistance (113; 114). 

In addition to altering glucose metabolism, glucocorticoids also promote hepatic T G 

storage. Normally, the T G level reflects the balance between lipogenesis and lipolysis. 

Some, early studies have suggested that hepatic stored T G undergoes lipolysis to release FA, 

which is re-esterified to form T G in the endoplasmic reticulum. This re-synthesized T G 

eventually incorporates into a V L D L particle with apolipoproteins (115; .11-6). In this 

process, the triglyceride hydrolase (TGH) is a key enzyme that regulates lipolysis (117), 

whereas the diacylglycerol acyltransferase (DGAT) catalyses the final stage of T G synthesis 

(118; 119). Following D E X treatment, a decrease in the expression of T G H and an increase 
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in DGAT 2 activity occurs in the liver, which is coupled with an amplified T G storage 

(120). Whether this increased T G storage promotes lipoprotein secretion is still 

controversial. 

1.5 GLUCOCORTICOIDS AND CARDIAC METABOLISM 

1.5.1 Normal cardiac metabolism 

To maintain normal physiological function, heart needs to consistently produce energy in the 

form of ATP. This procedure may utilize various substrates like FA, glucose, lactate and 

ketone bodies, in which glucose and fatty acid are the most important substrates consumed 

by cardiac tissue (121-123). Glucose oxidation provides the heart with approximately 30% 

of its energy requirements (124). Following insulin dependent glucose uptake and 

glycolysis, the pyruvate dehydrogenase complex (PDC) facilitates pyruvate translocation 

and subsequent oxidation in the mitochondria. PDP activates, whereas PDK inactivates 

PDC, with resultant augmentation or inhibition of glucose oxidation, respectively (124) (Fig. 

1-3). Compared with glucose, fatty acids are the preferred substrate consumed by cardiac 

tissue. FA is mainly derived through three pathways, 1) release from adipose tissue and 

transport to the heart after complexing with albumin (125), 2) provision through the 

breakdown of endogenous cardiac T G stores (126), 3) hydrolysis of TG-rich lipoproteins by 

LPL positioned at the endothelial surface of the coronary lumen (127). Of these 

mechanisms, LPL facilitated T G hydrolysis is suggested to be the principal source of fatty 

acid for cardiac utilization (128) (Fig. 1-3). 

1.5.2 Glucocorticoids and glucose metabolism in the heart 

Glucocorticoids play a key role in the regulation of glucose metabolism in the heart. 

Although incubation of cardiomyocytes with corticorsteroids for 24h increased both GLUT1 
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and GLUT4 gene expression (129), most in vivo investigations suggest that glucocorticoids 

may not affect insulin-regulated glucose transport in the heart (84; 85). Hence, following 

chronic D E X treatment, GLUT4 does not show any changes at the plasma membrane (84; 

85). 

1.5.3 Glucocorticoids and cardiac FA metabolism 

FA contributes approximately 70% of the ATP necessary for normal heart function (130; 

131). During metabolic stress, such as diabetes and insulin resistance, characterized by 

inadequate glucose utilization, cardiac FA consumption supercedes glucose oxidation. As 

an insulin resistance model, with decreasing glucose oxidation, elevated glucocorticoids is 

also associated with a dysfunction of FA metabolism in the heart (123). In the following 

section, the effects of glucocorticoids on FA delivery and oxidation will be discussed. 

1.5.3.1 LPL 

LPL plays a key role in F A delivery to the heart. In the heart, electron microscopy using 

immunogold-labeling established that 78% of total LPL is present in cardiac myocytes, 3-

6% in the interstitial space, and 18% at the coronary endothelium (127; 132). Even though 

the majority of enzyme is located in myocytes, vascular endothelial-bound LPL likely 

determines the rate of plasma lipoprotein-TG clearance, and hence is termed "functional" 

LPL (128). LPL also mediates a non-catalytic bridging function that allows it to bind 

simultaneously to both lipoproteins and specific cell surface proteins, facilitating cellular 

uptake of lipoproteins (133). Since endothelial cells cannot synthesize LPL (134), the 

enzyme is synthesized in cardiomyocytes and translocated onto myocyte cell surface 

heparan sulphate proteoglycans (HSPG) (127; 132). The secreted LPL is then further 

translocated onto comparable HSPG binding sites on the luminal side of the vessel wall. 
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Regulation of cardiac luminal LPL could be an important means whereby the heart is able to 

maintain its function at times of metabolic stress such as .diabetes, that is characterized by 

inadequate glucose utilization (135). Indeed, in 2 and 12 week streptozotocin (STZ) induced 

diabetic rats, we have reported a significant increase in luminal LPL (136; 137). More 

recently, the increase in LPL protein and activity at the coronary luminal surface has also 

been demonstrated in an acute model of hypoinsulinemia (1~3 h) (138). The influence of 

insulin resistance on Cardiac LPL is presently controversial. 

1.5.3.2 FA oxidation 

According to Randle's hypothesis, FA competes with glucose for mitochondrial oxidation 

(123). Following the inhibition of glucose metabolism by glucocorticoids, FA oxidation in 

the heart is likely to be elevated. Corticosteroid treatment in cardiomyocytes increases the 

gene expression of carnitine palmitoyltransferase 1 (CPT1), which is a key enzyme that 

regulates FA uptake into the mitochondria (129). 

1.6 C A R D I A C M E T A B O L I S M AND H E A R T DISEASE 

Although a promotion of atherosclerosis and other vascular diseases is commonly associated 

with diabetes and insulin resistance, increasing clinical and experimental evidence has 

established that metabolic abnormalities in the cardiomyocytes during glucose stress play a 

crucial role in the development of heart diseases (139; 140). This specific cardiac phenotype 

is named as "cardiomyopathy" (140). Diabetic cardiomyopathy is commonly initiated by a 

short-term and severe modification in fuel metabolism, and is followed by a chronic 

myocardial damage and measurable contractile dysfunction (141). Although the 

mechanisms of cardiomyopathy are not completely revealed, most investigators considered 

that this pathophysiological process is related with hyperinsulinemia, hyperglycemia and 
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increased FA (142). In general, hyperinsulinemia induces cardiac hypertrophy through 

insulin-mediated Akt-1 dependent and independent pathways, while hyperglycemia 

mediates cardiac injury through the generation of reactive oxygen species (142). As the 

most important risk factor, FA has been identified to trigger the development of cardiac 

hypertrophy via inducing insulin resistance or direct effects like altering myocardial 

contractility and cell death (142). A recent viewpoint indicated that this pathophysiologic 

process observed in diabetic heart might also occur in insulin resistance models (143). Even 

though this mechanism has not been completely evaluated and elucidated, clinical evidence 

indicates that insulin resistance might predate the development of heart failure at least 20 

years before diabetes (144). 

1.7 GLUCOCORTICOIDS AND H E A R T DISEASE 

Due to their effects on inflammation and cellular proliferation, glucocorticoids have been 

considered beneficial in heart diseases (145). However, excessive endogenous (146; 147) 

and exogenous (47; 48) glucocorticoids are linked to insulin resistance. In addition, 

glucocorticoids per se have been implicated in the pathogenesis of cardiac diseases. 

Epidemiological studies suggest that atherosclerosis and myocardial infarction occur in 

patients with long-term glucocorticoid treatment or Cushing's syndrome (148-150). Recent 

clinical reports also indicated that glucocorticoid treatment in newborn fetus and old patients 

potentially induced cardiomyopathy (151; 152). Although this pathologic process is not yet 

completely elucidated, some early morphological evaluations indicated that glucocorticoid-

induced cardiomyopathy is characterized by increased accumulation of lipid droplets, 

cardiomyocyte hypertrophy and dissolution of myofibrils (153; 154). The role of 

glucocorticoid signal in the development of cardiomyopathy is less clear. One investigation 
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suggests that glucocorticoid-induced cardiomyocyte hypertrophy is probably related to cross 

talk between glucocorticoid signaling and hypertrophic signalling pathways (155). The 

enhanced glucocorticoid signal up regulates serum- and glucocorticoid-induced kinase 1, 

which may augment alpha-adrenergic induced hypertrophy (155). Additionally, exogenous 

glucocorticoid treatment has been reported to induce mitochondrial dysfunction in both liver 

and muscle tissues (156). Whether this alteration in ATP production and mitochondrial 

genes also occurs in the heart following glucocorticoids is currently unknown. 
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1.8 R E S E A R C H R A T I O N A L E AND O B J E C T I V E S 

Insulin resistance leads to a cardiac pathology. In the San Antonio Heart Study, patients 

with insulin resistance had a 2.5 times increased risk to die of C V D than those without 

insulin resistance (157). An initial insulin resistance, followed by inadequate pancreatic 

beta cell insulin secretion, characterizes patients with Type 2 diabetes. Approximately 30% 

of patients who have insulin resistance eventually develop Type 2 diabetes. Diabetes itself 

promotes vascular diseases and non-vascular cardiac injury (158). 

Increasing evidence from clinical and experimental studies has established that metabolic 

abnormalities play a crucial role in the development of heart diseases (139; 140). Under 

physiological conditions, heart acquires most of its energy from metabolism of glucose and 

fatty acid (FA), with the latter being the major substrate consumed by cardiac tissue (140). 

During metabolic stress, such as insulin resistance and diabetes, characterized by inadequate 

glucose utilization, cardiac F A consumption supercedes glucose oxidation. In the heart, 

elevated F A use has been implicated in a number of metabolic, morphological, and 

mechanical changes, and more recently, in "lipotoxicity" (159). During lipotoxicity, when 

the capacity to oxidize F A is saturated, F A accumulates and can, either by themselves or via 

production of second messengers such as ceramides, provoke cell death (159). 

Excessive endogenous (146; 147) and exogenous (47; 48) glucocorticoids are linked to 

insulin resistance. In addition, epidemiological studies indicate that atherosclerosis and 

myocardial infarction occur in patients with long-term glucocorticoid treatment or Cushing's 

syndrome (146-148). Based on these findings, we hypothesized that DEX induces insulin 

resistance, and switches the heart to utilize FA exclusively through regulation of LPL at the 

endothelial lumen. This metabolic transformation could initiate heart failure. 

20 



Chapter 1: Introduction 

My research proposal had the following objectives: 

1. To develop an acute model of whole-body and cardiac insulin resistance using 

dexamethasone (DEX), and to examine F A delivery to the heart under these 

conditions. 

2. To evaluate cardiac F A composition and metabolism following acute DEX 

treatment. 

3. To compare changes in F A delivery obtained with drug-induced insulin resistance to 

insulin resistance induced by acute elevation of F A (intralipid infusion). 
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T A B L E S A N D FIGURES 

O 

FIG. 1-1 Cellular mechanism of insulin resistance. By binding to 
its tyrosine kinase receptor, insulin phosphorylates insulin receptor 
substrate (IRS). The tyrosine (Tyr) phosphorylation of IRS, 
activates phosphatidylinositol-3'-kinase (PI3 kinase) and mitogen-
activated protein (MAP) kinase. The PI3 kinase, path way mediates 
glucose transporter (GLUT4) translocation. Activation of MAP 
kinase is associated with cell proliferation and GLUT4 activity. 
Serine (Ser) phosphorylation of IRS uncouples insulin signal 
transduction, and provides a main molecular basis for insulin 
resistance. Ser phosphorylation of IRS is positively linked to TNF 
alpha and fatty acids (FA). The regulation of Ser phosphorylation 
by TNF alpha and F A involves the activation of serine kinases, for 
example, c-Jun N-terminal kinase (JNK). 
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FIG. 1-2 Cortisol secretion, regulation and metabolism. In the human 
body, the main endogenous glucocorticoid is Cortisol and its basal daily 
secretion is approximately 6-8 mg/m2. Endogenous glucocorticoid 
synthesis and release is regulated by the hypothalamo-pituitary-adrenal 
(HPA) axis. Under physiological conditions, the neuroendocrine neurons 
in the hypothalamus synthesize and secrete corticotrophin-releasing 
hormone (CRH), which subsequently acts on the pituitary gland, causing 
release of adrenocorticotrophic hormone (ACTH). A C T H is transported 
to the adrenal gland where it stimulates secretion of glucocorticoids. 
Following HPA-mediated release, glucocorticoids undergo a further 
intracellular conversion in peripheral tissues by 11-beta HSD. The 
biological action of Cortisol occurs when it is in the free form. However, 
the majority of Cortisol in the circulation is bound with corticosteroid-
binding.globulin (CBG, 90%) and albumin (6%). Both Cortisol and its 
inactive form, cortisone are metabolized by the A-ring reductases and 
eventually form 5 a - and 5 P-tetrahydrocortisol (5 a- and 5 P-THF) and 
5 P-tetrahydrocortisone (THE). 
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FIG. 1-3 Cardiac metabolism. Glucose and fatty acid are the most important 
substrates consumed by cardiac tissue. Glucose oxidation provides the heart 
with approximately 30% of its energy requirements. Following insulin 
dependent glucose uptake and glycolysis, the pyruvate dehydrogenase complex 
(PDC) facilitates pyruvate translocation and subsequent oxidation in the 
mitochondria. PDP activates, whereas PDK inactivates PDC, with resultant 
augmentation or inhibition of glucose oxidation, respectively. Compared with 
glucose, fatty acids are the preferred substrate consumed by cardiac tissue. F A is 
mainly derived through three pathways, 1) release from adipose tissue and 
transport to the heart after complexing with albumin, 2) provision through the 
breakdown of endogenous cardiac T G stores, 3) hydrolysis of TG-rich 
lipoproteins by LPL positioned at the endothelial surface of the coronary lumen. 
Of these mechanisms, LPL facilitated T G hydrolysis is suggested to be the 
principal source of fatty acid for cardiac utilization. (iPDC, inactive PDC; aPDC, 
active PDC) 
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2. SINGLE-DOSE DEXAMETHASONE INDUCES WHOLE-BODY 

INSULIN RESISTANCE AND ALTERS BOTH CARDIAC FATTY 

ACID AND CARBOHYDRATE METABOLISM 

2.1 I N T R O D U C T I O N 

Glucocorticoids have widespread use as anti-inflammatory and immunosuppressive agents 

(1). However, chronic glucocorticoid therapy is often associated with adverse and serious 

side effects including Cushing's syndrome, osteoporosis, gastrointestinal bleeding, and 

dyslipidemia (1). More importantly, both excess endogenous (2; 3) and exogenous (4; 5) 

glucocorticoids impair insulin sensitivity contributing to generation of the metabolic 

syndrome including insulin resistance, obesity and hypertension. Incidence of this 

syndrome is closely linked to increased mortality from cardiovascular diseases (6). 

Increasing evidence from clinical and experimental studies has established that 

metabolic abnormalities play a crucial role in the development of heart diseases (7; 8). 

Heart acquires most of its energy from metabolism of glucose and fatty acid (FA). 

Following glucose uptake and glycolysis, pyruvate dehydrogenase complex (PDC) 

facilitates entry of pyruvate into the mitochondria and changes in PDC activity alter glucose 

utilization. Thus, dephosphorylation by pyruvate dehydrogenase phosphatase (PDP) 

activates, whereas phosphorylation by pyruvate dehydrogenase kinase (PDK) inactivates 

PDC, with resultant augmentation or inhibition of glucose oxidation respectively. Of the 

four different isoforms of PDK that have been identified, PDK2 and 4 are the main isoforms 

present in the heart (9). Diabetes and starvation up regulate cardiac PDK4 but not PDK2 

expression (10; 11). Although the effects of glucocorticoids on cardiac PDK are less well 
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recognized, dexamethasone (DEX) was recently reported to increase expression of PDK4 in 

hepatoma cells (12). 

Compared to glucose, FAs are the preferred substrate consumed by cardiac tissue (8), 

with hydrolysis of triglyceride (TG)-rich lipoproteins by lipoprotein lipase (LPL) positioned 

at the endothelial surface of the coronary lumen being suggested to be the principal source 

of FA for cardiac utilization (13). Endothelial cells do not synthesize LPL and hence the 

enzyme is synthesized in cardiomyocytes. Secreted LPL binds to myocyte cell surface 

heparan sulphate proteoglycans (HSPG) before it is translocated onto comparable HSPG 

binding sites on the luminal side of the vessel wall. Regulation of cardiac luminal LPL may 

be an important means whereby the heart is able to maintain its function at time of metabolic 

stress like diabetes that is characterized by inadequate glucose utilization (14). Hence, in the 

streptozotocin (STZ) injected rat, with its attendant hypoinsulinemia and hyperglycemia, we 

demonstrated significantly elevated luminal LPL activity (15; 16) and hypothesized that this 

may lead to metabolic switching which provides excessive F A to the diabetic heart. 

Although the role of hypoinsulinemia in regulating cardiac LPL is now established, the 

influence of glucocorticoid-induced insulin resistance on cardiac LPL is unknown. 

The objective of the present study was to determine the acute effects of DEX-induced 

reduction in insulin sensitivity on cardiac metabolism. We demonstrate that a single dose of 

DEX leads to whole body insulin resistance and in hearts from these animals, glucose 

oxidation is compromised due to augmentation of PDK4 whereas amplification of LPL 

increases lipoprotein-TG clearance likely providing the heart with excessive FA that are 

then stored as intracellular TG. 
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2.2 RESEARCH DESIGN AND METHODS 

2.2.1 Experimental animals. The investigation conforms to the guide for the care and 

use of laboratory animals published by the US National Institutes of Health and the 

University of British Columbia. Adult male Wistar rats (270-290 g) were obtained from the 

UBC Animal Care Unit and supplied with a standard laboratory diet (PMI Feeds, Richmond, 

VA), and water ad libitum. The synthetic glucocorticoid hormone D E X (1 mg/kg) or an 

equivalent volume of ethanol was administered by i.p. injection, and the animals killed 1-4 h 

later (plasma half life of D E X is approximately 279 min). Previous studies have determined 

that this dose of D E X inhibits insulin-stimulated skeletal muscle glucose transport (17). 

2.2.2 Euglycemic-hyperinsulinemic clamp. Whole-animal insulin resistance was 

assessed using a euglycemic-hyperinsulinemic clamp, as described previously (18; 19). This 

procedure involves the simultaneous intravenous infusion of insulin (to inhibit endogenous 

hepatic glucose production) and glucose; the quantity of exogenous glucose required to 

maintain euglycemia is a reflection of the net sensitivity of target tissues (mainly skeletal 

muscle) to insulin. Briefly, following injection of vehicle or D E X for 4h, animals were 

anesthetized with sodium pentobarbital (Somnotol™; 65 mg/kg) and a cannula inserted into 

the left jugular vein. Surgical insertion of the cannula was rapid (-10 min for each animal). 

Insulin (HumulinR; 3 mU/min/kg) and D-glucose (50%) were continuously delivered for 3h 

with the glucose infusion started 4 min after commencement of insulin infusion. Insulin and 

glucose were dissolved in 0.9% saline prior to infusion. At regular intervals, a small amount 

of blood taken from the tail vein was analyzed for glucose (using a glucometer; AccuSoft™ 

Advantage™) and FA. Glucose infusion rate (GIR) was adjusted accordingly to maintain 

euglycemia. 
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2.2.3 Cardiac glucose metabolism. When metabolized, glucose passes through the 

glycolytic pathway to be oxidized to CO2 or non-oxidatively catabolized to lactate and 

alanine. To measure glucose oxidation, isolated hearts were perfused for 30 min with 

Krebs-Henseleit buffer in the working mode at a preload of 11.5 mmHg and an afterload of 

80 mmHg, as previously described (20). The buffer solution contained in mmol/L: 0.4 

palmitate, 2.0 CaCl 2 , 5.5 mM glucose, 0.5 lactate, 100 mU/L insulin, 3% BSA; pH 7.4. 

Rates of glucose oxidation (quantitative collection of I 4 C 0 2 liberated from [U-14C]-glucose 

at the pyruvate dehydrogenase reaction and in the citric acid cycle) and glycolysis (Re­

labeled products, [14C]-Lactate and [14C]-Pyruvate) were determined as described previously 

(20). On transport into cardiac cells, glucose disposal can also occur via its conversion into 

glycogen, which serves as the primary storage form of glucose. Cardiac glycogen was 

determined as glucose residues by a glucose kinase method after acid hydrolysis (21). 

Rate of glucose oxidation is dependent on mitochondrial pyruvate dehydrogenase 

complex (PDC). Phosphorylation via PDK inhibits PDC. PDK gene expression was 

measured in the indicated groups using RT-PCR. Briefly, total RNA from hearts (100 mg 

tissue) was extracted using Trizol (Invitrogen). After spectrophotometric quantification and 

resolving of RNA integrity using a formaldehyde agarose gel, reverse transcription was 

carried out using an oligo (dT) primer and superscript II RT (Invitrogen). First strand cDNA 

was amplified using PDK2 and PDK4 specific primers. PDK2- 5'-

T C T A C C T C A G C C G C A T C T C T - 3 ' (left) and 5' - G T T G G T G G C A T T G A C T T C C T - 3 ' 

(right); PDK4- 5' -CCTTTGGCTGGTTTTGGTTA-3 ' (left) and 5'-

C A C C A G T C A T C A G C C T C A G A - 3 ' (right); the p-actin gene was amplified as an internal 

control using 5 ' - T T G T A A C C A A C T G G G A C G A T A T G G - 3 ' (left) and 5'-

48 



Chapter 2: Diabetes. 2004 53(7): 1790-7 

G A T C T T G A T C T T C A T G G T G C T A G G - 3 ' (right). The linear range was found to be 

between 15-40 cycles. The amplification parameters were set at: 94°C for 1 min, 58°C for 1 

min and 72°C for 1 min, for a total of 40 cycles. The PCR products were electrophoresed on 

a 1.7% agarose gel containing ethidium bromide. Expression levels were represented as the 

ratio of signal intensity for PDK mRNA relative to P-actin mRNA. 

To determine whether changes in PDK4 mRNA is translated to an increase in protein 

expression, Western blot analysis for PDK4 was carried out in mitochondria isolated by a 

previously described method (10). Mitochondrial proteins (5 ug) were fractionated by 11% 

SDS-PAGE and transferred onto nitrocellulose membranes. Blots were probed with 

polyclonal rabbit anti-PDK4 antisera (1:500) (generously provided by Dr. K M Popov), 

followed by incubation with goat anti-rabbit horseradish peroxidase linked secondary 

antibody (1:3000). Reaction products were visualized using chemiluminescence, and 

quantified by densitometry. 

2.2.4 Heart function. Isolated heart function [rate pressure product (RPP)-heart rate, bpm 

x peak systolic pressure, mmHg] was recorded using a Direcwin physiograph (Raytech) 

(20). Mean arterial pressure was measured in vivo using a cannula inserted into the carotid 

artery. 

2.2.5 L P L activity. At varying times (l-4h) following DEX, hearts were perfused 

retrogradely through the aorta by the nonrecirculating Langendorff technique (16). To 

measure endothelium-bound LPL, perfusion solution was changed to buffer containing 1% 

fatty acid free BSA and heparin (5 U/ml). Coronary effluent was collected in timed 

fractions over 10 min and assayed for LPL activity by measuring the hydrolysis of a 

sonicated [ H] triolein substrate emulsion (16). 
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To compare D E X effects on LPL to that observed previously following 

hypoinsulinemia, p-cell death was induced with a single i.v. dose of streptozotocin (STZ; 55 

mg/kg) (15). Diabetic rats were kept for 4 days after STZ injection, at which time they were 

killed, and hearts removed. To then evaluate if DEX and STZ treated animals can maintain 

their augmented LPL activity in vitro, hearts from control, STZ and D E X treated animals 

were either perfused with heparin, immediately upon removal (0 min), or perfused with 

heparin free buffer for 60 min. During this 60 min perfusion with heparin free buffer, LPL 

activity in the buffer reservoir (total volume 30 ml) was determined at various intervals. 

Finally, a 10 min perfusion with heparin was carried out to determine the extent of residual 

LPL at the coronary lumen. 

2.2.6 Immunolocalization of LPL following DEX. Control and D E X (4h) hearts were 

fixed in 10% formalin overnight. Blocks were embedded in Paraplast and sectioned at 5 

um. For immunostaining, sections were incubated with affinity-purified chicken antibovine 

LPL polyclonal antibody (1:400). Samples were then incubated with the secondary 

biotinylated rabbit anti-chicken IgG (Chemicon Corp., 1:150), followed by incubation for lh 

with streptavidin-conjugated Cy3 fluorescent probe (1:1000). Slides were visualized using a 

Biorad 600 Confocal Microscope at 63 Ox magnification. 

2.2.7 LPL gene expression following DEX. LPL gene expression was measured using 

RT-PCR as described previously (22). 

2.2.8 Treatments. Acute (90 min) treatment of STZ-diabetic rats with rapid acting insulin 

reduces heparin-releasable LPL activity to normal levels (15). To determine whether insulin 

could also influence LPL activity following DEX, insulin was infused over 3h via the 

euglycemic-hyperinsulinemic clamp, and cardiac LPL activity subsequently measured. For 
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comparison, some STZ rats were treated iv with a rapid acting insulin (8 U/animal), rats 

were killed after 180 minutes, and LPL activity determined. Some hearts from DEX treated 

animals were also perfused for 60 min with dichloroacetate (DCA, 1 mM) for quantification 

of LPL. D C A by inhibiting PDK, stimulates pyruvate dehydrogenase and promotes glucose 

utilization (23). 

2.2.9 Plasma measurements. Control rats were injected with D E X at 10:00 A M (fed 

state). Following DEX, blood samples from the tail vein were collected at varying intervals 

in heparinized glass capillary tubes. Blood samples were immediately centrifuged and 

plasma was collected and assayed. Diagnostic kits were used to measure glucose, 

triglyceride (Sigma), non-esterified fatty acid (NEFA, Wako), and insulin (Linco). 

2.2 .10 Electron microscopy. To assess whether D E X causes accumulation of lipid 

droplets, morphological evaluation of hearts was carried out using transmission electron 

microscopy. Briefly, left ventricular tissue was fixed in 1.5% glutaraldehyde and 

paraformaldehyde, cut into small blocks (~1 x 0.5 x 0.2 mm), and fixed for 8h at 4°C. After 

washing, tissue was post fixed with 1% osmium tetroxide and further treated with 1% uranyl 

acetate and dehydrated using increasing concentrations of ethanol (50-100%). Blocks were 

embedded in Epoxy resin, and sectioned at -90 nm. Sections were stained with 1% uranyl 

acetate and Reynolds lead citrate. Images of the longitudinal-sections were obtained with a 

Hitachi H7600 electron microscope. 

2.2.11 Materials. [3H]triolein was purchased from Amersham Canada. Heparin sodium 

injection (Hapalean; 1000 USP U/ml) was obtained from Organon Teknika. All other 

chemicals were obtained from Sigma Chemical. 
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2.2.12 Statistical analysis. Values are means ± SE. LPL activity in response to heparin 

perfusion over time was analyzed by multivariate analysis (two-way ANOVA) of variance 

using the NCSS. Wherever appropriate, one-way A N O V A followed by the Tukey or 

Bonferroni tests or the unpaired and paired Student's t-test was used to determine 

differences between group mean values. The level of statistical significance was set at P < 

0.05. 
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2.3 RESULTS 

2.3.1 Acute DEX treatment induces whole-body insulin resistance. Injection of DEX 

for 4h was not associated with either hyperinsulinemia or hyperglycemia (Table 2-1). 

However, by using the euglycemic-hyperinsulinemic clamp,, a direct measure of insulin 

sensitivity, the unfavorable effect of DEX on glucose metabolism was established. 

Accordingly, our clamp data revealed that the glucose infusion rate necessary to maintain 

euglycemia was lower following DEX administration (Fig. 2-1). Development of insulin 

resistance was not linked to any change in blood pressure (Table 2-1). Additionally, 

mechanical function of hearts isolated from DEX treated animals remained unchanged 

throughout the perfusion period (Table 2-1). 

2.3.2 Cardiac glucose metabolism is altered following DEX. Insulin resistance involves 

multiple organs and various mechanisms. Thus, although D E X is known to inhibit insulin-

stimulated skeletal muscle glucose transport, its influence on cardiac metabolism is 

unknown. On transport into cardiac cells, glucose disposal occurs via oxidative metabolism 

to CO2, non-oxidative metabolism to lactate and alanine or conversion into glycogen. 

Myocardial glucose metabolism in control and DEX treated hearts is summarized in Fig. 2-

2. Mean steady state rates of glycolysis and glucose oxidation were determined from data 

obtained during the initial portion of the heart perfusion. Compared to control, although 

rates of glycolysis were unaffected in DEX treated hearts (Fig. 2-2A), the rate of cardiac 

glucose oxidation following D E X treatment was significantly decreased (Fig. 2-2B). In a 

separate experiment, cardiac glycogen was also evaluated from whole hearts following 

injection of D E X for 4h. Myocardial glycogen content in D E X hearts increased 

approximately two fold compared to control (Fig. 2-2C). 
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2.3.3 DEX induces expression of PDK4 but not PDK2 in the heart. Inhibition of 

cardiac glucose oxidation by DEX could occur through inactivation of PQC by PDK. As 

PDK2 and 4 are the main isoforms present in the heart, their expression was determined 

following acute D E X administration. DEX increased PDK4 (Fig. 2-3B) but not PDK2 

mRNA (Fig. 2-3A). More importantly, the increased PDK4 mRNA was associated with 

augmented PDK4 protein as measured by Western-blot analysis (Fig. 2-3C). 

2.3.4 Changes in coronary lumen LPL following DEX persist in vitro. LPL mediated 

hydrolysis of. circulating TG-rich lipoproteins at the coronary lumen provides the heart with 

FA. To measure this LPL activity, retrograde perfusion of hearts with heparin results in the 

release of LPL into the coronary perfusate (Fig. 2-4A). In a preliminary study, to determine 

the kinetics of LPL regulation at the vascular lumen, hearts from some fed control animals 

treated with a single injection of DEX were isolated at l-4h, and LPL activity measured. 

Interestingly, increase in LPL activity became apparent as early as lh subsequent to 

injection of DEX (Fig. 2-4A, inset), and was maintained for an additional 4h (Fig. 2-4A). 

The DEX induced increase in heparin-releasable LPL activity at the vascular lumen after 4h 

was substantial compared to control (~3 fold, Fig. 2-4A). Additionally, 

immunofluorescence microscopy of mycocardial sections from D E X hearts confirmed a 

more intense LPL immunofluorescence in blood vessels (Fig. 2-4B). 

We have previously demonstrated that hypoinsulinemia also causes substantial increase 

in coronary LPL activity and immunofluorescence at the vascular lumen (22). To determine 

whether this high LPL activity can be maintained in vitro, hearts from STZ and DEX 

animals were perfused with normal Krebs buffer for lh. Four days of STZ-diabetes caused 

a decline in plasma insulin (Control 2.3 ± 0.4, Diabetic 0.9 ± 0.1 ng/ml; P < 0.05) with 
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ensuing hyperglycemia (Control 8.7 ± 0.2, Diabetic 14 ± 1.1 mmol/L; P < 0.05). 

Interestingly, STZ but not D E X hearts demonstrated a decline in heparin releasable LPL 

activity to control values, presumably through dissociation of the enzyme from HSPG 

binding sites into the perfusate (Fig. 2-5). The mechanism by which D E X hearts are able to 

maintain high LPL in vitro suggest either an increased recruitment from myocytes or 

decreased displacement from the coronary lumen. To further investigate this process, basal 

LPL activity (in the absence of heparin) was determined in the buffer reservoir over time. 

DEX hearts showed greater basal release of LPL throughout the perfusion suggesting that 

these hearts were able to maintain coronary lumen LPL through accelerated transfer from 

the myocytes (Fig. 2-5, inset). 

2.3.5 Alterations in cardiac LPL are reversed by exogenous insulin in STZ but not 

DEX animals. Acute treatment of. STZ rats with a rapid acting insulin reduced 

hyperglycemia (STZ 18.7 ± 1.7, STZ + Insulin 6.4 ± 0.8 mmol/L; P < 0.05). Acute insulin 

treatment also lowered peak heparin releasable LPL activity to control levels (Fig. 2-6, 

inset). Unlike insulin reversal of LPL in STZ rats, LPL activity remained high even after 3h 

of insulin perfusion during the clamp suggesting ongoing resistance to the action of insulin. 

DCA, a stimulator of glucose oxidation was also unable to reverse the DEX-induced 

increase in cardiac LPL (data not shown). This was not surprising given the evidence that 

PDK2 is more sensitive to inhibition by D C A whereas PDK4 is insensitive (9). 

2.3.6 DEX augments expression of cardiac LPL. Previously, we have reported that STZ 

diabetes does not influence LPL mRNA and increases in cardiac heparin-releasable LPL 

activity are likely due to a posttranslational mechanism (22). To determine whether the 
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change in LPL activity following DEX is related to augmented synthesis, we measured LPL 

mRNA in heart homogenates. Four hours of DEX increased LPL mRNA levels (Fig. 2-4C). 

2.3.7 DEX lowers plasma levels of TG but not FA. Cardiac specific overexpression of 

LPL has been suggested to be an important determinant of plasma T G levels in mice (24). 

Given the increase of LPL at the coronary lumen, we evaluated both plasma T G and FA at 

varying times (l-4h) following DEX. Interestingly, although plasma T G declined 

progressively, there was no increase in plasma F A (Fig. 2-7A). 

2.3.8 Accumulation of cardiac lipid droplets following DEX. Electron micrographs 

illustrate increase lipid-like vacuoles in myocytes following D E X treatment (Fig. 2-7B, 

arrows). These spherical lipid droplets were closely associated with the mitochondria. No 

other ultrastructural difference was detected between control and D E X hearts. 
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2.4 DISCUSSION 

Chronic DEX treatment induces insulin resistance, hyperinsulinemia and hyperglycemia 

(25; 26). In our study, a single bolus dose of DEX had no influence on either plasma insulin 

or glucose after 4h. Nevertheless, exploiting the euglycemic-hyperinsulinemic clamp, we 

demonstrate that D E X induced whole-body insulin resistance at this time point. Although 

this insulin resistance could embrace metabolic abnormalities in multiple organs (27), the 

effects of D E X on insulin sensitive cardiac tissue have not been entirely elucidated. 

Assessment of cardiac glycolytic rates revealed no change following DEX, whereas glucose 

oxidation decreased significantly. Moreover, cardiac glycogen content increased almost 2 

fold after DEX. These data suggest that short-term, D E X is capable of inducing insulin 

resistance and switching cardiac glucose disposal from oxidation to storage, likely 

compromising energy production in the heart. 

Glucose utilization provides the heart with approximately 30% of its energy 

requirements. Following glucose uptake and conversion to pyruvate, PDC facilitates 

subsequent entry and oxidation of pyruvate in the mitochondria. By phosphorylating PDC, 

PDK can decrease the rate of glucose oxidation. In Morris hepatoma cells, DEX is known 

to stimulate PDK4, but not PDK2 expression (12). As these two PDK's are the major 

isoforms in the heart, we examined their cardiac expression. D E X increased the expression 

of PDK4, but was without effect on the high basal level of PDK2. Our data suggest that 

acute DEX could lower cardiac glucose oxidation through augmentation of PDK4 gene and 

protein expression. Whether PDP also plays a role in explaining the effect of DEX on 

cardiac glucose metabolism, as suggested in STZ diabetes (28), is currently unknown. 
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Typically, FA's provide most of the energy required by the normal heart, with the 

balance coming from oxidation of other substrates like glucose. As cardiac glucose 

oxidation is impaired following DEX, we predicted that FA consumption would make up the 

energy deficit. Based on reports that: a) LPL is the major F A supplier to the heart, and b) 

that glucocorticoids are known to enhance LPL activity in post heparin serum (29), heart 

homogenates (30), and isolated myocytes (31), we examined LPL regulation following 

DEX. The present study is the first to report a rapid increase in LPL activity and protein at 

its functionally relevant location, the coronary lumen. Given the observation that cardiac 

LPL is a major determinant of plasma T G (24), the increase in cardiac luminal LPL could be 

associated with the decline in circulating TG. However, as no apparent change was noted in 

plasma FA levels, our data suggest that following LPL mediated T G hydrolysis, FA can be 

taken up rapidly and directly into tissues. In support of this suggestion, cardiac and skeletal 

muscle specific overexpression of LPL decreased plasma T G , elevated T G storage in muscle 

tissue but was without effect when plasma FA was measured (32). In this study, 

visualization using E M also revealed high triglyceride storage in DEX-treated hearts. 

In hypoinsulinemic and hyperglycemic STZ rats, we reported elevated cardiac luminal 

LPL activity (15; 16) that was independent of shifts in mRNA levels, suggesting a 

posttranslational increase of LPL at this location (22). With insulin resistance induced by 

DEX, although comparable results were observed when luminal LPL activity was measured, 

in this instance, changes in LPL activity are coordinated to an increase in LPL mRNA. 

Another interesting dissimilarity between STZ mediated hypoinsulinemia and DEX induced 

insulin resistance is when hearts are perfused in vitro with heparin-free buffer. STZ hearts 

lose the augmented pool of heparin-releasable LPL at the coronary lumen implicating 
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hypoinsulinemia as an important reason for this effect in vivo, with continuous displacement 

of the enzyme in its absence, in vitro. It should be noted that we are unable to detect any 

alteration in basal enzyme displacement between control and STZ hearts due to the large 

volume (30 ml) into which LPL was being shifted. In contrast, hearts from DEX animals 

continued to demonstrate augmented basal and heparin-releasable LPL activity in vitro, 

implying that the rate of displacement is overcome by intrinsic and enduring changes, likely 

an increased synthesis and transfer of enzyme, that act to keep LPL high at this location. 

Regulation of cardiac luminal LPL may be an important means for maintaining cardiac 

function at time of metabolic stress by providing excess FA to the heart. Acute treatment 

(180 min) of 4-day STZ diabetic rats with a rapid-acting insulin reduced peak heparin-

releasable LPL activity to control levels. It is likely that in vivo, insulin by facilitating 

glucose entry and utilization, overcomes any energy deficit, eventually decreasing the 

requirement for LPL. D E X is considered a iong acting steroid with a single dose lasting 

about two to two and half days and an "every other day" schedule being recommended for 

treatment (33). Interestingly, estimation of cardiac LPL from D E X hearts revealed an 

increase in enzyme, both immediately and following 3h of insulin infusion (during clamp). 

These data suggest that unlike hypoinsulinemia, provision of exogenous insulin during 

DEX-induced insulin resistance is unable to normalize LPL. It should be noted that in 

humans, insulin secretegogues like sulfonylureas are also ineffective in overcoming 

glucocorticoid induced insulin resistance (34). 

In summary, our studies suggest that under circumstances where glucose utilization is 

compromised due to glucocorticoid-induced increase of PDK4, augmented LPL will amplify 

T G hydrolysis, and the F A supplied to the heart are used as additional sources of substrate to 
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maintain continuous energy production. On the other hand, intracellular availability of FA 

could regulate glucose metabolism, as suggested by the "glucose-fatty acid cycle" (35; 36) 

Accordingly, D E X effects on glucose oxidation are prevented by Acipimox, which reduces 

plasma FA (37), and in Morris hepatoma cells, FA's directly increase PDK4 expression 

(12). Irrespective of the mechanisms that increase LPL or decrease glucose oxidation, a role 

for LPL in cardiac pathology has been demonstrated in transgenic mouse lines 

overexpressing human LPL in skeletal and cardiac muscle (24; 38). These animals 

exhibited insulin resistance, and a severe myopathy characterized by muscle fiber 

degeneration, and extensive proliferation of mitochondria and peroxisomes. In a more 

recent study using genetically engineered mice that specifically overexpressed 

cardiomyocyte surface bound LPL, lipid oversupply and impaired contractile function 

(cardiomyopathy) was observed (39). Whether these effects of D E X on cardiac metabolism 

can be translated into increased cardiovascular risk (40) has yet to be determined. 

60 



Chapter 2: Diabetes. 2004 53(7): 1790-7 

2.5 TABLES AND FIGURES 

TABLE 2-1 

General characteristics of the animals 

Control Dexamethasone 

Plasma Glucose 8.7±0.2 8.7±0.1 
(mM) 

Plasma Insulin 3.2±0.5 3.3±0.7 
(ng/ml) 

Heart Weight 1-4±0.1 1.2±0.001 
(g) 

Heart Rate 313±10 312±8 
(bpm) 

Rate Pressure Product 32±1 34±1 
(bpm x mmHg/1000) 

MAP 122±6/93±4 125±6/93±6 
(mmHg) 

Values are means ± SE for 6 animals in each group. D E X (1 mg/kg) was administered by 
i.p. injection into control rats and the animals killed 4h later. Hearts were perfused in the 
working mode for an hour at a preload of 11.5 mmHg and an afterload of 80 mmHg. Mean 
arterial pressure (MAP) was measured by an in vivo cannula inserted into the carotid artery. 
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FIG. 2-1 Effects of DEX on whole animal insulin resistance. Following 
injection of vehicle or DEX for 4h, whole-animal insulin resistance was assessed 
using a euglycemic-hyperinsulinemic clamp. Insulin (HumulinR; 3 mU/min/kg) 
and d-glucose (50%) were continuously delivered (by a cannula inserted into the 
left jugular vein) for 3h, with the glucose infusion started 4 min after 
commencement of insulin infusion. At regular intervals, blood samples taken 
from the tail vein were analyzed for glucose using a glucometer. Glucose 
infusion rate (GIR) was adjusted accordingly to maintain euglycemia. CON, 
control; DEX, dexamethasone. 
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A 

FIG. 2-2 Glycolysis, glucose oxidation, and glycogen in DEX-treated 
hearts. 4h after control rats were treated with DEX, animals were killed 
and hearts collected. Isolated hearts were perfused in the working mode 
for lh (preload of 11.5 mmHg; afterload of 80 mmHg) and rates of 
glycolysis (A) and glucose oxidation (B) determined as described in the 
methods. Mean steady state rates of glycolysis and glucose oxidation were 
determined from data obtained during the initial portion of the heart 
perfusion. The lower panel (C) represents glycogen content in rat 
ventricular muscle. Cardiac glycogen was determined as glucose residues 
by a glucose kinase method after acid hydrolysis. Values are the mean ± 
SE for 5 rats in each group. Significantly different from control, P < 0.05. 
CON, control; DEX, dexamethasone. 
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CON DEX 

FIG. 2-3. Pyruvate dehydrogenase kinase (PDK) mRNA and protein 
expression in hearts from insulin resistant rats. PDK2 (A) and PDK4 
(B) gene expression were measured using RT-PCR, and total RNA 
extracted from 100 mg heart tissue. Expression levels were 
represented as the ratio of signal intensity for PDK mRNA relative to 
P-actin mRNA. Western blot analysis for PDK4 (C) was carried out 
in isolated mitochondria. Results are the means ± SE of 3-4 animals 
in each group. * Significantly different from control; P < 0.05. CON, 
control; DEX, dexamethasone. 
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FIG. 2-4 Effects of DEX on luminal LPL and cardiac mRNA expression. 
Coronary luminal LPL activity was determined in vitro by heparin perfusion (over 
10 min) of hearts isolated from animals treated with D E X (A). Hearts were 
perfused in the retrograde mode with heparin (5 U/ml) and fractions of perfusate 
collected and analyzed for LPL activity as described previously. The inset 
represents peak LPL activity at various intervals (l-3h of a single representative 
experiment) whereas the graph shows LPL activity after 4h of DEX (n=6). 
Changes in LPL activity in response to heparin perfusion, over time, were 
analyzed by multivariate analysis of variance followed by the Newman-Keul's test 
using the NCSS. The middle panel (B) is representative photograph showing the 
effect of D E X (4h) on LPL immunofluorescence as visualized by fluorescent 
microscopy. Heart sections were fixed, incubated with the polyclonal chicken 
antibody against bovine LPL followed by incubations with biotinylated rabbit anti-
chicken IgG and streptavidin-conjugated Cy3 fluorescent probe respectively. The 
lower panel (C) represents LPL mRNA gene expression as measured using RT-

PCR. Results are the mean ± SE of 3 rats in each group. Significantly different 
from control, P < 0.05. CON, control; DEX, dexamethasone. 
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CON STZ DEX CON STZ DEX 

0 min 60 min 

FIG. 2-5 Differential effects on coronary LPL in isolated hearts from STZ 
and D E X animals that are perfused in vitro for lh. On immediate removal of 
hearts from STZ (4 days) arid DEX (4h) rats, peak LPL activity was 

v. determined after perfusion with heparin (0 min). In a separate experiment, 
hearts from different groups were first perfused for 60 min with Kreb's 
buffer. During the 60 min perfusion, basal LPL activity (in the absence of 
heparin) was determined in the buffer reservoir over time (inset). 
Subsequently, LPL was displaced by heparin, and activity determined. 

Results are the mean ± SE of 4 rats in each group. Significantly different 

from control, ̂ Significantly different from all other groups, P < 0.05. CON, 
control; STZ, streptozotocin; DEX, dexamethasone. 
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FIG. 2-6 Responses of exogenous insulin on cardiac LPL activity. STZ diabetic 
rats were injected with a rapid acting insulin (8U) 4 days after diabetes induction, 
the rats killed 180 minutes later, and heparin-releasable LPL activity determined in 
perfused hearts (inset). Heparin-releasable LPL activity was also determined prior 
to, and following termination of the 3h euglycemic-hyperinsulinemic clamp. 

Results are the mean ± SE of 4 rats in each group. ^Significantly different from all 
other groups, P < 0.05. CON, control; STZ, streptozotocin; STZ + IN, 
streptozotocin + insulin; DEX, dexamethasone. 
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FIG. 2-7 Lipid homeostasis following D E X injection. Animals were 
treated with DEX (1 mg/kg, i.p.), and blood samples from the tail vein 
collected at 60 min intervals for determination of triglyceride (TG) and 
fatty acid (FA) (A). Results are the means ± SE of 4 rats in each group. 
After 4h, cardiac morphology was evaluated by transmission electron 
microscope. The lower panel (B) depicts a representative electron 
micrograph of hearts from control (CON) and dexamethasone (DEX) 
animals. The scale bar represents 500 nm. M , mitochondria; white 
arrow, lipid like vacuoles. 
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3. ALTERED CARDIAC FATTY ACID COMPOSITION AND 

UTILIZATION FOLLOWING DEXAMETHASONE INDUCED 

INSULIN RESISTANCE 

3.1 I N T R O D U C T I O N 

Glucocorticoids are widely used as anti-inflammatory and immunosuppressive agents. 

However, glucocorticoid therapy is often associated with serious adverse effects including 

dyslipidemia, impaired insulin sensitivity, and cardiovascular disease (1). Increasing 

evidence from clinical and experimental studies has established that metabolic abnormalities 

play a crucial role in the development of heart disease (2; 3). Under physiological 

conditions, heart acquires most of its energy from metabolism of glucose and fatty acid 

(FA), with the latter being the major substrate consumed by cardiac tissue (3). During 

metabolic stress, such as diabetes and insulin resistance, characterized by inadequate glucose 

utilization, cardiac FA consumption supercedes glucose oxidation. In the heart, elevated F A 

use has been implicated in a number of metabolic, morphological, and mechanical changes, 

and more recently, in "lipotoxicity" (4). During lipotoxicity, when the capacity to oxidize 

FA is saturated, FA accumulates and can, either by themselves or via production of second 

messengers such as ceramides, provoke cell death (4). 

Previously, we have reported that a single dose of the synthetic glucocorticoid hormone 

dexamethasone (DEX) induced whole-body, insulin resistance within 4h (5). Hearts from 

these animals showed high pyruvate dehydrogenase kinase (PDK4), an enzyme that 

inactivates pyruvate dehydrogenase complex, and subsequently attenuates glucose oxidation 

(5). DEX treated hearts also demonstrated enlargement of coronary lipoprotein lipase 
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(LPL), the enzyme that mediates hydrolysis of circulating lipoproteins to FA, and suggested 

to be the principal source of F A for cardiac utilization (5). The present study was designed 

to evaluate the fate of FA delivered to the heart following D E X treatment. 
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3.2 EXPERIMENTAL DESIGN AND METHODS 

3.2.1 Experimental animals. The investigation conforms to the guide for the care and 

use of laboratory animals published by the US National Institutes of Health and the 

University of British Columbia (animal care certificate A00-0291). Male Wistarrats (250-

300g) were obtained from the University of British Columbia Animal Care Unit and fed a 

standard laboratory diet (PMI Feeds, Richmond, VA), and water ad libitum. The synthetic 

glucocorticoid hormone D E X (1 mg/kg) or an equivalent volume of ethanol was 

administered by i.p. injection, and the animals killed after 4 and 8h, respectively. 

3.2.2 Euglycemic-hyperinsulinemic clamp. Whole-animal insulin resistance was 

assessed using a euglycemic-hyperinsulinemic clamp. Briefly, after treatment with DEX, 

anesthetized rats were administered insulin (Humulin R; 30 mU/min_1/kg~') and D-glucose 

(50%) continuously for lh; glucose infusion was initiated 4 min after commencement of 

insulin infusion. Throughout the procedure, circulating blood glucose was monitored by 

analysis of blood obtained from the tail vein (using a glucometer; AccuSoft Advantage). M -

value represents the average glucose infusion rate (GIR) measured over the last 30 min of 

the euglycemic-hyperinsulinemic clamp. 

3.2.3 Post heparin plasma lipolytic activity (PHPLA). Plasma LPL activity in the fed 

state and in response to a heparin injection was determined in control and D E X rats as 

described previously (6). Heparin (25 U/ml) was injected into the jugular vein of lightly 

anaesthetized (20 mg/kg sodium pentobarbital i.p.) rats, and blood samples collected after 10 

minutes. Plasma was separated and stored at -70 °C until assayed for LPL activity. Plasma 

lipase activity was determined by first measuring total lipase (hepatic + LPL) activity in 5 pi 

of plasma sample. Hepatic lipase activity was measured by incubating plasma with 1 M 
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NaCl (at room temperature for 10 minutes before exposing to substrate), and conducting the 

assay in the absence of apolipoprotein CII (7), to suppress LPL activity. Plasma LPL 

activity was calculated as the difference between total and hepatic lipase activity. 

3.2.4 Triton WR1339. WR 1339, a non-ionic detergent, physically alters lipoproteins 

making them inaccessible for LPL mediated hydrolysis (8). When injected intravenously, 

newly synthesized TGs accumulate in the plasma. Rats were injected (i.v.) with WR1339 

(25% w/v solution in normal saline to give a dose of 600 mg/kg body weight). WR 1339 

was injected 30 min prior to D E X administration and blood samples were collected at 2 and 

4h after the injection. Plasma was separated and the T G concentration was measured. 

3.2.5 Plasma triglyceride. Blood samples from the tail vein were collected at varying 

intervals in heparinized glass capillary tubes. Blood samples were immediately centrifuged 

and plasma was collected and assayed. A diagnostic kit was used to measure triglyceride 

(Thermo Electron). 

3.2.6 Separation and characterization of cardiac lipids. Total cardiac lipids were 

extracted and solubilized in chloroform-methanol-acetone-hexane (4:6:1:1 vol/vol/vol/vol). 

Separation of T G and F A was achieved using HPLC (Waters 2690 Alliance HPLC, Milford, 

MA) equipped with an auto-sampler and. column heater. FA were quantified as their 

respective methyl esters using heptadecaenoic acid (17:0) as the internal standard with a 

Varian 3400 G L C equipped with a flame ionization detector, a Varian Star data system, and 

a SP-2330 capillary column (30 m x 0.25 mm; Supelco, Bellefonte, PA). Values of cardiac 

FA and T G were expressed as micrograms per milligram protein. 

3.2.7 Measurement of A6-desaturase activity. A6-desaturase plays a key role in the 

synthesis of arachidonic acid from linoleic acid. The total activity of this enzyme is 
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reflected by the sum of all desaturatipn products from linoleic acid (9). Briefly, following 4 

and 8h of DEX, hearts were removed and mircrosomes prepared as described previously (9). 

One half milligram microsomal protein was reacted with 200 umol 18:2(n-6) with 0.1 juCi 

[14C] 18:2(n-6) at 37°C for 20 min. Following reaction termination and fatty acid extraction, 

the resulting methyl esters were dissolved in petroleum ether (bp 30-60 C) with a mixture of 

unlabeled methyl ester carriers (100 ug each) and then separated according to their 

urisaturation by argentation T L C on Silica Gel. The plates were developed in toluene 

acetone and the bands were visualized under U V light. The quantification of desaturation 

products was performed by liquid scintillation spectrometry with quench correction and 

conversion to dpm. Recovery of radioactivity from the T L C plates was >95%. 

3.2.8 Cardiac glucose and fatty acid oxidation. To measure glucose oxidation, isolated 

hearts were perfused for 30 min with Krebs-Henseleit buffer in the working mode at a 

preload of 11.5 mmHg and an afterload of 80 mmHg, as previously described (5). Rates of 

glucose oxidation were quantitatively measured by collection of 1 4 C 0 2 liberated from [U-

1 4 C] glucose at the pyruvate dehydrogenase reaction and in the citric acid cycle. To measure 

cardiac palmitate oxidation, hearts from halothane (2-3%)-anesthetized rats were perfused in 

the working mode with modified Krebs-Henseleit buffer (including 1.0 mM [9,10- H] 

palmitate prebound to 3% BSA, 5.5 mM glucose, 2.0 mM calcium, and 100 U/L insulin) at a 

preload of 11.5 mmHg, as described previously (10). An afterload of 80 mmHg was 

maintained, and samples of perfusate and hyamine hydroxide were taken every 10 min for 

measurement of fatty acid oxidation. 

3.2.9 Cardiac PDK4 and AMPK gene expression. Heart PDK4 and A M P K gene 

expression were measured using RT-PCR. Briefly, total RNA from cardiac tissues was 
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extracted using TRIzol (Invitrogen), and reverse transcription was carried out using an 

oligo-(dT) primer and superscript II reverse transcriptase (Invitrogen). cDNA was amplified 

using PDK4 (reported previously) (5) and A M P K [ 5 ' - G C T G T G G A T C G C C A A A T T A T - 3 ' 

(left) and 5 ' -GCATCAGCAGAGTGGCAATA-3' (right)] specific primers. The p-actin gene 

was amplified as an internal control using 5 ' -TGGTGGGTATGGGTCAGAAGG-3' (left) 

and 5 ' - A T C C T G T C A G C G A T G C C T G GG-3' (right). The amplification parameters were set 

at 94°C for 1 min, 58°C for 1 min, and 72°C for 1 min, for a total of 30 cycles. The PCR 

products were electrophoresed on a 1.7% agarose gel containing ethidium bromide. 

Expression levels were represented as the ratio of signal intensity for PDK4 and A M P K 

mRNA relative to p-actin mRNA. 

3.2.10 Western blotting for A M P K and A C C . Phosphorylation of A M P K increases its 

activity ~50 - to 100-fold (11; 12), and subsequently phosphorylates and inactivates A C C . 

To determine total and phosphorylated AMPKcc and A C C , whole cell homogenates were 

isolated as described previously (13). Briefly, hearts were ground under liquid nitrogen, and 

50 mg were homogenized. After centrifugation at 5,000 g for 20 min, the protein content of 

the supernatant was quantified using a Bradford protein assay. Samples were diluted and 

boiled with sample loading dye, and 50 ug were used in SDS-PAGE. After transfer, 

membranes were blocked in 5% skim milk in Tris-buffered saline containing 0.1% Tween 
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20. Membranes were incubated either with rabbit AMPKcc, phospho-AMPK (Thr ), 

phospho-ACC (Ser79) (Cell Signaling) or actin antibodies (Santa Cruz). Subsequently, a 

secondary goat anti-rabbit horseradish peroxidase-conjugated antibody was used, and the 

membranes visualized using enhanced chemiluminescence (ECL) detection. Measuring the 

phospho form of A M P K is a surrogate for estimation of its activity. 
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3.2.11 Materials. [ H]-triolein was purchased from Amersham Canada. Heparin sodium 

injection (Hapalean; 1000 USP U per ml) was obtained from Oraganon Teknika. All other 

chemicals were obtained from Sigma Chemical. 

3.2.12 Statistical analysis. Values are means ± SE. Wherever appropriate, one-way 

A N O V A followed by the Tukey or Bonferroni tests or the unpaired and paired Student's t 

tests were used to determine differences between group mean values. The level of statistical 

significance was set at P < 0.05. 
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3.3 RESULTS 

3.3.1 Acute DEX induces insulin resistance. Our previous study reported that DEX for 

4h induced whole-body and cardiac specific insulin resistance (5). In the present study, we 

confirmed and extended this finding. Thus, following lmg/kg D E X injection and using the 

euglycemic-hyperinsulemic clamp, our data revealed that the glucose infusion rate necessary 

to maintain euglycemia was lower, both after 4 and 8h of D E X treatment (Fig. 3-1 A). This 

whole-body insulin resistance was also associated with a heart specific increase in PDK4 ^ 

gene expression (Fig. 3-1B) and a reduction of cardiac glucose oxidation (Fig. 3-1C). 

3.3.2 High plasma TG clearance following DEX is due to amplified lipolytic activity. 

LPL, the rate-limiting enzyme in T G clearance, controls catabolism of TG-rich lipoproteins 

(14; 15). To test whether DEX influences whole body lipolytic activity, basal and post-

heparin plasma was obtained from CON and DEX treated animals. Both basal and post-

heparin plasma LPL activity increased at 4 and 8h after D E X (Fig. 3-2A). Given this 

increase in lipolytic activity, we evaluated plasma T G at varying times (0-8h). Interestingly, 

plasma T G declined progressively, and remained low at 8h following D E X (Fig. 3-2B). To 

exclude the possibility that the D E X induced reduction in plasma T G is a consequence of 

decreased lipoprotein secretion from the liver, both CON and D E X animals were treated 

with WR 1339. A 20 fold increase in circulating T G was observed following injection of 

this detergent, with no statistical difference between the CON and D E X treated groups (Fig. 

3-2C). 

3.3.3 FA composition in the heart following DEX. As incubation of circulating 

lipoproteins with LPL predominantly releases palmitic acid (16), we measured the cardiac 

FA composition following DEX. Palmitic (Fig. 3-3A) and oleic (Fig. 3-3B) acid levels were 
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higher after 4h of DEX, and decreased to control levels within 8h. More interestingly, 

polyunsaturated FAs demonstrated a drop in linoleic and gamma linolenic acid, with an 

increase in arachidonic acid after acute DEX injection (Fig. 3-3, table). Measurement of 

cardiac A6-desaturase showed a decrease in activity following D E X (Fig. 3-4). 

3.3.4 DEX alters cardiac TG and increases FA oxidation. Tissue FA clearance occurs 

through both storage as T G and oxidation. At 4h, D E X augmented cardiac T G 

accumulation (Fig. 3-5). However, this increase in tissue T G could not be maintained, such 

that at 8h following DEX, T G declined to control levels (Fig. 3-5). At an afterload of 80 

mmHg, palmitate oxidation after 4 and 8h of DEX was higher compared to control (Fig. 3-

6). The increase in palmitate oxidation following D E X was unrelated to any change in 

cardiac PPAR-ot gene expression (data not shown). 

3.3.5 Acute DEX influences cardiac AMPK and phosphorylates ACC. Following 4h 

of DEX, an approximately 2-fold increase of A M P K phosphorylation was observed, that 

was maintained until 8h (Fig. 3-7C). Interestingly, this change in A M P K phosphorylation 

paralleled a rise in total A M P K protein (Fig. 3-7B), and gene expression (Fig. 3-7A). Once 

activated, A M P K phosphorylates and inactivates ACC280, the predominant isoform in the 

heart (12). As A C C catalyzes the conversion of acetyl-CoA to malonyl-CoA, AMPK, by 

phosphorylating A C C , is able to decrease malonyl-CoA, and minimize its inhibition of FA 

oxidation (12). Following 4 and 8h of DEX, phosphorylation of ACC280 increased (Fig. 3-

8). 
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3.4 D I S C U S S I O N 

Both endogenous (17; 18) and exogenous glucocorticoids (19; 20) impair insulin sensitivity, 

contributing to generation of the metabolic syndrome including insulin resistance, obesity 

and hypertension. In the present study, both 4 and 8h DEX treatment decreased glucose 

infusion rate during the euglycemic-hyperinsulinemic clamp. This whole body insulin 

resistance was associated with augmented expression of cardiac PDK4, and a reduction in 

the rate of cardiac glucose oxidation. 

Plasma T G levels are maintained through uptake from the gut, secretion from the liver, 

and clearance by vascular endothelium-bound lipoprotein lipase (LPL). Using WR1339, the 

decrease in plasma T G following D E X was likely not related to decreased lipoprotein 

secretion from the liver. At the lumen, LPL actively metabolizes the T G core of lipoproteins 

to FA, which are then transported into the underlying tissue for numerous metabolic and 

structural functions. Through such a role, LPL activity directly affects the level of 

circulating lipoprotein-TG. For example, in transgenic rabbits that have global 

overexpression of LPL, attenuation of hypertriglyceridemia is observed (21). Given the 

association between glucocorticoids and LPL gene expression in the heart and adipose 

tissues (5; 22; 23), we measured post-heparin plasma lipolytic activity. Both basal and 

heparin releasable LPL increased following 4 and 8h of DEX. More importantly, this 

increased LPL was related to a progressive clearance of plasma T G , which remained low, 

even at 8h of DEX. It is unclear whether this effect of D E X on T G is beneficial. Systemic 

over-expression of LPL has been reported to ameliorate insulin resistance (24; 25). 

However, it should be noted that despite this reduction in TG, D E X was still associated with 

whole body.insulin resistance. 
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AMPK, a heterotrimeric enzyme, plays a key role in regulation of cardiac metabolism 

(26). AMP binding to the A M P K y subunit and Thr 1 7 2 phosphorylation by A M P K kinase 

increases A M P K activity (26). Under physiological and pathological conditions like 

exercise, fasting and ischemia that change the AMP/ATP ratio, A M P K is phosphorylated 

and activated in the absence of any change in total A M P K protein (27; 28). Various drugs 

including 5-aminoimidazole-4-carboxamide-l-p-4-ribofuranoside and metformin also 

activate A M P K without altering total protein (29). In the present study, our data for the first 

time demonstrate that acute D E X treatment, through transcriptional regulation, augments 

total A M P K protein, and thus phosphorylation. Glucocorticoids have previously been 

reported to influence the transcription of approximately 1% of the entire genome in humans 

Recently, A M P K has been implicated in FA delivery to cardiomyocytes through its 

regulation of CD36 (30). Given the importance of LPL in providing hearts with FA (15), 

and the observation that incubation of circulating lipoproteins with LPL predominantly 

releases palmitic acid (47.5% of total fatty acids released) (16), we predicted that following 

DEX, total cardiac palmitic acid should increase. Indeed, palmitic (and oleic) acid in the 

heart increased almost 2 fold following 4h of DEX. Whether this increase is also associated 

with hydrolysis of esterified pools (endogenous T G and phospholipids) has yet to be 

determined. At 8h, levels of palmitic and oleic acid returned to normal, and possibly are 

reflective of the low circulating TG, or increases in F A oxidation. In the heart, A M P K 

activation is known to promote FA oxidation (31). A M P K phosphorylates A C C and 

subsequently lowers malonyl-CoA. Decreased malony-CoA increases carnitine 

palmitoyltransferase-1 (CPT-1), a rate-limiting enzyme in mitochondria, and FA oxidation 
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is amplified (31). In the present study, acute DEX promoted A C C phosphorylation and 

increased palmitate oxidation, perhaps through its effects on AMPK. On the other hand, 

even though cardiac PPAR-alpha expression was unchanged after DEX, the possibility that 

DEX-induced metabolic changes were due to PPAR-alpha activation by elevated cellular 

fatty acids cannot be excluded. 

During diabetes and insulin resistance, in order to compensate for the diminished 

contribution of glucose as an energy source, cardiac energy production occurs largely from 

fatty acids, which are supplied in excess to the heart (3; 5). However, the heart and other 

non-adipose tissues have inadequate ability to handle excess lipids. Given that F A oxidation 

is likely operating at maximum in D E X treated hearts (in the normal heart, 70% of energy 

production is already being obtained through oxidation of FA) (3), the excess cardiac FA is 

likely channeled towards T G synthesis. Measurement of cardiac T G showed high levels at 

4h after DEX, but was normalized at 8h. As A C C phosphorylation and palmitate oxidation 

remained high at 8h, our data suggest that the drop in T G likely occurred, either due to 

persistent intracellular oxidation of FA and/or the presence of diminished circulating 

lipoprotein TG. At present, it is unclear whether this drop in cardiac T G would also occur 

under conditions of hyperlipidemia, which would be expected to maintain elevated 

intracellular TG. Given the clinical prevalence of glucocorticoid use, it is possible that 

should this occur, elevated F A delivery and subsequent T G synthesis may result in a number 

of metabolic, morphological, and mechanical changes, and eventually, in "lipotoxicity" (4). 

Unlike saturated F A necessary for ATP generation, polyunsaturated FA (PUFA) are also 

required to manufacture and repair cell membranes (32; 33), and regulate functions like 

heart rate, blood pressure and clotting (34; 35). In an effort to determine whether DEX 
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influences cardiac PUFA composition, we measured the cardiac F A species, and established 

a drop in linoleic and gamma linolenic acid, with an increase in arachidonic acid. Given the 

function of glucocorticoids to inhibit phospholipase A2 (36), the increase in cardiac 

arachidonic acid was unexpected. It is possible that as DEX decreased linoleic (LA) and 

gamma linolenic (LNA) acid over time, these FA are either being oxidized or converted to 

arachidonic acid (AA). Other studies have reported that in rat testis, D E X can stimulate 

delta 6 desaturase (37), the rate-limiting enzyme for converting linoleic acid to arachidonic 

acid. In the present study, as DEX inhibited cardiac A-6 desaturase, it is likely that the 

decrease in L A and L N A is due to increased FA oxidation. At present, the mechanism for 

the increase in cardiac A A is unknown. Irrespective of the mechanism, excess amounts of 

A A are known to alter insulin signaling and sensitivity (33), and induce cell death (38; 39), 

directly through the mitochondrial permeability transition (40) or indirectly through 

conversion of A A to toxic byproducts like hydroxyeicosatetraenoic (41) and 

epoxyeicosatrienoic acids (34; 35). Unlike omega 6 FA, D E X had limited effects on omega 

3 FA like DHA and EPA, reported to protect heart from cardiovascular disease (42). 

In summary, acute D E X induced insulin resistance increases plasma lipolytic activity, 

and rapidly clears circulating T G . The FA entering the heart are either stored as T G or 

oxidized. F A oxidation occurs through activation of A M P K and subsequent 

phosphorylation of A C C . In addition to saturated' FA, DEX also influences the cardiac 

composition of polyunsaturated FA, with the most significant change being the increase in 

arachidonic acid. Given the detrimental effects of high F A oxidation, T G storage, and 

arachidonic acid accumulation, our data suggests that the acute effects of D E X on cardiac 
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metabolism may be associated with the increased cardiovascular risk following chronic 

therapy. 
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T A B L E S A N D FIGURES 
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FIG. 3-1 Acute D E X induces insulin resistance and alters cardiac 
glucose oxidation. Following 1 mg/kg D E X injection for 4 and 8h, 
whole-animal insulin resistance was assessed using a euglycemic-
hyperinsulinemic clamp. M-value represents the average glucose 
infusion rate (GIR) measured over the last 30 min of the euglycemic-
hyperinsulinemic clamp (A). To identify changes in glucose metabolism 
specifically in the heart, we evaluated PDK4. PDK4 gene expression 
was measured using RT-PCR. Expression levels were represented as the 
ratio of signal intensity for PDK mRNA relative to B-actin mRNA (B). 
Glucose oxidation (C) was determined as described in methods. Results 
are the means ± SE of 3-4 animals in each group. *P < 0.05 vs. control. 
CON, control; DEX, dexamethasone. 
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FIG. 3-2 High plasma T G clearance following D E X is due to amplified 
lipolytic activity. Plasma LPL activity in the basal state, and in response to 
a heparin injection was determined in control and D E X rats. Heparin was 
injected into the jugular vein of lightly anaesthetized rats, and blood 
samples collected after 10 minutes. Plasma lipase activity was determined 
by first measuring total lipase (hepatic + LPL) activity. Incubating plasma 
with 1 M NaCl, and conducting the assay in the absence of apolipoprotein 
CII, to suppress LPL activity, measured hepatic lipase activity. Plasma 
LPL activity was calculated as the difference between total and hepatic 
lipase activity (A). A diagnostic kit was used to measure plasma 
triglyceride over time (B). In a different experiment, 30 min before DEX, 
WR 1339 was administered, rats killed after 4 and 8, and plasma T G 
measured (C). Results are the means ± SE of 5 animals in each group. *P 
< 0.05 vs. control. CON. control; DEX. dexamethasone. 
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Cardiac PUFA CON 
DEX 

Cardiac PUFA CON 4 h 8h 

Linoleic acid 
(C 18:2) 

0.627 ± 0.035 0.678 ± 0 . 1 1 7 0.294 ± 0.066 * 

Gamma-Linolenic acid 
(C18:3n3) 

0.024 ± 0.009 0.018 ±0.001 0.003 ± 0.002 * 

Arachidonic acid 
(C 20:4n6) 

0.051 ± 0.002 0.213 ±0.05 0.2 ±0.02 

EPA 
(C22:5n3) 

0.063 + 0.01 0.063 ± 0.027 0.058 ±0.021 

DHA 
(C 22:6n3) 

0.142 ±0 .02 0.078 ± 0 . 0 1 7 * 0.125 ±0.038 

FIG. 3-3 Effects of dexamethasone on cardiac F A compositioa Cardiac free fatty acids 
were extracted with chloroform-methanol-acetone-hexane solvent, converted to their 
respective methyl esters, and separated by gas chromatography. Values are means ± SE of 
4 rats in each group and are expressed as micrograms per milligram protein. *P < 0.05 vs. 
control. CON, control; DEX, dexamethasone; PUFA, polyunsaturated fatty acid. In the 
table, asterisk represents a significant decrease, whereas numbers that are italicized 
represent a significant increase compared to control. P < 0.05. 
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FIG. 3-4 Cardiac A6-desaturase activity. Following 4 and 
8h of DEX, hearts were removed, mircrosomes prepared, and 
reacted with 200 umol 18:2(n-6) with 0.1 uCi [ 1 4C] 18:2(n-6) 
at 37°C for 20 min. Following reaction termination and fatty 
acid extraction, the resulting methyl esters were dissolved and 
separated by argentation TLC on Silica Gel. The plates were 
developed in toluene acetone and the bands were visualized 
under U V light (upper panel). The quantification of 
desaturation products was performed by liquid scintillation 
spectrometry with quench correction and conversion to dpm 
(lower panel). Results are the means ± SE of 4 animals in 
control and 8h DEX groups, and 2 animals in 4h D E X group. 
*P < 0.05 vs. control. CON, control; DEX, dexamethasone. 
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FIG. 3-5 T G in the heart following DEX. Separation of T G was achieved 
using HPLC. These values were expressed as micrograms per milligram 
protein. Results are the means ± SE of 4 animals in each group. *P < 0.05 
vs. control. CON, control; DEX, dexamethasone. 
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FIG. 3-6 Palmitate oxidation increases in D E X treated hearts. Hearts 
were perfused in the working mode with Krebs-Henseleit buffer at a 
preload of 11.5 mmHg. An afterload of 80 mmHg was maintained, and 
samples of perfusate and hyamine hydroxide were taken every 10 min for 
measurement of fatty acid oxidation. Values are means ± SE of 4 rats in 
each group. *P < 0.05 vs. control. CON, control; DEX, dexamethasone. 
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DEX 

Fig. 3-7 Acute DEX influences cardiac A M P K . Heart 
A M P K gene expression was measured using RT-PCR. 
Expression levels were represented as the ratio of signal 
intensity for LPL mRNA relative to B-actin mRNA (A). To 
determine total and phosphorylated A M P K a , whole cell 
homogenates were isolated, protein content quantified, and 50 
ug protein used in SDS-PAGE. After transfer, membranes 
were blocked and incubated either with rabbit A M P K a (B), 
phospho-AMPK (Thr 1 7 2) (C), or actin antibodies (B). 
Membranes were visualized using enhanced 
chemiluminescence (ECL) detection. Results are the means ± 
SE of 5 animals in each group. *P < 0.05 vs. control. CON, 
control; DEX, dexamethasone. 
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Fig. 3-8 A C C phosphorylation increases in D E X treated hearts. 
A C C 2 8 0 was measured by Western blotting. Results are the means 
± SE of 4 animals in each group. *P < 0.05 vs. control. CON, 
control; DEX, dexamethasone. 
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4. ACUTE INTRALIPID INFUSION REDUCES CARDIAC 

LUMINAL LPL BUT RECRUITS ADDITIONAL ENZYME 

FROM CARDIOMYOCYTES 

4.1 I N T R O D U C T I O N 

Plasma triglycerides (TG) are maintained through uptake from the gut, secretion from the 

liver, and clearance by vascular endothelium-bound lipoprotein lipase (LPL). LPL actively 

metabolizes the T G core of lipoproteins [very low density lipoproteins (VLDL) and 

chylomicrons] to fatty acid (FA), which are then transported into the underlying tissue for 

numerous metabolic and structural functions (1). Through such a role, LPL activity directly 

affects the level of circulating lipoprotein-TG (2). Thus, in transgenic rabbits that have 

global overexpression of LPL, attenuation of hypertriglyceridemia is observed (3). 

Additionally, administration of NO-1886, an LPL-activating agent, to high-fat fed animals, 

suppressed hypertriglyceridemia (4). 

Although the functional location of LPL-mediated lipoprotein hydrolysis is at the 

capillary endothelial cell surface, a number of approaches including in situ hybridization 

have failed to demonstrate LPL mRNA localization in endothelial cells (5). In tissues like 

heart and adipose, this enzyme is produced in cardiomyocytes and adipocytes respectively 

(6), and subsequently secreted onto heparan sulphate proteoglycan (HSPG) binding sites on 

the surface of these cells. From here, LPL is transported onto comparable binding sites on 

the luminal side of endothelial cells (6-9). Thus, in the heart, electron microscopy using 

immunogold-labeling established that 78% of total LPL is present in cardiac myocytes, 3-

6% in the interstitial space, and 18% at the coronary endothelium (6; 9). Even though the 
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majority of enzyme is located in myocytes, vascular endothelial-bound LPL likely 

determines the rate of plasma lipoprotein-TG clearance, and hence is termed "functional" 

LPL (10). LPL also mediates a non-catalytic bridging function that allows it to bind 

simultaneously to both lipoproteins and specific cell surface proteins, facilitating cellular 

uptake of lipoproteins (11). 

Functional LPL is regulated by multiple mechanisms. Thus, gene mutations produce 

inactive LPL monomers leading to abnormal binding to HSPG (12). LPL at the endothelial 

lumen is also managed by internalization of the HSPG-LPL complex into an endothelial 

endocytotic compartment (13). Finally, FA can directly detach the enzyme from its HSPG 

binding sites (14). An additional property of FA, demonstrated in vitro, is its ability to 

increase heparanase expression in endothelial cells (15). In adipocytes, heparanase regulates 

LPL by enhancing its release through cleavage of HSPG, an effect suggested to influence 

transfer of LPL from parenchymal cells to the endothelial lumen (15; 16). The aim of the 

present study was to determine whether these effects of FA occur in vivo, using the heart as 

a model system in which we can differentiate LPL in various compartments. Our data 

suggest that acute amplification of plasma FA reduces cardiac luminal LPL but recruits 

additional enzyme from cardiomyocytes. 
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4.2 RESEARCH DESIGN AND METHODS 

4.2.1 Experimental animals. The investigation conforms to the guide for the care and 

use of laboratory animals published by the US National Institutes of Health and the 

University of British Columbia (animal care certificate A00-0291). Male Wistarrats (250-

300g) were obtained from the University of British Columbia Animal Care Unit and fed a 

standard laboratory diet (PMI Feeds, Richmond, VA), and water ad libitum. Animals were 

anaesthetized with sodium pentobarbital (Somnotol; 65 mg/kg), and the left jugular vein 

cannulated. Intralipid (IL; 5 ml/kg/h) (17) or vehicle (saline, CON) were then infused over a 

period of 3h. Where indicated, IL infusion at the third hour was terminated, and the animals 

kept for another 3h before removal of hearts. At each lh interval, blood samples were 

obtained from the tail vein for analysis of plasma FA, T G and LPL. 

4.2.2 Measurement of whole-body insulin resistance. Whole-animal insulin resistance 

was assessed using a euglycemic-hyperinsulinemic clamp, as described previously (18). 

Briefly, after infusion of vehicle or IL for 3h, animals were anesthetized with sodium 

pentobarbital (Somnotol; 65 mg/kg) and a cannula inserted into the left jugular vein. Insulin 

(Humulin R; 3 mU/min/kg) and D-glucose (50%) were continuously delivered for 2h, with 

the glucose infusion started 4 min after commencement of insulin infusion. At regular 

intervals, a small amount of blood taken from the tail vein was analyzed for glucose (using a 

glucometer: AccuSoft Advantage). The glucose infusion rate was adjusted accordingly to 

maintain euglycemia. 

4.2.3 Quantification of TG and FA. Total lipids were extracted from plasma and heart, 

and solubilized in chloroform-methanol-acetone-hexane (4:6:1:1 vol/vol/vol/vol). 

Separation of T G and F A was achieved with an HPLC (2690 Alliance HPLC, Waters, 
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Milford, MA). FAs were quantified as their respective methyl esters, with heptadecaenoic 

acid (17:0) used as the internal standard, with a Varian 3400 gas-liquid chromatograph 

equipped with a flame ionization detector, a Varian Star data system, and an SP-2330 

capillary column (30 m x 0.25 mm ID; Supelco, Bellefonte, PA). 

4.2.4 Plasma LPL activity. Plasma LPL activities following vehicle and IL infusion were 

determined as described previously (19). Briefly, blood samples were collected at lh 

intervals during IL infusion, and plasma was separated and stored at -70°C until assayed for 

LPL activity. Plasma lipase activity was determined by first measuring total lipase (hepatic 

+ LPL) activity in 5 pi of plasma sample. Hepatic lipase activity was measured by 

incubating plasma with 1 M NaCl (at room temperature for 10 minutes before exposure to 

substrate), and conducting the assay in the absence of apolipoprotein CII (20), to suppress 

LPL activity. Plasma LPL activity was calculated as the difference between total and 

hepatic lipase activity. 

4.2.5 Isolated heart perfusion and LPL activity. At termination, hearts from the 

different groups were removed and immersed in cold (4°C) Krebs HEPES buffer containing 

10 mM glucose (pH 7.4). After the aorta was cannulated and tied below the innominate 

artery, hearts were perfused retrogradely by the nonrecirculating Langendorff technique as 

described previously (18). Perfusion fluid was continuously gassed with 95% 02/5% CO2 in 

a double-walled, water-heated chamber maintained at 37°C with a temperature-controlled 

circulating water bath. The flow rate was controlled at 7-8 ml/min. Perfusion solution was 

then changed to buffer containing 1% fatty acid-free BSA and heparin (5 units/ml) to 

determine endothelium-bound LPL. Coronary effluent was collected in timed fractions over 
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10 min, and assayed for LPL activity by measuring the hydrolysis of a sonicated [3H]triolein 

substrate emulsion (18). 

To observe coronary luminal LPL recovery in vivo, some animals were maintained for 

another 3h following termination of 20% IL infusion. Hearts were removed and perfused 

with heparin to measure endothelial-bound LPL activity, as described previously. In a 

separate experiment, hearts from IL infused rats were perfused with heparin for 2 min (to 

deplete the LPL pool at the coronary lumen), allowed to recover for lh during which the 

heart was perfused with heparin-free Krebs buffer, and a second 10 min perfusion with 

heparin was then performed to determine the extent of LPL recovery in vitro. 

4.2.6 LPL gene expression and protein. Following termination of 20% IL infusion, LPL 

gene and protein expression were measured using RT-PCR and Western blotting as 

described previously (18; 21). For Western blotting, 100 mg of homogenized ventricular 

tissue and the 5D2 monoclonal mouse anti-bovine LPL (generously provided by Dr. J. 

Brunzell, University of Washington, Seattle, WA) were used. 

4.2.7 Immunogold-labeled electron microscopy. Immunogold electron microscopy was 

used to visualize LPL following IL infusion. Briefly, C O N and 20% IL hearts were 

perfused for 15 min with 4% paraformaldehyde. Following removal and sectioning, tissues 

were kept for another 2h in this fixative before embedding in gelatin blocks. Ultrasections 

using an ultramicrotome were collected on gold grids (200 mesh) for transmission electron 

microscopy. The grids were treated with 150 mM ammonium chloride in PBS-glycine 

solution, and then blocked in 1% ovalbumin in PBS-glycine solution at room temperature. 

The grids were then incubated with primary antibody (5D2), at a dilution of 1:200 overnight 

at 4°C in a blocking solution. Sections were incubated with a secondary antibody (sheep 

107 



Chapter 4: Cardiovasc Res. 2006 (in press) 

anti-mouse IgG gold-conjugated, 10 nM) for 2h at room temperature, at a dilution of 1:100. 

Sections were stained for 4 min with a saturated uranyl acetate solution. Electron 

micrographs were obtained using a Philip 300 transmission electron microscope. 

Distribution of immunogold-labeled LPL was quantified by a previously described method 

(6). Briefly, ten fields from each heart section were selected randomly and printed as 

electron micrographs at x 60,000. The micrographs (20 by 25 cm) were digitalized and 

examined using image analysis software (Image J, NIH). Following counting of the number 

of particles in endothelial and subendothelial compartments, and measuring the area of the 

compartments by conventional morphometry, the density of immunogold particles was 

calculated by dividing the number of particles by the area. 

4.2.8 Myocyte surface LPL activity. In addition to luminal LPL, considerable amount of 

LPL is also located on the myocyte surface and within myocytes. To examine LPL activity 

released from the surface of cardiomyocytes, ventricular calcium-tolerant myocytes were 

prepared by a previously described procedure (21). Cardiac myocytes from CON and 20% 

IL hearts were suspended at a final cell density of 0.4 x 106 cells per ml, incubated at 37 C 

and basal LPL activity in the medium measured. To release surface-bound LPL activity, 

heparin (5 U/ml) was added to the myocyte suspension and aliquots of cell suspension were 

removed at different time points, medium separated by centrifugation in an Eppendorf 

microcentrifuge, and assayed for LPL activity. 

4.2.9 Immunolocalization of heparanase. Heparanase immunolocalization was assessed 

in myocardial sections by a previously described procedure (22). Briefly, hearts from CON 

and 20%> IL animals were fixed in 10% formalin for 24h. Blocks were then embedded and 

sectioned. For immunostaining, sections were deparaffinized, rehydrated, and treated with 
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5% (vol/vol) heat inactivated goat serum in TBS to block non-specific background. 

Sections were incubated with rabbit polyclonal primary antibody against heparanase 1 

(Santa Cruz, 1:300) overnight at room temperature in a humid chamber. Samples were then 

washed with PBS and incubated for lh at room temperature with the secondary antibody 

goat anti-rabbit IgG-FITC (Santa Cruz, 1:5000 dilution). The unbound fluorescent probe 

was rinsed with PBS buffer and sections mounted with DABCO. Slides were visualized 

using a Bio-Rad 600 Confocal Microscope at 630 x. 

4.2.10 Materials. [3H]triolein was purchased from Amersham Canada. Heparin sodium 

injection (Hapalean; 1000 USP U/ml) was obtained from Organon Teknika. All other 

chemicals were obtained from Sigma Chemical. 

4.2.11 Statistical analysis. Values are means ± SE. LPL activity in response to heparin 

perfusion over time was analyzed by multivariate (two-way) A N O V A using the Number 

Cruncher Statistical System. Wherever appropriate, one-way A N O V A followed by the 

Tukey or Bonferroni test or the unpaired and paired Student's t test was used to determine 

differences between group mean values. The level of statistical significance was set at P < 

0.05. 
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4.3 RESULTS 

4.3.1 Acute IL infusion affects insulin sensitivity. Acute IL infusion has been reported 

to induce insulin resistance (17). In our current study, using the euglycemic-

hyperinsulinemic clamp, 10% IL did not alter whole-body insulin sensitivity. However, 

20%) IL for 3h significantly reduced the glucose infusion rate (GIR), suggesting the presence 

of insulin resistance (Fig. 4-1). 

4.3.2 Increased plasma and cardiac lipids following IL infusion. After 3h, IL infusion 

dose-dependently increased both plasma FA and T G (Fig. 4-2A). These augmented 

circulating lipids were closely associated with elevated cardiac F A and T G accumulation 

(Fig. 4-2B). 

4.3.3 IL changes plasma and heparin-releasable cardiac LPL activity. Within lh of 10 

and 20%) IL infusion, circulating basal LPL activity increased and remained high for the 

duration of the infusion (Fig. 4-3A). LPL at the coronary lumen is an outcome of 

translocation of the enzyme from the myocyte cell surface (6). To determine whether IL 

influences LPL at the vascular lumen, isolated hearts from CON and IL infused rats were 

perfused retrogradely with heparin buffer, which resulted in rapid LPL discharge, and peak 

activity, likely representing LPL located at or near the endothelial surface, was observed 

within 2 min. Compared to CON hearts, there was a substantial decrease in peak coronary 

heparin-releasable LPL activity at the vascular lumen following 3h of 10 or 20%) IL infusion 

(Fig. 4-3B, left panel), an effect unrelated to changes in LPL gene (Fig. 4-4A) and protein 

(Fig. 4-4B) expression. Interestingly, although constant perfusion of control hearts with 

heparin was able to strip off most of the luminal bound LPL, hearts from IL infused animals 

continued to release excessive amounts of the enzyme (Fig. 4-3B, right panel), suggesting 
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buildup of enzyme within endothelial cells or at the endothelial basolateral surface. As this 

effect was most pronounced with infusion of 20% IL, all of the subsequent experiments 

were carried out using this concentration of IL. 

4.3.4 Immunogold labeling for LPL. Based on our LPL activity data, suggesting 

accumulation of enzyme within endothelial cells and/or at the basolateral surface of the 

endothelial cells in 20% IL hearts, we used the immunogold technique to identify and 

confirm the subcellular localization of cardiac LPL. In both CON and IL hearts, there was a 

strong gold-particle labeling for LPL in myocytes. No or few gold particles were observed 

at the basement membranes adjacent to endothelial cells or within these cells in CON hearts. 

Only IL hearts demonstrated robust anti-LPL immunogold labeling at the above sites (Fig. 4-

5A and B). The electron micrograph also illustrates increased lipid-like vacuoles in 

myocytes following IL treatment. 

4.3.5 Decrease in myocyte LPL activity is coupled with augmented heparanase at the 

coronary endothelium following IL infusion. In the heart, as 78% of total LPL is present 

in cardiac myocytes (6), which subsequently transfers onto luminal HSPG binding sites, we 

evaluated if 20% IL can alter myocyte LPL. There was a significant decrease in heparin-

releasable LPL activity from myocytes isolated from IL hearts compared with CON (Fig. 4-

6). Increased FA can augment synthesis and release of heparanase from the endothelium. 

As this heparanase is preferentially secreted to the basolateral rather than the luminal side 

(15), it could facilitate LPL translocation from the myocyte to the subendothelium and 

endothelium. Using immunofluorescent detection, we identified higher heparanase in 

coronary endothelium following IL (Fig. 4-7). 
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4.3.6 Reversal of changes in LPL following reduction in TG both in vivo and in vitro. 

In an effort to observe whether changes in cardiac LPL are reversed following reduction in 

TG, 20% IL infusion was terminated, and animals kept for another 3h. Although plasma T G 

dropped rapidly on termination of IL infusion, hypertriglyceridemia was still apparent after 

3h (Fig. 4-8A). Measurement of LPL indicated that although peak heparin releasable LPL 

activity returned to normal in IL hearts (Fig. 4-8B, left panel), on continuous perfusion of 

these hearts with heparin, more LPL was released compared to CON (Fig. 4-8B, right 

panel). An alternate approach involved rapid removal of luminal LPL with heparin (Fig. 4-

8C, left panel), followed by in vitro perfusion with T G free buffer for lh. Using this 

strategy, the enzyme built up in IL hearts was able to transfer to endothelium luminal HSPG, 

such that with a second heparin perfusion, peak LPL activity was observed within 2 min, 

was substantially higher than CON, and was followed by a rapid decline (Fig. 4-8C, right 

panel). 
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4.4 DISCUSSION 

A number of mechanisms have been proposed to modulate endothelium-bound LPL activity. 

Vascular endothelial cells can internalize LPL (13). In addition, FA released through the 

action of LPL can decrease enzyme activity by product inhibition (23) or by reducing 

apolipoprotein (apo) CII activation of the enzyme (24). A third mechanism has been 

proposed, based on experiments where FA, both in vivo and in vitro, caused displacement of 

LPL from endothelial HSPG binding sites (14). In the present study, our data suggest that 

increased circulating lipids can also facilitate LPL transfer from cardiomyocytes to the 

endothelium. 

Acutely infusing intralipid augmented both plasma F A and T G in a dose dependent 

manner. As previous studies have reported that lipids can displace LPL from endothelial 

cells (14; 25), we measured basal plasma LPL activity and found a progressive increase of 

enzyme with both 10 and 20% IL. As HSPG-bound LPL exhibits a disparate rate of 

lipolysis compared with conventional lipolysis assays with LPL in solution, it has been 

suggested that such displacement greatly facilitates T G hydrolysis and lipoprotein clearance 

(15). Several organs like skeletal muscle and adipose tissue could contribute towards this 

increase in plasma LPL. However, as perfusion of these organs to determine vascular 

endothelial LPL in vitro is complicated, we measured heparin releasable LPL activity in 

hearts from IL infused rats. Unlike other organs, the heart is unique in that following 

isolation, LPL at the coronary endothelium, interstitial space and cardiac myocytes can be 

determined simultaneously (6). Heparin perfusion of 10 and 20% IL hearts for 2 min (that 

releases LPL localized predominantly from coronary lumen) released LPL activity that was 

lower compared to CON. This decrease in coronary luminal LPL activity could not be 
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explained by changes in insulin sensitivity, and was unrelated to alterations in LPL gene 

expression. As LPL protein measured in total heart homogenates remained unchanged 

between CON and IL infused rats, it is likely that this specific decrease in luminal LPL 

activity is posttranslational, and includes displacement of the enzyme as a result of high 

circulating plasma lipid. Alternatively, the reduced cardiac luminal LPL could be a 

consequence of the effect of linoleic acid. A key component of IL, soy oil, contains 40-60% 

linoleic acid, 20-30%) oleic acid, and 5-15% palmitic acid. Linoleic acid is known to inhibit 

proteoglycan synthesis, in addition to decreasing the anionic properties of HSPG in 

endothelial cell monolayers (26). 

Interestingly, following prolonged heparin perfusion of IL hearts, a second prominent 

phase of LPL release was observed, that was more pronounced in 20% IL infused rats. It is 

possible that this delayed heparin releasable LPL could originate from vesicles within 

endothelial cells, from enzyme that accumulated at the basolateral surface of vascular 

endothelium, or from the myocyte cell surface (9). Indeed, 20% IL hearts demonstrated 

robust anti-LPL immunogold labeling at basement membranes adjacent to endothelial cells 

or within these cells. Both of these sites may be accessible to heparin, which has been 

demonstrated to traverse the arterial wall (27). 

Heparanase is an enzyme that specifically cleaves heparan sulfate glycosaminoglycans 

from HSPG core proteins (28). In studies using adipocytes and endothelial cells, FA 

through their release of heparanase (15), preferentially from the basolateral side of 

endothelial cells, was shown to displace surface bound LPL from adipocytes (16). In the 

current study, we report that following IL, endothelial cells demonstrate increased 

heparanase immunofluorescence. To evaluate whether this increased heparanase is capable 
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of cleaving myocyte surface bound HSPG, we isolated myocytes and determined heparin 

releasable LPL activity. Interestingly, myocyte LPL activity following 20% IL was lower 

compared to CON. Whether FA can traverse from the luminal side of endothelial cells to 

also directly release myocyte surface-bound LPL is currently unknown. Our data suggest 

that similar to adipose tissue, conditions that increase circulating FA facilitate LPL 

translocation from the cardiac myocyte to the coronary endothelial lumen. In vivo, this 

mechanism likely contributes towards T G clearance. 

In an effort to further validate the role of T G in the LPL translocation, two approaches 

were exploited. First, we terminated IL infusion to reduce plasma T G , and hearts were 

removed from animals after 3h. Although normalization of peak LPL was observed, 

continuous heparin perfusion still released excessive LPL activity suggesting that majority 

of the accumulated LPL had not relocated to the luminal surface. As these animals 

remained hypertriglyceridemic after 3h, we used an in vitro approach to eliminate 

circulating TG. Thus, following IL infusion and in vitro stripping of the enzyme with 

heparin, hearts were perfused for lh in TG-free buffer. Only IL hearts showed re-

establishment of the heparin releasable peak, and on continuous perfusion of these hearts 

with heparin, LPL activity returned to near basal levels. Our data suggest that in the absence 

of TG, the accumulated enzyme pool is able to transfer to its functional location, the 

coronary lumen. An additional implication of this data is that the effect of IL in reducing 

apical endothelial LPL is likely unrelated to the number of HSPG binding sites. 

In summary, acute IL infusion augments plasma LPL, and this was associated with 

reduced LPL activity at the coronary lumen, but increased enzyme within endothelial cells 

and subendothelial space. It is likely that these effects are a consequence of FA releasing 
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LPL from apical endothelial HSPG, in addition to augmenting endothelial heparanase, 

which facilitates myocyte HSPG cleavage and transfer of LPL towards the coronary lumen 

(Fig. 9). Should this mechanism occur globally, it could contribute towards management of 

hyperlipidemia. 
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TABLES AND FIGURES 

FIG. 4-1 Acute intralipid infusion induces insulin resistance. 
Following infusion of vehicle or IL (10 and 20%, 5ml/kg/h) for 3h, 
whole-animal insulin resistance was assessed using a euglycemic-
hyperinsulinemic clamp. Insulin (HumulinR; 3 mU/min/kg) and D-
glucose (50%>) were continuously delivered (by a cannula inserted into 
the left jugular vein) for 2h. At regular intervals, blood samples taken 
from the tail vein were analyzed for glucose using a glucometer. The 
glucose infusion rate (GIR) was adjusted accordingly to maintain 
euglycemia. BG, blood glucose. Results are the means ± SE of 3-4 
animals in each group. CON, control; IL, intralipid. Significantly 
different from control, P < 0.05. 
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FIG. 4-2 Intralipid augments both plasma and cardiac lipids. Animals 
were anaesthetized and the left jugular vein cannulated. Intralipid (IL, 
10 and 20%; 5 ml/kg/h) was infused over a period of 3h. At the third 
hour, blood samples were collected and centrifuged. Hearts were also 
removed at this time, and plasma and cardiac samples were used for 
HPLC analysis of fatty acids (FA) and triglyceride (TG). Data are 
mean ± SE for 4 rats in each group. Significantly different from 
control (CON), P < 0.05. 
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FIG. 4-3 Changes in plasma and cardiac LPL activity following IL. 
Plasma LPL activity in the basal state was determined in control and IL 
rats. Following blood sample collection, LPL activity was determined by 
first measuring total lipase (hepatic + LPL) activity. Incubating plasma 
with 1 M NaCl, and conducting the assay in the absence of 
apolipoprotein CII, to suppress LPL activity, measured hepatic lipase 
activity. Plasma LPL activity was calculated as the difference between 
total and hepatic lipase activity (A). CON and IL hearts were removed 
and the isolated hearts were perfused retrogradely with heparin (5 U/ml), 
and fractions of perfusate collected and analyzed for LPL activity. The 
rapid heparin induced LPL discharge (0-2 min), suggested to represent 
LPL located at or near the endothelial luminal cell surface, is depicted in 
the left panel (B). The right panel (B) likely represents LPL that 
originates from within endothelial cells, interstitial space or myocyte cell 
surface! Changes in LPL activity in response to heparin perfusion, over 
time, were analyzed by multivariate A N O V A followed by the Newman-
Keul's test using the Number Cruncher Statistical System. Results are 
the mean ± SE of four rats in each group. *P < 0.05 vs. control. CON, 
control; IL, intralipid. 

119 



Chapter 4: Cardiovasc Res. 2006 (in press) 

FIG. 4-4 LPL gene and protein expression are unchanged following IL. 
LPL gene and protein expression were measured in isolated hearts from 
CON and 20% IL animals, using RT-PCR (A) and western blotting (B), 
respectively. Results are the mean ± SE of four rats in each group. 
CON, control; IL, intralipid. 
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FIG. 4-5 Immunogold labeling for LPL. Immunogold electron microscopy was used to 
visualize LPL following 20% IL infusion (A). In both CON and IL hearts, there was a 
strong staining for LPL in myocytes. No or few gold particles were observed at the 
basement membranes adjacent to endothelial cells or within these cells in CON hearts. 
Only IL hearts demonstrated robust anti-LPL immunogold labeling at the above sites 
(arrowheads). The scale bar represents 1 pm; arrowheads indicate LPL labeled with gold 
particle. L, lipid-like vacuoles; *, subendothelial space; Lu, coronary lumen; Nu, nucleus. 
CON, control; IL, intralipid. Quantification of immunogold labeled LPL was determined 
as described in methods (B). 
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FIG. 4-6 Heparin releasable LPL activity from cardiomyocytes is lowered 
following IL. Ventricular calcium-tolerant myocytes were prepared and 
suspended at a final cell density of 0.4 x 106 cells per ml. These cells were then 
incubated at 37°C and basal LPL activity in the medium was measured. To 
release LPL activity, heparin (5 U/ml) was added to the myocyte suspension and 
aliquots of cell suspension were removed at different time points, medium 
separated by centrifugation in an Eppendorf microcentrifuge, and assayed for 
LPL activity. Results are the mean ± SE of four rats in each group. *P < 0.05 vs. 
IL 20%. CON, control; IL, 20% intralipid. 

122 



Chapter 4: Cardiovasc Res. 2006 (in press) 

FIG. 4-7 Immunolocalization of heparanase. Heparanase 
immunolocalization was assessed in myocardial sections from CON 
and 20% IL hearts. For immunostaining, sections were 
deparaffinized, rehydrated, and treated with 5% (vol/vol) heat 
inactivated goat serum in PBS to block non-specific background. 
Sections were incubated with rabbit polyclonal primary antibody 
against heparanase 1 (Santa Cruz, 1:300) overnight at room 
temperature. Samples were then incubated for lh at room 
temperature with the secondary antibody goat anti-rabbit IgG-FITC 
(Santa Cruz, 1:5000 dilution). Slides were visualized using a Bio-
Rad 600 Confocal Microscope at 630x magnification. CON, control; 
IL, 20% intralipid. 
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FIG. 4-8 Reversal of changes in LPL following decreased T G both 
in vivo and in vitro. Following 3h of 20% IL, the infusion was 
terminated and the animals kept for another 3h before removal of 
hearts. At each lh interval, blood samples were obtained from the 
tail vein for analysis of plasma T G levels (A). Hearts were then 
perfused with heparin to measure LPL activity (B) as described in 
Figure 3. In a separate experiment, hearts from 3h 20% IL infused 
rats were exposed to heparin (2 min) (left panel, C), followed by lh 
wash with Kreb's buffer. A second heparin perfusion (10 min) was 
then performed to determine the extent of LPL recovery (right 
panel, C). Results are the mean ± SE of four rats in each group. *P 
< 0.05 vs. control. CON, control; IL, 20% intralipid; T-IL, 3h 
following termination of 20% IL infusion. 
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FIG. 4-9 Proposed mechanism for T G control of cardiac LPL. Following IL, 
circulating F A increases and displaces LPL from HSPG binding sites at the coronary 
lumen. This augmented FA may also stimulate heparanase synthesis and release, 
preferentially from the basolateral side of endothelial cells. Heparanase, through its 
cleavage of myocyte cell surface HSPG, facilitates LPL translocation towards the 
apical side of endothelial cells. Should this mechanism occur globally, it could 
contribute towards management of hyperlipidemia. 
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5. SUMMARY AND FUTURE DIRECTIONS 

Insulin resistance, defined as an impaired response to the physiological effects of insulin, is 

widely believed to be an important factor in the morbidity and mortality of cardiovascular 

disease (1). Clinical and experimental studies have also established that metabolic 

abnormalities play a crucial role in the development of heart failure (2). Therefore, my study 

attempted to explore whether insulin resistance related heart disease could be due to 

alterations in cardiac metabolism. 

Glucocorticoids have been recognized as anti-inflammatory and immunosuppressive 

drugs since the 1940s. Chronic and excessive glucocorticoid therapy is often associated with 

hypefinsulinemia (3). More importantly, endogenous glucocorticoid hormone plays a key 

role in the incidence and development of the metabolic syndrome (4). Therefore, in my first 

study, I developed an acute glucocorticoid-induced insulin resistance miodel. By using the 

synthetic glucocorticoid, dexamethasone (DEX), and the hyperinsulinemic-euglycemic 

clamp that measures insulin sensitivity, the unfavorable effects of D E X on glucose 

metabolism in the whole body were established. More importantly, treatment of DEX 

reduced glucose utilization in the heart. The mechanism by which D E X controls glucose 

utilization included glycogen storage and activation of pyruvate dehydrogenase kinase 

(PDK). In the presence of altered glucose oxidation, metabolic switching to using F A would 

be an expected requirement of DEX. Indeed.; our data is the first to report a DEX induced 

increase in LPL at its functionally relevant location, the coronary lumen. Under these 

conditions, the increased F A entering the heart augments intracellular T G storage. 

As previous studies have indicated that overexpression of muscle specific LPL increases 

tissue T G content, and inhibits insulin-mediated glucose uptake (5), it is possible that 
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increased LPL derived F A increases PDK4 activity (6), and eventually reduces glucose 

oxidation. Future studies should focus on examining this potential link between augmented 

LPL derived FA and glucose metabolism. FA delivery to the heart could be manipulated by 

using Triton WR1339. This non-ionic detergent physically alters lipoproteins making them 

inaccessible for LPL mediated hydrolysis (7). Recent studies have also suggested that 

nuclear proteins like forkhead-type transcription factor (FOXOl) play a key role in the 

regulation of both glucose and FA oxidation, likely through its control of ACO, PPAR 5 and 

PDK4 genes (8). Hence, whether D E X influences cardiac metabolism through its control of 

F O X O l is attractive, and should be pursued. Interestingly, glucocorticoid treatment in mice 

induced gene expression of F O X O l in skeletal muscle (9). 

In my second study, I evaluated the fate of FA delivered to the heart following DEX 

treatment. The F A entering the heart are either oxidized or stored as TG. Indeed, F A 

oxidation increased following DEX, and likely occurred through activation of A M P K and 

subsequent phosphorylation of A C C . T G storage was also augmented. In addition to 

saturated FA, D E X also influences the cardiac composition of polyunsaturated FA, with the 

most significant change being the increase in arachidonic acid (AA). Given the detrimental 

effects of high FA oxidation, T G storage, and arachidonic acid accumulation, our data 

suggest that the acute effects of D E X on cardiac metabolism may be associated with the 

increased cardiovascular risk following chronic therapy. 

Cardiac lipotoxicity is associated with elevated F A use, for example increased.TG 

storage and F A oxidation. Excessive lipid accumulation in myocytes will promote the 

generation of ceramide, a cellular pro-apoptotic factor, which eventually leads to 

programmed cell death (10). Although acute DEX induced T G storage in the heart, this 
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increased T G pool could not be maintained in our current model. It is unclear whether this 

drop in cardiac T G would also occur under conditions of hyperlipidemia, which would be 

expected to maintain elevated intracellular TG. To observe the effects of DEX under 

conditions of hyperlipidemia, the use intralipid (IL) infusion subsequent to DEX 

administration is recommended. This exogenous T G infusion will offset the decreased 

plasma T G following DEX. Excess amounts of A A are known to alter insulin signaling and 

sensitivity (11), and induce cell death (12), directly through the mitochondrial permeability 

transition (13) or indirectly through conversion of A A to toxic byproducts like 

hydroxyeicosatetraenoic (HETE) and epoxyeicosatrienoic (EET) acids (14-16). Hence, the 

role of DEX in ceramide synthesis and cell death, in addition to its effects on A A and its 

metabolic products like H E T E and EET should also be determined. 

Although a small portion of the patient population exhibits glucocorticoid-induced insulin 

resistance, the primary cause of this syndrome is excessive circulating FA, usually associated 

with obesity. Thus, in my third study, I induced insulin resistance by acute IL infusion. 

Acute IL augmented plasma LPL, and this was associated with reduced LPL activity at the 

coronary lumen, but increased enzyme within endothelial cells and the subendothelial space. 

It is likely that these effects are a consequence of FA releasing LPL from apical endothelial 

HSPG, in addition to augmenting endothelial heparanase, which facilitates myocyte HSPG 

cleavage and transfer of LPL towards the coronary lumen. These data suggest that the 

control of cardiac LPL is complex, and insulin resistance, in the presence or absence of high 

FA may have differential effect on the enzyme. 

High IL infusion displaces LPL from its functional position, the luminal surface. 

Although there are multiple mechanisms that may explain this effect, including increased 
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HSPG cleavage (17) and endothelial internalization (18), the specific mechanisms are still 

unclear. Heparanase is an enzyme that specifically cleaves heparan sulfate 

glycosaminoglycans from HSPG core proteins, and FAs stimulate endothelial cells to release 

heparanase (19). In vitro, this release occurs preferentially from the basolateral side of 

endothelial cells (19). Using co-cultures of endothelial cells and cardiomyocytes, future 

studies could examine the mechanisms that control vectorial transfer of LPL from the 

cardiomyocytes to the apical side of the endothelium. 
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