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Abstract 

This thesis consists of three essays that attempt to contribute towards a bet
ter understanding of the collective choice problems in presence of incomplete 
information. 

The first essay of this dissertation investigates a voting model with conflict 
of interest between the designer of the voting rule and the voters who share a 
common preference. We show that, given sophisticated voting by the voters, 
designer's optimal voting rule either nearly coincides with the voters' optimal 
rule or is a near unanimity rule for one of the alternatives. When the designer 
has a very strong bias in favour of one of the alternatives, her best option 
may lie in increasing the threshold of votes for that alternative. 

The second essay discusses an indirect voting mechanism that can achieve 
better informational efficiency. It is well known that under usual (simultane
ous) voting rules, private information held by voters are imperfectly aggre
gated. We consider a multi-round sequential voting procedure which allows 
voters to choose when to cast their votes. Without any conflict of inter
est among voters, there is always an equilibrium under this rule which per
fectly aggregates all the available information. Moreover, in an environment 
with conflicting interest among voters, we show that this indirect mecha
nism achieves as an equilibrium outcome what pre-play communication can 
achieve. 

The third essay examines committee design under endogenous informa
tion and shows that two opposing effects - the free-rider effect and the infor
mation complementarity effect - could get intensified in different parameter 
regions as the committee size increases. This induces a trade-off between 
quality and quantity of information for the committee designer. The model 
identifies parametric situations where it may be optimal to create a smaller 
committee to ensure better quality of information. 
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1. Overview and Summary 

This dissertation consists of three essays that contribute towards the under

standing of collective choice problems in presence of incomplete information. 

Any acceptable social choice rule should address two separate concerns. The 

first question deals with finding social choice rules that leads to an acceptable 

aggregation of individual preferences. The literature on welfare economics 

has dealt with this issue extensively. But any study that aims to deal with 

efficiency of collective decision in an uncertain environment must also ac

knowledge the role private information can play. Individual choice depends 

on private information and individual decisions are somehow aggregated to 

arrive at a collective decision. More informed decision-making increases the 

overall efficiency of the outcome. A n efficient social choice rule, therefore, 

besides finding an acceptable way to aggregate (possibly) diverse preferences 

of individuals, should recognize the importance of private information and 

take into account two factors. Institutions concerned with collective decisions 

should be designed to give proper incentives for information collection to the 

agents. Secondly, the private information of the agents should be used in the 

best possible way while making the final decision. These are the issues this 

dissertation intends to address. 

Voting is one of the most common social choice mechanisms used in prac-
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tice to arrive at a collective decision. One purpose of holding elections is 

clearly to aggregate individual preferences. But even abstracting from that, 

differences of opinion among agents may arise due to different private infor

mation. Hence, one purpose that an election intends to serve is to aggregate 

this disparate information. It has been recognized in the literature that 

there are some voting mechanisms which serve this purpose better than oth

ers. Now, assuming that society's average preference is the same as that of 

the body to which the decision is delegated (e.g. a jury or a committee), the 

voting rule that leads to best possible use of information is optimal for the 

society. In the first essay of this dissertation we take up an abstract model of 

voting to examine the consequence of conflict of interest among the society 

at large and members of the jury or the committee. We characterize the 

optimal voting rule from society's point of view. 

The second essay of the thesis deals with the issue of information aggrega

tion more closely, again in the context of a voting model. A well-known result 

in the literature on strategic voting is that simultaneous voting procedures 

cannot lead to efficient information aggregation if the information structure 

is rich enough. We look for a richer, yet practical, voting procedure that 

can achieve this end. We show that if the voters are allowed to choose the 

timing of their votes, then, under any voting rule, a substantial improvement 

towards better information aggregation can be made. 

The third and final essay of the thesis travels in another direction to 

investigate the incentive for collecting information when information is en

dogenous. We provide a model with multiple agents where agents are allowed 

to choose both the quality and the quantity of information. We show that 
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there may arise situations where a smaller group performs better even under 

the assumption of full information aggregation. 

The analytical framework adopted for this study has some restrictive 

features which are worth spelling out to give the reader a sense of its scope 

and possible limitations. 

First, we restrict attention throughout to binary choices. While restric

tive, many problems of collective choice do involve two choices. For example, 

whether a bill should be accepted in the legislature, a defendant should be 

convicted on criminal charges, a job applicant should be hired, a particular 

Presidential candidate should be chosen in a two-party system, whether a 

medical panel should recommend surgery for a patient, and so on. 

Second, we adopt a preference structure where all conflicts of interest (if 

any) arise from the issue of how to deal with uncertainty. In other words, 

in our framework, if the state-of-the-world were commonly known, everyone 

would agree about the correct course of action. Since only noisy information 

is available, preferences can be characterized by the relative weights agents 

place on the two types of errors that may arise. Most of the analysis goes 

further and assumes that agents also share a common distribution of weights. 

Preferences of this class, while special, seem reasonable descriptions of some 

real world problems. For example, people agree that murderers should be 

imprisoned and innocent people are entitled to personal freedom. Many 

economic policies (e.g. trade) have distributional consequences and therefore 

lack of consensus regarding the optimal choice. However, disagreements over 

monetary policy seem to be rooted more in disagreements over potential 

consequences rather than conflicting objectives (everyone benefits from low 
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inflation' and reduced macroeconomic fluctuations). Members of academic 

departments have substantial common interest in hiring superior candidates 

and rejecting inferior ones, even though private information may lead them to 

rank the candidates for a position differently. In these scenarios, the problem 

is not how to resolve the tension between conflicting objectives, but how to 

aggregate private information and make collective choices as responsive to 

available information as possible. 

Many interesting problems, on the other hand, clearly involve conflicting 

aims as well as dispersed information. For example, people's preferences over 

Presidential candidates are likely to be a function both of perceived ability 

and the voter's ideological leanings. It would be nice to develop a theoretical 

framework that allows for both these aspects and their interplay. However, 

this is not an easy analytical task and the literature based on such analysis is 

still nascent. We believe, along with many other researchers in this area, that 

the insights learnt from studying the' pure information- aggregation problem 

can be useful in studying the more complex, hybrid cases. 

Chapter 2 analyzes the properties of collective decision making when it is 

implemented through some voting rule that gives each agent a single transfer

able vote and a minimum threshold of votes necessary for each alternative to 

be chosen. This is a very limited class of mechanisms. For the environments 

and problems considered, more general mechanisms will typically lead to 

more efficient outcomes. In the real world, overly complex mechanisms may 

be too costly or place too high a cognitive demand on participants, possibly 

outweighing their benefits in many cases. In any case, voting is a commonly 

observed method of making collective decisions, and therefore understanding 
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its strategic and welfare consequences is of pract ical relevance. 

Since vot ing is often an imperfect way of aggregating information, there 

is also value to asking normative questions. C a n we modify collective deci

sion making procedures in ways that significantly improve outcomes, wi thout 

adding too much in terms of complexi ty or implementat ion cost? T h e exer

cise in chapter 3 is a step in this direction. We amend usual vot ing procedures 

by al lowing voters to choose the t iming of their votes, and releasing in ter im 

summary information about vote tallies. T h i s modif icat ion of rules does not 

seem too demanding given today's information technology. We show that if 

voters' fundamental objectives are closely aligned, such a modif icat ion allows 

information to be efficiently aggregated. 

In the analysis of Chapters 2 and 3, do not allow explici t pre-play com

munica t ion among the voters. T h i s seems reasonable in some cases (e.g. in 

nat ional elections), where the electorate is large and dispersed, but unre

alistic i n others (e.g. in jury decisions). Mos t elections w i l l present some 

oppor tuni ty for non-binding pre-play communicat ion, but it may be imper

fect for reasons of t ime, cost, complexi ty or communicat ion difficulties. T h e 

analyt ical framework adopted in this study may be a reasonable approxima

t ion for some of these scenarios. A s mentioned, it would be nice to bu i ld a 

richer framework capable of handling more diverse preferences and opportu

ni ty for pre-play cheap talk, but this raises significant technical difficulties 

which the l i terature on the subject is far from resolving satisfactorily. 
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Essay 1: O p t i m a l V o t i n g Rules w i t h Divergent Preferences 

We investigate a model where the decision making is delegated to a group of 

individuals with disparate information but common preference. The group 

arrives at a decision using a voting mechanism where the voting rule is cho

sen by a designer who may have preference difference from that of group 

members. The designer faces a trade-off between choosing a rule that leads 

to maximum utilization of information and a rule that aggregates informa

tion in a way to suit her own preference. We show that the designer resolves 

this trade off by going to one of the extremes. In other words, either she 

chooses a rule that efficiently utilizes almost all available information or a 

rule that leads to almost all information being ignored. We provide a full 

characterization of these two cases based on the designer's preferences. 

We show that if the designer and the group has opposing biases in favour 

of one of the alternatives, then the best voting rule for the designer is nearly 

the one that is best for the group. If, on the other hand, the designer has 

similar, but relatively stronger, bias as the group for one of the alternatives, 

the optimal rule is one which requires near-unanimity rule for the favoured 

alternative. Intuitively, this gives the group greater incentive to vote for the 

designer's favoured alternative uninformatively (since the group has similar 

bias, it will vote uninformatively in favour of the designer's preferred alterna

tive). We conclude by noting that for a wide range of designer's preferences, 

the optimal voting rule is almost independent of the designer's preference. 

In other words, decisive power (votes) is more important than constitutional 

power in many of the scenarios considered. 
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Essay 2 : Information Aggregation in Mul t i -Round Elections 

In this essay we examine a model of sequential voting to examine its effects 

on the information aggregation properties of the voting rules. In contrast to 

some existing studies which claim that vote sequencing cannot change the 

equilibrium outcome of a voting game, we show that it does if the sequenc

ing is endogenous. If the voters have common interest, or in other words 

if the sole purpose of the election is information aggregation, we show that 

with flexible timing there always exists a Bayesian Nash equilibrium, where 

information is fully aggregated. Moreover, if the model is symmetric, full 

information aggregation can be achieved as a symmetric equilibrium out

come. One of the most important features of our result is that this efficient 

equilibrium can be obtained irrespective of the voting cutoff. 

In the common interest case, if pre-play communication among the voters 

is allowed, all information is revealed instantly, and full information aggre

gation is achieved. The sequential voting procedure with flexibility in timing 

of the votes achieves the same in the absence of communication. A natural 

question is how well this indirect mechanism works in the presence of con

flict of interest among the voters. No voting procedure will generally achieve 

full-information aggregation in this case since the voters have an incentive 

to strategically withhold their private information. We illustrate, with a two 

person example with conflicting preferences, that the equilibria of the se

quential voting game are outcome equivalent to the set of efficient equilibria 

of the same voting game with pre-play communication. Unfortunately, we 

do not have a result that establishes a direct connection between the above 

two sets of equilibria under a more general environment. 
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Essay 3: Endogenous Informat ion and C o m m i t t e e Des ign 

The third essay of the thesis explores the moral hazard problem of individuals 

in the context of committee design with endogenous information. We identify 

two kinds of effects on the incentive for collecting information that could arise 

as a result of a larger committee size. Since information is a public good, 

with endogenous information collection there could arise a free-rider effect 

leading to a fall in the quality of information collected by each individual 

when several members are entrusted with the task. However, there could 

arise a complementarity effect as, in some situations, one's information may 

not be valuable in itself but becomes valuable in conjunction with others' 

information. The second effect bolsters the incentive to collect information 

in a larger committee and could lead to better quality information collected 

by each member. 

. In a model involving different levels of quality of information, the designer 

could face a trade-off between quantity and quality of information in some 

situations, while deciding on the size of the committee. We show that the 

resolution to this trade-off can go either way. We identify parameter zones 

where a smaller committee performs strictly better and thus provide a strict 

violation of one of the Condorcet jury theorems. 
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2. Optimal Voting Rules with 

Divergent Preferences 

2.1 Introduction 

Often we encounter situations where the decision maker or the society has 

to delegate the decision making to a group of agents (such as a jury or a 

committee or a legislature). With exogenous information, a group has access 

to greater information than a single individual and hence in an environment 

with imperfect information has an obvious advantage in decision-making. 

Differences of opinions among the member of this group may arise due to 

different information, which then can be aggregated to arrive at a group 

decision using some social choice rule. 

One problem the group decision making may encounter is that of aggre

gating the disparate information of individual members. Not all social choice 

rules perform equally well in this respect. A social choice rule is any rule 

that maps individual opinions into a group decision. If there is no inherent 

conflict of interest among the members of the group, the best social choice 

rule for the group is the one that aggregates individual information most 

efficiently. This is well documented in the literature on social choice and vot-
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ing 1. If the designer of the choice rule has the same preference as the group, 

the efficient rule for the group is the most efficient one for the designer. But 

if the designer's preference differs from that of the group, the optimal rule for 

the group may not be optimal for the designer because of the obvious reason 

that the designer has an incentive to distort the choice rule to suit her own 

preference. 

In many decision problems, time inconsistency of preference is well rec

ognized. At the outset, an optimal plan for future course of actions can 

be identified, but when the time comes to execute these actions, they are 

no longer preferred. Time inconsistency can be observed in every sphere 

of life - from individual decisions to government policy making or societal 

response to an event. Individuals who have decided to quit smoking do it. 

Couples who have pledged to a future plan of savings over a life span spend 

money on a top end car by deviating from the original plan. Government 

policies are even more prone to time inconsistencies. Populism in the face of 

election, giving in to pressures from interest groups are commonly observed 

phenomena. In the sphere of law, long term justice demands impassionate 

reasoning. But in the emotionally charged atmosphere of a criminal trial, 

the jury's decision often gets affected by sympathy and emotions rather than 

pure logic. For example, in a trial for a heinous crime committed to a child, 

a jury may be more trigger happy, while the long term view of natural justice 

demands stronger evidence for conviction. Time inconsistency may arise due 

to strategic reasons as well. In a situation involving strategic interactions 

among multiple agents, an agent may make long term gains by committing 

1Starting from Condorcet [12], in the eighteenth century, there exists a large literature 
that deals with voting and elections as social choice mechanisms. 
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to a particular course of actions against others under certain circumstances, 

but ex post there may still exist incentives for deviation from the promised 

course of action for the sake of short term benefits. 

To avoid the time inconsistency problems, two types of strategic responses 

are common. One is to engage in precommitments that reduce the opportu

nities to give in for temptations. Individuals commit to a generous pension 

plan to avoid the temptation of unnecessary current consumption. The other 

option available for avoiding time inconsistency problems is delegation of the 

decision making to some other agent or group of agents. In monetary and 

exchange rate policies, for instance, the credibility of the policy is very impor

tant and it can be costly in the long run to give in for temptations in the short 

run (Kydland and Prescott [32] and Barro and Gordon [4]). The time in

consistency problem in the context of monetary policy has been extensively 

studied in literature. Rogoff [48] showed that appointing an independent 

conservative central bank that put more weight on controlling inflation than 

increasing output would reduce the discretionary inflationary bias in mone

tary policy. The rules by which the central bank is governed are set by the 

government while the actual decision is taken by the bank independently. In 

the context of US trade policy, the incumbent President has very little dis

cretion. There exist mandated sanctions by law implemented by US Trade 

Representatives against certain kind of behaviour of the trading partners of 

the United States. The delegation of decision is made to make the commit

ment to sanctions credible, thus avoiding the potential time inconsistency 

problems. Both precommitment and delegation of decision-making to other 

agents can be viewed as institutional devices to improve or eliminate the time 
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inconsistency problems. 

The purpose of this discussion is to argue that there may arise many real 

world situations where long term interest of the society may be in conflict 

with its short term decision makers. Often it is the case that the society 

sets the rules of decision making while the power of decision making rests 

with others. In this chapter, we analyze a model of a social institution where 

decision making is delegated to a group of agents. The said group of agents, 

who may or may not have the same preference as the society, arrives at a 

decision using some collective choice mechanism set by the society. Many 

social institutions fit into this category. Legislative decisions and jury trials 

are two of the more prominent ones. 

Voting is one of the most commonly observed collective choice mecha

nisms. Hence, it is interesting to examine a situation like above in the con

text of a simple voting model where the designer chooses the voting rule and 

the group takes the decision. In the presence of conflict of interest between 

the designer and the group, the designer faces a trade-off while choosing the 

voting rule. She may distort the voting rule from that which leads to efficient 

information aggregation to suit her own preference, but in the process loses 

valuable information. We show that the resolution of this trade-off has the 

nature of a corner solution. The best solution for the designer is either to 

induce usage (almost) all the information, or to induce the group to take the 

decision using as little information as possible in the decision making. The 

intuition behind this result lies in the convexity in the value of information2 

2 The convexity in the value of information has been first identified by Radner and 
Stiglitz[47] though in a different .model. But the result is general and holds under most 
environments. * • '• * . . . . 
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arising out of the complementarity of the private information possessed by 

different members of the group. It is well known that value of information is 

convex in a decision problem. As it turns out in our model, even when the 

decision is delegated, the convexity property carries over. 

We use a two alternative binary signal model where the group chooses 

one of the alternatives using a voting rule. Each member of the group, after 

observing her private signal, casts a vote for one of the alternatives. The 

votes are aggregated using the voting rule chosen by the designer. This 

is a standard model used extensively in the literature on sophisticated (or 

strategic) voting3. We show that for a wide range of values of the designer's 

preference parameter, the optimal voting rule for the designer is almost the 

same as the optimal voting rule for the group. If the group members vote in 

a sophisticated manner, then they try to rectify any deviation from their op

timal voting rule by altering their equilibrium behaviour. Hence, the change 

in the voting rule by the designer to suit her own preference does not have 

the desired effect (or at least to the extent she desired) while resulting in loss 

of valuable information. 

More specifically, our results show that if the designer and the group 

members have opposing biases4, the optimal voting rule for the designer is 

almost5 the same as that of the group. On the other hand, if the designer 

has a relatively stronger but similar bias as the group, then a unanimity or 
3See Austen-Smith and Banks[3], Feddersen and Pesendorfer[21, 22], Miller[43] to name 

a few among many. 
4 An agent is biased in favour of of an alternative, if in the absence of any information 

she chooses that alternative. 
5 By almost same here we mean that the designer's optimal voting rule is either same 

as the group's optimal rule or just one off in either direction. 
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near-unanimity rule for the favoured alternative is optimal for the designer. 

Both results betray the initial intuition. With opposing biases, one would 

think that the designer will have greater incentive to manipulate the voting 

rule. While in case the designer has very strong bias in favour of one of the 

alternatives, it is likely to be the case that she will have incentive to make 

it easier for the group to choose that alternative. But exactly the opposite 

happens because of the sophisticated behaviour of the members, which the 

designer takes into account. The last result is somewhat related to what 

Feddersen and Pesendorfer[22] have shown. In their case, the probability of 

choosing an alternative wrongly may be higher under unanimity rule for that 

alternative than under some interior rule. We obtain a similar type of result 

though the equilibrium they select is different from ours. 

While a significant number of studies in the literature on strategic vot

ing have dealt with properties of different voting rules6, most are concerned 

with finding the rule that aggregates information in the best possible way7. 

Austen-Smith and Banks [3], in a very important contribution to this field, 

have shown that with a binary signal structure there exist a unique voting 

rule that aggregates information efficiently and hence maximizes the group's 

ex-ante pay-off. We use this result extensively throughout in our model. 

Feddersen and Pesendorfer [21, 22], Duggan and Martinelli [20], Martinelli 

6Some papers have examined the efficiency of different voting rules under the assump
tion of sincere voting. Sincere voting holds when voters vote the way they would had they 
been called upon to make the decision alone. See Miller [43], Ladha [33] and Berend and 
Paroush [6] for analysis of this. Young [53, 54] analyzes the same with more than two 
alternatives. We do not assume sincere voting a-priori, though this may arise as a result 
of equilibrium behaviour. 

7 W i t h a signal structure that allows for more than two realizations, generally there 
does not exist any voting rule that aggregates information efficiently. See Austen-Smith 
and Banks [3]. 
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[39], Meirowitz [42] and Wit [51] discussed asymptotic properties of different 

voting rules under various environments8. 

In an important contribution, McLennan [41] has shown that if the group 

members have common interest, the strategy profile that maximizes the ex-

ante (common) pay-off function given the voting rule constitutes a Bayesian 

Nash equilibrium. Since this equilibrium is the ex-ante pay-off maximizer 

for the group, this equilibrium is optimal among the class of Bayesian Nash 

equilibria from the point of view of the group. Chakraborty and Ghosh 

[10] have shown that there always exists an efficient equilibrium in pure 

strategies and they have provided a complete characterization of the pure 

strategy efficient equilibrium for a voting game in the binary signal case. In 

our model, we choose this equilibrium for the purpose of comparison across 

different voting rules. 

One important aspect of our model that merits some discussion here is 

that we don't allow for direct communication among the group members. 

With common interest among the group members, communication prior to 

voting would lead to all information becoming public knowledge. Hence, the 

decision will be independent of the voting rule, with every individual voting 

one way or the other. The designer can then do nothing by manipulating 

the voting rule. We show that even in the absence of communication the 

designer can do very little given sophisticated voting by the voters. 

Our model can also be related to the literature on committee design and 

delegation. One strand of literature in this area extends the information 

transmission model of Crawford and Sobel [14] to examine how a decision-
8Some have dealt with richer signal spaces, while others have incorporated heterogeneity 

among jury's preferences. 
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maker's welfare can be influenced by varying the composition of a com

mittee consisting of members with useful information ("expertise") whose 

policy preferences differ from that of the decision-maker (or the organiza

tion). Gilligan and Krehbiel [26], Austen-Smith [1, 2], Krishna and Morgan 

[30, 31], Battaglini [5] examine situations where all committee members have 

the same information but may have different preferences. Wolinsky [52] ex

amines a model where experts have the same preference but receive different 

signals, but the power of decision making rests with the designer, while in 

our model the decision is delegated9 to the group members. Li and Suen [37], 

Dessein [17] and de Garidel-Thoron and Ottaviani [15] have studied models 

of delegation; but while the focus of these studies are mostly on composition 

of the group, we focus oh the choice of the decision rule for a group with 

given preference. 

Other notable contributions'to the literature'on voting with private infor

mation are the following. Dekel and Piccione [16] analyze sequential, rather 

than simultaneous, voting procedures. Persico [46] studies a voting model 

with endogenous information to compare among different voting rules in 

terms of the incentives generated for information acquisition, as well as their 

information aggregation properties. Coughlan [13], Doraszelski, Gerardi and 

Squintini [19] and Gerardi and Yariv[23] study voting behaviour when voters 

can communicate. While these are interesting issues in themselves, our focus 

lies elsewhere in the current exercise. 

The rest of the chapter is organized as follows. Section 2 analyzes the 

model and states the results. Section 3 concludes. 
9 For a general model on the theory of delegation see Holmstrom [28]. 
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2.2 The Model and Results 

We consider a model of collective choice with n + 1 agents where there are 

two alternatives to choose from. We will use the terminology of the jury 

models for the rest of the chapter. Following the common practice in the 

jury literature, we assume that the collective decision must be made about 

whether to convict or acquit a defendant. The two social alternatives are 

— C (Conviction) or A (Acquittal). There are two possible states of nature 

- G (Guilty) and I (Innocent). Al l the agents would like to convict the 

guilty and acquit the innocent under complete information. With incomplete 

information, two types of error may arise as a result of the decision - namely 

convicting the innocent and acquitting the guilty. The utility function for 

agent i, ul(d,uj), where d € {C,A} represents the ultimate decision and 

OJ € {G, 1} is the state-of-the-world, is the following: 

for i £ {0,1,2..., n} where qt € (0,1). 

Agents 1, 2 , n are referred to as jurors and they are collectively referred 

to as the jury, J. The members of the jury share a common preference, that 

is qi — qj for a lH = 1,2,..., n. Each member of the jury gets a signal on the 

actual state of nature. We consider a binary signal structure. Each signal 

has two possible realizations: "guilty" (g) or "innocent" (i). The signals are 

partially informative. For each j 6 J, Pr(g|G) = Pr = p with p > |. 

(2-1) 
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With probability greater than | , each signal is correct. We also assume the 

signals to be conditionally independent. The common prior probability on 

the event u = G is IT for all agents. 

Generally speaking, the problem can be posed as a standard mechanism 

design problem. Type of juror j, tj, is private information and belongs to the 

type space Tj = {i, g}. Each juror sends a message to the mechanism designer 

and each juror's message is a function of his type, ij, i.e. m.j : Tj —> Mj 

where Mj is the message space for juror j. The mechanism designer sets a 

choice rule, F that maps the vector of messages into a decision. In other 

words, let M = M1 x M 2 x • • • x M n . Then, F : M —> {C, A}. Given any 

F, each juror chooses her message to maximize her pay-off. The designer 

chooses F to suit her own preference. 

In the ongoing exercise, we refrain from analyzing the general mechanism 

design problem. We restrict ourselves to a particular class of mechanism -

namely the voting mechanism with single transferable vote. Each juror can 

cast only one vote in favour of one of the alternatives and then the decision 

is taken according to some monotonic or cutoff rule. In the language of 

mechanism design, we we restrict the message space for each juror to be 

binary, i.e. Mj = {C, A} and the choice rule to be monotonic in the number 

of messages of each type, i.e. if the decision is conviction for some number 

of C votes, it must be the same for any higher number. We also restrict 

ourselves to deterministic mechanisms only. 

Why do we analyze such a restrictive mechanism? Voting is one of the 

age-old practical mechanisms using which collective choice problems are re

solved. One advantage of a voting mechanism is that it is easily imple-
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mentable. Moreover, a voting mechanism with a single transferable vote has 

an ethical flavour and is often seen as a desired democratic practice. Thus it 

is commonly observed in real world and demands closer attention in its own 

merit. Social scientists are aware of its importance. Starting from Condorcet' 

in the eighteenth century, economists and political scientists have contributed 

significantly in analyzing voting mechanisms. Even in recent times, a large 

number of studies, using sophisticated mathematical techniques have dis

cussed relative merits and demerits of different voting rules10 in optimizing 

the social outcome (Austen-Smith and Banks [3]Feddersen and Pesendorfer 

[21, 22], Duggan and Martinelli [20], Martinelli [39], Meirowitz [42] and Wit 

[51]). Our attempt here is to contribute towards this growing literature when 

there is conflict of interest between the voters and the designer of the voting 

rule. 

We assume that the joint decision is taken by the jury J by playing a 

non-cooperative simultaneous move Bayesian game. After observing their 

private signals, each juror j 6 J takes an action Xj E {C, A} simultaneously 

and independently of other jurors. The action Xj = C is interpreted as a vote 

for conviction while Xj = A is a vote for acquittal. The individual votes are 

then aggregated into a decision d by a voting rule which is chosen by agent 

0. Henceforth, we will refer to agent 0 as the "designer" with a preference 
1 0 One can think of more complicated voting rules rather than the simple cutoff rule we 

consider here. Borda count is one such rule where alternatives are ranked by the voters 
in order of preference and then the winner is chosen by summing over the ranks obtained 
by each alternative. In our case, however, this does not have any significance since we 
are in an environment with two alternatives. Scoring rule is another rule where each 
alternative is given a score instead of a vote by each voter and then aggregate scores are 
used to pick the winner. We however restrict ourselves to cutoff voting rules with single 
non-transferable votes -
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parameter qp which may or may not be different from qj. B o t h qj and qo 

are common knowledge. 

T h e t iming of the game is as follows. T h e designer first chooses the vot ing 

rule. T h e jurors then play the vot ing game. The votes are then aggregated 

and the decision is reached according to the specified vot ing rule. 

Let the vot ing rule R denote the m i n i m u m number of C votes required to 

convict . G i v e n any R, when al l voters vote informatively the jury ' s ex-ante 

payoff is the following: 

V (R, n; qj) = - £ Q) P

x (1 - p ) " " ' TT (1 - 9 j ) - £ G) pn~x (1 - pf (1 - TT) qj 
z=0 x=R 

(2-2) 

Suppose we denote Rs(n) = arg max/j V (R, n; qj) . We also assume that 

(I-TT^J * s n o ^ e x t r e m e in either direction such that Rs (n) € { 1 , 2 , n } . 

As . .Aus ten-Smi th ' and Banks[3]'have pointed out, Rs(n) is the unique rule 

under which a l l voters vote informatively in equi l ibr ium. Informative vot ing 

by a juror means that a juror votes for C i f and only i f he receives a signal g. 

T h e in tu i t ion behind this result is that since Rs (n) is op t imal , the jurors want 

to move the vot ing rule towards Rs ( n ) . Suppose R < Rs ( n ) . T h e n when 

al l others vote informatively, if a juror votes informatively the probabi l i ty of 

convict ion is higher than what is opt imal . Hence the juror wants to rectify 

this by vot ing A irrespective of signal. A similar argument holds for R > 

Rs (n) as well . 

Henceforth, we w i l l call Rs (n) the jury-optimal rule. Obviously, since 

under the ju ry -op t imal rule every juror votes informatively, information is 

fully aggregated and the ex-ante pay-off of the ju ry is maximized . Now if 
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the designer's preference is the same as the jury's, the jury-optimal rule is 

optimal for the designer as well. But if the designer's preference is different 

from the jury's preference, the designer may have an incentive to distort the 

voting rule to suit her own preference. Apparently, the pay-off maximizing 

voting rule for the designer should be different from the jury-optimal rule 

which maximizes the jury's pay-off. We show that, quite surprisingly, the 

designer's optimal voting rule is not very different from the jurors for a very 

wide range of preferences of the designer. 

Before we proceed further, we consider the benchmark case where all 

private signals become common knowledge. For the jury J of size n, consider 

the decision problem when the signal vector s = (si, S 2 , s n ) is common 

knowledge. In this case, from the jury's point of view, the optimal decision 

rule is to choose C whenever Pr (G\s) > qj and to choose A if Pr (G\s) < qj. 

With private signals, whether a jury would be able to implement the full 

information decision rule above depends, along with other things, on the 

voting rule R. The following definition characterizes the voting rules that 

satisfy full-informational equivalence. 

De f in i t i on 2.1. A voting rule R satisfies full-information equivalence for 

a jury of size n if there exists a Bayesian Nash Equilibrium a j such that 

Pr (dR = C\o~j, s) — 1 whenever Pr (G\s) > qj and Pr (dn — C\aj, s) = 0 

whenever P r (G | s ) < qJt where d^ is the decision under voting rule R. and 

aj is the equilibrium strategy profile for jury J. 

We now establish a property of the jury-optimal rule that we will exten

sively use in what follows. The jury-optimal rule under which every juror 

votes informatively in equilibrium satisfies full-information equivalence. 
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L e m m a 2 . 1 . The jury-optimal rule, Rs (n), for a jury J of size n is the 

unique voting rule that satisfies full information equivalence. 

Proof. See Austen-Smith and Banks [3]. | 

Since the jury-optimal rule satisfies full-information equivalence, the out

come of a voting game with n jurors and voting rule R s (n) is the same as 

the decision problem where an individual juror has access to all n signals. 

The optimal decision for the individual juror will then be to choose C if the 

number of guilty signals out of n is greater than or equal to R s (n). If the 

jury's relative cost of convicting an innocent defendant, qj, falls, the jury 

would require less evidence to convict. Hence, if private signals become com

mon knowledge, the number of guilty signals out of n required to convict 

falls with qj. Therefore, for a fixed jury of size n, R s (n) falls with qj. 

When the size of the jury increases, more signals are available. Hence, 

the optimal number of guilty signals required to convict changes for a given 

preference of the jury. In other words, R s (n) changes with n. In the next 

lemma we show that R s (n) changes at half the rate of change in n. 

L e m m a 2 .2 . For any n, Rs (n + 2) = Rs (n) + 1. 

Proof. Take any n. Since Rs (n) satisfies full-information equivalence 

\ n-2Rs(n)+2 / i \ / \ n-2Ra(n) 

V \ > TT(1 - QJ) > I V \ 

Similarly, 

V 

l - p j ( l - n ) q j \ l - p 

(n+2)-2fis(n+2)+2 ^ (\ - qj) ( p y n + 2 ) - 2 R * ( n + 2 ) 

l-pj ( 1 -TT )<7 J \ 1 - P 
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By Lemma 2.1, we know that R„(ri) satisfies full information equivalence 

for all n. Now for all n, both set of inequalities are satisfied if and only if 

R s ( n + 2) = Rs(n) + 1. | 

So far we have restricted ourselves to characterization of the jury-optimal 

rule. We now turn our attention to the efficient equilibrium under any voting 

rule. Let a.; (SJ) denote the probability of voting C for juror rafter receiving 

the signal Sj. We say that a juror votes informatively in any pure strategy 

equilibrium if o~i (g) — 1 and a, (i) = 0. Given a jury of size n and the voting 

rule R, following McLennan [41], we know that there exists an efficient pure 

strategy equilibrium. Chakraborty and Ghosh [10] have characterized this 

efficient equilibrium. Generally, for any arbitrary voting rule, not all voters 

vote informatively in this equilibrium. Only a subset of voters vote infor

matively. The following proposition characterizes the efficient pure strategy 

equilibrium. 

Proposition 2 . 1 . (Chakraborty and Ghosh [10], Persico [46]) Assume there 

are n informed jurors. Then, if R < Rs (n), at the most efficient equilibrium 

in pure strategies, a number n - ma < n of jurors vote Acquit regardless 

of their signal, and the remaining ma jurors vote informatively where ma is 

such that Rs (ma) = R. If R > Rs (n), at the most efficient equilibrium in 

pure strategies, a number n — ma < n of jurors vote Convict regardless of 

their signals, and the remaining ma jurors vote informatively where ma is 

such that Rs (ma) + n — ma = R-

Proof. See Chakraborty and Ghosh [10]. | 

Notice that given any voting rule there exist numerous Bayesian Nash 
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equilibria in the voting game with n jurors. The objective of this exercise 

is to characterize the optimal voting rule from the designer's perspective 

when the preference of the designer differs from that of the jury. There is an 

equilibrium selection problem here. An obvious choice is to select the most 

efficient equilibrium given any voting rule. We assume that the jurors are 

sophisticated enough to play the efficient equilibrium11. 

In the efficient equilibrium, not all jurors vote informatively. But those 

who vote informatively make sure that all the information used in equilib

rium is efficiently aggregated: If m# jurors vote informatively in the efficient 

equilibrium given voting rule R, then the outcome in this efficient equilib

rium is equivalent to the outcome of a voting game with jury of size m,R 

with the voting rule R s (m#). Since jury-optimal rule efficiently aggregates 

information, this is outcome equivalent to the decision problem where the 

signals of the rfiR jurors are common knowledge. 

The above argument shows that in the efficient equilibrium, the jurors 

adjust their equilibrium behaviour to offset the effect of a change in voting 

rule to suit their preference. Hence, from the designer's point of view, ma

nipulating the voting rule amounts to choosing a jury of size m < n, with 

the effective voting rule R s (m). By Lemma 2.1, this is equivalent to choos

ing m number of signals when the decision is taken optimally according to 

the jury's preference. The designer's problem then boils down to finding a 

feasible m < n that maximizes her own ex-ante pay-off. 

Since we assume that the jury plays the most efficient equilibrium given 

any voting rule, by manipulating the voting rule from the jury-optimal rule, 
1 1 There is a coordination problem here. But we ignore that for the sake of comparison 

across equilibria of similar nature. 
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the designer effectively makes less information count towards the ultimate 

decision. As long as there is a possibility that the potential aggregate pool 

of information is decision relevant for the designer, this is a net loss. On the 

other hand, distorting the voting rule to suit her preference can only have 

a limited success, since the jurors vote strategically to suit their preference 

in the efficient equilibrium. On balance, the decrease in value resulting from 

the loss of information outweighs the gain from distortion in the voting rule 

for a wide range of preferences for the designer. 

A little discussion regarding the intuition behind Proposition 2.1 may be 

worthwhile here. If R > Rs (n), then, in equilibrium, TTIR is such that it 

satisfies Rs (m^) + n — = R.. If the voting rule is biased in favour of 

A from the jury's point of view, some jurors vote uninformatively for C to 

rectify it. But this has to be done in a way such that the rest have exact 

incentives to vote informatively. That is possible if and only if the effective 

voting rule among the informative voters is the jury-optimal rule. On the 

other hand, if R < Rs (n), m,R must satisfy Rs (mn) = R, since the rest vote 

uninformatively in favour of A. Since, in our model, the designer only has R 

as the instrument to manipulate the decision in her favour, the equilibrium 

behaviour of the jurors puts bounds on the effective number of informative 

voters she can choose. 

We now turn our attention to the designer's payoff. Notice that our dis

cussion so far has shown that by changing the voting rule effectively the 

designer can choose a smaller jury which votes informatively after strate

gically adjusting the voting rule to suit its preference. In some cases, the 

designer can induce completely uninformative voting by the jury in favour 



26 

of one of the alternatives. In other cases, she cannot induce uninformative 

voting by all. We denote by V (m; qo) the designer's ex-ante payoff when a 

m—member jury decides the outcome on the basis of voting rule R s (m). We 

now characterize an important property of V (m; q_<) which we need to prove 

our main result. 

Lemma 2.3. Suppose n > 2. For any m < n, V (m; qo) > V (m — 2; qo) 

V(m + 2;qD) > V ( m ; q D ) . 

Proof. See Appendix A . l . | 

The last lemma also implies that V (m + 2; qo) < V (m; qo) => V {m; qo) < 

V (m — 2; qo). Now suppose that the designer has to choose the size of the 

jury, m, from the set TV — {no,no + l,...,n} with no > 0 where the de

cision is taken by the jury using the jury-optimal rule. As shown in the 

above lemma, the designer would effectively choose one of four numbers 

{no, n 0 + 1, n — 1, n} to maximize her ex-ante pay-off. 

There are two types of errors that may occur as a result of the jury's 

decision. One type of error arises because, for any finite jury, there is a 

positive probability of convicting an innocent defendant. The other type 

of error arises because of the possibility of acquitting a guilty defendant. 

The preference parameter qt, t = J or D captures the relative weights the 

agents attach to these two types of errors. Let pt = ^ I " ^ be the relative 

cost of acquitting a guilty defendant for an agent of type t. This parameter pt 

indicates the effective preference of the agents. Intuitively, if pt > 1, the agent 

is relatively more biased in favour of conviction which means he attaches more 

importance on the error arising from acquitting a guilty defendant. We will 



27 

state our comparative static results in terms of po and pj. 

The preference parameter for the jury, pj, determines the smallest size 

of the jury that will vote informatively. If pj falls outside the interval 

( ( ^ £ ) ' ) ^ 0 r s o m e n ' * n e n a n y J u r y °^ s l z e n o r ^ e s s w m v o ^ e u n ~ 

informatively for either C or A, depending on which side of the interval pj 

lies in. This happens because here all n signals taken together do not have 

any decision relevance for the jury. Hence, given pj, there is a lower bound 

on the size of an informative jury 1 2. 

We now show that the designer will either prefer a jury which takes the 

decision completely uninformatively13 or one which almost fully utilizes the 

available pool of information. Let m, denote the size of the jury that votes 

informatively, m = 0 indicates a jury that takes the decision uninformatively. 

L e m m a 2.4. The designer's pay-off is maximized either at m = 0 or at 

rn — n — 1 or n. 

Proof. See Appendix A . l . | 

Lemma 2.4 provides some important insights towards understanding the 

nature of the solution for designer's problem. Either the designer wants to 

tap (almost) the total pool of available information or she does not want to 

utilize any information at all. This is a direct consequence of Lemma 2.3 

which essentially proves that the designer's objective function is convex in 
1 2 This lower bound can be equal to 1. If pj = 1, then even a single individual will have 

an incentive to vote informatively. 
1 3Notice that as we have mentioned the designer only has one instrument - the voting 

rule - to affect the effective size of the jury. Whether she would be able to induce all 
the jurors to vote uninformatively using this instrument is a different issue that we will 
address later. 
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the number of signals. But, in our set up, the designer cannot choose the 

jury (or the number of signals utilized in the process of decision-making). 

She has only one instrument - the voting rule - which she can use only to 

affect the equilibrium behaviour of the jury. 

For ease of exposition of our main result, we will call any voting rule that 

is the same as the jury-optimal rule, or one off in either direction, a near 

jury-optimal rule. In similar vein, we will call a voting rule near unanimity 

rule if it is the unanimity rule or one off from the unanimity rule. We show 

that the designer's optimal choice of voting rule is either a near jury-optimal 

rule or a near unanimity rule. We now formally define these two rules. 

Definition 2.2. Given any n, a voting rule R is a near jury-optimal rule if 

R £ { R s ( n ) - l , R s ( n ) , R s ( n ) + l}. 

Definition 2.3. Given any n, a voting rule R is a near unanimity rule for 

Conviction if R £ {n — 1, n} . Similarly, a voting rule R is a near unanimity 

rule for Acquittal if R 6 { 1 , 2 } . 

By varying the voting rule, the designer can affect the number of jurors 

who vote informatively in the efficient equilibrium. Our next lemma states 

to what degree the designer can affect this number and how it depends on 

the jury's preference. 

Lemma 2.5. If pj 6 J ^ ^ 2 , YZ^J i there does not exist any voting rule R G 

{1 ,2 , ...,n} that can induce completely uninformative voting by all jurors in 

the efficient equilibrium,. For any other value of pj, there exist at least one 

voting rule R G {1 ,2 , ...,n} where all the jurors vote uninformatively in the 

efficient equilibrium. 
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Proof. For proving the first part of the lemma, we have to check that, at R = 

1 and at R = n, at least one individual has incentive to vote informatively. 

If PJ G i-p v 
P ' i—p then R s (1) = 1. Hence, from Proposition 2.1, at R = 1, 

a single juror has incentive to vote informatively even when all others vote 

uninformatively for A in the efficient equilibrium. Now consider R = n. 

Suppose n — 1 jurors vote uninformatively for C. That the other juror has 

incentive to vote informatively can be seen from R s (1) + (n — 1) = n. 

For the second part of the lemma, it can be easily shown that for pj > y ^ , 

R. = n will induce completely uninformative voting by all jurors and for 

pj < -^p, R = 1 will do the same. | 

We will now state our main result in the next proposition. The proposi

tion characterizes the efficient voting rule for the designer for different values 

of her preference parameter. 

P r o p o s i t i o n 2.2. Consider a n-member jury with pj G ( ( ^ ? £ ) ' ( I ^ P ) ) 

which decides the outcome by playing the efficient pure strategy equilibrium 

under any voting rule. 

1. For all pj > 1, there exists a p(pj) > pj such that for po < p{pj) 

the designer's optimal voting rule is a near jury-optimal rule and for 

PD > P{PJ) the designer's optimal voting rule is a near unanimity rule 

for Conviction. 

2. For all pj < 1, there exists a p(pj) < pj such that for pu > p{pj) 

the designer's optimal voting rule is a near jury-optimal rule and for 

PD < P{PJ) the designer's optimal voting rule is a near unanimity rule 

for Acquittal. 
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Proof. We will prove the first part of the proposition. The proof for the 

second part is similar and hence omitted. 

Since pj > 1, an uninformative decision by jury is C and hence V (0; q_>) = 

— (1 — 7r) qrj. Notice that if pp < 1 the designer will always prefer an infor

mative decision to an uninformative one. By Lemma 2.4, then the designer 

would prefer an informative jury of size n or n — 1. Since the designer's rela

tive cost of convicting the innocent defendant is greater than that of the jury, 

the designer will prefer a relatively higher threshold of conviction than the 

jury. If R s (n — 1) = R s (n), the threshold for conviction in an informative 

jury is stronger for the size n — 1 than for size n, since the jury of sizes n — 1 

and n need the same number of g signals for conviction. Hence the designer 

will prefer a jury of size n — 1. By similar reason, if R s (n — 1) = R s (n) — 1, 

the designer will prefer a jury of size n. 

Now consider p_> > 1. We first consider the case where R s (n) = R s (n — 1). 

Notice that for the jury 

\ n-2Rs{n) / \ n-2Rs(n)+2 
P ^ < P J < f P 

i-pj U - P 

It can be easily verified that V (n; qo) > V (n — 1; qo) if and only if po > 
/ \n-2R3(n) 

f in this case. For higher values of po, the designer is relatively 

more concerned about convicting the innocent and hence would prefer an 

informative jury of size n to a jury of size n — 1, since the threshold for 

conviction is relatively higher in a jury of size n than in a jury of size n — 1 

in this case. Now if the designer can induce completely uninformative voting 

by the jury in favour of conviction, then by Lemma 2.4, the optimal size of 
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/ \n-2Rs(n) 

informative jury is either n — 1 or 0 if p# < ( jr^ J and either n or 0 

( \ n-2Rs(n) 

A) 
Suppose that the designer can induce completely uninformative voting 

by choice of voting rule. Lemma 2.5 identifies when this is indeed the case. 

Then, we can write 

V ( n ; q D ) - V ( 0 ; q D ) 
Rs(n)-\ , 

- 7 r ( l - t o ) Y_ U W - P ) ' 

- ( l - n ) q D (n_)(;l-prpn-x + (l-ir)qD 

x=Rs(n) 

Rs(n)-1 

( 
, 1 

x=0 
iis(n)-l 

- 7 r ( i - t o ) E y p ' a - p r ^ o 
_ 7 r ( i - t o ) E a n M o ( i - p ) v - a _ , , 

/ \n-2fl 3(n) 
That pi > ( ) can be easily verified by some simple algebra 

If the optimal size of the informative jury is n. the voting rule R s (n) can 

achieve it by Lemma 2.1. If it is n — 1, then it can be achieved by choosing 

the voting rule Rs(n) + 1. To see that this is indeed the case, verify that 

R s (n - 1) + n - (n - 1) = R s (n) + 1 since R s (n - 1) = R s (n). If pj > 

then by Lemma 2.5, R = n will induce the'jury to vote uninformatively in 

favour of C. Hence, p(pj) — pi will ensure that for p < p(pj), optimal R 

from designer's perspective is either R s (n) or R s (n + 1) and for p > p(pj) , 
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optimal R is n. 

Now consider the case when pj < y ^ . By Lemma 2.5, there does not 

exist any voting rule that can induce uninformative voting by all jurors 

in efficient equilibrium. If po > 1, V (2;qo) > V (1;<7L>) is ensured from 

the fact R s (1) = R s (2) = 1 and the designer will prefer a relatively eas

ier threshold for conviction. Hence, the designer's effective choice of the 

informative jury is limited to three numbers {2,n— l , n } . Now for any 

PD, V{2;qD) > V(0;qD) max {V (n; qD), V (n - 1; qD)} > V (2; qD) by 

Lemma 2.4. Hence, for any pp < pi, the optimal size for the informative 

jury is n or n — 1. For po > pi, the designer would be better off if she can 

induce uninformative voting by all members in favour of conviction, but the 

restriction on jury's preference makes sure that she cannot achieve this by 

manipulating the voting rule;. - Hence, the effective comparison for the de

signer is between choosing between an informative jury of size' n and that of 

size 2. Now, 

V ( n ] q D ) - V ( 2 ; q D ) 
Ra(n)-1 / x Rs(n)-1 

a-*)fc> E y a - p ) v - x - * ( i - t o ) E ("Jp^-p)" 

[ ( l - 7 r ) g D p 2 - 7 r ( l - t o ) ( l - p ) 2 ] 

> 0 

~ 0 c ^ ( o n M C ) a - p r ^ - p 2 _ 3 f j l 

Eto O P X ( I - P ) - ( I - P ) 

/ \n -2H, ( ' i ) 
That p2 > P\ > ( iT^j c a n be verified easily for any pj. We now 
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choose 
, / P2(PJ) i f l < P j < T ^ 

P{pj) = \  P • 
( Pl (Pj) if P j > ^ 

We have already discussed that optimal voting rule for the case pj > y^;. If 

PJ < y ^ , then optimal size of informative jury for the designer is n or n — 1 

for p£> < P2 (Pj) • Hence, the efficient voting rule from the designer's point 

of view is Rs(n) or R s ( n + 1 ) . For p D > p2(/9j), optimally the designer 

wants two jurors to vote informatively under the constraint that she cannot 

induce complete uninformative voting. This can be implemented by choosing 

a voting rule R = n — 1. To see this verify that R s (2) + (n — 2) — n — 1 since 

Rs (2) = 1. 

The proof for the case when R s (n — 1) = R s (n) — 1 is similar except 

that pi and p2 are now obtained by equating V (n — l;qo) with V(0;qD) 

and V (2; qu) respectively. The reason behind this is now a jury of size n 

has a relatively stronger threshold for conviction than a jury of size n — 1 

and hence for high values of po the designer would prefer the jury of size of 

n — 1. Moreover, the designer can induce an informative jury of size n — 1 

with the voting rule R s (n) — 1. From Proposition 2.1, one member then votes 

for acquittal uninformatively and the rest votes informatively. That this is 

the efficient equilibrium can be verified by R s (n — 1) = R s (n) — 1. 

Combining the above two cases, we complete the proof of the proposition. 

For PD > p{pj), the designer's optimal voting rule is a near unanimity rule 

and for P D < p {pj) , the optimal voting rule is a near jury-optimal rule when 

PJ > 1. I 

The meaning of the last proposition can be summarized as follows. If the 
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designer's bias is either opposite that of the jury or similar but close, the 

designer is best off by not distorting the voting rule too much from what 

the jury itself would prefer. Specifically, she would find it optimal to choose 

exactly the jury's own optimal rule, or a rule which differs from it by the 

margin of a single vote. For example, suppose the jury has an acquittal 

bias (i.e. absent any information, the jury would prefer to acquit). If the 

designer has a conviction bias, or an acquittal bias of similar magnitude, the 

best thing for the designer to do is to set a rule that attempts to (nearly) 

maximize the amount of information being utilized in the jury's decision. 

This is achieved by choosing the voting rule that the jury most prefers. Our 

analysis shows that the jury will respond to any distortions in the rule by 

contracting the amount of information used in the decision in a way that 

(almost) neutralizes the distortion. The designer, therefore, fails to influence 

the way the utilized information is aggregated into the decision, but simply 

induces a loss of available information. She is better off avoiding this pure 

information loss. 

The strategic considerations are dramatically different when the designer 

and the jurors have similar biases (say in favour of acquittal), but the de

signer's bias is much more extreme than that of the jury. For example, 

consider a situation where the designer ideally wants a much higher burden 

of proof to convict a defendant than the jury. In such situations, the designer 

may prefer to minimize rather than maximize the informativeness of the de

cision. Since, in the presence of little or no information, the jury leans the 

same way as the designer, she may want to exploit this feature and avoid a 

lot of convictions in marginal cases. It is interesting- to observe what kind of 
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rule achieves this. In the case of similar but very disparate biases (say both 

lean towards acquittal but the designer more strongly so), she can achieve 

informational shutdown by making acquittal very difficult, i.e. by choosing a 

rule that requires unanimity to acquit! Such a rule makes a single conviction 

vote too risky, and the jury responds by voting for acquittal, disregarding its 

information altogether. 

It is interesting to contrast this result against that of Feddersen and Pe-

sendorfer [22], who pointed out some undesirable properties of the unanimity 

rule in jury trials. In particular, they demonstrated that the indirect strate

gic effect of changing the conviction threshold may outweigh the direct effect, 

to produce counter-intuitive results. In some circumstances, it may be more 

likely that an innocent person is convicted when conviction requires unanim

ity rather than simple majority. Feddersen and Pesendorfer [22], however, do 

not conduct explicit welfare analysis, which is a deficiency since these prob

lems involve a trade-off between two kinds of errors (convicting the innocent 

and acquitting the guilty) and an increase in one kind of error can be more 

than compensated in principle by a decrease in the other. This is especially 

important when the designer and the juror's preferences are in conflict, which 

may prompt the former to manipulate the rule to suit her own objectives. 

Our results show that optimal manipulation is either (nearly) zero, i.e 

choosing the jury optimum rule, or maximal, i.e a near unanimity rule, which 

leads to the greatest information loss. Hence, unanimity is a salient rule in 

voting, in the sense that it is the preferred rule whenever a designer finds it 

optimal to manipulate the decision making process through her constitutional 

powers. A further surprising feature is that this happens in a direction that 
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is diametrically opposite to what first intuition may suggest. Again, consider 

the example of a legislature which may place a lot of weight on the welfare loss 

from wrongful convictions, but may be worried about juries being relatively 

trigger happy, i.e. willing to convict on a lower burden of evidence. Feddersen 

et al suggested that raising the bar by requiring unanimity for conviction may 

be counter productive. Our results show that if manipulation is useful at all, 

the pendulum swings all the way to the other end, i.e. the optimal rule is 

to make conviction very easy, by requiring (near) unanimity for acquittal] 

Analogously, liberal minded constitutional designers (i.e. those receptive 

to change) may want to create highly conservative constitutions, requiring 

strong consensus to vote for change, and vice versa. 

2.3 Concluding Remarks 

We investigate a model where the decision making is delegated to a group of 

individuals with disparate information but common preference. The group 

arrives at a decision using a voting mechanism where the voting rule is chosen 

by a designer who may have conflict of interest with the group members. 

The designer faces a trade-off between choosing a rule that leads to efficient 

information aggregation and a rule that suits her own preference. We show 

that the designer resolves this trade off by going to one of the extremes. In 

other words, either she chooses a rule that almost fully aggregates information 

or a rule that uses almost no information. We provide a full characterization 

of these two cases based on designer's preferences. 

We show that if the designer and the group have opposing biases in favour 
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of one of the alternatives, then the best voting rule for the designer is nearly 

the one that is best for the group. If, on the other hand, the designer has 

similar, but relatively stronger, bias as the group for one of the alternatives, 

the optimal rule is one which requires near-unanimity for the favoured al

ternative. Intuitively, this gives the group greater incentive to vote for the 

designer's favoured alternative uninformatively (since the group has similar 

bias, it will vote in favour of the designer's preferred alternative when it is 

voting uninformatively). We conclude by noting that for a wide range of 

preferences for the designer, the optimal voting rule is almost independent 

of the designer's own preference. 
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3. Information Aggregation in 

Multi-round Elections 

3.1 Introduction 

Voting is the most common way in which social choice problems are resolved. 

However, if voters have noisy private information about the possible conse

quences of various choices, usual (simultaneous) voting procedures fail to 

aggregate that information efficiently. This is most clearly seen in a model in 

which voters have identical preferences but different information14. The de

centralized voting outcome is usually not informationally efficient—welfare 

would increase if a central planner could (costlessly) collect everyone's infor

mation and implement a decision. Of course, this is only an ideal benchmark. 

In reality, for a planner to collect accurate information from thousands or 

millions of people is an exercise fraught with incentive and free-rider prob

lems, to say nothing of administrative costs. A decentralized mechanism is, 

therefore, more or less a practical necessity. Hence, the search for better (yet 

practical) decentralized mechanisms is an important one for social choice 
1 4 I t can be argued that generally the voters will have both private information as well 

as heterogeneity of preference. Nevertheless, the pure common interest case serves as a 
useful theoretical benchmark. 
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problems. 

A significant number of theoretical and experimental studies, particularly 

in the context of jury trials, have tried to analyze this issue both in common 

interest elections and in the presence of some degree of heterogeneity in 

preferences. Ladha [33], Miller [43], Feddersen and Pesendorfer [21, 22], 

Duggan and Martinelli [20], Wit [51], Ladha, Miller and Oppenheimer [34] 

represent just a small sample of recent literature. 

The problem of aggregating information arises because in a simultaneous 

voting two-alternative election, voters condition their votes on being pivotal 

given the voting rule. Austen-Smith and Banks[3] show that sincere voting 1 5  

is not an equilibrium behaviour in general. Although for a binary signal 

structure, full informational efficiency can be achieved in a Nash equilibrium 

by properly choosing the voting rule, this is not true for a richer signal space. 

In a binary signal case, sincere votes can reflect the realized signals16 of the 

electorate and, if the voting rule is optimally chosen, one can achieve the 

central planners outcome. But this is not true when the signal space is rich 

enough so that voters cannot mimic their signals just by using their votes. 

The obvious way to resolve this problem is to introduce pre-play com

munication by allowing players to exchange messages prior to actual voting. 

With perfectly aligned (or even almost common) interests, all private infor

mation will be revealed, and then players will vote unanimously to achieve 

the informationally best outcome. But communication may not be feasible 

in all elections. Moreover, to achieve informational efficiency through com-

1 5Sincere voting is the voting behaviour in which each voter chooses the alternative 
yielding the highest expected payoff' conditional on her private signal. 

1 6 We consider the case when sincere voting is informative, i.e. each players vote depends 
on the private signal. -. ~ 
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munication, the message space has to be sufficiently rich so that players can 

convey their signals by their messages. Arbitrary communication mechanisms 

cannot achieve this end. Coughlan [13] examined a straw vote as a means of 

communication and showed that full informational efficiency can be achieved 

for any voting rule. But again this result holds only for binary signals and it 

fails as soon as the signal structure is more complicated.' Doraszelski, Ger

ardi and Squintani [19] and Gerardi and Yariv [23] study voting behaviour 

when voters can communicate using a sufficiently rich message space which 

allows the voters to imitate their signals. But direct pre-play communication 

is often costly, particularly if the size of the electorate is large enough. More

over, any mechanism that attempts to resolve a collective choice problem 

has greater appeal if it is indirect and easily'implemeritable. Full pre-play 

communication between the players even in a medium size election is often 

too much to ask for. 

What happens if direct communication is not feasible before voting? 

Chakraborty and Ghosh [10] showed that for conditionally independent sig

nals full information equivalence can be achieved for any voting rule that 

allows divisibility of individual votes. This chapter attempts to provide an 

alternative mechanism that can improve the voting outcome significantly. 

At first glance, it seems that instead of simultaneous votes, some kind of 

sequencing of the voting procedure could lead to better results, by allowing 

later voters to draw inferences from the votes exercised by those who pre

ceded them, and thereby vote in a more informed way themselves. However, 

Dekel and Piccione [16] have shown that this intuition is generally not true. 

Under sequential voting, the set of equilibrium outcomes remains the same 
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as under simultaneous voting. Callander [9] examines a model where vot

ers obtain positive utility from voting for the winning candidate and finds 

that superiority of the voting procedure depends on the value of the common 

prior. Morton and Williams [44] compare between simultaneous and sequen

tial voting outcomes empirically. Al l of these papers, however, consider rules 

that require the sequence in which the electorate must vote to be exogenous. 

This undoubtedly has practical relevance, as roll-call voting is often observed 

in reality, particularly in legislatures. 

The equivalence result of Dekel and Piccione, though, crucially depends 

on the requirement of exogenous voting sequence. One can easily imagine, 

and perhaps design, voting procedures which allow voters more flexibility 

with respect to timing. This allows the possibility of learning the private 

signals by the later voters. In the context of private investment decision, 

Chamley and Gale [11] examine how social learning can affect the behaviour 

of late investors, and thus induces strategic delay for better information. In 

this chapter, we take a similar approach in a collective decision setting. We 

consider a multi-round voting procedure in which each voter can exercise her 

vote in any one of several successive rounds. After each round, voters receive 

information about the votes that have been cast in previous rounds. We 

show that if voters have identical preferences, there always exists a perfect 

Bayesian equilibrium which aggregates all the information into the decision 

efficiently. Moreover, if the model is symmetric, there is a symmetric equi

librium which achieves this end. The basic intuition is that each voter can 

convey information to others not only through her choice, but also the timing 

of that choice. Those with relatively strong information can vote early, while 
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those with relatively weak information wait to see how things unfold. The 

following example clarifies how it works. 

We construct a very simple example that may help in indicating how 

multi-round voting can improve efficiency of the outcome over simultaneous 

or Dekel and Piccione type sequential voting with an exogenous sequence. 

We consider a 3-voter binary election where the choice is between alternative 

(A) and status-quo (Q). Each voter can get one of the three signals —1,0 

or 1. The signal 0 is interpreted as a completely uninformative signal while 

the signal 1( — 1) is a strong, though imperfect, signal in favour of A(Q). The 

prior on A is such that the efficient outcome is the following: 

, (1,1,1),(1,1,0),(1,1,-1) 
d*(9) = Affi0e{ 

(1,1,0),(1,0,-1),(0,0,0) 

where 6 is the realized signal vector and d* (8) is the collective decision. A 

wins if there are at least two votes in favour of A. 

If voting is simultaneous, the voting strategy of player i is a function 

Si : 0; —-> {A,Q} where 0j = {1,0, —1} is the set of signals that player i 

can receive. Now, if in any symmetric equilibrium of the simultaneous voting 

game d(0,0,0) = A, then for this equilibrium strategy profile d(Q, 0, —1) = A. 

This outcome is clearly inefficient. 

Let us consider a sequential voting procedure for the above example when 

the voting sequence is exogenous. Without loss of generality, we consider 

voter 1 as the first round voter. The voting strategy of voter 1 is still a 

function Si : 0 i —• {A,Q} , but for players 2 and 3, voting strategies 

depend oh the history of the game. For later players who vote in rounds 2 
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and 3, the voting strategy is s| : ff' x 0; —• {A, Q}, where H l is the set of 

all possible histories prior to period t. We will consider monotonic strategies. 

Voter 1 plays one of the following two strategies: 

Suppose voter 1 plays s\. If 9\ = 1 is followed by 02 = 0 and #3 = —1, then 

for the outcome to be efficient at least one among voters 2 and 3 have to 

vote for A since d*(l, 0, —1) = A. Now suppose 6i — 0 is followed by #2 = 0 

and (93 = — 1. Voters 2 and 3 now face the same histories and private signals 

and therefore vote similarly. Hence, A still wins although d*(0,0, —1) = Q. 

A similar inefficiency can be shown to exist if voter 1 plays s2 in equilibrium. 

In the game with flexible timing, the existence of a symmetric efficient 

equilibrium is easy to show. Only two rounds of voting are needed. In round 

1, each player has three actions to choose from — A,Q and W, where W 

stands for waiting in round 1. After round 1, the vote tallies in favour of A 

and Q become public knowledge and round 2 voters condition their vote on 

the history. Suppose (m^.m^) denote the number of votes in favour of A 

and Q respectively after round 1. The following strategy now constitutes an 

Q 

A if 9i = 1 or 0 

or 
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efficient symmetric equilibrium: 

A if 1 

s\ = { Q if - 1 

if 0 

and 
t 

Q 

A 

A 

A 

if (1 - 1) 

if ( 1 -0 ) 

if ;(0 - 0) 

if ( 0 -1 ) 
V 

where s2 is the action chosen by player i in round t. :These strategies generate 

efficient outcomes for all possible signal realizations. After round 1, the 

private signals become common knowledge and the later voters vote to ensure 

the efficient outcome. Since voters have common preferences and information 

is aggregated efficiently, these strategies constitute an equilibrium. 

What would happen if the preferences are diverse in a voting game with 

flexible timing? This will be a more difficult question to answer since even 

with pre-play communication the voters will have incentive to strategically 

withhold private information, fn Section 3 of this chapter, we show that 

the multi-round voting mechanism may work in environments with diverse 

preferences as well. This mechanism achieves precisely what single round 

pre-play communication or a straw vote like opinion poll can achieve. But 

unfortunately we don't have a general relationship between the set of equi

libria of the voting game with communication and the set of equilibria of 

the voting game with flexible timing. We conjecture that there would be a 
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strong connection between the set of equilibria with unrestricted communi

cation and that in the flexible timing game. But proving it is an agenda for 

further research. 

When the size of the electorate is very large, the probability of a single 

player being pivotal is almost negligible and the notion of strategic voting 

does not have much appeal. Also communication among the electorate is 

almost impossible. On the other hand, in very small elections, it's hard to 

believe that players are anonymous and cannot talk prior to voting. This 

gives players access to unrestricted communication. So our model is mostly 

applicable in medium-sized elections where communication is costly. Possible 

examples can be election of faculty council or vote on some agenda by the 

residents of a medium sized city. We conclude that mechanisms that allow 

for a more flexible choice of timing could substantially improve the efficiency 

of collective decisions. 

A common example of a sequential voting procedure is the roll-call vot

ing often observed in legislative voting. However, in roll-call voting, voting 

sequence is exogenous. Hence, given the pivotal voter argument, the scope 

of the later voters to learn some extra information from the actions of the 

earlier voters is limited. We, on the other hand, allow voters to choose the 

timing of their votes thus allowing the earlier voters to convey their private 

information to the later participants. 

In a different context, the papal election in Vatican proceeds in multiple 

rounds. In the papal election, there is no restriction in the number of can

didates. Each voter from the College of Cardinals votes in the first round. 

If one candidate gets two-third majority in the first round, then he wins. If 
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nobody gets the required majority in the first round, voting proceeds to the 

next round and the same procedure is repeated. The election mechanism 

used in the papal election, while not being the same as what we propose, has 

a similar flavour. After a round of voting with no clear winner, each voter 

updates his information using the voting history before the next round of 

ballot takes place. 

We essentially ask a normative question in this chapter. We suggest an 

election mechanism where voters at each stage can update their information 

from the voting history of the preceding stages. Moreover, by strategically 

choosing their timing, they can now convey their private information to oth

ers if they so desire. We seek to examine the efficiency implications of such 

a mechanism and it turns out that a multiround voting mechanism does a 

pretty good job in aggregating disparate private information of the voters. 

The chapter is organized in the following way. Section 2 describes the 

model and the results when preferences are aligned. Section 3 discusses an 

example with diverse preferences and shows the connection between the set 

of equilibria with communication and that with flexible timing. Section 4 

concludes. 

3.2 The Model with Common Interest 

A group of n voters must choose from among two options—the status quo (Q) 

and the alternative (A). The state-of-the-world can also have two values, Q 

and A. Al l voters have common preferences captured by the utility function 

u(d,u), where d G {Q, A} represents the voting outcome and u> is the state-



47 

of-the-world. We assume 

—q if d = A, UJ = Q 

u(d,u)=< -(1-q) iid = Q,uj = A •• (3.1) 

I 0 otherwise. 

Voter i receives a private signal Oi G 0j. Let 8 = 9 i x 0 2 x ... x 0 n , with 

9 being a typical element. We assume that the number of elements in 0j is 

finite. Let J(9\UJ) denote the probability of realization of the signal vector 9 

if the true state is UJ. The prior on the event UJ = A is ir. 

The voting rules are as follows. The alternative A is selected if the final 

vote tally in favour of A is k or more. Otherwise, Q is selected. Voting 

proceeds in T successive rounds. Each voter has a single, indivisible vote, 

which she must cast in favour of either Q or A in any one of the T rounds. 

Thus in rounds 1,2,...,T — 1, a voter who has not previously cast her vote 

must choose from a set of three alternatives: {Q, A, W}, where W stands for 

"wait till the next round." In round T, the set of options is simply {Q, A}. 

Votes, once cast, cannot be changed subsequently. In general, let X\ denote 

the set of options available to voter i at date t. If i has exercised her vote 

before, we adopt the convention that X\ = {W}. 

While each voter's signal is private information, the actions of all voters 

in each round become common knowledge before the next round1 7. Voter i's 
1 7Since we are interested in environments in which voters cannot directly communicate 

with each other; the requirement that they are able to observe the actions of all other 
voters after each round may seem restrictive. However, in the symmetric case, all that is 
necessary for our results is that voters be able to observe some relevant summary statistic of 
other voters' actions, e.g. the aggregate number of votes cast in favour of either alternative 
after each round. . , - . 
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history up to round t, denoted by h\, is the sequence of actions taken by i 

in rounds 1, 2 , t . Let h l be a vector of histories of all players, and H l the 

set of all possible histories up to round t, with H° = <£>. A (pure) strategy 

Si for player i is then a collection of mappings s\ : H 1" 1 x Gj - — > X\ for 

* = 1,2,...,T. 

The above discussion describes a well defined Bayesian game. We focus 

on perfect Bayesian equilibria (PBE) of this game. 

Before proceeding with characterizing equilibria, it is useful first to define 

a. benchmark. Suppose that all players' signals were common knowledge. 

Then, voters will have a common posterior defined by Bayes' rule as follows: 

:-- ^ = " m ~ « w ^ w - m ^ Q ) (3'2) 

Let d*(9) denote the optimal choice, given the entire vector of signals. Clearly 

d*(9) — A 7(0) > q (3.3) 

For every profile of strategies s in the voting game, and for every realized 

signal vector 9, we can define d(s, 9) E {Q, A} as the outcome induced by s. 

Def in i t i on 3.1. A strategy profile s satisfies full information equivalence if 

d(s,9) - d*(9) for all 9 G 0. 

Finally, denote by m„ the number of elements in 0j, and let m = 

max i 6 imj . We are now ready to state the main result of the chapter. 

T h e o r e m 3.1. Suppose T > m. Then there exists a pure strategy perfect 

Bayesian equilibrium s" of the voting game which satisfies full information 
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equivalence. 

Proof. To prove this result, it is enough to show that there exists a strategy 

profile which achieves full information equivalence. A useful property of 

common interest games is that the profile of strategies which maximizes the 

common payoff function is immune to individual deviations, i.e. constitutes 

a P B E 1 8 . Hence, if full information equivalence is feasible, it is achievable in 

equilibrium. 

Demonstrating the existence of such a strategy profile is extremely simple. 

Consider the strategy profile sas follows. Divide the voters into three subsets: 

TA — {1, 2 , k — 1}, TQ = {k,n-1} and TV = {n}. Let nA(h l) and UQ^I1) 

be the number of votes cast in favour of A and Q respectively under history 

h l. Also, let Qi = {1 ,2 , ...,m.J. For i e IA 

A a t = el 

W if t < m and t ^ 0{ 

Q \it = m + l,nA{h t) < k - l , n Q ( h t ) < n - k 

A \it = m + l , n A { h t ) = k - l , n Q ( h t ) < n - k 

Q if t = m + l ,n / i( / i t ) < k - \,nQ(h}) = n - k 

Q otherwise 

(3.4) 

3See McLennan [41] and Chakraborty and Ghosh [10]. 
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Similarly, for i 6 TQ 

Q if t = 9i 

W if /, < m and /. ̂  0* 

Q if t = m + l ,n / t ( / i t ) < fc - l ,n Q ( / i t ) < n - fc 

A if /, = m + 1, n A (^) = A; - 1, nQ(//,f) < n - k 

Q . if t = m + 1, n^/ i ' ) < /c - 1, n Q(/i t) = n - k 

Q otherwise 

Finally for i € TV 

(3.5) 

S * ( O 0 

w if t < m 

A if t — m + 1, n^/ i 4 ) = A; - 1, nQ(h}) = n — k 

and Pr [w = A | s_ i ; h l, 6i] > q 

Q if t = TO + 1, riAih 1) = k - 1, n q ^ ) — n - k 

and Pr [u> = A|s_i , h', 0,] < g 

A if £ = TO + 1, n^h') < k - 1, nQ(/if) < n - k 

A if f = TO + 1, n i 4(/i t) = A; - 1, ng(/i t) < n - k 

Q \f t — m + I, nA(h l) < k - 1, ng(/i') = n - k 

A otherwise 

(3.6) 

Since the first fc — 1 voters vote for /I, and the next n — k voters vote 

for Q regardless of their signals, the last voter is always pivotal along the 

equilibrium path of play. Although the first n — 1 votes are independent of 

the signals, their timing bears a one-to-one correspondence with the signals. 

Hence, voter ri can infer the signal realizations of all preceding voters, by date 

t = m+1. Since the last and pivotal voter votes optimally with respect to her 
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equilibrium information, the outcome satisfies full information equivalence. 

Since the equilibrium payoff is maximum that a voter can get in the above 

game, these strategies are immune from individual deviations under any set 

of off-the-equilibrium beliefs. 

We adopt a particular set of off-the-equilibrium beliefs and strategies, but 

many other specifications would work as well. In words, it can be described 

as follows. It is common knowledge that there has been a deviation if one 

of the non-pivotal voters hasn't voted by date m. Assume that the votes 

of others will be interpreted as if they have played in accordance with their 

equilibrium strategies, and the votes of those who have waited will be seen as 

uninformative. Further, at every date after it becomes clear that a deviation 

has taken place, everyone must simultaneously vote in favor of Q, unless 

there is an unanimity required among the remaining voters to adopt Q, in 

which case they simultaneously and unanimously vote for A. If there is a 

single voter left, she votes for whichever outcome she sees as optimal, given 

her beliefs at that point. Since, as long as there are two or more voters 

left, no voter is pivotal under this construction, every voter plays a best 

response. | 

Since we are interested in environments in which voters cannot commu

nicate and exchange information directly, the relevance of the above formu

lation may be called into question for two reasons. First, it requires voters 

to have individual specific information about each voter's actions in the pre

vious rounds. This may seem' too strong a requirement. It may be more 

reasonable to assume that voters get information about aggregate vote tal

lies from the past rounds, not who voted and who abstained. Second, it is 
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clear from the strategy constructed above that the partition of the set of 

voters, including the identity of the last and pivotal voter, is arbitrary—any 

permutation would work just as well. In other words, even if voters are ex 

ante identical, they must play asymmetric strategies based on a pre-specified 

partition that could be selected in many different ways. This requires solving 

a complex coordination problem which seems both unrealistic and incompat

ible with the assumption of lack of communication. Nevertheless, our next 

result shows that in a symmetric model, subject to a mild condition on the 

joint distribution over signals being satisfied, it is possible to construct a 

symmetric strategy profile which successfully aggregates all the information. 

Henceforth, suppose each.player could receive one among m.signals, so 

that,©; = { 1 , ' 2 , m } . The probability distribution f{9\u) is symmetric if 

the value of the function is the same for any permutation of the components 

of 9. f(9i, 9-i\u) is monotonic if ^ ' ' ^ [ Q ] is monotonic in Oi for all € 0_j. 

Without loss of generality, we assume that ^ " ^ ' [ Q J is increasing in 9%. 

T h e o r e m 3.2. Assume Qi = {1, 2 , m } for alii, and f(9\u) is symmetric 

and monotonic. IfT > rn, there is a symmetric PBE in pure strategies which 

satisfies full information equivalence. 

Before proceeding with the proof, a few definitions and preliminary results 

need to be established. Consider any subset of I voters and a subset 0 ' C 0 

of signals. Let 0J denote the product space of signals received by I members, 

each signal being drawn from the subset 0'. Let 9 denote the highest signal 

in 0 ' and 9 the lowest. Let ©'(r) denote the subset of 0 ' such that each 

member consists of at least r highest (i.e. 9) signals and the remaining 

arbitrary. Similarly, let 0'(r) denote the subset of 0 ' such that each member 
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consists of at least r lowest (i.e. 9) signals and the remaining arbitrary. 

Define 

%r;l,G') = min 7(6>) (3.7) 
flee (r) 

7(r;i,e') = max 7 ( 0 ) (3.8) 
— eee'(r) 

Let f?S]/_s € 0{ denote a signal vector that consists of ,s number of 9 signals 

and I — s number of 9 signals. Due to monotonicity, it follows that 

7(r;f,e') = 2 ( l - r ; l , & ) = 7 ( ^ - r ) 

and further, 7 ( r ; Z, 9 ' ) is increasing in r, while 7 ( r ; 6 ' ) is decreasing in r. 

Proof, (of Theorem) We can now complete the the proof of the theorem. 

Consider the first round. Either j(k;n, O) > q or 7(71 — /c + 1; n, 0) < 9. 

Suppose f(k; n, 0) > q. Then, let all the voters who received a signal m 

vote for A in this round, and the remaining choose W. If the outcome is 

decided by these votes straight away, that means at least k voters must 

have received the signal m. In that case, the updated posterior on the state 

being A, conditioning on the entire vector of signals, is bounded below by 

j(k;n,Q) > q. Then the decision is efficient, regardless of what the other 

signals are. On the other hand, if the number of votes cast is less than k, the 

game proceeds to the next round. If j(k;n, 0) < q, then the strategy is to 

vote for Q in the first round if a voter has received the signal 1, and to wait 

otherwise. 

Suppose, after application of these first round strategies, the result of the 
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election is still undecided, so that the game proceeds to round 2. Exactly-

similar strategies can now be constructed recursively. Notice that since the 

number of voters who voted in the previous round, as well as their signals 

(through knowledge of their strategies) is commonly known, all remaining 

voters can update their beliefs over the states accordingly. The subgame 

beginning with round 2 is exactly similar to the initial game, only with 

a reduced set of players (after eliminating those who have already voted), a 

reduced set of possible signals for each, an updated prior as well as probability 

distribution over signals, and a new threshold of votes necessary for each 

alternative to be chosen. The same exercise as in round 1 can be applied 

to this subgame to construct round 2 strategies after every possible history. 

This recursive method can last at most m steps before it yields an outcome, 

and by construction, the outcome is efficient whenever the process stops. 

More formally, after any history ht, let n(ht) be the number of voters 

left, 0 (ht) the reduced set of possible signals, and k((ht) the number of re

maining votes needed for A to be chosen. Either j(k(ht); n(ht), Q{ht)) > q or 

j(k{ht);n(ht),e(ht)) < q. Let 9 (ht) = max6(/i t) and 9(ht) = min0( / i t ) . 

Now if j(k(ht); n(ht), Q(ht)) > q, let all the voters who receive signal 9 (ht) 

vote for A, and all the others who didn't cast their votes in any of the pre

vious rounds choose W. If j[k(ht)-,n(ht).Q(ht)) < q, voters who receive 

9_(ht) vote for Q and wait otherwise. This strategy ensures that after any 

history ht, if the outcome is decided, then it is efficient. Since, as a result of 

this strategy profile, the best outcome is reached, this is a perfect Bayesian 

equilibrium'. | 

The following example clarifies how the process described above works. 
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We consider a simple voting game where n = 3, 0 ; = {1,2, 3} and outcome 

is decided by majority rule in favour of A, i.e. k — 2. 

Case I: 7(3,3,1) > q 

Anyone with signal 3 will vote for A in round 1. If the outcome is decided 

in the first round then it is efficient independent of the signals of the later 

voters, since 7(3,3,3) > 7(3,3,2) > 7(3,3,1) > q by monotonicity. Other

wise, there are two possible histories at the end of round one: (i) one vote for 

A from which the later voters can perfectly infer that there is one 3 signal; 

(ii) zero vote for A. 

fn case of (ii), there are now only four possible signal realizations19: 

{2, 2,2},{2,2,1},{2,1,1},{1,1,1}. 

If 7(2, 2,1) > q, all with signal 2 vote for A in round 2. Again if the outcome 

is determined, then it is efficient. If not, then in the last round the remaining 

voters know the exact realization of the signal vector and vote accordingly. 

If 7(2, 2,1) < q, all with signal 1 vote for Q. The same argument as above 

shows that outcome is efficient. 

In case of (i), there are three possible realizations of signal vector: 

{3,2,2},{3,2,1},{3,1,1}. 

Now the number of votes required for A to be chosen is one. If 7(3, 2,1) > q, 

voters with signal 2 vote for A in round 2. If 7(3, 2,1) < q, voters with signal 

1 vote for Q in this round. The outcome is efficient by similar reason as in 
19Because of symmetry, the permutations of signals canbe ignored. 
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(ii). 

Case II: 7(3,3,1) < q 

Anybody with signal 1 votes for Q in round 1. Outcome is efficient if 

decided in period 1. If it is still undecided, similar strategy as in Case I will 

generate efficient outcome. 

3.3 Diverse Preference 

In this section, we will try to explore the effectiveness of our mechanism 

in a situation where people's preferences may vary. Even when preferences 

vary, each player has incentive to make the best informed choice-and hence 

to share their private information. On the other hand, since interests can 

be conflicting, revealing one's private information completely may prove too 

costly. These two opposing incentive will lead to some revelation of private 

information in equilibrium if communication between the players are permit

ted. Doraszelski, Gerardi and Squintani [19] (henceforth DGS) have studied 

this situation in a two voter binary signal model. In their model, prior to 

the voting stage, the players may communicate using a straw vote to send 

messages to other players. This takes the form of an opinion poll prior to 

voting. In our case, we do not allow people to communicate among each 

other. In stead, we use the indirect mechanism of multi-round voting where 

voters get to choose the timing of their votes. We will show, using the same 

model as DGS, that the best equilibria in their model with communication 

can be easily replicated using our mechanism. As we have already shown 

in the earlier sections of this chapter, when interests are completely aligned, 
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multi-round voting achieves what unrestricted communication can do as an 

equilibrium outcome. The purpose of this section is to show that the use

fulness of our mechanism is not restricted to the special case of common 

interest. This mechanism can substitute for pre-play communication under 

more general circumstances. 

We use the same model as in Section 3.2 except that we now have only 

two voters and voters may differ in their relative concerns for two types of 

errors that may occur as a consequence of a wrong decision. A player of 

type q has the same utility function as in equation [3.1]. Types are private 

information, but it is common knowledge that each type is an i.i.d draw from 

a distribution F with domain (0,1). F is continuous and strictly increasing. 

We assume that players are not extreme types where they completely ignore 

one types of error. 

Each player i receives a private signal s» G {0,1} which is related to the 

state of the world: Pr (SJ = 1|A) = Pr (s; = 0\Q) = p G ( | , l ) . The signals 

are conditionally independent. Voting proceeds in two rounds20. After the 

first round, voting history is revealed to anyone who decides to vote in round 

two. Finally, conviction requires unanimity21. 

We begin by discussing the equilibria of the game with communication. 

Both the players can exchange messages prior to voting. There always exist 

some equilibria where players ignore the messages completely and the game 

proceeds just like a pure voting game. These equilibria are called babbling 

equilibria. We ignore this class of equilibria. We concentrate on the set 
2 0Since in this section we are restricting ourselves to a binary signal space, we need just 

two rounds of voting. 
2 1 The restriction to a particular voting rule is to ensure that we are using the same 

model as DGS. 
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of Perfect Bayesian equilibria in cutoff strategies that do not admit weakly 

dominated strategies. It can be shown that all the Perfect Bayesian equilibria 

of the communication game are outcome equivalent to the set of perfect 

Bayesian equilibria in cut off strategies22. 

Not all cutoffs are necessarily identified by sequential rationality or weak 

dominance. In the case an action by any of the player affects the final deci

sion, the cutoffs are uniquely identified across signals by a family of functions 

™> { 1 - p ) 2 q + p 2 { 1 _ q ) 

defined on (0,1). Note that k' (q) > 0 and k(q) < q for all q. The equilibria 

which admit cutoff strategies thus related across signals are called robust. 

Moreover, in equilibrium, each player conditions her vote on her preference 

parameter q, the signal she receives s, the message she sends m and the 

message she receives M. These equilibria are called responsive. Finally, we 

consider only the set of symmetric PBEs. 

The equilibrium profiles are identified by the cutoffs qs and qsmM with 

s € {0,1}, m € {0,1}, and M £ {0,1}. This means that a player of type q 

sends message m = l(m = 0) after observing signal s if q < qs (q > qs), and 

that a player of type q votes v = A (v = Q) after observing signal s, sending 

message m, and receiving message M if q < qsmM (<? > qsmM)-

P r o p o s i t i o n 3.1. (DGS) There exist three classes of responsive robust cutoff 

equilibria: 

Class 0: qs < qsio < Qsoo < Qsii = QsOi for s £ {0,1}; . 
2 2See DGS [19] for a detailed discussion. 
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Class 1: qs00 < qsio < Qs < Qsii < QsOi for s e {i,g}; 

Class 2: qs00 < qsl0 = qs < qsll = qsoi for s e {i,g}. 

There does not exist a responsive robust cutoff equilibrium in any other 

configuration. 

For any class, the smallest cutoff in s = 0 is larger than the largest 

cutoff in s = 1 and the two sets of cutoffs are separated by |. Moreover, the 

equilibria of class 0 are outcome-equivalent to the equilibria of class 1. 

This proposition is directly taken from DGS [19] with some minor changes 

to make it compatible with the notations of our model. The proof is omitted 

and can be found in DGS [19]. It can also be shown that class 0 and class 

1 equilibria are ex-ante Pareto superior to class 2 equilibria. We will show 

that any class 0 equilibrium is outcome equivalent to a Perfect Bayesian 

equilibrium of the multi-round voting game. 

We now turn to the equilibria of class 0. Figure 3.1 illustrates the equi

librium behaviour. For each interval, the first column reports the path of 

play of the type when she has received the signal s = 1 from nature, and the 

second column, the path after the signal s = 0. The first row identifies the 

message sent. The second row refers to the vote. When a type conditions 

her vote on her opponents message, we first present the vote after receiving 

message M — 1 and second the vote after M = 0. 

The cutoffs described in the above proposition for class 0 equilibria are 

defined by the following set of equations [19]: 
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Figure 3.1: Equilibrium path of play for class 0 equilibria in DGS 

and 

q s m 0 -, , D W F M - % ) ) + ( F ( t ( w ) ) - F [ t h , ) ) ) l ^ 3 - 1 0 ) 
^ n-[(F(qsm0)-F(qB))+R{F{k(qam0))-F(k(qs)))] 

and, finally, 

q s n , i ? f l (F(g .mi ) -F(g„»o) )+(F( fc ( g , m i ) ) -F( fc ( g j m 0 ) ) ) I 3 - 1 1 ) 
1 ^ n-(F(qsmi)-F(q5m0))+R(F(k(qsml))-F(k(qsm0))) 

for s £ {0,1} . ft should be noted that other configurations of equilibrium 

cutoffs are possible. We select this class of equilibria since this is ex-ante 

Pareto efficient as shown by DGS. 

Coming back to the analysis of multi-round game, we will try to find a 

symmetric Perfect Bayesian Equilibrium in cut-off strategies. Since d = A 
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requires unanimity, any voter who votes for Q can do so in round two. A 

single voter can decide the outcome in favour of Q. Hence, a Q voter loses 

nothing by waiting in round one. 

We consider an equilibrium in the following symmetric cutoff structure. 

A player with signal s G {0,1} will vote A in round one if q < qs. Otherwise, 

the voter waits. A waiting voter can face two possible histories in round 

two: (i) h° - 0 votes cast in round one and (ii) h) - 1 vote cast in round one. 

Confronted with history h n,n E {0,1} , a voter with signal s will vote A in 

round two if q < qsn. 

For the above cutoff strategies to be an equilibrium, qs < q s n must hold 

for n e {0,1} and s E {0,1} . In round two, voter i will vote A if and only if 

Pr [A|pit>, h n . Si] > qi. Hence, q s n = Pr [A|pw>, h n,s] . 

Lemma 3 .1. Given any history h n, the cutoffs are related across signals by 

the function: 

Qon = k(qln) = r^z — J T : (3.12) 

(1 -Pfqin +P 2(1 - <7ln) 
for n = 0,1. Moreover, q0n < q\n for n E {0,1} . 
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Proof. We can write 

qln = Pv[A\piv,h n,l} 
Pr \piv,h n,l\A}.Pv[A} 

Pr [piv, h n , l \ A ] . Pv[A] + Pr [piv, h n, 1\Q] . Pr{Q] 
1 

i , Pr[pw,/i",l|Q].Pr[Q] 
Pr[pii;,/i"1l|A .Pr A] 

Pr[l|Q1 Pr[pw,/i"IQ 
"T" Pr[l|A] - PT[piv,hn\A' 

-i , 1^2 Pr[pw,fe"|Q] 
1 p ' Pr[pTO,/in|>l] 

The above holds since signals are conditionally independent and uncorrected 

to q and also Pr [A] = Pr [Q] = \. This can be simplified to 

Pr \piv,h n |Q] p 1-qin 
Pr [piv, h n\A] l - p qVn 

Similarly, 

q0n = Pi[G\piv,hn,0] 

1 
-, ___ Pr[piv,h"-\Q] 

l - p ' Pr[pTO,/i"|/l] 
2*. (1 - p ) 9m 

- P ) 2 9 l n +J? 2(1 - g in) 

k ( g i „ ) < gin-

for any qln G (0,1) 
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After history h1, the waiting player is pivotal with probability one. Hence, 

Qn 

(3.13) 

1 i __ Pr\pivM\Q] 
p • PrJpwA1!^] 

1 
~ 1 . l -p Pr[/tMC?T 

1 "t" p -Pr^l/l] 
1 

~ i I i -p (i-p)F(gi)+pF(^y 
1 ^ p •pF(<}i)+(l-p)F(^) 

1 

where R. = ^ j 2 < 1. By Lemma 3.1, goi = ^ (<7n) • 

After history h°, the probability of being pivotal is less than one. An 

waiting player i can observe history h°, if either the other player's type gJ > % 

coupled with Sj = 0 or qi > qi coupled with Sj — 1. In case of the first 

event player i is pivotal under the symmetric cutoff strategies only when 

gJ G ( 9 0 i 9 o o ] - If sj = 1, player i is pivotal when gJ G (<7i,<?io]- We can now 

write 

Pr [piv, h°\A] = p[F (qw) - F (&)] + (1 - p) [F (q00) - F (q0)] 

and 

Pr [piv, h°\Q] =(1- p) [F (qw) - F (&)] + p [F (g00) - F (&)] • 
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Therefore, 

<?io = , , h-2 Pr[piv,h°\Q] 
1 + p • Piipiv,h°\A] 

1 , iz2 (l-p)[F(gio)-F(gi)]+p[F(goo)-F(gQ)] 
1 "f" p •p[F(,10)-i;,(9i)]+(l-p)[F(goo)-i;,(9o)] 

1 , D iJ[F(9-10)-F(q1)]+[F'(i;0o)-F((;o)] 
1 n - [F(910)-F(<h)]+/i[F(,joo)-F(9o)] 

(3.14) 

Again by Lemma 3.1, goo = ̂ (<?io)-

We still have to determine the round 1 cutoffs. Since in equilibrium 

qsri > qs for n.= 0,1, the marginal type's choice'is'between'voting A in 

round 1 and waiting to vote A in round 2. Hence, qs is determined from the 

following equality: 

El)(A in round l|,s) = EU(A in round 2\s) 

Suppose player i decides to vote A in round 1. If the other player plays the 

symmetric cutoff strategies, then A will be the voting outcome in either of 

the following two cases: 

(i) Player j receives an 0 signal and qi < goi- If gJ < %, then A will be 

decided in first round. If gJ > qo, player j waits in round 1; but since player 

j will be confronted with h 1, he will vote A in round 2 if gJ < goi-

(ii) Player j receives 1 and q j < q\\. 



65 

Hence, for a type q voter, 

EU(A in round l|s) 

= PT(0\s)[F(q01)V(A,s,0)-(l-F(q01))V(Q,s,0)} 

+ P i ( l \ s ) [ F ( q i l ) V ( A , s , l ) - ( l - F ( q n ) ) V { Q , s , l ) } 

= Pr (0|s) {-F(q01)(l - 7 (s, 0))q - (1 - F(g 0i)) 7(s, 0)(1 - 9)] 

+ Pr (l|s) [-F(qn)(l ~ 7(s, 1))? - (1 - F(g n ) ) 7 (s , 1)(1 - q)] 

where V(d, S j , S j ) is the expected utility from decision d when the signals are 

Si, Sj and 7 ( S J , Sj) = Pr[G|sj, s ]̂. Similarly, 

in round 2|s) 

= Pr (0|s) [-F(9oo)(l - 7(s, 0))? - (1 - F($oo))7(s, 0)(1 - q)] 

+ Pr (l|s) [-F(q10)j(s, l)q - (1 - F(g 1 0))(l - 7 (s, 1))(1 - <?)] • 

Now the cutoff qs can be determined from the following equation: 

EU(A in round l|s) = EU(A in round 2|s) 

Pr (0|s) (F(qoi) ~ F(q00)) [qs - 7(5,0)] = Pr (l|s) (F(qn) - F(qw)) [7(s, 1) 

. _ Pr (l[s) (F(g u ) - F(qw)) 7(5,1) + Pr (0|s) (F(g 0 1) - F(g 0 0)) 7 (s, 0) 
9 s Pr (l|s) (F(qn) - F(qw)) + Pr (0|s) (F(g 0 1) - F(g 0 0)) 

Since PrL4] = Pr[Q]'= | , 7(1,1) = p 2 + f* 7(1,0) = 7(0,1) = §, 7(0,0) = 
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^ ^ L _ a n d p r ( l | l ) = Pr(0|0) = p 2 + ( l - p ) 2 , Pr(0|l) = Pr(l|0) = 2p(l-p). 

Hence, simplifying we get 

^ =

 1 | p R(F{qn)-F(q.0))+(F(q01)-F(q00)) (3-15) 
A ~l~ rL-(F(gn)-F(qio))+R<.F(g0i)-F(q00)) 

and 

Qo = k(qi). 

Equations [3.13], [3.14] and [3.15] along with q0n = k(q\n) and q_ — k(<7i) 

now determine the equilibrium cutoffs. Notice that k(x) < \ for all x > |. 

Also, assuming that q\, qw and qw exist, it is easy to examine that all are 

greater than | . Hence, the highest cutoff corresponding to signal 0 is lower 

than the lowest cutoff corresponding to signal 1 and these two are separated 

by I 
From equation [3.14], we can express qw = <f>(qw, <7i). The function <p(.,q_) 

is well-defined over the domain (<ji, 1] and continuous in qw. Since <f>(..q_) > qi 

for all gio E (qi, 1], lim^-,^ <p(x, qi) > q\ and l i m ^ i <p(x, q_) < 1. We can now 

conclude that given any q_ E (0,1), qw exists and greater than q_. We write 

<7io — ho (q\). Similarly, from 3.13, we can express qw = h\ (q\). Notice that 

in finding qw and qw, we have made use of the relation % = k(q\). 

We still have to ensure the existence of q\. From equation [3.15], we 

express q\ = ip (q~i). The function tp(.) is continuous and l im^o (•) > 0 

and l i m x _ i ip (.) < 1. An. application of Brouwer's Fixed Point Theorem now 

ensures the existence of q\. ' < 

The equilibrium path of play for the multi-round voting game is charac

terized in Figure 3.2. The first column in each interval shows the player's 
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Figure 3.2: Equilibrium path of play in multi-round voting game 

choice of timing and vote if the signal received is s = 1 and the second column 

shows the same for s — 1. The first row shows the period at which the voter 

votes and the second row represents the preferred alternative. We describe 

the equilibrium in the multi-round game in the following proposition. 

P r o p o s i t i o n 3.2. The set of Perfect Bayesian equilibrium that admits a 

cutoff' configuration in the multi-round voting game has the following cutoff 

structure: 

Qs < Qso < Qsi 

A player with signal s votes for A in round 1 if her type q < qs. If q > qS7 

the player waits and votes for A after observing history h n iff q < qsn. 

• We can now easily compare between the set of equilibria in the game 
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with communication and the multi-round voting game. Since the same set of 

equations determine the relevant cutoffs for both games, the voting cutoffs 

are same. Hence the set of symmetric cut-off equilibria of the multi-round 

game is outcome equivalent to the set of efficient responsive robust cutoff 

equilibria in the game with communication. 

This example illustrates that efficiency of flexibility of timing of votes 

in a voting game is not limited to a situation of aligned preferences. Our 

conjecture is that endogenizing the timing of votes can substitute for direct 

communication in aggregation of private information in a collective choice 

problem. Unfortunately, we don't have the general result yet. The link 

•between the set of equilibria in these two types of games is not obvious. In 

our mechanism, to communicate her private information to others a player 

has to commit to a particular choice. In case of pre-play communication, a 

player can send a message and then deviate from her message in the voting 

stage. That is not feasible in the multi-round voting game. 

3.4 Concluding Remarks 

We show that in a common interest election, full information aggregation 

can be achieved if flexibility in timing of votes is allowed. With symmetric 

and monotonic signals, this can be achieved in a symmetric Perfect Bayesian 

Equilibrium. Moreover, the result does not depend on the degree and na

ture of correlation between private signals. The assumption of conditionally 

independent signals is an almost common feature of the literature of strate

gic voting, because otherwise the analysis becomes highly complicated. Our 
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result is more general. 

What would happen if the preferences are diverse in a voting game with 

flexible timing? This will be a more difficult question to answer since even 

with communication the voters will have incentive to strategically withhold 

private information. Wi th diverse preferences, if the preferences are suffi

ciently close to induce full revelation of private information in voting with 

communication, the same can be achieved with the endogenous timing of 

votes, fn the more general case, we conjecture that there would be strong 

connection between the set of equilibria in the game with communication 

and that in the flexible timing game. In Section 3 of this chapter, we illus

trate that in the two person binary signal example. But proving it in a more 

general environment is an agenda for future research. 

How this mechanism can be implemented when the number of voters are 

large enough to permit anonymity? Many elections are now held online with 

electronic voting. Wi th advancement of Internet technology, it is now feasible 

to offer continuous real time updates of voting history. We conclude that if 

the objective of the election is information aggregation, this mechanism works 

well. 
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4. Committee Design with 

Endogenous Information 

4.1 Introduction 

A prime task of any organization is acquisition and processing of informa

tion relevant to important decisions. Informed decisions reduce the chance of 

errors; guesswork increases inefficiency. Design of committees within an orga

nization for the purpose of information processing and collection is therefore 

very important. 

The Condorcet Jury Theorem of the first kind (see McLean and Hewitt 

[40]) states that a majority of a group is more likely than a single individual 

to choose the better of the two alternatives. With exogenous information, the 

result is trivially true if perfect information aggregation tools are available. 

Since a group inherently possesses more information than a single individual, 

whenever the problem of information aggregation can be overcome the group 

can do no worse. Even when information must be aggregated through (pos

sibly) imperfect mechanisms such as,voting, the Condorcet result is valid, as 

illustrated in the literature on strategic voting (see Feddersen and Pessendor-

fer [21], Miller [43], or McLennan [41] for a sample). Chakraborty and Ghosh 
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[10] have provided a general result to this effect, fn relation to committee de

sign, these results show that with exogenous information a larger committee 

does better than a smaller committee under fairly general conditions. 

What happens if information is endogenous? Since information is a public 

good, with endogenous information collection there could arise a free-rider 

effect. When several members are entrusted with the task of information 

collection, each may have an incentive to save private cost by collecting less 

information, free riding on the information of others. However, in some cases, 

there is another effect that shapes the incentive for information collection at 

the individual level. Since, in some situations, an individual's information 

may not be valuable in itself, but becomes valuable only in conjunction with 

information provided by others, individual pieces of information are often 

complementary to each other. This information complementarity effect, in 

some cases, bolsters the incentive to collect information in a larger commit

tee and could therefore lead to better quality information collected by each 

member. One objective of this chapter is to illustrate the possibility of each 

of these effects, and show under what kind of parameter conditions (priors, 

cost and quality of better information, etc.) they arise. 

Larger committees are unambiguously better when the information com

plementarity effect applies, both because individual members collect superior 

information and because there are more sources of information. However, if 

conditions are such that larger committees are prone to'the free rider effect, 

the designer, in choosing committee size, may face a trade-off between the 

quantity and quality of information. Larger committees will base their deci

sions on several pieces of low grade information', while smaller ones act on the 



72 

basis of fewer pieces of high quality information. We show that the free-rider 

effect can be strong enough to make smaller committees informationally su

perior in some cases. The model characterizes parametric situations where 

it is optimal to keep committee size smaller than what is feasible. 

Committee design, because of its obvious importance in the process of 

decision-making, has attracted much attention. One strand of literature ex

tends the "strategic information transmission" model of Crawford and Sobel 

[14] to examine how a decision-maker's welfare can be influenced by varying 

the composition of a committee consisting of members with useful informa

tion ("expertise"), whose policy preferences differ from that of the decision

maker (or the organization). Gilligan and Krehbiel [26], Austeh-Smith [1, 2], 

Krishna and Morgan [30, 31], Battaglini [5] examine situations where all 

committee members have the same information but may have different pref

erences. Wolinsky [52] examines a situation where experts have the same 

preferences but may receive different signals. Holrnstrom [28], Dessein [17], 

Li and Suen [37], de Garidel-Thoron and Ottaviani [15] concentrated their 

focus on the effects of delegation in the same setting. 

Our focus in this chapter is on the incentive for collecting information 

by committee members23. There are a number of other studies which deal 

with partly similar issues. But, while we focus on the issue of committee 

size, most of these studies attempt to see how the incentive for information 

collection varies with the decision rule in a committee of fixed size. Li , Rosen 

and Suen [38] and Li [36] examined optimal decision rules in the context of 

a fixed committee size. Li [35] analyzes the organizational structure that 
2 3 For an excellent survey of the existing literature on committee design with endogenous 

information, see Gerling, Griiner, Kiel and Schulte [25]. 
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minimizes information processing costs for a specific task. Dessein [18] also 

examines a model of organization with conflicting interest to study authorita

tive coordination vs. consensus in decision making. Sah and Stiglitz [49, 50] 

investigate similar issues of organizational design, but do not stress incen

tives to collect information. In their structure, information is exogenous. 

Blinder and Morgan [7] compare group versus individual decision making in 

an organization using an experimental study. Haleblian and Finkelstein [27], 

in an econometric analysis, test how managerial team size affects the orga

nizational decision-making using firm-level data and conclude that in more 

uncertain environments larger teams tend to do better. In the context of jury 

trial, Mukhopadhyay [45] identifies the free rider problem in a large jury. 

There are two ways in which this analysis departs from the existing lit

erature on committee design that addresses incentives to collect costly infor

mation. We consider only cheap talk mechanisms. Except for the private cost 

of collecting information, there is no conflict of interest among committee 

members or the decision maker in our model, implying that members have 

no incentive to withhold anything they have learned. We assume the com

mittee is advisory, and the designer cannot commit to ignore any decision 

relevant information ex-post, which means all the information that has been 

collected will be efficiently used. The only strategic choice the decision maker 

faces in our framework is the size of the committee. In contrast, Gerardi and 

Yariv [24], allow full commitment to any mechanism at the information ag

gregation stage, including ones which distort the use of available information. 

Persico [46] analyzes committees that make their decisions through voting, 

giving the designer the option to choose committee size as well as the voting 
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rule. Al l these papers assume some commitment power on the part of the 

designer as to how the information will be used. We think it is natural to 

assume in many contexts, especially those involving advisory committees, 

that commitment to distort the use of information once it becomes available 

is hard to sustain. 

We also allow for information of different qualities, and members can 

choose the precision of the information they gather. Specifically, we assume 

each member has access to a free informative signal, but can obtain a more 

precise signal if she pays a private cost. This creates a possible trade-off 

between quantity and quality of information from the committee designer's 

point of view. This aspect is absent from the other models24 of committee 

design that address similar issues (for example, Persico [46] and Gerardi and 

Yariv [24]), and has a non-trivial effect on the results. In other papers, larger 

committees are informationally superior to smaller ones in the weak sense, 

i.e. it is never the case that a smaller committee generates strictly better 

information than a larger one. Most papers demonstrate an upper bound to 

informativeness as committee size goes up. In contrast, we find situations 

where a smaller committee is informationally superior in the strict sense, 

which implies that when it comes to committee design, too many cooks may 

spoil the broth. 

One application that fits well with the model proposed in this essay is 

the example of a hiring committee in an academic department. Hiring com-
2 4 Karoutkin and Paroush [29] has examined the quantity versus quality dilemma in 

an exogenous setting. In their set-up, both the quality and quantity of information are 
exogenous and as the committee size decreases the quality of information for each member 
rises automatically. In our model, this occurs as an equilibrium phenomenon (for some 
parametric configurations). 
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mittees generally consist of existing faculty members. Once the department 

agrees on the field of the candidate it is going to hire, the faculty as a whole 

wants to hire a good candidate. Hence, there is no fundamental conflict of 

interest among the committee members. The committee members collect in

formation about a potential recruit and then pass on their recommendations 

to the departmental head or the dean who then takes the final decision based 

on the recommendations of the committee members. 

The committee members get a basic idea about a candidate's qualities by 

attending the interview and looking at a candidate's CV. A committee mem

ber may also collect better information regarding the candidate's qualities by 

putting in extra effort in reading the research papers authored by the candi

date or talking to people who have better idea about the candidate from past 

experiences. Presumably, the extra effort induces higher personal opportu

nity cost for the committee member. Once too many members are included 

in a committee, each individual member's incentive to put in that extra effort 

would reduce. More specifically, an individual committee member may bank 

upon others to read the candidate's papers and make the correct recommen

dations. Since all committee members have common interest, if everybody 

else puts in the higher effort, this course of action saves the higher opportu

nity cost for an individual committee member without vastly compromising 

the efficiency of the decision. But if a large number of committee members 

follow the same, the efficiency of the decision would be significantly reduced. 

Our model analyzes a scenario almost similar to above. 

The organization of the chapter is as follows.- In section 2, we set up the 

basic model. Section 3 analyzes the model and points out the main results. 
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Section 4 concludes. 

4.2 The Model 

An organization has to form a committee to take a decision. There are 

n individuals from which the committee has to be formed. The decision 

problem is to choose from among two options— A (alternative) or Q (status-

quo). There are two possible states of nature as well - A and Q. The common 

preference of each individual is such that with complete information the 

^optimal decision is matched exactly with,the state. This is captured by the 

utility function u(d,u), where d G {A, Q} represents the ultimate decision 

and u is the state-of-the-world. If the decision is correct, each member of 

the organization gets utility equal to one. The utility from a wrong decision 

is 0. The preference is captured by the following utility function: 

f 1 iid = u 
. u(u,d)=\ (4.1) 

I 0 otherwise. 

The prior on the event u = A is TT . 

There are two signal technologies indexed by t G {h, 1} . For each technol

ogy, the signal can take one of two possible values from the set Qt = {at) qt}-

A signal of type t has an accuracy pt i.e. for a t—type signal, Pr[a t|A] = 

Pr[g t|Q] = pt G ( | , 1 ) for t — h,l. We also assume that the signals are 

conditionally independent. 

We assume the /-technology is costless. This means that even if an indi

vidual does not invest in acquiring information, she still gets a noisy signal 
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by default. By investing in an effort amounting to cost c, each individual can 

collect a signal of better quality. The better signal has a precision level ph 

with p h > pi. 

For the sake of simplicity, we will restrict ourselves to two possible values 

of n - 1 or 2. Increasing n to values greater than 2 does not add much 

insight towards understanding the main points, but complicates the analysis. 

We model the situation in the following way. The committee designer first 

chooses the committee size n (1 or 2). The member(s) of the committee then 

decide simultaneously whether to collect the better signal by incurring the 

private cost or just depend on the lower quality signal. The members report 

their signals to the committee designer who takes the decision after utilizing 

all the available information. One assumption we make here is that the 

committee designer cannot make any credible commitment regarding not 

to use any available information at the decision stage. This implies that 

once the signals are collected, they are utilized optimally. In other words, 

information is fully aggregated prior to the decision. Everybody shares a 

common utility function; hence there is no incentive to withhold information 

under this mechanism after the collection stage. 

The assumption regarding full information aggregation merits some dis

cussion. We do not take up the optimal mechanism design problem. Notice 

that if we assume the committee designer can credibly commit to any mech

anism, then the smaller committee outcome can always be mimicked with a 

larger committee in which the designer commits to ignore the messages of 

some players. But there always remains a question regarding implementabil-

ity of such mechanisms. Given common interest between the decision maker 
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and the committee members it is hard to imagine that the decision maker can 

credibly commit to an ex post decision rule that promises to use less informa

tion than what is available to him. After all, we do not often see the heads of 

the departments or the deans of the faculties handing out explicit contracts 

to hiring committee members which say that not all recommendations would 

be used in decision making. We, therefore, restrict ourselves to a particular 

symmetric mechanism namely the ex post efficient mechanism25. However, 

we recognize, as has been pointed out by Gerardi and Yariv [24], for large 

enough n, the ex post efficient mechanism may not be the optimal mecha

nism. But that does not contradict our result. Even if we choose the optimal 

symmetric mechanism instead of the full information aggregation mechanism 

as the decision rule, a smaller committee can perform strictly better than a 

larger committee under certain parameter values. The intuitions behind the 

results remain similar. 

The problem we take up here is not one of finding the optimal committee 

size with an infinite number of potential members available. Obviously, the 

optimal committee size in this case is infinite. Since the default signal is 

somewhat informative (even if slightly), in a very large committee the prob

ability of making the correct decision is almost equal to one. One way to 

interpret this model is to consider it as a constrained problem. Given that 

only a finite number of people are available for inclusion in the committee, 

we discuss how committees should be formed.' 

For comparison across committees, we use the common expected value 

generated by the information collected by the committee exclusive of in-
2 5 The ex post efficient mechanism is one where the committee designer uses all the 

available information at the decision making stage 
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formation costs. This we think is the natural welfare function when the 

preferences are common. If the decision affects a very large group (or an or

ganization), the individual costs are small or negligible relative to the welfare 

of the people affected. Henceforth, we denote this common value generated 

by a n-member committee by Vn (.). 

Before proceeding further, we need to impose some restrictions on the 

parameters of the model. We assume that VK~VI > c- We need this restriction 

to make the better signals attractive at least in some cases. For the rest of 

the chapter, we restrict ourselves to values of IT > | . Similar results can be 

obtained for IT < | because of the symmetric nature of the model. 

Some discussions regarding the choice of this model are worthwhile here. 

The standard models of committee design with endogenous information (for 

example, Persico [46] and Gerardi and Yariv [24]) consider a two level choice 

of information quality. In these models, the committee members have access 

to either a high quality signal or no information at all. This dampens the 

incentive for free riding since the alternative has no informative value. That 

is why these models cannot generate a strict dominance result for smaller 

committee size. Our model, though apparently also has a two level choice 

of signal quality, is actually the first approximation of a model with richer 

quality choice. Similar qualitative results can be obtained if we introduce 

a cost (which must be appropriately low) for the lower quality signal. This 

suggests that the result we obtain here will survive in a more general model 

with multi-level quality choice. 
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Let 9 be the vector of signals collected by all players before the decision is 

made. Since each individual reports their signals truthfully, 0 is completely 

known prior to decision-making. Then the common posterior on the state 

being A, defined by Bayes' Rule, is as follows: 

^ ^ = m = r ^ _ ^ : ^ _ Q y (4.2) 

Clearly, under the no commitment mechanism, the optimal decision d*(9) is 

as follows: 

d*(9) = A 7(0) > ~. (4.3) 

We can write the ex-post common utility of this decision as 

, 7 ( 0 ) , if 7 (0) > i 
1/(7(0))= , • ^ 

1 - 7 ( 0 ) , if 7 (#)<1 

Let P (0) be the probability of realization of a signal vector 9. Possible realiza

tions of 0 of course depend on the chosen signal technologies. Let T G {h, I} 2  

be the vector of chosen signal technologies and QT be the set of all possible 

signal realizations under T. Then ex-ante common expected value from T 

can be written as 

V ( T ) = Y, P ( 0 ) U ( 7 ( 9 ) ) . (4.5) 
eeeT 

We are now in a position to discuss the equilibrium outcomes for different 

committee sizes. We take up that task in the next two subsections. 
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4.3.1 One member committee 

We first consider the single person decision problem. Without loss of general

ity, we concentrate on the range of priors TT G [|, 1]. Because of the symmetry 

of the structure, exactly similar results can be obtained for rr G [0, | ) . For 

the rest of the chapter, we assume TT > | . A i-type signal, t G {h,l} is in

formationally decision relevant if and only if TT G [ _,Pt)- In case the prior 

falls in this range, a signal qt pushes the posterior below | and the decision is 

contingent on the realization of the signal. Hence the expected utility from 

collecting a signal of type t without accounting for cost is given by 

V \ t ) = P ( q t ) ( l - 1 ( q t ) ) + P ( a t ) 1 ( a t ) 

for 7T G [|,Pt) a n d t  = I, h. For TT > pt, the optimal decision is A independent 

of the signal realization. Therefore, V 1 (t) — TT for TT > pt. Hence, the 

marginal benefit from collecting a /i-type signal in the single person decision 

problem is 

P h - P l if 1 < TT < pi 

1 ) 1 ( T T ) = { Ph if Pl < TT < p h • (4.6) 

0 otherwise 

Notice that b 1 (TT) is a continuous function of TT. The individual collects h if 

and only if b 1 (TT) > c. This condition induces an interval of priors over which 

the /i-type signal is collected by the individual. We summarize the finding 

in the following lemma. 

L e m m a 4.1. For any c < Ph — pi, in a one member committee, a h-type 

signal will be collected if and only if it G [_,.Ph ~ c]. 
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Proof. Since b 1 (IT) is strictly decreasing in IT for all n G [puPh], and reaches 0 

at ph, for any c > 0, 61 (IT) > c induces a unique interval for any c < Ph~Pi = 

The social value function from this individual decision (ignoring the cost) 

is then given by 2 6 

Since Ph — c > pi, the /-type signal has no decision relevance in the range 

where the to-type signal is not being collected and hence cannot affect the 

social value. 

One observation may be worth mentioning here. Notice that as pi falls, 

Ph — Pi rises. As we mentioned earlier, ph — Pi indicates the upper bound on 

the range of cost parameter for which an individual can be induced to collect 

a high quality signal. This shows that the presence of a free informative 

signal may sometimes lower the incentive for providing effort to find a better 

signal. In other words, free information may be expensive from a social point 

of view. 

4.3.2 Two member committee 

Next we move on to our analysis of a two member committee. Let ti'E {to, 1} 

denote player i's choice of signal technology and V2 (tj, tj) represent the pay

off to players when players i and j choose f and tj respectively. For different 
2 6 We are slightly abusing our notation here. We write the value function assuming 

that optimal decision d* is taken for all ranges of prior, given the incentive constraint for 
the individual. We do this throughout the chapter for the sake of comparison across the 
committees. 

max b 1 (n) . I 

( 4 . 7 ) 
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parameter values, three types of pure strategy equilibria may exist in a two 

member committee: (i) (h, h), (ii) (h, I) or (I, h) and (iii) (I, I). We next 

characterize the necessary and sufficient conditions for existence of these 

pure strategy equilibria in terms of the value function. 

1. V 2 (h, h) — V 2 (h, I) > c is necessary and sufficient for (h, h) to be an 

equilibrium. 

2. V 2 (h, h) — V 2 (h, I) < c and V 2 (h, I) — V 2 (I, I) > c are necessary and 

sufficient for (h, I) and (I, h) to be equilibria. 

3. V 2 (h, I) — V 2 (1,1) < c is necessary and sufficient for (1,1) to be an 

equilibrium. 

These conditions follow directly from the definition of Bayesian Nash 

Equilibrium which is the equilibrium concept we use throughout this essay. 

Since we are in an environment with common preferences where information 

is a public good, players' ex-ante utilities (net of cost) depend only on the 

types of signal technologies chosen by them, but not on the exact combination 

of choices. Hence, the value functions mentioned above are sufficient statistics 

for characterizing the equilibria in this environment. An immediate corollary 

of the above conditions is that at least one pure strategy equilibrium exists 

for all parameter values. 

The necessary and sufficient conditions for existence of different pure 

strategy equilibria also show that neither (h, h) nor (/, I) can coexist with 

(h, I) or (/, h) as equilibria. Moreover, for parameter values such that (h, I) 

is an equilibrium, (l,h) is an equilibrium as well. Our next lemma proves 
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that when (1,1) or (h,h) is the unique pure strategy equilibrium, no mixed 

strategy equilibrium can exist. 

L e m m a 4.2. For parameter values such that (1,1) or (h,h) is the unique 

pure strategy equilibrium, then it is the unique equilibrium of the two person 

game. 

Proof. First consider that (I, I) is the unique pure strategy equilibrium. Then, 

V 2 (h, h) - V2 (h, I) < c and V2 (h, I) - V 2 (1,1) < c. Now consider any mixed 

strategy o for player j where o is the probability of playing h. Generically, 

for a to be part of a mixed strategy equilibrium, we must have the following 

a V 2 (h, h) + (l- a) V 2 (h, l ) - c = aV2 (I, h) + (1 - a) V2 (I, I) 

or, equivalently 

a [V2 (h, h) - V 2 (I, h)] +(l-a) [V2 (h, I) - V 2 (I, I)] = c. 

From the two strict inequalities described above, and the fact that V 2 (h, I) = 

V2 (l,h), it follows that, for any o <E [0,1]., the lhs of the above is strictly 

less than c. Hence, we cannot have a mixed strategy equilibrium in this case. 

The proof for the case when (h, h) is the unique pure strategy equilibrium 

is similar. i ' , ' 1 ' | 

For any signal vector 9, we define n (9) to be such that for all ir > II (6), 

7 (9) > \ where 7 (6) is the common posterior on the state being A given 8. 

We first consider the case when both players collect h. For any IT27, 7 (ah, a>h), 

2 7Remember that we are restricting ourselves to values of 7r greater than or equal to | . 
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7 ( ah, Qh) and 7 (qh, ah) are greater than or equal to ^ and the optimal decision 

corresponding to these signal realizations is A. But 7 (qh, qh) < \ if and only 

if TT < fl ((ĵ , qh) and in that case the decision is Q under full information uti

lization. Hence, in the case where (h, h) are the signal technologies chosen by 

the players, the signals have decision relevance if and only if rr < n (qh, qh) • 

The expected utility to each player when both players choose h is the follow

ing: 

V 2 (h, h) 

P (o-h,  ah) 7 ( ah,  ah) + P (a-h, Qh) 7 ( ah, Qh) .. ^ . , 
if 7T < U ( q h , q h ) 

< +P (qh, ah) 7 (Qh, ah) + P (qh, qh) [1 - 7 (qh, Qh)} 
TT otherwise 

Ph +  2Ph (1 - Ph) TT i f TT < U ( q h , q h ) 
(4.6) 

TT otherwise 

Similarly, when both players choose /, the common expected utility is 
, vf + 2pi (1 — pi) TT if TT < n (qi, qA 

V 2(l,l) = {  1 m 7 V . (4.9) 
7T otherwise 

When the chosen signal technologies are (h,l) or (l,h) , the derivation 

of the common expected utility is a little more involved. The /-type signal 

has practical relevance in decision-making if and only if the prior falls in a 

range such that a I—signal in favour of A coupled with the prior overwhelms 

a h—signal in favour of Q to clinch the decision in favour of A. For this 

to happen, TT must belong to the interval [n (ah qh), Tl (qi, qh))- For TT < 
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neither signal matters. Hence the common expected utility can be written 

as 

( Ph if vr < n (a,, qh) 

- • , PhPi + [Ph (1 - Pi) + PJ (1 - Ph)] TT if n (aj, (fo) < TT < II (g,, %) 
7T otherwise 

(4.10) 

Let b 2 (TT; t) denote the marginal benefit from collecting an h—type signal 

when the other player is collecting a t—type signal. Obviously, we can now 

write 

b 2 (TT; h) — V 2 (h, h) — V 2 (h, I) (4.11) 

and 

b 2(rr;l) = V 2 { h , l ) - V 2 ( l J ) . (4.12) 

Since a better signal technology cannot reduce the ex-ante value of informa

tion, b 2 (n, t) > 0 for all TT. Both b 2 (TT; h) and b 2 (TT; I) are continuous functions 

of TT. The following two lemmas characterize the parameter zones for which 

incentive constraints for collecting the h—type signal conditional on the other 

player's strategy are satisfied. 

Lemma 4.3. For any c < — pi, there exists a unique fti (c) < U(qi,qh) 

such that b 2 (TT; I) > c if and only if.ir :< ~TTI ( C ) . 

Proof. See Appendix A.2. | 

Lemma 4.4. Fix Ph,Pi- There exist c0 > 0 such that for all c < en, there 

exist unique cutoffs TTQ (C) and TT\ (c) such that b 2 (TT; h) > c if and only if TT £ 

[A (c). A ( c ) ]  w h e r e  n o (c) < n (ah Qh) and n (a;, qh) < TT\ ( C ) <U(qh, qh) . 



87 

Proof. See Appendix A.2. | 

As a corollary to Lemma 4:4, we can see that a necessary condition for a 

(h, h) equilibrium is c < c0. As the cost of the h—type signal increases, the 

free-rider effect becomes more intense and it is more difficult to satisfy the 

incentive constraints for both individuals collecting the h—type signals. 

4.3.3 Comparison between committees 

We are now in a position to make comparisons across committees with respect 

to effort levels and effect on general welfare. We state our main results in 

two propositions. The first proposition identifies parameter zones where the 

domination of the complementarity effect over the free-rider effect (and vice 

versa) can be clearly seen. The second proposition provides conditions for 

the strict domination of a smaller committee over a larger committee. 

We define a set $ = {TT € [puPh] '• b 1 l71") = b 2 (TT; I)} . The following lemma 

characterizes the set $. 

Lemma 4.5. $ is non-empty, closed and bounded. 

Proof. Define g (TT) = b 1 (TT) — b 2 (TT; I). g (TT) is continuous since both b 1 (TT) 

and b 2 (TT; I) are continuous, b 2 (TT; I) is strictly decreasing over the domain 

[|, II (qu qh)\ and b 2 (\;l) = p h - pt. But, b 1 (pt) = p h - p, and b l (ph) = 0. 

Hence g (p{) > 0. and g (ph) < 0. An application of Intermediate Value The

orem then ensures that $ is non-empty. The boundedness obviously follows 

from definition of To see that $ is closed, assume the contrary. Then there 

exists a sequence {7r n} such that g (Trn) = 0 for all n, but lim n_oo g (TTn) ^ 0. 

But this contradicts continuity of g (.). | 
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Since $ C 9t, the last Lemma ensures that both max, <f> and min, $ exist 

and are unique. Let us denote these two by n l

m a x and n l

m i n respectively. Now 

define c\ = b 1 (n l

max) and ci = b 1 {ir l

miD) • Since 6 1 (.) is strictly decreasing in 

this range, C\ < c-i- An inspection of b 1 (.) and b 2 (.; I) reveals that we essen

tially confront two possible scenarios. If II (a;, q^) < II q{), then TTL

MAX = 

^Lin e {^-(ai,qh) ,U(qhqi)). On the other hand, if U ( a h q h ) > U(qhqi), 

then n l

min = II (qu q{) and -n l

max = II (a,, g h ) . 

Finally, for any c, define ff = max {n\ (c) , ff/ (c)}, where 7r̂  ( C ) and 7f; (c) 

are as defined in Lemma 4.3 and Lemma 4.4 respectively. Let T* denote the 

vector of equilibrium signal technologies chosen by a committee of size n. 

Now, we can state our first proposition. 

Proposition 4.1. 1. c < C\ and ix £ (ph — c, ft] are sufficient for T{* = /, 

and existence of a T2* € {(h, h), (h, I), (I, h)}. 

2. c > C2 and TT £ (ffj (c), — c] are necessary and sufficient for Tj* = / i 

andT; = (1,1) . 

Proof. See Appendix A.2. | 

Proposition 4.1 describes the effect of committee size on incentives. It 

identifies conditions under which the larger committee is subject to either 

the free rider effect or the information complementarity effect, and proves 

neither of these are empty. The first part provides a sufficient condition for 

information complementarity effect to come into play. Under these condi

tions, the equilibrium signal quality is I in a one member committee, but in 

a two member committee, there always exists an equilibrium with at least 

one h-type signal. The second part of the proposition provides necessary and 
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sufficient conditions for the free-rider effect to apply. It identifies parameter 

zones where a one member committee collects a /i-type signal in equilibrium, 

while in a two member committee the only equilibrium is (I, I). 

The result is quite intuitive. The incentive to free-ride is more intense 

.when the cost of quality information is high. • On the other hand, signals 

become complementary towards more extreme priors, since the cumulative 

signals must be sufficiently strong to have any relevance to the decision. 

Hence, for the complementarity effect, we need a sufficiently low value of c 

along with relatively large prior values. Exactly the opposite is true for the 

free-rider effect. We need a sufficiently high c along with not so extreme 

priors for this to happen. 

Some discussion regarding the set of equilibria for different parameter 

values is worthwhile here. In the following two figures, we illustrate these 

in the case of a particular set of parameter values, namely when n (qt, qi) < 

n (a;, qh) . The other cases can be dealt with similarly. 

We illustrate the above proposition with the help of a numerical example. 

For parameter values Vh = 0.8 and Vi = 0.6, the values of ci and c2 in the 

above proposition can be easily computed to be 0.0727 and 0.1077 respec

tively. Figures 4.1 and 4.2 are drawn with parameter values Vh = 0.8 and 

Pi = 0.6 to show the pure strategy equilibria for different values of prior. 

In Figure 4.1, we take c = 0.02 < c\. The panel at the top right hand 

corner of Figure 4.1 identifies the pure strategy equilibria when the prior 

falls in different zones. For vr close to \ (TT € A = [0.5000,0.5625)), the 

bigger committee admits (h,l) and (l,h) equilibria. For extreme values of 

TT (TT G E = (0.9118,1.0000]), neither type of committee puts in an ef-
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Note: The above figure is drawn with parameter values pi = 0.6, = 0.8 and c = 0.02. 

Figure 4.1: Pure Strategy Equilibria for Different Prior Values: c < Ci. 

fort to collect a h—type signal. For other values of TT , the bigger commit

tee admits a (h,h) equilibrium. When rr falls in C = (0.7800,0.8214] or 

D = (0.8214,0.9118], one (h,h) equilibrium exists in a two member com-

mittee while a single member committee does not put any effort at all into 

gathering the better signal2 8. For values of TT G B = [0.5625,0.7800], the 

bigger committee collects two h—type signals while the single member com-
2 8 This is just for the purpose of illustration. We ca.n have other parameter configurations 

satisfying the conditions mentioned in Proposition 4.1 such that values of prior exist where 
a one member committee collects I in equilibrium while a two member committee admits 
(h,l) or (l,h) as equilibria. 
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Note: The above figure is drawn with parameter values pi = 0.6, p^ = 0.8 and c — 0.15. 

Figure 4.2: Pure Strategy Equilibria for Different Prior Values: c > c2. 

mittee collects only one in equilibrium. B, C and D are the zones where a 

clear domination of the complementarity effect over the free-rider effect can 

be seen as identified in Proposition 1. 

Figure 4.2 illustrates the set of equilibria for c = 0.15 > c2. Given that 

c > c2, for priors very close to \ (TT G A = [0.5000,0.6042]), 7\* - h and 

T 2 = (h, I) or (/, h). Both these equilibria generate the same social value29 as 

the single member committee for this particular situation. Then, we have a 
2 9 0 f course, there exist mixed strategy equilibria for the bigger committee in this range, 

which may do strictly better than the smaller committee outcome. 
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range of priors (TT € B = (0.6042,0.6500]) where T* = h and T2* = (I, I). This 

is the parameter zone we identified in part 2 of Proposition 4.1. Towards the 

extreme prior values belonging to the interval C — (0.6500,1.0000], Tj* = I 

and T2* = (1,1). 

Notice that in both cases illustrated above, for values of prior close enough 

to \ , Tj* = h, and T2* = (h,l) or (l,h), that is the smaller and the bigger 

committees are informationally equivalent. In other words, both committees 

generate the same level of decision relevant information and hence social 

value. This is what Persico [46] and Gerardi and Yariv [24] identified. 

Their results show that given the parameters, there exists an upper bound 

on the social value that can be generated by increasing committee size. In 

their models, in the absence of an exogenous cost of designing a bigger com

mittee, a smaller committee cannot do strictly better. In our next propo

sition, we provide conditions for the strict dominance result of the smaller 

committee. 

In part 2 of Proposition 4.1 we have identified the conditions under which 

a one member committee collects h in equilibrium, while the unique equi

librium in the two member committee is (1,1). This is necessary for welfare 

dominance of the smaller committee, but may not be sufficient. In our next 

proposition, we show-that for all values of and pi, we can find parame

ter zones where Tj* — h and T2* = (1,1) become sufficient for strict welfare 

dominance of the smaller committee. 

P r o p o s i t i o n 4.2. For allpi,ph € (\, 1) such that P h > Pi, there exist TT and c 

such that the smaller committee dominates the larger committee welfarewise. 

Proof. See Appendix A.2. | 
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We illustrate again with numerical examples. We show in the proof of 
2 

Proposition 4.2 that if ph > p2+^_piy2 >  = h a n d F 2

 = (M) a r e sufficient 

for strict welfare dominance of the smaller committee. For parameter values 

ph = 0.8 and p ; = 0.6, ph > p2+^_pi)2- For these values of ph and ft, 

c2 =;0.1077 and .Tr^ = 0.6923 can be easily computed. Now, at Tt = 0.6923, 

V 2(l,l) — 0.6923.' For any c > c2, the values of TT for which T2* = h and 

T2* = (1,1) are strictly less than 0.6923. Since V 2(l,l) is increasing in TT, 

hence V 2(l, I) < V l(h) — 0.8 in the relevant zone. 

Next we consider parameter values ph — 0.8 and pi = 0.7. Now, ph is 
2 

strictly less than p 2 + ^ _ p [ ^ • We choose c = 0.05 such that (h,h) is not an 

equilibrium. In the range of prior given by (0.6190,0.7500), T£ = h and 

T2* = (1,1). To show that this no longer suffices for strict welfare dominance 

of the smaller committee, we choose TT = 0.74 where V 2(l,l) = 0.8008, but 

V l(h) = 0.8. But for lower values of TT, in particular for values of TT in the 

interval (0.6190,0.7381), V 1 (h) > V 2 (1,1) still holds. 

Notice that so far we have chosen the common value of each individual for 

welfare comparisons. Suppose instead we choose a utilitarian welfare function 

that sums up each individual's net welfare to obtain social welfare. As before 

a necessary condition for welfare dominance of the smaller committee is that 

the smaller committee chooses to collect a h-type signal while the larger 

committee collects only Z-type signals. As shown in Proposition 4.1 this can 

happen only if TT € (^i(c) ,ph~ c] and c > c2. Notice that social welfare 

if information is collected by a smaller committee is now 2V 1 (h) — c, while 

in case of the larger committee social welfare is 2V 2(l, I). Suppose we again 

take Ph = 0.8 and pi — 0.6. As we have already shown, for these values of 
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Ph and pi, C2 — 0.1077 and 7il
min = 0.6923. Suppose we choose c = 0.15. 

Then the highest value of n for which Tx* = h and T2* = (I, I) is 0.65. At 

TT = 0.65,2V 2(U) = 1.344. Since V2{l,l) is increasing in n, 2V2(l,l) < 1.344 

in the relevant zone, while 2Vl(h) — c = 1.45. Hence, for these parameter 

values the smaller committee dominates the bigger committee welfarewise 

even for utilitarian welfare function. This example illustrates the robustness 

of our result with respect to the specification of the welfare function. 

For high enough c, the incentive to free ride dominates the positive in

centive towards good quality signals arising out of complementarity between 

the signals in a larger committee, at least for some values of the prior. In 

a smaller committee, the lower free riding incentive may induce the individ

uals to collect a larger number of high quality signals, making the smaller 

committee better from a social point of view. This indicates the quality -

quantity trade-off that the committee designer faces in an environment with 

multiple information qualities. 

Notice that the last proposition is a strict violation of the Condorcet Jury 

Theorem of the first kind. Even under the assumption of full information 

aggregation, a smaller committee strictly dominates a bigger committee. In 

a two level signal quality choice model with the alternative to the informative 

signal being a completely uninformative one, this result cannot be obtained. 

It can be easily seen in this model'by verifying that as pi —> \,-b1 (TT) —> 

b2 ( T T ; I) for all values of n. 



4.4 Concluding Remarks 
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This essay doesn't attempt to give a general characterization of the solution 

to optimal committee design problems. Previous analyzes have provided a 

weak dominance result for smaller committees in that there is an upper bound 

on the value of information generated by increasing the committee size. We, 

on the other hand, argue that not allowing committee members choice over 

the quality of information they collect misses an important aspect of the 

problem. We show that in a slightly richer model which allows for this, there 

are situations when a smaller committee can do strictly better, even under 

the assumption of perfect information aggregation. We expect this result to 

be generic and robust to model specifications. 
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A. Appendices 

A . l Appendix to Chapter 2 

A.1.1 Proof of Lemma 2.3 

Proof. We first express V (m + 2; q D ) — V (m; q D ) expl ic i t ly in terms of the 

parameters as the following: 

V(m. + 2;qD)-V(m;qD)= ~ { x J P * ^ ~ * ( 1 " TO) 

. . : _ : 2 \ m + 2 _ x ( 1 _ p ) : r ( 1 _ y r ) f / / j 

x=fi . , (m)+l ^ 

x=0 \ X ' 
m / \ 

x=Rs{m) 
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To prove this lemma we first show that for a generic 1 < R < m, 

E (™y (i - v)m-x - E {m+

x v (i - pr+2-x 

x=0 ^ ' ' x=0 ^ ' ' 

m + l ^ { l - p ) m + l - R p R { - ^ - { l - p ) \ (A.2) 7V " r \m+l 

and 

E r V ^ i - p f - E \ \ ) p m + 2 - x a - P)X 

x=R ^ ' x-R+X ^ ' 

We use the method of induction to prove the above results. For notational 

convenience we write 

* (R) = E (TV (! - p ) m _ x - E (m+

x \ x (! - p ) m + 2 _ x 

and 

TO / \ TO+2 • I 9 \ 

V'(i2) = E ( m ) p m " s ( 1 - p ) a - E l p m + 2 - x a-p) x -
X = H W '. . . X=R+I \ x y 

For R = 1, the first equality holds. That both and of equa

tion [A.2] are equal to p (1 — p) m — (m + 1) p(l — p ) m + 1 can be verified after 

some algebraic manipulation. Now suppose that the equality holds for some 

arbitrary R. We show that then the equality holds for R + 1. We need to 
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show that 

' ( f l + [ ) - l's+0 ( 1 - " R ~ V + 1 {£TT - <> - < A - 4 > 

But, 

m-R+l 

m+l\ , m + l - R R { R 

by induction hypothesis. After cancelling (1 — p) m  R p R from equation [A.4] 

and some simplification we are left to prove the following: 

m \ , fm + l\ ,H 2 ( m\ fm + 2 

s - i ; ' 1 - " - I « J ( 1 - p ) + U r U + i J p ( 1 - p ) 

H ) P _ ( ' R + 1 1 ) P ( 1 " P ) 

which can be shown to be true using the fact that (n^1) — (") = {x™i)-

Next we consider the second equality. That equation [A.3] holds for R = 

m can be seen from verifying that both LHS and RHS of [A.3] are equal to 

p 2 (1 — p) m — mp (1 — p ) m + 1 . Suppose equation [A.3] holds for some arbitrary 

R + l. We will show that then it will hold for R. The induction hypothesis 
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tells us that V (R + 1) = (Rtl)P m~ R (1 - {P - S i ) • N o w > 

4>(R) = ^ ( i ? + i ) + ( ^ ) p m - f i ( i - p ) i i - ( ^ 1

2 ) p m - ^ 1 ( i - p ) i ? + 1 

R+ijr v r / r ™+i 
+ ( fljp-« (1 _ p ) « _ + i ] ^ (1 - p) 

We need to show that 

{̂R) = Ô 1̂ (1" p)* {P " ^ T i ) • (A'5) 

After cancelling p m _ - R (1 — p)^ from both sides of equation [A.5] and some 

simplification we are left to prove 

fl+i>(i-p) - UJ (1-p)+U)^U+i> (1"p) 

m + l \ 2 / m 

which can be shown to be true again using the relation (n^1) — (") = (fix)-

Since equations [A.2] and [A.3] hold for a generic R,, we-can now write 

V (rri + 2; qjj) — V (m; QD) in the following manner: 

V(m + 2;qD) - V { m ; q D ) 

= TT (1 - qD) 0 (Rs (m)) + (1 - TT) qD^ (Rs (m)) 

= (* ^ V - pr+i-Mm) P ^ ( M ) { - (i - P) } - (i -
\Rs(m)J [ m + l J 
nm+l-Rs(m) /-• _ ^ ^ ( m ) / „ Rs (m) + p^-KW (1 - p)H^m> p - (1 - T T ) q D \ (A.6) 

m + l 
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Suppose that V (m; qo) — V (m — 2; qo) > 0. We first consider the case 

when ttl < I < p . If ^ g l > l - p , then V (m + 2; to) - V (m; qD) > 0. 

Suppose < 1 - p. Then V (m + 2; - V (m; qD) > 0 if and only if 

(1 _ p ) m + i - « . M p * s ( m ) 7 r ( i _ ^ ) p _ ^ g l 

( 1 _ p r - H s ( m ) ^ s ( m ) _ l 7 r ( 1 _ t o ) p - ^ g i 

But, 
/?s (m) < 1 /?., (m) - 1 < Rs (m) < 1 
m + l ~ 2 ' m - 1 _ m + l ~ 2 

Hence, using R s (m — 2) = Z?s (m) — 1 from Lemma 2.2 in equation [A.6] and 

writing m — 2 in place of m we find 

V(m;qD) - V ( m - 2 ; q D ) 

' U M - 1 ) K l - P r ~ M m ) ^ { ̂  - ( 1 - P ) } ^ ( 1 - q D ) 

> o 
p m - i i . M ( 1 _ p ) « . ( m ) - l ( 1 _ ^ 1 _ p _ ^Mzl 

{ 1 _ p ) m - R s ( m ) p M m ) _ l n { 1 _ q D ) p - M ^ l ' . 

S i n C e 1 - p - 5 ^ 1 > when *-<">-1 < ^ 
^ m - 1 F m + l 

1/ (m; to) - V {m - 2;qD) > 0 V {m + 2;qD) - V [m; qD) > 0. 

Now consider the other possibility that > ^ > 1 - p. If ^ f f i < P, 
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then V (m + 2; qD)-V (m; to) > 0. Suppose Rf^ > p. Then V (m + 2; to)-

V (m; to) > 0 if and only if 

p m+l -« s (m) ( 1 _ p)R.(m) ( 1 _ ^ ^ ^ ) _ ( 1 _ p ) 

{I - p ) m + 1 - R s { m ) p ^ h (I - qD) ^ 1 P 

p m - ^ W ( 1 _ p ) ^ M - l ( 1 _ ^ M _ ( 1 _ p ) 

( l _ p r - « . ( - ) p f l . ( m ) - l 7 r ( 1 _ g | ? ) ^ - p 

But, ^ > i > ^tr > I Hence, 
' m+l 2 m—1 m+l 2 ' 

V (m; qD) — V (m — 2; qD) >0 

r W (1 - p ) * ^ ) - 1 (1 - vr)^ ^ - (1 - p ) 

^ (1 - P ) — ^ M p ^ M - % (1 - to) < - p 

Since ^ - ( 1 - p ) > S^-t-* w h e n ^ W - 1 > M a i oincc flj(m) ;> K s ( m ) - i wnen m _j .> m + 1 , 
m + l r 7 7 1 - 1 ^ 

V (m; <?o) - y (m - 2; to) > 0 =̂  K (m + 2; to) - V' (m; to) > 0 

in this case as well. This completes the proof of the lemma. | 

A.1.2 Proof of. Lemma 2.4 x 

Proof. We have to deal with two cases separately: 

Case 1: pj > 1; The jury puts relatively higher weight on acquitting the 

guilty. 

Case 2: pj < 1. The jury puts relatively higher weight on convicting the 

innocent. 
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• Case 1: pj > 1. 

The uninformative decision of the jury in this case is C. Hence, V (0; qp) — 

-(1 - ir)qD. 

Now suppose n 0 is the smallest positive integer such that ajury of size 

n 0 votes informatively. Then R s (no) = R s (no + 1) = 1. For any n < no, the 

jury votes uninformatively for C. Hence, R s (no) = 1. Now R s (no + 1) — 1 or 

2 by Lemma 2.2. For any n 0 > 1, if R s (n 0 + 1) = 2, then again by Lemma 

2.2, R s (no — 1) = 1 contradicting the hypothesis that no is the smallest 

integer such that the jury votes informatively. For no = 1, Rs (2) = 1 follows 

directly from the fact that pj > 1. 

We will argue that V (n0; qD) > V (0; qD) V (n 0 + 2; qD) > V (n0; qD) 

and V (n0 + 1; qD) > V (0; qD) => V (n 0 + 3; qD) > V (n 0 + 1; q D ) . Then an 

application of Lemma 2.3 will be sufficient for the proof in this case. 

Suppose V(no]qo) > V(0;qD)- Then, using Rs(no) — 1, we can show 

that (1 — TT) qoP n° > TT (1 — qjj) (1 — p) n° follows. As shown in the proof of 

Lemma 2.3, we can write V (n 0 + 2; q^) — V (n0; qo) as 

n 0 + 1 
1 

> 1 ' ^ + 1 M i - 9 * ) u - p r 

V (nQ + 2; qD) - V (n0; qD) 

^ ( l - q D ) ( l - p ) ^ p [ ^ - ( l - p ) 

+ ( l - T T ) q D p n ° ( l - p ) ( p - ^ j 

( l - p ) (p 

> 0 

D + l 
1 

n 0 + 1 + p n 0 + 1 
( l - p ) 

where we made use of the fact (1 — IT) qoP 7 1 0 > vr (1 — qo) (1 — p) n° and 
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The subcase for V (no + 1; qo) > V (0; qo) can be treated similarly. 

Case 2: pj < 1. 

The uninformative decision of the jury in this case is A. Hence, V (0; qo) = 

- T T ( 1 - qD) . 

Again, as in Case 1, suppose no is the smallest positive integer such that 

a jury of size n 0 votes informatively. Then Rs (no) — no and Rs (no + 1) = 

no + 1. For any n < no, the jury votes uninformatively for A. Hence, Rs (no) = 

no. Now Rs (no + 1) = n 0 + 1 or n 0 by Lemma 2.2. For any n 0 > 1, if 

Rs (no + 1) = "-Oi then again by Lemma 2.2, Rs (no — 1) = no — 1 contradict

ing the hypothesis that no is the smallest integer such that the jury votes 

informatively. For n-o — 1, Rs (2) = 2 follows directly from the fact that 

PJ < 1. 

Now we can proceed similarly as in Case 1 to show that V (no; qo) > 

V(0;qD) => V (n 0 + 2; qD) >,V(n0;qD) and V(n0 + l;qD) > V(0;qD) 

V(nQ + l;qD)>V{n0 + 3;qD)- I 

A.2 Appendix to Chapter 4 

A.2.1 Proof of Lemma 4.3 

Proof. In writing b2 (TT; I) explicitly in terms of the parameters, we have to 

consider two separate cases. 

Case I: II (ahqh) > U (quqi) 
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Using equations [4.10] and [4.9], we can write 

b 2(n;l) = < 

P h - p 2 - 2 p i { l - p i ) n if TT <Il(ql,qi) 

P h - v iiU(qi,qi) < n <U(ai,qh) 

PhPi ~ [PhPi + (1 - Ph) (1 - Pi)] TT if IT (a,, qh) < TT < f l (qi,qh) 

0 otherwise. 

Hence, in this case, b 2 (TT; I) is continuous and strictly decreasing in TT for all 

\ <7T < U ( q h q h ) . 

Case II: II (ai,qh) < II 

Again using equations [4.10] and [4.9], b 2 (TT; I) can be expressed as 

b 2(ir;l) = { 

p h - p ] - 2pi (1 -PI)TT if TT < U(ai,qh) 

{Ph ~ Pi) [Pi ~ (2pi - 1) TT] if II (ai, qh) < TT < U (qu qi) 

PhPi ~ [PhPi + (1 - Ph) (1 - Pi)] TT if II (qt, qt) <TT < n (qu qh) 

0 . otherwise. 

Here also, b 2 (TT; I) is continuous and strictly decreasing in TT for all \ < TT < 

fl {qi,qh) • 

Hence, irrespective of the parameter configurations, b 2 (TT; I) is mono-

tonically decreasing in TT . Moreover, b 2 (TT; I) = Ph — Pi > 0 at TT = | and 

b 2 (TT; I) = 0 at TT = n ((ft, gh). Therefore, any 0 < c < ph — Pi will induce 

a unique cutoff fti (c) e (|, n qh)) such that b 2 (TT;1) > c if and only if 

TT < 7f( (c) . | 
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A.2.2 Proof of Lemma 4.4 

Proof. We first express b2 (TT; h) in terms of the parameters of the model using 

equations [4.8] and [4.10]: 

b2(7f,h)= { 

p 2

h + 2ph(l - ph)ir - p h if TT < II (ai,qh) 

(Ph - Pi) [Ph (1 - 7r) + (1 - ph) TT] if IT (ai, Qh) < 7T < II (qt, qh) 

p 2 ( l - 7 r ) + ( l - p , ) 2 7 r 

0 

iiU(qi,qh) < TT < Tl(qh,qh) 

otherwise. 

Notice that b2 (TT; h) is throughout continuous in TT and has a unique maxima 

at II (au qh). Hence, any c < maxx b2 (TT; h) = p^ilpjj+fi^p, = co> induces 

an interval [TTQ ( C ) , TT\ ( C ) ] such that for TT 6 [TTQ (c) , TT^ ( C ) ] , b2 (TT; h) > c. 

Since b2 (\;h) = b2 (U (qh, qh); h) = 0 and b2 (Tl (aL, qh); h) = c0, c < c 0 

implies T T ^ ( C ) € (|, II (a(, and T T J 1 ( C ) G (II (a(, qh) , II (gft, %)). | 

A.2.3 Proof of Proposition 4.1 

Proof. First Part: 

For any c, = I for 7r > p/i — c can be seen from Lemma 4.1. For c < C\, 

TTI (c) >. ph — c. Hence from Lemma-4.4, {I, /)-cannot be an equilibrium for 
71-1S (ph — c, Tti (c)]. Since we already argued that a pure strategy equilibrium 

always exists, T2* must be (h,l) or (l,h) or (/i,/i) in this zone. Now consider 

the case where TT\ ( C ) > Hi ( C ) . For 7r € (ff( (c), 7r̂  (c)], b2 (TT;1) < c, but 

b2(TT,h) > c. Hence, in this zone we have a (1,1) equilibrium, but we also 

have (h, h) as an equilibrium. 

Second Part: 
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Sufficiency • ' , • 

Suppose c > c2. Then TT < VH — c is sufficient for T{ = h by Lemma 4.1. 

For c > C2,.7f; (c) < Ph — c. Hence, for TT. G (#; (c), ph- — c\, (h, I) or (/, h) cannot 

be an equilibrium by Lemma 4.4. We now need to show that (7i, h) cannot 

be an equilibrium in this zone. We have to consider two separate cases. 

Case I: U(ai,qh) > U(qhqi) 

In this case, irl

mia = U(qhqi). Hence, 

c2 = 6a(n(g,,g0) 

= Ph~Tl{qi,qi) 

> p h - U ( a i , q h ) 

= Ph (1 ~ Pi) 
P h ph(l - pi) + pi (1 - ph) 

Ph (1 - Ph) (2pi ~ 1) 
ph(l -pi)+pi(l - Ph)' 

Since b 2 (TT; h) is strictly increasing in TT for all TT G [|, IT (a;, qh)}, 

b 2 (U(qi,qi) ;h) < c2 along with Yl(qi,qi) < U(ai,qh) implies that for any 

TT < n (r/(, g() and c > c2, 62 (7r; //,) < c. The required condition can be easily 

verified as follows: 

b 2 ( H ( q h q i ) ; h ) = P h ( l - P h ) ( 2 U ( q l , q l ) - l ) 
P h ( l - p h ) ( 2 p i - l ) 

P? + ( I -W) 2 

< P h (1 - Ph) (2p< - 1) 

< c2. 
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Since for any c > c2, Ph — c < U (qi,qi), hence for any TT < Ph — c, (h, h) 

cannot be an equilibrium. We know that for all parameter configurations 

a pure strategy equilibrium exists. Hence, (/, I) is the only pure strategy 

equilibrium which is the unique equilibrium by virtue of Lemma 4.2. 

Case fl: U(ai,qh) < Tl(qi,qi) 

Here c2 = b 2
 ( 7 ^ ) . where TTL

MIN € (II (ah q h ) , II {qt, qt)). Hence, for any 

TT G [ U ( a h q h ) ,Trl
m-m] , 

b 2 (n;l) = ( p h - p l ) [ p l ( l - 7 T ) + ( l - p l ) n ] 

and 

b 2
 ( T T ; h) = (ph - pi) [ph (1 — ?r) + (1 — ph) TT] . 

Since re > \ in this range, b 2 (n; I) > b 2 (n; h) for all 7r G [ii {auqh) , 7r^ in] . 

Moreover, since b 2 (IT; I) is strictly decreasing for all 7r and b 2 (TT; h) reaches 

its maximum at n (at, qh), b 2 (TT; I) > b 2 (TT; h) for all TT G [|, ir l

min] • Hence, 

TT > 7 t i ( c ) implies b 2 (TT;K) < c. Therefore, (h, h) cannot be an" equilibrium 

outcome. 

Since we know that for all parameter configurations a.pure'strategy 

equilibrium exists, T2* = (/, I) is the only pure strategy equilibrium for 

TT G (fi (c) ,ph — c], which is the unique equilibrium by virtue of Lemma 

4.2. 

Necessity 

For c > c2, TT > ph — c implies Tj* = I and TT < fi (c) implies T2* includes 

at least one h by Lemma 4.4. For c < c2,7f/ (c) > Ph — c for all c and hence 

Tj* = h implies T 2 includes at least one h, again by Lemma 4.4. | 
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A.2.4 Proof of Proposition 4.2 

Proof. It is evident that T{ — h and T2* = (/, I) are necessary for the 

smaller committee to dominate the larger committee. For any c > c2, the 

existence of such situation is guaranteed by Proposition 4.1. In our rel-
2 

evant zone, V l(h) > V 2(l,l) if and only if TT < 2^(1-Pl)- First consider 

that p h > p 2 + ( l P i ) 2 - Then it follows that > p ? + (

p / _ p | ) 2 . Since 

^min < p 2 + ( i L P i ) 2 , therefore < i n < 2 p i " ( 1 ? p i ) . Now, for any c > c2, p f t - c < 
^min < 2Mi-p,)- H e n c e > for parameter values such that ph > pi+fl_pi)2, 

T; = / i and T2* = (i,Z) are sufficient for V l{h) > V 2(l,l). 
r,2 „ 2 

Now suppose p h < p ? + ; _ w ) 2 . This implies that < pi+ff^a- If 

"""Lin ^ 2p°i(\-pi)' then by the same argument as in the preceding paragraph, 

T; = / i and T2* = (Z,Z) are sufficient for V l(h) > V 2{l,l). Now suppose 

TT 'm > v N o t i c e t h a t oP'nV' ^ > o PV/1 ^ = i We have defined f,(c) 
mm 2 p i ( l - p i ) 2 p , ( l - p , ) 2 p , ( l - p , ) 2 ' w 

such that O2(TTI(C); /)•= c. Since b2(Tr;:l) is continuous, strictly decreasing in 7r, 

l i m ^ i b2(TT;l) = ph-pi and 6 2 (7rJ n i n ;Z) = c2, there exists c € (c2,Ph-pi) such 

t h a t T f ^ e ( i . a ^ y ) . Now for any 7 T G ( f f ; ( c ) , min { ^ ^ y . P / , - c } ) , 

T* = / i and T* = (Z, Z) and V l(h) > V 2(l, I). This completes the proof of the 

proposition. | 


