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Abstract

Semiparametric nonlinear mixed-effects (NLME) models are flexible for modelling
complex longitudinal data. Covariates are usually introduced in the models to partially ex-
plain inter-individual variations. Some covariate.s, however, may be measured with substan-
tial errors. Moreover, the responses may be missing and the missingness may be nonignor-
able. In this thesis, we develop approximate maximum likelihood inference in the following
three problems: (1) semiparametric NLME models with measurement errors and missing
data in time-varying covariates; (2). semipardmetric NLME models with covariate measure-
ment errors and outcome-based informative missing responses; (3). séniipa_rarnetric NLME
models with covariate measurement errors and random-effect-based informative missing re-
- sponses. Measurement errors, dropouts, énd missing data are addressed simdltaneouély in
a unified way. For each problem, we propose two joint model methods to simultaneously
obtain approximate maximum likelihood estimates (MLEs) of all model parameters. Some
asymptotic properties of the estimates are discussed. The proposed methods ar.e illustrated

in a HIV data example. Simulation results show that all proposed methods perform better

than the commonly used two-step method and the naive method.
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Chapter 1

Introduction

1.1 Longitudinal Studies

A longitudinal study is defined as a study in which the respohse for each individual in

the study is observed on two or more occasions. Longitudinal studies are very ‘common
in" health and life sciences, epidemiolbgy, medical, and biomedical research. Longitudinal

studies are. also common in other areas including education, psychology, social sciences, and

- econometrics. A major advantage of longitudinal studies over cross-sectional studies is that

in longitudinal studies one can model the individual response trajectory over time while in
cross-sectional studies one cannot.

In longitudinal studies, covariates may be classified into two categories: time-varying
covariates and time-independent covariates. Time-varying covariates represent variables
which vary over time within individuals. Time itself may be viewed as a covariate in that
often there is interest in testing whether there are any changes in the response variable
over time. When oné studies children’s weight trajectories over time, the height may be a

time-varying covariate which can change with time. Time-independent covariates, on the




other hand, may represent baseline factors which do not vary with time. Examples of time-
independent covariates might include an individual’s gender and race. One of the goals
in longitudinal research is to investigate the effects of important covariates on individual
response trajectories over time.

A defining feature of a longitudinal data set is repeated observations on a number of
individuals. The repeated observations on the same individual tend to be correlated. It is-
important to explicitly recognize two sources of variability in a longitudinal data set: random
variation among repeated -measurements within a given individual and randofn variation
between individuals. Moreover, the number of observations within individuals often varies
from individual to individual (i.e., the data are often unbalanced). Therefore, longitudinal
data require special statistical methods to draw valid statistical inferences‘

There are three approaches to a longitudinal data analysis. .‘The marginal model
approach is to model the marginal expectation of a response as a function of covariates.,
The methods are désigned to permit -separémte modelling of the regression of the response
on covariates, and the association among repeated observations of the response for each
individual. Marginal models are appropriate when inferences about the popula’cioﬁ average
are the main interest. For example, in a clinical trial the average difference between control
and treatment is most important, not the differen.ce for any one individual.

The random effects model approach assumes that the response is a function of covari-
ates with regression coefficients varying from one individual to the next. A random effects
model is a reasonable description if the set of coefficients for a set of individuals can be
thought of as a sample from a distribution. In random effects models, correlation arises
among repeated responses because the regression coefficients vary across individuals, and

regression coefficients represent the effects of the covariates on an individual, which is in

contrast to the marginal model coefficients which describe the effect of covariates on the




population average. Random effects models aré most useful when the objective is to make
inference about individuals, such as in AIDS studies. They may focus on both population
pérameters and individuals characteristics.

The transition model approach describes the conditional distribution of each response
on an individual as an explicit function of his past responses and covariates. Under transition
models, correlatioﬁ among the response observations on one individual exists because the
past response observations explicitly influence the present reSponse observation. The past
response observations are treated as additional covariates.

In each of the three approaches, we conside_r both the dependence of the responses
on covariates and the correlation among the r'esponses. With cross-sectional data, only the
dependence of the responses on covariat.es needs to be specified since there is no correlation
of résponses. In longitudinal studies, in which correlation usually exists among responses,
there are at least two lconsequences of ignoring it as follows. First, incorrect inferences about
regression coefficients. In particular, confidence intervals are too short based on assumption.
of independence when in fact there is positive dependence. Secondly, the estimation method

may be inefficient, that is, less precise than possible.

1.2 Parametric Nonlinear Mixed-effects Models

Parametric nonlinear mixed-effects (NLME) models, or hierarchical nonlinear models, have
been widely used in mény longitudinal studies such as human immunodeficiency virus (HIV)
viral dynamics, pharmacokinetic analyses, .and studies of growth and decay (Davidian and
Giltinan 1995; Vonesh and Chinchilli 1997). In these studies, the intra-individual variation
and the inter-individual variation are typically modelled by a two-stage hierarchical model.

The first stage specifies the mean and covariance structure for a given individual, whereas



the second stage characterizes the inter-individual variation. Understanding the nature of
inter-individual systematic and random variation at the second stage often receives more
emphasis. This inter-individual variation may be partially explzﬁned by some baseline or
time-varying covariates.
Suppbse that there are n individuals with measurements over time. Let y;; and z;;
respectively be the response value and the v x 1 covariate values for individual ¢ at time ¢;;,
t=1,...,n, j=1,...,n; The covariates z;; may incorporate variables such as time, dose,
etc. A general parametric NLME model can be written as a hierarchical two-stage model as

follows (Davidian and Giltinan, 1995)

Yij = 9(zi; ,Bij)‘*‘eij, elB; ~ N(O,(Szl), (L.1)

2.1.d.
B, = d(zi;; B, b;), b~ N®©B), i=1,...,n,j=1,...,m, (1.2)

where ¢(-) and d(-) ‘areA known (possibly nonlinear) functions, 8;; are individual-specific pa-
rameters, 3 are population parameters (fixed effects), b; are random éffects, B8, =(BL,... ,ﬂz:“)T,
e; = (ei1,...,€mn,)T are within-individual random errors and are assumed to be independent’
of b;, 62 is the unknown within-individual variance, I is the identity matrix, and B is an
unknown variance-covariance matrix.

In AIDS studies, for example, viral loads (Plasma‘ HIV-1 RNA copies) and various
covariates such as CD4 count are usually measured over time after initiation of treatments.
The following parametric NLME model has been widely used‘ to fit short-term (the first three

months after treatments) HIV viral dynamics (Wu, 2002; Wu and Zhang, 2002)

yij = logo(Pre 9% + Ppe™ %) ey, (1.3)
log(F;) = Bu + b, Aiij = B2 + Pazij + baiy : )
log(Pai) = Bs + bi, _ Xaij = P + bai, _ (1.5)

where y;; and z;; are the logyo-transformation of the viral load measurement and CD4 count

4




for patient 7 at time t;; respectively, b; = (by, b, bsi, by;)? are random effects, P; and Péi
are baseline values, and Ay;; and Ay, are the first (initial) and.the.second phase viral decay
rates réspectively (they may be interpreted as the turnover rates of productively infected
cells and long-lived and/or latently infected cells respectively).

Although NLME models are popular in practice, their use has been somewhat limited
because of the complexity of the likelihood function. Estimation of model parameters based
on maximum lii<elihood can be challenging since these models are typically nonlinear with
respect to the random effects and thus have no closed-form exp.ressions for the marginal like-
lihood. This has led to the development of some widely used approximate methods bésed
on Taylor expansions or Laplace approximation of the likelihood function (Lindstrom and
Bates 1990; Wolﬁnge.r 1993; Vonesh, Wangs, Nie, and Majumdar 2002). These approximate
methods are computationally efficient in the sense that they may converge faster and have
less computational problems than the “exact” likelihood method, which finds the maximum
likelihood estimator (MLE) using numerical integration techniques or Monte Carlo methods.
These approximate methods often perform well if the number of intra-individual' measure-
ments is not small, but theif performance may be less satisfactory if the intra-individual
data are sparse, especially wﬁen the inter-individual variability is large (Davidian and Gilti-
nan 1995; Vonesh and Chinchilli 1997; Pinheiro and Bates 1995). Thus there is still a need

for developing “exact” methods. “Exact” likelihood inference for generalized linear mixed

models based on Monte Carlo EM algorithms has been investigated by McCulloch (1997)

and Booth and Hobert (1999).




1.3 Semiparamétric Nonlinear Mixed-effects Models

Parametric NLME models are powerful tools in many longitudinal analyses. In some cases,
however, parametric NLME models may not be flexible enough in modelling complex lon-
gitudinal processes, since the underlying mechanism which generates the data may be com-
plicated in practice. In these cases, semiparametric or nonparametric models may be more
ﬁexible in modelling the complex lc;ngitudinal process (Ke and Wang, 2001; Rice and Wu,
2001). In particular, semiparametric NLME models are very useful in characterizing both
the intra-individual variation and the inter-individual variation, in which the intra-individual
variation is modeiled semiparametrically while the inter-individual variation is incorporated
by random effects (Davidian and Giitinan, 1995; Ke and Wang, 2001; Wu and Zhang, 2002).

In AIDS studies, for instance, the parametric NLME model (1.3) - (1.5) is appropriate
only for fitting short-term HIV viral dynamics. .Due to long-term clinical factors, drug
resistance, and other complications, the viral load trajectories can be very complex after the
initial phase viral decay (see Figure 1.1 for long-term viral load trajectories of six randomly
selected HIV patients). Gfossman et al. (1999) pointed out that viral decay rates after the
initial period may be complicated and may vary over time since they may depend on some
phenomenological parameters which hide considerable microscopic complexity and change
over time, Therefore, a nonparametric smooth curve modelling for the second phase viral
-decay rate may be more appropriate than parametric modelling (Wu and Zhang, 2002). This

leads to the following semiparametric NLME model

Yij = 10g1o(Prie™ 19" + Ppe 9% + ey, (L.6)
 log(Pr;) = Py + by, Aij = Bo + Bazi; + by, (1.7)
log(Py) = fa+bsi, iy = w(tyy) + hi(tiy), (1.8)

where w(-) and k() in (1.8) are unknown nonparametric smooth fixed- and random-effects

6
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Figure 1.1: Viral loads (response) of six randomly selected HIV patients.



functions used to describe the complicated second phase decay rate Ag;;.

Wu and Zhang (2002) introduced a class of semiparametric NLME models for lon-
gitudinal data. The standard parametric NLME models can be regarded as a special case
of their models. Their models are more flexible than the semiparanietric NLME models
propdsed by. Ke and Wang (2001). | Details of the semiparametric NLME models propésed
by Wu and Zhang (2002) will be described in Chapter 2. -

1.4 Measurement Errors and Dropouﬁs

In .many longitudinal studies, the inter-individual variation may be large and this variation
may be partially explained by time-varying covariates. Some covariates, however, may be
measured with substantial errors and may contain missing values a‘s.well. Ignoring measure-
ment errors and missing data in covariates may lead to biased results (Carroll et al. 1995;
Higgins et al. 1997; Wu, 2002). Moreover, some individuals may drop out of the study
before the scheduled end for various reasons such as drug intolerance, which leads to missing
data. Measurement errors and missing data make statistical analysis in longitudinal studies
much more complicated, because standard complete-data methods are not directly applica-
ble. Therefore, it is very important to find appropriate methods to deal with measufement
errors and missing data.

In AIDS studies, for example, it is well knovsl/n that CD4 counts, which may be used
as covariates, are usually measured with substantial errors and are usually measured at time
points different from the response (viral load) measurement schedule. In addition, it is very

common that some patients drop out of the study early or miss scheduled visits due to drug

“intolerance or other problems. Visual inspection of the raw data seems to indicate that

dropout patients may have slower viral decay, compared with the remaining patients. Thus,



the dropouts are likely to be informative or nonignorable.

Commonly used measurement error models are reviewed in Carroll et al. (1995). For
NLME models with covariate measurement errors, Higgins, et al. (1997) proposed a two-step
method and a bootstrap method, and Wu (2002) considered censored response and covariate
measurement errors based on a joint model. There is also extensive literature on dropouts

‘in longitudinal studies (e.g., Diggle. and Kenward, 1994; Little 1995; Ibrahim et al. 2001).
However, there is little literature on addressing measurement errors, informative drbpout_s,
and missing data in semiparametric NLME models.

| In the presence of missing data, the missing datd mechanism. must be taken into
account to obtain valid statistical inferences. Little and Rubin (1987) and Little (1995)
discussed statistical analyses with missing values. Let y; = (4i1,-..,%mn,)} be a vector of
repeated observations of a variable y on individual i. Write y; = (yfo), yfm)), with yfo)
denoting the observed components of y; and ygm) denoting the‘missing components of y;.
Let r; = (7i1,...,7im, )T denote a set of indicator variables such that ry; = 1 if y;; is missing
and r;; = 0 otherwise. The probability distribution of r; defines a probabilvity model for the

missing value mechanism. Little and Rubin (1987) classified the missing value mechanism

as follows.

e Missing data are missing completely at random (MCAR) if the probability of missing-
ness is independent of both observed and unobserved data. When missing data are
caused by features of the study design, rather than the behavior of the study subjects,
the MCAR mechanism may be plausible. For example, some values are missing because

“of reasons irrelevant to the treatment (e.g., the medical equipment is broken down on
a certain day). So missingness is MCAR if r; is indepéndent of both y(")

7

and ygm)

e Missing data are missing at random (MAR) if the probability of missingness depends



only on observed data, but not on unobserved data. For example, a patient may fail
to visit the clinic because he/she is too old. In mathematical notation, missingness is

MAR if r; is independent of y{™.

Missing data are nonignorable or informative (NIM) if the probability of missingness
depends on unobserved data. For random effects models, we consider the following
two nonignorable response miss.ing mechanisms. First, the probability of the missing-
ness depends on unobserved responses. For example, a patient fails to visit the clinic
because he/she is too sick. We call the missingness outcome-based informative (Little,
1995) if r; is dependent on y™

)

, but not on the random effects b;. Secondly, the
probability of missingness depends on unobservable random effects. For example, an

AIDS patient may drop out if his/her individual-specific viral decay is too slow. We

~ call the missingness random-effect-based informative (Little, 1995) if r; is dependent

(m)

i

on random effects b;, but not on y

Both MCAR and MAR missing mechanisms are sometimes referred to without distinc-

tion as ignorable. Little and Rubin (1987) showed that, when missing data are nonignorable,

likelihood inference must incorporate the missing data mechanism to avoid biased results.

1.5 A Motivating Example

Our research is motivated by HIV viral dynami(;, studies, which model the viral load tra-
jectories after initiation of anti-HIV treatments. HIV viral dynamic models have received
great attention in AIDS studies in recent years (Ho et al. 1995; Perelson et al: 1996; Wu
and Ding, 1999; Wu, 2005). These viral dynamic models provide good understanding of the
pathogenesis of HIV infection and evaluation of anti-HIV therapies. NLME models have

been popular in modelling the initial period of HIV viral dynamics and in characterizing

10



the large inter-patient variation. It is shown fhat the initial viral decay rate may reflect
the efficacy of the anti-HIV therapy (Ding and Wu, 2001). One of the major challenges in
modeﬂing lohg—term HIV viral dynamics is that, during late stages of an anti-HIV treatment,
it is difficult to model the viral load trajectory parametrically, because drug resistance, non-
compliance, and other long-term clinical factors may affect viral load trajectories. T};erefore,
semiparametric NLME mociels may be more suitable for modelling HIV viral dynamics (Wu
and Zhang, 2002).

Understanding the large inter-patient variation in HIV viral dynamic studies often
receives great attention, which may help to provide individualized treatments. It has been
shown that covariates such as CD4 cell count (see Figure 1.2) may partially explain the
large inter-patient variation (Wu et al. 1999; Wu, 2002). However, some covariates such
as CD4 cell count may be measured with substantial errors and may be measured at time
points different from the response measurement schedule (which leads to missing data in
covariates). Ignoring these measurement errors and missing data in covariates may lead to
biased results (Wu, 2002). In addition, it is very common that some patients may drop out of
the study early or miss scheduled visits due to drug resistance/ intolerance and other problems
(although dropout patients may return to study later). It appears that dropout patients
may have slower viral decay rates, compared with the remaining patients (see Figure 1.1).
Thus the dropouts are likely to be informative or nonignorable. Therefore, it is important
to address measurement errors, informative dropouts, and missing data in semiparametric
NLME models in order to obtain reliable results, which may make significant contributions
to HIV/AIDS studies.

The following AIDS dataset motivates dur research. A more detailed data description
can be found in Wu (2002). The dataset includes 53 HIV infected patients who wére treated

with a potent antiretroviral regimen. Viral loads (Plasma HIV-1 RNA copies) were measured
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Figure 1.2: CD4 counts of six randorﬁly selected HIV patients. -




ondays 0, 2, 7, 10, 14, 21, 28 and weeks 8, 12, 24, and 48 after initiation of treatments. After
the antiretroviral treatment, the patients’ viral loads will decay, and the decay rates may
reflect the efficacy of the tréatment. Throughout the time course, the viral load may continue
to decay, fluctuate, or even start to rise (rebound). The data at the late stage of study are
likely to be contaminated by long-term clinical factors, which leads to complex longitudinal
trajectories. Various covariates such as CD4 count were also recorded throughout the study
on similar schedules. It is well known that CD4 counts are usually measured with substantial
erroré. The numbe'r of response (viral load) measureménts for éach individual varies frofn 6
to 10. Five patients dropped out of the study due to drug intolerance or other problems and
sixteen patients have missing viral loads at scheduled time points. There were 104 out of
463 CD4 measurements missing at viral load measurement times, due mainly to a somewhat
different CD4 measurement schedule. Six patients are fand_omiy selected and their viral
loads are plotted in Figure 1.1.

In the presence of measurement errors in CD4 count, we consider the following semi-

parametric NLME model, which corresponds model (1.6) — (1.8), to fit the viral dynamics

yij = logio(Pue™ 19" + Ppie™91) + ey, | (1.9)
log(Py;) = Br + by, Aiij = Ba + Baz; + ba, (1.10)
log(Py;) = Ba+ bai, Aoy = w(ti;) + hi(tsy), (1.11)

where z}; is the unobseryable true CD4 count, reflecting the belief that actual, not pbssibly
corrupted, CD4 counts govern the initial phase viral decay rate Ay;. Model (1.9) — (1.11)
will be used in our data analyses in later chapters. The CD4 count trajectories for six
randomly selected ‘patients are plotted in Figure 1.2. There exists large variability in CD4
count befween patients. Most CD4 count trajectories appear to have roughly quadratic

polynomial shapes. We will discuss covariate models in the next chapter.
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1.6 Research Objectives and Thesis Organization

In ﬁhis thesis, we consider approximate maximum likelihood inference in the following three
problems: (1). semiparametric NLME models with measurement errors and missing data
in time-varying covariates; (2).- semiparametric NLME fnodels with covariate measurement
errors and outcome-based informative missing responses; (3). semiparametric NLME models
with covariate measurement errors and random-effect-based informative missing responses.
Measurement errors, dropouts, and missing data are addressed simultaneously in a unified
way. Some asymptotic results are developed. For each problem, we propose two joint model
methods to simqltaneously obtain approximate maximum likelihood estimates (MLEs) of all
model parameters. The ﬁ.rst method, implemented by a Monte Carlo EM algorithm, is more
accurate than the second method but it is computationally very intensive and may offer
éomputational difficulties such as slow or non-convergence, especially when the dimensions
of random effects are not small. The second method, Which-approximatefs joint log-likelihood
functions,‘is always computationally feasible and is often computationally much more effi-
cient, but it is usually less accurate than the first method. The second method may be used
as a reasonable alternative when the first method has convergence problems or may be used
to provide excellent parameter starting values for the first method.

The remainder of this thesis is organized as fol.'lows. In Chapter 2, we introduce general
semiparametric NLME models with covariate measurement errors. Following Rice and Wu
(2001) and Wu and Zhang (2002), we employ natural cubic spline bases with the percentile-
based knots to transform semiparametric NLME models into a parametric NLME models.
In Chapter 3, we address fneasurement errors and missing data in time-varying covariates

in semiparametric NLME models and propose two joint model methods, implemented by a

Monte Carlo EM algorithm and by a first-order Taylor approximation to log-likelihood func-




tions, reépectively. We also compare the two joint model methods .with the two-step method
suggested by Higgins, et al. (1997) and discuss the asymptotic propérties of approximate
MLEs. We finally apply the two joint model methods to a HIV dataset. In Chapter 4, we
address outcome-based informative dropouts and covariate measurement errors in semipara-
metric NLME models and propose two joint model méthods, implemented by Monte Carlo
EM algorithms. We illustrate our proposed methods in a HIV dataset and evaluate their per-
formance via simulation studies. In Chapter 5, we consider random-effect-based informative
missing responses in semiparametric NLME models with covariate measurement errors. We
propose fwo joint model methods, implemented by a Monte Carlo EM algorithm and by a
first-order Laplace approximation to log-likelihood functions respectively, to simultaneously
obtain approximate MLEs of all model parameters. We also discuss some asymptotic prop-
erties of the approximate MLEs. We illustrate our methods in a HIV dataset and evaluate
their performance by simulation studies. We conclude this thesis with some discussion and

possible future work in Chapter 6.
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| Chapter 2

A Semiparametric Nonlinear
Mixed-effects Model with Covari_ate

Measurement Errors

2.1 Introduction

In this chaplter we present the general form for semiparametric NLME models with covariate
measurement errors. In Section 2.2; we describe a general semivparametric NLME model
for the response pfocess and incorporate possibly mis-measured time-varying covariates. We
approximate the proposed semiparametric NLME model by a parametric NLME model, using
linear combinations of natural cubic splines with percentile-based knots. Consistency of the
estimates is discussed. In Section 2.3, the covériate process is modelled using a mixed-effects

model to address measurement errors and missing data.
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2.2 A Semiparametric N LME Model for the Response

Process

2.2.1 A Sémiparmetric NLME Model with Mis-measured Covari-

ates

We describe a semiparametric NLME model in general form. Let y;; be the response value
for individual ¢ at time t;;, i = 1', - ,n; j =1,...,n;. Let 2z be the observed value
and let 27, be the unobservable “true” value of covariate k£ for individual ¢ at time wuy,
i=1,....n, k=1,...,v, [ =1,. ,m;. For simplicity, we focus on the case where 2}, is
the current true covariate value, but our method can be extended to the case where FAN L
a summary of the true covariate values up to time u;. Note that for each individual, we

allow the covariate measurement times uy to differ from the response measurement times

t;;. In other words, we allow missing data in the covariates. Let y; = (yi1,--.,¥in;)’ and
T T \T _ T _
zi = (23, Zim,)" » Where zg = (ziy, ..., za0)’, L =1,...,my.

For the response process, we consider a general semiparametric NLME model similar

to Wu and Zhang (2002), but incorporate possibly mis-measured time-varying covariates

Yij = g(tij: /B;ja Ti(tij)) + €45, . | (21)
B, = ' 6,10, 22)
ri(t) = v(w@®), h(t)), di=1....n j=1...,n; o (23)

where g(-), d*(), and v(-) are known (possible nonlinear) fuﬁctions, w(t) and h;(t) are

unknown nonparametric smooth fixed-effects and random-effects functions respectively, ,ij
are individual-specific parameters, 3" are population parameters, e;; is the within-individual

random error, and b} are random effects. Let e; = (e;1,...,€in;)T. We assume that e; ~
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N(0, 6%1), where 62 is the unknown within-individual variance and I is the identity matrix,
b? BN (0, B*), h;(t)’s are identical and independent realizations of a zero-mean stochastic
process h(t), and b; and h;(t) are independent of e;. We can rewrite the semiparametric

NLME models (2.1) — (2.3) in a compacf way

vy = g(ty, d°(z%, B°, bE), v(w(ty), h(ty))) + e (2.4)

Note that in (2.1) or (2.4), we assume that the individual-specific parameters 3;; depend on
the true but unobservable covariates z;; rather than the observed covariates z;;, which are
measured with error.

Because of the nonparametric parts (i.e., w(t) and h;(t)) in the model, the semipara-
metric NLME model (2.4) is more flexible than parametric NLME models for modelling
longitudinal data, and it reduces to a parametric NLME model when the nonparametric
parts w(t) and h;(t) are constants. Following Wu and Zhang (2002), model (2.4) is also
more flexible than other semiparametric NLME models that have appeared in the literature,
such as Ke and Wang (2001). The semiparametric NLME models in Ke and Wang (2001)
can be considered as a special case of model (2.4). In particular, their model only put the
random effects in 3; as in (22) and considered w;(t;;) = w(t;;; B;;) in (2.3). Therefore,

model (2.4) is a very general and flexible semiparametric NULME model.

2.2.2 A Basis-based Approach to Nonparametric Functions

To do statistical inference for the semiparametric NLME model (2.4), a main difficulty is how
to fit the nonparametric smooth fixed-effects function w(t) and random-effects function h;(t).
Following Rice and Wu (2001) and Wu and Zhang (2002), we use a basis-based approach
which transforms a general semiparametric NLME model into a set of parametric NLME

models indexed by a smoothing parameter (the number of basis functions). We use the
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fixed-effects function w(t) to illustrate thé»basis—based approach.
Let x be the support of ¢ and L?() be the inner product space of all square integrable

functions with norm || - || and inner product < -,- >, where for any 1, 1, € L*(), we define

[l = [ W0d, <vuva>= [ n@na

Assume that w'(t) is an element of a smooth function space S, (x), a subspéce of L?(x). An

example of S,,(x) is the Sobolev space
W (x) = {9, ¢, ..., ™ absolutely continuous, @b("i) € L*(x)}.

Denote a complete orthonormal basis of S, (x) by U(¢) = [tho(t), w1 (t),¥a(t),...]T where

Yo(t) = 1. Then w(t) can be expanded as
w(t) = Z s Pis(t),
© k=0
where the coefficients
= [ wtpnl)t =< w, v >
X -
Let W,(t) = [ho(t), ¥1(t),. .., ¥p-1(t)]" and p, = (po, i1, .-, p)T. Since w(t) are square
integrable, the truncations of w(t) at term p
p—1
wy(t) = Z#k Yi(t) = Tp(t)"
k=0

will converge to w(t) in L?>-norm as p tends to infinity. It follows that when p is large enough,
wp(t) can approximate w(t) very well, i.e., w(t) = wpy(t).
Similarly, if we assume that h;(t) is an element of a smooth function space Sy (x)(C

L*(x)) with a complete orthonormal basis ®(t) = [¢o(t), d1(t), p2(t),...]T where ¢o(t) = 1,

the truncations of h;(t) at term q
, -
hig(t) = Zgik oi(t) = (I)q(t)T €iqa
k=0
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will converge to h;(t) in L2-norm as ¢ tends to infinity, where ®,(t) = [¢o(t), ¢1(t),...,
be—1(t)]” and &;, = (&, ..., &iq)"- It follows that when g is large enough, h;y(t) can approx-
imate h;(t) very well, i.e., h;(t) = hi(2).

The function w,(t) can: be considered as the projection of w(t) on the linear space
S(x, U) = {&|v = ¥(t)" py, p, € RP} C Su(x), spanned by basis functions U, (t),
and the function h;,(t) can be considered as the projection of h;(t) on the linear space
S(x, @) = {¢1¢ = @,(t)" &, &, € R} C Sh(x), spanned by basis functidns ®,(t). With
D and q increasing, w,(t) and hy(t) approach to w(t) and h;(t), respectively. Parameters
m, and &, ére unknown vectors of fixed- and random-effects coefficients, respectively. Since
hi(t)’s are assumed to be identical and independent realizations of a zero-mean stochastic
process, we can regard &, as identical and independent realizations of a zero-mean random
vector with unknown covariance matrix K.

There are many bases available in the literature for curve fitting. Among global
bases are Legendre polynomials and Fourier series, and among local bases are regression
splines (Eubank, 1988), B-splines (de Boor, 1978) and natural splines (Green and Sliverman,
1994). A B-spline of degree d on x with knots tp < t; < -+ < tpyy < tM+1_ is a piecewise
polynomial with polynomial pieces of degree d joining together smoothly at the interibr knots
t; < --+ <ty while satisfyihg some boundary conditions. In other words, a B-spline is a
polynomial of degree d within each of the intervals [tx, t541), 0 < k < M —1, and [:cM, Tari),
which globally has (d —1)-continuous derivatives. All such B-splines form a linear space with
M + d + 1 basis functions which are mainly determined by three factors: the degree d, thé
location of the knots, and the number of interior knots M. When the degree d = 3, the
corresponding B-splines are called cubic spliﬁes. When the cubic splines have zero second
and third derivatives at the two extreme knots zy and /.1, they are called natural cubic

splines. Without loss of generality, throughout this thesis, we assume that the nonparametric
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fixed- and random-effects functions w(t) and h;(t) are elements of the Sobolev space W2(x)
and we use natural cubic spline bases (Green and Sliverman, 1994) due to their many good
properties, for example, easy construction, good smoothness, and flexibility to model the

underlying curves of various shapes (de Boor, 1978).

2.2.3 Percentile-based Knot Placing for Splines

The placing of knots is an important issue for splines in which we atterﬁpt to use a few
knots to represent a sample of design time points. We use sample percentiles of the design
time points as knéts so that there are more (fewer) knots in the area where more (fewer)
design time points afe available, as suggested by Wu and Zhang (2002). They indicated
that the percentile-based knot placing rule should work better for longitudinal data than
the équally-spaced knot.placing rule used by Rice and Wu (2001), since the design time
points of longitudinal data are usually sparse and often not uniformly spaced. Moreover, the
percentile-based knot placing rule guarantees that the locations of the knots (and also the
resulting basis functions) are sample-dependent and design-adaptive. These properties are
not shared by the equally-spaced knot placing rule. After the degree d and the knot placing
rule are determined, we need to choose the numbers of the interior knots, or equivélently to

choose the numbers p and ¢ of the basis functions, which are called smoothing parameters.

2.2.4 Selection of Smoothing Parameters

Using natural cubic spline bases with percentile-based knots to fit the nonparametric fixed-
and random-effects functions w(t) and h;(t), we can transform the semiparametric NLME
model into a parametric NLME model. To assess how well the resuiting parametric NLME
model approximates the originall semipafarnetric NLME model, we need to consider two

factors: the goodness-of-fit and the model complexity. Goodness-of-fit usually indicates how
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well the model fits the data (or how small the biases of the associated estimators are). It can
be improved by increasing p and g or equivalently, enlarging the linear spaces S, (x, ¥p(t))
and Sh(x, ®4(t)). However, the model complexity represents how complex the model is (or
how large the variances of the associated estimators are). The model usually becomes more
complicated with increasing p and g. Thus, there is a trade-off between the goodness-of-
fit and the model complexity. To balance the two components, it is natural to employ
Some model selection rules such as the Akaike Information Criterion (AIC) or the Schwarz’s
Bayesian Information Criterion (BIC) (Davidian and Giltinan, 1995). This is because the
transformed parametric NLME models are indexed by p and ¢ and choosing different p and
g is equivalent to choosing different parametric NLME models.

Let ¢ be the number of independent parameters in a parametric NLME model, say,

model (1.1) and (1.2). Then the AIC and the BIC are defined as

AIC = —2Loglik + 2¢,

BIC = —2Loglik + | log ( > )] e,

=1
where Loglik is the log-likelihood of the fitted the parametric NLME model (see Davidian and .
Giltinan, 1995, p156). Since a parametric NLME model with a larger number of parameters

will always produce a larger value for the log-likelihood (a smaller value for -2 Loglik), the

n
penalty terms 2¢p in AIC and {log(z nz)]  in BIC are needed to offset this advantage. Since

t=1 .
the penalty term in BIC is usually much larger than that in AIC, BIC is a conservative rule

and generally favors a parsimonious model. Since both the AIC and thé BIC of a parametric
NLME model are defined as twice the negative log-likelihood of the model (representing the
goodness-of-fit) plus a,pehalty term related to the number of pararﬁeters used in the model
(representing the model complexity), we will choose ¥,(t) and ®,(t) so that the AIC or the
BIC are minimized over a series of ¥,(¢) and ®,(t), which leads to the best approximate

parametric NLME model to the original semiparametric NLME model in terms of the AIC
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and BIC criteria. Liang et al. (2003) noted that the model obtained this way often provides
good approximation in practice. We will evaluate the performance of the AIC and the BIC

in the current setting (see Section 4.6).

2.2.5 Transformation of the Semiparametric NLME Model

After determining the smoothing parameters p and ¢ via the AIC and the BIC criteria, we
replace w(t) and h;(t) in the nonparametric function r;(t) in (2.3) by their approximations

wp(t) and hy(t). Thus, we obtain an approximation to the nonparametric function r;(t),

and approximate the semiparametric NLME model (2.4) as follows

yi; ~ g(ty, d*(z};, B, b)), v(Tp(t)T 1, D(t)T &) + €5
= g(tij7 d(Z:j; ﬁ; bl)) + €ij : (25)
where 3 = (8%, p,) are fixed effects, b; = (b}, &,,) are random effects, and d(-) is a known

but possible nonlinear function. Then, we can approximate the semiparametric NLME model

(2.1) - (2.3) by the following parametric NLME model

vy = gt By)+ey,  &lB; XN, 621, (2.6)
B = d(z B, bi), b; i N(0, B), v (2.7)

whére B is an unstructured covariance matrix. Note that e; and b; are independent of each
other. Approximate statistical inference can then be based on the approximate model (2.6)

and (2.7), as shown in Chapters 3 - 5.

2.2.6 Consistency of the Estimate of w(t)

After we obtain estimates f1, and éiq based on the parametric NLME model (2.6) and (2.7),

we can then estimate the nonparametric functions w(t) and h;(t) in the semiparametric
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NLME model (2.1) —(2.3) as follows

Bt) = () = Ty(t) fa,

iLl(t) = hiq(t) ZQQ(t)T'éiQ’

Therefore, the consistency of the estimates in the semiparametric NLME model (2.1) - (2.3)
is strongly related to the consistency of estimates in the parametrié NLME model (2.6)
and (2.7). Under some mild conditions, the following Theorem 2.1 guarantees that we can
obtain a consistent estimate w(t) of the nonparar_netrié fixed-effects fﬁnction w(t) in the
semiparametric NLME model (2.1) — (2.3) if we can find \/n-consistent estimates {1, of the
fixed-effects coefficients . |

Following Wu and Zhang (2002), we prove the consistency of the estimate w(t) of the
nonparametric fixed-effects function w(t) in the semiparametric NLME model (2.1) — (2.3).
baséd on the following coﬁditions:

(a). ¥(t) is a complete orthonormal basis of S(x), a subspace of L%().

(b). The nonparametric fixed-effects function w(t) € S(x) so that w(t) = i pk Ui (t).

(c). The design time points {t;;, ¢ = 1,...,n, § = 1,...,n;} are iderﬁ:iqcally and
independently distributed such that when the number n of individuals tends to infinity, the
number of distinct time points will tend to infinity. In this case, we can truncate w(t) in
the semiparametric NLME model (2.1) - (2.3) in such a way that w,(t) = S°07¢ k() =
W, (t)T p,, so that p — oo, p/n — 0 as n — co. |

(d). For any fixed p, we assume that we can obt._ain v/n-consistent estimates f,, of the

fixed-effects coefficients p,, so that as n — oo, E(f1,) — p, and Cov(\/ﬁﬂp) — X, for some

semidefinite positive matrix ¥, with p~'tr(Z,) bounded.

Theorem 2.1. Under Conditions (a) — (d), as n — oo, we have || —w]|| — 0 in probability.
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Proof. First we consider E||fi, — p,|?
Ellﬂp — =

Z fii — k) ] =" E(fu — )"
pard)

= ZEM— Mk)+ E(j) — px]®

-1

S Z E{lie — E(iu))? + [E(ie) — m)? + 2o — E(u) [ B () — pue]}

= Z{E[Hk— )] + (B () — e}

(
= ZVar(/lk) + Z[E(ﬂk) -
k=1 k=1

= tr[Cov(i,)] + 1 E(f,) — ]l
Under Conditions (a) and (b), and Cov(y/nfs,) — £, in Condition (d), we have

Ellw —w|* = Ef, — wl* < 2{Elldy, — wpl® + [lw, — w]*}
= 2{Ellfr, = poll* + llwp — wl*}
= 2{tr[Cov(fn,)] + IE(r,) — p,lI* + llwp — wi*}

= 2{n7'tx[Cov(Vnfr,)] + || E(is,) — 1, lI* + 1wy — wif*}

= 2{%"1tr[2p+ (V] + 11 E(f,) up||2+2uk}

= { “Htr(Zp) + po( )]+||E(up)—upll2+2uk}

k=p

- {2y s St o (2)

k=p
Under Conditions (b)—(d), it is easy to show that the three terms in parentheses {-} of the
right-hand side tend to 0 as n — co. Under Condition (d), as n — oo, E|lid — w|* — 0

implies ||w — w|| — 0 in probability. )
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2.3 Measurement Errors and Missing Data in Covari-
ates

At the presence of measurement errors and missing data in the time-varying covariates
zi = (21, - -, 2i) T, we need to model the covariate processes. We considef the following
multivariate linear mixed-effects (LME) model '(Shah et al., 1997) to empirically describe

the covariate process

.zil=Uila+V¢1ai—+—eil (= 2] + €), i=1,...,n, 1=1,...,my, (2.8)
where U;; and V;; are design matrices, @ and a; are unknown population (ﬁxea—effects) and
individual-specific (random-effects) parameter vectors, and €; are the random measurement
errors for individual i at time u;. For example, we may model the covariate processes
parametrically based on empirical polynomial models with random coefficients, as in Hig-
gins et al. (1997) and Wu (2002). Alternatively, we may model the covariate processes
nonparametrically, and approximate the nonparametric fixed- and random-effects functions
by linear combination of some basis functions, ias in Section 2.2. For either pararﬁetric or
nonparametric covariate models, we may convert the covariate models to the LME model
(2.8). Note that the covariate model (2.8) incorporates both the correlation of the repeated
measurements on each individual and the correlation among different covariates.

- Note that the parameters in the covariate model (2.8) may be viewed as nuisance pa-

rameters because they are often not of main interest. We assume that the true (unobservable)

covariate values are

z; = Uy +Vja.

We also assume that a; "< N(0, A), €; vid N(0,R), and a; and ei‘z'(eﬂ, oo, €8 )T are

im;

independent, where A is an unrestricted covariance matrix and R is an unknown within-
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individual covariance matrix. We further assume that €; and a; are independent of e; and
b;. Models (2.8) may be interpreted as a covariate measurement error model (Carroll et al.,
1995; ~Higgins et al., 1997).

To allow for missing data in the time-varying covariates (or different measurement

schedules for the time-varying covariates), we recast model (2.8) in continuous time:
Zz(t):Uz(t)a_{_‘/l(t)al_*—ez(t)? ’i:——l,...,’fl,

where z,(t), U;(t), Vi(t), and €;(t) are the covariate values, design matrices, and measurement
errors at time it respectively. At the response measurement time ¢;;, which may be different
from the covariate measurement times wu;, the possibly unobserved “true” covariate valués
can be viewed as zj; = U;; a + V5 a;, where Uj; = Ui(t;;) and V;; = Vi(t;;). In other words,

missing covariates at time ¢;; may be imputed by their estimated true values z;;.
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Chapter 3

A Joint Model for Semiparametric
NLME Models with Covariate
Measurement Errors and Missing

Data

3.1 Introduction

In this chapter, we address measurement errors and missing data in time-varying covariates
for semiparametric NLME models. In Section 3.2, we review the two-step méthod proposed
by Higgins et al. (1997). We derive somé analytic and asymptotic results for the two-
step estimates for pafametric NLME models with mis-measured covériates, and analytically
show that the variances of the main parameter estimates based.on the two-step method are

underestimated.

To address measurement errors and missing data in time-varying covariates in semi-




parametric NLME models based on models (2.6) — (2.8), in Sections 3.3 and 3.4 we propose .
two joint model methods, implemented by a Monte Carlo EM algorithm and by a first-order
Taylor approximation to the log-likelihood function ‘respectively, to find approximate MLEs
of model parameters. We aleo discuss asymptotic properties of these approximate MLEs.

In Section 3.5, we apply the two joint model methods to a real dataset. We evaluate
the proposed methods and compare them with the two-step method via simulation studies.
We conclude this chapter with some discussion in Section43.6. Proofs of the asymptotic

properties of approximate MLEs are presented in Section 3.7.

3.2 A Two-step Method

For covariate measurement error problems, a commonly used method is the so-called two-
step method (Higgins, et al., 1997; Liang, et al., 2003): in the first step the “true”’ covariate
values are estimated based on an assumed covariate model, and then in the second step,
the possibly mis-measured covariates in the response model are simply replaced by the esti-
mated covariates from the first step. The estimation of the main parameters in the response
model proceeds as if the estimated covariate values are the true covariate values without
measurement error. Intuitively, the resulting estimates of the main parametere may be ap-
proximately unbiased if the covariate estimates from the first step are unbiased, but the
variances of the main parameter estimates may be underestimated because the variability of -
the covariate estimation in the first step is ignored in the estimation of the main parameters
in the second step. Higgins et al. (1997) and Ogden and Tarpey (2005) realized this problem
and proposed bootstrap methods which incerporate the variability from estimating the co-
variates in the first step. Wu (2002) considered an approximafe joint model approach which

also incorporates the variability in the covariate estimation. In this section, we derive some



analytic resullcs for the two-step estimates for parametric NLME models with mis-measured
covariates such as the models (2.6) — (2.8), analytically show that the variances of the main
parameter estimates based on the two-step method are underestimated, and derive some
asymptotic results for the two-step estimates. |

Let y = (yT,--- ,yI)T, and define z, z*, and € similarly. If z* is known, an estimate
B* of B3 can be expressed as ,fi* = s(y,z*), where s is a vector function. Sinée z is recorded
with errors and z* is unobservable, we assume z = z* + €, where E(e) = 0. Let 2 be an
unbiased estimate of the true covariate value z* based on the observed covariate value z (i.e.,
E(2) = z*). The two-step method estimates 8 by 8 = s(y, z), which depends on realizations

of two random variables y and z. If we assume that E[s(y,z*)] =~ 3, and y and z are roughly

independent so that

E{ [8_5%3;;@ o=s ](z - z)} ~ E[%ﬁl - ] E(z - ), |

and that the function s(y,z) is well approximated by a first-order Taylor series expansion
around z*, then we show next that the estimate. ,B ié also approximately unbiased, following
Ogden and Tarpey (2005). Taking a first-order Taylor expansion of s(y; z) around the “true”
“covariate value z*, we have
B(B) = Els(y,2)) ~ E {s(y,2") + [242 ;o | (2 - 2)}
~B+E [ |, | B -2) =B,

provided that the expectations exist (the‘expectation operator in the above expression is
to be taken as the expectation with respect to both y and 2). However, the variances of
the two-step estimates will be underestimated, as shown below. When % is plugged in the
estimation of 3, the resulting variance-covariance matrix is actually an estimate of Cov([i|i).

By the well-known variance decomposition formula

Cov(B) = Cov|E(BI2)] + E[Cov(B]2)),
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we know that Cov(3) — E[Cov(B|2)] is nonnegative definite, since Cov[E(3|2)] is nonneg-
ative definite. Thus, on average, the two-step approach underestimates the true variance-
covariance matrix of ,@

Following the general approach taken by Amemiya (1983), under the suitable regular-
ity conditions on the log-likelihood function of 3 (e.g., the third order derivatives exist and
are continuous in an open neighborhood about 3), we derive the asymptotic distribution for
the MLE of 3 when the unobservable “true” covariates z} are imputed by their estimated

values z;. Suppose that z; are \/m;-consistent estimates of z; and that
\/mi(ii—z:)—‘aN(O, Q,,), 1=1,...,n,

where m; is the number of observations for covariates on individual i. We assume that
m; = O(m) uniformly for ¢ = 1,...,n, where m = min;(m;), and that m; and n go to

infinity at the same rate with n/m; — ¢;, where 0 < ¢; < co. Let

By, 2 Zl (B; vi, %)

| be the log-likelihood function of 3 based on the observed data y and z* with the unobservable
“true” covariates z* are imputed by their estimated values z. The MLE ﬁ of 3 satisfies a

set of equations

8Z(B;y, 2) zn: 3li(B;}’i, ii)

= =0
op — o ’
where
olL(Bsyi, 2:) ,8 yz, ’
0B B B=B"

“Taking a first-order Taylor expansion of 81(3;y, 2)/03 around the “true” covariates z*, we
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have

0 - > 1>+§;[——~—ggg;’ ey —22) + Ol - 717
- ROy [P o)
- 3 ) S A6+ Y0, ()
- 3 By P 0, (1)
- 3 MOty P a2+ 0, i) |
_ é—"”ﬁ(ﬁég’z?)+;—————azlégayz“ Lo~ 23) + 0y(m™),

since z; are \/m;-consistent estimates of z;. Next, carrying out a first-order Taylor expansion

of 3 01;(B;y:, z¥) /88 in the above expression around 3, we can obtain
=1 '

" OBy, %) | = PllBrys 7)) s 5 a2
> B t) o 3 Bt 5 5)+ 0115 - )

0°l; iy 2 ,
+;—————§g§; d 3~ 22) + O, (m™)

~ 0li(B;yi, 27) |~ LBy, 7)), - -
- Y ROsl) SO - )+ O™

> P D, ) 0 m =0,

i=1

0

since [3 is the MLE of 3 and thus it is y/n-consistent under the necessary regularity conditions

on the log-likelihood function of 3. The above expression can be written as
' » _ a l (ﬁ Yi, 24 al ﬂ y“ i .
Vn(B-B) = [—;;W] {\/—Z .

5 P ] o o)
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Assume that the following limits exist

LBy, 7)) o LBy, )
n——»oo n2 Z 0B0zT P 07,087 2

where I;(8) = —E[0%L;(B; yi, z¢)/0B803"] is the Fisher information matrix for individual s.

It follows from Lemma 3.2 in Section 3.7 that

- PU(Bryi, 7) , LBy 2t)
bl 'L Qz. 1 bl 13 1 Qz.
) Z 98027 92,087 -
Note that /n(2; —z}) = \/c;m;(2; — z}) for large n and m;. Using the asymptotic normality
of z;, we know that for large m;, E[./m~(i‘ —z})] = 0 and Cov[\/m;(2; — z})] = Q,,. By

Lindeberg’s central limit theorem, we have

n

1O LBy, ) PhBryi, )11 U(Bry:, 7) 1
[Z’Z;c 9BoaT % 02,087 ) [n DG g X Vil - 20)] 4 N©, 1)

i=

It follows from Slutsky’s theorem that

al IByM ;,k 8l(:3 Yi, 2 i) N «\ d
Z BT X v/n(Z; Z\/— T X /m;(2; — z}) — N(0, 2,).
Under the necessary regularlty conditions on the log-likelihood function of 3, based on the

standard arguments for showing asymptotic normality of MLEs, we can obtain

ML 4 o, 1(ey,

and

apapT

Since y and z are roughly independent, the two limit random variables with distributions

1 - a2lz 1Yy : P 7 :
Ly Ty ) 5, fig)
. =1

N(0, Q,) and N(0, I(8)) are roughly independent. Note that n/m = O(1). Putting these

pieces togefher, we have asymptotic normality of \/ﬁ(,@ — ) as follows:

VaB - B) % N, I8) + T(8) . I(8) ). | (31)
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Note that the variance-covariance matrix of B based on the asymptotic distribu-
tion (3.1) has two components. The first component I(3)~! is the “naive” estimate of the
variance-covariance matrix of B in the two-step method, in which the variability of z; is
neglected. The second component 1(3)~! Q, I(8)~! arises from the variability in estimating
7; and summarizes thé extra uncertainty of ,@ due to estimation of z;. Since the second
" component I(B3)7*Q, I(B8)7! is nonnegative definite, the variances of the main parameter.

estimates based on the two-step method are underestimated.

3.3 A Joint Model Method for Likelihood Inference

3.3.1 The Likelihood for the Joint Modél

We consider likelihood inference for semiparametric NLME models with measurement er-
rors and missing data in time-varying covariates, based on the approximéte parametric
NLME models (2.6) — (2.8). The observed data are {(yi, z), i = 1,...,n}. Let 6 =
(a, B, 6%, R, A, B) be the collection of all unknown paramet.ers in models (2.6) - (2.8).
We assume that the barameters o, B, 6, R, A, and B are distinct. Let f(-) be a generic
density function, and let [X|Y] denote a conditional distribution of X given Y. The approx-

imate log-likelihood for the observed data {(y;, z;), i =1,...,n} can be written as

1(6) = Zlog {//fY(Yilzi, a;, bi; @, B, &) fz(zlai; o, R) f(ai; A) f(bi; B)da;db;|
i=1




where

Fr(vilz, ai, bis o, B, 62) =TT1%, fy(yislzy, ai, bis o, B, 6%)
= [T5%, (2n6%) 72 exp{~yys — glty, d(ufiex +va, B, bo))J?/26%),
fz(zilai; o, R) = [I;L, fz(zulas; o, R)
= [ |2.7TR|_1/2 exp{—(zix — wr o — vy a;)T R}
X (zikx — Wip 0 — Vi, a;)/2},
fla; A) = |2n A7 exp{—al A~'a;/2},
f(bi; B) = |27 B|"2 exp{~bT B-1b;/2}.
This approximate log-likelihood function generally does not have a closed-form expression
since the functions in the integral can be nonlinear in the random effects a; and b;. Exact
likelihood calculations therefore requirehumerical evaluation of an integral whose dimension
is equal to the dimension of the random effects (a;, b;). This is straightforward to do by
direct numerical integration éuch as Gaussian quadrature when the dimension of (a;, b;) is
very small (say, 1 or 2). However, when (a;, b;) has a dimension of 3 or more as is often the
case in practice, one needs to consider alterﬁative metho\ds such as computationally intensive
Monte Carlo methods.
Laird and Ware (1982) obtained MLEé in LME models using the EM algorithm.
Here we use a Monte Carlo EM (MCEM) algorithm to find the approximate MLEs of all
parameters 8. By treating the unobservable random effects a; and b; as additional “missing”
data, we hdve “complete data” {(yi, z;, a;, b;), ¢ = 1,...,n}. The complete-data log-

likelihood function for all individuals can be expressed as

1(8) =5219(6) = 3 {log fr(yilz:, a;, b, B, 82) + log fz(zlas; a, R)
i=1 =1

+log f(a;; A) +log f(by; B)},

(3.2)

where lgi) is the complete-data log-likelihood for individual :.
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3.3.2 A MCEM Method

The EM algorithm (Dempster, Laird, and Rubin, 1977) is a very useful and powerful algo-
rithm to compute MLEs in a wide variety of situations, such as missing data and random-’
effects models. The EM algorithm iterates between an E-step, which computes the condi-
tional expectation of the complete-data log-likelihood given the observed data and previous
parameter éstimates, and a M-step, which maximizes this conditional expectation to update
parameter estimates. The computation iterates between the E-step and M-step until con-
vergence leads to the MLEs (or local maximizers). When there are several modes in the
conditional expectation, the MLEs can be determined by trying different parameter starting
values. For our models, the E-step is quite intractable due to nonlinearity, so we use Monte
Carlo methods to approximate the intractable conditional expectations. In the M-step, we
use standard completé—data optimiza‘pion procedures to update parameter estimates.

Let 8® be the parameter estimates from the ¢-th EM iteration. The E-step for

individual ¢ at the (¢ + 1)th EM iteration can be written as
Qi(6169) = E(P(O)ly:, z:; 6Y) -' -
=. // {ldg fY(Yilzi: a;, bzaa; 137 62) + log fZ(z'L|a’L, -, R)
+log f(as; A) +log f(by; B)] X f.(am', bilys, zi; %)) da; db;

1f(e, B, &) + I{(a, R) + I (4) + I{(B). (3.3)

I

The above integral generally does not have a closed form, and evaluation of the integral by nu-
merical quadrature is usually infeasible, except for simple cases. However, note that expres-
sion (3.3) is an expectation‘ with respect to the conditional distribution f (ai,'bilyi, z;; 0),
and it may be evaluated using the MCEM algorithm of Wei and Tanner (1990), as in Ibrahim
et al. (1999, 2001). Specifically, for individual i, let {(égl), BE”), ce (55’““, f)z(.k‘))} denote a

random sample of size k, generated from [a;, by|y;, z;; 6®]. Note that each a*, b)) de-
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pends on the EM iteration number ¢, which is suppressed throughout.. Then we approximate
the conditional expectation Q;(8]6®) in the E-step by its empirical mean, with missing data

replaced by simulated values, as follows
ke
Qi(0|0(t)) ~ {_1_ S lgl)(O Vi, %, a(k) b(k))}
k ,

=% Zlog fryilz, &, b a, B, 82) + £ Zlog F2(205%; @, R)

+k Z log f( (k) ; A) + H};log I bik); B).
We may choose kqy as a large number and k; - ki 1+ki1/c,t=1,2,3,..., for some positive
constant ¢, in the t-th iteration. Increasing k; with each EM iteration may speed up the EM
convergence (Booth and Hobert, 1999). The E-step at the (t + 1)th EM iteration can then

be expressed as

n LI k k
Q169) =3 Qi(6]6W) ~ X {k— S 18(0; ys, zi, 8%, b} >>}

=1 k=

n kg n k
=53 Elog fr(yilzi, &, b a, B, 6%) + +3 Z Liog fz(z:|a); o, R)
i=1k—1 i=1 k=1
LA, 50, Liog F(B®; '
+ > E—ogf A+ZZ log f(b;"”; B)

i=1 k=1 i=1k=

= QW(a, B, 6°16Y) + QP (cx, RIOV) + QP)(A|6W) + QW (B|OW).
To generate independent samples from [a;, b;|y;, z; O(t)], we use the Gibbs sampler
(Gelfand and Smith, 1990) by sampling from the two full conditionals [a;|y;, z;, bs;; 8®)] and

[bily:, zi, a;; 8] as follows.

f(a, yleu i; 00) = f(ailzi, bi; 00) - fy(yilzi, a;, bi; 60)

(a |2:; 09) - fy (vili, aj, by; 6®) :

Fai 89) - falmlag 00) - frlyiz, ai b 00),  (34)
F(bs, yilzs, ai; 89) = f(bylz;, ai; 09) - fy (yilz:, as, bi; V)

f(aib% z;, b;; e(t))

f(bilyi, zi, a;; 01))
= f(b;; 69)- fY(Yi|zi; a;, b;; 90),
where a; and b; are independent each other. Monte Carlo samples from the above full condi-

tionals can be generated using rejection sampling methods, as in Wu (2004). Alternatively, -
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integral (3.3) may be evaluated using the importance sampling method. Details of these
sampling methods and convergence issues will be investigated in the next section.

The M-step then maximizes Q(8|0™) to pfoduce an updated estimate 8¢+Y) at the
(t + 1)-th iteratioP. Note that the parameters o, 3, 62, R, A, and B are all different, so we
can update the parameters (a, 3, 62, R), A, and B by maximizing Q") + Q®, @®, and
Q" separately in the M-step.

The maximizer (a®+1, g+ 520+ READY for QM) + Q@ may be computed via
iteratively re-weighted least squares where the random effects are replaced by their simulated

values {(égk), ng))};

(oD, BUHD, 204D, RHD) = arg max {QW(a, B, 7(69) + QPax, RIOV))

«,3,52, R .
n k)g 1 .
_ (k) 1.(k). 2
= ar maXx —lo il2s, Q; ,bi y O, 1676
. ﬁ{zz Liog fulys )
n k 1 . .
~(k
DD P T S
=1 k=1

In general, the function in (3.5) is nonlinear in parameters and thus, the maximizers have
no closed-form expressions. The maximizers could be obtained via standard optimization
procedures for complete-data nonlinear models, such as the Newton-Raphson method. Note
that optimization procedures for nonlinear models may be iterative as well.

We can use the following Lemma to obtain analytic expressions of the maximizer

A+ for QB) and the maximizer B for Q.

Lemma 3.1. (Seber, 1984). Consider the matrix function
h(E) = log || + tr[E=719).

If Q is positive definite, then, subject to positive definite £, h(X) is minimized uniquely at

=0




A = arg mjxx{Q@) (A|6®)}

L argmln{10g|Al+tr{ ZZ (&) [aknr }}

i=1 k=1

: By Lemma 3.1, the maximizer At for Q©® can be written as
- 1 (k).
) = arg maxz Z k log f(a;"; A)
i=1 k=1
LIS 1 (&)
= -z _ 2ianT 4-1q50k
= argmfelxx;kz_; kt{ 3 log |27 A| 2[az 1" A [ ]}
= arg mlnz Z {log Al + [éz(k)]T 41 [éﬁ’“)]}
i=1 k=1
= i (k (k)
= wamin{ntogial+ £ 33T 4 )
i=1 k=1
= arg mln{n log |A] + — Zztr [a(k) }
i=1 k=1
= arg mln{n log |A| + — Z Ztr ~1 [a(k) }
=1 k=1
= arg mm{n log |A| + —tr{A Z Z[a(k)] [a(k)]T}
=1 k=1

- & Z”:Z[ ®) @

=1 k=1

Similarly, the maximizer Bt+D for Q) can be obtained by
B¢ = argmaX{Q(4)(B|0(t))}

' = argmaxiz log f(b(k) B)
|
|

=1 k=1

— nk Zn:zb(k) b(k)]T

i=1 k=1
To obtain the asymptotic variance-covariance matrix of the MLE é, we can use the for-

mula of Louis (1982), which involves evaluating the second-order derivative of the complete-
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data log-likelihood function. Alternatively, we may consider the following approxirnate for-
mula (McLachlan and Krishnan, 1997). Let s = a1 /00, where 19 is the complete-data
log-likelihood for individual ¢. Then an approximate formula for the variance-covariance
matrix of 6 is |

' n -1

Cov(6) = | >~ EGPlys, 25 0) E(Olys, 25 )
i=1 '

where the expectations can be approximated by Monte-Carlo empirical means, as above.

In summary, the foregoing MCEM algorithm proceeds as follows.

Step 1. Ob‘gain an initial estimate of @ = 8® based on a naive method such as the
two-step method, and set a§°) =0 and bf-o) =0. |

Step 2. At the (t+ 1)th (¢ > 0) iteration, obtain Monte Carlo samples of the “missing
data” (a;, b;) using the Gibbs sampler alo}lg with rejection sampling methods by sampling
from the full conditionals [a;]y;, z;, bs; 6] an'd [bilys, 2, ai; Y], or using importance sam-
pling methods to approximate the conditional expectation in the E-step.

Step 3. Obtain updated estimates ) using standard complete-data optimization
procedures.

Step 4. Iterate between Step 2 and Step 3 until convergence.

3.3.3 Sampling Methods

Gibbs Sampler

For the proposed Ménte Carlo EM algorithm, we can see that generating samples
from the conditional diétribution [a;, bily:, zi; 6] is an important step for implementing
the E-step of the Monte Caljlo EM algorithm. The Gibbs sampler (Gelfand and Smith, 1990)
_is a popular method to generate samples from a complicated multi-dimensional distribution

by sampling from full conditionals in turn, until convergence after a burn-in period. Here, we
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use the Gibbs sampler to simulate the “missing” random effects a; and b;. Set initial values
(51(0), Bgo)). If the current generated values are (égk), ng)), we can obtain (égk“), ngﬂ)) as
follows:

Step 1. Draw a sample for the “missing” random effects 55’““) from the full conditional '
= (k
flailys, z, b§ ); e(t))-
" Step 2. Draw a sample for the “missing” random effects B§k+1) from the full conditional

f(bilyia Z;, 5('“1); e(t))-

(A

We assess the convergence of the Gibbs sampler by examining time series plots and
sample autocorrelation function plots. After a sufficiently large burn-in of r iterations,
the sampled values will achieve a steady state as reflected by the time series plots. Then, -

{(égk), ng))} can be treated as a sample from the multidimensional density function
f(aﬂ,) bilyi; Z;; o(t))

If we choose a reasonably large gap 1’ (say r' = 10), we can treat the sample series
{(éz(k), f)f.k)), k=r+7,r+2r, ...} as an independent sample from the multidimensional

1) K3

density function. The simplest choice for initial values (5(0) B(O)) is (0, 0).

‘Multivariate Rejection Algorithm

Sampling from the two full conditionals can be accomplished by rejéction éampling
methods as follows. If the density functions are log-concave in the appropriate parameters,
the adaptive rejection algorithm of Gilks and Wild (1992) may be used, as in Ibrahim et
- al. (1999). However, for arbitrary NLME models, some densities may not be log-concéve.
In such casés, the multivariate rejection sampling method (see Section 3.2 in Geweke, 1996)

may be used to obtain the desirable samples. Booth and Hobert (1999) discussed such a
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method in the context of complete-data generalized linear models, which can be extended to
our models. For example, consider sampling from f(a;]y;, z;, by; 0®) in (3.4). Let f*(a;) =
f(zi|as; D) f(yilzi, a5, by; 8Y) and ¢ = sup{f*(u)}. We assume ¢ < 0o0. A random sample
from f(a;|y;, i, bi; 8®) can then be obtairl;ed as follows by multivariate rejection sampling:

Step 1. Sample a} from f(a;; 8%)), and independently, sample w from the uniform
(0, 1) distribution.

Step 2. If w < f*(a})/s, then accept a}, otherwise, go back to step 1.

Samples from f(b;]y;:, z;, a;; @) can be obtained in a similar way. Therefore, the
Gibbs sampler in conjunction with fhe multivariate rejection sampling can be used to obtain
samples from [a;, b;|y;, z;; 6®)]. Booth and Hobert (1999) noted that, when it is easy to
simulate from the assumed densities, the multivariate rejection sampling method can be very

fast even if the acceptance rate is quite low.

Ifnportahce Sampling

When the dimensions of a; or b; are not small, however, the foregoing rejection/sarn-
pling methods may be slow. In this case, we may consider importance sampling methods
where the importance function can be chosen to be a multivariate Student ¢ density whose
mean and variance match the mode and curvature of f(a;, bs|y;, z;; 6®). Note that a mul-
tivariate ¢ distribution, which has heavier tails than a multivariate normal distribution, will
produce a more robust approximation since underestimating the tails can have serious con-
sequences such as unstable behavior that may be difficult to diagnose. Booth and Hobert
(1999) discussed an importance sampling method for complete-data generalized linear mod-

els. Here, we may extend their method to our models and use importance sampling methods

to approximate the integral in the E-step. Specifically, we write

f(ai; bib’i; Zi, O(t)) = SeXP[h(ai, bi)])
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where s is an unknown normalizing constant. Let h(a;, b;) and h(a;, b;) be the first and
second derivatives of h(a;, b;) respectively, and let (af, b}) be the solution of h(a;, b;) =0,
which is the maximizer of h(a;, b;). Then, the Laplace approximations of the mean and
veriance of fai, bilys, zi; 00) are (af, b?) and —(h(a?, bf))~! respectively. Suppose that
(&Y, b;Y), . @&%) 5%} is a random sample of size k; generated from an importance

function h*(a;, by), which is assumed to have the same support as f(a;, bi|y;, z; _G(t)). Then

we have

g=1

n ki .
1 ) .
0160) ~ > & =" wi(0; yi, 2, a;%, ;) 5
Q( l ) {kt pot ik “c ( y 1 i )
where

w(t) B f(éz(k),f):(k)|yi, Z;; o(t)) .
e h(ar® | bk

)

are importance weights. Other sampling methods have also been proposed (e.g. McCullqch,
1997).

For the above sampling methods, the adaptive rejection method is applicable only
when the appropriate densities are log-concave, while the multivariate rejection sampling
method and the importance sampling meth;)d are applicable in general. Adaptive and mul-
tivariate rejection sampling methods may be efficient when the dimensions of the random
effects and the sample sizes are small. When the dimension of the integral in the E-step
is high, however, rejection sampling methods can be inefficient due to low acceptance rate.
If the sample size is not small, importance sampling methods may be more efficient than
rejection sampling methods since in this case the importance function may closely resemble

the true conditional distribution.
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3.3.4 Convergence

For Monte Carlo EM algorithms, the incomplete-data log-likelihood is 'not guaranteed.to
increase at each iteration due to the Monte Carlo error at the E-step. However, under
suitable regularity conditiofls, Monte Carlo EM algorithms still converge to the MLEs (Chan
and Ledolter, 1995). When applying the Monte Carlo EM algorithm, Monte Carlo samples
for the “miésing” random effects are drawn at each EM iteratioﬁ. Consequently, Monte
Carlo errors are introduced. The Monte Carlo errors are affected by the Monte Carlo sample
size. It is obvious that larger values of the Monte Carlo sample size k; will result in more
precise but slower Icomputation. A common strategy is to increase k; as the number ¢t of EM
iterations increases (Booth and Hobeft, 1999). For sufficiently large values of k;, the Monte
Carlo EM algorithm would inherit the properties of the exact versions, such as the likelihood
Aincreasing properties of EM, but this would substantially increase the computational work
load. Thus, we usually use a relatively small k; at initial iterations, and then increase k;
with the iteration number ¢. |

If the Monte Carlo error assoéiated with 8¢+1) is large, the (¢ + 1)th iteration of
the Monte Carlo EM algorithm is wasted because the EM step is swamped by the Monte
Carlo error. Booth and Hobert (1999) proposed an automated method for choosing k in the
context of complete-data generalized linear models. Their method can be extended to our

case in a straightforward way as follows.

Let
9Q(616Y)
(1) (t) i Sl )
0°Q(6|6")
@gle®)y = XV _J
QP(6l0") = o,

and let 6"+ be the solution to Q)(0]8®) = 0. When the simulated samples are indepen-

dent, it can be seen that the conditional distribution of [§¢*1|@®)] is approximately normal
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with mean 8***V and a covariance matrix that can be estimated by
60\\,(9(1&4-1)10(,:)) _ Q(Q)(e*(t+1)|0(t))—1 C/C)T,(Q(l)(e*(t+1)|0(t))> Q(?)(o*(t+1)|0(t))—1’ ‘

where
e kt B
Cov <Q£1>ce*<t+l>|e<t>>> =% { [wik%mgf(yi, 7, a0, bYY; 9*<t+1>)}

T
{Uﬁk% 10gf<Yi7 Z;, éz(k)a B'Ek)) 0*(t+1)):| }_’

(55’“), Bf-k)) are simulated samples, and w;, are the importance weights when the importance
sampling is used and are all set to 1 when rejection sampling methods are used. After the
(t + 1)th iteration, we may construct an approximate 100(1 — @)% confidence ellipsoid for
6***Y based on the above normal approximatioh. The EM step is swamped by the Monte
Carlo error if the previous value 8® lies in the confidence ellipsoid, and in that case we need
to increase k;. For example, we may set k; to be k;_; + ki—1/c for some positive constant
¢ and appropriate ky. Increasing k; with each iteration may speed up the EM convergence
(Booth and Hobert, 1999). Note that this method of choosing k; is completely aﬁtomated.

The proposed M-ont.e Carlo EM algorithm often works well for models with a srﬁall
dimension of random effects. When the dimension of random effects is not small, however,
the proposed MCEM algorithm and Gibbs sampler may converge very slowly or even may
not converge. Therefore, in the next section, we propose an alternative approximate infer-
ence method which may avoid these convergence difficulties and may be more efficient in

computation.
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3.4 A Computationally More Efficient Approximate Method

3.4.1 The Need for an Alternative Method

The Monte Carlo EM method in the previous section may be computationally very intensive
and may offer potential computational problems such as slow or non-convergence, especially
when the dimensions of the random effects a; and b; are not small. When the diménsions
of the random effects are not small, sampling the random effects in the E-step may lead -
to i_neﬂicient and computationally unstable Gibbs sampler, and may lead to a high degree
of auto-correlation and lack of convergence. To overcome these difficulties, in this section
we propose an alternative approximate method by iteratively using a first-order Taylor ap-
proximatioﬁ to the nonlinear models.’ The proposed method avoids saﬁnpling the random
effects and providés analytic expressions fof parameter estimates at each iteration, So it
may be preferable when the Monte Carlo EM method exhibits computational difficulties.
Alternatively, the proposed method in this section can be used to obtain excellent parameter
starting values for the Monte Carlo EM method.

For complete-data NLME models, approximate methods have been Widely used, and
“these approximate methods perform reasonably well in most cases (Lindstrom VanvdBates,
1990; Pinheiro and Bates, 1995; Vonesh et al., 2002). Theée approximate methods are typ-
ically obtained via Taylor expansions or Laplace approximations to the noniihear models.
One particularly popular approximate method for complete-data NLME models is that of
Lindstrom and Bates (1990), which is equivalent to iteratively carrying out maximum like-
lihood based on certain LME models (Wolfinger, 1993). Following Lindstrom and Bates
(1990), we propose to further approximate model (2.5) by taking a first-order Taylor ex-
pansion around the current parameter and random effects estimates, which leads to a LME

response model. For the resulting LME response model, with the covariate model (2.8), we
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updaée parameter esfimates based on the distribution of observations and an EM algorithm.
In each iteration, analytic expressions for parameter estimates aré available. Therefore, the
proposed approximate method may provide substantial computational advantages over the
Monte Carlo EM method.

We rewrite the NLME model (2.6) and (2.7) as a single equation
yij:gij(a) /B) a;, bi)+eij)\ izl)"'an7j:1>"‘7ni; (36)

where g;;() is a nonlinear function. Let g; = (gi1,.-.,in,)’ - Denote the current estimates
of (8, a;, b;) by (é, a,, Bz) Taking a first-order Taylor expansion of g;; around the current
parameter estimates & and B and random effects estimates &; and b;, we obtain the following

LME response model

yi=Wia+ X;8+ Hia,+T;b; +e, (3.7)
where
W, = (wi,... ,wmi)T with w;; = aaga”
X, = (xi;, .. .',xmi)T with x;; = aagg :
H; = (hy,...,hy,)T with h; = %%’
T, = (ti, .- tin,)" with t;; = %

Vi = yi—gi(o, B, 8, b)+W,a+ X, 8+ H;a;+ T, b,

with all the partial derivatives being evaluated at (&, B, &, b;).

The proposed method in this séction is to iteratively carry out maximum likelihood
based on the LME response model (3.7) and the covariate model (2.8). Let v = (e, B)
be the mean parameters and A = (6%, R, A, B) be the varjance—cOvariance parameters. The

algorithm consists of alternately obtaining approximate estimates of « given the current
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%

estimates of variance-covariance parametérs A based on the distribution of 7; = 7 z
and then updating the variance-covariance parameter estimates via an EM step using the

posterior curvatures of (e;, €;;, a;, b;), as in Laird and Ware (1982).

3.4.2 Analytic Expressions of Estimates

We can combine the LME response model (3.7) with the covariate model (2.8) to form a
unified LME model
f‘i:Qi’Y_}_ZiWi_*_vi; i=1)"')n7 (38)

7 bT)T) Vi = (e‘TaeT)Ta Ui = (Uzga"j7UT )Ta ‘/1« =

img

with O’s being appropriate zero matrices.

For the unified LME model (3.8), by standard arguments, we have

[Folws; v, A} ~ N(Q; v + Zi%, Az), (75 ¥, A] ~ N(Qi% i), (3.9)

. where Zi = Z,LDZ? + Ai,

and the Kronecker product I ® R is a vm,; X vm; matrix with the v X v submatrix R on
the diagonals and zeros elsewhere. Using known results for LME models (e.g., Vonesh and

Chinchilli, 1997), we can update the estimate of ’y given the current estimates A by

n -1 n :
¥ = (Z Qf &7t Qi) <Z Q7 Ei—l’;'i> : (3.10) .
i=1 im1 .
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Based on the unified LME model (3.8), we can also obtain the joint distribution of

(Piy wi) aty =4 and A = X\
T < Qi Y, Z;D
A A~ [T ,
w; 0 Dz’ D

from which we obtain the conditional distribution of w; given the observed data 7; at v =4

and A = X:
[wil?i; 4, Al ~ N[D ZI £7M(# — Qi4), D — D ZF 57 2, D). (3.11)
An estimate of the random effects w; is thus given by
wi = DZ{ 57 (7 — Qi) (3.12)

Finally, following Laird and Ware (1982), we can update the variance-covariance pa-
rameter estimates as follows. Note that if we were to observe a;, b;, e;, and ¢;, in addition

to y; and z;, we would have the following estimates

A n n R n

0> =3 ele;/> mn, B =73 b;bl/n,
i=1 =1 =1

. n m; - n n T

R=3) 3 eje;/> m, A=} a;a/n,
i=1j=1 i=1 i=1

where i ele;, i % eiTj €ij) f: a;al, and Xn: b; bl are the “sufficient” statistics for 62, R,
A; andz_l;, respelc_tlix]/;lly. Sinc;:i, b;, e;, anld_leij' are unobservable, we can “estimate” them
by their conditional expectations given the observed data y; and z; at the current parameter
estimates ~y - ~and A = . Based on standard results for multivafiate normal distributions,
we know that

i} - [ @ Y Ly

e; 0 LT &1
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and

7y . | Q4 S Ry

;Y=Y A=Al ~N : 3 ,
€ 0 R;-"; R

where L; is a (n; +vm,;) X n; matrix with the first n; X n; submatrix 627 and zeros elsewhere,
R;; is a (n; + vm;) X v matrix consisting of the first n; X v submatrix 0 and the remaining
m; (v X v) square submatrices with the jth square submatrix R and zeros elsewhere. By the

definition of conditional distributions, it can be shown that
[eil73; %, Al ~ N[LT 57 (7 — Qi%), 61~ LT 71 Ly,

[ewln, ¥ /\] N[R;E74 (7 - QiA), R— R 57 Ry).

Using the expectation and covariance properties for multivariate random variables and some

matrix algebra, we update the estimates of the variance-covariance parameters (6%, R, A, B)

as'follows: ‘
= 3 B(eT el 4, 3/ 3. n
= Slir(Covlelfs 4, X)) + Blef 4, A7 Bl 4, D)/ 35 m,
R =35 Bley bl 5, %)/ S m, |
= Z i[COV(EijI'F'&; 7, )\) + E(Gijf’f'i; v, 5\) E(eij|7~“i; v, X)T]/ Zn:mi,
A =15=1 ) _ =1 (3.13)
A = 1; (aa] |7i; 4, A)/n
= S [Covlailfss 7, 3) + Blaili; 4, 3) Bl 4 M7/n,
B =3 B(biblis 4, 3)/n

- Z[COV(b |T’L1 7) ) + E(b lru PY: ) (b I’I"“ 77 )T]/n
The foregoing results show the closed-form expressions of the parameter estimates at
each iteration for LME model (3.8). Iteratively solving LME model (3.8) until convergence

leads to an approximate MLE 6 = (%, )\) of 6.
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3.4.3 Asymptotic Properties

Following Vonesh et al. (2002), we show in Section 3.7 that, under fairly mild regularity

conditions, 4 satisfies the following properties ,
A X -1/2
Y = YmLet Op{ (min Ni) }

= Yo +.Op{ma><[n“”2, (ml.in Ni)_m] }

where N; = n; +m,, and v, and 9,,; p are the true value and exact MLE of ~, respectively.
Thus the approximate MLE 4 is not only éonsistent but also asymptotically equivalent to
‘the exact MLE. The rate of convergence is shown to depend on both the number n,; of
observations per individual and the number n of individuals.

Moreovér,_ the estimate 4 asymptotically follows a normal distribution:

« d
V(¥ = 0) = N(0, (o)),
where the asymptotic variance-covariance matrix, £2(-y,), can be consistently estimated by
n -1
1 Ts =10, . .
[n ; Ql 21 Q’L] '0:0 :

The proofs of the above results are given in Section 3.7.

3.5 Example and Simulation

3.5.1 An Application in AIDS Studies

We apply the foregoing proposed methods to a HIV dataset for illustration. We also com-
pare the proposed methods with the commonly-used naive method which ignores covariate

measurement errors and the two-step method, which is described in Section 3.2.
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Data Description

The study consists of 46 HIV infectéd patients who were treated with a potent an- -
tiretroviral regimen consisting of protease inhibifor and reverse transcriptase inhibitor drugs.
Viral loads (Plasma HIV-1 RNA copies) were measured on days 0, ~2, 7, 10, 14,21, 28 and
weeks 8; 12, 24, and 48 after initiation of treatments. After the antiretroviral treatment, the
patients’ viral loads will typically decay, and the decay rates fnay reflect the efficacy of the
treatment. Throughout the time course, the viral load may continue to decay, fluctuate, or
even start to rise (rebound). The data at the late stage of study are likely to be contami-
nated by long-term clinical factors, Which leads to complex longitudinal trajectories. Various
covariates such as CD4 count were also recorded throughout the study on similar schedules.
The viral load has a detectable limit of 100 RNA copies/mL. For simplicity, we imputed the
censored viral loaqls, which are below the detection limit, by half the detection limit 50, as in
Wu and Zhang (2002). The nﬁmber of measurements for each individual varies from 4 to 10.
There were 72 out of 361 CD4 measurements missing at viral lp_fid measurement times, due
mainly to a somewhat different CD4 measurement schedule. The detailed data description
can be found in Wu and Ding (1999) and Wu (2002).
The Response and Covariate Models

Modelling HIV viral dynamics ;Lfter anti-HIV treatments has received a great deal of
attention in recent years (Ho et al., 1995; Perelson et al., 1996; Wu and Ding, 1999; Wu,
2005). The following HIV viral dynamic model (first stage model) has been widely used (Wu
2002; Wu and Zhang, 2002)

Yij = logIO(Plie_)\lijtij + P2ie—)\2ijtij) + eij, . ' (3'14)

where y;; is the logjo-transformation of the viral load measurement for patiént v at time
tij, P1; and Py, are baseline values, and Ay;; and Ay, are the first (initial) and the second

phase viral decay rates, respectively, and they may be interpreted as the turnover rates of
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productively infected cells and long-lived and/or latently infected cells respectively. ‘The
loglo—transforniation of the viral load is used to make the data more normally distributed
and to stabilize the variance. |
-Wu (2002) noted that variation in the dynamic para‘metel_“s such as the first phase
decay rate Aj;; may be partially associated wi£h variation in CD4 counts. In AIDS studies,
it is known thaf covariates such as CD4 count are oftén measured with substantial errors.
Thus we assume that the dynamic parameters are related to the true covariate values,
reflecting the belief that actual, not possibly corrupted, covariate values govern the model
parameters, as in Higgins et al. (1997) and Wu (2002). |
Due to long-term clinical factors, drug resistance, and other complications, the viral
load trajectories can be very complex after the initial phase viral decay (see Figure 1.1).
Grossman et al. (1999) pointed out that the viral decay rate after the initial period may
be complicated and may vary over time since they may depend on some phenomenological
parameters which hide considerable microscopic complexity and change over time. Therefore,
a nonparametric smooth curve modelling for the second phase viral decay rate may be more
appropriate than parametric modelling (Wu and Zhang, 2002). Based on the reasons noted
above, we consider the following second stage model, which corresponds to the first stage

model (3.14),

log(Py;) = fr + bus, Ay = P2+ ﬁazfj + by, (3.15)

log(Pa;) = Ba + bsi, Aaij = w(tij) + haltis), '
where z}; is the true (but unobserved) CD4 count, and w(t;;) and h;(t;;) are nonparametric
smooth fixed- and randém—eﬁ”ects functions defined in Section 2.1. To avoid very small (large)
estimates, which may be unstable, we standardize the CD4 counts and rescale the original

time ¢ (in days) so that the new time scale is between 0 and 1.

As discussed in Section 2.1, we employ the linear combinations of natural cubic splines
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Table 3.1: AIC and BIC values for the viral load model (3.14).and (3.15), with ¢ < p =
1, 2, 3.

Model p=1,=1 p=2,4=2 p=2,g=1 p=3,4=3 p=3,9=2 p=34=1
AIC 615.96 583.54 585.39 577.37  586.45 576.43
BIC 678.18 669.09 656.43 670.71 665.90 651.50

with the percentile-based knots to approximaté the nonparametric smooth functions w(t)
and h;(t). Follbvving Wu and Zhang (2002), we take the same natural cubic splines with
q<pin ordqr to decrease the dimension of the random effects by, i.e., more basis functions
used to approximate the fixed-effects function than the random—éﬁects functions. AIC and
BIC criteria are used to determine the values of p and q. We‘ use the observed CD4 counts for
the unobservable true CD4‘ counts in the response model (3.14) and (3.15), and use SPLUS
functions nlme() and anova() to obtain the values of AIC and BIC. Table 3.1 displays AIC
and BIC values for various plausible models. Based on these AIC and BIC values, the model
with p=3 and g =1, i.e,, |

Aoij = [B5 + ﬁGIiDl(tij) + B7 pa(ti;) + bas, (3.16)

seems to be the best, and thus it is selected for our analyéis.

For the CD4 process, in the absence of a theoretical rationale, we consider empirical
polynomial LME models, and choose the best fitted model based again on AIC/BIC values for
each possible model. This is done based on the observed CD4 values, and is done separately
from the response model for simplicity. Specifically, since the inter-patient variation is large,
we consider rﬁodel (2.8) with Uy = Vy = (L,ug,...,us™ ") and linear (a = 2), quadratic

(a = 3), and cubic (a = 4) polynomials. Table 3.2 presents AIC and BIC values for these

three models. The following quadratic polynomial LME model best fits the observed CD4




Table 3.2: AIC and BIC values for the linear, quadratic, and cubic CD4 models.

Model a=2 a=3 a=4
AIC  796.17 703.19 742.12
BIC 819.50 761.52 781.01

process:

CD4zl = (011 + al) + (042 -+ (lz) Ui + (a3 + a3) u?[ + €, (317)

where u; is-the time and a = (ay, as, ag)T are the population parameters and a; =

(as1, ase, a;3)T are the random effects.

Estimation Methods and Computation Issues

We estimate the parameters in the response and covariate models using the naive
method which ignores measurement errors, the two-step method in Section 3.2, and the two
proposed “joint” model methods discussed in Sections 3.3 and 34 We deﬁote the method
" in Séction 3.3 by MCEM and the method in Section 3.4 by APPR.

The two proposed joint model methods need starting values for model parameters. We
'respectively use the parameter estimates obtained by the naive method and by the two-step
method as parameter starting values for the two joint model methods.

- For the naive method and _the.two—step method, we use SPLUS functions Ime() and
nime() to obtain parameter estimates and their default standard errors. For the MCEM ,
Iﬁethod, we assess the convergence of the Gibbs sampier by examining time serieé plots
and sample autocorrelation function plots. For example, Figures 3.1 and 3.2 show the time
series and the autocorrelation function plots for b, associated with patient 10. From these
figures, we notice that the Gibbs sampler converges quickly and.the autocorrelations between

successive generated samples are negligible after lag 15. Time series and autocorrelation
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Figure 3.2: The autocorrelation function plot for by associated with patient 10.




function plots for other random effects show similar behavioré.- Therefore, we discard the
first 500 samples as the burn-in, and then we take one sample from every 20 simulated
samples to obtain “independent” samples (see sampling methods in Section 3.3.3).

For the Monte-Carlo EM algorithm, we start with kg = 500 Monte-Carlo samples, and
increase the Monte-Carlo sample size as the number of iteration ¢ increases: kiy1 = k + ki/c
with ¢ = 4. Convergence criterion for the iterative methods in our examples is that the
relative change iﬁ the parameter estimates from successively iterations is smaller than a given
tolerance level (e.g., 0.01). However, due to Monte Carlo errors induced by Gibbs sampler,
it is difficult to converge for an extremely small tolerarice level, otherwise it may converge
very slowly. The actual tolerance level we used in our example for the two proposed joint
model methods is 0.05. Convergence of the algorithms are considered to be achieved when
the maximum relative change of all estimates is less than 5% in two consecutive iterations.
We use the multivariate rejection Sampling method for the MCEM method. Other sampling
methods may also be applied.

On a SUN Sparc work-station, the MCEM rnethod took about 90 minutes to converge
while the APPR method took only 3 minutes to converge. This shows that the APPR method
offers quite a substantial reduction in computing time, and is thus computationally much
more efficient than the MCEM me’phod. |

.Analysis Results and Conclusions

Table 3.3 presents the resulting parameter estimates and standard errors. We see that,
except for the naive methéd, the other three methods give similar point estimates for the
parameters, especiaﬂy for the covariate model parameters a. However, for the parameters 3
of main interest, the two—step method gives smaller standard errors than the two joint model
methods (MCEM and APPR). This is because the two-step method ignores the variability

due to estimating the parameters « in the covariate model. Thus, these results are consistent
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Table 3.3: Parameter estimates (standard errors) for the HIV dataset.

Method a1 oy a3 B B Bz Bu Bs Bs Bt 6 R
Naive - - - 11.73 6541 .41 6.82 -3.01 9.27 -1.67 .35
S -~ (2) (39) (33) (6) (56) (88) (3.6)
Two-step —.42 4.17 -3.74 11.73 65.78 1.53 6.84 -2.86 9.04 -1.75 .35 .52
(1) (5) (5) (2) (41) (47) (6) (55) (8.9) (35)
MCEM —-41.4.02 -3.54 11.74 66.60 1.55 6.85 -2.78 891 -1.79 .35 .53
- (1) (5) (6) (2) (47) (5.2) (7) (6.0) (9.0) (3.6)
APPR -42 417 -3.74 11.74 65.72 1.33 6.85 -2.82 8.99 -1.77 .35 .52

(1) (6) (6) (2) (45) (5.0) (7) (5.9) (9.1) (3.6)

Note: A and B are unstructured covariance matrices, but we only report the estimates of their diagonal ele-
ments here. D'L'ag(fl) = (.52,4.06,1.98) for Two-step, Diag(/i) = (.53,2.55,1.25) for MCEM, and Dz'ag(fi) =
(.52,4.06,1.99) for APPR. Diag(B) = (1.11,69.94, 2.02, 24.86) for Naive, Diag(B) = (1.10,69.58, 2.02, 25.04)
for Two-step,. Diag(B) = (1.11,69.96, 2.05,25.47) for MCEM, and Diag(B) = (1.10,69.78,2.01,24.85) for
APPR. ‘

with the analytical results about the two-step method in Section 3.2. We also see that the
naive rﬁethod may severely under-estimate the effect of the covariate CD4 (which is measured
by the parameter (3). The estimates and standard errors based on the two joint model
methods are simiiar and may be more reliable.

The commonly used two-step method and the naive method may give misleading
results, and the two proposed joiht model methods may be more reliable. We will confirm

this conclusion via simulations in next section.

3.5.2 A Simulation Study

~In this section, we conduct a simulation study to evaluate the proposed methods (MCEM
and APPR), and compare them with the commonly used two-step method and the naive
method by the mean-square-error (MSE). The models and the measurement schedules used
‘in the simulation are the same as those in the real HIV dataset in the previous section

(i.e., models (3.14) — (3.17)). In the simulations, the true values of a and B are shown in
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Table 3.4: Simulation results for parameter estimates as well as (standard errors) and (sim-
ulated standard errors)* for the estimation methods Naive, Two-step, MCEM, and APPR.

Parameter o1 o3 B B2 Bs Ba Bs Be B+
True Value -5 40 .40 12.0 66.0 1.5 70 -=-3.0 9.0 -2.0
Naive Method - — - 11.98 6550 0.94 6.92 -3.74 10.13 -1.62

- - - (1) (1) @1 (3) @7 (26) (9)

= (2)F (1.2)F (LO)* (3)* (1.6)* (2.8)* (L.0)*

Two-step —-51 4.05 -4.02 11.98 65.66 1.53 6.92 -3.74 10.13 -1.62
(1) (3) (4 (20 (12) 14) (3) (17 (26) (9)

: C1)* (3) (3)  (1)* (L2)* (14 (2)* (1.6)* (25)* (9)
MCEM- . =51 4.04 —-4.02 11.98 65.85 148 6.98 -3.11  9.15 -1.95
(1) (4) (4 (1) @15 (1.8 (3) (20) (3.0) (L1)

(1) (4)* (4 (27 (15)* (1.8)* (.3)* (1.9)* (2.8)* (L1)*

APPR -51 4.05 -4.03 11.98 6546 1.52 6.93 -3.82 10.29 —1.56
(1) (3) (4 (20 (14) (1.8 (3) (20) (31) (L)

CL* (3 (3) (2 (L4 (L7)* (3)* (1.9)* (2.8)° (L.0)*

Table 3.4, and the other true parameter values are § = .'1, R = 3, A = diag(.5, 2, 1), énd
B = diag(1, 9, 2, 4). We simulated 100 data sets and calculated averages of the resulting
estimates and their standard errors as well as simulated standard errors based on each of the
four estimation methods. Since MCEM method sometimes offérs computational problems,
such as slow or non-convergence, the 100 sets of parameter estimates are obtained from 116
data sets. The simulation results are shown in Table 3.4. |

From Table 3.4, we see that the naive method can severely under-estimate the covari-
ate effect B3. The two-step method produées similar point estimates as the two joint model
methods (MCEM and APPR), but it gives smaller standard errors than the MCEM and the
APPR methods, since the two-step method fails to incorporate variability in estimating the
covariate model. These results are consistent with the analytical results in Section 3.2. Note
that the estimates for the covariate model parameters c are similar for the three methods

(TWo—step, MCEM, and APPR), but the parameters a are usually treated as nuisance pa-
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rameters and are not of primary interest. The two proposed joint model methods (MCEM
and APPR) perform better than the two-step method and the naive method, and the MCEM
method is the best among all foﬁr methods in terms of bias. In the computation, the APPR
method converges much faster than the MCEM methéd. These simulation results confirm
that the‘naive method and the two-step method may give misleading results and that the

two proposed methods are more reliable.

3.6 Discussion

We_have proposed two approximate likelihood methods for semiparametric NLME models
with Qovariate measurement errors and missing data. The first method, implerﬁented by a
Monte Carlo EM algorithm combined with Gibbs sampler, may be more accurate but may be
computationally intensive and sometimes may offer computational problems such as slow or
non-convergence. The second method, implemented by an iterative algorithm without Monte
Carlo approximation, is computationally much more efficient, but it may be less accurate
than the first method since it uses an additional approximation. Alternatively,‘ the second
method may provide excellent parameter starfing values for the first method. Simulation
results show that both methods perfqrm better than the commonly used two-step method
and a naive method. In particular, the commoﬁly used two-step method may under-estimate
standard errors, and the naive method may under-estimate covariate effects.

For semiparametric NLME models with covariate measﬁrement errors and missing
data, the models can be very complex. Thus, if there is not sufficient information in the
data, the models can be non-identifiable. To our knowledge, there seem no existing general
neééssary and sufficient conditions for model identifiability, and the identifiability problem

needs to be considered on a case-by-case basis. In practice, we can check model identifiability
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by examining the convergence of iterative algorithms. If the model is nén—identiﬁable, the
iterative algorithms may diverge quickly. For the models considered here, we find that the
iterative algorithms converged without problems, so the models seem identifiable.

The methods propésed here may be extended to semiparametric generalized linear
mixed models and nonparametric mixed-effects models with covariate measurement errors

and missing data. The results will be reported in the near future.

3.7 Appendix: Asymptotic Properties of 4 Based on
the APPR Method in Section 3.4

In this section, we show the asympfotic properties of 4 obtained by the APPR method in
Section 3.4. We first state some Lemmas, which are used in the proofs, in Section 3.7.1.
Then we describe some regularity conditions under which the asymptotic properties hold
in Section 3.7.2. In Section 3.7.3, we obtain some estimating equations, which are used for
showing asyniptotic properties of 4. Consistency and asymptotic normality of 4 are shown

in Sections 3.7.4 and 3.7.5, respectively. The results are extensions of Vonesh et al. (2002).

' /
3.7.1 Some Lemmas

The following four lemmas will be used for showing asymptotic properties of 4.

Lemma 3.2. (Vonesh and Chinchilli, 1997). Let Y;, be a sequence of random variables
satisfying Y, = c+Op(ay) where a, = o(1). If f (z) is a function with r continuous derivatives

at ¥ = ¢, then -

F(¥n) = f©) + FO)(Ya =)+ + [1/(r = DIFTD () (Yo — )71 + Op(ar),
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where f*)(c) is the kth derivative of f evaluated at c. In particular,

f(¥Yn) = F(c) + Op(an).

This result holds when O,(-) is replaced everywhere by o,(-) or when Y, and c are replaced

by a vector/matrix random variable Y, and vector/matrix constant c.

Lemma 3.3. (Aitchison and Silvey, 1958). If f is a continuous function mapping R* into
itself with the property that, for every 6 such that ||6]] = 1, 7 f(6) < 0, then there exists a

point § such that ||6|| <1and f(6)=o.

Lemma 3.4 (The Bounded Convergence Theorem). Let {f.(z)} be a sequence of
.measurable functions defined on a set of F of finite measure, and suppose there is a real
number M such that |f,(z)| < M for all n and all z. If f(z) = limy_co fu() for each z in

E, then

lim fn(a:)dxz/E lim fn(w)d:cz/Ef(x)d:v.

n—oo E Nn—00

Lemma 3.5. Let A and B be v X v symmetric matrices with eigenvalu‘es pu1(A) > us(A) >

<o > pu,(A) and pi(B) > pa(B)-> -+ > u,(B), respectively. If A — B are nonnegative

~ definite, denoted by A — B > 0 or A > B, then we have p;(A) > u;(B),1=1,...,v.

3.7.2 Notat.ion and Regularity Conditions

~ Let the 7-dimensional vector v = (a, 8) € I and

Ly, wi) = lLi(e, B, a;, by yi, 2:) = log fy (4i|2s, wi;v) + log fz(z:|ws; ),

N;Li(~y, wi) = li(~y, w;) +log f(a;) + log f(b;),
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where Ni =n; +m;. Let

, . 0
li,wi(% wi(’Y)) = %li(’)’, wi)

: Wi=wi(Y)
82
lgiwiwi(’)’: wi(v)) = Wli(% w;) =Wi(Y)
- - 9
li,")’(’)’a wi(y)) = ali(% w;) Wi=W;(Y)
n A~ . 82
iy (Y, i) = Wli(% Wi) |w,=@,(y)
82

, l;i’)’wi("')’, wi(7)) = Wli(’% w;) Wi=w;(Y) etc.

Similarly, we can define the corresponding derivatives for L; (v, wi(y)) and

0 0?
lg,wi(% w;) = a_'li(7» W), lg’,wiwi(% w;) = WQ(% w;), etc.

Also, we denote convergence in probability as N; — oo by o0,(1y,), convergence in probability
as n — 0o by 0,(1,), and convergence in probability as both N; — oo and n — 0o by
0p(1n;n). We show consistency and asyn'lptotflc normality under the foliowing regularity
conditions. An outline of the proof when some of these éonditions are relaxed is provided at
the end. |

R1. N; = O(iN) uniformly for i = 1,...,n, where N = min; N;.

R2. The variance-covariance parameters A = (62, R, A, B) are fixed and known, and
the true parameter -y, is in the interior of I'. @;, A;, Z;, %;, and D are evaluated at € and

w;. When A is unknown, we can simply replace it by its consistent estimate (e.g., in (3.13)). .

R3. The density functions fy(yi;|z:, wi;y) and fz(z;|w;; vv) satisfy the necessary

-regularity conditions (e.g., Bradley and-Gart, 1962) such that, for fixed «, the MLE of w;

is v/N;-consistent for w; as N; — oco. In addition, the necessary regularity conditions are

assumed (e.g., Serfling, 1980, p. 27, Theorem C) such that, by the Law of Large Numbers,
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the following hold:

5?

“Ni_lava,y:pli(’)’, wi) = N7'QTAT Qi+ 0p(1w,) as N — oo,
0? '

_Ni_lmli('Y: wi) = NT'ZIAT Zi+ 0p(1n,) a5 Ny — oo,
182 i -

o\ 87(9le¢(7’ wi) = N7'QT AT Zi + 0p(1,) s N, — oo,
52

fNi_lmli(fYa wz) = Ni_lZfAlei +op(ly;) as  N; — oo,
where, under models (2.6) - (2.8),
82
Eriw {—Wli(% wi)} = QIAT'Q;,
82
Erjw {Wli('y, wi)} = ZiTAi‘lZi, :

82
Er|w {Wli(% wi)} :

Finally, the matrices N, QT A;'Q; and N ' ZT'A; ' Z; are both assumed to be positive definite

T
52
Erw {Wli(% wz)}:l =QTAZ,.

with finite determinants such that, for example, the smallest eigenvalue of Ni‘leAi_ 'Qi
exceeds Ag for some Mg > 0.

R4. For all v € I' and all the b-dimensional w; € R?, the function L;(v, w;) is six
times differentiable and continuous in -y and w; for all y;; and z;;, and Li('y, w;) satisfies the
necessaryiregularity conditions needed to change the order of integration and differentiation,
as indicated in the proof.

R5. For any «v € I, there exist d; > 0 and A; > 0 such that

a. For all v* € By, (7), where By, () is the 7-dimensional sphere centered at « with

radius d;, the following holds:

1 0 A o
— ; ngd('y, @i(7) |y=y = Q(Y) T +0p(1n), a5 — o0,
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where Q(v*)™! is positive definite with minimum eigenvalue greater than \; and

a 7 - * A * " * oA *
Wli,'y(% wi(7)) \’Y=’7’*- = _{lg,’y’y(’)’ , wi(Y)) + i,'ywi(’)’ , @i(7"))

X[l:‘:ww (7", @i(v")) + D_l]_lléiwﬁy(’)’*a ‘:-’z(’)’*))}

b. The first, second, and third derivatives of V' N;Li(vy, w;) with respect to w; are
uniformly bounded in By, (7).

R6. At the true value =, the following hold true:

Eu(QTS71Q)) = ¢i(y,) exists for all i=1,...,n,

lim n™* " Cove (QT £7'Qs) =0,
=1 '

and

lim ™Y " wi(v,) = Qo)™
=1

n—oo

where @;, Z;, and ¥; are evaluated at 4, and w; and Q(vy,)™! is positive definite.
R7. The marginal densities, [ exp{N;L;(v, w;)} dw;, satisfy the necessary regularity

conditions such that the MLE of ~ exists and satisfies (4.5 — 7o) = Op(n~1/2).

3.7.3 Estimating Equations

In Section 3.4, we obtain an approximate MLE 6 = ¥, 5\) of @ and the predictor @; of
w. It is obvious from (3.10) and (3.12) that the estimate 4 is a function of A and the final
estimates w; of w; are functions of both 4 and . For fixed A, it can be shown that 4 and

~

3
w; = w;(%) maximize the complete-data log-likelihood function (3.2), i.e., > N;L;(7y, w;).
=1 ’
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In fact, we can write I = lgi)(a, B, a;,b;, A) in (3.2) as

| i i 1 A
19 = o log(2m6?) — T—log |27 R| — = log |2 A| — = log |27 B]
2 2 2 2
o T
1 Yi— 8 AL Yi — &
I\ z-Ua-Va 2 — Ui — Viay
J T
_1 ai D1 &

Taking the first derivatives of 3 I with respect to v = (a, 8) and w; = (a¥, bT)T and set-

i=1

" ting these first derivatives to appropriate zero vectors, we can obtain the following estimating

'equations

( N

o | TTE | =0
=1 z;—Uia—Viay

< : (3.18)

Yi— 8i a;
Z AT ~ D! =0, i=1,...,n,
zi—Uia—Viay b; '

\

which is equivalent to
QAT QY+ Y QA Ziwi =Y QA Ty,
=1 =1 i=1

ZzA:lQZ’)"{“[ZlA:lZz'FD_l]wZ=ZlA;_lI‘.L, 1= 1,n,

(3.19)

where

dg; 1 f og;
[ vimmtadrot G A Gt g b
i:

z;
The solution to the estimating equations (3.19) can be obtained by iteratively solving the

following equations

EQ?A51Q17+§Q§F/~\IIZM= ;Q?Aflf%;

i=1

(3.20)




where 1; = (y7, zI')T is defined in (3.7), 'ar;d Qi, As, Z;, and D are Q;, A;, Z;, and D
evaluated at v = 4 and w; = w;, respectively. The solution to the equations (3.20) is given
n (3.10) and (312) Therefore, for fixed A, the final estimate 4 and w; = w;(¥) satisfy the
estimatiﬁg equations (3.18) and maximize the complete-data log—likelihdod function (3.2).

These facts will be used to show the following asymptotic properties of 4.

3.7.4 Consistency

. We first note that, for fixed A, the MLE of « will satisfy the set of estimating equations

9 T~ ' e
J(v) = a Hf(}’i: Zi;Y) = EH/EXP{NJM(’Y, w;) }dw; = 0.
i=1 =1 '

Under R4, we have

J(v) = / / ZN (7, wl)}exp{ZNL v, w;) }dwl - dw,
= Z:\/ﬁi/"'/(\/ﬁiah(% wi)) exp{ZNiLj(—y, w;) ey -+ du
Zj: \/7\7—1[/ <\/_sz (v, wi) )exp{NL (7, wi) dw; x H/exp{N L;(v, wj)}dw]].

g

Now we examine the term L; ~ (v, w;) in the above expression. Since the y;;’s and z;;’s are
conditionally independent each other given w;, by the Lindeberg Central Limit Theorem, it

follows that conditional on w;,

Lg,'y(% wi) = Ni_llg,'y(% w;).

Y. — 8 _
— NOQTA s —0,(NA. (32

z, - U,a~-V,a

Furthermore, under R3 it can be shown that the estimate

@i(7) = wi+ Oy(N N7, - (322)
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| Combining the results in (3.21) and (3.22) and applying Lemma 3.2 to L; ~ (v, @i(7)), we

can show that

Lim(v, @:(7)) = Lim(v, wi) + Op(N72)
= Op(N7'?) + 0,(N]'?)

L= O,(N7P. | (3.23) "

1

Then, by direct application of the Laplace approximation to integrals of the form [ éxp{kp(z)}dz
and [ ¢(z) exp{kp(z)}dz, where g(z) and p(z) are smooth functions in z with p(z) having
a unique maximum at some point & (see, e.g., Barndorff-Nielson and Cox, 1989), it can be

shown that

27

/exp{NiLi(% w;) }dw; = exp{N;L;(~, ‘?i(’)’))} (m

b/2
) (1+0(N;1))

and
/ (\/EL;,'Y(V, U-’z)> eXp{NiLi("Y, wi)}dw;

b/2

2w

= exp{NiLi(,@:i(7))} x (-—,,——) VNiLi (7, @i()) + O(NT) ),
|NiLf ool ( 7 )

where ffi/ww = Liww(, @i(7)). Because (3.21) implies v N;L; ~ (7, @i(7)) = Op(1), it

follows from R1 that

(VR Ly (7, @3() + Op(N7)) % T+ OpN7)) = VR g, @4(1)) + Op(N).
J# '

Hence we have

) = Zﬁ- exp { NiLi(, @i(7)) NG ‘|> (VELiy (v, oty )+ O H)

)
XH{exp (N, 4 (lNlL wwl) (1fO(NJfl))}
@)+

JFi
1/2 ]

- [ZNL (v @iy
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where K (v, &(v)) = exp{g N.Zi(y, @)} H (2m/INi L o). Since K(v, &(7)) # 0

for all v € I', the MLE #,,; p of v satisfies

I gy, =0 = A1, @) |y=4,,, +Op(nN"?) =0, (324)

where Ji (v, w(7)) = 22 NiLi~ (7, @i(7)) = 2_ li~ (v, wi(7)) is the set of estimating equa-
i=1 i=1

tions for v conditional on fixed A, as given in (3.21). By taking a first-order Taylor series
expansion of Ji (7, @(v)) about 4, and noting that, from (3.24), Ji (Y1, cb(’yMLé)) =

O,(nN72), we have

(Y, @) = Op(nNT2) + SV, G(Y)) (Y = Ame), (3.25)

where

Lk (o 9 - 0 S~ g A
Ji(v w(") = le(% w(7)) |’7=’7* = a7 ZNiLi,’y(’Ya w;i(7)) |')’=’)’*
0 0 i=1

and ~v* is on the line segment joining ~ to 4,,, . By applying the chain rule, we have, for

any v €I, .
(. 6 7 | i 86i()
J1(7a w(’Y)) = ; {a’ya’yTNiLi(_’Y; wi) wi=wi(7) + WNiLi('y, wi) wi=wi(’)/) W}
' - ~ " N 8&)1 Y
= > {lifw(% @i(7)) + Ly (1, @i(7)) 67(T ) } : (3.26)
i=1 ’

Note that w;(v) maximizes N;L;(~, w) and satisfies the second set of equations in (3.18),

1.e. . v R ‘ ' ?
(v, @) — D71 @u(y) =0 <= &i(v) = DU, (v, @i(7)).

Applying the chain rule once again, we have

8‘:)1(7) _ a / A
__(9—’7T_ = B,Y—T{Dli,w('% wz(')’))} _ |
o2 82 86 (7)
Ow;(7)

= DUy (7, @i(7)) + DUy (7, @i(7)) YT
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Solving the above equation for [0&;(v)/0~7], we have

ad’i(’)’)
o~T

= { ~ lawr, @) + D}l (7, &:(7)).

Substituting this expression of [0w;(v)/8v*] in (3.26), it follows from R1, R3, and R5 that
as n — 0o |

1 T * 1 0 / N
L @) = *ﬁ;a—,ﬁliry(% @i (V) |ly=-

= 9(7*)-\1 + 0p(1,), (3.27)

which implies —XJ7(v*, W, (v*)) B Qv

Taking e = 2Q(y*)™" in the definition of convergence in probability, from (3.27), we

have
.1Q *\—1 1 ! * A * Q *\y—1 1Q *\y—1
Pl=500v)7 <=2 A", @) = Q0) 7 <350()7 ) =1, asn—oo
1 *\—1 1 i * A * 3 *\—1
= P(3067)7 < —Sa @ilr) <507 =1, asn— oo,

2
which implies

1 1
P30 < -2 @) 1 wsn—oo

Therefore, for sufficiently large n, .

1 1 * A * 1 ' *\— 1
—EJ1(’7 , Wi(Y*)) > 59(’7 )7t > 5/\11 (3.28)

with probability 1, where ), is defined in R5. Since, in (3.25), O,(N~2) = N=1/20,(1) % 0
as N — oo, similar arguments as for —1J}(v*, @;(v*)) lead to with probability 1, for any
0< Kk <dy, |

0,(N2)] < 217, (3.29)
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where d; is defined in R5. For any -+ such that ||v — Y5l = &, we know that ||y -
Ymeell/6 = 1, which satisfies the condition of Lemma 3.3. We can regard Ji(7, @(v)) in
(3.25) as a function of +(v — 4, ;) on the unit sphere in R™ and using the results in (3.28)

and (3.29), we have

1 . 1 R
L= Al |20 ()
1 | 1 1 1

= 2= ) 0N+ k2= )| |2t S| [ = )]
1 . B Mk 1 . : '

< E“7 — YmrellllOp(N Uz)“ - ‘;‘FH’Y - '7’ML||2 .

’ /\1/‘\7 )\1I‘L )\1K)
< 42 AR AR ),
S TR

Therefore, conditional on w, we can show

1 . 1 R o
P {;(7 _’YMLE)T {;Jl(’y, ,w(’y))} < O} —1 ‘as n—o00, N> oo. -

~

Thus, since 4 satisfies J (¥, @(¥)) = 0, Lemma 3.3 implies that
}\i}m Po{l& = Aueell < 6} = 1.
n,N-—00
Hence, using Lemma 3.4, we have
n}\l,r_f}oo P{l¥ = Yyl <k} =Ew {n}}lfﬁw Po{ll& — Ymeell < “}} =1 (3.30)

Since Ji(%, @(¥)) = 0 and Ji(Fpre @(Fmre)) = Op(nN"V2) by (3.24), it follows from
(3.25) that

1 ‘ kA *x 2 Iy - ‘
== Ji (v, OOV — Awws) = Op(NTH2), (3.31)

where 4** is on the line segment joining 4 to 4,,.5. From (3.30), we know that 4* is in
the interior. It follows from R5 and inequality (3.28) that

1
_/\1[7

2

]‘ ! *% ~, *k 1 **‘—
“;Jl(’Y , @(Y™)) > 59(7 )7t >
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‘where Q(+**)~"is positive definite. Lemma 3.5 implies that all eigenvalues of [—1 J{ (v**, &(v**))]

are greater than 3),. Therefore, all eigenvalues of e ACA GJ('y**))]_l,_which are equal

to the reciprocal of all eigenvalues of [—1J;(v™, ©(v*))], are less than . So we have
[~& iy, GJ(’Y**))]_l < £l ie, [-LJ(v, L?J('y**))]_l = O,(1). Hence, from (3.31), we
have
1 ' -
(¥ — YmrE) = _——7:1:‘]{(7**’ w(v™) OP(N_l/z) = 0,(1) OP(N_1/2) = OP(N_l/z)a

from which it follows (given R7) that

Y = Ymre+ O,,(N_l/2)

= Y+ Op(n_1/2) + Op(N_1/2)

= -+ Qp {max‘[n“l/{ (miin Ni>_1/é] } .

3.7.5 Asymptotic Normality of %

The asymptotic normality of 4 will be shown based on the estimating equations (3.10). Let

®(7) =Y QIS (7 — Q). -

i=1
where Q;, %, and ¥; are defined in (3.20). The estimator 4 satisfies <I>('3/) = 0 at convergence.

Noting that ®(v)/9vT = — 3_ QTE;1Q; is constant for -y, we take a Taylor series expansion

i=1

of ®(4) around the true parameter ~,:

0=2() = )+ L (5= )

which implies

V(¥ =) = {_13@(’7)] B [L 4’(%)}




Since E[QTS; (7 — Qiyo)] = 0 and Cov]QTE (7 — Qivo)] = QTE1Q;, by the Lindeberg
Central Limit Theorem, we have |

n

. _1/2 n
1 ATE 1A 1 o -
[; 2O 1@} <7a LU Qm)) % N(0, D).

i=1

Noting that 4 = vy + 0,(1n») and N; = O(N), and using Lemma 3.2 and- (3.22), we have

~

@i(¥) = @i(vo) + 0op(1wn)
= wi+ O,(N ) + 0,(1n1)
= W; + O,,(N—l/2) + Op(lN,n)

= Ww; + Op(le).

Hence, it follows by the Law of Large Numbers, Lemma 3.2, and R6 that

- -1/2 Lo 1 -1/2
[— z@zfsgl@] L |iyarsag, i
n i A= 15e5.@=0¢4)
[ 1-1/2
- _ZQ?ii—lQi ;. N—>oo, n—ooo
v -n =1 - V=" w=w )
= [Q(’Yo)]m, ' N — 00, n — 00,

where u is the number of iteration. Using Slutsky’s theorem, we can show that

n~-~~_1/2 n~~~_1/2 noo. . -
VA ) = [Z asral  ix Qz‘zzl@] (HE @ aw)

<4 N(0, Q7))

We can extend the foregoing proofs to the case where A is unknown by replacing A
with its consistent estimate. Note that at the estimate 4, the estimate A given in (3.13) can

be shown to be consistent for A as n — co and N — oo (see, e.g., Demidenko, 2004).
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Chapter 4

Simultaneous Inference for
'Semiparametric NLME Models with
Covariate Measurement Errors and

Outcome-based Informative Dropbuts

4. 1 Introduction

“In this chapter, we develop two approximate likelihood methods to simultaneously address
covariate measurement errors and outcome-based informative dropouts in semiparametric
'NLME modelé. In Section 4.2, we propose models for this complicated problem. We obtain
approximate MLEs of all model parameters, using a Monte-Carlo EM (MCEM) algorithm
-along with Gibbs sampler methods, in Sections 4.3. In Section 4.4, we propose an alternative
and computationally much more efficient approximate method. The proposed methods are

illustrated in a HIV dataset in Section 4.5 and are evaluated via simulation in Section 4.6.
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We summarize this chapter in Section 4.7 with some discussion.

4.2 Models for Nonignorable Missing Responses

In the presence of nonignorable or informative dropouts in the semiparameteric NLME model
(2.6) and (2.7) with the covariéte process (2.8), We can write y; = (Ymis,i, Yobs,s) for indi-
vidual 1, where Ymis: collects the missing components of y; and yq; collects the observed
components of y;. Here, the missing y;;’s are intermittent, i.e., we allow dropout individuals
to possibly return to the study at a later time. Let r; = (741,...,7in,)T be a vector of miss-

ing response indicators for individual 7 such that ri; = 1if yzJ is missing and 0 otherwise.

.Note that r;; = 1 does not necessarily imply that 7;;,,°= 1. We have the observed data

{(Yobs,is Zi, Ti), ¢ = 1,...,n}

To allow for a nonignorable missing mechanism in the response, we need models for
the missing response indicators r;, which are called dropqut models. The parameters in the
dropout models are treated as nuisance parameters and are usually not of inference interest.
Thus, we try\ to reduce the number of nuisance parameters to make the estimation of main
parameters more efficient. Moreover, too many nuisance parameters may even make the
response and the co{/ariate models non-identifiable. Therefore, we should be very cautious
about adding extra nuisance parameters.

~In general, the probability that y;; is missing may depend on many factors, such
as responses, covariates, and individual random effects, etc. Since the missing response

indicators r; are binary, a simple model for them is a logistic regression model as follows.

- We will assume that ;;’s are independent for simplicity (to reduce the number of nuisance

parameters)

g

f(rlys, zi, &, by m) = H[P(Tij = 1lys, z;, a5, by; )] [1 — P(ry; = 1ly;, z;, a;, b;; n)]' 7,

i=1
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with i

P(ry; = 1lyi, 2, a;, by; )
[1 - P(’ri]' = ]‘lyz'a"zh ag, b'L) n

1Ogit[P(Tij = 1|}’i, Z;, a;, by; 77)] = log )] = h(}’i, zZ;, a;, bi;.ﬂ),

where 7 are the unknown nuisance parameters and h(-) is often chosen to be a linear function
ofy;, z;, a;, and b;. More complicated models can also be considered, but they may introduce
more parameters and increase the computational burden. Note that the missingness of Yij
may depend on 'the (unobserved) true covariates z; rather than the observed error-prone
covariates z;. In this case, a method similar to the one described below can be developed
and will be discussed in the next chapter.

The density function f(r;lyi, z:, a;, b;; n) is a general expression of the missing re-
sponse mechanism. Little (1995) pointed out two ways to incorporate informative missing-
ness:

o outcome-based informative if f(r;|y:, z;, a;, bi; M) = f(ri|lys, 2z; m). That is, the prob-
ability that thé current response is missing depends on the possibly unobserved re-
sponse y; and covariates z; but not on the random effects a; and b;. For example, a

patient does not show up because he is too sick to go to the clinic.

o random-effect-based informative if f(r;|y;, z;, a;, bi; m) = f(rs|a;, bs; n). That is, the
probability that the current response is missing depends on the underlying unobservable
random effects a; and b; but not on y; and z;. For examplé, a patient may be more

likely to drop out if his initial viral decay is slower than other patients.

In this chapter, we focus on the outcome-based informative missing mechanism. Diggle
and Kenward (1994), Little (1995), and Ibrahim et al. (2001) discussed various speciﬁcations
of the outcome-based informative missing mechanism. We will assume that, for example, r;;

are independent with

logit[P(rij = 1|yi, Zi; 'I’])] =M + Nazs1y + N3z + -0 + Nu+12iv T Mor2lij-
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More complicated dropout models can be specified in ‘é similar way. Note that the assurhed
dropout models are not testable based on the observed data, so it is ifnportant to carry
out sensitivity analysis based on various plausible dropout models. If the main parameter
estimates are not sensitive to the assumed dropout model, we may be confident about the
results. Otherwise, if the estimates are sensitive to the assumed dropout model, we need

further investigation of possible missing mechanisms.

4.3 Likelihood Inference

4.3.1 The Likelihood Function

We consider likelihood inference for semiparameﬁic NLME models with outcome-based in-
fomiative dropouts and measurement errors and missing data in time-varying covariates,
based on the approximate models (2.6) — (2.8). Let @ = (o, B, 6%, R, A, B, n) be
the collection of all unknown model parameters. We assume that the parameters «, 3,
82, R, A, B, and n are all distinct. The approximate log-likelihood for the observed data

{(¥obs,is 2i, i), © = 1. ,m} can be written as

0 = Sotog [ [ [ [l aubsa 5, ) sa(alasie 1) flas 4)

f(bg; B) f(rilyi, 2 "7)] AYmis,i da; db;,




where
fr(yilzi, ai, bi; &, B, 6%) =TI, fr(yislzg, a, bi; o, B, 62)
= [172, (276%) 2 exp{~[ys — g(ts;, d(ufjex + viay, B, by))]?/28%},
fz(zilag; o, R) = [, fz(zalai; o, R) |
=[Ii%, [27R|™? exp{—(zix — up @ — v a;)" R™!
X (Zak — Wi @ — Vig ;) /2},
flai; A) = |2nA|7Y2? exp{—aT A 'a,;/2},
f(b;; B) = |2nB|"Y?exp{—~bIB~'b;/2}.

The observéd-data log-likelihood [(@) can be quite intractable, so we use a MCEM
algorithm, which is similar to Section 3.3.2, to find the approximate MLEs of parameters
0. By treating the unobservable random effects a; and b; as additional “missing” data, we
have “complete data” {(yi, z;, ri, a;, b;), ¢ =1,...,n}. The complete-data log-likelihood
for all individuals can then be expfessed as |

1(6) =Y 19(8) = > {log fy(yilz, ai, biyex, B, 62) +log fz(zila;; «, R).

i=1

i=1

+log f(a;; A) +log f(by; B) + log f(rilys, zi; m)}- (4.1)

where I is the complete-data log-likelihood for individual 1.

4:3.2 Approximate MLEs Based on a MCEM Method

The EM algorithm iterates between an E-step, which computes the conditional expectation
of the complete-data log-likelihood given the observed data, and a M-step, which maximizes
this conditional expectation to update parameter estimates. For our models, the E-step is
quite intractable due to nonlinearity, so we use Monte Carlo methods to approximate the
intractable conditional expectation. In the M-step, we use standard complete-data optimiza-

tion procedures to update parameter estimates.
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Let 8®) be the parameter estimates from the t-th EM iteration. The E-step for

individual ¢ at the (¢ + 1)th EM iteration can be expressed as

Qi(OIOEt’) = E(lgi)(o)lyobs,i; Zi, Iy, e(t)) = /// [log fY(yilzi; a;, b;;a, B, 52)

+log fz(zila; «, R) +log f(a;; A) +log f(b;; B)

+ log f(ri|Yia z;; )] X f(Ymis,i, a;, bilyobs,i; Zi, Ty, o(t)) dymis,i da; db;

I}l

1P(e, B, ) + I, R) + I{)(A) + 1)(B) + I (n). (4.2)

Since the expression (4.2) is an expectation with respect to f(¥misi, i, BilYobs,i, %, Ti; 0%)),

it can be evaluated using the MCEM algorithm (Wei and Tanner, 1990). Specifically, we may

use the Gibbs sampler to generate samples from [Ymis.i> @iy Di|Yobs.i, Zi, Ti; 8] by iteratively

sampling from the full conditionals [Yomis,i|Yobs,ir Zis Ti, &, bi; 0], [aslys, 2,13, bi; 8], and

[bily:, 2, ri, a;; 8®)] as follows.

f(ymis,iIYObs,ia z;, I;, a;, by;; O(t)) x fy
‘o fy(yilzs, &, bi; 00)  f(rilyi, 2, a;, by; 8Y)

.
<

(v
(
(
F(ailyi, 2, 13, bi; ) oc fy (yi, aslzi, i, by; 6©)
(
(v

VOCfY

,Z'H r’L, a’L’ b’L’ B(t))

= fY yzlzu au ) e(t)) (rilyi, Z;; O(t)),

= fY Yi |Z’L7 r;, a;, bza 0 ) (ai|zi7 r;, bla e(t))

|Zz, a;, by; e(t)) (rilyi> z;, a;, by; o(t)) ) f(adlzi; o(t))(4 3)

o f(ai; 09) fz(zilas; 09) - fy(vilzi, a, bi; 69),

f(bilyi, 25, i, A 09) o fy(yi; bilzs, 1, a;; D)

= fy(yilz, ri, a;, by; 60) - f(b;|z;, ;) a;; OD)

- X f(bi; e(t)) : fY(Yilzi) a;, b;; O(t)) : f(ri|Yia z;, a;, b;; o(t))

= f(bi; 09) - fy(vilzs, ai, by; 69) - f(rilys, zi; 69)
o f(bi; 8©) - fy(yilz;, a;, b; 89).

Monte Carlo samples from each of the full conditionals can be generated using rejection
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sampling meﬁhods, as in Wu (2004). Alternatively, the integral (4.2) may be evaluated using
the importance sampling method (see Section 3.3.3).
For individual 1, let {(yf,tzs“ al, pMy, .. (yf,';‘g“ ~£k‘ b(k‘ )} denote a random
®) 5B HE

sample of size k; generated from [Ymis i, @i, bs|Yobss, Zi, Ts; O(t)]. Note that each (¥,,i;:, &, b;"’)

depends on the EM iteration number ¢, which is suppressed throughout. The E-step at the.

(t + 1)th EM iteration can then be expressed as

QeI = 5 Qu016) ~ 5 {& 3510065 78 v, i, 8, BV
A= i=1
n k-
=3 2 i log fy((yfnzsi,yobsi)[zi, a®, 5, 8, 6%)
1= _711 ki n ke *)
+2 %m&@m,,m+z Liog f(a); A) (4.4)
i=1k=1"" i=lk=1 "
n  kt 1 (k). n kg 1 (k) .
+ ;k—l % log F(b; B) + 2 271 % Frd(Fmisir yobs,z:), z; M)
—_ Q(l)( (52|9(t)) +AQ(2)(a, R|0(t)) + Q(3)(A|0(t)) + Q(4)(B|9_(t)) + Q(S)(nlg(t))_

The M-step then maximizes Q(0|0®) to produce an updated estimate 8%+Y| so it
is like a complete-data maximization. Since the parameters in Q) + Q®, Q®, Q™ and
Q® are distinct, the M-step can be implemented by maximizing Q) + Q(é), QR®, QW and
Q) separately using standard optimization procedures for the corresponding complete—daté
models, as in Section 3.3.2. |

As in Section 3.3.2, we use the approximate formula suggested by McLachlan and
Krishnan (1997) to obtain the variance-covariance matrix of the approximate MLE 6. Let

) = a1 /00, where 1) is the complete-data log-likelihood for individual ¢. Then an
approximate formula for the variance—c;)variance matrix of 6 is
Cov = [ZE S()lyobsz; Z;, Iy é) E(sgi)l}’obs,i; Zi, Iy, é)T]_l, (4.5)
i=1
where the expectations can again Be approximated by Monte Carlo empirical means, as in

(4.4).
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In summary, the foregoing MCEM algorithm proceeds as follows.

Step 1. Obtain an initial estimate of (e, 3, 62, R, A, B) = (a(©@, g0, §20) RO
A©® BO)) based on a naive method, which ignores covariate measurement errors and missing
data, and an initial estimate of 7 = n® based on the dropout model by filling in ypns,; with
the average of yopsi. Set a © — 0 and b(o) =0.

Step 2. At the ¢-th iteration, obtain Monte Carlo samples of the “missing data”
(Ymiss, @i, b;) using the Gibbs sampler along with rejection sampling methods by sampling
| from the full conditionals [Yomis i|Yobs i, Zi ri,'a;-, bi; Y, [ailyi, z, ri, bi; 0] and [byly;, 2z,
r;, a;; 8®)], or using importance sampling methods to approximate the conditional expecta-
tion in the E-step.

Step 3. Update estimates §¢+Y using standard complete-data optimization pfoce-
dures. |

Step 4. Iterate between Step 2 and Step 3 until convérgence.

4.3.3 Monte Carlo Sampling

Gibbs Sampler

As in Section 3.3.3, we can again use the Gibbs sampler to draw the desired samples

© 30 50).

as follows. Set initial values (¥, &;

() 50 pk)y

ymzs 'L’

Suppose that the current generated values

(kD) s(+1) f(+1))

Yimisi » as follows.

are (y , we can obtain (y

Step 1. Draw a sample for the “missing” response ymzs z) from
~(k) T (k
F(Ymis,ilYobs,is Zi, Ti, az( ), bE ); 0(1,))_
Step 2. Draw a sample for the “missing” random effects égk“)'from

f( I(yg::‘;lz), yobsz) Z;, Xy, ng); O(t))
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Step 3. Draw a sample for the “missing” random effects ng“) from
FOAGEY, Yobs), 2, T, 85T, 90),

After a sufficiently large burn-in of  iterations of Steps 1 — 3, the sampled values will
achieve a steady state. Then, {(5’7(725,1', a® ™) k=r+1,... 7+ k:} can be treated as

7

samples from the multidimensional density function
f(Ymisir @i, bilYobs,ir Zi, T4 o(t))-

And, if we choose a sufficiently large gap r’ (say r" = 10), we can treat the sample series
{(yf,’jgs,i, égk), BE’“)), k=r+r',r+2r',...} asindependent samples from the multidimensional ‘
density function. There are several ways to get the initial values (y(mogs,i, 55"), BZ(.O)). A simple
way is to set yffjgsﬂ. to the average of youss, and (8, B{?) to (.0, 0).
Multivariate Rejection Algorithm

Sampling from the three full conditionals can be accomplished by the fnultivari—
ate rejection sampling method. For example, consider sampling from f(Yumis:|Yobs.i» Zi,
r;, a;, b;; O(t)) in (4.3). Let f*(Ymiss) = f(yobs,ilziy a;, by; O(t)) frilyi, zs; e(t)) and ¢ =
sup{f*(u)}. We assume ¢ < co. A random sample from f(Ymisi|Vobsi, Zi, Ii, @i, by; 8Y)

u

 can then be obtained as follows by multivariate rejection sampling:

Step 1. Sample y; . from fy(Ymis:lz:i, i, bi; 0®), and independently, sample w
from the uniform (0, 1) distribution. .

Step 2. If w < f*(yys4)/S, then accept yy ;. i, otherwise, go back to step 1.

Samples from f(a;|y;, 2, Ti, by; 1) and f(byly;, z;, 15, a;; %)) can be obtained in
a similar way. Therefore, the Gibbs sampler in conjunction with the multivariate rejection

sampling can be used. to obtain samples from [ymis, @i, bilyobss, 2, Ti; 0]
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4.4 A Computationally More Efficient Approximate Method

The estimation method described in the previous section may be computationally very inten-
sive and may even offer potential computational problems such as slow or non-convergence,
since the method involves sampling the random effects (a;, b;), which may have high di-
mension (see the detailed discussion in Section 3.4.1). To overcome these difficulties, in this
section we propose.an alternative approximate method which further .approximates model
(2.5) by takiné a first-order Taylor expansion around- the current parameter and random
effects estimates, which leads to a LME response model. For the résulting LME response
model with the covariate model (2.8) and the dropout model, we can obtain approximate
MLEs of model parameters by using a computationally more efficient MCEM a}Igorithm.
The random effects a; and b; can be integrated out in the E-step of the EM algorithm and
thus sampling the random effects in the E-step is no longer needed. vTherefore, the proposed
approximate method may provide substantial computational advantages over the MCEM
method in the previous section. Moreover, the proposed method can be used to obtain good
parameter starting values for the MCEM method in the previous section.
Denote the current estimates of (6, a;, b;) by (é, a,, f)i), where &; = E(a;|yobs,is ‘zi, r;; 0)

and b; = E(bilyobs,i, zi, Ti; é), suppressing the EM iteration number. Taking a first-order

Taylor expansion of g;; in (3.6) around the current parameter estimates & and B and random

effects estimates a; and Bi, we obtain the following LME response model

yi = &+ Wia+X;8+H,a,+T;b; t+e, (4.6)
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where

W, = (wq,.. .I , Wi, )T with w;; = %
Xi = (Xﬂ,_- cs Xipg) T With ;= 8895
H; = (hy,. ,h;ni)T with h;; = %%Zl
Ti = (ta,.. ., t,)" with t; : gi:ﬂ

& = 8(& B, a,b)-W,a-X,B-Ha-Tb;,

with all the partial derivatives being evaluated at (&, B, ;, B,-).

Our proposed approximate method is to iteratively solve LME response model (4.6).
For the LME response model (4.6) with the covariate model (2.8) and the dropout model,
the MLEs of the model parameters can be obtained by a MCEM algorithm, in which the
random effects a; and b; can be integrated out in the E-step, as shown below. Thus, the
E-step only involves sampling ymis,: rathef than (Ymis,, @i, b;) as in Section 4.2. Moreover,
some analytic expressions for the M-step can be obtained. These result in a substantial

improvement in computational efficiency.

4.4.1 A Much Simpler E-step

In this section, we show that, based on the approximate LME response model (4.6) and the
covariate measurement error model (2.8) along with the dropout model, the random effects

(a;, b;) in the E-step in Section 4.2 can be integrated out.

Based on standard results for multivariate normal distributions, the distribution of
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(i, i, a;, b;) for individual ¢ is given by

Since H; AHT +T; BTT +62 I and V; AVT + 1 Q) R are positive definite, they are symmetric

and invertible. By the inverse operation of partition matrices, we can write
' -1
H;AHT + T,BTT + 621 H AVT Gi+ F,E;FT —F,E,

,  (47)

V; AHT | V,AVT +I®R ~E,FT ' E

where

G, = (H;AHT +T,BTT + 62 1),
F‘i = GiHiA‘/iTa

B = [(VAVT +I1®R) -V, AH] GiH; AVT| ™.

Because the random effects a; and b; are conditionally independent of r; given (y;, z;), it is

straightforward to obtain the conditional distribution of [a;, b;|y;, 2;,1;] when 6 = 6

i Zai Eaibi
Yi, Z;, Ty 6| ~N ) )
b; Uy, Ybia; b,

7 i

a; ~ Vy,
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a; 0 : AHT AVT A0
|\ b ] I ' 0 B‘TiT : 0 0 B /|




where

Va; = [AH?(Gi+EEiﬂT)—A%TEiET](Yi-gi—VVid—Xi,B)
HAVT B~ ABT R E(z:— Uio) |g_g
Vb, = B:l;T(GiJrEEiET)(yi—gi—Wia—Xiﬁ)—BY}TFiEi(Zi—Uia)’gzga
Ta = A=[AHI(Gi+ F.EFT)— AV B FT|Hi A~ [AVF B, - AHT . E]ViAlg_p,
Sy = B—BT}T(Gi—%EE,-F}T)EB‘O:é, |

Tab, = (b)) =[AVIEF —AH (Gi+F,EFI)|T.B|y_g -

By the expectation and covariance properties for multivariate random variables, we have

E(ajlyi, ziri; 0) = va,,

E(a;al'ly;, zi, 15; ) = Sa, + va, V7,
E(bily;, 2, 15; 0) = vy,

E(b;bllyi, 2,15 0) = Sy, + v, vi,

E(az bﬂ}’z, Zi>ri; é) = Za,‘bi + Vg, V’ll)—‘l

Since

f(ymis,i; a;, bil}’obs,i; Z;, Ty é) = f(ai, bi|}’i, Z;, Iy 9) f(}’mis,i|)’obs,i, Z;, Iy; é),
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the conditional expectations in the E-step, which correspond to I 1(i) - Isi) in (4.2), become

e, B, 6)

/Eai,bib[ - % log(2m6?) — 2;2( - & —W,a—X;8—H;a,—T;b;)"
x(yi — gz ~ W - X;B - H;a; — T;by)ly;, z, r3; é]
X f(Ymis,ilYobs,ir Zi, Tis é) AY mis,i |
——2—log 2”52 252/{ — & -Wia- X8 (yi— & — Wia— X, 8)
=2(yi — & — Wia— X; 8)T Eq,v,[Hia; + T; bily;, z;, 13 0]
+Ea b [(Hia; + Ty b)) (Hy 2, + T by)yi, 24, 155 9]}
Xf(Ymis,i|y@bs,§, Zi, Ti; 0) dYmis
*%i log(2m6%) - % / {(yi —gi—W,a — Xi,B)T(yi -g—-W,a—X;P8)
~2(yi — & — Wia — X; B)7 [H; E(ailys, 2, 13; 0) + Ti E(byly;, 2, r;; 0))]
+ Bai[al HY Hia; + 267 T Hya; + bY TT Ty bilys, 2, 143 6]}
X f (Yrmis,ilYobs,i» iy Ti; 0) @Ymisy
~Slog(ns?) - o [{(vi =& - Wia = XB) (v - &~ Wear - X)
—2yi— & - Wia~ Xi,@)T (HiE[aiIYi, Z;, Iy; é] + T Elbilyi, z;, rs; é])
+tr[H; E(a;al'lyi, zi, vi; 0) HY | + 2tr[H; E(a;b] |yi, 2, ri; 0) TF]
+tr[T; E(b; b |yi, 2, 1:; 0) TzT]} X f(Ymis,ilYobsis Zis Ti; 8) dYmis i
—%10€(2752) - 2—(152 / {(Yz —&-Wia-X;8) (yi— g - Wia—X,0)
2yi-& - Wa—-X, ﬁ)T [Hz Va, +T; Vbi]
+tr[H; (Sa, + va, V1) HY | + 26r[H; (Saib, + Va, v5,) T} |

+tI‘[T’1 (Ebi + Vp, ij‘i) T;T]} X f(ymis,'ilyobs,i) Zi, Iy, é) dymis,ia
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f2i)»(a) R)

(B

i 1 &
/Eai‘bi [ - ﬁ;— IOg |27TR| - 5 Z(Zij - Uij o — ‘/;'j ai)T R_—l

j=1

x(zij — Usj o — Vi a))|ys, i, 155 9} X f(FmisilYobsiis Zis Ti; 0) @Y mis
m; 1 i - |
-5 log |27 R| — 3 / { Z(zij — Uy &) B (2 - Uy @)

J=1

—QZ ZU U R ‘/z] -E13Z b,(az|Y1a Z;, I'y; 0)

+ZEal, b:lay Vil R7'Viailys, 2, 1y é]} X f (Ymis il Yobs,ir Zi, Ti; 0) @Ymis,i

> :
my

__2_ ‘log |27 R| — = / { Z(Zi]‘ — Ui @) R (245 — Uy o)

j=1

_22 Zz] z] R ‘/1] E(azl}’z; Z;, I';; 0)

+Ztr[Vi;‘.p R™! ‘/1] E(a; a] |yi, 2, ri; é)]} X f(Ymis,ilYobs,i Zis Ti; 0) @Y misyi

-5 log |2 R| — —2-{ Z(zij —Uij )T R (2 — Uy; @)

j=1
/{—QZZ” wa R"lVijl/al.
+ Z tr(‘/z_cyr Rhl ‘/ij (Eai + Vg, VZ,))] X f(ymis,ilyobs,i; Z, Ty} é) dymis,i}y

/Eai,bi.[ - %Iog |2m Al — %aiT A aily:, zi, T é] X f(Ymis,ilYobs,ir Zis Tis é) dY mis,i
—% log |2mA| — %/tf[A_l E(a¢ aiT|)’i, Z;, T'i; é)] X f(Ymis,ilYobs,is Zis Tis é) dYmis;i
—% log [2m Al ~ %/tf[A—l (La; + Vs, VZ;)] X (Y mis,ilYobsir Ziy Ti; é) AYmis,i;
/Eai,bi [ - %108 |27TB| - %sz B bz’lyi; Z;, Iy, é} X f(y'mis,i|}’obs,iabziab ri; é) dY mis,i
——-21-Iog|27rB| - %/tr[B E(b; bl lys, 2, 155 0)] X f(YmisilYobsis Zis Ti; 0) dYmisi

1 1 o
3 log |27 B| - 3 /tr[B‘l (Zb; + Vb, V5] X f (Ymis,ilYobs,ir Zir Ti5 0) @Y s,
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15(1)(77) =. /Eai,bi l:log f(ri|yi7 Zy; 77)} X f(Ymis,i’yobs,iy Z;, r;; 0) dymis,i '
= /IOg F@ilyi, zi; 1) X f(Ymis il Yobs,ir %, ri; 0) dYmis ;-

Thus, compared with the intractable high-dimensional integrals in (4.2), the above integrals
fl(i) - féi) have much lower dimension, i.e., the E-step is éubstantially simplified. Note that
fl(i) — féi) are expectations with respect to f(Ymis|Yobsi Zi, Ti; é), so they may be evaluated
using common numerical integration methods such as Gaussian quadrature if the dimension
Of Ymis; 1s small. If the dimension of y,;s; is not small, we can use the rejection sampling

methods to generate samples from [ymisi|Yobss, Zi, Ts; é] based’on the conditional density

f(ymis,iIYObs,i; Z;, Ty, é) X f(YiJ Zi, Ty é)

= flyi, zi; é)f(riIYi, Zi; é),
where the distribution of (y;, ;) is

vi | o |[ &+ Wit Xio H;AHT + T,BTT + 621 HAVT

~

z; Ui V;AHT VAV +IQ@R

f;gsﬂ., . ,5’,(7133)1 denote a random sample of size k; generated from

- (k)

ymis,i

-For individual ¢, let ¥

[Ymis,i|Yobsir Zi, Tij é] Note that each depends on the EM iteration number ¢, which

is suppressed throughout. Then we approximate the conditional expectations ffi) - féi) in




the E-step by its empirical mean, with missing data replaced by simulated values, as follows.

ke
7(4 n; . 1 1 ~
Il( )(aaﬂ: 52) ~ _Elog(?ﬂ(sz) - W{E Z[(yr(:z)s i» Yobs 1) — 8 — Wia - Xi IB]T

X (T Yotss) = & = Wicx = X ]

k¢
1 . i |
_k_z2 y5m)3m yobsz)_gi_Wia_Xi,B]T )

[H E(az|(ymz)sza Yobs z) Z;, Ty 0) + T E(b |(ym1,s i) yobsz) Z;, Iy, 0)}
kt

1 _ -
= > tr{H: [Cov(ail(Find i, Yobsa), 2, 755 0)
t k=1

+E(@| (55 ., Yobos)s iy T35 0) B(ai| (%), ., Vobss), 74, 143 8)7) HT}
kt ’

1 -

+-— Z 2tr{H; [Cov(ay, bil (¥ s» Yobssi), Zi, Ti; 0)

kt o ’

+E(a | yr(m)s i Yobs 1) Zi, T3 0) (b |(Ym7,s ir Yobs, z) Z;, Ty é>T] TLT}
k¢

1 ~
o D te{Te [Cov(bil (Tl Yobss), i, 743 6)
t k=1 '

E(bil(yg:i)s,i) yobs,i)7 Z;, Ty é) E(bzl(y',(-r}izsym yobs,i)7 Z;, Ty} é)T] 2—;T}}7
~(i) Lomy 1[ & T p-1
.[2 (a, R) ~ —7 lOg l2’/TR| - 5 Z(Zij - U'ij a) R (Z,;j - Uij a)

7=1

_22 Z Zi; — U R ‘/1_7 E(a1|(ymw i1 Yobs 1) Zi,iri; é)

+ Z Zt {V? R—l ‘/ij [Cov(ail(yfr]fz)s,i’ yobs,i)v Z, T é)

ke i
+E( |(y£m,)s I3 y0b31,) Z;, I'“ é) E( l(y5n1)3 i1 Yobs 'L) Z;, Iy, é)T]}}a
” 1 1 &1 .
Iéz)(A) ~ —Elog 12 A| — T Z —tr{A7} [Cov(a,bl(y,m“, Yobsi)s Zi, Ti; )
k=1

+E( I(y7(7n)s1,) Yobs z) Z;, Ty é) E(azl(yim)s i1 Yobs z) zi; r; O)T]}a
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ke

~; 1 1 1 _ ' .
By ~ —5log 27 B[ — P > EtF{B L [Cov(bil (3%, 1, Vobssi), 2i, 133 6)
' k=1 .

(b |(ymzs R yobs ’L) Z’i7 rl) ) (b |(ym13 79 yObs Z) Zi) ri; 0)T]}7

j’él)('r’) ~ k Zlog-f rz ymzsw yObSl) Zi n)

4.4.2 The M-step

In this section we derive some closed-form expressions for the M-step, so we avoid some
iterative algorithms, which may be computatlonally mefﬁment

The M-step of the EM algorithm maximizes

Q(18) = \iu}“(a, B, %)+ I{ (e, R) + I (A) + I (B) + I (n)]

to produce an updated estimate of @. Note that if we were to observe (e, €;, a;, b;), in

addition to (Yobs, Zi, i), We would use the following estimates

Ze e/an, R= ZZGU U/Zmz,

1,—1_7 1

:Zaia;tr/n, B=Zbib?/n,
i=1 i=1

where Ze e;, Z Z € €55, Za1 T, and Z b; bl are “sufficient” statistics for 6%, R, A,
% » i=1j=1 i

and B, respectlvely Since e;, €;, a;, and b are unobservable we can “estimate” them by

their conditional expectations given the observed data (Yobs,is Zi, Ti), as in Laird and Ware

(1982). Based on results in multivariate analysis, we have

¥i g+Wia+ X8 HAHF + T,BTF +6°1 H AVTF 621
z |0 ~N Uice , V,AHT V,AVI+IQR 0 ,
e; 0 . 82T | 0o . &I
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and

Yi g+ Wia+ X8 H,AHT + T, BTF + 41 H, AVT 0
z |0 ~N Ui , V; AHT V,AVT+IQR My ||
€ij 0 0 : M;I; R

where M;; is a vm; X v matrix with the Jth v x v submatrix R and zeros elsewhere. Since

e; and ¢;; are conditionally independent of r; given y,; and z;, we have

f(eily:, z;, rs; é) = f(eilys, zi; 9)7

ey, zi, ri; 6) = flelys, z; 6).

Using the above results, the inverse of partition matrix in (4.7), and the definition of condi-

tional distributions, it can be shown that

[ei|Yia Z;, I;; 0] ~ N(Vei) Aei))

- where
Ve, | = PG+ FREF)(yi— &~ Wia—-X.8) -8 FE(zi-Uic)] |g_p
Ao, = S -6(Gi+FEF)|g_p>
and
[eijb’iy Zs, Ty; é] ~ N(Veij, Aeﬁ);
where N

ve, = [RY (BiY*(zx—Una) = R(EFY (yi—& - Wia—X:8)]|g_p
k=1 '

Ae, = [R-R(E)"l|g g,
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with the jth v x n; submatrix (E; FT)/ of E; FT and the jth row and the kth column v x v

submatrix (F;)* of E;, 5, k= 1,...,m;. Note that

E(el e|yobsy, Zi, Ti; 6) = E(e! eilyi, 2, 1s; é)f(ymis,ib’obs,i; Zi, Ty é) AYmis,i

E(eij eg;lygbs,i;zi; Ty é) = E(e; G;TFIYi, Zj, I'i; é)f(ymis,il}'obs,ia Z;, Iy, é)dymis,i,

E(a,; a?lyobs,i; Z;, Ty é) = E(ai aﬂ}’i, Zi, Ty, é)f(ymis,ib'obs,i, Z;, Ty, é) deis,i,

— — Y —

E(bi bﬂ}’obs,u Z;, Iy; é) = E(bi biT|Yi, Z;, Ty é)f(ymis,ilyobs,i; z;, Ty é) deis,i-

Using the expectation and covariance properties for multivariate random variables and the
properties of the matrix trace operation, we can update the estimates of (62, R, A, B) in

the M-step as follows.

Al

tr[E(eie] [Yobsir 2, 1i; )]/ Z U

o
&

= 11

@
Il
—
=
il
—

Q

tI‘[E €; e Tl(y’r(TI:Z)S’L’ yobsz Zj, T3 )]/Zktn“

~ noom
R = Z E(eij 63;'|}’obs,i’ Z;, Ty )/ Z my;
i=1j=1 :
n Jml k¢ . n
~ Z E (61_7 Ul(ymzs ir Yobs 1) Zi, Iy 0)/ Z ktm'i;
1=1j=1 k=1 =1
A = > E(ai al [Yovsis 2, T; 0)/n
'L;l th © i
~ Z E(a a (ymls i) Yobs z) Z;, Ty, 0)/ktn:
i=1 k=1
A n ~
B = Z (b b |yobs i) Zz, r;; 0)/”
171 ky R -
~ . E(b; bﬂ(ymisﬂ-, Yobs;i), Zi, Ti; 0)/kim.
=1 k=1 .

Plugging 42 and R into Z?zl[fli)(a, B, 62)+ I (a, R)] and setting its first derivative

‘with respect to (a, 8) equal to 0, we can get a set of equations for & and G.
Z:(WTW +522 TR Uy) S WX, Z{WTI/yI-f-éQZUTR Ly b

=1
T
Z Xi Vyis
=1

Q>

@

[
z X;f W, ‘ > XFX;
i=1 =1
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where

Vy, = Eilyobsi 2i Ti; 0) — & — Hi E(@i|Yobs > %i, Ti; 0) — T; E(bilYobasr 7i, 15 ),

I/zij = Zj; — ‘/ij E(ai|}’obs,ia Z;, Ty, é)

The foregoing conditional expectations can be approximated as follows.

ke

E(yilYobs,ir 2, Ti; ) = Z(yf(m)s“ Yobs,i)/ ki,
k=1

E(ai|YObs,i; Z;, Yy 0) ~ ZE(ail(ygﬁi)s,i) yobs,i)a z;, Iy, 0)/kt7
k=1

E(bilyobs,ia Z;, Xy, 0) ~ Z (b |(ymzs ir Yobs 1.) Z;, I';; 0)/kt
k=1

Using the inverse operation of partition matrices, we obtain closed-form estimates of av and

B in the M-step:

& =Ty [WTV + 82 zf Uz B uzij] +T Y XT vy,

=Tu >
i=1 _ i=1
B3 =Ty Z: [WT v, + 82 Z Uf R yzij] + Ty ; XT vy,

where Ty = M+ QL 1QT, T, =TL = —Q L™, and Typ = L7}, with

M = (Zn: W W, + 82 i i‘ UL R Uij)_l,
=1 :

i=1 j=1

[ = ixg‘xl_(inﬂ/;)M(iVVZTXz):
i=1 =1 =t
@ = M(3wix)

We finally maximize ) .., I; (Z (n) to obtain an updated estimate of 7, which can be
done by standard optimization procedures such as the Newton-Raphson method.
Iterating between the above E-step and M-step until convergence, we obtain approxi-

mate MLEs of 8. The asymptotic variance-covariance matrix of the approximate MLE 0 of
4
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6 can again be obtained using the approximate formula given in (4.5). The only difference
is that the density function fy(y;|z, a;, bi‘; a, B8, 62) in I in (4.1) is based on the LME
response model (4.6). We see that, for this approximate method, both the E-step and the
M-step are computationally much less intensive than those in Section 4.3. The performance

of this approximate method will be evaluated in Section 4.6.

4.5 Example

We illustrate our proposed methods in this chapter using a HIV dataset. We also analyze
this dataset using the commonly-used naive method which ignores measurement errors and

missing data for comparison.

4.5.1 Data Descriptibn :

The dataset includes 53 HIV infected patients who were treated with a potent antiretroviral
regimen. Viral loads (Plasma HIV-1 RNA copies) were measured on days 0, 2, 7, 10, 14,
21, 28 and weeks 8, 12, 24, and 48 after initiation of treatments. After the antiretroviral
treatment, the patients’ viral loads will decay, and the decay rates may reflect the efficacy of
the treatment. Throughout the time courée, the viral load may continue to decay, fluctuate,
or even start to rise (rebound). The data at the late stage of study are likely to be contami-
nated by long-term clinical factors. Various covariates such as CD4 count were also recorded
throughout the study on similar schedules. It is well known that CD4 counts are usually
measured with substantial errors. The number of response measurements for each individual |
~ varies from 6 to 10. Five patients dropped out of the study due to drug intolerance and other
problems and sixteen patients have missing viral loads at scheduled time points. There were

104 out of 403 CD4 measurements missing at viral load measurement times, due mainly to
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a somewhat different CD4 measurement schedule. A detailed data descripfion can be found
in Wu and Ding (1999).

Six patients are randomly selected and their viral loads are plotted in Figure 1.1.
Due to long-term clinical factors, drug resistance, and other complications, the viral load
trajectories can be very complex after the initial phase viral decay. Visual inspection of
the raw data seems to indicate that dropout patients appear to have slower viral decay,
compared with the remaining patients. Thus, the dropouts are likely to be informative or
nonignorable. The CD4 count trajectories for six randomly selected patients are plotted in
Figure 1.2. There exists large variability in CD4 count between patients. The populati.on

CD4 count trajectory appears to have a quadratic polynomial shape.

4._5.2. The Response and the Covariate Models

Based on Wu (2002) and Wu and Zhang (2002), we consider the following HIV viral dynamic

model (see Section 3.5 for the details)

y; = logo(Pue vt 4 Pye™?23%5) 4 e, ,. (4.8)
log(Py;) = fBr+ by, Mij = Ba + ,332% + byi, | (4.9)
log(Pa) = fa+ bs, Aoij = w(ti;) + hiti;), (4.10)

where y;; is the logo-transform of the viral load measurement for patient ¢ at time ¢;;, P;; and

Py; are baseline values, Ay;; and Ao are viral decay rates, 27; is the true (but unobsefvable)

CD4 count, and w(t;;) and h;(t;;) are nonparametric fixed- and random-effects functioné (see

Section 2.1). To avoid very small (large) estimateé, which may be unstable, we standardize
the CD4 counts and rescale the original time ¢ (in days) so that the new time scale is between

Oand 1. | |

As discussed in Section 2.1, we employ the linear combinations of natural cubic splines
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Table 4.1: AIC and BIC values for the model (4.8) - (4.10), with¢ <p=1, 2, 3.

Model p=1,g=1 p=2,g=2 p=2,0=1 p=3,4=3 p=3,9=2 p=3,4=1
AIC 622.92 590.82 501.37  584.51 593.32 583.19
BIC 685.37  676.68 662.95 677.16 671.76 657.72

with percentile-based knots to approximate w(t) and h;(t). Following Wu and Zhang (2002),
we take the same natural cubic splines with ¢ < p in order to decreas’é the dimension of
random effects. AIC and BIC criteria are used to determine the values of p and g. Table
4.1 displays AIC and BIC values for various plausible models. Based on these AIC and BIC

values, the model with p =3 and ¢ =1, i.e,,

Aoij = Bs + Be 1 (ts;) + Brpa(ts;) + bai, (4.11)

seems to be the beét, and thus it-is selected for our analysis.

For the CD4 process, in the absence of a tﬁeoretical rationale, we consider empirical
polynomial LME models, and choose the best fitted model based again on AIC /BIC values for
each possible model. This is done based on the observed CD4 values, and is done separatély
from the response model for simplicity. Specifically, since the inter-patient variation is large,
we consider model (2.8) with Uy = Vi = (1L, ug,...,uy™") and linear (a = 2), quédratic
(a = 3), and cubic (a = 4) polynomials. . Table 4.2 presents AIC and. BIC values for these
three models. The‘ following quadratic polynomial LME model best fits the observed CD4

process:
CD4u = (C\(l + al) + (a2'+ a2) Uz + (a3 + CL3) U?I + €il, : (412)

where u; is the time and a = (a, as, a3)T are the population parameters and a; =

(ai1, @iz, a;3)T are the random effects.




Table 4.2: AIC and BIC values for the linear, quadratic, and cubic CD4 models

Model a=2 a=3 a=4
AIC 806.58 715.80 752.15
BIC 30.00 774.34 791.18

4.5.3 Dropout Models and Sensitivity Analysis

In this study, dropout patients appear.to have slower viral decay, compared wifh the remain-
ing patients. Thus, dropouts are likely to be informative or nonignorable. So we need to
assume a model for the dropout process in order to make valid likelihood inference. Although
dropout models are not verifiable based on oBserved data, subject-area knowledge and sen-
sitivity analysis based on plausible models may still lead to reasonable models. Note that
we should avoid building a too complicated dropout model since a complicated model may
become non-identifiable (Fitzmaurice et al. 1996). Subject-area knowledge suggests that
dropout may be related to current or previous viral load and CD4 measurements. Thus, we

consider the following five plausible dropout models for sensitivity analysis

Model I : logit[P(ry; = 1]ys, zs; )] = m + mCDdij + n3ysj,
Model II: logit[P(ri; = 1ly:, z;; m)] = m + N2¥ij—1 + NaYsj,

(
(
Model II1: logit[P(ri; = 1]y, z; m)] = m + n2C D4y + nayij—1 + Nayij, (4.13)
Model IV : logit[P(ri; = llyi, 2;m)] = m + movir, k< 4,

(

Model V :  logit|P(riy; = 1|yi, zi;m)] = m + 172C’D4;“j,
- where y;; (K < j) in Model IV is the last observed response and C'D4f; in Model V is
the estimated true CD4 value for individual 5. Thus Models I — ITT represent possible

nonignorable missing response models, Model IV represents a possible ignorable missing

response model, and Model V relates dropouts to (estimated) true CD4 values. We also




considered the following ignorable missing response models:

logit[P(r;; = 1|y, zi;m)] = 77i + oy

logit[P(ry; = 1lys, zi;m)] = m + matyy,

but the resulting estimates are similar to those for Model IV, so we only present results for

Model IV in Table 4.3. We assume independence of the r;;’s to simplify the model.

4.5.4 Estimation Methods and Computation Issues

We estimate the model parameters using the naive method which ignores measurement errors

and missing data and the two proposed “joint” model methods discussed in Sections 4.3 and

4.4. We denote the method in Section 4.3 by APPR1 and the method in Section 4.4 by
APPR2. The two proposed joint model methods need starting values for model parameters
since they are implemented by MCEM algorithms. We use the parameter estimates obtained
by the naive method as parameter starting values for the two joint model methods.

For the naive method, we use the SPLUS function nime() and Ime() to obtain param-
eter estimates and theirl default standard errors. For the two proposed joint model methods,
we assess the convergence of the Gibbs sampler by examining time series plots and sample
autocorrelation function plots. For example, Figures 4.1 and 4.2 show the time series and
the autocorrelation function plots for by associated with patient 14. From these figures, we
notice that the Gibbs sampler converges quickly and the autocorrelations between successive

generated samples are negligible after lag 17. Time series and autocorrelation function plots

- for other random effects and missing responses show similar behaviors. Therefore, we discard

the first 500 samples as the burn-in, and then we take one sample from every 20 simulated
samples to obtain independent samples (see sampling methods in Section 4.3.3). We start

with ky = 500 Monte Carlo samples, and increase the Monte Carlo sample size as the number
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Figure 4.1: The time series plot for b, associated with patient 14.
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Figure 4.2: The autocorrelation function plot for b, associated with patient 14.
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t of iteration increases: kip1 = ki + ki/c with ¢ = 4 (Booth and Hobert, 1999). Conver-
gence criterion for these two joint model methods is that the maximum relative change in
the parameter estimates from successively iterations is smaller than 0.05. Convergence of
the algorithms are considered to be achieved when the maximum percentage change of all
- estimates is less than 5% in two conéecutive iterations.

We use the multivariate rejection sampling method for the two proposed joint model
method. On a SUN Sparc work-station, the APPR1 method took about 146 minutes} to
converge while the‘APPRZ method took only 12 minutes to converge. This shows that
APPR2 offers a big reduction in computing time, and thus is computationally much more

efficient than APPRI.

4.5.5 Analysis Results

We estimate the model parameters using the naive method and the two proposed jéint
model methods APPR1 and APPR2. We use the parameter estimates obtained by the naive
method as the parameter starting values for the APPR1 and the APPR2 methods. We also
tried several other parameter starting values for the proposed methods. Different parameter
starting values appear to lead to roughly the same parameter estimates for both the APPR1
and the APPR2 methods.

Table 4.3 presents the resulting pérameter estimates and standard errors based on
rnodels I, 1V, and V in (4.13). We find that the two joint model methods provide similar
parameter estimates. We also find that the naive method may severely under-estimate the
covariate CD4 effect (i.e., B3) and may poorly estimate some other parameters as well (this
will be confirmed by simulation). For the different dropout models in (4.13), we ﬁnd that
the resulting estimates based on the three nonignorable models (Models I, I1, IIT) are ail

similar, which indicates that the estimation may be robust against the nonignorable dropout
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Table 4.3: Parameter estimates (standard errors) for the models in the example.

Model =~ method a; a2 o3 Br B Bz By Bs Bs Br b R
_‘NAIVE — - - 11.72 65.71 0.84 6.87 -2.58 8.66 -1.90 .35
- o~ = (2) (38) (32) (6) (5.5) (8.9) (3.1)
Model_I APPR1 -42 4.15 -3.75 11.72 67.08 152 6.97 -1.83 7.75 -2.54 .35 .51

(1) (5) (6) (.2) (5.2) (6.2) (7) (5.8) (8.8) (3.5)
APPR2 —43 421 -3.78 11.70 66.97 1.50 6.96 —1.90 7.86 -2.63 .33 .50

(1) (6) (6) (2) (4.4) (58) (.6) (5.5) (7.9) (3.0)
Model IV APPR1 -.43 4.18 -3.75 11.73 66.52 1.37 6.89 —2.62 8.83 -1.92 .35 .51

(1) (5) (6) (2) (5.0) (6.0) (7) (5.9) (8.9) (3.1)
Model V. APPRI .43 4.21 -3.80 11.74 66.79 1.44 6.89 —2.50 8.60 -1.98 .35 .50

(1) (6) (6) (2) (49) (6.1) (7) (5.9) (8.9) (3.1)

Note: A and B are unstructured covariance matrices, but we only report the estimates of their diag-
onal elements here. Diag(A) = (.50,3.65,1.61) for APPR1, Diag(A) = (.52,3.80,1.66) for APPR2.
Diag(f?) = (1.08,77.12,2.03,24.98) for Naive, Diag(l?) = (1.10,75.50,2.01,26.51) for APPRI1, and
Dz'ag(B) = (1.09,75.24,1.83,22.37) for APPR2. '

models. The estimates based on the ignorable models (Models IV and V'), however, appear.
to be somewhat different, especiélly'for the parameters associated with the decay rates Aj;;
and Ay;. This suggests that the missing responses (dropouts) may be nonignorable, and
reliable likelihood estimation must incorporate a reasonable nonignorable missing response
model. Although some estimates in Table 4.3 are not statistically significant, the values of
the estimates may still provide useful information about viral load and CD4 trajectories.
The estimates of parameters 7, and 73 in dropout model [ based on APPR1 method (or
APPR2 method) are —.05 and .97 (-.04 and 1.06) respe;:tively, with both p-values less than
0.001, which also indicates that the dropouts may be nonignorable (or informative) since
the missingness may depend on the missing values. The estimates of 12 and 73 indicate that
dropout patients seem to have lowér CD4 counts and higher viral loads than the remaining

patients.
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4.6 A Simulation Study

in this section, we conduct a simulation study to i) evaiuate the performances of the semi-
f)arametric modelling and of the AIC/BIC knots selection method, ii) assess the two proposed
methods (APPR1 and APPR2) and compare them to the naive method (NAIVE), and iii)
evaluate the impact of specification of the missing response mechanisms on parameter esti-
" mation.

We generate 100 datasets from the following model, which corresponds to the model

(4.8) - (4.10),

yij = logo(Pue™ 1% + Pye™ k) + ey, (4.14)
log(Pi;) = fi+ by, Ay = B2 + B3zf; + bai, log(Py;) = Bs+ by,  (4.15)

Agij = —22+ (53 + 0.1 b4i) Sln(004 + Stij); ) (416)

where the nonparametric model (4.16) is carefully chosen to closely mimic the viral load
trajectory at later stages in the example of the previous section. The covariate model and
 the measurement time points used in the simulation are the same as those in the example
of the previous section. The true values of model parameters are similar to those in the
example. The true values of (81, B2, B3, B4) and a are presented in Table 4.4, and the other
true paraméter values are § = .2, R = 4, A = diag(.5, 3, 2), and B = diag(l, 9, 2, 4).
Note that b; = (b;1, bia, bi3, bia) ~ N(0, B), where by; is incorporated in the nonparametric
model (4.16). There are 147 viral loads after the rescaled time 0.25. We regard the viral
loads out of 147 greater than the 45th percentile as missing responses. Thus, we delete 20%
largest response values at the last few _time points to mimic an informative missing response
mechanism (i.e., missingness depends on the values being missing). The structure of the
data generated by the simulation study is similar to that in the example in Section 4.5.

We calculate averages of the resulting estimates and their standard errors based on
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each method, and compare the methods by comparing their biases and meén—square—errors
(MSEs). Here, bias and MSE are assessed in terms of percent relative bias and percent
relative root mean-squared error, as defined next. For instance, the bias for §;, the jth

component of 3, is defined as '
bias; = B; - 8,
where Bj is the estimate of 3;. The mean-squared error for g; is deﬁned as
MSE; = bias] + s,

where s; is the simulated standard error of ﬁj. Then, the percent relative bias of Bj is defined

as
bias;/|8;] x 100%,

and the percent relative root MSE is

v MSE]/l,@JI x 100%.

First, to evaluate the nonparametric modelling, we study the performance of the AIC
and BIC Qriteria in selecting the numbers of knots (p and ¢), since these numbers represent
the degrees of smoothness of nonparametric functions (too large/small values may result
in overfit/underfit). For the 100 datasets simulated from the semiparametric NLME mg)del
(4.14) — (4.16), we find that all BIC values and 97% of AIC values lead to the model (4.11)
(ie, p=3,¢g=1). To further evaluate the AIC and BIC methods, we also generate data
from models (4.8) — (4.12) with (Gs, G, B7) = (—2.0, 8.0, —3.0) (so the true number of knots
are known), and use the AIC and BIC methods to select the best model. The performance

of the AIC and BIC methods is similar. These results show that the AIC and BIC criteria

perform well in the current setting.




Table 4.4: Simulation results for the parameter estimates (standard errors) as well as their
biases and MSEs for the estimation methods PARA, APPRI1, and APPR2.

Parameter o Qs as B Ba B3 Ba Bs Bs B
True Value -04 40 4.0 120 670 15 7.0

PARA - - - 11.94 6091 -0.62 648 0.20

- (1) (15) (18 (2) (1)
APPRI  -0.39 4.05 -3.99 = 12.00 66.87 149 7.1 -1.89 9.65 -1.66

(1) (3). (3) (1) (13) (1.6 (3) (20) (3.1) (11
APPR2 -0.39 4.06 -4.01 12.00 66.25 1.59 6.90 -3.11 10.18 -1.47

(1) (3) (.3) (2) (1.1) (1.4) (.3) (1.7) (2.6) (1.0)

Bias '

PARA - - - -48 —-9.09 -141.03 -7.43

APPRI1 1.28 1.27 .17 01 =19  -60 1.29

APPR2 1.73 155 -.18 .03 -1.07 6.99 -1.36
MSE -

PARA - — - 1.71 9.38 23093 8.18

APPRI1 21.33 10.02 9.87 1.12 248 98.67 4.12

APPR2 25.40 10.49 10.56 1.34 273 10094 5.06

Note: Bias = Percent bias = 100 x bias;/|G;|; MSE = Percent vMSE = 100 x \/MSE;/|5;|.
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To inQestigate the effect of semiparametric modelling on the estimation of the fixed-
effects parameters ; — B4, we consider the two proposed methods (APPR1 and APPR2)
for the semiparametric NLME model (4.14) — (4.16), along with the covariate model (4.12)
and a nonignorable dropout model (Model I in (4.13)). We also use a parametric NLME
model, where Ay;; = (5 + by and the other parts are the same as in the semiparametric
NLME model (4.14) — (4.16), to fit the sirﬁulated datasets. To emphasize the difference
between the nonparametric and the parametric modélling for Agi;, we consider an ideal case
for the parametric NLME model fitting, in which there is no covariate measurement errors
and dropouts. Thus, we do not need the covariate measurement error model and the dropout
model in this ideal cése. We use SPLUS function nlme() to'obtain parameter estimates and
their default standard errors, denoted by the PARA method. We calculate averages of the
resulting estimates and their standard errors based on each method. Since APPR1 method
sometimes offers corﬁputa’cional problems, such as slow or non-convergence, the 100 sets of
parameter estimates are obtained from 137 data sets. The simulation results are shown
in'Table 4.4. We find that estimates for the fixed-effects parameters 3; — (4 obtained by
APPR1 and APPR2 are very close to their true values, and both methods perform better
than the PARA method in terms of bias and MSE criteria. These results show that the
semiparametric modélling based on AIC/BIC for knots selection performs well and better
than the parametric modelling in the current setting.

To study the effect of missing data mechanisms, we assess the proposed methods
(APP‘RI and APPR2) based on a nonignorable model (Model I) and an ignorable model
(Model IV), and compare them with the naive method (which ignores measurement errors
and missing data). To investigate the performance of the estimate of \y;;, we generate 100
datasets from the true models (4.8) — (4.12). In the simulations, the true values of model

parameters 3 and a are shown in Table 4.5, and the other true parameter values, the missing
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Table 4.5: Simulation results for the parameter estimates (standard errors) for the three
estimation methods NAIVE, APPR1, and APPR2 with dropout models I and IV in (4.13).

Dropout Parameter «a; o9 a3 B B Bz Bs PBs  Bs  Pr

Model ~ True Value -4 40 -40 120 67.0 15 7.0 -20 80 -3.0
NAIVE - - - 1108 66.87 0.92 6.98 —2.41 0.64 —2.03

z - - - (1) (1.2) (1.1) (0.3) (1.9) (2.9) (1.0)

Model I APPRI1 -40 4.08 -4.00 11.99 66.93 148 7.01 -2.04 811 -2.92
(1) (3) (3) (1) (14) (16) (3) (L9 (31) (1.2)

APPR2  -40 4.06 -4.01 11.99 66.86 153 7.03 —-2.11 8.17 -2.87

(1) (3) (3)  (2) (1.3) (1.5) (.3) (1.8) (2.8) (1.0)

Model IV APPR1  —40 4.06 -3.99 12.00 67.15 145 7.0l -1.81 8.97 -2.22
, (1) (3) (3) (1) (13) (16 (3) (21) (32) (1.2)
CAPPR2 -39 4.06 —4.00 11.99 66.80 1.42 6.96 -1.78 9.08 -2.28

(1) (3) (3)  (2) (1.2) (15) (.3) (1.8) (2.8) (1.0)

mechanism and the missing rate are Ithe same as above. We ca]culate averages of the resulting
estimates and their star.ldarvd errors based on each of the three methods and each of the two
dropout 'models. We compare the methods by comparing their biases and mean-square-errors
(MSEs). Since APPRI method sometimes offers computational problems, such as slow or
non-convergence, the 100 sets of parameter estimates are obtained from 130 data sets.
From the simulation results in Tables 4.5 and 4.6, we see fhat, when measurement.
errors and reasonable missing data mechanisms (Model I) are taken into account, the two
proposed joint model methods (APPR1 and APPR2) perform well in terms of bbth bias and
MSE criteria. APPRI1 performs better than APPR2 as expected, but APPR2 also performs
reasonably well and is computationally much more efficient. When the missing data mech-
anism is ignored (Model V'), however, the two methods may not perform well. The naive
method, which ignores measurement ‘errors and missing data, may lead to severely biased

estimates and large MSEs (e.g., the covariate effect (3 can be severely under-estimated).
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Table 4.6: Simulation results for biases and MSEs of the parameter estimates for the three
estimation methods NAIVE, APPR1, and APPR2 with dropout models I and IV in (4.13).

Dropout ~ Parameter o o7} a3 B B B3 Ba Bs Bs B
Model - True Value -4 4.0 4.0 12.0 670 1.5 7.0 2.0 80 3.0
Bias
NAIVE — - - -10 -25 -3842 -61 -20.53 2045 32.33"
Model I APPR1 -78 1.95 01 -08 -11 -159 .18 -2.21 140 2.62
APPR2 -78 195 -.01 -09 -21 -1.78 50 =570 208 4.30
Model IV APPR1 -97 202 .16 -08 .22° 363 .19 926 12.10 23.10
APPR2 140 2.07 -.09 -09 -29 -6.91 -55 '10.66 13.57 26.02
‘ MSE ’
NAIVE - - - 1.89 2.97 148.06 6.96 168.66 68.32 70.14
Model 1 APPR1 20.00 7.28 7.00 1.17 1.84 96.01 3.43 80.02 35.15 40.42

APPR2 25.00 7.65 8.00 125 223 98.69 3.74 112.64 39.06 43.21
Model IV APPR1 30.51 9.90 9.84 1.45 2.49 120.12 4.84 122.80 56.26 58.90
APPR2 36.50 10.46 10.31  1.74 2.58 131.24 5.73 146.04 62.14 66.07

_ Note: Bias = Percent bias = 100 x bias;/|0;|; MSE = Percent vVMSE = 100 x /MSE;/|5;].

4.7 Conclusions and Discussion

. We have proposed two approximate likelihood methods for semiparametric NLME mod-
els with outcome-based informative dropouts and covariate measurement errors and missing
data, implemented by Monte Carlo EM algorithms combined with Gibbs sampler. The first

“method is more accurate than the second method but it may be computationally very in- .
tensive and sometimes may offer computational difficulties such as slow or non-convergence,
especially when the dimensions of fandom effects are not small. The second method is com-
putationally much mdre efficient, but it is less accurate than the first method. The second
method may be used as a reasonable alternative when the first method has convergence prob-
lems or it may be used to provide excellent parameter starting values for the first method.

Simulation studies indicate that the proposed methods, which incorporate measurement
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errors and dropout mechanisms, produce satisfactory results, but methods ignoring mea-
surement errors and/or ignoring dropout mechanisms.may perform poorly. Moreover, the
AIC and BIC criteria perform well in the current setting. i

We have assumed that the dropout models depend on the observed or unobserved
responses and covariates. ‘Allternatively, we may consider drobout models which share the
random-effects parameters in response and covariape' processes. Sﬁch models may be appro-
priate if the dropout mechanism is related to the true but unobservable response/covariate
values or summaries of response and covariate processes such as unobéervable true viral
decay rates. The methods in this chapter may be extended to such models. Finally, for

Monte Carlo EM algorithms, Booth and Hobert (1999) proposed a nice automated method

for choosing the number of Monte Carlo samples, which can be extended in our case as well.
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Chapter 5

Semiparametric NLME Model with
Random-effect-based Informative
Dropouts and Covariate Measurement

Errors

5.1 Introduction

In this chapter, we develop two likelihood methods to simultaneously address covariate mea-
surement errors and random-effect-based informative dropouts in semi_pa,rametric NLME
models. The major difference in the models in this chapter and the models in Chapter
4 is the difference in the assumed missing response (or dropout) models. The response and
covariate models remain the same. In Section 5.2, we discuss the models for this problem.
We obtain approximate MLEs of all model parameters, using a Monte Carlo EM (MCEM)

algorithm along with Gibbs sampler methods, in Sections 5.3. To avoid potential compu-
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tational problems in the method discussed in Section 5.3, we also propose an alternative
approximate method by using a first-order Laplace approxi‘mation to the log—likeiihood func-
tion in Séction 5.4. Some asymptotic properties of the resulting estimates are also discussed.
The two proposed methods are illustrated in a HIV' dataset and are evaluated via simulation
in Section 5.5. We conclude this chapter in Section 5.6 with some discussion. Asymptotic

properties presented in Section 5.4 are proved in Section 5.7.

5.2 Missing Response Models

The dropout is mndom-eﬁect—based info%mative if the missing probébi_lity of the current re-
sponse depends only on the underlying unobservable random effects a; and by, i.e., f(r;ly:, 2, a;, by;
n) = f(rila;, by; nj. In the presence of random-effect-based informative dropouts in the
NLME model (2.6) and (2.7) with the covariate process (2.8), we can again write y; =
(ymisﬂ-, yobs,i) as beforeT Let neps,; be th_e number of components in ygs ;. Here, the missing
Yi;’s are again intermittent, i.e., we allow dropout individuals to possibly return to the study
at a later time. For the vector g = (9i1,-- -, Gin;), Where g;; are defined in (3.6), we wrife
8 = (Zmis,ir Sobsi) With Zops i and g5, being the conditional expectation of yops; and yoms.i,
respectively. Let r; = (riy, ..., T, )7 bé‘a vector of missing response indicators for individual
i such that r; = 1 if y;; is missing and 0 otherwise. Note that r;; = 1 does not necessarily
imply that r; ;41 = 1. We have the observed data {(yobs;, 2:, 1), 1 =1,...,n}.
To allow for an informative missing mechanism in the response, we need to assume
a distribution for the missing response indicator r;. For reasons discussed in Sections 4.2
and 4.7, in this chapter we consider the random-effect-based informative dropout mechanism
- f(rila;, by; ) for r;, where n are the unknown nuisance parameters. For such a missing

data mechanism, the missingness of y;; share the random effects a; and b; in the response
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and covariate models, suggesting that the dropout may be related to the true but unobserv-
able response/covariate values or summaries of individual-specific response and covariate
trajectories such as unobservable true viral decay rates. For example, such missing data
models may be appropriate if a patient is more likely to dropout early because his true (but
unobservable) viral decay rate is slower than other patients.

In this chapter, we focus on the random-effect-based informative missing mechanism
f(xr;|a;, bs; m). Such models are related to the shared-parameter models in the literature
(e.g., Wu and Carroll, 1988; Little, 1995; Ten Have et al., 1998). Although the relationship
of the missingness With the random effects may be complex, a simple logistic regression
model may provide a reasonable approximation. We will assume that r;;’s are independent,
ie.,

f(rilay, bi; m) = H[P(Tij = 1]a;, by; 7)™ [1 = P(ri;.= 1]ay, by; m)]'779, (5.1)

i=1 - B

with

' P(ri; = la;, bi; n)
logit[P(ri; = 1|a;, by; )] = log 1— (p(JT = 1la;, b;; n
. 13 1) (3

)=no+nfm+4ﬁbu

where . = (m9, n7, n¥)T are the unknown nuisance parameters. For example, we may

assume that the missingness of response is related to the first decay rate, say Ay;; = B2 + bio
in Section 4.5., i.e., |
10git[P(7”ij = 1]ay, b;; 77)] = T +m A1ij
= 5+ (B + bi)
= (ng + 71 Ba) + 11 bz
= 70+ M bi2.

Note that we should avoid building too complicated a dropout model since the model

parameters may become non-identifiable. As the assumed dropout models are not testable
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based on the observed data, it is important to carry out sensitivity analysis based on various
dropout models. The random-eﬁect—Based informative dropout models in this chapter and
the outcome-based informative dropout models in Chapter 4 can all be used for sensitivity

analysis.

5.3 A Monte Carlo EM Method

5.3.1 The Likelihood Function

.We consider likelihood inference for semiparametric NLME models with random-effect-based
informative dropouts and measurement errors and missing data in time-varying covariates,
based on approximate models (2.6) — (2.8). Let 8 = (a, B, 62, R, A, B, i) be the collection
of all unknown model parameters. We assume that the parameters o, 3, 62, R, A, B, and
n are distinct. The approximate log-likelihood for the observed data {(yobsi, 2, Ti), ¢ =

1,...,n} can be written as

I

1) = >oog [ [ [ [vlsste as bin, 8,89 falmfas o, ) s )

x f(bs; B) f(ri|as, by; "7)] Ay mis;i da; dbi,

= Sotog [ [ [frivamidan ai bia 6,8 falalas o, B) fai 4
i=1 ’

x f(bi; B) f(ri|a;, by; ”7)] davi d/bi) (5.2)
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where

fY(yobs,i‘zi; a;, b;; o, 3, 52) = H?:f'i fY(yobs,ij|Zij; a;, b;; a, G, 52)
= H?ibf'i (2”52)—1/2 exp{~[Yobs,ij — gobs,ij]2/252}’
fz(zilai; ¢, R) =[[;L, fz(zala; o, R)
=[12, 127 R~V exp{—(zir — wir @ — vy a;)T R~}
X (zik = Ui @ = Vi a;)/2},
f(a; A) = |27A|"Y? exp{—al A 1a;/2},
f(b;; B) = |2nB|"Y?exp{-bl B~'b,/2},
and Yobs,i; 15 the observed y,;. Note that unlike {(8) in Section 4.3, the missing responses
Ymisi are integrated out in (5.2).

The observed-data log-likelihood function [(6) generally does not have a closed-form
expression since the functions in the integral can be nonlinear in the random effects a; and
b;. So we use a Monte Carlo-EM (MCEM) aléorithm to find the approximate MLEs of
parameters . By treating the unobservable random effects a; and b; as “missing” data,
we have “complete data” {(yopsi, Zi, Ti, a;, b;), ¢ = 1,...,n}. The complete-data log-
likelihood function for aﬂ individuals can be expressed as

1(6) = Zlﬁi)(e) = Z{IOg Fr(Yobslzi, i, bis @, B, 6%) +log fz(zi|ai; a, R)
i=1 :

i=1

+log f(ai; A) +log f(bs; B) + log f(rs|a;, by; 77)} ‘ (5.3)

where IV is the complete-data log-likelihood for individual 2.
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5.3.2 A MCEM Algorithm

Let 8¢ be the parameter estimates from the t-th EM iteration. The E-step for individual

at the (t + 1)th EM iteration can be expressed as

Qu(O16Y) = BUSOytnss 2,15 69) = [ [ [ [10g fr(yimmsla 20 bisx, 8, 8)
+log fz(zilai; a, R)+log f(a; A) +log f(by; B)
+ log f(rilai7 b;; 77)] X f(a¢, bilyobs,i; Z;, I';; e(t)) da; db;

1(ex, B, 8%) + I (e, R) + I(A) + I (B) + I (m). (5.4)

I

Since the expression (5.4) is an expectation with respect to f(a;, b;|yobs, Zi, Ti; 8Y), it may
be evaluated using the MCEM algorithm. Specifically, we may use the Gibbs sampler to gen-
erate samples from |[a;, bi[yobsﬂ--, z;, ry; )] by iteratively sampling from the full conditionals

[aib’obs,i: Z;, T, b 9(”] and [bi|}’obs,i, Z;, Ty, &y e(t)] as follows.

F(@ilYobs,ir Zis Ti, bi; 81) o< f(Yobs s Ailzi, T3, by 69)
= f(YobsilZi, T3, a5, by; OB - f(ay|zs, ri, by; 6)
o f(yobszlzl, r;, a;, by OY) - f(r;, a;|z;, by; D)
= f(Yobs,ilZi, ai, bi; e(t)) f(rilzs, a;, by; e(t)) - f(ai]zi, bi; e(t))
= f(Yobs,ilzi, 2i, bi; OV) - f(rias, bi; 89)) - f(ai|zi; 60))
¢ f (Vovsdl, a5, bis 69) - f(rifa, bi; 6) - f(z, ai; 6) 55
= f(ai; 09) - f(Yobsilzi, ai, bi; 09) - f(zilai; 00) - f(rilay, by; D)
F(bilYobssr Zi, Ti, ai; 09) o< f(Yobss, bilzs, ri, ag; 89)
= f(YobsilZi, Ti, a;, by; 8D - f(by|zs, ri, a5, )
o f(YobsilZi, s, a5, bs; 89) - f(r;, b;|zi, a;; 69)
= f(yobsz|zza a;, by; O(t)) f(ri|zi, ai, by o(t)) - f(bilzi, a; 6))
f(bu O(t)) f(Yobsil2i, @i, bi; o(t)) - f(rilai, bi; B(t))-
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Monte Carlo samples from each of the full conditionals can be generatéd using rejection
sampling methods. Alternatively, integral (5.4) may be evaluated using the importance
sampling method (see Section 3.3.3). We will briefly discuss the sampling methods in the
next section. A

Note that, unlike the MCEM methodlin Section 4.3.2, here we do not need to sample
¥Ymis,i, which reduces the computational burden. |

For individual ¢, let {(é(l) B(l)) ,(~(k‘) B(k‘))} denote a random sample of size
k; generated from [al, b;|Yobsis Ziy Ti; O(t)] Note that each (&; (k) b( )) depends on the EM
iteration number ¢, which is suppressed throughout. The E-step at the (¢+1)th EM iteration

can then be expressed as

Q10Y) =

s

n ki . -
QMW%wZ{ﬁZM@ﬁmmmjﬂw%}

kt

s
i
—

k%log fY(yobszlzm (k) b(k) &, 187 52)

t

I
M=

s
il
—

=

=1

ol

% log f2(2:1a%; a, R)'

s
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The M-step then maximizes Q(8]0™) to produce an updated estimate 0%tV o it
is like a complete-data maximization. Since the parameters in QI + Q®, @® Q® and
Q®) are distinct, the M-step can be implemented by maximizing QM) + Q@ Q®), Q¥ and
Q) separately using standard optimization procedures for the corresponding complete-data
models.

As in Section 3.3.2, we use the approximate formula suggested by McLachlan and

Krishnan (1997) to obtain the variance-covariance matrix of the approximate MLE . Let

) = a1 /00, where 19 is the complete-data log-likelihood for individual 4. Then an
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approximate formula for the variance—covariance‘ matrix of 6 is
Cov [ZE s()|yob“, z;, r;; ) E(sﬁi)[yobs,i, Z;, T é)T] _1,
i=1

where the expectations can be approximated by Monte Carlo empirical means, as in (5.6).

In summary, the foregoing MCEM algorithm can be implemented as follows.

Step 1. Obtain an initial estimate of (a, B3, 52, R, A, B) = (a©®, 8O, 52(6), R©) A(‘O),
B©) and an initial value of (a;, b;) = (a!”, b”) based on a naive method; then we ob-
tain an initial estimaﬁe of n = 79 based on the dropout Iﬁodel with the raﬁdom effects
(ai, bi) = (a”, b{").

Step 2. At the t-th iteration, obtain Monte Carlo samples of the random effects
(a;, b;) using the Gibbs sampler along with rejection sampling méthods, or using importance
sampling methods to approximate the conditional expectation in the E-step.

Step 3. Obtain updated estimates o+ using standard complete-data optimization
procedures

Step 4. Iterate between Step 2 and Step 3 until convergence.

- 5.3.3 Sampling Methods

Gi_bbs Sampler
As in Section 3.3.3, we can agéin use the Gibbs sampler to draw the desired samples
as follows. Set initial valﬁes (5(0), B(O)). Suppose that the current generated values are
(égk), ng)) we can obtain (a; (k+1) b(kH)) as follows.
Step 1. Draw a sample for the “missing” random effects a a Y from f(ailyobsis Zi, Ti, b1 ); o).
Step 2. Draw a sample for the “missing” random effects bE *D from f (bi|_y0bsﬂ-, Z;, i, & 5’““’; oM.

After a sufficiently large burn-in of r iterations, the sampled values will achieve a

steady state. Then, {(a; (k) (k)) k=r+1,...,7r+ k;} can be treated as samples from the
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multidimensional density function f(a;, b|Yopsi, 2i, Ti; ). And, if we choose a sufﬁciéntly
large gap ' (say v’ = 10), we can treat {(figk), b,k =r+1,r+2r, ...} as independent
samples from f(a;, by|Yobs, Zi, Ii; G(t)). There are several ways to get the initial values

©

© B based on a naive method.

(égo)’ f)z(.o)). A simple way is to obtain (a
Multivariate Rejection Algorithm

Sampling from the two full conditionais can be accomplished by the multivariate
rejection sampling method. For example, we consider sampling from f(a;|yobs,:, %, I's, bi;
6“) in (5.5). Let f*(a) = f(Yobssl2i, ai, by; 0U) f(zi|a;; 00) f(x;]a;, by; 8Y) and ¢ =
sup{f*(u)}. We assume ¢ < co. A random sambple from f(a;|y.ssi, i, Ti, bi; 8%) can then
be obtained as follows

Step 1. Sample a} from f(a;; 8®), and independently, sample w from the uniform
(0, 1) distribution. |

Step 2. If w < f*(a})/s, then accept a}, otherwise, go back to step 1.

Samples from f(b;|Yobsi, Zi, i, a;; %) can be obtained in é similar way. Therefore,
the Gibbs sampler in conjunction with the multivariate rejection sampling can be used to

obtain samples from [a;, b;|Yobs i, 2, Ti; Y]

5.4 An Alternative Approximate Method

5.4.1 The Hierarchical Likelihood Method

The approximate maximum likelihood inference using a Monte Carlo EM method in the
previous section may be computationally intensive and sometimes may offer potential com-
" putational problems such as slow or non-convergence, especially when the dimensions of the

random effects a; and b; are not small (see the detailed discussion in Section 3.4.1). To
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overcome these difficulties, in this section we consider an alternative rﬁethod called the hi-
erarchical likelihood method (Lee and Nelder, 1996, 2001) for approximate inference. The
hierarchical likelihood method avoids Monte Carlo approximation and thus is always com-
putationally feasible, and it can also used to obtain good parameter starting values for the
MCEM method in the previous section. |

 Let & denote general “nuisance parameters”. Lee and Nélder. (1996) considered a

function pé(l) defined by

Y
pg) = [t~ 3loe |50 &[] .

where D(l, &) = —821/852, and & solves 0l/0¢ = 0. Following Lee and Lelder (1996), the

complete-data log—likelihood function [.(0) in (5.3) may also be called the hierarchical log-

likelihood function since it combines the two stages of mixed-effects models. Let w = {w; =

(a;, by), i =1,... ,n} be the collection of random effects. The function p,(l.(@)) can be

written as |

i - i 1 1 :
Zp o)=Y [zp(e) — 5 log|=D(I{(8), wi)

=1

]wizw; (5.7)

We can show that, for unobservable w, the use of the function p,(l.(8)) is equivalent to
integrating w out using the first-order Laplace approximation. Thug, pe (1(0)) is the first-
ordeér Laplace approximation to the marginal log-likelihood {(8) in (5.2) using the hierarchical
log-likelihood function {,(6). |

‘In fact, let N; = ngps; +m; be the number of the résponse and covariate observatipns
for individual ¢ and let b be the dimension of w;. Assume that N; = O(N) uniformly for
i=1,...,n, where' N = min; N;. Taking k = N;, kp(x) = lgi)(O), v =b, and X = w; in the
following Laplace approximation |

_1
2

9*p(x)

ox?

P& L Ok,

x=X

/ ekP(¥) gx = (Qﬂ/k)v/Q
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where x is a y-dimensional parameter vector and X maximizes kp(x), we can approximate

the ¢th individual’s contribution /;(8) to the overall log-likelihood 1(8) as

l1(0) = log/elgi)(e)dwi = lOg/éNip(wi)dwi

: | 27\ ¥/ o 212 Nep(@n) —
\ ~ log{( ) D), @) Loz | 2 %7 1 0,V
b/2 () e 196 -1
= log D(17(0), wi) |wi=wi e + Op(N;)
1 (g e 1
= log{ | =D(Y(6), w; 2O . Ny
o | Ol + OpNT

= log [eXp{Pwi(l? (6))} +O(N; )]
= pe,(I8(0) + O(N), | (5.8)
in which the last step holds by Lemma 3.2 in Section 3.7. Hence, the log-likelihood /() can

be approximated as

=D _u6) = D o, (@) +OWNT]

= pe((8)) + nO(NY). (59

As N = min; N; grows faster than n, the function pw(lc(O)) approaches the marginal log-
likeiihood function {(6), and hence an estimate of 8, which maximizes p, (I.(6)), also maxi-
mizes [(6). This lead to the following algorithm to obtain an approximate MLE of 6 called
B |

Step 1. Obtain an initial estimate of (c, 8, 6%, R, A, B, w) = (a©®, 8O, 52(0?, RO

AQ ) BO) ,©) based on a naive method, and an initial estimate of n = n® based on the

dropout model with the random effects w©.
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Step 2. Given the current parameter estimates 8, update random-effects estimates
W™ by maximizing (& () with respect to w;, i = 1,...,n.

(t+1)

Step 3. Given the random-effects estimates w; " ’, update the parameter estimates

6+Y) by maximizing py, e+ (1.(8)) with respect to 6.
Step 4. Iterate between Step 2 and Step 3 until convergence.

We can use Fisher informdtion to obtain the following approximate formula for the

variance-covariance matrix of the approximate MLE @y,

2. . -1

Cov(BL) = [_—3 pw(lc(f))} o
0606 0-0,,

Many optimization procedures evaluate the matrix [—0%pg,(1.(0))/000607] at 8 = O

(called Hessian maﬁrix), from which it is easy to obtain Cov(fyz).

5.4.2 Asymptotic Properties

Under suitable regularity conditions on [(8), g(-), and d(-), we extend Vonesh (1996) to show

in Section 5.7 ’chat
(éHL - 6;) = O, [max {n_%, (mz_in Ni)—l}] ,

where @, is the true value of #. Thus, the approximate MLE 0 g1 will be consistent only
as both n and (min; NV;) — oo. Intuitively, the n~% term comes from standard asxmptotic
theory while the (min; V;)~! term comes from the Laplace approximation.

Note that the acc‘uracy of the first-order Laplace approximation to the log-likelihood
function is O{n/(min; Ni)}, or, equivalently, o(1) provided (min; N;) grows faster than n.
In this case, (é HL —00) = Op(n‘%) with @ being asymptotically equivalent to the “exact”
MLE. This reflects the fact that, as the accuracy of the Laplacé approximation to the log- |

likelihood increases, the approximate MLE 65 will behave more and more like the “exact”
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MLE. However, we can decrease the growth rate of (min; V;) for the asymptotic normality
of Oyr. In particular, as (min; N;) grows at a rate greater than né, the rate of consistency
of Oy, will still be Op(n‘%) and the resulting estimate will be asymptotically equivalent to
the “exact” MLE in the sense that it has the same asymptotic distribution as the “exact”
- MLE (see Section 5.7). We correct the claim by Vonesh (1996) that, as (min; N;) grows at a
rate greater than n? but less than or equal to n, the rate of consistency will still be Op(n‘%)
but the resﬁlting estimate will no longer be asymptotically equivalent to the “exact” MLE.

The proofs of the above arguments are given in Section 5.7.

5.5 Example and Simulation

5.5.1 Example

We use the séme HIV dataset in Section 4.5 to illustrate our proposed methods in this
'chapfer, but we use the mndom—eﬁeét—based informative dropout médel here rather than
the outcome-based informative dropout model in" Section 4.5. These iﬁformative dropout
models may be used for sensitivity analysis. We use the commonly-used naiwe method,
which ignores measurement errors and missing data, for parameter starting values iI'1 the

two proposed methods. See the data description in Section 4.5.1.

The Response and the Covariate Models

We consider the same HIV viral dynamic and CD4 measurement error models in

Section 4.5.2. For completeness, we describe these nodels again here. For the viral load




process, we consider the following model

Yij = loglo(Plie—)‘”jt? + Pzie_'\z”tij) + ey, ' (5.10)
log(P;) = B+ by, Aij = B2 + Baz; + by, (5.11)
log(Py) = fs+ bsi, Aaij = w(ti;) + h(ti;), (5.12)

where y;; is the logo-transform of the viral load measurement for patient 7 at time¢;;, Py and
Py; are baseline values, \1;; and Ay;; are viral decay rates, zfj 1S Athe true (but unobservable)
CD4 count, and w(t;;) and h,(t;;) are nonparametric fixed- and random-effects functions
(see Section 2.1). In order to reduce the ﬁumber of nuisance parameters, we assume that the
vériance—covariance matrices A and B of the random effects are both diagonal matrices. To
avoid very small (lafge) estimates, which may be unstéble, we standardize the CD4 counts
-and rescale the original time ¢ (in days) so that the new time scale is between 0 and 1.

As discussed in Section 2.1, we employ the linear combinations of natural cubic splines
with percentile-based knots to approximate w(t) and h;(t). Following Wu and Zhang (2002),
we take the same natural cubic splines with ¢ < p in order to decrease the. dimension of
random effects. AIC and BIC criteria are usedvto determine the \'/alues of p and ¢, which

leads to the following model for Ag; in.(5.12) (see Table 4.1), with p=3 and ¢ = 1,

Aaij = f5 + Pe 1(ti;) + Br 2 (tsy) + bas. (5.13)

For the CD4 process, we consider empirical polynomial LME models, and choose the
best fitted model based again on AIC/BIC values for each possible model. This is done based
on the observed CD4 values, and’is done separately from the response model for simplicity.

The following quadratic polynomial LME model best fits the CD4 trajectory (see Table 4.2):

CD4y = (o1 + a1) + (02 + a2) uy + (a3 + a3) u) + €, (5.14)
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where u; is the time and o = (o1, @z, ag)T are the population parameters and a; =

(ai1, s, as3)T are the random effects.

Random-effect-based Informative Dropout Models

In this study, dropout patients appear to have slower viral decay, compared with the
remaining patients. Thus, drdpouts are likely to be informative or nonignorable. So we need
to assume a model for the dropout ‘process.in order to make valid likelihood inference. Note
that we should avdid building too complicated a dropout Ilnodel‘since a complicated model
may bécome non—‘identiﬁable. Subject-area knowledge and prelinﬁnary checks suggest that
dropout may be related to the random-effects con'lponents' a;1, G2, and by, so we consider

the following dropout model
logit[P(r;; = 1]a¢,_ b;; m)] = m + neai + N3ai + 774’%‘2- ' (5.15)

We assume independence of the rij;s to simplify the model. The dropout model (5.15) along

with the dropout models in Section 4.5 can be used for sensitivity analysis.

Estimation Methods and Computation Issues

We estimate the model parameters using the two proposed “joint” model methods
discussed in Sections 5.3 and 5.4. We denote the method in Section 5.3 by AP and the method
in Section 5.4 by H‘L. The two propos.ed joint model methods need starting values for model
parameters since they are implemented by a MCEM algorithm or by an iterative Laplace
approximation to the log-likelihood function. We use the parameter estimates obtained by
the naive method, which ignores measurement errors and missing data, as pararheter starting
values for the two joint model methods. |

For the naive method, we use the SPLUS function nime() and Ime() to obtain param-

eter estimates and their default standard errors. For the proposed AP method, we assess the
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convergence of the Gibbs sampler by examining time series plots and sample autocorrelation
function plots. For example, Figures 5.1 and 5.2 show the time series and the autocorrelation
function plots for b, associated with patient 14. From these figures, we notice that the Gibbs
sampler converges quickly and the autocorrelations between successive generated samples
are negligible after lag 15. Time series and eutocorrelation function plots for other random
effects show similar behaviors. Therefore, we discard the first 500 samples as the burn-in,
and then we take one sample from every 20 simulated samples to obtain independent samples
(see sampling methods in Section 5.3.3).

We start with ky = 500 Monte Carlo samples, and increase the Monte-Carlo sample
size as the number ¢ of EM iteration increases: ki1 = ki + kt/c with ¢ = 4 (Booth and
Hobert, 1999). Convergence criterion for these two joint mo.del methods in our examples is
that the relative change in the parameter estimates from successively iterations is smaller
than 0.05. Convergence of the algorithms are considered to be achieved when the maximum
percentage change of all estimates is less than 5% in two consecutive iterations.

We use the multiveriate rejection sampling method for the AP method. Other sam-
pling methods may also be applied and may be even more efficient. On a SUN Sparc
work-station, the AP method took about 135 minutes to converge while the HL method
took about 150 minutes to converge. The HL method took more time than the AP method
mainly because all model parameters appear in the nonlinear function pg, ({.(8)) and no sep-
aration of the parameters is possible. However, the HL method is always computationaﬂy
feasible while the AP method sometimes may have convergence problems. Moreover, the HL

method can be used to obtain good parameter starting values for the AP method.

Analysis Results

We estimate the model p'arameters using the two proposed joint model methods AP
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Figure 5.2: The autocorrelation function plot for bz associated with patient 14.
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Table 5.1: Parameter estimates (standard errors) for the models in the example.

Method o1 a2 a3 B B Bz PBs B PBs P 0 R

AP -43 4.29 -3.90 11.72 66.65 1.53 6.93 -1.86 7.49 -2.36 .36 .51
(2) (5) (6) (2) (43) 46) (7) (4.9) (7.8) (2.7)
HL -41 4.32 -3.93 11.64 66.44 1.58 6.89 -1.92 7.46 -2.29 .35 .50

(1) (4) (5) (1) (3.4) (2.8) () (4.8) (7.5) (2.7)

Note: the estimated covariance matrices are A = diag(.62,4.70,4.41) for AP, A = diag(.51,4.74,4.53) for
HL. B = diag(1.45,91.62,1.94,20.16) for AP, and B = diag(1.42,91.91,1.58,19.96) for HL.

and HL. We use the parameter estimates obtained by the naive method as the parameter
starting. values for the AP‘ and the HL methods. We also tried several other par.ameter
starting values for the proposed joint modei methods. Different.parameter starting values
lead to roughly same parameter estimates in both the AP and the HL methods.

Table} 5.1 presents the résulting parameter estimates and standard errors based on
the random-effect-based informative model (5.15). We find thatbthe twd joint model meth-
ods provide similar pafameter estimates. Comparing the random-effect-based informative
dropout model with the outcome-based informative dropout model I in (4.13), we find that

the resulting estimates are similar. This indicates again that the estimation may be robust

against the nonignorable dropout models. Although some estimates in Table 5.1 are not sta-

tistically significant, the values of the estimates may still provide useful information about

viral load and CD4 trajectories. The estimates of parameters 77 based on the AP method (or

‘the HL method) are —2.32, .31, —.05,, and —.07 (or —2.41, .27, —.04, and —.08) respectively,

with all p-values less than .00001, which also indicates that the dropouts may be ’nonignor-
able (or informative) since the missingness may depend on the unobservable random effects.
The estimates of 7,, 73, and 7 indicate that dropout patients seems to have higher baseline
CD4 count, decrease in CD4 count faster over time, and -have slower first decay rate than

the remaining patients.
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5.5.2 The Simulation Study

We evaluate the proposed methods (AP and HL) for the mndom—eﬁect‘—based informative
model (5.} 15) via simulation. The resbonse and covariate models, the mndom-eﬁect-based.
informative dropout model, and the méasurement time points used in the simulation are all
the same as those in the example in the'previous section (i.e., (5.10) — (5.14)). We choose
appropriate values of  to mimic certdin missing rate, and we use the SPLUS function
sample() td generate binary data r;; based on the values of parameters n and the random
effects a; and b;. If r;; = 1, then y;; is deleted, and if r;; = 0, y;; is considered to be observed.

| In the simulations, the true values of model parameters 3 and o are shown in Table
5.2, and the other true parameter valueé'are 0 =2 R=.4 A= diag(.S, 3, 2), and
B = diag(1, 9, 2, 4). We set n = (—1.4,0.1,—-0.1,—-0.1) to get an average missing rate of
20%. We always regard the first two responses on each individual as observed, i.e., every
individual has at least two observed r.esponses.

We simulated 100 data sets and. calculated averages of the resulting estimates and
their standard errors based on each of the two methods. We compare the methods by
comparing their biases and mean—square;errors (MSEs). Here, bias and MSE are aésesseci
in terms of percent relative bias and percent relative root mean-squared error, as defined
in Section 4.6. Since AP method sométimes offers computational préblems, such as slow or
non-convergence, the 100 sets of parameter estimates are obtained from 128 data sets.

From the simulation results in Tables 5.2 and 5.3, we see that the two proposéd joint
model methods (AP and HL) perform well. The AP method performs better than the HL
method in the sense that the AP yields smaller relative MSE and bias than the HL method.
The HL method also performs reasonably well and it is always computationally feasible.
Therefore, the HL method may be a good alternative method when the AP method exhibits

computational difficulties, and the HL method can also be used to obtain good parameter
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Table 5.2: Simulation results for the parameter estimates (standard errors) for the estimation
methods AP and HL.

Parameter oy a2 a3 B Ba B3 P4 Bs Bs Bz
True Value -4 4.0 -4.0 120 670 15 70 20 80 =30

AP -40 4.01 -3.98 11.99 66.95 1.49 6.99 -2.01 8.04 -2.97
(2) (5) (6) (1) (14) (16) (3) (21) (32) (L1)

HL  -38 3.96 -3.93 11.99 67.10 156 6.95 —2.08 8.09 -2.89
1) (4 () (1) (10) (1.3) (3) (1.8) (2.9) (1.0)

Table 5.3: Simulation results for bias and MSE of the parameter estimates for the estimation
methods AP and HL. : ‘

Parameter o, Qg o B B2 [ B4 Bs Bs  PBr
True Value -4 4.0 -4.0 12.0 670 1.5 70 =20 80 3.0

_ : Bias

AP - 1.59 .15 .95 -07 -1 -44 -13 -53 46 .25

HL 217 -1.02 131 -08 .22 108 -26 -3.78 .62 .93
MSE

AP 793 646 7.39 166 1.74 66.69 198 71.84 2895 22.26

HL 9.07 833.931 169 243 93.67 4.24 98.75 37.30 31.71°

Note: Bias = Percent bias = 100 x bias;/|3;]; MSE = Percent vMSE = 100 x /MSE;/|5;|."




starting values for the AP method.

5.6 Discussion

We ‘have proposed two approximate likelihood methods for semiparametric NLME models
with mndom-eﬁ’ect—based informative dropouts and covariate measurement errors andrmissing
data, implemented by a Monte Carlo EM algorithm cgmbined with Gibbs sampler or by an
iterative Laplace approximation to the log—likelihood function respectively. The first method
may be more accurate than the second method but it sometimes may offer computational
difficulties such as slow or non-convergence, especially when the dimensions of random effects
are not small. The second method is always computationally feasible but Iﬁay be less accurate
than the first method. The second method may be used as a reasonable alternative when
the first method has convergence problems or it may be used to provide excellent parameter
starting values for the first method. Simulation studies indicate that both methods produce
satisfactory results. |

Aithough it does not need to generate Monte Car‘lo samples for random effects, the
second method may not be computationally more efficient than the first method. A possible
reason is that there are too many model parameters appear in the nonlinear functions in
optimization procedures and no Separation of the parameters is possible. A possible solution
is to use Bayesian method to address this problem. Specifically, we may assume the known
hyperpriorﬂistributions for the model parameters.

In many longitudinal data sets, dropouts, censoring, measurement errors, and missing
covariates are all present simultaneously. To our knowledge, there are almost no unified
methods in the literature which address these problems simultaneously. Wu (2002) pro-

posed a unified method to address censoring and measurement errors simultaneously and
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showed that the proposed method offered significant improvement over existing methods
currently in use. The ideas in Wu (2002) and in this chapter can be extended to address
dropouts, censorin_g, measurement errors, and missing covariate simultaneously in semipara-

metric/nonparametric NLME models.

5.7 Appendix: Asymptotic Properties of the Approx-

imate MLE 0y in Section 5.4

5.7.1 Consistency

We will show that the following result -
. . -1
(Our — 6o) = O, [max{n-i, (mjn Ni) }}

holds under the usual regularity conditions on 1(8), g(-) and d(-), where 8, is the true value
of 6. |

Proof. Let w; maximize lgi)(O) with respect to w; for fixed 8. Denote N; = ngs; + mz
Suppose ‘that N; = O(N) uniformly for ¢ = 1,...,n, where N = min; N;. Based on (5.8)
in Section 5.4.3, the i¢th individual’s contribution [;(8) to the overall log-likelihood may be

approximated as
Li(8) = p, (1(6)) + O(Ni_l) = pe,(10(6)) + O(N 7).
Hence, the log-likelihood /(@) can be written as (see (5.9))
1) =1*(8) + O{n N1}, o (5.16)

where 1*(0) = pg,(1(8)) = Y0, pe,(1(8)). Let u*(8) = 91*(8)/06 and let 84, be the

appfoximate maximum likelihood estimate satisfying u* (9 1) = 0. Under suitable regularity
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conditions on /(@) and assuming 6. is an interior point in a neighborhood containing 8y,
- Taylor’s theorem tells us that there exists a vector 8 on the line segment between 6y and

0 gL such that

~

n u(Bxr) = n"tu(00) + n M ()04 — 6y), (5.17)

where u(8) = 9((0)/960 and M(8) = 5%1(0)/0606" are the first and second order derivatives
of the true but intractable marginal log-likelihood /(). The first term n™'u(6) on the right

of (5.17) is

1 _101(0) _1&01(0)
80 = 2555 |00, = 1 2 g~ |0-6, -

. , =1
Given sufficient regularity conditions on [(@), we know from the Lindeberg Central Limit

Theorem that

1 _ '
—7(00) 5 N(0,1(65), (5.18)
where the matrix I(8) = lim,—c + 3 I;(8) and I;(8) is the information matrix for individual

=1

1. That implies

_\/%U(OO) = Op(1) &= %u(eo) = Op(n—l/Q)'

The matrix n~'M(8) on the right of (5.17) is

1. . 13%(6)
M) = n 50907 ‘9=9 -

| 2 _1(9), - (5.19)

by the Law of Large Numbers. Since I(8) is positive definite for all @, the probability that
the matrix n~'M (@) is invertible tends to 1. By writing n"'M(8) = —I(8) + 0,(1) and

applying Lemma, 3.2 in Section 3.7 to the inverse function, we have

[nIM(0)] = —I(8)  +0,(1). (5.20)
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Given suitable regularity conditions on ¢(-) and d(-), for example that third order derivatives
exist and are continuous in an open neighborhood about 8y, application of Lemma 3.2 in

Section 3.7 to the partial derivative function in the expression (5.16) leads to

A

n~tu(@gr) = n~'u*(BgL) + O(NY). (5.21).
Note that u*(8x.) = 0 and n~u(p) = O,(n~2). From (5.17), we have
n" M (8)(8rz — 80) = n"'u(@uz) — n” u(6o)
(Buz — 60) = [0 M(8)] " n""u(8xr) — n " u(6o)]
(012 — 80) = (—I(8) ™ + 0, (1)) u(Brz) — n~'u(Bo)]  (by (5.20))

(Onr — 00) = (-I(0)* + o,,(1))[n-1u*(éHL3 +O(NT) +0,(n72)]  (by (5.21))

~

(O — 0) = —f(@’)“1 O, [max{n“%, N"l}} +0p [max{n_%, N%H

(B~ 60) = O, [max{n__%,'<@iin Ni)—l}] ,

el

Finally, let @ML denote the “exact” maximum likelihood estimate with u(@ML) = 0.
Let min; N; = O"(nT) for 7 > 1 so that the accuracy of the Laplace approximation to the
marginal log-likelihood is approximately O(n!=") = o(1) from the formula (5.16). Then,
under the same regularity conditions as before; by multiplying n on the both sides of the

equation (5.21) and noting that u(64) = 0, we have -
u(0pr) = (Byr) + 0p(1) = 0+ 0,(1) = u(Barz) + 0p(1).

Thus u(fgr) — u(fy) = 0,(1) and hence @y is asymptotically equivalent to the “exact”

maximum likelihood estimate @ ML- ' ' O

5.7.2 Asymptotic Normality of Oyr,

In this section, we will show that as N grows at a rate greater than nt, ie, N = O(n")

for 7 > 1, the approximate MLE 6 H-L and the “exact” MLE éML have the same asymptotic
2
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distribution.
Proof. Noting that the approximate MLE @, satisfies a set of equations u*(éHL) =0, we

take a first-order Taylor series expansion of u*(@ gr) around the true parameter 8

. du*(6*)

0=u(0nr) = uw(Bo)+—p7" (65 — o),

where 6* is on the line segment joining 6y to 6 gL, which implies

Va(BuL — 60) = {—13“*(9*)]_1 [iu*(oo)}

n 007 vn ’
no 52 o gi) 0* -1 P w (@ 00
- [y Tl LS el O s

Now we consider the two product terms on the right of (5.22). Applying Lemma 3.2 in

Section 3.7 to the first and second partial derivative functions in the expression in (5.16), we

know that, for any fixed 6,

ﬁu*(e) \/—11(9)+O("2N )
PN V_Z ;; ;_Z N, (5.23)
and
50150 0
n ) z) 2
= Z = aeaoT = delaeT (N7) (5.24)

1

Assume that N = O(n"), where 7 > 3. Then 'O(n% N1 = O(n2™") = o(1). From
(5.23) and (5.24), we have

o, (l )<00>>

. n - =L a1:(0
iy = Jim 5 2. %0 525
n (l(l)(e ) ' 1 n 321'(9*) .
nlggo Z_: 80307 = Hm o 2 20007



Note that g — 0 = Op[max{n‘%, N = Op(n‘%), ie., Oyr is a \/n-consistent estimate

of 8y. Since 0" is on the line segment joining 6, and Op;, 8* 2 6y as n — co. Under the

same regularity conditions as before, it follows from (5.18) and (5.19) that

L5~ 2uo) 4 g f(gy)), | -
' (5.26)

Combining the results in (5.25) and (5.26) and using Slutsky’s theorem, we can show that
Vit(Biz — 00) = N(0, 1(80)™),

which implies that when N = O(n") for 7 > £, the approximate MLE Oy and the “exact”

MLE 8, have the same asymptotic distribution. ‘ ol

b
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‘Chapter 6

Conclusions and Future Research

6.1 Conclusions

In this thesis, we have developed approximate maximum likelihood inference in the following
three problems: (1). semiparametric NLME models with measurement errors and missing
data in time-varying covariates; (2). semiparametric NLME models with covariate measure-
ment errors and outcome-based informative missing responses; (3). semiparametric NLME'
‘models with covariate measurement errors and random-effect-based informative missing re-
splonses. Measurement errors, dropouts, and missing data are addressed simultaneously in a
unified way. For each problem, we have proposed two joint model methods to simultaneously
obtain approximate maximum likelihood estimates (MLEs) of all model parameters. The
first meﬁhod, implemented by a Monte Carlo EM algorithm, may be more accurate than
the second method but it may be computationally very intensive and sometimes may offer
computational difficulties such as slow or non-convergence, especially when the dimensions
of random effects are not small. The second method, which approximates joint log-likelihood

functions by using a first-order Taylor expansion or by using a first-order Laplace approxima-
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tion, is computationally more appealing, but it may be less accurate than the first method.
The performance of the second method may need further investigation. We have showed
some asymptotic results for the estimates based on'the second method. The second method
mdy be used as a reasonable alternative when the first method has convergence problems or
be used to provide excellent parameter starting values for the first method.

Simulation results have shbwn that all proposed methods perform better than the
commonly used two-step method and the naive method which ignores measurement errors,
in the sense that the proposed methods yield smaller bias and MSE. In particular, the
commonly used two-step method may under-estimate standard errors, which ié consistent
with analytic results, and the naive method may under-estimate covariate effects and poorly

estimate other parameters.

6.2 Future Research Topics

Finally, we discuss possible future work relevant to this thesis as follows.

1. In many longitudinal studies such as HIV viral dynamics, another common problem is
that the response measurements may be subject to left censoring due to a detection

" limit. Censored responses in practice were often substituted by the detection limit
oor half the detection limit (Wu and Ding, 1999; Wu and Wu, 2001), which may lead

to substantial biases in the results (Wu, 2002). In the presence of both dropouts
and censoring, unified approaches which address these problems simultaneously in
semiparametric/nonparametric NLME models are needed in order to make reliable

statistical inference.

2. In many longitudinal datasets, dropouts, censoring, measurement errors, and miss-

~ ing covariates are all present simultaneously. To our knowledge, there are almost no
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unified methods in the literature which address these problems simultaneously. Wu
(2002) proposed E,L unified method to addfess censoring and measurement errors simul-
taneously and showed that the f)roposed method offered significant improvement over
existing methods currently in use. The ideas in Wu (2002) and in this thesis can be
extended to address dropouts, censoring, measurement errors, and missing covariates

simultaneously in semiparametric/nonparametric NLME models.

3. For the response process, we only consider semiparametric nonlinear mixed-effects models
with independent and normal distributed error terms e;. In the future, we may consider

more complicated covariance structure for e; such as an AR(1) structure.

4. In our study, we only consider semiparametric nonlinear mixed-effects models for
normal data. Generally, our proposed methods may be extended to other models,
such as semiparametric/nonparametric generalized linear mixed-effects models and

semiparametric/nonparametric generalized nonlinear mixed-effects models.

5. Computational efﬁciehcy is an important issue in our study. Multivariate rejection sam-
pling methods have been used in our data analyses ar;d simulation. In gengral, other
sampling methods, such as adaptive rejection sampling Ihethods and importance sam-
pling methods, may also be used and may be even more efficient. We plan to compare

computational efficiency among several sampling methods in our current setting.

6. In our alternative methods, we have approximated log-likelihood fuﬁctions by using a
first-order Taylor expansion or by using a first-order Laplace approximation. Some-
times, these are not necessarily accurate approximations. In. the future, we may in-
vestigate better approximations, such as higher order Taylor expansions and ‘Laplace

approximations.
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7. One problem in our models is that there are too many parameters. If the data are not

rich enough, the proposed methods may have convergence problems and identifiability

problems. We plan to develop Bayesian methods for our problems.




References

rl ‘ ’
Aitchison, J. and Silvey, S. D. (1958). Maximum-likelihood estimation of parameters sub-

ject to restraints. The Annals of Mathematical Statistics, 29, 813-828.

Amemiya, T. (1983). Nonlinear regression models. In Handbook of Econometrics, Volume

I, Z. Griliches and M. D. Intriligator, eds., pp.333-389. Noth Holland, Amsterdam.

Barndorff-Nielsen, O. E. and Cox, D. R. (1989). Asymptotic Techniques for Use in Statis-

tics. New York: -Chapman and Hall.

Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed models likeli-
hoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical

Society, Ser. B, 61, 265-285.

Bradley, R. A., and Gart, J. J. (1962). The asymptotic properties of ML estimators when

sampling from associated populations. Biometrika, 49, 205-214.

Cé,rroll, R. J., Ruppert, D., and Stefanski, L. A. (1995). Measurement Error in Nonlinear

Models. London: Chapman and Hall.

Chan, K. S. and Ledolter, J. (1995). Monte Carlo EM estimation for time series models

involving counts. Journal of the American Statistical Association, 90, 242-252.

140



Davidian, M. and Giltinan, D. M. (1995).- Nonlinear Models for Repeated Measurements
Data. Chapman & Hall.

de Boor, C. (1978). A Practical Guide to Splines. Springer-Verlag, New York.

Demidenko, E. (2004). Mized Models Theory and Applications. John Wiley & Sons.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood estimation.

from incomplete data via the EM algorithm (wi‘th discussion). Journal of the Royal

Statistical Society, Ser. B, 39, 1-38.

Diggle, P. and Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis

(with Discussion). Applied Statistics, 43, 49-93.

Ding, A. and Wu, H. (2001). Assessing antiviral potency of anti-HIV therapies in vivo by

comparing viral decay rates in viral dynamic models. Biostatistics, 2(1), 13-29.

Euband, R. L. (1988). Spline smoothing and Nonparametric Regression. New York: Marcel
Dekker.

Fitzmaurice, G. M., Laird, N. M., and Zahner, G. E. P. (1996). Multivariate logistic models
for incomplete binary responses. Journal of the American Statistical Association, 91,

99-108.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating

marginal densities. Journal of the American Statistical Associatibn, 85, 398-409.
Geweke, J. (1996). Handbook of Computationali Economics. Amsterdam: North-Holland.

Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied

Statistics, 41, 337-348.




Green, P. J. and Solverman, B. W. (1994). Nonparametric Regression and Generalized

Linear Models. Chapman and Hall, London.

Grossman, Z., Polis, M., Feinberg, M. B'z Grossman, Z., Levi, 1., Jankelevich, S., Yarchoan,
R., Boon, J.‘,‘De Wolf, F., Lange, J. M. A., Goudsmit, J., Dimitrov, D. S., and Paul, W.
‘E. (1999). Ongoing HIV dissemination during HAART. Nature Medicine, 5, 1099-1103. ,

Higgins, D. M., Davidian, M., and Giltinan, D. M. (1997). A two-step approach to mea-
surement error in time-dependent covariates in nonlinear mixed-effects models, with

application to IGF-I pharmacokinetics. Journal of the American Statistical association,

92, 436-448.

Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., and Mérkowitz, M.
(1995). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection.
Nature, 373, 123-126.

Ibrahim, J. G., Chen, M. H., and Lipsitz, S. R. (2001). Missing responses in generalized
linear mixed models when the missing data mechanism is nonignorable. Biometrika,

- 88, 551-564.

Ibrahim, J. G., Lipsitz, S. R., and Chen, M. H. (1999). Missing covariates in generalized
linear models when the missing data mechanism is nonignorable. Journal of the Royal

Statistical Society, Ser. B, 61, 173-190.

Ke, C. and Wang, Y. (2001). Semiparametric nonlinear mixed-effects models and their
applications (with discussions). Journal of the American Statistical Association, 96,

1272-1298.

Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Bio- .

metrics, 38, 963-974.




Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models. Journal of the
Royal Statistical Society, Ser. B, 58, 619-678.

' Lee, Y. and Nelder, J. A. (2001). Hierarchical generalised linear models: A synthesis of gen-
eralised linear models, random-effect models and structured dispersions. Biometrika,

88, 987-1006.

Liang, H., Wu, H., and Carroll, R. (2003). The relationship between virologic and immuno-
logic responses in AIDS clinical research using mixed-effects varying-coefficient models

with measurement errors. Biostatistics, 4, 297-312.

Lindstrom, M. J. and Bates, D. M. (1990). Nonlinear mixed effects models for repeated

measures data. Biometrics, 46, 673-687.

Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated measures studies.

Journal of the American Statistical Association, 90, 1112-1121.

Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. New York:
John Wiley.

Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm.

Journal of the Royal Statistical Society, Ser. B, 44, 226-233.

McCulloch, C. E. (1997). Maximum likelihood algorithrﬁs for generalized linear mixed

models. Journal of the American Statistical Association, 92, 162-170.

“McLachlan, G. J. and Krishnan, T. (1997). The EM-Algorithm and Extension. New York,

Wiley.

Ogden, R. T. and Tarpey, T. (2006). Estimation in Regression models with externally

estimated parameters. Biostatistics, 7, 115-129.

143




Perelson, A. S., Neumann, A. U., Mdrkowitz,LM., Leonard, J. M., and Ho, D. D. (1996).
HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral gener- . -

ation time. Science, 271, 1582-1586.

Pinheiro, J. C. and Bates, D. M. (1995). Approximations to the log-likelihood function in
the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics,

4, 12-35.

Rice, J. A. and Wu, C. O. (2001). Nonparametric mixed-effects models for unequally

sampled noisy curves. Biometrics, 57, 253-259.
Seber, G. A. F. (1984). Multivariate Observations. New York: Wiley.

Serfling, R. J. (1980). Approzimation Theorems of Mathematical Statistics. New York:
Wiley.

Shah, A., Laird, N., and Schoenfeld, D. (1997). A random-effects model for multiple char-
acteristics with possibly missing data. Journal of the American Statistical Association,

92, 775-779.

Ten Have, T. R., Pulkstenis, E., Kunselman, A., and Landis, J. R. (1998). Mixed ef-
fects logistics regression models for longitudinal binary response data with informative

dropout. Biometrics, 54, 367-383.

Vonesh, E. F. (1996). A note on the use of Laplace’s approximation for nonlinear mixed-

effects models. Biometrika, 83, 447-452.

Vonesh, E. F. and Chinchilli, V. M. (1997). Linear and Nonlinear Models for the Analysis

of Repeated Measurements. Marcel Dekker, New York.




Vonesh, E. F., Wang, H., Nie, L., and Majumdar, D. (2002). Conditional second-order gen-
eralized estimating equations for generalized linear and nonlinear mixed-effects models.

Journal of the American Statistical Association, 97, 271-283.

Wéi,-G. C. and Tanner, M. A. (1990). A Monte Carlo implementation of the EM algbrithm
and the poor man’s data augmentation algorithm. Journal of the American Statistical

Association, 85, 699-704.

Wolfinger, R. (1993). Laplace’s approximation for nonlinear mixed models. Biometrika,

80, 791-795.

Wu, H., Kuritzkes, D. R., McClernon, D. R., Kessler, H., Connick, E., Landay, A., Spear,
G., Heath-Chiozzi, M., Roﬁsseau, F., Fox, L., Spritzler, J., Leonard, J. M., and Leder-
man, M. M. (1999). Characterization of viral dynamics in human immuno-deficiency
virus type l-infected patients treated with combination antiretroviral therapy: rela-

tionships to host factors, cellular restoration and virological endpoints. Journal of

Infectious Diseases, 179, 799-807.

Wu, H. and Ding, A. (1999). Population HIV-1 dynamics in vivo: application models and

inferential tools for virological data from AIDS clinical trials. Biometrics, 55, 410-418.

Wu, H. (2005). Statistical Methods for HIV Dynamic Studies in AIDS Clinical Trials.
Statistical Methods in Medical Research, 14,171-192. |

Wu, H. and Zhang, J. (2002). The study of long—tefm HIV dynamics using semi-parametric

non-linear mixed-effects models. Statistics in Medicine, 21, 3655-3675.

Wu, L. (2002). A joint model for nonlinear mixed-effects models with censoring and covari-
ates measured with error, with application to AIDS studies. Journal of the American

Statistical Association, 97, 955-964.

145



Wu, L. (2004). Exact and approximation inferences for nonlinear mixed-effects models with

missing covariates. Journal of the American Statistical Association, 99, 700-709.

Wu, L. and Wu, H. (2001). A multiple imputation method for missingvcovariate‘s in non-
linear mixed-effect models, with application to HIV dynamics. Statistics in Medicine,

20, 1755-1769.

Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence

of informative right censoring by_modeling'the censoring process. Biometrics, 44, 175-

188.




