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Abstract 

In this thesis, we study differential space-time modulation with multiple transmit and 

receive antennas over a frequency non-selective block fading channel in the absence of 

channel state information (CSI) at both the transmitter and the receiver. We focus 

on the analysis of the random coding exponent proposed by Gallager for such space-

time channels employing differential modulation with finite signal sets, and consider 

multiple symbol differential detection (MSDD) with an observation window size N. The 

underlying principle of MSDD is to utilize an increased observation window of N > 2 

consecutively received space-time samples to yield decision variables on N — 1 space-

time data symbols. We thus take into account the channel memory, and can improve 

power efficiency over conventional differential detection, which employs N — 2. 

We extend previous work for a similar setup, in that we consider channels where the 

fading coherence interval is different from the MSDD observation window N, and can 

be arbitrary with L independent fading realizations per coding frame. We analyze 

the effect of arbitrary fading coherence intervals on the random coding exponent, and 

therefore analyze the achievable performance of coded transmission over block fading 

channels with low to moderate code lengths, i.e. with decoding delay constraints. In 

this context we also analyze space-time transmission systems with spatial correlation 

between antennas. Such an analysis allows for a fair comparison of DSTM with MSDD 

where the window size may vary but the coded diversity remains fixed. 
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Abstract iii 

We also devise upper and lower bounds and approximations for the random coding 

exponent, which allows us to not only bound the achievable performance of such space-

time systems but also allows for efficient numerical evaluation of the random coding 

exponent by limiting the search space for the metric calculation. To this end, we 

make use of tree-search based sphere decoding algorithms for efficient decoding, and 

along with novel stopping criteria to control the accuracy of the approximation and 

correspondingly the computational complexity, we apply these sphere decoders for a 

reduction in complexity cost upto many orders of magnitude. 

The presented numerical results provide useful information on the performance of coded 

differential space-time transmission for short to moderate code lengths. 
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Chapter 1 

Introduction 

The field of digital transmission systems has been long driven by the need for higher 

data rates, lower probabilities of error and reduced power consumption. Especially in 

the case of modern wireless communication systems, the quest for low power, band

width efficient digital communication systems has been the major area of research and 

development over the past years. The goal of this thesis is to contribute to the design 

and analysis of noncoherent wireless communication systems, and present a detailed 

analysis of the random coding exponent proposed by Gallager (see [10]) and its prop

erties. 

In digital communication systems, the overall system model of the transmitter, the 

channel under consideration and the receiver is given by the equation 

r[k] = eje[k]h[k]s[k] + n[k] (1.1) 

relating the discrete time, complex valued data or transmit symbol s[k] to the received 

symbol r[k]. A time variant phase shift is taken into account by the term e^k\ which is 

introduced generally by oscillator instabilities or by Doppler effects. The additive noise 

component n[k] is generally modeled as additive white Gaussian noise (AWGN). The 

techniques for detecting r[k] from s[k] can be broadly classified into two categories, 

1 
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based on the knowledge about the phase shift 9[k\. In coherent detection, 9[k] is 

assumed to be perfectly known, implying the existence of a phase-synchronization 

mechanism, often involving the transmission of pilot tones or symbols (cf. e.g. [31, 30, 

33, 3]). On the other hand, noncoherent detection assumes no knowledge about the 

phase, but treats the estimation of the transmitted data as well as the channel phase 

as one operation. The signal fading, which is one of the major disturbances in mobile 

communications is represented by h[k], and this enables us to distinguish between 

coherent detection with perfect channel state estimation (CSI) at the receiver, i.e., 

ê /̂iffc] is presumed to be perfectly known by means of explicit channel estimation, and 

noncoherent detection without CSI where neither 9[k] nor h[k] are explicitly estimated 

for the purpose of data selection. One of the common ways to implement a noncoherent 

receiver is to base the estimation of the data vector on blocks of N > 2 received 

symbols (see [43]), also known as multiple-symbol differential detection (MSDD). This 

form of noncoherent reception assumes that the receiver is aware of the statistical 

characterization of the channel. 

The concept of noncoherent reception where explicit channel estimation is not required 

becomes even more attractive for the case of transmission systems employing multi

ple antennas at the transmit and receive points, where transmit diversity is achieved 

through the use of NT > 1 antennas at the transmitter. Such space-time (ST) com

munication systems employing NR receive antennas require extensive training intervals 

to estimate the NT • NR fading coefficients, and due to this restriction, space-time 

modulation formats which do not require the receiver to know or estimate the channel 

coefficients have been proposed (see [28,14]). We use an approach known as differential 

space-time modulation [16, 15], which generalizes the notion of differential phase-shift 

keying (DPSK) to multiple antenna transmission, and is a low complexity scheme pro

viding full-antenna diversity. 

In this thesis, we study the application of bandwidth efficient noncoherent coded mod-
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ulation to differential space-time coding for multiple transmit and receive antenna 

systems. We focus our research on the error exponent analysis of such systems, and 

consider a block fading channel of arbitrary fading coherence interval, i.e. where the 

channel remains constant over an arbitrary interval. This is an extension to previous 

work [24] on single antenna DPSK where the channel coherence interval was assumed 

to be equal to the MSDD observation interval N. Error exponent analysis is a powerful 

tool to study the achievable performance of coded transmission over fading channels 

with short to moderate code lengths due to e.g. delay constraints. In particular, 

random coding exponents have been used to bound error and/or outage probability 

for certain types of channels and different degrees of channel state information be

ing available. In this context the block-fading channel model is often employed to 

(approximately) represent realistic fading channel scenarios with possibly non-ideal in

terleaving. More recently, random coding exponents for space-time (ST) modulation 

over block fading channels have been evaluated in [4, 18]. We consider Gallager's ran

dom coding exponent [10, Ch. 5] for ST transmission over block fading channels with 

no CSI at both the transmitter and the receiver. We consider bandwidth-efficient dif

ferential space-time modulation with practical signal constellations at the transmitter 

and power-efficient MSDD at the receiver. 

Chapter 2 introduces the discrete time, frequency non-selective block fading channel 

model under consideration, and also introduces the differential encoding technique used 

to resolve the ambiguities in the data detection. The concept of MSDD is described 

in detail, where blocks of iV consecutively received symbols are processed for joint 

detection of the corresponding data symbols. In particular, we consider spectrally 

efficient DPSK based encoding strategies for single antenna transmission and multiple 

antenna DSTM based on unitary signal elements. We also introduce the different signal 

constellations for DSTM that will be used throughout the thesis for analysis purposes. 

Chapter 3 is dedicated to the random coding exponent and its properties as a tool for 



4 

error exponent analysis. We focus on absolute performance limits of coded transmis

sion over block fading channels, and to this end we consider Gallager's random coding 

exponent and, to a lesser degree, channel capacity as appropriate information theoret

ical parameters. We derive expressions for the random coding exponent for DSTM, 

and widen the range of block fading channels that can be analyzed by extending the 

definition of the random coding exponent to channels with arbitrary fading coherence 

intervals. For the sake of completeness, we present results corresponding to the case of 

single antenna transmission as well as DSTM, and show the effect of arbitrary fading 

coherence intervals on the random coding exponent. 

In Chapter 4, we present efficient decoding algorithms for DSTM with orthogonal and 

diagonal constellations. We describe in detail the need for such algorithms based on 

the analysis in Chapter 3, and describe how efficient tree-search based sphere decoding 

algorithms considerably reduce the computational complexity of the derived metrics, 

where the search space for the decoding algorithm increases exponentially with the 

length of the fading interval. In order to reduce this exponential dependency on the 

fading coherence interval, we devise modified sphere decoding algorithms (cf. e.g. [22]) 

to limit the complexity cost for ST transmission systems with arbitrarily large fading 

intervals. We also attempt to use a combination of the sphere decoding algorithms 

and a metric to upper and lower bound the random coding exponent and hence the 

probability of error. We devise a novel performance metric using the best maximum 

likelihood (ML) metrics obtained for the sphere decoding algorithms along with a 

stopping criteria, which not only allows us to bound the random coding exponent to 

a user-defined accuracy, but correspondingly also reduces the complexity cost for the 

decoder by several orders of magnitude, depending on the required accuracy. Finally in 

Appendix A, we derive in detail the expression for Gallager's random coding exponent 

used in this thesis, where the effect of transmit diversity is taken into account. 

We present results and analysis separately for multiple transmit and receive antenna 
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systems and single antenna systems, and present our findings at the end of each chapter. 

We make a note of the fact that the focus of this thesis is on block fading frequency non

selective channels with arbitrary fading coherence intervals, so the class of broadband 

communication systems entailing a frequency-selective or time-dispersive channel are 

nor directly addressed by this thesis, neither are channels with continuous fading. 

Nevertheless, by means of widely accepted multicarrier transmission technologies [2], 

which decompose a frequency-selective channel into a number of parallel frequency 

non-selective channels, the concepts proposed throughout the thesis can be applied to 

such broadband systems. 



Chapter 2 

Channel Models and Differential 

Encoding 

This chapter briefly introduces the discrete time channel models and signal constella

tions used throughout the thesis for the single antenna systems considered as well as 

space-time transmission. In accordance with the proposed work, we distinguish be

tween the single antenna channel with one transmit and one receive antenna and the 

multiple antenna channel with more than one transmit and/or receive antennas. The 

corresponding channels are thus referred to as single-input-single-output (SISO) and 

multiple-input-multiple-output (MIMO) channels respectively [23]. In section 2.1, we 

introduce the multiple transmit and receive antenna channel model that we will use 

throughout this thesis. We introduce the vector channel model of the system, and 

explain in detail the process of differential space-time modulation (DSTM) and mul

tiple symbol differential decoding (MSDD) for noncoherent reception without channel 

state information (CSI). The block fading channel model for our MIMO channel is also 

described, along with the transmit diversity effect of the channel. We also describe, 

for reference, the single antenna channel model used in literature in section 2.1.3, and 

6 



2.1 Multiple Transmit and Receive Antenna Systems with MSDD 7 

introduce the basic channel model and differential encoding for such a SISO channel 

model. Finally in section 2.2, we introduce the space-time signal constellations that 

we use throughout the thesis for analysis purposes, and mention in brief the design of 

orthogonal and diagonal space-time block codes for DSTM. . 

2.1 Multiple Transmit and Receive Antenna Sys

tems with MSDD 

Multiple symbol differential decoding works on blocks of N consecutively received 

matrix symbols (in the case of DSTM, these symbols are NT x NT matrices) such 

that decision variables on data symbols are based on independent evaluations of these 

blocks cf. e.g. [42, 8, 25, 9]. Since, in general, computational complexity grows 

exponentially with N, a judicious choice of N is required to balance performance 

and complexity. Since in MSDD, a constant phase offset does not reflect in decision 

metrics, differential encoding techniques are required to resolve phase ambiguities. 

This process of differential encoding can be achieved by multiplying the data carrying 

differential symbol by the previously transmitted symbol. Let S[k] be the reference 

symbol, and V[k] be the data carrying differential symbol drawn from a signal set V. 

The transmitted symbol at the current instant is then given by 

S[k] = V[k] • S[k - 1] (2.1) 

This process of differential encoding is applied to blocks of N symbols for MSDD, 

and at the receiver, N consecutively received symbols are grouped together to yield a 

decision on N — 1 differential data symbols. 
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2.1.1 Discrete Time Channel Model for Multiple Transmit 

and Receive Antenna Transmission 

In the previous section we introduced the concept of MSDD, and we use this concept to 
formulate our system model with multiple transmit and receive antennas. We consider 
space-time transmission with NT transmit antennas and NR receive antennas over 
a frequency non-selective block fading channel. We consider transmitting blocks of 
Af space-time symbols over a particular fading subchannel, and D such blocks are 
transmitted over one fading realization. Since the total number of fading realizations 
is L, one codeword spans 

differential symbols, i.e. the code length is nc = nv log2(M). This is an extension 
to work done in literature thus far, where the channel coherence interval and the 
MSDD observation window N were equal. Here, the channel remains constant for 
DN consecutive matrix symbols, and L such independent fading realizations are seen 
in one coding frame, thereby introducing a transmit diversity which is then used to 
parameterize our channel model. The transmitted symbols are NT x NT matrices 
denoted by Sitd,n[k], where subscripts £, d, and n, 1<£<L, l < d < D , l < n < N , 

specify the fading subchannel, the block transmitted over this subchannel, and the 
symbol position within this block, respectively, and fc G 2 is the time-index with 
respect to frames of 

symbols. The £th subchannel is represented by the NTxNR channel matrix Hi[k]. For 
a compact notation, it is convenient to introduce the matrix notations 

nv = LD(N - 1) (2.2) 

ns = LDN (2.3) 

Sl4[k] 
A 

St[k] 4 [SUk] ... SlD[k}f 
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to represent the transmitted symbols, 

Re,d[k] 4 [RjAl[k} 

Re[k] A jR^ik] . 

to represent the received symbols, and 

= [NjA1[k] 

Ne[k] A [NjAk]. 

• NjdtN[k]]T , 

NlD[k]f , 
to represent the noise samples, corresponding to blocks of N and DN matrix-symbol 

transmissions respectively. 

2.1.2 Differential Space Time Modulation: Vector Channel 

Model 

We consider the channel model from section 2.1.1, and apply differential space-time 

modulation at the transmitter to achieve the necessary transmit diversity. D S T M can 

be described by considering transmission of B x JV T matrices ([28],[14]), if channel state 

information is not available at the receiver. Hence during each modulation interval 

T, one row vector is transmitted, corresponding to using all NT antennas, assuming 

the channel remains constant for all B intervals. This approach is known as unitary 

space-time (ST) modulation. It is possible to show ([28]) that right multiplication of 

these B x NT matrices by arbitrary 7YT x NT matrices does not affect the pairwise 

error probability, hence consecutive B x NT matrices can overlap by such submatrices, 

thereby increasing power and bandwidth efficiency. In the considered case, B = 2NT, 

the NT X NT unitary submatrices are chosen, without loss of generality to be the identity 

matrix I^T. Hence the overlapping is achieved by successively right multiplying the 

current matrix symbol with the corresponding NT x NT unitary submatrices of all 
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*[* -1] *[fc -1] #[«; - 1] 
INT INT 

V[k-1] V[k-1] 

S[k - 3] 

S[k - 2] 

S[/fc - 2] 

S[k - 1] 
S[fc - 2] 

S[fc - 1] 
S[k] 

S[k - 1] 

S[fc] S[k] 

S{k + 1] 

Figure 2.1: Overlapping of consecutive 2NT X ATr matrix symbols <f?[k]. After right 

multiplication with the NT x NT submatrix S[k — 1] = TJcii — C] °f the previous 

matrix symbol &[k — 1], only the bracketed regions i.e. NT X NT matrices S[k] are 

transmitted. 

previous matrix symbols. As an illustration, let V[k] be the chosen matrix for the 

current transmission. Hence the 2NT x NT transmit matrix &[k] = [lNTV[k]T]T. At 

a given time instant k, &[k] is right multiplied by the unitary matrix 

s[k-i] = l[v[k-c] (2.4) 

This is illustrated in fig. 2.1. 

The block diagram of the equivalent system is shown in fig. 2.2. We map binary coded 

symbols to a D(N — 1)NT x NT dimensional matrix 

Vt[k] 4 [Vl4MTVWW • • • V^N-Wf, \<d<D (2.5) 

of D(N — 1) space-time NT x NT data matrix symbols V^di7l[A;], 1 < n < N — 1,1 < 

d < D. The matrix symbols are taken from a signal set V as described in section 2.2. 

This signal set forms a space-time code with M = 2NTRm elements, where Rm is the 

modulation rate in bits/(channel use), and one channel use corresponds to the use of 

all NT transmit antennas simultaneously. In our case of DSTM with unconstrained 
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Channel Encoder 

(.dm 
Mapper 

Tlv 

"t.dl^l 
Mapper 

Tlv 

Vt[k] St[k] 

Parallel/Serial Differential 
Encoder 

Binary data 

-R/,d[fe] 
fi/,d[fc] 

-=a 1 Channel Decoder n* 1 

fi/,d[fc] 
Grouping and 1 

Channel Decoder n* 1 

Reordering 1 

Modified Block 

Fading Channel 

Ri[k] 

Vt[k] 

(a) Discrete-time channel model for DSTM with MSDD 

St[k] 
Differential Encoder Reference Symbol 

Extension 

St,D,N-l[k] 

Random Generator J 

Rt[k] 

Modified 

Block Fading 

Vector Channel 

(b) Equivalent vector channel model for DSTM with MSDD 

Figure 2.2: Block diagrams for Differential Space-Time Modulation: Discrete Time 

Model and Vector Channel Model 
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block fading, DSTM can best be described by generating a block transmit matrix 

Se[k] 4 [SlAMTSi4MT • • • SeAN[k]T]T, l < d < D (2.6) 

from the data block matrix Vf[k] via 

Se,d,n-j[k\ — Vt,d,n-i[k]Sitd,n-j-\[k], l . < j < N - l (2.7) 

where the reference symbol Se,D,N-i[k], which is an independent u.i.i.d random vari-

able is taken arbitrarily from the signal set S. Since we are primarily interested in 

performance analysis using the random coding exponent, we can conveniently assume 

interleaving to be limited to blocks of L D N space-time symbols without imposing any 

more restrictions. 

Taking the expressions above and defining block matrix symbols 

Se[k] 4 

Ht[k] ^ [He,dAk]THe,d,2[k)T • • • Htfd,N[k]T]T, 1 < d < D (2.9) 

SW[k] 0NT 

0Nt StA2[k] 

0/vT 

(2.8) 

0Nt Si,d,DN-l [k] 

Ne[k] ^ [Ne,dil[k}TNiA2[k ~ 1]T • • • Nltd,N[k - (DN - 1)]T]T, 1 < d < D (2.10) 

we obtain the DNNT X NR matrix Rt[k] of DN received samples as 

Re[k] = Se[k}He[k} + Ne[k] , 1 < t < L , (2.11) 

where Nt[k] denotes additive spatially and temporally white circularly-symmetric 

Gaussian noise (AWGN) with variance a\ per complex scalar component. We also 
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assume that the elements of iT f̂c] are circularly-symmetric Gaussian distributed, i.e., 

block Rayleigh fading, with common variance o\ and possible spatial correlation, 

tl>H\»x,l*2,vi,V2\] ^SUHeik^dHeik}}^)*} , (2.12) 

which is assumed identical for all subchannels L 

At the receiver, MSDD with an observation window size N is applied. This means that 

the decoder input is based on independent processing of blocks of N received samples 

collected in Re,d[k] corresponding to N — 1 differential symbols 

VeAk} = [VjAl[k}...VjAN_1[k]]T • 

We use the notations 

R 4 [RT[k]...R[[k]f 

V 4 [VT[*]...Vl[ib]]r4[V^.Jfc]Vj2[ifc]...Vri0[ib]]r 

to represent the collection of all received samples and differential symbols corresponding 

to the transmission of one codeword. Throughout this thesis, for the sake of simplic

ity, we omit the frame index k, and use the representations X(jd[k] = X(id, X([k] — 

Xe,Xe {S,R,N}. 

2.1.3 Single Antenna Transmission: A Special Case 

For the special case of NT = NR = 1, we revert back to the traditional single antenna 

transmission scenario with multiple symbol differential detection at the receiver. For 

a compact notation, it is convenient to introduce the vector notation 

xe<d[k] = [xjtdtl[k] ... xld>N[k]]T , 

xe[k] ^ [xlik] • • • xlD[k]f , 

corresponding to blocks of N and DN vector-symbol transmissions, respectively, and 

x € {s, r, n} corresponding to the transmitted, received and noise vector block symbols 

respectively. 
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Here, instead of transmitting DNN? x NR matrix symbols as in the ST case, we trans

mit differentially encoded vectors of length DN corresponding to the fading coherence 

interval, and we can represent the received vector as 

rt[k] = se[k]he[k] + ne[k] , 1 < £ < L , (2.14) 

where 
xp4{k] 4 [xj>dil[k] ... xJtdtN[k]]T , 

xe[k] = [xj^k] ••• xlD[k]]T , 

corresponding to blocks of N and DN vector symbols transmissions respectively. 

Vector Channel Model for Single Antenna DPSK 

Similar to the DSTM case, we consider transmission of blocks of DN symbols over a 

frequency non-selective block fading channel, with L independent fading realizations 

per coding frame (see [19, 20, 27]). A sequence of information bits is encoded at the 

encoder, and mapped to data carrying differential symbols 

vi[k] = [vi4,i[k]vt,dAk -!]••• veAN-i[k]]T (2.15) 

consisting of D(N — 1) scalar differential symbols vt^j[k] G V, 1 < j < N, 1 < d < D. 

Here, since we consider interleaving and deinterleaving as an integral part of the chan

nel, a vector channel is considered between the transmitter and the receiver. Assuming 

interleaving to be restricted to frames of LDN symbols, as in the DSTM case, at the 

transmitter, the process of differential encoding can be described by generating the 

transmit vector of dimension DN 

se[k] = [se4Ak]sW[k -!]••• *W*;]]r, l<d<D (2.16) 

from the D(N — 1) dimensional data vector v^A^] y i a 

seAn-j[k] = ve,d,n-j[k] • aW,n-j-i[A], 1 < 3 < N, 1 < d < D (2.17) 
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where the reference symbol is chosen arbitrarily from the signal set S due to noncoher

ent detection at the receiver. Here, the first (reference) symbol s^o^k] of the block 

8i[k] is the last symbol of the previously transmitted block S£_i[/c]. As [21] and [35] 

note, this overlapping is advantageous with respect to spectral and power efficiency. 

Defining the DA-dimensional vectors of channel gains and noise samples corresponding 

to st[k] by 

ht[k] = [heA1[k]hw[k -I]... heAN[k]]T,l < d < D (2.18) 

ne[k] = [ntAi[k]nw[k - 1]... nlAN[k]\Tl <d<D (2.19) 

respectively, the input-output relation of the vector channel is represented as 

rt[k] = 8i[k]ht[k] + ne[k] (2.20) 

where the fading gains hg[k] and the noise ni[k] are complex valued Gaussian random 

vriables with variances l/\/2 and a\ respectively per complex component. For the 

single antenna case too, throughout this thesis we omit the frame index k for the sake 

of simplicity. 

2.2 Signal Constellations for Differential Space Time 

Modulation 

The signal constellations for DSTM that are supported in this thesis have been widely 

studied in literature ([16, 15, 36, 12, 17]). Signal Constellation design for DSTM 

basically involves design of constellations V = { V 0 , V i , . . . , VM-\} of M — 2NTRm 

unitary matrices V m , where Rm is the maximum supported bit rate in bits per channel 

use, and one channel use corresponds to all NT antennas being used simultaneously. 

This ensures that throughout the course of this thesis, the rate Rm is independent of 
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the number of transmit antennas. We consider two basic kinds of signal constellations, 

namely constellations from Group Codes and Non-Group Codes ([36],Table 4). 

2.2.1 Constellations from Group Codes: Cyclic Codes or Di

agonal Signals 

To simplify design, group codes have been developed [16, 15, 36, 17], which form a 

group under matrix multiplication. A set of group codes implies V = S, i.e. the 

differential symbols are the same set as that of the transmitted symbols. Cyclic group 

codes or diagonal signals are defined as 

CCY{M,ui,.. .,UNT) = < 

eJ2-KUl/M Q 

Q eJ2wv,2/M 

0 0 

0 

0 

eJ2nuNr /M 

\m e {0,1,..., M - 1} 

where Ui € {0,..., M — 1}, 1 < I < NT are coefficients optimized with respect to 

minimum distance. Some particular diagonal signal constellations that we use later for 

analysis purposes are 

CC y(16,l,3) 
0 ej27r.3/16 

\m G {0,1... 15} (2.21) 

for NT = 2 transmit antennas and modulation rate Rm — 2 bits per channel use and 

CCJ/(9,1,2,5)= { 

ei^/9 o 0 

0 e^-2/9 0 

0 0 e

j 2 7 ! - 5 / 9 

\me {0,1...8} (2.22) 

for NT = 3 transmit antennas and Rm = 1 bits/(ch. use). 
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2.2.2 Constellations from Non-Group Codes 

Based on group structures, in the case of group codes considered by [36], we consider 

another set of space-time constellations where V ̂ 5 . 

Orthogonal Codes 

Codes from orthogonal designs ([39]) can be applied with good performance results for 

DSTM. For the special and widely considered case in literature of NT = 2 transmit 

antennas, DSTM based on Alamouti's space-time block code is considered and applied. 

These codes can be represented by 

COD(M) = { 
1 x -y* 

< 
y x* 

\x,y€ {l,eTr,. 
) 2 7 T ( - / M - 1 ) . 

2 W }, M = 221 ) (2.23) 

where the two symbols x and y are taken from vMPSK constellations. Such codes 

yield good results and are used for analysis purposes, and also allow particularly simple 

detection [1, 40]. 

Cayley Codes 

Another class of non-group unitary constellations Ccai^r, M) has been proposed by 

Hassibi and Hochwald [12]. The differential matrix symbols are obtained via the Cayley 

Transform of jA, where A = Ylq=i A.Qaq, and A\,..., AQ are preselected NT x NT 

complex Hermitian matrices and a i , . . . , aq are chosen from a set A with P real values. 

Similar to previous work [23], we focus on the advantageous effect of transmit diversity 

considering low and moderate modulation rates of Rm = 1,2,3 bits/(channel use). 

One such Cayley constellation giving good performance and complexity results is the 
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Cayley Code CCa(2,4) given by 

[I2+jA)-\l2-jA) 

A, = 

A = Aai + Aa 2 

-0.1853 0.8218 + 0.2694? 

0.8218 - 0.2694J 0.1359 

-0.2935 -0.5885 - 0.5704; 

-0.5885 + 0.5704J 0.3452 

ai,a 2 G {-1,1} 

(2.24) 

for a modulation rate of Rm — 1 bit/(ch. use). We will use this particular diagonal 

code for the random coding analysis in later chapters. 



Chapter 3 

Gallager Random Coding Exponent 

for Differential Transmission and 

Noncoherent Reception 

3.1 Introduction 

In this chapter, performance limits of coded transmission from an information theoretic 

perspective are discussed. We discuss the performance of differential space-time mod

ulation with MSDD using Gallager's random coding exponent [10] as a performance 

metric for the general block fading channel already described, and also use channel 

capacity to characterize the transmission system. The first part of the chapter focuses 

on multiple transmit and receive antenna systems, where we first introduce the re

quired noncoherent channel probability density functions (PDFs) to characterize the 

block fading channel in section 3.2.1 and then analyze the random coding exponent for 

space-time modulation in section 3.2.2, and also introduce the channel capacity for our 

transmission scheme. We provide detailed derivations of the random coding exponent, 

19 
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and explain in detail the effect of transmit diversity introduced due to our general block 

fading model on the random coding exponent. In section 3.2.3 we introduce a reduced 

complexity metric to calculate the error exponent, which eliminates the complexity 

drawback where the calculation of the channel metrics involved a high dimensional 

search space corresponding to the length DN of the channel coherence interval. We 

present results illustrating our analysis for DSTM in section 3.2.4, and to complete our 

analysis of the random coding exponent, we present the corresponding single antenna 

performance metrics and results in section 3.3. 

In this section, we introduce the noncoherent PDFs required to characterize the space-

time channel and introduce Gallager's random coding exponent for DSTM, along with 

a detailed derivation of the exponent for the block fading channel model under consid

eration. 

3.2.1 Noncoherent Probability Density Functions 

For noncoherent transmission, the channel described in section 2.1.1 is completely 

characterized by the DN dimensional probability density function p(Re\Vt) for a given 

differential vector Vt. Under our block fading assumption, in order to characterize our 

vector channel model, we express the conditional noncoherent pdf (see [37]) as 

3.2 Multiple Antenna Systems 

p(Re\Vt) 
exp(- tr{Rf^- 1 f l ,}) 

(ITNNT det{*tf})^ 
(3.1) 

where 

* R = £Rl{RiR?\Vt} = NR{a2

hStSf + allNNT) (3.2) 
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is the conditional autocorrelation matrix of the received vector Re given the transmitted 

vector Ve, with some arbitrarily chosen Se,i- We note that det{\&ft} is independent of 

Ve. Equation 3.1 is the expression for the conditional noncoherent pdf of the output 

vector given the input vector each of length DN, and we differentiate from previous 

work where the channel coherence interval was equal to N. We represent the overall 

maximum-likelihood (ML) decoding metric as 

L D 

A(R\V) = Yl E KRt4\Vt4) , (3-3) 

1=1 d=l 

where the metric increments X(Re,d\Ve,d) are log-likelihood expressions derived from 

the probability density function (pdf) p(Re,d\Ve,d)• The rationale for (3.3) is that since 

the size of the effective signal constellation and hence the complexity of soft-output 

MSDD increases exponentially with the window size N, the value for N has often to be 

chosen (much) smaller than the channel coherence interval of length DN, i.e., D > 1 

(cf. e.g. [8]). 

The pdf for the received sequence R given the sequence of differential symbols V 

assuming coherent detection with CSI can be decomposed into the product (H = 

[Hj...Hlf) 
L D 

• p(R\V,H) = Hp(Re,d\Ve,d,He) , (3.4) 1=1 d=l 
with the A^A^A f̂l-dimensional pdf 

e x p f - ^ ^ H l 
p(Re4\Ve,d,He) = £S(A,1

J V °n 

NNTNR 

(3.5) 

We will use the pdf in (3.5) to derive certain metrics to bound the random coding 

exponent in section 3.2.3. 
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3.2.2 Random Coding Exponent and Channel Capacity 

We consider the random coding exponent to be the definitive information theoretic 

parameter to analyze the maximum data rate supported by the channel. Since channel 

capacity assumes infinite code length and zero error probability, for most practical ap

plications we require an information theoretic performance measure that incorporates 

code length and/or decoding delay and error probability to give an accurate perfor

mance analysis. The random coding exponent proposed by Gallager relates code length 

or decoding delay to the reliability of the decoded data, namely the word error rate 

(WER) Pw. The random coding exponent is given by [10] 

E(RV, N, D) = max {EQ(p, N, D) - pRv} (3.6) 
0<p<l 

where Ry is the rate in bits per vector symbol, and E0(p, N, D) is Gallager's function, 

derived in the next section. From the random coding exponent, given the number nv 

of vector symbols vk per code word, the word error rate Pw is bounded by 

Pw < 2-n"E{Rv'N) (3.7) 

Derivation of Gallager's Random Coding Exponent: 

We refer to Gallager's original derivation for the random coding exponent in [10], and 

modify it to reflect the block fading channel under consideration. Since we consider 

noncoherent transmission with L vector symbols V^d, each consisting of N — 1 com

ponents drawn from a signal set V, we denote the codeword of length L as Ve i.e. 

Vt = [ V l 1 V l 2 . . . V l D } T (3.8) 

and the corresponding received vector R consists of L overlapping received blocks Re4, 

i.e. Ri — [Rj^Rj^ • • • RJ,D\ T- We assume the transmission rate is Ry bits per vector 

symbol. 
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At the receiver, we assume decoding metrics of the form 

D L 

d=l 1=1 

corresponding to (3.3), where nw = DNL denotes the dimension of R i.e. we assume 

a memoryless channel. Let us assume that a particular codeword Vt is transmitted, 

and if Xnw(R\Vt) < Xnw(R\Vd) for some d^t the receiver decides in favor of another 

codeword. Then, given Vt and a set of 2RvL codewords, the word error rate (WER) 

reads as 

(R\Vt)Tt(R)dR (3.10) 

where pnw(R\Vt) is the nw dimensional complex pdf of R given Vt and the indicator 

function Tt(R) is given as 

2 K "L r 

r(R) 4 | 

Upper bounding Tt(R) by 

Tt(R) < 

(3.10) can be upper bounded by 

J Pnw(R\Vt) 

1, if\nw{R\Vt) < Xnw{R\Vd) for some d ? t 

0, otherwise 

E 
d=\,d^t 

Kw(R\Vd) 
lKw(R\Vt) 

p>0 

Pw,t < E 
d=\,d^t 

K„(R\Vd) 
Xw(R\vt) 

dR, 

(3.11) 

(3.12) 

(3.13) 

Now, additionally imposing p < 1, the random coding upper bound on the average 

WER Pw follows from averaging the right hand side of 3.12 with respect to Vd and 
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V t . Assuming the codeword symbols V t4 are chosen independently and identically 

distributed with a fixed distribution Pr{Ve4} not subject to optimization, we have 

'D L \ P 

I H ! E Pr{VE,D}\N(Rt,d\Veid)&\ dR (3.14) 

Hence we have 

Pw = 2-L(EO(P<N,D)-PRV)^ 0 < p < 1 (3.15) 

where Gallager's function E0(p, N, D) is defined as 

E0(p,N,D) ±^\og2 ( f I \[Y[Pr{Vi4}\N(Rt4\Vi4)^pnw(R\V) 

Wc"- \ V 6 V ( " - - L ) d = l « = l 

' D L \ P X 

HIT E Pr{Vi4}\N{RzAVi,d)^ ) dR) (3.16) 

Here, we reiterate the fact that the considered channel has L independent fading real

izations per coding frame, and we can rewrite the expression for Gallager's function as 

£ 0 (p,N,D) = -1 l o g 2 / •••/E---E(nf[PriV^ MRe,d\Ve4))^) • 

fnf[ f E - ' - E M ^ K A i v ^ l ^ ) ) ^ ) ) dRx.:.dRL. 
\£=1 d=l V V i vL J J 

(3.17) 
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We expand the above products to read 

E, 

p(Re\Vt)-

(nil \ ^Pr{Ve,d}(\N(Re,d\Vt,d))^ ) ) dR1...dRL. 
\e=id=i \vttd ) ) 

(3.18) 

Combining the product terms and interchanging the order of integration and summa

tion, we have 

i?0(p,JV)£>) = - - l o g 2 f... fH ^2(Pr{Ve,d}(XN(Re,d\Ve,d))^-P(Re\Ve)) 

D 
Ri RL 

YsYlPriVt^MReAVe,*)^ 
\ vt d=l , 

dRx. ..dRL. 

(3.19) 

Since each block of DN samples experiences independent fading and is independently 

processed at the receiver, we represent Ri... R L as Ri,l < i < L to give 

E0(p,N,D) = - - l o g 2 n [ [YsXlPriV^NiR^Vw)^ •piRelVi)) • 
e=iRi \ v( d=i 

D 

Y,UPriV^X^R^V^) dRe 
\ Vt d=l J 

Finally, we obtain 

E0(p,N,D) = " ^ l o g 2 / (^i\Pr{Vi4}\N{Ri,d\Vi,d)^-p{Ri\Vt) 

(3.20) 

D 

D 
Rt 

Y,T[Pr{Vi4}\N(Re,d\Vt>d)^\ dRe 

K Vt d=l / 

(3.21) 
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Here, the product over all transmitted vectors L is equivalent to multiplying the results 

of each vector by L, since each vector represents an independent fading coherence 

interval. This expression 3.21 represents Gallager's function for any arbitrary channel 

with a fading coherence interval independent from the MSDD observation interval, 

and simulation results shown in section 3.2.4 demonstrate the effect of various fading 

coherence intervals on the random coding exponent. This is an invaluable tool to 

accurately demonstrate the effect of varying MSDD observation intervals with the 

coding diversity kept constant, and allows for analysis of a far wider range of channels 

that until now were restricted to having fading coherence intervals tied to N. Because 

of the varying fading coherence interval, for the noncoherent case we need to take a 

product over all possible A -̂dimensional (or N — 1-dimensional differential symbols) 

transmitted vectors V"e,d within a transmitted vector of dimension DN and sum over 

all possible transmitted vectors Ve to obtain the DA-dimensional pdf 
L 

Pnw(r\v) = Hp(Re,i\Ve,i) (3.22) 
»=i 

where nw = nv.N is the codeword length for the block fading channel under consider

ation having DN consecutive transmit vectors seeing the same fading coefficients. 

For the special case of D = 1, we refer to 3.14, and can express it compactly by 

optimizing with respect to p. Hence the random coding exponent E(RV, N, D) is given 

by 

EiRy, N, D) 4 max {EJ0(p, N, D) - pR,} (3.23) 
0<p<l 

and the expresion for Gallager's function 

, o t e , , 1 ) = - 1 o g 2 ^ , v { ( ^ « i l ) - l 1 + ' M (3,4, 

with the WER bounded by 

p < 2RvLp j I E Pr{VeA}pN(Re,i\Ve,i)^\ dRe 

RticN \vtev»-i J 
(3.25) 



3.2 Multiple Antenna Systems 27 

This is exactly the expression seen in [10] to calculate the random coding exponent for 

various channels and constellations. From information theory, we know that Gallager's 

function E0(p, N, D) is upper bounded by the coherent channel with perfect channel 

state information (CSI) as E0tcsi(p, N, D). The performance of noncoherent transmis

sion without CSI is clearly expected to improve as the MSDD observation length N 

increases, as the dependencies amongst received symbols are compromised by the in

creasing N, and the channel memory is more completely taken into account. However, 

when we look at the performance taking decoding delay constraints into account, we 

observe an interesting effect. We see that for noncoherent transmission over a block 

fading channel, where the channel coherence interval is equal to the MSDD observa

tion window, the error exponent and the cutoff rate are decreasing functions of Â , 

and decreases substantially as the fading memory becomes large [29, 41]. This behav

ior illustrates the reduced diversity achievable by coding when the MSDD interval N 

increases and the delay (N — l)nv is fixed, resulting in a higher WER as shown by 3.7. 

Channel Capacity 

From information theory [10], the average mutual information I(;) in bits per vector 

symbol is given by 

v « i = { b * ic^Jr)} (3-26) 

where 

p(Re4)=£Vt,MRi,d\Vt,d) (3-27) 

is the average pdf of the channel output. 

Another information theoretic parameter to analyze the performance of block fading 

channels is the channel capacity C(N) where we will consider the input distribution 

to be uniformly distributed, and hence refer to "capacity" meaning constellation con-
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strained capacity [23]. For the conventional case of channel coherence interval equal 

the the MSDD observation window N, the average mutual information 

Vl4) = t ^ y u (log2 } (3.28) 

measured in bits per matrix symbol V is considered, where 

PNNTNR(Rl,d) = £vt<d{PNNTNR(Re,d\Ve,d)} (3.29) 

is the average pdf of the channel output. We normalize the channel capacity with 

respect to DN — 1 components per data vector symbol V ^ , giving 

c w = Dihi • H R ' *
 v*> - D i h • ^ K icWr)} 13 30) 

3.2.3 Reduced Complexity Metric to Calculate the Random 

Coding Exponent 

In order to efficiently compute the random coding exponent for higher dimensions 

(i.e D, N » 1), we introduce a reduced complexity derivation of the random coding 

exponent in this section. We begin with the expression for the WER bound, obtained 

from Gallager's function given by 3.21. The average probability of decoding error Pe 

is bounded by 

p e < 2 - P N T B n v j i^^pr{Vi4}\(Ri4\Vi4)^p{R^VM 

(j2l[Pr{Ve4}X(Re,d\Ve4)^] dRt (3.31) 
\ VE d=l / 
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We note the simplification 

p(Rt\Vt) 4 Jp(Hi)p(Rt\Vt,Hi)dHi 

H L D (3.32) 
= \[p{Rt4\V^Hi)dHt 

Hi d = 1 

where p(Rt\Vt, Ht) is the pdf for the received sequence Rt given the sequence of 

differential symbols Vt assuming coherent detection with CSI. Using the pdf's from 

section 3.2.1, 3.31 and 3.32, we can rewrite the expression for the probability of decoding 

as 

P E < 2 - P N T R N V n^mV, H)[exp(A(fl|V))]-rf? 
Rt^nsNTxNR (3 33) 

f ^ E [exp(A(H|y))]^N) d(He,Rt) 

for 0 < p < 1, where the PDFs p(R\V, H) and A(K| V) have been described in section 

3.2.1. Optimizing the parameter p such that the upper bound (3.33) becomes tightest, 

we can write 

Pe < 2~n-E^N^ , (3.34) 

where Er(R, N, D) is the random coding exponent given by 

Er(R, N, D) = max {E0{p, N, D) - pNTR] . (3.35) 
0</9<l 

After manipulations using (3.3), (3.4), and (3.33), the Gallager function E0(p, N, D) is 

obtained as 

J_ 
(N ~1)D 

E0(p,N,D) = --—---log2 

SVlA \exP(X(Rt,d\Vt4)) ^p(Rt,d\Vt,d, He)\ 
/ f , 1 N P

 J (3-36) 
(£Vltd{exV(X(Rt,d\Vt,d))^JI 

{£Vt<d{p(Re,d\Vt,d,Ht)}y 
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Here, using the Monte-Carlo technique we rewrite the integrations as expected values 

£(.) and again make use of 3.3 and 3.4 to rewrite Re4 and Ve,d in terms of Re and 

Ve- In Appendix A, we look into this derivation of Gallager's function with reduced 

complexity in greater detail, and present only the result here for coherence. 

3.2.4 Results and Discussion 

In this section, we discuss the performance of differential space time modulation based 

on channel capacity and the random coding exponent. The random coding exponent 

analysis from section 3.2.3 is an invaluable tool to calculate the random coding exponent 

for channels not restricted by previous analysis, where the channel fading coherence 

interval was tied to N. Here we first analyze the performance of DSTM, and the 

advantage over single antenna systems for the purpose of random coding exponent 

analysis, and show that orthogonal constellations perform better than any other kind 

of space-time code such as diagonal constellations. 

A ) Random Coding Exponent Results 

In this section, we demonstrate the random coding exponent for differential space-time 

modulation for the channel under considerations with fading coherence interval varying 

and not constrained to N. We use the results from section 3.2.3 to obtain the simplified 

expression for Gallager's function and correspondingly the random coding exponent. 

In order to compare and analyze the random coding exponent for DSTM, we plot 

Gallager's exponent against the rate R as in the single antenna case to justify our claim 

that the above analysis enables us to analyze channels where the coding diversity is 

kept constant though the MSDD observation interval N may change. We also perform 

SNR-delay analysis for the exponent and compare it with the single antenna case, to 

fairly compare the potential advantages of DSTM with multiple transmit antennas over 
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Diversity L=10 
- * — Diversity L=5 
•e— Diversity L=2 

Figure 3.1: Gallager Exponent vs Rate for DSTM, Orthogonal codes with CDD (N = 

2),target rate Rt = 1 bit/(channel use): Effect of coding diversity 

single antenna traditional DPSK. The decoding delay td is measured as the number of 

scalar transmitted symbols required for decoding, i.e in this case 

td = (DN - l)nd = (DN - l)L (3.37) 

where nd = L is the number of vector symbols per code word. 

1) E(R, N, D) analysis for DSTM: In fig. 3.1, we illustrate the advantage of the deriva

tion in section 3.2.3. When we compare schemes with different values for N and/or 

NT, we use the normalized coherence length nc/L = (N — l)£)log 2 (M) as parameter 
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•S— D4PSK, N=3, D=1 
D4PSK, N=2, D=1 

* - DSTM,C(0D)16, N=2, D=1 
6 - DSTM,C(0D)16, N=3, D=1 

Decoding delay 

Figure 3.2: Required SNR (10\og10(Es/N0)) vs td in PSK samples, D4PSK and 

COD (16). Dashed lines: DSTM, Solid lines: D4PSK 

to specify the amount of coded diversity (either temporally or spectrally) available. 

As a counterpart to the advantage of being able to compare different MSDD observa

tion intervals N for the same coding diversity, we show the effect of different coding 

diversities nc/L = 20,40,100 i.e coding diversities 10,5 and 2 respectively for DSTM 

with orthogonal designs and target rate Rt — 2 bits/(channel use). We observe that 

keeping the observation window N constant while increasing the diversity allows the 

transmitter to see more independent fading realizations, thereby increasing the coding 

diversity and correspondingly a better random coding exponent performance. 

2) SNR-delay analysis for DSTM: Advantage over Single Antenna Systems: Here, we 

demonstrate the advantage, taking decoding delay constraints into account, of DSTM 

with multiple transmit antennas over single antenna modulation. Fig. 3.2 shows the 

required ES/N0/NR per received antenna to achieve a WER Pw < 0.001 as a function of 

the decoding delay. We plot the random coding exponent for single antenna DPSK with 
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(a) CDD (N = 2): DSTM with CQD(16) 

(b) MSDD (N = 3): DSTM with C0£>(16) 

Figure 3.3: Required 101og 1 0 (£ l

s /A 0 ) vs Decoding delay td in PSK samples. Target rate 

Rt=l bit/(channel use), CDD (N = 2) and MSDD with N = 3 
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CDD and MSDD, and compare it with the corresponding DSTM results. Interestingly, 

we note that not only do we get an added SNR boost by switching for NT = 1 to NT = 2, 

but for smaller delays td < 102 . . . 103 DSTM performs significantly better than DPSK. 

For the single antenna case we noted that for smaller delays, the gain obtained from 

MSDD is countered by the reduced diversity of not seeing enough independent fading 

realizations, hence the curves for different N's intersected. However, for DSTM we 

see that the potential advantage of DSTM remains even for small delays, effectively 

providing enough diversity via space-time coding to retain the advantage of MSDD. In 

fig. 3.3 we look more closely into the advantage of DSTM over single antenna systems. 

For this purpose, we compare CDD (N = 2) and MSDD with N = 3 for both schemes. 

We note of interest that while the advantage of DSTM over single antenna DPSK is 

apparent at high decoding delays where the situation closely resembles the capacity 

case with potentially infinite delay, the advantage of DSTM is more apparent for low 

delays. This shows that with reduced diversity available for low delays and a specific 

window size N, the DSTM advantage far exceeds the single antenna case due to the 

space-time coding and overlapping process. This result shows the beneficial advantages 

of transmit diversity with NT > 1 over standard single antenna differential modulation. 

3) Effect of D: In order to characterize and analyze our proposed modified channel, we 

observe the effect increasing the fading coherence interval has on the random coding 

exponent. In fig 3.4, we show the effect increasing D has on the coding exponent. The 

curve for standard DSTM as in section 2.1.2 with D — 1 is shown as a reference. We 

observe that increasing D reduces the diversity observed on the channel by reducing 

the number of independent fading observations seen by the channel, hence requiring 

a higher SNR to achieve the same WER. This results in a degraded random coding 

exponent performance as seen by the increasing curves in the figure. Here we consider 

transmission of orthogonal codes with MSDD observation window N = 3, and change 

D to reflect the increased fading coherence interval. 
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DSTM,C(od)16,N=3,D=1 
DSTM,C(od)16,N=3 D=3 

10° 
decoding delay 

Figure 3.4: Gallager Exponent results: Required SNR (10log10(Es/No)) vs Decoding 

delay td in PSK samples for DSTM with Orthogonal Codes COD (16) showing the effect 

of increasing D while keeping N constant: Reduced diversity. Solid horizontal line: 

channel capacity for DSTM, N = 3 

Finally, in order to complete our introduction to the random coding exponent for 

DSTM, we compare E(R, N, D) for single antenna systems and DSTM from a coding 

diversity point of view. Fig. 3.5(a) compares the random coding exponent E(R, N, D) 

for single and multiple antenna systems where the coding diversity is the same in 

both cases. For a fair comparison, the normalized fading coherence length nc/L is 

taken in PSK samples, hence an accurate comparison between single and multiple 

antenna systems can be made. In each case, for diversities 10, 5, 2 i.e nc/L = 20,40,100 

respectively, the random coding exponent obtained from DSTM offers a significant 

advantage over the single antenna case. We keep in mind the fact that since the WER 

bound is inversely proportional to the random coding exponent 

P < 2~nvE(R'N'D) (3.38) 
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(a) E(R, N, D) vs R comparison between DPSK and DSTM: 

Overall Diversity L = 10,5,2, DSTM with Con(16), Rtarget — 

1 bit/(ch. use) vs Single Antenna D^PSK 

(b) Required SNR vs decoding delay: DSTM vs D4PSK and 

fading coherence length nc/L = 100 fixed: Advantage of DSTM 

over single antenna modulation 

Figure 3.5: Comparison between D4PSK and DSTM: Diversity Analysis 
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a higher random coding exponent implies better performance since less Es/N0 is re

quired to achieve the same WER. In fig. 3.5(b), the random coding exponent is shown 

as a function of the total decoding delay for the case when the transmitted vec

tor length DN is maintained constant. We plot the SNR 10 \ogw(Eb/N0) required 

to achieve Pe < 10 - 3 according to (3.33) as function of code length n c for transmis

sion with rate R = 1 bit per scalar channel use. The normalized coherence length is 

nc/L = 100, i.e. L degrees of freedom, and thus coded diversity increases linearly with 

code length n c. Two things are interesting to note. First, increasing Â  consistently 

improves power efficiency regardless of n c. This is decidedly different from [24], where 

coded diversity was decreasing with AT. Second, the gain due to transmit diversity 

increases with decreasing nc. This result reiterates the benefits of spatial transmit 

diversity if coded diversity is limited, e.g., due to delay constraints. 

B) Capacity Results 

In fig. 3.6 we compare the channel capacity obtained with DSTM with that from 

single antenna DPSK, and see the potential advantages of coding over multiple an

tennas i.e NT > 1. In 3.6(a), we plot the normalized capacity C(N) over the SNR 

i.e 10\ogw(Es/N0/Nii) for CDD (N — 2). We can see that increasing the number 

of transmit antennas NT from 1 to 2 consistently increases the gain by about 2 dB 

in power efficiency for NR = 1. We take constellations with the best performance 

[[16, 15, 36, 17]], and refer to section 2.2 to obtain the best constellations. As a sum

mary, the rates and the corresponding DSTM constellations are given as follows 

Modulation Rate Rm in bits/(channel use) NT = 2 

1.0 CCM(2,4) 

2.0 CW16) 
3.0 C W 6 4 ) 
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(a) Capacity C{N) for DSTM: Advantage over DPSK. Solid 

lines: DSTM, N = 2; Dashed lines: D4PSK, N = 2; Dash-

dotted lines: DSTM, MSDD (N = 3) 

B N=2 

e N=3 

1 N=4 

/ / i 

/fl 
M 

A f 
\ J 
0* 

S N R (101og1 0(E./JV0)dB) - t 

(b) Capacity C(N) for DSTM: Orthogonal Codes with modula

tion rate Rm = 2 bits/(channel use), MSDD with N G {2,3,4} 

Figure 3.6: Capacity CDSTM(N) results for DSTM, Orthogonal Codes with modulation 

rate Rm = 2 bits/(channel use) 
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(a) C(N) for Rm = 2 bits/(ch. use), orthogonal and diagonal con

stellations for N = 2,3,4 

2 r : — U r f f c i f i - f f l m m m m m i 

fir 

' 0 

0 5 10 
SNR (101ogio(B./JV0)) [dB] 

(b) C{N) for COD(-), rates Rm = l,2 bits/(ch. use) 

Figure 3.7: Capacity CDSTM(N) for DSTM 
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The advantage of MSDD with DSTM is shown in fig. 3.6(b), where we show the ef

fect of increasing N on the channel capacity. As expected, while operating under 

unconstrained decoding delay scenarios for channel capacity, the increasing MSDD ob

servation window N provides an increase in channel capacity for any given SNR of 

interest. Noting from [23] that in a perfectly interleaved fading channel, time diver

sity is utilized through channel coding, and additional transmit diversity is limited, 

we take into consideration NT = 2 DSTM analysis. As mentioned, the best DSTM 

constellations are taken according to table 3.2.4, and this can be seen from fig. 3.7(a). 

A comparison is shown between orthogonal constellations and diagonal constellations 

for N = 2,3,4, and we can see than orthogonal constellations perform best for mod

ulation rate Rm = 2 bits/(channel use). We also show in fig. 3.7(b) the capacities for 

2 different modulations rates i.e Rm = 1,2 bits/(channel use), and N — 2,3,4. The 

constellations are taken from table 3.2.4. 

3.3 Single Antenna Systems 

For the case of NT = NR = 1, traditional single antenna differential modulation with 

MSDD results. The analysis of the random coding exponent exactly follows along the 

lines of 3.2.3, and we forego the analysis and present only the results, which we apply 

in section 3.3.3 for performance analysis using the random coding exponent. 

3.3.1 Noncoherent SISO Channel P D F 

For noncoherent transmission over a single transmit and receive antenna system, the 

channel described in 2.1.3 is completely characterized by the N dimensional pdf p(re,d[k] 

of the received vector r^A;] given the transmitted vector t̂ ,d[A:]. Since r condi

tioned on ŝ d[fc] is the sum of zero-mean complex Gaussian random variables, the 
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conditional pdf according to [32] reads as 

p ( r ' ' * 1 | 3 w l t ) = ^ e t M W ^ M + ( 3 ' 3 9 ) 

where yjhh is the autocorrelation matrix. From this equation, the conditional proba

bility p(̂ ,d[̂ ]|v̂ d[A;]) is obtained by averaging the above probability p(r£)d[A;]|s^[&]) 

with respect to the reference symbol S(td[k]. For trie-special case of M-ary DPSK, the 

averaging mentioned above can be omitted, and we can further simplify the pdf 3.39 

as 

iKrwWW*]) = + ( 3- 4°) 

analogous to the multiple transmit and receive antenna metric. 

3.3.2 Random Coding Exponent and Capacity Analysis 

As previously mentioned, we disassociate the channel coherence interval from the 

MSDD observation window, making the channel fading remain constant for DN sym

bols, where DN — 1 transmitted differential symbols are differentially encoded to pro

duce transmission vectors of length DN. The analysis for the random coding exponent 

closely follows from the analysis done in section 3.2.3, so only the result will be repro

duced here. Following the theoretical analysis, the random coding exponent for single 

antenna differential modulation can be written compactly as 

E(p, N, D) = max {E0{p, N, D) - p.R,} (3.41) 
0<p<l 

with Gallager's function E0(p, N, D) given by 

E0(p,N,D) = -— log2 f \^X{Pr{vi4}\{rl4\vt4)^ - p M * ) / ) • 
UV u V " d = 1 , 1 (3.42) 

( D \P Y ' 

^Y\Pr{vi4}\(rt4\vi4)^\ dre 

V d=l ) 
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D 

d=l 

(3.43) 

Once again, we apply the metric simplification from section 3.2.3 to reduce the number 

of candidate vectors for maximum likelihood decoding, by rewriting the expression for 

Gallager's function as 

£Vld ^exp(X{re4\vi4))~^p(re4\ve4, he)} 

{exp(A(r / i d |«/ , d ))^}y 

{£vltd {p{rt4\vt4M)}Yl 

Channel Capacity 

As discussed in section 3.2.2, channel capacity is another essential information theoretic 

tool to classify the memoryless block matrix channel between the transmitted symbols 

ve4 and the received symbols r^4. Similar to the single antenna case, "capacity" in 

this case refers to the associated mutual information normalized with the respect to 

each channel use i.e N — 1 as 

C ^ = jrh- = {log2 } (3-44) 

Fig. 3.8(a) demonstrates the channel capacity for single antenna DPSK for different 

rates R = 1,2,3 bits/(channel use), and fig. 3.8(b) illustrates the random coding 

exponent for different MSDD observation intervals N for single antenna DPSK. Both 

channel capacity and the random coding exponent are demonstrated and explained in 

section 3.3.3. 

3.3.3 Performance Analysis: Results and Discussion 

In this section, the presented analysis for the random coding exponent for single an

tenna DPSK as well as channel capacity are discussed. Correspondingly, channel ca-
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— « — DPSK 
—6— D4PSK 
— a — D8PSK 
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(a) Channel capacities C(N) for sin

gle antenna DPSK, Rates Rv = 1,2,3 
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(b) Random coding exponent E(R, N, 1) for 

single antenna DJ^PSK 

Figure 3.8: Capacity and Gallager functions for Single Antenna DJ^PSK 

pacity and the word error rate obtained from the random coding exponent are analyzed 

as a function of the required signal to noise ratio 101og 1 0(£ l

5/A r

0), and decoding delay 

in PSK samples td respectively. As general and interesting cases, for single antenna 

modulation we consider 4-ary and 8-ary modulation supporting 2 and 3 bits/(channel 

use) respectively. Specifically, we consider D4PSK and D8PSK as suitable signal con

stellations for transmission. Throughout the thesis we consider block fading channels 

as already discussed in section 2.1.3. 

Random Coding Exponent Results 

In this analysis, unlike channel capacity which has been discussed at length in literature, 

we put our transmission system under decoding delay constraints. As mentioned, we 

consider the random coding exponent to be a necessary and adequate information 

theoretic tool to analyze the transmission system, and to this end we discuss the average 
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(a) E(R,N,D) vs Rate R bits/(channel use) for single antenna 

D4PSK, CDD (N = 2) 

Diversity L=10 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Rate R bits/(ch. use) —• 

(b) E(R,N,D) vs Rate R bits/(channel use) for single antenna 

D4PSK, MSDD (N = 6), decoding delay in PSK symbols=100 

Figure 3.9: Gallager exponent E(R,N,D) vs Rate R, effect of coding diversity 
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(b) Required 10log10(Es/No) vs Coding Delay tj, in PSK symbols, standard 

MSDD vector channel with channel coherence interval=N i.e D = 1 

Figure 3.10: Gallager random coding exponent results: Single Antenna D4PSK, delay-

SNR analysis 
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signal to noise ratio (SNR) yielding a random coding exponent, which in turn leads to a 

word error rate (WER) not greater than a given threshold Pw. Also, in order to clearly 

emphasize the effect of various block fading scenarios on the random coding exponent, 

we show the Gallager exponent E(R, N, D) as a function of rate R in addition to the 

Gallager exponent-delay-SNR examples, to clearly illustrate the effect of the channel 

coherence interval on the random coding exponent. In all cases, we consider either 

D8PSK or D4PSK with supported rate 3 and 2 bits/(channel use) respectively and 

a block fading channel with channel coherence interval DN — 1 differential symbols. 

The target rate considered is R = Rv/(D.(N — 1)) where R^ is the rate in bits/(vector 

symbol). 

In figure 3.9, we show the random coding exponent E(R, N, D) as a function of rate 

R for D4PSK, where the decoding delay ta is kept fixed at 100 PSK samples, and the 

transmission diversity obtained by the varying fading coherence interval is changed. 

From figure 3.9(a) we note that as the fading diversity L is increased from 2 to 5 to 10, 

the random coding exponent increases, agreeing with our discussing wherein for the 

same decoding delay, the channel sees more independent fading realizations, thereby 

increasing the diversity and correspondingly the random coding exponent. The same 

argument is employed for figure 3.9(b), where instead of CDD as in the previous figure, 

MSDD with N = 6 is employed. 

In figure 3.10, the effect of MSDD is shown. For a fair comparison, the normalized 

coherence length DN is kept constant at 12, and the MSDD observation window N 

is varied. From this, we can clearly see the beneficial effect of increasing N while 

keeping the overall diversity constant, as the differential encoding effect becomes more 

apparent. Fig. 3.10(b) shows the required 10log10(Es/N0) required to obtain a WER 

not greater than 0.001 i.e Pw < 0.001. For long delays, the situation resembles the 

capacity case, where the decoding delay does not affect the performance significantly, 

and the effect of MSDD is apparent in the reduced SNR required to achieve a particular 
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Decoding delay —• Decoding delay -+ 

(a)CDD(N = 2) (b)MSDD(N = 3) 

Figure 3.11: Required 10\og10(Es/N0) vs coding delay td for single antenna D8PSK, 

CDD(N — 2), fading coherence interval increasing with D 

WER. However for shorter delays, the effect of shorter component codes or the reduced 

diversity seen from the fewer independent fading realizations outweighs the effect of 

MSDD, and the curves intersect where increasing the observation window results in a 

deterioration in performance for td < 102 . . . 103. 

In order to demonstrate the effect of the channel with fading coherence interval not 

equal to N, we observe from figure 3.11 the effect of increasing D while keeping JV the 

same. Increasing D effectively reduces the number of independent fading realizations 

seen for a given decoding delay td, hence reducing the effective coding diversity. The 

effect of this reduction can be seen in the increased SNR required to achieve a particular 

WER as D increases. Finally, fig. 3.12 shows E(R, N, D) as function of R for D4PSK 

transmission, SNR 10 log1Q(Es/No) = 10 dB, and fixed normalized coherence length 

nc/L = 40. As can be seen from fig. 3.12, and as expected from MSDD performance 

results in e.g. [8], the random coding exponent for MSDD approaches that of coherent 

detection with CSI, which is included as reference curve, with increasing N. 



Figure 3.12: Gallager Exponent E(R,N,D) vs R for D4PSK (NT = I) and 

lOlogioC&yJVo) = 10 dB 



Chapter 4 

Modified Tree-Search and Sphere 

Decoding MSDD Algorithms 

In the previous chapter, we derived expressions for the random coding exponent for 

both single antenna systems and DSTM where the channel coherence interval was 

independent from the MSDD observation window. This helped us analyze a wide range 

of channels without any restrictions on the channel coherence interval, for example if 

the coding diversity was kept fixed but the MSDD observation window N was allowed 

to vary for analysis of different MSDD strategies. However, one drawback of this 

derivation was that the expression for Gallager's function E0(p, D, N) given by 

(4.1) 

49 
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involved summing over all possible vectors V'i4 of length N, where the value for N 

could involve an extremely high complexity cost as the complexity for MSDD increases 

exponentially with not only N but also with the number NT of transmit antennas and 

the modulation rate i?m. In order to reduce the complexity cost for analysis of such 

block fading channels, we make use of efficient tree-search algorithms to overcome the 

complexity limitations of MSDD for differential space-time modulation([34]), and with 

novel modifications to this tree-search approach we obtain an efficient implementation 

of Gallager's random coding exponent for our block fading channel under considera

tion. Furthermore, we propose a novel "modified metric" using this stack algorithm 

to provide accurate bounds for the random coding exponent and time delay analysis, 

which reduces the computational cost for analysis of our modified block fading channel 

by many orders of magnitude. 

In section 4.1 we consider the tree-search algorithm for single antenna systems, and 

explain the working of the tree-search stack algorithm. This algorithm will later be 

extended to the DSTM case in section 4.2 for Alamouti's NT x NT for NT — 2 code 

as well as diagonal DSTM constellations, where we use a modified sphere decoding 

algorithm to obtain computational efficiency during our search. We then achieve ac

curate bounds for the random coding exponent as well as the time-delay analysis of 

the random coding exponent in section 4.3 by using a combination of efficient mod

ified tree-search algorithms, the modified performance metric for calculation of the 

random coding exponent and a novel sorting approach that enables us to formulate 

an efficient "stopping criteria" to terminate our MSDD tree-search for an increase in 

computational efficiency. We also analyze the effect of this modified metric on the 

random coding exponent and formulate a tradeoff between the efficiency or complex

ity of the tree-search algorithm and the tightness of the corresponding bound on the 

random coding exponent. Since our work is focused primarily on space-time coding, 

the analysis done for single-antenna systems serves as a reference for the DSTM case, 
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where we include some more detail to the analysis. We present results for the various 

approximations and bounds in section 4.4 for multiple antenna transmission as well as 

single antenna DPSK for reference. 

4.1 Single Antenna Systems: Multiple Symbol Dif

ferential Sphere Decoding (MSDSD) 

In this section, we review some efficient algorithms for reducing the complexity cost 

of MSDD, where the complexity for decoding increases exponentially with the MSDD 

observation window N. We mainly focus on tree-search algorithms for MSDD for 

single antenna systems, and apply sphere decoding to Maximum Likelihood-MSDD 

(ML-MSDD) also known as multiple symbol differential sphere decoding (MSDSD) 

In this section, we devise efficient sphere decoding algorithms for MSDD corresponding 

to [22], where we reproduce the results here to make the analysis in further sections 

clearer. For maximum likelihood MSDD (ML-MSDD), we obtain the estimate s}>d 

based on the observation of the A-dimensional received MSDD vector r. For the case 

of Rayleigh fading, the maximum likelihood decision rule is [13] 

(see [22]). 

se,d = argmin{r£ r f B r >^} (4.2) 

with the correlation matrix 

Rrr = £{re,dr?d\se4} (4.3) 

Applying the Cholesky factorization of the inverse matrix C 1 = LLH, and further 

defining U = (LHdiag{reid})*, where L, U are upper and lower triangular matrices 
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respectively, we obtain the ML decision metric 

setd = argmin{C7s£ id||2} (4.4) 

This is generally regarded as a shortest vector problem that can be solved using sphere 

decoding. The sphere decoder examines only those candidate vectors se,d that lie within 

a sphere of radius (distance) R 

\Use, < R (4.5) 

As has been discussed, due to the upper triangular form of U, the metric for ML 

detection (see 4.4) can be checked component-wise i.e. having found initial candidates 

Si for the N — i previous components Si, % +1 < / < N, where we eliminate the indices 

£, d for simplicity, we can obtain a condition for the zth component as follows. If the 

squared length, 
N 

d: +i = n 
l=i+l 

N 

3=1 

(4.6) 

where Uij is the U entry in row i and column j, 1 < i,j < N, then the candidates Sj 

have to satisfy the criteria 

d1 = 
N 

uu8i+ Yl + d2

i+l < R2 (4.7) 

Once a valid vector s is found (i = 1), then the radius is dynamically updated by 

R — \\Us\ \ and the sphere decoding is repeated with i — 2 and the updated radius. If 

no candidate vector s is found within the updated radius R, MSDSD stops. 

The stack algorithm used in this thesis basically eliminates one drawback of the sphere 

decoding algorithm, where searching needs to start from the beginning each time the 

decoded is called to provide the next best candidate. In the stack algorithm, we 

calculate an initial metric (or sphere decoding distance) from the upper triangular 

matrix U, and each time replace the path at the top of the stack with all its extensions. 

This process is repeated, and the first path of MSDD length N at the top of the stack 
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is the optimal path corresponding to the best transmitted vector Vc,d. We then store 

the stack and continue with this stack when the next best candidate is required (see 

section 4.4.1). 

4.2 Multiple Antenna Systems: Tree Search based 

Sphere Decoding Algorithms 

As mentioned previously, similar to the single antenna case, the complexity of MSDD 

for differential space time modulation too increases exponentially with the MSDD ob

servation interval N. A number of sub-optimum decoders have been proposed for 

DSTM specific to certain Space-Time constellations and/or MSDD observation in

tervals ([11],[38],[6]). Lattice reduction based techniques ([5]) and sphere decoding 

techniques ([7]) amongst others have been proposed in literature, and to this end we 

apply tree-search based sphere decoding algorithms for efficient decoding for our pur

pose. From [34]the maximum likelihood (ML) metric can be rewritten as a sum of N 

non-negative scalar terms 

62

n^\\Ve,dRn,n,(t,d) + Xe,d\\2 (4.8) 

where 
N 

Xt,d = Sn+ite,d sf,e,dRn,j,{e,d) (4-9) 
j=n+l 

/ - n 

and Rn,ue,d) = ^z^RjAdA < n < N - 1, n < j < N. pf] and (ain))2 denote the 

jth. coefficient of the nth order linear backward minimum mean squared error (MMSE) 

predictor for the discrete time random process Ht4 + N(.td and the corresponding 

variance respectively, and = — 1. Defining 
N-l 

d2

n±Yl + X<W2 = C i + %> 1 < n < TV - 1, (4.10) 
i=n 
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where d?N = 0 and d\ is the ML metric in 4.9, we simplify the notation by eliminating 

£, d. We begin the sphere decoding algorithm at n = N — 1, and select the candidate 

transmitted vector Vn based on tentative decisions Vj = Vj, n + 1 < j < N — 1 and 

we decrement n until the current metric dn does not exceed a certain maximum metric 

p i.e dn < p. Once we reach the top of the "stack" i.e. have traversed through until 

n = 1, we use the metric of the currently examined best candidate Vn to reduce the 

search space by updating p = d\. If, for any n, dn exceeds p, n is incremented and a 

new candidate transmitted vector is examined. Once the sphere decoder reaches 

n = N meaning that there are no candidate vectors inside the current search sphere, 

the algorithm stops. 

4.2.1 Algorithms for Orthogonal Space-Time Codes 

For orthogonal designs, given by 

it is relatively easy to show that 

51 = jn + Re{anan} + Re{bnpn}, 1 < n < N - 1 (4.12) 

with an,pn being functions of the elements in i t„ ) n , X n ) T l respectively. It turns out 

that the parameters an,bn minimizing the distance 6n are independent of each other, 

hence the sphere decoding algorithm can be regarded as an extension of single antenna 

MSDSD as in section 4.1 to differential space-time modulation. 

a -b* 

b a* 
a, be VMPSK (4.11) 

4.2.2 Algorithms for Diagonal Constellations 

For diagonal constellations, given by the set 

VD 4 [diag{e^c\ ..., e^^}'|/ G {0,..., L - 1}} (4.13) 
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using the cosine approximation, the problem for minimizing S2 can be turned into a 

Ar-dimensional lattice decoding [5, 26] of the form 

x = argmin \ 
xezNr 

&2,1 &2,2 

0 

XNT 

h (4.14) 

ONt,1 0 bitTtNT 

To obtain x, we apply the sphere decoding algorithm and take advantage of the lower 

triangular structure of 4.14. We find possible candidates for Xi € Z and increase 

h 2 < i < NT, as long as 

2 A 

Mi = | & i , i z i - * i | 2 + E \bJ>lXl + b™£j ~ * J I 2 < r 2 

J=2 

(4.15) 

with Xj = [(tj — bj^x^/bjj]. If fJ,NT < r, X\ is considered to be the temporary decoder 

result, and the search continues with the updated radius r — /J,NT- The sphere decoder 

terminates when {bi^xi — t\\ > r. Hence the overall search is limited to a single 

dimension rather than the NT dimensional search space of ML-MSDD. 

4.3 Bounds Using Tree-Search Algorithms 

In this section, we aim to present accurate bounds to the random coding exponent us

ing the results from section 3.3.2 and the above mentioned tree-search or Stack based 

decoding algorithms. Here, we reintroduce the notations for the modified channel of 

coherence interval DN, and differentiate between the corresponding metrics for the 

block fading channel where the fading coherence interval is equal to the MSDD obser

vation window N. We begin by revisiting the ML noncoherent metric PN{Re,d\Ve,d) 

given by 
, 0 i v x exp {-tv{Rld*R

lRl4}) 
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where 

* R = £RtAR*<dRe,d\vt,d} = N*(°lSt,dS?>d + O2JNNT) (4.17) 

with some arbitrarily chosen Se,d,i- We note that det{*H} is independent of V t4. 

Inserting (4.17) into (4.16) the decoding metric follows as 

\N(Re>d\Ve,d) = \og{p{RejVe,d)) 

l l ^ . d l l 2 i O f t l l - R i , d g 5 i , r f | l 2 (A-\a\ 
- + A r _ 9 ^ _ o , A T _ 2 \ I 4 - 1 8 ) NRal NRal{ol + Nal) 

-NR\og(*NNTtet{VR}) . 

Since we would like to provide accurate bounds on the random coding exponent 

E(p,N,D), we begin with the already derived expression for Gallager's function for 

differential space-time modulation for the modified channel, with channel coherence 

interval DN given by 

Eo{p,N,D) = - — l o g 2 f (^llPr{Vd}XN(Ri,d\Ve4)^ •pDN(Rt\Vi) J • 
Uv i W ( d=i ^ J 

E L I ? r ^ a } A N ( % | T a ) ^ dRe 
\ Ve k=l J 

(4.19) 

Different from the case of coherent detection with CSI, the MSDD metric \N{Re,d\Ve,d) 

cannot be split into individual terms depending only on Vi4tn, 1 < n < N — 1. Thus, 

averaging over the set V ^ - 1 instead of V is necessary in (4.19), which becomes com

putationally expensive for large values of N. We therefore consider an approximation 

of E0(p, N, D) using only a subset Vs C V ^ - 1 of differential symbols to reduce compu

tational complexity when numerically evaluating E0(p, N, D). We begin our analysis 

with the special case of D — 1 and spatially uncorrelated fading, and based on the 

results obtained we look at the block fading channel under consideration, where the 

fading coherence interval is not fixed. 
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4.3.1 D — 1 and Spatially Uncorrelated Fading 

For the interesting special case of D = 1 and spatially uncorrelated channels, i.e., each 

block of N transmitted space-time symbols experiences independent fading and 4.16 is 

the correct ML decoding metric, the Gallager function can be simplified to 

1 
E0(p,N,D = l) = -

log2 

(N-1) 

£VlA {piReAVe^} 

(fv l l l{p(fle,i|V4i)})^ 

(4.20) 

Considering (4.20) it is reasonable to choose the subset Vs of the ML search space such 

that the ratio 

r(Cs) 4 aja < 1 (4.21) 

with 

a 4 £V(1{p(Re>1\Vt^} (4.22) 

a ' ~ E l ^ r M R ^ \ V ^ ) ) ^ (4-23) 

is maximized for a given cardinality 

CS±\VS\<M N-1 (4.24) 

This means we only consider the dominating terms when averaging over V^i and to do 

so, we need to sort matrices V^,i 6 V ^ - 1 according to decreasing values of p{Re,i\V^i). 

A) Sorting: 

An efficient way to accomplish sorting without actually calculating p(Re,i\Ve,i) for 

all Vf,i G V ^ - 1 is to run a detection algorithm which returns the best (ML) and 

successively the next best estimates for Ve,i according to p(R^\Vt,i) a n d given Rtii. 
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As this detection requires a tree search and the search metric is additive, we use a 

modified version of the stack algorithm as described in section 4.2, which continuously 

finds the next best signal point. We calculate the maximum likelihood metric using 

the tree-search based stack algorithm as described in the previous section, each time 

saving the stack and corresponding the path through the tree as we proceed. We then 

rerun the algorithm starting from the previously saved locations, thereby giving us the 

next best metric to the ML metric. We continue this process until sufficient accuracy 

and/or complexity has been reached according to 4.21. 

B) Choice of C s : 

For a given Cs the ratio r{Cs) in (4.21) significantly varies depending on the realization 

Ri,\. It is therefore advisable not to fix Cs but to choose it adaptively when Monte-

Carlo integrating (4.20). To this end, let V ^ s ' be the C sth best term found by the 

stack algorithm. The upper bound 

au 4 as + (1- CS/MN-1) (piRvlV^j) ^ > a (4.25) 

for a allows to lower bound r(Cs) by 

r(Cs) > ^ . (4.26) 

We then can choose Cs such that the lower bound exceeds a certain threshold value of, 

e.g., 0.9 for 90% accuracy of the Stack Algorithm. We can then control the accuracy of 

our approximation, by modifying the parameter r(Cs). A higher value of r(Cs) closer 

to 1 indicates a higher accuracy, however it would also involve a higher complexity. 

In this case, rather than computing the additions or complex multiplications to gauge 

complexity, we define complexity as the number of candidate vectors in the signal space 

of dimension MDN that the stack algorithm tests in order to achieve a certain accuracy 

for the random coding exponent (RCE) bound. 
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C) Bounds for E0(p,N,D): 

Let us define 

)})** (4.27) 

•p{Re,i\Ve,i)+ 

•p(Re,i\Vttl) (4.28) 

{l-Cs/MN^)p{R^\Vf{]) (4.29) 

We note that {<j/ri)1+p is used in (4.20). Since the function f(x) = xl^l+p"> is concave 

for 0 < p < 1, the inequalities 

hold. Hence, E0(p,N,D = 1) in (4.20) is, respectively, upper and lower bounded 

when using the subset Vs and replacing the exact ratio a/r] with as/ns and au/r]u, 

respectively. 

4.3.2 D > 1 and Spatially Uncorrelated Fading 

In the previous section, we dealt with the special case of D = 1, where we reverted 

to the traditional block fading channel with the fading coherence interval equal to the 

MSDD observation interval. We outline a procedure to obtain lower bounds on the 

random coding exponent and Gallager's function E0(p, N, D) for any general block 

fading channel, i.e. D > 1 as well as spatially correlated fading. Although in this case 

the pdf p(Ri4\Vetd, He) is used for Monte-Carlo integrating (3.36), and thus r(Cs) 

does not appear in the expression for Gallager's function, we extend the application of 

the bound (4.26) to determine the set V s to these cases.. The reasons for this are that 

(4.30) 
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(a) r(Cs) (or its bound (4.26)) is still a good indicator whether the terms dominating 

the argument in (3.36) for given Rz and Hi are taken into account and (b) sorting 

V^d according to a mixed criterion of exp(\(Rzid\Ve,d))~p^1+p^ and p(Ri4\V t4) or 

p(Rt,d\Vt,d, He) would depend on p. 

We note that in this case, using only the set V s does not result in bounds for the 

Gallager function, but rather approximates Eo{p, N, D). 

4.3.3 Upper Bound to the Random Coding Exponent 

We further explore the possibility of upper bounding the random coding exponent, 

thereby lower bounding the word error rate, by modifying the metric in 4.30. In 

order to achieve this, we assume that the tree-search based sphere decoder iterates 

through the ML probabilities in order, and assuming the C sth iteration is in progress, 

we approximate all the remaining MNrRm — Cs probabilities with the most recent 

output of the sphere decoder, i.e. PN(Re,d\V^d)^CsK We therefore approximate the 

contributions of the remaining candidate vectors to the most pessimistic value, since 

our sphere decoder outputs the channel probabilities in ML order. We see that this 

approximation is actually a very accurate upper bound to the random coding exponent, 

and using the lower and upper bounds previously derived, the word error rate for any 

particular block fading channel can be accurately bounded through our analysis and 

with a computational efficiency many orders of magnitude better than the ML solution. 

4.4 Performance Analysis and Results 

We illustrate the various sphere decoding decoding algorithms explained in this chapter 

through various illustrative examples. We use these decoding algorithms to upper 

and lower bound the random coding exponent and correspondingly the probability of 
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error, and show how our approach results in a significant reduction in computational 

complexity for the random coding exponent. 

4.4.1 Single Antenna Systems 

We illustrate the tree search algorithms for single antenna systems namely the stack 

algorithm, and show how we can obtain accurate bounds for the random coding expo

nent using a combination of the tree-search algorithms and a stopping criteria ratio. 

We illustrate how modifying the ratio r(Cs), which acts as an accuracy parameter for 

our approximation, affects the lower bound to the random coding exponent, and we 

also show the complexity advantage that we gain from using the modified tree-search 

decoding algorithm to obtain recursively the best noncoherent metrics. In fig. 4.1(a), 

we show the Gallager random coding exponent as a function of the decoding delay t^, 

and plot it against the SNR (101og10(/^s/A0)) required to achieve a WER < 10e-3. 

We show the results for CDD (N = 2) as well as MSDD (N = 3,4, 5,6) for single 

antenna D4PSK as before. In order to provide a good approximation for the exponent 

we bound it using the stack algorithm (see section 4.1), and fix the accuracy parameter 

to 90%. 

We can then fix the accuracy for the stack approximations by controlling the parameter 

Cs- In fig. 4.1 we fix this parameter so that the ratio in 4.26 does not exceed 0.9, thus 

giving us an accuracy of 90%. We can see that using this criteria to approximate the 

random coding exponent does not involve a great deal of loss in the approximation, 

the maximum loss never exceeds 0.1 dB. However, the complexity advantage gained by 

using efficient stack algorithms is significant, and justifies the negligible loss in accuracy. 

For example, in fig. 4.1(b) we compute the complexity for the random coding exponent 

bound in fig. 4.1(a). We can clearly see that for the scenario in fig. 4.1(a), the ML 

solution would involve MD^N~1^ — 45 = 1024 test vectors and their corresponding 
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(a) Random Coding Exponent for DJPSK: Lower bound using Stack 

Algorithm. Overall accuracy 99%, according to 4-26 

(b) Complexity analysis for Stack algorithm: D4PSK with N = 

2,3,4,5,6, 90%,99% accuracy of Stack algorithm 

Figure 4.1: Stack algorithm bounds for D4PSK: MSDD with 99% accuracy 
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Figure 4.2: Random Coding Exponent for DJ^PSK: Lower bounds using Stack Algorithm 

with different accuracies. CDD (N = 2) and MSDD (N = 6) with 90% and 99% 

accuracy 

metrics to be calculated. However, for SNR's of interest to us such as an overall 

ES/NQ of 10 dB, the number of test vector needed to provide a 99% approximation 

to the true random coding exponent is almost 10 orders of magnitude less (approx. 

102). Similar results are obtained for smaller values of N, however the cases of interest 

where the overall signal space would be too large begin from about N > 4. As a 

comparison, we also show the reduction in complexity that could be achieved if the 

accuracy constraint was further reduced to 90%, however the savings in complexity do 

not justify the negligible improvement to the random coding approximation. This can 
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(a) Random Coding Exponent for D8PSK: Lower bound using Stack 

Algorithm. Overall accuracy 99%, according to 4-26 

(b) Complexity analysis: D4PSK and D8PSK with N = 5,7, different 

accuracies of Stack algorithm with same ML search space 

Figure 4.3: Complexity and random coding analysis of Stack Algorithm, D4PSK and 

D8PSK with 99,90 and 85% accuracy 
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be seen if fig. 4.2, where we compare the lower bound achieved with different accuracies 

of the stack algorithm. We see that reducing the complexity from 99% to 90% shows 

a marked difference in accuracy to the true RCE, however the reduction in complexity 

is not significant, as we see from fig. 4.1(b). In fig. 4.3, we show the effectiveness of 

the stack algorithm for D8PSK, and compare the complexity advantage gained with 

the corresponding D4PSK signal space. In each case, the ML estimate would have to 

take into account the same number of signal points, however the stack algorithm for 

each accuracy performs significantly better for D4PSK than D8PSK. The advantage 

gained is again in orders of magnitude, and is thus an invaluable tool too accurately 

approximate the random coding exponent for higher dimensions where a ML decoder 

would be prohibitive. In fig.4.3(a), we demonstrate the accuracy for smaller values of 

N i.e CDD with N — 2 and MSDD with N — 3 and can see that even with extremely 

limited vector search spaces, the Stack algorithm does an excellent job of approximating 

the exponent, as the accuracy of the decoder increases with the size of the search space. 

4.4.2 Multiple Antenna Systems 

Bounds using Sphere Decoding for Spatially Correlated Antennas 

Similar to the case of D > 1 and spatially uncorrelated fading, we analyze the transmis

sion scheme where spatial correlation results in a loss of diversity. In previous sections, 

we look at the case of a general block fading channel considering spatially uncorrelated 

fading, i.e the channel between each transmitter and each receiver is modeled as an 

independent fading channel, with the fading coherence interval equal to DN. Here 

we also present and analyze some results for the case of spatially correlated channels, 

which also provides us with interesting insights into the behavior of such channels. We 

begin with the case of spatial correlation, where the channel between each transmitter 

and receiver does not experience independent fading, but is correlated with a param-
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(a) Orthogonal Codes: Coding diversity 10 i.e nc/L = 20 
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(b) Diagonal constellations: Coding diversity 5 i.e nc/L = 40 

Figure 4.4: E(R,N,D)vsR for DSTM, different ST codes with Rt = 1 (bit/ch. use), 

spatially correlated antennas. 
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Correlation 0 
(DSTM,C(od)16,N=2,D=1) :" 
Correlation Factor 0.5 
Correlation Factor 0.9 

10 - : • — Correlation Factor 0.8 

Decoding delay 

Figure 4.5: Required ES/N0 vs decoding delay td for DSTM with CDD, COD(16) with 

Rt = 1 (bit/ch. use), spatially correlated antennas 

eter we denote as p. We model this spatial correlation, for example with NT = 2 and 

NR = 1 by generating Gaussian random variables #1 ,52 such that 

g2 = p.gr + y/l - p 2

5 l (4.31) 

where the greater the value of p, greater is the correlation. For p = 0, we revert to 

the uncorrelated channel scenario. In fig. 4.4(a), we plot the random coding exponent 

E(R, N, D) against the rate R for orthogonal constellations, with a target rate Rt = I 

bit/(channel use). We plot this exponent for different values of the parameter p indi

cating different levels of correlation between antennas. We find that the performance of 

the system w.r.t the random coding exponent deteriorated significantly as p approaches 

the fully correlated case i.e p = 1, and at that Value of p = 1, the performance of the 

overall space-time model approaches that of an equivalent single antenna system. This 

is because as the antennas become more correlated, the channel between the NT — 2 

transmit antennas and the NR = 1 receive antennas becomes the same, and the overall 
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effect is the same as if there was a single channel between the transmitter and the re

ceiver, (p = 1 implies that the channels are the same). Fig. 4.4(b) illustrates the same 

effect for the case of diagonal constellations with the normalized coherence interval 

nc/L = 40 implying a coded diversity of 5. 

In order to clearly visualize the effect of spatial diversity on the random coding expo

nent, we plot the required Es/N0 vs the decoding delay td in PSK samples in fig. 4.5. 

We can see that corresponding to fig. 4.4, as the spatial correlation between antennas 

increases, a significant drop in the RCE performance results, and this bears out our 

E(R, N, D) analysis showing that the performance of DSTM with spatially correlated 

antennas approaches that of the single antenna transmission system as the correlation 

factor p increases towards 1. 

Diagonal vs Orthogonal Constellations 

We present some simulation results to justify our claims from the previous section, 

where we devised tree-search based sphere decoders for orthogonal and diagonal con

stellations, in order to accurately represent the random coding exponent for differential 

space time modulation with high dimensions and correspondingly large matrix search 

spaces. We also look into different space-time constellations as in the capacity analysis 

in chapter 3 from a random coding exponent point of view. We present simulation 

results related to the bounds for E0(p, N, D), and to this end, we analyze the sphere 

decoding algorithms for orthogonal and diagonal constellations first, and demonstrate 

the effectiveness of these algorithms be comparing the bounds obtained using such ef

ficient decoding algorithms with the true calculation of the random coding exponent. 

In fig. 4.6(a), we compare the random coding exponent E(R, N, D) for two commonly 

used space-time constellations namely orthogonal constellations and diagonal constel

lations. We see that for a modulation rate Rm = 2 bits/(channel use), the orthogonal 

constellations consistently outperforms the diagonal constellation. This is also demon-
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(a) E(R,N,D) for DSTM: Orthogonal Cou(16) and diagonal 

Cjr)/(16) codes, Rtarget — 1 bit/(channel use) 

(b) RCE for DSTM: (b) Stack algorithm for orthogonal and diagonal 

codes, Rtarget = 1 bit/(ch. use) 

Figure 4.6: Random coding exponent for DSTM:CQD{^) and Co/(16) codes 
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strated by the capacity results from chapter 3. Combining this with the modified block 

fading channel, we demonstrate also the effect of coding diversity on the random coding 

exponent, where the normalized channel coherence length nc/L is changed to reflect 

different coding diversities. We see that for both diagonal as well as orthogonal constel

lations, an increase in diversity results in an increase in the random coding exponent 

performance, reflecting the effect of seeing more independent fading realizations per 

codeword for the same delay. We also present in fig. 4.6(b) the lower bounds to the 

exponents in fig. 4.6(a) obtained using the sphere decoding algorithms from section 

4.3. We fix the accuracy of the sphere decoding algorithms to 90%, and observe that 

we can very closely approximate the random coding exponent to within ± 0.1 dB. 

Lower Bounds to the Random Coding Exponent using Sphere Decoding 

As mentioned, we have described the method to use efficient tree-search based algo

rithms to bound the random coding exponent for single as well as multiple transmit 

antenna transmission systems. We have shown illustrative examples in 4.4.2 to show 

the effect of the modified block fading channel on the random coding exponent with 

D > 1. Here we present some examples analyzing the Es/N0 performance of our ap

proximations and bounds to the random coding exponent, and observe the effectiveness 

of our proposed scheme to accurately lower bound the exponent for different cases of 

single antenna transmission and DSTM, with the fading coherence interval indepen

dent of N. In fig. 4.7(a), we plot the required Es/N0 in dB against the decoding delay 

td for single antenna D8PSK, where the MSDD observation interval N — 2, and D 

varies to reflect different fading coherence intervals. We also lower bound the random 

coding exponent using the stack algorithm with 99% accuracy. We observe that though 

the overall performance of the system deteriorates with increasing D, because of the 

reduced diversity observed due to fewer independent fading realizations seen by each 

codeword, the stack approximation nevertheless gives us an accurate bound to the ran-
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(a) SNR-delay analysis, D8PSK with CDD (N = 2) and varying D 

2,3,5,10 with lower bound using stack approximation: effect of D 
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(b) Random coding exponent for DSTM vs DPSK, Sphere decoder 

bounds. 

Figure 4.7: 
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dom coding exponent even for higher values of D » N. This proves our claim that 

by a novel combination of sphere decoding/stack algorithms and a performance metric 

designed to optimize the search space for the random coding exponent calculation, we 

obtain very accurate bounds to the exponent and at the same time increase the effi

ciency of the analysis by many orders of magnitude over current analysis techniques. 

Fig. 4.7(b) shows the application of the sphere decoding algorithm from section 4.2 to 

lower bound the random coding exponent for DSTM, where the constellation chosen is 

the orthogonal constellation COD(16), and we can compare the performance of single 

antenna DPSK with DSTM. We see that for the same transmitted vector length DN 

for both single and multiple antenna systems, the performance of MSDD consistently 

improves with N for both DPSK and DSTM. This is different from our earlier analysis 

when we kept the overall coding diversity constant, and hence as D increased, the 

performance degraded due to reduced independent fading intervals seen by the system. 

We also note that the stack algorithm for DPSK and the sphere decoding algorithms for 

DSTM provide an excellent bound to the random coding exponents. Our proposal has 

the added advantage of being computationally effective as compared to current tech

niques to analyze the random coding exponent. As an excellent example, we provide 

the approximation (bound) for the random coding exponent for N = 6 with DSTM in 

fig. 4.7(b), where the computation of the exponent would involve a best metric search 

through 1, 048, 576 or 1 million candidate vectors, and would limit the channels which 

could be analyzed purely due to computational complexity. 

Upper Bounds using Sphere Decoding 

In this section, we complete our analysis of the random coding exponent for single 

antenna and multiple antenna systems by attempting to upper bound the exponent 

with an innovative approximation to the metric in section 4.3. In this case, in fig. 4.8(a) 

we begin with the single antenna case for the Gallager exponent E(R, N, D) for D4PSK 
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Figure 4.8: E(R, N, D) vs. R: D4PSK and Wlog10(E,/N0) = 10 dB. (a): MSDD 

with different N. (b): N = 6. Exact expression and approximation for Er(R, N, D). 

njL = 40. 

and NT — 1. We plot the random coding exponent as a function of rate R in fig. 4.8(a) 

to serve as a reference, and can see that the exponent approaches the performance of 

coherent detection with CSI as the MSDD observation window Af increases. Since the 

complexity associated with A^ > 10 becomes prohibitive to simulate, we present the 

upper and lower bound approximations using 4.30 to bound the true random coding 

exponent, and hence the overall WER. Fig. 4.8(b) gives us a much clearer insight into 

this approximation where we plot the bounds on a logarithmic scale along with the true 

RCE for N = 6. Extending this approximation the the multiple antenna case, in fig. 4.9, 
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we refer back to fig. 4.7(b) to compare the performance of single antenna DPSK and 

DSTM, but we upper bound the random coding exponent along with the true RCE. We 

can see that our analysis does indeed give us an excellent upper bound to the random 

coding exponent To this end, we show the SNR 101og10(.E'&/iVo) required to achieve 

Pe < 10~3 according to (3.33) as function of code length nc for transmission with rate 

R = 1 bit per scalar channel use. The normalized coherence length is nc/L = 100, i.e., 

degrees of freedom L and thus coded diversity increase linearly with code length nc. 

Two things are interesting to note. First, increasing N consistently improves power 

efficiency regardless of n c . This is decidedly different from [24], where coded diversity 

was decreasing with N. Second, the gain due to transmit diversity increases with 

decreasing nc. This result reiterates the benefits of spatial transmit diversity if coded 

diversity is limited, e.g. due to delay constraints. 
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Figure 4.9: Required 10\ogw(Eb/N0) for Pe < 1(T3 vs. nc. 4DPSK (NT = 1) and 

160D (NT = 2). nc/L — 100, R — 1 bit/(scalar channel use): upper bound approxi

mation 



Chapter 5 

Conclusions and Future Work 

In this thesis, we consider coded space-time transmission with multiple antennas over 

a block fading channel with an arbitrary fading coherence interval and a finite code 

length, with differential encoding applied at the transmitter. We focus our attention on 

error exponent analysis of such channels, namely the calculation of the random coding 

exponent proposed by Gallager. Our work differed from previous work in this field, 

which limited error exponent analysis to block fading channels with the fading interval 

equal to the MSDD observation window N. 

• To this end, we derived an expression for the random coding exponent for differ

ential space-time modulation and MSDD over a block fading space-time channel 

where the fading coherence interval is arbitrary. This extension to previous work 

is particularly important as it allows for a fair comparison of MSDD with different 

window sizes but fixed coded diversity. 

• Furthermore, we devised upper and lower bounds and approximations for the 

random coding exponent using tree-search based sphere decoding algorithms for 

orthogonal and diagonal space-time codes. These sphere decoding algorithms en-

76 
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able efficient Monte-Carlo integration, and reduce the complexity cost by several 

orders of magnitude at SNR's of interest. 

• To achieve this, we proposed a novel performance metric to control the accuracy 

of the approximation, and correspondingly the computational complexity. We 

illustrated the potential advantage of our analysis with several numerical results 

to demonstrate the usefulness of our approximations, the improvements with 

increasing observation interval N and the benefits of spatial transmit diversity 

even in highly correlated channels for coded DSTM transmission with short or 

moderate code lengths. 

Through our investigations, we believe that we have formulated a novel and innovative 

approach to calculate the random coding exponent for a wide range of channels, and 

have provided researchers with an invaluable technique to calculate such exponents 

with a performance efficiency increase of several orders. Through our analysis and 

subsequent simulations, we can summarize our findings as follows: 

• The performance of the random coding exponent for DSTM with MSDD ap

proaches that of coherent detection with perfect channel state information. 

• The analysis allows for accurate comparisons of systems with fixed coded diversity 

but different MSDD observation windows. The random coding exponent perfor

mance degrades with an increase in the fading coherence interval for the same 

code length, effectively reducing the overall diversity due to a reduced number of 

independent fading realizations. 

• If the transmit diversity increases, the random coding exponent performance im

proves correspondingly, reiterating the benefit of our analysis where we enable 

accurate analysis of block fading channels with arbitrary fading intervals. Pre

vious work limited the analysis of the random coding exponent to block fading 
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channels without the advantage of analyzing the effect of coding diversity, as the 

channel coherence interval was equal to N. 

• We also devised bounds and approximations for the random coding exponent 

using efficient decoding techniques such as tree-search based sphere decoding 

algorithms. We found that the novel performance metric we devised to control the 

accuracy of the approximation enabled an excellent approximation to the random 

coding exponent, at the same time reducing the computational complexity of the 

analysis by several orders of magnitude. Another advantage to our approach 

was the flexibility to balance the degree of accuracy of the approximation with 

the complexity cost. We concluded that reducing the accuracy from 99% of the 

full-search approach (taking all possible candidate vectors into account) to 90% 

gave us only a marginal improvement in computational complexity, as opposed 

to the improvement of several orders of magnitude in computational complexity 

when reducing the accuracy from the full-search to 99%. 

• Different from previous work, we also took into consideration the effect of spatial 

correlation between antennas, and through suitable examples demonstrated the 

random coding exponent for such systems with varying degrees of correlation. 

We concluded that as the spatial correlation approached full correlation (the 

parameter p in our analysis approached 1), the performance of DSTM degraded 

and became equivalent to a single antenna link between the transmitter and the 

receiver. 

• We also successfully outlined a procedure to provide an accurate upper bound 

to the random coding exponent, and along with the lower bound obtained from 

the sphere decoding algorithms coupled with a suitable performance metric, we 

demonstrated a technique to bound the error exponent performance of coded 

transmission over a multiple antenna link with MSDD. 
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In our opinion, there are a number of interesting and advantageous research topics for 

future work in this field. The work done in this thesis can further be used to analyze 

channels with frequency selective fading or time-varying channels. We can also combine 

the analysis from this thesis with different coding strategies such as bit-interleaved 

coded modulation (BICM) or hybrid coded modulation (HCM). We could also consider 

the application of the analysis from this thesis to the design of noncoherent coded 

modulation schemes for multiuser communications and for extremely high bandwidth-

efficient MIMO systems. 



Appendix A 

Derivation of Gallager's Function 

with Coherent metric 

In this appendix, we present the derivation of Gallager's function with reduced com

plexity metric given by 3.36 in detail. The channel is the block fading channel consid

ered throughout this thesis channel, seeing L independent fading realizations, where 

the channel remains constant for DN symbols (PSK symbols or matrix symbols cor

responding to single antenna or DSTM respectively). For simplicity, we denote the N 

dimensional vectors Re4[k], Vi^k] as R, Vi respectively, we begin with the expression 

for Gallager's function E0(p, N, D) 

where R is the vector of overlapping symbols of length L.D.N = riw, nw = LDN, ny = 

L.D. In our analysis, without any loss of generality we can consider non-overlapping 

(A.l) 
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blocks, as such a system would have the same performance as a system with overlapping 

when M S D D is applied and noncoherent transmission is considered. Thus 

E0{p,N,D) = j±log2 [ I E niMV 4}A(J*|V«) -/»/(i+p) P(«|V) 
R 6 C 

Since 

and 

t=l V i S V ^ - 1 

p(Hiv)=nP(j^iv/) 

p(Jfc|V*) = Jp(He)p(Re\Ve,He)dHt 

Hi 

= E ^ Jp(Hi)p(Re\Si,He)dHt 

(A.2) 

(A.S) 

(A.4) 

s o 

where So is the reference symbol, we get 

E0(p,N,D) = —log2 [ ( E n ^ v j A ^ i y . ) -p/( l+p) 

£=1 s o 

^ Pr{Vi}A^(iJi|V01/(1+'') ] dRt 

(A.5) 

Since each block of L samples experiences independent fading, we separate the product 
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over L.D and obtain 

EQ(p,N,D) = — l o g . n / f E fiPrwmivr^ 
e=1RteCDN

 V y / 6 V D < " - i > t = l 

^ E / P(HMRe\Se,Ht)dHe 

5 0 ff. 

i=i Vjev*-1 

(A.6) 

-1 
L D 

1 °g 2 ^ E / E n p r{^}A(^i^) _ p / ( i + p )^i^^) 

n ^ Pr{V i }A(i i i |V,) 1 / ( 1 + p ) ) 
t=l V j G V ^ - 1 

Since p (^ |5 / , = \\p{Ri\Sh Hi), 
i=l 

E0(p,N,D) = - ^ l o g 2 

P r { V j A ( R i | V i ) 1 / ( 1 + ' , ) J \dHidRe 

(A.7) 

^ E / y W n 
| ( 53 Pr{^}A(H i |V i )-"/( 1 + ").p(H i |^,^)] (A.8) 

Rewriting the above equation using the relation 

p(Re, He, s0) - p(Rt, Ht\s0) • p(s0) = J^P(r^ He\s0) (A.9) 

file:///dHidRe
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we get 

EQ(p,N,D) 
-1 D 

(A.10) 

E / / Pi***, He, s0) • f[ 

PriViMRilVi)1'^ ) \dHedRe 

Finally, in order to efficiently use Monte Carlo techniques we write Gallager's function 

in terms of expected values as 

( D 

E0(p,N, D) = --\og2 £RI,HA II 

SVi {exp(\(Ri\Vi))-T^p(Ri\Vi,He)} 

(5v i{exp(A(H i|V i)) 1^})' 

(£Vi {piRilV^He)})-1 

(A.11) 

file:///dHedRe


Appendix B 

List of Symbols and Acronyms 

In this appendix, we summarize the important symbols and list the acronyms used 

throughout this thesis. 

Operators 

argmax{.} argument maximizing the expression in brackets 

diag{.} diagonal matrix with diagonal entries of vector argument 

Sx{.) expectation with respect to X 

Pr{.} probability 

Re{.},Im{.} real and imaginary parts of a complex number 

(•)* Hermitian transposition 

(•)T transposition 

(•)* complex conjugation 

|.| magnitude of a complex number 
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Constants 

j 

TT 

e 

Ox 

Ix 

Sets 

c 

c 

N 

R 

S 

s 

V 

V 

z 

imaginary unit: j2 = — 1 

the number pi: TT = 3.14159265358979... 

Euler number: e = 2.718281828... 

X x X all-zero matrix 

X x X identity matrix 

signal constellation 

matrix (space-time) signal constellation 

natural numbers 

real numbers 

alphabet of scalar transmit symbols 

alphabet of matrix (space-time) transmit symbols 

alphabet of scalar data symbols 

alphabet of matrix (space-time) data symbols 

integer numbers 

C[i\,C[n] 

H[k] 

N[k] 

binary code symbol 

Ricean fading process 

discrete time zero-mean white Gaussian noise 



R[k] 

S[k] 

V[k] 

received (matrix) signal sample 

transmit (matrix) symbol 

data (matrix) symbol 

Miscellaneous Functions 

cos(.) cosine function 

det{.} determinant of matrix argument 

Kronecker delta function 

exp(.) exponential function 

log(-) logarithm to base e 

log2(.) logarithm to base 2 

logio(-) logarithm to base 10 

p(-) probability density function 

p(-l-) conditional probability density function 

sin(.) sine function 

tr{.} trace of a matrix 

Variables 

Scalars 

C(.) constellation constrained channel capacity 

Ccsi capacity of coherent transmission with perfect CSI 
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D number of blocks of length N transmitted over one fading interval 

random coding exponent 

3>(v) Gallager's function 

Eb average received energy per information bit 

Es average received energy per symbol 

/(•;•) average mutual information 

k scalar and matrix (space-time) symbol discrete-time, index, respectively 

AO log-likelihood metrics based on conditional PDFs 

L number of independent fading realizations per codeword 

I index of block within one fading realization 

M size of PSK symbol alphabet 

riy number of vector symbols per code word 

nD number of vector symbols per code word for arbitrary block fading channel 

N observation window size for noncoherent detection 

N0 single sided power spectral density of passband noise process 

NT number of transmit antennas 

NR number of receive antennas 

Pw word error rate 

p parameter of random coding exponent 

R data rate in bits per channel use 

modulation rate in bits per channel use 

Ry data rate in bits per vector symbol 

a2 variance 

noise variance 

u decoding delay 

T modulation interval 
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Matrices 

H[k] matrix of fading samples 

N[k) matrix of noise samples 

R[k] matrix of received signal samples 

S[k] matrix of space-time transmitted signal samples 

SD[k] diagonal matrix of transmit symbols 

V[k] matrix of space-time data symbols 

VD[k] diagonal matrix of space-time data symbols 

autocorrelation matrix 

Acronyms 

AWGN additive white Gaussian noise 

BER bit error rate 

CDD conventional differential detection 

CSI channel state information 

DPSK differential phase shift keying 

dB decibel 

DSTM differential space-time modulation 

MIMO multiple input multiple output 

ML maximum likelihood 

MLD maximum likelihood decoding 

MMSE minimum mean squared error 

MSDD multiple symbol differential decoding 

MSD-SD multiple symbol differential sphere decoding 

pdf probability density function 



PEP pairwise error probability 

PSK phase shift keying 

RCE random coding exponent 

SA stack algorithm 

SD sphere decoding 

SISO single input single output 

SNR signal-to-noise ratio 

ST space-time 

u.i.i.d. uniformly, independently and identically distributed 

WER word error rate 
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