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Abstract 

Programmed cell death (PCD), or cell suicide, encompasses multiple pathways including 

apoptosis and autophagy and is essential for development, cellular homeostasis, and prevention 

of cancer cell growth. I describe here the development and use of bioinformatic methods to 

identify and analyze genes involved in PCD, both in the model organism Drosophila 

melanogaster and in human cancer, by analysis of large-scale gene expression data. An approach 

was developed to correctly identify genes from serial analysis of gene expression (SAGE) data, 

distinguish the set of genes not accessible to the SAGE method, and determine the optimal set of 

enzymes for Drosophila, C. elegans, and human SAGE library construction. In Drosophila 

metamorphosis the salivary gland undergoes autophagic PCD, whereby cellular components are 

engulfed and degraded by cytoplasmic vacuoles, with additional hallmarks of apoptosis. This is 

an excellent model in which to study the genes involved in PCD. Transcriptional profiling of this 

tissue by expressed sequence tags (ESTs) and serial analysis of gene expression (SAGE) 

identified many genes differentially regulated prior to cell death, including genes known to be 

death regulators, genes in related pathways, genes of no known function, and potentially novel 

unannotated genes. The PCD-associated genes found in this analysis were then used to identify 

similar genes in the human genome that are differentially expressed in cancer, which have the 

potential to be involved in PCD and in oncogenesis. The pattern of genes expressed suggests a 

role for autophagy-associated processes in cancer progression. To examine this further, 

expression of the autophagy gene LC3 was examined in multiple cancer types, subtypes, and 

stages. LC3 expression is decreased significantly in several cancer types and also during cancer 

progression, suggesting a tissue- and stage-specific role for autophagy in regulating oncogenesis. 
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1.1 Thesis overview 

The aim of this thesis was to identify and analyze genes involved in programmed cell 

death (PCD) in Drosophila melanogaster and in human cancer systems, using a bioinformatics 

approach. Programmed cell death, referring to a number of processes of cellular suicide, is 

essential for the development of multicellular organisms and the prevention of unwanted cell 

growth that can lead to cancer, and underlies the pathology of some neurodegenerative and other 

diseases. Several decades of research have defined complex pathways that control cell death, but 

many of the genes involved are still unknown, especially in less well studied forms of PCD such 

as autophagic cell death. In addition, the role of PCD genes in the process of oncogenesis is both 

important and complex; understanding of the functions of PCD in cancer has the potential to 

impact cancer research, diagnosis, and treatment. I approached these research questions by first 

examining the process of PCD during the development of the model organism Drosophila 

melanogaster, and then applying these results, in combination with further studies, to investigate 

the role of PCD in cancer. The primary method employed was bioinformatic analysis of large-

scale gene expression data, with additional use of genomic, expressed sequence, comparative 

genomic, and functional data. This comprehensive approach takes advantage of the large amount 

of high-throughput biological data that is being generated at an astounding rate, and applies it to 

the understanding of essential cellular pathways and their role in the complex causes of cancer. 

1.2 Programmed cell death 

1.2.1 Functions and types of programmed cell death 

Programmed cell death is precisely initiated and executed cellular suicide, and requires 

the activation of specific genes and pathways. Thus, it is differentiated from non-programmed 
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necrotic cell death which occurs when cells lose homeostasis often due to environmental insult. 

PCD is essential in development, where the specific removal of cells acts together with cell 

proliferation to shape tissues such as digits and the neural tube, and to select the cells of the 

immune system (reviewed in Baehrecke 2002). It also acts in a protective manner by deleting 

damaged or diseased cells, such as those, that are virally infected. However, excess PCD can be 

detrimental and play a role in disease, particularly neurodegenerative diseases (reviewed in 

Dlamini et al. 2004; Marino and Lopez-Otin 2004). 

PCD was categorized by Schweichel and Merker (1973) into three types: type I, 

apoptotic; type II, autophagic; and type III, non-lysosomal programmed cell death. Little 

research has gone into the study of non-lysosomal programmed cell death, described 

morphologically as cellular disintegration with no involvement of the lysosomal pathways and 

no cellular condensation (Clarke 1990), and it will not be discussed further here. Both apoptosis 

and autophagic cell death are important in development and disease, though autophagic cell 

death has only recently become a major research focus. Indeed, the relationship between 

apoptosis, autophagic cell death and the morphologically related process of autophagy is unclear 

and thus these processes are described separately here. 

1.2.2 Apoptosis 

Classical apoptosis as described by Kerr et al (1972) is caspase-dependent and marked by 

chromatin and cytoplasm condensation, and D N A cleavage and fragmentation (reviewed in 

Baehrecke 2002; Zornig et al. 2001). The cell condenses to form apoptotic bodies which are 

cleared by phagocytes recognizing the phosphatidylserine which becomes exposed on the plasma 

membrane. Controlled apoptosis is necessary for development and maintenance of multicellular 

organisms. Most mice deficient in caspases, the effectors of apoptosis, die during development. 
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Apoptosis of self-reactive lymphocytes prevents autoimmune diseases, and apoptosis of virally 

infected cells prevents virus replication and spread. However, inappropriate apoptosis of neurons 

is thought to play a role in neurodegenerative diseases such as Alzheimer's, Parkinson's, and 

Huntington's diseases (reviewed in Friedlander 2003). The genes responsible for control of 

apoptosis were first elucidated in C. elegans with the identification and characterization of three 

ced genes (Ellis and Horvitz 1986). Discoveries of functionally homologous genes in insects, 

mammals, and many other organisms have shown that the apoptosis pathway is essentially 

conserved in many multicellular eukaryotes. However, the complexity is substantially increased 

compared to the C. elegans system, as there are hundreds of proteins that are involved in 

mammalian apoptosis. 

There are two major apoptotic pathways in mammals (Figure 1.1, reviewed in Hengartner 

2000; Zornig et al. 2001). The extrinsic pathway responds to signals from outside the cell such as 

binding of T-cell Fas ligand, and is mediated by death receptors of the tumor necrosis factor 

family and a variety of adaptor proteins such as TRADD and F A D D . The intrinsic pathway 

responds to internal indicators such as p53 signals due to D N A damage, and is mediated by the 

mitochondria which, regulated by pro- and anti-apoptotic Bcl-2 family proteins, can be triggered 

to release pro-apoptotic molecules including cytochrome c and Smac/DIABLO. Both pathways, 

which also have means of cross-talk, ultimately result in recruitment, cleavage and activation of 

cysteine proteases known as caspases. Their proteolytic action on a wide variety of substrates 

results in the observed apoptotic morphology: D N A fragmentation, protein degradation, and 

eventual cellular disintegration and phagocytosis. Numerous regulators such as the IAPs 

(Inhibitor of Apoptosis Proteins) tightly control the activity of apoptosis proteins so that the 

process is only activated when specific environmental or genetic triggers are present. Control of 
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apoptosis is also exerted by regulators of growth and differentiation, such as the N F K B , Ras, and 

Jun kinase pathways. The number of genes with roles in apoptosis is ever-increasing, with some 

genes only recently described as associated with Bcl-2 proteins (Zhao et al. 2005), death 

receptors (Kamradt et al. 2005) and control of N F K B (Park and James 2005). Given the 

complexity of this process, there are undoubtedly more genes involved in regulation of apoptosis 

yet to be discovered. 
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1.2.3 Autophagy 

The term "autophagy" refers to multiple processes (Cuervo 2004b), but it is the process 

of macroautophagy which has been most extensively studied and implicated as having a role in 

development and disease. Macroautophagy, hereafter referred to as simply autophagy, is a 

mechanism of protein and organelle degradation and turnover that is conserved in organisms as 

distantly related as yeast and humans (reviewed in Levine and Klionsky 2004). It involves the 

sequestration of cellular components in double-membraned structures thought to be derived from 

the endoplasmic reticulum. These structures, called autophagic vacuoles or autophagosomes, 

fuse with lysosomes to form autolysosomes in which the sequestered cellular components are 

degraded. It is this pattern of autophagosomal activity that forms the morphological definition of 

autophagy. Autophagy in yeast is a mechanism to survive nutrient starvation, and it may have a 

similar function in mammals (Kuma et al. 2004). A role for autophagy in aging is suggested by 

its necessity for the formation of the long-lived C. elegans dauer larva (Melendez et al. 2003) 

and its association with increased lifespan in mammals (Bergamini et al. 2003). It also functions 

in cellular responses to bacterial infection and may be involved in cell differentiation (reviewed 

in Bursch 2001; Gozuacik and Kimchi 2004; Levine and Klionsky 2004). Defects in autophagy 

are implicated in muscular diseases and in neurological diseases such as Huntington's Disease 

and Alzheimer's Disease (reviewed in Cuervo 2004a; Marino and Lopez-Otin 2004; Shintani and 

Klionsky 2004). 

The majority of the molecular components of autophagy were first identified using 

genetic screens in yeast. Three screens identified aut (Thumm et al. 1994), apg (Tsukada and 

Ohsumi 1993), and cvt (Harding et al. 1995) gene sets, which were subsequently shown to be 

partially overlapping; the nomenclature has since been unified and all genes are referred to as atg 
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(autophagy-related) genes (Klionsky et al. 2003). An overview of the mammalian autophagy 

pathway is shown in Figure 1.2. Initiation of autophagy, regulated by nutrient availability and 

mitogenic signals, is controlled by TOR (target of rapamycin). Early stages of autophagic 

vacuole formation are dependent on class III PI3K which is found in a complex with Beclin 1 

(orthologous to Atg6 in yeast). Beclin 1 can induce and is required for normal autophagy (Liang 

et al. 1999; Qu et al. 2003; Yue et al. 2003). Expansion of the autophagosomal membrane occurs 

through the action of two ubiquitin-like systems, with the result that the Atg8 protein is tethered 

to the autophagosomal membrane. In mammals, several homologs of yeast Atg8 have been 

identified, but only MAP1LC3B, known as LC3, has a clear role in autophagy (reviewed in 

Tanida et al. 2004). LC3 is used as a marker for autophagosomes (Mizushima et al. 2004), as it is 

the only protein known to remain membrane-bound after the autophagosome has been 

completely formed. Beclin 1 and LC3 are among the most extensively studied mammalian 

autophagy genes, and both are integrally involved in the autophagic process. 
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1.2.4 Autophagic cell death 

Autophagic cell death has morphological features of autophagy, as the formation of large 

vacuoles which engulf and degrade both cytoplasm and organelles is observed prior to nuclear 

collapse (reviewed in Bursch 2001). The level of autophagic vacuole formation can be very 

extensive, such that a majority of the area in the cell is contained within vacuoles. Autophagic 

PCD is distinct both in morphology and molecular control from apoptosis. In addition to the 

presence of large autophagic vacuoles and early organelle degradation, autophagic PCD is 

marked by the preservation of the cytoskeleton, which is cleaved early in apoptosis but is 

presumably necessary for the movement of autophagic vesicles in type II PCD (Bursch et al. 

2000). Molecularly, autophagic PCD is not caspase-dependent, but can be prevented by 

inhibitors of the autophagy pathway which target the P B K pathway or prevent the fusion of 

autophagosomes with lysosomes, and can require autophagy genes such as Beclin 1 (Shimizu et 

al. 2004; Y u et al. 2004). However, little work has yet been done to define the molecular 

pathways controlling autophagic. PCD, and thus the relationship between autophagy and 

autophagic PCD is unclear. For instance, autophagy is a protective mechanism of removing 

potentially detrimental protein aggregates in the brain, but high levels of autophagy are also 

observed in neurodegenerative disorders associated with cell death (reviewed in Levine and 

Klionsky 2004). In such cases, the observed autophagy-associated PCD may represent a 

progression of the autophagy pathway past the point at which the cell can survive, thus leading to 

PCD. 

Many tissues which were previously thought to undergo only apoptosis, such as the 

tadpole tail, sexual structures during mammalian development, and various organs during insecf 

metamorphosis, have since been shown to have additional hallmarks of autophagy, and thus the 
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mechanisms of PCD are in some cases being redefined (reviewed in Gozuacik and Kimchi 

2004). It appears that autophagic PCD may play an important role when a large number of cells 

or an entire tissue need to be deleted. This will be discussed in more detail in the context of the 

Drosophila salivary gland in Section 1.4. Autophagic cell death and apoptosis are not mutually 

exclusive, and there may be some cross-talk between the respective signaling pathways as 

indicated by the regulation of Beclin 1 by Bcl-2 (Liang et al. 1998; Pattingre et al. 2005), and the 

triggering of autophagy when apoptosis is prevented, for instance, by Caspase-8 inhibition (Yu et 

al. 2004). However, as apoptosis can occur with no evidence for autophagy, so can autophagy 

occur with no evidence for apoptosis. In particular, there is growing evidence that under certain 

environmental or genetic conditions cancer cells undergo caspase-independent cell death with no 

apoptotic features, which can be prevented by autophagy inhibitors (Kitanaka et al. 2002). The 

role of autophagy and autophagic PCD in cancer will be discussed further in Section 1.3.3. 

1.3 Cancer and programmed cell death 

1.3.1 Molecular mechanisms of cancer 

Cancer is a disease of uncontrolled cell growth caused by genetic changes that alter cell 

physiology. This process is exceptionally complex, and thus only a broad overview of concepts 

related to cancer progression and associated molecular changes is given here. These are 

discussed in more detail in Kufe et al (2003). A recent review identified 291 genes demonstrated 

to be involved in cancer, representing over 1% of human genes (Futreal et al. 2004). 

For a cancer cell to survive, it must initially start to grow in an uncontrolled manner, 

beyond what is specified by various extracellular signals. Concurrently, it must circumvent the 

normal cellular mechanisms for recognizing and preventing this uncontrolled growth. It then 

must sustain this growth by obtaining sufficient nutrients and oxygen, even in a large tumor cell 
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mass. To advance to a metastatic state, it must gain the ability to live outside of its normal 

cellular milieu. Many different types of genetic mutations contribute to this complex multistep 

process, which differ from cancer to cancer and from cell to cell. Hanahan and Weinberg (2000) 

summarize the common molecular characteristics of cancers into six categories which specify the 

genetic changes a cancer cell must acquire to progress (Table 1.1). 

The genes involved in cancer progression can be placed in two broad categories: 

oncogenes and tumor suppressors. Oncogenes promote cancer growth when active, and are often 

upregulated in cancers, for instance by increased expression or by mutations that increase their 

activity. Examples are the growth-promoting genes Ras and Myc. Tumor suppressors inhibit cell 

growth, and are often downregulated in cancers, for instance by decreased expression, 

inactivating mutations, or deletion. A very common example is p53, which can restrain the cell 

cycle or promote apoptosis, and is inactivated in an estimated 50% of cancers. A number of 

genes which regulate or execute the apoptotic program clearly fall into these categories. The role 

of autophagy genes in cancer is, however, more enigmatic. 
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Table 1.1 Acquired molecular changes in cancer progression. 

Characteristic of cancer* Molecular examples 

Self-sufficiency in growth signals 

. Production and secretion of extracellular growth factor PDGF 
results in autocrine growth signaling 

• Mutations in Ras cause constitutive activation of intracellular 
growth signaling pathways 

Insensitivity to growth-inhibitory signals . Mutation or inhibition of Rb allows cell cycle progression 
• Overexpression of Myc inhibits cell differentiation 

Evasion of programmed cell death . Bcl-2 upregulation blocks mitochondrial apoptosis pathway 
. Deletion of p53 prevents apoptosis due to DNA damage 

Limitless replicative potential 

• Upregulation of telomerase enzyme maintains telomere length 
which is otherwise lost after many cell divisions; loss of 
telomeres otherwise results in crisis, characterized by 
chromosome fusions and cell death 

Sustained angiogenesis 

• Upregulation of VEGF promotes growth of blood vessels into 
tumor, providing nutrients and oxygen 

• Downregulation of angiogenesis inhibitor thrombospondin-1 
promotes vessel formation 

Tissue invasion and metastasis 

. Loss of E-cadherin function removes inhibitory cell-cell signals 
and connections 

. Proteases such as MMPs activated due to loss of inhibition by 
TIMPs degrade the extracellular matrix, promoting metastasis 
and invasion 

* as categorized by Hanahan and Weinberg (2000). 

1.3.2 Apoptosis and cancer 

Current knowledge of tumorigenesis suggests that all cancers must inhibit apoptosis at 

some stage in their growth, as the apoptotic response is linked to alterations in many other 

cellular pathways (reviewed in Evan and Vousden 2001; Zornig et al. 2001). Overexpression of 

oncogenes such as Myc, in addition to signaling cell proliferation, also triggers apoptosis 

(Hipfner and Cohen 2004). Similarly, detachment of endothelial cells from the extracellular 

matrix during metastasis removes survival signals from integrins and cadherins and disrupts the 

cytoskeleton, resulting in a form of apoptosis called anoikis (Frisch and Screaton 2001). 

Genomic instability and D N A damage due to mutations and erosion of telomeres also trigger 
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apoptosis, primarily through p53, and result in cancer cell death (Evan and Vousden 2001). As 

might be expected, then, it is genes that promote apoptosis (pro-apoptotic) that are generally 

found to be inactivated or deleted in cancer, and thus are potential tumor suppressors. Genes that 

prevent apoptosis (anti-apoptotic) are potential oncogenes and are expected to be overexpressed. 

Probably the most common mechanism resulting in inhibition of apoptosis is the 

mutation or deletion of p53, which protects the cell from apoptosis due to D N A damage and 

oncogene activation (Asker et al. 1999). If p53 is not mutated, its activity may be decreased by 

overexpression of its inhibitor Mdm2 or downregulation of the Mdm2 inhibitor ARF (Lowe and 

Lin 2000). Other common mutations seen in the apoptotic pathway include the overexpression of 

anti-apoptotic Bcl-2 proteins, for instance due to a translocation involving Bcl-2 in lymphoma 

(Zornig et al. 2001), or the downregulation of pro-apoptotic proteins such as the frameshift 

mutations of Bax seen in some colon carcinomas (Rampino et al. 1997), either of which can 

prevent apoptosis via the mitochondrial pathway. While the death receptor pathway is a less 

common target for oncogenic mutations, changes in Fas and other death receptors have been 

found in non-Hodgkin's lymphoma and gastric cancer (Gronbaek et al. 1998; Park et al. 2001), 

and the decoy receptor DcR3 that competes with death receptors for ligand binding is amplified 

in a significant proportion of lung and color cancers (Pitti et al. 1998). IAPs, especially survivin, 

are overexpressed in cell lines and many common tumor types (Ambrosini et al. 1997). Direct 

effects on caspases themselves are rare, possibly because it is difficult to stop the apoptotic 

program at the late stage of caspase activation, although methylation, deletion, or mutation of the 

Caspase-8 gene is seen in neuroblastomas (Takita et al. 2000; Teitz et al. 2000) and late stage 

gastric cancers (Soung et al. 2005). The central role of apoptosis in cancer and the commonality 

14 



of apoptosis-related alterations in cancer makes modulation of cell death pathways an attractive 

target for cancer therapies (Ghobrial et al. 2005). 

1.3.3 Autophagy and cancer 

One of the avenues of research that broadly ignited interest in investigating the role of 

autophagy in cancer was the study of the autophagy gene Beclin 1. Beclin 1 is monoallelically 

deleted in 40% of breast cancer cell lines, and its protein expression is reduced in a majority of 

breast and ovarian tumors (Liang et al. 1999). The MCF-7 breast cancer cell line has 

undetectable expression of Beclin 1 protein, and reintroduction of expression increases 

autophagy, decreases cell proliferation, and reduces MCF-7-derived tumor formation in mice 

(Liang et al. 1999). Additionally, Beclin 1 has been shown to act as a haploinsufficient tumor 

suppressor, as mice heterozygous for a deletion of beclin 1 develop lymphomas, liver and lung 

cancers, and breast hyperplasias, with no evidence for additional mutations in the wild-type 

Beclin 1 gene (Qu et al. 2003; Yue et al. 2003). Although it is clear that inactivation of Beclin 1 

can be an important step in the oncogenic process, it binds the apoptosis protein Bcl-2 (Liang et 

al. 1998; Pattingre et al. 2005) and may function through mechanisms other than autophagy 

(Furuya et al. 2005; Y u et al. 2004). Thus, an outstanding question is whether it is reduced 

autophagy that is responsible for the tumorigenic effects of Beclin 1 deletion mutants. 

Recently, a number of studies have demonstrated that autophagy has a role in cancer 

causation, progression, and therapy. Multiple lines of evidence suggest that autophagy has a role 

in suppressing oncogenesis, either through its role in autophagic cell death, or through other 

mechanisms such as regulation of cell growth (reveiwed in Gozuacik and Kimchi 2004). Rat 

models of hepatocellular carcinomas and pancreatic adenocarcinomas demonstrate decreased 

levels of autophagy (Schwarze and Seglen 1985; Toth et al. 2002). Autophagic cell death can be 
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induced by oncogenic forms of Ras in glioma and gastric cancer cell lines (Chi et al. 1999), and 

may contribute to spontaneous regression of neuroblastomas (Kitanaka et al. 2002). MCF-7 

breast cancer cells undergo autophagic cell death in response to tamoxifen (Bursch et al. 1996), 

as do glioma cells when treated with the chemotherapeutic arsenic trioxide (Kanzawa et al. 

2003). These data suggest that autophagy and autophagic cell death can act to prevent cancer, 

and thus induction of these pathways could be of therapeutic benefit in treatment of at least some 

cancers. 

However, autophagy does not only have an inhibitory role in oncogenesis; indeed, it may 

in some situations contribute to cancer progression (reviewed in Ogier-Denis and Codogno 

2003). Some cancers exhibit high levels of autophagy, which may aid in cancer cell survival 

under conditions of nutrient starvation and hypoxia which are common in preangiogenic solid 

tumors. The potential survival advantage of active autophagy in early stage cancers is supported 

by the observation that although rat models of pancreatic carcinomas show decreased autophagic 

capacity compared to normal pancreatic cells, premalignant rat pancreatic cancer cells show 

increased levels of autophagy (Toth et al. 2002). Additionally, autophagy may diminish the 

effects of chemotherapy or irradiation, potentially by contributing to elimination or sequestration 

of toxic molecules and damaged organelles (Cuervo 2004a; Ogier-Denis and Codogno 2003; 

Paglin et al. 2001). Thus, it appears that autophagy may have dual roles in cancer. In certain 

cancer types or stages, it may aid in cancer cell survival. In other types or stages, or in response 

to other stimuli such as blocked apoptosis or presence of particular chemotherapeutics, 

autophagic cell death may be induced (Ogier-Denis and Codogno 2003). 
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1.4 Programmed cell death in the development of Drosophila melanogaster 

1.4.1 Drosophila as a model for programmed cell death 

During development and metamorphosis of the fruitfly Drosophila melanogaster, a 

number of tissues are subject to programmed cell death (Figure 1.3A, reviewed in Baehrecke 

2000; Rusconi et al. 2000). Tissues such as the salivary gland and midgut are removed 

completely during metamorphosis by autophagic cell death to make way for the adult organs 

(Figure 1.3B). In other tissues, such as the eye, it is only individual cells which are deleted by 

apoptosis in order to shape the tissue in a precise manner (reviewed in Brachmann and Cagan 

2003). As discussed above, the pathways responsible for programmed cell death are conserved in 

many organisms, and many human PCD genes have homologs in the Drosophila system. 

Importantly, both the apoptotic and autophagic systems are in place in the fly. However, the 

pathways in Drosophila are less complex and less redundant; for instance, there have been at 

least 14 caspases identified in mammals (Zhang et al. 2003), and only seven in Drosophila 

(Kornbluth and White 2005). The conservation of PCD elements between species implies that 

novel genes found in this model system are likely to have relevant functional homologues in 

mammalian systems, but at the same time will be easier to study in Drosophila both because of 

the relative ease of genetic studies in this model, and the reduced complexity of the system 

(Richardson and Kumar 2002). 
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Figure 1.3 Programmed cell death during Drosophila development. 
(A) Pulses of the steroid hormone ecdysone punctuate development. The late larval pulse in the 3 r d instar 
larva triggers destruction of the midgut, and the prepupal pulse triggers destruction of the salivary gland; 
both are destroyed by autophagic cell death. The time scale is expanded in the prepupal stage. Images from 
(Griffiths et al. 1999). (B) The prepupal ecdysone pulse triggers death and removal of the salivary gland by 
autophagy. Images from (Jiang et al. 1997). APF, after puparium formation. 

1.4.2 Molecular mechanisms of programmed cell death in Drosophila 

Apoptosis in Drosophila, as in the mammalian system, is executed by caspases. The 

caspase-inhibitory proteins, IAPs such as Diapl, have a central role in controlling apoptosis as 

lack of these proteins results in increased apoptosis and lethality (Hay et al. 1995). Primary 

control of IAPs is exerted by three IAP-inhibiting pro-death proteins, Hid, Reaper, and Grim 

(Goyal et al. 2000), and also by two recently discovered proteins which appear to have similar 

function, Sickle and Jafrac2 (Srinivasula et al. 2002; Tenev et al. 2002). Though these genes do 
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not have direct mammalian homologs, several can induce apoptosis by activating caspases in 

mammalian cells (Varghese et al. 2002) and they are analogous in function to mammalian 

Smac/DIABLO and Omi/HtrA2 (Du et al. 2000; Hegde et al. 2002). Expression of these proteins 

allows caspases to be activated and thus triggers death. A mitochondrial apoptosis pathway also 

exists, involving the Bcl-2 homologues dBORG-1 and 2 and the Apaf-1 homologue Dark, which 

initiates activation of Drone and downstream caspases (Kumar and Doumanis 2000). Several 

important PCD-related proteins, such as the Bcl-2 homologues (Colussi et al. 2000) and several 

more caspases (Doumanis et al. 2001; Harvey et al. 2001), have only recently been recognized, 

and there are undoubtedly more apoptosis regulators to be identified in Drosophila. For instance, 

the initiator caspase Dredd binds a protein very similar to human F A D D (Hu and Yang 2000) 

and thus resembles in function human Caspase-8, but the putative death receptors which may 

initiate this pathway have yet to be uncovered. In general, few upstream regulators of cell death 

have been identified in Drosophila, and thus research into potential upstream regulators of 

caspases, transcriptional regulators of Reaper, Hid and Grim, and other as yet unidentified 

control mechanisms has the potential to contribute significantly to the understanding of cell 

death in Drosophila (Hay et al. 2004). 

Although 11 putative homologs of autophagy genes have been identified in Drosophila 

(Baehrecke 2003), most have not been studied in detail. Drosophila Atg4 (Apg4/Aut2) can 

complement its yeast counterpart, but mutants have no phenotype in Drosophila; genetic studies 

have demonstrated that it is a modifier of Notch signaling but no studies on its role in autophagy 

have yet been done (Thumm and Kadowaki 2001). Atg3 (Apg3/Autl), on the other hand, is 

required for autophagy in Drosophila fat body cells and mutants die during metamorphosis, 

demonstrating this gene is part of the Drosophila autophagy pathway and that this pathway is 
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required for normal development (Juhasz et al. 2003). Several other putative autophagy genes 

have recently been shown by loss of function to be necessary for autophagy in Drosophila fat 

bodies (Scott et al. 2004). As in the human system, the exact role of autophagy in programmed 

cell death is unclear but intriguing. The Drosophila salivary gland has been a focus of research in 

this area. 

1.4.3 Programmed cell death in the Drosophila salivary gland 

The Drosophila salivary gland is an excellent model in which to study gene regulation 

during PCD, because nearly every cell in the gland undergoes PCD within a well-defined, short 

time period (Figure 1.3B). This provides a large number of cells which are all in the same known 

stage of PCD for analysis. Developmental PCD in the salivary gland is triggered by a pulse of 

the steroid hormone ecdysone at the prepupal-pupal stage transition. Upon ecdysone binding to 

the ecdysone receptor, this complex along with PFTZ-F1 initiates a transcriptional cascade 

(Figure 1.4) by activating the early genes BR-C, E74A and E93, which in turn regulate 

downstream genes including the IAP inhibitors Hid and Reaper (Jiang et al. 1997; Jiang et al. 

2000; Lee et al. 2002a; Martin and Baehrecke 2004). This results in activation of caspases such 

as Drone and death of the salivary gland. 

Intriguingly, although genes involved in the apoptotic pathway are required for salivary 

gland death, and the death has hallmarks of apoptosis such as D N A fragmentation (Jiang et al. 

1997; Martin and Baehrecke 2004), the primary morphology of salivary gland death is 

autophagic (Lee and Baehrecke 2001). Large autophagic vacuoles are formed, and changes in the 

cytoskeleton and increased acid phosphatase activity indicate vesicular movement and protease 

degradation (Jochova et al. 1997). Inhibition of caspases by baculovirus p35 does prevent D N A 

fragmentation and death of the salivary glands, but they progress to a late stage of autophagic 
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activity. Mutants in the early genes BR-C and E74A similarly progress to late stages but salivary 

glands are not destroyed, whereas PFTZ-F1 and E93 mutants show early defects in 

vacuolarization (Lee and Baehrecke 2001). Our work (Gorski et al. 2003) as discussed in 

Chapter 3, along with a similar large-scale study published concurrently (Lee et al. 2003), has 

demonstrated that multiple autophagy genes are expressed during autophagy in the salivary 

gland, suggesting that the canonical autophagy pathway is involved in salivary gland death. 

Thus, programmed cell death in the salivary gland appears to be autophagic but with hallmarks 

of apoptosis, possibly with some level of overlap between pathways in the genes involved, and is 

a model for understanding the relationship between these very different types of cell death. 
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Figure 1.4 Ecdysone-triggered transcriptional cascade controlling salivary gland PCD. 
Binding of ecdysone to the ecdysone receptor, in the presence of the competency factor pFTZ-Fl, initiates 
transcription of early genes, which in turn act as transcription factors to express late genes. Repression of 
Diap2 allows caspases including Drone and Drice to cleave downstream substrates. 

1.5 Gene expression analysis 

1.5.1 Gene expression and mRNA levels 

Messenger R N A is the molecular intermediate between D N A and protein; and the 

quantity of mRNA for a gene present in a cell is often used as a surrogate measure of the activity 

of the functional gene product, generally a protein. mRNA levels are determined by several 
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levels of regulation, including transcription, splicing, and mRNA stability (Akker et al. 2001; 

Day and Tuite 1998). Although correlations between mRNA and protein levels vary, there is 

generally high consistency for abundantly expressed genes (Chen et al. 2002a; Gygi et al. 1999; 

Kern et al. 2003). Additionally, genes whose protein products are involved in the same protein 

complex are expressed similarly (Greenbaum et al. 2002), and it is generally thought that 

changes in mRNA levels, because they are specifically regulated, are indicative of changes in 

cellular function. Cellular activities are often measured at the mRNA level because, unlike 

protein abundance, mRNA abundance is relatively easy to assay. Both low throughput methods 

such as Northern blots and high-throughput methods such as microarrays rely on the natural 

R N A base-pairing to probe for the presence of particular mRNA molecules; other methods such 

as ESTs and SAGE rely on reverse transcription and sequencing of mRNAs. Several such high-

throughput methods for gene expression analysis, that allow simultaneous assay of large 

numbers of mRNA molecules and thus generate large datasets requiring computational 

algorithms for analysis, are described below in more detail. 

Analysis of mRNA expression measurements can identify genes that change in 

expression between conditions and thus have a potential role in the system under study. The 

utility and potential power of these studies is indicated by the size of publicly available gene 

expression repositories such as the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/ 

geo/), containing tens of thousands of experiments representing hundreds of millions of 

measurements (Barrett et al. 2005). In the study of cancer, it is common to compare tumor cells 

to nontumor cells, compare types of cancers, or compare expression across a timecourse such as 

cancer progression or drug effects in cell culture. A subset of genes, including the autophagy 

gene Beclin 1 (Liang et al. 1999), are regulated at the protein level and thus are not identifiable 
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through mRNA expression profiling. In cancers, however, this subset may be reduced as genes 

normally regulated only at the protein level may be perturbed due to mutations causing deletions, 

over-, or under-expression. Large-scale analysis of gene expression is particularly powerful for 

indicating cellular pathways that are perturbed in the process under study, and for identifying 

new genes involved in the process without the necessity of prior functional knowledge. 

1.5.2 Microarrays 

Microarray methods, using either cDNA or oligonucleotide-based chips, make use of 

hybridization rather than sequencing to measure mRNA expression levels. cDNAs or 

oligonucleotide sequences are printed or constructed in known locations on a glass slide or other 

substrate. mRNA is reverse transcribed to cDNA and labeled, and then allowed to hybridize with 

the D N A on the chip. After washing, the measured intensity of the fluorescence is related to the 

expression level of the mRNA in the sample. Two-color microarrays, as described originally 

(Schena et al. 1995), use long PCR products or complete cDNAs to measure relative 

hybridization levels of two samples. Oligonucleotide microarrays, such as those produced by 

Affymetrix (Lipshutz et al. 1999), use shorter sequences of 25-70 nucleotides designed to 

precisely and specifically match known genes and thus permit more direct rather than relative 

quantitiation. These methods are discussed in more detail in (Butte 2002; Lipshutz et al. 1999). 

Microarrays have significant advantages over other large-scale expression measurement 

methods as they are relatively inexpensive, widely available, and produce results quickly, but 

they also have disadvantages that can affect the accuracy of the resulting measurements. Probe 

design is a major determining factor in the efficacy of microarray analysis. Prior knowledge of 

the genes to be profiled is necessary to place the probes on the array, and thus microarrays, 

unless specifically designed to do so (Shoemaker et al. 2001), do not have the ability to detect 
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novel genes. Additionally, genes which are very similar in sequence may hybridize to each 

others' probes (cross-hybridization) and thus interfere with correct expression measurement 

(Evertsz et al. 2001; Zhang et al. 2005); this is a more significant problem with longer probes 

such as those used on cDNA arrays. Analysis of microarray data to determine true expression 

levels is also complicated by issues such as differences in cDNA labeling efficiencies and probe 

affinities, and requires sophisticated computational tools for steps including image processing, 

background subtraction, and normalization (discussed in Quackenbush 2001). 

Many cellular systems in a wide range of organisms have been subjected to microarray 

analysis, and microarrays have been used extensively in the study of cancer. Gene expression 

during Drosophila development from embryo to adult, and in specific tissues including the 

salivary gland and midgut, has been profiled with microarray time courses (Arbeitman et al. 

2002; L i and White 2003). The applications of microarray analysis to cancer include using gene 

expression profiles to define subtypes of breast cancer (Sorlie et al. 2003), and differentiate 

patients with poor prognoses (van't Veer et al. 2002). Meta-analysis of multiple microarray 

experiments can identify sets of genes commonly deregulated in tumors (Rhodes et al. 2004). 

Because they are relatively economical compared to other large-scale gene expression methods, 

it is thought that microarrays may become practical for use in diagnosis. A l l large-scale gene 

expression methods have the potential to identify genes important in cancer progression that 

could potentially be markers or targets for treatment. 

1.5.3 Expressed Sequence Tags 

Expressed sequence tags, or ESTs, are single-pass sequences representing the 3' or 5' 

ends of genes in a cDNA library that is constructed by reverse transcription of mRNAs extracted 

from a cell population. Each sequence read corresponds to one gene, and thus ESTs are usually 
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300-500 nucleotides long. As a result, ESTs are good for gene identification and genome 

annotation as they can be compared to other genes and to genome sequence, but are expensive 

and not best suited for quantitative large-scale expression profiling. 

Nearly 30 million ESTs have been sequenced and stored in the dbEST database 

(http://www.ncbi.nlm.nih.gov/dbEST/, Boguski et al. 1993), of which the largest proportion are 

human. Use of ESTs for quantitative profiling is limited by the common practice of normalizing 

cDNA libraries to avoid repeatedly sequencing the same abundant transcripts, and by some 

skewing of expression levels (Haverty et al. 2004). However, EST sequences are very valuable 

for identifying alternative splice variants, and combined with expression levels can identify 

tumor-associated variants (Hui et al. 2004). Additionally, ESTs are widely used in gene 

annotation (Curwen et al. 2004). Over 200,000 Drosophila ESTs have been sequenced, and used 

both for identification of full-length clones for the majority of Drosophila genes (Stapleton et al. 

2002) and for gene prediction (Misra et al. 2002). 

1.5.4 Serial Analysis of Gene Expression 

Serial analysis of gene expression (SAGE) is a sequence-based rather than a 

hybridization-based approach to expression profiling developed in 1995 (Velculescu et al. 1995) 

and now widely used. It is both more efficient and more quantitative than EST-based profiling. 

As this technique and the associated analysis are central to this thesis, the experimental method 

and computational analysis of SAGE data are described here in more detail. 

1.5.4.1 SAGE experimental method 

Serial analysis of gene expression, or SAGE, involves extraction of short sequences called 

SAGE tags from polyadenylated RNA by conversion to cDNA followed by a series of restriction 

25 

http://www.ncbi.nlm.nih.gov/dbEST/


digestions. Tags are then PCR amplified, concatenated, and sequenced (Figure 1.5, Velculescu 

et al. 1995). The SAGE method is designed such that the frequency of SAGE tags in the final 

sequences should be directly proportional to the abundance of their parent mRNA molecules. 

The position in the transcript from which the tag is extracted is determined by the 4-cutter 

anchoring enzyme used, commonly Nlalll which recognizes " C A T G " , but also occasionally 

Sau3A which recognizes "GATC" . As the 3' end of the cDNA is immobilized and all non-

immobilized fragments are removed after cleavage with the anchoring enzyme, only the portion 

of the transcript 3' to the anchoring enzyme site is retained. After the linker sequence containing 

the tagging enzyme recognition site and PCR primers is ligated, tagging enzyme cleavage results 

in a tag representing the sequence adjacent to the 3'-most anchoring enzyme site. BsmFl is the 

most common tagging enzyme used, but others such as Mmel are also employed, and this defines 

the length of the extracted SAGE tag (Table 1.2). 

There are several sources of bias in the SAGE method that can skew the resulting tag 

frequencies and lead to misinterpretation of gene expression levels. The efficiency of the blunt-

end ligation used in the standard SAGE procedure varies dependent on the terminal nucleotides 

of the sequences to be ligated (Yamamoto et al. 2001). In LongSAGE, 2 bp overhangs are 

retained for ligation. Both of these approaches can result in nonrandom pairing of tags for 

amplification and therefore influence overall tag frequency. A n independent bias in GC content 

has also been observed whereby room-temperature storage of ditags results in denaturation and 

loss of AT-rich tags (Margulies et al. 2001). Finally, PCR amplification has an inherent potential 

for bias, as not all sequences are amplified with equal efficiency (Warnecke et al. 1997). AT-rich 

ditags may produce as much as 7-fold more amplicon than GC-rich tags (Spinella et al. 1999). 

The potential for PCR bias was recognized as a concern in the original description of SAGE 
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(Velculescu et al. 1995), and it is partly to account for this problem that ditags are introduced, 

rather than simply amplifying and ligating tags individually. Because ditags are formed before 

amplification, and there are generally an extremely large number of different tag species, it is 

expected that only rarely will two tags be coupled to produce the same ditag more than once by 

chance. Therefore, if two identical ditags ("duplicate ditags") are observed in the final. SAGE 

sequences, such ditags are proposed to have arisen from biased PCR amplification (Velculescu et 

al. 1995). Duplicate ditags are observed in essentially every SAGE library, commonly at 

frequencies of 5-10% but as high as 50% in less complex tissues (Gorski et al. 2003). 

Several experimental issues can produce tags other than those expected. Only SAGE tags 

derived from the 3'-most anchoring enzyme (e.g. Mal l l ) site are canonical or expected tags in 

SAGE libraries. During cDNA synthesis, extended strings of A 's can bind the oligo-dT primer, 

resulting in cDNA production starting at sites upstream of the poly-A tail, and thus can produce 

SAGE tags from farther upstream in the transcript. Similarly, tags derived from 2, 3 or even 4 

anchoring enzyme sites upstream from the 3'-most are observed due to incomplete digestion by 

the tagging enzyme. Additionally, some proportion of SAGE tag sequences produced are 

incorrect. Sequence error rates in SAGE libraries have been estimated at 0.7%-1% per base, or 

6.8%-9.6% per 10 bp tag (Colinge and Feger 2001a; Velculescu et al. 1997). Less frequently, 

similar errors in SAGE tags can result from misincorporation of bases during PCR. Formation of 

linker dimers during tag cleavage and ligation can produce artifactual SAGE tags whose 

sequence is derived from the linker sequence itself and not the transcript. Linker contamination 

in SAGE libraries usually ranges from less than 1% to 5% of sequenced tags (Cheng and Porter 

2002; Velculescu et al. 1999). Incorrect "quasi-ditags" can also arise from genomic 

contamination or random nucleotide combinations, and are most likely to appear in clones with 
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only one or two ditags (Anisimov and Sharov 2004). A l l of these issues of sequence bias, 

sequence errors, and non-canonical tags must be dealt with where possible in the computational 

analysis of SAGE libraries. 
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Figure 1.5 Diagram of the SAGE procedure. 
Steps marked in italics are subject to errors and biases. For more detailed procedure, see (Velculescu et al. 
1995) or www.sagenet.org. From Pleasance and Jones (2005). 
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Table 1.2 Variations in the SAGE procedure affecting SAGE tag length. 

Procedure Anchoring 
enzyme 

Tagging 
enzyme 

Tag 
length 

Reference 

SAGE (original) Malll Fok\ 13 bp (Velculescu et al. 1995) 
SAGE (now in practice) Nla\\\ BsmF\ 14 bp (Velculescu et al. 1997) 
SADE Sau3f\ BsmF\ 14 bp (Virion et al. 1999) 
Modified SAGE Malll Rsa\ 18 bp (Ryo et al. 2000) 
LongSAGE Malll Mme\ 21 bp (Sahaetal. 2002) 
SuperSAGE Malll EcoP15\ 26 bp (Matsumura et al. 2003) 

1.5.4.2 SAGE tag processing and statistics 

Sequence reads from SAGE libraries consist of a series of ditag sequences separated by 

anchoring enzyme sites, and it is commonly assumed that all tags are the same length. However, 

variation in cleavage by the BsmYl tagging enzyme produces tags ranging from 13 to 17 bp 

including the anchoring enzyme site (Yamamoto et al. 2001). Therefore, there is no way to 

determine i f a particular ditag of 28 bp corresponds to ligation of two 14 bp tags, or a 13 bp tag 

and a 15 bp tag. Approximately 88% of ditags are 30 or 31 bp long, corresponding to tags of 15-

16 bp (Colinge and Feger 2001b), so the likelihood of one base of a longer tag being erroneously 

assigned to a 13 bp tag is small and therefore 14 bp tags are commonly extracted. This variation 

in tag length, however, provides an opportunity to extend an extracted SAGE tag to the 15 th base 

if a longer tag is needed to distinguish between two possible gene assignments. This extension 

can be done by determining the most common 15 t h base for a particular tag using statistical 

methods to determine confidence (Colinge and Feger 2001b), but still increases the likelihood of 

misassigning a base to the wrong tag and so should be used with caution. 

Many of the issues discussed in Section 1.5.4.1 can be mitigated by appropriate 

computational processing to remove incorrect SAGE tags. The most common way to deal with 

PCR bias is to remove all but one copy of repeated ditags (Lash et al. 2000; Velculescu et al. 
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1995). However, i f genes of extremely high abundance are present, for instance those 

representing >1% of total tags, they may pair in a significant fraction of ditags to produce non-

artifactual duplicate ditags in the final sequence. In such cases, it has been suggested that, based 

on observed tag frequencies, a certain calculable proportion of duplicate ditags should not be 

removed from analysis as they may represent true transcript expression (Vilain et al. 2003). Non-

canonical tags produced due to mispriming or incomplete digestion can be included in an 

analysis i f they can be correctly assigned to genes (see Section 1.5.4.3), in which case their 

frequency can be added to that of the canonical tag for the same gene. Tags resulting from 

incorporation of linker sequence can be easily identified computationally and simply removed. 

Sequence errors can be reduced by selecting tags only of high sequence quality (Gorski et al. 

2003; Pleasance et al. 2003). However, there is no way to detect PCR errors through Phred 

scores. For relatively small libraries, the chance of seeing the same sequence or PCR error twice 

is very low and thus the approach of removing all tags seen only once ("singletons") will 

alleviate almost all such errors (Lash et al. 2000). For tags with expression high enough to 

produce multiple redundant errors, all possible permutations of a tag must be determined, and 

tags corresponding to these permutations identified as potentially affected by sequence error. 

These tags can either be excluded from the library i f their expression is not significantly above 

that expected due to error (Velculescu et al. 1999), or adjusted in frequency by estimating the 

original tag count without sequencing error (Akmaev and Wang 2004; Beissbarth et al. 2004; 

Colinge and Feger 2001a). 

As SAGE tag counts are absolute, SAGE libraries from different tissues or conditions can 

be directly compared once all sequence processing is complete and tag frequencies are 

determined. A number of statistical tests for SAGE library comparison have been developed. 
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Tests generally involve the comparison of two libraries, where the frequency of a tag in one 

library is compared to the frequency of that tag in another and the probability (p-value) that the 

observed difference in frequencies would have occurred by chance due to sampling error is 

determined. Some statistical tests have been developed particularly for SAGE analysis (Audic 

and Claverie 1997), while others are more generic tests applied to SAGE data (Man et al. 2000). 

A comparison of the number of tags found to be differentially expressed in various situations 

with each of these tests revealed that most of them produce equivalent results (Ruijter et al. 

2002). Several web-based tools have been developed to apply statistical tests to experimental 

SAGE libraries (Lai et al. 1999; Pylouster et al. 2005). 

1.5.4.3 SAGE tag-to-gene mapping 

An essential step in SAGE is the unambiguous correlation of the 14 bp SAGE tag with 

the transcript from which it is derived, a process termed "tag mapping". It generally involves 

automated searching for the tag sequence in sequence databases. This process is complicated by 

variation in gene structure and sequence including alternative splicing, alternative 

polyadenylation site usage, polyadenylation cleavage heterogeneity, and single nucleotide 

polymorphisms (SNPs). It is estimated that between 35% and 75% of human genes are 

alternatively spliced (Johnson et al. 2003; Xie et al. 2002; X u et al. 2002), producing different 

transcripts by use of different exons. Computational extraction of SAGE tags from alternatively 

spliced transcripts suggests 38% of human genes produce more than one tag due to alternative 

splicing (Unneberg et al. 2003), and 24% of Caenorhabditis elegans genes produce multiple 

SAGE tags (Jones et al. 2001). 30-50% of genes are likely to use multiple different 

polyadenylation signals, producing 3' ends that vary in length by up to several kb (Beaudoing et 

al. 2000; Iseli et al. 2002). As this variation is focused at the 3' end of the transcript, and 
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generally changes the length of the transcript by several hundred nucleotides, use of different 

polyadenylation signals can result in extraction of different SAGE tags. In addition, the exact site 

of polyadenylation cleavage varies from 10-25 nucleotides downstream of the polyadenylation 

signal. The approximately 3% of human SAGE tags affected by cleavage heterogeneity (Pauws 

et al. 2001) can be difficult to map to genes as part of their sequence is often derived from the 

poly-A tail itself, and thus a one-base-pair variation in cleavage (eg. G G T C G A A A A A vs. 

G G T C A A A A A A ) can result in a tag that no longer matches any known sequence. Finally, SNPs 

result in slight changes in a gene's nucleotide sequence, and thus can produce a SAGE tag that 

does not exactly match the expected sequence for that gene; as many as 8.6% of genes may 

produce such tags (Silva et al. 2004). It can also be difficult to distinguish true gene variations 

from errors in SAGE tags due to sequencing errors and incomplete digestion. 

Full-length cDNA sequences which exactly match the transcripts from which SAGE tags 

are experimentally derived would be ideal for making the most accurate assignment of SAGE 

tags to genes. A number of full-length cDNA sequencing projects are ongoing (Ota et al. 2004; 

Stapleton et al. 2002; Strausberg et al.' 1999), but complete transcript sequences of all gene 

variants are not currently available for any organism. Sequences that are not full-length will 

result in tags that cannot be assigned to genes. For instance, in 54% of Drosophila full-length 

cDNAs, SAGE tags are derived from either the 5' or 3' UTR and thus full-length coding 

sequences alone are not sufficient for tag mapping (Pleasance et al. 2003). Having an incomplete 

set of gene sequences can also be very misleading, as some tags will not be assignable, and 

others may be assigned to the wrong gene. A common issue in SAGE tag mapping is that, 

because of the limited length of a SAGE tag, two or more different genes may produce identical 

SAGE tags and thus a tag sequence may not have a unique gene assignment. If not all gene 
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sequences are known, a tag may appear to match one gene uniquely, when in reality it also 

matches another gene as well and thus its frequency may represent the expression of one or both 

genes. Choosing the sequences and methods used for SAGE tag mapping has a significant effect 

on the completeness and accuracy of the resulting gene expression profiles. 

For simpler organisms such as yeast, simply mapping to ORFs and 500 bp of downstream 

sequence can assign 88% of tags, and mapping the remaining tags to genomic sequence assigns 

in total 93% (Velculescu et al. 1997). For more complex and larger genomes, however, this 

method is not applicable. Instead, a number of different methods have been developed for 

assigning SAGE tags to genes, most of which use a combination of different sequence databases. 

The first comprehensive human SAGE tag mapping resource to be developed was 

SAGEmap, available from NCBI (Lai et al. 1999; Lash et al. 2000). SAGEmap extracts SAGE 

tags from GenBank mRNA and 3' EST sequences that are grouped into UniGene clusters. Tags 

extracted from the 3'-most M a l l l or Sau3A site are assigned reliability based on the type of 

sequence they are derived from, where mRNAs are more reliable than ESTs, and ESTs with 

polyadenylation signals and poly-A tails are more reliable than those without as they can be 

correctly assigned an orientation. There are a number of difficulties with using ESTs for tag 

mapping. Because ESTs are single-pass sequences, they have an error rate of approximately 1% 

and thus an overall tag error rate of-10% (Lash et al. 2000). In addition, clustering of ESTs into 

gene groups as is done in the UniGene database (Schuler 1997) is a difficult process due to 

sequence errors, sequence artifacts such as chimeras, incomplete gene sequences, and the 

existence of highly similar genes. ESTs belonging to different genes may be clustered together, 

or the same gene may be represented in different EST clusters. Thus, EST-based tag mapping 

can result in erroneous or highly nonunique SAGE tag assignments. To accommodate the 
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expected EST sequence errors, SAGEmap removes the 10% of least commonly observed tag-

gene pairs to create a "reliable" mapping. In this reliable mapping, 87% of tags can be assigned 

uniquely to one gene and 59% of genes have only one tag, compared to mappings using mRNAs 

only from which 96% of tags were unambiguous, and 80%) of genes had a single tag. 

The SAGE Genie tool refines the SAGEmap approach by incorporating full-length 

sequences from the Mammalian Gene Collection (MGC, Strausberg et al. 1999) and the 

Reference Sequence (RefSeq) database at NCBI (Maglott et al. 2000), and devising a datasource 

scoring method based on experimentally observed SAGE tags (Boon et al. 2002). Similar 

approaches have since been applied by others (Bala et al. 2005). For SAGE Genie, tag databases 

were created from M G C , RefSeq, mitochondrial, clustered mRNA, clustered EST, and 

unclustered EST sequences, divided based on presence or absence of polyadenylation signals and 

poly-A tails. Tags were extracted from the four 3'-most M a l l l sites, as well as sites upstream of 

poly-A tracts i f they were confirmed by EST or cDNA evidence to be potential sites of internal 

priming. A confident SAGE tag list of 194,126 different experimental tags was also produced, 

using 6.8 million tags from 171 SAGE libraries filtered to remove linker sequences, sequence 

errors, and singletons. Each of the tag databases was then scored based on the percentage of 

computationally extracted tags that were represented in the confident SAGE tag list, with the 

expected result that M G C sequences were the most reliable, followed by RefSeq, clustered 

sequences, and finally unclustered ESTs. For tag-to-gene mapping, the final "best" assignment is 

then made based on the database the tag was extracted from, the position relative to the 3' end, 

whether the site is internally primed, and the expression level of the gene based on the confident 

tag list where more highly expressed genes are considered more reliable. A limited manual 
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confirmation of 77 tag-to-gene assignments suggests the method produces fairly accurate tag 

mappings. 

As more eukaryotic genome sequences are completed (Adams et al. 2000; Arabidopsis 

Genome Initiative 2000; C. elegans Sequencing Consortium 1998; Lander et al. 2001; Waterston 

et al. 2002), it is possible to assign SAGE tags directly to genomic sequence. This eliminates the 

problems arising from incomplete representations of the transcriptome by sequenced cDNAs, 

difficulties with clustering sequences, and effects of sequence errors, as finished genome 

sequences have error rates typically below 1/10,000 bp (C. elegans Sequencing Consortium 

1998). However, SAGE tags derived from sites in the transcript that cross exon splice junctions 

will not exist directly in genomic sequence, and are very computationally difficult to search for. 

Tags with sequence derived partly from the poly-A tail will also not be found in genomic 

sequence, although these tags are difficult to map by any means due to slight variations in 

polyadenylation cleavage sites as discussed above. Finally, depending on SAGE tag length and 

the size of the genome, it is often not possible to uniquely map SAGE tags to genomic sequence. 

For instance, only 59% of Drosophila and C. elegans SAGE tags are unique in their genomes, 

even though these organisms only have genome sizes of 120 M B and 100 M B respectively 

(Pleasance et al. 2003). Statistically, it is expected that essentially every 14 bp SAGE tag will be 

found more than once in the human genome making tag mapping to genomic sequence infeasible 

(Saha et al. 2002). It is also important to include the mitochondrial genome in SAGE tag 

mappings, as mitochondrial genes produce a significant proportion of SAGE tags (Boon et al. 

2002; Jones et al. 2001). Thus, genomic sequence is best used as part of an iterative process of 

tag mapping using multiple data sources (Gorski et al. 2003; Robinson et al. 2004). 

36 



1.5.4.4 A chantages, disadvantages, and applications o/SA GE 

SAGE is highly reproducible in the expression patterns it produces, and has reasonable 

concordance with other measurements of gene expression. SAGE libraries produced from the 

same RNA sample show correlations of 0.96 (Dinel et al. 2005). Similarly, MicroSAGE libraries 

constructed from the same RNA, the same ditag ligation, or the same pool of sequences in 

sequencing vectors, have correlations of between 0.94 and 0.98, with all of the differences due 

only to variability in tag sampling. As this sampling variability has a larger effect on tags of 

lower frequency, tags with counts under 100 show correlations closer to 0.8 (Blackshaw et al. 

2003). Comparisons to RT-PCR and to oligonucleotide microarrays show correlations generally 

between 0.4 and 0.8 (Huminiecki et al. 2003; Ishii et al. 2000; Kim 2003). The biases and errors 

in SAGE discussed above can largely be accounted for by appropriate computational analysis, 

which contributes to the high reproducibility of SAGE. As SAGE does not depend on 

hybridization, issues such as cross-hybridization and saturation, which are more difficult to 

measure and resolve, do not influence observed expression measurements. 

The ability of SAGE to determine transcript abundance is dependent on the depth to 

which the library is sequenced, which may typically be as few as 20,000-30,000 tags or as many 

as over 100,000 tags from a single RNA sample. SAGE is much more sensitive than EST 

sequencing for identifying low abundance transcripts (Sun et al. 2004), and at moderate library 

sizes it has similar detection efficiency to Affymetrix oligonucleotide arrays (Evans et al. 2002). 

Deep sequencing makes detection of very low abundance transcripts possible, which is 

particularly important in understanding complex tissues and transcriptional regulation (Boheler 

and Stern 2003). However, SAGE library construction is substantially more expensive than 

microarray profiling, especially when many tags are sequenced to produce large libraries, and 
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thus the number of libraries constructed is often more limited. This is offset by the increased 

utility of SAGE libraries for multiple experiments and comparisons. SAGE tag counts are 

absolute rather than relative as many hybridization-based methods are, and are not dependent on 

array design or prior knowledge of sequences. Thus, SAGE tag frequencies from different tissues 

or conditions can be directly compared, even across experiments. Additionally, as more genome 

and gene sequence information becomes available, tag-to-gene mappings can be updated and 

thus available SAGE data will be able to be reanalyzed and used for years to come. 

Like ESTs and unlike most microarrays, SAGE does not require prior knowledge of the 

genes to be profiled, and thus it is an ideal method for novel gene identification. While the rate of 

novel sequence discovery by ESTs has decreased over time, a significant proportion of newly 

sequenced SAGE tags are unique and do not represent known genes (Boheler and Stern 2003). 

35% of SAGE tags from mouse embryonic stem cells cannot be mapped to any known gene 

(Anisimov et al. 2002a; Anisimov et al. 2002b), suggesting there could be 16,000-39,000 novel 

genes and transcripts yet to be identified (Boheler and Stern 2003). Additionally, SAGE has been 

used to identify antisense transcripts (Quere et al. 2004), and the procedure modified to produce 

5' SAGE tags for genome annotation (Wei et al. 2004). The ability of SAGE to profile 

expression of a gene is dependent on the presence of specific sequence motifs corresponding to 

endonuclease recognition sites, particularly of the commonly used anchoring enzyme J V M I I and 

the occasionally employed Sau3A (Virion et al. 1999) and Rsal (Ryo et al. 2000). Additionally, 

gene profiling is dependent on unique representation of genes by SAGE tags. These issues are 

examined and discussed in Chapter 2. 

Tens of millions of SAGE tags have been generated for hundreds of studies of normal 

and diseased tissues, cell lines, and model organisms. A limited number of studies have produced 
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Drosophila SAGE libraries, including experiments on the JNK signaling pathway (Jasper et al. 

2001) and sex-specific differences (Fujii and Amrein 2002), as well as our work on programmed 

cell death (Gorski et al. 2003). SAGE libraries produced from multiple Drosophila tissues have 

been used to identify many novel low-abundance transcripts in Drosophila, demonstrating the 

utility of SAGE for gene identification (Lee et al. 2005). As is the case with microarray 

technologies, the SAGE method is commonly applied to studies of cancer. Many of these studies 

are collected in the Cancer Genome Anatomy Project (http://cgap.nci.nih.gov/) catalog of SAGE 

tags from hundreds of libraries representing close to 30 tissues, which also provides tools for 

identification of genes differentially expressed between normal and cancer samples (Boon et al. 

2002) . 

1.6 Thesis objectives and chapter summaries 

Programmed cell death is a complex cellular response that encompasses multiple 

pathways including apoptosis and autophagy. This response is essential in development and 

cellular homeostasis, but when misregulated can result in diseases including cancer. The death of 

the Drosophila salivary gland during development is an excellent model for studying PCD due to 

the precisely timed and complete nature of the destruction of this tissue; additionally, this death 

has hallmarks of both autophagy and apoptosis, and the genes involved are regulated at the 

transcriptional level. The mechanisms of programmed cell death, and the role of autophagy in 

PCD, are not completely understood, and identification of genes and pathways involved in these 

processes would contribute to our understanding both of PCD and its role in cancer. Genome-

scale gene expression profiling and comparison of expression between species is a powerful 

approach that has the potential to identify such genes and pathways. Analysis of expression 
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datasets requires development of computational methods and approaches to examine the patterns 

of gene expression in cells undergoing cell death or tumorigenesis. 

The primary aim of this thesis was to identify, using gene expression data, genes and 

associated pathways involved in programmed cell death in two systems, the Drosophila salivary 

gland and human cancer. A l l of the analyses described here are computational, involving 

development of methods, algorithms and databases appropriate to the assembly of data from 

disparate sources, and analysis for the purpose of extracting biological meaning. The first part of 

this analysis involved the development of methods to analyze gene expression data, particularly 

serial analysis of gene expression data, for the purpose of gene discovery and monitoring 

differential expression and also to define the limitations of the technique. Using these methods, I 

analyzed SAGE and EST data from the Drosophila salivary gland to identify genes expressed 

and regulated prior to programmed cell death in this tissue. The PCD-associated genes found in 

this analysis were then used to identify similar genes in the human genome that are differentially 

expressed in cancer, which have the potential to be involved in PCD and its regulation in 

oncogenesis. As both of these analyses pointed toward an important role for autophagy and 

associated processes in cancer, I subsequently examined the expression of an autophagy marker 

in various cancers, which indicated that autophagy is likely to be altered in cancer in a tissue-

specific manner. A summary of these analyses as presented in Chapters 2 through 5 are given 

here. 

In Chapter 2 (as published in Pleasance and Jones 2005; Pleasance et al. 2003), I describe 

an approach to constructing full-length "conceptual transcripts" from genome, EST, and gene 

prediction data, which I implemented in the Drosophila and C. elegans genomes. I hypothesized 

that using these transcripts constructed from multiple data sources would allow for more 
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effective assignment of SAGE tags to genes. The method I developed was indeed superior to 

previous tag-to-gene mapping methods available for Drosophila, and also allowed the 

assessment of SAGE for its ability to correctly, completely, and unambiguously identify genes. I 

demonstrated the effects in the Drosophila, C. elegans, and human genomes of varying the 

restriction enzymes used in SAGE that affect SAGE tag length and position. This analysis 

provides SAGE tag-to-gene mappings for these organisms, defines the limitations of SAGE, and 

suggests optimal choices of enzymes for a SAGE experiment. 

In Chapter 3, I describe the analysis of an EST library and three SAGE libraries derived 

from developmental timepoints leading up to programmed cell death in the Drosophila salivary 

gland (Gorski et al. 2003). ESTs were clustered and assigned to genes, and novel ESTs 

identified. SAGE tags were assigned to genes using the method described in Chapter 2, and 

novel tags assigned to ESTs and genomic locations. Confirming the hypotheses that genes 

involved in PCD could be identified by gene expression analysis and that both apoptosis and 

autophagy genes are regulated in Drosophila PCD, genes which change in expression between 

SAGE libraries were found to include genes known to be part of the salivary gland PCD 

transcriptional hierarchy, genes belonging to other cellular pathways, and genes of no known 

function. These genes are potential regulators or effectors of programmed cell death in 

Drosophila. 

Chapter 4 describes my approach based on the hypothesis that similar genes are involved 

in programmed cell death in cancer and in Drosophila, and that these genes can be identified 

based on a cross-species gene expression filter. Human orthologs of genes differentially 

expressed in the Drosophila salivary gland were identified, and the expression of these genes 

examined in multiple human cancers based on a database of SAGE data. Analysis of Drosophila 
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and human datasets identified a subset of genes which are regulated in both systems. These 

candidates for involvement in PCD in cancer were examined for known roles in PCD or cancer, 

and overall functions determined. 

Chapter 5 (Pleasance et al, manuscript submitted) focuses on the analysis of the human 

LC3 autophagy gene in cancer based on multiple expression datasets, from both SAGE and 

microarray technologies. Consistent with the hypothesis that LC3 expression is altered in 

cancers, potentially reflecting the impact of autophagy on oncogenesis, differential expression of 

this gene was observed in multiple cancers compared to corresponding normal tissues. 

Differences in expression were also seen in cancer subtypes and stages of cancer progression. 

My observations suggest potential roles for the process of autophagy in cancer which are tissue-

specific. 

The bioinformatic methods used in these analyses can be applied to studies of other 

cellular processes, and the results suggest roles for multiple processes including autophagy in 

programmed cell death and cancer. This work contributes to our overall understanding of the 

functions of cell death in oncogenesis, and to the goal of a comprehensive view of the genetic 

changes that occur in cancer. 

In addition to the work described in this thesis, I have been involved in several other 

collaborative projects at the Genome Sciences Centre which have been described in publications 

or submitted manuscripts. I worked with Obi Griffith and others to identify human genes which 

are coexpressed across many conditions by comparing and combining SAGE and microarray 

expression datasets, as described in Griffith et al (2005). I was also involved in work done by 

Peter Huang, examining the expression of genes in operons in C. elegans based on large-scale 
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GFP and SAGE data (Huang, Pleasance, et al, manuscript submitted). Finally, I am currently 

working on both the collection of known regulatory elements in a public database (Montgomery 

et al, manuscript accepted in Bioinformatics) and the discovery of novel regulatory elements in 

Drosophila based on genome sequence data as part of a pipeline and database system known as 

cisRED (Robertson et al, manuscript accepted in Nucl Acids Res.). 
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Chapter 2: Assessment and analysis of SAGE for transcript identification 

A version of this chapter has been published. 

Pleasance, E.D., Marra, M.A. , and Jones, S.J.M. 2003. Assessment of SAGE in transcript 
identification. Genome Res 13: 1203-1215. 

Pleasance, E.D. and Jones, S.J.M. 2005. Evaluation of SAGE tags for transcriptome study. In: 
Wang SM, ed., SAGE Technologies: Current Technologies and Applications. Horizon Scientific 
Press, Norwich, U K . 
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2.1 Introduction 

An essential step in Serial Analysis of Gene Expression (SAGE) is tag-to-gene mapping, 

or tag mapping, which refers to the unambiguous determination of the gene represented by a 

SAGE tag. At the time of the work described in this chapter, the importance of full-length, 

complete transcript sets for SAGE tag mapping had not been discussed in the literature. The 

primary tag mapping resource at the time of our analysis was SAGEmap (Lash et al. 2000), 

which makes use of EST and mRNA sequences, with the corresponding drawbacks as described 

in Section 1.5.4.3. Additionally, this resource was only available for mammalian and 

Arabidopsis thaliana sequences, while the SAGE technique had been increasingly applied to 

other organisms (Jasper et al. 2001; Jones et al. 2001; Steen et al. 2002). In particular, there was 

no publicly available tag mapping resource for Drosophila, and such a resource was necessary 

for our analysis of Drosophila SAGE libraries. 

Many of the difficulties encountered when tag mapping based solely on expressed 

sequences could be addressed by using genomic sequence and annotation. As genomic sequence 

is more accurate, with a low estimated error rate of <1/10,000 (Adams et al. 2000; C. elegans 

Sequencing Consortium 1998), the potential for results to be obfuscated due to sequence errors 

in the tag mappings is reduced. Also, annotated gene sets are potentially more complete than 

expressed sequence sets alone due to the use of additional information such as genefinder 

predictions and exons detected through conserved protein similarity, and the curation of this data 

to form the annotation (FlyBase Consortium 2002; Stein et al. 2001). Basing tag mappings 

entirely on predicted genes from genomic databases is problematic, however, as gene annotations 

rarely include untranslated regions (UTRs) of expressed transcripts. Since SAGE tags will 

correlate to the 3'-most anchoring enzyme site, typically that of the four-cutter restriction 
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enzyme Nlalll which occurs on average every 256 bp, many SAGE tags are expected to be 

derived from 3' UTR sequence. 

It is essential when using the SAGE technique to be aware of the transcripts that will not 

be identifiable using this method, due to shared sequence resulting in ambiguity or due to lack of 

an appropriate anchoring enzyme site, as the expression of such transcripts will not be accurately 

determined. Identification and quantification of these refractory transcripts would potentially 

permit the choice of appropriate modifications to the SAGE procedure, which could minimize 

the number of transcripts that will not be profiled using SAGE and increase the utility of this 

expression profiling method. Thus, in addition to developing a tag mapping method and 

resource, I assessed for the first time the ability of SAGE to uniquely and completely identify 

transcripts. 

To overcome some of the limitations in SAGE tag mapping and to assess the utility and 

restrictions of the SAGE approach in transcript identification, I devised a method for 

constructing a complete predicted transcript set ("conceptual transcripts") and deriving SAGE 

tags from it. These conceptual transcripts are based on a combination of genomic sequence, 

annotated predicted genes, and expressed sequences, and thus are sufficiently complete to allow 

this assessment. I applied this method to the model organisms Drosophila and C. elegans, as 

more mature genomic annotation resources were available for these organisms than for the 

human genome. Also, although the SAGE technique has been utilized in these organisms, there 

were at the time of our work no publicly available tag mappings. In addition to providing tag 

mappings for these organisms, I was able to determine the number of genes lacking a suitable 

anchoring enzyme site, and establish the extent to which SAGE tags will be correlated 

ambiguously to genes. I also determined the most efficient anchoring enzyme choice for each 
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particular organism. I applied a similar analysis, though more limited as it did not include 

construction of conceptual transcripts, to the human transcriptome. The method described here 

permits assessment of the efficacy of the SAGE approach in transcript identification by 

distinguishing genes refractory to this profiling method, and facilitates SAGE analysis in both 

Drosophila and C. elegans as well as in other organisms to which this method can potentially be 

applied. 

2.2 Methods 

2.2.1 ACEDB 

An A C E D B (Durbin and Thierry-Mieg 1991) database is available for C. elegans (Stein 

et al. 2001) and contains a large variety of data including genomic, gene, expression, and 

sequence similarity information. This database is vital in the construction of the conceptual 

transcript set for tag mapping, as it can be automatically queried using existing software. It was 

accessed through a remote connection to WormBase (http://www.woi-mbase.org) version WS78 

(May 2002). This database includes EST alignments determined by B L A T (Kent 2002). 

The Drosophila databases GadFly (http://www.bdgp.orR/annot/index.html) and FlyBase 

(2002), contain similar information, but do not allow the direct automated manipulation of data 

in the manner necessary for the integration of sequence information into conceptual transcripts. 

Accordingly, I constructed an A C E D B database for Drosophila, based on the GadFly resources, 

which contains data on the genomic sequence as well as predicted and known genes, and EST 

and cDNA alignments. This database is directly queryable in an automated manner. Genomic 

sequence and predicted gene coding sequence positions were obtained from the GadFly Release 

2 mySQL database gadb2c on Apr 8 2002, accessible from headcase.lbl.gov. EST and cDNA 

sequences were obtained from the BDGP at ftp.fruitfly.org/pub/genomic/fasta/ on April 11 2002. 
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ESTs and cDNAs were aligned to genomic segments identified as having similarity by B L A S T N 

(Altschul et al. 1990) (v. 2.0.14) (E value < le-100, word size 32) using the dynamic, intron-

aware EST_GENOME (Mott 1997) alignment program (min. score 100). EST_GENOME output 

was converted into A C E D B format using custom Perl scripts. In addition, the gene represented 

by each of the ESTs was determined by B L A S T N similarity (E value < le-3, word size 16) 

processed by MSPcrunch (Sonnhammer and Durbin 1994) (v. 2.3), requiring that an EST match 

no more than one gene locus. A l l other input/output processing was performed using custom Perl 

scripts. This Drosophila A C E D B database is available for download from http://sage.bcgsc.ca/ 

tagmapping/. Besides its utility in constructing the conceptual transcript set, the Drosophila 

A C E D B database is useful for viewing gene structure, expression and similarity information. In 

these respects, it is similar to FlyBase's (2002) GeneSeen (http://www.flvbase.org/annot/ 

geneseen-launch-static.html). However, it has the added advantages that it can incorporate user-

specific data and be queried directly or through the AcePerl (Stein and Thierry-Mieg 1998) 

interface to extract sequences and associated information, allowing further whole-genome 

analysis. 

2.2.2 Transcript construction 

Transcripts were constructed using custom Perl scripts for each organism which interact 

with the A C E D B database described above through the AcePerl modules (Stein and Thierry-

Mieg 1998). UTRs were added to predicted genes using the genomic sequence as determined by 

alignments with ESTs and cDNAs for genes where such data is available. If expressed sequences 

were unavailable, UTRs were estimated to be a length that would encompass 95% of known 

UTR sequences based on empirical UTR size distributions and polyadenylation signals. 
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In C. elegans, UTRs were added based on EST evidence i f the EST was assigned to the 

gene (in the MatchingcDNA field of the gene in ACEDB) and was in the correct orientation 

(e.g. only 3' ESTs used to construct 3' UTRs) and started within 1 kb of the end of the gene (for 

reasons of efficiency; UTRs in C. elegans are not expected to extend this far). UTRs were 

extended to encompass the furthest EST from the gene. 

In Drosophila, UTRs were added based on EST/cDNA evidence i f the EST/cDNA both 

overlapped with the gene's coding region (by EST_GENOME) and was more similar to that 

gene than any other (by BLAST). As Drosophila UTRs are occasionally spliced, breaks in the 

EST alignments corresponding to introns were excluded from the final transcript sequence. Only 

ESTs or cDNAs starting within 20 kb of genomic sequence from the end of the gene were 

considered. As in C. elegans, ESTs were required to be in the correct orientation. 

For genes that did not have expressed sequence corresponding to their UTRs, 5' UTRs 

were extended to 836 bp in Drosophila and 388 bp in C. elegans, and 3' UTRs were extended to 

1039 and 574 bp respectively. This corresponds to a length > 95% of the known UTRs as 

determined by EST/cDNA alignments. If the most common polyadenylation signal A A T A A A 

(Graber et al. 1999; Riddle et al. 1997) was found in the estimated 3' UTR, the UTR was 

truncated 35 bp downstream of the end of this signal. Also, i f there was a gene nearby, the 

estimated UTRs were truncated so as not to overlap ESTs associated with another gene nor 

extend over one-half the distance to the next nearest coding region, so as to prevent adjacent 

UTRs from overlapping. 

A 30 bp poly-A sequence was added to the 3' end of all constructed transcripts to 

represent the poly-A tail present on mRNAs, as occasionally SAGE tags contain part of this 

poly-A sequence. 30 bp was chosen because it extends further than the longest SAGE tags (25 
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bp) used in this analysis, thus permitting SAGE tags to extend their full length into the poly-A 

sequence i f necessary. SAGE tags derived from poly-A sequence will complicate SAGE analysis 

in any case. A l l such tags will end in a varying number of As, and thus will be more likely to be 

ambiguous. Also, the variance in polyadenylation cleavage sites will result in multiple tags 

derived from the same gene (Pauws et al. 2001). 

Conceptual transcript sequences and corresponding tag mappings, to both gene loci and 

individual alternative transcripts, are available at http://sage.bcgsc.ca/tagmapping/. Perl code is 

made available upon request. 

2.2.3 Evaluating tag-to-gene mapping accuracy 

To evaluate the accuracy of tag-to-gene mappings derived from the conceptual 

transcripts, I used a set of "test" SAGE tags extracted from the 3'-most position of 6614 full-

length Drosophila cDNA sequences (Stapleton et al. 2002) obtained from BDGP 

(http://www.bdgp.org/EST/index.shtml; entire available set as of April 11 2002). The accuracy 

of mapping was calculated as the percentage of tags that could be correctly and unambiguously 

assigned to genes, as this is the goal of tag-to-gene mapping. First, I attempted to assign each of 

the cDNA and 252,362 EST sequences (from BDGP sequencing project, http://www.bdgp.org/ 

EST/index.shtml) to one of the 13,489 Drosophila predicted genes by B L A S T N (E value< e-50); 

conceptual transcripts, as they are constructed based on predicted gene sequences, are already 

associated with genes. In order to correctly compare the accuracy of EST mapping approaches, 

only cDNAs and genes to which EST sequences could be mapped were considered. Also 

removed were ESTs that did not match predicted genes from genomic annotation. I thus used for 

the analysis 5606 SAGE tags extracted from cDNA sequences, 13,489 conceptual transcripts, 

and 204,380 EST sequences, each assigned to a gene. 
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Each of the sequence sets described in Table 2.1 were then used to map the "test" SAGE 

tags to genes. I constructed sets of conceptual transcripts with and without using EST or cDNA 

sequences to determine UTRs; i f no ESTs or cDNAs were used, the UTRs were estimated as 

described above. In mapping to EST sequences, tags were assigned to ESTs which were grouped 

based on gene assignments so that clustering ESTs based on sequence similarity was 

unnecessary. Ambiguous mappings would only occur in cases where two ESTs from different 

genes contained the same SAGE tag. The number of tags assigned to a single gene using these 

various sequence sets and the number of those assignments that were correct were determined. 

2.2.4 Choice of tagging and anchoring enzymes, tag length 

A l l tags of a given size for a given enzyme site were extracted from all conceptual 

transcripts for all loci in the genomes using Perl scripts. A locus was considered not to contain an 

enzyme site i f none of its alternative transcripts contained that site, and a locus was considered 

ambiguous if any of its transcripts shared a tag at the 3'-most enzyme site with a transcript from 

a different locus. If, for instance, a particular tag was found in the 3'-most site in one transcript 

and a site closer to the 5' end in another transcript, that was not considered to be an ambiguity 

and that tag would be assigned to the gene in which it was found at the 3'-most site. Probability 

of uniqueness was calculated from the formula used in (Saha et al. 2002), assuming 13,489 tags 

of 14 bp each. 

2.2.5 Mapping experimentally derived tags 

4007 different experimentally derived Drosophila tags (Gorski et al. 2003) and 9159 

different C. elegans tags (Halaschek-Wiener et al. 2005), of at least 99% quality (1% chance of 

sequence error) and occurring more than once, were derived using software under development 
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in our laboratory (R. Varhol and S. Zuyderduyn, unpublished). A l l tags of 14 bp were extracted 

using Perl scripts from M a l l l enzyme sites at every position in the Drosophila and C. elegans 

genomes derived from A C E D B . Experimental tags were compared to genomic tags, and the 

number of occurrences of each tag determined. The same libraries of experimental tags, with 

varying frequency cutoffs, were mapped to conceptual transcripts and the percentage mapped 

unambiguously and ambiguously determined. 

2.2.6 Human tag mapping with RefSeq 

Human nucleotide sequences from the RefSeq database were downloaded Oct 10 2002 

from the NCBI FTP server (ftp://ftp.ncbi.nih.gov/refseq/H sapiens/1. A l l 15,274 mRNA 

sequences (those beginning with NM_J then available were used in analysis. Tags were extracted 

from the 3'-most enzyme site, with varying length and varying enzymes as described in Section 

2.2.4. To estimate the actual level of ambiguity based on the incomplete set of RefSeq 

sequences, random subsamples of the sequence set of varying sizes were chosen and ambiguity 

calculated for each subsample. This was done in triplicate and the average ambiguity for each 

subsample size determined. 

2.3 Results 

2.3.1 Tag mapping using genomic sequence 

Mapping SAGE tags directly to genomic sequence could potentially deal with the issues 

of sequence quality and incomplete transcript sets. However, the genome sizes of complex 

eukaryotes are large enough that tag sequences may be present more than once by chance. To 

determine the impact of this issue, I mapped experimental C. elegans and Drosophila SAGE tags 

to the corresponding genomes, which are -100 M B and -120 M B respectively (Adams et al. 
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2000; C. elegans Sequencing Consortium 1998). Only 59% of mapped SAGE tags occur 

unambiguously in the C. elegans genome, and 20% of C. elegans SAGE tags occur 3 or more 

times in the genome. 59% of Drosophila SAGE tags are also unambiguous, and 18% occur 3 or 

more times in the genome. Also, only approximately 60% of SAGE tags map to the Drosophila 

or C. elegans genomes at all, due in part to some SAGE tags crossing splice boundaries and thus 

not being present in the genome. These results suggest that it is necessary to use transcript 

sequences rather than genomic sequence for SAGE tag-to-gene mapping. 

2.3.2 Transcript construction and analysis 

In order to organize and access the data required to produce the conceptual transcript set, 

I first constructed a queryable A C E D B (Durbin and Thierry-Mieg 1991) database containing 

genomic, gene, and expressed sequence information for Drosophila (see Methods). A.similar 

database is already available for C. elegans (Stein et al. 2001). Using these databases, conceptual 

transcripts were constructed as described in Methods (Figure 2.1). In Drosophila, a total of 

8213/14335 (57%) conceptual transcripts have 3' UTRs constructed based directly on expressed 

sequence evidence, with an average size of 343 bp and a median of 224 bp. The remaining 

transcripts have predicted 3' ends based on empirical size distributions (Figure 2.2A and B) 

indicating that 95% of 3' UTRs are 1039 bp or less. In C. elegans, the 6608/20448 transcripts 

(32%) found to have 3' UTRs constructed based on direct sequence evidence were an average of 

195 bp and a median of 137 bp, while the remaining 3' UTRs were estimated based on empirical 

size distributions (Figure 2.2C and D) that show 95% of known UTRs to be 574 bp or less. 
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Figure 2.1 Conceptual transcript construction for SAGE tag mapping. 
Genomic sequence was used to form conceptual transcripts, taking advantage of its high sequence quality. 
Coding sequences were derived from current genomic annotation. (A) If expressed sequences that extend 
beyond the predicted coding sequence were available, the alignment position of these sequences was used to 
determine the extent of the UTR. (B) If no expressed sequences were available, Drosophila 5' and 3' UTRs 
were extended to 836 bp and 1039 bp respectively, and C. elegans UTRs were extended to 388 bp and 574 bp. 
These UTR size estimates encompass 95% of known UTRs determined in (A). If the polyadenylation signal 
"AATAAA" was found within the estimated 3' UTR, the UTR was truncated 35 bp downstream of the signal. 
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Figure 2.2 UTR size distributions in Drosophila and C. elegans. 
Lengths of conceptual transcript UTRs were determined based on expressed sequence alignments (Figure 
2.1). (A) Drosophila 5' UTR. (B) Drosophila 3' UTR. (C) C. elegans 5' UTR. (D) C. elegans 3' UTR. 

2.3.3 Tag-to-gene mapping 

Based on this conceptual transcript set, tag-to-gene mappings were derived by extracting 

all tags from the transcripts, that is, the 10 bp downstream of each MoIII (CATG) site for a total 

of 14 bp for each tag. It is important for this tag mapping method to consider all anchoring 

enzyme sites and not just the 3'-most, for two reasons. First, gene prediction programs often 

have difficulty correctly defining the ends of genes (Rogic et al. 2001), so that the apparent 3'-

most tag site may not be correct. Second, estimated UTRs added when no expressed sequence is 

available are a length that would encompass 95% of known UTRs, and are thus known to be 
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overestimates of real UTR length. In many cases, therefore, the true 3' end of the transcript and 

the associated 3'-most SAGE tag will be upstream of the estimated one. SAGE tags are then 

assigned to the transcript containing the correct tag sequence. In cases where a SAGE tag is 

found in more than one transcript, we take advantage of the fact that the SAGE procedure is 

expected to derive the SAGE tag from the 3'-proximal position (Figure 1.5), and resolve this 

ambiguity where possible by assigning the correct tag as the one closest to the 3' end of the 

transcript. If a tag is found in the same relative position in more than one transcript, that tag 

cannot be resolved and is considered to be ambiguous. In this tag to gene mapping, tags derived 

from alternative transcripts are consolidated and assigned to a single gene locus, to avoid 

labeling unique assignment to a single locus "ambiguous" when a tag matches two alternative 

transcripts. This also means that the same gene may be represented unambiguously by two or 

more different SAGE tags from different alternative transcripts. 

These tag mappings, as they are derived from accurate (< 1/10,000 error rate) (Adams et 

al. 2000; C. elegans Sequencing Consortium 1998) genomic sequence and incorporate expressed 

sequence information with the predicted transcriptome, are expected to be more complete than 

mappings from expressed sequences alone. To assess our tag mapping method, a test set of 5606 

tags were extracted from sequences of full-length cDNAs, which are assumed to be accurate 

representations of true expressed transcripts. The accuracy of each mapping method, including 

mapping to ESTs or to conceptual transcripts, was determined by its ability to correctly assign 

tags to genes from this validated test set (Table 2.1). As relatively few full-length cDNAs are 

available for C. elegans, this comparison was done for Drosophila only, although the results are 

expected to be similar for both organisms. I found that conceptual transcripts constructed using 

EST data in conjuction with gene predictions produced significantly more accurate tag mappings 
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(85% correct) compared to EST sequences alone (70% correct). There were also slightly more 

tags assigned ambiguously when mapping to EST sequences alone (6% of tags compared to 4%), 

most likely to due sequencing errors in the EST sequences that produce extra, erroneous tags, or 

due to chimeric ESTs. Simulating the situation in which a set of genes have no associated ESTs 

and thus only predicted protein coding genes from genomic annotation are available for tag 

mapping, we found that tag mappings derived from such sequences alone (48% correct) were 

significantly less accurate than tag mappings from conceptual transcripts constructed with 

estimated UTRs (81% correct). This is not unexpected, given that 56% of SAGE tags extracted 

from Drosophila cDNAs are derived from the UTR sequence, which is lacking in the predicted 

protein coding sequences. The high proportion of tags derived from UTR sequence emphasizes 

the importance of estimating UTRs when no expressed sequence evidence is available. Overall, 

between 81% and 85% of tag mappings derived from conceptual transcripts are correct when 

full-length cDNA data is not incorporated, a significant improvement over tag mapping with 

ESTs or genomic annotations alone. When full-length cDNA data is incorporated into the 

conceptual transcripts, as is normally the case where possible, 93% of test tags are mapped 

correctly (Table 2.1); the remaining incorrectly mapped tags are due to gene prediction errors. 
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Table 2.1 SAGE tag mapping accuracy using conceptual transcripts compared to other available sequences. 

Test tags assigned to genes by mapping to ... Tags mapped 
unambiguously 

Unambiguously mapped 
tags correctly assigned 

to genes 
Full-length cDNAs (5606) 99% 100% 
EST sequences (204,380) 94% 70% 
Predicted protein coding sequences from genomic 
annotation (13,489) 

97% 48% 

Conceptual transcripts constructed from predicted 
protein coding sequences from genomic annotation, 
UTRs estimated (13,489) 

96% 81% 

Conceptual transcripts constructed from predicted 
protein coding sequences from genomic annotation, 
UTRs derived from EST data or estimated if ESTs 
unavailable (13,489) 

96% 85% 

Conceptual transcripts constructed from predicted 
protein coding sequences from genomic annotation, 
UTRs derived from EST and cDNA data or estimated 
if ESTs and cDNAs unavailable (13,489) 

96% 93% 

2.3.4 Analysis of transcriptomes with SAGE 

As the conceptual transcript sets for Drosophila and C. elegans are based on essentially 

complete genomic sequence, representing all known and predicted genes, quantification of the 

genes that are not amenable to SAGE in these organisms is possible. For this analysis, 

alternative transcripts were considered to be a single gene, so as not to erroneously assign tags as 

ambiguous i f they are derived from multiple alternative transcripts belonging to the same locus, 

as described above. Tag mappings are also available (see Methods) that assign tags to individual 

alternative transcripts. 

As described above, genes that produce ambiguous tags, shared with other genes, will not 

be uniquely identifiable in a SAGE library. 6% of Drosophila genes and 12% of C. elegans 

genes fall in this category, in the common situation of 14 bp SAGE tags extracted using the 

Nlalll anchoring enzyme. As recent work has yielded a SAGE procedure that produces a 21 bp 
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tag (Saha et al. 2002), it is relevant to ask how SAGE tag length influences the ambiguity of the 

tag mappings for each organism. We observe (Figure 2.3A and B) that increasing SAGE tag 

length by 2-3 bp decreases ambiguity in tag assignments, after which increasing length has little 

effect. This information can be used to make an informed decision about the ideal tag length for 

a particular SAGE experiment. 

One drawback of the SAGE technique is that genes that lack the appropriate anchoring 

enzyme recognition sequence will not be represented in SAGE libraries. For instance, genes 

lacking a " C A T G " site will not be represented in SAGE libraries constructed with M a l l l . 

However, judicious choice of anchoring enzyme could improve the utility of the SAGE 

approach. Based on the conceptual transcript set, there are 261 genes (2% of the annotated 

transcriptome) lacking Nlalll sites in Drosophila and 563 (3%) in C. elegans. However, when 

tags are extracted with other four-cutter anchoring enzymes, differing numbers of genes contain 

no anchoring enzyme site or produce ambiguous SAGE tags (Figure 2.4A and B). Sau3A, which 

has occasionally been used in SAGE library construction (Virion et al. 1999), allows recovery of 

more genes unambiguously in Drosophila and C. elegans than Nlalll. Interestingly, however, at 

higher tag length in Drosophila, Nlalll has this property (Figure 2.3). It is important to consider, 

however, that MoIII is compatible with the BsmFl tagging enzyme in such a way that an extra 

base pair of tag length can be obtained, resulting in the potential for a 15 bp rather than 14 bp tag 

(see Section 1.5.4.2). The Acil (CCGC) enzyme, which has not been used in SAGE library 

construction, also has the same property and allows more genes to be resolved in Drosophila 

than M a l l l . This knowledge allows the preselection of an anchoring enzyme, which may be 

organism-specific, which produces the best representation of the expressed genes within an 

mRNA population. 
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Figure 2.3 SAGE tag ambiguity varies with tag length. 
Number of ambiguous genes and number of ambiguous tags derived from conceptual transcripts is shown 
with varying tag length (length includes 4 bp anchoring enzyme site) and anchoring enzyme. (A) Drosophila, 
total 13,489 gene loci (B) G elegans, total 19,432 gene loci. 

60 



Figure 2.4 Number of genes not resolvable by SAGE varies with anchoring enzyme. 
Number of ambiguous genes and genes with no anchoring enzyme site are shown for various restriction 
enzymes used as the anchoring enzyme. (A) Drosophila, total 13,489 gene loci (B) C. elegans, total 19,432 gene 
loci. 
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2.3.5 Mapping experimentally derived tags 

To further analyse the tag-to-gene mappings and compare predicted levels of ambiguity 

with experimental levels, I mapped C. elegans and Drosophila experimental SAGE tags using 

this method of tag-to-gene mapping (Figure 2.5). In this comparison, the number of ambiguous 

genes cannot be compared, as we do not know how many genes are represented by an ambiguous 

experimental SAGE tag. Instead, the number of SAGE tags that are ambiguous is compared. In 

both organisms, an even higher proportion of experimental SAGE tags map ambiguously to 

genes than expected. For C. elegans, 5.0% of 14 bp tags were predicted to be ambiguous (Figure 

2.3B), and 7.5% of experimental tags were ambiguous; for Drosophila, the predicted (Figure 

2.3A) and experimental ambiguities were 2.5% and 3.6% respectively. It is also notable that the 

proportion of tags that are mapped to genes increases with expression level, for both organisms. 
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Figure 2.5 Experimental SAGE tags mapped to conceptual transcripts. 
Subsets of experimental SAGE tags with varying minumum frequency were mapped to conceptual transcripts, and the 
percentage that mapped ambiguously and unambiguously determined. (A) Drosophila (B) C. elegans. 
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2.3.6 Assessment of human tag mapping with RefSeq 

A complete gene set is not available for the human transcriptome, and thus SAGE tag 

ambiguity cannot be directly determined as for Drosophila and C. elegans. However, ambiguity 

can be estimated from the incomplete set of full-length, high-quality sequences in the RefSeq 

database by examining the increase in ambiguity with the number of sequences in a 

transcriptome (Figure 2.6A). 5000 sequences produce -4.5% ambiguous tags, while the full set 

of 15,274 sequences produces -7.5% ambiguous tags. Extrapolation from this trend suggests that 

10% of 14 bp tags will be ambiguous in a set of 30,000 transcripts, 15% in 50,000 transcripts, 

22% in 75,000 transcripts, and 27% in 100,000 transcripts. The actual transcriptome size is not 

yet known. As expected, increasing tag size decreases SAGE tag ambiguity, by approximately 

50% for a 21 bp tag (Figure 2.6B), and less thereafter. Less than 1% of human RefSeq sequences 

lack an Nlalll site, compared to nearly 3% which lack a Sau3A site, and Sau3A also derives tags 

with higher overall ambiguity (Figure 2.6C). In fact, of all the restriction enzymes that are 

compatible in recognition sequence with the BsmFl tagging enzyme (see Section 2.3.4), M a l l l 

appears to allow the most human genes to be resolved by SAGE. 
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Figure 2.6 SAGE tag mapping with RefSeq. 
(A) Effect of transcriptome size on unique SAGE tag assignment. Varying size random subsets of RefSeq 
sequences were sampled and the percentage of genes producing ambiguous 14 bp tags determined. (B) 
Percentage of 15,274 RefSeq transcripts that produce ambiguous SAGE tags. (C) Percentage of RefSeq 
transcripts that produce ambiguous tags or have no anchoring enzyme site for various choices of anchoring 
enzyme. 
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2.4 Discussion 

This work has shown that utilizing genomic annotation provides a more accurate strategy 

for the assignment of SAGE tags to gene transcripts. I have also estimated the total resolving 

power of the SAGE approach, determining that 93% and 86% of genes can be detected in 

Drosophila and C. elegans respectively, when optimum anchoring enzymes are utilized. 

Extrapolations for the human transcriptome suggest that between 75% and 90% of genes can be 

resolved by SAGE. These findings suggest that the use of M a l l l , most commonly used in SAGE 

experiments, is most advantageous for studies in human cells but is potentially sub-optimal for 

other organisms. 

2.4.1 Ambiguity in SAGE 

The observed rate of SAGE tag ambiguity is higher than would have been expected based 

on statistical calculations that predict 13,489 genes would produce tags with a 98.7% probability 

of being unique (see Methods). The observed increase in ambiguity is likely due to the non-

independent nature of gene sequences, as there is similarity within gene families and even 

between distantly related genes. In addition, the presence of repetitive elements in the 3' UTRs 

of genes can contribute to increased rates of ambiguity. The 6% increase in ambiguity seen in C. 

elegans compared to Drosophila may be due to a combination of increased gene number and 

expansion of gene families (Friedman and Hughes 2001). Similarly, increasing transcriptome 

size as determined by subsampling of human sequences yields higher levels of ambiguity. The 

same factors of non-independent and repetitive sequence are likely to be responsible for the 

higher than expected rates of over 40%) ambiguity observed when mapping directly to genomic 

sequence, which makes such an approach less feasible even for relatively small genomes of ~100 

66 



M B . For the human genome of 3,000 M B , 14 bp tags cannot be usefully mapped to the genome, 

as even random sequence would result in each tag occurring by chance 10 times in the genome. 

The ambiguity predicted based on the conceptual transcripts is likely to be an 

underestimate of the true ambiguity. This is demonstrated by the higher than predicted 

proportion of ambiguous tags seen in experimental data. There are two factors that contribute to 

this. First, the genomic annotations remain under constant revision and our current understanding 

of both transcription and gene prediction suggest that complete transcript predictions will not be 

available for some time. Thus, the total gene count may be an underestimate as not all genes 

have necessarily been identified. EST data in Drosophila suggests there may be as many as 10-

20% more genes than currently predicted (Andrews et al. 2000; Gorski et al. 2003), and 5% of 

full-length cDNAs do not match known or predicted genes (data not shown). Increased gene 

number increases the chance of shared sequence and thus shared S A G E tags. Also, increasing 

numbers of alternative transcripts, which are poorly predicted by genefinders and are constantly 

being discovered based on expressed sequences, can also increase ambiguity i f an alternative 

transcript produces a tag that is already present in a transcript from a different locus. Second, 43-

68%) of 3' UTRs predicted in this analysis are estimated and thus are likely to be longer than the 

actual UTRs, and so will extend into less conserved intergenic sequence. It is expected that this 

sequence, as it is more random, will be less likely to be shared between genes, and thus less 

likely to yield ambiguous tags. As this hypothesis would predict, updating the transcripts with 

increasing amounts of expressed sequence data has resulted in shorter UTRs and increased 

ambiguity as more tags are derived from conserved sequence (data not shown). 

The increase in ambiguity with expression level that occurs in C. elegans is likely 

because ambiguous tags have the potential to represent the sum of expression of several genes, 
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thus increasing the observed tag frequency. For instance, the tag " A A A A A A A A A A " which can 

be derived from the poly-A tail of many transcripts is seen at a relatively high frequency in most 

SAGE libraries (data not shown). Such an increase may not be visible for Drosophila in Figure 

2.5 because of the lower overall ambiguity, and fewer tags available with high frequencies in the 

libraries under study (less than 200 tags with expression > 50 tags). 

2.4.2 Choice of tag length, anchoring, and tagging enzyme 

Based on Figure 2.3, the ideal tag lengths are approximately 16 bp for Drosophila and 17 

bp for C. elegans. It is at these points that the curves of ambiguity vs. tag length level off and 

little is gained from further tag length. The residual level of ambiguity is most likely due to high 

similarity within gene families and repeats in 3' UTRs that result in sequences identical over 

regions > 25 bp. This suggests that approximately half of the ambiguity seen for 14 bp tags is 

due to random production of identical tags by dissimilar genes, which can be distinguished by 

longer tags. Human sequences similarly produce tags that are less ambiguous at higher tag 

lengths. However, unlike the curves of Drosophila and C. elegans, the human curve in Figure 2.6 

does not level off completely, suggesting that tags of 21, 25 bp or longer continue to allow an 

increase in resolving power. 

SAGE procedures that produce tags of 14 bp (Velculescu et al. 1995) and 21 bp (Saha et 

al. 2002) are commonly in use, and the SuperSAGE procedure produces tags of 26 bp 

(Matsumura et al. 2003). Although the currently described procedures cannot produce tags of 

arbitrary length, it is possible to modify any of these methods to produce shorter tags. Shorter 

tags may be desirable for organisms such as Drosophila and C. elegans where tags of 21 bp do 

not provide more resolving power than tags of 16 or 17 bp, and are more error-prone and 

expensive to produce as discussed below. Normally, the linker sequence used in SAGE consists 
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of a PCR primer attached to the tagging enzyme recognition site, where the recognition site is 

placed at the far 3' end of the linker to maximize the resulting tag length (Figure 2.7A). 

However, i f one or more bases are appended to the 3' end of the linker, the tagging enzyme site 

will be further from the tag sequence and thus a shorter tag will be extracted (Figure 2.7B), 

allowing tags of arbitrary length up to 26 bp to be extracted. A n important additional factor to 

consider when comparing SAGE tag lengths is the crucial role of longer SAGE tags in novel 

gene discovery, as longer tags can be mapped directly to the genome. 99.8% of 21 bp tags are 

expected to occur only once in the human genome, though mappings indicate that only 70% of 

tags are unique in practise, due to repeats and related genes. Even this lower proportion is still 

practical, and allows tag mapping to be done independent of the cDNA sequences available in 

current databases. 

Approximately 7.5% of human RefSeq full-length mRNA sequences produce ambiguous 

14 bp SAGE tags, while 4% produce ambiguous 21 bp tags. As RefSeq is incomplete, these 

levels are underestimates; extrapolation from ambiguity levels in smaller sets of sequences 

suggests that ambiguity is between 10% (in a transcriptome of 25,000) and 27% (in a 

transcriptome of 100,000). These results are in line with those published after our work, 

estimating that 9% of RefSeq sequences produce ambiguous 14 bp MoIII-derived SAGE tags, 

but increasing to a tag of 34 bp only decreases ambiguity to 6% (Unneberg et al. 2003). In 

contrast to tags extracted from RefSeq, tags extracted from UniGene clusters appear to have 

extremely high ambiguity, as 89%) of 14 bp tags are ambiguous, and even tags of 39 bp are 80% 

nonunique (Clark et al. 2002; Lee et al. 2002b). Using only high quality non-EST sequences in 

this mapping decreases ambiguity to 56%, still significantly above the RefSeq estimates. The 

actual number of unique genes is likely to be somewhere between these estimates, as RefSeq 

69 



represents only a fraction of the transcriptome and so will underestimate ambiguity, while 

UniGene, due to problems with clustering and other artifacts, may overestimate ambiguity. An 

intermediate level of ambiguity along the lines of our estimates is also suggested by a model 

incorporating sequence errors and the nonrandom nature of D N A sequences, which predicts 6% 

of 14 bp tags will be ambiguous in a set of 15,000 sequences, similar to the size of RefSeq, while 

25% will be ambiguous in a set of 78,600 sequences, more similar to the size of UniGene 

(Stollberg et al. 2000). The true level of ambiguity will be dependent on the actual number of 

genes transcribed. 

It is important also to consider that increasing tag length decreases the efficiency of 

sequencing SAGE tags due to both longer SAGE tag length and thus fewer tags per sequence 

read, and also an increased per-tag error rate. At 1% sequence error, 13% of 14 bp tags are 

expected to contain sequence errors, while 21 bp tags will be erroneous in 19% of cases. A more 

recent detailed analysis of sequencing errors in SAGE data has indeed shown that 17.3% of 

LongSAGE tags contain one or more incorrect bases due to sequencing and PCR amplification 

errors (Akmaev and Wang 2004). Thus, for Drosophila and C. elegans, a tag length of 14 bp is 

probably an efficient and cost-effective choice, unless a more complete snapshot of the 

transcriptome is desired or a particular gene or set of genes of interest is identified as ambiguous 

with a 14 bp tag and not with a longer tag. Alternatively, if a tag of particular interest is found to 

be ambiguous, it can be resolved with further experimental procedures such as GLGI (Chen et al. 

2000) which derive a larger portion of the expressed sequence represented by a SAGE tag 

allowing more likelihood of unambiguous gene assignment. 

As shown in Figure 2.4 and Figure 2.6A, there can be a decrease in the number of genes 

that cannot be accurately analyzed using SAGE depending on the anchoring enzyme chosen. The 

70 



number of genes that are not unambiguously identifiable with a 14 bp tag can be decreased by 

12% (883 vs. 1001) in Drosophila and 5% (2823 vs. 2962) in C. elegans by using Sau3A instead 

of M a l l l . Conversely, Nlalll performs 37% better than Sau3A in the human transcriptome (629 

vs. 1001 not unambiguously identifiable). Other work has since confirmed our findings that less 

than 1%> of human genes represented in RefSeq do not contain M a l l l sites and 3% do not contain 

Sau3A sites (Boon et al. 2002; Unneberg et al. 2003). Notably, 7%> of RefSeq genes do not 

contain Rsal sites, an enzyme used in an alternative SAGE procedure (Ryo et al. 2000), 

suggesting this enzyme is not a good choice. Making use of the extra base pair of tag length 

provided by M a l l l by using a 15 bp tag in analysis would further increase the effectiveness of 

M a l l l . This would not involve a change in the SAGE procedure, only a change in the way in 

which SAGE tags are extracted from raw sequence derived from serially ligated tags. The 

tradeoff of such an analysis would be the loss of the small proportion of tags which, due to the 

slight variation in cutting position of BsmFl, would only be 14 bp even with M a l l l . My analysis 

of the effects of the choice of anchoring enzyme allows the potential for tailoring of the SAGE 

procedure to produce the most comprehensive results for each organism individually. 
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Figure 2.7 Creating shorter LongSAGE tags. 
(A) Current LongSAGE procedure produces tags of 21 bp (Saha et al. 2002). (B) Designing the linker 
sequence with the appropriate number of nucleotides added to the 3' end could produce shorter tags of 
arbitrary length under 21 bp. 

2.4.3 Tags with no gene mapping 

It is notable that the proportion of experimental SAGE tags which cannot be mapped to 

genes or genomic sequence is significant (Figure 2.5). This is due in part to the presence of 

sequencing errors in experimental SAGE data. In Figure 2.5A, 55% of all experimental SAGE 

tags are mapped to genes, whereas 68% of tags that occur 2 or more times are mapped. This 

suggests that a significant proportion of the unmapped tags are singletons (occur only once) in 

the SAGE library under consideration. A similar trend occurs in Figure 2.5B. Singleton tags are 

more likely to represent sequencing errors, which generally produce tags that do not match 
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known sequences. In rare cases, a sequencing error may produce a tag that, by chance, matches 

another gene, which can confound analysis. Using more sequences for tag-to-gene mapping, 

such as a large set of EST sequences or clusters, increases the chance of this occurrence because 

there is a larger body of sequence to which a match may occur. Using the conceptual transcripts 

for mapping makes this unlikely, and thus a significant proportion of infrequently occurring, 

unmapped tags may be due to sequencing errors. Many of these errors can be removed by using 

only SAGE tags derived from sequence of high quality as determined, for instance, by Phred 

(Ewing et al. 1998). Techniques have also been proposed (Akmaev and Wang 2004; Velculescu 

et al. 1999) to remove tags that are likely to represent sequence errors of more highly expressed 

tags as discussed in Section 1.5.4.2. These methods can help to limit the effect of sequence errors 

in SAGE analysis. 

The general increase in proportion of mapped tags with increasing expression level may 

also be related to the quality of genome annotation. On average, highly expressed genes are 

easier to study and survey and so are more likely to be known and thus included in the predicted 

gene set, while rarely expressed genes may not be annotated. Quality of annotation may in part 

explain why fewer tags are assigned to genes in Drosophila than C. elegans in Figure 2.5, as the 

C. elegans genome has been available for a longer period and therefore may have more correct 

annotations. It is somewhat surprising that the proportion of non-singleton tags mapped to 

genomic sequence (61%) is even lower than the proportion mapped to genes (68%) in C. 

elegans). This may be because SAGE tags that cross splice boundaries will not exist in genomic 

sequence. 

Another reason that experimental SAGE tags may not be mapped to transcripts or 

genomic sequence is the presence of polymorphisms, especially single nucleotide 
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polymorphisms (SNPs). The Drosophila and C. elegans strains used to produce the SAGE data 

described here are slightly different or derived from those used for genomic sequencing, and so 

there are expected to be base pair changes in a fraction of SAGE tags that prevent exact matches 

to genomically derived sequence. The same polymorphism effect can be expected in humans. 

Large bodies of EST sequence from multiple strains or multiple individuals are likely to 

represent these polymorphisms; however, it is very difficult to separate true polymorphisms from 

EST sequence and clonal errors which can cause erroneous mappings as discussed above, and 

thus this issue is not simplified by the use of EST sequences for tag mapping. The polymorphism 

rate in most experimental situations is relatively low, thought to be below 1/1000 bp in human 

sequences (Lander et al. 2001; Venter et al. 2001). However, more recent work suggests a 

polymorphism rate as high as 1/100 to 1/300 bases, and an analysis using dbSNP to map 

polymorphisms to transcripts and SAGE tags indicates that 8.6% of human genes may produce 

tags with sequence variations due to SNPs (Silva 2004). 

We find that even after comprehensive mapping to the known transcriptome, 15-30%) of 

highly expressed (>50 copies) SAGE tags are not identified, which cannot be accounted for by 

sequence errors and polymorphisms. This emphasizes the current incompleteness of genomic 

annotation and underscores the role that SAGE can play in novel gene discovery. 

2.4.4 Limitations of conceptual transcripts 

As the conceptual transcript sets rely heavily on curated sets of known and predicted 

genes, errors and omissions in gene predictions result in inaccuracies and incompleteness in the 

tag mappings. For instance, 7% of tags from known Drosophila cDNAs in the test set were not 

mapped correctly, due to gene prediction errors. This is mostly likely due to the latency in the 

process of incorporating experimental data into the curated genomic databases. It is anticipated 

74 



that as gene predictions are updated, refined, and consolidated with more expression data, the 

constructed transcript sets will become a more accurate reflection of the true transcriptome and 

thus yield more accurate tag mappings. For this purpose, the full-length cDNA sequencing 

projects currently being carried out in multiple organisms have positive implications for SAGE 

analysis. 

2.4.5 Conclusions 

The conceptual transcript sets and tag mapping procedure described here provide tag-to-

gene mappings for the Drosophila and C. elegans genomes, thus facilitating SAGE analysis in 

these organisms. They also permit analysis of the limitations of SAGE for transcript 

identification. Without complete transcript sets, incomplete sets of full-length sequences such as 

the RefSeq database of human transcripts can be used both for tag mapping and to estimate 

levels of ambiguity. This analysis allows researchers to make informed decisions as to the SAGE 

procedure most appropriate for the organism under study and for the applications of the research. 

Since this research has been published, an equivalent method utilizing UTR length 

distributions, gene predictions, and genome sequence to create conceptual transcripts has been 

used for SAGE tag mapping and SAGE assessment in Arabidopsis (Robinson et al. 2004). This 

demonstrates our method can be usefully applied to other model organisms. 

Cheaper and more accurate sequencing has already decreased significantly the cost and 

errors involved in SAGE library construction. Genome annotations are constantly being 

improved and, in combination with full-length cDNA sequencing projects, will result in more 

reliable tag-to-gene mappings. Thus, SAGE is likely to continue to be a significant tool for gene 

expression analysis and genome annotation. 

75 



Chapter 3 : SAGE and EST analysis of PCD in the Drosophila salivary gland 

A version of this chapter has been published. 

Gorski, S.M., Chittaranjan, S., Pleasance, E.D., Freeman, J.D., Anderson, C.L., Varhol, R.J., 
Coughlin, S.M., Zuyderduyn, S.D., Jones, S.J., and Marra, M . A . 2003. A SAGE approach to 
discovery of genes involved in autophagic cell death. Curr Biol 13: 358-363. 

Co-authorship details: I was responsible for all of the computational analysis described in this 
chapter with the exception of raw SAGE sequence processing and implementation of statistical 
methods, and partially responsible for the data interpretation. Where others contributed to the 
work described, they are credited in the text. 
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3.1 Introduction 

During Drosophila metamorphosis, the larval salivary glands undergo programmed cell 

death that is regulated by a transcriptional cascade induced by the steroid hormone ecdysone. 

Death occurs with features of both autophagy and apoptosis. Transcription of several known 

ecdysone-induced and cell death genes is upregulated. Subsequently, the entire larval salivary 

gland undergoes cell death in a rapid, stage-specific, and virtually synchronous manner. These 

features combine to make Drosophila salivary gland death an ideal system for analysis of gene 

expression associated with autophagic cell death. Large-scale analysis of the genes involved in 

this process would indicate which known PCD and hormone signaling genes are involved, as 

well as indicating which other genes are candidates for involvement and what other processes are 

important for PCD. This would contribute to the understanding of the regulation of cell death in 

this tissue and in other systems which undergo PCD, and provide insight into the relationship 

between the molecular mechanisms of apoptotic and autophagic cell death. 

Gene expression analysis techniques permit simultaneous measurement of the majority of 

mRNA species expressed in a tissue, and as genes involved in Drosophila hormone-regulated 

cell death are transcriptionally up- and down-regulated prior to PCD, differential gene expression 

is an indicator of potential involvement in PCD. A combination of EST and SAGE analysis is an 

ideal way to examine gene expression, as no prior knowledge of the genes expressed or present 

in the genome is necessary. ESTs in particular can identify novel genes and transcripts, and 

SAGE provides quantitative measurements of gene expression. SAGE and EST libraries created 

by Suganthi Chittaranjan, Doug Freeman, and Sharon Gorski at the Genome Sciences Centre 

were the first libraries to comprehensively measure gene expression associated with autophagic 

cell death during normal metazoan development in vivo. SAGE libraries were created from 
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salivary glands dissected from developmental stages leading up to cell death, 16 hours, 20 hours, 

and 23 hours (at 18°C) after puparium formation (APF; see Section 1.4). An EST library was 

created, representing mixed stages between 16 h and 24 h. At 24 h APF, acridine orange staining 

is visible and salivary glands begin to be degraded. 

This chapter describes the computational analysis of this EST and SAGE data, for the 

purpose of identifying genes and pathways potentially involved in cell death in the salivary 

gland. EST analysis involved removing poor quality sequences, grouping redundant ESTs, 

identifying the genes represented, and discovery of potentially novel genes. SAGE analysis 

involved removing poor quality SAGE tags, determining differential expression, and 

identification of the genes represented. EST sequences and all available Drosophila sequences 

including genes and genomic sequence were used for SAGE tag mapping using the method 

described in Chapter 2. This analysis identified known PCD genes, differentially expressed genes 

not previously known to be involved in PCD, and many genes of unknown function, some not 

previously predicted. These genes are of potential interest based on their expression patterns. Our 

data indicates that both apoptosis and autophagy genes are involved in salivary gland death, as 

are several other pathways, and identifies a number of genes of unknown function that are 

candidates for involvement in programmed cell death. 

3.2 Methods 

3.2.1 EST sequence processing and clustering 

EST sequences were trimmed for vector using crossjmatch (P. Green, unpublished) and 

for poor quality sequence using Phred (Ewing and Green 1998). The minimum requirement for 

inclusion in analysis was at least 50 bp of non-vector sequence at Phred 20 quality, 

corresponding to average 99% accuracy at each base. Sequences were masked for low 
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complexity and repetitive regions using Dustn (NCBI toolkit release 6.1) and RepeatMasker (A. 

Smit, unpubl.; version available 04042000) using the Drosophila library from Repbase Update 

(Jurka 2000) vol. 7 no. 2, March 2002, option -dr. Clustering was based on cross_match 

alignments between all possible EST pairwise comparisons and required at least 95% identity 

over 80 bp with no greater than a 10 bp sequence end overhang. 

3.2.2 BLAST analysis of ESTs 

B L A S T N (v. 2.0.14) comparison to genes revealed 3 chimeric sequences that were 

removed from further analyses. Representative EST sequences were chosen as (1) the longest 

sequence from a cluster or (2) any singleton EST sequence that aligned to genomic sequence 

(Release 2 of the Drosophila genome) by B L A S T N with at least 95% identity over 80 bp. 

Comparisons were then conducted between representative EST sequences and all Drosophila 

annotated genes (14,350 including mitochondrial genes, Release 2 gene annotations), enhanced 

to include UTRs as described in Chapter 2, and all Drosophila expressed sequences (both ESTs 

and full-length cDNAs; total of 259620 as of May 14 2002) using B L A S T N with a minimum 

requirement of 95% identity over 80 bp. 

3.2.3 SAGE tag processing 

SAGE tags were extracted from sequences and counted using a pipeline of Perl scripts 

written by Scott Zuyderduyn and Richard Varhol. Phred was used to call bases (Ewing et al. 

1998) and assign quality scores (Ewing and Green 1998), and vector sequence was detected 

using crossjnatch (P. Green, unpublished). Ditags significantly shorter or longer than expected 

(due to errors creating or deleting C A T G sites) were removed. Duplicate ditags, with identical 

sequences, were identified and all but one copy removed from analysis as described (Velculescu 
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et al. 1995). This can result in removal of true ditags, especially when certain mRNAs and 

therefore certain tags are highly represented in the library, but this only reduces the quantity of 

very highly expressed tags by a small percentage, and does not significantly affect differential 

expression. 14 bp tags were extracted from ditags, and tags were removed if (1) they were 

derived from linker sequences, (2) their overall quality, as calculated by multiplying the Phred 

error probability for each base, was less than 95%, i.e. >5% chance of at least one error, or (3) 

they were only observed once in all three libraries combined. 

3.2.4 SAGE tag-to-gene mapping 

Conceptual transcripts representing Drosophila genes were constructed and used for tag-

to-gene mapping, as described in Chapter 2. The sequenced salivary gland ESTs were used in 

transcript construction to maximize the number of tags that could be mapped. Tags which did not 

match to genes were matched to Drosophila EST sequences (both 5' and reverse complemented 

3'); the public ESTs used are described in Section 3.2.2. When such ESTs overlapped with a 

gene, or their clone partner overlapped with a gene, the SAGE tag was assigned to the gene as 

well. Multiple EST matches that resolved to the same gene or genomic location were considered 

unambiguous. Remaining SAGE tags were mapped to genomic sequence, and also to the reverse 

orientation of genes and ESTs to identify antisense tags. Gene annotations, including Gene 

Ontology functional categories and chromosomal locations, were obtained from the FlyBase 

database (FlyBase Consortium 2002). 

3.2.5 SAGE statistics 

Differential gene expression in SAGE libraries was determined in three pairwise 

comparisons. Statistical differences were determined using the formulas of Audic and Claverie 
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(1997), a SAGE-specific statistical method which accounts for sampling error. For each tag, the 

probability (p) that the observed difference in tag frequencies between two libraries would occur 

by chance is determined, given the respective library sizes. Tags with p<0.05 were considered 

differentially expressed; multiple testing was not taken into account in this analysis. This 

algorithm was implemented in Perl scripts and in the DiscoverySpace software (Scott 

Zuyderduyn, Richard Varhol et al, unpubl.) as well as in Java (Mehrdad Oveisi). 

3.2.6 ACEDB database 

The Drosophila A C E D B database as described in Section 2.2.1 was expanded to include 

and visualize the newly sequenced ESTs, SAGE tags, and other data such as protein and genome 

alignments. ESTs were aligned as described in Section 2.2.1. Mapped SAGE tags were 

positioned on the genome and associated with genes to facilitate searching for tags matching 

genes, tags matching ESTs, and tags matching genomic sequence only. A l l Drosophila proteins 

and all SWISSPROT-TREMBL proteins (obtained via SRS Sep 27 2002) were aligned against 

the genome with B L A S T X (EO.001) to facilitate identification of novel genes. In areas of 

particular interest, T B L A S T X (E<0.001) alignments of Drosophila pseudoobscura (downloaded 

from the Baylor Human Genome Sequencing Centre June 12 2003) and Anopheles gambiae 

(downloaded from NCBI October 2 2002) partially sequenced genomes were also incorporated. 

3.3 Results 

3.3.1 Processing and clustering of EST sequences 

A library of 3' ESTs was constructed from mixed-stage Drosophila OreR salivary glands 

(16 h to 24 h APF). A total of 7680 sequence reads were obtained, which were processed to 

select high-quality sequences and analyzed to group the ESTs based on sequence similarity 
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(Figure 3.1). Three ESTs were identified as chimeric and removed from analysis. Each of the 

1696 representative EST sequences, 1323 of which were single-EST clusters, potentially 

represents a gene or transcript. The quality of this clustering was determined by comparing the 

ESTs to annotated Drosophila genes. Two genes were represented by two clusters each instead 

of one, and one cluster erroneously contained ESTs corresponding to two genes. In addition, 374 

singleton ESTs matched genes also matched by other representative EST sequences; these 

singleton ESTs were not clustered due to small sequence differences, so that the correct cluster 

membership could not be assured. Overall, the clustering was very successful in grouping ESTs, 

as few clusters split or joined genes. 

7680 sequence reads for 3' ESTs 

Remove vector and 
low-quality sequence 

Mask repetitive regions 

5161 high 
quality 3' ESTs 

Cluster based on sequence overlap 

Unclustered ESTs Clustered ESTs 

Choose only ESTs that align 
against genomic sequence 

Choose longest sequence as 
representative for each cluster 

1323 
singleton ESTs 

373 clusters 
contain 3858 ESTs 

1696 representative EST sequences 

Figure 3.1 Processing and clustering of Drosophila 3' ESTs. 
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3.3.2 Genes identified by ESTs 

Comparison of ESTs to predicted Drosophila genes and to publicly available ESTs 

(Table 3.1) identified subsets of ESTs that represent known genes, and potentially novel genes. 

The most abundant gene, a mitochondrially encoded ribosomal RNA, represented 14% of the 

ESTs. Other abundant genes were genes known to be ecdysone inducible, or genes of unknown 

function. 4 of the 10 most abundant genes were not already represented by any publicly available 

ESTs. Of the 1043 genes matched by the ESTs, 56 had no previous expressed sequence 

evidence; thus, our ESTs confirmed the expression of these predicted genes. Notably, 196 

representative ESTs (16 clusters and 180 singletons, 38 of which are spliced) did not match any 

known or predicted genes, or any previously sequenced ESTs or cDNAs (Table 3.1). These ESTs 

represent potentially novel genes or transcripts. Examples of ESTs corresponding to known 

genes, novel transcripts, and potentially novel genes are shown in Figure 3.2. A l l representative 

ESTs, matching genes, and matching public ESTs are listed at http://sage.bcasc.ca/tagmapping/ 

SG_representative_ESTs.txt. 

A number of known PCD genes were also identified by ESTs (Table 3.2), representing 

several parts of the salivary gland death pathway as well as several autophagy genes. A l l of these 

genes were identified by very few ESTs, as the EST library was not very deep, but further 

confirmation of the expression of PCD genes was found in the SAGE data (see below). 
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Table 3.1 Summary of sequences matched by representative Drosophila ESTs. 

Match predicted genes Do not match predicted genes Total 

Match public ESTs 1280 145 • 1425 

Do not match public ESTs 75 196 271 

Total representative ESTs 1355 341 1696 

Table 3.2 Cell death genes identified by ESTs. 

Gene Description Number of ESTs 
BR-C Ecdysone PCD signaling 1 
Rpr Pro-death gene 1 
Diap-1 / Th Inhibitor of apoptosis 4 
Dark / Apaf-1 Caspase activator 3 
CG7188 Probable inhibitor of pro-apoptotic Bax 3 
Dcp-1 Caspase 1 
Drone / Nc Caspase 1 
Drice Caspase 3 
Crq Croquemort, engulfment receptor 1 
Ced-6 Similar to C. elegans apoptosis engulfment gene 3 
CG6194 Atg4-like, autophagy gene 2 
CG1643 Atg5-like, autophagy gene 1 
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Figure 3.2 ESTs representing known and potentially novel genes. 
Images generated from the Drosophila ACEDB database. (A) ESTs are in the 3' UTR of a gene. (B) ESTs are 
in the intron of a gene, possibly representing a novel exon or an entirely separate gene. (C) ESTs are not near 
any predicted genes and are spliced, and therefore are likely to represent novel genes. 
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3.3.3 Processing and differential expression of SAGE tags 

Three SAGE libraries were constructed from 16 h, 20 h, and 23 h APF salivary glands 

(Suganthi Chittaranjan and Doug Freeman). Sequences containing SAGE tags were processed to 

extract tags (Scott Zuyderduyn and Richard Varhol); tags of poor sequence quality, tags 

potentially derived from amplification bias, and tags only seen once in all the libraries combined 

were removed. Each library was sequenced to a depth of over 30,000 high-quality tags (Table 

3.3). In all libraries, a small number of tags were very highly abundant; at the 23 h timepoint, one 

tag species accounted for 9.1% of the tags in the library. The salivary gland is predominantly 

made up of a single cell type, and thus it is expected that this tissue will have reduced complexity 

compared to libraries constructed from mixed tissues or mixed timepoints. Nevertheless, a large 

number of tags are seen only a few times, suggesting that despite this reduced complexity there 

are many genes expressed at low levels, and the number of different genes expressed is most 

likely even higher than observed. 

SAGE libraries were compared pairwise to identify genes up- or down-regulated in the 

three stages profiled. In the 16 h vs. 23 h comparison, 522 (12.1%) transcripts were upregulated 

significantly (p<0.05), and 331 (7.7%) transcripts were downregulated significantly (p<0.05) 

prior to cell death. Together, these transcripts account for almost 20% of all transcripts expressed 

in the salivary gland during these two stages. In the 16 h vs. 20 h and 20 h vs. 23 h comparisons, 

288 (7.0%) and 459 (11.2%) transcripts were significantly upregulated, and 255 (6.2%) and 287 

(7.0%i) transcripts were significantly downregulated, respectively. 
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Table 3.3 SAGE library tag counts and frequency distributions. 

Tags % of tag species seen at frequency: 
Library Total Unique 1 2-10 11-100 100+ 

16 h 34,989 3,126 32.7% 55.7% 10.4% 1.2% 
20 h 31,215 3,034 38.0% 50.9% 9.7% 1.4% 
23 h 30,823 2,963 33.3% 54.0% 11.2% 1.4% 
Total 97,027 4,628 

3.3.4 Genes identified by SAGE tags 

The genes represented by the 4628 different SAGE tags were identified by a series of 

comparisons to available sequence databases (Figure 3.3). Tags were mapped to conceptual 

transcripts enhanced to include UTRs as described in Chapter 2, as well as to ESTs and genomic 

sequence. This comprehensive mapping method was successful in mapping all but 7% of the 

tags. Of the 4628 tags, 53% were matched to genes directly; half of these tags mapped to UTRs, 

demonstrating the necessity of using conceptual transcripts rather than simple gene predictions. 

A n additional 7% were matched to genes through matches to ESTs. 217 tags (5%) 

unambiguously match ESTs not corresponding to predicted genes; 55 of these match ESTs from 

the salivary gland library only. 225 antisense tags were also found, where a tag matched both 

genomic D N A and the reverse strand of an EST, and the tag mapped to a single genomic location 

and all matching ESTs also corresponded to the same location. Notably, 294 SAGE tags (6%) 

matched only to genomic sequence, suggesting potential locations for genes which have not been 

predicted and do not have previously available expression evidence. 

Genes identified by SAGE tags were associated with Gene Ontology (Ashburner et al. 

2000) terms describing their function, as well as chromosome band location. A complete list of 

salivary gland SAGE tag sequences, frequencies, and mappings can be found at 
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http://sage.bcgsc.ca/tagmapping/SG SAGE_tags.txt and summary tables at http://www.bcgsc.ca/ 

lab/fg/dsage. As in the EST libraries, some of the most abundant genes identified by SAGE were 

ecdysone-inducible genes and mitochondrially-encoded rRNAs, as well as genes of unknown 

function. Several abundant SAGE tags corresponded only to ESTs. Examination of this gene set 

as described below, in particular determining the pathways of interest that were found to be 

differentially expressed, was done in conjunction with Sharon Gorski and Suganthi Chittaranjan 

based on the results of my analysis. 

SAGE tags corresponding to known cell death and ecdysone-induced genes associated 

previously with salivary gland cell death (Jiang et al. 1997; Jiang et al. 2000; Lee et al. 2000) 

were detected in the SAGE libraries (Figure 3.4). BR-C, E74 and E75 are general ecdysone-

induced primary response genes shown previously to regulate salivary gland expression of cell 

death genes. E93 is a stage and tissue-specific ecdysone-induced primary response gene required 

in prepupal salivary glands for maximal expression of both ecdysone-induced and cell death 

genes. Consistent with a previous report (Lee et al. 2000), we detected increased expression from 

16 to 23 h APF of the pro-death genes Dark, Drone and Crq. The genes E93, Rpr and Diap2 were 

detected but expressed at low levels. 

Some of the genes showing differential expression that are involved in pathways other 

than those previously known to be active in the salivary gland are shown in Table 3.4. Multiple 

apoptosis genes not previously associated specifically with salivary gland cell death were 

identified both in the EST and SAGE libraries, as were a number of autophagy genes. The 

caspases Drone, Dcp-1, Drice, and Dredd were present, as were Diap-1 and Diap-2. The Bcl-2 

gene Debcl and the pro-death gene Sickle were upregulated. Nine putative homologs of yeast 

autophagy genes were detected, with marked increase in expression of Atg4/apg4/aut2. Multiple 
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cathepsins, proteins involved in lysosomal degradation which is part of the autophagic process, 

were also upregulated. These data identify specific autophagy genes which may be involved in 

salivary gland death, and indicate that this autophagic cell death may use some of the same 

molecular components as does apoptotic cell death. 
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4628 unique tags from 3 SAGE libraries 

Map tags to genes 
(conceptual transcripts) 

2067 tags do 
not map tô  
genes 

107 tags (2%) 
with ambiguous 
gene mappings 

2454 tags (53%) 
unambiguously 

represent 2191 genes 

Map tags to ESTs and 
to genomic sequence 

533 tags 
map to ESTs 

unambiguously 
303 tags (7%) do not match 

any known sequences 

937 tags (20%) with 
ambiguous EST and/or 

genomic mappings 

294 tags (6%) map 
unambiguously to 

genomic sequence only 

217 tags (5%) map 
unambiguously to 

novel ESTs 

Figure 3.3 Mapping of Drosophila SAGE tags to genes, ESTs, and genomic sequence. 
SAGE tags were mapped iteratively, first to genes, then to ESTs and genomic sequence. Mappings were to the 
3'-most enzyme site. Ambiguous mappings refer to SAGE tags that exactly matched to two or more 
sequences. 
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Figure 3.4 Expression of known salivary gland cell death related genes in SAGE libraries. 
Observed number of SAGE tags corresponding to known salivary gland death related genes were converted 
to frequencies for purposes of comparison. SGI 6, SG20 and SG23 refer to the 16 h, 20 h, and 23 h SAGE 
libraries, respectively. The inset of a simplified cell death pathway indicates the relative timing of expression 
for the genes indicated (Jiang et al. 2000; Lee et al. 2000). 
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Table 3.4 Differentially expressed genes associated with salivary gland autophagic cell death in Drosophila 
SAGE libraries. 

Tag Sequence 16 h 23 h P-value Gene GO id GO Molecular Function 

Protein Synthesis 
ATATTGTCAA 11 24 8.34E-03 Ef1 gamma 3746 translation elongation factor 
AGCAGGGGGA 1 9 5.69E-03 CG5605 8079 translation termination factor 
ATGAAAAACA 1 25 5.82E-08 CG3845 3743 translation initiation factor 

TGGGAGGATG# 0 10 4.12E-04 CG8277 3743 translation initiation factor 

TGGGAGGATG# 0 10 4.12E-04 elF-4E 3743 translation initiation factor 
ACCCACGAGC 4 15 4.35E-03 CG9769 3743 translation initiation factor 
GGGTGTCTCT 0 5 1.95E-02 CG10192 3743 translation initiation factor 
ATGAGCTATG 0 4 4.22E-02 CG7439 3743 translation initiation factor 

TTTGAATAAC 60 81 7.70E-03 elF-5A 3743 translation initiation factor 

Ecdysone/hormone 
AACTGTAATG 65 0 3.28E-18 Eig71Ed ecdysone-induced protein 
AACGAGGGAT 1103 38 1.99E-239 Eig71EI ecdysone-induced protein 

AGACGGATTC 1371 540 3.09E-58 Eig71Ej ecdysone-induced protein 
GGTTTATTGT 2 36 1.79E-10 Hr78 4879 ligand-dependent nuclear receptor 

TAGCAACTAG 2 8 3.64E-02 Hr78 4879 ligand-dependent nuclear receptor 

AGTCAAAAGG 32 532 2.32E-135 CG15505 

GATCCAGCCA 121 2339 0.00E+O0 CG7592 

TGGATTCATA 2 *11 6.83E-03 Eip63F-1 5509 calcium binding 

GCCGAATCTG 1 *7 2.50E-02 Eip71CD 8113 protein-met-S-oxide reductase 

Transcription Factors 
TTAAGTTCGT 1 *6 4.79E-02 Bun 3702 RNA pol II transcription factor 
TAGCTGGTGT 1 *8 1.30E-02 EP2237 16563 transcriptional activator 

TCCAATTCCG 0 *5 2.16E-02 CG9954 3700 transcription factor 
GAGCAGGAGT 0 *11 2.34E-04 CG3350 3700 transcription factor 

Signal Transduction 
CGAATAATCC 3 67 3.03E-19 Akap200 5079 protein kinase A anchoring 
AGAATCCAAC 0 5 1.95E-02 Trafl 

TGTACACTTC 0 33 8.10E-12 Doa 4674 protein serine/threonine kinase 

CTGCGCTTGT 0 5 1.95E-02 Doa 4674 protein serine/threonine kinase 

TAAATAAAGG 2 14 8.24E-04 Sktl 16308 1-PI-4-phosphate 5-kinase 

AGAAGATAAA 0 4 4.22E-02 Ptpmeg 4725 protein tyrosine phosphatase 

CAAGTAACCA 0 10 4.12E-04 PR2 4713 protein tyrosine kinase 

TAGCTCTTAG 0 5 1.95E-02 CG16708 17050 D-erythro-sphingosine kinase 

TGAACGAGGA 1 9 5.69E-03 CG8655 4702 receptor signaling S/T kinase 

Cell Death 
TTCCGCATAT 4 13 1.32E-02 Emp 5044 scavenger receptor 

GCTTTCGTGT 1 7 2.21E-02 CG12789 5044 scavenger receptor 

CCCGTTCCAC 2 8 3.64E-02 CG3829 5044 scavenger receptor 

GGCACCAGTC 4 *0 8.35E-02 Debet 16506 apoptosis activator 

TATTTTCTTT 1 38 4.24E-11 Sickle 

Autophaqy 
TAGCGCTTAG 0 30 8.20E-11 CG6194 apg4/aut2-like; cysteine protease 

TAAAATTGCT 7 12 1.44E-01 Rab-7 3928 RAB small monomeric GTPase 

GATCCAGCCC 0 4 4.22E-02 CG11159 3796 lysozyme 

CATCATCATC 19 566 3.86E-160 CG3132 4565 beta-galactosidase 

GTTTCTTCCG 3 15 1.53E-03 CG10992 4213 cathepsin B 

GGCAACGATC 8 43 2.23E-08 cathD 4192 cathepsin D 

AAATAAATTG 66 240 1.04E-30 CG17283 4193 cathepsin E 

TTCTTCAACC 0 4 4.22E-02 CG12163 16946 cathepsin F 

ATGGCAGAGA 5 15 1.04E-02 Cp1 4217 cathepsin L 

TATGATATAG 58 620 2.63E-139 Cp1 4217 cathepsin L 
* tag number corresponds to the SG20 SAGE library 
# ambiguous mapping to two similar genes 
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3.4 Discussion 

This study represents the first comprehensive analysis of genes associated with 

autophagic cell death in vivo. Our work was published alongside similar research by Lee et al 

(2003), who used oligonucleotide microarrays to examine gene expression in Drosophila 

salivary gland PCD and radiation-triggered cell death. Their findings were consistent with those 

described in this chapter; they similarly reported differential expression of apoptosis and 

autophagy genes, and changes in other cellular pathways. In addition to providing important 

clues to the molecules involved in PCD, however, our work also contributes significantly to 

knowledge of the Drosophila genome. With respect to the latter, this work provides evidence for 

the expression of more than 4,000 transcripts, including over 500 previously unpredicted, almost 

300 previously undetected, and at least 225 overlapping and divergently transcribed. In total, 

1244 different transcripts were expressed differentially prior to salivary gland cell death, and 377 

of these did not correspond to predicted genes. Detection of these transcripts exemplifies the 

advantage of the SAGE and EST methods, ideally suited for the discovery of new genes. 

3.4.1 Use of EST and SAGE to identify genes 

The EST set, though small, comprised significant novelty. 341 ESTs (20%) did not match 

to predicted genes, and 196 of these (12%) did not correspond to any previously sequenced ESTs 

at the time of our analysis. Many of these ESTs not corresponding to genes likely represent 

previously unannotated genes, but some will represent novel splice variants or 3' ends of already 

predicted genes. This data therefore suggests that the number of genes in Drosophila may be 

substantially underestimated, as suggested by previous EST analysis studies (Andrews et al. 

2000; Posey et al. 2001) and more recent expression analyses (Hild et al. 2003). Strikingly, 

despite the previous sequencing of over 200,000 Drosophila ESTs and cDNAs, over half of the 
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ESTs not matching genes were unrepresented in public databases. This demonstrates the 

uniqueness of this salivary gland-specific resource, and suggests that deeper sequencing from 

specific tissues will be necessary to identify all Drosophila genes and transcripts. The genes 

represented by such ESTs are likely to have a unique role in the salivary gland, possibly in PCD. 

The SAGE tag-to-gene mapping results highlight one of the main advantages of the 

SAGE method compared to other large-scale profiling methods such as oligonucleotide- or 

cDNA array-based analyses. SAGE has the potential to reveal transcripts not previously 

identified, and indeed 45% of the SAGE tags did not correspond to known or predicted genes, 

consistent with more recent analyses of Drosophila SAGE libraries (Lee et al. 2005). It is 

possible that some of these SAGE tags do not correspond to predicted genes because they are 

derived from noncoding transcripts, as recent work in several species has demonstrated that such 

transcripts may account for a significant fraction of expressed mRNAs (Ota et al. 2004; Tupy et 

al. 2005) but only protein-coding transcripts were included in the Drosophila genome annotation 

at the time of my analysis. 217 tags, or 5% of the set, corresponded unambiguously to ESTs 

only. 55 of these mapped specifically and unambiguously to the novel salivary gland ESTs, thus 

confirming the expression of these putative salivary gland-specific novel genes and 

demonstrating the advantages of a complementary tissue-specific 3' EST and SAGE approach. 

294 tags, or 6%, mapped uniquely and unambiguously to genomic D N A and may represent novel 

genes or novel 3' ends or splice forms of already predicted genes. Our SAGE data provides the 

first evidence of expression for these putative transcripts. 

In at least 225 cases, SAGE tags represent apparent antisense transcription. Some fraction 

of these antisense tags could arise out of mispriming in cDNA library construction as discussed 

in Section 1.5.4.1, but such errors are likely to account for only a few percent of the observed 
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tags-. These tags suggest the existence of previously unpredicted transcripts that may represent 

divergently transcribed overlapping gene sequences; this is not surprising as current gene finding 

programs are unable to readily detect overlapping genes (Rogic et al. 2001). More recent work 

analyzing SAGE and other expressed sequence data has indeed identified many such overlapping 

genes and antisense transcripts in mammals (Wahl et al. 2005; Yelin et al. 2003), and pairing of 

sense-antisense overlapping transcripts is conserved in evolution (Dahary et al. 2005). The 

significance of these transcripts is not known, but it is possible that they act as a form of 

antisense regulation at the transcriptional or post-transcriptional level. 

Even after mapping to all Drosophila sequences available at the time of this analysis, 303 

tags, 7% of the SAGE set, were left unassigned. The unmapped tags could be due to issues 

discussed in Section 2.4.3 such as sequence polymorphisms or common sequencing errors, or to 

lack of representation in the available sequence resources. The latter could occur i f tags 

represented genes in heterochromatic regions, which at the time of my analysis were not 

sequenced but have since been shown to contain significant numbers of genes (Hoskins et al. 

2002). It is also possible that unmapped tags span adjacent exons that are currently not 

represented in the EST or cDNA data set, and as such would not be identified in genomic 

sequence. Overall, the salivary gland EST and SAGE data confirms expression of predicted 

genes and can also aid in gene discovery, demonstrating the importance of expression data for 

genome annotation, especially data from specific tissues. 

3.4.2 Expression of PCD genes 

In general, the gene expression profiles of known salivary gland cell death genes as 

generated by SAGE are consistent with previous reports and can temporally distinguish known 

upstream transcriptional regulators from downstream death effector molecules. The genes E93, 
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Rpr and Diap2, which were detected only at very low levels, were analyzed further by 

quantitative RT-PCR by Suganthi Chittaranjan and Shaun Coughlin and this indicated expression 

profiles consistent with previous studies (Jiang et al. 1997; Lee et al. 2000). RT-PCR analysis of 

96 genes chosen to have varying expression levels were concordant with respect to the direction 

of change in expression for 91/96 (95%) of the genes tested and the overall correlation in fold-

difference of 0.48 was significantly positive. Thus, the SAGE data is confirmed by and 

consistent with lower-throughput, quantitative RT-PCR results. Genes known to be expressed 

during salivary gland PCD but not detected in our SAGE and EST libraries were EcR, USP, 

pFTZ-Fl and hid (Figure 3.4 inset). A l l of these genes possess putative M a l l l recognition sites 

and thus theoretically can be associated with a SAGE tag. However, EcR, USP and PFTZ-F1 act 

upstream of the primary response genes BR-C, E74, E75, and E93, and thus may be expressed 

maximally prior to 16 h APF. This interpretation is consistent with Northern analysis of pTTZ-

F l (Jiang et al. 2000). Alternatively, these genes may be expressed at very low levels. Failure to 

detect Hid was not surprising because RT-PCR analysis indicates it is expressed at levels lower 

than Rpr which was detected only two times at the 23 h timepoint. 

The degradation phase of autophagic cell death appears to utilize components of the 

machinery required for autophagy. While autophagic cell death was shown previously to share 

morphological features with autophagy, there had been no prior connection between the 

molecules involved in these two processes at the time of our study. Expression was detected in 

the EST library of a gene similar to Atg5, involved in one of the ubiquitin-like pathways required 

for autophagy in yeast (Ohsumi 2001). Particularly highly induced in the SAGE libraries was a 

gene similar to Atg4 which encodes a novel cysteine protease, whose yeast homolog processes 

and activates Atg8, an ubiquitin-like protein. Multiple lysosomal enzymes, including cathepsins, 
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were also upregulated prior to autophagic cell death. It is not expected that these genes would be 

specifically induced in apoptotic cells because the bulk of cellular degradation occurs within a 

macrophage or neighboring cell. Our analyses showed that multiple genes involved in apoptotic 

cell death are also expressed during autophagic cell death, supporting the view that these two 

processes occur simultaneously or utilize common pathway components (Baehrecke 2002; Lee 

and Baehrecke 2001; Lee et al. 2000). It is reasonable to expect, then, that some of the novel 

autophagic cell death associated genes identified in this study may also be associated with 

apoptotic cell death. Given the relationship of both autophagic and apoptotic cell death to 

disease, and the concomitant use of apoptotic genes as therapeutic targets (Reed 2002), it is 

essential to develop a detailed understanding of the molecules required for both processes. The 

genes discovered here provide a powerful starting point for protein function-based studies to 

determine the mechanisms essential for the execution of autophagic cell death and to understand 

how its unique components are integrated with those of known apoptotic cell death pathways. 

3.4.3 Novel putative PCD genes 

Many genes involved in other pathways, not specifically related to cell death, also 

demonstrated changes in gene expression levels between the three SAGE libraries. Multiple 

other ecdysone- and hormone-inducible genes were differentially expressed. Upregulation of 

several translation initiation, elongation, and termination factors is consistent with the concept 

that autophagic cell death requires active protein synthesis. Multiple transcription factors, 

including several with no known function in Drosophila, were differentially expressed between 

timepoints. Components of multiple signal transduction pathways, including genes related to 

cytoskeletal remodelling, Ras, and defense response signaling, changed in expression level, 

indicating what is likely to be a complex interplay of pathways in autophagic death. 
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In addition to assigning a possible new role to genes already annotated functionally, we 

have implicated in the autophagic cell death process more than 732 differentially expressed 

genes with unknown function. As these genes change significantly in expression during stages 

leading up to cell death, their expression implicates them as having a role in salivary gland death, 

either directly or indirectly. 377 of these differentially expressed genes were unpredicted and 48 

of these are represented solely by our salivary gland ESTs. 

3.4.4 Conclusions 

This work has demonstrated the value of large-scale expression data for examining gene 

expression patterns in Drosophila, and the utility of analysing SAGE and EST data for 

identification of novel genes. The genes observed and differentially expressed indicate that 

programmed cell death in the Drosophila salivary gland utilizes components of both the 

apoptosis and autophagy systems, and suggests a complex regulation of this process by multiple 

signalling pathways. A major challenge is to identify which genes, both previously described and 

newly discovered, are likely to play an important role in the autophagic cell death process. One 

computational approach to this analysis is to examine the human homologs of these genes, not 

only in terms of function but also in terms of expression, to identify which genes have expression 

patterns consistent with a role in programmed cell death across multiple species. 
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Chapter 4: Identification of PCD genes in Drosophila and cancer gene 
expression data 
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4.1 Introduction 

Programmed cell death (PCD) is essential for cell homeostasis, and cells which lose the 

ability to initiate or execute this process have the potential to grow in an uncontrolled manner. 

Genes involved in the apoptosis pathway are commonly altered in sequence or expression in 

cancers, as inhibition of this pathway is one of the necessary steps in oncogenesis. However, the 

pathways regulating cell death are complex, and in many cases the genes that are most relevant 

to oncogenesis are unknown. There is great potential for the use of gene expression data to 

identify the relevant genes and pathways which are altered in cancers. In mammals, post-

transcriptional regulation at the translation or protein activity level is widespread and thus 

changes in mRNA levels alone can be insufficient to identify active pathways. However, the 

widespread gene deregulation that occurs in cancers can cause genes normally regulated at the 

protein level, such as caspases, to change in expression at the mRNA level and thus be detectable 

by analysis of differential gene expression (Takita et al. 2000). 

In this chapter, I aim to identify genes involved in regulation or execution of PCD, 

specifically those which are altered during oncogenesis either by activation or suppression. The 

larval salivary glands of Drosophila melanogaster undergo programmed cell death during 

development in a concerted, precisely timed, transcriptionally regulated manner, making this 

tissue an ideal system in which to identify genes involved in PCD by gene expression analysis. 
i 

As PCD is altered in cancer and conserved from Drosophila to humans, genes which are 

differentially expressed during cancer development and have orthologs differentially expressed 

during Drosophila PCD are candidate PCD-related genes with involvement in oncogenesis. 

Using SAGE data as described in Chapter 3, genes differentially expressed during Drosophila 

PCD were identified. Human orthologs for these Drosophila genes were found, and the 
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Drosophila SAGE tags linked to their human SAGE tag counterparts. The expression of human 

SAGE tags was compared in cancerous and non-cancerous libraries representing a variety of 

tissues. Choosing appropriate statistical cutoffs, genes differentially expressed during cancer 

progression with orthologs differentially expressed during Drosophila PCD were identified as 

candidate PCD-related genes. Included in this set were genes with a previously defined role in 

PCD, or an association with PCD or cancer. The genes were classified by functional categories, 

and the functions overrepresented in the candidate gene set determined. The observed functions 

point to a role for several cellular processes related to autophagy in both cancer progression and 

PCD. 

4.2 Methods 

4.2.1 Drosophila PCD expression data 

SAGE libraries were obtained and processed as described in Chapter 3, such that only 

tags of minimum quality 99% and minimum total count of 2 were considered. The A C E D B 

database and associated Drosophila gene annotations and genomic sequence were updated to 

Release 3.1 (Misra et al. 2002). SAGE tags were mapped to genes from this new release using 

methods described in Chapters 2 and 3; tags mapped to ESTs and genomic sequence were not 

considered in this analysis, as no gene predictions are available and so human orthologs of these 

putative novel genes could not be identified. 

Three library vs. library statistical comparisons were performed: 16 h vs. 20 h, 16 h vs. 

23 h, and 20 h vs. 23 h, to identify all genes which changed in timepoints leading up to cell 

death. P-values were determined for each SAGE tag for each comparison using the Audic-

Claverie algorithm used in Chapter 3 (Audic and Claverie 1997). A mysql database was created 

to hold tags, counts, p-values, genes, and associated gene data such as gene functions for easy 
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querying across datasets. Data from a similar experiment on the salivary gland using Affymetrix 

oligonucleotide arrays (Lee et al. 2003), giving gene expression levels at 6 h and 12 h APF (at 

25°C, equivalent to 12 h and 24 h APF at 18°C) and associated p-values for differential 

expression, were also obtained and included in the database. 

4.2.2 Human cancer expression data 

265 human normal and cancer SAGE libraries were downloaded from the Cancer 

Genome Anatomy Project website (http://cgap.nci.nih.gov/) on October 15 2004. From these, the 

libraries included in analysis were (1) not derived from cell lines or cultured cells, (2) short 

SAGE (14 bp tags), and (3) derived from tissues for which both normal and cancer data were 

available. 

SAGE tags were mapped using SAGE Genie (Boon et al. 2002) "best gene for tag" 

mappings linking tags to UniGene entries, downloaded at the same time as the SAGE libraries. 

SAGE Genie was chosen as the mapping method as this database utilizes full-length cDNA 

sequences from the RefSeq and M G C databases as well as mRNAs from GenBank and ESTs to 

compile a set of mappings that takes into account the reliability of each data source. For each 

tissue, a comparison of the expression of each tag in normal libraries vs. cancer libraries was 

done and p-values computed with the Audic-Claverie algorithm, implemented as a command-

line program by Mehrdad Oveisi. RefSeq, LocusLink, and UniGene database identifiers were 

also downloaded from NCBI (June 22 2004) so that SAGE tags could be linked to genes in 

LocusLink and RefSeq databases. SAGE tags, counts, p-values, mapping and library 

information, and all database mapping links were included in the same mysql database used for 

Drosophila data. 
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4.2.3 Drosophila-human orthology 

The InParanoid program (Remm et al. 2001) was used to determine Drosophila-human 

orthologs; this program processes B L A S T results to identify orthologs and paralogs. The 

publicly available InParanoid ortholog pairs for these species were only computed on SwissProt 

sequences, which do not represent the complete set of predicted proteins in Drosophila and 

cannot be completely mapped to NCBI databases used for SAGE tag mapping. Thus, the 

InParanoid software was run locally on compiled sequence sets. 18,489 Drosophila predicted 

proteins (Release 3.1) were extracted from A C E D B , 18691 human RefSeq proteins were 

downloaded from UCSC (ftp://genome.cse.ucsc.edu; April 2003 genome build), and 9478 

predicted yeast proteins were downloaded from the Saccharomyces Genome Database (June 11 

2003). RefSeq proteins were used because they are high quality and full-length. Reciprocal 

pairwise BLASTP comparisons were performed between each species pair, a score threshold of 

50 was applied, the results were input into InParanoid, which identified Drosophila-human 

orthologs with yeast as an outgroup. The output was parsed using a script written by Keith 

Boroevich, and integrated into the mysql database to link Drosophila genes to RefSeq sequences. 

4.2.4 False discovery rate 

To determine a p-value cutoff for differential expression for each of the Drosophila and 

human SAGE library comparisons, a desired false discovery rate (FDR) was chosen and then a 

p-value approximating this FDR determined. A range of p-values cutoffs for Drosophila 

comparisons (0.001, 0.01, 0.05 and 0.1) and human comparisons (0.0001, 0.0005, 0.001, 0.005, 

0.01, 0.05 and 0.1) were applied and the number of genes differentially expressed in each 

comparison determined. The FDR was then calculated for each p-value as described in Storey 

(2002): 
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Estimate of FDR = (# observations not significant) x (p-value cutoff) 

(# observations significant) x (1 - p-value cutoff) 

The actual FDR is different for each of the three Drosophila comparisons and the nine human 

comparisons performed, and so an average FDR for Drosophila and an average FDR for human 

were calculated. An average FDR close to 30% was achieved for Drosophila p-value cutoff of 

0.05 and human p-value cutoff of 0.01. For an average FDR close to 10%, as used in the 

analysis, the Drosophila p-value cutoff was 0.01 and the human p-value cutoff was 0.001. 

4.2.5 Expected proportion of differentially expressed and PCD genes 

To determine whether the overlap between the PCD and cancer sets was greater than 

expected given a random selection of genes, the expected number of human genes in the pcd-

cancer set was determined to be: 

Expected # human genes = (# human genes differentially expressed) x 
(% of all human genes that have Drosophila orthologs) x 
(% of all Drosophila orthologs that are differentially expressed) 

The expected number of Drosophila genes in the pcd-cancer set was determined in an equivalent 

manner. Similarly, the number of human known PCD genes expected to be identified by chance 

in the pcd-cancer set was: 

Expected # human PCD genes = (# human genes appearing in pcd-cancer set) x 
(% of human genes with orthologs that are known PCD genes) 

4.2.6 GO analysis 

Gene Ontology (Ashburner et al. 2000) terms were obtained for Drosophila genes from 

FlyBase (FlyBase Consortium 2002). Human genes were linked to GO terms using 

DiscoverySpace (Varhol, Zuyderduyn et al, unpubl.). For the pie chart of GO terms (Figure 4.3), 
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genes associated with terms below level 4 of the GO hierarchy were mapped to parent terms at 

level 4. 

The GoMiner software (Zeeberg et al. 2003) for identification of overrepresented 

functions in a gene set requires UniProt IDs, and thus Ensembl was used to associate the 

LocusLink IDs of the human pcd-cancer genes with UniProt IDs (as of Oct 26 2004). This set of 

genes was input into GoMiner, and associated GO categories from any of the hierarchies 

(Molecular Function, Biological Process, or Cellular Component) determined. The PCD-

upregulated subset of the pcd-cancer set consisted of genes which (1) increased in expression 

between 16 h and 23 h, or (2) did not change in expression between 16 h and 23 h, and increased 

in expression between 16 h and 20 h. The remaining genes, which decrease in expression in the 

16 h vs. 23 h or 16 h vs. 20 h comparisons, made up the PCD-downregulated subset. In 

GoMiner, each GO category is given a p-value representing the probability that the observed 

number of genes would be associated with that category by chance, based on a Fisher exact test. 

The GO categories with the lowest p-values are the most highly overrepresented. 

4.3 Results 

4.3.1 Drosophila PCD and human cancer expression 

In total 97,027 high-quality SAGE tags were sequenced for the three Drosophila SAGE 

libraries constructed from salivary glands at developmental stages leading up to PCD, at 16 h, 

20 h, and 23 h after puparium formation at 18°C (Chapter 3, Gorski et al. 2003). 2960 of the 

4628 different tags in these libraries could be unambiguously mapped to predicted genes, giving 

a set of 2313 genes expressed prior to cell death in Drosophila. 

SAGE libraries constructed from human cancerous and normal tissues were obtained 

from the Cancer Genome Anatomy Project (Boon et al. 2002). 9.1 million SAGE tags from nine 
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tissues were included in analysis, with the largest proportion of tags derived from brain and 

breast samples (Table 4.1). Of the 541325 different tag species, 233614 were unambiguously 

mapped to 40213 human UniGene identifiers using CGAP's SAGE Genie tool (Boon et al. 

2002). These corresponded to 16655 LocusLink records, which approximates the number of 

genes. 

Orthologous genes between the Drosophila and human genomes, those thought to be 

derived from a common ancestor and thus expected to have related function, were identified 

using the InParanoid algorithm (Remm et al. 2001) using yeast (Saccharomyces cerevisiae) as an 

outgroup. This identified 5792 Drosophila genes which were putative orthologs of 8723 human 

genes. Cases where more than one human gene was associated with a Drosophila gene could 

arise from gene duplication since the divergence of the human and Drosophila lineages. 

Table 4.1 Tissues and SAGE libraries from CGAP used for analysis of cancer expression. 

Tissue Brain Breast Colon Kidney Lung Pancreas Peritoneum Prostate Stomach Total 

N* Libraries 9 8 2 1 1 1 1 2 2 27 N* 
Tags" 769K 446K 98K 41K 89K 22K 54K 123K 51K 1.693K 

C* Libraries 69 22 2 1 3 2 1 3 4 107 C* 
Tags 5.364K 1.255K 97K 100K 159K 67K 33K 154K 249K 7,478 

T* Libraries 78 30 4 2 4 3 2 5 6 134 T* 
Tags 6.133K 1.701K 195K 141K 248K 89K 87K 277K 300K 9.171K 

* N-Normal, C=Cancer, T=Total 
** "K" refers to thousands of tags 

4.3.2 Differentially expressed genes 

To identify genes which change in expression in both PCD in Drosophila and in cancer, 

the genes differentially expressed in each system need to be identified, orthologs linking them 

established, and the overlap between the two systems determined. Each Drosophila and human 

SAGE tag was assigned a p-value for each library comparison; three pairwise comparisons 
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between the three Drosophila libraries were performed, and nine normal vs. cancer comparisons 

were performed, one for each human tissue. Comparisons were not done across tissues, as 

substantial, non-cancer related differences in gene expression would be expected. Based on the 

distribution of p-values obtained, a p-value cutoff of 0.01 for Drosophila tags and 0.001 for 

human tags was chosen, to correspond with a false discovery rate of approximately 10% (see 

Methods). This indicates that for each species, the chance that a gene will be identified as 

differentially expressed when in fact there is no real difference and the apparent difference is due 

to chance is estimated to be 10% or 0.1. These p-value cutoffs resulted in 426 Drosophila genes 

and 4509 human genes identified as differentially expressed. 

Using the orthologs as identified above, and linking between the UniGene and RefSeq 

databases, the genes that are differentially expressed in both Drosophila PCD and human cancer 

were identified. In total, 171 human genes, orthologous to 143 Drosophila genes, changed in 

expression in both systems, hereafter referred to as the "pcd-cancer set" (full listing of genes and 

expression at http://sage.bcgsc.ca/tagmapping/pcd cancer table.txf). This set contains 2-fold 

more genes than expected by chance, given the number of genes differentially expressed in each 

system and the number of orthologs (see Methods), indicating the two processes of PCD and 

cancer have significant overlap. The most common pattern in this set is opposite expression in 

PCD and cancer; 48 human genes upregulated in cancer have orthologs downregulated in PCD in 

Drosophila, and 18 human genes are downregulated in cancer with counterparts upregulated in 

PCD (Figure 4.1). This suggests that overall PCD is likely to be inhibited in cancer. The 44 

genes which show the same direction of change in PCD and in cancer may have more complex 

roles, or may represent pathways within tumors that are actively attempting to prevent tumor 
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growth. 61 genes are both up- and down-regulated in cancer in different tissues, indicating the 

variety of responses to cancer and the variety of pathways that may be active in different tissues. 

Upregulated J 
in PCD | 

Downregulated J 
in PCD 

Upregulated in cancer Downregulated in cancer 

Figure 4.1 Expression categories of human pcd-cancer genes. 
The 171 human genes in the pcd-cancer set were divided into categories based on their expression in cancer 
and the expression of their Drosophila orthologs in PCD. Genes shown in both circles were upregulated in 
cancer in one or more of the nine tissues examined and also downregulated in one or more tissues. 

4.3.3 Roles of genes in PCD and cancer 

Gene annotations and Gene Ontology terms were searched to identify 434 human and 50 

Drosophila known programmed cell death genes in the respective genomes. Three of the human 

genes in the pcd-cancer set were in this list of known human PCD genes: PRKAG1, a subunit of 

the A M P K kinase involved in the regulation of autophagy (Samari and Seglen 1998), SGPL1, 

involved in ceramide-induced apoptosis (Reiss et al. 2004), and IkBa, a pro-apoptotic molecule 

(Castro-Alcaraz et al. 2002). Two of the Drosophila genes in the pcd-cancer set were in the list 

of known Drosophila PCD genes: Sec61a, involved in neuronal cell death (Kanuka et al. 2003), 

and BR-C, an early gene in ecdysone death signaling (Jiang et al. 2000) that was identified in my 
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analysis as orthologous to a human transcription factor that controls cell proliferation and death 

(Kamio et al. 2003). In both cases, the number of known PCD genes identified is not 

significantly greater than expected by chance given the size of the pcd-cancer set. This analysis 

was repeated based on Affymetrix microarray data from the Drosophila salivary gland (Lee et al. 

2003) in place of the SAGE data, similarly identifying differentially expressed genes and human 

orthologs, and again no more known PCD genes were identified than expected by chance (data 

not shown). 

Many genes, although not core components of PCD pathways, have been associated with 

cell death in literature. For instance, a gene may induce cell death when overexpressed or 

knocked out, but the mechanism may be unknown. Brief annotation and literature database 

searches were performed for each of the 171 human genes in the pcd-cancer set to identify which 

genes had been associated with cell death in this way. Similarly, implied roles in cancer, for 

example inhibition or promotion of tumor cell growth, involvement in translocations, or 

mutations in tumor cells were investigated. The majority of genes in the pcd-cancer set have 

some known function, and a significant portion of these were associated with cell death or cancer 

in the literature (Figure 4.2). 
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Known function 

Role in PCD Role in cancer 

Figure 4.2 Categorized roles of human genes in pcd-cancer set as found in the literature. 
Searches of PubMed and other NCBI databases for each gene identified genes associated with cell death or 
cancer in previous experiments. Genes marked as no known function have not been studied at a molecular 
level. 

4.3.4 Functional categorization and overrepresentation 

To understand the cellular pathways and functions represented by the human genes in the 

pcd-cancer set, the Gene Ontology (GO) Biological Process terms associated with each gene 

were determined. 101 of the 171 genes had such annotated functions, representing a wide range 

of cellular pathways (Figure 4.3). Processes such as protein metabolism and biosynthesis appear 

highly represented, but this is partly due to the unequal nature of the GO hierarchical tree 

classification, where some processes are more highly represented due to a greater level of study 

or a difference in the branching pattern of the tree (e.g. some parts of the tree branch greatly near 

the root, while others branch at levels further down the hierarchy). 

To gain an unbiased view of the functions in the pcd-cancer set, the functions most 

overrepresented in the set were identified using the GoMiner software (Zeeberg et al. 2003). This 

analysis takes into account the unequal distribution of genes and GO terms in the GO hierarchy, 
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and determines which GO terms are found associated with genes in a gene set more often than 

would be expected by chance. Terms and functions thus enriched in the pcd-cancer set are more 

likely to represent pathways altered in the systems under study. The pcd-cancer set, limited to 

168 genes with UniProt IDs for use in GoMiner, was divided into two categories: a PCD-

upregulated set of 110 human genes whose Drosophila homologs are upregulated in PCD, and a 

PCD-downregulated set of 58 human genes whose Drosophila homologs are downregulated in 

PCD. 121 genes were found to have at least one GO term in any GO category (Biological 

Process and others). A summary of the categories of genes found to be enriched in each set are 

shown in Table 4.2. Cathepsins, lysosomal proteins, and cytoskeletal proteins were primarily 

downregulated in cancers. Ribosomal proteins were found to be enriched both in the pcd-

upregulated and the pcd-downregulated sets, as well as in several cancers. Metalloprotease 

inhibitors (TIMPs) changed in expression in cancers of multiple tissues: they are upregulated in 

brain and pancreatic cancer, and downregulated in lung and prostate cancer. Carbonic anhydrases 

and V-ATPases also showed varied expression in cancers of different tissues. 
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organismal movement 
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electron transport 

organic acid metabolism 
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organogenesis 

coenzyme metabolism 
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sexual reproduction 
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response to external 
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cell motility 

Figure 4.3 Functions associated with human genes in the pcd-cancer set. 
The proportion of 101 genes associated with each GO Biological Process term were determined, and terms at 
level 4 of the GO hierarchy are shown. 70 genes did not have an associated GO Biological Process term. 

Table 4.2 Functions overrepresented in the pcd-cancer set. 

PCD-upregulated subset PCD-downregulated subset 
Cathepsins and lysosomal proteins 
Carbonic anhydrases 
Cytoskeletal proteins 
Signaling and adaptor proteins 
Ribosomal proteins 

V-ATPases 
Metalloendopeptidase inhibitors 
Protein carriers 
Ribosomal proteins 
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4.4 Discussion 

In this study I took a novel approach to understanding the cellular pathways important in 

cancer by combining expression analysis with cross-species similarity information to pinpoint 

genes altered in both programmed cell death and cancer. Human orthologs of Drosophila genes 

differentially expressed during salivary gland PCD were identified and the expression of these 

genes determined in cancers of nine tissues. 171 human genes and 143 Drosophila genes were 

found to be differentially expressed in both systems, and these are candidates for involvement in 

cancer through a function in PCD. Although few of these genes were found to be core 

components of apoptosis or autophagy pathways, a significant proportion are associated with 

cancer or cell death in the literature. The genes represent a wide range of functions, and the 

functions overrepresented in the set point to pathways regulated in both programmed cell death 

and cancer. 

4.4.1 Cross-species integration 

Model organisms are an essential aspect of molecular biology, allowing experiments that 

are inappropriate or impossible to perform in humans or mammals to be carried out in other, 

often simpler, organisms. Advent of genomic technologies has only increased the utility of such 

models, as comparative genomics allows identification of genes, regulatory sequences, and other 

genomic features (Ureta-Vidal et al. 2003). My approach expands the concept of model organism 

analysis to include analysis of expression data in multiple organisms concurrently. The 

Drosophila salivary gland has advantages as a model of programmed cell death that are not 

available in mammalian systems. The method used here directly applies gene expression studies 

in Drosophila to the much more complex system of cancer in humans, of which programmed cell 

death is one aspect, and thus permits the identification of genes involved in both processes. Some 
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previous work has been done using this concept, for instance, for identification of genes involved 

in breast cancer by concurrent analysis of mouse and human SAGE data (Hu et al. 2004), but 

overall cross-species analyses of genome-wide data have rarely been applied to gene expression. 

Cross-species analysis presents several difficulties which must be considered. It is 

estimated that over half a billion years has elapsed since the divergence of human and 

Drosophila lineages (Hedges et al. 2004), during which time varying evolutionary requirements 

can result in multiple gene deletions, duplications, and mutations and thus make identification of 

true orthologs, rather than paralogs, difficult. The InParanoid algorithm is specifically designed 

to account for such complexities, as it takes into account all relevant gene-gene distances both 

between and within genomes (Remm et al. 2001). Indeed, several cases examined in detail 

showed that given the sequence alignments, the ortholog relationship found appeared most likely 

to be correct. However, as the full complement of human genes, and to a lesser extent 

Drosophila genes, is not yet determined, in some cases the correct ortholog relationship may not 

be discovered. In addition, even when genes are orthologous, there is no certainty that the genes 

perform the same function in both organisms; the pathway may serve a different purpose, or the 

gene's activity may have changed. Thus, absolute inferences cannot be made about the role of 

human genes in cases where their orthologs are involved in programmed cell death. However, 

given the similarities in the known pathways of apoptosis and autophagy in humans and 

Drosophila, in many cases the results are expected to be relevant to both systems. 

4.4.2 Functions of genes in PCD and cancer 

2-fold more genes were found in the pcd-cancer set than expected given the number of 

genes identified as differentially expressed in the PCD and cancer systems individually; this 

overlap indicates commonality between these processes. Similarly, the observation that a higher 
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proportion of genes have opposite expression tendencies in cell death and in cancer points to an 

inhibitory role for cell death processes in cancer, consistent with current understanding as 

discussed in Section 1.3. If the observed decrease in expression of genes in cancer is due to a 

mutation associated with cancer progression, those genes are potential tumor suppressors; 

similarly, genes that increase in expression have the potential to be oncogenes. 

However, it is notable that the pcd-cancer gene set is not enriched for genes involved in 

programmed cell death, as might be expected given that their expression in Drosophila indicates 

a potential role in this process. There are several issues that may contribute to this. It is not 

expected that all programmed cell death genes would be regulated at the transcriptional level. In 

Drosophila, many are, and in cancer, many genes that are normally regulated post-

transcriptionally are altered in expression due to drastic changes in gene regulation caused by 

mutations in cancer. However, genes not regulated at the mRNA level in both systems would be 

excluded from this analysis. Also, many of the genes known to be involved in programmed cell 

death are expressed at very low levels in the Drosophila SAGE libraries (see Chapter 3), and 

therefore do not have the opportunity to be recognized as differentially expressed. Analysis of 

Affymetrix oligonucleotide array data from the same tissue (Lee et al. 2003) gave similar results. 

This is a common problem in quantitation of gene and protein expression, as frequently 

molecules such as transcription factors which can have the greatest influence on cellular 

activities are expressed at levels that make them difficult to detect. Our analysis suggests that it 

is not the core PCD pathways that undergo the most dramatic changes in gene expression in 

cancer, but associated pathways which also have the potential to be important in controlling 

cancer cell survival and cancer progression. 
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Many of the genes identified in the pcd-cancer set have a previous association with cell 

death or cancer (Figure 4.2). Our analysis suggests that the genes with known roles in cancer 

may act through effects on PCD-related cellular processes. It also implicates a number of other 

genes as having a role in cancer, when no such role was previously described, and suggests that 

these genes may also function through PCD. In future, it would be beneficial to examine the pcd-

cancer set for enrichment of known cancer genes as well as known programmed cell death genes, 

using a defined set of known cancer genes such as compiled in a recent cancer census (Futreal et 

al. 2004). 

Several classes of genes in the PCD-upregulated subset (Table 4.2) are related to the 

process of autophagy. Cathepsins and other lysosomal proteins are responsible for the 

degradation of cellular proteins and organelles in the autolysosome (reviewed in Bursch 2001), 

and cytoskeletal proteins are necessary for the large amount of vesicular movement involved in 

autophagy (Bursch et al. 2000). Carbonate anhydrases and V-ATPases are responsible for 

cellular pH regulation, and proper acidification of vesicles is required for autophagy (Yamamoto 

et al. 1998). pH regulation is also particularly important in hypoxic cells, and V-ATPase 

expression can prevent apoptosis due to cellular acidosis (reviewed in Izumi et al. 2003). 

Multiple signaling pathway components and adaptor proteins were identified in the pcd-

cancer set, several with no known function; not surprisingly, this suggests that cell signaling is 

important both in PCD and in cancer. Interestingly, several metalloendopeptidase inhibitors 

(TIMPs) were identified as downregulated in PCD and changing in expression in cancer. TIMPs 

inhibit matrix metalloproteases which promote metastasis by breaking down the extracellular 

matrix. Although this activity could suppress tumorigenesis, the role and expression of TIMPs is 

complex (Noel et al. 2004), and they have also been described as anti-apoptotic (Hojilla et al. 
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2003). The downregulation of these genes during PCD in Drosophila and upregulation in cancers 

of the brain and pancreas suggests that their role in apoptosis may be important in cancer. 

Functions associated with ribosomes and protein synthesis were found to be enriched 

both in the pcd-upregulated and the pcd-downregulated sets. This may reflect a potential bias in 

this analysis, as genes which are highly conserved will be more likely to appear as orthologs and 

thus become highly represented in the pcd-cancer set. Many genes involved in basic cellular 

processes, such as ribosomal proteins, are also often highly expressed and therefore more likely 

to be differentially expressed in any system. Their appearance in this set, as well as in many 

other studies of gene expression, may simply reflect these properties. However, changes in 

expression of genes associated with protein translation, including ribosomal proteins, may 

actually be related to changes in cellular growth pathways (Martin et al. 2004) and thus may 

truly be an important indicator of changes in pathway regulation. 

4.4.3 Conclusions 

My novel cross-species analysis of programmed cell death in cancer demonstrates the use 

of genome-scale data from multiple systems to better understand the roles of genes and pathways 

in complex processes. Such potentially powerful approaches are likely to become more common 

as the amount of genome, gene expression, and other large-scale molecular data increases and 

demands new analysis methodologies. The results described here suggest that pathways 

associated with autophagy may be regulated in cancer, and thus point to the importance of 

studying autophagy gene expression in cancer. 
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Chapter 5: The autophagy gene MAP1LC3B in cancer 

A version of this chapter has been submitted for publication. 

Pleasance, E.D., Jones, S.J.M, and Gorski, S.M.. 2005. The autophagy gene MAP1LC3B 
downregulated in multiple human cancers. Manuscript submitted. 
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5.1 Introduction 

Cancer is characterized by multiple molecular genetic alterations, including changes in 

growth regulation, cellular aging, and cell death pathways (reviewed in Hanahan and Weinberg 

2000). Recently, the cellular mechanism of autophagy has been implicated in cancer, and 

represents an additional pathway whose modulation potentially impacts cancer progression 

(Edinger and Thompson 2003). However, the role of autophagy in cancer is enigmatic; there is 

evidence for its role in cancer inhibition through regulating cell growth and death, but also for 

contributing to cancer cell survival in conditions of nutrient- or oxygen-limitation or 

chemotherapy and radiation (reviewed in Ogier-Denis and Codogno 2003). The gene Beclin 1, 

which is essential for autophagy, has been demonstrated to be a tumor suppressor which can 

influence cell growth and tumorigenesis in cell lines and mice (Qu et al. 2003; Yue et al. 2003). 

To date, no other autophagy genes have been specifically studied in cancer. 

To initiate further investigation into the role of autophagy in cancer and examine 

autophagy's possible dual role in oncogenesis, I describe in this chapter a comprehensive gene 

expression approach utilizing publicly available data. This approach was chosen and the analysis 

focused on the gene MAP1LC3B, or LC3, because previous studies indicated LC3 is the only 

autophagy gene demonstrated to be transcriptionally regulated in mammals. LC3 is.indeed 

unique in this regard since regulation of other mammalian autophagy genes is not known to be at 

the transcriptional level. The localization of the LC3 protein to autophagosomes is used as a 

marker for autophagy (Mizushima et al. 2004), and importantly the level of expression of LC3 

mRNA is correlated both with this localization and with onset of autophagy (Kanzawa et al. 

2004). Additionally, transcriptional regulation of LC3 is evolutionarily conserved. The yeast 

LC3 homolog Atg8 is transcriptionally regulated in autophagy (Kirisako et al. 1999), multiple 
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Arabidopsis thaliana Atg8 homologs show increased expression during starvation when 

autophagy is observed (Rose et al. 2005), and expression of the Drosophila melanogaster LC3 

homolog CG32675 correlates with autophagy in the midgut (E. Pleasance, based on data from L i 

and White 2003) and fat body (G. Juhasz and M . Sass, unpublished data), and autophagy stimuli 

including starvation and chemotherapeutic treatment increase LC3 expression in human systems 

(Kanzawa et al. 2004; Kanzawa et al. 2005; Nara et al. 2002). This conservation suggests that 

transcriptional control is an important mechanism of regulating LC3 function. Together, the 

above observations suggest that levels of LC3 gene expression correlate with autophagy levels. 

Thus, the expression patterns of LC3 not only may provide insight into the roles of LC3 itself, 

but also may provide insight into the possible roles of autophagy in different cancerous tissues, 

subtypes and stages. Results show that LC3 is indeed differentially expressed in multiple 

cancers, consistent with the tissues in which Beclin 1 effects are seen. 

5.2 Methods 

5.2.1 Processing of microarray expression data 

Affymetrix oligonucleotide microarray data from Ramaswamy et al (2001) were 

downloaded from the authors' website. LC3 was represented by probes RC_AA283759_at and 

W28106_at on array Hu35KsubA, and Beclin 1 was represented by probe L38932_at on array 

Hu6800, as annotated by NetAffx (http://www.affymetrix.com/analvsis/, March 30 2005). Only 

samples for which comparable normal and cancer tissues were available were considered in this 

analysis. Intensities were provided as absolute readings; values were converted to log(2) and, for 

the two LC3 probes, averaged. Affymetrix oligonucleotide microarray data from Bhattacharjee et 

al (2001) were downloaded from the authors' website. LC3 was represented by probe 39370_at 

on array U95A, as annotated by NetAffx (Feb 10 2005). Intensities were provided as absolute 
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readings, and log(2) was applied. For all cDNA and oligonucleotide microarray data, p-values 

for differences in group means were calculated with two-sample two-tailed Welch's t-tests. 

Two-color cDNA microarray data from Chen et al (2002b) and Sorlie et al (2003) were 

obtained from the Stanford Microarray Database (http://genome-www5.stanford.edu/) as log(2) 

normalized ratios. Both studies used cDNA arrays (Perou et al. 2000), and for all samples 

standardized R N A was used as a reference in hybridization. LC3 was represented by two clones, 

IMAGE:796650 and IMAGE:795604, mapping to UniGene Hs. 121849. It was confirmed by 

B L A S T N that ESTs from these clones correctly align to LC3 RefSeq record NM_022818. The 

average of the log-ratio values for the two LC3 probes was computed. As full-length clones are 

spotted on these cDNA microarrays, there is potential for cross-hybridization of the MAP1LC3B 

probe sequence with other genes. B L A S T N analysis of the LC3 RefSeq sequence compared to 

all RefSeq mRNA sequences identified a -100 bp region of 80% identity between MAP1LC3B 

and LC3A gene sequences, as well as a region of >300 bp of >90% identity between 

MAP1LC3B and two hypothetical genes, only one of which has expression evidence. This 

indicates that a low-to-moderate level of cross-hybridization may be expected (Evertsz et al. 

2001), which could alter the observed hybridization intensities. 

5.2.2 Processing of SAGE expression data 

The LC3 gene was mapped to sequences in the RefSeq, UniGene (via SAGE Genie, 

Boon et al. 2002), M G C , and Ensembl databases using DiscoverySpace (Varhol, Zuyderduyn et 

al, unpubl.). This identified the 14 bp tag (CATG)TGAGTGGTCA, at the 3'-most M a l l l site in 

the 3' UTR, as unambiguously representing the LC3 gene. The tag (CATG)CTGAGGGGTG 

was identified as the next 3'-most tag corresponding to the second N M I I site from the 3' end of 

the LC3 transcript. SAGE libraries were downloaded from the Cancer Genome Anatomy Project 
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website (http://cgap.nci.nih.gov/) as described in Chapter 4. Breast cancer libraries were 

classified based on descriptions in the associated publications (Lai et al. 1999; Porter et al. 2003; 

Porter et al. 2001); libraries that could not clearly be classified were excluded. P-values were 

determined both by summing tag counts in each group and using the Audic-Claverie method 

(Audic and Claverie 1997), which may produce overly optimistic p-values when used on 

summed libraries, and also using a two-sample two-tailed Welch's t-tests, which may be overly 

conservative for SAGE data (Baggerly et al. 2003). 

5.2.3 Tag mapping and EST analysis of secondary LC3 tag 

The 14 bp tag (CATG)CTGAGGGGTG, which corresponds to the M a l l l site just 

upstream of the 3'-most M a l l l site in LC3, also corresponds to an upstream tag in the gene 

FBXW11. This ambiguity was resolved by examining the 15 t h base pair in the ditags (Colinge 

and Feger 2001b) from which the observed SAGE tags were derived. In the LC3 gene, the 

sequence C A T G C T G A G G G G T G is followed by " A " ; in the FBXW11 gene, it is followed by 

" G " . Kornelia Polyak, author of the breast cancer SAGE studies, kindly provided raw SAGE 

sequences. These were processed to extract ditags, and ditags containing the tag of interest that 

were of length 22-26 (30-34 including flanking C A T G sites) were analyzed to determine the 15 t h 

base. In all cases where suitable length ditags were available (between 1 and 6 cases per library), 

the 15 t h base pair was " A " , indicating unambiguous representation of the LC3 mRNA transcript. 

The locations of the primary and secondary LC3 tags in the LC3 3' UTR were visualized 

in the UCSC Genome Browser (http://genome.ucsc.edu/), and it was noted that the tags reside 

-100 bp from the 3' end of the transcript, and only 10 bp separates the two tags. For these two 

tags to be produced legitimately, there must be two forms of the LC3 transcript, one of which 

ends after the secondary tag but before the primary tag. To look for other evidence of such a 
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transcript, which would only differ from the canonical, full-length transcript by ~100 bp, EST 

alignments at UCSC were examined for 3' ESTs which ended between the two tags. 16 such 

ESTs were found, 10 of which had discernable poly-A tails and all of which ended in the short 

region between the two tags. Thus, ESTs and SAGE data indicate that a second, slightly shorter, 

transcript of LC3 is expressed. 

5.3 Results and discussion 

5.3.1 Overview ofLC3 regulation in multiple cancer and normal tissues 

To gain a comprehensive view of LC3 expression in normal and cancer tissues, I first 

examined oligonucleotide microarray data produced by Ramaswamy et al (2001) which profiles 

90 normal and 190 cancer samples obtained from tissue biopsies prior to cancer treatment (Table 

5.1). This dataset is particularly suitable for LC3" expression analysis as the Affymetrix 

oligonucleotide microarray platform used in this study produces consistent results (Nimgaonkar 

et al. 2003), and the LC3 gene can be uniquely identified by probes on this array. In addition, the 

number of cancer and normal samples available for each tissue combined with the variety of 

tissues allows for a comprehensive comparison and statistical assessment of LC3 expression 

patterns. Overall, a trend is observed toward decreased LC3 expression in cancerous tissues, but 

this varies substantially between tissues (Figure 5.1). Decreased LC3 expression (p<0.05, 

Welch's t-test), suggesting a decrease in levels of autophagy, is particularly pronounced in 

cancer of the bladder, colon, breast and ovary. These observations are consistent with reports of 

decreased Beclin 1 protein expression in cancer of the breast and ovary (Liang et al. 1999). 

In contrast to the observation of decreased LC3 expression in some cancers, several other 

cancer types do not show differences in LC3 expression, including brain, kidney, and prostate 

cancers, and leukemias and lymphomas. Overall expression of LC3 in the brain is higher than in 
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many tissues, as has been observed previously (Mizushima et al. 2004; Tanida et al. 2004), but 

no difference in LC3 expression is seen in brain cancer compared to normal brain tissue, or in 

medulloblastoma or glioblastoma subtypes. This is confirmed by my analysis of alternate 

expression data (Boon et al. 2004; Lai et al. 1999; Siu et al. 2001) in medulloblastomas, 

glioblastomas, epyndymomas, astrocytomas, and meningiomas (data not shown). Although 

glioma cell lines have previously been observed to undergo autophagic cell death in response to 

therapy and thus have autophagic capacity (Kanzawa et al. 2004; Kanzawa et al. 2003), there is 

no evidence from LC3 expression for a change in autophagy in gliomas. Similarly, no difference 

in LC3 expression is seen in prostate cancer despite that autophagic death that has been observed 

in the LnCAP prostate cancer cell line in response to neuregulin (Tal-Or et al. 2003). This may 

reflect that, in the absence of certain chemotherapeutic agents, autophagic cell death does not 

occur and thus there is no survival advantage to the cancer cells in reducing autophagy. 

Additionally, there may be a difference between the behavior of cell lines and cancers in vivo; 

indeed, I have observed disparities in LC3 expression in some cell lines compared to bulk 

samples from the same tissue (data not shown). 

In only one tissue, the pancreas, was observed an increase rather than a decrease in LC3 

expression in cancer. The higher expression of LC3 in pancreatic adenocarcinomas compared to 

normal pancreatic tissues may simply reflect an unusually low expression of LC3 in normal 

pancreas compared to any other normal tissue examined. Alternatively, it may indicate that 

expression of LC3 has been elevated, potentially reflecting a different role for autophagy in this 

type of cancer. Although rat pancreatic carcinomas have decreased autophagic capacity, which is 

a different pattern than we observe in human pancreatic adenocarcinomas, early stage rat 

pancreatic cancers show increased levels of autophagy (Toth et al. 2002). This may imply that 
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the proliferation of this type of cancer, which also has a particularly high mortality rate 

(Lowenfels and Maisonneuve 2004), can be enhanced by increased autophagy levels. 
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Figure 5.1 LC3 expression in multiple normal and cancer tissues. 
Expression values are log transformed from Affymetrix oligonucleotide microarray data published by 
Ramaswamy et al (2001). P-values are calculated with a Welch's t-test for each cancer with respect to 
equivalent normal tissue; error bars represent standard error. Number and type of samples represented for 
each tissue are given in Table 5.1. 
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Table 5.1 Composition of normal and cancer samples shown in Figures 5.1 and 5.5. 

Tissue* Cancer status" Type" # Samples 

Bladder 
Normal Normal bladder tissue 7 

Bladder 
Cancer Transitional cell carcinoma 11 

Brain 
Normal 

Cerebellum 3 

Brain 
Normal 

Whole brain 5 
Brain 

Cancer 
Glioblastoma 10 

Brain 
Cancer 

Medulloblastoma 10 

Breast 
Normal Normal breast tissue 5 

Breast 
Cancer 

Breast carcinoma in situ 7 Breast 
Cancer 

Invasive breast carcinoma 4 

Colon 
Normal Normal colon 11 

Colon 
Cancer Colorectal carcinoma 11 

Kidney 
Normal Normal kidney 12 

Kidney 
Cancer Renal cell carcinoma 11 

Leukemia 
Normal 

Peripheral blood polymorphonuclear leukocytes 3 
Leukemia 

Normal 
Peripheral blood monocytes 2 Leukemia 

Cancer Acute myelogenous leukemia 10 

Lymphoma 
Normal Germinal centers 6 

Lymphoma 
Cancer 

Follicular lymphoma 11 Lymphoma 
Cancer 

Large B-cell lymphoma 11 

Lung 
Normal Normal lung 7 

Lung 
Cancer Lung adenocarcinoma 11 

Ovary 
Normal Normal ovary 4 

Ovary 
Cancer Ovarian adenocarcinoma 11 

Pancreas 
Normal Normal pancreas 10 

Pancreas 
Cancer Pancreatic adenocarcinoma 11 

Prostate 
Normal Normal prostate 9 

Prostate 
Cancer Prostate adenocarcinoma 10 

Uterus 
Normal Normal uterus 6 

Uterus 
Cancer Uterus adenocarcinoma 10 

a As in Figures 5.1 and 5.5 
b As described and analyzed in Ramaswamy et al (2001) 

5.3.2 LC3 in cancer stages 

To corroborate and expand on the observations above, I examined complementary 

expression data from different studies, using different expression technologies. In particular, we 

were interested to observe whether there were any stage-specific differences in autophagy gene 

expression in cancers, as one hypothesis is that increased autophagy enhances cancer cell 

survival in early-stage preangiogenic tumors, while later in cancer development autophagy is 

detrimental to cancer cells and may lead to cell death. Breast cancer was of particular interest, as 
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LC3 shows a difference in mRNA expression (Figure 5.1) and Beclin 1 differs in protein 

expression in this tissue (Liang et al. 1999), and Beclin l 's tumor suppressor activity has been 

demonstrated specifically in breast cancer cell lines. Liver and lung cancers were also of interest 

due to the observation of increased rates of these cancers in Beclin 1 knockout mice (Qu et al. 

2003; Yue et al. 2003). 

Data generated from liver cancers (Chen et al. 2002b) shows a decrease in expression of 

LC3 during cancer progression (pO.OOl, Welch's t-test; Figure 5.2), consistent with a 

previously observed decrease in autophagy in liver cancer models (Schwarze and Seglen 1985), 

and the presence of hepatocellular carcinomas in Beclin 1 knockout mice (Qu et al. 2003; Yue et 

al. 2003). Unlike the trend observed in pancreatic cancer (Toth et al. 2002), no increase in 

autophagy in early stages was seen. This liver cancer dataset was derived from cDNA 

microarrays, and unlike oligonucleotide microarrays, the probe design of cDNA microarrays is 

such that the expression of LC3 observed may be influenced by the expression of other genes. 

Even so, the data are consistent with reduced LC3 expression levels in hepatocellular carcinoma. 

127 



- 0 . 5 
* p<0.05 

**p<0.01 
-0 .6 

'35 
c 
o •E -0 .7 A 

> 

** 

> 
< -1.1 -

> V . . ; 

-1.2 
Normal Hyperplasia Carcinoma Metastatic 

Stage 

Figure 5.2 LC3 expression in liver cancer stages. 
Expression values in normal, early, and late-stage liver cancers are averages of two cDNA microarray probes, 
with intensities given relative to reference RNA, from data published by Chen et al (2002b). P-values are 
calculated with a Welch's t-test for each stage relative to normal. Number of samples represented for each 
stage are: 76 (normal), 7 (hyperplasia), 104 (carcinoma) and 7 (metastatic). 

5.3.3 LC3 in breast cancer progression 

To investigate a possible stage-specific role for autophagy in cancer, I analyzed serial 

analysis of gene expression (SAGE) data from breast cancer samples representing cancer 

progression (Lai et al. 1999; Porter et al. 2003; Porter et al. 2001). Genes can have multiple 

SAGE tags that can represent alternative transcripts. For LC3, both the most common SAGE tag 

for LC3 and a secondary tag were sufficiently abundant in both normal and cancerous breast 

libraries to be statistically significant, and our analysis shows that these tags unambiguously 

represent expression of the LC3 gene. Consistent with the data shown in Figure 5.1, levels of 

LC3 were observed to decrease in ductal carcinoma in situ, as well as in invasive and metastatic 

breast carcinomas (Figure 5.3A; p<0.05 for Welch's t-test comparing each stage to normal). 
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Interestingly, however, the secondary SAGE tag for LC3 shows a similar decrease in DCIS and 

invasive stages, but increases again at the metastatic carcinoma stage (Figure 5.3B; p<0.05 for 

Welch's t-test comparing metastatic to DCIS). Additionally, invasive library INV5, which shows 

higher expression of the secondary LC3 tag (Figure 5.3B), is derived from the same patient as 

the metastatic library MET1. Analysis of Expressed Sequence Tag (EST) evidence suggests that 

this secondary SAGE tag represents a shorter version of the LC3 mRNA transcript which lacks 

-100 bp of the 3' UTR (data not shown), possibly due to a difference in usage of 

polyadenylation recognition sequences. This is an example where subtle differences in transcript 

structure can be observed with SAGE, where such differences would be unlikely to be observed 

with microarray technologies. While we cannot rule out the possibility that the difference in 

expression level of the LC3 transcript variant is due to the effects of cancer treatments, there are 

numerous examples of genes with alternative splice forms which are differentially associated 

with cancer progression (Kirschbaum-Slager et al. 2004). 3' UTR sequences are known to 

contain regulatory elements that can control mRNA levels (Yan and Marr 2005), which may 

explain the difference in expression level. The differential regulation of this transcript variant in 

metastatic breast tissue suggests that LC3 may have a different role in different stages in breast 

cancer. 
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Figure 5.3 LC3 expression in breast cancer progression. 
(A) LC3 primary SAGE tag frequency in breast cancer progression SAGE libraries from CGAP (Lai et al. 
1999; Porter et al. 2003; Porter et al. 2001). Each bar represents a SAGE library; libraries are sorted from 
lowest to highest LC3 expression in each category. (B) LC3 secondary SAGE tag frequency in breast cancer 
progression SAGE libraries. Note that INV5 and MET1 are derived from the same patient, and NORM7 
represents a breast hyperplasia. 
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5.3.4 LC3 in cancer subtypes 

I also found evidence for a cancer subtype-specific pattern of LC3 expression. Analyzing 

oligonucleotide microarray data profiling specific histological subtypes of lung cancer 

(Bhattacharjee et al. 2001), a significant decrease in LC3 expression in lung adenocarcinoma was 

observed (Figure 5.4A), which was not significant in the dataset analyzed for Figure 5.1 due to a 

smaller number of samples. Interestingly, the expression of LC3 is not consistent between lung 

cancer subtypes. Small cell lung carcinomas and squamous carcinomas show the greatest 

decrease in expression. In contrast, LC3 expression in carcinoid tumors, a less common and 

lower grade subtype (Kufe et al. 2003), is in fact higher than in normal lung samples. I also 

examined breast cancer expression profiles from cDNA arrays (Sorlie et al. 2003) and found 

differences in LC3 expression in breast cancer subtypes (Figure 5.4B). In particular, significantly 

decreased expression of LC3 in the luminal A subtype is observed; this subtype also shows the 

lowest mortality rate. Results from both of these datasets suggest that autophagy may not only 

have different functions in different cancer stages, but may in fact be differentially regulated in 

different cancer subtypes. 
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Figure 5.4 LC3 expression in lung and breast cancer subtypes. 
(A) LC3 expression in lung cancer subtypes; values are log transformed from Affymetrix oligonucleotide 
microarray data published by Bhattacharjee et al (2001). P-values are calculated with a Welch's t-test with 
respect to normal lung tissue expression for each cancer type; error bars represent standard error. Number 
of samples represented: 17 (normal), 139 (adenocarcinoma), 20 (carcinoid), 6 (small cell), 21 (squamous). 
(B) LC3 expression in breast cancer subtypes; values are averages of two cDNA microarray probes, with 
intensities given relative to reference RNA, from data published by Sorlie et al (2003) where subtypes were 
also defined. P-values are calculated with a Welch's t-test comparing each subtype. Number of samples 
represented for each subtype are: 3 (normal), 6 (normal-like), 28 (luminal A), 11 (luminal B), 11 (ERBB2+), 
19 (basal), 43 (no subtype given). 
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5.3.5 LC3 and Beclin 1 expression 

My observations of LC3, the second autophagy gene to be investigated in cancer, are 

strikingly consistent with the previously reported behavior of the autophagy gene Beclin 1 in 

cancer, and provide strong support for a role of autophagy in this disease. Decreased expression 

of the autophagy gene LC3 in breast, ovarian, lung, and liver cancer was observed, while 

previous work showed that protein expression of the autophagy gene Beclin 1 is decreased in 

breast and ovarian cancer, and that mice lacking one copy of Beclin 1 develop lung and liver 

cancers as well as breast hyperplasias. My analysis thus lends support to the hypothesis that it is 

indeed Beclin l 's role in autophagy that is responsible for its tumor suppressor effects, as the 

major autophagy marker LC3 has an expression pattern suggesting decreased autophagy in 

cancers - and this is observed in the same tissues affected by decreased Beclin 1. Unlike the data 

available for LC3, there is no evidence for transcriptional regulation of mammalian Beclin 1 or 

its yeast counterpart. Analysis of Beclin 1 expression in multiple cancers (Figure 5.5) confirms 

that Beclin 1 mRNA levels are not consistent with protein levels (Aita et al. 1999), and when 

multiple testing is accounted for, the differences in Beclin 1 expression in cancers are 

insignificant. This emphasizes the importance of evaluating protein expression of Beclin 1 when 

studying the role of this gene in autophagy and cancer. 
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Figure 5.5 Beclin 1 expression in multiple normal and cancer tissues. 
Expression values are log transformed from Affymetrix oligonucleotide microarray data published by 
Ramaswamy et al (2001). P-values are calculated with a Welch's t-test for each cancer with respect to 
equivalent normal tissue; error bars represent standard error. Number of samples represented for each tissue 
are given in Table 5.1. 

5.3.6 Conclusions 

In summary, we have analyzed for the first time the autophagy gene LC3 in the context 

of multiple human cancers. We have observed decreased expression of LC3 in several cancers, 

corroborating previous findings with Beclin 1 and indicating that downregulation of autophagy 

may indeed be an important step in oncogenesis. Not all cancers show this difference, suggesting 

that autophagy levels and the potential for autophagic cell death may be an important factor in 

some but not all tumors. We have also observed differences in LC3 expression during cancer 

progression, and in different cancer subtypes, lending support to the hypothesis that autophagy 

may play a dual role in oncogenesis and can be beneficial to cancer cell survival. Overall, these 
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results underline the importance of better understanding the role of autophagy in oncogenesis, 

and point to the modulation of the pathways of autophagy and autophagic cell death as a possible 

means of therapeutic intervention. 
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Chapter 6: Summary and Conclusions 
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6.1 Summary 

This thesis describes the testing of the hypotheses that gene expression analysis can be 

used to identify genes potentially involved in programmed cell death, and that related apoptosis 

and autophagy genes play a role in Drosophila PCD and cancer; additionally, this work 

generates further hypotheses regarding the involvement of other genes in these processes. The 

aims of this work were therefore to develop and utilize methods for large-scale gene expression 

analysis, and identify genes and pathways regulated in programmed cell death and cancer. 

Methods for analyzing SAGE data and assessment of SAGE for gene identification were 

described and shown to be more effective than other available approaches. These methods were 

applied to expression data describing programmed cell death in the Drosophila salivary gland. 

The PCD-associated genes identified as differentially expressed in this analysis were used in 

conjunction with large-scale expression data from human cancers in an analysis of the role of 

programmed cell death in oncogenesis. Additionally, multiple datasets were examined for 

expression of the autophagy marker LC3. These analyses identified genes and pathways with 

potential roles in PCD and cancer. 

6.2 Large-scale gene expression analysis with SAGE and other techniques 

6.2.1 Measurement and comparison of gene expression 

For large-scale gene expression analysis methods to be successful, correct identification 

of the genes under study is necessary. I found that the standard SAGE procedure has the ability 

to profile and unambiguously identify all but 7-20% of the transcriptome, depending on the 

organism under study. Use of different anchoring enzymes or use of longer SAGE tags reduces 

this intractable fraction to only 5-10% of genes. The ideal SAGE tag length and enzyme differs 
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for each organism; for instance, longer tags are more beneficial in analysis of human genes than 

in Drosophila. The ability of microarrays to correctly identify genes is not inherent to the 

procedure, as it is for SAGE, but is greatly dependent on the probes placed on the microarray. In 

the analysis of cDNA microarray data for the study of autophagy in cancer, it was noted that the 

probes corresponding to the gene of interest had the potential to match other genes as well, 

making unambiguous gene profiling difficult. 

The vast repositories of gene expression data continuously being collected in databases 

such as the SAGE catalog at the Cancer Genome Anatomy Project or the array data in the 

Stanford Microarray Database provide an opportunity to study cellular pathways by data mining. 

Comparison of expression across experiments performed in different contexts is necessary to 

make full use of this data. This is difficult when analyzing microarray data, especially if the array 

probe design is not identical or different references are used for cDNA arrays. As such, in the 

examination of LC3 expression in cancer, the analysis looked at each microarray experiment 

individually rather than analyzing the results collectively; this can reduce the power of an 

analysis, but has advantages such as reduced variability due to differences in procedures. SAGE 

data, on the other hand, does not depend on array design and does not require a reference; SAGE 

tag counts are absolute and easily normalized to library size. These properties allowed direct 

comparison of breast cancer SAGE data from multiple publications, and the success of this 

comparison was demonstrated by the consistency of expression of the LC3 autophagy gene 

across different SAGE libraries representing the same stage of breast cancer and the significant 

differences between stages. Similarly, SAGE libraries from multiple cancer and normal tissues 

were mined for differential gene expression, and the genes found linked to genes differentially 

expressed in Drosophila PCD. In addition to variability in gene expression due to technical 
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issues or conditions, however, the contribution of biological variability due to differences 

between individuals or individual occurrences of cancer must be recognized, as many differences 

may be measured that may or may not be relevant to the system under study. Recognizing the 

most relevant expression changes in any system will require continued collection and further 

refined analysis of gene expression data. 

6.2.2 Novel genes and alternative transcripts 

Despite intense research focused on gene discovery and genome annotation, the entire 

gene complement of any organism is not yet established. SAGE and EST analyses have the 

potential for novel gene discovery to aid in genome annotation, while typical microarrays 

representing only known genes do not. Indeed, analysis of Drosophila salivary gland SAGE and 

EST data identified many potential novel genes. With an equivalent amount of sequencing, 

SAGE has a greater potential to identify novel genes than do ESTs, due to greater depth of 

sampling which reaches genes expressed at lower levels. Many genes of interest in the 

Drosophila salivary gland are observed at levels of less than 5 tags. A significant proportion of 

Drosophila salivary gland ESTs did not correspond to known or predicted genes and could be 

mapped directly to the genome. Drosophila SAGE tags could be used to confirm expression of 

potential novel genes by mapping directly to ESTs, and in a limited fashion could be mapped 

directly to the genome, identifying potential novel expressed transcripts. In smaller genomes 

such as that of Drosophila, mapping 14 bp SAGE tags directly and uniquely to the genome is 

possible in approximately 60% of cases, while in larger vertebrate genomes this is not practical 

unless longer SAGE tags are used. The finding that only 55-65% of Drosophila SAGE tags 

could be mapped to genes, and less than half of human SAGE tags in CGAP could be mapped 
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unambiguously, underscores the possibility that there are a large number of expressed transcripts 

which are not yet annotated. 

In addition to the potential number of unannotated gene loci, many alternative transcripts 

for known genes may not yet have been described. Alternative splicing and alternative 5" and 3' 

ends increase the number of different transcripts and proteins that can be derived from coding 

sequences in the genome. cDNA microarrays have little potential for identifying alternative 

transcripts, as different transcripts are likely to cross-hybridize. Oligonucleotide microarrays, 

depending on probe design, can potentially target specific transcripts. SAGE has the potential to 

distinguish alternative transcripts if the variation occurs near the 3' end of the gene. In mapping 

of Drosophila SAGE tags, the ratio of mapped tags to genes was approximately 1.1:1. The 

situation is even more extreme in human tag mapping, where hundreds of thousands of tags 

mapped to tens of thousands of genes. This indicates that multiple SAGE tags are extracted from 

each gene, which may be accounted for in part by alternative transcripts. Indeed, SAGE data 

from breast cancers not only identified an alternative, shorter LC3 transcript, but indicated a 

difference in expression of this transcript in metastatic breast cancer. Continued research into 

identifying both novel genes and novel transcript forms through analysis of large-scale 

expression data will be necessary for the understanding of cellular regulatory networks. 

6.3 Genes and pathways associated with programmed cell death 

6.3.1 In Drosophila 

Changes in gene expression measured by SAGE in the Drosophila salivary gland 

indicated that significant transcriptional changes are associated with programmed cell death, and 

that genes known to be involved in autophagic PCD and apoptosis are expressed and 

transcriptionally regulated. Transcriptional profiling using both ESTs and SAGE was successful 
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in detecting expression of the ecdysone-triggered transcriptional cascade known to regulate PCD 

in the salivary gland. Several of these genes were expressed at very low levels, however, 

indicating that much of the control of PCD may be exercised by genes whose differential 

expression is difficult to measure; accordingly, some of the many genes that were not found to be 

differentially expressed due to low expression levels may also play important roles in PCD. 

Interestingly, in addition to expression of autophagy genes (discussed in Section 6.4.1), many 

apoptosis genes including multiple caspases, that were not previously known to be involved in 

salivary gland cell death were expressed prior to autophagic PCD. Death of the salivary gland, 

although it is autophagic as demonstrated by the accumulation of autophagic vacuoles, 

cytoskeletal rearrangements, and degradation with little phagocyte involvement, shows marked 

apoptotic features such as cytoplasm and D N A fragmentation (Jiang et al. 1997; Lee and 

Baehrecke 2001; Martin and Baehrecke 2004). Interestingly, caspase inhibitors that prevent 

apoptosis also prevent complete salivary gland destruction, but do not avert autophagic vacuole 

formation and rearrangements of the actin cytoskeleton (Martin and Baehrecke 2004). The nature 

of the relationship between apoptosis and autophagy is not known. The two pathways may be 

independent but triggered by the same upstream signal; for instance, the E93 transcription factor 

is required for both autophagic and apoptotic morphologies (Lee and Baehrecke 2001). 

Alternatively or additionally, there may be direct crosstalk between the pathways, as is suggested 

to be the case in mammals (Yu et al. 2004). The changes in expression of ecdysone cascade 

genes, autophagy genes, and apoptosis genes suggest an intriguing picture whereby both 

autophagy and apoptosis are required to correctly and completely remove a tissue by PCD. 

Nearly one quarter of the transcripts expressed in the Drosophila salivary gland in stages 

prior to cell death show changes in expression, pointing to a vast reorganization of the 
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transcriptome preceding PCD. Most likely transcriptional control is mediated in part by the 

activity of many transcription factors which are observed at low levels and peak several hours 

before death is initiated. There may be additional upstream factors that peak at even earlier time 

points and so were not observed in the time frame examined, as is probably the case with the 

ecdysone cascade initiators EcR/USP and PFTZF-1. These various regulators act on downstream 

pathways such as those controlling protein synthesis and defense responses, and possibly trigger 

signaling through kinase cascades including the protein kinase A and Ras pathways. Future 

research may determine the role of each of these transcription factors and interaction of these 

signaling pathways in cell death. Not surprisingly, it seems the death of an entire tissue is 

complex and requires significant cellular changes and regulation. 

6.3.2 In cancer 

Transcriptional profiling of cancers has become increasingly common, and is carried out 

with goals of identifying pathways which are altered and understanding the underlying causes of 

these alterations for the purposes of diagnosis and therapy. M y analysis of SAGE data indicates 

thousands of human genes are altered in expression in cancers of various tissues, representing a 

broad spectrum of cellular functions. Given the number of changes observed, recognizing the 

pathways that are related to a specific cellular process such as PCD can be difficult. Using the 

better defined system of the Drosophila salivary gland as a filter to pick out genes more likely to 

be involved in PCD, my approach identified genes known or suspected of being involved in cell 

death that are changed in cancer. Additionally, pathways related to pH regulation, the 

cytoskeleton, protein synthesis, and metalloprotease regulation were implicated in cell death. 

Although some changes are consistent between cancers of different tissues, in other cases 

a gene may show a significant increase in expression in some cancers, and a significant decrease 
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in others. This may reflect tissue-specific differences that are not directly relevant to the cancer, 

for instance, a higher or lower basal level of activity of a pathway in that tissue. Alternatively, 

such differences could be related to variations in cellular environments and growth requirements 

in different tissues. They may also be specific to the individual cancer or the individual patient, 

especially in cases where only one or two SAGE libraries, derived only from one or two patients, 

were available to represent a tissue. The large number of changes observed which are common to 

multiple cancers represent common mechanisms in cancer which are the most promising targets 

for generally applicable therapies, whereas genes that behave significantly differently between 

individuals suggest targets that would require individualized therapies. In future, application of 

this filtering principle with other gene expression datasets, possibly focused on mammalian 

systems, may be a powerful tool for dissecting pathway deregulation in cancer. 

6.4 Roles of autophagy in P C D and cancer 

6.4.1 In Drosophila PCD 

Large-scale expression data, both from our Drosophila EST and SAGE libraries and from 

co-published microarray data (Lee et al. 2003) provided the first direct evidence for expression 

of multiple Drosophila homologs of yeast autophagy genes in salivary gland PCD. Many genes 

in the autophagy pathway were observed and several were differentially expressed, indicating 

that the majority of the putative autophagy pathway is present and active in the Drosophila 

salivary gland. Though this pathway has not until recently been examined in detail in Drosophila 

(Scott et al. 2004), it is thought to function similarly to the yeast pathway in regulating the 

formation of autophagic vacuoles, which then engulf and degrade cytoplasmic contents. Not 

surprisingly, significant changes in the expression of cytoskeletal genes are observed in the 

SAGE libraries, as the cytoskeleton is required for the increased vesicular movement in 
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autophagy. Autophagy is observed in situations where, as in the death of the salivary gland, an 

entire tissue must be removed simultaneously. Death through apoptosis produces apoptotic 

bodies which must be removed by phagocytes, whereas death by autophagy internalizes much of 

the required cellular degradation, leading to more efficient destruction and removal of the tissue. 

To what extent the activity of the autophagic pathway itself is responsible for cell death is as yet 

an unanswered question. 

6.4.2 In cancer 

Evidence for the important role of autophagy in cancer is growing. My analysis of the 

LC3 gene has supported the suggestion that autophagy has a dual role in cancer, as the 

expression of this autophagy gene differs between tissues, stages, and subtypes of cancer. 

Marked decreases in LC3 expression are consistently observed in breast tumors and several other 

cancers. The role of autophagy may be dependent on the cellular environment or the pathways 

naturally active in a tissue, on other cellular changes such as inhibition of apoptosis pathways, or 

on external conditions such as lack of oxygen or treatment by chemotherapy. My analysis of 

genes regulated in both Drosophila PCD and cancer identified changes in other cellular 

machinery such as lysosomal activity, pH regulation and cytoskeletal rearrangements that could 

relate to activity of the autophagy pathway. Increases in expression of autophagy genes and 

associated pathways could reflect positive selection within the tumor, where autophagy is 

advantageous due to its protective effects. Alternatively, increases may reflect the triggering of 

natural cellular mechanisms which are in place to prevent unwanted cell growth, which the 

cancer may need to counter to survive. Which of these circumstances may be the case in 

different cancers will be better understood as the genes and pathways responsible for initiating 

autophagy are examined further. 
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6.5 Conclusions 

Large-scale gene expression analysis has the potential to discover genes and reveal 

molecular components of complex cellular processes. SAGE is a powerful technique, facilitating 

comparative analyses of multiple systems, but has important limitations which must be 

understood. Analyses of expression data in Drosophila PCD and human cancer reveal that 

pathways of autophagy and apoptosis may act together to execute programmed cell death. 

Additionally, autophagy is clearly important in oncogenesis, as both core autophagy genes and 

potentially associated processes are regulated in cancer progression in multiple tissues. 

Autophagy and programmed cell death represent some of the many aspects of the cellular 

machine that are essential to homeostasis and must be subverted in tumor cells to permit 

oncogenesis. 
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