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A B S T R A C T 

Microbial contamination of drinking water poses a danger to human health, and 

although the risk of exposure to waterborne microbes is highest in developing nations, 

outbreaks continue to affect populations in developed countries. Complacency toward 

groundwater protection can have tragic consequences - an example of which is the M a y 

2000 outbreak of waterborne disease in Walkerton, Ontario, where seven people died and 

over 2100 became i l l . In a response to such incidents, our research investigates the 

potential mechanisms of microbial contamination of Ontario's groundwater sources, 

which supply over 25% of the Province's twelve mil l ion residents with drinking water. 

In this project, we identify environmental risk factors for private well 

contamination by coliform bacteria, specifically Escherichia coli (E. coli), in Southern 

Ontario. Inspired by concepts of landscape epidemiology, multiple methodologies were 

employed to assess the impact of local environmental characteristics on groundwater 

quality. A Geographic Information System (GIS) was used to integrate and analyze 

several datasets, including: land use, agricultural animal densities and farming practices, 

private well locations and corresponding water quality, human population densities, and 

geology. Through spatial and statistical analyses, we found that areas of agricultural 

land, low infiltration rate soil and surficial geology, and carbonate bedrock are 

significantly more prevalent near contaminated wells; whereas areas of developed land, 

soils with high infiltration rates, and non-carbonate bedrock are more prevalent near 

clean wells. The outcomes and methodologies identified in this project help further our 

understanding of the potential processes responsible for effective transfer of microbes 

from the environment and animals to humans. 
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1. INTRODUCTION 

1.1 Background 

Historically, groundwater has been considered a more reliable source of clean 

water than surface water due to the attenuating effects of protective aquifers against 

microbial pollution (United Nations Environment Programme [UNEP], 2003). It is 

argued that efforts to protect groundwater sources have been halfhearted for this reason 

(De Loe and Kreutziser, 2005), and as human development and agricultural production 

intensifies worldwide, shortcomings in knowledge and groundwater policy management 

pose a significant risk to population health. Complacency toward the protection of 

groundwater sources has ended in tragic results - a prime example being a recent 

outbreak of waterborne disease in Walkerton, Ontario. In May 2000, seven people died 

and more than 2100 people became il l with gastroenteritis when the municipal water 

supply in Walkerton was contaminated by Escherichia coli (E. coli) 0157:H7 and 

Campylobacter jejuni. In the Inquiry report to the Ontario Attorney General that ensued 

(O'Connor, 2002a, 2002b), investigators attributed operator error as just one cause of 

many that contributed to the outbreak, citing lack of knowledge of the processes by 

which pathogens contaminate groundwater, and gaps in water protection policy as the 

foundations for the system failure (De Loe et al., 2005; Holme, 2003; Hrudey, Payment, 

Huck, et al., 2003). As a result, many research projects were launched to investigate the 
r 

mechanisms of microbial contamination of Ontario's groundwater, which supplies over 

25% of the Province's 11.5 million residents with drinking water. 

The Canadian Institute of Health Research's (CIHR) Safe Food and Water Initiative 

has funded a research project to examine patterns of Antimicrobial Resistance (AR) in 

waterborne pathogens found in Alberta, Quebec, and Ontario. Led by Dr. Marie Louie of 

the University of Calgary, the project is entitled 'Prospective multi-Province surveillance 

for antimicrobial-resistant E. coli in drinking and recreational source waters: Impact on 

humans and the environment.' There are four research components of the project, 

detailed in Table 1.1. 
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Table 1.1: ARO Study Group Overview 

Group 1 Antimicrobial Surveillance 

Aim: 

To determine the prevalence of A R in E. coli 
isolated from private drinking water sources 
in Alberta and Ontario, and 
recreational/beach waters in Alberta, 
Ontario, and Quebec 

Group 2 Case-control Study 

Aim: To determine risk factors for well-water 
contamination with A R E. coli 

Group 3 Molecular Characterization 

Aim: 
To characterize the resistance determinants 
in selected strains of A R E. coli, and to 
compare their resistance genotype(s) 

Group 4 Spatial Analyses 

Aim: 
To characterize the spatial distribution of E. 
coli and A R E. coli, and derive models that 
predict the presence of A R E. coli strains 
based on land use and population attributes. 

Dr. Michael Buzzel l i o f Queens University, previously of the University of British 

Columbia ( U B C ) , is an investigator in the Spatial Analyses group. The author of this 

thesis is a graduate student at U B C working with Dr. Buzzel l i on the research questions 

posed to Group 4, specifically investigating the impact of local environmental conditions 

on a well 's microbial water quality. The second team in Group 4, based out of the 

Laboratory for Foodborne Zoonoses in St-Hyacinthe, Quebec, focuses on the effects of 

regional (rather than local) processes on A R in E. coli. 

Research on local and regional effects of non-point pollution on private drinking 

water sources is especially important today as agricultural intensification coincides with 

the growth of rural communities in Southern Ontario. Although agricultural production 

is increasing in Ontario, the total number of farms in the Province decreased by 13% 

from 1996 to 2001. In the same time period, the total acreage of farms decreased 2.8% -

however the average size of a farm increased 8.8% (see Appendix 1 for detailed totals). 

These trends signal a general shift from small family-run farms to high production 

operations, with large numbers of livestock 1 (Miller, 2000). Animal densification and 

' While not all farms have large numbers of livestock, there has been a general trend to livestock 
intensification. Although numbers of cattle have decreased 6.8% from 1991-2001, there has been an 18.1% 
increase in the number of pigs in the Province, an 18.4% increase in sheep and lambs, and a 31.6% increase 
in hens and chickens. 
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intensified agricultural production leads to increases in nutrient (manure) storage and 

application. Juxtaposed against rural population growth and increased pressure on shared 

groundwater resources, the potential mismanagement of agricultural byproducts poses a 

significant risk to public health. 

In Ontario, "dependence on groundwater is highest in rural areas, where the 

population is served predominantly by private wells" (De Loe et al., 2005, p. 245), and 

unlike government-maintained municipal water supplies, the water quality of a private 

well is the sole responsibility of the well owner. However, a well owner does not have 

the right or capability to monitor agricultural activities on a nearby property that may 

affect the microbial quality of their well - these responsibilities lie with various levels of 

government. Questions regarding groundwater protection have been raised by concerned 

citizens, environmental groups, and experts alike, calling for research and environmental 

policies to be updated to match new intensified forms of agricultural production 

(O'Conner, 2002b; Mil ler , 2000; Bocking, 2002). Fueling these worries is the fact that 

waterborne disease continues to place a burden on population health and healthcare 

systems across the nation. The Canadian Water Research Institute reported in 2003 that 

exposure to waterborne infections causes 90,000 cases of illness (approximately 1400 of 

which are due to verotoxic E. coli (Charron, Thomas, Waltner-Toews, et al., 2004)), and 

90 fatalities across Canada every year (Edge, Byrne, Johnson, et al., 2003). 

1.2 Objectives 

The purpose of this research is to contribute to the emerging (and entwined) fields 

of spatial epidemiology, GIS, and groundwater studies in a Canadian context. There 

exists gaps in our knowledge concerning the environmental and anthropogenic processes 

responsible for the fecal contamination of groundwater, and we are interested in the 

potential of spatial analysis to address these types of public-health related questions. 

There is minimal research into the effect of local landscape characteristics on the 

microbial water quality of private wells in Southern Ontario, and we aim to expand this 
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knowledge base through the exploration of multiple spatial and statistical methodologies. 

Our specific objectives are to: 

1) Compile a spatial database of environmental data pertaining to microbial 

water quality in Southern Ontario 

2) Explore methods for measuring land characteristics surrounding private 

wells using GIS 

3) Identify environmental risk factors for private well contamination on the 

basis of these local land characteristics 

4) Derive inferential models to predict the presence o f E. coli and Total 

Coliforms (TC) in private wells based on land use and population 

attributes 

5) Further our understanding of the potential processes responsible for 

effective transfer of microbes from the environment and animals to 

humans 

The outcomes measured from the models and related statistical analyses w i l l elucidate the 

environmental characteristics most closely associated with E. coli, which w i l l be an 

important contribution for guiding the selection of case-wells and control-wells in 

subsequent analyses in the larger A R O project. 

This thesis is comprised of five chapters. Following the introduction, in chapter 

two I review current research in spatial epidemiology and waterborne disease. The 

microbiology of E. coli is discussed, in particular the environmental conditions required 

for bacterial survival and transport (pertaining to the study area). The chapter closes with 

an outline of the hypotheses, where we argue that certain environmental characteristics 

are associated with the presence o f E. coli and T C in the private wells sampled in 

Southern Ontario during the 2003 and 2004 summer seasons. On the basis of the 

literature review and research questions, data are singled out for inclusion to the GIS for 

further analyses. 

In chapter three, I describe the origin and quality of all spatial data entered into 

the GIS, and the methodologies employed to clean and resolve the information. These 

layers include well water samples, environmental data, and census data. The last section 
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describes the GIS-specific buffering and overlay techniques applied to measure the 

landscape characteristics adjacent to sampled wells. 

In chapter four, I report the various statistical methods applied to these data, and 

the results. First, a comparison of multiple circular buffer sizes reveals that one radius is 

of greater importance for measuring the impact of land local to private wells on water 

quality. Secondly, the total areas of land selected by the well buffer zones are analyzed 

with both descriptive and inferential statistics, to determine i f certain land characteristics 

are significantly more prevalent near contaminated wells versus clean wells. 

In chapter five I discuss the results reported in chapter four, and the implications 

of these findings to the hypotheses, and other current studies. A section of this chapter 

includes ideas for possible improvements of the analyses for future research. These five 

chapters come together to form an investigation into geo-statistical methods in health 

research, and as a whole work to contribute to the emerging science of landscape 

epidemiology as applied to groundwater quality. 
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2. LITERATURE REVIEW 

"The landscape that distinguishes a place is a complex expression of 
physical, biotic, and cultural process. When one knows how to analyze its 
elements and patterns, one can usually determine what diseases can occur " 

(Meade, Florin, and Gesler, 1988, p. 59). 

2.1 Health Geography and Spatial Epidemiology 

Health Geography refers to the study of the spatial dimensions of health and 

disease (Andrews, 2002). The discipline emerged over three decades ago as a 

quantitative scientific analysis of the spatial distributions of disease "and health care 

provision, and was more commonly referred to as 'medical geography.' In the 1980s a 

theoretical shift away from quantitative methods and toward critiques of structuralism 

and humanist thought occurred in the discipline of human geography. These new 'health 

geographies' sought to integrate the study of health within broader social, cultural, 

political concerns (Jones and Moon, 1987; Kearns and Gesler, 1998). Most recently, 

there has been a convergence of the twin streams of 'medical' and 'health' geographies 

(Andrews, 2002), to form a more comprehensive analysis of the geography of health and 

wellbeing (Rosenberg, 1998). It has been established that multilevel perspectives, 

facilitated by technologies such as GIS, give new recognition to the complexity of 

hierarchy and variation in data and space (Kearns and Moon, 2002). 

This is a study in health geography, as we apply methodologies of spatial analysis 

to examine the covariation in space of disease occurrence and related environmental 

factors (Meade and Earickson, 2001). This is also an epidemiological inquiry, as we are 

investigating patterns in disease presence that may give important clues about the 

behaviour of E. coli in the natural environment. Pathogens are living organisms that 

require a certain set of environmental parameters for survival and for their contamination 

of subsurface aquifers. By identifying the intersection of these parameters on a map (in a 

GIS), researchers can predict geographic areas where the risk of microbial contamination 

of groundwater might potentially occur. This practice is known as spatial epidemiology -

a field "concerned with describing and understanding the small-area variations in disease 
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risk as inferred from investigations of geographically referenced health and population 

data" (Raper, 2004, p. 627). Spatial epidemiology can be broken down into three main 

areas: 

1. Disease mapping: Individuals with a health outcome (disease) are represented as 

points on a map, or cases are aggregated to a spatial unit to form a chloropleth 

map. Visualizing disease outcomes juxtaposed with other data can guide map 

readers to identify disease 'hot spots' or associations with other data layers. Dr. 

JohnJSnow applied this method to study an 1849 cholera outbreak in London. B y 

mapping disease outcomes in relation to well locations, Snow was able to identify 

the cause of the outbreak: contaminated water from a specific well (Bingham, 

2004). 

2. Disease clustering (outcome surveillance): Spatio-temporal patterns in disease 

events identified by geo-statistical methods (i.e. cluster analysis) can give 

important clues about the etiology (cause and behaviour) of the studied disease. 

Most recently, cluster analysis has been put to use to analyze trends in cases of 

illness due to E. coli 0157:H7 by postal code district in Scotland. The study 

found a significant trend increasing from west to east, as well as seasonal trends 

in outbreak patterns (Innocent, Mellor, McEwen, et al., 2005). 

3. Geographic correlation studies (exposure surveillance): This newest field in 

spatial epidemiology aims to measure and determine the factors (environmental, 

social, political, etc.) that put certain parts of a population at risk for exposure to a 

disease, or disease-causing substances. Nygard, Andersson, Rottengen, et al. 

(2004) investigated associations between Camploylobacter incidence and 

municipal environmental characteristics (land use, livestock densities, water 

supply infrastructure), and found that municipalities with higher animal densities 

and longer water pipe lengths were at an increased risk o f exposure to 

Campylobacter than other regions. 
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There is consensus among spatial epidemiologists that geographic correlation 

studies are rare and understudied compared to the first two study designs (Graham, 

Atkinson, and Danson, 2004; Elliott and Wartenberg, 2004; Jacquez, 2000). Although 

studies in landscape epidemiology first emerged over 50 years ago (Pavlovsky, 1966), 

research has been slow to advance. In their review of the field, Ostfeld, Glass, and 

Keeling (2005) argue "although the spatial dynamics of infectious diseases are the subject 

of intensive study, the impacts of landscape structure on epidemiological processes have 

so far been neglected" (p. 328). 

The use of GIS to investigate the presence of waterborne microbes in relation to land 

use, human patterns, and environmental factors is also an emerging field. Prior to 2000, 

"surprisingly, GIS have only sparsely been applied to describe and analyze health risks 

due to microbial hazards" (Kistemann, Dagendorf, and Exner, 2001, p. 226). The 

epigraph by Meade et al. (1988) raises an interesting point - the authors mention that 

'when one knows how to analyze' the complex elements and patterns of the environment, 

one can predict where a specific disease might occur. However, there is no 

methodological standard for how these investigations should be conducted, especially 

pertaining to environmental processes and waterborne disease. Every study varies widely 

in data content, scale, and geo-statistical methodologies. To my knowledge, no literature 

has been published on the effects of land characteristics local to private wells (measured 

by GIS methods) on the presence of E. coli or T C in private well water. A 

comprehensive body of knowledge does, however, exist on the local environmental 

effects on nitrate ( N 0 3 - N ) concentrations in both ground and surface waters. 

Synonymous to fecal coliforms, the major source of nitrates in groundwater is agriculture 

(manure is rich in nitrates). 

In the extant literature, GIS buffering and overlay techniques have been widely 

used for over a decade to measure land characteristics surrounding water sources for 

comparison to nitrate levels (Barringer, Dunn, Battaglin, et al., 1990; Eckhardt and 

Stackelburg, 1995; Kolp in , 1997; Sl iva and Will iams, 2001; Lee, M i n , Woo, et al., 2003; 

Wang, L i u , W u , et al., 2006). Using similar techniques to investigate fecal coliform 

levels is not as widespread, despite the fact that "contamination of rural drinking water by 
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bacteria is commonly more prevalent than contamination due to excessive nitrate or 

pesticides" (Conboy and Goss, 2001, p. 101). Kistemann et al. (2001) used buffer zones 

to measure land uses near surface water tributaries to compare to the bacterial loading o f 

streams and rivers - see Table 2.1 for details on these and other relevant studies. 

However, the majority of other research employing GIS techniques to study fecal 

coliforms examine patterns of disease outcomes (Dagendorf, Herbst, Reintjes, et al., 

2002; Nygard et al., 2004; Innocent et al., 2005), instead of the presence of 

environmental E. coli in source waters. Further, most studies focus on smaller scale 

regions (drainage basins, municipalities, postal code districts) rather than land 

characteristics immediate to the source. 

One paper of particular relevance to our work is entitled 'Statistical models for 

the assessment of N 0 3 - N contamination in urban groundwater using GIS ' (Lee et al., 

2003). In this study, environmental characteristics surrounding sampled wells are 

measured using circular buffers with radii ranging from 50-400m. These quantities are 

compared with nitrate concentrations using various descriptive and inferential statistical 

techniques (Mann-Whitney tests, correlation analyses, linear regression). The study 

found that 200m and 250m buffers are the most effective radii for measuring land 

characteristics. The results also show that nitrate concentrations in groundwater are 

associated with cropped land and mixed residential and business areas. Although their 

study focuses on chemical concentrations in groundwater, it serves as a useful guide for 

our investigation. 

A 2001 paper by Thomas Kistemann et al. provides the most pertinent 

information on using GIS as a tool to study the microbial contamination of drinking water 

sources. The researchers recommend a microbial risk-assessing geo-ecological 

information system ( M R A - G I S ) . This GIS includes a database built to incorporate a host 

of data relevant to microbial water quality: geology, soil, topography, vegetation, 

precipitation, human land use patterns (settlement, traffic, agriculture, forest, and 

industry), watercourses, farming practices, and unique features (drainage systems, cattle 

tracks, sewage plants, and private sewer systems). Kistemann et al. use the M R A - G I S for 

spatial and statistical analyses to provide a geo-ecological portrait o f each watershed by 
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Authors/ 
Location 

Metric of 
interest 

Study 
Design 

Sample Size, Time 
frame 

Geo-statistical 
Methods 

Landscape characteristics 
considered Scale Major findings 

Wang et al., 
2006. North 

China 

N O 3 , N 
concentration of 

groundwater 
Geographic 
correlation 

616 samples taken 
from shallow 

irrigation wells 

Buffer zones 
(200m-2000m), 

Back propagation 
neural networks. 

crop yields, nitrogen inputs, 
groundwater depth, soil 

organic matter content, soil 
sand content. 

sample 
sites (buffer 

zones) 

Vegetable cropping systems 
held high nitrogen surpluses. 

Nitrogen budget combined with 
GIS-based neural networks are 
effective in predicting nitrogen. 

Innocent et 
al., 2005. 
Scotland 

outbreaks of 
illness caused by 
E. coli 0157:H7 

Disease 
clustering, 
geographic 
correlation 

All incidences of 
illness caused by 

E. coli (4-10 cases 
per 100,000 per 

year 1996-1999). 

Choropleth 
mapping, 

Poisson model, 
Moran's I, spatial 

scan statistic. 

cattle density, human 
density, number of cattle per 
person, lat/long, urban/rural 

landuse 
Postal code 

districts 

C a s e rate increases West to 
East, and South to North. Cattle 
density, human pop density, and 

# of cattle per person were 
significant. 

Nygard et 
al., 2004. 
Sweden 

Campylobacter 
jejuni infections 
among human 

populations 
Geographic 
correlation 

7007 cases of 
Campylobacter 

infections, 1998-
2000 

Data 
overlay/joining in 
GIS, Multivariate 

Poisson 
regression 

cattle, swine, and poultry 
densities; population 

receiving water from public 
water supply, water pipe 

length 
Munici
palities 

Positive associations with water-
pipe length, ruminant density, 

and a negative association with 
% of the population receiving 
water from a public supply. 

Lee et al., 
2003. Korea 

N03, N 
concentration of 

groundwater 
Geographic 
correlation 1988 Well samples 

Buffer zones (50-
400m) 

surrounding 
wells, overlay, 

regression 

Well depth, geology, 
precipitation, land uses, 

surface waters 

sample 
sites (well 

buffer 
zones) 

NO is associated with crop 
lands, mixed residential & 

business areas. Favourable 
results returned with 200m and 

250m buffers. 

Kistemann 
et al.,2001. 

Germany. 

Cryptospridium 
and Giardia 

lamblia loads in 
surface water 

Geographic 
correlation 

70 surface water 
samples 

Areas measured 
by overlay, 

Landuse % in 
basins vs. % in 

50m river buffers 

landuse, population density, 
cattle breeding, settlement 
areas, sewerage systems, 
surface water hydrology, 

weather patterns, soil 

watershed, 
and local 
effects on 
tributaries 

(50m buffer) 

Cryptospridium is associated 
with agriculture, and 

Giardia lamblia is related to 
discharge of human wastewater. 

Sliva and 
Williams, 

2001. 
Southern 
Ontario 

Chemicals in 
surface waters in 

3 Toronto 
watersheds, 
1990-1993. 

Geographic 
correlation 

Averaged results 
from 12 surface 
water sampling 

stations across the 
3 watersheds. 

catchement 
measured by 

overlay in GIS 
vs. areas 

measured by 
100m buffer of 

sampling station. 
Surface elevation, slope, 

geology, landuse. 

100m buffer 
zone, 

drainage 
basins. 

Trend in increased chemical 
fluxes with increasing urban land 

use intensity. Catchment 
processes reflect water quality to 

a greater degree than 100m 
buffer zones. 



buffering surface water bodies, calculating land classification areas within the buffer, and 
using descriptive statistics to investigate possible associations. We borrow from these 
concepts in our research and create a similar spatial database as a platform for studying 
private wells in Southern Ontario. 

Although the above-mentioned studies provide guidance on general study design 
issues, it is clear that we are exploring new research territory. Our sample sizes (in the 
hundreds of thousands) are considerably larger than any other study published on the 
topic. Further, none of the examples found in current literature are specific to our study 
region, or use GIS methodologies to explore the effects of the local environment on E. 
coli in private wells. Despite the lack of a strong guiding tradition, an exciting 
opportunity exists to explore new methodologies and ideas. As the literature reveals, 
when working with extensive datasets in a GIS environment the possibilities for analyses 
are endless, and the potential for knowledge contribution is great. The first challenge 
comes in selecting data layers to collect and analyze in the GIS. To address this question, 
we consider the bio-ecology of E. coli: the relation between cell biology and the 
environmental processes that together are responsible for the presence of fecal coliforms 
in groundwater aquifers. 

2.2 Waterborne E. coli and Total Coliforms 

E. coli are single-celled organisms found in the intestinal systems of most 
mammals, and are a normal component of the human digestive system. Most E. coli 
strains are not harmful to our heath; in fact, their competitive presence prevents 
mammalian gastrointestinal tracts from being overrun by harmful bacteria and fungi. E. 
coli also plays a large role in synthesizing K and B-complex vitamins for absorption by 
the body. Despite the active role of E. coli in maintaining gastrointestinal health, the 
bacterium is probably best-known for its pathenogenic properties. 

Five classes of E. coli are not normally found in the digestive system and cause 
intestinal disease in humans: enterotoxigenic, enteroinvasive, enterohemorrhagic, 
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enteropathogenic, and enteroaggregative E. coli. Each of these classes displays distinct 

features in pathogenesis, ranging from urinary tract infections, cramps, nausea, diarrhea, 

and fever, to more severe and chronic outcomes. One serotype of enterohemorrhagic E. 

coli (0157:H7) carries a toxin that when ingested by humans can cause bloody diarrhea, 

infant mortality, severe renal or neurological complications, long-term kidney failure, and 

death (Berg, 2003; Postgate, 2000). It is estimated that E. coli 0157:H7 has an infectious 

dose o f less than 100 organisms (Griffin and Tauxe, 1991), therefore, even a small 

presence of the coliform in drinking water is a serious concern. Heath Canada drinking 

water guidelines state that 

"no sample should contain Escherichia coli. E. coli indicates recent faecal 
contamination and the possible presence of enteric pathogens that may 
adversely affect human health. If E. coli is confirmed, the appropriate 
agencies should be notified, a boil water advisory should be issued, and 
corrective actions taken" (Health Canada, 2004, p. 3). 

In a laboratory, it is costly and time-consuming to differentiate E. coli from other 

coliforms, let alone identify specific strains of E. coli that may or may not be harmful to 

human health. Therefore, any strain of E. coli found in drinking water is considered 

dangerous, and for ease of testing most private and governmental drinking water testing 

agencies do not isolate E. coli; rather they identify whether or not T C bacteria is present 

in a sample. TCs refer to the larger family of rod-shaped bacteria o f which Fecal 

Coliforms (coliforms originating 
Figure 2.1: Coliform Subgroups 

from the gastrointestinal tracts of 

mammals) and E. coli are subgroups 

(see Fig. 2.1). TCs are pervasive in the 

natural environment, and although not 
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nutrient-rich atmosphere of a mammal's intestines and are not as pervasive in the natural 

environment as TCs . However, E. coli have been recorded as surviving for up to 110 

days in the open environment (Na, Miyanaga, Unno, et al., 2006; Chalmers, A i rd , and 

Bolton, 2000). A major source of environmental E. coli is the fecal waste of livestock 

(Altherholt, Feerst, Hovendon, et al., 2003), deposited by grazing animals or as a nutrient 

to crop beds (manure). When microbes come into contact with water through 

precipitation, or by being deposited into surface waters, water acts as a transport medium 

and can percolate through the subsurface carrying pathogens, eventually contaminating 

drinking water aquifers. A s Schaffter, Zumstein, and Parriaux (2004) describe, once E. 

coli has been released into the environment, 

"the survival capacity o f enteric bacteria depends on their physiological 
characteristics and on the properties of their immediate [emphasis added] 
environment (availability o f nutrients and energy, light, temperature, p H , the 
presence of other organisms: predators and/or antagonists). In groundwater, 
the natural elimination o f microorganisms is accentuated by other processes 
like adsorption, dispersion, and filtration" (Schaffter et al., 2004, p. 226). 

Naturally, then, to investigate the prevalence of E. coli in well water, it is essential to 

understand the environmental characteristics local to groundwater sources. In the 

following section, I provide an overview of the hydrogeology, land characteristics, and 

agricultural activities of Southern Ontario. Each of these elements is important to the 

presence and survival of environmental E. coli, and wi l l be added to our M R A - G I S for 

closer inspection. 

2.3 Study Area 

The study area of the A R O project is located in the southern part o f the Province 

of Ontario, Canada. The boundaries of the study area coincide with those of four Ontario 

Regional Health Authority Districts: Southern, Western, Central, and Eastern Ontario, 

comprising 15% of the Province's total landmass. Within these four districts lie 224 

municipalities (depicted in Fig . 2.2), home to over eleven mil l ion people and 94% of the 

total provincial population. Over time, settlement patterns have been influenced by the 
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availability of groundwater supplies, and today the rural population of Southern Ontario 

relies almost entirely on groundwater resources (Conboy and Goss, 2000). 

Figure 2.2: Study Area 

| Study Area Municipalities (CSDs) 

Statistics Canada, 2001 
MOE, 2003 

Southern Ontario has a humid continental climate, characterized by cold winters 

and hot humid summers. The region receives approximately one meter of precipitation 

distributed evenly throughout the year (Government of Ontario, 2006), a sufficient 

amount to recharge groundwater aquifers for private use. Because the climate is moist, 

the presence of groundwater in Southern Ontario depends primarily on hydrogeologic 

characteristics. In the study area two principal geologic materials can be tapped for water 

supply: fractured bedrock, and sand/gravel overburden deposits (Novokowski, Beatty, 

Conboy, et al., 2006). Because water movement in bedrock is restricted to fractures, 

fissures, folds, joints, and eroded channels that may disrupt the formation, the porous 

overburden deposits generally provide higher-yielding wells. 
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Three major bedrock formations exist in the study region: the Canadian Shield in 

the north, the Great Lakes Lowlands in the southwest, and the Ottawa-St. Lawrence 

Lowlands in the east. The Canadian Shield is the oldest formation, consisting of bi l l ion-

year old (Precambrian) granite, gneiss, metasedimentary and metavolcanic rocks. This 

region is characterized by exposed bedrock and thin soils. A s a result, hydrological 

drainage is poor, and few high-capacity wells exist on the Shield. The most densely 

populated regions in the Province are located in the Great Lake Lowlands, which consist 

largely of Paleozoic sedimentary rock. The Niagara Escarpment is a prominent geologic 

feature of the region, dividing the lowlands into two physiographic parts. East of the 

escarpment, the rocks are composed of shale and limestone, and west of the escarpment, 

some of Ontario's most productive bedrock aquifers lie in numerous limestone and 

dolostone formations. Lastly, the Ottawa-St. Lawrence Lowlands are characterized by 

newer Paleozoic sedimentary rocks, mainly sandstone, limestone, and dolostone. 

These three bedrock formations are overlain by highly variable sediment deposits, 

characterized by the glacial formations of the Pleistocene Epoch (Novokowski et al., 

2006). During this Ice Age, ice sheets deposited a wide variety of water-bearing 

sediments (called overburden), across the study area. Glacial landforms such as 

drumlins, eskers, and moraines are often composed of sands and gravels. These surficial 

materials are permeable in nature, have complex soil structures, and typically yield 

productive aquifers (Regional Municipality of Waterloo, 2003). Groundwater 

availability combined with deep fertile soils render overburden deposits attractive 

locations for human settlement and agriculture. The majority of high-quality agricultural 

land in the Province is located in Southern Ontario, and as a result the study area has an 

active and diverse agricultural sector, generating over seven bil l ion dollars annually. 

A wide range o f fruit, vegetables, and grains are grown; and the region supports a 

thriving livestock industry, especially in dairy, cattle, and hog farming. Multiple 

hydrological drainage basins in Southern Ontario have consistently been placed in the top 

5 basins for manure production in Canada, with farms located in these basins producing 

between 2,000 and 5,000 kilograms per hectare of land yearly, when the national average 
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is 775 kg/ha (Statistics Canada, 1996,1|2; Statistics Canada, 2001, Livestock Manure 

Production, 1f2). In rural regions, intensification of agricultural production is occurring 

alongside population growth and an increased dependence on groundwater, signaling that 

an investigation into processes responsible for microbial contamination of aquifers is 

relevant, especially in Southern Ontario. 

2.4 Hypotheses 

A goal of this research is to identify local environmental risk factors for private 

well contamination by waterborne fecal coliforms . Based on a survey o f current 

literature, we assume that the prevalence of E. coli in private well water is associated 

with environmental characteristics local to wells, specifically: 

• Agricultural land use 

• Agricultural animal densities (Cattle, sheep, poultry, hens) 

• L o w human population densities (rural areas) 

• Soils with low water infiltration rates 

• Surficial geology with low permeability 

• Bedrock composed of carbonate materials 

• Ancient (mesoproterozoic) bedrock 

• Non-moraine material 

• Selected agricultural practices (manure application, lack of tilled soil, 

irrigation) 

The rationale behind these assumptions w i l l be discussed at length in the remainder of 

this section. To investigate the specific relations between the above-listed environmental 

characteristics and the presence of E. coli and T C in well water, we w i l l : 

• Compile relevant environmental and population data in a spatial database 

• Use a GIS to measure land characteristics local to wells with circular buffers 

2 The results are also applicable to public wells, but because our samples have all been obtained from 
private wells (which are generally smaller in capacity, and therefore have a smaller zone of influence 
footprint on the surface than public or commercial wells), in this thesis I will exclusively discuss the 
relevance of the results to private wells. 
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• App ly statistical tests to assess the degree of association between land 

characteristics and well contamination 

Specifically, we expect to see a higher prevalence of E. coli in wells located near 

agricultural areas, as activities typical to agriculture (animal husbandry, manure storage, 

nutrient application to crops) are major sources of environmental fecal coliforms. 

Extensive research shows that agricultural land use and livestock density are associated 

with groundwater coliform concentrations (Goss, Barry, and Rudolph, 1998; Crowther, 

Kay, and Wyer, 2002; Kistemann et a l , 2001; Nygard et al., 2004; George, A n z i l , and 

Servais, 2004). Agriculture typically exists in rural regions with lower population 

densities; therefore we hypothesize that a higher prevalence of contaminated wells exists 

in areas with low human population densities. Previous studies have shown a clear 

rural/urban gradient in well contamination (Innocent et al., 2005; Haack, Jelacic, Besser, 

et al., 2003). 

Once E. coli has been deposited on the surface, microbes must travel through and 

survive in the subsurface in order to contaminate an aquifer, and hydrogeologic 

characteristics have a significant impact on these processes. We hypothesize that wells in 

Southern Ontario w i l l be at increased risk for contamination by E. coli i f they are 

surrounded by soils with low water infiltration rates; and surficial geology with low 

water permeability. The reason lies in filtration: soils act as a natural filter for bacteria. 

A s water percolates down through pores in soil, bacteria can adsorb to sediment surfaces 

and may be removed from the infiltrating water. The larger sediment surface area that 

the bacteria come into contact with, the more likely it is that bacteria w i l l be removed 

from the percolating water. Natural filtration can be extremely effective at protecting 

groundwater sources. Crane, Westerman, and Overcash (1980) irrigated bacteria onto a 

soil surface, and found that 92% to 97% of bacteria were removed by the top 1cm of soil. 

Well-drained, sandy soils allow for the unhindered infiltration of water through the 

subsurface, and have been shown to restrict bacteria and provide a protective 

3 The term 'surficial geology' refers to all geologic materials from the surface to the bedrock layer; and the 
term 'soils' refers to only the top 1 meter of geologic materials. This difference will be discussed to greater 
extent in the data section 3.2.2 and 3.2.3. 
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environment for wells (Crane, Moore, Grismer, et al., 1983). Contrary to this, shallow 

soils or exposed bedrock offer little or no filtration. Non-permeable materials such as 

clay have finer grain sizes than sandy soils, are less porous, and have lower infiltration 

rates. Clay is a hydrophilic material, meaning that when it comes into contact with water 

it absorbs water and expands. When the water evaporates, the clay particles shrink and 

fractures can form in drying soil formations. In summer months, soils with low 

infiltration rates are often inherently fractured, and water is able to travel quickly through 

preferential flow paths into the subsurface without filtration. Further, clay soils are often 

high in organic content, providing bacteria with a favourable nutrient-rich environment. 

The works of Ontario-based researchers Conboy and Goss (2000, 2001) focus on 

the impact of Ontario-specific hydrogeology on microbial water quality. They describe a 

survey of rural groundwater quality in Ontario (2000, 2001), the results of which are 

instrumental to our hypotheses. Among other findings, they established that 

"high risk wells in Ontario were located most often at sites with older 
limestone or dolostone bedrock, and in clay or clay loam soil . The 
presence of a sandy soil may offer some protection to groundwater 
resources in very vulnerable dug or bored wells" (2000, p. 1). 

We hypothesize that wells surrounded by ancient (Mesoproterozoic) bedrock are at 

higher risk for contamination by microbes. Over time, this bedrock is subject to greater 

erosion than the newer Neoproterozoic and Paleozoic materials, and therefore preferential 

flow paths are more likely to exist in the formations. 

Similarly, we expect to find a high prevalence of carbonate bedrock surrounding 

contaminated wells. Carbonate materials such as limestone, calcite, and dolomite are 

partially soluble; therefore areas of carbonate bedrock weather readily, especially in 

acidic conditions (i.e. acid rain). Erosion and weathering leads to the development of 

preferential flow paths through the subsurface, rendering aquifers in carbonate bedrock 

more vulnerable to contamination from surficial sources of pollution (Allen and 

Morrison, 1973). Conboy and Goss note that in Ontario, the "fracturing, dissolution and 

especially karstification of limestone appeared to result in higher potential movement of 

bacterial contaminants through limestone rock than in any other geological formation" 

(2000, p.3). To summarize, we hypothesize that wells are at higher risk of contamination 
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i f they lie in areas of permeable bedrock, but at a lower risk of contamination i f they lie 

in areas of permeable soils and surficial geologic materials. 

A s described in section 2.3, a major source of groundwater in Ontario is found in 

the permeable surficial aquifers formed by glacial deposits, such as moraines. Moraines 

are mounds of unconsolidated sands and gravels, composed of a wide variety of sediment 

sizes once carried and deposited by retreating glaciers. Some of Southern Ontario's most 

productive sand and gravel aquifers are located on moraines (Novokowski, Beatty, 

Conboy, et al., 2006). The permeable sand and gravels of the deposits 

"act like a sponge, and absorb precipitation. This precipitation is then stored in 
layers of aquifers, filtered, and slowly released as cool fresh water. Hence, a 
moraine can provide drinking water and act as a recharge/discharge area -
sustaining the health o f many watersheds and communities" (Regional 
Municipal i ty of Waterloo, 2003, p. 6 ) . 

In accordance, we postulate that wells located on moraine deposits are less susceptible to 

contamination by E. coli than wells not sited on moraines. 

Lastly, we hypothesize that a number of anthropogenic agricultural processes 

contribute to the presence of E. coli in groundwater sources, although the data associated 

with obtaining information on farming practices is on a municipal scale, not a local one. 

We expect to see an association between E. coli presence and the proportion of land in a 

municipality that manure nutrients have been applied to. This is not only because manure 

is a primary source of environmental E. coli, but also because the presence of nitrogen 

facilitates the survival of E. coli in competition with indigenous bacterial flora in an 

aqueous environment (L im and Flint, 1989; Rosen, 2000). We also expect to see an 

association between E. coli presence and the proportion of untilled cropland in a 

municipality. The practice of leaving soils untilled is becoming more frequent as farmers 

make efforts to reduce the dilapidating effects of erosion. Tillage disrupts the surface and 

causes water to percolate more evenly through soils, breaking down preferential flow 

paths that may have developed over time. The result is increased filtration of water 

through the surface layers, and a more protected aquifer (Gaglardi and Karns, 2000; 

Conboy et al., 2000). Finally, because E. coli survives in aqueous environments and is 
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transported through the subsurface by water, we propose that there is an association 

between E. coli presence the total area of irrigated land in a municipality. 

A number of natural and human-induced processes work together in order for a 

well to become contaminated with fecal coliforms. Compiling a GIS database of the 

geologic, landuse, and agricultural information pertinent to the above-stated hypotheses 

w i l l provide a solid platform for measuring and analyzing environmental characteristics 

in relation to water quality. In the following chapter, I outline the data layers sought and 

entered into to the M R A - G I S , and the spatial methods used to measure land 

characteristics local to private groundwater sources. 
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3. DATAAND METHODS 

The chief aim of this research is to identify environmental characteristics that 

contribute to the prevalence of waterborne fecal coliforms in Southern Ontario's private 

groundwater sources. A s discussed in section 2.1, this question lends itself to the practice 

o f landscape epidemiology: the study of associations between geographic location, 

environment, and disease (Clark, McLafferty, and Tempalski, 1996). In order to 

facilitate this approach, a spatial database of multiple layers of environmental data was 

compiled using ArcGIS 9.0 software. The most important data for this research are 

private well water samples provided to the A R O research team by the Ontario Ministry of 

Health and Long Term Care ( M O H L T C ) . This was the first and only data provided to 

our research team and served as the foundation of the spatial database, however, we 

required a host of other environmental data to compare the test results to. 

In M a y 2005,1 began a search for online data through spatial data clearinghouses, 

and contacted data custodians in both government and industry via telephone, email, and 

letter mail. Based on a survey of the current literature outlined in sections 2.3 and 2.4, 

the goal was to obtain (from reliable sources) continuous digital data layers at the finest 

resolution possible; describing land use patterns, soils, surficial geology, bedrock 

geology, aquifer boundaries, precipitation, temperature, and topography. Data on 

anthropogenic influences such as the location of septic fields, human population 

densities, and agricultural practices (animal densities, manure application, tillage, etc.) 

were also sought after. The data acquisition'process continued until August 2005, at 

which point I had collected (at no cost) most of the data required 4. However, certain data 

simply does not exist in digital format, or is unavailable for release due to data sharing 

constraints and confidentiality purposes. Data in this category include septic field sites, 

feedlot locations, manure storage sites, outhouse locations, aquifer boundaries, and 

subsurface hydraulic gradients. There wi l l be further discussion of the cause and effects 

of missing data in section 5.2.1. In this chapter, I w i l l provide a detailed account of the 

data collection, cleaning, and manipulation processes undertaken for each layer stored in 

4 See Appendix 3 for a comprehensive list of data attained, and sources. 
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the spatial database. In sections 3.1 through to 3.3, data structure and quality w i l l be 

discussed, and in the final section of the chapter, I w i l l describe the methods applied in 

the GIS for measuring environmental characteristics local to tested wells in the study 

area. 

3.1 Well Water Data 

The backbone of this project is a Province-wide database of water test results, 

compiled by the Safe Drinking Water Unit of the M O H L T C . These data were provided 

to the A R O research team under a Memorandum of Understanding, signed by Dr. 

Michael Buzzel l i and myself. The data arrived in the format of two Access databases, 

one containing tests from the 2003 sampling season (May 1 - Oct 1 2003), and one from 

the 2004 season (May 1 - Oct 1 2004). In total, there are 181558 test results for the 2003 

season; and 280139 test results for the 2004 season. The 2003 season is considered a 

pilot study for the A R O project, thus the 2004 season contains a greater number of 

records. N o sub-sampling of the water test records occurred prior to our receipt of the 

data. 

Each record in the database refers to a sample collected by a private well owner, 

sent to the M O H L T C laboratories for complimentary testing. A s part of this public health 

initiative, well custodians pick up water testing kits from their Health Region's 

departmental offices, and conduct their own sampling from raw well water. The kit 

includes detailed instructions on appropriate sampling methods 5; however there is no 

guarantee that the samples have been acquired accurately, and no indication of the 

amount of error introduced during the sampling process. We l l owners are required to f i l l 

out a form to accompany the sample, providing information on the date the sample was 

collected and the mailing address of the property the well is located on. Once the sample 

reaches the laboratory, it is tested for the presence of E. coli and TCs. The results of each 

test are disclosed to the well owner, and recorded into a digital database along with the 

information copied from the hand-written forms completed by well owners. The data 

5 Find the sampling directions provided to well custodians in Appendix 4: Water Sampling Guidelines 
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provided to the A R O study team by M O H L T C are simplified versions of the original test 

records, and exclude the owner's name and other potentially sensitive or redundant 

information. Data attributes provided for each water test (where available) include: the 

date of sample collection, the date the sample was processed by the laboratory, E. coli 

count 6 , T C count, and a description of the outcome of the water test (i.e. 'no significant 

evidence of contamination' or 'unsafe for consumption'). 

Geographic coordinates for the wells were not provided, preventing the 

immediate input of the well data to the GIS. Caroline Guenette, the A R O Project 

coordinator from the Public Health Agency of Canada, used a software package called 

GeoPinPoint to assign spatial coordinates to each test result based on the address fields in 

the database7 (this process is called geocoding). Geocoding relies on the matching of two 

databases: a spatial database of digital road networks (an Ontario road network compiled 

by D M T I ) , and the attribute data ( M O H L T C records). The address fields used in the 

geocoding process (in order from most to least accurate) include: the civic (street) 

address of the water source, lot number, six, five, and three-digit postal codes, and 

municipality. The address field in the water test database is matched to the attribute data 

of the road network, starting with the most accurate data (civic address). When records 

match, x,y coordinates are assigned to a well based on the corresponding address location 

in the street network. The remaining records are then re-matched to the next most 

accurate address field, until all records have been matched. In this case, only a small 

percentage of records were not assigned coordinates due to incomplete or inconsistent 

address information. For the 2003 season, 172572 entries (95%) were geocoded, while 

8986 (5%) were not. In the 2004 dataset, 267174 (95%) samples were geocoded, while 

12965 (5%) were not. Please refer to Appendix 2 for a detailed record of geocoding 

results for both seasons. Approximately 25% of the records in both databases were 

geocoded according to their civic address, and a further 5% by their lot and concession 

numbers, which also identify individual properties. The remaining records were 

6 The count is the total amount of Colony-Forming Units 6 (CFU) per 100ml sample (for both E. coli and TC 
bacteria), to a maximum of 81 C F U per sample. Any value over this arbitrarily-chosen number was 
considered completely overgrown and not worth additional laboratory time to count. 
7 For technical details, refer to Caroline Guenette's geocoding report, entitled: Performance Report: 
Geocoding a database related to water testing: A R O Study (2003 v.2.1, 2004 v . l ) 

23 



geocoded using more relaxed parameters such as the centroids of postal code and 

municipality areas. 

Even i f a record is geocoded with civic address information, there is always some 

degree of inaccuracy incurred as part of the geocoding process. The GeoPinPoint 

application assigns geographic coordinates (used to represent a well location) based on 

linear interpolation along a road segment of arbitrary length. In urban areas where road 

networks and house addresses are dense, research has shown that there can be as little as 

an average of 100m difference between the actual and geocoded locations (Bonner, Han, 

Nie , et al., 2003). However, in rural areas the discrepancies can be much larger, 

depending on the road network available. Numerous studies have found that positional 

errors are greater when rural addresses are geocoded, in comparison to urban addresses 

(Ward, Nuckols, Giglierano, et al., 2005; Vine and Degnan, 1997). Even in urban areas, 

addresses entered in the M O H L T C database do not represent authentic well locations. 

The geocoding process automatically places the x,y coordinate directly on a road 

segment, whereas in reality a well could be located anywhere on a property of 

unspecified size at the address. We also know that well locations cannot possibly be 

located at Post Office Box addresses, although thousands of records in the database were 

addressed as such by well owners. Unfortunately, obtaining additional address 

information to improve geocoding results is impossible; therefore we are forced to work 

within the constraints of these data, acknowledging their limitations. 

Once x,y coordinates were assigned to each sample record, Caroline Guenette 

released the updated database to our research team. A t our lab, I used ArcMap 9.0 

software to plot the coordinates, creating a digital shapefile composed of 29134 points 

and 144501 attribute records for the 2003 season. The shapefile of the 2004 data is 

composed of 37359 points and 225052 records (see Fig. 3.1). The first reason for the 

significant discrepancy between well points and well records is because multiple samples 

are often sent in from a single well over the course of a season, so in some cases many 

test records are associated with a single point. Secondly, i f a record does not contain 

specific address information, many sample records can be assigned to a single point (such 

as a municipality centre point) even i f the samples originate from different wells. For 
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example, i f two neighbors test their wells and do not provide a street address or lot 

number that can be geocoded, but do provide a postal code, then both wells (regardless of 

Fig. 3.1: Sampled Well Locations, 2003 
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the lot they are located on) are assigned to the same point: the centroid of their 6-digit 

postal code region. Each record contains an E. coli count (number of colonies per 100ml 

sample), therefore one x,y coordinate could potentially have up to 957 different E. coli 
8 * 

counts linked to it . This case is an exception, as a majority of the unique wells in the 

database are associated with only one or two test results (79.6% in 2003, 76.2% in 2004), 

and the mean value of tests linked to each well is 4.96 in 2003 and 5.73 in 2004. Among 

wells geocoded to their civic address or lot number, the mean number of tests per well is 

only 1.24 in 2003, and 1.26 in 2004. 

8 957 records assigned to one point (well) is the maximum number of records linked to a point in both 2003 
and 2004. This number is high because all 957 of these records lacked detailed address information, and 
were geocoded to the same municipality centroid. 
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After a preliminary exploration of these data, it was apparent that for the purposes 

of our analyses, the database required refining. Selected samples were removed due to 

geocoding inaccuracies, incomplete laboratory testing status, and location outside of the 

study area. In addition, a smaller sub-sample was selected to comply with software 

constraints and data processing time. The following section describes the data cleaning 

progression that led to the four final sub-samples used in the analysis. 

3 . 1 . 1 Cleaning the Well Database 

We aim to use samples that provide the most accurate representation of microbial 

water quality in each well , and derive a measure of the prevalence of E. coli and TCs 

across numerous samples. This was accomplished through a five-step process of record 

elimination (refer to Table 3.1 for details). First, records not geocoded due to lack o f 

sufficient address information were deleted from the database. Second, well points 

Table 3.1: Cleaning the Well Database 

Steps Taken to Clean Well Test Database Number of Records Remaining Steps Taken to Clean Well Test Database 
2003 Season 2004 Season 

Total Records 181,558 280,139 
1. Geocoded (assigned x,y coordinates) 172,572 267,174 
2. Within Study Area 160,423 248,514 
3. Tested for E. coli and Coliforms 144,501 225,052 
4. Unique Wells (aggregated to x,y coordinates) 29,134 37,359 
5. Accurate Location (geocoded to civic address, lot/con#) 27,096 35,296 

located outside of the study area boundary were removed, as were wells that were not 

laboratory tested for E. coli or T C s 9 . Due to time constraints (and the lack o f resolved 

climatic data), we chose not to pursue temporal or climate-related cross-sectional 

analyses. Instead, we focus on the impacts of local environmental characteristics on well 

water quality in a cross-sectional analysis of each sampling season. Therefore, for the 

purpose of using statistical methods to compare a well 's microbial water quality with the 

9 I f samples were received frozen, in a broken or leaking container, or i f they were sampled from tap water 
instead of the raw well source, they were not eligible to be tested for the presence of E. coli or TCs. 
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surrounding landscape over the course of the entire season, we required a single E. coli 

outcome value, and a single T C outcome value for each point. This was achieved in the 

fourth step - records were not removed from the database, rather, many records were 

aggregated in into a single record (based on common x,y coordinates); therefore reducing 

the total number of records, but not well points. This method condensed the number of 

test records associated with each well to one, regardless of how many tests had been 

performed on the well . This aggregation prompted the question of how best to quantify 

E. coli and T C measurements in order to provide a suitable and standardized outcome for 

analysis. 

Two approaches were considered: finding a coliform 'rate' for each well , or 

simply coding a well 'positive' or 'negative' according to coliform presence. The first 

option was to assign a rate to each well to represent the sampled E. coli and T C 

concentration over the course of an entire 5 month season. Applying this method raises 

the question of whether a static continuous value the most accurate way to represent these 

data. Assigning a continuous value to a well implies precision that does not exist. E. coli 

and T C counts in wells are not static. Rates vary over time and over climatic conditions 

(i.e. heavy rainfall events), and it is natural that tests performed on different days may 

return varying results. The presence of coliforms in groundwater rises over the course o f 

a May-Oct sampling season, as temperature increases provide a more favorable 

environment for bacterial survival (Miller, Beasley, Yanke, et al., 2003). Coliform 

counts may also be variable throughout a single well at the time of sampling - a 250ml 

sample scooped from a well may not present a representative cross-section of the well 's 

microbial climate. Atherholt et al. (2003) suggest that a groundwater sample should be 

analyzed ten times or more to confidently determine its sanitary status1 0. Further, the 

Provincial water testing laboratories do not count higher than 81 coliforms per 100ml 

sample. A n y value over this arbitrarily-chosen number is considered overgrown and not 

worth additional laboratory time to count. Therefore, an absolute number of coliforms 

The methods used for the analysis of bacteriological water quality are standardized in each Province, and 
the M O E laboratories employ these established processes for sample submission, testing, and reporting. 
For the complete list of standards, refer to the M O E Protocol of Accepted Drinking Water Testing Methods 
(MOE, 2006). 
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per 100ml sample can never be provided, and any rates created with the 81 C F U cut-off 

value are not accurate. 

A n additional problem with assigning a rate to each well lies in the sampling bias 

caused by self-reporting, as it is the well owner's responsibility to initiate the sampling 

process. W e l l custodians whose water tests positive for E. coli are more likely to send in 

further samples for testing than owners whose water tests clear. For example, in 2003, 

wells positive for E. coli were tested 2.97 times on average; whereas wells that never 

tested positive for E. coli were tested 1.66 times on average. In 2004, wells positive for E. 

coli were tested 3.49 times on average; whereas wells never tested positive for E. coli 

were sampled 1.83 times on average. This indicates a potential for error, as spurious 

estimates could be produced based on the autocorrelation of multiple samples. The rates 

also have the potential to be skewed by the repeated measures of wells that had tested 

positive earlier in the sampling season. If all wells were sampled the same number of 

times at standardized temporal intervals, then a rate would be a more reliable way to 

compare water quality across wells. However, due to the sampling and laboratory 

processes, and the dynamic nature of the l iving organisms whose patterns we are trying to 

describe, we rejected the idea of using a continuous rate as an outcome variable. 

A n alternative to using a continuous rate is to simplify the outcome variable to 

ordinal/discrete categories by assigning a binary code (1 or 0) to each well , indicating its 

potential for contamination by E. coli and T C . This method does not imply precision - it 

simply reports whether E. coli or T C have been found in any o f a well 's tests over the 

course of the season. I recoded each well either 'positive' for E. coli ( i f one or more E. 

coli coliforms had ever been detected in the well , no matter how many samples taken), or 

'negative' i f no sample had ever detected the presence of an E. coli coliform in that well 

at any point from M a y 1 - Oct 1 each year. To achieve the aggregation, I imported the 

Access database file into SPSS 12.0, and employed the 'Data -> Aggregate' function, 

using common x,y coordinates as the grouping variables for attribute aggregation 

(simply, i f two records have the same coordinates, the records are combined). In the 

grouping parameters, I specified for the E. coli and T C counts to be summed during the 

aggregation. Once aggregation was complete, all E. coli and T C values >0 were recoded 
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to the value of 1 to indicate that the potential for contamination exists at that well site. 

Conversely, all wells for which E. coli or T C had never been found remained coded as ' 0 ' 

(see Fig. 3.2 for a diagram of this process). 

Figure 3.2: Aggregating W e l l Records to Unique W e l l Locations 

\ , ' 
ID Date Collected Status Coliform Ecoli X Y 

64852 5/18/2003 No significant evidence of contamination 0 0 -81.55649 42.68991 V 
99273 6/13/2003 No significant evidence of contamination 0 0 -81.55649 42.68991 s X 103644 6/22/2003 UNSAFE TO DRINK 81 81 -81.55649 42.68991 • 107669 9/1/2003 No significant evidence of contamination 0 0 -81.55649 42.68991 • 

\ 

ID Date Collected Status Coliform Ecoli X 1 1 
47367 7/12/2003 No significant evidence of contamination 0 0 -81.43364 42.87662 

X / \ 
ID Date Collected Status Coliform Ecoli X Y x 

X V 
59866 7/26/2003 No significant evidence of contamination 2 0 -81.77364 42.32218 x 

X V 115974 9/14/2003 Significant evidence of contamination 81 0 -81.77364 42.32218 o 
o 
o 
o d E. coli positive well _ 

Road 
O E. coli negative well 
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do not contain real data / 

o 
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/ X 

The result of the aggregation is a table that contains one record per wel l ; with the 

fol lowing variables: X and Y coordinates, E. coli status (0 or 1), T C status (0 or 1), and a 

code conveying the level of geocoding precision. Although no data from any well 

sample was lost (all wells were considered), the aggregations significantly reduced the 

number of records for both sampling seasons: from 144501 to 29134 in 2003 (a 79.8% 

reduction), and from 225052 to 37359 in 2004 (an 83.3% reduction). These high 

reduction levels are due to the fact that wells geocoded to inaccurate locations have not 

yet been excluded from the pool; therefore the example of the 'wel l point' with 957 

observations described earlier (which in actuality is a municipal centroid) is still 

provisionally included in the sample. 

This leads us to the fifth and final step in database cleaning: excluding wells 

geocoded to imprecise locations. We are interested in examining the local environmental 

characteristics that affect well water quality; therefore it is logical to only include wells 
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that are accurately geocoded (i.e. to a specific property) in the analysis. Current literature 

on well protection area zoning reports that regions of influence for wells vary widely, 

depending on environmental and well characteristics (to be discussed further in section 

3.4.1). However, estimates for small-capacity private wells place the radius of microbial 

influence anywhere from 50-300m ( M O E , 2001; L i n , 2001; Horsley and Witten, 1995), 

thereafter effects drop off. Consequently, including a well that has been geocoded to the 

centroid of an area covering more than the area of a circle with a 300m radius 

(282660m 2, or 28.2 Ha) would introduce an increasing magnitude of error into an 

analysis of local effects. In order to determine the level of geocoding to be used as the ~ 

threshold for discarding records, I examined a shapefile of the locations of 6-digit postal 

codes, published by Statistics Canada. In our study area, this shapefile contains 253070 

points, each point representing the centre point of a six-digit postal code region. I created 

Thiessen polygons 1 1 around each point in an attempt to estimate the postal code regions 

using the point shapefile (refer to Fig . 3.3 for a diagram on the creation of Thiessen 

polygons). 

Figure 3.3: Thiessen Polygons 
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Thiessen Polygons 

I calculated the area for each of the 253070 polygons, and found the mean area of 

all polygons in the study region to be 523329m 2 (52.3ha). Because the mean area o f the 

6-digit postal code regions is almost twice as large as the well buffer zones (28.2ha), 

1 1 Also known as Voronoi polygons, Thiessen polygons bound the region that lies closer to a point than any 
other point. The boundaries lie exactly between two adjacent points. 
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using wells geocoded to the 6-digit postal codes would introduce uncertainty to the 

analysis. Thus, the only two levels of geocoding acceptable to use for the analysis are 

those records that are geocoded to the civic address,, and lot/concession number. B y 

restricting our sample to a lot-specific level of geocoding, we also eliminate the 

possibility that multiple samples aggregated to one point might have originated from 

separate properties 1 2. To complete the final step of data reduction, I selected the records 

geocoded to their civic addresses or lot/concession numbers, and discarded the remaining 

records. For the 2003 season, this resulted in a 7% reduction in sample size (n = 27096), 

and in 2004 only a 5.5% reduction (n = 35296). 

3.1.2 Selecting Wells for Analyses 

Large samples provide a more accurate, true-to-life representation of a 

phenomenon than do small sample sizes; yet complications can arise when dealing with 

very large samples. Because our sample sizes are in the tens of thousands, computing 

ability is an issue to contend with. Our spatial database is stored in a powerful desktop 

P C , with ArcGIS (v. 9.0) software. When the first stages of analysis were carried out, 

essential GIS processes (buffering and overlay, to be further discussed in section 3.4) 

could not be completed without the system failing. The largest sample size that the 

computer managed to process successfully was limited to 2000 wells, so for efficiency's 

sake the sample size required reduction. 

The sub-sampling design was influenced by our objective to compare landscape 

characteristics surrounding clean wells to landscape characteristics surrounding 

contaminated wells. Logically, each sample must contain both positive and negative 

wells (as a control). Four samples were required to analyze E. coli and T C patterns 

separately (two samples per season). In the 2003 season, 6.9% of wells tested positive 

for E. coli, and 43.3% tested positive for T C (see Table 3.2), with similar proportions for 

the 2004 season. The reason for the high percentage of T C positive results is that TCs are 

1 2 However, there is no indication whether multiple samples might originate from more than one well at 
the same address. 
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naturally more prevalent in the environment than E. coli (An et al. 2005, Health Canada 

2006). Further, each of the E. coli positive results also tests positive for TCs , as E. coli 

are part of the T C family of fecal coliform bacteria. 

Table 3.2: Positive and Negative Well Samples 

2003 2004 
Count % of Total Count % of Total 

Total samples 27096 100.0% 35296 100.0% 

E. coli positive 1859 6.9% 2779 7.9% 
E. coli negative 25237 93.1% 32517 92.1% 

T C positive 11752 43.4% 15925 45.1% 
T C negative 15344 56.6% 19371 54.9% 

Figure 3.4: Sample Selection, 
E. coli. 2003 

27,096 records 
>= 1 cfu E. coli present? 

To reduce the sample size without losing the limited number of positive contamination 

results, every record that had tested positive for E. coli or T C was retained. Then, as a 

control, an equal number of negative results 

were selected using a random number selection 

process in SPSS 12.0. The issues surrounding 

the use of an aspatial sampling scheme wi l l be 

discussed further in section 5.2.2. The diagram 

in Figure 3.4 depicts a flow chart outlining the 

sampling process for E. coli in 2003. Selecting 

a 1:1 ratio of positive to negative results ensures 

that the statistical power of positive and 

negative results are the same, and reduces the 

sample sizes sufficiently. The final samples are 

comprised of 50% positive and 50% negative 

results, and are still large in size: 

2003: E. coli n = 3718 
2004: E. coli n = 5558 

T C n = 23504 
T C n = 31850 
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3.2 Local Environmental Data 

The locations of the water samples extend across the entire study area, therefore 

continuous data of fine resolution are required to examine land characteristics 

surrounding each of the wells. A l l of the layers listed in section 3.2 are 100m or less in 

resolution (cell size), meaning that variability in each data layer wi l l be captured with 

well buffer zones with radii 100m and over. 

3.2.1 Land Cover 

It is widely acknowledged that landuse in a water catchment has a profound 

impact on water quality (Bolstad et al., 1997; Sekhar et al., 1995; George et al., 2004; 

Nygard et al., 2004). Thus, data describing Ontario's land characteristics are important 

components o f this project. Two possible sources of data were considered: a landuse 

layer produced by the Canadian Land Inventory (CLI), and a landcover layer produced by 

the Ontario Ministry of Natural Resources ( M N R ) . There is no significant difference 

between the land classification groups of the two layers (agriculture, mixed forest, 

developed land, marsh, etc), and both have similar patterns when visualized. The 

majority of the C L I landuse data was collected in the 1970s, with some updates 

performed in urban areas in the 1990s. These data were primarily collected via the 

interpretation of air photographs, and the resolution is approximately 25m. However, 

data are only available in Southern Ontario for 'populated' areas, which accounts for 

approximately 75% of the study area. In comparison, the MNR-landcover data were 

collected more recently (1986-1997) from remote sensing data, but the layer has a coarser 

resolution at 100m. Although the resolution is not as fine as the C L I landuse data, it is 

more recent and is available for the entire Province. For this reason, the M N R landcover 

layer was chosen for analysis. 
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The M N R data is available online, free of charge through GeoGratis 1 3 . The 

Ontario layer is available in approximately 80 zipped files, which were downloaded from 

the website, unzipped, and converted from .e00 (interchange) format to ESRI 'coverages' 

for input to the GIS. I projected each tile into U T M coordinates separately, and then 

used the union tool in ArcToolbox to merge the tiles together in groups of 5, eventually 

forming one cohesive layer (see Fig. 3.5). 

Figure 3.5: Land Cover Map 

3.2.2 Soils 

While the landcover layer provides information on surficial processes, the 

composition of the soil structure can give insight into the movement of microbes from the 

surface to a groundwater source. The soil layer was provided on C D by the Ontario 

Ministry of Agriculture and Food ( O M A F ) . The data was collected on a municipal basis 

1 3 GeoGratis is a website for the dissemination of Canadian geospatial data, hosted by Natural Resources 
Canada, and can be accessed at the following U R L : http://geogratis.cgdi.gc.ca/clf7en 
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by the Canadian Soil Information System (CanSIS) from 1970 - 1990, and describe soil 

characteristics from the surface to l m in depth. A t a 50m resolution, these soil surveys 

are the most detailed data available, however data is missing for large parts of the study 

region (see Fig. 3.6). O M A F data custodians provided two reasons for this: the first 

being a lack of soil in an area (i.e. the exposed bedrock of the Canadian Shield, or paved-

over urban centres), and the second reason being that data was not recorded in areas 

where the land is considered unsuitable for farming (i.e. wetlands and exposed rock). 

A s discussed in the hypotheses section (2.4), we are most interested in the water 

infiltration rate of a soil: the velocity at which water enters into the subsurface. O M A F 

scientists created a derived variable to classify soils into four hydrological soil types (A, 

B , C, and D) according to water run-off and infiltration rates, based on soil texture, type, 

porosity, and drainage. Soils in group A are typically sandy and gravel soils, with low 

runoff and a high infiltration rate, whereas group D have a high runoff and low 

infiltration rate, and include clay soils with a high swelling potential or shallow soils over 

impervious material. For ease of analysis, I combined soils in groups A and B together, 

and soils in groups C and D together to form two categories: high to moderate infiltration 

rates (A, B) , and slow to very slow infiltration rates (C, D). See Fig . 3.6 for a map of the 

soil characteristics in the study region. 
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Figure 3.6: Soils Map 

3.2.3 Geology 

The soil layer describes geology from the surface down to one meter in depth, 

however most wells collect water from a source deeper in the subsurface, as private wells 

in the region typically range from 1 Om to 100m in depth. Data on surficial and bedrock 

geology provides insight into the hydrogeological processes occurring below the 

uppermost soil cover. This data was provided to us by the M N R Mines and Minerals 

Divis ion, and was collected by the Ontario Geological Survey and its predecessor 

organizations over the course of 100+ years, at a resolution of 100m. The three data 

layers chosen for input to the GIS are surficial geology (permeability), bedrock geology 

(material and age), and areas of moraine deposits - all of which offer nearly complete 

coverages of the study area. 
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Surficial geology refers to all materials overlying the bedrock layer, including the 

top l m of the surface; therefore we expect these data to be similar to the soils layer 1 4 . 

Included in the attribute table of is a derived variable calculated by M N R , classifying the 

permeability of the surficial geology into three classes: high, medium, and low (See Fig. 

3.7). Permeability refers to the rate at which water infiltrates into the subsurface, and 

there is no apparent difference between this metric and the infiltration rate metric in the 

O M A F soil layer, except for terminology. 

Figure 3.7: Map of Surficial Geology 

Bedrock Geology refers to the solid rock underlying all loose geological 

materials. A s described in the hypotheses (section 2.4), we are interested in whether the 

Visually, the surficial geology and soils layers have similar patterns. The dangers associated with using 
two similar datasets in statistical analyses (i.e. misspecification bias caused by multicollinearity) will be 
further discussed in section 4.2.3. 
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bedrock is composed of carbonate or non-carbonate materials. In the attribute table of 

the bedrock layer, a field lists the primary rock types of each map area. B y querying this 

field, I reclassified each polygon into one of two categories: carbonate bedrock 

(limestone, calcite, or dolomite), or non-carbonate bedrock (all remaining records). See 

Fig. 3 .8 for a map of bedrock materials. 

Figure 3.8: Map o f Bedrock Material 
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The third variable o f interest is the age (era) of the bedrock. Using the bedrock age 

field in the attribute data, I reclassified the bedrock layer into three categories listed 

below. For details see Fig. 3 . 9 . 

1. Paleozoic 542 M i l l i o n years ago (Ma) to 251 M a 
2. Neoproterozoic 1000 M a to 542 M a 
3 . Mesoproterozoic 1600 M a to 1000 M a 

3 8 



Figure 3.9: Map o f Bedrock Age 

Km 

Data Source: MNR, 
Mines and Minerals Division, 
ON Geological Survey 

Due to the important hydrogeologic properties of moraine deposits and their 

abundance in the study area, the fourth geologic dataset added to the GIS indicates areas 

of glacial moraine deposits, also obtained from M N R (see Fig. 3.10 for details). These 

data are the last of the local environmental layers to be included in the analyses. 
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Figure 3.10: Map of Moraine Deposits 

3.3 Aggregated Census Data 

The environmental data described above are provided at fine resolutions, the 

detail o f which is usually dictated by the data collection process rather than 

confidentiality issues. Data regarding human population and agricultural demographics 

are more sensitive in nature. Statistics Canada collects human and agricultural census 

information at the individual level, and for confidentiality reasons these individual data 

are aggregated to large, arbitrarily-chosen administrative boundaries for public release. 

Dissemination Areas (DAs) are the smallest units for which data are available for the 

human census, with a mean area (in the study area) of 720ha, and Census Consolidated 
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Subdivisions 1 5 (CCS) are the smallest units for which agricultural data are available in 

the study area, with a mean area of 54123ha. 

3.3.1 Agricultural Census 

Every five years, coinciding with the Canadian population census, Statistics 

Canada performs a census of the Agricultural industry. The most recent census for which 

data is available was conducted in 2001. Thousands of different variables are provided, 

ranging from farm revenue, size, crops, and animal counts to agricultural practices. 

Available for download through University of British Columbia ( U B C ) Data Services 1 6 , 

these data tables can be linked to large geographic areas called Census Agricultural 

Regions ( C A R ) , or to C C S regions. C C S data was used exclusively for this analysis as it 

is at a higher resolution (smaller geographic areas) than C A R data. The spatial data are 

also provided by Statistics Canada, in digital shapefile format. Only variables pertaining 

to the hypotheses were selected for analysis, listed below: 

• Total area of land fertilized by manure (ha) 

• Total area of irrigated land (ha) 

• Total area of tilled soil (ha) 

• Total area of untilled soil (ha) 

• Total cattle and calves 

• Total pigs 

• Total sheep and lambs 

• Total horses and ponies 

• Total hens and chickens 

Linkage of the data tables to the C C S boundary file was performed in ArcMap , 

using the join attribute function. Both the tabular and spatial data have a field containing 

1 5 CCS areas are the same size and shape as municipal boundaries in Ontario. 

1 6 The U B C data services website is available to U B C students, faculty, and staff. The website is available 
at: http://data.library.ubc.ca/ 
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C C S identification codes, used as the connection key between the two data sets. The 

initial join was successful, however upon inspection, agricultural census data were 

missing for 45 CCSs . There is no documentation of this in the metadata, so I contacted a 

census official at Statistics Canada who informed me that the 45 C C S areas in question 

contained fewer than 20 farms. For confidentiality purposes, Statistics Canada 

aggregates data for all C C S regions with <20 farms to an adjacent C C S tract, leaving null 

fields for 45 C C S regions. Statistics Canada publishes a correspondence file that 

documents these census tract aggregations, and I used this file to create a similar 

correspondence file in the GIS. I then used the 'dissolve' function in A r c V i e w 3.2 to join 

the adjacent C C S units together where data aggregations had occurred, in order for the 

spatial data to 'match' the aggregated census data. Fig. 3.11 below is a chloropleth map 

of the final C C S regions, symbolized according to cattle density. 

Figure 3.11: Map of Cattle Density 
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3.3.2 Human Population Census 

Data from the 2001 human population census was used to examine the association 

between population density and water quality in a watershed. The methods for preparing 

these data are identical to the agricultural data: spatial and tabular population data were 
17 

downloaded from E-Stat online (Statistics Canada's data site ), and joined in the GIS. 

The area of each D A was found in Arc View 3.2, and then the total population of each D A 

divided by the area to find the population density (number of persons per square 

kilometer). The mean population density for the study region in 2001 is 4084 people/km 

- see figure 3.12 for a map of population by C S D . The contrasts in population density 

between rural and urbanized regions are clearly visible on this chloropleth map. 

Figure 3.12: Map of Human Population Density 

1 7 The E-stat website can be accessed at: 
http://estat.statcan.ca/cgiwin/CNSMCGI.EXE?ESTATFILE=EStat\English\E-Main.htm 
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3.4 GIS Methods 

The data described above are compiled within a GIS to form a set of layers that 

represent many natural and anthropogenic processes affecting groundwater quality in the 

study region. Not only does the GIS allow for the storage of spatial data, it also serves as 

a platform for data querying, manipulation, and analysis. This research examines the 

impact of local land characteristics on a well 's microbial water quality; therefore rather 

than using the environmental data for the entire study area, only spatial data in close 

proximity to well locations were selected for examination. I used the buffer feature tool 

in ArcMap'sproximity toolbox to create digital circles around well locations, 

representing a zone surrounding a well where land characteristics might potentially have 

an impact on the source's microbial water quality. ,Then, using these circular buffer 

zones as 'cookie cutters,' I used the overlay feature to select only the environmental data 

in close proximity to a well , and discarded the irrelevant remainder of the data. B y 

performing database queries and area calculations on the remaining dataset, the final 

tables used for analyses were constructed. These tables consist of one record per well 

(coded either positive or negative for microbial contamination), with many fields, each 

containing a quantitative value listing the total area of an environmental characteristic 

found within the buffer zone of each well . This format allows for the statistical analysis 

of patterns in land characteristics (based on the area measurements) surrounding clean 

wells versus contaminated wells. In this section I w i l l describe the methodologies 

employed to derive the tables used for the analyses described in chapter 4 (results). 

3.4.1 Well Buffer Zones 

In order to select land characteristics for analysis, a circular buffer was drawn 

around each well to represent a zone of influence. The purpose of the uniform buffers is 

to efficiently capture land characteristics that have an impact on the source's microbial 

water quality. Two major questions arose, first: a well 's zone of influence is never 

perfectly circular, nor static - how adequately does a circular buffer describe complex 

environmental processes? Secondly, what size should a buffer radius be to capture a 
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zone of influence over such a large sample size? A s described in the literature review, 

research on the use of GIS in analyzing the impact of local land characteristics on 

microbial well water quality has not been widely attempted; therefore there is no 

substantial body of literature to draw from to develop methodologies. 

A well capture zone is the land area surrounding a groundwater source where 

there is a potential for microbiological contaminants to be deposited on the surface, enter 

the water table and travel through the subsurface, eventually contaminating the well . 

This process is mediated by specific environmental characteristics in that region such as 

landuse type, soil porosity, and direction of groundwater flow. Wel l characteristics 

(depth, casing material, and pump rate) also affect the extent of the zone of influence. 

Due to the variability of the natural environment and the wells themselves, the fingerprint 

of a capture zone differs for every well . N o fixed guidelines appear in academic literature 

or in technical documents, probably for fear o f risks associated with underestimation. 

Many techniques are used by scientists to delineate well capture zones, ranging from 

complex computer modeling to assigning an arbitrarily-fixed radius to a source. In 2001, 

the Ontario Ministry of Environment ( M O E ) published a protocol for delineating 

wellhead protection areas for municipal wells ( M O E , 2001). In the ministry's eyes, the 

preferred methods for Wellhead Protection Area ( W H P A ) delineation are three-

dimensional steady-state computer modeling programs, like M O D F L O W . These models, 

along with other analytical methods of delineating W H P A s 1 8 require a host of input data 

that are unavailable to us at this time, such as hydraulic flow gradients, well pump rate, 

and aquifer thickness. For these reasons, using analytical methods to determine W H P A s 

is beyond the scope of the project 1 9. 

A simpler approach to zone delineation known as the arbitrary fixed radius 

method is supported by the World Health Organization ( W H O , 1993), O N M O E (2001), 

U S E P A (1991), and many local governments and technical institutions (NJDEP 2003, 

B C W W A , 2006) as a cost-effective and reliable method for W H P A delineation. This 

For example, the Uniform Flow and Calculated Fixed Radius Methods. 
1 9 Graham Mclntyre, another U B C geography graduate student working with Dr. Buzzelli on the A R O 
project, is conducting research on using computer modeling, to analyze the same A R O water data used in 
this research. 
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method involves simply drawing a circle around a well to estimate the travel time of 

organisms to a well source. Although the subsurface water gradient near each well is 

different, it has been suggested that "buffer areas are best calculated as circular entities, 

allowing ease of generation in a geographic information system (GIS), and avoiding 

problems of orientation when groundwater flow direction is unknown" (McLay and 

Dragten, 2001, p. 193). The circular zones represent isochrones: contour lines that 

denote the time of travel. For medium capacity municipal wells, the W H O suggests a 50-

day isochron (parallel with the assumption that most microbes die after 50 days in 

groundwater) which can range from fifteen meters in a confined aquifer, to 300m in an 

unconfined aquifer ( W H O , 1993). The Ontario M O E suggests that a two-year Time of 

Travel (TOT) zone be drawn around a municipal wellhead, starting from 100m ( M O E , 

2004). The New Jersey Department of Environmental Protection (NJDEP) suggests a 

two-year T O T range of 200-900m, and a U S Standard handbook on water calculation 

methods suggests a 300m radius (Lin, 2001). A workshop on Source Water Assessment 

and Protection published online by Groundwater.org (a US-based groundwater research 

organization) also recommends 200m-300m radii values for a two-year T O T isochron 

(Herpel, 2006), and in their GIS analysis of private wells, Kistemann et al. (2000) use a 

50m radius to buffer their water samples. 

Turning to studies that employ buffering techniques to study nitrate 

concentrations, researchers used buffer zones ranging from 250m (Barringer et al., 1990) 

to 800m (Eckhardt et al., 1995). Clearly, no firm consensus on an appropriate buffer size 

exists, so we thought it practical to test many different buffer radii in order to identify 

which buffer size might yield the most significant results in our study region. The buffer 

radii must be at least ~200m to capture variability in the environmental data layers, and 

1000m or less for the computer to process the data without failing. Five different buffer 

sizes were created around each well in our 2003 E. coli sample, at distances of 200m, 

300m, 650m, 900m, and 1000m, and were used to select environmental data surrounding 

the wells for further analysis. The methodologies employed in the selection process are 

the foci of the following section: Joining Environmental Data and Water Results. 
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3.4.2 Joining Environmental Data and Water Results 

In order to compare water quality results, local environmental data, and 

aggregated census data, all datasets have been linked together to form a single table. 

Merging the aggregated census data with the water test results was a straightforward 

process: the attribute tables of the water samples were joined to the C C S and D A attribute 

tables using the join by spatial location function in ArcMap. Each well was assigned the 

complete set of census data values belonging to the administrative region the well is 

located in, making the comparison of census data and water test results possible. The 

approach to measuring local environmental characteristics is different, as continuous 

values (the total area in m 2 o f the particular characteristic within a buffer zone) are being 

used as a metric, rather than densities or rates. First, each well buffer was assigned a 

unique ID code, then the intersect tool in Arc View 3.2 was used to clip (overlay) the 

environmental data layers with the buffers, saving only data in the same spatial location 

as the buffer zones. Then, the area of each polygon was calculated (see Fig. 3.13). 

Figure 3.13: Well Buffers and Overlay 

Buffers drawn around each well Buffers intersected with land cover layer. 
Area of each polygon measured 

750 1.500 
_ J L_J I L 
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Settlement and Developed Land 

Dense Coniferous/Deciduous Forest 

1000m 
Treed Wetlands 300m 
Water 
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Some buffer zones contain more than one polygon of the same class ; therefore I 

aggregated the GIS database file by the unique well ID code, and summed together the 

area values of similar land classifications. First, the buffering/overlay process was 

carried out once for each of the five different buffer zones (200m, 300m, 650m, 900m, 

and 1000m) with just the 2003 E. coli sample, in order to compare the effects of varying 

buffer sizes on the associations with water quality. The results (to be discussed in section 

4.1) indicate that a 300m buffer radius is an appropriate size for measuring the full set of 

land characteristics. 

For the second round of analyses, a 300m buffer was used to repeat the 

buffering/overlay process 28 times: once for each of the seven environmental data layers, 

for each of the four water samples. Using the merge data function in SPSS, the 28 tables 

were consolidated to create four final tables, one for each sample. Each table contains 

one record per well sampled, with numerous fields listing the area (in m ) of each 

environmental characteristic captured in the buffer zone, as well as the rates and densities 

of the aggregated census data. For a sample section of one table, see Appendix 5. The 

tables were imported into SPSS 12.0, and the associations between the microbial test 

results and the measured environmental data were examined using a number of different 

statistical analyses, to be outlined in detail in the following chapter. 

For example, two small polygon islands of agricultural land may exist within a larger forest class 
polygon. 
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4. RESULTS 

The purpose of this chapter is to describe various descriptive and inferential 

statistical analyses used to summarize and explain the data, and the results garnered from 

these tests. The techniques are exploratory in nature as no protocol exists for applying 

statistics to describe the prevalence of E. coli in groundwater based on land 

characteristics. A n in-depth discussion of the results can be found in the following 

chapter. 

4.1 Buffer Size Comparisons 

A l l analyses described in this chapter have been performed on four tables of data, 

one table per sample group. These tables contain continuous data quantifying the total 

area o f an environmental variable measured within a well buffer zone. A s discussed in 

section 3.4.1, there is contention among experts as to what the most appropriate radius of 

this buffer zone should be, although suggested radii range from 50m to 900m. Before 

embarking on an extensive analysis of the data, a suitable buffer size for capturing land 

characteristics local to wells had to be determined. To address this question, the 

independent samples t-test was applied to compare land characteristics surrounding clean 

versus contaminated wells, using data collected with five different buffer zones ranging 

from 200m - 1000m. The goal was to determine the buffer size that returned the most 

significant results. To increase efficiency, only 9 out of 26 variables were examined 

(agricultural land area, soils, and agricultural census data), and a smaller sub-sample 

(n=1512) was selected from the 2003 E. coli sample group. The mean values of each 

environmental variable were compared using the independent samples t-test, the results 

o f which are listed in table 4.1. 
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Table 4.1: Buffer Size Comparison Results 

Grouping variable: E. coli presence/absence p = 0.05 
Water Testing Data - 2003 n = 1512 (756 E. coli positive wells, 756 E. coli negative wells) 

200m buffer 300m buffer 650m buffer 800m buffer 1000m buffer 

Variable t 
Sig (2-
tailed) t 

Sig (2-
tailed) f 

Sig (2-
tailed) f 

Sig (2-
tailed) t 

Sig (2-
tailed) 

Area of Agricultural Land in Buffer 2.915 0.004 2.955 0.003 2.470 0.014 2.312 0.021 2.187 0.029 
Area of soils with high infiltration rates -4.403 0.000 -4.142 0.000 -4.311 0.000 -4.399 0.000 -4.242 0.000 
Area of soils with low infiltration rates 3.837 0.000 3.788 0.000 4.219 0.000 4.243 0.000 4.173 0.000 
Human Population Density -1.268 0.205 -1.268 0.205 -1.268 0.205 -1.268 0.205 -1.268 0.205 
Cattle Density -0.519 0.604 -0.519 0.604 -0.519 0.604 -0.519 0.604 -0.519 0.604 
Pig Density -1.007 0.314 -1.007 0.314 -1.007 0.314 -1.007 0.314 -1.007 0.314 
Chicken Density 2.401 0.016 2.401 0.016 2.401 0.016 2.401 0.016 2.401 0.016 
% Irrigated land in CCS 1.507 0.132 1.507 0.132 1.507 0.132 1.507 0.132 1.507 0.132 
% Land fertilized by manure in CCS -0.519 0.604 -0.519 0.604 -0.519 0.604 -0.519 0.604 -0.519 0.604 

For this analysis, we are interested in the impact that a buffer radius size has on 

the results of a t-test, not the connotation of the results on well water quality. The t-test 

results displayed in Table 4.1 demonstrate that varying buffer size has little impact on 

returned r-values or p-values. The direction of association between independent and 

dependent variables (signified by the positive or negative value of the /-values) are the 

same for each variable, and the /-values are similar, no matter the buffer size. The same 

variables show significant group differences across all five buffer radii: agricultural land, 

soils with high infiltration rates, soils with low infiltration rates, and chicken density. 

Further, the /^-values (and t-values) for each test are almost identical regardless of the 

area measured, differing only in the agricultural land category. The identical results 

suggest that at this time it would be logical to apply a static buffer size to analyze all 

variables. In reality, each environmental characteristic has a different influence on 

mediating the transport and survival of E. coli. In future research it may be useful to 

• • 2 1 • 

further investigate each variable to determine whether assigning buffer radii o f varying 

sizes to different environmental characteristics (based on their individual reported zones 

of influence on well water quality) may be a more suitable representation of the effects of 

local land characteristics on well water quality. 

In our comparison, the 300m buffer radii return the most significant results 

overall, as this buffer size returns the smallest p-value (0.003) in the t-tests of the 

agricultural land data. A 300m radius allows the variability of continuous data layers to 

2 1 By conducting specific literature reviews, and/or applying alternative statistical tests to these data. 
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be captured, yet it is small enough to allow for efficient data processing in the GIS. 

Further, a 300m radius is supported repeatedly in current literature as being within the 

range of appropriate buffer sizes to delineate a W H P A using the arbitrary fixed radius 

method. For these reasons, buffers with 300m radii were placed around all wells in the 

four well sample groups for the selection and measurement of the environmental data in 

the main analyses. 

4.2 Environmental Characteristic Compar isons 

Once environmental data were selected with the 300m buffer zones, the resolved 

tables containing water test results and environmental characteristic measurements were 

imported into SPSS for analysis. First, independent samples t-tests were carried out to 

assess whether the mean values of environmental variables differ significantly between 

clean and contaminated wells. Secondly, bivariate logistic regressions were performed to 

test whether associations exist between E. coli presence and individual environmental 

variables. Multivariate logistic regressions were applied in an attempt to model E. coli or 

T C presence as a function of multiple environmental characteristics. Lastly, logit 

loglinear analyses were run in further exploration of inferential modeling as applied to 

this research problem. 

4.2.1 Independent Samples T-tests 

Similar to the buffer comparisons described in the previous section, independent 

samples t-tests were performed for 26 variables of interest in all four sample groups to 

compare land characteristics surrounding clean wells to contaminated wells. These tests 

compare the mean values of all dependent variables, grouped by E. coli presence/absence 

or T C presence/absence, in order to assess whether group differences are due to chance 

alone. These tests w i l l address questions related to the hypotheses, such as: is 

agricultural land area more prevalent near contaminated wells? Or, is carbonate bedrock 

more prevalent near contaminated wells? The results of the Mests are listed in Table 4.2 
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on the following page. In the E. coli sample groups, significant results with positive 

associations were returned for the following variables: 

• Agricultural land 1 

• Soils with low infiltration rates 

• Geology with medium/variable permeability 

• Carbonate bedrock 

• Non-moraine material 

• Sheep and lamb density 

Significant results with negative associations were returned for the following variables: 

• Developed land 

• Soils with high infiltration rates 

• Highly permeable geology 

• Moraine material 

• Human population density 

• Intensive tilling of land 

• Irrigated land 

• Non-carbonate bedrock 

The results of the t-tests for the T C sample groups were similar to those of the E. coli 

samples, except for positive associations with ancient bedrock (mesoproterozoic), and 

unfilled land. The charts in Fig. 4.1 and Fig . 4.2 provide a graphical comparison of the 

mean values of eight selected environmental characteristics, grouped by E. coli 

presence/absence and T C presence/absence. 
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Table 4.2: T-test Results - E.coli and TC, 2003 & 2004 

Comparison of Pilot data (2003), and Surveillance Data (2004) 
with the Independent Samples T-test 

Water Test Data Grouping variable: E. coli presence/absence 
n = 3718 (1859 pos, 1859 neg) 

300m Buffer Radius Pilot Study data - 2003 

Variable Assoc t 
Sig (2-

df I tailed) 
1. Landcover Area of Agricultural Land 

Area of Densly Forested Land 
Area of Mixed Forested Land 
Area of Mixed Wetlands 
Area of Developed Land 

pos 2.655 3716 0.008 1. Landcover Area of Agricultural Land 
Area of Densly Forested Land 
Area of Mixed Forested Land 
Area of Mixed Wetlands 
Area of Developed Land 

neg -0.824 3715 0.410 
1. Landcover Area of Agricultural Land 

Area of Densly Forested Land 
Area of Mixed Forested Land 
Area of Mixed Wetlands 
Area of Developed Land 

pos 1.872 3716 0.061 

1. Landcover Area of Agricultural Land 
Area of Densly Forested Land 
Area of Mixed Forested Land 
Area of Mixed Wetlands 
Area of Developed Land 

neg -1.782 3716 0.075 

1. Landcover Area of Agricultural Land 
Area of Densly Forested Land 
Area of Mixed Forested Land 
Area of Mixed Wetlands 
Area of Developed Land neg -5.004 3716 0.000 

2. Soils Area of Soils with High Infiltration rates 
Area of Soils with Low Infiltration rates 

neg I -4.586 2928 0.000 2. Soils Area of Soils with High Infiltration rates 
Area of Soils with Low Infiltration rates pos 4.554 2933 0.000 

3. Surficial 
Geology 

Area of High/Med-high Permeability 
Area of Medium/Variable Permeability 
Area of Low/Med-Low Permeability 

neg -7.136 | 3586 | 0.000 3. Surficial 
Geology 

Area of High/Med-high Permeability 
Area of Medium/Variable Permeability 
Area of Low/Med-Low Permeability 

pos 5.371 3586 0.000 
3. Surficial 

Geology 
Area of High/Med-high Permeability 
Area of Medium/Variable Permeability 
Area of Low/Med-Low Permeability pos 12.103 3585 0.360 

4. Moraines Area of Moraine Material 
Area of Non-Moraine Material 

neg 
pos 

-2.952 
2.801 

3716 
3716 

0.003 
0.005 

5. Census 2001 Human Population Density neg -2.806 I 3703 0.005 
6. Agricultural 
Census 2001 

Cattle Density 
Pig Density 
Chicken Density 
Sheep and Lamb Density 
% Land tilled intensively in C C S 
% No till land in C C S 
% Irrigated land in C C S 
% Land fertilized by manure in CCS 

neg -0.143 3706 0.886 6. Agricultural 
Census 2001 

Cattle Density 
Pig Density 
Chicken Density 
Sheep and Lamb Density 
% Land tilled intensively in C C S 
% No till land in C C S 
% Irrigated land in C C S 
% Land fertilized by manure in CCS 

neg -1.484 3716 0.138 
6. Agricultural 
Census 2001 

Cattle Density 
Pig Density 
Chicken Density 
Sheep and Lamb Density 
% Land tilled intensively in C C S 
% No till land in C C S 
% Irrigated land in C C S 
% Land fertilized by manure in CCS 

pos 1.619 3716 0.106 

6. Agricultural 
Census 2001 

Cattle Density 
Pig Density 
Chicken Density 
Sheep and Lamb Density 
% Land tilled intensively in C C S 
% No till land in C C S 
% Irrigated land in C C S 
% Land fertilized by manure in CCS 

pos 0.966 3713 
3716 

0.334 
. _ _ 

6. Agricultural 
Census 2001 

Cattle Density 
Pig Density 
Chicken Density 
Sheep and Lamb Density 
% Land tilled intensively in C C S 
% No till land in C C S 
% Irrigated land in C C S 
% Land fertilized by manure in CCS 

neg -2.323 
3713 
3716 

0.334 
. _ _ 

6. Agricultural 
Census 2001 

Cattle Density 
Pig Density 
Chicken Density 
Sheep and Lamb Density 
% Land tilled intensively in C C S 
% No till land in C C S 
% Irrigated land in C C S 
% Land fertilized by manure in CCS 

pos 0.431 3716 0.666 

6. Agricultural 
Census 2001 

Cattle Density 
Pig Density 
Chicken Density 
Sheep and Lamb Density 
% Land tilled intensively in C C S 
% No till land in C C S 
% Irrigated land in C C S 
% Land fertilized by manure in CCS 

neg -2.054 3716 0.040 

6. Agricultural 
Census 2001 

Cattle Density 
Pig Density 
Chicken Density 
Sheep and Lamb Density 
% Land tilled intensively in C C S 
% No till land in C C S 
% Irrigated land in C C S 
% Land fertilized by manure in CCS neg -0.723 3715 0.470 

7a. Bedrock 
Material 

Carbonate Bedrock 
Non-carbonate Bedrock 

pos 2.228 3711 0.026 7a. Bedrock 
Material 

Carbonate Bedrock 
Non-carbonate Bedrock neg -2.311 3711 0.021 

7b. Bedrock 
Age 

Youngest (Paleozoic) 
Middle (Neo to Meso Proterozoic) 
Oldest (Mesoproterozoic) 

neg -0.420 3711 0.966 7b. Bedrock 
Age 

Youngest (Paleozoic) 
Middle (Neo to Meso Proterozoic) 
Oldest (Mesoproterozoic) 

neg 
pos 

-0.985 3704 0.325 
7b. Bedrock 
Age 

Youngest (Paleozoic) 
Middle (Neo to Meso Proterozoic) 
Oldest (Mesoproterozoic) 

neg 
pos i.123 3711 0.261 

n = 5558 (2779 pos, 2779 neg) 
Survc illance d ata - 2004 

Sig (2-" 
Assoc t df tailed) 

pos 4.266 5556 0.000 
neg -2.499 5556 0.012 
neg -1.022 5556 0.307 
pos 0.008 5535 0.994 
neg -5.800 5556 0.000 
neg -5.083 4647 0.000 
pos 6.503 4674 0.000 
neg -7.591 5389 0.000 
pos 5.388 5389 0.000 
pos 2.572 5389 0.100 
neg -2.856 5556 0.004 
pos 3.406 5556 0.001 
neg -3.882 I 5541 0.000 
neg -1.302 5556 0.003 
neg -2.005 5556 0.045 
pos 0.947 5556 0.344 
pos 2.139 5548 1 0.032 
neg -3.019 5556 0.003 
pos 1.09 5556 0.276 
neg -2.398 5556 0.016 
neg -1.713 5556 0.087 
pos 4.804 5544 0.000 
neg -4.909 5544 0.000 
pos 1.838 5544 0.066 
neg -1.600 5544 0.110 
neg -1.188 5544 0.235 

Water Test Data 

300m Buffer Radius 

Grouping variable: Coliform presence/absence 
n = 23504 (11752 pos, 11752 neg) 

Pilot Study data - 2003 
Sig (2- Sig (2-

Variable Assoc t df tailed) Assoc t df tailed) 
1. Landcover Area of Agricultural Land pos 6.875 I 23502 0.000 pos 7.301 31848 0.000 

Area of Densly Forested Land neg -0.132 23502 0.895 neg . -1.508 31848 0.132 
Area of Mixed Forested Land neg -0.817 23502 0.414 neg -0.511 31848 0.609 
Area of Mixed Wetlands pos 1.174 23502 0.895 pos 1.286 31848 0.198 
Area of Developed Land neg -8.850 23502 0.000 neg -10.647 31848 0.000 

2. Soils Area of Soils with High Infiltration rates neg -3.315 18127 0.001 pos 1.150 25335 0.250 
Area of Soils with Low Infiltration rates pos 6.099 18127 0.000 pos 5.556 25628 0.000 

3. Surficial Area of High/Med-high Permeability neg -4.486 14016 0.000 neg -2.150 18562 0.032 
Geology Area of Medium/Variable Permeability pos 0.757 13897 0.449 pos 0.314 12031P 0.754 

Area of Low/Med-Low Permeability neg -2.262 13681 0.024 neg -0.728 19654 0.467 
4. Moraines Area of Moraine Material neg -2.274 23502 0.023 neg -2.845 31848 0.004 

Area of Non-moraine Material pos 2.335 23502 0.020 pos 2.572 31848 0.010 
5. Census 2001 Human Population Density neg -5.774 23425 0.000 neg -4.912 31770 0.000 
6. Agricultural Cattle Density pos 0.828 23502 0.408 neg -3.234 31848 0.001 
Census 2001 Pig Density pos 0.082 23502 0.935 neg -4.148 31848 0.000 

Chicken Density pos 2.961 23502 0.003 pos 1.497 31848 0.134 
Sheep and Lamb Density pos 2.844 23495 0.004 pos 4.588 31848 0.000 
% Land tilled intensively in C C S pos 0.333 23498 0.739 neg -17.453 31841T 0.000 
% No till land in C C S pos 3.655 23502 0.000 pos 2.462 31848 0.014 
% Irrigated land in CCS neg -2.638 23502 0.008 neg -3.969 31848 0.000 
% Land fertilized by manure in CCS pos 0.680 23495 0.497 neg -3.602 31848 0.000 

7a. Bedrock Carbonate Bedrock pos 6.587 23488 0.000 pos 14.211 31818 0.000 
Material Non-carbonate Bedrock neg -6.573 23488 0.000 neg -14.255 31818 0.000 
7b. Bedrock Youngest (Paleozoic) neg -0!821 23488 0.412 pos 1.200 31818 0.230 
Age Middle (Neo to Meso Proterozoic) neg -1.686 23488 0.092 neg -2.803 31818 0.005 

Oldest (Mesoproterozoic) pos 3.639 23488 0.000 pos 2.060 31818 0.039 

n = 31850 (15925 pos, 15925 neg) 
Surveillance data - 2004 
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Figure 4.1: Comparison o f Mean values, E. coli, 2003 

Mean Area of Variable within Well Buffer (300m radii), 2003 
Grouped by E. coli presence/absence 

( * = indicates statistically significant difference) 
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Figure 4.2: Comparison o f Mean Values, T C , 

Mean Area of Variable within Well Buffer (300m radii), 2003 
Grouped by Coliform presence/absence 

("k = indicates statistically significant difference) 
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These visual summaries demonstrate the clear differences in mean values of 

environmental variables between clean and contaminated wells. It is interesting to note 

that the mean values of developed land are lower than the mean values of agricultural 

land. This discrepancy reflects both the high prevalence of farming and agriculture in 

southwestern Ontario in comparison to the lower overall amount of developed land. 

Further, in developed areas where municipalities generally supply drinking water, there 

are fewer private wells per capita than in rural and agricultural regions, where 

populations rely more heavily on private wells. 

The test results displayed in Table 4.2, and Figs. 4.1 and 4.2 are consistent - the 

same variables show significant differences across both T C and E. coli samples and 

across two years. However, when many statistical tests are performed, there is a 

possibility that some results may be erroneous. A /7-value of 0.05 indicates that there is a 

95% chance that the results are statistically significant. 26 t-tests were performed for 

each sample to obtain the aforementioned results, so there is a possibility that the 

outcome of at least 1 of the 26 tests is the result of type I or type II errors. Accordingly, 

the Bonferroni correction is a multiple-comparison correction that can be applied in a 

situation where many tests are performed simultaneously. I applied the correction to the 

thirteen variables that returned significant results in the first round of t-tests. To obtain a 

new confidence level, alpha was simply divided by the number of variables tested: 

a / n = ap 
0.05 / 13 = 0.003846 
1 -0 .00294 = 0.996153 

Therefore, the new confidence interval = 99.62 

The t-tests were re-examined with the new (higher) confidence interval ensuring that out 

of thirteen tests, the overall chance o f making a type I error is still less than 5%. The 

results of the correction show that t-test results returned from nine of the thirteen 

variables continue to reject the null hypothesis. The 4 variables that fail to return 

significant results under the Bonferroni correction are: land tilled intensively, irrigated 

land, carbonate and non-carbonate bedrock. 
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Another method to improve the validity of the t-tests is to ensure the fundamental 

assumptions of the tests are not violated by the input data, potentially rendering the 

results incorrect or misleading. The t-test requires input data to follow the normal 

distribution. However, due to the nature o f the sample selection (buffers) and the nature 

(resolution, variability) o f the original data, the frequencies for 17 out of 26 

environmental variables are bimodal. This is the case because a well buffer zone is 

usually either composed of 100% of an environmental characteristic, or 0%, and it is not 

as common for variability to occur within a buffer (owing in part to the 300m buffer size 

used). The histogram in Fig. 4.3 shows the bimodal nature of the frequency distribution 

of agricultural land, in the 2003 E. coli sample. 

Figure 4.3: Histogram of Agricultural Land Values, E. coli, 2003 

Frequency Histogram of Agricultural Land Area 
in 300m radii Buffer Zones: E. coli, 2003 
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When assumptions of parametric tests are violated by input data, nonparametric tests can 

be employed instead of their parametric counterparts, in this case, the Mann-Whitney U 

Test. A l l variables were re-tested using the Mann-Whitney test (with the Bonferroni 

correction) in SPSS, and nine of the thirteen continued to return significant results. The 

four variables for which returned results did not reject the null hypothesis are: soils with 

low infiltration rates, geology with medium/variable permeability, and both carbonate 

and non-carbonate bedrock. 

The results of these tests consistently return significant differences between clean 

and contaminated wells in terms of these surrounding variables: 

• Agricultural land 

• Developed land 

• Soils with high infiltration rates 

• Surficial Geology with high permeability 

• Moraine material 

• Non-moraine material 

• Human population density 

4.2.2 Bivariate Logistic Regressions 

The results of the t-tests show that certain variables are significantly more 

prevalent near contaminated wells, as opposed to clean wells. However, the t-test does 

not indicate an association between the dependent and the independent variables. 

Regression analysis attempts to model the relationship between two variables indicating 

the extent to which variables are associated with one another. Logistic regression is part 

of a group of statistical models called generalized linear models ( G L M ) . Where linear 

models predict the best line to fit a series of continuous data points, logistic regression 

allows for the prediction o f a probability of categorical outcomes, in this case discrete 

outcomes (i.e. E. coli presence versus. E. coli absence), based on either continuous or 

categorical data. 
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Logistic regression has a historical place in both health research and 

hydrogeology, as noted by Gardner and Vogel (2005, p. 345): "logistic regression has 

been used extensively in the health sciences since the late 1960s to predict a binary 

response from explanatory variables (e.g. Truett, Cornfield, and Kannel, 1967; Hosmer 

and Lemeshow, 2000), and more recently in the environmental sciences to assess 

multiple variables that may explain the occurrence of contamination in ground water." 

Applied to our research question, logistic regression generates coefficients to calculate a 

logit transformation (the natural log odds of the probability of E. coli appearing in a well) 

based on environmental characteristics within a 300m range of a well. The formula used 

for logistic regressions is as follows: 

logit(p) = b 0 + b^Xj + b 2 X 2 + b 3 X 3 + ... + b k X k 

Where 
p is the probability of E. coli presence 

bo is the intercept 

X is the area of an environmental variable within the well buffer zone 

The logit transformation is defined as the logged odds: 

P probability of presence of E. coli 
Odds - j _ p - probability of absence of E. coli 

and 

logit(p) = In 
1-p 

The null hypothesis is that a particular logit coefficient is zero (i.e. that the independent 

variable does not contribute to the outcome of the dependent variable). Logistic 

regression makes no assumption of the distribution of predictor variables, so bimodal 

data distributions are not problematic, and both categorical and continuous variables can 

be included in the analysis. 
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In SPSS, bivariate logistic regressions were individually run with the thirteen 

environmental variables that showed significant group differences in the t-tests. The tests 

returned two figures of interest for each variable: the Wald statistic and an R square (R ) 

value. The Wald statistic tests the statistical significance o f each component of the model 

to discern whether an effect exists between two variables. The results listed in Table 4.3 

show that every variable tests significant in at least one of the samples, meaning that each 

independent variable significantly contributes to the prediction of the outcome of the 

dependent variable. The second figure of interest is the R 2 values. 

Table 4.3: Bivariate Logistic Regression Results 

E. coli 
300m Buffer Radius 2003 season 2004 season /'•, 

Variable Wald | Sig. Wald | Sig. 
Area of Agricultural Land 
Area of Developed Land 

7.029 0.008 18.102 0.000 Area of Agricultural Land 
Area of Developed Land 23.784 0.000 25.634 0.000 
Area of Soils with High Infiltration rates 
Area of Soils with Low Infiltration rates 

13.895 0.000 23.634 0.000 Area of Soils with High Infiltration rates 
Area of Soils with Low Infiltration rates 5.158 0.023 41.626 0.000 
Geology - High/Med-high Permeability 8.635 0.003 56.643 0.000 
Area of Moraine Material 
Area of Non-Moraine Material 

8.376 
7.623 

0.004 
0.006 

7.994 
11.334 

0.005 
0.001 

Human Population Density 
Chicken Density 
Sheep and Lamb Density 
% Land tilled intensively in CCS 
% No till land in CCS 

7.289 0.007 14.116 0.000 Human Population Density 
Chicken Density 
Sheep and Lamb Density 
% Land tilled intensively in CCS 
% No till land in CCS 

2.610 0.106 2.927 0.411 
Human Population Density 
Chicken Density 
Sheep and Lamb Density 
% Land tilled intensively in CCS 
% No till land in CCS 

0.931 0.334 4.557 0.033 

Human Population Density 
Chicken Density 
Sheep and Lamb Density 
% Land tilled intensively in CCS 
% No till land in CCS 

5.375 0.020 9.069 0.003 

Human Population Density 
Chicken Density 
Sheep and Lamb Density 
% Land tilled intensively in CCS 
% No till land in CCS 0.186 0.666 1.188 0.276 
Carbonate Bedrock 
Non-carbonate Bedrock 

4.971 0.026 22.933 0.000 Carbonate Bedrock 
Non-carbonate Bedrock 5.236 0.022 23.937 0.000 

Total Coliforms 
2003 season |l;2004'.seaspnA4: 

Wald Sig. Wald Sig. 
47.124 0.000 53.161 0.000 
76.655 0.000 110.515 0.000 
10.981 0.001 1.325 0.250 
37.050 0.000 30.798 0.000 
20.052 0.000 4.623 0.032 

5.109 0.024 8.022 0.005 
5.437 0.020 6.602 0.010 

31.185 0.000 28.219 0.000 
8.747 0.003 2.239 0.135 
8.075 0.004 20.974 0.000 
0.111 0.739 28.219 0.000 
5.833 0.016 6.059 0.014 

43.273 0.000 199.994 0.000 
43.091 0.000 201.218 0.000 

t 2 

Logistic regression does not actually return an R , however SPSS has a function that 

returns two derived measurements: the Cox and Snell R , and the Nagelkerke R , 

designed to mimic R 2 values in linear regression. Out of the 52 regressions run in SPSS, 

the highest R 2 value returned was 0.014, for the variable 'surficial geology with high 

permeability.' This means that the best model can only predict 1.4% of the variability 

displayed by the dependent variable (E. coli presence/absence), based on the amount of 

highly permeable surficial geology found in a buffer zone. The remaining variables all 

returned lower R , so although the regressions determine that the thirteen variables 

singled out by the t-test results are significant components of a bivariate logistic 

regression model, a model based the coefficients of just one environmental variable 

clearly does not predict the presence or absence of E. coli or T C in our dataset. 
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4.2.3 Multivariate Logistic Regressions 

A bivariate analysis assesses whether the independent and dependent variables 

covary, but "provides insufficient evidence for causality. Multivariate analysis may 

provide better, though still incomplete, evidence for causality because it allows checking 

for possible spuriousness" (Hamilton, 1992, p. 29). Adding multiple independent 

variables to the model can help identify whether covariation between independent and 

dependent variables found by the bivariate regressions do not result from the effects of 

some other environmental characteristic in our GIS22. Multivariate regression analysis 

also helps to account for the inherent complexity of the multifaceted environmental 

processes responsible for fecal coliforms appearing in well water. 

The problem of selecting the 'best' number and combination of independent 

variables to use in a multiple regression is a longstanding discussion among statisticians 

(McQuarrie and Tsai, 1998). Including too few variables in the model may result in 

misspecification bias and an over-simplified model, yet including many variables could 

cause spurious results and an inflated R2. The method of model construction used in this 

analysis is a forward-inclusion regression, where the investigator first includes the single 

X variable that has the largest effect on the dependent (Y) variable. At each subsequent 

step, one more X variable is introduced, until the model produces the largest possible R . 

In order to select independent variables for inclusion to the multivariate model, we turn to 

the previous results of the independent samples t-tests and the binary regressions. These 

tests indicate that thirteen of the variables are associated with the presence or absence of. 

E. coli and TC in private wells. 

In constructing a multivariate regression, it is preferable to add variables to the 

model based on the strength of association between X and Y. A test called discriminant 

function analysis (DFA) is useful for this purpose, as it ranks the relative importance of 

each independent variable in predicting the dependent variable based on the Wilks 

2 2 Although it does not help us in any way if the model's spuriousness is a result of an environmental 
characteristic not included in our analysis. 
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lambda statistic^. In SPSS, DFA was performed on all four samples, with the results of 

the top six variables24 listed in Table 4.4 in canonical order. Each sample has a different 

ranking pattern, although many of the same variables appear in the top 6. Regions of 

Table 4.4: Discriminant Function Analysis 

Discriminant Function Analysis 

E.coli 2003 TC 2003 
Wilks Wilks 

Rank Variable Lambda Rank Variable Lambda 

1 High Infiltration Soil 0.995 1 Developed Area 0.995 
2 Developed Area 0.992 2 Untilled Soil 0.994 
3 Moraine Area 0.988 3 Low Permeability Geology 0.994 
4 High Permeability Geology 0.986 4 Non-Moraine Area 0.993 
5 Tilled Soil 0.984 5 Low Permeability Soil 0.992 
6 Agricultural Area 0.981 6 Carbonate Bedrock 0.991 

E.coli 2004 TC 2004 
Wilks Wilks 

Rank Variable Lambda Rank Variable Lambda 
1 High Permeability Geology 0.984 1 Tilled Soil 0.995 
2 Low Infiltration Soil 0.980 2 Moraine Area 0.993 
3 Tilled Soil 0.975 3 Developed Area 0.990 
4 Low Permeability Geology 0.972 4 Low Infiltration Soil 0.989 
5 Agricultural Area 0.967 5 Carbonate Bedrock 0.988 
6 Non-Carbonate Bedrock 0.964 6 High Infiltration Soil 0.987 

developed land appear to be comparatively strong predictors of the absence of both E. 

coli and TC, and both soil infiltration rates and geological permeability (high and low) 

figure prominently in all four samples. The results of the DFA indicate the order in 

which variables should be included in the model, but the presence of multicollinearity 

among independent variables must still be tested for. 

The presence of multicollinearity (or the lack of independent variation between 

data) leads to unreliable or misleading coefficient estimates (Hamilton, 1992) and an 

imprecise model. For example, among our data, the soils layer illustrates the infiltration 

In this analysis, I added the variables to the model one by one based on the strength of association 
between X and Y. In other models (i.e. forward-inclusion stepwise regression), the software uses 
algorithms to test different combinations of independent variables one by one, and automatically selects the 
order of variable inclusion based on algorithm results. In future research, a stepwise regression could be 
applied to these data (for further discussion on analytical possibilities see section 5.2.2). 
2 4 Although DFA was performed on all 13 variables, only the top six are listed in table 4.4. The number six 
is an arbitrary cutoff, although after the top six variables the Wilks Lambda values noticeably plateau. 
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rate of the top one meter of surficial geologic materials, whereas the geology layer 

describes the permeability of all geologic materials overlying bedrock, including the 

same top one meter of surficial materials. To test whether multicollinearity is a 

problematic factor among our data, the Variance Inflation Factor (VIF) was examined for 

all thirteen variables in SPSS. The output of the test is a V I F score with a range from one 

to infinity. The most commonly used V I F threshold is ten, and any value above this 

number indicates the presence of collinearity among variables. Among the thirteen 

variables tested, the highest V I F returned is 69.1, for both carbonate and non-carbonate 

bedrock. Moraine and non-moraine areas have the second highest V I F of 23, and the 

remainder of the variables had V I F scores below the threshold of ten, near one. The 

reason for the high V I F values in the geology and moraine layers is because these two 

layers are both dichotomous categories (i.e. in any point in the study area, there is either a 

moraine or there is not), therefore collinear as they directly reflect one another. The 

findings of these collinearity diagnostics show that when entering variables into the 

model, entering both carbonate and non-carbonate bedrock data, or moraine/non-moraine 

data into the same model may cause confounding. 

The results of the D F A indicate the order variables should be entered into the 

model, and the results of the V I F confirm that the most of the independent variables are 

not collinear. Multiple logistic regressions were performed on each of the four samples, 

adding each variable into the model separately in the order prescribed by the D F A 

analysis. A V I F analysis was performed alongside the regressions, the results of both 

listed in Table 4.5. The highest V I F returned was 2.1, well below the threshold of ten. 

A s indicated by the R values, the models do not have strong inferential power, with the 

most favourable model explaining only 4.6% of the variability o f the dependent 
25 2 

variable . Berry and Feldman (1985) caution the use of R as a sole measure of 

goodness-of-fit, as " R 2 w i l l always increase (to some degree) when new variables are 

added to the equation, even when they may have no effect on the dependent variable. In 

fact, as the number of independent variables (k) gets close to the number of cases in the 
2 2 

sample (n), R w i l l necessarily get close to 1.0 (p. 16)." Calculating an adjusted R is one 

See Appendix 6 to find the formula for the strongest model. 
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Table 4.5: Multiple Logistic Regression Result's 

Results from Multiple Logistic Regressions 

E.coli 2003 TC 2003 
# # 

entered Nagel- entered Cox 

into Cox and kerke into and Nagel-
model Variable Snell R 2 R 2 model Variable Snell R 2 kerke R 2 

1 High Infiltration Soil 0.005 0.006 1 Developed Area 0.003 0.004 
2 Developed Area 0.008 0.001 2 Unfilled Soil 0.004 0.005 
3 Moraine Area 0.012 0.016 3 Low Permeability Geology 0.005 0.006 
4 High Permeability Geology 0.014 0.019 4 Non-Moraine Area 0.007 0.009 
5 Tilled Soil 0.016 0.021 5 Low Permeability Soil 0.007 0.009 
6 Agricultural Area 0.017 0.023 6 Carbonate Bedrock 0.007 0.009 

VIF <= 1.384 VIF <= 1.172 

E.coli 2004 TC 2004 
# # 

entered Nagel- entered Cox 
into Cox and kerke into and Nagel-

model Variable Snell R 2 R 2 model Variable Snell R 2 kerke R 2 

1 High Permeability Geology 0.011 0.014 1 Tilled Soil 0.001 0.001 
2 Low Infiltration Soil 0.020 0.027 2 Moraine Area 0.001 0.001 
3 Tilled Soil 0.027 0.037 3 Developed Area 0.005 0.006 
4 Low Permeability Geology 0.029 0.040 4 Low Infiltration Soil 0.007 0.010 
5 Agricultural Area 0.032 0.043 5 Carbonate Bedrock 0.010 0.014 
6 Non-Carbonate Bedrock 0.035 0.046 6 High Infiltration Soil 0.012 0.016 

VIF <= 2.135 VIF <= 1.082 

2 

method of solving this problem, as the equation adjusts R to compensate for number of 

variables added to the model. For the model with the highest R 2 of 0.046, the adjusted R 2 

is 0.045. So although the R 2 values increased as variables were added, even the most 

favourable adjusted R 2 value is so low that re-running the D F A and V I F tests in order to 

add the 7 additional variables is redundant. 

4.2.4 Logit Loglinear Analyses 

2 

A s the low R values demonstrate, the bivariate and multivariate logistic 

regression models do not account for the variability of E. coli and T C in our samples. 

One final method of analysis (involving data transformations) was applied in an effort to 

improve upon the inferential capacity of previous models. Logit loglinear analysis is a 

multivariate method for analyzing relationships between variables through data 

crosstabulation, when both X and Y variables are categorical, nominal, or ordinal in 

nature. Unlike the regressions previously explored, loglinear analysis involves the 
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transformation of continuous data to ordinal categories. Data transformations are defined 

as the mathematical modification of the values of a variable (Osborne, 2002), and are 

commonly used tools in statistics to remedy modeling problems related to outliers, 

homoscedasticity, and non-normality. 

The crosstabulations performed as part of loglinear analysis renders it a labour-

intensive process, and experts suggest that the analysis should include five or less 

variables (Hosmer et al., 2000). This analysis was performed solely on the 2003 E. coli 

sub-sample, from which five independent variables were selected on the basis of the rank 

order prescribed by the D F A (see section 4.2.4 for details). These variables are: high 

infiltration soil type, developed area, moraine area, geology with high permeability, and 

tilled soil. These data are continuous in nature, and represent either an area value or a 

rate. I used the 'recode' function in SPSS to reclassify each variable into nine different 

categorical combinations, ranging from two to ten categories per variable. Then, logit 

loglinear analyses were performed nine times (once for each categorical breakdown) in 

order to determine the transformation that yields the strongest results. Although the 

results were almost identical among the nine different categorical combinations, 

transforming the data into three categories returned the highest measure of association. 

Loglinear analyses return entropy and concentration values (similar to R 2 ) , and the 

highest values returned overall were 0.036 and 0.048, respectively. These values are 

slightly higher than the R 2 found in the bivariate and multivariate regressions, yet are still 

too small to have any inferential power. 

4.3 Summary 

Although lacking inference, the statistical analyses described in this chapter show 

results that address questions raised in our hypotheses. Multiple tests were applied to the 

same data, and the results demonstrate that specific variables are statistically important to 

the presence of E. coli and T C . The results of independent samples t-tests, Mann-

Whitney U-tests, bivariate logistic regressions, and discriminate function analysis all 
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show that positive relationships exist between E. coli and TC presence in tested private 
wells and the following variables: 

• agricultural land 
• soil with low infiltration rates 

The same analyses maintain that negative relationships exist between E. coli and TC 
presence in tested private wells and the following variables: 

• developed land 
• human population density 
• soil with high infiltration rates 
• surficial geology with high permeability 
• areas of moraine material 
• tilled soils 

Moreover, these analyses serve as a useful exploration of the role of applied statistics in 
characterizing and estimating microbial groundwater quality based on local 
environmental characteristics. Using the information presented here as a starting point 
for discussion, the following chapter addresses how this research can be improved upon. 
Specifically, problems relating to the lack of inference in the multivariate models (such as 
autocorrelation, coarse-resolution data, and the lack of inclusion of temporal and 
climactic data) will be discussed. 
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5. DISCUSSION AND CONCLUSION 

5.1 Discussion 

Our hypotheses, methodologies, and study area are together relatively 

understudied, therefore the spatial analyses reported here are exploratory and 

experimental in nature. Although the inferential power of the models are weak, the 

results of t-tests and bivariate regressions identify a list of environmental characteristics 

associated with contaminated wells. Many of the results are consistent across sample 

groups, seasons, and statistical tests, and are in agreement with our hypotheses. The 

purpose of this chapter is to discuss key findings reported in chapter 4, and identify 

limitations in data and methods that may have contributed to a lack of inferential power 

in the multivariate models. I also offer suggestions for future research based on our 

experiences and results. 

5 .1.1 Key Findings 

In the opening analysis, well buffer zones o f five different radii were examined to 

determine an appropriate buffer size for the selection of local land characteristics. A s 

reported in section 4.1, varying the buffer radii has a negligible impact on t-test results. 

The 300m buffer returns the most significant results (lowest p-values) overall, and is 

within the 200m-900m range of buffer sizes utilized in similar studies (see section 3.4.1). 

Our decision to use a 300m buffer zone was corroborated (after the fact) by a July 2006 

article on private well water by Wang et al. The investigators applied similar geo-

statistical methods in their study of agriculture-derived nitrate concentrations on the 

North China Plain, and^ tested buffer radii ranging from 200m-2000m. The study reports 

that a 400m radius returned optimal results in a comparison of land characteristics to 

nitrate concentrations in groundwater. Although the geological characteristics, climate, 

and agricultural practices of the North China Plain most likely differ to our study region, 

the findings of Wang et al.'s study support our results. 
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The 300m buffer zones were used to overlay and select environmental variables 

local to sampled wells in order to answer questions related to the hypotheses. To review, 

we hypothesize that the following environmental characteristics are associated with E. 

coli presence in the samples of private well water: 

• Agricultural land use 

• Agricultural animal densities (Cattle, sheep, poultry, hens) 

• L o w human population densities (rural areas) 

• Soils with low water infiltration rates 

• Surficial geology with low permeability 

• Bedrock composed o f carbonate materials 

• Ancient (mesoproterozoic) bedrock 

• Non-moraine material 

• Land subject to manure application 

• Lack of tilled soil 

• Irrigated land 

The t-tests show that seven of these eleven variables are significantly more prevalent near 

E. coli contaminated wells as compared to clean wells. The exceptions are: animal 

density, ancient bedrock, manure application, and irrigated land. The results of the 

bivariate logistic regressions show that the same seven variables are significantly 

associated with E. coli presence in wells. The Bonferroni correction and the Mann-

Whitney U-Test emphasize these results with the exception of the carbonate bedrock 

layer. 

These seven variables consistently return significant results in four different 

statistical tests across two separate sampling seasons. Logical complimentary patterns 

exist in the results. For example, low infiltration soils and surficial geology with low 

permeability both show positive associations with E. coli and T C . These two layers 

originate from different sources, yet describe similar environmental phenomena. 

Likewise, agricultural land shows a positive association with E. coli, while areas of 

developed land and high population density show negative associations with well 

contamination. These consistencies add strength to the argument that wells located 

V 
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within 300m of any of the noted 7 variables may be at higher risk of contamination than 

other wells. 

Four layers are not associated with E. coli presence: manure application, animal 

densities, amount of irrigated land, and bedrock age. Three of these four variables 

' originate from the agricultural census, and consist of data aggregated to municipal C C S 

tracts. This suggests that in our analyses, regional-level data are not as important as local 

data to the presence of E. coli in individual wells. In future studies, mixed (multilevel) 

modeling methods could allow for the analyses of the effects of different sample 

groupings on the model results (see section 5.2.2 for further discussion). It would be 

useful to compare agricultural census data with water test results aggregated to the same 

geographic boundaries for analysis. Instead of comparing individual wells to C C S data, 

the rate of well contamination per C C S could be used as the dependent variable . 

Conversely, i f information on anthropogenic processes had been collected at the same 

local level as environmental data, there is a possibility that the analytical outcomes would 

be more definitive (see section 5.2.1). A further discussion on the effects of scale in 

geographic analyses w i l l continue in section 5.2.2. The lack of significant results among 

census data may also indicate that anthropogenic effects are less important to well water 

quality in our study area than hydrogeologic characteristics. In continuation with this 

idea, it is interesting to observe that the only census variable found to be associated with 

E. coli is the proportion of the C C S area composed of tilled land. Although tillage is a 

human-induced process, it impacts the hydrogeology of a region by encouraging the 

natural filtration of microbes from groundwater through soil disturbance. 

One surprising result returned by the agricultural census data, based on the 

analytical methods used in this research, is that agricultural animal densities at the C C S 

level are not associated with E. coli presence. Although a majority of evidence suggests 

otherwise, the study by Conboy and Goss cited earlier (2001) corroborates this finding. 

In their household-level survey of wells in Southern Ontario, the researchers found that 

The 2" half of the ARO Geospatial team, based in Quebec, is using this approach for their regional 
analysis of AR E. coli in well water. 
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"many low risk wells also housed livestock indicating that the presence o f 
livestock alone did not result in a well being vulnerable to contamination. 
Logistic regression analysis did not find the presence of livestock to be an 
important predictor of well vulnerability" (2001, p. 18). 

Yet, Conboy and Goss found that locally, manure application was an important indicator 

o f well contamination, whereas our results (based on regional data) did not. A n extensive 

body of literature reports that manure storage sites, septic lagoons, and feedlot sites are 

key sources of environmental E. coli (Gagliardi and Karns, 2000; Macler and Merkle, 

2004; Rahe, Hagedorn, M c C o y , et al., 1978). On the basis of this knowledge, and our 

findings, it is possible that locations of mass storage of fecal matter are more important to 

E. coli presence in groundwater than the total number of animals l iving in a region. 

Because we do not have access to detailed (or regional) data on the location of feedlots, 

manure storage sites, and septic fields, there is a strong likelihood that we are neglecting 

to address important indicators of E. coli in well water. These data would permit a 

comparison of the geology of different manure storage sites, septic fields, and feedlots, to 

assess whether certain hydrogeologic characteristics mitigate the harmful effects of such 

hazards. This information would be fruitful from a landuse planning perspective. 

In the case of local environmental variables, the only layer listed in the 

hypotheses that that did not return significant results is bedrock age. The oldest bedrock 

in the study region is found in the Canadian Shield, and is composed mostly of erosion-

resistant materials such as granites, gneisses, metasedimentary and metavolcanic rocks. 

The insignificant t-test results indicate that in Southern Ontario, bedrock age is not as 

important as bedrock material in terms of providing protection to the contamination of 

bedrock aquifers by bacteria. Our results indicate that a well located in newer bedrock 

composed of carbonate material is at greater risk for E. coli contamination than a well 

located on the older non-carbonate materials of the Canadian Shield. 

For the purposes of this research we are most interested in the results of the E. 

coli samples. However, the results returned by the two T C sample groups are telling. 

Every variable that returned significant results in the E. coli tests returned significant 

values in the T C tests. Three variables showed significance in the T C t-tests but not the 

E. coli t-tests: ancient bedrock, % irrigated land, and sheep and lamb density. This 
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difference in results is most likely due to the larger sizes (and statistical power) o f the T C 

samples (n 2003 =23504, n 2004 =31850) as opposed to the E. coli samples (n 2003 

=3718, n 2004 =5558); because T C are more prevalent in the natural environment. 

However, there is a strong similarity in the results of the E. coli and T C samples, across 

both sample years. Although not mentioned in the hypotheses, these findings are in line 

with current literature as reports consistently show that the T C is reliable indicator of 

fecal coliform bacteria and E. coli in groundwater (Atherholt et al., 2003; U S E P A , 2006, 

Drinking Water Pathogens and Their Indicators, If3). Our results demonstrate that the 

environmental characteristics associated with E. coli are also associated with the presence 

of T C in private well water, confirming T C an appropriate indicator for E. coli in future 

investigations into the landscape epidemiology of E. coli. 

5.1.2 Limitations 

The results of the t-tests and binary logistic regressions show certain variables are 

more prevalent near contaminated wells versus clean wells. However, the low R values 

returned by the binary logistic regressions also demonstrate that data from one variable 

alone is not enough to predict the presence of E. coli. Although an individual 

environmental variable may be important to well water quality, the presence of E. coli in 

private well water requires a host of processes to occur concurrently (i.e. deposition of 

fecal matter on the surface, transportation to an aquifer, lack of filtration). Multivariate 

methods were applied in an attempt to model the complex biological, ecological, and 

spatial relationships between bacteria and the environment. Despite large sample sizes 

and multiple statistical analyses, none of the models returned an adjusted R of higher 

than 0.045, meaning that the best model is only able to predict 4.5% of the variability of 

E. coli presence in private wells. The possible reasons for the low predictability of the 

models are many, but are rooted in the basic tenets of the modeling process. 

The first assumption of logistic regression is that the true conditional probabilities 

are a logistic function of the independent variables. However, misspecification of the 

logistic function does not usually result in specification error, in comparison to using 
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alternative function choices ( U C L A , 2006, Regression Diagnostics, | 2 ) , such as those 

based on a normal distribution (i.e. linear regression). The second possible violation of 

the tests' assumptions is the existence of multicollinearity among independent variables, 

which has been ruled out by testing the V I F of each of the variables separately (and 

together). Thirdly, we know that extraneous variables were not included, as the only 

variables added to the models showed significant results across both sample years, in 

both the t-tests and binary logistic regressions. Further, D F A was applied to ensure that 

the independent variables were added in hierarchical order of importance to the 

dependent variable. 

This leaves us with two remaining assumptions: that no important variables are 

omitted from the model, and that the observations are independent. Both of these 

assumptions have likely been violated in our attempts, causing misspecification errors 

that have rendered the models ineffectual (Berry and Feldman, 1985). A s described, the 

biogeography of E. coli is complex and can not be explained by a small handful of 

independent variables. In current literature, many variables in addition to those included 

in our models have been cited as being important to E. coli presence in groundwater, such 

as: climate, time, well characteristics, septic tank locations, manure storage sites, 

drainage basin topography, feedlot locations, groundwater flow, and aquifer 

characteristics. The reasons for the exclusion of important variables in the modeling 

process are fourfold: 

• The data do not exist in digital format for input to the GIS 

• The data exist but were not released for confidentiality purposes 

• We have access to digital data, but time constraints and project boundaries restrict 

further analyses 

• We may not be aware of certain variables of importance 

A detailed discussion of causes and implications of missing data layers w i l l be continued 

in section 5.2.1. 

The second assumption of logistic regression that may be violated in our analyses 

is that our observations (well water tests) may be not spatially independent. Spatial 
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autocorrelation refers to patterns that exist in data collected in the vicinity of other 

samples. If a nonrandom pattern (i.e. clustering) is identified in the spatial arrangement . 

of the samples, then spatial autocorrelation exists. The same can be said for samples 

clustered in time. Because clustered samples may bear a greater resemblance to each 

other than samples collected randomly over space and time, grouped data may cause 

model confounding. Two point pattern analyses can be applied to assess a sample for 

spatial autocorrelation: the average nearest neighbor test, and the Moran's I test. Both 

tests were applied to the 2003 and 2004 E. coli samples (using ArcToolbox in ArcMap v. 

9.0). The results of the nearest neighbor analyses showed that E. coli positive wells were 

no closer together than E. coli negative wells. However, the Moran's I tests report that 
27 

moderate clustering does exist in both samples . 

The combination of spatial autocorrelation and, perhaps more importantly, 

omitted independent variables are the principal problems of the multivariate logistic 

models, logit loglinear analyses, and of this research in general. The limitations of this 

project are the following: 

• A lack of important independent environmental variables, specifically: 

o Local agricultural data (feedlots, manure storage) 

o Hydrogeologic characteristics (aquifer boundaries, drift thickness) 

o Septic tank and outhouse locations 

• Lack of attention to climate (rainfall events, temperature) 

• Lack of attention to time 

• Lack of attention to watershed characteristics (multi-scale analyses) 

• The spatial (and possible temporal) autocorrelation of samples 

• Lack of exact well locations (well points were geocoded to road networks) 

Wi th additional data and time, most of these limitations could be addressed. The 

potential for further analyses is unlimited, and unfortunately many of the questions raised 

here are beyond the scope of this M A thesis. However, it is imperative to identify project 

2 7 A Moran's I value near 1.0 indicates clustering, a value near -1.0 indicates dispersion, and a value near 0 
indicates a random spatial distribution. Moran's I returned values ranging from 0.51 to 0.78 in both is. coli 
sample groups, indicating moderate clustering among samples. 
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constraints so that future work can continue where this research ends. In the following 

section, the above-listed limitations are discussed, with a view to offer direction for 

further investigations on this topic. 

5.2 Suggestions for Future Research 

5.2.1 Data 

The quality of any analysis depends on the characteristics of the original data. 

Sub-standard data and accessibility issues are hallmark problems in GIS-related research. 

Unfortunately, high-quality digital data are difficult to obtain as a Canadian researcher -

bureaucratic roadblocks have certainly affected the direction and outcomes of this 

research project. And , as mentioned above, some data simply don't exist or are not in 

digital format for input to a GIS. Data missing from our analyses can be broken down 

into three categories: sources of environmental E. coli (i.e. manure storage sites, feedlots, 

and septic fields), mediums through which E. coli travel to contaminate a private well 

(i.e. aquifer and well characteristics), and larger influential processes (i.e. climate and 

time). 

Extensive research shows that wells located on or near agricultural land are at risk 

of contamination by E. coli because many agricultural activities are sources of 

environmental E. coli. The M N R landcover layer represents the location of all 

agricultural land in the study area, but is not specific to different types of agriculture. 

This is problematic and may introduce error into the analyses because not all agricultural 

activities encourage the release o f E. coli into the environment. For example, fruit 

orchards and fallow fields would pose negligible risks to nearby wells, in comparison to 
28 

livestock operations or even a field of corn or legumes . It would be useful to have 

information on specific agricultural land uses in a finer-grain resolution than the currently 

available CCS-level data, and this may be a possibility as data collection via satellite 
2 8 Nitrates hinder the production of fruit in plants and are not typically applied to orchards or other fruit 
crops. Opposite to this, nitrates encourage the production of grains and legumes and are frequently applied 
to these crops. 
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imagery improves . Statistics Canada publishes non-sensitive human demographic data 

at a fine resolution (DA-level), yet similar-scale agricultural landuse data are not 

available. This means that the public can know the human population of every D A in the 

country, but not the number of commercial animals that live in the same small areas. 

From a public health perspective, information on the location of high-risk 

agricultural operations (like feedlots or manure storage sites) would be valuable. 

Research has shown that groundwater is at risk for contamination by E. coli and other 

fecal coliforms near feedlots (Olson, Mi l le r , Rodvang, et al., 2005), defined as buildings 

or yards where a large number of animals are fattened for slaughter. O M A F possesses 

data on the locations of high-density animal operations in the Province; yet w i l l not 

circulate it for public (or research) use. Similarly, M N R refused to release data locating 

septic drying beds, septic fields, sewage disposal, tile beds, and transfer stations for use in 

this project, despite evidence that human fecal waste contributes to E. coli in groundwater 

(George et al., 2004), and poorly-maintained septic systems have been identified as the 

cause of numerous outbreaks of waterborne disease in developed countries (Goss et al., 

1998; Francey, Ffelsel, and Nalley, 2000). If these data ever come available in the future, 

the distance between a well to the nearest feedlot or septic field could be measured, and 

added to a logistic regression model as a continuous independent variable. The last 

source data that would be beneficial (but do not exist as far as I am aware) are non-

agricultural animal densities, since fecal matter from wi ld animals and domestic animals 

such as horses, dogs, and cats also contribute to the contamination of groundwater 

(Mall in , Will iams, Esham, et al., 2000). 

It has been established that both topographic and subsurface characteristics affect 

the movement and survival of E. coli from the surface to underground drinking water 

sources. The relief of the natural landscape can contribute to well water quality, as 

landuse in an upland water catchement zone has a direct effect on downland water quality 

(Crowther et al., 2002; Hunter and McDonald , 1991). Topography affects both surface 

Environment Canada's current data on crop cover was collected by R A D A R S A T - 1 (the first radar 
satellite system), and does not contain enough detail to identify crop types. However, R A D A R S A T - 2 , 
launched in 2005, is currently collecting detailed data to provide this information (Wagner, 2005). 
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and subsurface flow gradients, therefore influencing the spatial diffusion of fecal 

pollutants. The flow direction and bacterial loading of surface waters can also affect 
30 groundwater quality when natural exchange occurs between surface and groundwaters 

(Brunke and Gonser, 1997). Most importantly, water drainage is compartmentalized by 

watersheds, and water quality in one watershed often differs to that of an adjacent basin. 

In future work, Digital Elevation Models ( D E M ) could be used to delineate watershed 

boundaries in order to compare land characteristics and well test results by basin. Other 

researchers have found multi-scale analyses (incorporating watershed boundaries) fruitful 

in determining land uses associated with fecal coliforms in source waters (Kistemann et 

al., 2001). Data describing subsurface aquifer boundaries would be useful for the same 

reasons. 

The 'depth to bedrock' of overlying surficial geology is another hydrogeological 

factor important to well water quality, and could easily be introduced to the analyses. We 

would expect to see a higher prevalence of shallow depths near contaminated wells, 

because 

" i f the depth of soil over the bedrock was shallow, there would be little 
opportunity for soil to interact with water and any contaminants percolating 
with it. Consequently, a relatively unrestricted flow of water would take 
place, allowing contaminants to enter the groundwater" (Conboy and Goss, 
2 0 0 0 , p.4). 

This also explains why the depth of a well is significant to its water quality. Deep wells 

offer greater protection than shallow wells because microbial (and other) contaminants 

are subject to increased filtration. Waters in shallow wells are less likely to have 

encountered geologic media that provide natural barriers to contaminant transport 

(O'Conner, 2002b). Apart from depth, numerous well characteristics affect water 

quality. The method o f well construction is important because sandpoint, dug, and bored 

wells have been found to be subject to greater contamination than drilled wells (Goss et 

al., 1998). The age and casing material of a well are also relevant, because older wells 

are more l ikely to be under-maintained and have cracks in the casing, and casings made 

out of concrete generally crack more readily than plastics or metal. We are also 

3 0 The nature of surface/groundwater exchange depends on complex hydrogeological processes and is 
beyond the scope of this paper. 
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interested in the sites of abandoned or decommissioned wells, because improperly capped 

wells can provide an unmediated pathway for contaminants into an aquifer (Novokowski 

et al., 2006). 

Fortunately, well-level data do exist. M O E maintains a Province-wide database 

called the Water Wel l Information System (WWIS), to which well custodians and 

contractors must log the construction or decommissioning of a well . The records date 

back to the 1940s and are available to the public at cost. The following data variables are 

available for each well: U T M coordinates, municipality, lot, elevation, casing material, 

casing diameter, pump rate, pump recovery rate, depth of water found, drill method, 

primary water use, and contractor. The W W I S is a wealth of information regarding 

Ontarian wells, yet we were unable to use these data at this time because the process of 

matching our geocoded records from the M O H L T C database to the (approximate) U T M 

coordinates in the M O E W W I S would be time-consuming and inexact . Further, 

because there are no data collection standards, the accuracy of the W W I S data has been 

called into question in the past (Galal and Sarvas, 2005). Accurate well-level data w i l l be 

obtained from the A R O case-control study questionnaire, and comparing these data with 

water tests w i l l be a more reliable route for investigation. 

Most of the local independent variables used in our analyses are geologic, and 

static in nature. Landuse is the only data that requires updating. However, we know that 

the presence of E. coli in well water can be sporadic due to precipitation events, 

temperature, and other fluctuating environmental conditions that impact E. coli survival 

and transport (Atherholt et al. 2003). For example, research shows that E. coli 

concentrations in groundwater spike in the 48-hour period after a heavy rainfall (Long 

and Plummer, 2004; Kelsey, Scott, Porter, et al., 2003). Likewise, E. coli thrive in 

warmer environments therefore are more l ikely to be present in a well later in the 

sampling season as temperatures rise (Chalmers et a l , 2000). Charron et al. report that 

"there is mounting evidence that weather is often a factor at triggering waterborne disease 

outbreaks" (2004, p. 1667). The researchers warn that under conditions of global 

3 1 The matching process would be an approximation because there is no link between the two data to 
validate whether correct matches have been made. 
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warming these risks wi l l increase, as "drought increases the demand for water when the 

supply is significantly reduced and vulnerable. Heavy rain following drought can lead to 

more severe runoff and risk of water contamination" (Charron et al., 2004, p. 1674). 

Although undoubtedly important, time and climate have been excluded from our 

analyses, first because existing climate data are sparse and incompatible for entry to the 

GIS at this time. Secondly, although a time stamp is attached to each well test, 

incorporating time into our analyses would mean re-conceptualizing our study design. 

Our analyses regard any well that tested positive for E. coli or T C during the course of an 

entire four month sampling season as a 'positive' case, regardless of the date the positive 

sample was taken. The samples would require disaggregation and re-coding in order to 

account for the temporal location of positive samples in the M a y 1 - Oct 1 season. 

Spending additional time recoding climate data and re-establishing our analyses to 

incorporate climate and time are beyond the scope of this project. Thirdly, well locations 

are static over time - and from a landuse planning perspective, it is important to identify 

fixed environmental characteristics that naturally protect or endanger well water quality 

throughout a range of weather conditions in the long term. 

5.2.2 Spatial Analyses 

The section above describes data that we know are important to the presence o f E. 

coli, but are absent from our analyses. However there may be other key environmental 

characteristics missing that we are not aware of, subsequently causing misspecification 

errors in our models. Additional geo-statistical analyses could help unpack this problem, 

and other limitations of this project. In this section, I w i l l call attention to limitations in 

our analytical methodologies and suggest practical solutions; such as residual analyses, 

stratified sampling techniques, and multi-scale methodologies, that would benefit future 

investigations on this topic. 

A l l observations in our models are referenced spatially, thus visualizing the 

geography of the residuals "may reveal insights into mechanistic relationships or other 
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kinds of associations between the predictors and the response" (White and Sifneos, 2002, 

p. 602). In plain terms, a residual is the estimated difference between a predicted and 

observed value. In logistic regression, the residual is calculated as: the observed value of 

Y minus the predicted probability, divided by the standard deviation of the predicted 

probability. The residuals could be visualized (by well location) in the GIS, and 

compared to other continuous environmental data to evaluate whether similar patterns 

may exist between layers. If a non-random pattern is identified in the residuals, then 

there is a chance that the exclusion of the mirroring data layer may be causing 

misspecification bias in our models. 

Autocorrelation may also be causing error in the models. Although nearest-

neighbor tests did not detect clustering, Moran's I coefficients indicate positive spatial 

autocorrelation in all samples, l ikely caused by grouping in human settlement patterns. 

The cause and effects of autocorrelation are complex issues, and providing in-depth 

analyses and solutions for potential spatial dependence in our samples is outside of the 

realm of this paper. However, I investigated the effects of autocorrelation on our results 

by applying a stratified random sub-sample to our data, a technique sometime used to 

mitigate effects of autocorrelation in simple random samples (McGrew and Monroe, 

1993). A sub-sample of the 2004 E. coli group was selected by dividing the study area 

into sections based on a 1000m grid (1 OOha sections). I then joined the grid layer to the 

well points in the GIS, and randomly selected one well from each square to retain for 

analyses. See Fig . 5.1 for a diagram of this process. 

Figure 5.1: Stratified Sub-sampling o f Wells with a 1000m Gr id 
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The stratified sub-sample reduced the original sample size by 24%, from n=5558 

to n=4189. The same series of t-tests and logistic regressions as described in chapter 4 

were applied to this sub-sample. The results collectively show no significant differences 

between the two sample groups, and the R 2 values returned by the regressions were all 

lower than those returned by the full 2004 E. coli sample. One possible reason why the 

sub-sampling did not improve the inferential power of the models is because the 

observations were still found to be positively autocorrected. The stratified sampling 

reduced clustering but did not eradicate it: in the sub-sample, the Moran's I coefficient is 

0.36 compared to 0.78 in the full sample. For future analyses, I would suggest using a 

larger grid to stratify the sample, as 1000m does not separate groupings sufficiently. 

Further, samples could be stratified by boundaries other than a square grid, such as C G S 

boundaries, natural landforms, or geology. 

Stratifying samples by environmental data may also help eliminate 

autocorrelation resulting from missing data values. Incomplete cases in a dataset can 

cause error i f information loss is not random and occurs in one region more than in 

another. A n example of data potentially subject to this problem is our soils layer. These 

data were collected by O M A F for the purposes of surveying regions for agricultural 

viability in the Province, and as a result data were not collected in areas where landcover 

is not suitable for cultivation (i.e. exposed bedrock or muskeg). The map of the O M A F 

soils layer (Fig. 3.6) shows evidence that large portions of data are missing in the 

northern parts of the study area. This northern region is located on the Canadian Shield, a 

geologic formation characterized by exposed bedrock, shallow soils, and low infiltration 

rates. The problem therein is that the incidence of missing data is not random, as areas 

with higher infiltration rates have more complete data than do areas with low rates. To 

address the potential error caused by this autocorrelation, sub-samples could be stratified 

by the two infiltration rate groups, with a balanced number of wells located in both high 

and low infiltration rate soils (proportionate to the total area of each variable). One 

benefit o f having such a large sample size is that it allows for such flexibility in sub-

sampling. 
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Wel l test results could also be aggregated to spatial boundaries delineated by 

environmental characteristics for an alternative scalar perspective. Likewise, land 

characteristics could be measured by zones other than circular buffers (i.e. watersheds). 

So far, our study has focused on the large scale (small area) effects on well water quality. 

Whi le there is no doubt that local environmental factors play an important part in 

determining the water quality of a well , regional watershed characteristics have also been 

found to be important contributor to water quality (Bolstad and Swank, 1997, Sekhar and 

Raj, 1995; Kistemann et al. 2001; Sliva et al., 2001). Deciding on an 'appropriate' scale 

of analyses is an issue for any investigation of spatial data. Landscape ecologists are 

particularly involved with discussions on scale as they typically examine the structure, 

function, and patterns of a landscape - all o f which are affected by different levels of 

observation. Levin (1992) argues that 

"there is no single natural scale at which ecological phenomena should be 
studied; systems generally show characteristic variability on a range o f spatial, 
temporal, and organizational scales. The observer imposes a perceptual bias, a 
filter through which the system is viewed" (Levin, 1992, p. 1943). 

Levin is referring to a phenomenon geographers term the Modifiable Areal Unit Problem 

( M A U P ) . When data are grouped to areal units of different sizes, analyses can obtain 

variable results. This is referred to as the scale effect (or aggregation effect). It would be 

interesting to learn whether the importance of environmental variables to well 

contamination changes when the landscape is analyzed at multiple scales. In their 

comparison of land characteristics selected by buffer zones and by watersheds, Johnson, 

Richards, Host, et al. (1997) found that data collected with their 100m buffer zones 

explained slightly more o f the variability in water quality than did the characteristics of 

the entire watershed. Sl iva et al. (2001) found opposite results, but comment that "the 

influence of buffer landscape composition in our study...may be underestimated due to 

the low resolution of digitized data used" (Sliva et al., 2001, p. 3471). Interestingly, 

these authors used the same geology and landuse layers in their study of three Ontarian 

watersheds as we did in this project. 

In a regional analysis, insight into the effects of the M A U P on test outcomes 

could be offered by aggregating well water data to different regional boundaries (i.e. 

drainage basins, aquifer boundaries) and comparing results across data groupings. 
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Adding multi-scalar observations would add depth to this research by addressing both the 

local and regional environmental processes responsible for groundwater contamination. 

Multi level models (also known as mixed models, or hierarchical models) include 

variables measured at more than one level of organization, and are useful for analyzing 

hierarchically-nested data. Applied to the A R O well water data, a multilevel model could 

potentially include data on local land characteristics (area of land characteristics inside 

the well buffer zone), and also include data on regional land characteristics that a well is 

located in (area of land characteristics inside a watershed, for example). 

Classification and Regression Tree ( C A R T ) modeling is a multilevel approach 

that shows potential for use in this project. C A R T s are inferential models based on 

decision trees where binary (yes/no) questions are posed to classify data, and where the 

'leaves' o f the tree predict membership of cases based on one or more independent 

variables. Applied to our research question, the goal of a C A R T would be to predict the 

presence of E. coli in a well based on a hierarchical system for sorting cases, 

accomplished by asking binary questions such as: 'does this well lie on a moraine?' Or, 

'does this well lie on or near agricultural land?" Algorithms can be applied to determine 

the optimal order and combination of binary decisions, providing further insight into the 

hierarchical effects of the independent variables on well water results. 

In considering analytical methods to apply to our data, the possibilities are 

endless, and as outlined above there are a number of opportunities for continued work on 

this project. The large sample sizes, and extensive environmental data contained in the 

GIS to date provide a solid basis for further investigation of the research questions raised 

here. 

5.3 Conclusion 

In summary, our analyses of the relationships between private well water quality 

and local landscape characteristics have proved productive on many levels. First, a GIS 

database containing the most current available data on environmental characteristics 

relevant to microbial water quality in Southern Ontario was compiled and used as a 
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foundation for analyses. This database is ready for the use of other researchers working 

on the A R O project. Secondly, this work demonstrates the value of applying concepts in 

spatial epidemiology to groundwater studies. In this project, geo-statistical methods for 

measuring land characteristics surrounding private wells were explored, and circular 

buffer zones with 300m radii were found to be the most relevant for our analyses. 

Third, the results of numerous statistical tests identify a list of specific local land 

characteristics that are more prevalent near contaminated wells than to clean wells. We 

found that areas of agricultural land, low population density, low-infiltration rate soils, 

surficial geology with low permeability, untilled land, and carbonate bedrock are more 

prevalent near wells tested positive for E. coli or T C at least once in the M a y 1- Oct 1 

sampling season, for both 2003 and 2004. These results indicate that private wells 

located in or near any o f the aforementioned characteristics may be at an increased risk of 

contamination by fecal coliforms. The following characteristics were found to be more 

prevalent near clean wells: developed land, high population density, high-infiltration rate 

soils, surficial geology with high permeability, tilled soils, and non-carbonate bedrock. 

These characteristics may offer natural protection to groundwater sources located nearby. 

Fourth, multivariate regression modeling was explored in tandem with various 

other statistical tests in order to derive models to predict the presence of E. coli and T C in 

private wells based on land use and population attributes. Although the models identified 

individual environmental covariates (listed above) associated with the presence or 

absence of fecal coliforms in well water, the models did not have any significant 

inferential power. The weak R 2 values indicate that misspecification errors exist in the 

models, possibly caused by absent independent variables and/or autocorrelation o f 

observations. The problems associated with the inferential modeling have highlighted 

some key steps to take to improve and build upon these analyses. Through these 

combined explorations, we have furthered our understanding of the potential processes 

responsible for the effective transfer of microbes from the environment and animals to 

humans, specific to our study region. This research is exploratory by nature, and the 

limitations identified simply serve to strengthen future work in this field and in the larger 

A R O project. 
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The applications of this research are many, within and beyond the A R O project. 

On the basis of this study, questions regarding the identified risk factors have been added 

to a questionnaire used by the A R O case-control group to obtain qualitative information 

on the condition of informants' wells and the surrounding environment. A n exciting 

opportunity to 'ground-truth' our findings exists here. The quantitative area 

measurements in our tables could be compared to the qualitative information provided by 

well custodians on a well-by-well basis to assess how representative our digital data is of 

the real world. The informants' perceptions of the natural environment could also be 

incorrect, so for increased accuracy the interviewing team could conduct a survey of the 

well locality. The qualitative information provided by informants and interviewers on 

land characteristics adjacent to wells could be recoded and entered into a logistic 

regression model for group analyses similar to those described in sections 4.2.2 and 4.2.3. 

The spatial database stands as a basis for other researchers, and components of 

these data wi l l be used by another graduate student working with Dr. Buzzel l i in group 4 

of the A R O team. This student w i l l be involved with 3-dimensional computer modeling 

of groundwater flow, adding further complexity to the research and addressing many of 

the data and analytical limitations outlined in section 5.2 of this thesis, such as lack of 

addition of important time, climate, and geological data. In this respect, the identification 

of the shortcomings of this project has helped pave the direction for more advanced work 

on the environmental covariates of E. coli in Southern Ontario. 

On a broader level, this thesis adds to understanding the effects of non-point 

source pollution on private groundwater quality in Ontario. In the Inquiry Report 

following the Walkerton crisis, Justice Dennis O'Connor comments that research in this 

field has been limited in the past: 

"Non-point source contamination has received significantly less attention and 
less funding, in part because some non-point contaminants are considered less 
dangerous, and because non-point application of fertilizer, manure and pesticides 
is a necessary part of agriculture" (O'Connor, 2002b, p. 2). 

The fallout from the Walkerton crisis has had much to do with changing the tide of 

research in a different direction, this thesis being an indirect product of this shift in 
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thought. The public health problem associated with private water sources can be further 

reduced by the continued identification and understanding of risk factors such as those 

identified here, and by the proper protection of water sources through this knowledge 

(Said, Wright, Nichols, et al., 2003). 

The methods explored in this project also contribute to the evolving field of 

landscape epidemiology. Studies that apply GIS and statistical analyses to investigate the. 

effects of local land characteristics on private well water sources are scarce, especially in 

our study region. However, as a whole, we wi l l l ikely see an increase in local area health 

studies. Digital data are becoming available at a more detailed level; therefore research 

in spatial epidemiology is beginning to focus on large-scale variability within populations 

as opposed to more traditional regional approaches. The limitations of this project also 

continue to constrain other work in this field and, collectively, spatial epidemiologists are 

calling for the rejection of static space/time/health research models to improve disease 

process analyses (Rushton, 2000; Meade and Earickson, 2000; Jacquez et al., 2000; 

Jarup, 2004). Further work is needed to refine models to represent the unpredictable bio

physical world in order to understand disease ecology - and this w i l l require a 

transcendence o f traditional fixed space/time research models that has only just begun to 

take place. 

Trends in health geography are also shifting towards the incorporation of more 

complex study designs. Kearns and M o o n (2002) suggest that longitudinal or repeated 

cross-sectional studies should be performed to better understand processes of change in 

health and place. Today, in the face of global warming, the importance of longitudinal 

approaches to studying climate events, regional ecology, and human health is 

emphasized. Existing drinking water infrastructure is designed to operate within 

expected climate and landuse dynamics, and as Charron et al. warn, 

"the frequency and severity of drought, flood, sea-level rise, extreme rainfall, 
and changes in snow cover and timing of snowmelt may change in some 
parts of Canada under conditions of climate change. As a result, pathogen 
entry and behavior in source and finished water will also be subject to 
change" (Charron et al, 2004, p. 1668). 
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Clearly, it is imperative to understand the drawbacks of our existing systems in order to 

prepare for how potential landscape changes may impact drinking water quality. 

In summary, this project is a study in environmental health, a term the W H O 

defines as: "the theory and practice of assessing, correcting, controlling, and preventing 

those factors in the environment that can potentially affect adversely the health of present 

and future generations" ( W H O , 2006, Tfl). B y identifying environmental characteristics 

that facilitate the transfer of microbes from animals to humans through the contamination 

of source waters, the research described in this thesis contributes to one facet of a multi-

barrier approach to public health protection. The continuation of this work is important 

here in Canada, but is especially vital in other nations, as there is a current bias in the 

spatial clustering of similar research examples in developed countries. The worldwide 

public health problem associated with the contamination of groundwater sources by E. 

coli could be reduced by landscape-specific identification and understanding of risk. A s 

landuse and agricultural production intensifies, as populations grow, and as weather 

events become more severe due to global warming; the risk of human exposure to fecal 

coliforms w i l l increase worldwide, certainly highlighting the importance of continuing 

such research. 
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APPENDICES 

APPENDIX 1: Ontario Farm and Population Data, 1996-2001 
Tables adapted from Statistics Canada (1996, 2001). 

Ontario Farm Data, 
1996 and 2001 C e n s u s of Agr icul ture 

Item 1996 2001 % change, 
1996 to 2001 

Number of census farms 67,520 59,728 -13.0 
Total acreage of farms 13,879,565 13,507,357 -2.8 
Average farm size acres 206 226 8.8 
Cropland acres 8,759,707 9,035,915 3.1 
Pasture acres 2,502,478 2,087,985 -19.9 
Summerfallow acres 48,492 35,175 -37.9 
All other land acres 2,568,888 2,348,282 -9.4 
Total of above crops acres 8,739,902 9,004,267 2.9 
Greenhouse area thousand ft2 63,303 98,374 35.7 
Total number of cattle and calves 2,285,996 2,140,731 -6.8 
Total number of pigs 2,831,082 3,457,346 18.1 
Number of sheep and lambs 231,087 337,625 31.6 
Number of horses 76,553 83,337 8.1 
Number of hens and chickens 35,596,946 43,624,696 18.4 
Number of tractors 180,213 183,704 1.9 
Number of combines 19,855 17,677 -12.3 
Number of balers 38,329 35,385 -8.3 

Market dollar value of land and buildings 33,167,842,178 40,898,278,324 18.9 

Dollar value of machinery and equipment 5,410,519,342 6,564,007,507 17.6 

Dollar value of livestock and poultry 2,282,574,515 3,067,497,674 25.6 
Total capital value 40,860,936,035 50,529,783,505 19.1 

Ontario Populat ion Data, 
1996 and 2001 C e n s u s of Populat ion 

Item 1996 2001 % change, 
1996 to 2001 

Ontario 10,753,373 11,410,046 5.8 
Rural Southern Ontario 3,792,719 3,998,060 5.1 
Urban Southern Ontario 6,128,529 6,616,361 7.4 
Total Southen Ontario 9,927,297 10,623,603 6.6 

References: 
Stat is t ics C a n a d a 



APPENDIX 2: Geocoding Results 

2003 

Ofthe 181 558 entries in the initial database, 

43,903 (-24%) entries were geocoded using the civic address 
11,392 (~ 6%) entries were geocoded according to lot/concession numbers 
17,373(~10%) entries were geocoded using the six digit postal code 
34,883 (~19%) entries were geocoded using the five digit postal code 
30,340 (-17%) entries were geocoded using the tree digit postal code 

34,681 (~ 19%) entries were geocoded to the centroid of their municipality 

In total: 172,572 entries (-95%) were geocoded while 8,986 (-5%) were not. 

2004 

O f the 280,139 entries in the initial database, 

70,073 (-25%) entries were geocoded using the civic address 
14,182 (~ 5%) entries were geocoded according to lot/concession numbers 
27,937 (-10%) entries were geocoded using the six digit postal code 
55,927 (-20%) entries were geocoded using the five digit postal code 
51,091 (-18%) entries were geocoded using the tree digit postal code 
47,964 (~ 17%) entries were geocoded to the centroid of their municipality 

In total: 267,174 entries (-95%) were geocoded while 12,965 (-5%) were not. 

Adapted from Caroline Guenette's Geocoding Reports entitled: Geocoding a database related to water testing: ARO 
Study (2003 v.2.1,2004 v.l). 
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A P P E N D I X 3: Water Sampling Guidelines 

How do I take a water sample properly? 

Use the sampling bottles provided by the laboratory. These will be sterile, 250-ml bottles 
containing the preservative sodium thiosulphate to prevent the collected water from degrading. 
Do not touch or handle the preservative. Do not rinse the bottle as this will remove some or all of 
the preservative and ruin the sample. 

Choose an inside tap that is not connected to a treatment device such as a chlorinator or ultra
violet light treatment system. Then follow the sampling procedure below: 

1. Wash hands carefully. 
2. Remove screens, aerators or other attachments from the faucet 
3. Run cold water for 3-5 minutes to ensure a constant temperature and to clear stagnant 

water that may have been sitting in the lines/pipes. 
4. Reduce the water flow to a steady stream. 
5. Take the cap off the bottle and hold it in one hand and the bottle in the other. Do not 

rinse the bottle. 
6. Do not set the cap down or drop it. Do not touch the inside of the cap or the mouth of 

the bottle. Bacteria on your hands will contaminate the sample. 
7. Carefully fill the bottle to line indicated, approximately one inch (2.54 cm) from the top. 
8. Put the cap back on the bottle so that the inside of the cap and the mouth of the bottle 

are untouched. 
9. Fill in the Bacteriological Analysis of Drinking Water for Private Citizen, SINGLE 

HOUSEHOLD ONLY form and bring the water sample to the laboratory as soon as 
possible. 

10. Refrigerate the samples and maintain at a temperature of about 
4 ° C (40 ° F). This will slow bacterial growth and maintain the target bacterial 
population at the level that existed at the time of sample collection. Keep the samples 
chilled during transport to the lab. Do not freeze the samples. 

Please Note: The result is unreliable if the sample is improperly collected or improperly stored. If 
the water sample takes more than 48 hours to reach the laboratory, it will not be tested. 

It is recommended that well water be tested: 

1. After well construction is completed and the well has been disinfected, 
2. When a well has not been in use for long periods, e.g., seasonal residences, and 
3. 2-3 times during the year, preferably after a heavy rain or snow melt. 

It is also recommended that 3 samples are taken 1-3 weeks apart to determine well water 
quality. Please note that the bacterial stability'of water cannot always be determined from a 
single sample. 

Adapted from the York Region Website (2006). 
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A P P E N D I X 4: List o f Data and Sources 

Data Description Originator Year 

Well Data 

Well water test results - A R O Pilot data O N M O H L T C 
Well water test results - A R O Surveillance 
data O N M O H L T C 

Water well borehole logs M O E 

2003 

2004 

1946-present 

Administrative Boundaries 
O N Public Health Unit 
O N District Health Council Areas 
O N Census Agricultural Regions (CAR) 
O N Agricultural Census Consolidated 
Subdivisions (CCS) 
O N Dissemination Areas (DA) 
O N Census Tracts (CT) 
O N Regional Districts 
Provinces 

Statistics Canada 

Statistics Canada 

Statistics Canada 

Statistics Canada 

Statistics Canada 

Statistics Canada 

Statistics Canada 

Statistics Canada 

2003 

2003 

2001 

2001 

2001 

2001 

2001 

2001 

Postal Geographies 

O N Forward Sortation Areas (FSA) 

O N 6-digit postal code points 

Statistics Canada 

Statistics Canada 

2003 

2003 

Land Cover 

Land Cover 

Land Use 

O N MNR 

CLI 

1986-1997 

1966 

Soils 

Soils - O N (type, drainage, infiltration rates) CANSIS 

Soils - Southern O N , Municipal Soil Surveys O M A F 

1970-1990 

1950-present 

Geology 

Bedrock Geology - O N 

Quaternary Geology - O N 

Surficial Geology - Southern O N 

Moraine Deposits 

Surficial Geology - Canada (1880A) 

Geological Map of Canada (1860A) 

O N Geological Survey 

O N Geological Survey 

O N Geological Survey 

O N Geological Survey 

Geological Survey of Canada 

Geological Survey of Canada 

1970 - present 

1970 - present 

1970 - present 

1970 - present 

1960 - present 

1960 - present 

Topography 

D E M (30m resolution) O N DMTI 

Hydrology 

Canadian Water 

O N Hydrology (Lakes & Rivers) 

Statistics Canada 

Statistics Canada 

2001 

2001 

Meteorology 

Meteorology 

Meteorology 

Environment Canada 

Environment Canada 

2000-2003 

1840-present 
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where: 
i x = 

y = 

ecoli 
crjlifom = 

apri = 

develop = 
solljilgh = 

soil low = 

geo_high = 

geojow = 

moraine = 

nnjnorai = 

i cow dens = 

E coli presence or absence (binary code 1 = presence, 0 = absence) 
Total Coliform (TC) presence or absence (binary code 1 = presence, 0 = absence) 
area of agricultural land in buffer zone (m2) 
area of developed land (m2) 
area of high infiltration soil type (m2) 
area of low infiltration soil type (m2) 
area of surficial geology with high permeability (m2) 
area of surficial geology with low permeability (m2) 
area of moraine material (m2) 
area of non-moraine material 
cow density (number of animals per km2 in CCS) 

(m2) 



A P P E N D I X 6: Multivariate Logistic Regression Formula 

E. coll 2 0 0 4 

Formula for the strongest multivariate logistic regression model produced: 

logit(p) = 0.33478 + (0.00000166 x A) + (0.00000163 x LS) + (-0.00000286 x HG) 
+ (-0.00000183 x LG) + (-1.59 x TS) + (-0.000000772 x NC) 

Where: 
p = probibility of the presence of E. coli 
A = agricultural land 
LS = Low porosity soil Entropy = 0.036 
HG = Highly permeable geology Concentration = 0.048 
LG = Low permeability geology 
TS = Tilled Soil 
NC = Non-carbonate geology 


