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ABSTRACT 

Airport congestion has become a major public policy issue because delays impose 
important costs on airlines, passengers and shippers (losses have been estimated to be 
above US$20 bil l ion annually). The answer economists have given to the airport runway 
congestion problem has been the use of the price mechanism, under which landing fees are 
based on a flight's contribution to congestion. However, these schemes have not really been 
implemented. 

Airports have traditionally been owned by governments, but this has been changing: 
following the U K , many airports around the world have recently been, or are in the process 
of, being privatized. One of the leading arguments for airport privatization is that privatized 
airports might well shift towards peak-load or congestion pricing schemes of their runway 
services, thus reducing delays. Nevertheless, out of the concern that the privatized airports 
would exert monopoly power, most of the newly privatized airports have been subject to 
some form of economic regulation. Lately, however, some authors have argued that the 
regulation mechanisms fell short of being optimal because they would misplace capacity 
investment incentives. They suggested divestment of regulation or the less-stringent price 
monitoring. 

However, as important as these issues may appear, there have been only a couple of papers 
that have analytically examined what the outcomes of privatization or divestment of 
regulation may be. And , although many papers analyze optimal pricing of public airports, 
most of the papers that deal with privatization and deregulation are fairly descriptive. In 
this thesis, the effects that competition, privatization and regulation (or absence of it) would 
have on the performance, pricing structure and capacity investments of airports, and the 
consequences this w i l l bring to the downstream market (airlines), and final users 
(passengers) w i l l be examined analytically. What makes this different from previous work 
on airport privatization is that, here, vertical structure models of airport-airlines behavior 
wi l l be used. That is, it w i l l be recognized that airports provide an essential input, which is 
used by airlines to produce the output - t ravel- under oligopolistic conditions. Previous 
work abstracted from the airline market under the assumption that the airline market was 
perfectly competitive. 

Non-cooperative games w i l l be analyzed, in order to extract lessons and conclusions for 
public policy, on a number of different issues: (i) whether previous conclusions regarding 
airport privatization (and airport pricing in general) hold under imperfect airline 
competition; (ii) whether privatized unregulated airports would use efficient peak-load 
pricing congestion schemes or not, and under which conditions they would; (iii) whether 
the arguments that have been put forward in favor of deregulation of private airports hold 
or not; (iv) whether competition between private airports in multi-airport regions would 
lead to a more efficient outcome than single ownership. 
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1 INTRODUCTION 

1.1 Research Topic and Content of the Thesis 

Airport pricing has attracted the attention of economists and policy-makers for at least 
thirty years. Economists have been interested in finding efficient pricing practices, which 
would need to take into account the increasing levels of congestion at many airports. Early 
work includes Levine (1969) -who was critical on weight-based runway charges and the 
fact that prices were 'too low' to reflect congestion levels-, and Carlin and Park (1970) -
who advocated social marginal cost pricing, or congestion tolls, as a way to fight airport 
congestion in the short run. But, given the wave of privatizations of public enterprises 
throughout the world -which started in the U K in the 1980s-, economists were also urged 
to discuss about what would be the efficiency gains that privatization of airports would 
bring, about whether regulation would be necessary or not and, i f it was, about how it 
should be implemented. A l l these issues, new and old, gave rise to a literature on airport 
pricing, ownership and regulation which has been, i f not massive, considerable. The present 
thesis attempts to make a contribution to the economic analyses of airport pricing and 
privatization, through the presentation of five papers, which are assembled in Chapters 2 to 
6. 

This thesis has been written following The University of British Columbia's manuscript 
style. In this case, the thesis has an Introduction and a Conclusions chapters, while the rest 
of the chapters are published, in-press, accepted, submitted or draft manuscripts written in a 
consistent format. This has the advantage that each chapter is a stand-alone unit which can 
be read it on its own, but it is obtained at the expense of some linearity of the thesis. In this 
sense, this introduction attempts to provide a more unified vision of the papers in the thesis, 
by presenting them as sequentially and linked as possible. However, some circularity, that 
is, cross references between papers, was necessarily introduced. 

Chapter 2, entitled " A Survey of Analytical Models of Airport Pricing" is a literature 
review, and is the reason why I do not present one here in the Introduction. In this paper, 
analytical airport pricing papers are reviewed and their main insights are highlighted. We 
give special consideration to how particular features of the model may drive the results, and 
we look for similarities and differences across papers.1 Among other things, we show that 
the literature may be grouped into two broad approaches, which we have called the 
traditional approach and the vertical structure approach. The traditional approach uses a 
classical one-market partial equilibrium model where the demand for airports depends on 
airport charges and on congestion costs of both passengers and airlines; the airline market 
at the airport is not formally modeled. The vertical structure approach instead recognizes 
that airports provide an input for the airline market -which is modeled as a rather simple 
oligopoly- and that it is the equilibrium of this downstream market which determines the 
airports' demand: the demand for airports is therefore a derived demand from final 

Given the time at which the literature review was written and the state of advance of the other papers, 
Chapter 2 does include Chapter 3 -and partially Chapter 4 - as part of the papers reviewed, but not Chapters 5 
and 6. 
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passengers' consumption of airline services. We show with an example that airports' 
demand does not carry enough information to derive welfare-maximization results unless 
the airline market is perfectly competitive. Hence, vertical structure models, which formally 
consider the airline market, are more appropriate when there is market power at the airline 
level. 

That last point has in fact to do with the more general question of how "consumer surplus" 
measures coming from areas under input demand curves -such as the airport's demand-
capture the effects of direct purchasers -the airlines- and downstream final consumers -the 
passengers. In other words, on how to obtain a proper measure of social welfare when 
analyzing an input market. The most general results available in the literature regarding the 
relation between input and output markets surplus, hinge on a number of strong simplifying 
assumptions, which in fact make them inapplicable for the airport case. Chapter 3, entitled 
"On Input Market Surplus and Its Relation to the Downstream Market Game" relax those 
assumptions, providing a systematic way to assess how much information about the 
downstream market is captured in the derived demand for inputs. And , while this is not 
directly a paper about airport pricing, its application to airport markets is important given 
the derived nature of the airport's demand. The main proposition of this paper is obtained 
by linking the input markets surplus question to results from another -seemingly unrelated-
stream of literature, which characterizes a function that firms in oligopoly collectively, yet 
unintentionally, maximize. I show that the input markets surplus change measure (obtained 
by integration under the input demands derived from the equilibrium of a downstream 
oligopoly game) is equal to the change in a function for which critical points coincide with 
the equilibria of the downstream game. In particular, i f the downstream game is potential, 
the input market surplus is shown to be equal to the change in the exact potential function. 
This proposition synthesizes and generalizes the established results on the relation between 
input and final market surplus measures, providing guidance to policy analysts who seek to 
infer the total welfare effects of input market price changes from information on the input 
market demands only. 

Chapter 4 is entitled "Airport Ownership: effects on pricing and capacity". It has been 
argued in the literature that privatized airports would charge more efficient congestion 
prices and would be more responsive to market incentives for capacity expansions. 
Furthermore, the privatized airports would not need to be regulated since price elasticities 
are low, so allocative inefficiencies would be small, and collaboration between airlines and 
airports, or airlines countervailing power, would solve the problem of airports' market 
power. Given the results of Chapters 2 and 3, this paper uses a model of vertical relations 
between airports and airlines in order to adequately set-up the central planner benchmark 
case (the public airport). Wi th this model I examine, both analytically and numerically, how 
ownership affects airports' prices and capacities. The results show a rather unattractive 
picture for privatization when compared to first- and second-best benchmark cases. I find 
that: (i) private airports would be too small in terms of both traffic and capacity and, despite 
the fact that they may be less congested, they would induce important deadweight losses; 
(ii) the arguments that airlines' countervailing power or increased cooperation between 
airlines and airports may make regulation unnecessary seem to be overstated; and (iii) 
things may deteriorate further i f privatization is done on an airport by airport basis rather 
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than in a system. Also , I show that two features of air travel demand that have not been 
incorporated previously in the literature -demand differentiation and schedule delay cost-
play important roles on airports' preferences regarding the number of airlines using the 
airport. 

On the closing sections of Chapters 2 and 4, I state that two lines of work that should be 
explored are: (i) periodic demand, which may induce peak-load pricing practices 
sequentially, at both the airport and the airlines levels; and (ii) the case of geographic 
competition between airports, that is, what happens in multiple airports regions (such as 
New York or San Francisco), because in this case results may be hindered. Chapter 5, 
"Sequential Peak-Load Pricing in a Vertical Setting: the case of airports and airlines", 
examines the first line of work. We investigate airport peak-load pricing (PLP) and analyze 
both the price level and price structure with vertically differentiated peak and off-peak 
travel. Using a vertical structure of airport and airlines in which both players may use peak-
load pricing, we carry out an analysis for a private, unregulated airport and for a public 
airport that maximizes social welfare. We find that compared to the public airport, a 
private, profit-maximizing airport would charge both, higher peak and off-peak runway 
prices, as well as a higher peak/off-peak price differential. A s a consequence, airport 
privatization would lead to both fewer total air passengers and fewer passengers using the 
premium peak hours for their travel, both of which reduce social welfare. Although those 
passengers who still use the peak period benefit from less congestion delays, overall it is 
not economically efficient to have such a lower level of peak congestion. The analysis also 
shows that whilst private airports w i l l always use peak-load pricing a public airport may, 
somewhat surprisingly, actually charge a peak price that is lower than the off-peak price. 
Here the public airport, on the surface, is not practicing the peak-load pricing, but such 
pricing structure is nevertheless socially optimal. Again, the case where a private airport 
strategically collaborates with the airlines is examined. 

Chapter 6, "Congestible Facility Rivalry in Vertical Structures" examines the second line of 
work identified in Chapters 2 and 4. We investigate rivalry between congestible facilities 
and its effects on facility charges, capacities and congestion delays. The analysis is 
conducted under a vertical facility-carrier-consumer structure, with imperfectly competitive 
output (carriers) markets. We find that the duopolists' equilibrium prices increase with both 
the consumers' value of time and the carriers' cost sensitivity to congestion delays; 
entrance of a new carrier to any of the facilities depresses the prices charged by both 
facilities; and lower marginal cost of the carriers at one facility w i l l induce a higher facility 
price at that facility but a lower facility price at the other facility. In terms of service level, 
we find that the duopoly facilities provide longer congestion delays than a monopolist only 
i f capacity decisions are made prior to the facility pricing decisions. When the capacity and 
pricing decisions are made simultaneously, the duopolists would provide the same level of 
service quality (delays) as the monopolist. Furthermore, monopoly pricing and capacity 
choices result in a higher level of service quality (shorter delays) than the social optimum. 
Our analysis shows that when the monopolist vertically integrates with the carriers at the 
facilities, it would provide the same congestion level as the central planner. Nevertheless, 
this monopoly service level is not socially optimal in a second-best sense. In effect, in the 
fully ex-ante symmetric case, it is too low with respect to the second best. 
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2 A SURVEY OF ANALYTICAL MODELS OF AIRPORT PRICING 1 

2.1 Introduction 

Airport pricing has attracted the attention of economists for some time now, starting with 
Levine (1969). Most of the attention has been devoted to the efficiency of pricing practices 
by airport authorities and the need to take into account congestion which, even in the early 
70s, was afflicting passengers and airlines. The alleged inefficiencies of actual pricing 
practices plus the factual wave of privatizations and/or partnerships that started in the late 
eighties throughout the world (following the example of the U K ) induced, in addition, a 
focus on the effects of privatization and the efficiency of different regulatory schemes. The 
problem would be that privatized airports w i l l pursue maximization of profits, but it has 
usually been accepted that airports enjoy a local monopoly position because they have a 
captive market. Besides, there would be sizeable economies of scale on airport 
infrastructure provision and airport operations (Doganis, 1992). Out of the concern that 
private airports would exert market power in user charges, many private airports are under 
some type of economic regulation such as rate-of-return or price caps. 

The work on airport pricing has been, i f not massive, considerable. Some old questions, 
such as, how should we use the price mechanism to signal congestion problems, have 
persisted in the literature. New questions, such as whether privatization would induce better 
capacity investment or not, have appeared. A n d as far as we know, there has been no paper 
devoted to put together all the questions and answers that have been obtained in the 
literature. We attempt to do that here; in this paper, we review the airport pricing literature, 
with a focus on analytical papers. Indeed, we are narrowing the scope of our work, by 
leaving aside a number of important empirical papers. We do not mean by this that the 
empirical work is irrelevant, but as it w i l l be seen, a comprehensive survey of the analytics 
of airport pricing easily use the space in a paper, and we believe that a good command of 
theoretical results helps to better grasp empirical results. Also, we w i l l focus on papers on 
the last 20 years. We believe that this is enough to understand what is known today about 
the theory of airport pricing, since earlier contributions such as Levine (1969), Carlin and 
Park (1970) and Morrison (1983) have been incorporated into the papers we review. 

We summarize the findings and provide directions of what we think should be future 
research. In order to do this in an orderly manner, we group the papers in 'approaches'. 
Papers within one approach share many features regarding the analytical modeling, which 
makes it easier to explain what characterize them, while also enabling a better description 
of the contributions of each of individual article. Therefore, Sections 2.2 and 2.3 w i l l be 
devoted to explain what we have called 'the traditional approach' and 'the vertical 
structure approach' to airport pricing respectively and, within each approach, what we 
have learned from individual articles. Later, in Section 2.4, we attempt to connect the 
approaches as a mean to better understand how the results stemming from the two 

1 A version of this chapter is forthcoming as: Basso, L.J . and Zhang, A . (2006a) A Survey of Analytical 
Models of Airport Pricing, in Advances in Airline Economics, Volume 2: The Economics of Airline 
Institutions, Operations and Marketing, Darin Lee, ed., Elsevier. 
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approaches relate to each other. In short, whether results from one approach can be 
transferred to the other. Sections 2.2 and 2.3 deal with a single airport's decision or, at 
most, two (complementary) airports, given the complexity of the economics of airport 
pricing. However, there are a few articles that looked at the pricing of airport networks, i.e., 
three or more connected airports, something that indeed bears more relationship with 
reality. We discuss these papers in Section 2.5, noting that the previous classification may 
still be applied. We conclude in Section 2.6 by providing what we think should be the lines 
of future research. 

2.2 The Traditional Approach to Airport Pricing 

The main characteristic of this approach is that it typically considers a single airport 
decisions and follows a partial equilibrium analysis in which the airport's demand is 
directly a function of its own decisions; airlines decisions (and competition) are not directly 
considered and hence, the derived characteristic of an airport's demand is not formally 
recognized. In this Section, we consider papers by Morrison (1987), Morrison and Winston 
(1989), Oum and Zhang (1990), Zhang and Zhang (1997; 2001; 2003), Carlsson (2003), 
Oum et al. (2004), L u and Pagliari (2004) and Czerny (2006). Most of these papers follow 
essentially the same model: they assume that the demand for the airport is a function of a 
full price. This full price includes the airport charge and, in an additive fashion, some cost 
measure of the delay caused by congestion. Delay functions have always been measured 
through some non-linear function of traffic and capacity, although the modeling has not 
been unique: the main discrepancy has been whether the function should or should not be 
homogenous of degree one in the traffic to capacity ratio. Delay is assumed to affect both 
airlines and passengers, and consumers' surplus is measured by integration of the airport's 
demand. When the airport capacity is variable, the cost function has been usually assumed 
to be separable in operating and capacity costs. 

This approach has been used to analyze many different issues regarding airport pricing and 
capacity decisions and under many different sets of assumptions, as can be seen in Table 
2.1. Initially the focus was on deriving optimal prices and capacities on the presence of 
congestion but, lately, it has been used to assess the effects of privatization and regulation 
as well . 

The basics of the traditional approach can be synthesized in a fairly concise analytical 
manner, which we present below. Certainly, not all the papers can directly be assimilated to 
this presentation -particularly L u and Pagliari (2004) and Czerny (2006) may seem more 
distant-, but most of them fit through slight adjustments, which are indicated where 
relevant. The approach is as follows: in order to provide aviation services, an airport incurs 
both operating and capital expenses. It collects user charges to cover these costs and, in the 
private case, to make a return on capital investments. For a given capacity, congestion w i l l 
start to build up as demand grows, inducing delays and therefore extra costs on passengers 
and airlines. It is usually assumed that airlines fully pass whatever airport charge they face 
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2 to passengers; the same is assumed for airlines delay costs. Therefore, passengers w i l l 
perceive a full price consisting of the airport charge, the airline delay cost, passengers delay 
cost, travel-time costs plus other charges (air ticket). It has been argued that since other 
airline charges are exogenous as far as the airport is concerned, the demand an airport faces 
may be considered to be a function only of the airport charge P and the flight delay costs D 
(which includes both airlines and passengers). The variables in the model would be: 

Qtipd = Demand for airport facilities in period t, measured in number of 
flights, which is a function of a full price pt 

pt = Pt + Dt, full price in period f, which determines airport's demand 
(and which is a part of the full price perceived by passengers) 

Pt = airport charge per flight in period t 
Dt=D(Qt,K) = flight delay costs (airlines plus passengers) experienced by each 

flight in period t, which depends on traffic Qt and airport capacity K 
K = capacity of the airport 
C(Qt) = operating costs of the airport in period t 
r = cost of capital 

In most cases, when many periods are considered, demands are assumed to be independent 
(the exception is Oum and Zhang, 1990). When capacity is assumed to be continuously 
adjustable, this is has been justified because capacity would be defined not only by the 
number of runways -which can only be increased discretely- but also by air navigation 
systems and other infrastructure -which can be increased or enhanced continuously. 

One of the first issues that was analyzed using the traditional approach was airport's 
choices of capacity, K, and user charges, P„ for the benchmark case in which social welfare 
is maximized subject to a budget constraint -the public airport case. Thus, this case 
corresponds to Ramsey-Boiteux pricing. The problem the public airport faces is given by: 

™*E \Qt(Pt)dp, + PtQ,-C(Qt) 
\ 

-rK (2.1) 

\P J 
s.t. £ / > , G , - C ( < 2 , ) - r i C = 0 (2.2) 

The first term in the objective function would correspond to consumer surplus; the 
remaining terms are airport's profits. Forming the Lagrangean and taking derivatives with 
respect to Pt and K, first-order conditions are obtained. From them, the following pricing 
and capacity investment rules follow 

2 Morrison (1987) make this assumption by equating airlines' elasticity of demand for airport services to 
the elasticity of passengers' demand with respect to full price times the fraction that airport charges and 
congestion costs represent in total flight costs (p.48, see also Raffarin p. 115). Oum et al. (2004) make this 
assumption explicitly, arguing that this will be the case under perfect competition. However, this is going to 
be so only in the case of constant marginal costs for the airlines. As a tax, the proportion of the charge that is 
actually passed to consumers will depend on the relative slopes of demand and supply curves in the case of 
perfect competition. 
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Pt=C'+Q, (2.3) 

(2.4) 

where A denotes the Lagrange multiplier of the budget constraint. According to Morrison 
(1987) and Zhang and Zhang (1997, 2001), the interpretation of the pricing rule is as 
follows: the first two terms on the right hand side of equation (2.3) represent the social 
marginal cost of one flight (operational marginal cost plus marginal cost of congestion) 
while the third term represents a markup that is inversely related to the (positive) elasticity 
of demand with respect to the full price, £ t , and that depends on the severity of the budget 

constraint. Hence, the difference with the usual Ramsey-Boiteux pricing is that the pricing 
rule has to take into account the congestion that a new flight imposes on others. 

Regarding the optimal capacity rule -Equation (2.4)-, Zhang and Zhang (1997) note that it 
does not depend on X and hence it is identical to the one obtained when a budget constraint 
is not imposed, as in Morrison and Winston (1989). Therefore, airport authorities which 
adopt Ramsey pricing should still pursue the same optimal policy of capacity investment. 
In this policy, the socially optimal level of capacity is set such that the marginal benefit of 
capacity in terms of reduction of delays, equates the marginal cost of capacity (Morrison 
and Winston, 1989; Zhang and Zhang, 1997). 

Now that we have set up the basics of the approach, we can look into the modifications that 
have been made to it and the insights that have been gained in each case. 

On weight-based airport charges 

Because in general aircrafts are not charged by the contribution they make to congestion 
but by their weights, Morrison (1987) wanted to uncover the importance regulators give to 
each type of aircraft when choosing the aeronautical charges. For this, he assumed that the 
demand in each period is Qit, where i denotes a class of airport user, that is, a type of 
aircraft. Then, assuming that capacity is fixed, he put weights on the contribution of each 
class of users at each period, to the social welfare function (2.1): 

where rjit is the weight of user i at period t. Wi th this social welfare function, the optimal 

pricing rule, (2.3), turns into: 

(2.5) 

Pu = C+Qk 

3D | X+l-Tj, (A, 
(2.6) 
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Morrison then asks the following question: what set of weights is implied by actual airport 
charges? To uncover the weights, he follows Ross (1984) and solves for the weights rju in 
(2.6). Hence, using actual data, those weights can be obtained up to a multiplicative 
constant. Morrison's main result was that when the airport is non-congested, weight-based 
landing fees imply welfare weights (the 7]it) that are very similar. But when congestion 
increases, the dispersion in the weights also increases, implying that the weight-based 
landing fees would be less appropriate when there is congestion. He argues that this 
happens because, while weight is a reasonable proxy for elasticity of demand, it is a poor 
proxy for congestion costs. 

Lumpy capacity and cost recovery 

Oum and Zhang (1990) and Zhang and Zhang (2001) were interested on how would budget 
adequacy be affected by the fact that, in reality, capacity can be increased only discretely. 
The conjecture was that the lumpy nature of capacity expansions would make social 
marginal congestion pricing lead to alternating periods of airport surplus and deficit. Oum 
and Zhang (1990) considered lumpy capacity expansions, i.e. that K can be increased only 
by a minimum amount AK, incorporating a positive time trend to the airport's demand to 
capture the fact that demand would increase on time together with the economy. They 
focused on the timing of capacity expansions rather than in a steady-state as above, but they 
did not consider a budget constraint though. They concluded that, when capacity is 
indivisible, optimal congestion pricing (as in equation 2.3 with &=0) and optimal capacity 
expansion would lead to alternating periods of excess capacity and capacity shortage. 
During capacity shortage, the congestion toll would exceed annualized capacity costs but 
during excess capacity, the congestion toll would fall short of annualized capacity costs. 
This implies that budget adequacy would depend entirely on the number of shortage/excess 
capacity periods between capacity expansions. A n d the number of periods in each case 
depends on the pattern of traffic growth. 

Oum and Zhang (1990) concluded that, when capacity is indivisible, the cost recovery 
status of an airport cannot be predicted without reference to the time path of the traffic 
growth and, therefore the cost recovery theorem for investment in transportation 
infrastructure would note hold. This theorem states that (see e.g. Mohring, 1976) when 
operational costs are separable from capacity costs and exhibit constant returns to scale, and 
the delay function is homogenous of degree one in the traffic to capacity ratio, congestion 
pricing lead to exact cost recovery of capacity investments and operational costs. This is 
not the only way in which the cost recovery theorem would fail for airports though. Even i f 
capacity is divisible, as in model (2.1)-(2.3), Zhang and Zhang (1997) showed that, without 
a budget constraint, social-marginal-cost pricing would always give rise to a financial 
deficit to the airport because the delay function D would not be homogenous of degree one 
in the traffic to capacity ratio (Lave and De Salvo, 1968; U S Federal Aviation 
Administration, 1969; Horonjeff and McKelvey , 1983). Furthermore, the deficit would 
increase the more congested the airport is. 
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Given all this, Zhang and Zhang (2001) were interested in the case in which delays are non-
homogenous of degree one, capacity is indivisible, traffic grows in time, but airports are 
required to recover their costs, both from operations and capacity investments. The question 
they asked was: should public airports be asked to break even in the short-run, or in the 
long run, that is, taking losses in early years but surplus in later years? For this, they 
modified the program (2.1)-(2.2) so as to consider that the airport would now maximize 
social welfare over a period of time S, while achieving cost recovery over the entire period. 
Capacity was assumed to be fixed during the period, owing to its indivisibility. The new 
long-run problem faced by the public airport is: 

ax f m a x h 
P - 0 

X \Qt(Pt^)dp,+PtQt-C{Qt) -rK \e-rsds 

s.t. )^P,Qt(Pt,s)-C(Qt)-rKYrsdS = 0 

(2.7) 

Now, the airport's demand increases in time, that is dQt lds>0 and future revenues are 

discounted using the cost of capital, r. The short-run problem is as in (2.1). Not 
surprisingly, Zhang and Zhang found that the short-run financial break-even constraint lead 
to smaller social welfare levels than a long-run break-even constraint. This was expectable, 
since short-run budget adequacy implies long-run budget adequacy. The slackness won 
with the latter though, explains the increase in social welfare. In fact, Zhang and Zhang 
showed that the two wi l l be equal only when the airport's demand does not change on time, 
that is dQt I ds = 0 . This directly speaks of the importance of the time path of the traffic 

growth, as pointed out by Oum and Zhang (1990): to maximize social welfare, airports 
should be allowed to take losses or make profits at different times, seeking cost recovery 
only in the long run. 

What is perhaps more interesting is that they found that, under short-term cost recovery, 
airport charges are high when the demand is low and when there is excess capacity. 
However, when the demand is high, and there is congestion, airport charges would be low. 
This seems to be undesirable. On the other hand, under long term cost recovery, airport 
charges grow together with the demand. 

Airport concessions and their effects on public and private airports 

Given the increasing pressure on public airports to self finance, airports have been 
increasingly depending on revenues generated by non-air related business, such as parking, 
in-airport stores and so on. The demand for these concession services is complementary to 
the demand for aeronautical services in that, the more people there are using the airport, 
the higher the concession revenues w i l l be. Zhang and Zhang (1997) wanted to analyze 
what would be the socially optimal balance between aeronautical revenues and concession 
revenues given the cost recovery constraint, and how would the pricing practices involved 
look like. For this, they modified the problem of the public airport in (2.1)-(2.2), to 
incorporate the fact that concession demand is complementary to aeronautical demand: 
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max JQ(p)dp + PQ-C(Q)-rK + Q \x(p)dp + pX-c(X) 

s.t. PQ-C(Q)-rK + Q{pX-c(X)) = 0 

(2.8) 

In (2.8), p represents the price for concession goods or non-aeronautical services provided 
in the airport, X(p) is the demand for concession services per flight, and c(X) are the costs 
of providing the concession services, which are assumed to feature constant returns to 
scale. For notational simplicity, we present hereafter the models without intraday variation 
in demand, i.e., there is only one t. 

There are two important things two note in Zhang and Zhang (1997) setup. First, that the 
complementarity between the demands is unidirectional, that is, consumers decide to fly or 
not based on the full price of the aeronautical service; they do not take into account the 
price of the concessions in their travel decisions. Only after arrival at the airport, passengers 
observe concession prices and make purchasing decisions. Second, note that the budget 
constraint includes both revenues, from aeronautical and concession services, which 
effectively enables cross-subsidies. 

Without the budget constraint, the (first best) optimal solution obviously involves marginal 
cost pricing on the concessions side, i.e. p = c'(X). On the aeronautical side, the social-
marginal-cost pricing of equation (2.3) would have an additional markdown; this happens 
because now, a smaller aeronautical charge increases the demand for both, aeronautical 
services and concessions services. Hence, the optimal charge is smaller. This, however, 
would lead to deficits i f the delay function is non-homogenous of degree one in the traffic 
to capacity ratio, as discussed above. Wi th the budget constraint, and assuming that the 
delay function is non-homogenous of degree one, Zhang and Zhang showed that, at the 
(second best) optimal solution of problem (2.8), concession operations would subsidize 
aeronautical operations, i.e. p> c'(X) showing that profits would be made in concession 
services. If the airport were not allowed to make profits from its concessions, but was still 
asked to self finance, then this would obviously lead to smaller levels of social welfare. 
Further, they showed that the cross subsidy from concessions does not in general restore 
social-marginal-cost pricing on the aeronautical side (equation 2.2), unless the demands and 
costs fulfill a very particular condition. 

The attention to concession revenues, however, does not stop at the cost-recovery issue of 
public airports. It has also been suggested that the complementary nature of the concessions 
demand would give incentives to private airports to diminish the price they charge for 
aeronautical services in order to maximize the number of travelers in the airport using the 
concessions. This may imply that price regulations may be unnecessary (see e.g. Condie, 
2000; Starkie, 2001). In order to assess whether the argument holds, Zhang and Zhang 
(2003) and Oum et al. (2004) use Zhang and Zhang (1997) model, but also look at the 
decisions a private unregulated airport would make. The profit maximization problem faced 
by a private unregulated airport is 
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max PQ - C(Q) -rK + Q{pX - c(X)) (2.9) 

Zhang and Zhang (2003) and Oum et al. (2004) found that, while airside private prices 
diminish as it was conjectured by Condie (2000) and Starkie (2001), they decrease less than 
prices in a public airport that also has concessions, and that this is the case for both, first-
best pricing (unconstrained public airport) and second best-pricing (budget constrained 
public airport). Therefore, concession revenues would not be a valid argument to de­
regulate. The intuition of the result is simple: a private airport would care about the extra 
profits it can make from concession activities; a public airport maximizing social welfare, 
however, would care about concession profits but also about the consumer surplus induced. 
Consequently, the decrease in the aeronautical charge would be larger in the public case: 
concession revenues would actually increase the gap between private and public airside 
charges. 

Another important result obtained by Oum et al. (2004) was that the capacity investment 
rule of the private airport would be the same as the one the public airports follow, as in 
equation (2.3). Hence, they argued that, i f the capacity can be adjusted continuously, the 
capacity investment decision of the private unregulated airport would be efficient from a 
social view point. However, since price and capacity decisions are simultaneously 
determined, and pricing rules are different, so w i l l be actual traffic levels and capacity. In 
fact, since a private airport charges more, the actual capacity of the private airport would be 
smaller. But, their main point was that, conditional on traffic level Q, the capacity K 
determined by (2.4) would be efficient because marginal benefit equals marginal cost. On 
line with the actual capacity of private airports being smaller when capacity can be adjusted 
continuously, Zhang and Zhang (2003) found that, when capacity is indivisible, a private 
airport would make the (lumpy) addition of capacity later than a public airport. Note that 
none of these two results imply anything about the level of actual delays, because traffic 
levels w i l l be different as well . 

Czerny (2006) also looks at the effects of concession revenues on airside charges. There are 
two important differences between his model and Oum et al. (2004): First, he considers an 
airport that is non-congestible and which has spare capacity, making the reasons for cross-
subsidization discussed above to vanish. Second, in Oum et al. (2004) the number of actual 
flyers would depend only on the full price p and not on the price for concession services. 
The concession services price would only determine how many of those already flying buy 
concession services. Czerny (2006) however, considers that both, airport and concession 
charges affect the number of flyers, and that the complementarity arises because only 
people actually flying wi l l be able to purchase concession goods. Hence, in Czerny's 
setting it may happen that the airport charge is higher than a consumer's willingness to pay 
for flying, but that negative payoff is compensated by positive benefits arising from 
consumption of commercial services. These differences are material. Czerny shows that in 
this setting, the monopoly charge for aeronautical activities is actually higher with 
concession revenues than without, rejecting Condie (2000) and Starkie (2001) conjecture. 
The intuition is as follows: when the airport has concession services, and since these 
influence the number of flyers, the airport may increase its revenues in two ways. It may 
increase the price for aeronautical services, using a low concessions charge to mitigate the 
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decrease in demand, or it may decrease its aeronautical charge, hoping to make revenues on 
the concessions side. But since only passengers can buy commercial services, the demand 
for the latter is a subset of the demand for flights. Therefore, and increase in aeronautical 
charges increases revenue more than an increase in the concession services charge. 

Efficiency implications of alternative forms of regulation 

Although traditionally airports have been owned by governments (national or local) a wave 
of privatizations started in the late 1980s. These privatized airports have been regulated out 
of the concern that they would exert market power given their monopoly nature. However, 
many economists have argued that the regulation mechanisms have failed to provide the 
airport with the correct incentives for pricing and capacity investments. Oum et al. (2004), 
L u and Pagliari (2004) and Czerny (2006) analyze the effects of alternative mechanisms of 
regulation on the performance of private airports, with a particular focus on how revenues 
from concession services should be dealt with. 

Oum et al. look into four different regulation mechanisms: single-till rate of return (ROR), 
dual-till rate R O R , single-till price cap and dual-till price cap. Let us discuss first the R O R 
mechanisms. Under the single-till R O R , airport charges (both for airside and concession 
operations) are set for cost recovery plus a fair return on invested capital. If u is the allowed 
R O R , then the new problem the private airport solves is: 

max PQ - C(Q) -rK + Q{pX- c(X )) 

s.t. PQ-C(Q) + Q{pX-c(X)) = uK 

The well-know problem with R O R is that, i f the allowed return is greater than the cost of 
capital, i.e. u>r, the airport has an incentive to over-invest in capital, a problem know as the 
Averch-Johnson effect. However, i f the regulators get the allowed return right, the problem 
vanishes. It has been argued though that, even i f the allowed return is chosen correctly, the 
single-till R O R would still misplace the incentives on terms of the productive efficiency, 
because it is essentially a cost-based mechanism. While the argument is sensible and has 
been detected empirically in several industries, it does not flow analytically from model 
(2.10). 

Under the dual-till R O R , the allowed return applies only to aeronautical operations. If the 
regulators get the allowed rate right, the new restriction is PQ - C(Q) = rK . I n this case, 
then, the airport would make no profits in airside operations and therefore, would try to 
maximize the profits coming from concession operations: Q(pX-c(X)). Given the 
complementary nature of the concessions demand, the airport w i l l , in fact, try to maximize 
traffic, which is equivalent to minimize the full price p. Hence, this regulation mechanism 
would lead to a capacity rule as in the public case, that is (2.3), and to average cost pricing, 
that is P = {C(Q) + rK)lQ. Note however, that i f u>r, the Averch-Johnson effect re­
appears. 
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We now turn to price-cap regulation, mechanism in which the regulator sets a ceiling for 
the aeronautical charge, that is P<P*. Theoretically, the cap is set to limit the airport's 
market power, while ensuring its financial viability (this may include a fair rate of return on 
capital investment). The difference between the single-till and dual-till is, again, related to 
whether concession revenues w i l l be lumped together with airside revenues or not; to be 
perfectly clear, the debate is not about regulating concession activities. Under single-till 
price cap regulation, the cap P * w i l l be set considering the fact that the airport w i l l make 
revenues from concession activities. According to Oum et al. (2004), this implies that most 
of the revenues wi l l have to come from concessions and, therefore there wi l l be a cross-
subsidy, just as in the case of a public airport subject to budget constraint (Zhang and 
Zhang, 1997). However, a problem is that the more revenues the airport makes from 
concessions, the smaller the allowed price would be in future revisions of the cap, even i f 
traffic growths and congestion builds. Because of this, single-till cap regulation for the case 
of congested airports has been criticized (e.g. Starkie, 2001): the airport charge would not 
be a useful signal to users regarding congestion. Moreover, Oum et al. (2004) also showed 
that a price cap induces under-investment in capacity, worsening the problem. This result is 
in fact very robust. Spence (1975) showed that i f a monopolist who initially can choose 
both price and quality of its product, is constrained to charge below some price ceiling, the 
quality it chooses w i l l be always below what is socially optimal for that price. 

On the other hand, under dual-till price cap, that is, when concessions revenues are not 
considered in establishing the cap, Oum et al. (2004) showed that the cap would not be set 
as low as in the single-till, something that seems desirable. However, the problem of under­
investment in capacity would worsen. Hence, overall, Oum et al. (2004) concluded that the 
presence of the concession revenues make the dual-till R O R approach a quite interesting 
mechanism as it would induce the airport to invest optimally in capacity, while minimizing 
its costs and congestions delays, since it would try to minimize the full-price. Indeed, 
Spence (1975) suggested that R O R has nice properties when regulating both quantity and 
quality. 

L u and Pagliari (2004) also looked at the effects of single-till and dual-till price cap 
regulation. They considered a social welfare function as in (2.1), but considered that more 
traffic caused no congestion, that is D=0. The difference is that in a model with a delay 
function non-homogenous of degree one, congestion is essentially a cost. A n d given that 
the cost increases importantly as the traffic gets closer to capacity, equilibrium levels of 
traffic would never surpass capacity. In L u and Pagliari's case however, i f the aeronautical 
charge is too low, demand may well exceed capacity, particularly because in their model, 
capacity is assumed to be fixed. L u and Pagliari found that a single-till would be 
appropriate when the average cost of the airport is larger than the market clearing price (for 
the given capacity), because cross-subsidies from concession revenues would be needed to 
decrease the airside charge and restore full capacity use. In other cases, however, they 
found that a dual-till would be better: under the single-till the price cap may be set 'too 
low' because of the concession revenues and hence dead-weight losses would occur 
because of excess demand. 
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Czerny (2006) also compared single-till to dual-till price cap regulation. A s discussed 
previously, he considers an airport that is non-congestible and which has spare capacity, 
and considers that both, airport and concession charges affect the number of flyers. Under 
these conditions, he founds that the single-till dominates the dual-till social welfare wise, a 
result which is similar to what L u and Pagliari found when the airport does not suffer from 
excess demand. The intuition is that with the single-till, the regulator has better control of 
the overall profits of the airport, which is not the case with dual-till regulation, which 
therefore helps to limit market power. 

Hence, overall, when the airports are not congested, a single-till price cap seems like a 
reasonable approach to control market power. However i f congestion actually occurs, the 
single-till would induce incorrect signals regarding congestion, while the dual-till would 
distort capacity investments. Further, i f there are delays as traffic levels approach capacity 
(as in the original setup), the socially optimal pricing structure would require cross-
subsidization (Zhang and Zhang, 1997), but this is precluded in the dual-till. Hence, in 
congested airports, dual-till R O R regulation may be a better option: the incentives for 
capacity investments would be well placed, while the regulated airport would pursue 
average cost pricing. 

Airport pricing considering environmental costs 

Carlsson (2003) developed a model of airport pricing that, in addition to congestion, also 
included environmental damages considerations (noise, emissions). For this, he modified 
the social welfare function in (2.1) to include environmental costs, as follows: 

max "\Q{p)dp + PQ- C(Q) -rK- QE{D(Q, K)) (2.11) 

where E is the average environmental cost per flight. It depends on the level of congestion 
because, for example, delays increase fuel consumption and hence increase emissions. 
Carlsson considered many periods throughout the day and allowed for the environmental 
costs to vary according to the type of aircraft. For simplicity we do not do so here; the 
intuition of the results remains unchanged. The optimal pricing obtained has now two more 
terms than the only congestion social-marginal-cost pricing in (2.3) when fc=0: 

P=C+Q— + E + Q—— (2.12) 

The last two terms in the left-hand side represents marginal environmental cost: in addition 
to the airport's marginal cost and the marginal cost of congestion, each aircraft would have 
to pay the environmental cost it produces, plus another sum, owing to the fact that the extra 
delay a new flight imposes in existing flights increases the average environmental cost of 
all flights. 3 These last two terms are obviously positive, which shows that, when 

The optimal charge is differentiated between type of aircraft and time of the day when these are 
differentiated. 
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environmental costs are considered, the airside charge is higher. Carlsson then points out 
that, i f the proceeds from the environmental charge accrue to the airport, then cost recovery 
may be feasible. Whether this is the case or not, however is an empirical matter, as it 
depends heavily on the shapes of the delay function and the average environmental cost. 

A s for the capacity decision, although Carlsson did not look into it, it is fairly evident the 
direction in which it would change. Since now more capacity is beneficial not only because 
smaller delays decrease full price, but also because smaller delays diminish average 
environmental costs, the capacity investment rule would induce a larger investment in 
capacity. 

2.3 The Vertical Structure Approach to Airport Pricing 

This approach is newer and, hence, there are fewer papers. Here we review Brueckner 
(2002), Raffarin (2004), Pels and Verhoef (2004), Basso (2005) and Zhang and Zhang 
(2006). In this approach, the airline market is formally modeled as an oligopoly, which 
takes airport charges and taxes as given; these are two-stage games. Airports however, are 
not always considered integrally; in some cases, only airport authorities, who have to set a 
tax to be paid in addition to the airport charge - implic i t ly assumed to be marginal cost-, are 
considered. In these cases, airport profits do not enter the social welfare function. This 
approach has been driven by increasing levels of delays at hubs throughout the world, and 
therefore the focus has mainly been on optimal (public) runway pricing under congestion 
and airline market power, as can be see from Table 2.2. Unt i l recently, capacity was 
assumed to be fixed and thus was not a decision variable of the airport or the airport 
authority. Overall, the idea of this approach is to highlight the differences between airport 
congestion pricing and road congestion pricing. 

Brueckner (2002) should undoubtedly be credited for starting this stream of literature; his 
work has been very influential. He considers N airlines that are seen as homogenous by 
consumers and which compete in Cournot fashion. He allows for peak and off-peak 
demand, which are interrelated, and where the peak period consists of a set of relatively 
short time intervals containing the daily most desirable travel times. Only the peak is 
congested. In this sense, it would seem that peak and off-peak travel are vertically 
differentiated in that, other considerations such as income and congestion levels absent, 
consumers would prefer to travel in the peak. In fact, he does not directly assume 
downward sloping demands, but starts with a continuum of consumers who would decide 
to use the peak or the off-peak depending on the full prices they perceive from airlines, that 
is, airfare, plus congestion costs caused by delays at the airports. However, Brueckner also 
adds a 'tendency to flight in business', which correlates to travel in the peak, as a device 
that would enable simpler (non-corner) solutions. The problem with this is that it actually 
imposes that, in terms of pure utility, with no income or congestion effect whatsoever, 
some consumers would prefer to travel in the off-peak. This seems to contradict the idea of 
'the most desirable travel times'. 
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The airlines, observing the demands and understanding how consumers' decisions are 
taken, make their quantity decisions. A n important aspect here is that congestion also 
affects airlines: there are externalities in production in that, the more a rival produces, the 
higher a firm's marginal and average cost w i l l be. The delay function is a non-necessarily-
linear function of traffic. In equilibrium then, the sorting of consumers towards peak and 
off-peak happen through the (airlines) quantity decisions. Brueckner then looks at what 
should be the optimal additional tax that should be charged to airlines in the peak period, in 
order to adequately account for the congestion externality. In this sense, he looks at the 
regulator case in that the airport is not formally incorporated into the analysis: its profits do 
not enter the social welfare function, which is compound only by consumer surplus and 
airlines profits, and there is no consideration of cost recovery, something that has drawn 
important attention within the traditional approach (see Section 2.2). Brueckner's main 
conclusion, and the one that since has drove research in the area, is that with Cournot 
oligopoly, each airline internalizes only the congestion is imposes on itself and its 
passengers, which enables a role for congestion pricing. In a symmetric airlines case, the 
optimal toll that should be charged during congested periods is equal to the congestion cost 
from an extra flight times one minus a carrier's share. In particular, a monopoly airline 
would perfectly internalize all the congestion it produces and hence there would be no 
space for congestion pricing. This shows the difference with the road case: with market 
power, the degree of internalized congestion is usually sizeable. 

Pels and Verhoef (2004) wanted to expand Brueckner's work in two directions: first, they 
wanted to explicitly consider market power distortions and its effects on optimal congestion 
tolls. Second, they wanted to consider the fact that, at an origin-destination (OD) pair, the 
airports may not collaborate to maximize overall social welfare, but may maximize local 
measures of it. Their model is as follows: they consider an O D pair in which the airports 
decide charges prior to competition in the airline market. The capacities of the airports are 
assumed to be fixed. In this O D pair, two homogenous and symmetric airlines compete in 
Cournot fashion, taking airport charges and taxes as given when they choose their 
quantities (frequencies). Congestion delays affect airlines costs; the delay function is a 
linear function of total traffic at an airport. Passengers have only demand for roundtrips, 
and choose airlines based on a generalized cost which is the addition of the air ticket and 
congestion delay costs. The model is solved by backward induction to obtain sub-game 
perfect equilibrium. Hence, the first step is to solve the airlines' oligopoly, in order to 
obtain a sub-game equilibrium which wi l l be parametrically dependent on the congestion 
tolls charged at each airport. Wi th that sub-game equilibrium at hand, the authors looked 
for the optimal taxes that should be charged at each airport in order to adequately account 
for congestion. Initially, they consider that a single authority handles both airports and 
consequently tries to maximize the sum of consumer surplus and airlines profits. Hence, as 
Brueckner, Pels and Verhoef look at the regulator case, in that the airports profits do not 
enter the social welfare function. 

Their main result indicates that the optimal toll would have two components: a congestion 
effect (which is positive) and a market power effect (which is negative). The first part is the 
one identified by Brueckner: since airlines only internalize the congestion they imposed in 
themselves, the uninternalized congestion should be charged. The second term, which 
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decreases the toll, arises because of market power at the airline level. What happens is that 
the regulator, in maximizing social welfare, would need to subsidize the airlines to induce 
them the produce more. The sign of the optimal toll is therefore undetermined; when the 
market power effect exceeds the congestion effect, a subsidy is necessary. The toll would 
be positive i f the congestion effect dominates. They pointed out, for example, that this 
would undoubtedly be the case for a monopoly airline. 

Pels and Verhoef compared their toll to the pure congestion toll suggested by Brueckner 
(2002). They found that, when the market power effect is strong, a pure congestion toll may 
actually be harmful for social welfare, since airlines are charged with a tax when in fact 
they should be receiving a subsidy. Brueckner did acknowledge this, though, by stating in 
his proposition that, "since congestion pricing corrects one distortion but leaves the residual 
market-power effect in place, tolls are guaranteed to be welfare improving only i f that 
effect is sufficiently small. Otherwise, a negative welfare effects is possible." (p. 1367). 
Pels and Verhoef argued that, i f a negative toll (subsidy) is optimal but unfeasible (for 
example for political reasons), the regulator should charge a zero toll. 

Finally Pels and Verhoef considered the case in which, at each airport, different regulators 
only maximize consumer surplus of passengers that live in the airport's region, plus the 
profits of the home airline. The non-cooperative behavior of airports obviously hints that 
the result w i l l be inferior to the single regulator case. In fact, the authors show, both 
numerically and analytically, that in the non-cooperation case, tolls at each of the two 
airports would always be positive. 

Raffarin (2004), as Brueckner (2002) and Pels and Verhoef (2004), is interested in the 
optimal airport toll. But rather than considering a two-stage model, she considers three 
stages. In the first stage of her model, the airport chooses its price; its capacity is fixed. But 
then, conditional on the airport charge, duopoly airlines sequentially decide frequencies and 
then prices. The difference with Brueckner and Pels and Verhoef is that, in their case, 
airlines only decided frequencies; price is determined in equilibrium by the Cournot 
assumption. Raffarin, however, has a system of differentiated demands (obtained from a 
representative consumer framework), such that an airline's demand increase when its 
frequency increases or its price decreases, and decreases when its rival's frequency 
increases or price decreases. 

Raffarin's model has three key assumptions that determine her results: first, she assumes 
that, even though frequencies are airlines' decisions, any demand w i l l always be fulfilled. 
A n d this is not ensured by airlines' choice of aircraft size, k, because k is an exogenous 
parameter in the model (that is, equilibrium results w i l l be dependent on k). Hence, there is 
no real connection between the number of passengers and the number of flights, other than 
the assumption that there wi l l be enough space. Both Brueckner (2002) and Pels and 
Verhoef (2004) made & fixed-proportions assumption, by which the number of passengers 
in a flight was a fixed constant. This make it easier, yet transparent, to transform the 
demand in terms of passengers, into an airport's demand in terms of flights. The second 
assumption is that congestion delays -which as in Pels and Verhoef (2004) increase linearly 
with total traffic- do not affect consumers' or airlines' decisions. Instead, congestion costs 
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are subtracted in the social welfare function, which, interestingly, explicitly considers the 
airport's profits. Hence, in this case, airlines do not internalize any of the congestion they 
cause because it does not directly affect them (it is not a cost to them), and its customers do 
not care about congestion either. Finally, the third important assumption is that an airline's 
operational cost per flight, z, depends on the aircraft size in an increasing fashion, that is 
dz(k)/dk > 0 . Hence, even though using larger aircrafts means fewer flights, which saves 
on costs, each of those flights w i l l be individually more costly. Aircraft size however is not 
a decision variable but a parameter. The implication is then that for given airport charges, 
equilibrium frequencies increase as the aircraft size diminishes. 

Rafffarin then maximizes social welfare -which is the sum of airport's profits, airlines 
profits, and consumer surplus, minus congestion costs- in order to find what the optimal 
frequencies are, that is, the optimal level of airport's demand. The optimal airport charge is 
then obtained as the price that would induce the optimal frequencies. The optimal charge 
she obtains has three components (which she did not recognize): airport's marginal cost, 
plus the costs of congestion (recall that airlines do not internalize any fraction of congestion 
in this model), plus a third term, which is negative, and that could be assimilated to Pels 
and Verhoef s market power effect. The interesting twist however, is that this term depends 
on the aircraft size, k, and diminishes the higher k is. That is, the airport charge should be 
larger for smaller aircraft. A n d since aircraft size and weight are positively correlated, this 
implies that the airport charge should decrease with the aircraft weight, rather than increase 
as it is usually the case. The airport would reward airlines that use larger aircrafts because 
that implies smaller frequencies and hence smaller congestion costs. The choice of k 
however, is not endogenous for the airlines in the model. 

The papers we have reviewed so far have in common two important features: they all 
consider maximization of social welfare and in all three cases the airport capacities were 
fixed. In close but independent work, Basso (2005) and Zhang and Zhang (2006) 
generalized these two aspects. Both of this papers considered that the airport decides on 
price and capacity in the first stage, and in the second stage N airlines choose quantities 
(frequencies) in Cournot Fashion. The airlines have identical cost functions, but are 
insensitive to congestion costs in Zhang and Zhang (2006) while they do have extra costs 
owing to congestion in Basso (2005). Passengers, as usual, are sensitive to the full price of 
travel, that is airline ticket plus congestion delay costs.4 Both used congestion delay 
functions that are not homogenous of degree one in the traffic to capacity ratio, that is, 
congestion increases more than linearly with total traffic (for a given level of capacity). 
Other differences between the two papers are: Zhang and Zhang considered that airlines are 
homogenous in the eyes of the consumers, while Basso allowed them to be horizontally 
differentiated (in non-address fashion). Basso also considered in the full price perceived by 
the passengers another time cost, namely, schedule delay cost. This time cost arises because 
flights do not depart at a consumer's w i l l but have a schedule. Hence, schedule delay costs 
are a sort of waiting time, which decreases with higher airlines' frequencies. On the other 
hand, Zhang and Zhang considered a general demand function (of the full price) while 
Basso considered a more restrictive system of demands: linear in the full-prices of airlines. 

4 This last point is enough for the internalization of own congestion by an airline to arise in oligopoly, as 
discussed before. It is not needed for both, airlines and consumers, to be sensitive to congestion costs. 
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Both, Basso (2005) and Zhang and Zhang (2006) solved by backward induction, 
characterizing the shape of the derived demand for the airport through comparative statics. 
Then, they both considered three different objective functions (Basso considered two more 
which are discussed later): unregulated profit maximization, unconstrained social welfare 
maximization, and social welfare maximization subject to cost recovery. Let us discuss first 
the pricing rules obtained. In the case of unconstrained maximization of social welfare, they 
both considered a social welfare function in which the airport profits were included. They 
find that, in their more general settings, Pels and Verhoef s insight go through: the optimal 
pricing rule is the sum of airport's marginal cost, plus a congestion effect (positive) and a 
market-power effect (negative). When capacity is fixed, this pricing rule shows that with 
large values of N, the congestion effect is large while the market power effect weakens. 
Smaller values of N imply a weaker congestion effect but a stronger market power effect. 
Wi th this pricing rule, the airport manages to obtain a first-best outcome in the airline 
market. Note that, in this setting, rather than a regulator setting the toll, is the airport who 
would distort marginal cost pricing to account for both, uninternalized congestion and 
market power. Since the optimal airport charge may be below marginal cost and even 
below zero, the airport may run a deficit. 

In the case of unregulated profit maximization, Basso (2005) and Zhang and Zhang (2006) 
clearly found in the pricing rule of the airport the double marginalization problem that 
affects uncoordinated vertical structures. For a given capacity, the airport charge w i l l 
decrease with the number of airlines downstream. On the other hand, and in a somewhat 
expectable result, an airport that maximizes social welfare subject to cost recovery w i l l 
have a charge that is in between the previous two. The balance w i l l be given by the severity 
of the budget constraint. 

Turning to capacity decisions, Basso (2005) and Zhang and Zhang (2006) found that an 
unconstrained welfare maximizing airport w i l l provide capacity until the marginal cost of 
capacity equates the marginal benefits in saved delays (to airlines and passengers in the 
case of Basso, to passengers only in the case of Zhang and Zhang). Interestingly, Zhang and 
Zhang (2006) proved that when both price and capacity are decision variables, in their 
setting, the market structure (i.e. N) has no impact on airport's actual demand and capacity. 
Consequently, delay levels w i l l be independent of market structure. This however does not 
hold in Basso's setting, in which airlines are differentiated and/or passengers care about 
schedule delay cost. The explanation has to do with the 'preferred N' of a welfare 
maximizing airport. Basso showed that there are two opposing effects. Wi th congestion and 
market power effect controlled, as it is the case here, fewer airlines in oligopoly would 
provide -each of them-, higher frequencies than more airlines, thus delivering smaller 
schedule delay costs which increases social welfare. Smaller N would be preferable. On the 
other hand, differentiation brings about new demand when N increases, so a larger N is 
preferable. 

A private airport, however, would increase its capacity until the marginal revenue of doing 
so equate its marginal revenue. Clearly, this capacity rule is different that the previous one. 
Basso (2005) note then, that this is different than what happened in the traditional approach 
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(e.g. Oum et al. 2004), in which the capacity rules of private and public (unconstrained) 
airports were the same. However, when N goes to infinity, i.e. airlines become perfectly 
competitive, the pricing rules become the same. The explanation for this is given in the next 
Section. Further, Zhang and Zhang, and Basso, showed that conditional on the level of 
traffic, a private airport would oversupply capacity. However, that capacity would most 
likely be too small in a second best sense. That is, a public airport forced to charge using 
the private airport pricing rule, would most likely supply more capacity than the actual 
capacity offered by the private airport (Basso, 2005). A s with price, a budget constrained 
airport would, conditional on the level of traffic, choose a capacity that is in between the 
private capacity and the unconstrained public capacity. 

Basso looks at two other types of ownerships as well . First, he looks at the case in which 
airports and airlines vertically integrate. The reason to look at this is because it has been 
often argued that more strategic collaboration between airlines and airports would solve 
incentive problems, particularly regarding capacity expansions. Basso finds that the airport 
charge would include marginal cost, a term equal to the uninternalized congestion cost of 
each carrier, but would also include a third term, which is positive. This mark-up is put in 
place to fight the business-stealing effect, a horizontal externality typical of oligopoly: 
firms do not take into account profits lost by competitors when expanding their output. B y 
increasing the airlines' marginal cost, the airport would be able to induce a profitable (for 
the whole structure) contraction of total output. In fact, the final outcome is indeed that of 
cooperation between competitors in the airline market. The intuition is that airlines would 
'capture' an input provider to run the cartel for them, given that they are unable to collude 
on their own. A s for capacity, the vertically integrated structure would have the same 
capacity rule than the unconstrained public airport. The actual capacity however would be 
below the 2 n d best capacity (i.e. a public airport forced to charge using the vertical 
integration pricing rule would supply more capacity). Basso also showed that, depending 
on how strong airlines' differentiation is, and how strong schedule delay effects are, profits 
may be higher when the airports integrate with a single airline. A non-integrated private 
airport though w i l l always prefer a larger N.5 

Basso (2005) also looked at the case in which two distant airports are privatized separately. 
Social welfare wise, results worsen because when airports are both, origin and destinations 
of trips, their demands are perfect complements and therefore 'competition' between 
airports induces a horizontal double marginalization problem. This horizontal double 
marginalization arises in both integrated and non-integrated vertical structures. 

2.4 Relationship between Approaches 

It is clear that the two approaches -which we have called traditional approach and vertical 
structure approach-, are rather different and that the questions examined with each of them 
have not perfectly overlapped. This raises questions about the transferability of results 

5 Both Brueckner (2002) and Zhang and Zhang (2006) had N airlines downstream. Public airports and 
vertically integrated airports would have no particular preference for /V in their settings though, because 
airlines are homogenous and there are no schedule delay effects. 
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which we attempt to answer next; most of this Section is a simplified exposition of some 
materials available in Basso (2005). 

In the traditional approach, the airline market is not formally modeled, under the 
assumption that the airport charge would be completely passed to consumers, and that 
airline tickets and other charges would be exogenous to the airport. Oum et al. (2004) argue 
that this would be the case under perfect competition. In the vertical structure approach, on 
the other hand, it is recognized that airports provide an essential service that is required by 
airlines to move passengers; therefore, airports are viewed as providing a necessary input 
for the production of and output: travel. In fact, some authors using the vertical structure 
approach have been somewhat critic of the traditional approach on the grounds that it does 
not properly consider all actors involved. For example, Raffarin (2004) say that it is rather 
strange that the pricing rules obtained from the traditional approach do not consider 
passengers' utility. This is not completely accurate though. Passengers are indeed somehow 
considered in the approach, as delay costs affect them as well , something that Raffarin 
missed. 6 But what it is true is that a vision of the problem that recognizes that airports 
provide a necessary input for the production of an output that is sold at another market, 
seems more complete. 

Using the notation of Section 2.2, what the papers in the vertical structure approach have 
shown, is that for any given airport charge, P, and airport capacity, K, the airline market -
the downstream market- w i l l reach some equilibrium. This equilibrium is constituted not 
only by equilibrium traffic but also by equilibrium delays and air ticket prices. B y stressing 
this fact, three things become apparent. First, that as long as the airport is concerned, its 
demand is going to be some direct function of P, K and of the (exogenous) airline market 
structure, which in most papers is represented by the number of airlines N. Hence, the 
airport's derived demand would be Q(P,K;N). Delays enter the picture through the 
equilibrium of the downstream market. How does this demand faced by the airport respond 
to changes in P and K is something that formal analysis of the airline market can unveil. 
Second, that how airport charges and airlines' delay costs are passed to consumers is built 
inside the demand faced by the airport and depends on the nature of the equilibrium 
reached in the airline market. In this sense, it would seem that a full price model pertains 
more to the airline market stage than the airport market stage. A n d third, that other airline 
charges are not exogenous to the airport because the downstream equilibrium -that is, the 
airport demand- depends on P and K, which are decided by the airport. Airport managers 
with foresight w i l l take this into account and decide user charges and capacity accordingly. 

We can then go back to the traditional approach and contrast its basic setting with what we 
have described above. Two important questions arise: 

1. Is it reasonable to use the full price idea at the airport, rather than at the airline 
market level? That is, under what conditions it would be legitimate to assume that 

6 The problem may lie in that Morrison (1987) states that the final consumers of airports services are 
airlines, even though in his model congestion explicitly affects passengers. In Oum et al. (2004), passengers 
are said to be the final consumers. 
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the airport demand can be written as Q(p) - with p = P + D(Q, K) - rather than as 
Q(P,K;N)7 

2. If under some conditions the airport demand can reasonably be written as Q(p), 
would its integration give a correct measure of consumer surplus? We have learned 
that the consumers of airports are both airlines and passengers. Hence, a social 
welfare function should include both airlines profits and passenger surplus. This is 
in fact what is explicitly done in the vertical structure approach when analyzing the 
maximization of social welfare. In the traditional approach, however, that is not the 
case. There, consumer surplus has been obtained through integration of the airport 
demand function with respect to a full price. Under what conditions does the 
derived demand for the airport carry enough information about the downstream 
market so that its integration gives a correct measure of airlines profits and 
passenger surplus? 

In short, these two question attempt to clarify how the two approaches are related. This is 
what we undertake in this Section. We start by concisely describing a simple oligopolistic 
airline market, which takes airport charges and capacities as given. We use this model to 
derive the demand for the airport. Consider N homogenous and symmetric airlines 
servicing a congestible airport. Airlines are assumed to choose quantities (frequencies) in 

Cournot fashion. Let Qi be airline i's number of flights, and Q = ^^Qi be the airport's 

demand. q( denotes the demand, in terms of passengers, of airline i, while q = 2_,<Z, is 

the aggregate demand for airline services. Assuming that aircraft size times load factor 
equals S for all carriers, we have that: 

QiS = qi, QS = q (2.13) 

We assume that the aggregate demand for airline services is linear in the full price. The full 
price, 0, w i l l be the sum of the air ticket, t, plus passenger delay costs, D. It is, therefore, a 
full price at the airline market level. Thus we have: 

q(0) = a-b0 (2.14) 

0 = t + D(Q,K) (2.15) 

where a and b are positive. Inverting (2.14) and using (2.13) we obtain 

0(Q) = A-SBQ (2.16) 

where A and B are obviously defined. Further, replacing (2.15) in (2.16) gives us 
t(Q) = A-SBQ-D(Q,K), which is the aggregate inverse demand faced by the airlines. 
Assuming for simplicity that airlines have constant operational marginal costs, c, and that 
they do not suffer from congestion 7, an airline's profit is: 

This assumption does not influence our results below and could be easily relaxed, see Basso (2005). 
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(Qi , Q- , > P, K) = [A- SBQ - D(Q, - (c + P)Qi (2.17) 

where P is the airport charge. To obtain the derived demand for the airport, we need to find 
the equilibrium of the airline market. The Cournot-equilibrium is characterized by first 
order conditions d7tl ldQi = 0 . Computing these and imposing symmetry, we obtain: 

Q(Q, P, K; N) = D(Q, K) + ^-D0 (Q, K) + Q^±^-BS 2+c + P-AS = 0 (2.18) 
f\T ^ AT 

Equation (2.18) implicitly defines a function Q(P,K;N), which is airports' demand as a 
function of airport charges, capacities and airline market structure, N. A n explicit 
expression of the airports' inverse demand P(Q,K;N) is also obtainable. From (2.18), 
comparative statics would enable a characterization of the shape of the airport's demand 
function (see Basso, 2005; Zhang and Zhang, 2006). Here, however, we w i l l not follow that 
path because we are interested in different questions. We can in fact now answer the first 
question we posed before. Forming p = P + D(Q,K) in (2.18), we can re-write this 
equation as: 

Hence, in general, Q would not depend only on p but also on DQ and N: the (implicit) 
demand for airports then should be Q = Q(p,DQ,N) and not Q(p). However, in the 

perfect competition case, i.e. when N — ( 2 . 1 9 ) leads to 
Q(N ->oo) = (AS -c-p)/(BS2), which implies that Q(p,DQ,N -> oo) = Q(p). Thus, 

under perfect competition, a full price as defined by p, can in fact be used directly at the 
airport market level. It does summarize well the equilibrium of the downstream market. 

We can thus turn to second question. If we assume that there is perfect competition, would 
integration of Q(p) correspond to airlines profits plus passenger surplus? This question is 
related to the more general subject of the relation between input and output market surplus 
measures (see Jacobsen, 1979; Quirmbach, 1984; Basso, 2006). To answer it, we first 
compute the surpluses - i n sub-game equilibrium and when N goes to infinity- of airlines 

and passengers. Passenger surplus is given by PS = S\ I 6(Q)dQ - 6(Q)Q , where 

Q 
(N + l) 

N 
BS2 +p + c-AS+ — D0 = 0 

N Q 
(2.19) 

6(Q) is given by (2.16). Straightforward calculations lead to 

PS = 
BS2Q2 

2 
(2.20) 
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The aggregate (equilibrium) profit of airlines, n = ^ v r ' , is easily obtainable from an 

individual carrier's profit (2.17) and the imposition of symmetry, that is, Qf=QIN. 

Taking the limit when N —> °° and regrouping terms to form p, we obtain: 

U(Q,p) = QS[A-QSB]-Q[c + p] (2.21) 

Consider now the total derivative of II with respect to p. Noticing that 
AS -c -p = QS2B, we obtain 

^ - = -Q(p)-QBS2^- (2.22) 
dp dp 

g 
Integrating from p to <*>, reordering, and using equation (2.20) we finally get 

~JQ(p) dp = 11 +PS (2.23) 

Therefore, equation (2.19) shows that, when TV —> «>, one can reasonably write the airport 
demand as Q(p), with p = P + D(Q, K). Equation (2.23) further show that, in that case, 

integration of the airport demand with respect to the full price p, w i l l deliver a correct 
measure of consumer surplus, that is, airlines' profits plus passenger surplus. Basso (2005) 
shows that with differentiated demands, this result holds. 

Perfect competition in the airline market was in fact, the maintained assumption of Oum et 
al. (2004). Hence, we have provided theoretical support for their claim. But we have also 
provided boundaries for the use of the traditional approach: it would be reasonable to use it 
only i f market power at the airline level is absent. If market power is present however, 
modeling the demand for the airport as Q(p) would be incorrect. Furthermore, its 

integration with respect to p would fall short of giving the sum of airlines' profits and 
passenger surplus (see Basso, 2005). In this case, a full model that formally considers the 
three actors involved, as in the vertical structure approach, is necessary. 

Lastly, since Q(p) is not an approach that can be used when there is market power 
downstream, one may well wonder whether by using the demand function Q(P,K;N) -
which may be estimated empirically for instance-, and by integrating it with respect to P, 
one can adequately capture consumer surplus. This is not the case unfortunately. Using 
results in Basso (2006) it can be shown that integration of the airport demand would give: 

\Q(P,K\N)dP = n + ̂ — ! - P S - ^ N ~ l ) \Q^-D0dP (2.24) 
I N N i BP Q 

1 Here, we used the fact that Q(p = <») = 0 and therefore Tl(p = °°) = 0. 
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Hence, there is no value of N for which the integral of the airport demand with respect to P 
equals airlines profits plus passenger surplus. Not even i f N is very large. 

2.5 Pricing of Airport Networks 

The papers we have reviewed, in both approaches, are papers that do not really deal with 
airport networks. In most cases they deal with an airport in isolation. The exceptions, so far, 
have been Pels and Verhoef (2004) and Basso (2005) who consider a 'network' of two 
airports. Yet, real air networks are obviously more complex than that, and it is fairly clear 
that in these real networks other issues arise. We review here three papers that have dealt 
with networks of airports, that is, three or more airports. 

Oum et al (1996) argue that in hub and spoke networks (HS), airports' demands are 
complementary because any take-off at a spoke airport w i l l generate a landing at the hub. 
This complementarity is of different nature that the complementarity that arises in two-
airport networks because the presence of a hub introduces asymmetries. As in the two-
airport cases, failure to consider the complementarities when looking for optimal pricing 
policies w i l l result in social welfare losses. But in a HS network, congestion at the hub w i l l 
build up more rapidly than at spoke airports. A n d when budget adequacy is an issue, this 
may imply the need for cross-subsidizations between airports. Depending on the type of 
ownership however, cross subsidies may be unfeasible. Oum et al. (1996) study how 
ownership and cost recovery constraints affect airport pricing in a HS network and, 
consequently, social welfare. 

Oum et al. (1996) consider n airports in a hub and spoke system: n-1 airports are spoke 
airports and there is one hub. A l l the airports have constant operational marginal costs and 
fixed capacity, but capacity maintenance costs are positive. The demands for spoke airports 
depend on their own charge and the hub charge. Demand for the hub airport depends on its 
own charge and the charge of all spoke airports. A l l airports are congestible, but congestion 
is an external cost that the airport authority w i l l include in the social welfare function; it 
does not affect the demands (as in Raffarin, 2004; see Section 2.3). This set up shows two 
things: First, that the spoke airports' demands are indeed complementary with the hub's 
demand, but they are not directly complementary between them. Second, that this paper is 
ascribable to the traditional approach, since the airline market is not formally included. 
Indeed, consumer surplus is measured as the integrals of the airports demand. 

Oum et al. first analyze the case in which all the airports are publicly owned and under the 
control of a single authority: this is the 'federal' case. The authority w i l l maximize the sum 
of airports profits plus consumer surplus -the sum of the integrals of airports demands-
minus external congestion costs. The optimal pricing policy would have all airports 
charging social marginal cost (SMC) , that is, operational marginal cost plus the external 
costs of congestion. Since the hub is more likely to be heavily utilized, congestion w i l l be 
larger there than at spoke airports. Hence, they assume that S M C pricing would lead to cost 
recovery at the hub but to deficit at spoke airports. The first best federal case then would 
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require cross subsidies from the hub to the less utilized spoke airports. If a budget 
constraint is set in place, the question becomes whether the hub makes enough profits to 
cover for the spoke airports deficits. If it does, where back in the first best case. If it does 
not, then Ramsey pricing is called for: the charge at the hub wi l l increase. Cross 
subsidization w i l l be obviously still needed and this alternative w i l l be welfare inferior to 
S M C pricing. 

They then look at the case in which each airport is under the control of a different authority 
who, subject to cost recovery, maximizes own social welfare, that is, the integral of own 
demand plus own profits, minus congestion costs. This is the 'de-federalized' or 'local 
government' case. Given the assumption about S M C not covering costs in spoke airports, 
in this case, the hub wi l l price at S M C , but the spoke airports would charge average costs to 
ensure cost recovery. Since individual cost recovery implies overall cost recovery, this case 
w i l l be inferior, social welfare wise, to the previous Ramsey pricing case. In general, in the 
federal case, and independently of whether S M C or Ramsey prices are used, charges at the 
hub w i l l be larger and charges at the spoke airports w i l l be smaller than in the local 
government case. Oum et al. (1996) conclude that de-federalization of airports may imply 
social welfare losses: by not jointly pricing the airports, the local airport authorities w i l l not 
take into account that demands are complementary and cross-subsidies w i l l l ikely become 
unfeasible. The welfare losses, though, would have to be balanced against possible X -
inefficiencies gains that de-federalization may bring about. 

Recall, however, that the conclusion of Section 2.4 was that a traditional approach would 
be justified only when air carriers are atomistic. What would happen i f carriers have market 
power? In this case, we would need a vertical structure type of approach. This is what 
Brueckner (2005) analyzes. The main point here has to do with the meaning of market 
power. One of the conclusions in Section 2.3 was that congestion tolls would be decreasing 
on an airline's share of flights at the airport, because an airline only internalizes the 
congestion caused on own flights. Since in that Section, only one or two airports were 
considered, the share of flights at the airport was identical to the share of flights at the city-
pair market level. However, when one considers even a simple network of airports in which 
airline competition exists, it is no longer true that the share of flights at the airports w i l l be 
necessarily equal to the share of flights at the city-pair market level. Hence, the relevant 
question becomes, what is the relevant flight share for congestion internalization? 
Brueckner consider the following network, in which two airlines compete: 
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Figure 2.1: Network Structure and airline competition (Brueckner, 2005) 

In this network, airport H is airline l ' s hub, while airport K is airlines 2's hub. Air l ine 1 
serves four city-pair markets: A H , K H , B H and A B (two legs). Air l ine 2 also serves four 
city-pair markets. The airlines compete in two markets, K H and A B , while each of them is 
a monopolist in other two markets. It can be easily recognized -for example under full 
symmetry- that airline l ' s share of departures and take-offs at hub H is larger than airline 
2's share. Similarly, airline 2 dominates hub K in terms of departures and take-offs. 
However, in the two markets where airlines compete, they would both have a 50% share of 
flights under symmetry. This nicely shows the difference between shares of flights at 
airports and share of flights in city-pair markets, which justify the research question. 

To analyze what would be the optimal congestion toll, Brueckner uses a setup which is 
essentially the same as in his single airport paper (Brueckner 2002, see Section 2.3 for a 
description), but considering each of the various markets. Airports are assumed to have a 
fixed exogenous capacity while only the hubs are prone to congestion. The derivation of 
optimal congestion tolls is involved so it is omitted here, but the conclusion is simple and 
important: regardless of the degree of market power that an airline has in the city-pair 
markets it serves, the amount of congestion it internalizes depends only on its flight share at 
the congested airport. Hence, "the appropriate airport congestion tolls are carrier-specific 
and equal to the congestion damage from an extra flight times one minus the carrier's 
airport flight share" (Proposition 1, p. 612). 

A n important final point that Brueckner raise has to do with the market power effect we 
discussed in Section 2.3. There, we saw that, while a congestion toll is justified when 
carriers are oligopolistic, from a first best point of view a subsidy was also justified as a 
mean to fight market power at the airline level, and hence reduce allocative inefficiencies. 
In the simple settings of one or two airports, both, the congestion effect and the market 
power effects depended on a carrier's flight share. But, again, in that case the airport share 
and the city-pair market share were the same. Brueckner (2005) showed that, in a network 
setting, the congestion tolls are airport specific, while the subsidies required are city-pair 
specific. Hence, an airport regulator would need to calculate appropriate airport specific 
congestion tolls to be combined with city-pair specific subsides to obtain, finally, the 
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optimal charge, which would be positive i f congestion effects dominate market power 
effects. Brueckner argues that, since market-level subsides are impractical to implement, 
only airport congestion tolls would be used, an approach that would be welfare improving, 
yet not first-best, i f congestion effects dominate. 

Now, both Oum et al. (1996) and Brueckner (2005) assumed that the route structure of 
airlines, that is, the way airlines move passengers between origin and destinations, remain 
unchanged and were independent of the pricing practices of airports. But, what would 
happen in the long run i f route structures were adjustable? For example, it has been often 
argued that economies of density drive the selection of HS networks. But i f congestion at 
hubs is too important, airlines may decide to by-pass them, offering direct connections in 
some city-pair markets.9 Would congestion pricing affect the timing of such a decision? 
M a y airports use their pricing practices as a way to compete for connecting passengers, that 
is, compete to become hubs? A model including all these elements would be indeed very 
complicated and has not been proposed yet, as far as we know. However, there is one paper 
that, even though in a context of non-congestible airports and a monopoly airline, does look 
at how airport pricing and airline's choice of route structure are related. Pels et al. (1997) 
consider a model with three public and non-congested airports, and a monopoly airline. 
Airport charges are directly made to passengers. Thus, demands for airports and for the 
airline depend on both air tickets and airport charges. The airports and the monopoly airline 
play a simultaneous game in which each airport choose its per-passenger charge, while the 
airline choose a route structure and its prices. The objective function of the airports is to 
maximize own social welfare (as in the de-federalized case in Oum et al., 1996), which is 
measured as the integral of the airport's demand. They are subject to a budget constraint 
though. The airline seeks to maximize profit. There are some key assumptions in the model, 
which are more easily explained using figure 2.2: 

Fully connected Network (FC) 

Hub and Spoke Route Structure (HS) 

Figure 2.2: Possible route structures 

First, it is assumed that node A has more passenger generating capacity. That is, i f airports 
and airline charges were zero, demands in the O D pairs A B and A C would be a; while in 
the O D pair B C it would be era, where <7<l. Second, consumers only care about the 
monetary charges (from the airports and the airline) but would not care about travel times 
(which are higher in a H S route structure) or whether they have to make connections or not. 
Third, the marginal cost of carrying a passenger is constant and equal across links; hence, 

9 For a paper related to this issue, see Basso and Jara-Diaz (2006) 
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in a H S route structure, a passenger traveling from B to C would cost to the airline 2c while 
with a F C route it would cost only c. Finally, i f a link is used, it has a fixed cost c 0 . Hence, 
a HS route structure is cheaper in terms of fixed costs, as it only uses two links, but is more 
expensive in term of operational costs. 

Pels et al (1997) show that, in this setup, i f the airport charges are zero (or, i f they are equal 
but chosen non-strategically, i.e. without considering what the airline does), a HS route 
structure w i l l be preferred by the monopoly airline i f a < a , in other words, i f the demand 
in the B C market is much smaller than the demands in the A B and A C markets. The limit 
o increases with c and with CQ and decreases with oc Further, they show that the airline 
w i l l always choose to place its hub at the node with the highest level of demand, in this 
case, node A . 1 0 

When airports choose their prices simultaneously with the airline's choice of route structure 
and prices, Pels et al. show that that the airport charges wi l l be increasing in airline prices, 
but airline prices w i l l be decreasing in airport charges. The 'dynamics' of equilibrium 
would be: the monopoly, who is a profit maximizer, would increase its prices depressing 
demands. Since the airport has to break even, it would raise its own charges, but that would 
induce the airline to decrease its prices. This in turn would increase demand, inducing a 
decrease in the airports charge, which would induce the airlines to increase price. 
Eventually, this loop may reach equilibrium, although Pels and Verhoef show that non­
existence of equilibrium is a possible outcome. Since analytical solution of the equilibrium 
was unfeasible, they rely on a numerical simulation to extract more conclusions. They 
found that, only i f c is small enough, the airline would choose a HS route structure. The 
higher the a , however, the better for the hub. More importantly, price competition between 
airports seems to have little effect on the airline's choice of a hub; the choice would still be 
made based on passenger generating capacity. Obviously, one can foresee that the actual 
geographic position of the airports would be important as well . A hub would not be placed 
really far away from all its spoke airports. But in this model, distances, that is the topology 
of the network, does not play a role. This is reasonable under the assumption that all 
airports are located fairly close or equidistant from each other. 

2.6 Conclusions and Further Research 

Airport pricing has been widely analyzed in the economics literature. In this survey paper, 
we have focused on analytical models of airport pricing, from 1987 on. We claimed that the 
models in the literature con be grouped into two broad approaches. Roughly, the 
traditional approach has used a classical partial equilibrium model where the demand for 
airports depends on airport charges and on congestion costs of both passengers and airlines; 
the airline market is not formally modeled, in several cases under the assumption that 
airline competition is perfect and hence airport charges and delay costs are completely 
passed to passengers. The vertical structure approach has instead recognized that airports 
provide an input for the airline market -which is modeled as a rather simple ol igopoly- and 

For more on the choice of route structure, see Hendricks et al. (1999), Pels et al. (2000) and Jara-Diaz 
and Basso (2003). 
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that it is the equilibrium of this downstream market which determines the airports' demand: 
the demand for airports is therefore a derived demand. 

The questions examined with the approaches have not perfectly overlapped. The traditional 
approach has been wider in scope, having been used to analyze issues such as optimal 
capacity investments, the effect of concession revenues, privatization, the efficiency of 
alternative regulation mechanisms, cost recovery when capacity cannot be increased 
continuously, or the efficiency of weight-based airport charges. The vertical structure 
approach on the other hand, has mainly focused on calculating the additional toll that 
airlines should be charged to attain maximization of social welfare. It is only recently that 
vertical structure models have been used to assess issues such as optimal capacity levels or 
the effects of privatization on airport charges. However, the two approaches have not only 
examined different questions, but also grew somewhat disconnected, which raise the 
questions of transferability of results. Drawing from results in Basso (2005), we showed 
here that abstracting from the airline market, as is done in the traditional approach is a 
reasonable approximation only when airlines behave competitively, but it is not when 
airlines have market power. In the latter case, the derived demand for the airport would not 
be dependent only on its full-price, as it is assumed. A s a result, the integration of the 
airport demand with respect to the full price, which is said to capture consumer surplus, 
would not adequately capture the surpluses of passengers and airlines because market 
power and congestion effects preclude i t . 1 1 

The fact that the airline market cannot be ignored i f airlines have market power implies, on 
one hand, that future research would have to use vertical structure models to re-examine 
some of the questions that have been addressed only with the traditional approach, for 
example, effect of concession revenues on airport charges, the efficiency of regulation 
mechanisms and what happens i f capacity is lumpy. But on the more practical side, the fact 
that the airline market has to be included in the models is also bad news for managers of 
public airports and regulators: to take optimal decisions, the amount of information 
required would be massive even in simple settings, which undoubtedly complicates the 
problem. 

In the models we have reviewed in this survey, authors have resorted to a number of 
simplifications, which was the price to pay to preserve tractability. In the airline market of 
vertical structure models, two usual simplifications have been assuming fixed proportions 
and symmetric airlines. The fixed proportions assumption is made when authors assumed 
as constant the product between aircraft size and load factor (or both). Yet, it has been 
widely accepted that airlines enjoy what is called 'economies of density' -decreasing 
average cost on nonstop connections- because of economies of aircraft size. These 
economies are not considered under the fixed-proportions assumption. A variable 
proportions case would arise because, i f the charge per flight is too high, airlines would 
have an incentive to change to larger airplanes, independently of existing or exhausted 
economies of airplane size. So, with privatization for example, not only capacities and 
traffic level would be distorted downwards, but aircraft size would be distorted as well . 

1 1 This result in fact applies not only to airports but to any other type of transport terminal, or even railroad 
tracks, since the situation is essentially the same. 
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Modeling this effect is an interesting area of future research albeit a complex one, as larger 
aircrafts imply smaller frequencies, which directly affects congestion and demand through 
schedule delay costs. 1 2 Regarding asymmetric airlines, certainly insights would be gained, 
as the model would depict a more realistic case. Brueckner (2002, p. 1368) stated that "cost 
differences across firms may not be a useful source of asymmetry however, because a 
planner would not allow high-cost firms to operate at the social optimum". In Basso (2005) 
and Zhang and Zhang (2006), however, there was no social planner but rather managers of 
public airports maximizing social welfare, who probably would not have the power to 
preclude less efficient airlines to operate. But they did not consider asymmetries. It seems 
to us that this would be unfeasible analytically. Numerical simulations for the case of 
asymmetric airlines would be required. Pels and Verhoef (2004) did present numerical 
simulation for the case of an asymmetric duopoly (see Table 2.2 for a description of their 
setting). 

The papers in Section 2.3 looked at airports in isolation or at round trip travel between two 
airports at the most. In the latter case, that implied that airports have complementary 
demands, from where it followed that public airports that are priced independently would 
not achieve a first best (Pels and Verhoef, 2004), and private airports would ended up with 
a horizontal double marginalization (Basso, 2005). However, airport networks are more 
complex than that; and on this subject, the papers presented in Section 2.5 are good 
progress in understanding the main issues. But there is still work to do because in Oum et 
al. (1996) and in Brueckner (2005) there is no route structure decisions from the part of 
airlines, and it is through route structure decisions that airports may actually compete: they 
would be competing for connecting passengers. Pels et al. (1997) on the other hand, 
although having route structure decisions, do not include congestion, capacity choices, or 
airline competition. Further work in the pricing of airport networks-including effects of 
privatization and regulation mechanisms- is, in our view, a clear line of future work. 

There may be also geographic competition; airports competing for costumers in the same 
origin, i.e. with overlapping catchment areas, as in the case of New York. There has been 
some empirical work on this issue (e.g. Ishii et al. 2005), but not too much work on the 
analytical side. Some papers have looked at competition between congestible Bertrand 
oligopolists (e.g. De Borger and Van Dender, 2006) but, as it has been discussed, that 
overlooks the vertical structure in which airports are inserted. A simple model of 
geographic competition between two airport-airline structures is Gi l len and Morrison 
(2003); but they consider only one airline per airport, that the airport and the airline 
maximize joint profits, and that there are no congestion and capacity choices. We think this 
is another interesting area of research, in which we have been doing some work. 

Another aspect that we think is important and that we are currently pursuing (Basso and 
Zhang, 2006) has to do with peak-load pricing, in addition to congestion pricing. Most of 

Note that Raffarin (2004) is not an analysis of variable proportions case because, although she did 
considered different aircraft sizes, the airlines where not free to decide about their preferred aircraft size. 
Rather, the aircraft size was exogenously given through a parameter, which thus showed up in the final 
pricing rules of the airport. Also, in her model congestion did not directly affect passengers or airlines but was 
an external cost to be minimized by the airport authority and capacity was fixed. 
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the models we revised are about congestion pricing and not peak-load pricing, in the sense 
that, even i f there is more than one period, the demands between periods are not 
interdependent. Hence, the only way to fight excess usage is to dampen the demand. When 
periods are interdependent, pricing can be used not only to dampen the demand but to re­
distribute consumers through the periods, 'flattening' the demand curve. This is the case of 
peak-load pricing. Brueckner (2002) allows for endogenous sorting to periods, but this is 
done mainly through airlines decisions. If the airlines use peak-load pricing, then that 
would deliver a different demand to the airport, which would probably also have peak and 
off-peak periods. The airport would then have an incentive to choose prices for both 
periods, using peak-load pricing as well , in order to maximize its objective function, which 
would be dependent on the type of ownership and regulation. Hence, we would be in a 
situation of sequential peak-load pricing, which is quite particular the case of airports and 
airlines. 

We have highlighted some of the issues that we think should be examined in the future, but 
perhaps one of the most important aspects of future research has to do with actual policies. 
It is seldom true that airports are priced as in a system, and it is seldom true that airport 
managers have access to all the information that they would need to do what is best. Hence, 
how should public airports be priced when they are not in a system, and when information 
is incomplete? A n d given this, what are the costs and gains of privatization? A n d what 
would be a good and feasible regulation mechanism? 
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Table 2.1: Summary of papers using the traditional approach (from 1987 on) 

Author Goal of the Paper Objective Functions Capacity Delay Observations 

Morrison (1987) Uncover the importance regulators give to 
each type of aircraft when they max SW 

Max SW st B C Fixed NHDO Many periods with independent 
demands 

Morrison and 
Winston (1989) 

Efficient pricing and capacity with 
congestion 

Max SW Variable and 
continuous 

HDO Many periods with independent 
demands 

Oum and Zhang 
(1990) 

Analyze budget adequacy under 
congestion pricing when capacity 
investments are lumpy 

Max SW Variable and 
lumpy 

NHDO Many periods with dependent demands 

Zhang and 
Zhang (1997) 

Effects of concessions. Should the B C be 
common to both concessions and airside 
activities or separate? 

Max SW st B C Variable and 
continuous 

NHDO Many periods, independent demands. 
First model to formally incorporating 
concessions 

Zhang and 
Zhang (2001) 

Analyze whether public airport should 
have a strict brake-even constraint (short 
run) or a longer run constraint 

Max SW st B C Lumpy NHDO Many periods, independent demands 

Carlsson (2003) Efficient pricing and capacity with 
congestion and emissions 

Max SW Variable and 
continuous 

NHDO One period. 
Social cost for emissions added to SW 

Zhang and 
Zhang (2003) 

Analyze privatization and the effects of 
concessions on pricing and capacities 

Max SW 
Max profits (private case) 
Max SW st BC 

Variable and 
lumpy 

NHDO One period. 
They include concession operations. 
B C is in the long run. 

Lu and Pagliari 
(2004) 

Oum, Zhang 
and. Zhang 
(2004) 

Czerny (2006) 

Regulation and concessions: single-till 
versus dual-till cap 

Efficiency implications of alternative 
forms of regulation 

Effects of concessions on aeronautical 
charges. Regulation: single-till versus 
dual-till cap 

Max profits st two different 
forms of regulation 

Max SW st BC 
Max profits (private case) 
Max profits st four different 
forms of regulation 
M a x S W 
Max Profits st two different 
forms of regulation 

Fixed 

Variable and 
continuous. 

Fixed but 
large: no 
excess 
demand 

No 

delays 

NHDO 

No 
delays 

Rather than having delays, they 
assumed that capacity is a restriction on 
feasible output: potential for excess 
demand 
One period. 
They include concession operations. 

B C is in the long run-

Both airside and concession charges 

determine the number of consumers. 

SW: Social Welfare; BC: Budget constraint; NHDO: The delay function is Non-homogenous of degree one in the traffic to capacity ratio; HDO: The delay 
function is homogenous of degree one in the traffic to capacity ratio. 



Table 2.2: Summary of papers using the vertical structure approach 

Author Goal of the Paper Oligopoly model Objective Function and airport Observations 
modeling 

Brueckner 
(2002) 

Optimal tax 
(additional to airport 
charges) to account 
for congestion 

N airlines in 
homogenous Cournot 

Max SW=CS+<P 
No formal modeling of the airport, 
only a regulator. 

There are peak and off peak periods (peak-load 
pricing). 
Sorting to periods is endogenous through airlines 
decisions. 
Only the peak is congested 
Congestion is a non-linear function of traffic and 
affects both airlines and passengers. 

Pels and 
Verhoef (2004) 

Optimal tax 
(additional to airport 
charges) to account 
for congestion and 
market power 

Duopoly in 
homogenous Cournot 

Two airports not formally 
modeled, only two regulators. 
Max SW=CS+<5 
Also analyze Individual Max SW. 

One period (congestion pricing) 
Delay is a linear function of traffic and affects both 
airlines and passengers. 

Raffarin (2004) Efficient congestion 
pricing 

Differentiated 
duopoly competing in 
prices and 
frequencies 

Max SW= CS+4>+^- congestion 
costs. 
Single airport. 

One period (congestion pricing). 
Three stage game: airport pricing, frequencies, prices. 
Congestion does not affect airlines or demand. They 
are only an external social cost. 
Delay is a linear function of traffic. 

Basso (2005) Effects of ownership 
on prices and 
capacity 

N airlines in 
differentiated 
Cournot 

Two airports (roundtrips) 
Max SW= CS+Q+x 
Max airports' profits 
Max airport-airlines joint profits 
Max SW st B C 
Max individual airport profits 

One period (congestion pricing). 
Congestion is a non-linear function of traffic and 
affects both airlines and passengers. 
Consumers are also affected by schedule delay cost. 

Zhang and 
Zhang (2006) 

Optimal pricing to 
account for 
congestion and 
market power when 
there are N airlines 
and capacity is 
variable 

N airlines in 
homogenous Cournot 

Max SW= CS+<D+;r 
Max airports' profits 
Max SW st B C 

One period (congestion pricing). 
Congestion is a non-linear function of traffic affecting 
only the passengers. 
The demand function is general. 

SW: Social Welfare; CS: Consumers' surplus; &: Airlines profits (industry wide); m Airport profits; BC: Budget constraint 
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3 ON INPUT MARKETS SURPLUS AND ITS RELATION TO THE 
DOWNSTREAM MARKET GAME 1 

3.1 Introduction 

Evaluating the welfare effects on buyers and sellers of price changes is a familiar task for 
policy analysts in a variety of circumstances. When the market in question is one for a final 
good, the analysis is generally straightforward; indeed, it is a familiar problem put to 
undergraduate economics students to teach them how to measure consumer and producer 
surplus. When the prices changing are that for inputs which are subsequently used by its 
downstream purchasers to produce their own outputs, a full analysis of the welfare effects 
of price changes must take into account the effects on downstream consumers. A common 
example involves attempts to measure the harm caused by price fixing. When the price-
fixed goods are purchased by final consumers, the impact of the higher prices is typically 
measured by changes in the consumers' surplus under the products demands curve. When 
the price-fixed goods are inputs, however, the area under the input demand curves wi l l be 
determined by the benefits received by the direct inputs purchasers and their final 
consumers. Just how "consumers' surplus" measures coming from areas under the input 
demand curves capture the effects of direct purchasers and downstream final consumers 
then becomes a critical question. 

The relation between the measures of input and final markets surplus has been addressed by 
Schmalensee (1971, 1976), Wisecarver (1974), Anderson (1976), Carlton (1979), Jacobsen 
(1979) and Quirmbach (1984). The latest result indicates that the input markets surplus is 
equal to downstream industry profits, plus a fraction -which depends on the degree of 
downstream competition- of consumer surplus. Yet, this result hinges on a number of 
simplifying assumptions which we would like to relax. In this paper, it is argued that this is 
possible by linking the input markets surplus literature to results from a second, seemingly 
unrelated, literature. 

This second literature involves the search for a function, the maximization of which 
generates the same choices as would be obtained in the play of the standard non-
cooperative game (Samuelson, 1947; Spence, 1976; Bergstrom and Varian, 1985; Slade, 
1994; and Monderer and Shapley, 1996). This class of functions succinctly, and more 
simply, describes the equilibria of the game by transforming a fixed point problem into a 
maximization problem. The connection between the two streams is as follows: I show that 
the input markets surplus measure, obtained by integration of the input demands derived 
from the equilibrium of a downstream oligopoly game, is equal to the change of a 
multivariate function which critical points coincide with the equilibria of the downstream 
game. In particular, for the case of potential oligopoly games, the input market surplus is 
shown to be equal to the change in the exact potential function. A characteristic of a 
potential function is that its Jacobian coincides with the system of first order conditions of 

1 A version of this chapter has been submitted for publication. Basso, L .J . (2006) On Input Markets 
Surplus and its Relation to the Downstream Market Game. 
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the game, which implies nice stability properties of equilibria. The relation between input 
market surplus and potential functions is helpful because finding out i f a game is potential 
or not is simple, and potential functions have a well-defined way to be computed. 

The results regarding the relationship between input and final markets surplus measures 
available up to now in the literature, are particular cases of the Proposition proved in this 
paper. Therefore, the Proposition synthesizes and generalizes them, relaxing the strong 
simplifying assumptions about the nature of the downstream competition that they needed, 
and further providing the analyst with a tool to understand what does the input market 
surplus captures in a wide variety of situations. 

The plan of the paper is as follows. In Section 3.2 the downstream oligopoly game is 
introduced. I use this game and its notation to briefly review both streams of the literature. I 
then discuss their connection in Section 3.3, proving the main Proposition and presenting 
some examples of cases that could not have been handled with the current literature. In 
Section 3.4 I discuss the particular, yet interesting, case of potential games and potential 
functions. Formal definitions and properties are provided here. Section 3.5 concludes. 

3.2 The Downstream Game and the Literature 

The game 

I start by defining the game I look into in this paper. This game is also used next to present 
both streams of the literature. Let N be the set of n firms competing in a final market, 

N = {l,..,n}. A strategy for firm i w i l l be the choice of a level of production qt from some 

compact subset A' of the real line, Si. I denote q the vector of choices (g, ,..,<?„) > define 

G = X,"-î < ^ * e t A b e the strategy space, A = xieNA'. For ScN, -S denotes the 

complementary set of S , and As denotes the Cartesian product x . s S A'. For singleton sets 

{/}, A " { , ) is denoted A~' so that q_, e A'' is q_( = (ql,.,qi_i,qM,.,qn). A s is usual, with a 

slight abuse of notation I let q = (g., q_,). Let w be the vector of prices of m inputs used by 

all firms, where wz e with z e Z = {l,..,m} and w e 51 + = x z e Z 9 ? + . How these input 
prices are determined is not important. What matters, is that downstream firms take these 

prices as given. F i rm f s profit, Kl : A x 9 t + —> 9t, is given by nl (q, w) = R' (q) - C (q, w), 

where R' are revenues a n d C are costs. I assume 7t' to be twice continuously 

differentiable. The final market game is then given by r<N,{A'},{n'}>. A s for the 

inputs market, let xiz(q,w) be firm f s conditional demand for input z e Z , and 

Xz = ̂ J"=lxiz input z's total demand. q*(w) denotes an interior Nash-equilibrium of the 

downstream game as function of w. 
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Equivalence of input and output markets Marshallian surpluses: the literature 

A s explained in the introduction, the question this literature has attempted to answer is, 
"given a change in the vector of unit factor prices, to what is the resulting change in 
Marshallian surplus (in the factor markets) equal?" (Jacobsen, 1979, p.423). Formally, the 
idea is to try to unveil what is exactly being calculated when one computes 

J ^ 1 ^ g Z X z ( w ) ^ w z . This issue was addressed by Schmalensee (1971, 1976), Wisecarver 

(1974), Anderson (1976) and Carlton (1979) under different sets of simplifying 
assumptions such as, perfect competition downstream, change in only one factor price 
and/or linear homogenous output production. Jacobsen (1979), in an elegant paper, 
obtained more general results. He showed that, regardless of how many factor prices are 

changed, with a monopoly downstream, 1^^X z(w)dwz w i l l be exactly equal to the 

change in monopoly profits downstream that occurs because of the factor-price vector 
change. Under competitive conditions in the final market, the surplus change in the factor 
markets is precisely equal to the change of final consumers' surplus plus the change in 
downstream producers' profits. 

A n obviously unanswered question was how this extended to imperfect competition cases. 
Quimbarch (1984) looked into this. He considered a simplified version of the game 
described previously: firms had identical cost functions dependent only on own production, 
qt, used only one input, and were homogenous in that they faced an inverse demand 
function given by P(Q) . Letting /3t = J3 = (qt I Q)(dQI dq^ be the firms' conjectures about 
the elasticity of total production before a change in own production, and using the 
symmetry of the game, Quirmbach showed that: 

w \ 

(3.1) 

where CS is Marshallian consumer surplus (in the final market). Since 0=0 corresponds to 
perfect (Bertrand) competition, p=l/n to Cournot competition and p=l to monopoly, 
Quirmbach's result showed that the area under the demand curve for the input, corresponds 
to the sum of industry wide profits of downstream producers plus a fraction -dependent on 
the degree of competition- of consumer surplus. This generalized Jacobsen's results to a 
homogenous and symmetric oligopoly, but with the qualification that Quirmbach 
considered only one factor price. 

Transformation of a game into a maximization problem: the literature 

The second stream of literature, which I argue can be linked to the first, asks whether there 
exists a function that firms in an oligopoly collectively, yet non-cooperatively, maximize, 
and what would be its characteristics. The main references are Samuelson (1947), Spence 
(1976), Bergrstrom and Varian (1985), Slade (1994) and Monderer and Shapley (1996); I 
w i l l omit the factor prices here since inputs were not an issue in these papers. Samuelson 

£ ' X(w)dw = — 
n 

2 > ' + ( 1 - £ ) C S 
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asked, under what conditions the first order conditions of a game can be regarded as the 
solution of an extremum problem so that the equilibrium loci correspond to the vanishing of 
the partial derivatives of some function. In terms of T, he was looking for H : A - » 9t such 
that dH(q*) / dqi = dn1 (q*) / dq{ = 0 , V i e N. I shall call this type of functions Samuelson 
functions hereafter. Spence (1976) was interested in studying the process of product choice 
in a monopolistic environment. He argued that, by looking at the function that is implicitly 
maximized by the monopolistic competitors - i f one exists- and by comparing it with the 
total surplus function, biases in product choice under the market mechanism could be 
found. Spence found that a broad class of utility functions led to a system of differentiated 

inverse demands and to profit functions that can be written as Kl (q)/cci = F(q) + 0 ' (q_,), 

where at is a firm-specific constant. Hence, when firm i maximizes 7t' with respect to q', 

it maximizes F(q) with respect to q\ making F(q) the function sought. Spence called F 
the wrong surplus function. 

Bergstrom and Varian (1985) wanted to address the same question but for a standard 
(homogenous and symmetric) Cournot: what does a Cournot equilibrium maximize? They 

found that the following function of total output, W(Q) = ̂ .^N K' (Q) + ((1 - n) I n)CS(Q), 

had a first-order condition with respect to Q which led to the same first-order condition of 
the Cournot game after imposition of symmetry. They concluded that the industry output in 

a symmetric Cournot equilibrium maximizes W. Slade (1994) considered more general 
oligopoly games. She asked when it is true that individuals firms pursing selfish objectives 
act as i f a single agent was maximizing a well defined fictitious-objective function. She 
found necessary and sufficient conditions under which a function F : A —» 9? , such that 
dF(q)/dqi = d7Vl (q)/dqt , V i e N, exists. Slade's fictitious-objective function, which was 

later defined to be an exact potential function by Monderer and Shapley (1996), has nice 
properties that facilitate solving and characterizing the game. Among others, local maxima 
of F are a subset of the local-Nash equilibria of the game, while Nash equilibria that are not 
local maxima of F are unstable. I further discuss exact potential functions in Section 3.4. 

3.3 Input Market Surplus and the Downstream Game 

So, how are the two issues connected? The more general result available in the literature 
regarding the relation between input and output markets surplus measures is Quirmbach 
(1984). Yet, it hinges on a number of assumptions which we would like to relax. I argue 
that this is possible by relating the input markets surplus measure to one of the functions 
that describe the equilibrium of the downstream game, and that Quirmbach and Jacobsen's 
result are particular cases of this stronger theoretical relation. That such relation exists is 
hinted by the following simple observation. In Quirmbach's setting, when the downstream 

Bergstrom and Varian (1985) showed that i f a social planner maximizes a pseudo-social 

game is Cournot, i.e. p=l/n, (3.1) becomes 
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welfare function given by W = ^7tl +((l-n)/n)CS, then the Cournot outcome is 

obtained. Hence, it is true that f' X (w)dw = - w 

If a more general relation is to be established, the first issue that needs to be addressed is 
which function describing the equilibria of the downstream game we should use. As 
explained in the previous Section, many authors have addressed the question of finding and 
characterizing the equilibria of an oligopoly game through a single function. Yet, the ways 
they have answered it differ. Samuelson's analysis was done under the heading of 
convertibility into a maximum problem, but, as can be seen, his question was actually 
related to the more general problem of existence of a function whose critical values are 
equilibria of the game. Bergstrom and Varian were close to Samuelson in that they were 
interested in the equilibrium point, but they derived their function with respect to the total 
output and not with respect to each firm's output, which is why they had to compare against 
the first-order conditions of the game after imposing symmetry. They did however check 
the second-order condition to ensure that the critical Q value was in fact a maximum. 
Spence on the other hand was indeed interested in the maximization of a multivariate 
function and he obtained something stronger that the Samuelson condition: from what he 

found, it flows that aidF(q)/dqi = d7t' (q)/dq{, a condition which implies Samuelson's 
but which holds for points other than the equilibria. Slade explicitly acknowledged that the 
fictitious-objective function (or exact potential) she was looking for was different from the 
functions Samuelson was looking for, because she was concerned with stability, a notion 
that deals with behavior both on and off equilibrium points. For the case of monopolistic 
competition, her functions would be a subset of Spence's, since she requires ai to be 1 for 

all i. In fact, exact potential -or fictitious objective- functions (Slade, 1994; Monderer and 
Shapley. 1996) are a subset of Spence's wrong surplus functions, which in turn are a subset 
of Samuelson functions. Because of this, it is better to establish the relation between input 
markets and final market surplus measures using the Samuelson functions. 

Proposition 3.1: Consider the game described in Section 3.2. If in the producers' game 

there exists a differentiable function H(q, w): A x 9 ? —» 9? such that: 

dH(q*, w)/dqt = dn1 (q\ w) /dqt , ie N (3.2) 

dH(q*,w)/dwz = -£dC ' (q \w ) /bX, ZGZ (3.3) 
i 

then 

f£X z (w)r fw z = -|ff(q (w),w)T (3.4) 

Proof. Take the total derivative of #(q*(w),w) with respect to wz. Since q*(w) is a Nash 

equilibrium, it is true that dn'(q*)/dql= 0 . Use conditions (3.2) and (3.3) to get 
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dH.(q*(w),w)/dwz = - X , 3 C < /dwz • T h e n u s e Shepard's Lemma, that is dCldwz = -xiz, 
sum over z and integrate between wo and wi. • 

Proposition 3.1 shows that input markets surplus correspond to the change of a Samuelson 
function of the downstream game; that we are considering a Samuelson function is apparent 
from condition (3.2). Although it may be tempting to say that the input markets surplus 
corresponds to what is maximized in the downstream game, this is not true; condition (3.2) 
pertains to critical values and not to extreme values necessarily. This would be the case 
only i f we narrow the class of functions we use, as I discuss in the next Section. Condition 
(3.3) may appear to be stringent but it is not really; it w i l l be apparent that it can be always 
made to hold when C (q, w) = C (qt, w). 

Proposition 3.1 allows us to find the relation between input markets surplus and the 
surpluses of downstream agents for a large variety of downstream games. For example, it is 
direct to verify that Bergstrom and Varian's function is a Samuelson function of the 
Cournot game 2 and that condition (3.3) holds, which explains its link to Quirmbach's result. 
However, this result can be expanded to other conjectures and change in more than one 
input price: consider symmetric and homogenous firms as before and the following 
candidate function: //,(q,w) = ̂  ;r'(q,w) + ( ( n - l - v)ln)CS(Q), where v = d^q^dq^ 

V i e N, is firms' conjecture about the change in total rivals' output when they individually 

change their own, xi(q,w) = qiP(Q)-C(qi,yr) and CS(Q) = ^P(Z)dZ-QP(Q). 

Differentiating 7/,(q,w) with respect to qt, we obtain (see appendix A . l ) : 

dHl/dqi=P(Q) + ((l + v)/n)QP(Q)-Cq(qi,w). This is identical to the first order 

conditions of the producers' game after imposing symmetry, which is true in equilibrium. 
This shows that H\ is a Samuelson function and hence condition (3.2) is satisfied. To prove 
that H\ is what is captured by integration of the input demands, we only need to verify that 
condition (3.3) holds, which is direct. 3 Thus, i f we consider only one input, we recover 
Quirmbach's result. If we let v be equal to -1 (perfect competition) or v be equal to 0 and n 
equal to 1 (monopoly), we recover Jacobsen's results. Furthermore, we can see that under 
collusion, i.e. v = n -1, it is also true that only downstream profits are captured (collusion 
and monopoly profits w i l l be equal only i f marginal costs are constant). Hence, as argued, 
the two most important results in the input markets surplus literature are particular cases of 
Proposition 3.1. 

2 Hence, although Bergstrom and Varian took the derivative only with respect to Q, they could have done 
it as Samuelson and in condition (3.2), that is, with respect to each firm's output. Bergstrom and Varian's 
function has an extra feature though: the partial derivative of their function with respect to is equal to the 
partial derivative of the profit function of firm i at any symmetric point (i.e., when all q's are equal). In 
particular, they are equal for the Nash equilibrium —the Samuelson condition—, which is symmetric because 
the game is symmetric. 

3 Note that this show that Proposition 3.1 is not reduced to quantity competition only, as the Bertrand case 
is captured here by v=-l. 
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The advantage of Proposition 3.1 though, is that Samuelson functions exist for many more 
cases than the previous simple ones, so we can depart from these settings and examine how 
results change. Consider for example homogenous Cournot competition downstream, but 
with externalities in production. This would be the case, for example, of firms using 
congestible upstream facilities in order to produce a final good (e.g. airlines using airports 
to provide travel or telephone companies using upstream networks to provide phone calls). 
Externality in production, caused by congestion, may be modeled as C(q{, Q, w); I consider 
the single input case for simplicity. The symmetric Nash equilibrium is given by 
7T'(q\w) = P(Q) + (Q/n)F(Q)-Cq(Q/n,Q,w)-CQ(Q/n,Q,w) = 0. Next, consider the 
function 

— 1 Q ( 7 
H2 (q,w) = Y7t' (q, w) + — CS(Q) + (n -1 ) fCQ - , Z , w dZ (3.5) 

It is easy to check that H2 fulfils (3.2), i.e. dH2(q*,w)/dqi = n\(q* ,w) -see appendix A . 2 -

so, to prove that \X(w)dw--AH2\q*,w\ 1 , we need to verify that (3.3) holds, which is 

the case i f CQ^ = 0 . 4 Here, then, the integral of the demand for the input is not equal to 

producers' profits plus a fraction of consumer surplus. There is a third term, which captures 

uninternalized congestion; and as n grows, \X(w)dw does not approach industry profits 

plus consumer surplus as before. This analysis easily extends to conjectures other than 
Cournot. 

3.4 Potential Function and Input Market Surplus 

A s explained, one of the advantages of Proposition 3.1 is that, for any given downstream 
game, there are probably many Samuelson functions fulfilling condition (3.3). A s stated by 
Slade (1994), it is almost always true that a function which first order condition have the 
same zeroes as the first order conditions of the game, exists (it is enough to square and sum 
the first order conditions of the game). This, however, may be also an embarrassment of 
riches; without further structure, it may be hard to obtain economic intuition from such 
functions, as pointed out by Slade and Samuelson himself. A way to circumvent this is to 
look at some more economically meaningful subset of the Samuelson functions. This is the 
case of Slade's fictitious-objective functions, and Monderer and Shapley's exact potential 
functions. These two types of functions are in fact the same in the class of infinite 

4 A cost function featuring this characteristic is used, for example, by Pels and Verhoef (2004) in their 

analysis of airport markets. They consider C(qj ,Q,w) = qt (c + w + aD(Q)), where c and a are constants and 

D(Q) is the delay function. 
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differentiable games, as summarized in Lemma 3.1, and they have many nice properties, as 
Lemma 3.2 shows: 5 

Lemma 3.1: (Slade, Monderer and Shapley) Consider the game r< N,{A' },{>'} > and a 

function F(q,w): AxSi+ -> 9?. Then, the following statements are equivalent: 6 

1. r is a potential game and F is a potential function, i.e. Vg(, A; G A' , Vq_, e A~', 

F(qt, q_,, w) - F( r . , q_,, w) = it (q., q_., w) - nl (rt, q_,., w) 

2. 3F(q, w) / dq, = dnl (q, w) / dq. ,Vi<= N 
3. There exist functions 0 ' (q_(., w) such that /r' (q, w) = F(q, w) + 0 ' (q_,, w). 

Lemma 3.2: (Slade, Monderer and Shapley) 

1. T has a potential function i f and only i f d x (q,w) _d K (q,w) ^ ̂  ^ 
dqidqj dqtdqj 

(Monderer and Shapley). 
2. The local maxima of F are a subset of the local Nash-Equilibria of T (Slade). 
3. Let q be an interior local pure-strategy Nash Equilibrium of T. Then q* is (not) 

an interior local maximum of F i f and only i f q* is locally asymptotically 
(un)stable in a myopic learning sense (Slade). 

4. The potential function is defined up to an additive constant (Monderer and 
Shapley). 

5. A potential function for a potential game can be obtained as: 

F(q,w) = V[—-(x(t),w)(x'y(t)dt, where x : [0 , l ]—»A is a piecewise 
ieN * dq' 

continuously differentiable path in A that connects an arbitrary but fixed strategy 
profile in A to q (Monderer and Shapley). 

From Lemma 3.1.2, it is apparent that potential functions fulfill condition (3.2) in 
Proposition 3.1. Their requirement is stronger though, since the equality between first order 
conditions have to occur not only at equilibria points but also off the equilibrium path. The 
flip side is that potential functions are economically more meaningful, as Lemma 3.2.2 and 
3.2.3 show; the potential function can unmistakably be considered as what the oligopoly 
maximize and in fact, it helps refine the set of Nash equilibria. Next, while Lemma 3.2.1 
provides an easy way to test whether a game is potential or not, Lemmas 3.2.4 and 3.2.5 
show two other important features. The former indicates that i f we use a potential function 
instead of a Samuelson function -and condition (3.3) in Proposition 3.1 holds-, the input 
market surplus measure is univocally defined by a single expression; in equation (3.4), the 

5 Monderer and Shapley discussed several notions of potentials functions for games in strategic form for 
both finite and infinite games, and for both differentiable and non-differentiable games. I present here only 
the results that pertain to the class that interest me, infinite differentiable games. I included the vector of 
factor prices in the notation because it is central for this paper, but their presence is immaterial at this point. 

6 The equivalence between (3.1.1) and (3.1.2) is in Monderer and Shapley (1996), the equivalence 
between (3.1.2) and (3.1.3) in Slade (1994). 
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input market surplus measure is equal to the change of the potential function and therefore 
constants do not matter.7 Lemma 3.2.5 provides us with a way to actually compute the 
potential function, which significantly strengths the applicability of the Proposition. 

The trade-off is clear, then. Potential functions are more meaningful economically, but exist 
in fewer cases than Samuelson functions. For example, in homogenous Cournot, a potential 
function exists i f and only i f the demand is linear (see Lemma 3.2.1). However, i f products 
are differentiated, things greatly improve. If we consider Spence's example, the following 
class of demands are sufficient (yet not necessary) for a potential function to exist: 

2" 

pj(q) = Qh(q)/dqj)(l/aj), where /i(q) = J ] H t ( f J ^ " ' ) ; I* are the 2" possible subsets 
k=\ fert 

of the first n positive integers, Hk are 2" scalar functions and oci,.., an are n positive 
numbers. The potential function is then 8 (see appendix A .3 for the derivation): 

r 

\-^JjCi(qj,yv). A s noted by Spence, h(q) contains 2" *Xq.w) = J 
fen. fen 

arbitrary functions Hk and n arbitrary weights flf., so it provides great flexibility and 
therefore, potential functions exist for a broad class of demand systems. Since condition 
(3.3) obviously holds, we can use Proposition 3.1 to obtain an expression for 

j^^zX z(w)dwz whenever the downstream game belongs to this broad class of games. 

For example, the demand systems defined by pj (q) include linear demands. For n=2, 

p'(q) = a-bqi -eqj is obtained by considering Tj ={1}, T2 ={2}, T 3 ={1,2}, T 4 = 0 ; 

ax = a2 = 1; Hx(x) = H2(x) = ax-(l/2)bx2 and H3(x) = -ex. For the n products case, 

p'(q) = a-b-qi-^ie-qJ, functions and weights are analogous but less simple to list. 

The resulting potential function however is not complex: it is given by 
n .- -. n—\ n 

F t(q,w) = ^[(a-bqj)qj - C ; ( g ; . , w ) J - e ^ ; - Now, ideally, we would like to 
j=l k=\ j=k+\ 

relate F\ to downstream profits and consumer surplus; it happens that finding the relation is 
easy. First, straightforward algebra allow us to get (see appendix A.4) : 

7 This is not to say that if we use Samuelson functions, the input market surplus measure would have 
different values depending on the function used. The expressions in (3.4) may differ, but when evaluated they 
would lead to the same number. 

8 Slade stated that p' (q) = dh(q)/dqj would lead to the existence of an exact potential function. In fact, 

that leads to the existence of a function F such that Of(.3F(q) / dqt = dx' (q) / dqj, which is different than the 

statement in Lemma 3.1.2. F would be what Monderer and Shapley defined as a weighted potential function. 
This function has useful properties in finite games but is not really helpful in infinite games. For example, the 
nice stability property of local Nash equilibria that are also local maxima of F (Lemma 3.2.3) does not hold 
for F . This is so because the proof hinges on the fact that the Hessian of F and the Jacobian of the system of 
first order conditions of the game are equal, making their characteristics roots equal. With F , this is no 
longer true. It is still obviously true though, that F is a Samuelson function. 

47 



n n k-l 

Fx (q> w) = X n1 (q, w) + e £ £ ak aj 
7=1 *=2 7=1 

(3.6) 

From (3.6) it can be seen that it is still true that, as the degree of competition decreases, that 
is, as substitutability diminishes (e goes to zero), the integral of the input demand captures 

only producers profits. Next, consumer surplus is given by the line integral jj^d.qi(p)dpi, 

which is straightforward to compute since direct demands exist (as long as b > e > 0 ) and 
the solution is path independent (see appendix A.5) . A linear integration path leads to 

n Jfc-1 

CS = (b/2)^ql + e^^qkqj , from where we get: 
* k=2 7=1 

f ;X z x z (w)^=- |F l ( q\w)[; 

= - X 71'(q*, w) + C S ( q \ w) -(b 12)£ (qk )' 
7=1 

(3.7) 

Hence, Proposition 3.1 allowed us to obtain yet another extension to Quimbarch's result. 
Equation (3.7) is valid when the downstream game is asymmetric Cournot, when demands 
are differentiated (linear) and when many input prices change. Here, we no longer have a 

fraction of consumer surplus; now, ^'^ZXz(w)dwz fails to exactly capture profits and 

consumer surplus by an amount that is a function of the squares of firms' production in 
equilibrium, which are not (necessarily) equal. 

3.5 Conclusions 

In this paper, I have proved a Proposition that states that the input markets surplus measure 
is equal to the change of a single multivariate function, which main characteristic is that it 
can be used to synthetically describe the equilibria of the downstream game. This 
Proposition generalizes the two more important results of the literature on input markets 
surplus and its relation to the output market (i.e. Jacobsen, 1979, and Quirmbach, 1984). 
Furthermore, it provides more significance to a class of functions, which I called 
Samuelson functions, which were said to be 'mere technical devices'. Yet, in my opinion, 
the more important aspect of the Proposition is that for downstream potential games, the 
input market surplus measure was shown to be equal to the change of the potential function. 
This is significant because, today, potential games are well-understood: we have simple 
ways to test whether a game is potential or not; when it is, we can easily learn a great deal 
about its equilibria points; and we have a well-defined way to compute the potential 
function (up to an additive constant, which in this case is irrelevant). Hence, whenever the 
downstream game is potential, the problem of calculating the input markets surplus is, in 
theory, completely solved. 
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The applicability of Proposition 3.1 for the analysis of input markets is important. It allows 
us to assess how much information about the downstream market is carried in the input 
demand functions or, in other words, how far-off the line integral of input demands is from 
exactly capturing producers' profits and consumer surplus. For example, it should be useful 
to adequately estimate damages on price-fixing cases on input markets (see Brander and 
Ross, 2005, for a discussion of this issue). Or, to estimate the welfare effects of input prices 
changes -which was Carlton (1979)'s motivation. What we would like to know is when it is 
legitimate to perform cost-benefit analysis considering only the input markets, since input 
demands are the ones that are derived from equilibrium in a related market. It w i l l never be 
incorrect to use the downstream information; by adding to the upstream firms' profits, the 
downstream profits and consumer surplus, one always get a proper social welfare function. 
But whether this is the case i f one adds upstream firms' profits and input markets surplus, is 
not as simple. A n d here is where Proposition 3.1 comes in handy, as it helps us find out 
how far the input market surplus is from capturing the sum of final consumer surplus and 
downstream producer profits. 

The advantage of Proposition 3.1 over the particular cases previously proved in the 
literature is its flexibility and generality, which I showed with some examples. The 
Proposition should be helpful to better analyze intermediate markets in a wide range of 
situations, such as non-symmetric firms or differentiated demands. 
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4 AIRPORT OWNERSHIP: EFFECTS ON PRICING AND CAPACITY 1 

4.1 Introduction 

In the last decades, some industry watchers, commentators and economists have argued in 
favor of the privatization of airports. They have given many reasons; among others, 
government revenues, financing aspects and private enterprise creativity and drive. On 
efficiency grounds, which is the focus of the present paper, it has been argued that private 
airports would charge more efficient congestion and peak-load prices and that they wi l l 
respond to market incentives for capacity expansions (see e.g. Craig, 1996). These last 
points are important because, in the literature, congestion is often mentioned as the most 
important problem major airports face. 

In 1987, the three airports in the London area and four other major airports in the U K were 
privatized. Following the example of the U K , many countries moved -o r are moving-
towards privatization of some of their public airports (among others, Austria, Denmark, 
New Zealand, Australia, Mexico and many Asian countries). Out of the concern that the 
privatized airports would exert market power -they would be local monopolies by having a 
captive market- most of the newly privatized airports have been subject to economic 
regulation, either in the form of price caps (as London Heathrow) or rate-of-return (as 
Flughafen Diisseldorf). Lately, however, many authors have argued that the regulation 
mechanisms fell short of being optimal; in particular, privatization has not been as 
successful as expected because the regulation mechanisms would misplace the incentives 
regarding capacity: price caps would lead to underinvestment while rate-of-return would 
lead to overinvestment in capacity. 2 Moreover, some authors and government agencies 
have argued that ex-ante regulation could be unnecessary altogether so it should be either 
completely divested or replaced by ex-post price monitoring. Why? Some of the reasons 
that have been put forward are the following (see e.g. Beesley, 1999; Condie 2000; Forsyth, 
1997, 2003; Starkie, 2000, 2001, 2005; Productivity Commission, Australia, 2002; C i v i l 
Aviation Authority U K , 2004): (i) airports have low price elasticity of demand so price 
levels w i l l not have large implications for allocative efficiency; (ii) airlines have 
countervailing power that w i l l put downward pressure on airport prices; (iii) alternatively, 
most of the problems would be solved i f deeper collaboration between airlines and airports 
was allowed and encouraged; and (iv) demand complementarities between aviation and 
concession activities would induce the airport to charge below monopoly prices on the 
aeronautical side (particularly when concession revenues are larger than airside revenues). 
In fact, the move towards divestment of regulation or the less-stringent price monitoring 
has already started in some countries (e.g. New Zealand and Australia). 

However, as important as this may appear, there have been, to our knowledge, only two 
papers that have analytically examined what the outcomes of privatization or divestment of 
regulation may be (Zhang and Zhang, 2003; Oum et al., 2004). And , although there are 

1 A version of this chapter has been submitted for publication. Basso, L.J . (2005) Airport Ownership: 
effects on pricing and capacity. 

2 For a list of papers that discuss country-specific experiences with regulation see Oum et al. (2004). 
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many analytical papers that examine optimal pricing of public airports, most of the papers 
that do deal with privatization and divestment of regulation issues are fairly descriptive. 
Forsyth (2003) acknowledges this: "The shift to price monitoring has been a response to 
these problems [the problems with regulation], though the content and likely impact of 
monitoring has yet to be determined". What this paper does, precisely, is to analyze the 
effects of airport ownership on prices and capacities using a formal model, since the 
suggested move towards private unregulated airports is fairly new and hence empirical 
analyses are not feasible. The idea is to make an analytical examination of some of the 
assertions that have been put forward in the literature regarding privatization and regulation 
of airports, and to gain insights about other issues that have yet been discussed. 

What makes this paper different from the previous two is the way the airline market enters 
the picture. Zhang and Zhang (2003) and Oum et al. (2004) essentially abstract from it, 
assuming that an airport's demand is a function of a full price -which includes airport 
charges and congestion costs-, and measuring consumer surplus through the integration of 
the airport's demand. In this paper, we formally model the airline market as an oligopoly, 
which takes airport charges and capacities as given, recognizing that this is a vertical 
setting: airports provide an input -airport service-, which is necessary for the production of 
an output -movement- that is sold at a downstream market. Hence, the demand for airports 
services is a derived demand. Indeed vertical settings similar to the one considered here 
have been proposed before (Brueckner, 2002; Pels and Verhoef; 2004; Raffarin, 2004), but 
they have been mainly used to study optimal congestion pricing. Optimal capacity or the 
effects of privatization have not been analyzed (capacity has always been assumed to be 
fixed). 

In this paper we look into private ownership and allow capacity to be a decision variable. 
We consider both system and individual privatization of airports, and the case of joint 
maximization of airports' and airlines' profits, comparing these cases against both the first-
best benchmark and budget constrained public airports. Analytical and numerical results 
show a rather unattractive picture for privatization when compared to the first-best. First, 
the idea that low elasticities of demand for airports would induce small allocative 
inefficiency would be true only i f the elasticity was constant, something rather improbable. 
Observed elasticities from public airports or regulated airports are not evidence that this 
would be the case in a private unregulated airport; monopolies price in the elastic range of 
the demand. What is obtained here is that important allocative inefficiencies may well arise. 
Besides, the low price elasticity argument overlooks the fact that private and socially 
optimal capacities w i l l be different. When capacity becomes a decision variable of the 
airport -an idea that dominates the airport privatization and regulation literature- private 
airports would tend to be fairly small in terms of capacity, which further decreases traffic. 
Results worsen when privatization is done on an airport by airport basis rather than in a 
system because when airports are both origin and destinations of trips, their demands are 
perfect complements and therefore 'competition' between airports induces a horizontal 
double marginalization problem. On the other hand, the maximization of joint profits 
benchmark shows that the arguments regarding airlines countervailing power or an 
increased scope for cooperation between airlines and airports are probably overstated. The 
outcome does improve but still falls far off from the first-best. When privatization is 
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compared against public airports that have a budget constraint, its performance depends on 
whether public airport are able to use two-part tariffs or not. If they are, the results are 
essentially unchanged. If they are not, the gap diminishes but remains large. 

The airline oligopoly model we use expands on previous work in several ways: airlines' 
demands are sensitive to schedule (frequency) delay cost in addition to flight delay caused 
by congestion at the airport, airlines services are not necessarily perfect substitutes, and the 
impact of the number of firms on airport demand (a proxy for market structure) is 
highlighted. Evidently, the idea is to better understand how these three aspects of the 
downstream market influence the performance of the airport market. It is shown that they 
have an important role on the incentives an airport has with respect to the dominance by a 
single airline. 

The plan of the paper is as follows: Section 4.2 contains formal modeling of the 
downstream airline market. The derived demand for airports is obtained and characterized 
here. We analyze whether this derived demand carries enough information about the 
downstream market so that it would be possible to focus only on the airport market, 
abstracting from what happens downstream. Section 4.3 uses the results obtained in the 
previous Section to analyze airport pricing, capacity and incentives under private and 
public ownership. Since most of these analyses rely on comparative statics, Section 4.4 
provides numerical simulations that allow a better assessment of the differences. Section 
4.5 concludes. 

4.2 The Airline Market 

4.2.1 The airline oligopoly model 

The oligopoly model presented here is used to obtain the derived demand for airports and to 
characterize it. We start by making two simplifying assumptions: First, we abstract from 
network and route structure decisions by having only two national airports. Second, we 
assume there is only demand for round trips, not for unidirectional trips. 3 Having two 
airports enable comparisons between system and individual privatization later. The game 
we analyze is a three stage game: first, airports choose their capacities, KH; second, they 
choose the charge per flight, Ph\ finally, airlines choose their quantities. We look for sub-
game perfect equilibria through backward induction, so we focus first, in this Section, on 
the Nash equilibria of the airlines' sub-game. We consider TV airlines with identical cost 
functions, facing differentiated demands in a non-address setting with fixed variety. Thus, 
differentiation is horizontal and /V is exogenous and represents the main airline industry 

3 These assumptions are consistent with Pels and Verhoef (2004) and are, in fact, a generalization of 
Brueckner (2002) and Raffarin (2004), who consider a single airport. Zhang and Zhang (2003) and Oum et al. 
(2004), also consider an airport in isolation. 
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structure indicator in the model. Each firm's demand is dependent on the vector of full 
prices, 4 0: 

tf,.(0) = 4(.(0,.,8_,.) 

0t = tt + GCji) + a{D(Q, K,) + D(Q, K2)) 

where qt is the demand faced by airline i, 0, is its full price, Q is the total number of flights 
of all airlines, r, is the ticket price for the round trip, G(Tj) is schedule delay cost, 5 r{ is the 
expected gap between passengers' actual and desired departure time, D(Q,Kh) represents 
flight delay because of congestion at airport h and a represents the passengers' value of 
time. Note that r, depends on the frequency chosen by airline i; the higher the frequency, 

the smaller the gap. Thus, schedule delay cost can be written as g(<2,) = G(r,(<2,)) where 

Qi is the number of flights of airline /, g'(2«)<0 while g"(<2,) has no evident sign a 

priori. The delay function considered is 

This convex function of Q was proposed by the U S Federal Aviation Administration (1969) 
and is further discussed in Horonjeff and McKelvey (1983). 6 Dh is the total delay of both 
take-off and landing at airport h, which requires to assume that take-off and landing 
capacities are equal. 

Assuming that demands are linear, symmetric and airlines' outputs are substitutes: 

qiQ) = a-b6i+fdedJ (4.3) 

where a, b and e are positive. Inverting the system and re-labeling we get 

6i=A-B-qi-fjEqj (4.4) 

4 The use of full prices is a common feature of airline and transport economics papers. They are indeed 
used in the previous airport privatization papers but there they directly determine airport's demand (e.g. Oum 
et al. 2004). 

5 Schedule delay cost represents the monetary value of the time between the passenger's desired departure 
time and the actual departure time. It was first introduced by Douglas and Miller (1974) and there, it was the 
addition of two components: frequency delay cost and stochastic delay cost. The former is a cost induced by 
the fact that flights do not leave at a passengers' request but have a schedule. Stochastic delay has to do with 
the probability that a passenger cannot board her desired flight because it was overbooked. Overbooking 
arises in the presence of stochastic demands, which is not the case here; hence our schedule delay cost 
corresponds only to frequency delay cost. For more on schedule delay cost, see also Small (1992). 

6 This delay function has been used by Morrison (1987), Zhang and Zhang (1997) and Oum et al. (2004). 
Pels and Verhoef (2004) and Raffarin (2004) considered delay functions that were linear on the traffic level. 
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where A, B and E are positive. A s in Vives (1985), A, B and E are assumed to be fixed and 
B>E, that is, outputs are imperfect substitutes. It is easy to verify that B>E is equivalent to 
b>(N-l)e: i f all full prices increase by the same amount, the demand for airline i w i l l 
decrease (a condition sometimes called diagonal dominance). We assume that airlines 
behave as Cournot oligopolists in that they choose quantities, an assumption that is backed 
by some empirical evidence (Brander and Zhang, 1990; Oum et al., 1993). In the absence 
of congestion and schedule delay cost - i .e . when # = r, - and with constant marginal cost, 
the game is well behaved in that a unique equilibrium exists. Furthermore, market power 
decreases with the number of firms (Vives, 1985). So, in principle, the model is useful to 
assess the importance of airline industry structure (AO on airport pricing. 

Three more comments about the demand model are important. First, note that homogeneity 
in the Cournot competition, the usual case in airline oligopoly models 7, is a special case of 
our model (it w i l l suffice to replace E by B in the results). This enables an assessment of the 
importance of (horizontal) airline differentiation in airport decisions. Second, we 
incorporated the schedule delay cost, an important aspect of service quality which has 
sometimes been considered in pure airline oligopoly models but never in airport markets 
analysis. 8 Finally, we chose to have N as an exogenous parameter because airports may 
have preferences regarding N that are different than the pure free entry equilibrium, and 
they may indeed have a sizeable influence in the number of active firms. Airports' 
preferred N under different ownership and pricing schemes is analyzed in Section 4.3. In 
any case, the equations that define the free entry N are easy to identify. 

Using (4.4) and (4.1), the following system of inverse demands faced by the airlines can be 

obtained: t' =A-Bq{ - ^ E-q.}-g(Qt)-a{D(Q,KX) + D(Q,K2)). This can be 

simplified though, by recognizing that qt = Qi x Aircraft Size x Load Factor. Here, we 
assume that the product between aircraft size and load factor, denoted by S, is constant and 
the same across carriers, making the vertical relation between airports and airlines of the 
fixed proportions type. 9 Thus 

t' (Qi, Q_,) = A - SBQt - J]% SEQj - g(<2,) - cc{D(Q, K,) + D(Q, K2)) (4.5) 

It can be noted that linear demands in full prices do not lead to inverse demands that are 
linear in output, as D is not linear and there is no reason to think that g i s . 1 0 In fact, we 
make now the following useful assumptions regarding schedule delay costs: 

7 See e.g. Brueckner and Spiller (1991), Oum et al. (1995), Brueckner (2002), and Pels and Verhoef 
(2004). 

8 See e.g. Douglas and Miller (1974) and Oum et al. (1995). Morrison and Winston (1989) empirically 
measured schedule delay cost in their estimation of an airline choice model. 

9 This assumption was also made by Brueckner (2002) and Pels and Verhoef (2004). A variable 
proportions case arise if, before a change in airport charges, airlines decide to change S (aircraft size, load 
factor or both). 

1 0 Pels and Verhoef (2004) obtain linear inverse demands because they assumed a linear delay function 
and no schedule delay cost. 
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(a) The monetary cost of the gap between the actual and desired departure times, T, is 
proportional to its length. 

(b) r i s inversely proportional to the frequency of flights. 

Assumption (a) is similar to what has been already assumed regarding congestion delay 
costs; (b) is equivalent to say that r i s directly proportional to the interval between flights 
(inverse of the frequency). Hence, under (a) and (b) we get 
8(Qi) = G(Ti(Qi)) = yTi(Qi) = y-7]Q71, where ^ i s the constant monetary value of a 

minute of schedule delay and rj is a constant.1 1 Thus, the residual inverse demand is 
negative and upward-sloping first; it then becomes positive, and then downward sloping, 
when the linear part of the function starts dominating schedule delay cost. Finally, for 
higher values of <2„ congestion starts to kick and t' decrease faster than linearly. This 
particular feature of this demand system is not troublesome though: the main insight is that 
schedule delay cost put by itself, and regardless of other technological considerations such 
as a fixed cost, a limit to the number of firms that can be active in the industry: there is a 
minimum scale of entry (see appendix B.2). What it does imply is that perfect competition 
is not consistent with this model. 

The final ingredient necessary before analyzing equilibria is costs. Air l ine costs are 

CiAQM-i,Ph,Kh) = Q\c + J]h=h2(Ph +/3D(Q,Kh))\ (4.6) 

The term in square brackets is the cost per flight, which includes pure operating costs c, 
airports charges P\ and P2, and congestion delay costs. 1 2 Using the expression for delay in 
(4.2), it can be verified that marginal costs are strictly increasing and larger than average 
cost (except at Qi=Q). Cost, marginal cost and average cost functions are strictly convex. 

Airl ine i's profits are obtained from (4.5), (4.6) and the fact that revenues are t = t'Q^. 
We get 

1 1 If passengers' desired departure time is uniformly distributed along the day, then assumption (b) holds 
and /7=l/4. Note that we are assuming only one period here and not peak and off-peak periods: this is a model 
of congestion pricing and not peak-load pricing. If we were to assume more than one period (e.g. Zhang and 
Zhang, 1997), it would still be a reasonable assumption that, within each period, desired departure times are 
uniformly distributed. The results in this paper extend trivially to the case of many periods as long as demands 
in each period are independent of each other. 

1 2 Note that here it is assumed that c does not depend on aircraft size or load factor, which may appear as a 
strong simplification. Given that 2, is directly proportional to q-„ this essentially says that the cost per 
passenger is fixed, something that has been assumed elsewhere (e.g. Brander and Zhang, 1990, Pels and 
Verhoef, 2004). Alternatively, one could assume that a single aircraft size and load factor prevail, as in 
Brueckner (2002). Also, the cost function should depend on a vector w of other input prices. That dependence 
could be modeled through c(w). Since it is assumed that input prices other than airport charges remain 
constant throughout, vector w will be suppressed for notational simplicity. 
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f(Qi,Q_i,Ph,Kh) = AS-BQ^-^EQjS'-c-^P, 
h=l,2 (4.7) 

ft=l,2 

4.2.2 Equilibrium in the airline market: derived demand for airports and its 
characteristics 

To obtain the derived demand for airports, we need to find the equilibrium of the airline 
market. Using (4.7), it can be shown that under assumptions (a) and (b) there exists a 
unique, interior and symmetric Cournot-Nash equilibrium of the sub-game, as long as N is 
smaller than the free-entry number of firms which should always ho ld 1 3 (see appendix B . l ; 
appendix B.2 contains the derivation of the free-entry equilibrium). Thus, d0' ldQi = 0 

gives us the unique and symmetric Cournot-Nash equilibrium of the game. Calculating this 
and imposing symmetry, we obtain the following important equation 

Q « 2 , Ph, KH, AO = (aS + P) ^{D" (Q,KH) + %DH

Q(Q,KH)\ + s{gA + %g\%) 
h % \ N J \ N N N 

+ S2{2B + (N-l)E)Q- + c+ ^Ph-AS = 0 
N h=\,2 

(4.8) 

Equation (4.8) implicitly defines a function Q(Ph,Kh;N), which is airports' demand as a 

function of airport charges, capacities and airline market structure N (the implicit function 
theorem holds). Two observations are worthy to be made: first, under assumptions (a) and 
(b), g(x) + xg'(x) = 0 and so the second term would be zero. Second, one can define, 
without loss of generality, P=P\+P2', i f airports were to be priced jointly then an explicit 
expression of the airports' inverse demand P(Q, Kh; AO is obtainable. 

We now characterize the demand for airports. We are interested first in learning how 
airports' demand changes with Ph, Kh and Af or, alternatively, how the inverse demand 
P(Q, Kh; AO changes with Q, Kh and Af. Consider first changes of Q with N. If assumptions 
(a) and (b) hold, 

1 3 As for Cournot (or tatonnement) stability, a sufficient condition is that the best reply mapping is a 
contraction. In homogenous Cournot, it is known that this condition holds for Af small. Here, while 
differentiation (E<B) gives some latitude, congestion works in the opposite direction. In fact, the contraction 
condition was checked in the numerical application of Section 4.4 and results indeed show that it holds only 
for N=2. 
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dQ=_^L=Q_{ (aS + /3)YJDh

Q+S2(2B-E) 
dN Q.Q N ~ (aS + P)YJDl+S1(2B-E) + (cS + P)Y,(NDh

Q+QDh

QQ) + S2EN 
(4.9) 

It can be checked that dQ/dN>0, d2Q/dN2 < 0 and dQl/dN<0 V £ e ( 0 , 5 ] , so total 
flights increase with A 7 at a decreasing rate, while each firm's number of flights decrease. In 
the absence of congestion, when E—>0, Q' becomes independent of N: each firm has its own 
turf. Wi th congestion, Q' decreases even when substitutability is very low (E—>0) because 
the congestion externality causes marginal costs to increase. Note that, in this Section, this 
and any other examination of changes with respect to N are valid in the sub-game only: P 
and K are fixed and not functions of TV yet as they wi l l be in the equilibrium of the full 
dynamic game. A l l other derivatives are obtained in a similar fashion as above. In summary 

dP n dP n d2P n d2P A dQ n 

f e < 0 , | e > 0 ) a ^ > 0 

dPh dKh dP2 dPhdKh 

dP . d2P n d2P n d2P . d2P n •>0, T — r — > 0 , ——<0, ^ — — = 0, — — < 0 
dKh dQdKh dK2 dKldK2 dKhdN 

Results in the first two rows of (4.10) require assumptions (a) and (b) regarding schedule 
delay cost, while those in the third row do not. 1 4 

Having characterized the shape of the demand function, we can now compute the surpluses 
(in sub-game equilibrium) of airlines and passengers. Passenger surplus is given by 

PS = £ QiiQWOi • Since dq^dds =dqj/d9i, the line integral has a solution that 

is path independent (PS is equal to both Hicksian measures). Using a linear integration 
path, straightforward calculations lead to (see appendix B . 3 ) 1 5 

1 4 Regarding how market power (air tickets) change with N, the result by Vives (1985) that dt' I dN < 0 
when £e(0 ,B] is the normal case here, but the opposite case may also arise. The intuition is: when N 
increases, prices tend to go down because of two effects: Q increase, so substitutability will put downward 
pressure on prices, and demands shift inwards because of increased congestion. Marginal costs of each firm 
go up though, because of congestion, which makes <2, decrease, putting upward pressure on prices. When E is 
close to zero and i f B is large enough (i.e. substitutability is weak), the first effect is not important, while the 
third effect may dominate the second, resulting in prices that actually increase with N (this is confirmed by 
numerical simulations). With no externalities and no substitutability, a change in N does not affect a firm's 
marginal cost or demand: N does not affect prices. 

1 5 It can be checked that, when there is no congestion, dPS I dN > 0 V Ee(0,B]. But, as with i, when 
there is congestion and substitutability is small, the opposite case may occur. However, the somewhat strange 
case dPS I dN < 0 is not necessarily tied to increasing prices because, as N increase, not only quantities and 
prices changes but demands shift as well due to increased congestion. Thus, although prices may be smaller 
(larger), the area under the demand curves may have decreased (increased). 
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PS (Ph ,Kh,N) = {B + (N- 1)E)S 2Q(Ph, K h , N)2 / 2N (4.11) 

The aggregate (equilibrium) profit for carriers, O , is easily obtainable from an individual 
carrier's profit (4.7) and the imposition of symmetry, that is, Qi = Q{P,Kh,N)lN. We 
obtain: 

&(P,Kh,N) = QS A-^-(B + (N-l)E)-g(^ 
N {N J (4.12) 

Qlc + P + fi^DiQ,^)] 

We can now look at how much information about the downstream market is captured by 
the derived demand for airports. This is important because of the following: the airline 
market model was useful to derive and characterize the demand for airports (equations 4.8 
and 4.10). It would be simple i f we could directly use this demand function to fully analyze 
the airports markets, because this function may be estimated only with airport level 
information. In the private airports case, we w i l l indeed use this demand function to setup 
the maximization of profits problem. Things are less obvious with the maximization of 
social welfare case, though. What is needed is a measure of consumer surplus. But as it is 
clear from this vertical setting, consumers of airports are both final consumers (passengers) 
and airlines. What we need then is a measure of the sum of passenger surplus and airlines 
profits. What has been assumed in previous papers about privatization, where the airline 
market is not formally incorporated (Zhang and Zhang, 2003; Oum et al. 2004), is that the 
airport demand does carry enough information so that its integration gives consumer 
surplus. We investigate now under which conditions this is true. 

In Zhang and Zhang (2003) and Oum et al. (2004), the demand for the airport, Q, is 
assumed to be dependent on a full price p, which includes flight delay costs and the airport 
charge. They argue that, under perfect competition, the airport charge would be passed 
entirely to consumers. Using the notation of this paper, the demand for the airport would be 
Q = Q(P), where: 

p = X Ph + (aS + P) X Dh (Q, Kh) = P + (aS + P)ZhDh (4.13) 
A=l,2 A=l,2 

Indeed, Q(p) defines a fixed-point rather than a closed form demand. Other charges to 
passengers, such as the flight ticket, are assumed to be exogenous as far as the airport is 
concerned. However, when one considers the full vertical structure and the associated 
subgame equilibrium, Q'(Ph,Kh;N) = Q(Ph,Kh;N)/N , both delays (equation 4.2) and 

ticket prices (equation 4.5) w i l l directly depend on airport charges and capacities, which are 
the decision variables of the airports. So, the first question is, is it reasonable to use the full 
price idea at the airport, rather than at the airline market? A clearer picture can be obtained 
by looking at equation (4.8). Using (4.13) to form p , and abstracting from schedule delay 
cost effects (i.e., making g=0), so that we can take N —> ° ° , (4.8) can be written as: 
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QS2(— + ̂ —^-E\ + p + c-AS + (cxS + P)^-yDh

0 = 0 (4.14) 

Hence, in general, Q would not depend only on p but also on DQ and N; the (implicit) 
demand for airports should be Q = Q(p,DQ,N). However, in the perfect competition case, 

AS — c — o 
that is when T V - ^ o o , (4.14) leads to Q(N -><>o) = 1-, which implies that 

S E 
Q(p,DQ,N —>°°) = Q(p). Thus, under perfect competition, a full price as defined by p, 
can in fact be used directly at the airport market level. It does summarize well the 
equilibrium of the downstream market. 

Next, what has been (implicitly) assumed previously is that the integration of the airport 
demand with respect to the full price would capture the consumer surplus. Let us study this, 
using the general (implicit) demand function Q = Q(p,DQ,N). We are thus interested in 
unveiling how 

)(D(p,DQ,N)dp (4.15) 

is related to airlines profits and passenger surplus. For this consider the aggregate 
(equilibrium) profit for carriers, O , in equation (4.12). Regrouping terms to form p, and 
assuming away schedule delay effects, we obtain that: 

®(Q,P) = QS A-^-(B + (N-l)E) 
N 

-Q[c + p] (4.16) 

Consider now the total derivative of O with respect to p. Using (4.16) the following results 
(see appendix B.4) 

f = - Q i p , o e , N ) - ^ & f . ^ + ^ D ^ ( 4 , 7 ) 

dp * N dp Nh ^ dp 

Reordering, integrating from p to °°, and using equation (4.14) we finally get 1 6 

]Q(p,DQ,N)dp = 0 + P S - ^ ^ — ±(aS+/3)\QYDh

Qdp (4.18) 

16 Here, we used the fact that Q(p = °°, D0, N) = 0 and therefore <b(p = °°, D0, N) = 0. 
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From equation (4.18) it is obviously clear that integration of the airports demand with 
respect to the full price, w i l l deliver a correct measure of consumer surplus i f and only i f 
the airline market is perfectly competitive (N —> ° o ) , which was in fact the maintained 
assumption of Zhang and Zhang (2003) and Oum et al. (2004). Hence, we have provided 
theoretical support for their modeling. When the airline market is imperfectly competitive 
though, the integral of Q with respect to p, does not capture airlines profits plus passenger 
surplus because market power induces losses of consumer surplus and partial 
internalization of congestion (third and fourth terms in equation 4.18 respectively). 1 7 

The main conclusion of the previous analysis is that to fully analyze airport markets, one 
cannot abstract from the airline market i f competition is imperfect there. Formal modeling 
is required to adequately set up the social welfare maximization problem. The simplest way 
to do this is by considering directly the three actors involved, although one could also add 
the missing terms to the integral of airport's demand. At the practice level, the conclusion is 
bad news for managers of public airports or airport regulation authorities: even in a setting 
of complete information, optimal pricing and capacity require detailed knowledge about the 
market structure and demand of the airline market; information on costs and demand for 
airports alone is not enough. This unquestionably complicates the problem. Thus, fully 
modeling the vertical setting stands as a more correct way to study airport markets in 
general and the effects of airport ownership on prices and capacities in particular. The 
latter, which would have been new in any case, has now a stronger raison d'etre. 

4.3 The Airports Market 

4.3.1 General Features 

In this Section, we look at the first two stages of the game -airports' capacities and prices-
taking as known the equilibrium in the third stage. We compare prices and capacities of 
private airports against first-best 'public' airports that maximize social welfare, but later 
address the problem of budget adequacy of public airports. We assume that both public and 
private airports impose per-flight charges, although this may not be a reflection of actual 
practice. The point is that we would like to shed light on what are the differences induced 
by ownership and not by failure to implement the right policies. 1 8 It is further assumed that 
both type of airports have the same cost structure, despite arguments by some authors that 
public airports would not be as cost efficient as private ones (e.g. Condie, 2000). This 

Jacobsen (1979) and Quirmbach (1984) are the classic references on the relation between input market 
surplus and the downstream market. Basso (2006) synthesize and generalize their results. Among other things, 
he shows that, in a case like this, the integral of the input demand with respect to P -as opposed to p— would 
never adequately capture downstream firms' profits plus final consumer surplus, not even under perfect 
competition. 

Many airports actually have weight-based charges, but this has been starkly criticized on efficiency 
grounds by economists for at least three decades (e.g. Carlin and Park, 1970). And while in public airports 
efficient prices -which we show are not simply marginal cost- have certainly not been the norm (see 
discussions in Morrison, 1987, and Borenstein, 1992), private airports have not really moved to congestion 
pricing either (Forsyth , 2003; Starkie, 2005).Per-flight charges have been assumed in most analytical airport 
pricing papers. 
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assumption however, has some empirical support: Oum et al. (2004) found no significant 
differences between private and public airports in productivity terms. Overall, the idea is to 
understand the differences in a stylized benchmark model, leaving for future research the 
analysis of whether the alleged inefficiencies of public airports, i f unsolvable, are important 
enough to make differences small. 

A s explained in the introduction, it has been argued that concession revenues would put 
downward pressure on airside charges of private airports, making regulation less needed 
(Condie, 2000; Starkie, 2001; Forsyth, 2003). We do not consider concession revenues here 
though, first, because probably the demand for concession services is not a Marshallian 
demand but a derived one, just as in the aeronautical side. Hence, when analyzing the 
public case, we would need to device a way to adequately consider the surpluses of all 
actors involved: profits of the companies that run the concessions and final consumers. 
Modeling and incorporating this would increase the complexity of the model while 
obscuring the insights we look for. The second reason to abstract from the concession 
revenues issue is that the outcome of incorporating them is probably known. Zhang and 
Zhang (2003) find that, while airside private prices diminish as expected, they decrease less 
than prices in a public airport that also has concessions. The intuition is simple: a private 
airport cares only about the profits from the concession activities while a public airport, 
maximizing social welfare, cares about consumer surplus as well . Consequently, the 
decrease in prices is stronger in the public case: concession revenues actually increase the 
gap between private and public airside charges. A n d while Zhang and Zhang modeled this 
without considering the vertical feature of the problem, it is very likely that their insight 
goes through. We see the confirmation of this, though, as future work. 

4.3.2 System of Private Airports 

We examine first the decisions of a System of Private Airports (SPA): pricing and capacity 
decisions at both airports are made by a single entity which maximizes profits. This is truly 
a monopoly situation quite comparable to the analysis of an airport in isolation (the most 
common case in the airport pricing literature). Q(Ph,Kh;N) represents the demand for both 

airports as a function of prices, capacities and the (exogenously given) number of airlines. 
Decision variables are Q, P (which is the sum of P i and Pi), K\ and K2, but Q and P are 
related through the demand function. We use P and Kh as decision variables - i .e . we use the 
inverse demand function P(Q,Kh;N)- but obviously results do not vary i f we choose 

otherwise. In this setup, the three-stage game is identical to a two-stage game where Q and 
Kh are chosen simultaneously. A s it is usual in the literature, it is assumed that an airport 
costs are given by C{Q) + rK, where, C are operating costs and the second term represents 
capital costs. The problem the S P A faces is given by 

max K(Q,Kh;N) = P(Q,Kh;N)Q-2C(g)-(Kx+K2)r (4.19) 
Q,K1,K2 

where n is the sum of profits of both airports. First-order conditions lead to the following 
pricing and capacity rules: 
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p 
P = 2C+— 

£P 

(4.20) 

h=l,2 (4.21) 

where sP is the (positive) price elasticity of airports' demand. A s for second-order 
conditions, it cannot be proved that they hold globally but simulation show that they do 
hold for a large range of parameter values, particularly for the numerical applications in 
Section 4.4. A necessary condition though, is that C is not too concave. 1 9 It is also easy to 
prove that at the optimum, Kj= K2=K (see appendix B.5). Equation (4.20) is the familiar 
market failure in which monopolies set price above marginal cost. Equation (4.21) shows 
that private airports increase capacity until the marginal revenue of doing so equals the 
marginal cost of providing that extra capacity (recall that it was found that the marginal 
value of capacity, dP/dKh, is positive). The monopoly system of airports only cares about 

the last or marginal consumer, increasing capacity by AK allow the airport to charge an 
extra AP, without loosing the marginal consumer (recall that a consumer lost for the airport 
is equivalent to a change in the equilibrium quantity in the downstream market). The extra 
charge however can be passed to all inframarginal consumers. What is important to note is 
that the marginal revenue perceived by the airport is not necessarily a measure of the social 
benefit of an increase in capacity (Spence, 1975). 

Interesting as well , is to see how optimal Q, P and Kh change with N. Unfortunately, 
comparative statics are not definitive: derivatives cannot be signed a priori (see appendix 
B.6) so we w i l l need to wait until the numerical simulation to have a better idea (the same 
goes for final outcomes in the airline market of course). What it is easy to show, however, 
is that as N increases, profits increases. To see this, simply differentiate profits evaluated at 
optimal Q and K with respect to N and apply the envelope theorem: 

4.3.3 System of Public Airports 

Consider now a system of public airports that maximizes social welfare. This case w i l l be 
denoted by W . According to the discussion in Section 4.2, with imperfect competition in 
the airline market, the social welfare (SW) function is not simply the integral of airports' 
demand plus airports' profits. The correct SW function can be obtained by directly adding 
passenger surplus (4.11), total airlines profits in the sub-game equilibrium (4.12)-, and 
airports profits: SW - PS + 0 + 7t, that is, 

1 9 Evidence suggests that airports' operational economies of scale are exhausted at fairly small amounts of 
traffic (e.g. Doganis, 1992). 

dn/dN = KQQs

n

pa +y£xKKs

N

PA+KN =KN =QSPAPN>0. 
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max SW(Q,Kh;N) = P(Q,Kh;N)Q-2C(Q)-(Kl+K2)r+ v" v" ^ * 
Q,KLYK2 2iV 

+ QS A-^-(B + (N-l)E)-g(%)-aYDh -Q[C+ P + pYDh] 
(4.22) 

First-order conditions lead to 

P = 2C+ (aS + P)QYJDh

Q-
h 

BS2Q 
N 

(4.23) 

-Q(aS + P) 
dD(Q,Kh) 

dKh 

h = 1,2 (4.24) 

Again, second-order conditions do not hold globally but do in the numerical simulation, at 
the optimum Kj= K2=K, and results do not change i f P and Kh were taken as the decision 
variables. A s advanced, we do not impose a budget constraint here, so budget adequacy is 
not ensured. The discussion about this issue is delayed for Section 4.3.5. 

The public airports' total charge has three components: marginal cost, a charge that 
increases price and is equal to the uninternalized congestion of each carrier, and a term that 
decreases price, which countervails airlines' market power. In fact, this system of public 
airports' manage to induce the outcome of social welfare maximization in the airline 
market: i f one directly maximizes social welfare in the airline market, the equation that 
describe the final (symmetric) outcome is, precisely, 
a(Q,P,Kh,N) + ((NN)(OLS + p)QY4hDH

Q-BS2Q IN = 0 . A s can be seen, whether 

the final charge w i l l be above or below marginal cost depends on whether the congestion 
effect or the market power effect dominates. For the monopoly airline case, congestion is 
perfectly internalized and the airports charge w i l l be below marginal cost (and probably 
below zero). The third term in fact amounts to subsidize firms with market power in order 
to increase social welfare by diminishing allocative inefficiency. The implicit assumption 
is, evidently, that there is no other mechanism in place to control this market power. Note 
that i f K is fixed, the market power effect decreases as N grows while the congestion effect 
increases. When K is not fixed, this is expectable but not clear cut, because K w i l l change 
with N as well . In fact, the signs of dQw IdN, dKw IdN and dPw IdN cannot be 
determined a priori. 

The congestion term was first found by Brueckner (2002). Pels and Verhoef (2004) later 
pointed out that the market power term was also needed (Brueckner acknowledged this, 
though, by stating that i f market power was strong, the pure congestion charge may actually 
be harmful). There are some differences between Pels and Verhoef s result and the result 
here, however: (i) in Pels and Verhoef s model (and in Brueckner's), a regulator would 
charge a toll equal to the second and third terms in (4.23). Here, it is the public airport that 
distorts marginal cost pricing by an amount equal to that toll; (ii) they only considered a 
duopoly in a homogenous Cournot setting while here there are N firms in a differentiated 
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Cournot setting; (iii) they assumed a delay function that was linear in traffic while here it is 
not; (iv) they assumed a fixed capacity while here capacity is not fixed. Hence, it can be 
seen that their main insight regarding price expands to a more general case. 

A s for capacity, public airports w i l l add capacity until the costs of doing so equate the 
benefits in saved delays to passengers and airlines. Clearly, this capacity decision is 
different from the decision (a system of) private airports make, as they care about extra 
revenues and not extra social benefits (Spence, 1975, provided this insight). This result 
differs from what was obtained by Oum et al. (2004) as they found that private and public 
airports followed the same capacity rule, and hence it was concluded that private airports 
set capacity levels efficiently for the traffic they induced through pricing. The divergence is 
caused by the fact that their set-up only holds for a perfectly competitive airline market, as 
discussed in Section 4.2.3. In effect, i f one replaces in the private airport capacity rule, 
(4.21), the marginal value of capacity by its full expression, i.e. 

dP 
6KU 

= -(aS + /3) Q 
N 

UQK ^ K one can see that, i f N —> ° o , then the capacity rules 

(4.21) and (4.24) do coincide. 

How does social welfare change with A7? Differentiating SW evaluated at optimal Q and K 
with respect to N, and applying the envelope theorem we get: 

dSW _ dSW 
dN ~ ddN 

(B-E)S2Q2_ + Sg/Q}Q 
2 A T N 

(4.25) 

The first term on the right hand side is non-negative while the second is negative. It can be 
seen that when differentiation is weak, (4.25) may be negative implying that it would be 
better, in a social welfare sense, to have one airline. This may appear surprising but the 
explanation is simple: with both market power and the congestion externality controlled, as 
it is the case here, a monopoly airline provides a higher frequency than each airline in 
oligopoly, thus diminishing schedule delay cost, which increases demand. When 
differentiation is strong, (4.25) would probably become positive. In that case, the expansion 
of demand generated by a new firm wi l l overweight the increased schedule delay cost due 
to reduced frequencies. The notable thing is that, in this model, with 'enough homogeneity' 
a monopoly airline is optimal but there is no need to regulate it: the public airports system 
would subsidize the airline to induce the optimal quantity (but there is still the issue of 
budget adequacy). These results were not obtainable in Pels and Verhoef s model because 
they only considered a homogenous duopoly and no schedule delay cost. Brueckner did 
considered N firms, but (4.25) would have always been zero in his case because his model 
featured homogeneity and no schedule delay cost. 

W e compare now the system of private airports and the system of public airports. 
Regarding price, we know the S P A price w i l l be above marginal cost; the W price may be 
above or below marginal cost depending on whether the congestion effect or the market 
power effect dominates. M a y it happen that private airports charge less than public airports, 
actually inducing more traffic? The problem is that comparisons are complex because 
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quantity (prices) and capacities are chosen simultaneously. A way to make comparisons 
feasible is to assume first fixed capacity. 

Proposition 4.1: For a given K, the system of private airports w i l l induce fewer flights than 
the system of public airports or, equivalently, it w i l l charge a higher price. 

Proof. See appendix B.7 . 

Proposition 4.1 indicates that it w i l l never happen that the congestion effect leads to public 
airports that have smaller traffic than private airports; allocative inefficiency w i l l always be 
in the form of restricted output. A s explained in Section 4.1, it has been argued that this 
inefficiency would not be too important because the price elasticity of airports' demand is 
low. So, even i f the price increases importantly, the actual quantity would not decrease as 
much. This assertion cannot be confirmed or negated with Proposition 4.1, but something 
can be said even at this point: observed price elasticities are not necessarily good forecasts 
of the value the price elasticity w i l l attain under other circumstances. The contention would 
be true only i f the price elasticity of airports demand is constant, something rather unlikely. 
For example, the efficient pricing rule in (4.23) has probably not been implemented in any 
airport, so we can hardly know what price elasticity value it would induce. More 
importantly, monopolies price in the elastic range of the demand. Thus, while it may be true 
that the price elasticity is low under the current pricing system (say, pure marginal cost, 
which as seen is not the efficient price), the system of private airports would price so to get 
into the elastic range of the demand, something that may indeed induce important allocative 
inefficiency. This issue w i l l be further discussed under the light of the numerical 
simulation. 

The reasoning regarding the price elasticity and the allocative inefficiency, also fails to take 
into account that a private airport would choose a different capacity than a public airport 
would. How can capacity decisions be compared? Various cases can be distinguished. First, 
quantity and capacity are defined simultaneously in a system of equations. We could 
therefore compare actual capacities and quantities. A more interesting question is, what 
distortions, i f any, arise on the capacity side when the (well known) monopoly pricing 
distortion is taken into account. How would the S P A capacity compare to constrained social 
welfare maximization where monopoly pricing is taken as given? Is the distortion in 
capacity a mere byproduct of monopoly pricing? To analyze these two cases, we first 
examine the transposed of Proposition 4.1, i.e. what happens with K when Q is given (e.g. 
the airline market is frequency regulated). In these analyzes, the reader w i l l find strong 
similarities with Spence (1975) examination of the provision of quality by a monopolist. 
Indeed, under the current modeling, K can be seen as a measure of quality. Spence's 

Proposition 4.1 states that, i f d2P/dQdK > 0 , then a monopoly would oversupply capacity. 
However, Spence's insights -although pervasive- do not apply here directly even though 
we are in a case in which the above derivative is indeed positive (see 4.10). The problem is 
that in this case, the firm that has to choose quality provides an input to a downstream 

66 



oligopoly and not a final product. Moreover, in the downstream (final) market, there are 
externalities in both production and consumption. Hence, a new proof is required. 2 0 

Proposition 4.2: For a given Q, the system of private (SPA) airports w i l l oversupply 
capacity with respect to the system of public airports (W). 

Proof: See appendix B.8. 

A s for actual capacities and quantities, from Proposition 4.2 it is clear that, i f for a given 
capacity the output restriction of the system of private airports is not too important, i.e. 
QSPA(K) ~ Qw (K) (these denote quantity rules for given K), then private airports' 
capacities w i l l be higher than the W ones. If the output restriction is severe, 
QSPA(K) « Qw (K), then the result is reversed. The low price elasticity reasoning then is 
also important here because it has a counterpart in terms of capacity. 

To analyze optimal social welfare capacities under monopoly pricing, consider the 

following constrained SW function, SW(K) = SW(QSPA (K)), and maximize it with respect 

to K (recall that K\=Kz=K). How does the second constrained social welfare capacity, Kw , 
compare to KSPA ? Differentiating and evaluating at KSPA we get 

dSW 
dK 

dSW dQ (K) 
dK + • 

dSW 
dK 

(4.26) 

We are interested on the sign of (4.26). If it is positive, then constrained social welfare 
capacities are larger than the S P A ones. The first derivative on the right hand side is always 
positive by Proposition 4.1; the second one also i s . 2 1 The third derivative can be rewritten 
as dSW/dK\QSPA ^ S M ) -where KSPA(Q) is the S P A capacity rule- showing that it is 

negative by virtue of Proposition 4.2. Therefore, the sign of (4.26) is not determined a 

priori: we cannot say whether Kw is below or above KSPA. However, i f 

QSPA(K) « QW(K), then KSPA > Kw because the first derivative on the right hand side of 

(4.26) would be close to zero by first-order condition in the (unrestricted) max SW case, 

and (4.26) would be negative (of course, we would also have KfA > K™). So, i f it was 

Something else that is worth noting is what is required to obtain the positive sign of the cross derivative 
of P. According to Spence, one way such a result may arise is consumers' heterogeneity; they would differ in 
their marginal willingness to pay for quality. A positive sign for the derivative shows that the marginal 
willingness to pay for quality of the marginal consumer is higher than for the average consumer. Here, 
however, things are different; both passengers and airlines are identical -they all care in the same way about 
congestion and therefore about capacity-, but the marginal consumer is not defined directly by differences in 
willingness to pay but by an equilibrium in the downstream market. 

2 1 We have that dQSPA(K)/dK = -nQK lnQQ, but nQK =PQKQ + PK >0 (see equation 4.10) and 

xQQ <0. 
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true that private airports induce small allocative inefficiencies, this would mean that private 
capacities would be too large, even in a second best sense. If QSPA (K) « Qw (K), then the 

positive terms in (4.26) are more likely to dominate the negative one, and Kw may be 

above KSPA : i f the system of private airports restrict output severely, and therefore has 

smaller capacities, the public airports, when forced to price as the private system, would 

increase its capacity departing from AT5™, as this directly benefits the other two parties, 

airlines and passengers. Overall, we can only say that, probably, the monopoly of private 
airports does induce distortions in capacity, which are in addition to pricing distortions. But 
whether this distortion is under or overinvestment can be unveiled only through numerical 
simulation, which is done in Section 4.4. 

4.3.4 Maximization of Joint Profits: Airlines and Airports 

There are at least two reasons why it is interesting to look at this case. First, it has been 
argued that regulation may be unnecessary - i n that airport charges may be kept down and 
capacity investments may be more efficient- if, on one hand, airlines were allowed to have 
a stake at the airport or i f deeper collaboration between airlines and airports was allowed 
and encouraged, or, on the other hand, i f airlines had enough countervailing power 
(Beesley, 1999; Condie 2000; Forsyth, 1997, 2003; Starkie, 2000, 2001, 2005; Productivity 
Commission, 2002; C i v i l Aviation Authority U K , 2004). The maximization of joint profits 
emerge then as an obvious way to analyze these assertions. It would be the best that can be 
achieved i f collaboration was allowed, while countervailing power would have an effect 
only on the division of profits. There might be a myriad of implementation problems 
though, as recognized in the literature (e.g. Condie, 2000; Starkie, 2005). We do not intend 
to model these problems here but, instead, to use the maximization of joint profits as a 
benchmark. If the outcome of the benchmark is deemed acceptable, then it can be later 
discussed how actual implementation would deviate from i t . 2 2 A second reason why it is 
interesting to look at the maximization of joint profits is because through a simple pricing 
scheme - two part tariffs-, that outcome is obtained in a non-cooperative fashion. Wi th two-
part tariffs, airports not only charge a per-flight price but they also charge a fixed-fee to 
each airline. Airlines then compete as in Section 4.2 but with this fee added to the cost 
function, which does not affect their quantity decisions but only whether they operate or 
not. The outcome is exactly that of maximization of the sum of profits: the system of 
private airports tries to maximize profits of the chain and then captures airlines' profits 
through the fixed fee. This is well-known in the vertical control literature and is somewhat 
surprising that almost no author has mentioned it (the only exception we are aware of is 
Borenstein, 1992). The difference with the usual setting is that here the upstream company 
has a quality (capacity) that matters. 

This case is denoted JP, for joint profits. Using airlines' aggregate profit in (4.12), we set 
up the problem as: 

For a discussion about potential strategic coalitions between airlines and airports, see Albers et al. 
(2005). 
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(4.27) 

First-order conditions yield 

P = 2C+ (N-l) 
N 

(aS + 0)Q£DH

Q + 
h 

(N-1)ES2Q 
N 

(4.28) 

-Q{c$ + p) 
dD(Q,Kh) — = r h=l,2 (4.29) 

Again, second-order conditions do not hold globally and Ki=K2=K at the optimum. The 
price charged by the system of private airports -the variable part in the case of a two-part 
tariff-, has three components, each one related to a different externality. First, it has 
marginal cost to avoid the vertical double marginalization problem - a vertical externality to 
the vertical structure-, which arises in the S P A case. Second, it adds a charge equal to the 
uninternalized congestion cost of each carrier, a horizontal externality. Third, it adds a term 
to fight the business-stealing effect, a horizontal externality typical of oligopoly: firms do 
not take into account profits lost by competitors when expanding their output. The first two 
components are on line with maximization of social welfare while the third moves in the 
opposite direction; it destroys competition downstream instead of attacking airlines' market 
power. The final outcome is indeed that of cooperation between competitors in the airline 
market. 

This result, which has not been obtained in the airport pricing literature before, has different 
intuitions depending on why the maximization of joint profits was the relevant case. Wi th 
two-part tariffs, the private airports use the variable price to destroy competition 
downstream in order to maximize the profits of airlines, which are later captured through 
the fixed fee. The process is known: the fixed fee allows the marginal price to act only as 
an aligner of incentives, relieving it from the duty of transferring surplus as well . When the 
max joint profits case arises because of collaboration between airlines and airports, what 
happens is that airlines would like to collude in order to increase profits, but fail to do so 
because of the incentives to defect on any possible agreement. What they manage to de 
here, however, is to 'capture' an input provider to run the cartel for them. B y increasing the 
price of the input, the input provider induces the collusion level of output. Here, the price 
increase takes into account both, the congestion externality and the business-stealing effect. 
Note that with N=l, there is no business-stealing effect and congestion is perfectly 
internalized by the monopolist; consequently, the last two terms vanish. Also , i f airlines 
were completely differentiated, i.e. E=0, there would not exist the business-stealing effect 
but congestion would still need to be internalized. The upstream firm is rewarded with part 
of the profits, which is where bargaining power enters the picture. 2 3 Now, despite the fact 

2 3 This idea of an upstream firm running the cartel for the downstream firms has been discussed in the 
vertical control literature and, particularly, in the input joint-venture case. For example, Shapiro and Will ig 
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that the result is as i f airlines collude, this is not necessarily worse for social welfare than a 
system of private airports charging linear prices as in S P A because, here, two other harmful 
externalities are dealt with, the vertical double marginalization and the congestion 
externality. The final outcome is indeed closer to the public case as shown below. A s for 
capacity decisions, it can be seen that the rule is the same as in the public case. This 
happens because this is the capacity that maximizes downstream profits as well (for a given 
0 -

The signs of dQJP/dN and dKJP/dN cannot be determined a priori but we can know how, 
in equilibrium, joint profits change with N. For this, differentiate TT+Q, evaluated at optimal 
Q and K, with respect to N and apply the envelope theorem: 

d(7T + ®) (B-E)S2Q1 , p ,(Q} 
dN N' 

•+Sg' Q 
(4.30) 

N2 

The analysis is similar to the social welfare case. When substitutability is weak, (4.30) may 
be negative so joint profits would be maximized with a monopoly airline: airports would 
have an incentive to let a single airline dominate. This may be facilitated i f airlines and 
airports are encouraged to collaborate, as the airports may try to deal with only one airline 
and, together, foreclose entry to other airlines. In the two-part tariff case, the airport would 
extract all the profits of the monopoly airline through the fixed fee. What is remarkable is 
that for the S P A case, the larger the N the better, irrespective of the degree of 
substitutability. This was Borenstein's (1992, p.68) insight: he was critic about 
privatization of airports because, among other things, "without competition from other 
airports, an operator's profits would probably be maximized by permitting dominance of 
the airport by a single carrier and then extracting the carrier's rents with high facility fees". 
His comment is supported by these results but, in this model, airport domination by a single 
airline is not necessarily harmful. Social welfare may actually increase because, for A M , it 
is still true that the congestion externality is internalized and that there is no competition, as 
with monopoly. But a monopoly wi l l offer a frequency even higher than the frequency 
offered by each airline in the coordinated case, reducing schedule delay cost. 

When airports are relatively indifferent between N=l or higher, the implementation 
problems mentioned before may play a role. In the case of collaboration between airport 
and airlines, it may be easier for the airports to coordinate actions with only one airline, but 
it may be also true that this could increase the airline's countervailing power. Wi th two-part 
tariffs, however, airports may still prefer to let a single airline dominate even i f (4.30) is 
slightly positive because the pricing rule becomes simpler: (i) airports do not need to 
estimate the second and third terms of the pricing rule (something indeed difficult); (ii) they 
would need to worry about assessing the right fixed fee for only one firm. This shows that 

(1990) conjecture that input joint-ventures can facilitate collusion and push a market toward the monopoly 
outcome. Chen and Ross (2003) formalize this. If airport provision was seen as an input joint-venture by the 
airlines, our results show two things in addition to what Chen and Ross found. First, that i f there are 
externalities, the input price is, additionally, used to force their internalization by downstream competitors. 
Second, that when marginal costs are not constant downstream, the outcome is not as in monopoly or a 
downstream merger, but as in a cartel. 
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recognizing the scope for vertical control in airport pricing is important. Two-part tariff is 
the simplest form of vertical control and even this pricing mechanism has important and 
rather unexplored consequences on the airline market. 

We can now turn to comparisons. They are summarized through the following 
Propositions: 

Proposition 4.3: For a given K the JP airports wi l l : (i) induce fewer flights than the W ones 
(ii) Induce more flights than the S P A ones 

Proof. Part (i) is direct because PJP(K)>PW(K) and dQ/dP<0. The proof of (ii) is 
analogous to the proof of Proposition 4.1 (in appendix B.7). • 

Thus, for a given capacity, JP airports induce a smaller allocative inefficiency than S P A 
airports, showing that the proposal of increased collaboration is an improvement. How 
strong this allocative inefficiency would be cannot be unveiled until a parameterization is 
chosen; however, it can be easily pictured that it may not be small since in this case 
competition downstream is absent while in the public case, market power downstream is 
controlled. 

Proposition 4.4: For a given Q, the JP airports w i l l : (i) have the same capacity as W 
airports (ii) Have less capacity than S P A airports. 

Proof: (i) is direct as they have the same capacity rule, (ii) follows from Proposition 4.2 and 
(i). -

Proposition 4.5: A s for actual capacities and quantities, JP airports w i l l induce fewer 
flights and wi l l have smaller capacities than W airports. 

Proof: See appendix B.9 

A s before, whether actual JP capacities are below or above S P A capacities w i l l depend on 
whether the output restriction of S P A airports, with respect to JP, is severe or not. 

Next, it has been argued before that a capacity rule such as the one JP airports follow would 
be efficient because it is identical to the public one so, for a given Q, capacity w i l l be set 
efficiently (Oum et al. 2004). The question we ask now is different: do JP airports induce 
distortions in capacity that go beyond what is induced only by pricing? To analyze this we 
look for constrained optimal capacities, by maximizing social welfare subject to the 
restriction of JP pricing. It can be shown that. 

Proposition 4.6: The JP airports undersupply capacity with respect to optimal social 
welfare capacities under JP pricing (despite having the same capacity rule). 

Proof: See appendix B.10. 
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4.3.5 On the budget adequacy of public airports 

The comparison between private and first-best public airports is very useful as a 
benchmark, yet budget adequacy of public airports is evidently important for policy 
making. The issue of budget adequacy was explicitly considered by Zhang and Zhang 
(2003) and Oum et al. (2004), but in models that only looked at the airport market, with 
social welfare functions that are valid only i f the airline market is perfectly competitive. On 
the other hand, in the airport pricing literature that takes into account the vertical relation 
between airports and airlines, airports profits are usually not considered in the social 
welfare function; only passengers' surplus and airlines profits are included. For example, 
Brueckner (2002) and Pels and Verhoef (2004) were interested in the toll that some airport 
authority has to charge to make efficient use of installed capacity, so whether revenues 
would cover costs or not was not examined. 

A s is evident from the analysis of first-best practice in Section 4.3.3, when N is small it is 
very l ikely that public airports would run a deficit because, in this case, it would be optimal 
for airports to subsidize the airlines (the market power effect dominates the congestion 
effect). Pels and Verhoef argued that when subsidies are optimal but unfeasible, it would be 
optimal to set the toll to zero, which in this model is equivalent to airports charging 
marginal cost. However, the analysis of the joint maximization of airports' and airlines' 
profits in the previous Section contained and important lesson: budget adequacy of public 
airports may be achievable through a fixed fee. Since lump-sum transfers w i l l not affect 
airlines' marginal decisions, the airports may use the efficient pricing and capacity rules -
which may include actually paying airlines to land-, and then collect the money necessary 
to cover their expenses through a monthly facility fee. This would be a sort of Loeb-Magat 
mechanism, which has also been suggested for the access problem to telecommunications 
networks (Laffont and Tirole, 2000). Yet, as appealing as the mechanism may be, there is 
still no guarantee that two-part tariffs would enable cost recovery, because airlines may not 
make enough money to actually cover the airports' expenses. To be sure that this would be 
the case, the restriction n + O > 0 would need to be included. The cost recovery two-part 
tariff pricing and capacity rules, case that we denote by C R T , are easy to obtain. The 
capacity rule would be the same as in W and the JP cases (equations 4.24 and 4.29), while 
the pricing rule is: 

pCRT _ M pJP ( 1 pW 

1 + JU 1 + JU 

N V (l + //)iV 

Where ju > 0 is the Lagrange multiplier of the restriction, which captures the severity of the 

constraint. Here, ju balances the charge between the efficient first-best price and the JP 
price, enabling the airlines to make enough money to cover the airport costs through the 
fixed fee. 
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But, what i f two-part tariffs are unfeasible? Note that setting the toll to zero, that, is 
charging marginal cost, would not be enough to cover airports costs even i f the marginal 
cost function is flat, because the airport has to pay for the capacity (see Zhang and Zhang, 
1997). In this case, the less efficient alternative of Ramsey-Boiteux pricing is called for. 
Formally, to ensure cost recovery using a linear price, the restriction that has to be 
considered is n > 0 . This case, which we denote by C R L , is characterized by the following 
pricing and capacity rules: 

pCRL _ X ,SPA 1 

l + X 

= 2C+-
X 

1 + X 

P 1 

l + X £p 1 + X 
(N-l) 

N (aS + P)QlZDh

Q- k t 

h N 

h BS2Q^ 
Q 

... y 

(4.32) 

Q(aS + P) dD(Q,Kh) X dP _ 
l + X l + X dKh 

h=l,2 (4.33) 

Where X > 0 is the Lagrange multiplier of the restriction and, obviously, X>ju 

4.3.6 Independent Private Airports 

So far, there has been no apparent need to have two airports in the model. We have them 
because in many cases the idea is to privatize airports independently and not in a system, 
and we would like to know what the outcome of this may be. However, there are some 
aspects here that were not present before and that need to be defined. First, do airports 
choose prices or quantities? This made no difference before but now it does. Given that 
airports' direct demands are Ql(Pi,P2,Kl,K2) = Q2(Pl,P2,Ki,K2) = Q(Pl+P2,Kl,K2), 
we take prices as tactical variables, so airports behave as Bertrand oligopolists with 
complement products. Second, are capacities and prices chosen simultaneously or 
sequentially, Kh first and then Ph1. The first case is usually called open-loop, the second 
closed-loop. In the closed-loop, the overall game has three stages as originally defined; in 
the open loop it has two. Let us look first at linear prices in the open-loop case. We denote 
this case IPA, for independent private airports. Airports choose Ph and Kh simultaneously in 
a non-cooperative game. Each airport's program is 

max*" =Qh(Pi,P2,Kl,K2)Ph-C(Qh)-Khr, h=l,2 (4.34) 
Ph'Kh 

A necessary condition for existence of equilibria is that C is not too concave, something 
that has been assumed throughout. If this is the case, it can be shown that prices are 
strategic substitutes. We look for symmetric equilibrium. Interest lies on the sum of airport 
charges, P, rather than individual charges. First-order conditions and imposition of 
symmetry leads to 
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P = 2C+2— (4.35) 
£P 

Q^T = r, h=l,2 (4.36) 

(4.35) is to be compared with the S P A case in (4.20); clearly PIPA > P 5 ™. This was 
expected: it is the result of the horizontal double marginalization problem that arises in 
oligopoly when outputs are complements. In these cases, competition is harmful for social 
welfare. Capacity rules are the same but obviously actual capacities w i l l be different. 
Hence, independent private airports induce fewer flights and have smaller capacities than a 
system of private airports. From Propositions 1 to 4, we have that: 

- For given K, Qw (K) > QJP (K) > QSPA (K) > QIPA (K). 

- For given Q, we w i l l have that, KJP (Q) = Kw (Q) < KSPA (Q) = KIPA (Q). 

- For actual capacities and prices, QW>QTPT, QSPA>QIPA, KJP <KW and 

K'PA <KSPA. 

In the closed-loop game, where airports first choose capacities (simultaneously) and then 
prices, airports over-invest in capacity par rapport to the open loop. Qualitatively (a full 
derivation is in appendix B . l 1), what happens is that, in the three stage game, investment in 
capacity makes an airport tough: it leads to an own price increase, which hurts the other 
airport. Since in addition prices are strategic substitutes, increasing capacity increases own 
profits. Using the terminology of Fudenberg and Tirole (1984), airports over-invest in 
capacity following top-dog strategies. This leads to higher prices than in the open loop, but 
the overall effect on traffic is unclear. 

What i f the independent private airports collaborate with the airlines? In this case, the 
relevant problem is each airport maximizing its profit plus the profits of airlines, given that 
the other airport is doing the same. The outcome of this is the same as i f airports, 
individually, charge two part tariffs (in an open-loop setting). We denote this case DP . 
Solving the game, we get the following pricing and capacity rules (see appendix B.12) 

P = 2 C + 2 ^ ( a S + /ML Di + 2(N~l)fQ (4.37) 

-QiaS + fi)dDf'Kk)=r ,h=l,2 (4.38) 

Jointly, individual airports using two part tariffs or collaborating with airlines charge more 
than a system of private airports using a two-part tariff or collaborating with airlines 
(except when N=\). The horizontal double marginalization also arises here: each airport 
tries to correct externalities on their own and, as a result, they jointly overcharge for 
congestion and the business stealing effect. Capacity rules on the other hand are as in JP, 
therefore comparisons between this case and the JP case is analogous to the comparison 
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between JP and W . Finally, whether there is over or under-investment in the close-loop 
cases cannot be determined analytically. 

4.4 Numerical Simulations 

The need for numerical simulations arises from three facts. First, since the move towards 
unregulated private airports is only a proposed move, which has not been implemented at a 
large scale, there is no real data to conduct an empirical analysis. Second, in this model, 
comparative statics and analytical comparisons were not conclusive in all cases. For 
example, it was not possible to know how Q, K and P change with N, or how S P A actual 
capacities and prices compare to W ones. A n d third, even when analytical results were 
obtainable, they were necessarily qualitative. For example, JP capacities and prices are 
below W ones, but by how much? We resort to simulation to shed light on these types of 
questions. We use the parameter values in Table 4.1. 

Table 4.1: Parameter values for the numerical simulation 

Demand Airlines Airports 

a 40 A 2000 S 100 r 10000 

P 3000 B 0.15 N varies C 2000 

y 4 E 0.13 c 36000 

For the schedule delay cost, it is assumed that (a) and (b) in Section 4.2 hold, so that the 
schedule delay cost function is only defined by yand rj; we impose 77 equal to one. 2 4 We 
consider a constant airport operational marginal cost, implying that economies of scale (if 
any) arise from the presence of fixed costs. We do not define a value for these so that 
airports' profits below are net of the fixed costs. It is not our intention to portray real 
aviation cases with these parameters but, rather, to obtain insights about what are the 
consequences of different ownership and pricing schemes; in fact, a two airports system is 
rarely the usual case. We did try, however, to be as reasonable as possible with the 
parameterization, by drawing data and values from other studies. 2 5 Relative comparisons 

2 4 As explained in footnote 11, i f passengers' desired departure time is uniformly distributed along the 
day, then assumption (b) holds and 77=1/4. We chose a larger n because we wanted to capture the fact that, in 
some cases, passengers cannot take the scheduled flight they would like to since they are already sold out. 
Taking 77=1/4 or n=l though, will analytically only affect the value of the air ticket t, not P, Q or K. 

2 5 The values of some of the parameter may be justified as follows: For a, Morrison and Winston (1989, p. 
90) empirically found a value of $45.55 an hour in 1988 dollars; for y, they found a value of $2.98 an hour in 
1983 dollars (p. 66). For fi, Morrison (1987, p. 51 footnote 20), finds that the hourly extra cost for an aircraft 
due to delays is approximately $1,700 (resulting from 3,484 - 18*100) in 1980 dollars. For S , recall that it 
reflects the product between aircraft size and load factor. In North America, the average plane size in 2000 
was 159 (see Swan 2002, Table 2); considering in addition an average load factor of 65% (see Oum and Yu, 
1997, p.33) we obtain a value for S of 103.35. Regarding airlines' operational per flight cost c, Brander and 
Zhang (1990) proposed the following formula for the marginal cost per passenger in a direct connection: 
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between results are probably more enlightening that the individual results by themselves, 
although previous results in the literature (discussed below) confirm the plausibility of the 
parameterization. 

Table 4.2 summarizes some of the results obtained. It has both, variable-capacity and fixed-
capacity cases; the latter, in order to better see whether the argument that says that 
allocative inefficiency would be small with privatization holds or not. When capacity is 
fixed, it was set at the socially optimal level but choosing it otherwise does not change the 
qualitative conclusions. When airports are independent (IPA and U P cases), results are for 
open-loop games. Social welfare is presented in terms of percentages rather than dollars. 
Second order conditions hold in all cases. A s reading directly from Table 4.2 is a rather 
difficult task, we highlight below what we deem are the main insights gained from the 
numerical simulation. 
1. In the system of private airports (SPA) case, both Q and K increases with N; delays also 

increase. Airports charges, P, almost do not change, leading to a t that decreases with N 
because of increased competition downstream. Airports profits increase with N as 
analytically showed, but social welfare also does. P is fairly large in all cases and way 
above marginal cost. This, however, is on line with a previous result: Morrison and 
Winston (1989) found that the difference between the monopoly and the efficient per-
passenger landing fee was $498.4. Multiplying this by 5=100 lead to a difference of 
$49,840 dollars per flight. Since they did not formally consider the airline market, their 
results are valid for perfect competition in the airline market. In our case, the difference 
between S P A and W when #=10 is $43,505 per landing (recall that P is the sum of 
charges at both airports), which is comparable to theirs. 2 6 

2. For public airports (W), Q and K increase with N but delays decrease, as opposed to the 
S P A case. P increases with N: as N grows, the congestion effect starts dominating the 
market power effect. When N=l, congestion is perfectly internalized by the airline 
without the need for correction from the part of the airports, and market power is at its 
ceiling; the need for subsidy is hence at its maximum, as is evident from the negative 
and large value of P. The charge increases with N and for N large enough subsidies are 
no longer required. Subsidies required when N is small may appear large but are 
consistent with Pels and Verhoef (2004) results. 2 7 It can also be seen that SW increases 
with N: differentiation dominates the schedule delay cost effect in equation (4.25). 
When homogeneity is increased (not shown), the result reverses as explained. Finally, 
air tickets decrease marginally with N, due to increased schedule delay costs because of 
depressed frequencies. 

cpm(DJ AFL) 8 D; where cpm is the cost per passenger-mile, D is the origin-destination distance, AFL is the 

average flight length of the airline and 8 is the cost sensitivity to distance. The following were the average 
values for American and United Airlines in the period 1981-1988 (see Oum et al., 1993): 
cpm=$0.12/pax/mile, AFL=115 miles and 6=-0.43. If we use AFL=800, cpm=$0.20 and £>=1000 (e.g. 
Chicago-Austin), and multiply the result by 2S to reflect the operational cost of a return flight, we obtain a 
value fore of $36,340. 

2 6 This, despite the fact that they used a different delay function (theirs was estimated and homogenous of 
degree one on Q and K), and that their airport's demand was actually estimated. 

2 7 In the monopoly airline case, they obtained a toll (congestion plus market power components in the 
pricing rule 21) which was negative and equal to $340,000, and an air ticket of $1,393. Here, the subsidy 
equals $130,263 (marginal cost was deducted to obtain their toll) and the air ticket is $608.14. 
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Table 4.2: Results of numerical simulation 

N Type Q K P D t PS 7C SW 

SPA 21.92 31.21 93,629 0.076 1,665 360,368 798,224 1,340,397 2,138,621 40.15 

W 92.18 100.18 -134,263 0.115 608 6,372,189 14,599,332 -14,748,019 -148,686 100.00 

JP 45.85 51.48 4,000 0.158 1,300 1,576,519 4,080,700 -1,029,579 3,051,121 74.36 

1 CRL 42.92 53.71 29,024 0.074 1,350 1,381,798 2,985,054 0 2,985,054 70.17 

CRT 91.09 99.05 -131,008 0.116 624 6,222,620 14,278,419 -14,278,419 0 99.99 

IPA 11.62 17.78 123,352 0.106 1,817 101,304 252,124 822,021 1,283,695 22.25 

U P 45.85 51.48 4,000 0.158 1,300 1,576,519 4,080,700 -1,029,579 3,051,121 74.36 

SPA 36.10 45.52 93,533 0.084 1,500 890,628 719,011 2,321,856 3,040,867 57.44 

W 101.23 109.62 -33,201 0.110 608 7,001,866 5,800,933 -5,958,055 -157,122 100.00 

JP 50.36 56.27 61,129 0.152 1,299 1,733,133 1,606,429 1,751,761 3,358,190 74.38 

3 CRL 71.11 81.31 26,867 0.086 1,021 3,455,375 2,754,159 0 2,754,159 90.72 

CRT 100.08 108.42 -31,065 0.111 623 6,843,847 5,677,648 -5,677,648 0 99.99 

IPA 19.80 26.23 123,174 0.117 1,719 267,820 238,905 1,518,049 2,073,541 34.21 

UP 34.34 39.21 90,607 0.180 1,516 805,821 820,940 2,189,990 3,010,930 55.76 

SPA 46.41 54.67 93,389 0.103 1,378 1,421,451 363,240 3,055,011 3,418,251 68.27 

W 104.83 113.37 6,379 0.108 607 7,252,401 1,855,122 -2,017,987 -162,865 100.00 

JP 52.16 58.17 83,218 0.149 1,299 1,795,457 509,499 2,968,472 3,477,971 74.38 

10 CRL 91.84 100.71 25,934 0.103 779 5,566,250 1,410,818 0 1,410,818 98.41 

CRT 103.64 112.13 8,121 0.109 623 7,088,606 1,815,514 -1,815,514 0 99.99 

IPA 25.87 31.67 122,926 0.141 1,646 441,640 124,213 2,054,761 2,567,223 42.44 

U P 31.16 35.79 113,528 0.188 1,572 640,840 205,027 2,697,114 2,902,142 49.97 
Fixed capacity (at the socially optimal level) 

SPA 42.76 109.62 84,054.67 0.0058 1,414.86 1,249,429 914,925 1,230,779 2,145,705 49.60 

W 101.23 109.62 -33,200.87 0.1100 607.66 7,001,866 5,800,933 -5,958,055 -157,122 100.00 

JP 58.37 109.62 54,794.35 0.0104 1,201.25 2,328,119 1,708,355 772,470 2,480,825 70.26 

3 CRL 68.31 109.62 36,095.95 0.0151 1,065.09 3,188,313 2,344,470 0 2,344,470 80.83 

CRT 100.05 109.62 -29,206.49 0.0954 624.85 6,840,677 5,514,806 -5,514,806 0 99.94 

IPA 28.53 109.62 110,686.70 0.0032 1,609.47 556,042 406,238 850,949 1,257,186 26.49 

UP 44.35 109.62 81,072.63 0.0062 1,393.08 1,344,236 984,543 1,226,018 2,210,560 51.93 

SPA: system of private airports (linear price). W: system of public airports maximizing social welfare. JP: maximization of joint profits: airports and airlines (or two-part tariff). 
CRL: public airports with linear cost recovery pricing. CRT: public airports with cost recovery two-part tariff pricing. IPA: independent private airports using linear prices. HP 
independent airports maximizing own profit plus airlines' profits (or each airport with two-part tariff). 
Q: traffic K: capacity P: Airport charges D: delay t: air ticket PS: Passenger surplus <I>: Airlines profits 7t: Airports profits SW: Social Welfare 



3. Regarding the JP case, Q and K increase with N while delays decrease. P increases with 
N: as N grows, both the uninternalized congestion and the business stealing effects are 
more important, and they are not countervailed by changes in capacity. When N=l, the 
monopoly airline perfectly internalizes congestion and it obviously produces at the 
profit maximizing level so there is no need for corrections from the part of the airports: 
P is thus equal to marginal cost. A i r fares decrease marginally with N, due to increased 
schedule costs because of depressed frequencies (recall that competition is destroyed in 
this case). Joint profits increase with N: differentiation dominates the schedule delay 
cost effect in equation (4.30). When homogeneity is increased though, the result 
reverses so it would be better for the airports to let a single airline dominate. This is not 
harmful for society however as social welfare actually increases (results not shown). 

4. It can be seen that actual S P A capacities and quantity are way below social welfare 
ones. We are therefore in the case in which the S P A output restriction is severe: 
QSPA(K)«QW(K), implying that KSPA<KW. This is confirmed by the fixed-
capacity simulations. The main insight here is that the allocative inefficiency of private 
airports, i f capacity is exogenously decided, is by no mean small, leading to important 
dead-weight losses. The argument was that price elasticities of demand are low, but the 
problem with that assertion is that it assumed the elasticity is constant. Observed 
elasticities however, are not the elasticities that would arise under private (unregulated) 
ownership, or with the efficient prices derived in (4.23) because efficient prices have 
not been the rule. In fact, it is true that the price elasticity of demand when P is equal to 
the linear cost-recovery price is fairly low (around 0.14 in absolute value) but, still, 
allocative inefficiency is very strong. Traffic is even smaller when the private airports 
can choose capacities. But since there is less waste of resources, social welfare is higher 
when capacity is a decision variable. 

5. Comparisons between the S P A and the JP cases were not analytically simple. W e can 
now see that, in general, JP airports are less harmful for social welfare than S P A 
airports. They induce higher joint profits and consumer surplus -and therefore S W - , 
more traffic, higher capacities and smaller airfares. The differences decrease with N 
though, because in the JP case competition downstream is destroyed for every N while 
in S P A it is not. These findings support the idea that collaboration between airlines and 
a system of private airports leads to a better outcome. There are two important things to 
note however. First, the same outcome is obtained through vertical control by the 
airports; two-part tariffs are enough in this case. Second, and more importantly, JP 
airports' traffic and capacities, while higher than the S P A ones, still fall way off optimal 
ones, which reflects in large deadweight losses. It would be adventurous, to say the 
least, to conclude that with privatization and collaboration -or strategic agreements-
between airlines and airports, regulation becomes unnecessary. If anything, the outcome 
is closer to private unregulated airports rather than optimal ones. 

6. What about budget adequacy of public airports? A s expected, public airports charging 
linear prices (W cases) would run deficits and, although these diminish as the number 
of airlines increase, they are still sizeable when A ^ I O . In Section 4.3.5 we argued that, 
perhaps, two-part tariff would solve the problem. The simulation however shows that 
this is not the case: airlines do not make enough profits. Hence, the cost-recovery cases 
gain importance. It can be seen that cost-recovery two part tariff (CRT) falls extremely 
close to the first best, showing that i f two part-tariffs are feasible, even when one 
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considers budget adequacy, privatization induces important deadweight losses. If two-
part tariffs are unfeasible, then the relevant cases to be compared are S P A and C R L . 
Obviously the performance of private unregulated airports is better here, but they still 
induce about half the traffic they should, generating deadweight losses of about 30 to 
40%. 

7. When comparing delays, it can be seen that in almost all cases, S P A airports have the 
smallest delays. This issues a warning: congestion has been one of the main drivers of 
research in this area and proponents of privatization have argued that private airports 
would charge efficient congestion and peak load prices and would respond to market 
incentives for expansion. If one measures the result of privatization only by its effects 
on congestion, privatization may appear as a better idea than it actually is. Despite the 
smaller delays, we have seen that the private airports themselves would be substantially 
smaller both in terms of traffic and capacity. More importantly, social welfare would be 
substantially smaller. JP airports on the other hand, would have larger delays than the 
public airports. 

8. When airports are privatized individually (IPA and U P cases), the horizontal double 
marginalization problems visibly arise. Independent private airports charging linear 
prices (IPA), while still performing better than public airports congestion wise, are very 
small and induce the larger airfare and the smaller social welfare. For individual 
airports collaborating with airlines -or charging a two-part tariff-, something stranger 
happens: as N increases, the double-charging problem worsens: total airport charges 
increase with N faster than in the system case, making traffic and capacities actually get 
smaller as the number of airlines increase (resulting in important reductions of social 
welfare as N grows). 

9. Regarding constrained social welfare capacities (results not shown in Table 4.2), when 
N=3, i f public airports are forced to price as S P A , they wi l l increase capacity from 45.5 
to 59.1, which wi l l lead to a traffic of 41.2 instead of 36.1. It w i l l still be far away from 
the first-best capacity though, which was 109.6. Hence, S P A does induce an extra 
distortion: given that their restriction of output is severe, they undersupply capacity 
with respect to the second best. 

10. Finally, the insights do not qualitatively change with changes in the value of the 
parameters, although some numbers do. Specifically, different values for the demand 
parameters (A, B and E) and for r and for C were tried, since for these parameters there 
was less external information. It was found that the impact of changes in r and C" are 
quite small, while demand parameters impact on the levels but not on the order of the 
results. For example, taking A=5,000 and B = l , as in Pels and Verhoef (2004), and then 
taking E=0.8 and N=3, S P A traffic decreases from 36 to 18 and S P A capacity decreases 
from 45 to 24, while W traffic decreases from 101 to 50 and W capacity decreases from 
110 to 56. 

4.5 Final Comments 

Privatization of airports has been argued for on the grounds that private airports would 
implement more efficient congestion and peak-load prices, and would have better 
incentives to invest in capacity. Privatized airports have been subject to economic 
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regulation though, out of the concern that they would exert market power. But it has been 
argued that regulation may be unnecessary because a private unregulated airport would not 
induce large allocative inefficiencies since price elasticities are low, because potential 
collaboration between airlines and airports -or, alternatively, airlines countervailing 
power- would put downward pressure on market power, and because concession revenues 
would induce the airports to charge less on the aeronautical side. The aim of this paper was 
to build an analytical model where these ideas could be tested and other insights gained, 
since most of the literature on airport privatization has been essentially descriptive and 
empirical analysis are unfeasible because of absence of real data. 

A vertical setting was used to analyze airport privatization, both analytically and 
numerically. In the model, airports are input providers for the downstream airline market, in 
which airlines take airport prices and capacities as given. Our airline oligopoly model 
expanded on previous models on three aspects: it featured demand differentiation, schedule 
delay cost was included in the full price perceived by passengers, and had a particular 
emphasis on the importance of the number of airlines in the market. It was shown that these 
aspects have an important role on the incentives an airport has with respect to the 
dominance by a single airline. A t the airport level, the results showed a rather unattractive 
picture for privatization when compared to both the first- and second best. First, the idea 
that low price elasticities of demand for airports would induce small allocative inefficiency 
failed to take into account the fact that observed elasticities may be poor forecasters of 
elasticities in other settings, and that capacity would be chosen by a private airport in a 
different way than a public airport. Our results showed that private airports would be much 
smaller than efficient public airports in terms of both traffic and capacities, which was 
reflected in important deadweight losses. Second, the arguments that airlines countervailing 
power or increased cooperation between airlines and airports may make regulation 
unnecessary are, most likely, overstated. The benchmark of maximization of joint profits 
showed, on one hand, that airports exerting vertical control on airlines (two-part tariffs in 
this model is enough) leads to the same outcome. More importantly, while the vertical 
double-marginalization problem is solved and the incentives for investment in capacities 
are better aligned, competition at the airline level is destroyed. So, while the outcome is 
indeed better in terms of traffic, capacities and social welfare, it is still closer to the pure 
private case than to the public one. It seems bold to conclude from here then, that regulation 
is unnecessary, especially because any implementation problem, which would only worsen 
the outcome, was assumed away. The analysis of budget adequacy showed that two-part 
tariffs alone may not be enough to avoid deficit of public airports. However, cost recovery 
two-part tariffs fell very close to the first-best. In the event that two-part tariffs were 
unfeasible, we found that a cost recovery linear price (i.e. a Ramsey price) would still lead 
to a superior outcome. Finally, it was shown that things deteriorate further when 
privatization is done on an airport by airport basis rather than in a system, because airports' 
demand complementarities induce horizontal double marginalization problems. These arise 
with simple linear prices, two-part tariffs, and when airports strategically collaborate with 
airlines. 

We note that our model and its results apply to many other cases such as other 
transportation terminal (seaports; container terminals), railroad tracks and any vertical 
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setting where upstream quality (here measured by capacity) matters, although we resorted 
to a number of simplifications to preserve tractability. A few that could be relaxed in future 
research are: the fixed-proportions assumption, absence of concession revenues, continuous 
capacity and a single demand period (several independent periods is a trivial expansion so 
the relevant case to study would be interdependent periods). Another important 
simplification was assuming (round trip) travel between only two airports (notwithstanding 
that the literature usually focuses on a single airport's decisions). It allowed us to abstract 
from airlines' route structure choices, an endogenous decision which is central for cost 
minimization and strategic aspects of competition (See Oum et al, 1995; Jara-Diaz and 
Basso, 2003). The assumption has a direct effect on the analysis of privatization: the two 
airports in this paper do not face any kind of competition. In fact, we presented what can be 
seen as the worst case scenario, social welfare wise, for private airports: the two airports 
have demands that are perfect complements. Real competition between airports can emerge 
in two ways though. First, there may be Geographic Competition; airports in the same city 
area -such as the three San Francisco Bay area airports-compete for consumers in the same 
origin. Second, there may be competition for connecting passengers. When there is a 
network of airports (three or more distinct origin-destinations pairs), airlines can partly 
offset airports' market power through routing, something that would be taken into account 
by private airports when making decisions. Modeling these two types of competition seems 
to us the most important directions for future research, albeit they are complex ones. In our 
opinion, only with results from such models at hand, we w i l l have a better and more 
complete picture about the economic effects of privatization and how we should go about 
regulation. 
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5 SEQUENTIAL PEAK-LOAD PRICING IN A VERTICAL SETTING: THE 
CASE OF AIRPORTS AND AIRLINES 1 

5.1 Introduction 

During the last several years airlines and passengers have been suffering from congestion 
and delays at the majority of busy airports, and airport delays have become a major public 
policy issue. Since the early work of Levine (1969), Carlin and Park (1970) and Borins 
(1978), economists have approached airport runway congestion by calling for the use of 
price mechanism, under which landing fees are based on a flight's contribution to 
congestion. While congestion pricing is economically desirable in that it would induce a 
better use of existing runway capacity and hence reduces congestion, it has not really been 
practiced. The existing landing fees depend on aircraft weight, and the fee rates are based 
on the accountancy principle of cost recovery required usually for a public enterprise.2 

Airports have traditionally been owned by governments, national or local. This is changing, 
however. Starting with the privatization of seven airports in the U K to B A A pic. in 1987, 
many airports around the world have recently been, or are in the process of being, 
privatized. 3 One of the leading arguments for airport privatization is that privatised airports 
might well shift toward peak-load congestion pricing of runway services they provide to 
airlines, thus reducing delays in peak travel times (Poole, 1990; Gil len, 1994; Vasigh and 
Haririan, 1996). For example, Gil len (1994) argues that privatization does a better job of 
producing efficient runway pricing mechanisms compared to public ownership. 

Taken together, today's shortage of airport capacity has revived much of the recent 
discussions about peak-load congestion pricing and airport privatization. In this paper we 
carry out an analysis of peak-load congestion pricing for a private, unregulated airport, as 
well as for a public airport that maximizes social welfare. The comparison of the two cases 
then allows us to shed some light on their pricing policies and traffic allocations to the peak 
and-off peak periods. We find that compared to a public, welfare-maximizing airport, a 
private, profit-maximizing airport would charge both higher peak and off-peak runway 
prices, as well as a higher peak/off-peak price differential. A s a consequence, privatisation 

1 A version of this chapter has been submitted for publication. Basso, L .J . and Zhang A . (2006b) 
Sequential Peak-Load Pricing on a Vertical Setting: the case of airports and airlines. 

2 Airport charges include landing fees, aircraft parking and hangar fees, passenger terminal fees and air 
traffic control charges (if the service is provided by the airport authority), with landing fees being most 
dominant. The revenues derived from these charges are referred to as aeronautical revenues. In addition, busy 
airports derive significant revenues from non-aeronautical business, such as concessions and other 
commercial activities. As Daniel (2001) pointed out, landing fees in the U.S. traditionally recovered the 
"residual" costs -those remaining after all other revenue sources are full exploited, with the fee rate equalling 
the annual residual costs divided by the weight of all aircraft landing during the year. 

3 A number of major airports in Europe, Australia and New Zealand have recently been privatized, and 
airports in several Asian countries are in the process of being privatized. In the U.S., on the other hand, the 
airports that are used by scheduled airlines are virtually all publicly owned facilities run by an agency on 
behalf of the state or local government. No major U.S. airports have been privatized to date. Canada may 
represent a middle-of-the-road case in which airports recently devolved from direct Federal control to become 
autonomous entities and major airports, though still government-owned, are now managed by private not-for-
profit (but subject to cost recovery) corporations. 
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would lead to both fewer total air passengers and fewer passengers using the premium peak 
hours of the day for their travel, both of which reduce social welfare. Although those 
passengers who still use the peak period benefit from privatization, owing to less 
congestion delays, overall it is not economically efficient to have such a lower level of peak 
congestion, suggesting that airport privatization cannot be judged based on its effect on 
congestion delays alone. Our analysis also shows that whilst private, profit-maximizing 
airports w i l l always use peak-load pricing, somewhat surprisingly, a public airport may 
actually charge a peak price that is lower than the off-peak price. Here the public airport, on 
the surface, is not practicing the peak-load pricing, but such pricing structure is 
nevertheless socially optimal. 

We further investigate a case where a private airport strategically collaborates with the 
airlines so that it maximizes the joint airport-airline profits, since it has been often argued 
that greater airlines' countervailing power or more strategic collaboration between airlines 
and airports may improve efficiency of privatized airports by allowing a better alignment of 
incentives. The analysis shows that while its pricing practices would induce a collusive 
outcome in the airline market, it would induce greater total traffic and greater peak traffic 
than a pure (no-collaboration) private airport. Nevertheless, both figures w i l l still be smaller 
than those for a public airport. 

A s indicated above, the present paper investigates airport peak-load pricing (PLP) and 
analyzes both the price level and price structure (peak vs. off-peak). This is in contrast to 
the majority of airport pricing studies which did not address inter-temporal pricing across 
different travel periods. In these congestion-pricing studies, there is only one demand 
function (i.e., a single-period model) for the airport, which is obtained by aggregating the 
demands of many agents - i n this case, the airlines. Since airport runways are congestible, 
when an airline decides to schedule a new flight, it induces extra-delays on every other 
flight. The airline however would only internalize the delays it imposes on its own flights 
and not others. Congestion pricing then looks at the price the airport, or a regulatory 
authority, should charge to the airline for the new flight, in order for the airline to 
internalize all the congestion it produces (e.g., Morrison, 1987; Zhang and Zhang, 2003, 
2005; Pels and Verhoef, 2004; Basso, 2005). Notice that under congestion pricing, since 
time-varying congestion is absent, there is only one way for either the airport or the airlines 
to internalize congestion: raising prices to suppress the demands. In a P L P framework, on 
the other hand, excess demand problems arise because of the variability of demands during 
the reference times of the day. If the same price was charged throughout the day, there 
would be peak periods at which the demand would be much higher than at off-peak periods. 
Peak-load pricing looks at the optimal time-schedule of prices so as to flatten the demand 
curve and make better use of existing capacity. A s discussed below, both airports and 
airlines may engage in such demand spreading by using peak-load pricing. Note that in this 
P L P framework, the airport is still a congestible facility, which implies that in the resulting 
optimal price-schedule, prices at peak periods would still have to correct for uninternalized 
congestion: peak-load prices w i l l have a congestion pricing component.4 

4 As demonstrated in the text, the PLP-congestion pricing distinction is also important in that a single-
period congestion toll is not optimal unless it is charged on top of the optimal charge in the off-peak period, 
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Another major feature of our analysis lies in the basic model structure used, which has 
strong implications for peak-load pricing. Here an airport, as an input provider, makes its 
price decisions prior to the airlines' output decisions. This vertical structure gives rise to 
sequential P L P : The P L P schemes implemented by the downstream airlines induce a 
different periodic demand for the upstream airport, with the shape of that demand 
depending on the number of downstream carriers and the type of competition they exert. 
The airport then would have an incentive to use P L P as well , which in turn affects the way 
the downstream firms use P L P . Although several very useful models of airport peak-load 
congestion pricing have been developed (e.g., Morrison, 1983; Morrison and Winston, 
1989; Oum and Zhang (1990); Arnott, de Palma and Lindsey, 1993; Daniel, 1995, 2001), 
these studies considered P L P primarily at the airport level. Brueckner (2002, 2005), on the 
other hand, investigated P L P primarily at the airline level. Further, most of these studies 
considered only a public airport that maximizes social welfare, making no assessments 
about the effects of privatization on airport price structures. 

There is an extensive body of literature on peak-load pricing. The classical papers (Boiteux 
1949; Steiner 1957; Hirschleifer 1958; Will iamson 1966) focused on normative rules for 
pricing a public utility's non-storable service subject to periodic demands. Some of the 
usual assumptions were: (i) demand is constant within each pricing period; (ii) demand in 
one period is independent of demand in other periods; (iii) constant marginal costs; (iv) the 
length of pricing periods is exogenous; (v) the number of pricing periods is exogenous; and 
(vi) peak time is known. Many authors have since contributed to the generalization of P L P 
results by relaxing one or a group of these assumptions, including Pressman (1970), Panzar 
(1976), Dansby (1978), Craven (1971, 1985), Crew and Kleindorfer (1986, 1991), Gersten 
(1986), De Palma and Lindsey (1998), Dana (1999), Laffont and Tirole (2000), Shy (2001) 
and Calzada (2003). 5 However, the case of sequential peak-load pricing, be it for public or 
private utilities, has yet been analyzed. In the telecommunications research, for instance, 
Laffont and Tirole looked at P L P only at the upstream level (the network access charge) 
whilst Calzada considered P L P only at the downstream level. Because of this, we think our 
paper could be a contribution to the general peak-load pricing literature as well . 

The paper is organized as follows. In the next Section we set out the basic model. In 
Section 5.3 we analyze and characterize the output-market equilibrium, paying particular 
attention to the peak and off-peak derived demands for airport services. Section 5.4 
examines the airport's decisions and discusses how the airport ownership influences the 
peak and off-peak runway prices, traffic volumes, delays and welfare. Section 5.5 examines 
the case where a private airport maximizes the joint airport-airline profits. Section 5.6 
contains concluding remarks. 

which may not be the marginal cost. In other words, restricting the analysis to the toll that should be charged 
during the peak hours offers only a partial view of the problem. 

5 See Crew, Fernando and Kleindorfer (1995) for an excellent survey of the peak-load pricing literature. 
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5.2 The model 

W e consider a two-stage model of airport and airline behavior, in which N air carriers 
service a congestible airport. In the first stage the airport decides on its charges on airlines 
for runway services, and in the second stage each carrier chooses its output in terms of the 
number of flights. 

There is a continuum of consumers labelled by 0. Denoting Bh (0) the (gross) benefits for 

consumer #from traveling in period h, consumers' utility function may be written as: 

where x is a vector of products and Dh denotes the flight delay associated with travel in 
period h. We shall consider a discrete choice model in which the consumer chooses 
between three mutually exclusive alternatives, namely: h=p, peak period travel; h=o, off-
peak period travel; and h=n, not traveling. We assume that for any given 6, 

where Bn(0) is, for convenience, normalized to be zero. The inequalities say that i f travel 
was free and without congestion, the consumer would always prefer traveling to non-
traveling. Furthermore, with identical airfares and delays, consumers would always prefer 
traveling in peak hours of a day to off-peak travelling. Thus, peak travel and off-peak travel 
are vertically differentiated: Controlling for fares and delay costs, passengers regard a peak 
flight as a better product than an off-peak flight. This vertical-differentiation feature of air 
travel can arise i f the peak period represents the day's more desirable travel times than the 
off-peak period. Since people want to travel in those "popular" hours, the (unfettered) 
demand approaches or exceeds the capacity of the existing infrastructure, thereby resulting 
in (potential) congestion in the peak hours. Note that our formulation (5.1) is different from 
the one used in Brueckner (2002, 2005), in which he assumed a "single crossing property" 
in the sense that the benefit functions intersect at an intermediate value of 6, thus 
indicating that Bp(9) > Bo(0) for large values of 9but Bp(0) < Bo(0) for small values of 

0. The single-crossing condition was imposed to avoid a degenerate (corner) equilibrium in 
his analysis. 

A s is usual in the discrete-choice models, we solve consumers' optimization problem in 
two steps: 

where Px is the vector price of products x, ft, is the ticket price (airfare) of travelling in 

period h, and 1(0) is consumer ffs income. The first-step maximization leads to the 

U(x,Bh(0)-Dh) 

Bp(0)>Bo(0)>Bn(0) = O (5.1) 

ie p,o,n (5.2) 
s.t. Px-x + th<I(0) 
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conditional Marshallian demands, x (Px,I(0)-th,Bh(0),-Dh). Replacing these demand 
expressions in U we obtain the conditional indirect utility function, 
U (x*, Bh (0),-Dh) = Vh (Px, 1(0) -1h, Bh (0)-Dh). For simplicity we assume that Vh is 
linear and further, Bh (0) takes the simple linear form of Bh • 0, with Bh being constant, 
leading to: 

Vh=¥Px + A(I(0)-th) + Bh-0-aDh 

Condition (5.1) then implies Bp > B0 > 0 , indicating that consumers differ in their travel 

benefits, with small 0 indexing consumers with low benefit values. For simplicity, we 
assume 0 is distributed uniformly on © = [#;#] and normalize the number of total 
consumers to 0 - 0 , so the number of passengers with type belonging to [# t,02] is 
directly given by 02—0i. 

For the second-step maximization -comparisons of Vh for different h- we focus on the 
elements that determine the discrete choice (note that y/Px +Al(0) plays no role), obtaining 
a truncated conditional indirect utility function. Dividing by the marginal utility of income, 
A, and redefining #and or we then obtain: 

Vh(0) = Bh0-aDh-th (5.3) 

In (5.3), while 0indexes consumers according to their (gross) travel benefits, the (positive) 
parameter a represents the subjective value of time savings and so aDh represents 
monetary costs of delays to passengers. Note that our demand problem is identical to the 
one that w i l l result i f we fix 0 but allow the value of time a to have a distribution among 
consumers (in simple models with endogenous hours of work, the consumers' "opportunity 
cost" of time lost in delays is proportional to their wages). One could also argue that 0 and 
or are related (Yuen and Zhang, 2005), but we do not do this here. 

A s for the delay itself, the flight delay at period h, for h=p,o, may be given 
byD h = D(Qh;Lh,K), where Qh is the total number of flights in the period, Lh is the length 

(duration) of the pricing period, and K is the airport's runway capacity (measured in terms 
of the maximum number of flights that the airport's runways can handle per hour). In this 
paper we consider that K and Lh are exogenously g iven. 6 We further assume L0 is 
sufficiently long so that D(Q0;L0K) = 0 throughout the relevant range of our analysis. In 

other words, whilst the narrow peak period is congestible, congestion never arises in the 
broader off-peak period. 7 For the peak delay function, we make the standard assumption 
that Dp = D(Qp) is differentiable in Qp and 

The case of variable and endogenous capacity is examined in Basso (2005) and Zhang and Zhang (2006) 
in a congestion-pricing framework. 

7 This is similar to the two-period (peak/off-peak) formulation developed in Brueckner (2002). 
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(5.4) 

This assumption is quite general, requiring only that for given airport capacity, increasing 
peak traffic w i l l increase congestion of the peak period and the effect is more pronounced 
when there is more congestion; that is, for given capacity, the peak delay is convex in 
traffic volume. The assumption is certainly satisfied under a linear delay 
funct ion,D(Q p ;L p ,K) = 8• Qp /(LpK), -which has been used by, e.g., Pels and Verhoef 

(2004)- or the functional form suggested by Lave and de Salvo (1968), 

D(Qp; Lp, K) = Qp [Lp K(K - (Qp I Lp ))\x .8 

To obtain the consumer demands for peak and off-peak travel, we first note the following 
characteristics about the allocation of consumers: (i) i f consumer 6\ flies, then consumers 6 
> 6\ fly; (ii) i f consumer 6\ does not fly, then consumers 6 < 6\ do not fly; and (iii) i f 6* 
denotes the consumer who is indifferent between traveling in the peak and off-peak periods, 
then passengers 0 > 6* choose peak travel whereas passengers 6 < 6* choose off-peak 
travel. 9 Hence, i f we denote 6* the consumer who is indifferent between flying and not 
flying, (i), (ii) and (iii) above imply, in the case of an interior solution, that 
6<8f <6* <6 . We assume interior allocations for now but later shall find conditions on 
the parameters for this to hold. Using qn to denote the total number of passengers in period 
h (h=p,o), then qp=6-6* and qD = 6* -0f. 

Since runway fees are imposed by aircraft (flight), we need to transform the passenger-
based demands qp and q0 into per-flight demand functions. A s in Brueckner (2002), Pels 

and Verhoef (2004) and Basso (2005), we make a "fixed proportions" assumption that S = 
Aircraft Size x Load Factor, is constant and the same across carriers. 1 0 It then follows 
immediately that qp — QpS - 6—6* and q0 - Q0S - 6* - 6f , or equivalently, 

6* = 8-QpS, 6f=6*-Q0S (5.5) 

This functional form was previously estimated from steady-state queuing theory and is further discussed 
in U.S. Federal Aviation Administration (1969) and Horonjeff and McKelvey (1983). It has been used by, 
e.g., Morrison (1987), Zhang and Zhang (2003), and Basso (2005). 

9 Proof: (i) If 0, flies, then 6xBh - aDh - th > 0 for h=p,o. If 9 > 9U 

9Bh - cdDh-th >0iBh - aDh-th >0 and so 6 flies, (ii) is analogous, (iii) Let 

AV(<9) = Vp(9) - V0(9) = (Bp -B0)9- a(Dp - D0)-(tp -t0) and suppose 0flies. Then i f AV(9) > 0, 

9 chooses to fly in the peak period. If AV(9) < 0 , 9 chooses to fly in the off-peak period. Now, suppose that 

there exists 9 * such that AV(9*) = 0 (interior solution). Then it follows, since AV' (9)>0, that if 9 > 9 * , 
^chooses peak travel and if 9 < 9 * , ^chooses off-peak travel. • 

1 0 This assumption also allows us to abstract away from the issue of weight-based pricing as aircraft here 
have the same weight, and focuses on the main issue of peak-load congestion pricing. 
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In (5.5) the indifferent flyer 6* is determined, using D0 = 0 , by 

9*(Bp -B0)-aDp = t p - t 0 , which says that a passenger's gain d*(Bp-B0), net of the 

delay cost aDp when shifting from the off-peak to peak periods, is balanced by the fare 

differential tp-t0. Further, since the final flyer 0s is determined bydfB0 = t0, (5.5) can 

be rewritten as: 

ta(Qo,Qp) = Bo0-BoSQ0 -BaSQp (5.6) 

tp(Q0,Qp) = Bpd-B0SQ0-BpSQp-aD(Qp) (5.7) 

Equation (5.6) is the (inverse) consumer demand function faced by the airlines for the off-
peak period, whereas (5.7) is the consumer demand function for the peak period. Note that 
this demand system is not linear i f D is not. Further, the peak and off-peak flights are 
substitutes for the final passengers, which gives the room for airlines to "spread the 
demand" across the peak and off-peak travel periods by using peak-load airfares. The 
analytical expressions of the cross elasticity of demand between peak travel and off-peak 
travel can be obtained from (5.6) and (5.7). 

We now turn to the airlines. They have identical cost functions, given by: 

C'M^'HA) = + +j3D(QH)U (5-8) 
he p,o 

where Q'h is the number of airline Vs flights in period h, Q~h' denotes the vector of flights 
of airlines other than i, c is the airline's operating cost per flight, and Ph is the airport 
landing fee in period h.n Further, parameter ft (>0) measures the delay costs to an airline 
per flight, which may include wasted fuel burned while taxiing in line or holding/circling in 
the air, extra wear and tear on the aircraft, and salaries of flight crews. Airl ines ' profit 
functions can then be written as: 

f(&,Qt,Pk) = Xh(Qo,QPMS-cA(Qi,QhA) (5-9) 
he p,o 

With these functions at hand, we shall investigate the subgame perfect equilibrium of our 
two-stage airport-airlines game. 

1 1 As indicated earlier, airport charges usually include landing and terminal charges (charges for aircraft 
parking are minor). While landing fees are based on aircraft movements, terminal charges are typically per-
passenger based. Since the present paper is concerned with runway congestion, we shall focus on landing 
fees. 
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5.3 Analysis of output-market equilibrium 

To solve for the subgame perfect equilibrium we start with the analysis of the second-stage 
airline competition. Given the airport's runway charges Pp and P0, the N carriers choose 

their quantities to maximize profits, and the Cournot equilibrium is characterized by the 
first-order conditions, 

df/dQl=0, h=p,o 

(note that the second-order conditions are satisfied). 1 2 Imposing symmetry Q'h =Qh/N and 

re-arranging, the first-order conditions can be expressed as: 

n°(Qo,Qp,Po,N) = (Bo0S-c-Po)-Qo 

B0S\N + l) B0S2(N + l)_ 
N 

-Q 
N 

= 0 (5.10) 

Qp(Q0,Qp,Pp,N) = (Bp8S-c-Pp)-Q0 

B0S2(N + l) „ BpS2(N + l) 
N 

-ictS+p) D(Qp) + ^j-D'(Qp) 

— Q 

= o 

N 
(5.11) 

A s demonstrated in Appendix C . l , there exist conditions on the parameters that guarantee 
interior solutions, that is, 8< 8f < 8* < 8 or equivalently, Qp,Q0,Qn > 0 . For example, 
the peak period is used i f the per-passenger airport peak/off-peak price differential is 
smaller than the incremental gross benefit, for the highest consumer type 0 , of shifting 
from off-peak travel to peak travel. In particular, when the airport does not practice peak-
load pricing (so P = P0), the peak period is always used. The proof also reveals that a 

smaller airport peak/off-peak price differential increases the likelihood of both the peak and 
off-peak periods being used. The result suggests that Brueckner (2002, 2005)'s single 
crossing property, which was introduced to guarantee the existence of a non-empty 
peak/off-peak interior solution, may not be needed. This may be desirable because the 
property implies, i f using Brueckner's interpretation of 8 as an index of a passenger's 
tendency to travel on business (as opposed to leisure travel), that peak benefits are higher 
than off-peak benefits for business travelers, but are lower than off-peak benefits for leisure 
travelers. This appears contradictory with the idea that the peak and off-peak periods are 
vertically differentiated. In the remainder of the paper we shall restrict our attention to 
interior allocations. 

A useful equation obtained from (5.10) and (5.11) is: 

1 2 We have assumed a Cournot game in the output-market competition. Brander and Zhang (1990, 1993), 
for example, find some empirical evidence that rivalry between duopoly airlines is consistent with Cournot 
behaviour. 
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(B -B )S2(N + 1) ( n ^ 
D(Qp) + ^-D'(Qp) 

(5.12) 

+ (Pp-Po)-0S(Bp-Bo) = O 

Since equation (5.12) depends on Qp but not on Qa, it implicitly defines Qp as a function of 

P0, Pp and N . Substituting this function into (5.10), equation (5.10) then implicitly defines 

Q0 as a function of Pg, Pp and N, leading to: 

QP = QP(P0,PP;N), Q0 = Q0(P0,PP\N) (5.13) 

which are the airport's demands for the use of its peak and off-peak periods, respectively. 
Here it is worth stressing that while t0(Q0,Qp) and tp{Q0,Qp), defined by equations (5.6) 

and (5.7), capture the final consumer (inverse) demands for air travel, Q0(P0,Pp;N) and 

QP (P0' Pp' ^ ) 3 1 6 t n e derived demands faced by the airport. 

We now characterize the airport's demands Qp(P0,Pp;N) and Q0(P0,Pp;N) . Totally 

differentiating (5.10) and (5.12) with respect to Pp yields: 

dQp _ d(-np+Q°)/dPp 

dPa d(-Qp +Q°)/dQn 

" V * p (5.14) 

~~{Bp-B0)S\N + l) + (aS + P)((N + \)D\Qp) + QpD"(Qp))< ° 

where the inequality follows from conditions (5.1) and (5.4). So the airport's demand for 
the peak period is, as expected, downward-sloping in peak charge. Similarly, we can 
obtain: 

^ < 0 , ^ = - ^ > 0 , 
3*, &o K 
^ = _ ^ = ^ > 0 , 2

N <0, (5.15) 
dPp dPp dP0 dP0 dP0 B0S2(N + D 

m+QP)_0 a(q+6 p) = N C 0 

dPp ' dP0 B0S2(N + l) 

We can see that, ceteris paribus, the airport peak price does not influence total traffic but 
only the allocation of traffic to the peak and off-peak periods. Furthermore, from (5.12) and 
(5.14) we get: 
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(5.16) 
p-o ~ p 

where APp_0 = Pp - P0. The above results (5.15) and (5.16) lead to: 

Proposition 5.1: The airport's demands Qp(Pg,Pp;N) and Q0(P0,Pp;N) have the 

following properties: 
(i) They are downward-sloping in own prices; 
(ii) The peak and off-peak periods are gross substitutes; 
(iii) The off-peak runway fee (P0) determines the amount of total traffic, while the 

difference between the peak and off-peak charges (AP ) determines the partition of 

that traffic into the two periods, with peak traffic declining with the charge differential. 

Notice that Part (ii) of Proposition 5.1 shows that the airport has room to "spread the 
flights" across the peak and off-peak periods by using peak-load landing fees. Together 
with the discussion following equations (5.6) and (5.7), therefore, our vertical airport-
airline structure gives rise to a possible sequential P L P : the P L P schemes implemented by 
the downstream airlines induce a different periodic demand for the upstream airport. A s 
shown in Proposition 5.2 below, the shape of that demand depends on the number of 
downstream carriers and the type of competition they exert. Our analysis conducted later in 
Section 5.4 shows that indeed, the airport then would have an incentive to use P L P as well , 
which in turn affects the way the downstream firms use P L P . 

Next we examine the airport demands change with the number of airlines, N. We obtain the 
following comparative static results: 

Proposition 5.2: A t the sub-game Cournot equilibrium, 

(i) 0 < dQp IdN <Qp l(N(N +1)), so the number of passengers traveling in the peak period 

increases with N; 
(ii) d(QQ +Qp)/dN = (Q0 + Qp)/{N(N+ \))>0 , so the total number of passengers 

traveling increases with N; 
(iii) dQa /dN>Qa /(N(N +1)), so i f the off-peak period is used (Q0 > 0) then the number 

of passengers traveling in the off-peak period increases with N. 

The proof of Proposition 5.2 is given in Appendix C.2. Given that we consider interior 
solutions, conditional on runway fees Pp and P0, both the peak and off-peak traffic 

volumes increase with the number of firms in the output market. The Proposition also 
shows that the (positive) elasticity of total traffic with respect to N is equal to l/(N + l), 
whereas the elasticities of peak traffic and off-peak traffic (with respecto to N) are, 
respectively, smaller and larger than \/(N + 1). A l l three elasticities become smaller as N 
increases. 
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The final ingredient to characterize the Cournot equilibrium in the output market is related 
to the important issue of airfares: For given airport charges, how do the peak and off-peak 
airfares compare with each other? From (5.6) and (5.7) it follows that 

top-o - t P = 6(Bp-B0)-QpS(Bp-B0)-ccD(Qp) (5.17) 

From the equilibrium condition (5.12) we obtain an expression for 6(Bp-B0). Replacing 

that expression in (5.17) gives rise to the following airfare-differential formula, evaluated at 
the Cournot equilibrium: 

i P -P B 
P - ° l c o u r n o t e q $ S 

BQ Q (B -B)S 
S N p N p " N 

(5.18) 

It is clear from (5.18) that i f Pp>P0, then Atp_0 > 0 , that is, i f the airport uses peak-load 

pricing, airlines w i l l also use it in equilibrium. More interesting perhaps is the fact that, 
even i f the airport price the periods backwards, i.e., P <Pa, airlines may still use peak-
load pricing in equilibrium. 

To further interpret (5.18), first note that holding Pp and P0 constant, dAtp_0/dN is 

negative, which can be seen by differentiating (5.17) and recalling, from Proposition 5.2, 
that sub-game equilibrium Qp and Q0 increase in N. This implies that a monopoly airline 
would have the largest airfare differential. Since, from (5.6), dta /dN is also negative, the 

lower the N, the larger the off-peak fare. These two observations are consistent with what 
we have already shown in Proposition 5.2 with respect to total peak and off-peak traffic. 
Next, it can be seen that for very large N, the airfare differential approaches to the 
difference between an airline's peak and off-peak per-passenger average costs, i.e., the first 
and second terms on the right-hand side (RHS) of (5.18). When there is an oligopoly, 
however, three extra terms are added. Specifically, the third term on the R H S of (5.18) is 
the cost of extra congestion on an airline's own flights and caused by an additional 
passenger flying in the peak period. Thus, the first three terms on the R H S of (5.18) 
represent the difference between an airline's peak and off-peak marginal costs. The fourth 
term represents the money value of extra congestion to an airline's passengers when a new 
passenger chooses to fly in the peak period, whereas the fifth term is the mark-up term that 
arises from the oligopoly airlines' exploitation of market power. Hence, as it is now known, 
the airlines in oligopoly only internalize (charge for) the congestion they impose on their 
own flights, which has two cost components: extra operating costs for the airline, and extra 
delay costs for its passengers (Brueckner, 2002). When there is a monopoly airline, 
congestion is perfectly internalized but exploitation of market power is at its highest degree. 
When N is large, exploitation of the market power is small but congestion is imperfectly 
internalized. 
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These points can be made more clearly i f the Cournot case is compared to the case in which 
a social planner maximizes total surplus in the second-stage of the game. To do this we first 
need a measure of consumer surplus (CS). Given the linearity of our conditional indirect 
utility function, CS is given by: 

& 6* 

CS = \[0Bp-aD(Qp)-tp(Qp,Qo)]f(0)d0 + §_0Bo-to(Qp,Qo)\f(0)d0 (5.19) 

where f(0) is the density function. Using (5.6) and (5.7) for t0 and tp, solving the integrals 

and replacing 0* and 0f with (5.5), we finally obtain: 

CS=^(B0Q2

0+2B0Q0Qp +BpQ2

p) (5.20) 

We are then interested in the case where the planner maximizes, for given airport charges, 
the sum of consumer surplus and airline profits: 

cs+^ = cs+Y.t/ (5-21) 

where O denotes the aggregate airline (equilibrium) profits. The first-order conditions of 
(5.21) with respect to airline outputs, together with the imposition of symmetry, then lead 
to two equations, analogous to (5.10) and (5.11), which characterize the optimum. 
Subtracting the two equations from each other yields: 

Qp(Bp - Ba)S2 + (aS + P)(D(Qp) + QpD'(Qp))+ (Pp - Pa) - 0S(Bp -Bo) = 0 (5.22) 

Using (5.22) to obtain a new expression for 0(Bp -Ba) and replacing the term in (5.17), 

we get: 

At 
p-o 

efficient - + 4 D(QP) + QpD' (Qp ) (5.23) 
output S S S 

Conditional on the airport charges and the airline market structure, (5.23) gives the socially 
efficient difference between the peak and off-peak airfares. This fare differential is equal to 
the difference between an airline's peak and off-peak average costs (the first and second 
terms on the R H S of (5.23)), plus all the external costs associated with a new flyer in the 
peak period, with the latter being the extra congestion cost of all the airlines and 
passengers, not just that of the airline that carries the new peak passenger. Obviously, the 
last two terms represent the portion of the optimal airfare differential that is not directly 
affected by the airport's pricing practices. 

It is also insightful -and useful later in Section 5.5- to compare the Cournot case with the 
"cartel" case in which the airlines choose outputs to maximize their joint profit 
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E N 

<t>1. The first-order conditions in the cartel case, together with the imposition of 

symmetry, lead to two equations, analogous to ( 5 . 1 0 ) and ( 5 . 1 1 ) , which characterize the 
cartel optimal solution. Subtracting the two equations then yields: 

2Qp(Bp - B0)S2 + (aS + fi)(D(Qp) + QpD'(Qp))+ (Pp -P0)- 6S(Bp -Bo) = 0 ( 5 . 2 4 ) 

Using ( 5 . 2 4 ) to obtain a new expression for 0(Bp -B0) to replace the term in ( 5 . 1 7 ) , we 

find the difference between the peak and off-peak airfares in the cartel case: 

A r D J =Pp~P° + — D(Qn)+°^ + ^QnD'(Qn) + QJBn -B„)S ( 5 . 2 5 ) 
P-° I cartel output 5 5 K ^ P J £ K b ^ P J ^ P K P °> v ' 

Here, the fare differential is equal to the difference between an airline's peak and off-peak 
average costs (the first and second terms on the R H S of ( 5 . 2 6 ) ) , plus all the external costs 
associated with a new flyer in the peak period. Comparing ( 5 . 2 5 ) with ( 5 . 2 3 ) reveals that 
the cartel, as in the social-planner case, internalizes the congestion costs of all the carriers 
and passengers. Here however, there is a fourth term which wi l l increase the fare 
differential. This term is related to the "business stealing" externality: Since oligopoly 
carriers behave in non-cooperative fashion, they produce too much with respect to the 
optimum for the airlines as a whole. This is so because they fail to consider the profits lost 
by the other airlines when they increase own output, depressing airfares: the fare 
differential of an oligopoly is insufficiently large from the cartel's point of view, and this 
problem worsens, the "looser" the oligopoly is (i.e., the larger N is). Consequently, the 
cartel, as a monopoly, is interested in having a less used peak period. In effect, the cartel 
airfare differential is identical to the monopoly's; see ( 5 . 1 8 ) by imposing T V = 1 . The cartel 
and monopoly traffic volumes w i l l differ however, since cost functions are convex and not 
flat. 

5.4 Airport pricing, traffic, delay and welfare comparisons 

We have shown that the airport decisions, namely, Pp and P0, can influence the subsequent 

output-market competition among airlines. When deciding its runway fees in the first stage, 
therefore, the airport w i l l take the second-stage equilibrium outputs into account. These 
decisions may in reality be set by a public airport or a privatized airport. Consequently, the 
objective of an airport may be to maximize social welfare or to maximize profit. In this 
Section, we compare airport charges and consequent airfares for these two airport types. 

Consider first a private, unregulated airport. The airport's profit may be written as: 

TC(P0,Pp;N) = P0Q0 + PpQp -C(Q0+Qp)-rK ( 5 . 2 6 ) 
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where Q0 = Q0(P0,Pp;N) and Qp - Qp(P0,Pp;N) are the airport's demands for the peak 

and off-peak periods, respectively, and are given by (5.13). In addition, C is the unit 
runway operating cost of the airport and r is its unit cost of capital. Note that we have 
assumed, as is common in the literature, that the operational and capital costs are separable 
and that the marginal operating cost is constant. For the latter, the estimation of cost 
function showed that airport runways have relatively constant return to scale (e.g., 
Morrison, 1983). The airport w i l l choose Pp and Pa to maximize its profit, and the first-
order conditions lead to (P„,Pp denoting the profit-maximizing airport charges): 

£ Q£ 
P" (Pn - C)Q £ 

pic Q_ P | v o ^'^o^op 
pp 

(5.27) 

(5.28) 
p PP 

where £00 = -(dQ01dPa)(P01Q0) is the (positive) elasticity of airport demand, 

£p0-$Q,p ldP0)(P0lQp) is a cross-price elasticity, and £ p p and £ o p are defined 

analogously. Since dQpldP0 > 0 and dQ0ldPp > 0 -see (5.15) or Proposition 5 .1- both 

£ o p and £ p o are positive, implying that the airport charges are higher than would be i f the 

peak and off-peak charges were chosen independently (in which case the mark-ups would 
be proportional to the inverse of demand elasticities only). This is a well-known result for 
multi-product monopolies that produce substitutes. 

We can simplify the pricing equations and show that Pp > P*. To do this, replace the 

elasticities' definitions and simplify, using the fact that 6Q0ldPp --6QpldPp in (5.15) 

and then using equation (5.14). We obtain the following charging formulas: 

N N 
aS + B r l QABn-Bn)S2(N + l) 

^ p - o = ^ r - Q p [ ^ + ^D'(Qp) + QpD"(Qp)]+^^ (5.30) 

The R H S of (5.30) is, by (5.1) and (5.4), positive and hence P* > P*: The private airport 

charges higher runway fees in the peak period than in the off-peak period, and this is true 
for any N. Thus, a profit-maximizing airport has an incentive to use peak-load pricing. 
Further, notice from (5.29) that the off-peak charge, which determines the amount of total 
traffic, is above marginal cost. This is a result of monopoly power on the part of the airport. 
There is, therefore, a "double marginalization" problem, which is typical of an 
uncoordinated vertical structure. The discussion leads to the following Proposition: 
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Proposition 5.3: A private, profit-maximizing airport would use peak-load pricing. 
Further, it would charge an off-peak runway fee that is above its marginal cost. 

Next, consider a public airport that chooses Pp and P0 to maximize social welfare. In the 
present situation with three agents (airport, airlines, and passengers), social welfare (SW) is 
the sum of their payoffs: 

SW(P0 ,Pp;N) = 7t(P0,Pp;N) + CS + Q> (5.31) 

where the airport's profit, n, is given by (5.26), consumer surplus, CS, is given by (5.19), 

ft , is introduced in (5.21). Since the downstream 

equilibrium is symmetric, ft(Ql,Ql',Ph) = ft(Q0(P0,Pp;N),Qp(P0,Pp;N),Ph) is each 

airline's equilibrium profit. We can then easily calculate O as 

0 ( P 0 , P p ; / V ) = N-ft(P0,Pp;N),that is, 

O(P0,Pp;N) = MBpQp+B0Q0)-siB0Q2

0+2B0QMp+BpQ2

p)-(oS + j3)QpD(Qp) 
-(c + P0)Q0-(c + Pp)Qp 

We do not include a budget constraint in the public airport problem, noting that fixed fees 
may solve the problem of budget adequacy. If lump-sum transfers are not feasible, then 
Ramsey-Boiteux prices should be considered (see Basso, 2005, for more discussion on 
this). 

Replacing O from (5.32) (and n, CS from their earlier equations) in the social-welfare 
function, we obtain: 

SW = 0S(BpQp + B0Q0)-c-{Qp+Q0)-C-(Qp+Q0)-rK 

- S2(B0Q2 + 2B0Q0Qp + BpQ2

p)/2- (oS + P)QpD(Qp) 

Derivation of pricing formulas follows from the first-order conditions. Specifically, we 

obtain, using equations (5.10), (5.12) and (5.15) (P™,Pp denoting the welfare-maximizing 

runway fees): 

P f f _ r Qos2B0 QP

s2B„ 
0 _ C N N P V 

A P ; _ C = ^ (OS + P)QPD' (Qp) - QpS 2 ( * P " B°) (5.35) 

The above welfare-maximizing airport pricing may be seen as i f the fees were determined 
in two phases. First, choice of an off-peak price Pj induces the (socially) right amount of 
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total traffic; as can be seen from (5.34), P0 is below the airport's marginal cost. This is 

needed because exploitation of market power in the airline market would induce allocative 
inefficiencies by producing too little output. A welfare-maximizing airport fixes this 
inefficiency by providing a "subsidy" to the airlines and hence lowering their marginal 
costs in the off-peak period. The exact amount of the subsidy depends in part on the extent 
of market power, which here is captured by N. Once the total traffic is set to its optimal 
level, the next phase is concerned with the optimal allocation of this traffic to the peak and 
off-peak periods, which is, as indicated earlier, determined by A P . In particular, the 

public airport sets the peak/off-peak price differential to &Pp_0 that w i l l induce the optimal 

airfare differential downstream. This is apparent from substituting (5.35) into (5.18), which 
yields 

Atw = ^D(QP) + ^^-QPD'(Qp)>0 (5.36) 
' " Cournot eq S S 

The R H S of (5.36) is equal to the optimal airfare differential that is not directly affected by 
the airport's pricing practices, as discussed in (5.23). Hence, the outcome is the same as i f 
the airport were to set P0 = Pp, which is optimal because there are no differences in costs, 

and then social welfare is maximized in the airline market. 

It is worth examining further the welfare-maximizing charge differential, APp_0, given in 

(5.35) . This differential is not signed a priori; hence, it may happen that the airport charge 
is smaller in the peak period than in the off-peak period. More specifically, the airport 
charge differential w i l l be negative for small N. This is so because a "tight" airline 
oligopoly has an airfare differential that is too large due to strong market power, while 
congestion is reasonably internalized. A s a consequence, the airport price differential is 
driven predominantly by the market-power effect (the second term on the R H S of (5.35)). 
When N is large, on the other hand, the airport price differential w i l l be positive. This is so 
because a "loose" oligopoly would have an airfare differential that is too small due to 
uninternalized congestion, whereas market power is relatively weak. The airport charge 
differential is then driven by the congestion effect (the first term in (5.35)). Note from 

(5.36) , that although Pp (the welfare-maximizing peak charge) may be less than P 0

W , 

(final) passengers w i l l , nevertheless, always pay higher peak airfare than off-peak airfare. 

The above discussion may be summarised in the following Proposition: 

Proposition 5.4: For a public, welfare-maximizing airport, (i) the off-peak runway fee is 
below its marginal cost; (ii) for small N, the off-peak runway fee may be greater than its 
peak runway fee; in this sense, it appears that the airport does not use peak-load pricing; 
(iii) although the airport's peak charge may be less than its off-peak charge, final 
passengers w i l l nevertheless always pay higher peak airfare than off-peak airfare. 

Brueckner (2002) identified the first term in (5.35) as the per-flight toll that should be 
charged by the airport authorities to address the problem of uninternalized congestion (note 
that when N=l, this toll is equal to zero). Pels and Verhoef (2004) and Basso (2005) 
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pointed out that the optimal toll should also include the second term, the market-power 
effect; 1 3 they did this, however, using models of congestion pricing (one period), while 
Brueckner (2002) and the present paper use a model of peak-load pricing. This distinction 
is important because a toll equal to the two terms, thereby capturing both the congestion 
and market power effects, w i l l not be optimal unless it is charged on top of the optimal 
charge in the off-peak period, which is not the marginal cost. In other words, restricting the 
analysis to the toll that should be charged during the peak hours offers only a partial view 
of the problem. 

Note that i f lump-sum transfers (two-part tariffs) are unfeasible, the pricing rules previously 
discussed may lead to airport's budget inadequacy. If budget adequacy has to be ensured 
but lump sums are not feasible, then the first best may not be attainable: Marginal prices 
would have to do both -namely, aligning incentives and transferring surplus- making the 
airport fall short of "control instruments" (Mathewson and Winter, 1984). 

Having derived and characterized the pricing structures for both the public and private 
airports, we now want to compare them. To have a clearer picture of the differences in 
performances, we shall compare not only the off-peak runway fees and the peak/off-peak 
fee differentials, but also the induced traffic levels, delays and total surplus levels. 
Moreover, we want to assess how these differences (if any) change with the number of 
airlines, N, which is exogenously given and may be used as a proxy for airline market 
structure. We summarize our findings in the following Proposition (the proof is provided in 
Appendix C.3): 

Proposition 5.5: Comparisons of airport pricing, traffic, delay and welfare between the 
private and public airports are as follows: 

dPw dP" 
(i) p 7 < p / a n d ^ > ^ - = 0; 

0 0 dN dN 
dAPw dAP" 

(ii) AP™ < AP* 0 and p— > 0 . If the delay function is linear, then  p— = 0 ; 
P-° P-° d N

 1 dN 
dQ" dQZ 

(iii) G * > f i * a n d - ^ > - ^ - = 0; dN dN 
jf\n /tnw 

0v) Q7>Q? and -^->-^- = 0 , where Q,=Q.+Q0 denotes total traffic 
dN dN p 

volume; 
dD* dDw„ 

(v) Dw. > DK. and —E- > = 0 ; 
p p dN dN 

w , dSW* dSWw 

(vi) SWW>SW* and > = 0 . 
dN dN 

1 3 To be fair, although Brueckner did not formally consider the second term in the toll to be charged, he 
did point out that, depending on the size of the market-power term, a pure congestion toll could be detrimental 
for social welfare. 
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To help better understand this Proposition we also offer a schematic representation of the 
findings in Figure 5.1. From Proposition 5.5 we see that a private, profit-maximizing 
airport would induce too small total traffic as compared to the first-best outcome, thereby 
resulting in allocative inefficiencies. Additionally, a private airport has a greater peak/off-
peak runway charge differential than a public airport. Hence, with a private airport, the 
peak period would be underused not only because the airport has smaller total traffic, but 
also because its charge differential is too large. This reduction in peak traffic volume is 
welfare-reducing in that passengers view traveling in the peak times as, other things being 
equal, a higher quality product than traveling in the off-peak times. Less peak traffic then 
means fewer consumers w i l l enjoy a premium product. A n d although those passengers who 
still use the peak period benefit from less congestion delays as part (v) enounces, overall it 
is not economically efficient to have such a lower level of peak congestion because total 
welfare is in fact reduced as shown in part (vi) of Proposition 5.5. In effect, in terms of 
overall welfare level, a numerical simulation has shown that SW*(N = 1) = 49% , 
SW'N = 3) = 65% , SW*(N = 5) = 69% and SW"(N = 50) = 77% , where the 
percentages are par rapport to the public case, that is, SWW =100% (as can be seen from 
part (vi), SW^does not depend on AO- 1 4 This is an important point: one of the main ideas 
behind airport privatization has been that it would allow airports to use peak-load pricing 
and thus help solve the congestion problems. But i f privatization is measured solely by its 
effect on congestion delays, it may be seen as a better idea than it actually is, and important 
deadweight losses may be overlooked. This result, which holds here for a fixed capacity-
peak-load pricing model, was also found by Basso (2005) in a variable (endogenous) 
capacity-congestion pricing model. 

P ,AP 

P" ,AP" 
o » p-o 

•PW,APW 

o ' p-o 

•> N 

QP,t,SW,D 

Ql,,SWw,Dw 

Q'Ptt,SW",D" 

•> N 

Figure 5.1: Schematic representation of the results in Proposition 5.5 

We have seen that the public airport is indifferent between values of N -although Basso 
(2005) showed that this may not be the case i f airlines are not homogenous or i f passengers 
are affected by schedule delay cost. Given that the (welfare) performance of a private 
airport improves as the number of airlines rises (see Proposition 5.5 and Figure 5.1), it 

1 4 The parameters used in the simulation are presented in Table c . l , in Appendix C.4 
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seems important to know what would be the preferred N of a private airport. From (28) we 
have: 

P«P, 0 ' dN V p ' dN 

where the first equality follows from the envelope theorem and the inequality follows from 
Proposition 5.2 and the first-order conditions (5.27) and (5.28), which indicate that prices 
are above marginal costs. Thus, the private airport prefers a large N, which is a desirable 
property, given the findings of Proposition 5.5. 

dn 
dN p* p* dN 

5.5 Airport-airline joint profit maximization 

In this Section, we shall consider an airport that has some sort of strategic agreement with 
the airlines using it. The reasons why it is interesting to look at this case are two-fold: on 
one hand, a simple pricing mechanism, two-part tariff, may be enough for the outcome of 
joint profit maximization to arise. On the other hand, it has been often argued that greater 
airlines' countervailing power or more strategic collaboration between airlines and airports 
may improve efficiency of privatized airports by allowing a better alignment of incentives, 
and even may make price regulation unnecessary (see, e.g., Beesley, 1999; Condie 2000; 
Forsyth, 1997; Starkie, 2001; Productivity Commission, 2002; C i v i l Aviation Authority 
U K , 2004). The analysis of joint profit maximization may then serve as a benchmark case. 

The objective faced by this airport is to maximize the sum of the airport's profit and 
airlines' profits. Using n in (5.26) and O in (5.32), the problem can be re-written as: 

max7C + ® = 0S(BpQp + BoQJ-c-(Qp + Qo)-C(Qp + Qo)-rK 
PQ >Pp 

- S\B0Q2

0 + 2B0Q0Qp + BpQ2

p) - (aS + P)QpD(Qp) 

Derivation of the pricing formulas follows from the first-order conditions of the above 

problem, using equations (5.10), (5.12) and (5.15) and rearranging (P0

JP,Pp

p denoting the 

joint profit-maximizing airport charges), 

Pf=C + 
Q0S2B0(N-l) , QpS2B0(N-l) 

N N 
QpS\Bp-Bo)(N-Y) 

APJ' = 
P-o N 

-(aS + J3)QpD'(Qp) + -
N 

(5.37) 

(5.38) 

The interpretation of the JP airport's pricing rules (5.37) and (5.38) is as follows. A s before, 
this airport may be seen as deciding its runway fees in two phases; first, it induces a 
contraction of total traffic by choosing an off-peak price P0

JP above its marginal cost. It 
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does so because the failure of coordination among the airlines results in them producing too 
much with respect to what would be best for them as a whole. The amount of excess 
production depends on how tight the oligopoly is, which is why the off-peak mark-up 
decreases with N. In particular, when the airline market is monopolized, (5.37) shows that 
PJ

0

P = C so the airport does not need the mark-up at all . Note, however, that the total traffic 
contraction in the JP case is smaller than that in the pure private case. 

In the second phase, the airport chooses the (non-negative) price differential APp

JP

0 that wi l l 

induce the airlines' cartel outcome, destroying airline competition downstream. This is 
apparent from substituting (5.38) into (5.18), and noting that the result is equal to the 
cartel's airfare differential not directly affected by the airport pricing practice. Hence, the 
outcome is the same as i f the airport were to set Pa = Pp and a cartel were running the 

airline market This result, which was obtained by Basso (2005) in a congestion pricing 
setting, has different intuitions depending on why the maximization of joint profits is the 
relevant case. Wi th two-part tariffs, the private airport use the variable prices, peak and off-
peak, to destroy competition downstream in order to maximize the profits of airlines, which 
are later captured by the airport through the fixed fee. When the joint profit maximization 
arises because of collaboration between airlines and the airport, what happens is that the 
airlines would like to collude in order to increase profits, but are unable to do so themselves 
because of the incentives to defect on any possible agreement. What they manage to do, 
however, is to "capture" an input provider to run the cartel for them. B y altering the prices 
of the inputs (runway services) and hence the downstream marginal costs in both the peak 
and the off-peak periods, the input provider (airport) induces both the collusive total output 
and the "right" (to the airlines) allocation of passengers to the peak and off-peak periods. 
The upstream firm is then rewarded with part of the collusive profits, which is where 
bargaining power enters the picture. 

Note also that the airport pricing rules (5.37) and (5.38) take into account both the 
congestion externality and the business-stealing externality, at both pricing phases: the 
airport's price differential has two parts. 1 5 When N=l, there is no business-stealing effect 
and congestion is perfectly internalized by the monopolist. Consequently, both terms 
vanish: with a monopoly airline, the airport will not use peak-load pricing. 

Now, despite the fact that the result is as i f airlines were colluding, this case is not worse, in 
terms of social welfare, than a private airport charging linear prices as before. This is 
because, here, the two other harmful externalities, namely, the vertical double 
marginalization and the congestion externality, have been dealt with. In effect, we can show 
that the JP case (where the airport has strategic agreements with airlines) represents a 

This idea of an upstream firm running the cartel for the downstream firms has been discussed in the vertical 
control literature and, particularly, in the input joint-venture case. For example, Chen and Ross (2003) 
formalized the conjecture that input joint-ventures can facilitate collusion and push a market toward the 
monopoly outcome. If airport provision was seen as an input joint-venture by the airlines, our results show 
three things in addition to what Chen and Ross have found. First, the results hold even in a peak-load pricing 
setting, i.e., when demand is periodic. Second, if there are externalities, the input prices are, additionally, used 
to force their internalization by downstream competitors. Third, when marginal costs downstream are not 
constant, the outcome is not as in a monopoly or a downstream merger, but as in a cartel. 
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middle-of-the-road case: in Proposition 5.5, the runway fees, traffic volumes, delays and 
social welfare w i l l be in between those of the private and public airport cases. A n d in 
Figure 5.1, the curves pertaining to the JP case would be parallel displacements of the 
public airport curves, lying in between the two existing public and private curves. Strategic 
collaboration between the airport and the airlines smoothes the airport-charge problem. But 
recall that the downstream airfares would be as i f the airlines were engaging in collusion, so 
we cannot expect to end up too close to the first best. In effect, a numerical simulation has 
shown that deadweight losses would correspond to 22% of the maximum social welfare 
attainable. 

5.6 Concluding remarks 

In this paper, we have analyzed the sequential peak-load pricing (PLP) problem that arises 
when the airport is recognized as an input provider for a final consumer market facing a 
periodic demand. We have analyzed this P L P problem for a private unregulated airport, for 
a public airport that maximizes social welfare, and for an airport that strategically 
collaborates with the airlines and hence maximizes their joint profits. We found that 
privatization would not induce efficient peak-load pricing schemes as it has been argued in 
some studies. While a private airport has always an incentive to use P L P -higher runway 
fees in the peak than off-peak periods, even when the airlines have used P L P themselves 
and irrespective of the number of airlines servicing the airport- its pricing structure would 
induce insufficient total traffic and insufficient peak traffic. Somewhat surprisingly, 
depending on the degree of market power (captured here by the number of carriers at the 
airport), a public airport may choose a peak runway charge that is lower than the off-peak 
charge, so as to offset the market power downstream at the airline level. Here, the public 
airport, on the surface, is not practicing the peak-load pricing, but such pricing structure is 
nevertheless socially optimal. Finally, a private airport that strategically collaborates with 
the airlines would induce greater total traffic and greater peak traffic than a pure private 
airport, but both figures w i l l still be smaller than those for a public airport. If the airport 
collaborates with a monopoly airline, it would not use peak-load pricing. 

Although the airline industry is chosen for analysis, our basic model structure, in which 
airports, as input providers, make their pricing decisions prior to airlines' strategic 
interactions in the final output market, is highly relevant to several other industries 
including electricity, telecommunications, and transport terminals (e.g., the vertical chain of 
ports-sea carriers-shippers). In telecommunications, for example, at the upstream level 
there are the network owners, while downstream there are carriers who must use the 
network in order to produce the final good (telephone calls). L ike airports, these industries 
are undergoing privatization in a number of countries. We note that the sequential P L P 
method used in the present paper may be useful in examining similar issues in those sectors 
as well . 
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6 CONGESTIBLE FACILITY RIVALRY IN VERTICAL STRUCTURES 1 

6.1 Introduction 

In this paper we investigate competition between congestible facilities -such as airports 
and seaports- and the associated effects on facility charges, capacities and congestion 
delays. In the case of airports, most of the scholarly research is concerned with the case of 
a single airport. This is understandable given the local monopoly nature of an airport. This 
is changing, however. The world has experienced a rapid growth in air transport demand 
since the 1970s, and many airports have been built or expanded as a result. This has led to 
a number of multi-airport regions such as greater London and the San Francisco Bay Area, 
within which airports may compete for air travelers.2 A t the same time, the dramatic 
growth of low cost carriers (e.g., Southwest and Jet Blue in the U.S.) has enabled some 
smaller and peripheral airports to cut into the catchment areas of large airports (see, e.g., 
Mason, 2000; Gil len and L a l l , 2004). Taken together, these two developments have 
significantly increased the degree of competition between certain airports. Furthermore, 
airports susceptible to competition are usually prime candidates for congestion. In the 
United States, for example, the three multi-airport markets -Chicago, New York, and 
Washington metropolitan areas- contain the four airports that are officially designated by 
the F A A as 'slot controlled'. The description also applies to several of the 23 airports 
identified by the F A A as 'delay-problem airports' -these airports are in the metropolitan 
areas containing one or more other airports with airline service (e.g., Dallas, Detroit, 
Huston, Los Angeles, and San Francisco). 

Our first objective is to compare our results -regarding facility charges, capacities, 
congestion delays, and so o n - with the results derived from the single-facility case where 
competition is absent, and with the socially optimal outcomes. To illustrate this objective, 
consider that the facility is an airport. Wi th airport competition, landing fees (facility 
charges) are lowered, which is beneficial to the airlines that use runways to produce air 
transport service and, ultimately, to the passengers who consume the transportation service. 
On the other hand, lower airport charges w i l l stimulate demand and w i l l , holding the 
capacity constant, increase congestion, which is 'bad' for both the airlines and passengers. 
However, since capacity is an endogenous decision variable, competition might lead to 
increased capacity for airports, leading to less congestion. The net effects on airport 
congestion, airfare, airlines' profit and consumer surplus are, a priori, unclear. 
Furthermore, it is useful, as to be seen below, to compare the monopoly provision of 
service quality (congestion delays) with the socially optimal level 

A major feature of our investigation is that it contains a vertical structure within a facility: 
Each facility is an upstream firm that provides an input service to downstream firms (to be 

1 A version of this chapter has been submitted for publication. Basso, L .J . and Zhang A . (2006c) 
Congestible Facility Rivalry in Vertical Structures. 

2 De Neufville (1995) identified 26 multi-airport regions in different parts of the world as of the early 
1990s. These multi-airport regions cover large territorial size, with some spanning over 100 kilometres, and 
have high passenger generating capacity (10 million or more annual originating air passengers). 
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referred as 'carriers' hereafter), which in turn produce outputs for final consumers. In 
particular, we shall explicitly recognize that the downstream carriers may possess market 
power in the output market: as argued by Brueckner (2002), Pels and Verhoef (2004) and 
others, airlines at congested airports usually are not atomistic and hence price-takers. More 
specifically, we shall employ a three-stage model of facility (e.g., airport) and carrier (e.g., 
airline) behavior. In the first stage, duopoly facilities choose their capacities and prices. 
Initially, we shall look into a 'closed loop' game, that is, capacities are decided strictly 
prior to prices. We later compare the results with the 'open loop' case in which capacities 
and prices are decided at the same time. In the second stage, oligopolistic carriers compete 
with one another in homogenous Cournot fashion. In the third stage, final consumers 
decide which facility to go - i f they decide to consume the product- by comparing the 'full 
prices' they face, which include the price of the final product, congestion at each facility 
and transportation costs (from their own location to the facility). 

Very few papers in the literature have examined the case of competing airports 
analytically. Several recent papers, including Pels and Verhoef (2004), Brueckner (2005) 
and Basso (2005), considered multiple airports but these airports are complementary to 
each other: passengers travel from one airport to another (and back) so the airports produce 
complements, not substitutes.3 A number of authors have examined more general 
duopolistic interactions between congestible facilities: Braid (1986) and Van Dender 
(2005) examined competition between fixed-capacity facilities, while De Palma and Leruth 
(1989), Baake and Mitusch (2004) and De Borger and Van Dender (2006) examined the 
competition between facilities that are able to adjust capacities. However, all of them have 
considered the facilities as final providers rather than as input providers in an intermediate 
market that may be imperfectly competitive. Rivalry between congestible vertical 
structures with imperfect competition has, as far as we know, not yet been studied in the 
literature.4 

De Borger and Van Dender (2006), hereafter D B V D , is the closest paper to ours. They 
studied duopolistic interaction between congestible facilities that first decide on capacities 
and then on prices (i.e., a closed-loop game). They found that (i) the duopolists offer lower 
service quality, in terms of longer delays, than the monopolist, who provides exactly the 
same service quality as the social optimum; and (ii) for constant returns to scale and linear 
delay functions, the optimal pricing and optimal provision of capacity lead to exact cost 
recovery. D B V D indicated that their analysis may apply to seaports, airports, internet 
access providers and roads. However, whilst roads and internet access providers may 
provide services directly to final consumers, seaports and airports are input providers that 
reach final consumers only through downstream firms (carriers): these facilities are in an 

3 One exception is Gillen and Morrison (2003), who examined two competing airports in the context of a 
full-service carrier and a low cost carrier. But they did not address the issue of congestion and capacity 
decisions, nor airline competition within each airport. 

4 There are many papers that analyze competition between vertical structures and how vertical integration 
affects the rivalry, e.g., Abiru (1988) and Lee and Staelin (1997). But a case in which the upstream firms are 
spatially differentiated, congestible, and their congestion affects both the downstream oligopolists and the 
consumers, has yet been studied. Next, to be perfectly clear, in this paper we do not investigate the incentives 
firms would have to vertically integrate, as it has been done elsewhere (e.g. Salop and Scheffman, 1987; Hart 
and Tirole, 1990). Instead, we just assume those two different ownership structures (as in Abiru, 1988). 
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intermediate market and not in the final market. Thus, the use of vertical structures may be 
better suited for airports, seaports and other facility markets, such as telephone networks 
for example. Hence, our second objective in this paper is to explicitly incorporate 
downstream carriers -both their decision-making and market structure -into the analysis, 
in order to compare the results with those of the existing literature in which, while facility 
competition is present, the vertical structure is absent.5 In this sense, our paper is 
complementary to D B V D and the existing literature. 

Another major departure from D B V D lies in our treatment of facilities' outputs. D B V D 
considered that facilities supply perfect substitutes in the eyes of final consumers. This 
assumption may be unrealistic for airports and seaports given that they are actually located 
at different points in space, with potential consumers being distributed in between and 
around them and consumers' travel to/from them being costly. Within a multi-airport 
region, for instance, some passengers may not necessarily choose an airport with cheapest 
fare, but may go to an airport that is nearer and has shorter total travel time (which includes 
delay times due to airport congestion), while other passengers may find the competing 
airport just too far away. In other words, airports may no longer have exclusive 
(monopoly) and clear-cut catchment areas in their vicinity. Instead, their market areas may 
be compound of one portion in which they face no competition, and another portion in 
which they do face competition. Indeed, the access time has been shown to be one of the 
main determinants of airport choice (e.g., Pels, et al., 2001; Ishii, et al., 2005; Fournier, et 
al., 2006). In this paper, we shall consider competing facilities providing differentiated 
services. 

We find, among other results, that: (i) the duopolists' equilibrium prices increase with both 
the consumers' value of time and the carriers' cost sensitivity to congestion delays; 
entrance of a new carrier to any of the facilities depresses the prices charged by both 
facilities; and lower marginal cost of the carriers at one facility w i l l induce a higher facility 
price at that facility but a lower facility price at the other facility, (ii) The duopoly facilities 
provide longer congestion delays than a monopolist only i f capacity decisions are made 
prior to the facility pricing decisions. When the capacity and pricing decisions are made 
simultaneously, or when capacity investments are not observable prior to the pricing 
decisions, the duopolists would provide the same level of service quality (congestion 
delays) as the monopolist, (iii) A closed-loop duopoly invests less in capacity, has higher 
facility prices and longer delays than an open-loop duopoly, (iv) Conditional on facility 
charges, the monopoly capacity rules are the same as the socially-optimal capacity rules i f 
and only i f the downstream carriers' markets are perfectly competitive. When the 
downstream markets are imperfectly competitive, the monopoly capacity rules w i l l be 
different from the social capacity rules, (v) When capacities are endogenous and adjustable, 
monopoly pricing and capacity choices result in a higher level of service quality than the 
social optimum, (vi) When the monopolist vertically integrates with the carriers at the 
facilities, it would provide the same congestion level as the social optimum. Nevertheless, 
the monopoly service level is not socially optimal in a second-best sense. In effect, in the 
fully ex-ante symmetric case, it is too low with respect to the second best, (vii) Finally, 

5 Furthermore, as demonstrated by Basso (2005, 2006), this distinction is relevant and important in the 
derivation of welfare-maximization results. Thus, it may be necessary to incorporate carriers into the analysis. 
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despite the fact that we assume constant returns to scale and a linear delay function, the 
socially optimal pricing and capacity wi l l probably not lead to cost recovery, owing to 
market power at the carriers' level. 

The paper is organized as follows. Section 6.2 sets up the basic model and characterizes the 
equilibria for both the final and intermediate markets. Section 6.3 examines the rivalry 
between two profit-maximizing facilities and compares the open-loop game to the closed-
loop game. In Section 6.4, we compare the results from the duopoly rivalry with the 
monopoly outcome and the social optimum. Section 6.5 examines a vertical-integration 
case in which a single owner of the facilities maximizes the sum of the facilities' profit and 
the carriers' profit. Section 6.6 contains concluding remarks. 

6.2 The Model 

We consider an infinite linear city, where consumers are distributed uniformly with a 
density of one consumer per unit of length. There are two congestible facilities, located at 0 
and 1 respectively and there are N0 and Ni carriers offering services at each facility. The 
locations of the facilities, the number of carriers and the facility from which they produce 
are exogenous. A t each facility, carriers are ex-ante symmetric and they all offer a 
homogenous good/service, which is to be referred to as a 'product' hereafter. We w i l l use 
the term 'fare' to indicate the price of the final product, reserving the terms 'price' and 
'charge' for the facilities' price. Given the homogeneity and symmetry at each facility, the 
fare w i l l , in equilibrium, be the same for every carrier at each facility. 

The timing of our facility-rivalry game is as follows: 
(i) Facility market competition: The facilities choose capacities and prices for the 

input. Initially, we w i l l investigate a closed-loop game where capacities are 
decided prior to prices. We later compare this case with an open-loop game in 
which capacities and input prices are decided simultaneously, or capacity 
investments are not observable ( D B V D looked at a closed-loop game). 

(ii) Output (carriers) market competition: Given the facilities' decisions, carriers at 
each facility make their decisions in homogenous Cournot fashion. 6 

(iii) Final consumers decide whether to consume the product and i f so, which facility 
to go. 

We shall solve the game by backward induction: First we obtain the demands faced by the 
carriers at each facility by solving the consumers' problem, taking the fares and delay 
levels as given. We then solve the carriers' maximization/competition problem, taking as 
given the facility charges and capacities. Finally, we solve the facilities' problem for 
various cases including duopoly, monopoly, the social optimum, and the case in which the 
facilities vertically integrate with the carriers. 

6 We assumed this sequential, or Stackelberg, structure because it is what seems more reasonable for the 
industries we have used as examples (airports, seaports and telecommunication networks). See Young (1991) 
for a discussion of the effects of simultaneous choice of prices in a vertical structure. 
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6.2.1 The consumer problem 

Consumers have unit demands for the final product, and they care for its 'full price.' If the 
product is consumed, the consumer derives a gross benefit of V. A consumer located at 
0 < z < 1, derives the following net benefit (utility) i f she goes to facility 0: 

U0=V-f0-aD(Q0,K0)~z 
4 

where f0 is the (equilibrium) fare of the carriers' product at facility 0, D is congestion 

delay time at the facility, a represents the consumers' value of time, and t/4 is the 
parameter representing consumers' transportation cost.7 Thus congestion affects consumers 
negatively, and the product's full price, denoted p0, is the sum of fare / 0 , consumers' 

delay cost incurred at the facility aD, and transportation cost tzIA. Note that the 
congestion delay at facility h (h = 0,1) depends on Qn, which denotes the total output 
produced at h, and Kn, the capacity of facility h. Similarly, i f the consumer goes to facility 
1, then she derives a net benefit: 

Ux=V-fx-cd)(Qx,Kx)-Ul-z) 
4 

with the full price being px = /, + aDx + f ( l - z ) / 4 . This is an 'address model' with linear 
transportation costs, and the differentiation of the two facilities is captured by consumer 
transportation cost (i.e., positive i). We note that in addition to distance, other aspects of 
facility differentiation may be captured by extending the present model. 8 For instance, we 
could further address differential access costs to the two facilities (e.g., ground access to 
airports) by introducing a parameter to the net-benefit function such that 

Ux=V-fx-aD(Qx,Kx)-tA\(\-z)l4 

where A\ >1 (0<A\ < 1, respectively) i f facility 1 has a higher (lower, respectively) access 
cost for consumers than facility 0. On the other hand, while we allow facility 
differentiation by final consumers, the facilities may be differentiated also in the eyes of 

This transportation cost may seem awkward but, of course, it has no influence on the results: one could 
always define t'=t/4 to have a more usual transportation cost. It is chosen because it will simplify most of the 
equations in the paper (see, e.g., equations (4)). 

8 When distances among competing airports in a multi-airport region are not great, access time to airports 
and other airport service factors are particularly important in determining airport patronage. For example, 
using revealed preference data Ndoh, et al. (1990) examined air travelers' choice of departure airports among 
four Central England airports. Access time to airports, flight frequency of both direct and connecting routes, 
average journey time, average connection time to hub airports, and weekly available aircraft seats were found 
to be significant factors in affecting travelers' choice. Similarly, Bradley (1998) showed, based on stated 
preference surveys, that air travelers' choice among competitive departure airports in Europe is affected by 
twelve factors, including air fare, travel time to the airport, and airport congestion. Using a hypothetical 
example and later the San Francisco Bay Area case study, Pels, et al. (2000, 2001, 2003) showed that ground 
accessibility of an airport is the most important factor in affecting airport choices in a multi-airport market. 
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downstream firms. In this paper we shall for simplicity abstract away from this aspect of 
facility differentiation by assuming that the carriers are specific to a facility. This 
assumption may be reasonable for airports, in that given the high specific investment by an 
airline in serving an airport, it is hard for the airline -certainly harder than for travelers- to 
switch from one airport to another, especially in the short run. 

Assuming that everyone in the [0,1] interval consumes (for this we need V to be sufficiently 
large; see the analysis below) and both facilities receive consumers from [0,1] (i.e., an 
interior solution), then the indifferent consumer z e (0,1) is given by 

p0=f0+aD(Q0,K0) + ^z=fi+aD(Qi,Ki) + ̂ (l-z) = pl 

that is, 

1 ( / 1 + Q p ( 6 „ g , ) - / o - q P ( g o . * o ) 
2 t/2 

Thus, z , or the number of consumers (who are between the facilities) going to facility 0 
rather than facility 1, increases in / , +aD(Ql,Kl) while decreasing in / „ +aD(Q0,K0). 
Taking into account the fact that facilities 0 and 1 also capture the consumers at their 
immediate left and immediate right sides respectively, we thus identify four types of 
consumers, defined by three different locations in the city: 

z = zl: the last consumer on the left side of the city, who consumes and goes to 
facility 0 
z = z '• the indifferent consumer who belongs to (0,1) 
z = zr: the last consumer on the right side of the city, who consumes and goes to 
facility 1 

These points also define the catchment areas of each facility as shown in Figure 6.1: 

V V 

f o + a D o 

fl+aDl 

' >-
/ „ ~ r 

z 0 z 1 z 

Figure 6.1: Consumer distribution and facilities' catchment areas 

9 See Pels et al. (1997) for an analysis on airport pricing and competition in attracting airlines, and Adler 
and Berechman (2001) for an empirical study of airport quality from the airlines' viewpoint. 
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With the assumptions about uniformity and unit density of consumers, we obtain that z' 
and zr are given by 

V - / 0 - a D ( Q 0 , K 0 ) r = 1 y - / i -QP (6 , .g , ) ( 6 2 ) 

t/4 ' t/4 

Hence, the consumer demands for products at each facility are then given by: 

Q0=z+\z'\, G , = ( l - z ) + ( z r - l ) 

Replacing z from ( 6 . 1 ) and z', zr from ( 6 . 2 ) yields: 

_(t/4) + 2V i fl+aDl-3(f0+aD0) 

t i l t i l 

= (f/4) + 2 V ; / 0 + Q D 0 - 3 ( / , + 0 0 . ) 

1 f / 2 r / 2 

( 6 . 3 ) 

where Dh = D(Qh,Kh) for h = 0 , 1 . It is clear that the consumer demands depend not only 

on product prices ( / 0 ,f{) of the two facilities, but also on their delay levels (Z) 0, D , ) . Note 

that in order to have both facilities receiving consumers from [ 0 , 1 ] , we need 

| / , + « D , — f0 -ocD0\ <t!4, whereas in order to have everyone in the [ 0 , 1 ] interval 

consuming the product we need 2V > /, + aDl + f0+ o£>0 +(t!4), both of which are our 

maintained assumptions. 

If the facilities served the final consumers directly and had identical constant marginal 
costs, then it is easy to obtain the Bertrand-Nash equilibrium in prices. 1 0 Here, however, we 
are interested in the case where the facilities are upstream input providers to carriers, who 
are the ones that provide the product to final consumers. Since we are assuming that the 
carriers compete in Cournot fashion, we are interested in obtaining the inverse demand 
functions. 1 1 Inverting the 'direct' demand system ( 6 . 3 ) in ( / Q , / ^ we obtain the inverse 
demand functions that the carriers at each facility face: 1 2 

1 0 It would be given by p*0 = ({It 14) + 14V + 21c -17D 0 + 3aD, ) / 35, and analogously for px. Further, if 

the facilities were non-congestible, the fares would be equal and given by p = ((t 14) + 2V + 3c) / 5 
1 1 Earlier studies that have explicitly incorporated imperfect competition in the carriers' market at a 

congestible airport (e.g., Brueckner, 2002, 2005; Pels and Verhoef, 2004; Basso, 2005; Basso and Zhang, 
2006; Zhang and Zhang, 2006) have all assumed a Cournot game in the output-market competition. Brander 
and Zhang (1990, 1993), for example, find some empirical evidence that rivalry between duopoly airlines is 
consistent with Cournot behaviour. 

1 2 Perhaps a more sensible assumption would have been to consider a non-constant density of consumers 
to indicate that towards the center, that is, in between the facilities, the density may be greater than outside. 
Such an assumption would complicate the derivations but should not affect the main insights. What is 
important is the 'infinity' of the city or, more precisely, that consumers far away from the facilities find it 
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f0(Q0,Q1,K0) = 2t + V -3tQ0 -tQx -aD0(Q0,K0) 

fx(Q0,Qx,Kx) = 2t + V-3tQx -tQ0 -ocDx(Qx,Kx) 
(6.4) 

Wi th these inverse demand functions, we can now model the carriers' competition which 
occurs at stage 2 of the game. 

6.2.2 Output (carriers) market competition 

In the output (carriers) market, although any given carrier faces direct competition from the 
other carriers at the same facility, it would also take into account what happens at the other 
facility: the demands depend on both <2o and Q\. From (6.4) it may also seem that carriers 
would only care about the congestion at their own facility, but this is not the case. Recall 
that in the direct demand system (6.3), the demands depend on the delays at both facilities. 

We consider ex-ante symmetric carriers at each facility. The cost function of carrier i at 
facility h is given by: 

C'iQiQ^^ic.+P.+^DiQ^K^Ql, h = 0,l (6.5) 

where Pn is the facility charge (the input price) at facility h. Notice that both the carriers' 
pure operational cost, denoted Q , and the carriers' delay cost parameter, fih, are facility-
specific. Thus, congestion at each facility affects not only the final consumers as indicated 
earlier, but the carriers as well . Further, the cost function C,h depends on the production of 
other carriers at the facility, Q ^ ' , through the congestion term, as well as its own 

production level <2 (̂and Qh = ^ . G i )• It does not depend on the output of carriers at the 

other facility, however. 

Given the demand and cost specifications, the profit for carrier i at facility 0 is: 

f ° ( G o . Q o " ' . & . * o ) = / o ( G „ • G i • * o ) G o " {c0 +P0+ /30D(Q0,K0))Q>, i= 1,...,iV 0 (6.6) 

and the profit at facility 1 can be similarly written. As can be seen from (6.6), these profit 
functions depend on the outputs of carriers at both facilities. 1 3 The carriers' first-order 
conditions at facility 0 are given by 

optimal not to consume. For the case of airports, De Neufville (1995) has indicated that the competing 
airports can be separated as far as 135 kilometres apart, which is consistent with our infinite-city modeling. If 
the city was finite and the whole market was covered, both direct demands would be dependent on the 
difference /j + aDl - (f0 + o£>0). The system of direct demands would not be invertible in prices as a result, 

making it impossible to model Cournot competition. 
1 3 Since each consumer in the model consumes one unit of the carriers' products, this would imply, in the 

airport-airlines case, one flight per person, which is indeed indefensible. This is easily solved however, 
through a 'fixed proportions' assumption: i.e., assuming that 5 = Aircraft Size x Load Factor, is constant and 
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a^/ag^o, 1=1,... M 

Calculating these conditions, imposing symmetry (i.e., Q'0=Q0/NQ) and re-arranging, and 

doing the same for facility 1, we obtain: 

Q^={2t + V - c h - P h ) - Q h

3 - ^ ^ - Q _ h t 

f \ ( 6 ' 7 ) 

(or + A ) D(Qh,Kh) + ^DQ(Qh,Kh) 
V h J 

= 0 

where h, -h = 0,1, h*-h, a n d D e =dD/3Qh. From the two equations in (6.7) it is 

straightforward to obtain the derived demand functions: 

Ph{Q0,Qx,Kh;Nh) 

which are the inverse demand functions faced by the facilities. However, the direct 
demands -necessary to model price competition between the facilities- do not necessarily 
have closed expressions and may be defined only implicitly by the system of equations 
(6.7). Working with implicit demand functions does not lead to useful results in this case 
however, because comparative statics w i l l be too complicated. For example, the changes in 
Qh with respect to own price and the other price, namely, dQ01 dP0 and dQx I dP0, are 
obtained as the solution of the following system: 

BQ^+dQ^dQ^+dQ^dQL=Q an' ag0 | aa1 ag, ^ q 

a?0

 + aG0 a?0

 + ag, ap0 " ' ag0 ap0

 + ae, ap0 ~ 

leading to expressions that are quite unmanageable. 

To have the explicit demand functions, we shall specify a linear delay function. The use of 
a linear delay function also enhances comparability between our results and those of De 
Borger and Van Dender (2006) in which a linear specification was employed. Linear delay 
functions may, nevertheless, lead to the problem of the first-order condition approach 
prescribing a solution in which capacity is exceeded, something that does not happen when 

delay functions are convex enough (e.g., when D(Q,K) = Q[K(K - Oi'1, delays approach 
infinity when demand approaches capacity). There are two ways around this problem: (i) 
we can assume an interior solution and later find conditions for this to be true; or (ii) we 
can impose a priori a capacity-rationing rule for the case in which capacity is reached. We 
shall take the first approach. 

the same across the airlines, and that S consumers make up one flight. Then the only change in our results 
would be that a parameter S would be included. Fixed proportions has been assumed in Brueckner (2002; 
2005), Pels and Verhoef (2004), Basso (2005), Zhang and Zhang (2006), and Basso and Zhang (2006). 
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In what follows we assume a linear delay function, 

D(Q,K) = a^ (6.8) 
K 

With (6.8) and letting P = ( P 0 , P,), K = (K0, KX) and solving system (6.7), we obtain the 

following derived demands for the two facilities (the expressions for facility 1 are 
analogous): 

e0(P.K) = ' ( C ' + / ' - 2 > - V > - « ' ( r f ° - 2 t - ' 0 (6-9) 
g0<?i ~t 

where 

8o= ° 3t + a 0 

J 
(6.10) 

Thus, the demands faced by the facilities depend directly on facility prices and capacities, 
and they are linear in P 0 and P i . Notice that go has two parts: the first part is related to t (the 
consumers' transportation cost) which leads to the two facilities being differentiated and 
having associated market power; and the second part is related to KQ, reflecting the 
congestion effect. Further, go depends on the carrier market structure: it decreases in A^ . In 
particular, go is largest with a monopoly carrier (N0 = 1) while smallest in the competitive 
case (when N0 —»«>). It can be easily shown that gh > t and, consequently, the 
denominator of (6.9) is positive. Furthermore, gh increases with a and Ph, and decreases 
with KH and Nh. 

Taking the perspective of facility 0 we can, from (6.9) and (6.10), characterize these facility 
demands through the following comparative statics: 

a<20 _ dQo _ g, <0 (6.11) 

• > 0 (6.12) dQ0 _ a<20 t 
dP, 3c, g 0 g , - r 

de0 e 0 g , O g 0 / 5 / 7 ) 
.2 d*! 8o8i-t 

dQo =Qlt(dg1/dT]) 

8o8i~t2 

> 0 , for 7]e{Ko,No-0o} (6.13) 

< 0 , for Tje {Kl,Nl,-Pi} (6.14) 
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dfio _Qit(dgl/da)-Q0gl (dg0/da) 
(6.15) 

80S1 -t2 

A l l the signs in (6.11) to (6.14) are as expected: e.g., inequality (6.11) is equivalent to the 
demand functions being downward sloping, and (6.12) shows that the facilities are 'gross' 
substitutes. From (6.11), (6.12) and gh > t, it follows that 

that is, own-price effects on demand dominate cross-price effects. This condition is 
equivalent to the stability condition for price equilibrium in the duopoly facility game and, 
together with downward-sloping demands, further implies the uniqueness of the price 
equilibrium (see, e.g., Dixi t , 1986). 

The demand for a facility increases in own capacity, but decreases in the competitor's 
capacity. The effects of carriers' marginal costs on the facility demands are the same as 
those of prices; after all , for the carriers, the facility charge is part of its marginal cost. 
Moreover, a facility's demand rises the greater the number of carriers it has, and the less its 
carriers care about congestion (i.e., the lower the value Ph is). Its demand also rises the 
fewer carriers there are at the other facility, and the more they care about congestion. 

A s for the effect of consumers' time value or on facility demands, equation (6.15) shows, by 
gh>t, that in a fully symmetric case (facilities and carriers), a larger time value w i l l 
reduce the demand for both facilities. However, it may occur that facility O's demand 
increases with a in asymmetric cases. For example, i f everything is symmetric except for 
carriers' marginal cost, and (en - c{) is large enough, then higher en implies that carriers at 
facility 0 would have, ceteris paribus, higher prices and hence the facility w i l l have a 
smaller demand but also less congestion. A marginal increase in the value of time would 
induce a shift by consumers towards the less congested facility, increasing the demand. 
Finally, the analysis of the demand effect of transportation cost t is similar to that of a, 
although the expression is slightly more complicated than (6.15). In a fully symmetric case, 
a smaller transportation cost w i l l increase the demand. However, this may be reversed with 
strong asymmetry. 

6.3 Equilibria of Duopoly Facilities 

Now that we have characterized the final market equilibrium and the facilities' demands, 
we can analyze the facilities' market -i .e. , stage 1 of the game- for various cases. In this 
stage, facilities take into account what w i l l happen downstream. This Section investigates 
the rivalry between two profit-maximizing facilities; in Section 6.4, we w i l l compare the 
results from this duopoly rivalry with those of monopoly and the social optimum. 

dQh dQh= g_h-t 
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6.3.1 Closed-loop duopoly 

Consider first a 'closed loop' game in which the facilities first choose capacities and then, 
given the capacities, they choose prices. We assume that the facilities' operational and 
capacity costs are separable and their marginal costs are constant. Without loss of 
generality, we set the operational marginal costs to zero, so the profit of facility h can be 
written as: 

xh(P,K) = Qh(P,K)Ph-mhKh, h = 0,l (6.16) 

where mh denotes the marginal cost of capacity. 

Pricing 

In the pricing stage the capacities are given, and the two facilities simultaneously choose 
their prices Ph to maximize profit (6.16) taking into account the carriers' competition and 

consumers' behaviour. The first-order conditions and equation (6.11) lead to the following 
pricing rules: 

P0=Qogo- — > ^ = G i * , - — (6-17) 
8i 8o 

The pricing rule for each facility has two parts. Consider facility 0, for example. Using 
(6.8) and (6.10), the first part, Q0g0, can be further written as: 

Q0g0=(l + s0){D0(a+/30) + 3t) (6.18) 

where s0=l/N0 is a carrier's market share at facility 0. The first term on the R H S of 

(6.18) is a congestion charge, but the duopoly facilities charge more than just the pure un-
internalized congestion of each carrier (which would have been 1 - so, rather than 1 + %): 
this is caused by the failure of coordination in the vertical structures.1 4 The second term in 
(6.18) is a mark-up from exploitation of market power that arises given the locational 
preferences of consumers. Going back to (6.17), the second part, -Q0t21 gx, is a mark-
down that arises owing to facility competition. As the other facility becomes less attractive 
-i .e. , as K\ decreases and hence gx increases- the mark-down falls, thereby making the 
price of facility 0 larger. 1 5 

As is to be seen in Sections 6.4 and 6.5, this coordination failure is not solved if facilities are single-
owned but would be solved by a vertical integration of facilities and carriers. 

1 5 This expression has a different flavour than the one obtained in a non-vertical setting (e.g., De Borger 
and Van Dender, 2006, equation (9)). In the non-vertical case, the second part would be positive, although a 
less attractive facility 1 would reduce the mark-up. 
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Notice that each pricing rule in (6.17) does not represent a 'best reply' function because <2o 
still depends on P 0 . Instead, the best-reply functionP" (Px, K) is implicitly determined by 
the first-order condition, 

9 ^ ° ( P 0

f l ( P 1 , K ) , P , , K ) _ ( ) 

dP0 

and, therefore, its slope is given by dP0

B ldPx = - (3 V /dP0dPx)/(B27T° IdP2), leading 
to: 

dP0

B _ t dPx

B _ t 
dPx 2gx dP0 2g0 

It is easy to see that the slope of the best-reply function is positive but smaller than 1, which 
indicates that the prices (P0,PX) are strategic complements and the Nash equilibrium (NE) 
in prices w i l l be unique and stable. This pricing N E -which we w i l l denote by a * - is at the 
intersection of the two best-reply functions. Letting x = (N0 ,Nx,c0,cx,P0,Px,a, t) be the 

vector of exogenous parameters, the N E , P* = (P*, P*) is found to be 

P ; ( K ; x ) = ^ ( C ' - 2 r - y ) - ( C ° - 2 f - V ) ( 2 g - ^ - r 2 ) (6.19) 

Next, we conduct comparative statics to see how capacities and features of the consumer 
demand and the carriers' market affect the equilibrium prices. For capacities, we obtain: 

dPp =t2(Q0g0+Qit) dg0 ^ Q 3 P ; = 2g0t(Qxgx+Q0t)dgx < Q 

dK0 g0(4g0gx-t2)dK0 ' dKx gx(4g0gx-t2) dKx 

This shows that higher capacities imply smaller equilibrium prices. In other words, the 
more congestible the system is, the higher the equilibrium prices are. This result was also 
found in the non-vertical setting of D B V D , which is not surprising because our derived 
demands for the facilities react to changes in prices and capacities in the same fashion as 
the demands they assumed in their final market. 

Another interesting parameter to look at is the time value a, a characteristic of the final 
market. We find tha t9P 0 * /3a>0 , which is interesting because, despite the fact that the 

demand for facility 0 may increase or decrease with higher a, the equilibrium prices w i l l 
always increase. Just as a more congestible system leads to higher prices, consumers that 
are more sensitive to congestion also induce higher facility prices. 
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But perhaps more interesting than the previous comparative statics -wh ich pertain to the 
final market- is to see how the equilibrium prices change with characteristics of the 
intermediate market (such as variables Nh, pn or Q,) and with the facility differentiation, as 
these two aspects are our main departures from the literature. The results are reported in 
Proposition 6.1: 

Proposition 6.1: For given capacities, (i) the duopolists' equilibrium prices increase with 
both the consumers' value of time and the carriers' cost sensitivity to congestion delays, (ii) 
Entrance of a new carrier to any of the facilities depresses the prices charged by both 
facilities, (iii) Lower marginal cost of the carriers at one facility w i l l induce a higher facility 
price at that facility but a lower facility price at the other facility. 

Proof: (i), (ii) The first part of (i) has been indicated by in the text (i.e., dP0* Ida > 0 ) . To 

prove the second part and (ii), we can, from (6.19), show: 

< > 0 , < >0, < <0, ^ < 0 . 
dp0 3A dN0 bW, 

Hence, the more sensitive the carriers are to congestion, the higher the prices w i l l be, which 
is consistent with the comparative statics with respect to capacities and a. Also , the 
entrance of a new carrier to any of the facilities would depress the prices charged by both 
facilities. 

(iii) This part follows from the following inequalities: 

dPp = 2 g 0 g , ~t2

 < Q dP* _ g0t ^ Q 

dc0 4 g 0 g , - r 2 ' dcx 4 g 0 g , - f 2 

Proposition 6.1 suggests that, when capacity is fixed, lower marginal cost of the carriers at 
one facility would induce a higher price at that facility but a lower price at the other facility. 
For example, i f we start from a case in which airlines have the same marginal costs en = c\ 
and we replace the airlines of one facility by lower marginal-cost carriers, then the airport 
charge would increase at the airport with low-cost carriers, while the charge at the other 
airport would fall. This may serve as a testable implication for empirical studies. Note, 
here, that the number of airlines at each airport would not need to be the same. 

Capacity Decisions 

The comparative statics in (6.20) show that the more congestible the system is, the higher 
the equilibrium prices are. Nevertheless, this result does not necessarily imply that the 
facility firms would prefer a more congestible system. When deciding their capacities, these 
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firms are able to foresee what is going to happen in the pricing stage and hence take the 
price equilibrium P * ( K ) into account. The reduced-form profits for the capacity game are: 

n " ( K ) = ^ ( p * ( K ) , K ) , /i = 0,1 (6.21) 

where tf*(P,K) is given by (6.16). 

Consider facility 0. Taking the derivative of its profit with respect to capacity, we obtain 
the following first-order condition: 

n 0 = an°(K) = dx° ap; { a p ; | _ ap; | 

0 dK0 aP0 dK0 aP, dK0 dK0 dPl dK0 dK0 

where the second equality follows from the envelope theorem. Hence, when a facility 
decides to marginally increase or decrease its capacity, it considers two effects on profit: a 

a r̂° a r̂° ap* 
direct effect , and an indirect effect —. Making the calculations, (6.22) 

BK0 ap, a^0 

becomes: 

* aon ap, . aoft P 0 ^ r 1 z-^ + P 0 ^ - m 0 = 0 (6.23) 0 ap, 3K0 BKQ 

The second and third terms on the left-hand side (LHS) of equation (6.23) are the direct 
effect of a marginal increase in capacity. Its sign obviously depends on the extent by which 
own demand increases when capacity is increased, and on the marginal cost of the capacity 
expansion. The indirect, strategic effect -the first term on the L H S of (6.23)- indicates that 
a marginal increase in own capacity wi l l lead to a reduction in the rival facility's price 
(recall comparative statics (6.20)), which in turn w i l l decrease own demand and own profit. 
The optimal level of capacity is then chosen such that the marginal gain from the direct, 
positive demand effect equates the marginal loss from both the capacity cost, m 0 , and the 
negative strategic effect. 

6.3.2 Open-loop duopoly 

In an 'open-loop' game, capacities and prices are chosen simultaneously by the facilities or, 
at least, i f capacities are chosen earlier, they are not observable by the rival facility. The 
problem faced by facility h is: 

m a x ^ " ( P , K ) 
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where 7th is given by (6.16). The first-order conditions w i l l give rise to the pricing and 
capacity rules. The pricing rules remain the same as those given in (6.17), whereas the 
capacity rules can be derived, using equation (6.13), as: 

ra(a + Ph)(Nh+\)^12 

mh Nh 

Qh, h = 0,l (6.24) 

The capacity rules (6.24), which obviously equates the marginal benefit of an increment in 
capacity to marginal cost (mh) for each facility, shows that at the subgame perfect Nash 

equilibrium -denoted by do, for the duopoly open-loop game- congestion delays at facility 
h w i l l be equal to: 

\do z r d o \ Qh 
do 

D(Q?,Ka

h°) = a 
K do 

amh Nh 

, 1 / 2 

(cc + /3h)(Nh+\)^ 
h = 0,l (6.25) 

Thus, in equilibrium, the delay times at a facility increase with the number of carriers at the 
facility (Nh) and the capacity cost (mh). They decrease as the time costs -either 

consumers' cost (a) or carriers' cost ( / i 0 ) - increase. Equations (6.25) also define a 

sufficient condition for an 'interior solution' in the sense that Qh <Kh: 

mh<a(a+ph), h = 0,l (6.26) 

Hence, i f the capacity costs are low enough, or i f the time costs are high enough, we are 
guaranteed to have an interior solution. 

6.3.3 Comparisons: closed- vs. open-loop duopoly 

We first show that the facilities w i l l invest less in capacity in the closed-loop (sequential) 
game than in the open-loop (simultaneous) game. To do this, we take the capacity first-
order condition of the closed-loop game, equation (6.22), and evaluate it at the open-loop 
capacity: 

n° 
2? C3P, dK0

+dKQ

} 
open dPx dK0 

loop 
open 
loop 

(6.27) 

The second equality follows from the capacity first-order condition in the open-loop game. 
The signs of the derivatives follow from inequalities (6.12) and (6.20). Hence, in the 
closed-loop game, according to the nomenclature of Fudenberg and Tirole (1984), firms 
invest less in capacity following 'puppy dog' strategies: Investment in capacity would make 
a facility tough, in that it decreases the facility's price hurting the rival, but that triggers a 
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harsh pricing reaction from the rival facility, since the prices are strategic complements. 
Hence, the facilities w i l l try to soften the price competition by committing to small 
capacities in the first stage: facilities want to look small and inoffensive. This directly leads 
to higher prices. 

However, that the fact that capacities are smaller when they are chosen prior to prices does 
not directly imply that delays wi l l be longer. This is because, on one hand, capacity levels 
directly affect demands and, on the other hand, we now have higher prices. Yet, it can be 
shown that delays do increase. From (6.27) and (6.23) it can be seen that at the closed-loop 
duopoly equilibrium -which we denote by dc- it happens that: 

>0 
dc 

Since in the equilibrium, equation (6.17) must hold, we can replace P0* with it. Further 

replacing dQ0 /dK0 with (6.13) and rearranging we obtain that 

Qt 
\ 1/2 

CL fit iW 1 
1 => D(Qt, K?) > D(Qt, K? ) (6.28) (a + j30)(N0+l) 

The above discussions lead to: 

Proposition 6.2: A closed-loop duopoly (in which capacities are chosen prior to prices) 
invests less in capacity, has higher facility prices and higher congestion delays than an 
open-loop duopoly (in which prices and capacities are chosen simultaneously, or capacity 
investments are not observable). 

6.4 Monopoly and the Social Optimum 

Having examined the duopoly case, we shall in this Section investigate both the monopoly 
case and the social optimum, emphasizing comparisons among the three cases. 

6.4.1 Monopoly 

Here a monopolist owns and operates both facilities, so its problem i s : 1 6 

max 7t° (P, K) + KX (P, K) = max ^ (QH (P, K)Ph - mhKh). 

Note that the results will remain the same in the monopoly case (and the social optimum) whether 
capacity and price are made simultaneously or sequentially. 
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The first-order conditions with respect to prices are: 

0 BP0

 0 1 dpQ

 1 a/> ^ 0 dpl 

Using (6.11) and solving for PQ and P i we obtain: 

P0=Q08o+Qit, P^Qtgi+Qot (6.29) 

where g 0 and gx are given by equation (6.10). These pricing rules can be compared to the 
duopoly pricing rules (6.17). Contrary to what happens with duopoly, the monopoly has a 
mark-up term. This occurs because of the monopolist's internalization: When increasing the 
price for one facility, the monopolist takes into consideration that it is actually increasing 
the demand for the other facility, with the resulting profit accruing to itself. Moreover, 
replacing g0,gl with (6.8) and (6.10), (6.29) becomes, for facility 0: 

P 0 = D0 (a + P0 )(1 + s0) + 3tQ0 (1 + s0) + Qxt (6.30) 

and the expression for facility 1 is analogous. The first term on the R H S of equation (6.30) 
is related to the congestion toll but the monopoly facility, as the duopolists, charges more 
than just the pure un-internalized congestion of each carrier (which would have been 1 - SQ, 
rather than 1 + SQ). The second term is the mark-up from exploitation of market power that 
arises given the locational preferences of consumers. The third mark-up arises because of 
lack of facility competition: the monopoly internalizes the interrelation of demands. 

From (6.17) and (6.29) it is not immediate, however, to conclude that monopoly facility 
charges are higher than duopoly charges, for two reasons. First, both (6.17) and (6.29) are 
actually a system of fixed points, since QQ and Q\ depend on both PQ and P i . Second, 
perhaps more fundamentally, capacities w i l l l ikely differ in the two cases; prices and 
capacities are decided simultaneously and therefore, prices can be compared in two ways 
(see Spence, 1975; Basso, 2005): 

(i) Compare prices as i f capacities were fixed, 
(ii) Compare actual prices, taking into consideration the difference in capacities. 

The first one is useful because it may represent a short-term case, but it is also useful in 
performing the second comparison. In what follows we w i l l , when feasible, perform both 
comparisons. For this, we first look at the capacity rules under monopoly. Taking the first-
order conditions for capacities, and using (6.10), (6.13) and (6.29), we get: 

ra(a + Ph)(Nh+\)^12 

Qh, h = 0,l (6.31) 

The monopoly capacity rule (6.31) is identical to the open-loop duopoly capacity rule 
(6.24). Obviously, since their pricing rules are different, the consumption levels, and hence 
actual capacities, w i l l be different in the two cases. Delay times w i l l be equal however, 
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given the assumption about linearity of the delay function. From (6.25), (6.28) and (6.31) 
we have (superscript M stands for monopoly): 

M 

K 0 

a m 0 N0 

,1/2 

(a+/30)(N0+l) 
D(Qd

0°, Kdo) < D(Qdc, Kd

0

c) (6.32) 

Note that the sufficient condition for an interior solution in the monopoly case is the same 
as (6.26). D B V D found that the duopolists would provide longer delays than the 
monopolist. Here we find that the duopolists provide longer delays than a monopolist only 
i f capacity decisions are made prior to price decisions (which is the case for D B V D ) . When 
the capacity and price decisions are made simultaneously, or when capacity investments are 
not observable prior to price decisions, the duopolists would provide the same service 
quality (congestion delay) as the monopolist. 

Next, we compare the monopoly and duopoly prices for given capacities. Obtaining 
monopoly prices for given capacities involves solving system (6.29). This leads to: 

PM ( K ) = 2 ' + ^ - C ° , / f ( K ) = 2 t + V

2 ~ C i (6.33) 

Thus, given the capacities, the monopoly prices are, somewhat surprisingly, actually 
independent of the capacities! This means that the monopolist would charge prices (6.33) 
independently of whether it can choose capacities or not (provided, of course, that it leads 
to an interior solution). A facility's price decreases with the marginal cost of carriers at that 
facility, but is independent of the marginal cost of carriers at the other facility. This is in 
contrast to the duopoly case, where a fall in carriers' marginal cost at one facility induces a 
fall of the other facility's charge. This distinction between duopoly and monopoly pricing 
might be used as an empirically testable hypothesis. 

To compare the prices, recall that the duopoly prices are derived in (6.19). From (6.19) and 
(6.33) we can easily show that for given capacities, the duopoly prices are, as expected, 
smaller than the monopoly prices: 

Pf ( K ) - P ; ( K ) = * (a+V -c , ) + 2 g 0 ^ + V - c , ) ] > Q 

Moreover, the fact that the monopoly pricing rules do not depend on capacities allows us to 
further show that the actual duopoly prices w i l l be smaller. Notice that P * ( K ) i n (6.19) 

denotes the duopoly pricing rules for given K . Letting Kdo denote the actual capacities in 
the open-loop duopoly, we have that P* (Kdo) are the actual prices in the open-loop 
duopoly. Hence, 

Pdo = P*(Kd0)< P0

M (Kd0) = P0

M ( K M ) = P^1 => Pd0 <PQ

M (6.35) 
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where the first inequality follows from the fact that the monopoly prices are higher than the 
duopoly prices for given capacities (equation (6.34)), and the last two equalities follow 
from the fact that the monopoly pricing rules do not depend on capacities. Similarly, we 
obtain that: 

Pdc = P*(Kdc)< P0

M (Kdc) = P0

M (KM) = P0

M => P0

dc < P0

M (6.36) 

Hence, overall we have the following result: 

Proposition 6.3: For facility h (h = 0,1) we have: (i) Pd0 < Pdc < Ph

M; and (ii) 

Dd

h° = < Ddc. Thus, an open-loop duopoly wi l l have lower prices than a closed-loop 

duopoly, which in turn wi l l have lower prices than a monopoly. A s for the service levels 
(congestion delays), duopoly facilities provide lower service quality than a monopoly only 
i f capacity decisions are made prior to the facility pricing decisions. If the decisions are 
simultaneous, the duopolists would provide the same service level as the monopolist. 

6.4.2 The social optimum 

The social optimum arises when a central planner chooses facility prices P and capacities 
K to maximize social welfare. Unlike the non-vertical setting of D B V D , we now have the 
surplus of three agents to consider (facilities, carriers, and final consumers) rather than just 
two agents (facilities and final consumers). Wi th two facilities, we need to consider five 
surpluses in the social-welfare function: 

5W(P,K) = CS + O , + 0 2 +nx +K1 (6.37) 

where CS is consumer surplus, O/, is the aggregate (equilibrium) profit for carriers at 
facility h and nh is the (equilibrium) profit of facility h. Recall that we have identified four 
types of consumers defined by three locations z of the linear city: z1, z and zr; see 
equations (6.1) and (6.2) and Figure 6.1. Wi th consumers being uniformly distributed with 
density one per unit of length, the consumers' surplus is thus given by: 

V'\ i 

CS = J[V - Po(Go,g,) - « D 0 - ft )]& + \[V - p0(Q0,Qx)-aD0 - tz)]dz 
0 0 

1 -z z'-\ 

+ \[V-Pl(Q0,Ql)-aDl-tz)}lz+ J [V- J p 1 (G 0 , e i ) -oD 1 - f t ) ]dz 
0 0 

Note that Go and Gi -which are given by (3)- do not depend on z, whereas z , z and z 
depend on Go and gi- Hence, we w i l l obtain an expression dependent on Go and gi- Using 
(6.4) to replace po and p\ both in the integrands and in z ', z r and z , and solving the 
integrals we get: 
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C5=^(3«2o 2+2(2 0e i+3(2 1

2-4). (6.38) 

It might seem that CS increases in t, and it is negative i f there is no consumption. However, 
it is important to recall that both QQ and Q\ are equilibrium values, in that they depend on 
the level of congestion and on the value of t. Indeed, an examination of (6.3) reveals that QQ 
and Q i w i l l rise as t decreases, so the overall result is that CS actually falls as t increases, as 
expected. Also , recall that the maintained assumption has been that V is sufficiently large so 
that everyone in the [0,1] interval consumes. This implies that the minimum values of QQ 
and Q\ for which the above CS expression is valid are when both are equal to 1 (each 
facility gets Vi consumer from each side, left and right). Therefore, CS is never less than 2t. 

Regarding the carriers' aggregate profit at a facility, it is straightforward, from (6.6), (6.4) 
and symmetry, to obtain: 

<D0(P,K) = (2? + y - c 0 ) « 2 0 - Q 0 P 0 - 3 t Q 0

2 - t Q 0 Q x - ( a + /30)Q0D0 (6.39) 

With these expressions for CS and and the expressions for the facilities' profits given by 
(6.16), the welfare function (6.37) can be written as: 

SW(P,K) = (2t + V - c0)<20 + (2t + V - c , - l-(3<20

2 + 2Q0QX + 3Q2) - 2t 
I (6.40) 

-(a + fi0)Q0D0 -(a + px)QxDx -m0K0 -mxKx 

Notice that SW above is not directly a function of PQ and P i . Instead, it is a function of QQ 
and Q\ and, through them, a function of prices. 

A t the social optimum, the prices and capacities are set such that social welfare is 
maximized. The first-order condition with respect to P 0 is, 

asw = dsw BQ0 | dsw ag, | dSW ^ Q 

dP0 dQ0 dP0

 + dQx dP0

 + dP0 ~ 

Calculating this -noticing that dSW I dP0 = 0 - and using Q° in (6.7) to obtain an 

expression for (2t+V-co), (6.8) for the delay function and (6.11)-(6.12) for the derivatives 
of QQ with respect to prices, we get: 

P +3t — -a(a+Bl) — 
N, 1 K, 

t = Po+3t%--a(a+0o)Qo 

Nn 

go (6-41) 

Similarly, the first-order condition with respect to P i leads to: 
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Px + 3t 
N, 

-a(a + /3x) 
Nx-l 

N 
i J 

P0 + 3t^-a(a + fi0)Q-
N, o ) 

t (6.42) 

Since the terms in brackets on the L H S of (6.41) and (6.42) are the same, the terms in 
brackets on the right-hand side (RHS) of (6.41) and (6.42) are the same, and g0 > t, gx>t 
and g0 * gx, equations (6.41) and (6.42) hold only i f each of the bracketed terms is zero. 
Using (6.8), this gives rise to the following social pricing rules: 

P0 = Do(a+j30)(l-so)-3tQos0, Px = Dx(a+px)(\-sx)-3tQxsx (6.43) 

where sh = 1/ Nh is a carrier's market share at facility h. This pricing rule for each facility 
is conceptually similar to the ones obtained by Pels and Verhoef (2004) for the case of two 
distant airports servicing two carriers, Basso (2005) for the case of two distant airports 
servicing N carriers, and Zhang and Zhang (2006) for the case of a single airport servicing 
N carriers. The socially optimal price at a facility consists of a congestion term - b y which 
the facility charges to each carrier the un-internalized congestion it produces-, and a mark-
down, the market-power term, by which the facilities 'subsidize' the carriers so as to 
countervail the market power by monopoly or oligopoly carriers and induce the allocatively 
efficient output. One consequence of such subsidy is that the facilities may not recover their 
costs especially i f the market-power term is large, even though we have constant returns to 
scale in the provision of capacity and the delay function is linear. 1 7 

Furthermore, notice that when there is a large number of carriers (sh —> 0), the carriers no 
longer have market power and hence the second terms on the R H S of price equations (6.43) 
vanish. Similarly, when there is a monopoly carrier at a facility (sh = 1) the monopolist 

perfectly internalizes congestion; consequently, there is no need to correct for congestion 
and so the first terms on the R H S of (6.43) vanish. Finally, (6.43) is easily comparable to 
the monopoly pricing equation (6.30). It can be also manipulated to yield: 

P ° = e ° g o ^ T i " 3 ^ 0 ' P l = G l g l ^ T T 3 ' G l ( 6 ' 4 4 ) 

which are more easily comparable to the duopoly pricing rules (6.17). 

Brueckner (2002), Basso (2005) and Zhang and Zhang (2006) have obtained the same result under 
different model settings. A l l these studies have explicitly considered imperfect competition in the carriers' 
market. When such imperfect competition is absent, earlier studies (Morrison, 1983; Zhang and Zhang, 1997; 
and De Borger and Van Dender, 2006) have shown that under the constant returns to scale in the provision of 
capacity and a linear delay function, the optimal pricing and optimal provision of capacity lead to exact cost 
recovery for a congestible facility (e.g., airport). The issue of budget adequacy is further discussed by Basso 
(2005) in the context two distant airports, but the conclusions there apply to this competing-facilities case as 
well: two part-tariffs, or cost-recovery two part tariffs if the carriers do not make enough profits, may resolve 
the problem. If fixed fees are not feasible for some reason, the less efficient alternative of Ramsey-Boiteux 
prices is called for. 
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To derive the socially optimal capacities, it is useful to point out that the pricing rules 
( 6 . 4 3 ) are obtained as i f we were maximizing directly in terms of (Qo, Q\) rather than (PQ, 

P I ) , because the pricing rules are in fact derived from dSW ldQh = 0 . Hence: 

dSW = dSW 3<2Q dSW dQ, | dSW _dSW ^Q 

dKh " dQ0 dKh

 + dQ, dKh

 + dKh ~ dKh " 

From dSW I dKh = 0 and ( 6 . 4 0 ) , it follows immediately that the social capacity rules are 
given by: 

Kh = 
/ „ \ l / 2 

Qh, h = 0,l ( 6 . 4 5 ) 

The capacity rules ( 6 . 4 5 ) can be compared to the monopoly capacity rules ( 6 . 3 1 ) , giving 
rise to: 

Proposit ion 6.4: Conditional on facility charges, the monopoly capacity rules are the same 
as the socially-optimal capacity rules i f and only i f Nh —> oo, i.e., the downstream carriers' 
markets are perfectly competitive. 

Proposition 6 . 4 shows that when the downstream markets are imperfectly competitive, the 
monopoly capacity rules w i l l be different from the social capacity rules. This is in contrast 
to what was found by D B V D in their analysis without an intermediate, carriers' market; 
they found that the monopoly and socially optimal capacity rules were identical. Their 
result had in fact a precedent in Oum, et al. ( 2 0 0 4 ) , who analyzed price and capacity 
decisions by a single congestible airport. Since they did not formally derive the airport's 
demand from the equilibrium of the airlines' market, their setting is actually quite close to 
D B V D ' s , with the exception that D B V D had two facilities with interdependent demands. 
Our result here shows that, when one takes into consideration that the congestible facilities 
may be upstream providers of an input, as in the case of airports, seaports or 
telecommunication networks, the monopoly capacity rules w i l l coincide with the socially 
optimal rules only for the case of atomistic carriers (see also Basso, 2 0 0 5 ; Zhang and 
Zhang, 2 0 0 6 ) . 

Both Oum et al. and D B V D correctly pointed out that, since the pricing rules are different, 
consumption levels w i l l be different, and hence actual capacities w i l l be different. 
However, taking advantage of the assumption of a linear congestion function, D B V D 
showed that, in their case where the facilities interact directly with final consumers, the 
monopolist provides exactly the same service quality -i .e . , the same level of delays- as 
welfare-maximizing facilities. In our case, from ( 6 . 4 5 ) and ( 6 . 3 2 ) it follows that: 1 8 

Note that the sufficient condition for an interior solution at the social optimum remains the same as (26), 
that is, mh < a(a + Ph) • 

1 3 2 



D(Q:,Kw

h) = a 
K w 

, 1/2 
am. 

> 
amh Nh 

A l l 

(cc + Ph)(Nh+\) 
D(Qh > ) (6.46) 

where W stands for welfare maximization. Inequality (6.46) thus leads to: 

Proposit ion 6.5: Monopoly pricing and capacity choices result in a higher level of service 
quality (shorter congestion delays) than the social optimum. 

Proposition 6.5 shows that when the facilities are input providers, the monopolist would no 
longer provide the same level of service quality as welfare-maximizing facilities. However, 
an important issue is: i f the congestion levels were equal, does that mean that the 
monopolist is providing the socially optimal level of service quality? The answer is no. A s 
it has been pointed out, capacities and prices are decided jointly so they cannot be analyzed 
separately. A n d since service quality is a result of both the level of demands induced and 
the capacities chosen, it cannot be looked at on its own; just as with capacity, delays must 
be analyzed together with the pricing rules. Hence, in the first-best case, the service quality 
obtained is optimal given the W pricing but it would no longer be optimal i f the pricing rule 
is different. In other words, both the capacities and the delay levels are most likely not a 
second best: If we were to look for optimal capacities subject to the monopoly pricing, 
different capacity rules, and consequently different congestion levels would follow (see 
Basso, 2005). 

This argument may seem a little bit difficult to see in the present case, given that the central 
planner and the monopolist w i l l have different capacity rules to start with. Nevertheless, we 
can make it more transparent by analyzing a fourth type of facility ownership: the 
monopolist vertically integrates with the carriers at the facilities. A s we shall show in the 
next Section, in this case, this hyper-monopolist w i l l have exactly the same service level as 
the central planner, just as in the case of D B V D . However, this w i l l not imply that the 
facilities provide the socially optimal quality level in a second-best sense. 

6.5 Vertical Integration 

Consider now a vertical-integration case, in which a single owner of the facilities tries to 
maximize the sum of the facilities' profit and the carriers' profit. This case is relevant in the 
real world; for example, in the case of airports, it has been often argued that strategic 
collaboration between airports and airlines would solve the incentive and coordination 
problems regarding capacity and pricing in the vertical structure (see, e.g., Beesley, 1999; 
Forsyth, 1997; Starkie, 2001; for a more complete list see Basso, 2005). 

Thus, the problem of the hyper-monopolist is: 

m^XtOfc+tf*). 
P K h 

The objective function is easily obtainable as: 
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X ( O , + Kh) = (2t + V - c0 )Q0 + (2t + V - c, )QX - t(3Q0

2 + 2Q0QX + 3QX

2) 
* (6.47) 

- (or + /? 0 ) G 0 D 0 - (or + px )QXDx -m0K0- m,Kx 

Notice that just like the welfare function (6.40), this objective function depends indirectly 
on Pn and P i . The pricing rules are obtained in the same fashion as in the social-optimum 
case, and are given b y : 1 9 

P0=D0(a+P0)(l-s0) + 3tQ0(l-s0) + Qxt (6.48) 

This pricing equation is conceptually similar to the ones obtained by Basso (2005) for the 
case of two distant airports that vertically integrate with the airlines, and by Basso and 
Zhang (2006) for the case of peak-period pricing by a vertically integrated airport. It shows 
that the price consists of a congestion toll term - b y which the facility charges each carrier 
for the un-internalized congestion it produces- and a mark-up. The congestion-toll term is 
represented by the first term on the R H S of (6.48), which depends on the number of carriers 
at the facility. The toll is greatest for atomistic carriers (s0 —>0) and is zero for a 

monopoly carrier (s0 = 1). B y the mark-up, the facility increases the carriers' marginal 

costs, thereby inducing the cartel level of output and maximizing the carriers' joint profit. 
In particular, the mark-up takes into account both the competition between the carriers 
within a facility (represented by the second term in (6.48), which vanishes when s0 = 1), 
and the competition exerted by the other facility and its carriers (third term). Note that 
equation (6.48) is easily comparable to (6.43) for the central-planner case and (6.30) for the 
monopoly case. 2 0 

Like the pricing rule, the capacity rule can also be obtained in the same fashion as we 
obtained the social capacity rule, that is, by realizing that the pricing rules are in effect 
obtained from di^hOh +7Th)/dQh = 0 . It turns out that the hyper-monopolist's capacity 

rule is the same as the central planner rule (6.45); as a consequence, the level of service 
quality (delays) is, from (6.46), also the same: 

D(Ql',Kl') = a ^ a VI 

v-vi 
a m0 

a + p0 

\ 1/2 

= D(QQ , KQ ) (6.50) 

where superscript VI stands for the vertical-integration case. Does this mean that the hyper-
monopolist would have no incentive to distort quality and would be providing the optimal 
level of delays? A s we argued earlier, the level of delays in (6.50) is optimal given the 
social optimal pricing. If a constrained central planner is forced to price as the hyper-

1 9 To save notations, in this Section various expressions will be written for facility 0 only, rather than for 
both facilities 0 and 1. 

2 0 It can be further modified to obtain an equivalent expression, P0 =Q0g0 (JV0 -1) /(N0 +1) + tQl, which 
can be more easily compared to the duopoly pricing rule (17), or the alternative social pricing rule (44). 
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monopolist does, it would choose a different capacity rule and thereby induce a different -
in fact, probably superior- service level. We formally state the result in Proposition 6.6: 

Proposit ion 6.6: When the monopolist vertically integrates with the carriers at the 
facilities, it would provide the same congestion level as the central planner. Nevertheless, 
the hyper-monopoly service level is not socially optimal in a second-best sense. In effect, in 
the fully ex-ante symmetric case, it is too low with respect to the second best. 

Proof: The first part of the Proposition has been indicated by (6.50). To prove the second 
and third parts, we consider the fully ex-ante symmetric case, namely, N0 = Nt = N, 

p?0 = ft = p andm 0 = m, =m. Let S W ( K ) = SW(FVI(K)) be a second-best social welfare 

function, where P w ( K ) represents the hyper-monopolist pricing rule. Hence we have: 

dSW . dSW 
= 0 <=> 

dKn 
dKn P W ( K ) 

_ . . dSW dSW dQ0 dSW 3<2, dSW . 
Calculating = — — + ——-r̂ L + from (6.40), we get: 

5 dK0 3<20 dK0 3(2, dK0 dK0 

P0+3t^-a(a+P0) 
N, 

+ a(a + p0) 

Go. dQ0 Px+3t%—a(a + Px)Qx 

N, v Nx j 

3 G i 

- m0 =0 

Evaluating this at P w ( K ) , which is given by (6.48) an its counterpart for facility 1, yields: 

dSW 
dKn 

= [3K2o + tQl + [3tQ{ + tQ0 ]<^L + a(a + P0 )| 
'dKn 

• m 0 = 0 . (6.51) 

From (6.13) and (6.14) it follows that: 

dGo 8i (N0+l)a(a + p0)Q0 dQ0 t(N0+l)a(a + P0)Q0 

N0(gogl-t2)K0

2 N0(gogl-t2)K2 

Replacing this in (6.51) and then looking into the symmetric-capacities solution for the 
fully symmetric case, we then obtain: 
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Since ¥>( ) , we can conclude that: 

D(QW ,Kw) = a^r= <D(Q\Kw) = D(Q\Kvl) 

Hence, the service level provided by the hyper-monopolist is not optimal: at the very least, 
in the fully symmetric case, a constrained central planner who is forced to use the same 
pricing rule as the hyper-monopolist would choose a higher service level. The congestion 
delays of the hyper-monopolist are not second best. The intuition is simple: given that 
prices w i l l be higher, the central planner w i l l compensate consumers and carriers by 
providing a higher quality service. Overall, this shows that, just as with capacity, 
congestion delays cannot be analyzed separately from pricing. 

(iV + l)4f 

N(g+t) 
+ 1 — m = 0 . 

6.6 Concluding Remarks 

Our main objectives in writing this paper are to contribute to the understanding of rivalry 
between congestible facilities -such as airports, seaports and telecommunication networks-
and to explicitly incorporate downstream carriers -both their decision-making and market 
structure -into the analysis of facility competition. In our vertical facility-carrier-consumer 
structure with imperfectly competitive output (carriers) markets, we found that the 
duopolists' equilibrium prices increase with both the consumers' value of time and the 
carriers' cost sensitivity to congestion delays; entrance of a new carrier to any of the 
facilities depresses the prices charged by both facilities; and lower marginal cost of the 
carriers at one facility w i l l induce a higher facility price at that facility but a lower facility 
price at the other facility. In terms of service level, we found that the duopoly facilities 
provide longer congestion delays than a monopolist only i f capacity decisions are made 
prior to the facility pricing decisions. When the capacity and pricing decisions are made 
simultaneously, or when capacity investments are not observable prior to the pricing 
decisions, the duopolists would provide the same level of service quality (delays) as the 
monopolist. Furthermore, a monopolist would provide a higher level of service than the 
central planner. Our analysis showed that when the monopolist vertically integrates with 
the carriers at the facilities, it would provide the same congestion level as the central 
planner. Nevertheless, the monopoly service level is not socially optimal in a second-best 
sense. In effect, in the fully ex-ante symmetric case, it is too low with respect to the second 
best. Finally, despite the fact that we assume constant returns to scale and a linear delay 
function, the optimal pricing and capacity w i l l probably not lead to cost recovery, owing to 
market power at the carriers' level. 
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Our analysis has also pointed to (at least) two areas for future research. First, it would be 
desirable to be able to rank the alternatives we have discussed in this paper, in terms of 
social welfare. For example, we know that, in terms of consumer surplus, the open-loop 
duopoly dominates both the closed-loop duopoly and the monopoly, because it has both 
lower prices and shorter delays. But it is not clear whether the closed-loop duopoly is 
superior to monopoly (because of its lower prices but higher delays as compared to 
monopoly), or under which conditions it w i l l be. The same goes for any comparisons with 
the vertical integration case. To compare the final outcomes for consumer surplus and 
social welfare under different ownerships and market structures is extremely hard 
analytically; and so it would probably need to be undertaken numerically. 

A second, perhaps more interesting, issue that could be further studied is how the prices at 
each facility compare to one another in the different cases. For example, it is easy to see 
that the price difference in the monopoly case w i l l always be (even i f capacities are fixed) 
equal to half the difference of carriers' marginal costs. In the duopoly case, however, the 
difference w i l l depend on many other parameters of the output (carriers) market, such as 
the number of firms. If the only source of asymmetry is carriers' marginal cost, the 
difference between prices in the duopoly case would be smaller than in the monopoly case. 
However, it is reasonable to ask: might it happen that with enough asymmetry the 
monopoly and duopoly price differentials have opposite signs? Again, it seems to us that 
such an analysis would be feasible only numerically. 
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7 CONCLUSIONS 

7.1 Summary of the Thesis 

This thesis has researched the issue of airport pricing and privatization through five papers: 
a literature review of the subject, four theoretical papers that looked at different aspects of 
airport pricing and capacity decisions under different types of ownership, and one paper 
that looked at the general relation between input and output pricing. 

In the first paper, in Chapter 2, we presented an up-to date review of theoretical papers of 
airport pricing, highlighting the main results in the literature. We claimed that the models in 
the literature can be grouped into two broad approaches: the traditional approach, which 
has used a classical partial equilibrium model where the demand for the airport depends on 
airport charges and on congestion costs of both passengers and airlines, and the airline 
market is not formally modeled. A n d the vertical structure approach which instead 
recognizes that airports provide an input for the airline market -which is modeled as a 
rather simple ol igopoly- and that it is the equilibrium of this downstream market which 
determines the airport's demand: the demand for airports is therefore a derived demand. 

We showed that the questions examined with the two approaches have not perfectly 
overlapped. The traditional approach has been wider in scope, having been used to analyze 
issues such as optimal capacity investments, the effect of concession revenues, privatization 
and so on. The vertical structure approach on the other hand, has mainly focused on 
calculating the additional toll that airlines should be charged to attain maximization of 
social welfare. But the two approaches have not only examined different questions, but also 
grew somewhat disconnected, which raises the questions of transferability of results. In the 
third paper, in Chapter 4,1 showed that abstracting from the airline market, as is done in the 
traditional approach is a reasonable approximation only when airlines behave 
competitively, but it is not when airlines have market power. In the latter case, the derived 
demand for the airport would not be dependent only on its full-price, as it is assumed. A s a 
result, the integration of the airport demand with respect to the full price, which is said to 
capture consumer surplus, would not adequately capture the surpluses of passengers and 
airlines because market power and congestion effects preclude it. 

This result however, was an ad-hoc answer to a broader question: how "consumers' 
surplus" measures coming from areas under input demand curves capture the effects of 
direct purchasers and downstream final consumers? This question pertains to the economic 
analysis of input markets in general, and because of that, it is central to the analysis of 
airport pricing as well . The second paper in Chapter 3 looked at answering the question in 
the more general possible way, within the context of differentiable oligopoly games. It was 
explained there that the most general results available in the literature regarding the relation 
between input and output markets surplus, hinge on a number of strong simplifying 
assumptions. I argued that those assumptions can be relaxed by linking the input markets 
surplus question to results from another stream of literature, which characterizes a function 
that firms in oligopoly collectively, yet unintentionally, maximize. I show that the input 
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markets surplus change measure (obtained by integration under the input demands derived 
from the equilibrium of a downstream oligopoly game) is equal to the change in a function 
for which critical points coincide with the equilibria of the downstream game. In particular, 
i f the downstream game is potential, the input market surplus is shown to be equal to the 
change in the exact potential function. The proposition proved synthesizes and generalizes 
the established results on the relation between input and final market surplus measures, 
providing guidance to policy analysts who seek to infer the total welfare effects of input 
market price changes from information on the input market demands only. In particular, it 
allows us to assess how much information about the downstream market is captured in the 
derived demand for inputs even when there are externalities in production downstream, 
which is precisely the case of airlines given the congestion problem at airports. 

In the third paper, in Chapter 4, I used a model of vertical relations between airports and 
airlines (in order to adequately set-up the central planner benchmark case), to examine both 
analytically and numerically, how ownership affects airports' prices and capacities. This 
paper was motivated by the fact that it has been argued that privatized airports would 
charge more efficient congestion prices and would be more responsive to market incentives 
for capacity expansions. Furthermore, the privatized airports would not need to be regulated 
since price elasticities are low, so allocative inefficiencies would be small, and 
collaboration between airlines and airports, or airlines countervailing power, would solve 
the problem of airports' market power. Results showed a somewhat unattractive picture for 
unregulated privatization when compared to first- and second-best benchmark cases 
though: (i) private airports would be too small in terms of both, traffic and capacity and, 
despite the fact that they may be less congested, they would induce important deadweight 
losses; (ii) the arguments that airlines countervailing power or increased cooperation 
between airlines and airports may make regulation unnecessary seem to be overstated; and 
(iii) things may deteriorate further i f privatization is done on an airport by airport basis 
rather than in a system. Also, I showed that two features of air travel demand that have not 
been incorporated previously in the literature -demand differentiation and schedule delay 
cost- play important roles on airports' preferences regarding the number of airlines using 
the airport. 

The model of Chapter 4 and most airport pricing models are usually models of congestion 
pricing and not peak-load pricing in that, even i f there is more than one period, the demands 
between periods are not interdependent. Hence, the only way to fight excess usage is to 
dampen the demand. When periods are interdependent, pricing can be used not only to 
dampen the demand but to re-distribute consumers through the periods, 'flattening' the 
demand curve. Proponents of privatization have argued that private airports would use 
more efficient peak-load pricing schemes. The fourth paper, in Chapter 5 investigated 
airport peak-load pricing (PLP), analyzing both the price level and price structure with 
vertically differentiated peak and off-peak travel. One of the main features of the model is 
that both players, airport and airlines, may use peak-load pricing, giving rise, potentially, to 
sequential peak-load pricing. We found that, compared to the public (benchmark) airport, a 
private, profit-maximizing airport would charge both higher peak and off-peak runway 
prices, as well as a higher peak/off-peak price differential. A s a consequence, airport 
privatization would lead to both fewer total air passengers and fewer passengers using the 
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premium peak hours for their travel, both of which reduce social welfare. A n d although 
those passengers who still use the peak period would benefit from less congestion delays, 
overall it would not be economically efficient to have such a lower level of peak 
congestion. Moreover, the analysis showed that whilst private airports w i l l always use 
peak-load pricing a public airport may, somewhat surprisingly, actually charge a peak price 
that is lower than the off-peak price, as a mean to correct the peak-load pricing used by 
airlines. A private airport strategically collaborating with the airlines would have fewer 
incentives to use peak-load pricing than a pure private airport. 

Now, the model of Chapter 4 was sort of the worse-case scenario for unregulated 
privatization, because the airports do not really face any type of competition. Hence, in the 
final paper, in Chapter 6, we investigated rivalry between congestible input providers, i.e. 
airports or seaports serving the same region, and its effects on facility charges, capacities 
and congestion delays. We found that the duopolists' equilibrium prices would increase 
with both the consumers' value of time and the carriers' cost sensitivity to congestion 
delays; entrance of a new carrier to any of the facilities would depress the prices charged by 
both facilities; and lower marginal cost of the carriers at one facility would induce a higher 
facility price at that facility but a lower facility price at the other facility. In terms of service 
level, we found that the duopoly facilities would provide longer congestion delays than a 
monopolist only i f capacity decisions were made prior to the facility pricing decisions. 
When the capacity and pricing decisions are made simultaneously, the duopolists would 
provide the same level of service quality (delays) as the monopolist. Furthermore, 
monopoly pricing and capacity choices would result in a higher level of service quality 
(shorter delays) than the social optimum. 

7.2 Future work 

There are many areas of future research that can be identified. They range from those that 
seem to be straightforward extensions of models already established, to some more 
fundamental questions, related to actual policy, but which would probably require to step a 
little further away from the models already known in the literature. Starting from the 
former, vertical structure models should be used to reassess those issues that have been 
examined only with the traditional approach. Among others, the effects of concession 
revenues on budget adequacy, the efficiency of alternative regulation mechanisms, or the 
importance of indivisibilities in capacity expansion. 

A second line of future research would have to deal with the pricing of airport networks 
(both private and public cases), and airlines' choice of route structure. Most of the papers in 
the literature -and particularly the papers in this thesis- look at airports in isolation or at 
round trip travel between two airports at most. However, real airport networks are more 
complex than that; and although some good progress has been made on this subject (as 
discussed in Chapter 2), there is still work to do because in two out of three papers there is 
no route structure decisions from the part of airlines, and it would be through route 
structure decisions that airports may actually compete: they would be competing for 
connecting passengers. The third paper on the other hand, although having route structure 
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decisions, does not consider congestion, capacity decisions or airline competition. Hence, 
further work in the pricing of airport networks -including effects of privatization and 
regulation mechanisms- should be pursued. Note also that, in most cases, all the airports 
have been assumed to be national. 

But perhaps the most important aspects of future research have to do with actual policies 
and, to date, important unanswered questions. Let me mention a few that I think are 
important. First, it is seldom true that airports are priced as in a system, and it is seldom 
true that airport managers have access to all the information that they would need to do 
what is best. Hence, how should public airports be priced when they are not in a system, 
and when information is incomplete? A n d given this, what are the costs and gains of 
privatization? A n d what would be a good and feasible regulation mechanism? Second, most 
of the papers in the literature -and particularly the papers in this thesis- have assumed that 
public airports would maximize social welfare. Because of this, one obtains that the airport 
may need to subsidy certain city-pair markets to restore allocative efficiency lost by market 
power at the airline level. But, is it reasonable to ask this from an airport manager? After 
all , the airline industry went through a large process of deregulation and it would seem here 
that regulation would be being re-imposed through airport pricing. What is then a 
reasonable objective function for a public airport? Charging only the uninternalized 
congestion may not be the best idea i f market power effects are too strong. Could it be 
better than an airport seeks to maximize throughput subject to budget adequacy? Or to 
minimize delays subject to a throughput constraint and budget adequacy? Third and lastly, 
in this thesis I have discussed mainly about pricing approaches. But a different answer has 
been attempted in European airports, namely, the more administrative approach of slot 
allocation. What would be the optimal allocation mechanism? A n d how would that 
mechanism compare to the best congestion pricing alternative? 
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APPENDICES 

APPENDIX A 

Appendix for Chapter 3: On input market surplus and its relation to the downstream 
market game 

A.l) Conjectural variations game with many inputs 
Proofthat /f1(q,w) = ̂ .^,'(q,w) + ( ( » - l - v ) / n ) C 5 ( 0 fulfills condition (3.2). 

Recall that CS(Q) = jj2 P(Z)dZ -QP(Q) and J^.x1 (q,w) = QP^-J^.Ciq^w). 

Replacing these two in H\ leads to: 

Hx (q, w) = — QP(Q) + ( ^ - ^ ) f P(Z)dZ - £ C(<7,, w) 
n n * ; 

A n d then, differentiating with respect to qj we get: 

^ ^ = P(fi) + ̂ f i P - ( f i ) - C f ( ^ . w ) (a.l) 
dqj n 

Next, it is easy to see that 

8^J(q,w) 
P(Q) + (1 + v)^7- F (2) - Cq (q., w) (a.2) 

A n d since the Nash Equilibrium of the oligopoly game is symmetric, from (a.l) and (a.2) 
we get 

dqj dqj 

A.2) Externalities (congestion) in production game: 

Proof that H2 (q, w) = (q, w) + ((n -1) / n)C5(Q) + (n -1) |* C f i (Z / n, Z , w)rfZ 

fulfills condition (3.2). 

Recalling that CS(Q)= f P(Z)dZ-QP(Q) and ^7r'(q,w) = QP{Q)-YdiC<JZi&™)> 
H2 can be re-written as: 
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H2(q, w) = QP(Q) - X.C(<7,-»2'w)
 + ~~[f P ^ d Z ~ QP(Q)\ + (" " 1)f C Q , Z , w dZ 

which leads to 

H2(q,w) = ̂  QP(Q) ~ £ C{qt, Q, w) + ^ - i [ f P ( Z ) dz] + (n -1) f C G , Z , dZ 

Differentiating with respect to and evaluating at the Nash equilibrium, which is 
symmetric, we get: 

^ 4 l [ a , ( a » + , ( a , ] - S , c , ( f , e , . ) I - z , c c g , f i , . 

n-l 
+ P(Q) + (n-\)CQ\^,Q,w 

n \n j 

Q 

From where it is direct that: 

dH^^KP{Q)+{Qln)F{Q)-Cqw 
dqj 

A.3) Differentiated demands game 
Proof that: p1 (q) = (dh(q)/dqj)(l/ otj) leads to a potential function given by 

|-£,c"foj,w). F(q,w) = £ 
/t=i fen. fen 

To prove this, I w i l l use Lemma 3.1; I w i l l show that firm i's profit can be written as the 
sum of two functions: the potential function and a function that depends only on q_, 

2" 

(statement 3). We have h(q) = <YI<1?) • 1 x 1 Ki = WJ e T k}> t h e n 

dh(q) 

dqj 

or. 

^7 «srt fer,. 

Fi rm j's revenues are then: 

*'(q) = P ' ( q ) « , = ^ ^ = Z 
dqj CCj ktti 

^(n^)n^ 
iert fer,. 
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Denoting by the complement set of Kj ,we can re-write this as 

*J(q) = Z 
i s r t ('en 

- Z 

« ( q ) -r'(q-j) 

which shows that firm i profits can be written as 7t' (q, w) = R(q) + r'(q_i)-C (qt, w), or 

7tl (q) = R(q) - Y.CJ (qj, w) + r1 (q_,.) + %, w) 
F ( q , w ) © ' ( q - i . w ) 

Therefore, by Lemma 3.1, the potential function exists and is given by 

F(q,w) = R(q)-Jd.Cj(qj,w) • 

A.4) Differentiated demands game 
Proof of equation (3.6), that is: 

ri •- 1 n—1 n rt ri K—i n k-\ 

7=1 jfc=l j=k+\ k=2 j=\ 

We have: 
n r- -. n—\ n 

Fl(q,w) = YJ[(a-bqj)qj-Cj(qj,w)\-eY, Z ^ v 
7=1 k=l j=k+l 

F,(q,w) = J 
7=1 **7 **/' y 

n - l « 

Jfc=l j=k+\ 

7=1 7=1 **7 i=l y=jfc+i 

And , therefore: 
n <fc-l 

f i ( q . w ) = X ^ i ( q . w ) + e I I ^ 9 i 
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A.5) Differentiated demands game: calculation of consumer surplus 
n k-l 

Proof that CS = ^ i W p , = {bl2)Yjq2

k+eYYjqkqj 

k=2 j=\ 

First, inverting the system of indirect demands lead to qj(p) = A- Bpj + ^ E P i , where 

A . B-(n-2)E 
a = , b = — N and e = • 

B-(n-\)E {B-(n-l)E)(B + E) (B - (n - l)E)(B + E) 

dq- dq: 
Since — - = ——, the solution of the line integral is path-independent. We take a linear 

opj dPt 
integration path as follows: x¥i(cr) = p, + a(a-/?,), ere [0,1], V i e [ l . . N ] . Thus 

VP,- (cr = 0) = pi and x¥i (<T-l) = a. Further, dyVi (a) = (a- P i )dcr. Changing variables, we 

can re-write 

from where we get CS = Z i a ~ Pi) J<7,0F(<T))/CF = Z bqt + Z e < ? 7 \qt(WiCT^cr 
i=i o «'=i v J " ' / o 

Next, we calculate /. Replacing qtC¥) we get I = J a - bx¥i (cr) + Z eX¥j (<*) 
o V -/'*' 

vp. and vp ; and reordering we obtain 

Replacing 

i l • 

/= Jtf,dcT + J -aB + Bpi + a^E~YJEP'J 
o o V 

I 

a da 

1 = <li + j(- qt+A-aB + a(n - 1)E)CT dcT 

I = q, ( A - a ( £ - ( n - l ) E ) 
2 2 

The second term on the right hand side of 7 is zero because a(B - (n - \)E) = A. Therefore, 
replacing I in CS we obtain 

( 
i=i 2 2 k=2 7=1 
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APPENDIX B 

Appendix for Chapter 4: Airport Ownership, effects on pricing and capacity 

B.l) Existence, unicity and stability of Cournot-Nash equilibria in the airline market 

First-order and second-order derivatives of airline f s profit function (equation 4.7) are: 

f \ 

# = As-iBs^-Es^Qj-c-Y,^ -sism+Qig'm) 
v *=i.2 ) (b.l) 

-(os+^)5;( D* +G» D S) 
A = l , 2 

^ = - £ 5 2 - (as + p) J (D j + 2,-£>ee) (b.2) 
A=l ,2 

^=-2B5 2 -5 (2g , (Q 1 . ) + j2 i«"(G,-))-(aS + /?)Z( 2 DS+G< I )Sfi) (b-3> 
A=l ,2 

where subscripts in <p denotes partial derivatives and D H

Q denotes the derivative of the delay 

function with respect to Q, evaluated at Q and KH. From (b.2) it can be seen that </>l < 0 , 

because DQ and DQQ are positive, implying that the game is not supermodular (hence 

disabling this approach to existence, uniqueness and stability), tp- = 0 , V i , are the necessary 

conditions for Nash equilibria. A s for the sufficient conditions, both the first and third terms 

on the right hand side of <p'u are negative; the sign of the second term is not obvious though, 

because while g'(-)<0, the sign of g"(-) is unclear. Under assumptions (a) and (b) regarding 

schedule delay, is easy to verify that g">0 but, further 2g'(QI) + Qig"(QI) = 0 . Thus tpi is 

negative and the existence of Nash equilibria is guaranteed (as long as the solution is 
interior which is assumed for now). To prove uniqueness, first note that best reply 
correspondences, ^-(Q^), defined by ^/(vF((Q_,),Q_,) = 0, are actually continuously 
differentiable functions of the sum of quantities of other firms, that is, 
^'i(Q-i) = ^,-(Z_,v,-G7-)- Next, the slope of each best reply function is given by the ratio 

between - 3 $ jd^^Qj and <p'H, but it is easy to check that -d<p- jd^^Qj = <f>!j • From 

(9) and (10) then, it follows that the slope of each best-reply function is greater than -1, 
implying there is a unique Cournot-Nash equilibrium, which is symmetric. 1 

1 See theorem 2.8 in Vives, (1999). Additionally, for a different approach to existence it would have been 
enough to note that, since all best reply functions are continuous and strictly decreasing, the best reply 
mapping *P=(lF1,.., 4^) has at least one fixed point; see theorem 2.7 in Vives (1999). 
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A s for Cournot (or tatonnemeni) stability, a sufficient condition is that the best reply 

mapping is a contraction: <p'u + ̂  < 0 . In this case this is: 

(OS+ 0)^=1 M~3)DQ +(N-2)N-lQDh

QQ)-{2B-(N-l)E)S2 <0 

where symmetry was imposed (Qi -Qj =QIN V y ) . Evidently, this condition holds for 

N very small. 

Reference: Vives, X . (1999) Oligopoly Pricing: old ideas and new tools, M I T Press. 

B.2) Free entry long run equilibrium in the airline market 

The free entry long run equilibrium is obtained when <p' = 0 V i or, equivalently, when the 

revenue per flight, S • t' (Qt;,Q_(.), equals average cost. Using equation (4.7), with free entry 

AS-{B + (N-l)E)S2%-Sg(%)-c-^Ph-(oS + fi)^iD(Q,Kh) = 0 (b.4) 

Equations (4.8) and (b.4) together determine the free entry equilibrium Q(Ph,Kh) and 

N(Ph ,Kh). To see this equilibrium graphically, first note that under (a) and (b), the 

marginal revenue of each firm,M/?.(j2;,Q_(.), is decreasing in Qt (recall that <p'u < 0 and 

that airline's cost are convex). Further, it intersects the inverse demand function for flights, 

S 't'(Qi>Q-i) > which is first increasing and then decreasing (see discussion in Section 

4.2.1), at its maximum. 2 Next, both marginal and average cost functions are convex and 

increasing, the former being larger than the latter. Therefore, the free entry equilibrium is as 

in Figure b. 1. 

2 Proof. Revenues are S -f 'g, . , therefore MR.(Q.,Q_.) = S(Qt t! +t.). Imposing MRt=S i, we obtain 

that S •Qj • t! = 0 . Since we are ruling out Qi = 0, marginal revenue and inverse demand intersect when 

t; = o . 
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MgCost 

/ AvCost 

\«,(g 1-,Q. i) 

Qi \ ^ Qi \ ^ 
Qi 

Figure b.l: Free-entry long-run equilibrium 

TV is given by Q/Qt, where Qi is determined by the profit maximization first-order 
condition marginal revenue equals marginal cost and the zero profit condition average cost 
equals revenue per flight. A t this point average cost and S • t' are tangent.3 

B.3) Derivation of equation (4.11): 

p s i P M - J ±q,^im^2L^m^EL. 
Since dq^jdds = /8#. the line integral has a solution that is path-independent. We take 

a linear integration path as follows: 

ei(C7) = ei(Ph,Kh,N) + (j(A-ei(Ph,Kh,N)) , ere [0,1] , V i e [ l . . N ] (b.5) 

Thus ei(a = O) = 0i(Ph,Kh,N) and 0,.(<r = l) = A . Further, 

d<dt (cr) = (A - f?, ( P A , , N))d<y. Changing variables, we can rewrite 

PS(Ph,Kh,N)= J Z^(e)^,. = <?,. ( 0 ( a ) ) - ( A - d ^ K ^ N J j d a 
6(P,K,N) i 0 ' 

3 Proof: The first-order condition is S(Qj • f/ + tt) = C!, while the zero profit condition is 

S-t.= C I Qj. Together the imply that S Q r t.' + C11 g, = C,.' and therefore S • t! = (<2, • f/ - C) I . 

Thus, at Qi, AvC' = S • f' and they have the same slope: they are tangent. 
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which is equivalent to 

PS(Ph ,Kh,N) = fj {A-e,(Ph,Kh,N)) jq, {&(a))da (b.6) 

Let us first restate / differently. Recalling that 0. (Ph, Kh, N) = A - Bqi - ^ Eq., that 

qt = 5(2, and that in equilibrium Qt=QIN V i , we get / = S ^ P h ^ N ) (g + , N _ ^ 

1 / 

Next, we calculate II in (b.6). Replacing <?,(0) we get / / = J a-b®i(a) + ^jeOJ((T) 

Next, replacing 0 , and 0 ; with (b.5) and reordering we obtain 

11= \qi(Ph,Kh,N)d(T + l -Ab + bq + AZe-J^effj 
o ov J*' i*' J 

a da 

// = q, (Ph ,Kh,N)+ J(- (/>, Kh, AO + a - Ab + A(yV - \)e)a da 
o 

n = SQ(Ph,Kh,N) | a - A O - ( v V - i ) e ) 

2 N 2 

In the first term on the right hand side we imposed symmetry; the second term is zero 
a 

because A = 
b-(N-l)e 

. Therefore, replacing / and / / in (b.6), we obtain 

SQ(Ph,Kh,N),t/„ . SQ(Ph,Kh,N) 

N 
• {B + (yV - ! ) £ ) • 

2 N 

and, obviously, nothing inside the brackets depend on i anymore so we obtain 

{B + (N-\)E)S2Q(Ph,Kh,Nf 
CS(Ph,Kh,N) = -

2N 
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B.4) Derivation of Equation (4.17): 

(N-Y)ES2Q dQ 
= -Q(P,Kh,N)-

dp N dP N h dp 

dQ 

Equation (4.16) shows that total profits in the airline market may be written as 

®(Q,P) = QS A-^-(B + (N-\)E) 
N 

-Q[c + p) 

d<& 9 0 dQ dO 
Where p is given by (4.13). Straightforward calculation of = — + , leads to 

dp dQ dp dp 

d<S> 

dp 

OS2 

AS-c-p-2^-(B + (N-l)E) 
dQ 

dp 
-Q 

On the other hand, equation (4.14) is: 

QS' 2B + ( N ^ E 

KN N 

\ 

+ p + c-AS + (aS + P)Q-Y.DQ =° 
" h 

which leads to: AS-c-p = (aS + p ) ^ Y J

D Q + ^ ~ ( - 2 B + (N~^E">• Replacing this i i n 

dp 
, gives us the desired result. 

B.5) Proof that at the optimum, Kj=K2=K 

We prove this for the S P A case. The proofs for the other cases are analogous. 

dP=-(aS + fi{ 
dK, 

—Dl + Dl 

N 'QK, does not depend on K2, therefore, Q • dP I dKx is a 

function of Q and K\ only. Also , dPldKx is decreasing, goes to infinity when A'I—>Q and 
to zero when K \ ^ o o . Hence, there is only one K\(Q,rjN)>Q that satisfies (4.21). B y 
symmetry of P with respect to K\ and K2, the same goes for fciQfjV). Replacing these in 
(4.20) one obtains the optimal Q and then optimal Kj= K2=K. 

B.6) Showing that dQ I dN and dK I dN cannot be signed a priori 

We show this for the S P A case. The other cases are analogous. Differentiating both (4.20) 
and (4.21) with respect to N and solving for dQSPA I dN and dKSPA I dN: 
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dQ SPA dK SPA 
^KN^QQ ^QK^QN 

dN ^QQ^KK ^QK dN nQQxKK-7ZQK 

where, for second-order conditions to hold, K Q Q , 7tKK and the denominators must be 

negative; also KQK =PQKQ + Pk>0, KQN = PQNQ + PN >0 and KKN =PKNQ<0 -see 

equations in (4.10). Therefore, the signs cannot be determined a priori and, as a 
consequence, it cannot be known now how P 5 ^ 4 change with N 

B.7) Proof of Proposition 4.1 

From (4.22), we can write 

SW(Q,Kh;N) = x + 
{B + (N-1)E)S2Q2 

2N 

+ QS A-^(B + (N-l)E)-g^yaYJDh -Q[C + P + / ^ D * ] 

We differentiate this with respect to Q and evaluate the resulting expression at QSPA(K), the 
optimal private quantity for the given K, which makes the term dnldQ n i l . Using equation 

(4.8) to replace AS-c-s( g'(—)— +g(—)\ we obtain: 
y N N N ) 

dSW 

dQ 
-P0Q + 

BS2Q (N-l) 

N N 
(aS + ftQ^D, 

Q"PA(K) 

Replacing PQ = (aS + j3)^(^K +%Dk

ao) + S 2 i 2 B + ^ 1 ) E ) , we finally get 
h N N N 

dSW 

dQ = f ( ^ + / ? ) ? ( 2 ^ + ^ e ) + ^^7-^ > 0 
QIPA(K) 

which shows that the S P A induces fewer flights. The equivalence follows from the 
decreasing monotonicity of P with respect to Q. m 

B.8) Proof of Proposition 4.2 

Expression (4.22) for SW leads to dSW /dK^SPA = -Q(aS + fi)DKi - QPKj 

Replacing 
dP 

dK 
= -{aS+P) N 

it is finally obtained that 
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dSW IdKx\KSPA(Q) = Q2(aS + p)Dm /N<0. 

B.9) Proof of Proposition 4.5 

Let QW(K) and QJP(K) be the W and JP quantity rules respectively. Consider 

O + OXCr (K)) = (n + ®)(K) and differentiate this with respect to K (could be either Kx 

, d(7t + Q)(K) d(x + <$>)QJP(K)dQJP(K) , ap + O) 9(;r + 0 ) , . 
or K2). We get — = \ „ + = ^ „ by using 

the first-order conditions 
dK dK dK 

Using (4.27) we obtain J ( ; r + °X g ) = _QJP(K)(aS + fi)DQ(Qjp(K),K)-r. However, we 
dK 

also know that r = -Qw (K)(aS + p)DQ (Qw (K),K) from (4.24) so we get 

d(n + ®)(K) 

dK 

= (OS + P)[QW(KW)DQ(QW(KW),KW)-QJP(KW)DQ(QJP(KW),KW)] 

(b.l) 

Since (fp (Kw) < QW(KW) by Proposition 4.3 and DQ < 0 and is decreasing in Q, (b.l) is 
negative. Therefore Kw > KJP and thus QJP(KJP) < QJP(KW) < QW(QW) which implies 
that QJP<QW, KJP<KW. m 

B.10) Proof of Proposition 4.6 

Consider the following second best social welfare function: SW(K) = SW(QJP(K)) 
differentiate it and evaluate it at KJP. We get: 

dSW 
dK 

dSW 

dQ 

dQJP(K) 

dK 

dSW 

dK 
(b.8) 

We are interested in the sign of (b.8). If it is positive, then second best S W capacities are 
larger than the JP ones. The third term in the right hand side is zero because 

dSW 

dK dK 
= 0 (the first equality is because they have the same 

capacity rule, the second from first-order condition). The first term is positive by 
Proposition 4.3. The second term is also positive because 
dQJP(K)/dK = -(x + ®)QK/(7r + ®)QQ,but (x + ®)QK > 0 and (7t + ®)QQ < 0 . Therefore, 

(A.4) is positive and JP capacities are below 2 n d best social welfare capacities 
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B. l l ) Analysis of the closed-loop game when airports are private and independent 

Airports first choose capacities (simultaneously) and then prices. Over or underinvestment 
in capacity w i l l be par rapport to the open-loop. From the profit functions in (4.34), and 

noting that 
dQ"(Pl,P2) _d2Q(Pl+P2) 

dPxdP2 dP2 
, is then easy to obtain that 

dpjpk 

( * V BP 

a v 
~dpj 

C* }BP2 dP 

^ 2 

dP2 

s 

dP2 
C" 

(b.9) 

(b.10) 

(b.10) being negative is a necessary condition for existence in the open-loop case. If this is 

true, then (b.9) is negative as well , but also d2nh/dP2 + d27TH /dPhdPk < 0 . Hence, the 

best reply mapping is a contraction and therefore there is a unique, symmetric and stable 

Nash equilibrium in the second stage, which is denoted by Ph(Kx,K2). To know whether 

capacities are going to be smaller or larger than in the open-loop game, we look at the first 

stage: 
dnh dKh dnh dPk dKh 3 A 

dK„ 
• + -

dKh dPh dKh dPk 6Kh 

Evaluating this at the open-loop capacity 

makes the first term on the right hand side vanish. The second term is zero by the envelope 
theorem. Thus 

dnh 

dK, 
dxh aA 6Kk aA aA 
dpk dKh dph dKh aA (b.ii) 

where the symmetry of the problem was used. It is easy to check that the first derivative on 
the right hand side is negative; the second is positive: 

dPh/dKh =-(d2xh /dPhdKh)(d2xh IdP?)'1. Investment makes an airport tough then, in 

that 
dnk dPh 

dP„ dKh 

< 0 . The third derivative is negative because prices are strategic substitutes 

(b.9 is negative). Hence ( b . l l ) is positive, which shows that closed-loop capacities are 
larger than open-loop capacities: airports over invest in capacity following top-dog 

strategies. This directly leads to higher prices (dPh/dKh <0 ) but the effect on traffic 

cannot be signed. 
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B.12) Derivation of equations (4.37) and (4.38) 

If airports individually use two part tariffs, the program they face in the open loop is 

max Qh(Px + P2,Kx,K2)Ph-C(Qh)-Khr + ThN st Tx +T2<0l(Px +P2,KX,K2) 

(b.12) 

where <f>x =<f)\ i = l , . . , N , is the profit of airline 1 given Pi , P2 and K\, K2 (i.e. downstream 
equilibrium profit). It is easy to check that in equilibrium the constraints must be binding; i f 

not, airports have incentives to increase their fees. Noting that d0l/dPh = d(pl/dP and 

recalling that yV^1 (Px + P2, Kx, K2) = O , we get the following first-order conditions 

dQ 
dP 
dQ 

dP BP 

3*, dKh dKh 

Tx+T2=<pl(Px+P2,Kx,K2) 

(b.13) 

(b.14) 

(b.15) 

It is easy to see that (b.l3) and (b.14) are identical to the first order-conditions of the setting 
in which each airport, in the open-loop, maximizes own profit plus airlines profits (the 
collaboration idea). Hence, pricing and capacity rules w i l l be identical (as in the S P A case). 
Next 

3Q 

3P 
AS-P-c-S Q 

N g 

-(aS+ D j - 2 + \)E) 

(Q) 

U J 
2 

+ g 
dQ 
3P 

dQ 

3P 

From D.(Q,P,Kh,N) = 0 in (4.8), it can be seen that the first term in brackets on the right 

hand side is equal to (aS + P^YJ^Q1 N + Dh)+QS2(2B + (N-\)E)I N. Replacing this, 

simplifying and then replacing the resulting 30/3P back into (b.13), we get 

Ph=2C+((N-l)/N)(aS + P)QYDQ -1)/N)ES2Q 

Imposing symmetry and adding Pi and P2, (4.37) is obtained. For capacities, we have 
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AS-P-c-S 

- (aS + P)QDh

K 

Q 
+ g -(aS + 0)Y,(QDh

Q+Dh)-2^-(B + (N-l)E) 
dQ_ 

dK,, 

replacing this in (b. 14) and using the first-order condition on P get us equation (4.38). 
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APPENDIX C 

Appendix for Chapter 5: Sequential Peak-Load Pricing in a Vertical Setting, the Case 
of Airports and Airlines 

C.l) Conditions for an interior allocation of consumers 

(i) If (Pp - P0) / S < 0 (Bp - B0), then the peak period is used, that is 0* < 0 . 

(ii) If 0BO <(c + Pa)/S, then some consumers wi l l not fly, that is 0s > 0. 

(iii) If 0 is large enough, then the off-peak period is used, that is 0* > 0s. 

Proof: 
First, equivalent conditions for interior allocations, but in terms of Qp and Qa are: 
The peak is used: 0* < 0 <=> (0 -6*)IS > 0 <=> Q0 >0 
Some consumers do not fly: 

6f >d<^(6-6f)IS <(6-6)IS ^Q0+Qp<(6-6)IS 

The off-peak is used: 6* > 9s <=> (6* - 0f )/S > 0 Q0 > 0 

Wi th this, the proofs of each part are: 

(i) Note that (-Qp in (5.12) is strictly increasing in Qp, and (- Qp + Q." )Q > 0 . 

Also , (-Q" +a°)Qf=0=(Pp-P0)-eS(Bp-B0). Hence, i f Pp - P0 <8S(Bp - Ba), 

then (- Q" + Q° )Qp=l> < 0and Qp > 0 . • 

(ii) From Q°=0 in (5.10) we get that (Q0 + Qp)B0S2(N + l)/N = B0dS -c-P0, This imply 

that Q0+Qp <{BoeS-c-P0)l(B0S2). Hence, a sufficient condition for 

<20+<2p<-̂ —= is: (B06S-c-P0)l(B0S2)<d-0/S, which leads to 

s 0Bo<(c + Po)/S. 

(B OS — c — P )N 
(iii) From Q°=0 we know that Qn + Q = ^-2 ^ — . Hence, Q„ > 0 is equivalent 

0 p B0S2(N + V) 
(B OS — c — P )N ~ ~ 

to Q„<— z —— = Q„. In order to ensure Qn<Q„, we need that 
" B0S2(N + l) * p p p 

( - Q p + Q ° ) G = g >0 (see proof of part i). Straightforward algebra gives us 
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( - Q " + n ° ) ( Q p ) = (aS + j3)\ 

so that a sufficient condition for (- Q.p + Q." )g > 0 is 

( f l , - « „ ) ( < ; + ?„) (PP-PJ 

V*P> N V*P> (as + p) B0(aS+p) 

D(Qn)> 
B0(aS + P) 

. A n d since dQ„ldd > 0 , the condition is 
(aS +p) p 

always fulfilled for 6 large enough. • 

Part (i) says that the peak period is used i f the airport price differential between peak and 
off-peak is not too large. Specifically, the per-passenger airport price differential has to be 
smaller than the incremental benefit, for the highest consumer type, of changing from the 
off-peak to the peak. Clearly, when the airport does not practice P L P , the peak is always 
used. Part (ii) says that i f 6 is low enough, then some consumers w i l l not fly. In particular, 
the lowest consumer type must have a willingness to pay for off-peak travel that is smaller 
than the airlines' per-passenger marginal cost for an off-peak flight. Finally, part (iii) 
implies that Brueckner (2002, 2005)'s single crossing property, which imposes that 
Bp (6) < B0 (6) for small 6 values, is not needed to have a non-empty off-peak, and that a 

smaller airport price differential between peak and off-peak increases the likelihood of the 
off-peak been used. The lower bound for 6 cannot be made explicit because of the non-
linearity of the delay function. For a linear delay function D(Qp, K) = SQp IK, the lower 

bound on 0 is given by § = 5 f ( f  +  lJ ((Bp -B0)(c + P0)-B0(Pp -P0))+c + Pa , 
SB0 (aS + p)N 

while a lower bound not depending on N, would be 20N /(N +1). 

C.2) Proof of Proposition 5.2 

(i) Differentiating (5.12) with respect to /V we get: 
dQp _ d(-np +Q°)/dN 

This 

leads to 

N' 
dN S\N + l)(Bp-B0) 

QpS\Bp-BJ + (tf^+/3)QpDQ(Qp) 

N 

which can be written as 

dN N(N +1) 

S2 (Bp-B0) + (aS+P)DQ(Qp) 

S2(Bp-B0) + (aS + fi)D'(Qp) + QpD''(Qp) 
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from where 0 < 6Qp I dN < Qp /{N(N +1)) follows. 

(ii) From Q.°=0 in (5.10) we know that Q0 +Qp = 
(B0dS-c-Po)N 

B0S\N + \) 
, from where it is 

>0 

(iii) From parts (i) and (ii) we know that dQa IdN >Qa l{N(N +1)). If the off-peak is used 

for all /V, then QB >0 and therefore dQo/dN>0. m 

C.3) Proof of Proposition 5.5 

To prove parts (i) and (ii), it is useful to first state the following Lemma: 

Lemma C.l: If two prices Px and P2 are given by the fixed points Px = f(Q(Px)) and 

P2 = g(Q(P2)) respectively, where / i s continuously differentiable in {Q(PX); Q(P2)). Q 

is continuously differentiable in (Pl;P2) ,f(Q(P2)) > g(Q(P2)) > and either Q() is non-

increasing and / ( • ) is non-decreasing, or Q(-) is non-decreasing and / ( • ) is non-

increasing, then Px > P2. 

Proof. We prove this by contradiction. Suppose that Pl <P2. Denote P2 =f(Q(P2))-

Applying the mean-value theorem to Px = f(Q(Px)) and P2 =f(Q(P2)) yields: 

where Q is some point between Q(PX) and Q(P2). Further applying the mean-value 

theorem to Q(PX) and Q{P2), the above equation becomes: 

Px-P2 = f\Q)(Q(P,)-Q(P2)) = f'(Q)Q'(P)(Px-P2)>0 

where the inequality arises because f'(Q)Q'(P) ^ 0 and the assumption that Px ^P2. 

Thus, PX>P2. But since by assumption f(Q(P2)) > g(Q(P2)) or> equivalently, 

P2 > P2 , we obtain Px > P2, thus resulting in a contradiction. • 

Now, we can prove Proposition 5.5. 

Pl-P2 =f'(Q)(Q(Pi)-Q(P2)) 

161 



(i) That Pa

w < P* follows from writing the pricing rules (5.34) and (5.29) 

a s P ; =f0(Q„+QP) and Pa

w = g0(Q0 +Qp). Since total traffic Q0+Qp is, by (5.15), 

downward sloping in P0, f0(-) is increasing and f0(-)>g0(-), then P0

W' < P* by 
Lemma C . l . 
Next, taking derivative of (5.34) and (5.29) with respect to N gives us: 

dPw 

dN 

dPn 

— = S2BC 

dN 

Q0+Qp ( d(Q0+Qp) 1 

dN N 
and 

Q0+Qp | d(Q0+Qp)(N + \^ 

N' dN N J 

But, from Proposition 5.2.2 we know that d(Q0 + Qp)/dN = (Q0 + Qp)/{N(N + 1)). 

dPo

w _S2B0(Q0+Qp) 
Therefore 

dN N(N + 1) 
>0 and dP*/dN = 0. 

(ii) That APp_0 < APp_0 follows from writing the pricing rules (5.35) and (5.30) as 

AP;_ 0=/ P_ 0(G P) and APj_0=gp_o{Qp). Since peak traffic Qp is, by (5.16), 

downward sloping in APp_0, fp_0 (•) is non-decreasing as long as the (unsigned) term 

D" ' ( - ) is non-negative (or i f is negative, its magnitude is not too large) and 

/ P - 0 0 > g , - o 0 , then A P ; _ o <AP;_o by Lemma C . l . 

d^Plo 
> 0 follows from differentiation of (5.35) with respect to N. We get: dN 

dAPw 

p-° =(aS + P) dN N dN N N 

+ S2(Bp-B0) 
QP dQp 1 

N2 dN N 

Since dQp /dN>0 by Proposition 5.2.1, the first term in the R H S is positive. Since 

dQp/dN <Qp/{N(N + l)) by Proposition 5.2.1, 
QD dQ l 
N2 dN N 

making the second 

term in the R H S positive as well . Therefore, d&P™ /dN>0. 

dAP* 
P-0 

dN 
= 0 i f the delay function is linear, follows from differentiating (5.30) and then 

imposing D''(Qp) = 0,D"'(Qp)-0. We get: 
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dAP 
p-o 

dN 
= ((aS + 0)D'(Qp) + (Bp-Bo)S2\ QP + dQP (N + l) 

N' dN N 
, where D'(Q ) is a 

constant. Wi th a linear delay function Proposition 5.2.1 changes to 

dQp ldN = Qp /(N(N +1)), making dAP*_0 / <#V = 0 . If we consider D"(Qp) > 0 , the 

sign is then undetermined and depends on the values of, for example, Bp, B0 and 
D"'(Qp). 

(iii)<2̂  >Qp flows from part (ii), and the comparative statics in (5.16) or Proposition 

dQ* dQw 

5.1.3. > = 0 follows from replacing AP* in the sub-game equilibrium 
dN dN p'° B 4 

equation (5.12); we get: 
/ x 2Q* (B — B )S2(N +1) _ 

+n°\APp*_0)= p '/ —0S(Bp-B0) N 
N + 2 i \2 

+ (as + p) D ( Q ; ) + — — Q ; D ' ( Q « P ) + (Q;) D " ( Q « ) 

V N 

= 0 

A s in the proof of Proposition 5.2.1, use this to calculate 

dQ*p = 8 ( - Q p + Q ° ) ( A P ; _ 0 ) / 9 i V 

dN d(-np +Q°)(AP*_0)/dQp 

and to prove that 0 < dQ*p I dN < Qn

p /(N(N +1)), which shows that peak traffic 

increases with N . 
Similarly, replacing APp_0 in the sub-game equilibrium equation (5.12), we get: 

( - a p + Q°\AP;_0) = Qw

p (Bp -B0)S2-6S(Bp -B0) 

+ (aS + p)(D(Qw

p )-Qw

pD\Qw

p)) = Q 

Which does not depend on N, hence dQ™ / dN = 0. m 

(iv) Q™ > Q* flows from part (i) and the comparative statics in (5.15) or Proposition 5.1.1. 

dQ1! dQ™ 
To prove — — > — — = 0 , use the sub-game equilibrium equation (5.10) to prove 

dN dN 
dQ* dQw 

> = 0 in an analogous way as in part (iii). The result then follows directly 
dN dN 

from this and part (iii). • 

(v) Direct from part (iii) and D'(Q ) > 0 (equation 5.4). 
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(vi)Consider the S W function in (5.33). We can rewrite it in terms of total traffic, Qt, and 
peak-traffic, by replacing Q0 =Qt -Qp. This gives us: 

SW(Q,,Qp) = 0S(BpQp + B0(Q, -Qp))-c(Qt)-C(Qt)-Kr 

- Y ( B o ( Q , - Q P ) 2 + 25„(Q, -Qp)Qp+BpQ2

p)-(aS + /3)QpD(Qp) 

Now, SW is globally concave in (Qt, Q ) because 

d2SW 
= -BoS2<0, = -(Bp -Ba)S2 -(aS + /?)(2D'(Qp) + QpD"(Qp))<0 

dQD 

and 

d2SW d2SW ( d2SW ^ 

dQ0

2 BQP

2 

KdQ0dQP j 
= B0S2[(Bp-B0)S2+(aS + P)(lD' (Qp) + Qp D" (Qp))] > 0 

Since (Q™,Qw

p)maximizes SW, and from parts (iii) and (iv),{Q™,Q w

p ) > (g,*,Q'p), 

then SWW >SW*. Finally, since (Q*,Qp) increases with N, SW* increases with N, 

while SWW does not change with N because (Q™, Q™) does not. • 

C.4) Parameter values for numerical simulation 

The values on Table c . l were used to simulate the model and obtain the dead weight-losses 
presented in the paper. Most of the values were used in the simulations of chapter 4, and 
were actually drawn from results from the literature. See Table 4.1 and footnote 25 in 
Chapter 4. The capacity level, which in this Chapter is exogenous and in Chapter 4 was 
endogenous, is close to the capacity J F K airport had in 2000 (56 flights per hour). 

Table c.l: Parameter values for the numerical simulation 

Demand Airlines Airports 

a 40 0 61,000 S 60 K 50 

P 3000 0 1,000 N varies C 2,000 

B 0 0.1 Bp 0.13 c 36,000 L p 5 
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