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Abstract 

Semiparametric nonlinear mixed-effects (NLME) models are flexible for modelling 

complex longitudinal data. Covariates are usually introduced in the models to partially ex

plain inter-individual variations. Some covariates, however, may be measured with substan

tial errors. Moreover, the responses may be missing and the missingness may be nonignor-

able. In this thesis, we develop approximate maximum likelihood inference in the following 

three problems: (1). semiparametric N L M E models with measurement errors and missing 

data in time-varying covariates; (2). semiparametric N L M E models with covariate measure

ment errors and outcome-based informative missing responses; (3). semiparametric N L M E 

models with covariate measurement errors and random-effect-based informative missing re

sponses. Measurement errors, dropouts, and missing data are addressed simultaneously in 

a unified way. For each problem, we propose two joint model methods to simultaneously 

obtain approximate maximum likelihood estimates (MLEs) of all model parameters. Some 

asymptotic properties of the estimates are discussed. The proposed methods are illustrated 

in a HIV data example. Simulation results show that all proposed methods perform better 

than the commonly used two-step method and the naive method. 
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Chapter 1 

Introduction 

1 . 1 Longitudinal Studies 

A longitudinal study is defined as a study in which the response for each individual in 

the study is observed on two or more occasions. Longitudinal studies are very common 

in health and life sciences, epidemiology, medical, and biomedical research. Longitudinal 

studies are. also common in other areas including education, psychology, social sciences, and 

econometrics. A major advantage of longitudinal studies over cross-sectional studies is that 

in longitudinal studies one can model the individual response trajectory over time while in 

cross-sectional studies one cannot. 

In longitudinal studies, covariates may be classified into two categories: time-varying 

covariates and time-independent covariates. Time-varying covariates represent variables 

which vary over time within individuals. Time itself may be viewed as a covariate in that 

often there is interest in testing whether there are any changes in the response variable 

over time. When one studies children's weight trajectories over time, the height may be a 

time-varying covariate which can change with time. Time-independent covariates, on the 



other hand, may represent baseline factors which do hot vary with time. Examples of time-

independent covariates might include an individual's gender and race. One of the goals 

in longitudinal research is to investigate the effects of important covariates on individual 

response trajectories over time. 

A defining feature of a longitudinal data set is repeated observations on a number of 

individuals. The repeated observations on the same individual tend to be correlated. It is 

important to explicitly recognize two sources of variability in a longitudinal data set: random 

variation among repeated measurements within a given individual and random variation 

between individuals. Moreover, the number of observations within individuals often varies 

from individual to individual (i.e., the data are often unbalanced). Therefore, longitudinal 

data require special statistical methods to draw valid statistical inferences. 

There are three approaches to a longitudinal data analysis. "The marginal model 

approach is to model the marginal expectation of a response as a function of covariates. 

The methods are designed to permit separate modelling of the regression of the response 

on covariates, and the association among repeated observations of the response for each 

individual. Marginal models are appropriate when inferences about the population average 

are the main interest. For example, in a clinical trial the average difference between control 

and treatment is most important, not the difference for any one individual. 

The random effects model approach assumes that the response is a function of covari

ates with regression coefficients varying from one individual to the next. A random effects 

model is a reasonable description if the set of coefficients for a set of individuals can be 

thought of as a sample from a distribution. In random effects models, correlation arises 

among repeated responses because the regression coefficients vary across individuals, and 

regression coefficients represent the effects of the covariates on an individual, which is in 

contrast to the marginal model coefficients which describe the effect of covariates on the 



population average. Random effects models are most useful when the objective is to make 

inference about individuals, such as in AIDS studies. They may focus on both population 

parameters and individuals characteristics. 

The transition model approach describes the conditional distribution of each response 

on an individual as an explicit function of his past responses and covariates. Under transition 

models, correlation among the response observations on one individual exists because the 

past response observations explicitly influence the present response observation. The past 

response observations are treated as additional covariates. 

In each of the three approaches, we consider both the dependence of the responses 

on covariates and the correlation among the responses. With cross-sectional data, only the 

dependence of the responses on covariates needs to be specified since there is no correlation 

of responses. In longitudinal studies, in which correlation usually exists among responses, 

there are at least two consequences of ignoring it as follows. First, incorrect inferences about 

regression coefficients. In particular, confidence intervals are too short based on assumption 

of independence when in fact there is positive dependence. Secondly, the estimation method 

may be inefficient, that is, less precise than possible. 

1.2 Parametric Nonlinear Mixed-effects Models 

Parametric nonlinear mixed-effects (NLME) models, or hierarchical nonlinear models, have 

been widely used in many longitudinal studies such as human immunodeficiency virus (HIV) 

viral dynamics, pharmacokinetic analyses, and studies of growth and decay (Davidian and 

Giltinan 1995; Vonesh and Chinchilli 1997). In these studies, the intra-individual variation 

and the inter-individual variation are typically modelled by a two-stage hierarchical model. 

The first stage specifies the mean and covariance structure for a given individual, whereas 
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the second stage characterizes the inter-individual variation. Understanding the nature of 

inter-individual systematic and random variation at the second stage often receives more 

emphasis. This inter-individual variation may be partially explained by some baseline or 

time-varying covariates. 

Suppose that there are n individuals with measurements over time. Let yy and zy 

respectively be the response value and the i / x l covariate values for individual i at time Uj, 

i = 1, . . . , n, j = 1, . . . , rii. The covariates zy may incorporate variables such as time, dose, 

etc. A general parametric N L M E model can be written as a hierarchical two-stage model as 

follows (Davidian and Giltinan, 1995) 

V i j = giz&PJ + eij, eilfS,1^ N(0,52I), (1.1). 

ft,- = d (z i i ; ft hi), N(0,B), i = l,...,n, j = l,...,m, (1.2) 

where g{-) and d(-) are known (possibly nonlinear) functions, ft,- are individual-specific pa

rameters, f3 are population parameters (fixed effects), b; are random effects, ft — (/3^,..., f3jni)T, 
ei — (eii, • • . , eini)T are within-individual random errors and are assumed to be independent' 

of bj, 82 is the unknown within-individual variance, / is the identity matrix, and B is an 

unknown variance-covariance matrix. 

In AIDS studies, for example, viral loads (Plasma HIV-1 R N A copies) and various 

covariates such as CD4 count are usually measured over time after initiation of treatments. 

The following parametric N L M E model has been widely used to fit short-term (the first three 

months after treatments) HIV viral dynamics (Wu, 2002; Wu and Zhang, 2002) 

y y = l o g 1 0 ( P l i e - A l * ^ + P 2 i e - X ^ ) + ey, (1.3) 

l0g(Pu) =p\ + bli} XUj = #2 + fcZij + hi, . (1-4) 

log(P 2 ») = PA + hi, X2ij = As + hi, (1.5) 

where yy and zy are the logio-transformation of the viral load measurement and CD4 count 
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for patient i at time Uj respectively, = (bu, b2i, hi, bij)T are random effects, Pu and P2i 

are baseline values, and A i ^ and X2ij are the first (initial) and the second phase viral decay 

rates respectively (they may be interpreted as the turnover rates of productively infected 

cells and long-lived and/or latently infected cells respectively). 

Although N L M E models are popular in practice, their use has been somewhat limited 

because of the. complexity of the likelihood function. Estimation of model parameters based 

on maximum likelihood can be challenging since these models are typically nonlinear with 

respect to the random effects and thus have no closed-form expressions for the marginal like

lihood. This has led to the development of some widely used approximate methods based 

on Taylor expansions or Laplace approximation of the likelihood function (Lindstrom and 

Bates 1990; Wolfinger 1993; Vonesh, Wangs, Nie, and Majumdar 2002). These approximate 

methods are computationally efficient in the sense that they .may converge faster and have 

less computational problems than the "exact" likelihood method, which finds the maximum 

likelihood estimator (MLE) using numerical integration techniques or Monte Carlo methods. 

These approximate methods often perform well if the number of infra-individual measure

ments is not small, but their performance may be less satisfactory if the intra-individual 

data are sparse, especially when the inter-individual variability is large (Davidian and Gilti-

nan 1995; Vonesh and Chinchilli 1997; Pinheiro and Bates 1995). Thus there is still a need 

for developing "exact" methods. "Exact" likelihood inference for generalized linear mixed 

models based on Monte Carlo E M algorithms has been investigated by McCulloch (1997) 

and Booth and Hobert (1999). 
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1.3 Semiparametric Nonlinear Mixed-effects Models 

Parametric N L M E models are powerful tools in many longitudinal analyses. In some cases, 

however, parametric N L M E models may not be flexible enough in modelling complex lon

gitudinal processes, since the underlying mechanism which generates the data may be com

plicated in practice. In these cases, semiparametric or nonparametric models may be more 

flexible in modelling the complex longitudinal process (Ke and Wang, 2001; Rice and Wu, 

2001). In particular, semiparametric N L M E models are very useful in characterizing both 

the intra-individual variation and the inter-individual variation, in which the intra-individual 

variation is modelled semiparametrically while the inter-individual variation is incorporated 

by random effects (Davidian and Giltinan, 1995; Ke and Wang, 2001; Wu and Zhang, 2002). 

In AIDS studies, for instance, the parametric N L M E model (1.3) - (1.5) is appropriate 

only for fitting short-term HIV viral dynamics. Due to long-term clinical factors, drug 

resistance, and other complications, the viral load trajectories can be very complex after the 

initial phase viral decay (see Figure 1.1 for long-term viral load trajectories of six randomly 

selected HIV patients). Grossman et al. (1999) pointed out that viral decay rates after the 

initial period may be complicated and may vary over time since they may depend on some 

phenomenological parameters which hide considerable microscopic complexity and change 

over time. Therefore, a nonparametric smooth curve modelling for the second phase viral 

decay rate may be more appropriate than parametric modelling (Wu and Zhang, 2002). This 

leads to the following semiparametric N L M E model 

y i j = l o g 1 0 ( P i i e - A l « * « + P 2 i e ~ x ^ ) + e y , (1.6) 

log(Pu) = (3i + bu, XUj = (32 + (33Zij + b2i, (1.7) 

log(P 2i) = PA + hi, A 2ij = w(Uj) + hilUj), (1.8) 

where w(-) and hi(-) in (1.8) are unknown nonparametric smooth fixed- and random-effects 
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Figure 1.1: Viral loads (response) of six randomly selected HIV patients. 



functions used to describe the complicated second phase decay rate X2ij-

Wu and Zhang (2002) introduced a class of semiparametric N L M E models for lon

gitudinal data. The standard parametric N L M E models can be regarded as a special case 

of their models. Their models are more flexible than the semiparametric N L M E models 

proposed by Ke and Wang (2001). Details of the semiparametric N L M E models proposed 

by Wu and Zhang (2002) will be described in Chapter 2. 

1 . 4 Measurement Errors and Dropouts 

In many longitudinal studies, the inter-individual variation may be large and this variation 

may be partially explained by time-varying covariates. Some covariates, however, may be 

measured with substantial errors and may contain missing values as well. Ignoring measure

ment errors and missing data in covariates may lead to biased results (Carroll et al. 1995; 

Higgins et al. 1997; Wu, 2002). Moreover, some individuals may drop out of the study 

before the scheduled end for various reasons such as drug intolerance, which leads to missing 

data. Measurement errors and missing data make statistical analysis in longitudinal studies 

much more complicated, because standard complete-data methods are not directly applica

ble. Therefore, it is very important to find appropriate methods to deal with measurement 

errors and missing data. 

In AIDS studies, for example, it is well known that CD4 counts, which may be used 

as covariates, are usually measured with substantial errors and are usually measured at time 

points different from the response (viral load) measurement schedule. In addition, it is very 

common that some patients drop out of the study early or miss scheduled visits due to drug 

intolerance or other problems. Visual inspection of the raw data seems to indicate that 

dropout patients may have slower viral decay, compared with the remaining patients. Thus, 
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the dropouts are likely to be informative or nonignorable. 

Commonly used measurement error models are reviewed in Carroll et al. (1995). For 

N L M E models with covariate measurement errors, Higgins, et al. (1997) proposed a two-step 

method and a bootstrap method, and Wu (2002) considered censored response and covariate 

measurement errors based on a joint model. There is also extensive literature on dropouts 

in longitudinal studies (e.g., Diggle and Kenward, 1994; Little 1995; Ibrahim et al. 2001). 

However, there is little literature on addressing measurement errors, informative dropouts, 

and missing data in semiparametric N L M E models. 

In the presence of missing data, the missing data mechanism must be taken into 

account to obtain valid statistical inferences. Little and Rubin (1987) and Little (1995) 

discussed statistical analyses with missing values. Let = (yu,... ,yini)T be a vector of 

repeated observations of a variable y on individual i. Write = (y[°\ y^™'), with y-°' 

denoting the observed components of and y | m ^ denoting the missing components of y,. 

Let Ti = (ra,..., r i n i ) T denote a set of indicator variables such that ry = 1 if y^ is missing 

and rij = 0 otherwise. The probability distribution of r; defines a probability model for the 

missing value mechanism. Little and Rubin (1987) classified the missing value mechanism 

as follows. 

• Missing data are missing completely at random ( M C A R ) if the probability of missing-

ness is independent of both observed and unobserved data. When missing data are 

caused by features of the study design, rather than the behavior of the study subjects, 

the M C A R mechanism may be plausible. For example, some values are missing because 

of reasons irrelevant to the treatment (e.g., the medical equipment is broken down on 

a certain day). So missingness is M C A R if is independent of both y\°^ and y - m ' 

• Missing data are missing at random (MAR) if the probability of missingness depends 
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only on observed data, but not on unobserved data. For example, a patient may fail 

to visit the clinic because he/she is too old. In mathematical notation, missingness is 

M A R if Ti is independent of . 

• Missing data are nonignorable or informative (NIM) if the probability of missingness 

depends on unobserved data. For random effects models, we consider the following 

two nonignorable response missing mechanisms. First, the probability of the missing

ness depends on unobserved responses. For example, a patient fails to visit the clinic 

because he/she is too sick. We call the missingness outcome-based informative (Little, 

1995) if rt is dependent on y\m\ but not on the random effects bj. Secondly, the 

probability of missingness depends on unobservable random effects. For example, an 

AIDS patient may drop out if his/her individual-specific viral decay is too slow. We 

call the missingness random-effect-based informative (Little, 1995) if r-j is dependent 

on random effects bj, but not on y-m^. 

Both M C A R and M A R missing mechanisms are sometimes referred to without distinc

tion as ignorable. Little and Rubin (1987) showed that, when missing data are nonignorable, 

likelihood inference must incorporate the missing data mechanism to avoid biased results. 

1 . 5 A Motivating Example 

Our research is motivated by HIV viral dynamic studies, which model the viral load tra

jectories after initiation of anti-HIV treatments. HIV viral dynamic models have received 

great attention in AIDS studies in recent years (Ho et al. 1995; Perelson et al. 1996; Wu 

and Ding, 1999; Wu, 2005). These viral dynamic models provide good understanding of the 

pathogenesis of HIV infection and evaluation of anti-HIV therapies. N L M E models have 

been popular in modelling the initial period of HIV viral dynamics and in characterizing 
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the large inter-patient variation. It is shown that the initial viral decay rate may reflect 

the efficacy of the anti-HIV therapy (Ding and Wu, 2001). One of the major challenges in 

modelling long-term HIV viral dynamics is that, during late stages of an anti-HIV treatment, 

it is difficult to model the viral load trajectory parametrically, because drug resistance, non

compliance, and other long-term clinical factors may affect viral load trajectories. Therefore, 

semiparametric N L M E models may be more suitable for modelling HIV viral dynamics (Wu 

and Zhang, 2002). 

Understanding the large inter-patient variation in HIV viral dynamic studies often 

receives great attention, which may help to provide individualized treatments. It has been 

shown that covariates such as CD4 cell count (see Figure 1.2) may partially explain the 

large inter-patient variation (Wu et al. 1999; Wu, 2002). However, some covariates such 

as CD4 cell count may be measured with substantial errors and may be measured at time 

points different from the response measurement schedule (which leads to missing data in 

covariates). Ignoring these measurement errors and missing data in covariates may lead to 

biased results (Wu, 2002). In addition, it is very common that some patients may drop out of 

the study early or miss scheduled visits due to drug resistance/intolerance and other problems 

(although dropout patients may return to study later). It appears that dropout patients 

may have slower viral decay rates, compared with the remaining patients (see Figure 1.1). 

Thus the dropouts are likely to be informative or nonignorable. Therefore, it is important 

to address measurement errors, informative dropouts, and missing data in semiparametric 

N L M E models in order to obtain reliable results, which may make significant contributions 

to H I V / A I D S studies. 

The following AIDS dataset motivates our research. A more detailed data description 

can be found in Wu (2002). The dataset includes 53 HIV infected patients who were treated 

with a potent antiretroviral regimen. Viral loads (Plasma HIV-1 R N A copies) were measured 
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Figure 1.2: CD4 counts of six randomly selected HIV patients. 
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on days 0, 2, 7, 10, 14, 21, 28 and weeks 8, 12, 24, and 48 after initiation of treatments. After 

the antiretroviral treatment, the patients' viral loads will decay, and the decay rates may 

reflect the efficacy of the treatment. Throughout the time course, the viral load may continue 

to decay, fluctuate, or even start to rise (rebound). The data at the late stage of study are 

likely to be contaminated by long-term clinical factors, which leads to complex longitudinal 

trajectories. Various covariates such as CD4 count were also recorded throughout the study 

on similar schedules. It is well known that CD4 counts are usually measured with substantial 

errors. The number of response (viral load) measurements for each individual varies from 6 

to 10. Five patients dropped out of the study due to drug intolerance or other problems and 

sixteen patients have missing viral loads at scheduled time points. There were 104 out of 

403 CD4 measurements missing at viral load measurement times, due mainly to a somewhat 

different CD4 measurement schedule. Six patients are randomly selected and their viral 

loads are plotted in Figure 1.1. 

In the presence of measurement errors in CD4 count, we consider the following semi-

parametric N L M E model, which corresponds model (1.6) - (1.8), to fit the viral dynamics 

Va = \ogw{Pue-x^ + P 2 i e - x ^ ) + e i j , (1.9) 

log(Pi0 = Pl + hi, Xlij = $2 + Psz*j + b2i, (1.10) 

log(P2t) = + hi, A 2 i i = w(tij) + hiiUj), (1.11) 

where z*- is the unobservable true CD4 count, reflecting the belief that actual, not possibly 

corrupted, CD4 counts govern the initial phase viral decay rate XUJ. Model (1.9) - (1.11) 

will be used in our data analyses in later chapters. The CD4 count trajectories for six 

randomly selected'patients are plotted in Figure 1.2. There exists large variability in CD4 

count between patients. Most CD4 count trajectories appear to have roughly quadratic 

polynomial shapes. We will discuss covariate models in the next chapter. 
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1.6 Research Objectives and Thesis Organization 

In this thesis, we consider approximate maximum likelihood inference in the following three 

problems: (1). semiparametric N L M E models with measurement errors and missing data 

in time-varying covariates; (2). semiparametric N L M E models with covariate measurement 

errors and outcome-based informative missing responses; (3). semiparametric N L M E models 

with covariate measurement errors and random-effect-based informative missing responses. 

Measurement errors, dropouts, and missing data are addressed simultaneously in a unified 

way. Some asymptotic results are developed. For each problem, we propose two joint model 

methods to simultaneously obtain approximate maximum likelihood estimates (MLEs) of all 

model parameters. The first method, implemented by a Monte Carlo E M algorithm, is more 

accurate than the second method but it is computationally very intensive and may offer 

computational difficulties such as slow or non-convergence, especially when the dimensions 

of random effects are not small. The second method, which approximates joint log-likelihood 

functions, is always computationally feasible and is often computationally much more effi

cient, but it is usually less accurate than the first method. The second method may be used 

as a reasonable alternative when the first method has convergence problems or may be used 

to provide excellent parameter starting values for the first method. 

The remainder of this thesis is organized as follows. In Chapter 2, we introduce general 

semiparametric N L M E models with covariate measurement errors. Following Rice and Wu 

(2001) and Wu and Zhang (2002), we employ natural cubic spline bases with the percentile-

based knots to transform semiparametric N L M E models into a parametric N L M E models. 

In Chapter 3, we address measurement errors and missing data in time-varying covariates 

in semiparametric N L M E models and propose two joint model methods, implemented by a 

Monte Carlo E M algorithm and by a first-order Taylor approximation to log-likelihood func-
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tions, respectively. We also compare the two joint model methods with the two-step method 

suggested by Higgins, et al. (1997) and discuss the asymptotic properties of approximate 

M L E s . We finally apply the two joint model methods to a HIV dataset. In Chapter 4, we 

address outcome-based informative dropouts and covariate measurement errors in semipara

metric N L M E models and propose two joint model methods, implemented by Monte Carlo 

E M algorithms. We illustrate our proposed methods in a HIV dataset and evaluate their per

formance via simulation studies. In Chapter 5, we consider random-effect-based informative 

missing responses in semiparametric N L M E models with covariate measurement errors. We 

propose two joint model methods, implemented by a Monte Carlo E M algorithm and by a 

first-order Laplace approximation to log-likelihood functions respectively, to simultaneously 

obtain approximate M L E s of all model parameters. We also discuss some asymptotic prop

erties of the approximate M L E s . We illustrate our methods in a HIV dataset and evaluate 

their performance by simulation studies. We conclude this thesis with some discussion and 

possible future work in Chapter 6. 
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Chapter 2 

A Semiparametric Nonlinear 

Mixed-effects Model with Covariate 

Measurement Errors 

2.1 Introduction 

In this chapter we present the general form for semiparametric N L M E models with covariate 

measurement errors. In Section 2.2, we describe a general semiparametric N L M E model 

for the response process and incorporate possibly mis-measured time-varying covariates. We 

approximate the proposed semiparametric N L M E model by a parametric N L M E model, using 

linear combinations of natural cubic splines with percentile-based knots. Consistency of the 

estimates is discussed. In Section 2.3, the covariate process is modelled using a mixed-effects 

model to address measurement errors and missing data. 
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2.2 A Semiparametric N L M E Model for the Response 

Process 

2.2.1 A Semiparmetric NLME Model with Mis-measured Covari

ates 

We describe a semiparametric N L M E model in general form. Let be the response value 

for individual i at time Uj, i = l , . . . , n , j = l , . . . , n j . Let ZM be the observed value 

and let z*kl be the unobservable "true" value of covariate k for individual i at time uu, 

i = 1, . . . , n, k = 1, . . . , v, 1 = 1,..., m-i. For simplicity, we focus on the case where z*kl is 

the current true covariate value, but our method can be extended to the case where z*kl is 

a summary of the true covariate values up to time uu. Note that for each individual, we 

allow the covariate measurement times uu to differ from the response measurement times 

Uj. In other words, we allow missing data in the covariates. Let — (yu,... ,yini)T and 

z* = (zfi> • • • >zLjT» where zu = (ziU, • . . ,ziui)T, l = l,...,mi. 

For the response process, we consider a general semiparametric N L M E model similar 

to Wu and Zhang (2002), but incorporate possibly mis-measured time-varying covariates 

Vij = 9(Uj, rifcjfi + eij, (2.1) 

ft, = d*(^, [3*, b*), (2.2) 

rt(t) = v(w(t), hi(t)), i = 1,... ,n, j = 1,... ,nu (2.3) 

where g(-), d*(-), and v(-) are known (possible nonlinear) functions, w(t) and hi(t) are 

unknown nonparametric smooth fixed-effects and random-effects functions respectively, /3*. 

are individual-specific parameters, (3* are population parameters, is the within-individual 

random error, and b* are random effects. Let e; = (en,... ,eini)T. We assume that ~ 
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N(0, 521), where 52 is the unknown within-individual variance and I is the identity matrix, 

b* 7Y(0, £ * ) , /ij(i)'s are identical and independent realizations of a zero-mean stochastic 

process h(t), and b* and hi(t) are independent of e i . We can rewrite the semiparametric 

N L M E models (2.1) - (2.3) in a compact way 

Vij = g(Uj, d*(z*., [3*, b*), v(w(tij), htiUj))) + eij. (2.4) 

Note that in (2.1) or (2.4), we assume that the individual-specific parameters /3*- depend on 

the true but unobservable covariates z*,- rather than the observed covariates zy, which are 

measured with error. 

Because of the nonparametric parts (i.e., w(t) and hi(t)) in the model, the semipara

metric N L M E model (2.4) is more flexible than parametric N L M E models for modelling 

longitudinal data, and it reduces to a parametric N L M E model when the nonparametric 

parts w(t) and hi(t) are constants. Following Wu and Zhang (2002), model (2.4) is also 

more flexible than other semiparametric N L M E models that have appeared in the literature, 

such as Ke and Wang (2001). The semiparametric N L M E models in Ke and Wang (2001) 

can be considered as a special case of model (2.4). In particular, their model only put the 

random effects in [3*^ as in (2.2) and considered (£*,•) = W(UJ; /?*•) in (2.3). Therefore, 

model (2.4) is a very general and flexible semiparametric N L M E model. 

2.2.2 A B a s i s - b a s e d A p p r o a c h t o N o n p a r a m e t r i c F u n c t i o n s 

To do statistical inference for the semiparametric N L M E model (2.4), a main difficulty is how 

to fit the nonparametric smooth fixed-effects function w(t) and random-effects function hi(t). 

Following Rice and Wu (2001) and Wu and Zhang (2002), we use a basis-based approach 

which transforms a general semiparametric N L M E model into a set of parametric N L M E 

models indexed by a smoothing parameter (the number of basis functions). We use the 
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fixed-effects function w(t) to illustrate the basis-based approach. 

Let x be the support of t and L2(x) be the inner product space of all square integrable 

functions with norm || • || and inner product < •, • >, where for any ipi, ip2 £ L2{x)> w e define 

Jx Jx 

Assume that w(t) is an element of a smooth function space Sw(x), a subspace of L2(x)- A n 

example of Sw(x) is the Sobolev space 

W^(x) = {ir>\il>,ip',...,i){m~1] absolutely continuous, ^ ( m ) e L2(X)}. 

Denote a complete orthonormal basis of Sw(x) by \I>(£) — [ipo(t), tpi(t), tp2(t), • • • ]T where 

ipo(t) = 1. Then w(t) can be expanded as 

oo 

fc=0 
where the coefficients 

Hk= w(t)ipk(t)dt =< w,ipk> . 
J X 

Let * p(t) = [ipo(t), ipi(t), • • • ,ipP-i(t)]T and fj,p — (//o, A*i, • • • ,^P)T- Since w(t) are square 

integrable, the truncations of w(t) at term p 

p - i 

fc=0 
-2 will converge to w(t) in L -norm as p tends to infinity. It follows that when p is large enough, 

wp(t) can approximate w(t) very well, i.e., w(t) ~ wp(t). 

Similarly, if we assume that hi(i) is an element of a smooth function space 5/l(x)(c 

L2(x)) with a complete orthonormal basis = [(f>o{t), <Pi(t), 02 (0> • • - ]T where (j>o(t) = 1, 

the truncations of hi(t) at term q 

<?-i 

k=0 
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will converge to hi(t) in L 2 -norm as q tends to infinity, where <&g(£) = [<f>o(t), <f>i(t), • • •, 

(f)q-i(t)]T and £, i q = ( £ i 0 > . . . , £ ; g ) T . It follows that when q is large enough, hiq(t) can approx

imate hi(t) very well, i.e., hi(i) ~ hiq(t). 

The function wp(t) can> be considered as the projection of w(t) on the linear space 

S(x, *p) = {i> | i> = typ(t)T fip, fip G i?p} C Sw(x), spanned by basis functions $?p(t), 

and the function hiq(t) can be considered as the projection of hi(t) on the linear space 

S{x, = {0 I 0 = ^P^T iiq^ iiq € C SUx), spanned by basis functions With 

p and g increasing, io p(i) and /iig(t) approach to w(t) and respectively. Parameters 

/x p and are unknown vectors of fixed- and random-effects coefficients, respectively. Since 

/ii(i)'s are assumed to be identical and independent realizations of a zero-mean stochastic 

process, we can regard £ i q as identical and independent realizations of a zero-mean random 

vector with unknown covariance matrix K. 

There are many bases available in the literature for curve fitting. Among global 

bases are Legendre polynomials and Fourier series, and among local bases are regression 

splines (Eubank, 1988), B-splines (de Boor, 1978) and natural splines (Green and Silverman, 

1994). A B-spline of degree d on x with knots to < ti < ' ' ' < < ^M+I is a piecewise 

polynomial with polynomial pieces of degree d joining together smoothly at the interior knots 

* i < • • • < * M while satisfying some boundary conditions. In other words, a B-spline is a 

polynomial of degree d within each of the intervals [tk, tfc+i), 0 < k < M — 1, and [XM, I M + I ] , 

which globally has (d — l)-continuous derivatives. Al l such B-splines form a linear space with 

M + d + 1 basis functions which are mainly determined by three factors: the degree d; the 

location of the knots, and the number of interior knots M. When the degree d = 3, the 

corresponding B-splines are called cubic splines. When the cubic splines have zero second 

and third derivatives at the two extreme knots XQ and XM+I, they are called natural cubic 

splines. Without loss of generality, throughout this thesis, we assume that the nonparametric 
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fixed- and random-effects functions w(t) and hi(t) are elements of the Sobolev space VK2

2(x) 

and we use natural cubic spline bases (Green and Silverman, 1994) due to their many good 

properties, for example, easy construction, good smoothness, and flexibility to model the 

underlying curves of various shapes (de Boor, 1978). 

2 .2 .3 P e r c e n t i l e - b a s e d K n o t P l a c i n g f o r S p l i n e s 

The placing of knots is an important issue for splines in which we attempt to use a few 

knots to represent a sample of design time points. We use sample percentiles of the design 

time points as knots so that there are more (fewer) knots in the area where more (fewer) 

design time points are available, as suggested by Wu and Zhang (2002). They indicated 

that the percentile-based knot placing rule should work better for longitudinal data than 

the equally-spaced knot placing rule used by Rice and Wu (2001), since the design time 

points of longitudinal data are usually sparse and often not uniformly spaced. Moreover, the 

percentile-based knot placing rule guarantees that the locations of the knots (and also the 

resulting basis functions) are sample-dependent and design-adaptive. These properties are 

not shared by the equally-spaced knot placing rule. After the degree d and the knot placing 

rule are determined, we need to choose the numbers of the interior knots, or equivalently to 

choose the numbers p and q of the basis functions, which are called smoothing parameters. 

2 .2 .4 S e l e c t i o n o f S m o o t h i n g P a r a m e t e r s 

Using natural cubic spline bases with percentile-based knots to fit the nonparametric fixed-

and random-effects functions w(t) and hi(t), we can transform the semiparametric N L M E 

model into a parametric N L M E model. To assess how well the resulting parametric N L M E 

model approximates the original semiparametric N L M E model, we need to consider two 

factors: the goodness-of-fit and the model complexity. Goodness-of-fit usually indicates how 
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well the model fits the data (or how small the biases of the associated estimators are). It can 

be improved by increasing p and q or equivalently, enlarging the linear spaces Sw(x,^p{t)) 

and Sh(x,®q{t))- However, the model complexity represents how complex the model is (or 

how large the variances of the associated estimators are). The model usually becomes more 

complicated with increasing p and q. Thus, there is a trade-off between the goodness-of-

fit and the model complexity. To balance the two components, it is natural to employ 

some model selection rules such as the Akaike Information Criterion (AIC) or the Schwarz's 

Bayesian Information Criterion (BIC) (Davidian and Giltinan, 1995). This is because the 

transformed parametric N L M E models are indexed by p and q and choosing different p and 

q is equivalent to choosing different parametric N L M E models. 

Let <p be the number of independent parameters in a parametric N L M E model, say, 

model (1.1) and (1.2). Then the A I C and the BIC are defined as 

A I C = -2Loglik + 2tp, 

BIC = -2Loglik + [log ( £ m)] cp, 

where Loglik is the log-likelihood of the fitted the parametric N L M E model (see Davidian and 

Giltinan, 1995, pl56). Since a parametric N L M E model with a larger number of parameters 

will always produce a larger value for the log-likelihood (a smaller value for -2 Loglik), the 
n 

penalty terms 2<p in A I C and log(]Tnj) ip in BIC are needed to offset this advantage. Since 
L i = l J 

the penalty term in BIC is usually much larger than that in A I C , BIC is a conservative rule 

and generally favors a parsimonious model. Since both the A I C and the BIC of a parametric 

N L M E model are defined as twice the negative log-likelihood of the model (representing the 

goodness-of-fit) plus a. penalty term related to the number of parameters used in the model 

(representing the model complexity), we will choose ^p(t) and $>q(t) so that the AIC or the 

BIC are minimized over a series of ^p(t) and $g(t), which leads to the best approximate 

parametric N L M E model to the original semiparametric N L M E model in terms of the AIC 
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and BIC criteria. Liang et al. (2003) noted that the model obtained this way often provides 

good approximation in practice. We will evaluate the performance of the A I C and the BIC 

in the current setting (see Section 4.6). 

2 .2 .5 T r a n s f o r m a t i o n o f t h e S e m i p a r a m e t r i c N L M E M o d e l 

After determining the smoothing parameters p and q via the A I C and the BIC criteria, we 

replace w(t) and hi(t) in the nonparametric function r;(£) in (2.3) by their approximations 

wp(t) and hiq{t). Thus, we obtain an approximation to the nonparametric function r^t), 

and approximate the semiparametric N L M E model (2.4) as follows 

V i j « gfc, d*(zT., ft, b*), v^!p{t)T ^ $q(t)T£iq)) + ^ 

= giUj, d(zy, ft, bi)) + ey (2.5) 

where (3 = (ft , /j, ) are fixed effects, b; = (b*, £ i ? ) are random effects, and d(-) is a known 

but possible nonlinear function. Then, we can approximate the semiparametric N L M E model 

(2.1) - (2.3) by the following parametric N L M E model 

Va = </(/,;• ft.-Hey, e i | f t ^ / V ( 0 , 52I), (2.6) 

ft,. = d ( z y , ft bi), b > A f JV(0,/3), (2.7) 

where B is an unstructured covariance matrix. Note that e; and bj are independent of each 

other. Approximate statistical inference can then be based on the approximate model (2.6) 

and (2.7), as shown in Chapters 3 - 5 . 

2 .2 .6 C o n s i s t e n c y o f t h e E s t i m a t e o f w{t) 

After we obtain estimates jip and £ i q based on the parametric N L M E model (2.6) and (2.7), 

we can then estimate the nonparametric functions w(t) and hi(t) in the semiparametric 
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N L M E model (2.1) - (2.3) as follows 

w(t) =• wp(t) = *p(i)TAP, 
k(t) = kg(t) = $g(t)Tiiq, 

Therefore, the consistency of the estimates in the semiparametric N L M E model (2.1) - (2.3) 

is strongly related to the consistency of estimates in the parametric N L M E model (2.6) 

and (2.7). Under some mild conditions, the following Theorem 2.1 guarantees that we can 

obtain a consistent estimate w(t) of the nonparametric fixed-effects function w(t) in the 

semiparametric N L M E model (2.1) - (2.3) if we can find i/n-consistent estimates -ft of the 

fixed-effects coefficients pip. 

Following Wu and Zhang (2002), we prove the consistency of the estimate w{t) of the 

nonparametric fixed-effects function w(t) in the semiparametric N L M E model (2.1) - (2.3) 

based on the following conditions: 

(a) . $(t) is a complete orthonormal basis of S(x), a subspace of L2(x)-
oo 

(b) . The nonparametric fixed-effects function w(t) E S(x) s o that w(t) = £ l^ki>k{t)-
k=Q 

(c) . The design time points {i^, i = l,...,n, j = l , . . . , n j } are identically and 

independently distributed such that when the number n of individuals tends to infinity, the 

number of distinct time points will tend to infinity. In this case, we can truncate w(t) in 

the semiparametric N L M E model (2.1) - (2.3) in such a way that wp(t) = Y^k^o^k^kif) = 

typ{t)T /xp so that p —> oo, p/n —> 0 as n —> oo. 

(d) . For any fixed p, we assume that we can obtain A/n-consistent estimates fxp of the 

fixed-effects coefficients pLp so that as n —• oo, E(p\p) — > fip and Cov(\/nfip) —• E p for some 

semidefinite positive matrix S p with p _ 1 t r ( E p ) bounded. 

T h e o r e m 2.1. Under Conditions (a) - (d), as n —* oo, we have \\w — w\\ —> 0 in probability. 
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"p f"pl 

- p - 1 
J E\\p,p-»p\\2 = E 

p-i 

P-I 

fc=i 

Proof. First we consider E\\£ip — [ip 

_fc=0 

= ^ E [ / x f c - E ( / i f c ) + ^ ( A f c ) - ^ ] 2 

fc=i 
p-i 

- £ - W * ) ] 2 + - A**] 2 + 2[A/t - E(p:k)][E(fik) - vk]} 
fc=i 
P-I 

= £ { E [ £ f e - £(£fc)] 2 + [£(£*) - ^]2} 
*;=i 
p—i p—i f 

= ^ V a r ( / i f e ) + I ] [ ^ ( A f c ) - ^ ] 2 

fc=i fc=i 

- tr [Cov(Ap)] + | |£; (Ap ) -M P ] ) 2 -

Under Conditions (a) and (b), and C o v ( v

/ n / i p ) —> S p in Condition (d), we have 

E\\w - w\\2 = E\\wp - w\\2 < 2{E\\wp - wp\\2 + \\wp - w\\2} 

= 2{E\\p,p-vP\\2 + \\wp-w\\2} 

= 2{tr[Cov(jip)] + \\E(j±p)-tip\\2 + \\wp-w\\2} 

= 2{n- 1tr[Cov(v^/i p)] + \\E(p.p) - M p | | 2 + \\wp - w\\2} 

= 2 J n - 1 t r [ S p + o(l)] + ||£;(Ap)-̂ ||2 + ̂ 2
f c | 

= 2(n- 1[tr(Sp)+po(l)] + | | / i ; ( A p ) - / X p | | 2 + f;^} 
fc=p 

= 2^ 
k=p ) 

Under Conditions (b)-(d), it is easy to show that the three terms in parentheses {•} of the 

right-hand side tend to 0 as n —> oo. Under Condition (d), as n —> oo, E\\w — w\\2 —> 0 

implies \\w — w\\ —* 0 in probability. • ' 
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2.3 Measurement Errors and Missing Data in Covari

ates 

At the presence of measurement errors and missing data in the time-varying covariates 

zu = (zni,... ,zil/i)T, we need to model the covariate processes. We consider the following 

multivariate linear mixed-effects (LME) model (Shah et al., 1997) to empirically describe 

the covariate process 

where Uu and Vu are design matrices, a and are unknown population (fixed-effects) and 

individual-specific (random-effects) parameter vectors, and eu are the random measurement 

errors for individual i at time uu- For example, we may model the covariate processes 

parametrically based on empirical polynomial models with random coefficients, as in Hig

gins et al. (1997) and Wu (2002). Alternatively, we may model the covariate processes 

nonparametrically, and approximate the nonparametric fixed- and random-effects functions 

by linear combination of some basis functions, as in Section 2.2. For either parametric or 

nonparametric covariate models, we may convert the covariate models to the L M E model 

(2.8). Note that the covariate model (2.8) incorporates both the correlation of the repeated 

measurements on each individual and the correlation among different covariates. 

Note that the parameters in the covariate model (2.8) may be viewed as nuisance pa

rameters because they are often not of main interest. We assume that the true (unobservable) 

covariate values are 

zit = Uua + Vu a; + eu (= z*t + eit) i = 1, . . . , n, I = 1, . . . , m-i (2.8) 

z*u = Uua + Vu sit. 

We also assume that a; i.i.d. N{0, A), ea 

i.i.d. 7V(0, R), and â  and et = (e^,... 

independent, where A is an unrestricted covariance matrix and R is an unknown within-
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individual covariance matrix. We further assume that and a, are independent of ej and 

b j . Models (2.8) may be interpreted as a covariate measurement error model (Carroll et al., 

1995; Higgins et al., 1997). 

To allow for missing data in the time-varying covariates (or different measurement 

schedules for the time-varying covariates), we recast model (2.8) in continuous time: 

Zi(t) = Ui(i)cx + Vi(t)ai + ei(t), i = l,...,n, 

where Z j ( £ ) , Ui(t), Vi(t), and e»(t) are the covariate values, design matrices, and measurement 

errors at time t respectively. At the response measurement time Uj, which may be different 

from the covariate measurement times uu, the possibly unobserved "true" covariate values 

can be viewed as z*j = [7^ cx + a^, where Uij = Ui(Uj) and = Vi(Uj). In other words, 

missing covariates at time Uj may be imputed by their estimated true values z*-. 
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Chapter 3 

A Joint Model for Semiparametric 

N L M E Models with Covariate 

Measurement Errors and Missing 

Data 

3.1 Introduction 

In this chapter, we address measurement errors and missing data in time-varying covariates 

for semiparametric N L M E models. In Section 3.2, we review the two-step method proposed 

by Higgins et al. (1997). We derive some analytic and asymptotic results for the two-

step estimates for parametric N L M E models with mis-measured covariates, and analytically 

show that the variances of the main parameter estimates based on the two-step method are 

underestimated. 

To address measurement errors and missing data in time-varying covariates in semi-

28 



parametric N L M E models based on models (2.6) - (2.8), in Sections 3.3 and 3.4 we propose 

two joint model methods, implemented by a Monte Carlo E M algorithm and by a first-order 

Taylor approximation to the log-likelihood function respectively, to find approximate M L E s 

of model parameters. We also discuss asymptotic properties of these approximate M L E s . 

In Section 3.5, we apply the two joint model methods to a real dataset. We evaluate 

the proposed methods and compare them with the two-step method via simulation studies. 

We conclude this chapter with some discussion in Section 3.6. Proofs of the asymptotic 

properties of approximate M L E s are presented in Section 3.7. 

3.2 A Two-step Method 

For covariate measurement error problems, a commonly used method is the so-called two-

step method (Higgins, et al., 1997; Liang, et al., 2003): in the first step the "true" covariate 

values are estimated based on an assumed covariate model, and then in the second step, 

the possibly mis-measured covariates in the response model are simply replaced by the esti

mated covariates from the first step. The estimation of the main parameters in the response 

model proceeds as if the estimated covariate values are the true covariate values without 

measurement error. Intuitively, the resulting estimates of the main parameters may be ap

proximately unbiased if the covariate estimates from the first step are unbiased, but the 

variances of the main parameter estimates may be underestimated because the variability of 

the covariate estimation in the first step is ignored in the estimation of the main parameters 

in the second step. Higgins et al. (1997) and Ogden and Tarpey (2005) realized this problem 

and proposed bootstrap methods which incorporate the variability from estimating the co

variates in the first step. Wu (2002) considered an approximate joint model approach which 

also incorporates the variability in the covariate estimation. In this section, we derive some 
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analytic results for the two-step estimates for parametric N L M E models with mis-measured 

covariates such as the models (2.6) - (2.8), analytically show that the variances of the main 

parameter estimates based on the two-step method are underestimated, and derive some 

asymptotic results for the two-step estimates. 

Let y = (yf, • • • , y ^ ) T , and define z, z*, and e similarly. If z* is known, an estimate 

(3 of (3 can be expressed as (3 = s(y, z*), where s is a vector function. Since z is recorded 

with errors and z* is unobservable, we assume z = z* + e, where E(e) = 0. Let z be an 

unbiased estimate of the true covariate value z* based on the observed covariate value z (i.e., 

E(z) = z*). The two-step method estimates (3 by f3 = s(y, z), which depends on realizations 

of two random variables y and z. If we assume that E[s(y, z*)] « (3, and y and z are roughly 

independent so that 

E 
d s ( y , z ) 

dz 
( z - z * ) } E 

d s ( y , z ) 

dz 
£ ( z - z * ) , 

and that the function s(y, z) is well approximated by a first-order Taylor series expansion 

around z*, then we show next that the estimate f3 is also approximately unbiased, following 

Ogden and Tarpey (2005). Taking a first-order Taylor expansion of s(y, z) around the "true" 

covariate value z*, we have 

E0) = £ ( s ( y , z ) ) ^ £ { s ( y , z * ) + ds(y,z) | 
dz Iz=z* ( z - z * ) } 

(3 + E ds(y,i) E(z - z*) = f3, 

provided that the expectations exist (the expectation operator in the above expression is 

to be taken as the expectation with respect to both y and z). However, the variances of 

the two-step estimates will be underestimated, as shown below. When z is plugged in the 

estimation of j3, the resulting variance-covariance matrix is actually an estimate of Cov(/3|z). 

By the well-known variance decomposition formula 

Cav0) = Cov[£(/3|z)] + £[Cov( /3|z)] , 
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we know that Cov(P) — E[Cov(/3\z)] is nonnegative definite, since Cov[E(/3|z)] is nonneg-

ative definite. Thus, on average, the two-step approach underestimates the true variance-

covariance matrix of f3. 

Following the general approach taken by Amemiya (1983), under the suitable regular

ity conditions on the log-likelihood function of P (e.g., the third order derivatives exist and 

are continuous in an open neighborhood about (3), we derive the asymptotic distribution for 

the M L E of f3 when the unobservable "true" covariates z* are imputed by their estimated 

values ẑ . Suppose that ẑ  are ^/m^-consistent estimates of z* and that 

yfrriiizi - z*) N(0, fiZi), i = l,...,n, 

where is the number of observations for covariates on individual i. We assume that 

mi = 0(m) uniformly for i — 1,. . . , n, where m — min^m,), and that m,j and n go to 

infinity at the same rate with n/rrti —• Cj, where 0 < Cj < oo. Let 

n 

i=l 

be the log-likelihood function of f3 based on the observed data y and z* with the unobservable 

"true" covariates z* are imputed by their estimated values z. The M L E J3 of /3 satisfies a 

set of equations 

where 

dp f-' dp 
1=1 

dk{P;yi, Z j ) = dlj(P;yi, z f) 
dp dp P=P 

Taking a first-order Taylor expansion of dl((3;y, z)/d/3 around the "true" covariates z*, we 
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have 

° - E 
i = i 

n = E 
i= l 

n 

= E 
n • = E 

i= i 
n = E 

i = i 
n = E 

2=1 

dli(P;yi, z*) n + E 
i = i 

r&li&yi, z* 
dp 

n + E 
i = i 

L d/33zf 

dli((3;yi, K) + E 
i= l 

r c ^ f t v i , z* 

8(3 + E 
i= l 

L <9/3<9zf 

dli(P;yi, z*) n + E 
i = i 

d2h(p-yi, z*) 
a/3 

n + E 
i = i 

dpdzf 

dli(f3;yu z*) n +E 82k(P;yi, z*) 
dp 

n +E dpdzf 

dk(P;yi, z | ) n +E 
i= l 

d2k(P;yi, z*) 
5/3 

n +E 
i= l 

dpdzf 

8h(P;yi, z*) 
dp 

n + E 
» = i 

d2li(P;yi, z*) 
dpdzf 

•(ii - z') + 0{|| Z , - z-|| 2) 

* - < > + £ > ( £ ) 
1=1 * 

Z j - z*) + Op I m a x Y — ) 
L i \ m j / . 

Z i - z * ) + O p ( m i n m ^ . 

z» - z*) + Op(m _ 1 ) , 

since z» are y / 7 7 v c o n s i s t e n t estimates of z*. Next, carrying out a first-order Taylor expansion 

of 9k(P; y i , z*)/dp in the above expression around /3, we can obtain 
i= l 

i = i 
d/3d/3J 

d2lj(P;yj, z*) . _x 
( z i - Z i ) + Op(m ) = 0 

i= l 

E 
t=i 

dh(P;yu zj) 
a/3 

i = i 

dpdzf 

d2h(p;yi, z*) 
dpdpT 

(P-P) + Op(n-1) 

, ^ d2li(P;yi, z*) * s , n , -u n 

+ 2^—a/35z r ( z i - Z i ) + QP(^ ) = o, i= l 

since /3 is the M L E of /3 and thus it is i/^-consistent under the necessary regularity conditions 

on the log-likelihood function of p. The above expression can be written as 

n ^ 
1 ^ d2h(P;yi, z*) 

i= i 
dpdp1 

v t= i 

dkjp-^z*) 
dp 

i=l 

d2k(p;yi,z*) 
dpdz\ 
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Assume that the following limits exist 

lim - f > ( / 3 ) = /(/3), 
n — * o o 7T, * — • • 

' =1 

where ii(/3) = —E[d2li(f3; yi, z*)/d(3d0r] is the Fisher information matrix for individual i. 

It follows from Lemma 3.2 in Section 3.7 that 

1 A - &kfayu z? ) n d2h(i3;yi, z*) p 

Note that -\/n( zi — z \ ) ~ \ / C i m i { z i —
 z*) for large n and m .̂ Using the asymptotic normality 

of Z j , we know that for large m*, £'[y /rf^'(zi — z*)] « 0 and Cov[y /m^(z i — z*)] « flz.. By 

Lindeberg's central limit theorem, we have 

It follows from Slutsky's theorem that 

1 ^ d2li0-yi, z*) r l ^ U d2k(J3;yi, z*) d 

Under the necessary regularity conditions on the log-likelihood function of (3, based on the 

standard arguments for showing asymptotic normality of M L E s , we can obtain 

and 

1 A d2li(f3;yi, z*) P -
^ d(3df3T I m 

Since y and z are roughly independent, the two limit random variables with distributions 

N(0, Q z ) and N(0, I((3)) are roughly independent. Note that n/m = 0(1). Putting these 

pieces together, we have asymptotic normality of y/n(/3 — (3) as follows: 

• ^cp-ft^N^rm-'+m-^jipy 1]. (3.1) 
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Note that the variance-covariance matrix of (3 based on the asymptotic distribu

tion (3.1) has two components. The first component I(f3)~l is the "naive" estimate of the 

variance-covariance matrix of /3 in the two-step method, in which the variability of z» is 

neglected. The second component /(/3) _ 1 O z /(/3) _ 1 arises from the variability in estimating 

Z j and summarizes the extra uncertainty of (3 due to estimation of Z j . Since the second 

component I{[3)~1 flz 7(/3)_1 is nonnegative definite, the variances of the main parameter 

estimates based on the two-step method are underestimated. 

3.3 A Joint Model Method for Likelihood Inference 

3.3.1 The Likelihood for the Joint Model 

We consider likelihood inference for semiparametric N L M E models with measurement er

rors and missing data in time-varying covariates, based on the approximate parametric 

N L M E models (2.6) - (2.8). The observed data are {(yi, z*), i = l , . . . , n } . Let 6 = 

(a, (3, 52, R, A, B) be the collection of all unknown parameters in models (2.6) - (2.8). 

We assume that the parameters a , (3, 52, R, A, and B are distinct. Let /(•) be a generic 

density function, and let [X\Y] denote a conditional distribution of X given Y. The approx

imate log-likelihood for the observed data {(yi, Z j ) , i = 1,... ,n} can be written as 

i=i J 
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where 

/y(yi |z i , a, (3, 52) = TJpli My i j l z y> a*> b*; A <̂ 2) 

= n;ii ( 2 ^ ) - ^ exp{-[y y - g(tl3, d(v%a + v̂ ai, /3, b,))]2/2<52}, 

/z(zi|ai; a, i?) = T J ^ i /z(zifcla*; a, i?) 

= ]ir=i M " 1 / 2 exp{-(zifc - u i f c cx - wik R~l 

x(zifc - U i f c Q - Vi f cai)/2}, 

/(a,; A)" = | 2 7 r A | - 1 / 2 e x p { - a l M - 1 a i / 2 } ) 

/(bi; fl) = |2^fi|-1/2eXp{-bf/3-1bi/2}. 

This approximate log-likelihood function generally does not have a closed-form expression 

since the functions in the integral can be nonlinear in the random effects ai and bj. Exact 

likelihood calculations therefore require numerical evaluation of an integral whose dimension 

is equal to the dimension of the random effects (ai( b;). This is straightforward to do by 

direct numerical integration such as Gaussian quadrature when the dimension of (ai, bi) is 

very small (say, 1 or 2). However, when (â , bi) has a dimension of 3 or more as is often the 

case in practice, one needs to consider alternative methods such as computationally intensive 

Monte Carlo methods. 

Laird and Ware (1982) obtained M L E s in L M E models using the E M algorithm. 

Here we use a Monte Carlo E M ( M C E M ) algorithm to find the approximate M L E s of all 

parameters 6. By treating the unobservable random effects ai and bi as additional "missing" 

data, we have "complete data" { (y , , Z j , ai, bi), i = l , . . . , n } . The complete-data log-

likelihood function for all individuals can be expressed as 

lc{Q) = E lc(0) = £ { l o g /y(yj | z i , ai, bi; a, (3, 52) + log fz{zi\^\ a, R) 
i=i i=i (3.2) 

+ log / (a i ;y l ) + log/(b i ;B)} ) 

where is the complete-data log-likelihood for individual i. 

35 



3 .3 .2 A M C E M M e t h o d 

The E M algorithm (Dempster, Laird, and Rubin, 1977) is a very useful and powerful algo

rithm to compute M L E s in a wide variety of situations, such as missing data and random-

effects models. The E M algorithm iterates between an E-step, which computes the condi

tional expectation of the complete-data log-likelihood given the observed data and previous 

parameter estimates, and a M-step, which maximizes this conditional expectation to update 

parameter estimates. The computation iterates between the E-step and M-step until con

vergence leads to the M L E s (or local maximizers). When there are several modes in the 

conditional expectation, the M L E s can be determined by trying different parameter starting 

values. For our models, the E-step is quite intractable due to nonlinearity, so we use Monte 

Carlo methods to approximate the intractable conditional expectations. In the M-step, we 

use standard complete-data optimization procedures to update parameter estimates. 

Let 6® be the parameter estimates from the i-th E M iteration. The E-step for 

individual i at the (t + l)th E M iteration can be written as 

Qi(9\0W) = E(l®(0)\yi, zf; flW) 

log /y(y;|zi, ai, bi; a, (3, S2) + log /z(zj|aj; a, R) 

+ log /(ai; A) + log /(bi; B) x /(ai, b;|v;, z{; 0(*>) db{ 

= J « ( a , (3,52) + / W ( a , R) + I®(A) + I®(B). (3.3) 

The above integral generally does not have a closed form, and evaluation of'the integral by nu

merical quadrature is usually infeasible, except for simple cases. However, note that expres

sion (3.3) is an expectation with respect to the conditional distribution /(ai, bi|yi, z*; 0®), 

and it may be evaluated using the M C E M algorithm of Wei and Tanner (1990), as in Ibrahim 

et al. (1999, 2001). Specifically, for individual i, let {(af \ bf >),..., (af(), bft})} denote a 

random sample of size kt generated from [a;, bj|yj, z*; 0^]. Note that each (afbf )̂ de-
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pends on the E M iteration number t, which is suppressed throughout. Then we approximate 

the conditional expectation Qi(0\0®) in the E-step by its empirical mean, with missing data 

replaced by simulated values, as follows 

= IT E log fviyiK a ? \ b f > ; « , (5, 6>) + i £ log / z ( * | a ? > ; a , J2) 
k=l fc=l 

+ i E l o g /(af U ) + £ E log / ( b i F C ) ; B ) . 

fc=i fc=i 

We may choose ko as a large number and kt = kt-\ + fct_i/c, t — 1, 2 ,3 , . . . , for some positive 

constant c, in the t-th iteration. Increasing kt with each E M iteration may speed up the E M 

convergence (Booth and Hobert, 1999). The E-step at the (t + l)th E M iteration can then 

be expressed as 

Q(o\o®) = ± QMeW) » E \rt E ^ ( 0 ; vu ~^t\ b ? } ) } 
i=i i=i i fe=i j 

= E E £ l o g M v t K a f , b?\a, (3, <52) + ± E £ log / ^ a f ; a , i?) 
i=lfc=l i=lfc=l 

+ E E i log /(af5; A) + E E i log / ( b ! f c ) ; B ) 
1=1 fc=l 2=1 fc=l 

= Q ^ a , /3, r52|6>W) + Q( 2)(a, i?|6»W) + < 2 ( 3 ) ( A | 0 « ) + Q ^ O ^ M ) . 

To generate independent samples from [a i ( b j | y i , z{; 0^], we use the Gibbs sampler 

(Gelfand and Smith, 1990) by sampling from the two full conditionals [aj | y i , Zj, b ^ 0^] and 

[ b i | y j , Zi, f?(t)] as follows. 

/ (ai lyi , z i ; b i ; 0<*)) oc / (a i , y ^ Z j , b i ; 0(*>) = / ( a ^ , b i ; 0<*>) • fY(yi\zi, a i ; b ^ 0(*>) 

= / ( a i | z i ; 6>W)- / y (y i | z i , a i , b i ;6»W) 

oc /(a,; 0 « ) • / ^ ( Z i | a i ; 0W) • M y ^ , ai, b , ; 0 « ) , (3.4) 

/ ( b i | y i , Z i , a i ; 0 ( t ) ) oc / ( b i , y i | z i , a,; 0 W ) = / ( b i | z i , a^ 0 W ) • / y ( v i | z i , a*, fy; 0W) 

= / ( b i ; 0 W ) - / y ( y i | z i i a i , b i ; 0 ( * ) ) , 

where a i and b i are independent each other. Monte Carlo samples from the above full condi

tionals can be generated using rejection sampling methods, as in Wu (2004). Alternatively, 
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integral (3.3) may be evaluated using the importance sampling method. Details of these 

sampling methods and convergence issues will be investigated in the next section. 

The M-step then maximizes Q(0\0^) to produce an updated estimate #( t + 1' at the 

(t + l)-th iteration. Note that the parameters cx, (3, 62, R, A, and B are all different, so we 

can update the parameters (a, (3, 52, R), A, and B by maximizing + Q^2\ and 

separately in the M-step. 

The maximizer (a<-t+1\ (3{t+l\ 52^t+l\ R ^ ) for + may be computed via 

iteratively re-weighted least squares where the random effects are replaced by their simulated 

values {(af \ b f >)}: 

( a(*+D ) / 3(t+D j < J 2 ( t + l ) j = a r g m a x {Q(D( Q ) / 3 ) ( 52| 0 ( t ) ) + g ( 2 ) ( a ) j R | 0 ( t ) ) } 

CX,j3,S2,R 

{ n kt j 

5I5Irlo6 M Y i N , a f \ b f ^ a , /3, <52) 

+ E E r l o g ^ ( ^ l ^ f e ) ; « ^ ) j - ( 3- 5) 

i=i fc=i K t J 

In general, the function in (3.5) is nonlinear in parameters and thus, the maximizers have 

no closed-form expressions. The maximizers could be obtained via standard optimization 

procedures for complete-data nonlinear models, such as the Newton-Raphson method. Note 

that optimization procedures for nonlinear models may be iterative as well. 

We can use the following Lemma to obtain analytic expressions of the maximizer 

A<t+1> for and the maximizer B ^ for 

L e m m a 3.1. (Seber, 1984). Consider the matrix function 

h(E) = log |E | + tr[E _ 1 n] . 

If Q is positive definite, then, subject to positive definite E , /i(E) is minimized uniquely at 

E = a 
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By Lemma 3.1, the maximizer A^t+1^ for can be written as 

= argmax{Q^(A|6>W)} 
• A y 

n kt ^ 

= a r g m a x ^ ^ - l o g / C a f M ) 
i=i k=i * 

" fct i ^ 1 

=' arg max £ £ - { - ± log | 2 T T A | - | [gWp A-i [fi(*)]} 
i = l fe=l * 

= arg mm £ £ I { log \A\ + [af >f ̂ "̂  [af >]} 
i = l fc=l 4 

= a r g n u n l n l o g l A I + i^^alY^- 1!^]} 
4 i = l fe=l 

= argmmjnlogMI + i ^ ^ t r l t a f ) ] ^ - 1 ^ ] ) } 
4 i = l fc=l 

= argminjn log |A | + ± ^ j S r ^ T 1 [af] [aj f c )] r)} 
4 2=1 fc=l 

= argminjn log | A | + ^- t rL" 1 £ | > f ] [af'f }} 
4 I i=l k=l J 

• = argmm{log|4+tr{/l-';i-^E^*)]N*)]7'}} 

- C i = l k = l 

Similarly, the maximizer 73 ( 4 + 1) for can be obtained by 

fl(i+1) = argmax{Q(4>(#|0(4))} 
B 

n kt -. 
= a r g n w x £ £ - l o g / ( b i f c ) ; i ? ) 

i = i fc=i 4 

= ^ E E ^ ' i i b f r . 

2=1 K = l 

4 1=1 fc = l 

To obtain the asymptotic variance-covariance matrix of the M L E 9, we can use the for

mula of Louis (1982), which involves evaluating the second-order derivative of the complete-
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data log-likelihood function. Alternatively, we may consider the following approximate for

mula (McLachlan and Krishnan, 1997). Let Sc \ = dlc^/dO, where li^ is the complete-data 

log-likelihood for individual i. Then an approximate formula for the variance-covariance 

matrix of 0 is 

- l 
Cov(0) = $ > ( s « | V l , z l 5 0) E{sf\Vi, z i ; 9f 

where the expectations can be approximated by Monte-Carlo empirical means, as above. 

In summary, the foregoing M C E M algorithm proceeds as follows. 

Step 1. Obtain an initial estimate of 9 = 0 ^ based on a naive method such as the 

two-step method, and set a f = 0 and bj0^ = 0. 

Step 2. At the (t+ l)th (t > 0) iteration, obtain Monte Carlo samples of the "missing 

data" (a,, bj) using the Gibbs sampler along with rejection sampling methods by sampling 

from the full conditionals [a^y;, z;, b,; 0^] and [b^y^, Z j , a^; 0^ ] , or using importance sam

pling methods, to approximate the conditional expectation in the E-step. 

Step 3. Obtain updated estimates 9^+1\ using standard complete-data optimization 

procedures. 

Step 4. Iterate between Step 2 and Step 3 until convergence. 

3 . 3 . 3 S a m p l i n g M e t h o d s 

G i b b s Sample r 

For the proposed Monte Carlo E M algorithm, we can see that generating samples 

from the conditional distribution [a*, bj|yj, Zj'; 0^] is an important step for implementing 

the E-step of the Monte Carlo E M algorithm. The Gibbs sampler (Gelfand and Smith, 1990) 

is a popular method to generate samples from a complicated multi-dimensional distribution 

by sampling from full conditionals in turn,.until convergence after a burn-in period. Here, we 
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use the Gibbs sampler to simulate the "missing" random effects â  and bv Set initial values 

( a | ° \ b-0^). If the current generated values are (a\k\ b f ) , we can obtain ( a f + 1 \ h \ k a s 

follows: 

Step 1. Draw a sample for the "missing" random effects a\hfrom the full conditional 

z t, b| f c ); 0 W ) . 

' Step 2. Draw a sample for the "missing" random effects h\k+1^ from the full conditional 

/(tx|yi> af+1); 0<*>). 

We assess the convergence of the Gibbs sampler by examining time series plots and 

sample autocorrelation function plots. After a sufficiently large burn-in of r iterations, 

the sampled values will achieve a steady state as reflected by the time series plots. Then, 

{ (a f , b|fc')} can be treated as a sample from the multidimensional density function 

/ (a i , bi |yi , 0(*>). 

If we choose a reasonably large gap r' (say r' = 10), we can treat the sample series 

{ ( a f ° , b\k)),k = r + r',r + 2r',...} as an independent sample from the multidimensional 

density function. The simplest choice for initial values (a\°\ bf^) is (0, 0). 

Mult ivar ia te Reject ion A l g o r i t h m 

Sampling from the two full conditionals can be accomplished by rejection sampling 

methods as follows. If the density functions are log-concave in the appropriate parameters, 

the adaptive rejection algorithm of Gilks and Wild (1992) may be used, as in Ibrahim et 

al. (1999). However, for arbitrary N L M E models, some densities may not be log-concave. 

In such cases, the multivariate rejection sampling method (see Section 3.2 in Geweke, 1996) 

may be used to obtain the desirable samples. Booth and Hobert (1999) discussed such a 
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method in the context of complete-data generalized linear models, which can be extended to 

our models. For example, consider sampling from /(aj |yj, z i ; bjj 0®) in (3.4). Let /*(a,) = 

/ ( z j | a j ; 0^)- /(yj |zj , a ,̂ b i ; 0^) and c = sup{/*(u)}. We assume c < oo. A random sample 
u 

from / ( a j | y i , Z i , b^ 0^) can then be obtained as follows by multivariate rejection sampling: 

Step 1. Sample a* from / (a^ 0^), and independently, sample w from the uniform 

(0, 1) distribution. 

Step 2. If w < /*(a*)/<r, then accept a*, otherwise, go back to step 1. 

Samples from / ( b j | y j , Z j , a*; 0^) can be obtained in a similar way. Therefore, the 

Gibbs sampler in conjunction with the multivariate rejection sampling can be used to obtain 

samples from [ai , bj|yj, z*; 0^]. Booth and Hobert (1999) noted that, when it is easy to 

simulate from the assumed densities, the multivariate rejection sampling method can be very 

fast even if the acceptance rate is quite low. 

Importance Sampl ing 

When the dimensions of â  or bj are not small, however, the foregoing rejection sam

pling methods may be slow. In this case, we may consider importance sampling methods 

where the importance function can be chosen to be a multivariate Student t density whose 

mean and variance match the mode and curvature of /(a*, b i | y i , Z i ; 0^). Note that a mul

tivariate t distribution, which has heavier tails than a multivariate normal distribution, will 

produce a more robust approximation since underestimating the tails can have serious con

sequences such as unstable behavior that may be difficult to diagnose. Booth and Hobert 

(1999) discussed an importance sampling method for complete-data generalized linear mod

els. Here, we may extend their method to our models and use importance sampling methods 

to approximate the integral in the E-step. Specifically, we write 

/ (a , , b i | y i ; Z i ; 0^) = 5exp[/i(ai, b i ) ] , 
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where s is an unknown normalizing constant. Let h(a^, bj) and h(a^, bj) be the first and 

second derivatives of h(a^, bj) respectively, and let (a*, b*) be the solution of /i(aj, bj) = 0, 

which is the maximizer of h(ai, bj). Then, the Laplace approximations of the mean and 

variance of /(aj,bj|yj, z$; 0®) are (a*, b*) and — (h(a*, b*))_1 respectively. Suppose that 

{(a*'1', b*'1^),..., (a* '̂', b*^)} is a random sample of size kt generated from an importance 

function /i*(aj, bj), which is assumed to have the same support as /(aj, bj|vj, Z J ; 0^). Then 

we have 

where 

it) / (a; W ,b; ( f c ) |y t ,z i ; Q W ) -
h*(af\b*M) 

are importance weights. Other sampling methods have also been proposed (e.g. McCulloch, 

1997). 

For the above sampling methods, the adaptive rejection method is applicable only 

when the appropriate densities are log-concave, while the multivariate rejection sampling 

method and the importance sampling method are applicable in general. Adaptive and mul

tivariate rejection sampling methods may be efficient when the dimensions of the random 

effects and the sample sizes are small. When the dimension of the integral in the E-step 

is high, however, rejection sampling methods can be inefficient due to low acceptance rate. 

If the sample size is not small, importance sampling methods may be more efficient than 

rejection sampling methods since in this case the importance function may closely resemble 

the true conditional distribution. 
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3.3.4 C o n v e r g e n c e 

For Monte Carlo E M algorithms, the incomplete-data log-likelihood is not guaranteed to 

increase at each iteration due to the Monte Carlo error at the E-step. However, under 

suitable regularity conditions, Monte Carlo E M algorithms still converge to the M L E s (Chan 

and Ledolter, 1995). When applying the Monte Carlo E M algorithm, Monte Carlo samples 

for the "missing" random effects are drawn at each E M iteration. Consequently, Monte 

Carlo errors are introduced. The Monte Carlo errors are affected by the Monte Carlo sample 

size. It is obvious that larger values of the Monte Carlo sample size fct will result in more 

precise but slower computation. A common strategy is to increase kt as the number t of E M 

iterations increases (Booth and Hobert, 1999). For sufficiently large values of kt, the Monte 

Carlo E M algorithm would inherit the properties of the exact versions, such as the likelihood 

increasing properties of E M , but this would substantially increase the computational work 

load. Thus, we usually use a relatively small kt at initial iterations, and then increase kt 

with the iteration number t. 

If the Monte Carlo error associated with 0( t + 1) is large, the (t + l)th iteration of 

the Monte Carlo E M algorithm is wasted because the E M step is swamped by the Monte 

Carlo error. Booth and Hobert (1999) proposed an automated method for choosing kt in the 

context of complete-data generalized linear models. Their method can be extended to our 

case in a straightforward way as follows. 

and let 0*(<+1) be the solution to Q^(G\6^) = 0. When the simulated samples are indepen-

Let 

Q ( 2>(0|0 ( t )) 

Q ( 1 ) ( 0 | 0 « ) 
0Q(fl|flC>) 

dd 
d 2 Q(0|0W) 

dddOT 

dent, it can be seen that the conditional distribution of [0^+1^|0W] is approximately normal 

44 



with mean 0*(t+1) and a covariance matrix that can be estimated by 

C o v ( 0 ( i + 1 ) | 0 « ) = Q(2)(0*(*+D|0(i))-i Cov(Q ( 1 )(0* ( t + 1 ) |0W)) Q(2)(6>*(t+1)|0(*))-1, 

where 

C o v ^ V ^ I ^ ) ) = £ E | 

^ l o g / ( y i , z i > a i f c \ b ^ ^ * + 1 ) ) | }, 

(a[k\ b f ) are simulated samples, and Wik are the importance weights when the importance 

sampling is used and are all set to 1 when rejection sampling methods are used. After the 

(t + l)th iteration, we may construct an approximate 100(1 — a)% confidence ellipsoid for 

0*(*+1) D a s e c} o n the above normal approximation. The E M step is swamped by the Monte 

Carlo error if the previous value 0^ lies in the confidence ellipsoid, and in that case we need 

to increase kt. For example, we may set kt to be & t _ i + h-i/c for some positive constant 

c and appropriate k0. Increasing kt with each iteration may speed up the E M convergence 

(Booth and Hobert, 1999). Note that this method of choosing kt is completely automated. 

The proposed Monte Carlo E M algorithm often works well for models with a small 

dimension of random effects. When the dimension of random effects is not small, however, 

the proposed M C E M algorithm and Gibbs sampler may converge very slowly or even may 

not converge. Therefore, in the next section, we propose an alternative approximate infer

ence method which may avoid these convergence difficulties and may be more efficient in 

computation. 
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3.4 A Computationally More Efficient Approximate Method 

3 .4 .1 T h e N e e d f o r a n A l t e r n a t i v e M e t h o d 

The Monte Carlo E M method in the previous section may be computationally very intensive 

and may offer potential computational problems such as slow or non-convergence, especially 

when the dimensions of the random effects a; and b; are not small. When the dimensions 

of the random effects are not small, sampling the random effects in the E-step may lead 

to inefficient and computationally unstable Gibbs sampler, and may lead to a high degree 

of auto-correlation and lack of convergence. To overcome these difficulties, in this section 

we propose an alternative approximate method by iteratively using a first-order Taylor ap

proximation to the nonlinear models. The proposed method avoids sampling the random 

effects and provides analytic expressions for parameter estimates at each iteration, So it 

may be preferable when the Monte Carlo E M method exhibits computational difficulties. 

Alternatively, the proposed method in this section can be used to obtain excellent parameter 

starting values for the Monte Carlo E M method. 

For complete-data N L M E models, approximate methods have been widely used, and 

these approximate methods perform reasonably well in most cases (Lindstrom and Bates, 

1990; Pinheiro and Bates, 1995; Vonesh et al., 2002). These approximate methods are typ

ically obtained via Taylor expansions or Laplace approximations to the nonlinear models. 

One particularly popular approximate method for complete-data N L M E models is that of 

Lindstrom and Bates (1990), which is equivalent to iteratively carrying out maximum like

lihood based on certain L M E models (Wolfinger, 1993). Following Lindstrom and Bates 

(1990), we propose to further approximate model (2.5) by taking a first-order Taylor ex

pansion around the current parameter and random effects estimates, which leads to a L M E 

response model. For the resulting L M E response model, with the covariate model (2.8), we 
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update parameter estimates based on the distribution of observations and an E M algorithm. 

In each iteration, analytic expressions for parameter estimates are available. Therefore, the 

proposed approximate method may provide substantial computational advantages over the 

Monte Carlo E M method. 

We rewrite the N L M E model (2.6) and (2.7) as a single equation 

Vij = 9ij(a, P, ai, b i ) + e^; i = 1, . . . , n, j = 1, . . . , ni} (3.6) 

where gij(-) is a nonlinear function. Let gi = (gn,... ,giTH)T. Denote the current estimates 

of (6, ai, bi) by (6, sn, bi). Taking a first-order Taylor expansion of g^ around the current 

parameter estimates a. and (3 and random effects estimates a* and bj, we obtain the following 

L M E response model 

yi = Wioc + Xir3 + Hi&i + Tihi + ei, (3.7) 

where 

Wi = (wji,. . . , W i „ i ) i with xvi:j = 

Xi = ( x i i x i n i )T with x ; j = 

da 
dgn 
dp 

Hi = ( h j i , . . . , hini )T with htj = 
iJ - d*i 

Ti = (tii, • • • , Um)T with tij = -7^-

9i = Yi -g i (at , P, a i , bi) + WiCx + XiJ3 + HiSH + Tibi, 

with all the partial derivatives being evaluated at (a, (3, a i ; bi). 

The proposed method in this section is to iteratively carry out maximum likelihood 

based on the L M E response model (3.7) and the covariate model (2.8). Let 7 = (a, (3) 

be the mean parameters and A = (52,R,A,B) be the variance-covariance parameters. The 

algorithm consists of alternately obtaining approximate estimates of 7 given the current 
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estimates of variance-covariance parameters a based on the distribution of fj = (yf, z[)T 

and then updating the variance-covariance parameter estimates via an E M step using the 

posterior curvatures of (e;, e ,̂ a;, bi), as in Laird and Ware (1982). 

3 .4 .2 A n a l y t i c E x p r e s s i o n s o f E s t i m a t e s 

We can combine the L M E response model (3.7) with the covariate model (2.8) to form a 

unified L M E model 

r% = QiJ + ZitJi + V j , i = l,...,n, 

where r% = (yf , z f f , = (af, bf)T, v 4 = ( e f , e f ) T , Ut = {1%,. 

Qi = 

(3.8) 

UT V V 

J 
Vi 0 Ui 0 

with O's being appropriate zero matrices. 

For the unified L M E model (3.8), by standard arguments, we have 

[fi\ui; 7, a] ~ N{Qi*f + ZiUii, Ai), [T\; 7, a] ~ iV(Qi7, Si), (3.9) 

where Ej = Z{DZj + A», 

A i = 

/ r 2 T r> \ 

V 

s2i 0 
0 I®R 

D 
I A 0 ^ 

0 B 

and the Kronecker product I ® R is a ẑ mj x um-i matrix with the u x v submatrix R on 

the diagonals and zeros elsewhere. Using known results for L M E models (e.g., Vonesh and 

Chinchilli, 1997), we can update the estimate of 7 given the current estimates a by 

7 = Etfsr 1 ^ Eo^r 1 * (3.10) 

.1=1 
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Based on the unified L M E model (3.8), we can also obtain the joint distribution of 

(fj, u>i) at 7 = 7 and A = A 

5 7i A N 

V 

Qa 

W") J IV 0 ) 
from which we obtain the conditional distribution of given the observed data r , at 7 = 7 

and A = A: 

[wi|f i ; 7, A] ~ JV[D Zf S 4

_ 1 (r i — Qi 7), D — D Zf Sr 1 Zi £>]. 

A n estimate of the random effects u>j is thus given by 

(3.11) 

£>i = DZ1

i ^(fi-Qn). (3.12) 

Finally, following Laird and Ware (1982), we can update the variance-covariance pa

rameter estimates as follows. Note that if we were to observe a*, b j , e,, and ei} in addition 

to y i and Z j , we would have the following estimates 

* 2 = £ e f e , / £ n t , 
i-1 i=l 
n rrii n 

^ = E E €ij 4/ £ ™» 
i=ij=i i=i 

^ = Ebibf/n, 
1=1 

A = £ aj a f /n , 
i=l 

where £ e F e i ' S £ €Jjeij> X ^ a j a f , and £ b i b f are the "sufficient" statistics for 62, R, 
i= l i = l j = l i = l i= l 

A, and fl, respectively. Since a i , b j , e ,̂ and are unobservable, we can "estimate" them 

by their conditional expectations given the observed data y i and z , at the current parameter 

estimates 7 = 7 and A = A. Based on standard results for multivariate normal distributions, 

we know that 

7 = 7, A = A N 

\ 0 l 

Z/i 

LT PI 
/ J 
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and 

\ €a J 
; 7 = 7, A = A N 

1 Q i i ^ 

V 0 / 

Ej Rij 

where Lj is a (nj + i/m^) x matrix with the first n; x nj submatrix 52I and zeros elsewhere, 

is a (rii + i/m*) x u matrix consisting of the first x v submatrix 0 and the remaining 

mi (u x v) square submatrices with the j th square submatrix R and zeros elsewhere. By the 

definition of conditional distributions, it can be shown that 

N f ^ T . A j - i V t L f E r ^ - Q ^ ) , 521 ~ Lj E " 1 L J ] , 

[e y | f i ; 7, A] ~ N[Rl E r ^ f i - Qa), R - R% E r 1 i ^ ] . 

Using the expectation and covariance properties for multivariate random variables and some 

matrix algebra, we update the estimates of the variance-covariance parameters (<52, R, A, fl) 

as follows: 

P = E E(ef ei\ril 7, A ) / £ r i i 

= X X C o v ^ l r , ; 7, A)) + ^ e ^ ; 7, A f l ^ e ^ ; 7, A)]/ £ n,-
n m i i=l 

R = £ £ £ ( e y e £ | f i ; 7, 
i=i 

(3.13) 

i=i j=i 
n mi _ n ' 

= E E [Cov(e^ | f i ; 7, A ) + £ ( 6 ^ ; 7, A ) f l ( C y | r i ; 7, A f ] / £ m t , 
»=i i=i i=i 

n 

A = E ^ ( a i a f l ^ ; 7,'A)/n 
i=i 

n 

= £ [ C o v ( a j | f y , 7, A) + E{sLi\fi; 7, A) £ ( a j | f i ; 7, A ) T ] / n , • 
i=l 

fl = E £ ? ( b i b f | f i ; 7 , A ) / / i 
i=l 

= ElCovCbilfij 7 ) A) + £ ( b j | f y , 7, A) E(b%\ri; 7, A ) T ] / n . 
i=l 

The foregoing results show the closed-form expressions of the parameter estimates at 

each iteration for L M E model (3.8). Iteratively solving L M E model (3.8) until convergence 

leads to an approximate M L E 0 = (7, A) of 0. 

50 



3.4.3 Asymptotic Properties 

Following Vonesh et al. (2002), we show in Section 3.7 that, under fairly mild regularity 

conditions, 7 satisfies the following properties 

7 = 7 M L £ + 0 P { (minJVi ) j 

= 7 0 + O p / m a x n~1^2, ^min N^j 
1/2-1 

where Ni = ni + m,i, and 7 0 and ^MLE a r e ^ n e ^ r u e value and exact M L E of 7 , respectively. 

Thus the approximate M L E 7 is not only consistent but also asymptotically equivalent to 

' the exact M L E . The rate of convergence is shown to depend on both the number 71$ of 

observations per individual and the number n of individuals. 

Moreover, the estimate 7 asymptotically follows a normal distribution: 

v ^ ( 7 - 7o) ± N(0, ft(7o))., 

where the asymptotic variance-covariance matrix, Q,(-y0), can be consistently estimated by 
1 j 

0=0 i=l 
The proofs of the above results are given in Section 3.7. 

3.5 Example and Simulation 

3.5.1 An Application in AIDS Studies 

We apply the foregoing proposed methods to a HIV dataset for illustration. We also com

pare the proposed methods with the commonly-used naive method which ignores covariate 

measurement errors and the two-step method, which is described in Section 3.2. 

51 



D a t a D e s c r i p t i o n 

The study consists of 46 HIV infected patients who were treated with a potent an-

tiretroviral regimen consisting of protease inhibitor and reverse transcriptase inhibitor drugs. 

Viral loads (Plasma HIV-1 R N A copies) were measured on days 0, 2, 7, 10, 14, 21, 28 and 

weeks 8, 12, 24, and 48 after initiation of treatments. After the antiretroviral treatment, the 

patients' viral loads will typically decay, and the decay rates may reflect the efficacy of the 

treatment. Throughout the time course, the viral load may continue to decay, fluctuate, or 

even start to rise (rebound). The data at the late stage of study are likely to be contami

nated by long-term clinical factors, which leads to complex longitudinal trajectories. Various 

covariates such as CD4 count were also recorded throughout the study on similar schedules. 

The viral load has a detectable limit of 100 R N A copies/mL. For simplicity, we imputed the 

censored viral loads, which are below the detection limit, by half the detection limit 50, as in 

Wu and Zhang (2002). The number of measurements for each individual varies from 4 to 10. 

There were 72 out of 361 CD4 measurements missing at viral load measurement times, due 

mainly to a somewhat different CD4 measurement schedule. The detailed data description 

can be found in Wu and Ding (1999) and Wu (2002). 

T h e Response a n d Cova r i a t e M o d e l s 

Modelling HIV viral dynamics after anti-HIV treatments has received a great deal of 

attention in recent years (Ho et al., 1995; Perelson et al., 1996; Wu and Ding, 1999; Wu, 

2005). The following HIV viral dynamic model (first stage model) has been widely used (Wu 

2002; Wu and Zhang, 2002) 

V i j = l o g 1 0 ( P l i e - A l ^ + P 2 i e - X ^ ) + ey, (3.14) 

where yy is the logio-transformation of the viral load measurement for patient i at time 

tij, Pu and P2i are baseline values, and X^j and A 2 y are the first (initial) and the second 

phase viral decay rates, respectively, and they may be interpreted as the turnover rates of 
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productively infected cells and long-lived and/or latently infected cells respectively. The 

logio-transformation of the viral load is used to make the data more normally distributed 

and to stabilize the variance. 

Wu (2002) noted that variation in the dynamic parameters such as the first phase 

decay rate XUJ may be partially associated with variation in CD4 counts. In AIDS studies, 

it is known that covariates such as CD4 count are often measured with substantial errors. 

Thus we assume that the dynamic parameters are related to the true covariate values, 

reflecting the belief that actual, not possibly corrupted, covariate values govern the model 

parameters, as in Higgins et al. (1997) and Wu (2002). 

Due to long-term clinical factors, drug resistance, and other complications, the viral 

load trajectories can be very complex after the initial phase viral decay (see Figure 1.1). 

Grossman et al. (1999) pointed out that the viral decay rate after the initial period may 

be complicated and may vary over time since they may depend on some phenomenological 

parameters which hide considerable microscopic complexity and change over time. Therefore, 

a nonparametric smooth curve modelling for the second phase viral decay rate may be more 

appropriate than parametric modelling (Wu and Zhang, 2002). Based on the reasons noted 

above, we consider the following second stage model, which corresponds to the first stage 

model (3.14), 

where z*- is the true (but unobserved) CD4 count, and w(tij) and hi(Uj) are nonparametric 

smooth fixed- and random-effects functions defined in Section 2.1. To avoid very small (large) 

estimates, which may be unstable, we standardize the CD4 counts and rescale the original 

time t (in days) so that the new time scale is between 0 and 1. 

As discussed in Section 2.1, we employ the linear combinations of natural cubic splines 

l o g ( P u ) = A + hi 

XUJ = w(Uj) +hi(tij), 
(3.15) 

l o g ( P 2 i ) = PA + hi 
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Table 3.1: A I C and BIC values for the viral load model (3.14) and (3.15), with q < p = 
1, 2, 3. 

Model p=l ,g=l p=2,q=2 p=2,g=l p=3,g=3 p=3,q=2 p=3,g=l 
A I C 615.96 583.54 585.39 577.37 586.45 576.43 
BIC 678.18 669.09 656.43 670.71 665.90 651.50 

with the percentile-based knots to approximate the nonparametric smooth functions w(t) 

and hi(t). Following Wu and Zhang (2002), we take the same natural cubic splines with 

q < p in order to decrease the dimension of the random effects bj, i.e., more basis functions 

used to approximate the fixed-effects function than the random-effects functions. A I C and 

BIC criteria are used to determine the values of p and q. We use the observed CD4 counts for 

the unobservable true CD4 counts in the response model (3.14) and (3.15), and use SPLUS 

functions nlmeQ and anovaQ to obtain the values of A I C and BIC. Table 3.1 displays A I C 

and BIC values for various plausible models. Based on these A I C and BIC values, the model 

with p = 3 and q = 1, i.e., 

A 2 i i « A + /?e#i(*tf)+ft V>2(*«)+•&«, (3.16) 

seems to be the best, and thus it is selected for our analysis. 

For the CD4 process, in the absence of a theoretical rationale, we consider empirical 

polynomial L M E models, and choose the best fitted model based again on A I C / B I C values for 

each possible model. This is done based on the observed CD4 values, and is done separately 

from the response model for simplicity. Specifically, since the inter-patient variation is large, 

we consider model (2.8) with Uu = Vu = (1, uu,..., uu~l) and linear (a = 2), quadratic 

(a = 3), and cubic (a = 4) polynomials. Table 3.2 presents A I C and BIC values for these 

three models. The following quadratic polynomial L M E model best fits the observed CD4 
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Table 3.2: A I C and BIC values for the linear, quadratic, and cubic CD4 models. 

Model a=2 a=3 a=4 
A I C 
BIC 

796.17 703.19 742.12 
819.50 761.52 781.01 

process: 

CD4i( = (ai + ai) + (a2 + 0 2 ) uu + (&3 + 0.3) u\ + eu (3.17) 

where uu is-the. time and oc — (ai, a2, c*3)T are the population parameters and a, = 

(an, ai2, ai3)T are the random effects. 

Es t imat ion M e t h o d s a n d C o m p u t a t i o n Issues 

We estimate the parameters in the response and covariate models using the naive 

method which ignores measurement errors, the two-step method in Section 3.2, and the two 

proposed "joint" model methods discussed in Sections 3.3 and 3.4. We denote the method 

in Section 3.3 by M C E M and the method in Section 3.4 by A P P R . 

The two proposed joint model methods need starting values for model parameters. We 

respectively use the parameter estimates obtained by the naive method and by the two-step 

method as parameter starting values for the two joint model methods. 

For the naive method and the two-step method, we use SPLUS functions lme() and 

nlme() to obtain parameter estimates and their default standard errors. For the M C E M , 

method, we assess the convergence of the Gibbs sampler by examining time series plots 

and sample autocorrelation function plots. For example, Figures 3.1 and 3.2 show the time 

series and the autocorrelation function plots for b2 associated with patient 10. From these 

figures, we notice that the Gibbs sampler converges quickly andthe autocorrelations between 

successive generated samples are negligible after lag 15. Time series and autocorrelation 
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Figure 3.1: The time series plot for 62 associated with patient 10. 

Series : b2 

I I i i i 

-I I I I I •' •'-

Figure 3.2: The autocorrelation function plot for b2 associated with patient 10. 
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function plots for other random effects show similar behaviors. Therefore, we discard the 

first 500 samples as the burn-in, and then we take one sample from every 20 simulated 

samples to obtain "independent" samples (see sampling methods in Section 3.3.3). 

For the Monte-Carlo E M algorithm, we start with k0 = 500 Monte-Carlo samples, and 

increase the Monte-Carlo sample size as the number of iteration t increases: kt+\ = kt + kt/c 

with c = 4. Convergence criterion for the iterative methods in our examples is that the 

relative change in the parameter estimates from successively iterations is smaller than a given 

tolerance level (e.g., 0.01). However, due to Monte Carlo errors induced by Gibbs sampler, 

it is difficult to converge for an extremely small tolerance level, otherwise it may converge 

very slowly. The actual tolerance level we used in our example for the two proposed joint 

model methods is 0.05. Convergence of the algorithms are considered to be achieved when 

the maximum relative change of all estimates is less than 5% in two consecutive iterations. 

We use the multivariate rejection sampling method for the M C E M method. Other sampling 

methods may also be applied. 

On a S U N Sparc work-station, the M C E M method took about 90 minutes to converge 

while the A P P R method took only 3 minutes to converge. This shows that the A P P R method 

offers quite a substantial reduction in computing time, and is thus computationally much 

more efficient than the M C E M method. 

Analys i s Results and Conclus ions 

Table 3.3 presents the resulting parameter estimates and standard errors. We see that, 

except for the naive method, the other three methods give similar point estimates for the 

parameters, especially for the covariate model parameters ex. However, for the parameters /3 

of main interest, the two-step method gives smaller standard errors than the two joint model 

methods ( M C E M and A P P R ) . This is because the two-step method ignores the variability 

due to estimating the parameters cx in the covariate model. Thus, these results are consistent 
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Table 3.3: Parameter estimates (standard errors) for the HIV dataset. 

Method a 2 
a3 Pi ft Ps Pi P5 As Pr 5 R 

Naive - - - 11.73 65.41 .41 6.82 -3.01 9.27 -1.67 .35 
- - - (•2) (3.9) (3.3) (.6) (5.6) (8.8) (3.6) 

Two-step -.42 4.17 -3.74 11.73 65.78 1.53 6.84 -2.86 9.04 -1.75 .35 .52 

(•1) (.5) (.5) (•2) (4.1) (4.7) (.6) (5.5) (8.9) (3.5) 
M C E M -.41. 4.02 -3.54 11.74 66.60 1.55 6.85 -2.78 8.91 -1.79 .35 .53 

(•1) (.5) (.6) (•2) (4.7) (5.2) (•7) (6.0) (9.0) (3.6) 
A P P R -.42 4.17 -3.74 11.74 65.72 1.33 6.85 -2.82 8.99 -1.77 .35 .52 

(•1) (.6) (.6) (•2) (4.5) (5.0) (•7) (5.9) (9.1) (3.6) 

Note: A and B are unstructured covariance matrices, but we only report the estimates of their diagonal ele
ments here. Diag(A) = (.52, 4.06,1.98) for Two-step, Diag(A) = (.53, 2.55,1.25) for MCEM, and Diag(A) = 
(.52,4.06,1.99) for APPR. Diag{B) = (1.11, 69.94,2.02,24.86) for Naive, Diag(B) = (1.10,69.58,2.02,25.04) 
for Two-step,. Diag(B) = (1.11,69.96,2.05,25.47) for MCEM, and Diag(B) = (1.10,69.78,2.01,24.85) for 
APPR. 

with the analytical results about the two-step method in Section 3.2. We also see that the 

naive method may severely under-estimate the effect of the covariate CD4 (which is measured 

by the parameter p3). The estimates and standard errors based on the two joint model 

methods are similar and may be more reliable. 

The commonly used two-step method and the naive method may give misleading 

results, and the two proposed joint model methods may be more reliable. We will confirm 

this conclusion via simulations in next section. 

3 .5 .2 A S i m u l a t i o n S t u d y 

In this section, we conduct a simulation study to evaluate the proposed methods ( M C E M 

and A P P R ) , and compare them with the commonly used two-step method and the naive 

method by the mean-square-error (MSE). The models and the measurement schedules used 

in the simulation are the same as those in the real HIV dataset in the previous section 

(i.e., models (3.14) - (3.17)). In the simulations, the true values of a and (3 are shown in 
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Table 3.4: Simulation results for parameter estimates as well as (standard errors) and (sim
ulated standard errors)* for the estimation methods Naive, Two-step, M C E M , and A P P R . 

Parameter Oil a2 a 3 Pi P2 Pz P4 p5 (% Pi 
True Value -.5 4.0 -4.0 12.0 66.0 1.5 7.0 -3.0 9.0 -2.0 
Naive Method - - - 11.98 65.50 0.94 6.92 -3.74 10.13 -1.62 

- - - (-1) (1.1) (1.1) (.3) (1.7) (2.6) (.9) 
- - - (.2)* (1.2)* (1.0)* (.3)* (1.6)* (2.8)* (1.0)* 

Two-step -.51 4.05 -4.02 11.98 65.66 1.53 6.92 -3.74 10.13 -1.62 

(•1) (.3) (•4) (•2) (1.2) (1.4) (•3) (1.7) (2.6) (.9) 
(.1)* (.3)* (.3)* (.1)* (1.2)* (1.4)* (.2)* (1.6)* (2.5)* (.9)* 

M C E M -.51 4.04 -4.02 11.98 65.85 1.48 6.98 -3.11 9.15 -1.95 

(•1) (•4) (•4) (•1) (1.5) (1.8) (•3) (2.0) (3.0) (1.1) 
(.1)* (.4)* (.4)* (.2)* (1.5)* (1.8)* (.3)* (1.9)* (2.8)* (1.1)* 

A P P R -.51 4.05 -4.03 11.98 65.46 1.52 6.93 -3.82 10.29 -1.56 

(•1) (•3) • (-4) (•2) (1.4) (1.8) (.3) (2.0) (3.1) (1.1) 
(.1)* (.3)* (.3)* (.2)* (1.4)* (1.7)* (.3)* (1.9)* (2.8)* (1.0)* 

Table 3.4, and the other true parameter values are 5 = A, R = .3, A = diag(.5, 2, 1), and 

B = diag(l, 9, 2, 4). We simulated 100 data sets and calculated averages of the resulting 

estimates and their standard errors as well as simulated standard errors based on each of the 

four estimation methods. Since M C E M method sometimes offers computational problems, 

such as slow or non-convergence, the 100 sets of parameter estimates are obtained from 116 

data sets. The simulation results are shown in Table 3.4. 

From Table 3.4, we see that the naive method can severely under-estimate the covari

ate effect /?3. The two-step method produces similar point estimates as the two joint model 

methods ( M C E M and APPR),"but it gives smaller standard errors than the M C E M and the 

A P P R methods, since the two-step method fails to incorporate variability in estimating the 

covariate model. These results are consistent with the analytical results in Section 3.2. Note 

that the estimates for the covariate model parameters a are similar for the three methods 

(Two-step, M C E M , and A P P R ) , but the parameters a are usually treated as nuisance pa-
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rameters and are not of primary interest. The two proposed joint model methods ( M C E M 

and A P P R ) perform better than the two-step method and the naive method, and the M C E M 

method is the best among all four methods in terms of bias. In the computation, the A P P R 

method converges much faster than the M C E M method. These simulation results confirm 

that the naive method and the two-step method may give misleading results and that the 

two proposed methods are more reliable. 

3.6 Discussion 

We have proposed two approximate likelihood methods for semiparametric N L M E models 

with covariate measurement errors and missing data. The first method, implemented by a 

Monte Carlo E M algorithm combined with Gibbs sampler, may be more accurate but may be 

computationally intensive and sometimes may offer computational problems such as slow or 

non-convergence. The second method, implemented by an iterative algorithm without Monte 

Carlo approximation, is computationally much more efficient, but it may be less accurate 

than the first method since it uses an additional approximation. Alternatively, the second 

method may provide excellent parameter starting values for the first method. Simulation 

results show that both methods perform better than the commonly used two-step method 

and a naive method. In particular, the commonly used two-step method may under-estimate 

standard errors, and the naive method may under-estimate covariate effects. 

For semiparametric N L M E models with covariate measurement errors and missing 

data, the models can be very complex. Thus, if there is not sufficient information in the 

data, the models can be non-identifiable. To our knowledge, there seem no existing general 

necessary and sufficient conditions for model identifiability, and the identifiability problem 

needs to be considered on a case-by-case basis. In practice, we can check model identifiability 
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by examining the convergence of iterative algorithms. If the model is non-identifiable, the 

iterative algorithms may diverge quickly. For the models considered here, we find that the 

iterative algorithms converged without problems, so the models seem identifiable. 

The methods proposed here may be extended to semiparametric generalized linear 

mixed models and nonparametric mixed-effects models with covariate measurement errors 

and missing data. The results will be reported in the near future. 

3.7 Appendix: Asymptotic Properties of 7 Based on 

the A P P R Method in Section 3.4 

In this section, we show the asymptotic properties of 7 obtained by the A P P R method in 

Section 3.4. We first state some Lemmas, which are used in the proofs, in Section 3.7.1. 

Then we describe some regularity conditions under which the asymptotic properties hold 

in Section 3.7.2. In Section 3.7.3, we obtain some estimating equations, which are used for 

showing asymptotic properties of 7 . Consistency and asymptotic normality of 7 are shown 

in Sections 3.7.4 and 3.7.5, respectively. The results are extensions of Vonesh et al. (2002). 

3.7.1 S o m e L e m m a s 

The following four lemmas will be used for showing asymptotic properties of 7. 

Lemma 3.2. (Vonesh and Chinchilli, 1997). Let 7 „ be a sequence of random variables 

satisfying Yn = c+Op(an) where an = o(l). If f(x) is a function with r continuous derivatives 

at x = c, then 

f(Yn) = /(c) + fU(c)(Yn - c) + • • • + [l/(r - l)!]/( r" 1)(c)(y n - c ) - 1 + O p « ) , 

61 



where / ^ ( c ) is the fcth derivative of / evaluated at c. In particular, 

f(Yn) = f(c) + Op(an). 

This result holds when Op(-) is replaced everywhere by op(-) or when Yn and c are replaced 

by a vector/matrix random variable Y„ and vector/matrix constant c. 

L e m m a 3 . 3 . (Aitchison and Silvey, 1958). If / is a continuous function mapping Rs into 

itself with the property that, for every 9 such that ||#|| = 1, 9Tf(6) < 0, then there exists a 

L e m m a 3 . 4 (The B o u n d e d Convergence T h e o r e m ) . Let {fn(x)} be a sequence of 

measurable functions defined on a set of E of finite measure, and suppose there is a real 

number M such that |/n(a;)| < M for all n and all x. If f(x) = l i m n _ > o 0 fn(x) for each x in 

E, then 

L e m m a 3 . 5 . Let A and B be u x u symmetric matrices with eigenvalues fJ-i(A) > /^(A) > 

••• > A*„(A) and Hi(B) > fj-2{B)-> ••• > Hv{B), respectively. If A — B are nonnegative 

definite, denoted by A — B > 0 or A > B, then we have fJ-i(A) > Pi(B), i = 1, . . . , v. 

3.7.2 Notation and Regularity Conditions 

Let the r-dimensional vector 7 = (a , (3) € T and 

k (7, oj{) = li(ct, 0, a i 5 y^ Zj) = log/y(j / i |zj , c^i;7) + log/z(zi |wi; 7 ) , 

NiLih, Wi) = ^ ( 7 , Wi) + log / (ai) + log / (b i ) , ' 
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where N; = rii + m-i. Let 

d 
w i=u; i(7)) 

d2 

dujidujf 

w i=a; i(7)' 

»\w,w t(7, ^ ( 7 ) ) = 

i, 7(7> ^ ( 7 ) ) = ^ ; ^ ( 7 , Wi) 

" 7 7 ^ ^(-Y)) = d^li^' W l ) 

" 7 ^ ( 7 , W i ( 7 ) ) = Q^fhh, Wi) 

wi=u;i(7)» 

u>i=u;i(7)i 

a; i=a>i(7). etc. 

Similarly, we can define the corresponding derivatives for L i (7, c*>i(7)) and 

3 2 

-h(i, Vi), etc. 

Also, we denote convergence in probability as iVj —> 00 by o p(ljv i), convergence in probability 

as n —> 00 by o p ( l „ ) , and convergence in probability as both Ni —> 00 and n —• 00 by 

o p ( l A ^ i , n ) - We show consistency and asymptotic normality under the following regularity 

conditions. A n outline of the proof when some of these conditions are relaxed is provided at 

the end. 

R l . /Vj = O(N) uniformly for i = 1, . . . , n, where N = min; 

R2. The variance-covariance parameters A = (52, R, A, B) are'fixed and known, and 

the true parameter 7 0 is in the interior of V. Qi, Ai , Zi, E j , and D are evaluated at 6 and 

Wj. When A is unknown, we can simply replace it by its consistent estimate (e.g., in (3.13)). 

R3. The density functions fyiVijl^i, <*V)7) and fz(zij\tJi; 7 ) satisfy the necessary 

regularity conditions (e.g., Bradley and-Gart, 1962) such that, for fixed 7 , the M L E of u>j 

is v^-consistent for Wj as Ni —> 00. In addition, the necessary regularity conditions are 

assumed (e.g., Serfling, 1980, p. 27, Theorem C) such that, by the Law of Large Numbers, 
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the following hold: 

~ K l - J ^ k { l ^ l ) = N-'QT

iK-lQl + op{lNi) as N* - oo, 
oyd'y1 

-N~l-^--Yk{1^l) = N-1ZjK-lZi + op{lNi) as N{ - oo, 

- N - l ^ Z T k h , u J i ) = N-1ZTA;lQi + op(lNi) as - o o , where, under models (2.6) - (2.8) 

a 2 

a 2 

Finally, the matrices N~lQj'h~lQi and N^lZjK^Zi are both assumed to be positive definite 

with finite determinants such that, for example, the smallest eigenvalue of N~1QfA~1Qi 

exceeds Ao for some Ao > 0. 

R4. For all 7 G T and all the 6-dimensional u>j € Rb, the function L;(7, cJj) is six 

times differentiable and continuous in 7 and Wj for all ŷ - and z -̂, and L i (7, Wj) satisfies the 

necessary regularity conditions needed to change the order of integration and differentiation, 

as indicated in the proof. 

R5. For any 7 e F, there exist di > 0 and Ai > 0 such that 

a. For all 7* € 5̂ (7), where #̂ (7) is the r-dimensional sphere centered at 7 with 

radius d\, the following holds: 

~ E ̂ >7^> ^ ( 7 ) ) l7=T = " ( 7 T 1
 + Op(ln), 

i = l ' 
as n —> 00, 
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where ^(7*) 1 is positive definite with minimum eigenvalue greater than A i and 

^ , 7 ( 7 , Wi(7)) |7=T = inni{l\ Wi(7*)) + # y W | ( 7 * , « i (7* ) ) 

x K i w « ( 7 * , Wi(7*)) + D - 1 ] - 1 ^ 7 ( 7 * ! w*(7*))}. 

b. The first, second, and third derivatives of y/NiL^-y, Wj) with respect to CJ^ are 

uniformly bounded in 5 ^ ( 7 ) . 

R6. At the true value 7 0 , the following hold true: 

Eu,(QjE~lQi) = c^j(70) exists for all i = l , . . . , r a , 
n 

lim n" 2 V Covo; (Qf E ^ Q , ) = 0, 
n—>oo ' ^ 

i = l 

and 

lim n _ 1 YV (7o) = fi(7o)~\ 
n—>oo ' J 

where Qi, Zit and E ; are evaluated at 7 0 and o»j and f 2 ( 7 0 ) _ 1 is positive definite. 

R7. The marginal densities, Jexp{iVjL;(7, u>i)} duii, satisfy the necessary regularity 

conditions such that the M L E of 7 exists and satisfies ('JMLE ~ 7o) = Op{n~ll2). 

3.7.3 E s t i m a t i n g E q u a t i o n s 

In Section 3.4, we obtain an approximate M L E 6 = (7, A) of 6 and the predictor u>j of 

<jj. It is obvious from (3.10) and (3.12) that the estimate 7 is a function of A and the final 

estimates Wj of u>j are functions of both 7 and A. For fixed A, it can be shown that 7 and 
n 

Cji = uJi(j) maximize the complete-data log-likelihood function (3.2), i.e., 2~2 -^ -^ (7 , <*>i)-
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In fact, we can write if = if (a, (3, aj,bj, A) in (3.2) as 

Hi 
l O g ^ T T C T j - — log -

T 

if = - | log(27r<52) - ^ l o g I27T.RI - \ l o g | 2 ^ | - \ l o g | 2 7 T f l | 

Yi' Si 
A T 1 

-UiOL-

T 

( » \ 

\b-) 

yi - gi 

yzi-UiOL-Viai J 

(1 
Taking the first derivatives of £ ii with respect to 7 = (a , (3) and = (af, b f ) r and. set-

i=i 

ting these first derivatives to appropriate zero vectors, we can obtain the following estimating 

equations 

i=l 

Z i \ -1 

^ Zi - Ui OL - Vi &i J 

^ yi - gi ^ 

V 
- D~ 

(3.18) 

V b t / 

= 0, i = l,...,n, 
Zi — UiCX — ViZn j 

which is equivalent to 

£ <9* A i _ 1 ^ 7 + E Ql A " 1 ^ = £ Qi K l
 n, 

i=l i=l i=l 

^ Zi A " 1 Qi 7 + [Zj A " 1 Zi + fl-"1]^ = ^ A ^ r - i , ' i = 1 . . . , n, 

where 

(3.19) 

( 

V 

Si . V>. \ 
eft 

Zi 

da] dbj 

J 

The solution to the estimating equations (3.19) can be obtained by iteratively solving the 

following equations 

£ QI A - 1 Qn + tQT A " 1 ZiUi = ± Qf A,-1 fit 

i=i i=i i=i (3.20) 

Z f A " 1 Q l l + (ZT A " 1 Zi + b-1)ui = Z j k . 1 r i , i = 1 . . . , n , 
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where f; = (yf , z[)T is defined in (3.7), and Qi, Ait Zit and D are Qi, Ai, Zi, and D 

evaluated at 7 = 7 and Wj = Wj, respectively. The solution to the equations (3.20) is given 

in (3.10) and (3.12). Therefore, for fixed A , the final estimate 7 and a V = ^ ( 7 ) satisfy the 

estimating equations (3.18) and maximize the complete-data log-likelihood function (3.2). 

These facts will be used to show the following asymptotic properties of 7 . 

3.7.4 C o n s i s t e n c y 

We first note that, for fixed A , the M L E of 7 will satisfy the set of estimating equations 

° ^ i=i 7 i=i J 

Under R4, we have 

"" / {j2NiQ~L^' ^ ) } e x p { ^ 7 V , L , ( 7 , ŵ dwr-.dw, 

= 53 V 7 ^ ' / • • • / (VNiQ-Hl, wO) exp { A ^ ( 7 , w^W • • • dwn 

i=i ^ 7 j=i 

= V 7 ^ / ( \ / ^ ^ , 7 ( 7 , w<)) exp{/V i L i(7, W f ) } ^ x 7 e x p { i V i L i ( 7 , a;,-)}** 
i=i ^ j ^ i - 7 

Now we examine the term £ - ^ ( 7 , u>j) in the above expression. Since the y^s and Zj/s are 

conditionally independent each other given u>iy by the Lindeberg Central Limit Theorem, it 

follows that conditional on u>,-. 

( 
= NrWA,1 

Yi ~ gi 

Ui a — Vi a, 
\ 

= Op(N~1/2) (3.21) 

Furthermore, under R3 it can be shown that the estimate 

^ ( 7 ) = vi + Op(N-1/2). 
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Combining the results in (3.21) and (3.22) and applying Lemma 3.2 to £ ^ ( 7 , ^ ( 7 ) ) , we 

can show that 

• 4 7 ( 7 , A ( 7 ) ) = L ; i 7 ( 7 ) u ; i ) + O p ( i V i - 1 / 2 ) 

= Op{N~112) + Op(N~1/2) 

.= Op(N~1/2). (3.23)' 

Then, by direct application of the Laplace approximation to integrals of the form J exp{kp(x)}dx 

and / q(x) exp{kp(x)}dx, where q(x) and p(x) are smooth functions in x with p(x) having 

a unique maximum at some point x (see, e.g., Barndorff-Nielson and Cox, 1989), it can be 

shown that 

\NiL"\ (l + ocivr1)) J exp{/ViLi(7, Ui)}dwi = exp{A^ iL i(7, 1^(7))} ^ 

and 

/ ( ^ ^ , 7 ( 7 , ";)) exp{/V i L i(7, w^jdui 

= e x p { M L l ( 7 , «i(7))} x ^ ( ^ - 7 ( 7 , « i(7)) + W 1 ) ) , 

where L - ' ^ ^ = £"u;,u>(7 ; 0^(7)). Because (3.21) implies y/N~L'irf(-y, 0)1(7)) = O p ( l ) , it 

follows from R l that 

1L 

( ^ ^ ( 7 , ^ ( 7 ) ) + O^N-1)) x J](l + O^Nf1)) = VWJ,7(7, w<(7)) + ^ ( A T 1 ) . 

Hence we have 

i=l 

e x p { / V i L i (7 , W i ( 7 ) ) } 
2?r 

6 / 2 

(y/NiL'^in, &&)) + OiNr1) 

n 

J J e x p { j V i L i ( 7 , « i ( 7 ) ) } 

2TT 

i r ( 7 ) w( 7 ) ) 
n 

E ^ , 7 ( 7 . ^ ( 7 ) ) + n O p ( i V - 1 / 2 ) 

6 / 2 

I (I + CXAT"1)) 

i=l 
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where K(7, u>(7)) = e x P { £ A ^ ( 7 , ^ ( 7 ) ) } ft ( V l ^ w J ) 6 / 2 - Since ^ ( 7 , 4 ( 7 ) ) ^ 0 
i = l i = l 

for all 7 € r, the M L E -yMLE of 7 satisfies 

J ^ ) | 7 = 7 ^ = ° ^ ( 7 , ^ ( 7 ) ) | 7 = 7 M L £ + O p ( n 7 V - 1 / 2 ) = 0 , (3,24) 

n n 

where Ji(7, £ ( 7 ) ) = ]H ^ - ^ 7 ( 7 , ^ ( 7 ) ) = E ^ 7 ( 7 , ^1 ( 7 ) ) is the s e t of estimating equa-
i = l i = l 

tions for 7 conditional on fixed A , as given in (3.21). By taking a first-order Taylor series 

expansion of Ji(7, £ ( 7 ) ) about y M L E

 a n d noting that, from (3.24), J\{IMLE, ^{IMLE)) = 

Op(nN~1/2), we have 

•• Ml, w (7)) = Op(nN-^2) + J { ( 7 * , w(7*))(7 - 7 M L E ) > 

where 

JiW, « ( 7 * ) ) = 7j~r<M7, « ( 7 ) ) | 7 =7* = ^ f E ^ ' 17=7* 

(3.25) 

<97

2 

t=i 
and 7* is on the line segment joining 7 to •JMLE- By applying the chain rule, we have, for 

any 7 G T, 

d2 I ^ ( 7 ) 
• / I ( 7 , * ( 7 ) ) = E { ^ T ^ ( 7 ; W i ) 

j=i 
+ 

i = l 

NiLi(-y, u>i) 

= E ^ 7 7 ( 7 , W i ( 7 ) ) + ^ w ( 7 , * i ( 7 ) ) a 7

3 
(3.26) 

Note that £ 1 ( 7 ) maximizes NiL^-y, u>) and satisfies the second set of equations in (3.18), 

i.e. '• ' I 

W 7 , ^ ( 7 ) ) - D^Cain) = 0 « ^ ( 7 ) = ^ ^ ( 7 , w<(7) ) . 

Applying the chain rule once again, we have 

0Wf(7) 3 
5 7 ' : { l > ^ ( 7 , ^ ( 7 ) ) 

d 2 

h{l, Wj) uji=u>i(7) 
a2 

dujidujf lift, W i ) u>i=<I;i(7) 
^ ( 7 ) 

a 7

r 

= ^ : W 7 ( 7 , « < ( 7 ) ) + ^ w ( 7 , « i ( 7 ) ) 
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Solving the above equation for [dLji{/^)/d^fT], we have 

0Wj(7) 
= { - Wi(7)) + <9 7

r 

Substituting this expression of [du^)/d~fT) in (3.26), it follows from R l , R3, and R5 that 

as n —> oo 

- l j { ( 7 * , *<(7-)) = - ^ E ^ , 7 ( 7 , « i . ( 7 ) ) l 7 ^ 
i=l 

= Q(7*)- 1 + o P ( l„) , (3.27) 

which implies ~J[(rf*, Wi(7*)) fl(7*)-1-

Taking e = |Q(7* ) _ 1 in the definition of convergence in probability, from (3.27), we 

have 

P ( - ^ ( T T 1 < -\J'Al\ «*(7*)) - ^(T*)" 1 < ^ ( T * ) " 1 ) -> 1, as n - oo 

<*=> p Q n ( 7 T 1 < ~ ^ ( 7 * , « i ( 7 * ) ) < | n ( 7 ' ) - 1 ) - » l , a s n ^ o o , 

which implies 

^ ( ^ ( T T 1 < - ^ 1 ( 7 * . «i (7*))) - 1, as n ̂  oo. 

Therefore, for sufficiently large n, , 

-^ i ( 7 * , «i(7*)) > ̂ (TT 1 > ^ J (3.28) 

with probability 1, where Ax is defined in R5. Since, in (3.25), O p (A^- 1 / 2 ) = N'1'2 Op(l) A 0 

as N —» oo, similar arguments as for —\J'i{l*, £j(7*)) lead to with probability 1, for any 

0 < K < di, 

\\Op(N^2)\\ < ^ , (3.29) 
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where d\ is defined in R5. For any 7 such that H 7 — •JMLEW = K> w e know that H7 — 

JMLE\\/K — 1) which satisfies the condition of Lemma 3.3. We can regard J i (7, ̂ ( 7 ) ) in 

(3.25) as a function of ^ ( 7 — JMLE) o n the unit sphere in RT and using the results in (3.28) 

and (3.29), we have 

:(7 - IMLE? - J i ( 7 , ,#(7)) 
n 

( 7 - 1MLE)TOP{N-1'2) + « 7 ( 7 - 7 M L B ) ~ ( 7 - 7 M i £ ) 

< " 7 M L E | | | | O P ( ^ - 1 / 2 ) I I - 4^4||7 - 7 M L I | 2 

s - - - < - - < ° -
Therefore, conditional on u , we can show 

Pu { - { I - I M L E ? -J\{l, ,w (7 ) ) 
n 

< 0 1 "as n —> 0 0 , N —> 0 0 . 

Thus, since 7 satisfies J i (7, ̂ ( 7 ) ) = 0, Lemma 3.3 implies that 

lim Puj{\\l - IMLEW < « } = 1. 
n,N—*oo 

Hence, using Lemma 3.4, we have 

lim P { | | 7 - 7 M i £ | | < K} = Eu; { lim Pu{\ft - 7 m l e | | < « } ) = 1. (3.30) 
n,N—>oo I n,N—>oo I 

Since ^ ( 7 , u>(7)) = 0 and J i ( l M L E , v(^MLE)) = O p ( n i V - 1 / 2 ) by (3.24), it follows from 

(3.25) that 

~ ^ ( 7 * * , w ( 7 * * ) ) ( 7 - W ) = 0 P ( i V - 1 / 2 ) , (3.31) 

where 7 * * is on the line segment joining 7 to -yMLE. From (3.30), we know that 7 * * is in 

the interior. It follows from R5 and inequality (3.28) that 

--J'i(l**> <*K7**)) > ^ ( 7 * * ) _ 1 > n z z 
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where Q(7**) _ 1 is positive definite. Lemma 3.5 implies that all eigenvalues of \—\J[{l**, ^ (7* 

are greater than | A i . Therefore, all eigenvalues of [—\J[{l**, £(7**))] ~ \ . which are equal 

to the reciprocal of all eigenvalues of [—^1(7**, ^(7**))], are less than So we have 

[ - ^ ( 7 * * , ^( 7 **)) ] _ 1 < £ / , i.e., [-±J{(Y*, ^(Y*))]'1 = 0P(1). Hence, from (3.31), we 

have 

-U(7**, 0,(7**)) n (7 IMLE) — 

from which it follows (given R7) that 

Op(iV-V2) = 0^1 )0^-1 /2 ) = 0p(N-1/2), 

1 = iMLE + Op{N-X/2) 

= 7o + O^n-1'2) + Op(N-V2) 

= 7o + Op j max n ~ 1 / 2 , (min 
-1/2 

3.7.5 Asymptotic Normality of 7 

The asymptotic normality of 7 will be shown based on the estimating equations (3.10). Let 

n 

* ( 7 ) = E ^ r 1 ( r l - Q i 7 ) , 
i=l 

where Qi, and are defined in (3.20). The estimator 7 satisfies $ ( 7 ) = 0 at convergence. 

Noting that d<&(7)/dyT = — E Qj^HlQixs constant for 7, we take a Taylor series expansion 

of ^ ( 7 ) around the true parameter 7 0 : 

0 = * ( 7 ) = $ ( 7 0 ) + ^ M ( 7 _ 7 o ) ) 

which implies 

V^(7 - 7o) = 
1 d${n) 
n dyT 

dy1 
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Since E[Qjtrl(ri - Q I 7 O)] = 0 and Cov[Qf S r 1 ^ - Q I 7 O)] = Qf^Qu by the Lindeberg 

Central Limit Theorem, we have 

n . I -1 /2 / n X 

- £ Qjt^Qi - = J2 Qf^ih - Q,7o) - N(0, I). 
i = l J \ * i = l / 

Noting that 7 = 7 0 + oP(ljv,n) a n d Ni = O(N), and using Lemma 3.2 and (3.22), we have 

Wi (7) = £ ; ( 7 0 ) + o p(ljv i n) 

= W i + O p ( A T 1 / 2 ) + 0 p ( l w , n ) 

= W i . + O p ( A T - 1 / 2 ) + o p ( l w , n ) 

= u>i + op(lAr,n). 

Hence, it follows by the Law of Large Numbers, Lemma 3.2, and R6 that 

i = l 

-1/2 

n 
i = i 

P. rr~>/.. \ l l /2 

-1/2 

7=7,0;=u> (7) 
-1/2 

u —> oo 

J 7=70,u>=u; 

[^(To)]1 

A —> oo, n —> oo 

N —> oo, n —> oo, 

where u is the number of iteration. Using Slutsky's theorem, we can show that 

vM7 -7o ) = 
d 

1 - va T n 

i E QWQi 
i = l 

-1/2 

i E Q ? V & 
J L i=l 

N(O, n( 7 o )) . 

We can extend the foregoing proofs to the case where A is unknown by replacing A 

with its consistent estimate. Note that at the estimate 7 , the estimate A given in (3.13) can 

be shown to be consistent for A as n —>• 0 0 and N —> 0 0 (see, e.g., Demidenko, 2004). 
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Chapter 4 

Simultaneous Inference for 

Semiparametric N L M E Models with 

Covariate Measurement Errors and 

Outcome-based Informative Dropouts 

4 . 1 I n t r o d u c t i o n 

In this chapter, we develop two approximate likelihood methods to simultaneously address 

covariate measurement errors and outcome-based informative dropouts in semiparametric 

N L M E models. In Section 4.2, we propose models for this complicated problem. We obtain 

approximate M L E s of all model parameters, using a Monte-Carlo E M ( M C E M ) algorithm 

along with Gibbs sampler methods, in Sections 4.3. In Section 4.4, we propose an alternative 

and computationally much more efficient approximate method. The proposed methods are 

illustrated in a HIV dataset in Section 4.5 and are evaluated via simulation in Section 4.6. 
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We summarize this chapter in Section 4.7 with some discussion. 

4 .2 Models for Nonignorable Missing Responses 

In the presence of nonignorable or informative dropouts in the semiparameteric N L M E model 

(2.6) and (2.7) with the covariate process (2.8), we can write = (ymis,i, y0bs,;) for indi

vidual i, where y m i S > i collects the missing components of y, and y0bs,i collects the observed 

components of y .̂ Here, the missing y -̂'s are intermittent, i.e., we allow dropout individuals 

to possibly return to the study at a later time. Let r; = (rn,..., rirH)T be a vector of miss

ing response indicators for individual i such that r^ = 1 if is missing and 0 otherwise. 

Note that = 1 does not necessarily imply that r^+i = 1. We have the observed data 

{(y0bs,i, Zi, Ti), i = l,...,n}. 

To allow for a nonignorable missing mechanism in the response, we need models for 

the missing response indicators r-j, which are called dropout models. The parameters in the 

dropout models are treated as nuisance parameters and are usually not of inference interest. 

Thus, we try to reduce the number of nuisance parameters to make the estimation of main 

parameters more efficient. Moreover, too many nuisance parameters may even make the 

response and the covariate models non-identifiable. Therefore, we should be very cautious 

about adding extra nuisance parameters. 

In general, the probability that is missing may depend on many factors, such 

as responses, covariates, and individual random effects, etc. Since the missing response 

indicators rj are binary, a simple model for them is a logistic regression model as follows. 

We will assume that r^-'s are independent for simplicity (to reduce the number of nuisance 

parameters) 

m 
/ ( r ^ , Zi, a ,̂ bi; 77) = J J j P ^ - = l | y i ) zh ai, b^ r])}r^[l - P ( r y = l | y i , zi} ait bi; r / ) ] 1 - ^ , 

i = l 
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with i 

logit[P(r0- = l|yi, ai, b i ; 77)] = log P ^ — Z " b * ' ^ = h(yu zh a^ bij.ry), 
[ 1 r\Jij — J-lYi, Z i , ai, D i , 77JJ 

where 77 are the unknown nuisance parameters and h(-) is often chosen to be a linear function 

of yi, Z j , â , and bi. More complicated models can also be considered, but they may introduce 

more parameters and increase the computational burden. Note that the missingness of 

may depend on the (unobserved) true covariates z* rather than the observed error-prone 

covariates Z j . In this case, a method similar to the one described below can be developed 

and will be discussed in the next chapter. 

The density function /(r^y*, z i ; a i ; b^ 77) is a general expression of the missing re

sponse mechanism. Little (1995) pointed out two ways to incorporate informative missing

ness: 

• outcome-based informative if /(rj|yj, Z j , a,, bi; 77) = /(rj|yj, ẑ ; 77). That is, the prob

ability that the current response is missing depends on the possibly unobserved re

sponse yi and covariates Z j but not on the random effects ai and bi. For example, a 

patient does not show up because he is too sick to go to the clinic. 

• random-effect-based informative if / ( r j | y j , Z j , ai, bi; 77) = /(r^a,, bi; 77). That is, the 

probability that the current response is missing depends on the underlying unobservable 

random effects ai and bi but not on yi and z». For example, a patient may be more 

likely to drop out if his initial viral decay is slower than other patients. 

In this chapter, we focus on the outcome-based informative missing mechanism. Diggle 

and Kenward (1994), Little (1995), and Ibrahim et al. (2001) discussed various specifications 

of the outcome-based informative missing mechanism. We will assume that, for example, 

are independent with 

logit[P(rij = l|yi, Z i ; 77)] = 771 + 772^1,- + r]3zi2j + • • • + r]v+1zivi + r?„+2yij. 
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More complicated dropout models can be specified in a similar way. Note that the assumed 

dropout models are not testable based on the observed data, so it is important to carry 

out sensitivity analysis based on various plausible dropout models. If the main parameter 

estimates are not sensitive to the assumed dropout model, we may be confident about the 

results. Otherwise, if the estimates are sensitive to the assumed dropout model, we need 

further investigation of possible missing mechanisms. 

4.3 Likelihood Inference 

4.3.1 The Likelihood Function 

We consider likelihood inference for semiparametric N L M E models with outcome-based in

formative dropouts and measurement errors and missing data in time-varying covariates, 

based on the approximate models (2.6) - (2.8). Let 0 = (a , /3, 52, R, A, B, 77) be 

the collection of all unknown model parameters. We assume that the parameters a, (3, 

52, R, A, B, and 77 are all distinct. The approximate log-likelihood for the observed data 

{(y0bs,i, Z i , T i ) , i = 1,... ,n} can be written as 

n / / / 1(0) = 5>g /y(yi|z» )fz{^W,a,R)f(&i;A) 

f(W,B)f(Ti\yi, Z i ; V) dymiStidaidbi 

77 



where 

/ y ( y ; | z ; , b^, a, (3, 82) = U^U fY{yij\zij,ai, W, a, (3, 52) 

= n ; i i (2TT<5 2)- 1/2 e x p { - [ y y - , d (u£a + v £ a t , /3, bl))]2/2<52}, 

/ z ( z i | a i ; a , i?) = n£=i /z( z;fcl a*; a , i2) 

= IE=i M " 1 7 2 exp { - ( z i f c - ink a - v , f c a i ) T i?" 1 

x ( z i f c - UifcQ: - V i f c a i ) / 2 } , 

/(a,; A) = | 2 7 r ^ | - 1 / 2 e x p { - a f ^ - 1 a i / 2 } , 

/ ( b i ; B) . = ^ y r f l l - ^ e x p f - b f f l - i b i ^ } . 

The observed-data log-likelihood 1(0) can be quite intractable, so we use a M C E M 

algorithm, which is similar to Section 3.3.2, to find the approximate M L E s of parameters 

0. By treating the unobservable random effects a; and b i as additional "missing" data, we 

have "complete data" { ( y i , z i ; r̂ , a i , b i ) , i = l , . . . , n } . The complete-data log-likelihood 

for all individuals can then be expressed as 

n n 

i=l i=l 

+ log / ( a i ; A) + log / ( b i ; B) + log f(rAyi, z i ; 77)}. (4.1) 
(i) 

where lc is the complete-data log-likelihood for individual i. 

4.3.2 Approximate M L E s Based on a M C E M Method 

The E M algorithm iterates between an E-step, which computes the conditional expectation 

of the complete-data log-likelihood given the observed data, and a M-step, which maximizes 

this conditional expectation to update parameter estimates. For our models, the E-step is 

quite intractable due to nonlinearity, so we use Monte Carlo methods to approximate the 

intractable conditional expectation. In the M-step, we use standard complete-data optimiza

tion procedures to update parameter estimates. 
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Let &® be the parameter estimates from the i-th E M iteration. The E-step for 

individual i at the (t + l)th E M iteration can be expressed as 

Qi(0\OV) = E(lU(e)\yoba,i,zi,Ti;0®) = J J J [log fyiy^, a,, b<; oc, 3, 82) 

+ log /z(zi |ai; oc, R) + log /(a^; A) + log /(fy; B) 

-(-log f(ri\yi, 77) x / ( y m i S i i , a i ; b ^ y ^ i , zu 0 ( t ) ) d y m i S j i ^ dbi 

= A(i)(a, 0, O.+ / i ° ( a . + 4 V ) + / J ° ( £ ) + / « ( t | ) . (4.2) 

Since the expression (4.2) is an expectation with respect to f(ymiS,i, ai, bi|y 0h S )j, Zj, i"*; 0^), 

it can be evaluated using the M C E M algorithm (Wei and Tanner, 1990). Specifically, we may 

use the Gibbs sampler to generate samples from [ymj S )j, â , b ^ y ^ i , Zj, ^ 0W] by iteratively 

sampling from the full conditionals [ymis,i\y0bs,i, Zi, ri} ai, bi; 0W], [ai|yi, Z i , r i , bi; 0 ( t )], and 

[bi|yi, Zi, Ti, a;; 0W] as follows. 

f(ymis,i\yobs,i, Zi, r{, ai, bi; 0W) oc /y (y i 

/y(y< 

<• = /y(y< 

/ ( a » | y i , Zi, r i , b i ; 0W) oc f Y ( y i 

= fv(yi 

« /y(yt 

Z i , r i , a i ; bi; 0W) 

Z i , ai, bi; 0W) • / ( r i | y i , Z i , a i ; b<; 0 ( i )) 

Z i , ai, b i 5 0W ) - / ( r i | y i , Z i ; 0 « ) , 

ai|zi, r i , bi; 0W) 

Z i , r i , a;, bi; 0W) • /(a^z*, r», bi; 0 ( 4 )) 

Z i , ai, b i ; 0W) • / ( r i | y i , Z i ) ai, b i 5 0 « ) • / ( a ^ ; 0(*>) 

CK /(ai; 0W) / 2 ( z i | a i ; 0 « ) • / y ( y ^ , ai, b,; 0<«)), 

/ (b i |y i , Z i , r i , a*; 0 ( t ) ) oc /y (y i , b;|z;, r i , a ;; 0 ( t )) 

= /y(Yi| zi> r *, a*. b i ! 0 ( t ) ) • / ( b i | z i , r i ; ^ ; 0<*>) 

ex / ( b i ; 0(*)) • /y(yi |z i , ai, b < ; 0 « ) • / ( r ^ , z i } ai, b<; 0W) 

= / (b i ; 0W) • /y(yi |z i , a i ; b<; 0^) • / ( r ^ , z,; 0W) 

oc/(bi; 0W ) - /y(yi |z i , ai, b,; 0W). 

Monte Carlo samples from each of the full conditionals can be generated using rejection 

( 
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sampling methods, as in Wu (2004). Alternatively, the integral (4.2) may be evaluated using 

the importance sampling method (see Section 3.3.3). 

For individual i, let {(y^., af> b f ) , . . . , (yf 0 , , a f \ b f 0 ) } denote a random 

sample of size kt generated from [ymiS,i, a*, b;|yofcSii, zu r- 0^}. Note that each (yf s i , a f , bf 

depends on the E M iteration number t, which is suppressed throughout. The E-step at the 

(t + l)th E M iteration can then be expressed as 

Q(0|0<*>) = ± QMeV) « E U E ^(tf; (3$.,,, y ^ ' ) , a f , b f ) ) 

. i = l i = l L fc=l J 

= E E iipg /y((yi2.,i,yo6.,i)|zi, a f , b f / a , *2) 
i = l f c = l 

+ E E Tt log / z N a f ; a , R) + £ £ & log / (af; A) 
t=i fe=i • i=i fe=i 

+ E E £ log / (bf ; B) + ± t £ log / ( r t | ( y f y 0 ^ ) , z i ; „) 
i=i fe=i t=i it=i 

= Qw{cx, /3, <52|0W) +.QP)(a, R\0®) + Q^{A\0^) + Q(4>(£|0(*>) + Q^{r)\0V). 

The M-step then maximizes Q(0\0^) to produce an updated estimate 0^t+1\ so it 

is like a complete-data maximization. Since the parameters in + Q^2\ Q^3\ and 

are distinct, the M-step can be implemented by maximizing + Q^4\ and 

separately using standard optimization procedures for the corresponding complete-data 

models, as in Section 3.3.2. 

As in Section 3.3.2, we use the approximate formula suggested by McLachlan and 

Krishnan (1997) to obtain the variance-covariance matrix of the approximate M L E 0. Let 

sf = dlf/dO, where if is the complete-data log-likelihood for individual i. Then an 

approximate formula for the variance-covariance matrix of 0 is 

Cov(0) = [ ^ £ ( s f | y o b S i i , Zi, Vi; 0) E(sf\yobSti, zu r i ; Of] , (4.5) 

i=i 

where the expectations can again be approximated by Monte Carlo empirical means, as in 

(4.4). 
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In summary, the foregoing M C E M algorithm proceeds as follows. 

Step 1. Obtain an initial estimate of (a, (3, 52, R, A, B) = (a' 0 ' , /3 ( 0 ) , 52(-°\ R®\ 

A^°\ B^) based on a naive method, which ignores covariate measurement errors and missing 

data, and an initial estimate of r/ = T / ° ) based on the dropout model by filling in ymjS)j with 

the average of y0bs,i- Set a f = 0 and b f = 0. 

Step 2. At the i-th iteration, obtain Monte Carlo samples of the "missing data" 

(yrms.i, a i , using the Gibbs sampler along with rejection sampling methods by sampling 

from the full conditionals [ymiS,i|y06S,i, Z i , ^ , ^ , fy; 0^], [a^y*, zi} riy bf, 0(i)] and [b^y*, z,, 

r-j, a i j 0^], or using importance sampling methods to approximate the conditional expecta

tion in the E-step. 

Step 3. Update estimates 0(i+1) using standard complete-data optimization proce

dures. 

Step 4. Iterate between Step 2 and Step 3 until convergence. 

4.3.3 M o n t e C a r l o S a m p l i n g 

G i b b s Sampler 

As in Section 3.3.3, we can again use the Gibbs sampler to draw the desired samples 

as follows. Set initial values (yfsi, af \ b f ) . Suppose that the current generated values 

a r e (ySs,i> a f \ b f } ) . w e c a n o b t a i n (9mi£i, a f + 1 ) , bf+1)) as follows. 

Step 1. Draw a sample for the "missing" response yfitV fr°m 

f(ymis,i\yobs,i, Z i , n, a f ' , b f } ; 0W). 

Step 2. Draw a sample for the "missing" random effects a f + 1 ' from 

/(a*l(yfS\ yofc.,0, r i ; b f *<*>). 
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Step 3. Draw a sample for the "missing" random effects h\ ' from 

After a sufficiently large burn-in of r iterations of Steps 1 - 3 , the sampled values will 

achieve a steady state. Then, { ( y ^ l . i i af \ H^)> k = r + I , . . . ,r + kt} can be treated as 

samples from the multidimensional density function 

f(,y-mis,i> a.j, b j | y 0 b S ) j , Z j , F j , Q()). 

And, if we choose a sufficiently large gap r' (say r' = 10), we can treat the sample series 

{ ( y m i s , i > d-ik\ bj f e'), k = r+r', r + 2r',...} as independent samples from the multidimensional 

density function. There are several ways to get the initial values ( y ^ , - s i , a\°\ b - 0 ^ ) . A simple 

way is to set y ^ ] S ) i to the average of yQbs,i, and (af \ b - 0 ) ) to (0, 0). 

Mult ivar ia te Reject ion A l g o r i t h m 

Sampling from the three full conditionals can be accomplished by the multivari

ate rejection sampling method. For example, consider sampling from / ( y m j S ) i | y 0 & s , i , Z j , 

rj, aj, b j ; 6>W) in (4.3). Let / * ( y m i S i i ) = / ( y 0 ( , s , ;K »i . hu 0{t)) / ( r j | y j , z < ; 0®) and c = 

sup{/*(u)}. We assume c < oo. A random sample from / ( y m j S , i | y 0 & s , i , Z j , rj, aj, b j j 0{t)) 
u 

can then be obtained as follows by multivariate rejection sampling: 

Step 1. Sample y ^ j s i from / y ( y m j S > j | z j , aj, b^ ; 0 ( t )) , and independently, sample w 

from the uniform (0, 1) distribution. 

Step 2. If w < / * ( y „ j S ] j ) / c , then accept y ^ j s i , otherwise, go back to step 1. 

Samples from / (aj|y j , Z j , riy b j ; 6^) and / ( b j | y j , zit rit a ;̂-O®) can be obtained in 

a similar way. Therefore, the Gibbs sampler in conjunction with the multivariate rejection 

sampling can be used'to obtain samples from [ymiS,i, b j | y 0 ( , S j , Z j , 
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4 . 4 A Computationally More Efficient Approximate Method 

The estimation method described in the previous section may be computationally very inten

sive and may even offer potential computational problems such as slow or non-convergence, 

since the method involves sampling the random effects (a j , b j ) , which may have high di

mension (see the detailed discussion in Section 3.4.1). To overcome these difficulties, in this 

section we propose,an alternative approximate method which further approximates model 

(2.5) by taking a first-order Taylor expansion around the current parameter and random 

effects estimates, which leads to a L M E response model. For the resulting L M E response 

model with the covariate model (2.8) and the dropout model, we can obtain approximate 

M L E s of model parameters by using a computationally more efficient M C E M algorithm. 

The random effects aj and b j can be integrated out in the E-step of the E M algorithm and 

thus sampling the random effects in the E-step is no longer needed. Therefore, the proposed 

approximate method may provide substantial computational advantages over the M C E M 

method in the previous section. Moreover, the proposed method can be used to obtain good 

parameter starting values for the M C E M method in the previous section. 

Denote the current estimates of (6, a j , b j ) by (6, a j , b j ) , where a j = E(&i\y0bSii, Z j , TJ; 0) 

and b j = £ ' ( b j | y 0 h S ; j , Z j , r̂ ; 6), suppressing the E M iteration number. Taking a first-order 

Taylor expansion of in (3.6) around the current parameter estimates a and J3 and random 

effects estimates a j and b j , we obtain the following L M E response model 

Yi = Ei + Wia + Xip + HiSLi + Tibi + ei, (4.6) 
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where 

Wi = ( w j i , . . . , w i n . ) with xvi:j = 
do. 

Xi = ( x i i , . . . , x i r i i ) r with Xjj = 
u dp 

/ / i = ( h j i , . . . , h i 7 l j ) with hi:j = 
O&i 

Ti = (t i l ;...,t i nJT witht0- = ^ 
gi = g i ( d , y9, ai , bi) - WiQ: - A"i3 - TfiOi - T i b i , 

with all the partial derivatives being evaluated at ( d , P, aj, bj). 

Our proposed approximate method is to iteratively solve L M E response model (4.6). 

For the L M E response model (4.6) with the covariate model (2.8) and the dropout model, 

the M L E s of the model parameters can be obtained by a M C E M algorithm, in which the 

random effects ai and b i can be integrated out in the E-step, as shown below. Thus, the 

E-step only involves sampling y m i S ) i rather than ( y m i S , i , a*, bj) as in Section 4.2. Moreover, 

some analytic expressions for the M-step can be obtained. These result in a substantial 

improvement in computational efficiency 

4.4.1 A Much Simpler E-step 

In this section, we show that, based on the approximate L M E response model (4.6) and the 

covariate measurement error model (2.8) along with the dropout model, the random effects 

(aj, bi) in the E-step in Section 4.2 can be integrated out. 

Based on standard results for multivariate normal distributions, the distribution of 
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( y i , Z j , a j , b j ) for individual i is given by 

\0 N 
0 

0 V 

Hi A Hf + TiB Tj + 52 I Hi A V? HiA TiB 

• ViAHf ViAV? + I®R ViA 0 

AHT AV? , A 0 

BT? 0 O B 

Since Ht A Hf + TtB Tf + S21 and V A Vf + I ® R are positive definite, they are symmetric 

and invertible. By the inverse operation of partition matrices, we can write 

^ rii j\n; - t -1; a it + o~ l rii A vt \ I Ui + ft —ft tii \ 
(4.7) 

V 
where 

Hi A Hf + TiB Tj + 521 HiAVf 

VAHT T/. 4 T / T . VAV/ +I<S)R J V -EiF1 

Ei J 

d = {HiA'Hj + TiBT? + 52 

Fi = GiHiAVf, 

Ei = [ ( V ^ V f + / ® i ? ) - V j A F f G j / f j A V f ] - 1 . 

Because the random effects aj and b j are conditionally independent of r j given ( y j , Z j ) , it is 

straightforward to obtain the conditional distribution of [aj, b j | y j , Z j , r j ] when 6 = 6 

y i i Z j , I*j, 6 N 
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where 

uai = [AHTtGi + FiEiF^-AVfEiFfiiyi-gi-Wia-XiP) 

+ [AVfEi-AHTFiEl}(zi-Ula)\e=Q1 

uhi = BT^Gi + FiEiFT^-^-Wia-Xi^-BTTFiEiixi-Uia)^^, 

E a i = A-iAHjiGi + FiEiF^-AV^EiF^HiA-lAV^Ei-AHTFiEilViA^ 

Ebi = B — B T?(Gi + Fi Ei Fj) T* B \ Q = Q , 

S a i b t - (Ebiai)T=[AVfEiFl-AHf(Gl + FiEiFn}TiB\e=B. 

By the expectation and covariance properties for multivariate random variables, we have 

£(aj |yj, ZiYi, 0) = 

E(^aJ\yi, z^ n\ 0) = £ a i + i / J , 

£(b; |yi , zu n; 0) = u b i , 

E{hihJ\yi, Zi,Yi- 0) = E b i + uhi v?., 

E(aihf \yi, z ^ ; 0) = S a i b i + u&i 

Since 

f(ymis,i, ^i, b i |y o 6 S ) j , Zi, Yi, 0) = /(a^, bi |yi , z», r»; 0 ) / ( y m i S , t | y 0 6 S l i , z i , r i ' , 
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the conditional expectations in the E-step, which correspond to - if1 in (4.2), become 

I?\a, (3, 52) = J £ a i , b i [ - ^ log(27r52) - ^ ( y < - g i - Wt oc - Xi (3 - H, a, - % b{)T 

x(yi - gi - Wi oc - X i (3 - Hi ^ - Ti b i ) | y i j Z i , r i ; 0 

^ f (ymis,i\yobs,ij Z i , T i , 0)dy 

= log(27r52) - ^ J {(yi - gi - Wi oc - X i /3) r(yi - g i - Wt oc - Xi (3) 

^{yi-^-WiOc-Xidf E^lHi&i + Tih^yi, zu r < ; 0] . 

+ E a i ) b i [ ( ^ i a i + r i b i ) T ( i / i a i + ri.bi)|yi, z ^ ; 0]} 

x / ( y mis,i\yobs,ii Z i , T j , 0)dy 

= - ^ l o g ( 2 7 r 5 2 ) - ^ y ' { ( y i - g i - l ^ a - X i ^ ) % i - & - W i a - X i / 3 ) 

- 2 ( y i - g i - W i a - X i / 3 ) T [ ^ i E ( a i | y i , z i ; r i ; 0) + Ti £ ( b i | Y i , Z i ) r < ; 0)] 

+ ^ a i , b j a f i f f / f i a i + 2bf T f t f i ^ + b f i f l - b ^ , Z i , r i ; 0]} 

x / ( y mis,i\^/obsji j ^i? "̂ij 

0)dy 

= - ^ l o g ( 2 7 r 5 2 ) - ^ y { ( ^ - ^ - ^ ^ - ^ ^ ( y i - g i - W i « - X i / 3 ) 

- 2 ( y i - g i - W i a - X i / 3 ) T ( F i J B [ a i | y i , z i ; r i ; 0} + Tt E[bi\yu zu n; 0]) 

+tr[Hi E(eii a f |yi, zh r<; 0) Hj) + 2 tr [# i b f | y i , z i , r < ; 0) i f ] 

+ t r [ 7 ; £ ; ( b i b f | y i , Z i . T i ; 0)Zf]} x 

= - | l o g ( 2 7 r < 5 2 ) - ^ | { ( y i - & - W i a - X i / 3 ) T ( y i - & - W ; a - X i / 3 ) 

-2 (y i - gi - VKi a - X , /3)T i / a i + 7} i / b J 

+tr[Hi ( S a i + V a i i / J ) tff ] + 2tr[tf; ( E a i b i + ^ if] 

+tr[Tj ( £ b i + i / b i !/£.) Z f ] | x 
i\yobs,i, Z i , Ti', 6)dymiSti, 
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E, a , , b j 

1 _ m ' _ 

- ^ log\2*R\ - - - Uv oc - Vtj Ri)T R-1 

i=i 

x(ZJJ UijOt Vij a j ) | y j , z^r^; 0 x / (y m i S ] i |y 0 ( , S ] i , Z j , i y d)dymiSi 

lOE g |27ri?| - - y { ^ ( z ^ - ^ a ) T i T 1 ( z y - ^ oc) 

mi i 

-2 ^ ( z y - Un ocf R-1 Vi3 E^ailyi, zu n- 0) 
3 = 1 

mi _ • 

+ ^2Eaiibi[^V^R-1'Vijai\yi, ^, r»; 0]\ x / ( y m i s , l | y 0 6 s , l , Z i , r 4; 0)dyn 

1 f r m i 

^ log |27ri?| - - J { £ ( z < , - - tfy ocf R-1 (zy - £ ^ a ) 
m i 

-2 ^ ( z ^ - - Un ocf R'1 Vij E(<a\yi, zu i y 0) 
i=i 

+ J ^ t r [ V r

i [ i ? - 1 K j £ ; ( a i a f | y i , Z i , i y 0)]} x / ( y ^ y ^ , z», rii 6>) dy„ 

m 1 f m * 

^ log |27ri?| - - { ~ Vij ocf R-1 (zij - Uij oc) 
3=1 

-2Y(zlj-Ul3ocf R-lVijUai 

3 = 1 

+ Ytr(vij R"1
 VH ( s a i + ^ a i ^ ) ) x / ( y m i s , i | y 0 6 S , i , Z i , r t ; d)dymia,ij, 

3 = 1 
r r l l ~ i 

E a u b i [ ~ 2 l o § \ 2 7 t A \ - A~l a * l y i ' Z i ' r i ' 0
 x / ( y m i s , i | y 0 6 s , i , z i , i"*; 9) dymiSii 

1 1 f 

- log |2TTV4| - - / tr[A~l E(aisf\yi, z h n; 0)} x f{ymiS,i\yobs,i, z ; , i \ ; 9)dymiSii 

1 1 f 

- log I27T.4I - 2 / t r [ ^ _ 1 ( E a ; + ^ ) ] x / ( y m ^ y , ^ , Z i , n; 6) dymiSii> E, a i . b i - ^ log |2vr5| - ho? B 1 bi |yi , zi} r»; 0 x / (y m i S , i |y 0 & s , i , z i ; r<; 0) d y m i 5 i i 

1 1 f 
- log|27r5| - - / t r [ 5 _ 1 E ( b i b f | y i , zi} i y 0)} x f{ymisAyobs,i,zi, i \ ; 9)dymis>i 

1 1 f ~ 
- log |2TT£| - - / tr[5 _ 1 (E B I + uhi ul.)\ x / ( y m i S , i | y o 6 s , i , zu i y 6) dymis>i, 



I^iw) = I EaiM log/ (r i |y i , z^, 77) x / ( y m i S , i | y o b s > i , z i } r4; 0) dy 

log/(rj |y i , Z J ; 77) x / ( y m « , i | y 0 b s , i , z i ; rij 0) dyn 

Thus, compared with the intractable high-dimensional integrals in (4.2), the above integrals 

I{ - II have much lower dimension, i.e., the E-step is substantially simplified. Note that 

if - if are expectations with respect to / ( y m i S l i | y 0 6 s , i , Z j , ry, 0), so they may be evaluated 

using common numerical integration methods such as Gaussian quadrature if the dimension 

of y m i s , i is small. If the dimension of y m i S ) i is not small, we can use the rejection sampling 

methods to generate samples from [ymis,i\y0bs,i, z%, &\ based'on the conditional density 

f{ymis,i\yobs,i, z i , r u 0) oc / ( y i , Zj,ry, 0) 

= / ( Y i , Z i ; 0)/(ri|y*> Z i ; 0), 

where the distribution of ( y j , Zj) is 

y i 
N 

/ gi + WiCt + Xi(3^ / 

UjCt 
J 

HiAHf + T{BTj + 62I HtAVf 

VtAHf ViAVf + I^R 

For individual i, let y ^ ] s j , • • •., yf i i . i denote a random sample of size kt generated from 

[ymis,i|yobs,i! zi, ry, • Note that each y ^ \ s i depends on the E M iteration number t, which 

is suppressed throughout. Then we approximate the conditional expectations if - if in 
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the E-step by its empirical mean, with missing data replaced by simulated values, as follows. 

* fe=i 
>(fc) 

r- E 2l(y{Xi> - & - w « - * /3p 
2 = 1 

x[^£;(aJ|(ySSil, yobs,), zu n; 0) + % E(bA(y^s., yofeM), Z i j ri; 9)} 

^ fct 

+r -E t r { H i [CovC^KySi.i. y^O. z i , r » ; 0) 
* fc=i 

+^(ai|(y2l,i> yobs,i), Zi, ry, 0) ̂ (aiKyJJ^, y0bs,i), zu ~6)T)Hj} 

^ kt 

+ 7 7 E 2 t r { ^ [ C o v ( a i ' bil(ySl,i' yobs,i), Zi, Vi; 9) 1 fc=i 
+E(^\(y{Xi, y o b s , i ) , zu vf, e)E(bl\(y{Xl, y o b s , i ) , zu n; ~9)T\T?} 

kt 

+77 Etr<T< [Cov(b,|(ySSl̂  yobs,i), Zi, vf, ~9) 
1 fc=i 

+ £ ? ( b i | ( y ^ i i , y o b s , i ) , Z i , r i ; ~9) £(bi|(y<2flii, y<*a,i), zu r i ; ~0)T] i f } } , 

1 f _m'_ 
j f (a , iJ) « - ^ i log [2jriJ| - J £ ( z „ - Utj af R'1 {ztj - U„ a) 

2 W -

- 2 E 77 E ( z « - un a ) T ^ £N ( y ™ U yob**), Zi,Vi, o) 
j=i k=i 

TUi _. kt 

+ E J7 E t r W ^ VH [Cov(ai|(ySs., y0^), Z j , r i ; 9) 
j=l * fc=l 

+-B(a*l(yS2s,i. yobs,i), Zi, ry, 9) £?(ai|(y2i8ii, yo6«,i), Z i , r;; 0) T]} 

f ) ( j 4 ) „ _ 1 l o g | 2 y r A | _ 1 ^{A-1 [Cov(a,|(ySS|i, yob.,0, r>; 0) 

* fc=i 
• +£( a i l ( y 2 L , yc*s,i). Z i , r i ; 9) £(a;|(yfs., y o 6 s,i), Z i , r i ; 9)T}}, 
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I^\B) » -l- log\2KB\ - 1 £ \ I V ^ [Cov^Ky JS, y 0 ^ ) , z i ; r i 5 0) 

+^( bi|(ySi , i ; yobs,i), ^ , r i ; 0) £ ; ( b i | ( y S s i , y o b S i i ) , zh r i ; 0)T]}, 
kt 

4 ° f a ) ~ 7 r £ l o g / ( r i l ( y 2 l , i . y<*8,i),z*; 
* fc=i 

4.4.2 The M-step 

In this section, we derive some closed-form expressions for the M-step, so we avoid some 

iterative algorithms, which may be computationally inefficient. 

The M-step of the E M algorithm maximizes 

n 

Q{6\9) = Y$\<*i A ^ + f V , R) + WW + W(B) + f }fa)] 
i=l 

to produce an updated estimate of 6. Note that if we were to observe (ei, €i, ai , bi) , in 

addition to (y0fcs,i, Z i , r i ) , we would use the following estimates 

n n n m; n ^ = £ e^ e i/£  W*>  R = =
 Y/)2eiJel/J2mi' 

i—1 i=l i=l j=l i=l 
n n 

i = J ] a i a f / n , R=J2hihI/n> 

i=l i=l 
n n mi n n 

where J2eIe«> 2~2 Yleij€Ij> 2 ~ 3 a i a f i a n d E D i b f a r e "sufficient" statistics for <52, R, A, 
i=l i=lj'=l i=l i=l 

and 5 , respectively. Since ei, a^, and b i are unobservable, we can "estimate" them by 

their conditional expectations given the observed data (y 0f, S )i, Z i , r ^ , as in Laird and Ware 

(1982). Based on results in multivariate analysis, we have M 1 gi + Wia + XiP ^ f Hi A Hf + TiB Tj + 521 HiAV? 52I^ 

Zi ~ N Uioc Vi A Hf ViAVf + I^R 0 

V e<) \ 0 J \ 5 2 1 
0 521 j 
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and 

V e^ J 

N 

Ei + Wicx + Xip 

UiC* 

0 V 

Hi A Hf + TiB 7 f + 82 I HiAV? \ 

0 

ViAVT + I®R Mij 

Ml R 

where is a vrrii x v matrix with the j th v y. v submatrix R and zeros elsewhere. Since 

ej and are conditionally independent of r-j given y j and Z j , we have 

/ ( e j | y j , Z j , ry, 0) = / ( e j | y j , z»; 0), 

/ ( e i | y i , Z i , ry 0) = f(ei\yi, Z J ; 0). 

Using the above results, the inverse of partition matrix in (4.7), and the definition of condi

tional distributions, it can be shown that 

[ e j | y j , Z j , ry 0] ~ N(uBi, A e J , 

where 

[52(Gi + Fi Ei i f ) ( y < - g j - Wi cc - Xi Q) - 62 F E^i - Ut cx)} 0=0 

and 

[cij|yi, Z j , Ti\ 0] ~ N(u€iJ, A £ y ) , 

where 

= [R^Ei)*{vik-Uikci)-R{EiFT)i(yi-&-WIOL-XiB)} 6=6 
k=l 

A e . . = [R-R{Ei)"R] 6=6 
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with the j th v x rn submatrix (Ei FfY of Ei Ff and the j th row and the kth column v x v 

submatrix (E^k of Ei, j, k = 1, . . . , m .̂ Note that 

E(e[ei\yobStU zu iy 0) 

Ei€ij <Hj\yobs,i,Zi, ru 0) 

E(aiaJ\y0bs,i, zi, Tu 0) 

E(hihJ|yo6s,i, ri; 0) 

E(&i G i | y i , Z i , Vi', 0) j'(ymis,i\yobs,i, zij r t i 0) ^Ymis.t) 

E(€-i €j | y i , Z i , F i , 0)/(yjnis,i|yo6s ,i; Z i , T i , 0) d y m i s i , 

f E(ai 
ai |yi, Z i , rf, 0)f(ymisAyobs vi;6)dy mis,11 

E ( b i b f | y i , Z i , Ti; 0)f(ymia,i\yobs,i, z i , r»; 0) d y 7 1 

Using the expectation and covariance properties for multivariate random variables and the 

properties of the matrix trace operation, we can update the estimates of (52, R, A, B) in 

the M-step as follows. 

52 = E tv[E(eief\yobSti, zt, iy 0)}/E ni 
i = l i = l 

n kt . 

- E E tv[E(eieJ\(yml,i, yobS,i), z * , r»; 0)]/ E ^ . 
i = l k=l i = l 

n m i _ n 

R = E E e5ly0feS,i; z*> r i ; )̂/ E m i 

n m i /ct m n 

~ E E E Efej CyKyJn-B . i , Yobs.i), Z i , r i ; 0)/ E 
i = l j=l k=l i=l 

A = E ̂ (ajaf | y o 6 S i i , zi; iy 0)/n 
i = l . 

~ E E ^ ( a i a f l ( y m i 5 , i > yobs,i), z<, v{; 0)//c t n, 
i = l fc=l 

5 = E - ^ ( b i b f | y o 6 S ] i , " Z i , v^, 0)/n 
i = l 

- E E ^ ( b i b F I ( y m i S , i ' y«*».0. z»> r » ; 0 )A^-
i = i fc=i 

Plugging 52 and .R into E r = i [ - ^ ( a > ^ , <52) + ^ ( a i ^ ) ] and setting its first derivative 

with respect to (oc, 3) equal to 0 , we can get a set of equations for 6c and 3. 

( ^ 
i-1 v j = l 7 i-l 

n 
E xf Wi 
i=l 

E xf x{ 

i=i 

a 
E l ^ ^ + ^ E c / ^ - 1 ^ . } 
i = l j=l J 

\ 
ZXfvyi, 
t=i 
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where 

u y i = E(yi\yahati, Z i , ry, 0) - gi- Hi E(ai\yobSti, zu r̂ ; 0) - T{ £ ( b i | y o h S i i , z i ; r - 0), 

= zij — E(&i\yobs>i, Zi, ry 0). 

The foregoing conditional expectations can be approximated as follows. 

kt 

E(yi\y0bs,i, Z i , ry 0) « E ^ y ™ l , i ' Yobs,i)/kt, 

k = i 

kt 

E(ai\yobSii, Zi, ry 0) « ^ ^ M ^ m l , ; , y<**.0> z i , ry 0)/fct, 
k = i 

kt 

E(bi\yobs,i, Zi, n; 0) « E ( b i | ( y f s i , y o f e s > i ) , r ;̂ 0)/fc t . 

fc=i 

Using the inverse operation of partition matrices, we obtain closed-form estimates of a and 

3 in the M-step: 
n r „ nii ^ n " 

« = r n £ w^yi + 52izuljR-^Zij + r 1 2 £ x > y i , 
i=l L j=l J i=l n n 

i=l L j=l J i=l 

where r n -M + Q L"1 QT, T12 = F21 = -Q L~\ and T 2 2 = L ' 1 , with 

n n mi 

i=l i=l j=l 

L = E x f X i - ( E ^ ^ ) M ( E : ^ X i ) , 
i=l i=l i=l 

n 

Q = M ( E ^ , ) . 
i=l 

We finally maximize E"=i ^i 1!) to obtain an updated estimate of 77, which can be 

done by standard optimization procedures such as the Newton-Raphson method. 

Iterating between the above E-step and M-step until convergence, we obtain approxi

mate M L E s of 0. The asymptotic variance-covariance matrix of the approximate M L E 0 of 
t 
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0 can again be obtained using the approximate formula given in (4.5). The only difference 

is that the density function /y(yj|zj, a;, by a, 3, 52) in if1 in (4.1) is based on the L M E 

response model (4.6). We see that, for this approximate method, both the E-step and the 

M-step are computationally much less intensive than those in Section 4.3. The performance 

of this approximate method will be evaluated in Section 4.6. 

4.5 Example 

We illustrate our proposed methods in this chapter using a HIV dataset. We also analyze 

this dataset using the commonly-used naive method which ignores measurement errors and 

missing data for comparison. 

4.5 .1 Data Description 

The dataset includes 53 HIV infected patients who were treated with a potent antiretroviral 

regimen. Viral loads (Plasma HIV-1 R N A copies) were measured on days 0, 2, 7, 10, 14, 

21, 28 and weeks 8, 12, 24, and 48 after initiation of treatments. After the antiretroviral 

treatment, the patients' viral loads will decay, and the decay rates may reflect the efficacy of 

the treatment. Throughout the time course, the viral load may continue to decay, fluctuate, 

or even start to rise (rebound). The data at the late stage of study are likely to be contami

nated by long-term clinical factors. Various covariates such as CD4 count were also recorded 

throughout the study on similar schedules. It is well known that CD4 counts are usually 

measured with substantial errors. The number of response measurements for each individual 

varies from 6 to 10. Five patients dropped out of the study due to drug intolerance and other 

problems and sixteen patients have missing viral loads at scheduled time points. There were 

104 out of 403 CD4 measurements missing at viral load measurement times, due mainly to 
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a somewhat different CD4 measurement schedule. A detailed data description can be found 

in Wu and Ding (1999). 

Six patients are randomly selected and their viral loads are plotted in Figure 1.1. 

Due to long-term clinical factors, drug resistance, and other complications, the viral load 

trajectories can be very complex after the initial phase viral decay. Visual inspection of 

the raw data seems to indicate that dropout patients appear to have slower viral decay, 

compared with the remaining patients. Thus, the dropouts are likely to be informative or 

nonignorable. The CD4 count trajectories for six randomly selected patients are plotted in 

Figure 1.2. There exists large variability in CD4 count between patients. The population 

CD4 count trajectory appears to have a quadratic polynomial shape. 

4.5.2 The Response and the Covariate Models 

Based on Wu (2002) and Wu and Zhang (2002), we consider the following HIV viral dynamic 

model (see Section 3.5 for the details) 

Vij = \ o g w ( P u e - X i i ^ + P2ie-X2iJtii) + eij, (4.8) 

log(Pii) = 0i + bu, \UJ = fa + fcz-j + b2i, (4.9) 

log(P 2 i) = 04 + hi, X2ij = w(tij) + hi{Uj), (4.10) 

where yi3- is the logi0-transform of the viral load measurement for patient i at time Uj, Pu and 

P2i are baseline values, A^- and A 2 i j are viral decay rates, z*j is the true (but unobservable) 

CD4 count, and w(Uj) and hi(Uj) are nonparametric fixed- and random-effects functions (see 

Section 2.1). To avoid very small (large) estimates, which may be unstable, we standardize 

the CD4 counts and rescale the original time t (in days) so that the new time scale is between 

0 and 1. 

As discussed in Section 2.1, we employ the linear combinations of natural cubic splines 
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Table 4.1: A I C and BIC values for the model (4.8) - (4.10), with q < p = 1, 2, 3. 

Model p=l,q= 1 p=2,q=2 p=2,q=l p=3,q= 3 p=3,g= 2 p=3,q= 1 
A I C 622.92 
BIC 685.37 

590.82 591.37 584.51 
676.68 662.95 677.16 

593.32 
671.76 

583.19 
657.72 

with percentile-based knots to approximate w(t) and hi(t). Following Wu and Zhang (2002), 

we take the same natural cubic splines with q < p in order to decrease the dimension of 

random effects. A I C and BIC criteria are used to determine the values of p and q. Table 

4.1 displays A I C and BIC values for various plausible models. Based on these A I C and BIC 

values, the model with p = 3 and q = 1, i.e., 

seems to be the best, and thus it~is selected for our analysis. 

For the CD4 process, in the absence of a theoretical rationale, we consider empirical 

polynomial L M E models, and choose the best fitted model based again on A I C / B I C values for 

each possible model. This is done based on the observed CD4 values, and is done separately 

from the response model for simplicity. Specifically, since the inter-patient variation is large, 

we consider model (2.8) with Uu = Vu = (1, uu,..., v^f1) and linear (a = 2), quadratic 

(a = 3), and cubic (a = 4) polynomials. Table 4.2 presents A I C and BIC values for these 

three models. The following quadratic polynomial L M E model best fits the observed CD4 

process: 

where uu is the time and ot = (a\, a 2 , a3)T are the population parameters and at = 

(flii, fli2, 0'i3)T are the random effects. 

A 2ij ~ ft + fa ^ i ( iy) + ft foiUj) + b4i 
(4.11) 

C D 4 i ( = ( « i + ai) + ( « 2 + a 2) ua + (a 3 + a 3) u2

t + eu (4.12) 
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Table 4.2: A I C and BIC values for the linear, quadratic, and cubic CD4 models 

Model a=2 a=3 a=4 
A I C 
BIC 

806.58 715.80 752.15 
830.00 774.34 791.18 

4.5.3 D r o p o u t M o d e l s a n d S e n s i t i v i t y A n a l y s i s 

In this study, dropout patients appear to have slower viral decay, compared with the remain

ing patients. Thus, dropouts are likely to be informative or nonignorable. So we need to 

assume a model for the dropout process in order to make valid likelihood inference. Although 

dropout models are not verifiable based on observed data, subject-area knowledge and sen

sitivity analysis based on plausible models may still lead to reasonable models. Note that 

we should avoid building a too complicated dropout model since a complicated model may 

become non-identifiable (Fitzmaurice et al. 1996). Subject-area knowledge suggests that 

dropout may be related to current or previous viral load and CD4 measurements. Thus, we 

consider the following five plausible dropout models for sensitivity analysis 

Model I : logit[F(r i j = l|yi, zi'i V)] = Vi + V2CDAij + rj3yij 

Model II : logit[P(r y = i|yi, z i i V)] = vi + V2Vi,j-i + myij, 

Model III : logit[P(rjj = i|y<, zi\ V)] = Vi+ mCD^j + rj3yitj 

Model IV : logit[F(r i j = i|y», z i ' , *)] = m + V2yik, k<j, 

Model V : logit[F(ry = i|y<, zi> V)] = Vl+rl2CD4*j, 

where y^ (k < j) in Model IV is the last observed response and CD A*- in Model V is 

the estimated true CD4 value for individual i. Thus Models I - III represent possible 

nonignorable missing response models, Model IV represents a possible ignorable missing 

response model, and Model V relates dropouts to (estimated) true CD4 values. We also 
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considered the following ignorable missing response models: 

logit[P(r;j = l | y i , zfT])] = r)X +r)2yn 

logit [P(r^ = l|y*, zf 77)] = 771 + 7 7 2 ^ , 

but the resulting estimates are similar to those for Model IV, so we only present results for 

Model IV in Table 4.3. We assume independence of the r^-'s to simplify the model. 

4.5.4 Estimation Methods and Computation Issues 

We estimate the model parameters using the naive method which ignores measurement errors 

and missing data and the two proposed "joint" model methods discussed in Sections 4.3 and 

4.4. We denote the method in Section 4.3 by A P P R 1 and the method in Section 4.4 by 

A P P R 2 . The two proposed joint model methods need starting values for model parameters 

since they are implemented by M C E M algorithms. We use the parameter estimates obtained 

by the naive method as parameter starting values for the two joint model methods. 

For the naive method, we use the SPLUS function nlme() and ImeQ to obtain param

eter estimates and their default standard errors. For the two proposed joint model methods, 

we assess the convergence of the Gibbs sampler by examining time series plots and sample 

autocorrelation function plots. For example, Figures 4.1 and 4.2 show the time series and 

the autocorrelation function plots for b2 associated with patient 14. From these figures, we 

notice that the Gibbs sampler converges quickly and the autocorrelations between successive 

generated samples are negligible after lag 17. Time series and autocorrelation function plots 

for other random effects and missing responses show similar behaviors. Therefore, we discard 

the first 500 samples as the burn-in, and then we take one sample from every 20 simulated 

samples to obtain independent samples (see sampling methods in Section 4.3.3). We start 

with ko = 500 Monte Carlo samples, and increase the Monte Carlo sample size as the number 
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Figure 4.1: The time series plot for b2 associated with patient 14. 

Series : b2 
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Figure 4.2: The autocorrelation function plot for b2 associated with patient 14. 
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t of iteration increases: kt+i = kt + kt/c with c = 4 (Booth and Hobert, 1999). Conver

gence criterion for these two joint model methods is that the maximum relative change in 

the parameter estimates from successively iterations is smaller than 0.05. Convergence of 

the algorithms are considered to be achieved when the maximum percentage change of all 

estimates is less than 5% in two consecutive iterations. 

We use the multivariate rejection sampling method for the two proposed joint model 

method. On a S U N Sparc work-station, the A P P R 1 method took about 140 minutes to 

converge while the A P P R 2 method took only 12 minutes to converge. This shows that 

A P P R 2 offers a big reduction in computing time, and thus is computationally much more 

efficient than A P P R 1 . 

4.5.5 Analysis Results 

We estimate the model parameters using the naive method and the two proposed joint 

model methods A P P R 1 and A P P R 2 . We use the parameter estimates obtained by the naive 

method as the parameter starting values for the A P P R 1 and the A P P R 2 methods. We also 

tried several other parameter starting values for the proposed methods. Different parameter 

starting values appear to lead to roughly the same parameter estimates for both the A P P R 1 

and the A P P R 2 methods. 

Table 4.3 presents the resulting parameter estimates and standard errors based on 

models / , IV, and V in (4.13). We find that the two joint model methods provide similar 

parameter estimates. We also find that the naive method may severely under-estimate the 

covariate CD4 effect (i.e., /?3) and may poorly estimate some other parameters as well (this 

will be confirmed by simulation). For the different dropout models in (4.13), we find that 

the resulting estimates based on the three nonignorable models (Models I, II, III) are all 

similar, which indicates that the estimation may be robust against the nonignorable dropout 
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Table 4.3: Parameter estimates (standard errors) for the models in the example. 

Model method Oil Oil a3 Pi P2 ft PA P5 / V PT 6 R 
N A I V E - - - 11.72 65.71 0.84 6.87 -2.58 8.66 -1.90 .35 

- - — (•2) (3.8) (3.2) (.6) (5.5) (8.9) (3.1) 
Model I A P P R 1 -.42 4.15 -3.75 11.72 67.08 1.52 6.97 -1.83 7.75 -2.54 .35 .51 

(•1) (.5) (•6) (•2) (5.2) (6.2) .(•7) (5.8) (8.8) (3.5) 
A P P R 2 -.43 4.21 -3.78 11.70 66.97 1.50 6.96 -1.90 7.86 -2.63 .33 .50 

(•1) (.6) (.6) (•2) (4.4) (5.8) (.6) (5.5) (7.9) (3.0) 
Model IV A P P R 1 -.43 4.18 -3.75 11.73 66.52 1.37 6.89 -2.62 8.83 -1.92 .35 .51 

(•1) (•5) (•6) (•2) (5.0) (6.0) (•7) (5.9) (8.9) (3.1) 
Model V A P P R 1 -.43 4.21 -3.80 11.74 66.79 1.44 6.89 -2.50 8.60 -1.98 .35 .50 

(•1) (.6) (.6) (•2) (4.9) (6.1) (-7) (5.9) (8.9) (3.1) 

Note: A and B are unstructured covariance matrices, but we only report the estimates of their diag
onal elements here. Diag(A) = (.50,3.65,1.61) for APPR1, Diag(A) = (.52,3.80,1.66) for APPR2. 
Diag(B) = (1.08,77.12,2.03,24.98) for Naive, Diag(B) = (1.10,75.50,2.01,26.51) for APPR1, and 
Diag(B) = (1.09, 75.24,1.83, 22.37) for APPR2. 

models. The estimates based on the ignorable models (Models IV and V ) , however, appear, 

to be somewhat different, especially for the parameters associated with the decay rates XUJ 

and A 2 ij . This suggests that the missing responses (dropouts) may be nonignorable, and 

reliable likelihood estimation must incorporate a reasonable nonignorable missing response 

model. Although some estimates in Table 4.3 are not statistically significant, the values of 

the estimates may still provide useful information about viral load and CD4 trajectories. 

The estimates of parameters 772 and 773 in dropout model I based on A P P R 1 method (or 

A P P R 2 method) are -.05 and .97 (-.04 and 1.06) respectively, with both p-values less than 

0.001, which also indicates that the dropouts may be nonignorable (or informative) since 

the missingness may depend on the missing values. The estimates of 772 and 773 indicate that 

dropout patients seem to have lower CD4 counts and higher viral loads than the remaining 

patients. 
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4 . 6 A Simulation Study 

In this section, we conduct a simulation, study to i) evaluate the performances of the semi

parametric modelling and of the A I C / B I C knots selection method, ii) assess the two proposed 

methods (APPR1 and APPR2) and compare them to the naive method (NAIVE), and iii) 

evaluate the impact of specification of the missing response mechanisms on parameter esti

mation. 

We generate 100 datasets from the following model, which corresponds to the model 

(4.8) - (4.10), 

y i j = l o g 1 0 ( P i i e - A l ^ + P M e - A a « * « ) + eii, (4.14) 

log(P u ) = A + Xiij = fez?, + b2i, log(P 2 i) = Ai + hi, (4.15) 

X2ij = -2.2 + (5.3 + 0.164*) sin(0.04 + 3ty), (4.16) 

where the nonparametric model (4.16) is carefully chosen to closely mimic the viral load 

trajectory at later stages in the example of the previous section. The covariate model and 

the measurement time points used in the simulation are the same as those in the example 

of the previous section. The true values of model parameters are similar to those in the 

example. The true values of (52, /33, /34) and a are presented in Table 4.4, and the other 

true parameter values are 5 = .2, R = .4, A = diag(.5, 3, 2), and B = diag(l, 9, 2, 4). 

Note that b» = (bn,bi2,bi3,bii) ~ N(0,B), where b& is incorporated in the nonparametric 

model (4.16). There are 147 viral loads after the rescaled time 0.25. We regard the viral 

loads out of 147 greater than the 45th percentile as missing responses. Thus, we delete 20% 

largest response values at the last few time points to mimic an informative missing response 

mechanism (i.e., missingness depends.on the values being missing). The structure of the 

data generated by the simulation study is similar to that in the example in Section 4.5. 

We calculate averages of the resulting estimates and their standard errors based on 
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each method, and compare the methods by comparing their biases and mean-square-errors 

(MSEs). Here, bias and M S E are assessed in terms of percent relative bias and percent 

relative root mean-squared error, as defined next. For instance, the bias for ft, the j th 

component of 3, is defined as 

biaSj = J3j- — fij, 

where ft is the estimate of ft. The mean-squared error for ft is defined as 

MSE.,- = bias2 + s), 

where Sj is the simulated standard error of ft. Then, the percent relative bias of ft is defined 

as 

bias^/lftl x 100%, 

and the percent relative root M S E is 

•^MSEj/l/3,-1 x 100%. 

First, to evaluate the nonparametric modelling, we study the performance of the AIC 

and BIC criteria in selecting the numbers of knots (p and q), since these numbers represent 

the degrees of smoothness of nonparametric functions (too large/small values may result 

in overfit/underfit). For the 100 datasets simulated from the semiparametric N L M E model 

(4.14) - (4.16), we find that all BIC values and 97% of A I C values lead to the model (4.11) 

(i.e., p = 3, q = 1). To further evaluate the A I C and BIC methods, we also generate data 

from models (4.8) - (4.12) with (/35, 06, (37) = (-2.0, 8.0, -3.0) (so the true number of knots 

are known), and use the A I C and BIC methods to select the best model. The performance 

of the A I C and BIC methods is similar. These results show that the A I C and BIC criteria 

perform well in the current setting. 
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Table 4.4: Simulation results for the parameter estimates (standard errors) as well as their 
biases and MSEs for the estimation methods P A R A , A P P R 1 , and A P P R 2 . 

Parameter ai a2 a 3 02 03 04 0s 06 07 
True Value -0.4 4.0 -4.0 12.0 67.0 1.5 7.0 
P A R A - - - 11.94 60.91 -0.62 6.48 0.20 

- - - (•1) (1.5) (1.8) (•2) (•1) 
A P P R 1 -0.39 4.05 -3.99 12.00 66.87 1.49 7.11 -1.89 9.65 -1.66 

(•1) (.3) . (.3) (•1) (1.3) (1.6) (.3) (2.0) (3.1) (1.1) 
A P P R 2 -0.39 4.06 -4.01 12.00 66.25 1.59 6.90 -3.11 10.18 -1.47 

(•1) (.3) (•3) (•2) (1.1) (1.4) (•3) (1.7) (2.6) (1.0) 
Bias 

P A R A - - - -.48 -9.09 -141.03 -7.43 
A P P R 1 1.28 1.27 .17 .01 -.19 -.60 1.29 
A P P R 2 1.73 1.55 -.18 .03 -1.07 6.99 -1.36 

M S E 
P A R A - - - 1.71 9.38 230.93 8.18 
A P P R 1 21.33 10.02 9.87 1.12 2.48 98.67 4.12 
A P P R 2 25.40 10.49 10.56 1.34 2.73 100.94 5.06 

Note: Bias = Percent bias = 100 x b\asJ/\PJ\; MSE = Percent V M S E = 100 x , / M S E " / \ P J \ . 

105 



To investigate the effect of semiparametric modelling on the estimation of the fixed-

effects parameters ft - ft, we consider the two proposed methods (APPR1 and APPR2) 

for the semiparametric N L M E model (4.14) - (4.16), along with the covariate model (4.12) 

and a nonignorable dropout model (Model I in (4.13)). We also use a parametric N L M E 

model, where \2ij = ft + b^ and the other parts are the same as in the semiparametric 

N L M E model (4.14) - (4.16), to fit the simulated datasets. To emphasize the difference 

between the nonparametric and the parametric modelling for X2ij, we consider an ideal case 

for the parametric N L M E model fitting, in which there is no covariate measurement errors 

and dropouts. Thus, we do not need the covariate measurement error model and the dropout 

model in this ideal case. We use SPLUS function nlmeQ to obtain parameter estimates and 

their default standard errors, denoted by the P A R A method. We calculate averages of the 

resulting estimates and their standard errors based on each method. Since A P P R 1 method 

sometimes offers computational problems, such as slow or non-convergence, the 100 sets of 

parameter estimates are obtained from 137 data sets. The simulation results are shown 

in Table 4.4. We find that estimates for the fixed-effects parameters ft - ft obtained by 

A P P R 1 and A P P R 2 are very close to their true values, and both methods perform better 

than the P A R A method in terms of bias and M S E criteria. These results show that the 

semiparametric modelling based on A I C / B I C for knots selection performs well and better 

than the parametric modelling in the current setting. 

To study the effect of missing data mechanisms, we assess the proposed methods 

(APPR1 and APPR2) based on a nonignorable model (Model /) and an ignorable model 

(Model IV), and compare them with the naive method (which ignores measurement errors 

and missing data). To investigate the performance of the estimate of X2ij, we generate 100 

datasets from the true models (4.8) - (4.12). In the simulations, the true values of model 

parameters 0 and a are shown in Table 4.5, and the other true parameter values, the missing 
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Table 4.5: Simulation results for the parameter estimates (standard errors) for the three 
estimation methods N A I V E , A P P R 1 , and A P P R 2 with dropout models I and IV in (4.13). 

Dropout Parameter Oil "2 a 3 ft ft ft ft ft ft ft 
Model True Value -.4 4.0 -4.0 12.0 67.0 1.5 7.0 -2.0 8.0 -3.0 

N A I V E - - • - 11.98 66.87 0.92 6.98 -2.41 9.64 -2.03 
- - - (•1) (1.2) (1.1) (0.3) (1.9) (2.9) (1.0) 

Model I A P P R 1 -.40 4.08 -4.00 11.99 66.93 1.48 7.01 -2.04 8.11 -2.92 

(•1) (.3) (•3) (•1) (1.4) (1.6) (.3) (1.9) (3.1) (1.2) 
A P P R 2 -.40 4.06 -4.01 11.99 66.86 1.53 7.03 - 2 . i i 8.17 -2.87 

(•1) (.3) (.3) (•2) (1.3) (1.5) (.3) (1.8) (2.8) (1.0) 
Model IV A P P R 1 -.40 4.06 -3.99 12.00 67.15 1.45 7.01 -1.81 8.97 -2.22 

(•1) (.3) (.3) (•1) (1.3) (1.6) (.3) (2-1) (3-2) (1.2) 
A P P R 2 -.39 4.06 -4.00 11.99 66.80 1.42 6.96 -1.78 9.08 -2.28 

(•1) (.3) (.3) (•2) (1.2) (1.5) (.3) (1.8) (2.8) (1.0) 

mechanism and the missing rate are the same as above. We calculate averages of the resulting 

estimates and their standard errors based on each of the three methods and each of the two 

dropout models. We compare the methods by comparing their biases and mean-square-errors 

(MSEs). Since A P P R 1 method sometimes offers computational problems, such as slow or 

non-convergence, the 100 sets of parameter estimates are obtained from 130 data sets. 

From the simulation results in Tables 4.5 and 4.6, we see that, when measurement 

errors and reasonable missing data mechanisms (Model /) are taken into account, the two 

proposed joint model methods (APPR1 and APPR2) perform well in terms of both bias and 

M S E criteria. A P P R 1 performs better than A P P R 2 as expected, but A P P R 2 also performs 

reasonably well and is computationally much more efficient. When the missing data mech

anism is ignored (Model IV), however, the two methods may not perform well. The naive 

method, which ignores measurement errors and missing data, may lead to severely biased 

estimates and large MSEs (e.g., the covariate effect ft can be severely under-estimated). 
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Table 4.6: Simulation results for biases and MSEs of the parameter estimates for the three 
estimation methods N A I V E , A P P R 1 , and A P P R 2 with dropout models I and IV in (4.13). 

Dropout Parameter Oil OL2 QJ3 Pi ft ft ft ft ft ft 
Model True Value -.4 4.0 -4.0 12.0 67.0 1.5 7.0 -2.0 8.0 -3.0 

Bias 
N A I V E - - - -.10 -.25 -38.42 -.61 -20.53 20.45 32.33 

Model I A P P R 1 -.78 1.95 .01 -.08 -.11 -1.59 .18 -2.21 1.40 2.62 
A P P R 2 -.78 1.95 -.01 -.09 -.21 -1.78 .50 -5.70 2.08 4.30 

Model IV A P P R 1 -.97 2.02 .16 -.08 .22 -3.63 .19 9.26 12.10 23.10 
A P P R 2 1.40 2.07 -.09 -.09 -.29 -6.91 -.55 10.66 13.57 26.02 

M S E 
N A I V E - - - 1.89 2.97 148.06 6.96 168.66 68.32 70.14 

Model I A P P R 1 20.00 7.28 7.00 1.17 1.84 96.01 3.43 80.02 35.15 40.42 
A P P R 2 25.00 7.65 8.00 1.25 2.23 98.69 3.74 112.64 39.06 43.21 

Model IV A P P R 1 30.51 9.90 9.84 1.45 2.49 120.12 4.84 122.80 56.26 58.90 
A P P R 2 36.50 10.46 10.31 1.74 2.58 131.24 5.73 146.04 62.14 66.07 

Note: Bias = Percent bias = 100 x biaSj/lPj ; MSE = Percent V M S E = 100 x V M S E J V I / 3 , - 1 . 

4 . 7 Conclusions and Discussion 

We have proposed two approximate likelihood methods for semiparametric N L M E mod

els with outcome-based informative dropouts and covariate measurement errors and missing 

data, implemented by Monte Carlo E M algorithms combined with Gibbs sampler. The first 

method is more accurate than the second method but it may be computationally very in

tensive and sometimes may offer computational difficulties such as slow or non-convergence, 

especially when the dimensions of random effects are not small. The second method is com

putationally much more efficient, but it is less accurate than the first method. The second 

method may be used as a reasonable alternative when the first method has convergence prob

lems or it may be used to provide excellent parameter starting values for the first method. 

Simulation studies indicate that the proposed methods, which incorporate measurement 
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errors and dropout mechanisms, produce satisfactory results, but methods ignoring mea

surement errors and/or ignoring dropout mechanisms may perform poorly. Moreover, the 

A I C and BIC criteria perform well in the current setting. ^ 

We have assumed that the dropout models depend on the observed or unobserved 

responses and covariates. Alternatively, we may consider dropout models which share the 

random-effects parameters in response and covariate processes. Such models may be appro

priate if the dropout mechanism is related to the true but unobservable response/covariate 

values or summaries of response and covariate processes such as unobservable true viral 

decay rates. The methods in this chapter may be extended to such models. Finally, for 

Monte Carlo E M algorithms, Booth and Hobert (1999) proposed a nice automated method 

for choosing the number of Monte Carlo samples, which can be extended in our case as well. 
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Chapter 5 

Semiparametric N L M E Model with 

Random-effect-based Informative 

Dropouts and Covariate Measurement 

Errors 

5.1 Introduction 

In this chapter, we develop two likelihood methods to simultaneously address covariate mea

surement errors and random-effect-based informative dropouts in semiparametric N L M E 

models. The major difference in the models in this chapter and the models in Chapter 

4 is the difference in the assumed missing response (or dropout) models. The response and 

covariate models remain the same. In Section 5.2, we discuss the models for this problem. 

We obtain approximate M L E s of all model parameters, using a Monte Carlo E M ( M C E M ) 

algorithm along with Gibbs sampler methods, in Sections 5.3. To avoid potential compu-
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tational problems in the method discussed in Section 5.3, we also propose an alternative 

approximate method by using a first-order Laplace approximation to the log-likelihood func

tion in Section 5.4. Some asymptotic properties of the resulting estimates are also discussed. 

The two proposed methods are illustrated in a HIV dataset and are evaluated via simulation 

in Section 5.5. We conclude this chapter in Section 5.6 with some discussion. Asymptotic 

properties presented in Section 5-4 are proved in Section 5.7. 

5.2 Missing Response Models 

The dropout is random-effect-based informative if the missing probability of the current re

sponse depends only on the underlying unobservable random effects a j and b j , i.e., / ( r j | y j , Z j , 

rj) = / ( r j | a j , b j ; rj). In the presence of random-effect-based informative dropouts in the 

N L M E model (2.6) and (2.7) with the covariate process (2.8), we can again write v* = 

(ymis,i, y<jbs,i) as before. Let nobSti be the number of components in y0bs,i- Here, the missing 

2/ij's are again intermittent, i.e., we allow dropout individuals to possibly return to the study 

at a later time. For the vector g, = (gn,... ,gini), where ^ are defined in (3.6), we write 

gi = (grms.i, gobs,i) with gohS)i and g m i S : i being the conditional expectation of y o b S i i and y m i S , i , 

respectively. Let r j = (rn,..., rini)T be a vector of missing response indicators for individual 

i such that = 1 if is missing and 0 otherwise. Note that = 1 does not necessarily 

imply that r i j + i = 1. We have the observed data {(y 0 6s , i , Z j , i"i), i = 1,.. . ,n}. 

To allow for an informative missing mechanism in the response, we need to assume 

a distribution for the missing response indicator r j . For reasons discussed in Sections 4.2 

and 4.7, in this chapter we consider the random-effect-based informative dropout mechanism 

/ ( r j | a j , b j ; rj) for i y where rj are the unknown nuisance parameters. For such a missing 

data mechanism, the missingness of yid- share the random effects a j and b j in the response 
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and covariate models, suggesting that the dropout may be related to the true but unobserv

able response/covariate values or summaries of individual-specific response and covariate 

trajectories such as unobservable true viral decay rates. For example, such missing data 

models may be appropriate if a patient is more likely to dropout early because his true (but 

unobservable) viral decay rate is slower than other patients. 

In this chapter, we focus on the random-effect-based informative missing mechanism 

/(rj |aj, bf 77). Such models are related to the shared-parameter models in the literature 

(e.g., Wu and Carroll, 1988; Little, 1995; Ten Have et al., 1998). Although the relationship 

of the missingness with the random effects may be complex, a simple logistic regression 

model may provide a reasonable approximation. We will assume that r^'s are independent, 

i.e., 

fin]*, b<; 77) = IJ[P(r y = I K b i 5 7 7 ) p [ l - P(rij = I K b i ; » 7 ) ] 1 - r «, (5.1) 

with 

logit[P(rij = I K bf 77)] = log — —— r = 770 + r)1 + 772 b;, . 

l — r\Tij — l | a i , Oi, rj) 

where 77 = (770, r/J, r]2)T are the unknown nuisance parameters. For example, we may 

assume that the missingness of response is related to the first decay rate, say XUJ = ft + bi2 

in Section 4.5., i.e., 

logit[F(ry = I K h i , 17)] = Vo + Vi xUJ 

= V* + rjl(p2 + bi2) 

= (Vo + V*iP2) + rilbi2 

= r]o + r]ibi2. 

Note that we should avoid building too complicated a dropout model since the model 

parameters may become non-identifiable. As the assumed dropout models are not testable 
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based on the observed data, it is important to carry out sensitivity analysis based on various 

the outcome-based informative dropout models in Chapter 4 can all be used for sensitivity 

analysis. 

We consider likelihood inference for semiparametric N L M E models with random-effect-based 

informative dropouts and measurement errors and missing data in time-varying covariates, 

based on approximate models (2.6) - (2.8). Let 6 = (ct, 0, 52, R, A,B, rjj) be the collection 

of all unknown model parameters. We assume that the parameters ct, 0, 52, R, A, B, and 

rj are distinct. The approximate log-likelihood for the observed data {(y0bs,i,
 zi> r i ) , i = 

1,. . . , n} can be written as 

dropout models. The random-effect-based informative dropout models in this chapter and 

5.3 A Monte Carlo E M Method 

5 .3 .1 T h e L i k e l i h o o d F u n c t i o n 

n 
1(d) = ) fz(zi\&i;ct,R) f(sa;A) 

x / ( b i ; B ) / ( r i | a i by rf) dymiSti dfy dbi 

n II £ l o g /V(y06s,i|Zi> ai bh a , 0, 52) fz(zi\*i\ct, R) / ( a * ; A) 

i=l 
x/(b;; B) / (r; |a;, b ;̂ rj) da^dbi (5.2) 
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where 

/y(y 0b s,i|zi, a*, bj; ex, (3, 52) = n"=i'' fy(yobs,ij\zij, a*> b » ; <*> P> 

= nST"' (27r (52)-1/2exp{-[yobs, i j - geb.Ai]*/2P}, 

/z(zi|aij a, i?) = n r=i fzfak\ai\ «, 

= Ilfcii |27r/?|_1/2 exp{-(z i f c - Uj'fe a - v i f c a;)r i?" 1 

x(z i A ; - uika - vifca;)/2}, 

/(a*; A) =\27rA\-^2exP{-ajA-^/2}, 

f(ht; B) = |27rJB|-1/2 exp{-bfB-1b,/2}, 

and y06s,ij is the observed yij. Note that unlike 1(6) in Section 4.3, the missing responses 

ymiS,i
 a r e integrated out in (5.2). 

The observed-data log-likelihood function 1(6) generally does not have a closed-form 

expression since the functions in the integral can be nonlinear in the random effects &i and 

bj. So we use a Monte C a r l o - E M ( M C E M ) algorithm to find the approximate M L E s of 

parameters 6. By treating the unobservable random effects a; and b, as "missing" data, 

we have "complete data" {(y0bs,i, zi, *i, ai, bj), i = l , . . . , n } . The complete-data log-

likelihood function for all individuals can be expressed as -

n n 

ldG) = YI Zc°(0) = XX l o g
 fy(yobs,i\zi, a(, hi, ex, 0, 52) + log /z(zi|ai; ex, R) 

i=l i=l 

+ log / (a l ; J 4)+log / (b , ; J B) + l o g / ( r t | a i , h%] r,)} (5.3) 

where if is the complete-data log-likelihood for individual i. 
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5.3.2 A M C E M Algorithm 

Let be the parameter estimates from the t-th E M iteration. The E-step for individual i 

at the (t + l)th E M iteration can be expressed as 

Q i ( 0 | 0 « ) = E{lf{9)\yobs,u Z i , r i 5 0 « ) = J J J [log /y(yo b s,i|zj, a*, b i ; a , 3, 52) 

+ log /z(zi|ai; a, i?) + log /(a i ; A) + log /(bi; 5 ) 

+ log /(ri|ai, bi; 17) x /(ai, bi|yo 6 s,i, Z i , n; 0 ( t ) ) dat dbi 

= /W(a, /3, <52) + /« (« , J?) + 4V) + + i f f a ) . (5.4) 

Since the expression (5.4) is an expectation with respect to /(ai, bj|y0j,Sjj, Z j , i y 0^), it may 

be evaluated using the M C E M algorithm. Specifically, we may use the Gibbs sampler to gen

erate samples from [ai, b^y^i, Z j , i y 0^] by iteratively sampling from the full conditionals 

[ai|y06s,i, Z j , r i , bi; 0W] and [bi|vofcs,i, z i ; rj, a*; 0W] as follows. 

/(ai|yo 6 s,i, Z i , rj, b»; 0<*)) a f(yobSti, a ^ , rt, bij 0W) 

=/(y0fcs,i|zi, ri, ai,bi; 0^') •/(ai|zi, ri, bi; 0W) 

oc /(y06s,i|zi, ri, ai,bi; 0W) • /(ri, a ẑ̂  bij 0 ( t ) ) 

= /(y0bs,i|zi, ai,bi; 0W) • /(ri|zi, ai,bi; 6{t)) • / ( a^z* ,^ 0 ( t ) ) 

= /(YcUzi, ai, b i ; 00>) • /(r-i|ai, b i 5 9®) • / ( a ^ ; 0 « ) 

oc /(yo b s,i|zi, ai,bi; 0(*>) • / ( r ^ a ^ h i ; 0W) • / ( z i ? ai; 0(*>) 

= /(ai; 0(*)) • / ( y ^ l z i , ai, bt; 0W) . / ( z ^ ; 0(0) . / ( r . |a , , b,; 0W) 

/(bi|yo b s,i, Z i , ri, ai; 0(*)) oc f{y0bs,i, b^Zj, ri, ai; 0(*>) 

= /(y 0b5,i|zi, ri,.ai,bi; 0 ( i ) ) • /(bi|zi, r i ; aj; 0 W ) 

OC /(yofcs,i|zi, T i , ai,bij 0W) • / ( 

J*i, bi |Zi, a i ; 0W) 

= /(y 0h5,i|zi, ai,bi; 0W) • / (ri | Z i , a,,^; 0<*>) • /(b^z^a*; 0 ( t ) ) 

= /(b i 5 0 « ) • /(yofcs,i|zi, a,, b,; 0(«>) • /(ri|ai, b i ; 0 « ) . 
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Monte Carlo samples from each of the full conditionals can be generated using rejection 

sampling methods.. Alternatively, integral (5.4) may be evaluated using the importance 

sampling method (see Section 3.3.3). We will briefly discuss the sampling methods in the 

next section. 

Note that, unlike the M C E M method in Section 4.3.2, here we do not need to sample 

Ymis,i, which reduces the computational burden. 

For individual i, let { ( a f , b f ) , . . . , ( a f \ b f ' ) } denote a random sample of size 

kt generated from [a*, b i \ y o b S i i , Z j , ry, 0^}. Note that each ( a f , b f ) depends on the E M 

iteration number t, which is suppressed throughout. The E-step at the ( £ + l ) t h E M iteration 

can then be expressed as 

Q(6\0M) = ± Qi{9\9®) « ± h E lf(0; yobs,u zh iy a f , b f ) } 
i=i i=i I fe=i J 

= E E 17 log fy(yobs,iK a f , b f ;a, 3, 52) 
i=i fc=i 

+ E E i log / z f e l a f ; a , R) + £ £ £ log / ( a f ; A) 
i=lfc=l i=lfc=l 

+ E E i log / ( b f ; B) + £ E £ log / W a f , b f ; r,) 
t=lfc=l i=lfc=l 

= Q ( 1 ) ( « , /3, <52|0«) + Q<2)(a, J?|0W) + Q( 3 ) (A | 0« ) + Q^{B\0^) + Q^{rj\0W). 

The M-step then maximizes Q(0\0^) to produce an updated estimate 0^t+l\ so it 

is like a complete-data maximization. Since the parameters in + Q< 2 \ Q^, Q<4), and 

are distinct, the M-step can be implemented by maximizing + Q^2\ Q^3\ and 

separately using standard optimization procedures for the corresponding complete-data 

models. 

As in Section 3.3.2, we use the approximate formula suggested by McLachlan and 

Krishnan (1997) to obtain the variance-covariance matrix of the approximate M L E 0: Let 

sf = dlf /80, where if is the complete-data log-likelihood for individual i. Then an 
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approximate formula for the variance-covariance matrix of 9 is 

n 

Cov(0) = [J2E(sc]\yobs,i, Z i , rf, 9) E{sf\yobs^, zit r i ; 9) 

where the expectations can be approximated by Monte Carlo empirical means, as in (5.6). 

In summary, the foregoing M C E M algorithm can be implemented as follows. 

Step 1. Obtain an initial estimate of (a, 0, S2, R, A, B) = (a ' 0 ' , / 3 ( 0 ) , 62^°\ Bl°\ A<°\ 

B^) and an initial value of (aj, bj) = (af\ b-0^) based on a naive method; then we ob

tain an initial estimate of 77 = rj^ based on the dropout model with the random effects 

(ai>bi) = (aS°\bW). 

Step 2. At the t-th iteration, obtain Monte Carlo samples of the random effects 

(aj, bj) using the Gibbs sampler along with rejection sampling methods, or using importance 

sampling methods to approximate the conditional expectation in the E-step. 

Step 3. Obtain updated estimates #( t + 1) using standard complete-data optimization 

procedures. 

Step 4. Iterate between Step 2 and Step 3 until convergence. 

5.3.3 S a m p l i n g M e t h o d s 

G i b b s Sampler 

As in Section 3.3.3, we can again use the Gibbs sampler to draw the desired samples 

as follows. Set initial values (&f\ bf^). Suppose that the current generated values are 

{a\k\ bf^), we can obtain (a[k+1\ b\k+l^) as follows. 

Step 1. Draw a sample for the "missing" random effects a f ^ from /(aj |y 0 h S ] j , z i : i y b^; 9^). 

Step 2. Draw a sample for the "missing" random effects b\k+1^ from/(bj |y 0 t S i j , ziy Ti, a| f e + 1^; 9^). 

After a sufficiently large burn-in of r iterations, the sampled values will achieve a 

steady state. Then, {(a| f e\ bf^), k = r + 1, . . . , r + kt} can be treated as samples from the 
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multidimensional density function / ( a j , b j | y 0 ( , S ) j , Z j , ry, 0 ^ ) . And, if we choose a sufficiently 

large gap r' (say r' = 10), we can treat { (a f , b f ) , k = r + r',r + 2r',... } as independent 

samples from / ( a j , b j | y 0 j , S ) j , Z j , r j ; 0®). There are several ways to get the initial values 

( a f , b f ) . A simple way is to obtain ( a f , b f ) based on a naive method. 

Mul t ivar ia te Reject ion A l g o r i t h m 

Sampling from the two full conditionals can be accomplished by the multivariate 

rejection sampling method. For example, we consider sampling from / ( a j | y 0 ( , S j , Z j , ry b j ; 

9®) in (5.5). Let / * ( a j ) = / ( y o b s , j | z j , a j , b,; 0W ) / ( z i | a i ; 0 ( « > ) / ( r ^ , b i ; 9®) and ? = 

sup{/*(u)}. We assume <; < oo. A random sample from / ( a j | y o h s j , Z i , i y b j j 0^) can then 
u 

be obtained as follows 

Step 1. Sample a* from / ( a j ; 0^), and independently, sample w from the uniform 

(0, 1) distribution. 

Step 2. If w < /*(a*)/<r, then accept a*, otherwise, go back to step 1. 

Samples from / ( b j | y 0 ( , S i j , Z j , r-j, a j ; 0^) can be obtained in a similar way. Therefore, 

the Gibbs sampler in conjunction with the multivariate rejection sampling can be used to 

obtain samples from [aj, b j | y 0 6 S i j , Z j , 

5.4 A n Alternative Approximate Method 

5.4.1 The Hierarchical Likelihood Method 

The approximate maximum likelihood inference using a Monte Carlo E M method in the 

previous section may be computationally intensive and sometimes may offer potential com

putational problems such as slow or non-convergence, especially when the dimensions of the 

random effects a j and b j are not small (see the detailed discussion in Section 3.4.1). To 
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overcome these difficulties, in this section we consider an alternative method called the hi

erarchical likelihood method (Lee and Nelder, 1996, 2001) for approximate inference. The 

hierarchical likelihood method avoids Monte Carlo approximation and thus is always com

putationally feasible, and it can also used to obtain good parameter starting values for the 

M C E M method in the previous section. 

Let £ denote general "nuisance parameters". Lee and Nelder (1996) considered a 

function pi (I) defined by 

£4' 
where D(l, £ ) = -d2l/d£2, and £ solves dl/d£ = 0. Following Lee and Lelder (1996), the 

complete-data log-likelihood function lc(&) in (5.3) may also be called the hierarchical log-

likelihood function since it combines the two stages of mixed-effects models. Let UJ = {u>; = 

(a ,̂ bi), i = 1,... ,n} be the collection of random effects. The function p&(lc(Q)) can be 

written as 

i o™-— v _ c ~̂ " ~ 1 1 , . ' (5-7) 
L Z I Z7T IJ U>i=UJi 

1=1 1=1 

We can show that, for unobservable UJ, the use of the function PQj(lc{9)) is equivalent to 

integrating UJ out using the first-order Laplace approximation. Thus, P(j(lc{Q)) is the first-

order Laplace approximation to the marginal log-likelihood 1(6) in (5.2) using the hierarchical 

log-likelihood function lc(d). 

In fact, let N = n0bS:i + be the number of the response and covariate observations 

for individual i and let b be the dimension of w ; . Assume that Ni — O(N) uniformly for 

i = 1,... , n, where'TV = mini TV*. Taking k = N, kp(x) = lf(6), 7 = 6, and x = a?* in the 

following Laplace approximation 

Id2p(x) I 
e f c P ( x ) d x = ( 2 7 r / / c ) ^ 2 

dx2 
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where x is a 7-dimensional parameter vector and x maximizes kp(x), we can approximate 

the ith individual's contribution U(0) to the overall log-likelihood 1(0) as 

h(0) = log J el*){e)dui = \og J eNip{U}i)duji 

= log j (^)b/2
 | D ( p ( W i ) i « i ) \^r/2eN^ + O p ( i V r ^ ) | 

6/2 

= log 

= log 

2 7 r Y 

Ni) 

- 1 / 2 

^ ) ^+O P (TV- 1 ) 

U > = C J 

-1/2 
4°(0) 

= log[exP{p^(^)(0))} + O(iV- 1 ) ] 

= P c 2 , ; ( ^ i ) W ) + O W - 1 ) . (5.8) 

in which the last step holds by Lemma 3.2 in Section 3.7. Hence, the log-likelihood 1(0) can 

be approximated as 

1 = 1 

= PcJ(U0)) + Y2o(N-i) 
1=1 

= Po ; (a0 ) )+nO( iV- 1 ) . (5.9) 

As N — miriiNi grows faster than n, the function p&(lc(Q)) approaches the marginal log-

likelihood function 1(0), and hence an estimate of 0, which maximizes pjj(lc(0)), also maxi

mizes 1(0). This lead to the following algorithm to obtain an approximate M L E of 0 called 

OHL'-

Step 1. Obtain an initial estimate of (ct, 3, 52, R, A, B, w) =' (a ' 0 ' , 3{0), 52(-°\ Rp\ 

A(°\ B(°\ U/°)) based on a naive method, and an initial estimate of r) = rj^ based on the 

dropout model with the random effects u /°) . 
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Step 2. Given the current parameter estimates update random-effects estimates 

Ut+V> by maximizing lc\0^) with respect to a;*, i = 1,. . . ,n. 

Step 3. Given the random-effects estimates u>f+1\ update the parameter estimates 

#( t+1) by maximizing pa,(t+i)(Zc(^)) with respect to 0. 

Step 4. Iterate between Step 2 and Step 3 until convergence. 

We can use Fisher information to obtain the following approximate formula for the 

variance-covariance matrix of the approximate M L E OHL 

C o v ( ^ ) = [ - 8 ^ ( ' f ) r " ' v [ 80dOT 

Many optimization procedures evaluate the matrix [—d2p^j(lc(0))/dOd6T] at 6 = BHL 

(called Hessian matrix), from which it is easy to obtain Cov(0 HL)-

5.4.2 Asymptotic Properties 

Under suitable regularity conditions on 1(0), g(-), and d(-), we extend Vonesh (1996) to show 

in Section 5.7 that 

0=0 HL 

1T1 

(OHL — 00) = Op 
max | n 2, ^min N^j | 

where 60 is the true value of 6. Thus, the approximate M L E OHL will be consistent only 

as both n and (min; Ni) —* 0 0 . Intuitively, the term comes from standard asymptotic 

theory while the (mini Ni)^1 term comes from the Laplace approximation. 

Note that the accuracy of the first-order Laplace approximation to the log-likelihood 

function is 0{n/(min; Ni)}, or, equivalently, o(l) provided (min;TV;) grows faster than n. 

In this case, (OHL ~ Oo) = Op(n~^) with OHL being asymptotically equivalent to the "exact" 

M L E . This reflects the fact that, as the accuracy of the Laplace approximation to the log-

likelihood increases, the approximate M L E OHL will behave more and more like the "exact" 
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M L E . However, we can decrease the growth rate of (min^ N) for the asymptotic normality 

of OHL- In particular, as (min, Nt) grows at a rate greater than n%, the rate of consistency 

of OHL will still be Ov{rT^) and the resulting estimate will be asymptotically equivalent to 

the "exact" M L E in the sense that it has the same asymptotic distribution as the "exact" 

M L E (see Section 5.7). We correct the claim by Vonesh (1996) that, as (minj/Vj) grows at a 

rate greater than nh but less than or equal to n, the rate of consistency will still be Op(n~%) 

but the resulting estimate will no longer be asymptotically equivalent to the "exact" M L E . 

The proofs of the above arguments are given in Section 5.7. 

5.5 Example and Simulation 

5.5.1 Example 

We use the same HIV dataset in Section 4.5 to illustrate our proposed methods in this 

chapter, but we use the random-effect-based informative dropout model here rather than 

the outcome-based informative dropout model in Section 4.5. These informative dropout 

models may be used for sensitivity analysis. We use the commonly-used naive method, 

which ignores measurement errors and missing data, for parameter starting values in the 

two proposed methods. See the data description in Section 4.5.1. 

The Response and the Covariate Models 

We consider the same HIV viral dynamic and CD4 measurement error models in 

Section 4.5.2. For completeness, we describe these models again here. For the viral load 
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process, we consider the following model 

Vij 

log(Pii) 

log(P 2 t) 

where y,j is the logi0-transform of the viral load measurement for patient i at time t^, P^-and 

P 2 j are baseline values, A^- and A 2 ^ are viral decay rates, z*j is the true (but unobservable) 

CD4 count, and iw(£y) and h^tij) are nonparametric fixed- and random-effects functions 

(see Section 2.1). In order to reduce the number of nuisance parameters, we assume that the 

variance-covariance matrices A and B of the random effects are both diagonal matrices. To 

avoid very small (large) estimates, which may be unstable, we standardize the CD4 counts 

• and rescale the original time t (in days) so that the new time scale is between 0 and 1. 

As discussed in Section 2.1, we employ the linear combinations of natural cubic splines 

with percentile-based knots to approximate w(t) and hi(t). Following Wu and Zhang (2002), 

we take the same natural cubic splines with q < p in order to decrease the dimension of 

random effects. A I C and BIC criteria are used to determine the values of p and q, which 

leads to the following model for A 2 r , in (5.12) (see Table 4.1), with p = 3 and q — 1, 

A 2 i j « ft + ft MUj) + ft MUj) + hi- (5.13) 

For the CD4 process, we consider empirical polynomial L M E models, and choose the 

best fitted model based again on A I C / B I C values for each possible model. This is done based 

on the observed CD4 values, and is done separately from the response model for simplicity. 

The following quadratic polynomial L M E model best fits the CD4 trajectory (see Table 4.2): 

CD4*/ = (ai + ai) + (a 2 + a 2) ua + (a 3 + a 3) u\ + eih (5-14) 

= \ogW{PLIE-X^+ P 2 i e - x ^ ) + e i j , (5.10) 

= Pi + bu, XUj = ft + ft4 + 6 2 i, (5.11) 

= ft + hi, Mij = w(Uj) + hi(tij), (5.12) 
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where uu is the time and a = (ai, a2, a^)T are the population parameters and a; = 

(an, aj2, a^)T are the random effects. 

Random-effect-based Informative Dropout Models 

In this study, dropout patients appear to have slower viral decay, compared with the 

remaining patients. Thus, dropouts are likely to be informative or nonignorable. So we need 

to assume a model for the dropout process in order to make valid likelihood inference. Note 

that we should avoid building too complicated a dropout model since a complicated model 

may become non-identifiable. Subject-area knowledge and preliminary checks suggest that 

dropout may be related to the random-effects components an, ai2, and bi2, so we consider 

the following dropout model 

logit[P(rjj = l | a i , b^ T?)] =r]1 + rj2an + ri3ai2 + 774^2- (5.15) 

We assume independence of the r^'s to simplify the model. The dropout model (5.15) along 

with the dropout models in Section 4.5 can be used for sensitivity analysis. 

Estimation Methods and Computat ion Issues 

We estimate the model parameters using the two proposed "joint" model methods 

discussed in Sections 5.3 and 5.4. We denote the method in Section 5.3 by A P and the method 

in Section 5.4 by H L . The two proposed joint model methods need starting values for model 

parameters since they are implemented by a M C E M algorithm or by an iterative Laplace 

approximation to the log-likelihood function. We use the parameter estimates obtained by 

the naive method, which ignores measurement errors and missing data, as parameter starting 

values for the two joint model methods. 

For the naive method, we use the SPLUS function nlme() and lme() to obtain param

eter estimates and their default standard errors. For the proposed A P method, we assess the 
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convergence of the Gibbs sampler by examining time series plots and sample autocorrelation 

function plots. For example, Figures 5.1 and 5.2 show the time series and the autocorrelation 

function plots for b2 associated with patient 14. From these figures, we notice that the Gibbs 

sampler converges quickly and the autocorrelations between successive generated samples 

are negligible after lag 15. Time series and autocorrelation function plots for other random 

effects show similar behaviors. Therefore, we discard the first 500 samples as the burn-in, 

and then we take one sample from every 20 simulated samples to obtain independent samples 

(see sampling methods in Section 5.3.3). 

We start with k0 = 500 Monte Carlo samples, and increase the Monte-Carlo sample 

size as the number t of E M iteration increases: kt+i = kt + kt/c with c — 4 (Booth and 

Hobert, 1999). Convergence criterion for these two joint model methods in our examples is 

that the relative change in the parameter estimates from successively iterations is smaller 

than 0.05. Convergence of the algorithms are considered to be achieved when the maximum 

percentage change of all estimates is less than 5% in two consecutive iterations. 

We use the multivariate rejection sampling method for the A P method. Other sam

pling methods may also be applied and may be even more efficient. On a S U N Sparc 

work-station, the A P method took about 135 minutes to converge while the H L method 

took about 150 minutes to converge. The H L method took more time than the A P method 

mainly because all model parameters appear in the nonlinear function p<jj(lc(9)) and no sep

aration of the parameters is possible. However, the H L method is always computationally 

feasible while the A P method sometimes may have convergence problems. Moreover, the H L 

method can be used to obtain good parameter starting values for the A P method. 

A n a l y s i s Resu l t s 

We estimate the model parameters using the two proposed joint model methods A P 
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Series : b2 

Figure 5.2: The autocorrelation function plot for b2 associated with patient 14. 
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Table 5.1: Parameter estimates (standard errors) for the models in the example. 

c 
Method a i a 2 « 3 ft ft ft ft ft ft ft S R 
A P -.43 4.29 -3.90 11.72 66.65 1.53 6.93 -1.86 7.49 -2.36 .36 .51 

(.2) (.5)' (.6) (•2) (4.3) (4.6) (.7) (4.9) (7.8) (2.7) 
H L -.41 4.32 -3.93 11.64 66.44 1.58 6.89 -1.92 7.46 -2.29 .35 .50 

(•1) (-4) (.5) (•1) (3.4) (2.8) (.6) (4.8) (7.5) (2.7) 

Note: the estimated covariance matrices are A = diag(.62,4.70, 4.41) for AP, A = diag(.51, 4.74, 4.53) for 
HL. B = diag(1.45,91.62,1.94,20.16) for AP, and B = diag(1.42,91.91,1.58,19.96) for HL. 

and H L . We use the parameter estimates obtained by the naive method as the parameter 

starting values for the A P and the H L methods. We also tried several other parameter 

starting values for the proposed joint model methods. Different parameter starting values 

lead to roughly same parameter estimates in both the A P and the H L methods. 

Table 5.1 presents the resulting parameter estimates and standard errors based on 

the random-effect-based informative model (5.15). We find that the two joint model meth

ods provide similar parameter estimates. Comparing the random-effect-based informative 

dropout model with the outcome-based informative dropout model I in (4.13), we find that 

the resulting estimates are similar. This indicates again that the estimation may be robust 

against the nonignorable dropout models. Although some estimates in Table 5.1 are not sta

tistically significant, the values of the estimates may still provide useful information about 

viral load and CD4 trajectories. The estimates of parameters rj based on the A P method (or 

the H L method) are -2.32, .31, -.05,, and - .07 (or -2.4.1, .27, -.04, and -.08) respectively, 

with all p-values less than .00001, which also indicates that the dropouts may be nonignor

able (or informative) since the missingness may depend on the unobservable random effects. 

The estimates of rj2, n3, and 774 indicate that dropout patients seems to have higher baseline 

CD4 count, decrease in CD4 count faster over time, and have slower first decay rate than 

the remaining patients. 
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5.5.2 The Simulation Study 

We evaluate the proposed methods (AP and HL) for the random-effect-based informative 

model (5.15) via simulation. The response and covariate models, the random-effect-based 

informative dropout model, and the measurement time points used in the simulation are all 

the same as those in the example in the previous section (i.e., (5.10) - (5.14)). We choose 

appropriate values of rj to mimic certain missing rate, and we use the SPLUS function 

sampleQ to generate binary data ry based on the values of parameters 77 and the random 

effects 3n and by If ?y = 1, then yid- is deleted, and if ry = 0, is considered to be observed. 

In the simulations, the true values of model parameters 3 and oc are shown in Table 

5.2, and the other true parameter values are 5 = .2, R = .4, A = diag(.5, 3, 2), and 

B = diag(l, 9, 2, 4). We set 77 = (—1.4,0.1, —0.1, —0.1)r to get an average missing rate of 

20%. We always regard the first two responses on each individual as observed, i.e., every 

individual has at least two observed responses. 

We simulated 100 data sets and calculated averages of the resulting estimates and 

their standard errors based on each of the two methods. We compare the methods by 

comparing their biases and mean-square-errors (MSEs). Here, bias and M S E are assessed 

in terms of percent relative bias and percent relative root mean-squared error, as defined 

in Section 4.6. Since A P method sometimes offers computational problems, such as slow or 

non-convergence, the 100 sets of parameter estimates are obtained from 128 data sets. 

From the simulation results in Tables 5.2 and 5.3, we see that the two proposed joint 

model methods (AP and HL) perform well. The A P method performs better than the H L 

method in the sense that the A P yields smaller relative M S E and bias than the H L method. 

The H L method also performs reasonably well and it is always computationally feasible. 

Therefore, the H L method may be a good alternative method when the A P method exhibits 

computational difficulties, and the H L method can also be used to obtain good parameter 
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Table 5.2: Simulation results for the parameter estimates (standard errors) for the estimation 
methods A P and H L . 

Parameter Oil a2 « 3 ft A ft ft ft ft ft 
True Value -.4 4.0 -4.0 12.0 67.0 1.5 7.0 -2.0 8.0 -3.0 

A P -.40 4.01 -3.98 11.99 66.95 1.49 6.99 -2.01 8.04 -2.97 

(•2) (.5) (.6) (•1) (1.4) (1.6) (.3) (2.1) (3.2) (1.1) 
H L -.38 3.96 -3.93 11.99 67.10 1.56 6.95 -2.08 8.09 -2.89 

(•1) (•4) (.5) (•1) (1.0) (1.3) (.3) (1.8) (2.9) (1.0) 

Table 5.3: Simulation results for bias and M S E of the parameter estimates for the estimation 
methods A P and H L . 

Parameter a\ <%2 a3 ft- ft ft ft ft ft ft 
True Value -A 4.0 -4.0 12.0 67.0 1.5 7.0 -2.0 8.0 -3.0 

Bias 
A P 1.59 .15 .95 -.07 -.1 -.44 -.13 -.53 .46 .25 
H L 2.17 -1.02 1.31 -.08 .22 1.08 -.26 -3.78 .62 .93 

M S E 
A P 7.93 6.46 7.39 1.66 1.74 66.69 1.98 71.84 28.95 22.26 
H L 9.07 8.33 . 9.31 1.69 2.43 93.67 4.24 98.75 37.30 31.71 

Note: Bias = Percent bias = 100 x b i a S j / | / ? j | ; MSE = Percent ^MSE = 100 x ^/MSE^/I^I. 
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starting values for the A P method. 

5.6 Discussion 

We have proposed two approximate likelihood methods for semiparametric N L M E models 

with random-effect-based informative dropouts and covariate measurement errors and missing 

data, implemented by a Monte Carlo E M algorithm combined with Gibbs sampler or by an 

iterative Laplace approximation to the log-likelihood function respectively. The first method 

may be more accurate than the second method but it sometimes may offer computational 

difficulties such as slow or non-convergence, especially when the dimensions of random effects 

are not small. The second method is always computationally feasible but may be less accurate 

than the first method. The second method may be used as a reasonable alternative when 

the first method has convergence problems or it may be used to provide excellent parameter 

starting values for the first method. Simulation studies indicate that both methods produce 

satisfactory results. 

Although it does not need to generate Monte Carlo samples for random effects, the 

second method may not be computationally more efficient than the first method. A possible 

reason is that there are too many model parameters appear in the nonlinear functions in 

optimization procedures and no separation of the parameters is possible. A possible solution 

is to use Bayesian method to address this problem. Specifically, we may assume the known 

hyperprior distributions for the model parameters. 

In many longitudinal data sets, dropouts, censoring, measurement errors, and missing 

covariates are all present simultaneously. To our knowledge, there are almost no unified 

methods in the literature which address these problems simultaneously. Wu (2002) pro

posed a unified method to address censoring and measurement errors simultaneously and 
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showed that the proposed method offered significant improvement over existing methods 

currently in use. The ideas in Wu (2002) and in this chapter can be extended to address 

dropouts, censoring, measurement errors, and missing covariate simultaneously in semipara-

metric/nonparametric N L M E models. 

5 . 7 Appendix: Asymptotic Properties of the Approx-

imate M L E #HL in Section 5 . 4 

5.7.1 Consistency 

We will show that the following result 

(OHL — Oo) = OV 

holds under the usual regularity conditions on 1(0), g(-) and d(-), where 60 is the true value 

of 0. 

Proof. Let u); maximize lc\0) with respect to u>; for fixed 0. Denote Ni = n0bs<i + rrii. 

Suppose that Ni = O(N) uniformly for i = 1, . . . , n, where ./V = mim Ni. Based on (5.8) 

in Section 5.4.3, the zth individual's contribution k(0) to the overall log-likelihood may be 

approximated as 

m = POMW) + ^ r 1 ) = P&T{W(o)).+ O(N-1). . 

Hence, the log-likelihood 1(0) can be .written as (see (5.9)) 

l(0) = l*(0) + O{nN~1}, . (5.16) 

where l*(0) = p^(lc(0)) = E H i P u ^ W ) - L e t u*(e) = dl*(0)/d0 and let 0HL be the 

approximate maximum likelihood estimate satisfying U*(0HL) — 0- Under suitable regularity 
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conditions on 1(0) and assuming QHL is an interior point in a neighborhood containing 00, 

Taylor's theorem tells us that there exists a vector 0 on the line segment between 00 and 

OHL such that 

n-lu(0HL) = n-xu(0Q) + n-lM(0)(0HL - 00), (5.17) 

where u(0) — dl(0)/dO and M(0) = 82l(0)/d0d0T are the first and second order derivatives 

of the true but intractable marginal log-likelihood 1(0). The. first term n - 1 u ( 0 o ) on the right 

of (5.17) is 

= ly dk(0) iu(«0, = I«2> 
n n oO 

0=0O 80 0=00 

Given sufficient regularity conditions on 1(0), we know from the Lindeberg Central Limit 

Theorem that 

^ u ( 0 o ) - ^ ( 0 , 7 ( 0 0 ) ) , (5.18) 

where the matrix 7(0) = l i m ^ o o ^ £ h(0) and h(0) is the information matrix for individual 
" i = l 

i. That implies 

- ^ u ( 0 o ) = O p ( l ) ^u (0 o ) = Op(n-1'2). 

The matrix n~lM(0) on the right of (5.17) is 

1 A d\(0) 
l-M(0) = 
n v ' ndOdOT 0=0 n Z-u n ^ dOdO1 0=0 -1(0), (5.19) 

by the Law of Large Numbers. Since 1(0) is positive definite for all 0, the probability that 

the matrix n _ 1 M ( 0 ) is invertible tends to 1. By writing n'lM(0) = —1(6) + op(l) and 

applying Lemma 3.2 in Section 3.7 to the inverse function, we have 

[n-lM(0)Yl = -IijO)-1 + op(\). 
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Given suitable regularity conditions ong(-) and d(-), for example that third order derivatives 

exist and are continuous in an open neighborhood about 0O, application of Lemma 3.2 in 

Section 3.7 to the partial derivative function in the expression (5.16) leads to 

n-1u(6HL) = n-1u*{dHL) + 0(N-1). (5.21). 

Note that u*(0HL) = 0 and n - 1 u(0o) = Op(n~i). From (5.17), we have 

n - 1 M ( 0 ) ( 0 H L - 6o) = n - y f l i / L ) - n ^ u ^ o ) 

(OHL - 00) = [n-lM(d)]-l[n'lvi{eHL) - n " 1 ^ ) ] 

(OHL - Oo) = ( - / (0)" 1 + o p ( l ) ) [n - 1 u(0 H i ) - n " 1 ^ ) ] (by (5.20)) 

(OHL - Oo) = (-1(G)-1 + op{l)){n-lu\0HL) + O ^ " 1 ) + Op(n^)\ (by (5.21)) 

(OHL - 00) = -I(O)-1 Op maxjra^ , A T 1 } ' ] + o p m a x j n - ^ , iV_1>}] 

m a x j n . v^nr in /V^ }J . 

Finally, let OML denote the "exact" maximum likelihood estimate with U(0ML) = 0-

Let min; N = 0(nT) for r > 1 so that the accuracy of the Laplace approximation to the 

marginal log-likelihood is approximately 0(nl~T) = o(l) from the formula (5.16). Then, 

under the same regularity conditions as before, by multiplying n on the both sides of the 

equation (5.21) and noting that U(0ML) = 0, we have 

U(0HL) = U*(0HL) + Op(1) = O + Op(1) = U(0ml) + Op(1). 

Thus U(9HL) ~ u(0ML) = op(l) and hence OHL is asymptotically equivalent to the "exact" 

maximum likelihood estimate OML- d 

5.7.2 Asymptotic Normality of #HL 

In this section, we will show that as N grows at a rate greater than n%, i.e., N = 0(nT) 

for r > | , the approximate M L E OHL and the "exact" M L E OML have the same asymptotic 
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distribution. 

Proof. Noting that the approximate M L E OHL satisfies a set of equations U*(OHL) = U, W E 

take a first-order Taylor series expansion of U*(0HL) around the true parameter 0O 

O = u*(0HL) = U*(00) + ^-^-(0HL-00), 
dO 

where 0* is oh the line segment joining 00 to OHL, which implies 

V^{0HL-00) = 
1 du*{0*) 

n 801 

"i - i 

i=l 
dOdO1 80 

(5.22) 

Now we consider the two product terms on the right of (5.22). Applying Lemma 3.2 in 

Section 3.7 to the first and second partial derivative functions in the expression in (5.16), we 

know that, for any fixed 0, 

and 

4=u*(6>) = - ^ u ( 0 ) + 0(nl2 A " 1 ) 

dO dO + U ^ N )> 
(5.23) 

n dOT n dOT 

dOdOT n^dOdOT 1 ' 

i=i i=i 

Assume that N = 0(nT), where r > \ . Then ~0(n^ N'1) = 0(n^-T) 

(5.23) and (5.24), we have 

(5.24) 

o(l). From 

£%>^h aO 
_ l ™ 1 dlj(Oo) 

1 A rpp^f)) _ l i m i f *«e-) 
« £ a0a0 r ~ » " 

(5.25) 
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Note that OHL — Oo = Op[ma,x{n~%, N^1}] = Op(n~^), i.e., OHL is a -^-consistent estimate 

of 6o- Since 9* is on the line segment joining 0O and OHL, A- 0O as n —> oo. Under the 

same regularity conditions as before, it follows from (5.18) and (5.19) that 

i=n „. (5-26) 

Combining the results in (5.25) and (5.26) and using Slutsky's theorem, we can show that 

V^(0HL-0O) A / V ( 0 , Wo)'1), 

which implies that when N = 0(nT) for r > | , the approximate M L E OHL a n d the "exact" 

M L E OML have the same asymptotic distribution. • 
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Chapter 6 

Conclusions and Future Research 

6.1 Conclusions 

In this thesis, we have developed approximate maximum likelihood inference in the following 

three problems: (1). semiparametric N L M E models with measurement errors and missing 

data in time-varying covariates; (2). semiparametric N L M E models with covariate measure

ment errors and outcome-based informative missing responses; (3). semiparametric N L M E 

models with covariate measurement errors and random-effect-based informative missing re

sponses. Measurement errors, dropouts, and missing data are addressed simultaneously in a 

unified way. For each problem, we have proposed two joint model methods to simultaneously 

obtain approximate maximum likelihood estimates (MLEs) of all model parameters. The 

first method, implemented by a Monte Carlo E M algorithm, may be more accurate than 

the second method but it may be computationally very intensive and sometimes may offer 

computational difficulties such as slow or non-convergence, especially when the dimensions 

of random effects are not small. The second method, which approximates joint log-likelihood 

functions by using a first-order Taylor expansion or by using a first-order Laplace approxima-
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tion, is computationally more appealing, but it may be less accurate than the first method. 

The performance of the second method may need further investigation. We have showed 

some asymptotic results for the estimates based on'the second method. The second method 

may be used as a reasonable alternative when the first method has convergence problems or 

be used to provide excellent parameter starting values for the first method. 

Simulation results have shown that all proposed methods perform better than the 

commonly used two-step method and the naive method which ignores measurement errors, 

in the sense that the proposed methods yield smaller bias and M S E . In particular, the 

commonly used two-step method may under-estimate standard errors, which is consistent 

with analytic results, and the naive method may under-estimate covariate effects and poorly 

estimate other parameters. 

6.2 Future Research Topics 

Finally, we discuss possible future work relevant to this thesis as follows. 

1. In many longitudinal studies such as HIV viral dynamics, another common problem is 

that the response measurements may be subject to left censoring due to a detection 

limit. Censored responses in practice were often substituted by the detection limit 

or half the detection limit (Wu and Ding, 1999; Wu and Wu, 2001), which may lead 

to substantial biases in the results (Wu, 2002). In the presence of both dropouts 

and censoring, unified approaches which address these problems simultaneously in 

semiparametric/nonparametric N L M E models are needed in order to make reliable 

statistical inference. 

2. In many longitudinal datasets, dropouts, censoring, measurement errors, and miss

ing covariates are all present simultaneously. To our knowledge, there are almost no 
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unified methods in the literature which address these problems simultaneously. Wu 

(2002) proposed a unified method to address censoring and measurement errors simul

taneously and showed that the proposed method offered significant improvement over 

existing methods currently in use. The ideas in Wu (2002) and in this thesis can be 

extended to address dropouts, censoring, measurement errors, and missing covariates 

simultaneously in semiparametric/nonparametric N L M E models. 

3. For the response process, we only consider semiparametric nonlinear mixed-effects models 

with independent and normal distributed error terms e;. In the future, we may consider 

more complicated covariance structure for e; such as an AR(1) structure. 

4. In our study, we only consider semiparametric nonlinear mixed-effects models for 

normal data. Generally, our proposed methods may be extended to other models, 

such as semiparametric/nonparametric generalized linear mixed-effects models and 

semiparametric/nonparametric generalized nonlinear mixed-effects models. 

5. Computational efficiency is an important issue in our study. Multivariate rejection sam

pling methods have been used in our data analyses and simulation. In general, other 

sampling methods, such as adaptive rejection sampling methods and importance sam

pling methods, may also be used and may be even more efficient. We plan to compare 

computational efficiency among several sampling methods in our current setting. 

6. In our alternative methods, we have approximated log-likelihood functions by using a 

first-order Taylor expansion or by using a first-order Laplace approximation. Some

times, these are not necessarily accurate approximations. In the future, we may in

vestigate better approximations, such as higher order Taylor expansions and Laplace 

approximations. 
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7. One problem in our models is that there are too many parameters. If the data are not 

rich enough, the proposed methods may have convergence problems and identifiability 

problems. We plan to develop Bayesian methods for our problems. 
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