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ABSTRACT 
The emergence of the Semantic Web as a future of the World Wide Web has created 

a strong interest in information system (IS) ontologies as a means of representing - in a 

formal and machine readable form - the knowledge about various domains, and the 

semantics of heterogeneous web sources in particular. For effective representation, sharing 

and reuse of real world domain knowledge, an IS ontology needs to properly convey beliefs 

about the real world. However, as the focus of IS ontologies is often on formalization and 

machine-readability, the question arises as to how well IS ontologies or ontology 

development languages allow the representation of a real world domain. 

The OWL Web Ontology Language is an ontology development language recently 

proposed by the World Wide Web Consortium as one of the key components of the 

Semantic Web. Prior research identified several potential weaknesses of OWL in its ability 

to represent knowledge about real world domains, which may lead to limited expressiveness, 

ambiguity, inconsistency and lack of stability of representations. It suggested ways to 

improve the expressiveness of OWL by associating it with a philosophical ontology that 

deals with what exists in the real world. 

This thesis continues research in that direction. It uses an established philosophical 

ontology - Bunge's ontology - for developing modeling rules and guidelines on how to 

better represent real world domains in OWL. The study conducts a comparative analysis of 

the key constructs of Bunge's ontology (things, properties, interactions, classes and 

composition) and the related OWL constructs, so as to propose a representation mapping 

between these constructs. Through the transfer of ontological assumptions of Bunge's 

ontology, this thesis develops general modeling guidelines and specific rules on how to 

model real world domain elements in OWL ontologies. In addition, this thesis proposes a 

meta-model - a set of high-level domain independent OWL classes and properties for OWL 

ontologies of real world domains - to facilitate the application of the proposed guidelines 

and to clarify the semantics of domain specific elements of ontologies. The applicability and 

the process of applying the proposed modeling approach are illustrated by specific examples. 
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1 INTRODUCTION 

1.1 IS ONTOLOGIES AND OWL WEB ONTOLOGY LANGUAGE 

During the last decade ontologies and ontological engineering have gained 

considerable popularity in a variety of research disciplines including artificial intelligence, 

knowledge engineering and representation, and computer science. Ontologies are now 

widely used in research and applications related to knowledge management, natural 

language processing, e-commerce, intelligent information integration, information retrieval, 

integration of heterogenous databases, bioinformatics, and, most recently, in newly emerging 

fields like the Semantic Web (Gomez-Perez et al., 2004). A popular definition of an 

ontology was proposed by Gruber (1993): "An ontology is a formal explicit specification of 

a shared conceptualization which is a simplified view of the world". In simpler terms, a 

formalized ontology can be understood as set of (usually computer usable) definitions of 

concepts and relationships among concepts describing a particular domain. Ontologies 

provide a common vocabulary of an area and define, with different levels of formality, the 

meaning of the terms and relationships between them (Gomez-Perez et al, 2004). They are 

used by people, databases, and applications that need to share subject-specific (domain) 

information - domain examples include medicine, tool manufacturing, real estate, 

automobile repair, financial management, and others. 

A number of markup languages and ontology development languages have been 

developed, such as XML, RDF(S), OIL, DAML + OIL, and, more recently, OWL. Some 

languages have been developed for use in specific projects and applications, while others 

have gained wider acceptance and popularity in support of the goal of making the Web more 

accessible by computers. One such language - the OWL Web Ontology Language - is the 

focus of this thesis. OWL is a language for describing, publishing and sharing ontologies on 

the World Wide Web. It has been developed by the World Wide Web Consortium (W3C)1 

Web Ontology working group and has been approved (as of February 10, 2004) as a W3C 

recommendation, which is understood by industry and the Web community at large as an 

accepted Web standard (W3C press release, 2004). OWL is currently considered one of the 

key accepted Semantic Web technologies that together provide a framework for asset 

management, enterprise integration, and data sharing and reuse on the Web. 

1 World Wide Web Consortium (W3C) website: http://www.w3c.org 
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1.2 IS ONTOLOGIES AND REPRESENTATION OF REAL WORLD 

DOMAINS 

One of the key purposes of developing ontologies is to model relevant aspects of 

some real world domain (so that representations can be agreed upon, shared and reused by 

applications and people). Often, the main focus of IS ontologies and Web-based ontology 

development languages is on formalization and machine-readability; that is, on expressing 

domain conceptualization (shared by a community) explicitly in a form that can be 

understood and processed by computers. However, for effective representation, sharing and 

reuse of domain knowledge, it is equally important that an IS ontology properly conveys 

beliefs about the real world - i.e. beliefs on what exists, might exist or happen, as perceived 

by a community of domain knowledge users (Bera & Wand, 2004). Clear, consistent and 

stable representation of real world domain elements and relationships in IS ontologies is 

essential for effective and efficient development, maintenance, alignment, sharing and reuse 

of ontologies by people and applications. Thus, important research questions arise as to what 

should be considered a clear and consistent representation of a real-world domain, how well 

a particular IS ontology or an ontology development language are suited for proper 

representation of a real world domain of interest, and how language constructs and 

functionality should be used to achieve a stable and consistent representation. 

OWL language provides a number of fundamental constructs for defining classes, 

individuals, and properties, and for asserting properties of classes and individuals. OWL 

syntax allows the creation of ontologies that can be used in reasoning about classes, 

properties and individuals, to the degree permitted by the formal (logical) semantics of 

OWL. However, OWL is not specifically tailored to real world domain representation, but 

rather is intended as a general language providing generic constructs which allow 

representation of any concepts (whether "real world" or abstract) and the relationships 

between them in an ontology. No clear real world domain semantics or guidelines on how to 

use these constructs to properly represent real world domain knowledge are available for 

OWL. Modelers using OWL are allowed substantial freedom and flexibility (within OWL 

syntax rules) in how they can apply these basic constructs to represent domains of interest. 

On one hand this is an advantage of OWL, providing language flexibility, universality and 

applicability to multiple domains. On the other hand, such freedom, together with the lack of 

modeling guidelines and constraints, may become a drawback and can lead to a number of 

problems including limited expressiveness of an implemented ontology, inconsistent domain 
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representation by different ontologies, potential for ambiguous interpretation, and a lack of 

stability of ontologies (as significant changes may be required for an existing ontology when 

more domain knowledge is acquired, affecting applications using information described by 

this ontology). Bera and Wand (2004) discuss some specific examples of the above issues in 

the case of OWL ontologies modeling real world domains. 

1.3 ONTOLOGICAL EXPRESSIVENESS OF THE OWL LANGUAGE 

To identify possible causes of such problems and potential ways of alleviating them, 

Bera and Wand (2004) proposed using an established philosophical ontology - Bunge's 

ontology (Bunge, 1977, 1979) - as a benchmark for evaluating OWL expressiveness (i.e. how 

well OWL allows the representation of a real world domain of discourse). A philosophical 

ontology (such as Bunge's ontology) makes explicit commitments about what might exist 

and happen in a domain. It provides a number of high-level constructs (such as things, 

properties, classes, states, events, etc.) for describing real world phenomena. To evaluate 

OWL expressiveness, Bera and Wand (2004) apply the notion of ontological expressiveness, 

which had been introduced by Wand & Weber (1993) as a way to analyze and evaluate 

conceptual modeling grammars and languages. The ontological expressiveness approach has 

been used to evaluate a number of systems analysis and design methods, such as ERM, 

ARIS, UML etc. (e.g. Evermann & Wand, 2001a,b; Green & Rosemann, 2000; Wand et al, 

1999). The evaluation is done by exploring the mappings between a set of ontological 

concepts and the grammar's constructs. A grammar is ontologically complete if and only if 

every ontological construct can be mapped to a grammar construct (i.e. the mapping is total). 

A grammar is ontologically clear if and only if no two ontological concepts are mapped onto 

the same grammar construct, and all grammar constructs can be mapped to ontological 

concepts (Wand & Weber, 1993). 

In the analysis of the ontological expressiveness of OWL, Bera and Wand (2004) 

identified a number of deficiencies in the mapping between OWL and Bunge's ontological 

constructs. In particular, they argue that 1) mapping between OWL and Bunge ontology is 

not total (ontological incompleteness) as some ontological constructs do not have an 

equivalent in OWL (construct deficit), and that 2) there are several situations when 

ontological incompleteness arises due to construct overload, construct redundancy or 

construct excess. These deficiencies are likely to lead to the problems discussed above, 

namely limited expressiveness, ambiguity, inconsistency and lack of stability of real world 

domain representations using OWL ontologies. 
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1.4 THESIS SCOPE AND OBJECTIVES 

Bera and Wand (2004) proposed that evaluating IS ontologies (and OWL in 

particular) against a philosophical ontology can provide modeling guidance to support the 

creation of consistent and stable ways of describing domain knowledge. Such guidance can 

be provided by introducing ontologically grounded general representation guidelines, as well 

as specific guidelines on modeling certain ontological constructs in OWL. Also, the 

philosophical ontology can suggest the addition of new constructs to overcome the lack of 

expressiveness of the language. 

This thesis continues the work cited above on the ontological analysis and 

improvement of the expressiveness of OWL. Specifically, the key objectives of this thesis 

are as follows: 

• To conduct, based on ontological foundations, a comparative analysis of certain OWL 

and Bunge constructs so as to propose clear and consistent mapping between those 

constructs or their combinations (with respect to real world domains) 

• To develop, based on the comparative analysis and proposed mapping, a high-level class 

structure (meta-model) and representational rules and guidelines for modeling real world 

domains in OWL ontologies 

The proposed ontologically grounded guidelines and a high-level class structure 

(which will also be termed 'meta-model' in this thesis) are intended to help OWL modelers 

avoid, or at least alleviate, the earlier mentioned problems with ontologies and to facilitate 

the development of more clear, consistent, unambiguous, and stable OWL ontologies for real 

world domains. 

The scope of this thesis is limited mainly to the representation issues related to static 

aspects of the world (which are described by such concepts of Bunge ontology as things, 

properties, and classes). Some dynamics-related concepts (such as interactions) are discussed 

when relevant to the analysis, but other dynamic concepts (states, events, etc) are outside of 

the scope of this work and are not discussed in detail. 

Also, the scope of this work does not include detailed discussion of another OWL 

improvement method proposed by Bera & Wand (2004) - the addition of new constructs to 

OWL. Developing, implementing, and approving significant changes to the OWL language 

would require considerable time and effort from the many researchers and practitioners 

involved in the development and use of OWL and OWL ontologies, because OWL has been 

approved as a current Web standard recommended by the W3C and has already been widely 

used for developing ontologies in research and applications. Thus it is appropriate to limit 

4 



the scope of this research and not attempt to change the current OWL functionality2, but 

rather suggest how the available constructs and functionality can be used in ways consistent 

with ontological foundations. Nevertheless, we believe that our recommendations can also 

provide some ideas as to what constructs can be added to OWL in the future versions of the 

OWL language in order to improve OWL expressiveness, and how such new constructs can 

be best implemented in OWL. 

1.5 GENERAL APPROACH 

To achieve the objectives of the thesis, we use a general approach that has been 

developed based on the ontological analysis method initially proposed by Wand and Weber 

(Wand & Weber 1993; see also Wand et al. 1995). This approach has been successfully 

employed in several prior contributions to the literature on the ontological analysis of 

various modeling languages (e.g. Evermann & Wand, 2001a,b; Green & Rosemann, 2000; 

Wand et al., 1999). It has recently been formalized by Evermann and Wand (2005) in a 

general form in the case of conceptual modeling languages. As stated in Evermann & Wand 

(2005), the general idea of the approach is that the likelihood of creating correct domain 

models can be increased if the syntax of a modeling language is restricted to ensure that only 

possible configurations of a domain can be modeled. This can be achieved through first 

assigning domain (ontological) semantics to the modeling language constructs, and then 

subsequently restricting the syntax of the modeling language to respect assumptions and 

constraints in the domain (ontological assumptions). 

Specifically, our analysis includes the following key steps: 

1) Adopting a specific high-level ontology - Bunge's ontology, or more specifically, 

Bunge-Wand-Weber ontology (BWW),3 - as a view of the real world (as perceived by 

someone). Thus, we assume that any real-world domain can be represented in terms of 

the general abstract constructs from Bunge ontology, and that the ontological 

assumptions and postulates made in Bunge's ontology are applicable to any real world 

domain 

2) Comparing selected constructs of Bunge's ontology to OWL constructs so as to propose 

a mapping between these Bunge constructs and the OWL constructs or their certain 

combinations. This would allow the assignment of ontological semantics to the OWL 

2 This thesis is based on the OWL functionality as described in the OWL Language Guide (McGuinness et 
al.,2004) 
3 We are going to use Bunge's ontology, as adapted and extended by Wand & Weber (1989) for use in 
information systems research. This ontological model of information systems has been termed Bunge-Wand-
Weber ontology in subsequent research literature. 
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constructs (or their combinations) when they are used for representing real world 

domains. 

3) Identifying key ontological assumptions and rules that govern the elements of the 

domain and their relationships according to Bunge's ontology 

4) Transferring the relevant assumptions identified in step 3 by means of the mapping 

proposed in step 2, and proposing general and specific modeling guidelines, as well as 

the set of high-level domain-independent classes and properties (a meta-model) for 

modeling real world domains in OWL. The ontological assumptions become rules which 

restrict the use of the language constructs and limit the kind of statements that can be 

made about a real-world domain in OWL. 

The applicability and the process of using the proposed guidelines will be illustrated 

by an example. In addition, some ideas will be proposed on how ontology development tools 

and environments can be enhanced to support the proposed guidelines and rules, in order to 

facilitate development of OWL ontologies that are consistent with the proposed guidelines. 

1.6 THESIS STRUCTURE 

The remainder of the thesis is structured as follows. Chapter 2 provides background 

theoretical information relevant to this thesis and discusses related prior research. 

Specifically, section 2.1 is devoted to IS ontologies in general, including definitions, types of 

ontologies, and their applications. Section 2.2 gives a brief overview of the OWL Web 

Ontology Language. Key concepts and premises of Bunge's ontology are introduced in 

section 2.3, and section 2.4 provides a review of related prior research work in the area of 

ontological analysis and IS ontologies. 

Chapter 3 discusses in more detail the general methodology employed in this thesis. 

Chapter 4 contains the main theoretical analysis of selected concepts of Bunge's ontology 

and their representation in OWL. We start with the discussion of things (Section 4.1), 

followed by a detailed examination of properties, which includes general issues related to 

properties in Bunge's ontology and in OWL as well as issues specific to representation of 

mtrinsic and mutual properties in OWL (Section 4.2). Classes and classification-related 

issues are the subject of Section 4.3. Next, Section 4.4 discusses a number of issues related 

to the representation in OWL of ontological premises that govern the relationships between 

the key ontological constructs (things, properties and classes). Finally, in Section 4.5 we 

focus on the representation of composition relationships between things. 

Chapter 5 summarizes some of the outcomes of the main analysis. Specifically, it 

provides a summary of the proposed meta-model and presents the key modeling process 
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steps recommended for modelers intending to use the proposed approach. An example 

demonstrating the applicability and the process of applying the proposed rules and meta-

model is presented in Chapter 6. Finally, Chapter 7 concludes the thesis by summarizing the 

main ideas and outcomes of the work and discussing potential future research directions. 
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2 THEORETICAL BACKGROUND AND RELATED 
RESEARCH 

This section includes some theoretical background information and discussion of 

prior research relevant to this thesis. First, we provide some general information on IS 

ontologies (such as their definition, categorization, and applications). Next, we briefly 

discuss main aspects of the OWL language and introduce OWL concepts relevant to this 

work. Following that, we introduce the concepts of Bunge's ontology. Finally in this section, 

we provide an overview of related prior research work, which we categorize in two groups: 

1) Bunge-Wand-Weber ontological foundations and their applications to ontological analysis 

of information systems analysis and design (ISAD) modeling languages, and 2) research and 

practical guidelines (such as tutorials, guides and best practices) related to ontology 

development, and to the OWL language in particular. 

2.1 IS ONTOLOGIES - AN OVERVIEW 

2.1.1 What are IS ontologies? 

The term "ontology" has been in use for many years. The Merriam-Webster 

dictionary4 provides two abstract, philosophical definitions of ontology: 1) a branch of 

metaphysics concerned with the nature and relations of being, and 2) a particular theory 

about the nature of being or the kinds of existents. In philosophy, Ontology is "that branch of 

philosophy which deals with the order and structure of reality in the broadest sense possible" 

(Angeles, 1981). 

A new notion of "ontologies", which is different from the original philosophical 

concept of "ontology", has emerged relatively recently and has been gaining popularity 

among different research disciplines, such as artificial intelligence, knowledge engineering, 

knowledge representation, qualitative modeling, language engineering, database design, 

information retrieval and extraction, and knowledge management and organization (Guarino, 

1998; McGuinness, 2002; Noy and Hafner, 1997; Uschold and Gruninger, 1996). 

Ontologies have become even more important - not only among researchers but also 

among practitioners and businesses - with the advent and the widespread usage of the World 

Wide Web and the new vision of the Semantic Web, which was first put forward by Tim 

Berners-Lee (Berners-Lee et al, 2001). The Semantic Web is a vision for the future of the 

Web, in which information is given explicit meaning, making it easier for machines to 

4 http://www.m-w.corn/cgi-bin/dictionary?book=Dictionary&va=ontology 
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automatically process and integrate information available on the Web (Heflin, 2004). In 

these contexts, ontologies are often termed 'formalized ontologies' or 'information system 

ontologies' (or simply 'IS ontologies'). 

Various definitions for these ontologies have been proposed in the literature. 

Comparative analyses of different definitions can be found in several research works (e.g. 

Gomez-Perez et al., 2004; Guarino & Giaretta, 1995). One of the most widely cited 

definitions is that by Gruber (1993): "An ontology is a formal explicit specification of a 

shared conceptualization, which is a simplified view of the world". Fensel (2001) explains 

this definition as follows: the term "shared conceptualization" refers to an abstract model (or 

a view) of a set of phenomena or a domain of interest which is shared by a community of 

agents (people or computational agents); the word "formal" indicates that an ontology is 

expressed with the use of some formal notation, and "explicit" usually means that the 

precision of concepts and their relationships is clearly defined. 

In simpler terms, an ontology is a formal description of the concepts and 

relationships that can exist in a domain as viewed and shared by a group of users (e.g. people 

or computational agents). An ontology often includes a hierarchical description of concepts 

in a domain, along with descriptions of the properties of each concept and the relationships 

between concepts. It may also contain instances of concepts. An ontology with individual 

instances is sometimes termed a 'knowledge base' (Noy & McGuinness, 2001). 

We can summarize that ontologies: 

• are used to describe a specific domain 

• clearly define terms and relations in that domain 

• use some formal mechanism to represent these concepts 

• are agreed upon by users in such a way that the meaning of the terms is used 

consistently 

• are usually build cooperatively by different groups of people in different 

locations 

The main focus of IS ontologies is on machine-readability, i.e. on expressing a 

"specification of a shared conceptualization" explicitly in a form that can be "understood" 

and processed by computers. A number of markup languages (such as XML, RDF, RDFS) 

and ontology languages (such as OIL, DAML + OIL, and, more recently, OWL) have been 

developed to this end. Some of those languages have gained wide acceptance in supporting 

the goal of making the Web more accessible by computers. The available languages differ in 

terms of their expressiveness and inference mechanisms, and are based on diverse 
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knowledge representation paradigms (such as frames or description logics). Gomez-Perez et 

al. (2004) review and compare a number of languages available for implementing 

ontologies, and give some recommendations regarding the suitability of these languages for 

different purposes and areas of application. 

2.1.2 Types of IS Ontologies 

The word 'ontology' has been used to describe artifacts with different degrees of 

structure - from simple taxonomies (such as the Yahoo! hierarchy) to metadata schemes 

(such as the Dublin Core) to logical theories (Heflin, 2004). 

McGuinness (2002) classifies ontologies along a linear spectrum based on the level 

of detail and formalization in their specification. This spectrum proceeds from "simple 

ontologies", such as controlled vocabularies, catalogs, terms/glossary, thesauri, and 

taxonomies with informal "is-a" hierarchies, to more complex, structured, ontologies with 

formal subclass hierarchies, frames, and value restrictions, and finally to very expressive 

ontologies that use first order logic constraints between terms and more detailed 

relationships to represent domain knowledge facts. 

According to Gomez-Perez et al. (2004), the ontology community often uses the term 

'lightweight ontologies' for ontologies that are mainly taxonomies, and the term 

'heavyweight ontologies' for those ontologies that model a domain in a deeper way and 

provide more restrictions on domain semantics. Lightweight ontologies usually include 

concepts, concept taxonomies, relationships between concepts, and properties that describe 

concepts. Heavyweight ontologies add axioms and constraints to lightweight ontologies to 

clarify the intended meaning of the terms in the ontology. 

Heavyweight and lightweight ontologies can be modeled with different knowledge 

modeling techniques and can be implemented in a variety of languages (Uschold & 

Gruninger, 1996). As a result, ontologies differ in their degree of formalization and structure. 

Ontologies can be classified into highly informal if they are expressed in natural language, 

semi-informal if expressed in a restricted and structured form of natural language, semi-

formal if expressed in an artificial and formally defined language, and rigorously formal if 

they provide meticulously defined terms with formal semantics, theorems and proofs of 

properties such as soundness and completeness (Gomez-Perez et ai, 2004). 

The OWL language, which is the focus of this thesis, allows representation of both 

heavyweight ontologies and lightweight ontologies (depending on the language version used 

- OWL Lite, OWL DL, or OWL Full). OWL is based on a rigorous knowledge 

representation formalism (Description Logics), is formally defined, and is assigned clear 
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model-theoretic semantic. Thus, with respect to the degree of formalization, OWL 

ontologies should be classified as (at least) semi-formal. 

2.1.3 Applications of IS ontologies 

Ontologies can support a great variety of tasks in diverse research and application 

areas. Numerous applications of IS ontologies have been proposed and implemented in 

research prototypes and industry applications. Ontologies enable knowledge sharing and 

reuse where information resources can be communicated between human or software agents. 

Using ontologies, ontology-based tools can perform automated reasoning, and thus provide 

advanced services to intelligent applications such as conceptual/semantic search and 

retrieval, software agents, decision support, speech and natural language understanding, 

knowledge management, intelligent databases and electronic commerce (Heflin, 2004). 

McGuinness (2002) describes various benefits and applications both of simple 

ontologies and of complex structured ontologies. An important advantage of simple 

ontologies is that they are not costly to build and many are already available in various 

forms. Even simpler ontologies can provide controlled vocabularies and can be used for 

website organization, navigation and browsing support, for search support (such as query 

reformulation and disambiguation), and sense disambiguation support. More complex 

structured ontologies can, in addition, provide a basis for inference and thus can be used in 

applications to enable consistency checking, interoperability support, semantic integration of 

heterogeneous information sources, and validation and verification of data. They can also 

support structured, comparative and customized information searches and exploit 

generalization/ specialization hierarchies. 

Ontologies play a key role in the emerging Semantic Web, providing a way of 

representing the semantics of documents and enabling these semantics to be used by web 

applications and intelligent agents. The OWL use cases and requirements document (Heflin, 

2004) discusses six representative use cases of web ontologies in such application areas as 

web portals, multimedia collection management, corporate website management, design 

documentation management, intelligent agents and services, and ubiquitous computing. 

These selected examples clearly demonstrate the potential and real benefits and usefulness of 

ontologies on the Web. 
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2.2 OWL WEB ONTOLOGY LANGUAGE 

2.2.1 General information 

In this section, we provide a brief discussion of key constructs and features of the 

OWL Web ontology language5. This OWL overview is based on the official OWL 

documentation from the World Wide Web Consortium (W3C) (Bechhofer et al, 2004; 

Heflin, 2004; McGuinness et al, 2004), as well as on several other available OWL guides 

and tutorials (Antoniou & van Harmelen, 2004; Horridge, 2004). Please refer to these 

sources for more detail on OWL syntax and functionality. Another excellent source of 

information on OWL is the W3C OWL website (http://www.w3.org/2004/OWLY) which 

provides links to various OWL resources. 

The OWL Web Ontology Language is the most recent development in standard 

ontology languages from the World Wide Web Consortium (W3C). It is intended to enable 

publishing and sharing IS ontologies on the Web. OWL is based on RDF (Resource 

description Framework) and RDF Schema (RDFS), which are widely accepted as formal 

languages of meta-data describing any web resources. As an extension of RDF/RDFS, OWL 

uses some basic elements of RDF/ RDFS (such as rdf:subclassOf, rdfs:domain, etc.). It also 

provides constructs for defining and characterizing classes and properties of those classes, 

and for defining individuals and asserting properties about them. OWL language has a 

formal logical model and formal semantics which allow reasoning about classes, individuals, 

and their properties. 

The OWL language is divided into the three increasingly expressive sublanguages: 

OWL Lite, OWL DL and OWL Full. OWL Lite is the least expressive sublanguage. It 

supports only a subset of OWL constructs and is intended to be used in situations where only 

a simple class hierarchy and simple constraints are needed. The OWL DL sublanguage is 

based on description logics and supports the maximum expressiveness without losing 

decidability and computational completeness6 of reasoning systems. Tool builders have 

already developed powerful reasoning systems (based on description logics) which support 

ontologies constrained by the restrictions required for OWL DL. The complete OWL 

language, OWL Full, supports the same set of the OWL language constructs as OWL DL, 

but relaxes some of the constraints on OWL DL to provide maximum expressiveness and the 

syntactic freedom of RDF. However, it does not guarantee decidability or computational 

5 http://www.w3.org/2004/OWLA 
6 Computational completeness means all entailments are guaranteed to be computed. Decidability means all 
computations will finish in finite time. 
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completeness. One of the distinctions between OWL DL and OWL Full is that OWL DL 

requires disjointness of classes, properties, individuals and data values, i.e. in OWL DL, for 

example, a class cannot be at the same time an individual (or vice versa). The focus of this 

thesis is on OWL DL (unless noted otherwise). 

Key OWL constructs are classes, individuals and properties. An OWL document 

consists of optional ontology headers plus any numbers of class axioms, property axioms, 

and facts about individuals. In the following sections we discuss these concepts in more 

detail. 

2.2.2 OWL classes and individuals 

Classes in OWL are intended to represent concepts in a domain of discourse. They 

provide an abstraction mechanism for grouping resources with similar characteristics. Every 

OWL class is associated with a set of individuals called the class extension. 

OWL individuals represent objects in the domain of discourse. The individuals in the 

class extension are called instances of the class. Generally, it is intended that classes should 

correspond to naturally occurring sets of things in a domain of discourse and individuals 

should correspond to actual entities that can be grouped into these classes. For example, we 

can define a class Book with instances of this class (OWL individuals) representing some 

specific books. 

Two OWL class identifiers are predefined: owl:Thing and owl:Nothing. The class 

extension of the owl:Thing class is the set of all OWL individuals; thus, every OWL class is a 

subclass of owlThing. The class extension of owl:Nothing is the empty set; so owl:Nothing is a 

subclass of every class. 

The simplest way to define a class in OWL is just to declare it by name, for example: 

<owl:Class rdf:ID="Human"> 

This definition is sufficient to allow, for example, the declaration of some OWL 

individuals to be instances of this class. OWL individuals are defined with individual axioms 

(also called 'facts'). Facts about individuals in OWL include facts about class membership, 

facts about property values of individuals, and facts about individual identity (which assert 

whether individuals are same or different7). An individual can be minimally introduced by 

being declared a member of a class (either of the predefined top class owl:Thing or some other 

7 Unlike many languages, OWL does not have a "unique names" assumption. That is, in OWL, even i f 
individuals have different names they can still be the same. OWL provides several constructs to make explicit 
statements regarding whether individuals are the same or different. 
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class defined in an ontology), for example: 

<owl:Thing rdf:ID="SomeThing"> 
<owl:Human rdf:ID="John_Smith"> 

In the above example, the first statement introduces an individual SomeThing simply 

as an instance of owkThing (no further information about this individual has beeen provided 

yet). The second statement declares another individual, John_Smith, which is stated to be an 

instance of the class Human (note that this individual is automatically an instance of owl:Thing 

since any OWL class is the subclass of owl Thing). 

Declaring a class only by declaring its name does not provide much information 

about the class (other than its name). In general, OWL classes are further defined through 

class descriptions, which can be combined into class axioms. A class description describes 

an OWL class either by name (as was shown above) or by specifying the class extension (set 

of instances) of an unnamed (anonymous) class. 

Defining classes in OWL by specifying the class extension means describing the 

conditions that must be satisfied by an individual for it to be a member of the class. For 

example, a class in OWL can be described 

• by exhaustive enumeration of its individuals (using owl:oneOf construct for stating that 

the extension of a class consists of these and only these listed instances) 

• as a set of all individuals which satisfy certain constraints on their properties {property 

restrictions). 

Classes can also be defined as Boolean combinations of two or more class 

descriptions - union, intersection or complement - using the constructs OwkunionOf, 

owl:lntersectionOf, and owl:complementOf, respectively. 

Class axioms contain components that state necessary and/or sufficient 

characteristics of class membership. OWL provides three language constructs for combining 

class descriptions into class axioms: rdfs:subClassOf, owhequivalentClass, owhdisjointWith. 

Using rdfs:subclassOf construct, classes in OWL can be organized into superclass-

subclass hierarchies. OWL allows multiple inheritance - an individual can be an instance of 

different classes and a class can be a subclass of several other classes (this can be declared 

and/ or inferred based on formal semantics). 

2.2.3 OWL properties 

All OWL properties are binary relationships. They are used to assert general facts 
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about class instances and specific facts about individuals. There are two main types of 

properties in OWL8: 

• Object properties relate individuals to individuals. For example, in some ontology 

describing people we can define an object property hasParent to relate individuals 

representing persons to other individuals - their parents. 

• Datatype properties link individuals to data values (an XML schema datatype value or 

an RDF literal). For example, we may define a datatype property hasAge to represent the age 

of a person, i.e. to link an individual (person) to a nonnegative integer representing age. 

Note, that properties in OWL have direction: a property links a subject (an OWL 

individual) to an object (an OWL individual or a data value), and the object is considered a 

value of this property for the subject. For readability, a predicate notation P(x,y) is often 

used to show that a pair (x,y) is linked by some property P, meaning that P is a property of 

an individual x with a value y (which is either an individual or a data value). A term 

'property extension' is sometimes used (in a similar fashion to 'class extension') to denote 

the set of (directed) subject-object pairs that are associated with a particular property. 

Properties in OWL are described using property axioms. In its simplest form, a 

property axiom just declares the existence of a property by its name, for example 

<owl:ObjectProperty rdf:ID="hasParent7> 

Properties may have a domain and/or a range specified (using class descriptions and 

XMLS schema datatypes for datatype property range). For example, in some ontology we 

may need to specify that the domain of a property hasAge is the class Human and the range is 

a set of nonnegative integers (represented as an XML Schema datatype): 

<owl:Class rdf:ID="Human"> 

<owl: DatatypeProperty rdf: I D="hasAge"> 
<rdfs:domain rdf:resource="#Human" 
<rdfe:rangerdf:resource="http://www.w3.org/2001/XMLSchema#nonnegativelnteger7> 

</owl: Datatype Property> 

It is important to remember, however, that domains and ranges in OWL are not 

8 OWL also has other types of properties, such as owl:AnnotationProperty and Owl:OntologyProperty. They are 
intended for specific purpose of adding annotation information (metadata) to classes, individuals, object/ 
datatype properties and the ontology itself. The features of those property types are limited (compared to 
object/datatype properties), and these properties are usually ignored in reasoning. Thus, these properties are not 
considered in this study due to their specific purpose. 
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viewed as constraints to be checked but rather they are used as 'axioms' in reasoning. In 

particular, they allow the inference that an individual belongs to a class declared as some 

property domain (or range) based on the fact that an individual possesses that property. For 

example, for the hasAge property (introduced earlier), we could also assert that some 

individual ThingX possesses this property, e.g.: 

<owl:Thing rdf:ID="ThingX"> 
<hasAge rdf:datatype=Mp://www.w3.org/20 

</owl:Thing> 

Based on the above, most reasoning tools would infer that ThingX is an instance of the class 

Human (since this class is the domain of the property hasAge). Thus, domain and range 

constraints should be used with caution since they may lead to unintended implications. 

It is important to note that properties in O W L are defined independent of classes. 

This means that one does not have to define classes to be able to define properties, and vice 

versa. By default, a property is assumed to be a binary relationship linking two individuals of 

the predefined class owkThing or an individual of the class owl:Thing and a data value. Thus, in 

general, any individual can (but does not have to) possess any property defined in an 

ontology, i.e. can have an arbitrary number (zero or more) of values for a particular property. 

O W L provides a number of constructs to describe additional characteristics of 

properties, for example: 

• owkSymmetricProperty: P(x, y) O P(y,x) (e.g. "is a sibling of) 

• owl:TransitiveProperty: P(x,y) & P(y,z) => P(x,z) (e.g. "is taller than")9 

• owl:FunctionalProperty: states that a property has at most one unique value for each 

individual (e.g. "age" property) 

• owl:lnverseFunctionalProperty: defines a property for which two different individuals 

cannot have the same value (e.g. "social security number") 

O W L also allows the description of certain relationships between properties using the 

following constructs: 

• rdfs:subpropertyOf: properties can be arranged in property-subproperty hierarchies. P is a 

subproperty of Q iff P(x,y) => Q (x,y) (i.e. the property extension of P is a subset of the 

property extension of Q). P and Q should be either both datatype or both object 

properties. 

9 In OWL DL only object properties can be declared symmetric or transitive 
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• owl:EquivalentProperty: two properties P and Q can be declared equivalent which would 

mean they have the same property extension (set of pairs), i.e. P(x,y)OQ(x,y) 

• OwhlnverseOf: an object property may have a corresponding inverse property10. For 

example, we can declare that the property hasParent has an inverse property hasChild, 

which would mean the implication hasParent(X,Y) <=>hasChild(Y,X) 

2.2.4 Property restrictions and class descriptions 

As mentioned earlier, classes in OWL can be defined by specifying the class 

extension, i.e. by describing the conditions that must be satisfied by an individual for it to be 

a member of the class. One way to do that is to use property restrictions. A property 

restriction describes an anonymous (unnamed) class of all individuals that satisfy certain 

constraints on a property. Property restrictions are used as parts of class descriptions. 

OWL has two types of property restrictions: value constraints and cardinality 

constraints. A value constraint puts constraints on the range of the property when applied to 

a particular class description (within the scope of a particular class axiom). A cardinality 

constraint puts constraints on the number of values a property can take, also in the context of 

a particular class description. 

The following constructs can be used to specify value constraints: 

1) owl:allValuesFrom (universal qualifier) - is used to specify the class of possible values (or 

a data range) that the property specified in a property restriction can take. For example, 

we can describe an anonymous OWL class of all individuals for which the hasParent 

property can only have values of the class Human11: 

<owl:restriction> 
<owl:onProperty rdf:resource="#HasParent" /> 
<owl:allValuesFrom rdf:resource="#Human" /> 

</owl:Restriction> 

This restriction can be used in class descriptions. For example, it can be stated that the 

class Human is a subclass of the anonymous class of individuals that can have only 

human parents (if any). In other words, this would mean that humans can only have 

1 0 In OWL DL only object properties (not datatype properties) can have inverse properties 
1' Note that this does not imply that the property hasParent can only have values from this class Human. There 
may be individuals that possess the property hasParent but have values for this property that are not instances of 
the class Human. Such individuals will not be members of this anonymous class, however. Also note, that in 
OWL this constraint on the property is trivially satisfied if an individual has no values for the property P at all, 
thus this class includes individuals which have no parents at all. 
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parents who are also humans. 

2) owhsomeValuesFrom (existential qualifier) - is used to specify the existence of at least one 

value from a specified class for the property specified in the restriction. For example, we 

may specify an unnamed class of individuals who have at least one parent who is a 

student: 

<owl:restriction> 
<owl:on Property rdf:resource="#hasParent" /> 
<owl:someValuesFrom rdf:resource="#Student" /> 

</owl:restriction> 

3) OwkhasValue constraint - is used to describe a class of all individuals for which the 

specified property has at least one value semantically equal to the specified value. For 

example, we may describe a class of individuals that have the individual referred to as 

Smith as their parent: 

<owl:restriction> 
<owl:onProperty rdf:resource="#hasParent" /> 
<owl:hasValue rdf:resource="#Smith" /> 

</owl:restriction> 

As for the cardinality restrictions, in general it is assumed in OWL that any instance 

can have an arbitrary number (zero or more) of values for a particular property. OWL 

provides three cardinality restriction constructs for specifying constraints on a number of 

semantically distinct values for a property (within a context of a particular class description): 

owl:minCardinality, owhmaxCardinality, owl:Cardinality. For example, we can describe an 

anonymous class of individuals that have at least 1 and at most 4 children (using minimum 

and maximum cardinality restrictions on hasChild object property): 

<owl:restriction> 
<owl:onProperty rdf:resource:='#hasChild7> 

<owl:minCardinality rof:datatype="http://www.w3.org^ 
</owl:minCardinality> 
<owl:maxCardinality rdf:datatvpe="http://vvww.w3.org/2001/XMLSchema#non 
</owl:maxCardinality> 

</owl:restriction> 

Anonymous classes (such as property restrictions described above) can be used in 

class axioms in a variety of ways. For example, we can state that a particular class C is a 
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subclass of an anonymous class C1 defined as a property restriction (which would mean that 

all instances of the class C satisfy this restriction). We can also state that a certain class is 

equivalent to or disjoint with another class (anonymous or named) using owl:equivalentClass 

or owl:disjointWith constructs, respectively. Finally, both anonymous and named classes can 

be used in class definitions with Boolean operators on classes (owl:intersectionOf, owl:unionOf, 

OwhcomplementOf), which can be arbitrarily nested. Thus, it is possible in OWL to combine 

anonymous classes (property restrictions) and named classes in a variety of ways to create 

complex class definitions. By describing and combining classes, properties, and individuals 

using constructs and mechanisms provided in OWL, one can represent knowledge about a 

particular domain. In later sections, more detail and usage examples are provided for the 

OWL constructs and mechanisms relevant to this thesis. 

2.2.5 Reasoning 

OWL has a well-defined syntax and formal semantics, which allow applications to 

make inferences and provide automatic reasoning support. Antoniou & van Harmelen (2004) 

list the main aspects that can be reasoned about for ontological knowledge: 

• class membership: for example, if x is an instance of a class C, and C is a subclass of D, 

then it can be inferred that x is an instance of D; 

• equivalence of classes: for example, if classes A and B are equivalent and classes B and 

C are equivalent, then we can infer that A is equivalent to C; 

• consistency: if, for example, we declared that x is an instance of A, and that A is a 

subclass of B, A is a subclass of C, and B and C are disjoint, then inconsistency in the 

ontology can be detected (since A should be empty but it also has the instance x), 

• classification: if it is declared that certain property-value pairs are sufficient condition 

for membership of a class A, then if an individual x satisfies such conditions, it can be 

concluded that x is an instance of A. 

Description logic is a subset of the predicate logic, for which efficient reasoning 

support is possible. For OWL DL ontologies, derivations such as above can be performed 
12 13 

automatically by reasoning applications (such as FaCT or RACER ). Reasoning support 

allows one to check the consistency of an ontology and of the represented knowledge, to 

check for unintended relationships between classes, to classify instances in classes 

automatically, and so on. Automated reasoning support is invaluable for designing large 

ontologies (where multiple modelers are involved), for integrating and sharing ontologies 
1 2 http://www.cs.man.ac.uk/~horrocks/FaCT/ 
1 3 http://www.sts.tu-harburg.de/~r.f.moeller/racer/ 
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from various sources, and for ontology-based applications. More specific examples of 

reasoning that can be performed based on OWL ontologies can be found in Bechhofer 

(2003). 

2.3 BUNGE-WAND-WEBER ONTOLOGICAL FRAMEWORK 

As mentioned in the introduction, following Bera & Wand (2004) and other research 

on ontological expressiveness of modeling languages (Wand & Weber, 1990a,b, 1993, 1995; 

Wand et al., 1999), this thesis applies a particular philosophical framework - Bunge's 

ontology (Bunge 1977, 1979) - to develop a representational mapping (between ontological 

and language constructs), a meta-model (a high-level class/property structure), and 

ontologically grounded modeling guidelines with the intent to improve the representation of 

real world domain semantics in OWL. This section briefly introduces some key concepts of 

Bunge's. More complete description of Bunge's ontology can be found elsewhere (e.g. 

Bunge, 1997, 1979; Wand & Weber, 1990a,b, 1993, 1995). The relevant concepts of 

Bunge's ontology are also discussed in more detail in other sections of the thesis as part of 

the analysis. 

Bunge's ontology describes a set of high-level constructs that are intended to 

represent real world phenomena. In this work, we are using Bunge's ontology as adapted and 

extended by Wand & Weber (1990a,b, 1993, 1995) for the use in information systems 

research (sometimes referred to as the Bunge-Wand-Weber ontology, or 'BWW ontology'). 

Bunge's ontology has been chosen as a basis for this research for a number of pragmatic 

reasons: 1) it is based on solid philosophical foundations, is comprehensive and well 

formalized; 2) it has been adapted and extended for information systems (Wand & Weber 

1990a,b, 1993, 1995; Wand et al, 1995; Weber 1997); 3) it has been successfully applied to 

evaluation of modeling languages (e.g. Evermann & Wand (2001a,b, 2005); Green & 

Rosemann, 2000; Wand & Weber, 1993; Wand et al. 1999); 4) it has also been empirically 

shown to lead to useful outcomes (e.g. Burton-Jones & Weber, 1999, 2003; Bodart et al. 

2001; Evermann, 2003; Gemino & Wand, 2000; Parsons & Cole, 2004). Numerous prior 

applications of Bunge's ontology in IS research are discussed later in section 2.4.1. 

The fundamental concepts of Bunge's ontology are summarized in Table 1. Of these 

concepts, the most relevant ones for this thesis are the concepts of thing, property, class, 

kind, composition, attribute, functional schema, and interaction. These concepts will be 

discussed in more details in further sections of the thesis. 
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Table 1: Selected concepts of Bunge's ontology (adapted from Wand & Weber, 1993; Bera & 
Wand, 2004) 

Concept "Description: • .• \>>(''.̂  ... . . , ...'.V .* " 
Things A thing is the elementary unit in the ontological model. The world is made of 

things. A distinction is made between concrete (or substantial) things (e.g. a 
book) and conceptual things (e.g. a mathematical set). It is assumed that any 
domain can be described by concrete things and the linkages between them 

Properties All things possess properties. A property that is inherently a property of an 
individual thing is called an intrinsic property. A property that is meaningful 
only in the context of two or more things is called a mutual property. For 
example, height is an intrinsic property of a person and salary is a mutual 
property between a person and a company. 
Properties in generator generic properties) are those properties possessed by a 
set of things (e.g. "color"); properties in particular (individual, or specific, 
properties) are properties that can be represented as the value of a property in 
general (e.g. "blue in color") 

Composition A composite is a thing that is made up of other things. Composites possess 
emergent properties — properties not inherited from their components. For 
example, a computer has a property "processing power" not possessed by any of 
its components individually. 

Law Ontology postulates that things satisfy some laws. Laws are defined in terms of 
relations between properties. A particular form of law is precedence: property A 
precedes property B iff whenever a thing possesses B, it also possesses A. A 
(state) law is a restriction on the possible values of the components of a 
functional schema of a thing or their combinations. 

Class, kind, 
and natural 
kind 

Things can have one or more properties in common. A class is a set of things 
possessing a common property. A kind is a set of things possessing more than 
one common property. A natural kind is a set of things adhering to the same 
laws (which implies a set of properties as well since, by definition, laws relate 
properties) 

Attribute A property is modeled via an attribute function that maps a set of things into a 
set of values at a given time 

Functional 
schema 

Humans conceive of things in terms of models of things. Similar things can be 
represented by the same model. A functional schema is a formalization of a view 
of a set of similar things in terms of a set of attribute functions. For example, a 
person may be viewed as an employee, a customer or a taxpayer. Each view is 
modeled as a different set of attribute functions (usually functions of time). 

State The state of a thing is the vector of values for all attribute functions in a schema 
of a thing at a given time 

Event An event is a change of state of a thing. It is affected via a transformation (see 
below) 

Transformation A transformation is a mapping of a set of states into itself 

History The history of a thing is the chronologically ordered states that a thing traverses. 
Example - history of positions of an employee over a period of time 

Interaction Interaction is the ability of a thing to change the "history" (states traversed) by 
another thing. The two things are said to interact or to be coupled. Interactions 
usually give rise to mutual properties. The existence of interaction can be 
considered a mutual property of things, and conversely, the existence of a mutual 
property can indicate an interaction. 
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2.4 RELATED PRIOR RESEARCH 

In this section we provide a condensed overview of the prior research relevant to the 

thesis topic, specifically in the areas of ontological analysis and development of IS 

ontologies. Prior research related to this thesis can be categorized in the following groups: 

1) research on the ontological foundations for IS research and application of those 

foundations to ontological analysis of some information analysis and design (ISAD) 

modeling languages, 

2) research and practical guidelines (such as tutorials, guides and best practices) related 

to ontology development and applications, and to the OWL language in particular. 

The next two sections discuss the prior work in each of these areas in more detail. 

2.4.1 Ontological foundations for IS research and their applications 

The stream of the research work that applies philosophical ontology to IS research 

was initiated by Wand and Weber (1989, 1990a,b). Starting from the fundamental premise 

that an information system is intended to be a representation of some perceived real world 

system, they proposed to turn to a philosophical ontology which provides a set of constructs 

to describe a generalized view of reality. They adopted a specific philosophical ontological 

framework, Bunge's ontology (Bunge 1977, 1979), and adapted and extended it for use in 

information systems research. Based on Bunge's ontology, Wand & Weber (1990a, 1993) 

proposed a set of the ontological models of information systems, one of which - the 

representation model - defines a set of core concepts that can be used to describe the 

structure and behavior of information systems. This model has been termed in subsequent 

research literature as Bunge-Wand-Weber ontology (or BWW ontology) and has found a 

number of applications in IS research since then. 

One of the most popular applications of the BWW ontology is the evaluation of 

conceptual modeling techniques and languages. The ontological analysis method is based on 

the notion of the ontological expressiveness proposed by Wand and Weber (Wand & Weber, 

1993). The method is used for the evaluation of conceptual modeling grammars with respect 

to their capability to represent properly the elements of real-world systems, and for the 

identification of potential representational deficiencies. This approach is based on exploring 

mappings between the set of ontological concepts and the grammar's constructs, so as to 

evaluate modeling grammar's ontological completeness and clarity. 

A grammar is ontologically complete if and only if every ontological construct can be 

mapped to a grammar construct (i.e. the mapping is total). A grammar is ontologically clear 
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if and only if no two ontological concepts are mapped onto the same grammar construct, and 

all grammar constructs can be mapped to ontological concepts (Wand & Weber, 1993). 

Ontological clarity can be undermined by such deficiencies as construct overload (if one 

grammar construct represents more than one ontological construct), construct redundancy (if 

more than one grammar construct represents the same ontological construct), and construct 

excess (when a grammar construct is present that does not map into any ontological 

construct). Through the mapping between ontological and grammar constructs, the 

ontological semantics can be assigned to a language, which also helps to derive modeling 

guidelines prescribing how language constructs should be used to model elements of a real-

word domain to improve ontological clarity and completeness. 

The ontological analysis approach has been employed for the evaluation of several 

systems analysis and design and conceptual modeling languages, such as data flow diagrams 

(Wand & Weber, 1993), NIAM (Weber & Zhang, 1996), Entity-Relationship (ER) diagrams 

(Wand et al, 1999), ARIS (Green & Rosemann, 2000), and more recently - UML 

(Evermann, 2003; Evermann & Wand (2001a,b); Evermann & Wand, 2005). 

Other applications of the BWW ontology in IS research include the analysis of the 

object concept in object-oriented modeling (Wand, 1989), clarifying the notion of data 

quality dimensions by anchoring them in ontological foundations (Wand and Wang, 1996), 

developing guidelines for choosing classes in conceptual modeling (Parsons & Wand, 1997), 

proposing ontologically grounded two-layer data model in which instances are allowed to 

exist separately of classes (Parsons & Wand, 2000), and applying the ontological concept of 

property precedence to the semantic reconciliation of heterogeneous data sources (Parsons & 

Wand, 2004). 

In addition to the theoretical research, a number of empirical studies have been 

conducted, aiming to test theoretical propositions derived from the applications of Bunge's 

ontological foundations to the evaluation of modeling grammars. In general, these studies 

investigated whether the use of mappings and guidelines derived based on the ontological 

analysis leads to better models, specifically, the models that are better understood and are 

more useful for model designers or users. Some specific issues tested in those studies 

included the impact of using relationships with attributes in ER modeling on users' problem-

solving performance (Burton-Jones & Weber, 1999, 2003); the use of optional properties 

compared to the use of subclassification with only mandatory properties (Bodart et al, 2001; 

Gemino, 1998; Gemino & Wand, 2000); an experimental evaluation of representing property 

precedence in conceptual modeling (Parsons & Cole, 2004); an experimental evaluation of 
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the specific benefits to domain understanding induced by U M L models developed in 

conformance with the ontologically grounded modeling rules (Evermann, 2003). 

Overall, the results of the empirical studies in this area have been encouraging. The 

studies provided support to the idea that models built in accordance with the guidelines and 

recommendations developed based on Bunge's ontological foundations lead to better models 

especially in cases when more in-depth (rather than surface-level) understanding of the 

models was required. 

To summarize, a lot of prior research work in this field has focused on the 

ontological evaluation of languages. This thesis continues the research in this area and 

applies the ontological analysis method to an ontology development language - O W L . Bera 

and Wand (2004) conducted an initial ontological analysis of the O W L language, 

highlighted a number of weaknesses of O W L with respect to the ontological clarity and 

completeness, and proposed a high level mapping between O W L constructs and ontological 

constructs as well as some general guidelines on how the clarity and completeness of O W L 

models can be improved. This thesis follows up on and expands the work started by Bera 

and Wand, aiming to employ the results of the analysis and the mapping between the 

ontological and O W L constructs in a constructive and prescriptive way - to develop specific 

ontologically grounded guidelines on how to use O W L language in an ontologically better 

way for modeling real world domains. 

2.4.2 Prior work on IS ontology development methodology and guidelines 

IS ontologies have been receiving ever increasing attention in various research 

disciplines, including artificial intelligence, computer science, knowledge management, 

Semantic Web research, and others. Relevant to this thesis topic is the research related to the 

certain aspects of ontological engineering. A term 'ontological engineering' is used to refer 

to the set of activities that pertain to the ontology development process, the ontology 

lifecycle, the methods and methodologies for building ontologies, and the tool suites and 

languages that support them (Gomez-Perez et al, 2004). 

The focus of this thesis is mainly on the conceptual aspects of modeling real world 

domains with O W L ontologies (rather then on technical, implementation or application 

issues). Therefore, in this section we conscentrate on prior work that is concerned more with 

conceptual modeling issues and is relevant to O W L . For more detailed discussion of the 

state of the art in the ontological engineering field, various ontology development languages, 

methods and methodologies for ontology construction, and other issues in the area of 

ontological engineering, we refer the readers to the book by Gomez-Perez et al, 2004 
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(which, in turn, provides plenty of other references). 

A number of research publications on IS ontologies (e.g. Chandrasekaran et al, 

1999; Gruber, 1993; Gruninger & Fox, 1995; Guarino & Giaretta, 1995; Uschold & 

Gruninger, 1996) is concerned with the general issues related to ontologies such as what is 

an ontology and what is not, why ontologies should be created, how they can be used, and 

what criteria should be followed to build an ontology. Other research work (e.g. Guarino, 

1998; Smith, 2003) is focused mainly on the philosophical aspects of ontologies and 

ontological commitment. 

Yet other ontology research focuses on the development of the so called upper-level, 

or top level, ontologies - i.e. ontologies which describe very general concepts that are 

common across the domains and give general notions under which all the terms in the 

existing ontologies should be modeled. Among such upper level ontologies are the top level 

ontologies of universals and particulars (Guarino & Welty, 2000; Gangemi et al. 2001), 

Sowa's top-level ontology (Sowa, 1997), Cyc's upper ontology (Lenat & Guha, 1990), and 

SUO/ SUMO (Pease & Niles, 2002). The topic of this thesis is (to some extent) related to the 

upper-level ontology research since one of the thesis objectives is to propose (based on a 

general philosophical ontology) certain upper-level classes and properties to be 

recommended for inclusion into every OWL ontology representing a real world domain. 

However, this thesis work is different from other research on upper-level ontologies since 

the thesis does not attempt to develop a comprehensive upper-level ontology, but rather uses 

an established philosophical ontology to inform IS ontology development. While the thesis 

proposes certain upper-level classes and properties for OWL ontologies modeling real world 

domains, the intent is to keep the suggested 'upper-level' structure relatively simple and 

intuitively clear so that it could be used by domain modelers more easily. Other formal 

upper-level ontologies (as those mentioned above) are much more comprehensive and 

demand more background knowledge and experience from modelers (and thus maybe harder 

to apply). 

There also exists a number of IS ontology development publications that adopt a 

more pragmatic (rather than theoretical or philosophical) perspective and that are intended to 

provide more specific guidance to ontology developers (both researchers and practitioners). 

For example, a popular ontology development guide by Noy and McGuinness (2001) 

discusses an ontology development methodology for declarative frame-based systems (using 

as an example the well popularized wine ontology and the Protege-2000 ontology 

development environment). This paper proposes the steps in the ontology development 
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process and addresses some complex issues pertaining to the definition of class hierarchies 

and properties of the classes. Other research publications propose alternative ontology 

development methodologies (e.g. Gomez-Perez, 1998; Gruninger and Fox, 1995; Uschold & 

Gruninger, 1996). 

As for the OWL related publications, not much theoretical research on the 

methodologies for developing OWL ontologies is available (partly due to the relatively 

recent introduction of the language). Many existing theoretical research papers on OWL are 

not focused on guidelines for modelers on how develop conceptual models in OWL 

ontologies, but rather are concerned more with model-theoretic or technical issues such as 

the underlying formal logical model of OWL, formal reasoning and machine readability 

aspects of OWL ontologies (Carroll & De Roo, 2004; Fforrocks et al, 2003; Patel-Schneider 

et al 2003), reasoners and querying capabilities for OWL ontologies (e.g. V. Haarslev & 

R. Moller, 2003; Haarslev et al., 2004), and formalized extensions to OWL (e.g. Horrocks 

& Patel-Schneider, 2004; Horrocks et al. 2005; Fikes et al. 2004). 

Among a limited number of publications discussing representational guidelines for 

OWL modelers, are the several documents from the World Wide Web Consortium (W3C), 

which aim to develop and promote best practices for the OWL community14. These 

documents discuss some frequently arising modeling issues and needs in ontology 

development, suggest possible modeling patterns, and discuss some advantages and 

disadvantages of those patterns. Some discussed modeling issues include: modeling N-ary 

relations in OWL (Noy & Rector, 2004), modeling part-whole relationships (Rector & 

Welty, 2005), modeling specified values (value partitions and value sets) in OWL (Rector, 

2004). To the best of our knowledge, we reviewed most of the existing OWL tutorials and 

best practice documents (currently available from the OWL W3C website15 as well as from 

other publication sources) in an attempt to keep up-to-date with OWL functionality and 

conceptual modeling issues discussed within the OWL community. 

Some of these documents are working drafts and are still being developed collaboratively by members of 
W3C consortium (Semantic Web Best Practices and Deployment Working Group). 
1 5 http://www.w3.org/2004/OWL/ 
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3 METHODOLOGY 

As briefly discussed earlier, the key objective of this thesis is to develop, based on a 

specific philosophical ontology (Bunge's ontology), some ontologically grounded modeling 

guidelines and a high-level class structure (a meta-model) that would facilitate the 

development of ontologically clear, consistent, and expressive OWL ontologies of real world 

domains. The methodology we use is based on the theoretical foundations for information 

systems analysis and design developed by Wand and Weber (Wand & Weber 1990, 1993, 

1995) and has been employed by various researchers in many subsequent studies in the 

conceptual modeling and ISAD areas (as discussed in section 2.4.1). One of the most recent 

applications of the approach (and most similar to the one used in this thesis) is the research 

conducted by Evermann and Wand (Evermann, 2003; Evermann & Wand, 2001a,b, 2005) 

on the ontological analysis of UML and the use of UML for conceptual modeling. 

In the introduction we briefly presented the key steps comprising our analysis. Here, 

we discuss the process in more detail. Specifically, the approach is as follows. In order to 

develop theoretically-grounded modeling guidelines and a meta-model for representing real 

world domains in OWL, we make an ontological commitment to Bunge's ontology. In other 

words, we assume that constructs and assumptions of Bunge's ontology provide sufficient 

descriptive power for representing phenomena of any real world domain.16 Under this 

assumption, we consider a subset of the ontological constructs from Bunge's ontology 

(limiting the focus of this work mainly to the static aspects of the world) and propose how 

they can be modeled using OWL constructs (or their combinations) so as to preserve the 

ontological assumptions and to ensure that relationships among the ontological constructs 

are reflected in their representations in OWL ontologies. This analysis results in a mapping 

between the ontological and the language constructs. 

Such a mapping allows the assignment of ontological semantics to OWL language 

constructs (or their combinations). In addition, such mapping can be used to transfer certain 

ontological assumptions to the language. As pointed by Evermann (2003), an established 

high level domain ontology (such as Bunge's ontology) may suggest that certain situations 

are possible in the real world while others are not. By virtue of mapping between modeling 

language constructs and ontological constructs, some combinations of language elements 

may therefore describe possible real world situations while others may describe impossible 

1 6 To be more specific, by 'real world' we mean beliefs on what exists, might exist or happen as perceived by a 
community. 
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ones. To achieve a proper representation, rules or constraints that relate ontological concepts 

(ontological assumptions), by virtue of the mapping, must also hold for the mapped language 

constructs in order to allow only models of possible real-world situations. Thus, we can 

transfer the ontological rules and constraints to a modeling language (like OWL) by creating 

the respective modeling rules and guidelines which specify how language constructs should 

be used to model elements of real world domains. Thus, we can limit the kinds of statements 

that can be made about real world domains in OWL to ensure that the ontological 

assumptions are preserved in the resulting OWL ontologies and that the language constructs 

have well-defined semantics. 

Encouraged by the prior successful applications of the above approach to other 

modeling languages (ER, UML and others) and some empirical support (as discussed in 

section 2.4.1), we believe that the mapping and the guidelines resulting from our analysis 

can potentially lead to better representations of real world domains in OWL ontologies. If 

modelers are guided by the proposed mappings and follow the proposed ontologically 

grounded modeling rules and guidelines, then they would be more likely to develop more 

expressive, clear, consistent, and stable OWL ontologies of real world domains and would 

be less likely to model situations that are not reflected in a real world domain or to represent 

the same domain elements using different language constructs in different ontologies. Since 

we assume that the constructs of Bunge's ontology allow the proper representation of 

domain knowledge, then if we are able to represent those constructs in OWL in a consistent 

and clear way, we can expect the resulting OWL ontologies also to represent the domain 

more adequately and be more stable (from person to person and over time). 

Bera and Wand (2004) note some potential problems with OWL ontologies when 

modeling real world domains including potential inconsistency in domain fact representation 

and interpretation, difficulty in modeling some domain information, and instability of OWL 

ontologies developed from domain information. These problems may arise due to a lack of 

the well-defined real world ontological semantics in OWL, and can also be attributed to the 

fact that the OWL language is not specifically intended for modeling real world domains. 

Rather, OWL is intended as a general purpose web ontology language with basic constructs 

(which allow the representation of various concepts and their properties) and a number of 

operators for describing these constructs and relationships between them, with a main focus 

on machine readability and reasoning (thus OWL focuses on formal logical semantics rather 

then real world ontological semantics). The approach in this thesis, focused specifically on 

the representation of real world domains in OWL and grounded in philosophical ontological 
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foundations, is intended to help modelers to avoid or alleviate the earlier mentioned 

problems when modeling real world domain, without modifying or extending the existing 

OWL language. 

The scope of this thesis is limited a subset of ontological constructs.. The selected 

constructs (such as things, properties, classes, interaction, composites) mainly describe the 

static structure of the world. The representation of other constructs of Bunge's ontology 

(such as states or events), while briefly mentioned in this thesis where relevant, is generally 

outside of the scope of this work and is a topic of future research. 

It is also important to note that this work does not aim to provide a full interpretation 

mapping (i.e. a mapping from all OWL constructs to Bunge's ontological constructs). This 

restriction of the scope is, in part, due to the fact that the main purpose of the OWL language 

is to allow the development of machine-readable ontologies. Thus, some OWL constructs 

are purely implementation-related and can not be assigned real-world ontological semantics 

(as they are not intended for real world representation). 

One more methodological consideration pertains to the issue of achieving ontological 

completeness and clarity. As mentioned earlier, a grammar is ontologically complete if and 

only if every ontological construct can be mapped to a grammar construct, i.e. the mapping 

is total. A grammar is ontologically clear if and only if no two ontological concepts are 

mapped onto the same grammar construct, and all grammar constructs can be mapped to 

ontological concepts (Wand & Weber 1993). Since OWL only has three key constructs 

(classes, individuals and properties), there is no way to represent each ontological construct 

using a separate OWL construct (without extending the language by adding new constructs). 

Evermann (2003) stresses a similar issue noting that to achieve a bijective mapping between 

ontological and modeling language constructs (i.e. a one-to-one mapping of all constructs, 

which provides maximum ontological clarity) it may be necessary to map language 

constructs to ontological constructs only if they appear in a particular context. For example, 

the same language construct, depending on its usage context, may represent two different 

real-world elements (ontological concepts). To achieve ontological clarity we can use 

modeling rules and constraints on the meta-model so as to map a certain language construct, 

when used in the first context, to the one ontological concept, and map it, when in the 

second context, to the other ontological concept. This thesis research adopts a similar 

approach in the case of OWL in order to alleviate the problem of ontological incompleteness 

and construct overload. Specifically, it proposes modeling rules and guidelines and meta-

modeling elements to specify in what context a certain OWL construct (or a combination of 
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constructs) represents a particular ontological construct. Also, some naming conventions are 

proposed as an additional means to clarify the semantics of OWL elements used to model 

certain ontological elements. 

It is also worth mentioning that since IS ontologies (and OWL ontologies in 

particular) are intended to represent knowledge (including real world domain knowledge) in 

a machine-readable form the ontology development process usually involves two types of 

issues: conceptual modeling issues and implementation-related or machine-processing 

issues. While machine readability and implementation isues are very important, conceptual 

modeling aspects of ontology development are equally important. Despite the advances in 

computer application support for ontological engineering activities, people are still heavily 

involved in ontology development and have to understand, analyze and agree upon 

ontologies. Ontologies also need to be maintained, merged and expanded, and used in 

applications, which also requires a clear understanding of what knowledge an ontology 

represents and how. All this also requires human involvement, even though some semi­

automatic tools for building and maintaining ontologies have been developed. Thus, the 

issues of the effective conceptual representation of a domain of interest and of the proper 

human comprehension and unambiguous interpretation of the resulting ontologies are very 

relevant to the ontological engineering field. 

Furthermore, some ontologies may be intended to represent only real world domain 

information while others may attempt to combine both aspects (e.g. real world domain and 

application aspects). Our analysis focuses on the conceptual modeling aspects of real-world 

modeling and is not intended to address implementation-related or machine-readability 

aspects of the OWL modeling process. However, to make our proposed rules and meta-

model applicable in practice we follow the existing language syntax and try to keep in mind, 

as much as possible, certain implementation, machine-understandability and reasoning 

issues (including some current ontology usages and practices which may affect the way 

ontologies are developed and applied). Therefore, we hope that using the proposed 

guidelines for ontology development in OWL should not affect machine-understandability 

of the resulting ontologies. At the same time, our analysis does not exclude or proscribe 

using OWL constructs to represent non-real world related aspects in OWL. Rather, one of 

the goals of the meta-model and guidelines proposed in this thesis is to distinguish between 

the situations when OWL constructs are used in ontologies for modeling real-world elements 

and when they are used for other modeling purposes so as to achieve better ontological 

clarity and consistency. 
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Finally, it is worth noting that this work takes the current OWL language as given 

and does not attempt to extend or modify it. Nevertheless, the outcomes of our analysis do 

suggest some ideas for possible extensions and modifications to OWL, as well as for some 

potentially useful functionality for OWL ontology development environments and tools 

which can improve the expressiveness of the language and facilitate the development of 

better models. 
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4 ANALYSIS - REPRESENTING MAIN ONTOLOGICAL 
CONSTRUCTS IN OWL 

This chapter discusses how some key constructs of Bunge's ontology can be 

represented in OWL. According to Bunge's ontology, our world consists of a static structure 

of things with their properties, changes in things and interactions of things. This thesis 

mainly focuses on the representation in OWL ontologies of the ontological constructs that 

describe the static structure of the world (such as things, intrinsic and mutual properties, 

classes and kinds), leaving the discussion of the concepts related to change and dynamics 

(such as states or events) to future research. However, the dynamics-related concept of 

interactions among things will be discussed as it is relevant for the modeling of other 

constructs (such as mutual properties). 

Specifically, this chapter provides a representation mapping for the basic constructs 

stated above and develops recommendations for modelers (in a form of guidelines and 

modeling rules) for representing these constructs in OWL based on the relevant ontological 

rules and assumptions. The term 'guideline' is used for more general recommendations 

stating how certain constructs should be represented or some general constraints on 

representation, while the term 'modeling rule' is employed for more detailed 

recommendations, which are usually OWL-specific and provide more detailed suggestions 

on how general guidelines can be implemented using OWL constructs and mechanisms. As 

an additional outcome of the analysis, we propose several upper-level classes and properties 

which together may be viewed as a meta-model for developing OWL ontologies 

representing real world domains, and which we recommend (as part of our rules and 

guidelines) to include in all such OWL ontologies. 

4.1 REPRESENT A TION OF THINGS 

4.1.1 General guidelines and modeling rules 

Our analysis begins with the concept of a thing - the most fundamental, elementary, 

concept in Bunge's ontology. Bunge's ontology distinguishes between concrete, or 

substantial, things, and conceptual things (such as mathematical concepts such as sets or 

functions or other abstract concepts). Following Parsons & Wand (2000), we assume that 

information modeling reflects humans' view of existing or possible reality and apply the 

notion of thing to anything perceived as a specific entity by someone, whether existing in 
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physical reality or only imagined. Thus, for example, both a bank account and an imagined 

product wi l l be considered concrete things. We wil l use the terms 'Bunge thing' or 

'substantial thing' to denote ontological things and distinguish them from O W L things (i.e. 

O W L individuals in general), which are discussed below. 

O W L provides the construct of individual, which is an instance of the top level class 

OwlThing or any its subclasses (i.e. O W L classes).17 It is possible in O W L to declare an 

individual, and, i f desired, to specify its properties. 

We propose to map Bunge things to O W L individuals. That is, entities in a real-

world domain that are Bunge things should be represented in O W L ontologies as O W L 

individuals: 

Guideline 1: Substantial things (Bunge things) in a domain should be modeled in OWL 

ontologies as OWL individuals. 

However, note that in general, not every O W L individual (i.e. an instance of the top 

class owl:Thing) can be interpreted as some Bunge thing. O W L does not place any restrictions 

on what can be modeled using the construct of individual. In current O W L usage practice, 

O W L individuals are often used to represent all sorts of things - substantial things, 

conceptual things, properties, property values, and so on. This situation has been identified 

by Bera & Wand (2004) as a construct overload issue - one of the problems that undermines 

the ontological clarity of the resulting models (Wand & Weber 1993). 

While it is unpractical to require restricting the use of individuals only for modeling 

ontological things (in the current O W L syntax), the above problem can be alleviated as 

suggested in the following guideline for modeling real-world ontologies in O W L : 

Guideline 2: OWL ontologies intended to model real world domains should clearly 

distinguish between OWL individuals representing substantial things (in the ontological 

sense) and OWL individuals representing other concepts (i.e. non-substantial, or 

conceptual, things). 

To implement the above two guidelines in O W L we propose to declare two upper-

level classes (subclasses of the owlThing class) - one for representing all substantial things 

(and classes of substantial things), and the other one for representing anything other than 

1 7 Note that every OWL individual is an instance of a top level class OwlThing, that is, every OWL individual is 
an 'OWL thing'. The concept of Bunge thing (or substantial, ontological, thing) is different from the OWL 
thing (OWL individual), which can potentially represent anything in OWL (not just substantial things). 
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substantial things (in Bunge's sense). Since in Bunge's ontology no thing can be a 

substantial thing and not be a substantial thing at the same time, these two upper-level 

classes should be declared as disjoint. This wi l l help to ensure that thes classes do not 

overlap (i.e. no O W L individuals can be declared instances of both classes). Ontology 

development environments such as Protege O W L would not allow modelers in this case to 

define classes (or individuals) that are subclasses (or instances) of both of these upper-level 

classes (such classes would be found inconsistent since they would not have any instances). 

Also, reasoning tools (such as Racer 1 8) would be able to detect such inconsistencies in an 

ontology. 

This implementation suggestion is summarized in the following modeling rule: 

Modeling Rule 1: In order to distinguish between OWL individuals representing substantial 

things and OWL individuals used for other purposes, an OWL ontology intended to model a 

real world domain should include two disjoint upper-level classes: 

1) Substantial_Thing/9 class — the extension of this class would consist of all OWL 

individuals that represent substantial things 

2) Non_Substantial_Thing class - the extension of this class would consist of all OWL 

individuals that are used to represent anything other than substantial things20. 

Several corollaries follow from the above rule and the fact that the two upper-level 

classes should be disjoint, specifically: 

Corollary 1: Substantial things should be modeled as OWL individuals that are instances of 

the class Substantial_Thing or its subclasses; OWL individuals used for other purposes should 

be made instances of the Non_Substantial_Thing class or its subclasses. 

Corollary 2: Any OWL class, all instances of which are intended to represent substantial 

things, should be made a subclass of the Sllbstantial_Thing class. OWL classes used for other 

purposes should be made subclasses of the Non_Substantial_Thing class 

Corollary 3: No OWL individual in an ontology can represent both a substantial thing and 

non-substantial thing at the same time 

Corollary 4: No OWL class can (other than built-in top class OWlThing) can include both 

OWL individuals representing substantial things and OWL individuals representing non-

http://www.sts.tu-harburg.de/~r.f.moeller/racer/ 
1 9 The names chosen for the upper level classes are just our suggestions; other class names can be used 

2 0 We include the word 'thing' in this class name since the instances of this class would still be things in OWL 
sense (even though they are not substantial things in the Bunge-ontological sense). 
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substantial things 

Corollary 5: Other OWL constructs (such as OWL properties) should not be used to 

represent substantial things 

If the proposed guidelines and rules are followed, then ontological substantial things 
can be mapped to a subset of OWL individuals - specifically, individuals that are members 
of the class extension of the upper-level class Substantial_Thing (representation mapping). On 
the other hand, every OWL individual that is an instance of the class Substantial_Thing would 
correspond to some ontological substantial thing (interpretation mapping). Thus, OWL 
individuals from the class Substantial_Thing are assigned ontological real-world semantics. 

4.1.2 Example implementation in OWL 

To illustrate the implementation of the guidelines and rules proposed in the previous 
21 

section, we can declare the proposed two disjoint upper-level classes in OWL as follows : 

<owl:Class rdf:about="#Substantial_Thing"> 
<owl:disjointWith> 

<owl:Class rdf:ID="Non_Substantial_Thing" /> 
</owl:disjointWith> 

</owl:Class> 
<owl:Classrdf:about="#Non_Substantial_Thing"> 

<o wl :d isjo i ntWith rdf:resource="#Substantial_Thing" /> 
</owl:Class> 

Now, if in some ontology (e.g. about people) we want to represent some specific 
ontological thing, for example, a person John Smith, we can minimally represent it as an 
OWL individual declared to be an instance of the class Substantial_Thing: 

<Substantial_Thing rdf:ID="John_Smith"> 

In principle, this declaration in OWL is sufficient to represent an individual and 
allows assertions about properties of this individual (as will be discussed later). Note that 
OWL syntax does not require to declare classes (such as Person) first to be able to declare 
individual things. Without a doubt, classes are very useful for modeling and exist in any 
ontology, and OWL individuals can be declared or inferred to be instances of certain classes, 
However, in principle, OWL individuals are not required to be declared instances of any 
classes (other than of the top level default class owkThing) and can be asserted to possess 

2 1 These classes will automatically be subclasses of the built-in top O W L class owl:Thing 
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properties independent of class membership. We will discuss this issue in more details in 

later sections (when analyzing classes and properties) and will later introduce more rules 

regarding classes and properties. 

For now, as far as classes are concerned, we just want to show that if, for example, 

one needs to represent some class of substantial things, such as a class Person, it should be 

modeled in accordance with our rules (Corollary 2) as a subclass of the upper-level class 

Substantial_Thing22: 

<owl:Class rdf:ID="Person"> 
<rdfs:subClassOf> 

<owl:Class rdf:ID="Substantial_Thing" /> 
</rdfs:subClassOf> 

</owl:Class> 

On the other hand, sometimes the concepts that do not represent real world 

substantial things still may need to be represented using OWL classes and individuals (for 

example, due to some implementation or reasoning related issues). For instance, a domain 

may include a concept of "Delivery". According to our rules, such concepts should be 

modeled as subclasses and individuals of the Non_Substantial_Thing class: 

<owl:Class rdf: I D=" Delivery" 
<rdfs:subClassOf> 

<owl:Class rdf:ID="Non_Substantial_Thing" /> 
</rdfs:subClassOf> 

</owl:Class> 

In later sections, we will present more examples of what kind of concepts may need 

to be modeled as non-substantial things and how they can be related to substantial things. 

For now, we proceed to the discussion of the concept of properties and their representation 

in OWL. 

4.2 REPRESENTATION OF PROPERTIES 

In this section we compare the ontological property concept with the OWL property 

construct and propose methods to represent ontological properties in OWL in such a way 

that real world semantics and the ontological assumptions involving properties are preserved 

22 A class can also be declared as a subclass of another class, which in turn is a subclass of the Substantial_Thing 
class. For example, if we already declared a class Person to be a subclass of Substantial_Thing, we could declare 
another class, Woman, as a subclass of Person, which would imply that Woman is also a subclass of Substantial_Thing. 
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to as great an extent as possible. 

4.2.1 Properties in OWL and ontological properties - a comparison 

According to Bunge's ontology, every thing possesses properties and properties are 

always attached to things. Properties can be intrinsic - possessed by the thing alone, or 

mutual - shared properties of two or more different substantial things. 

Properties of things exist whether or not humans are aware of them, and things are 

known to us through their properties. However, according to Bunge's ontology, humans 

conceive of things in terms of models of things (or conceptual things), and conceive of 

properties of things in terms of attributes (which are properties of models of substantial 

things). An attribute may or may not reflect a substantial property or a number of properties. 

For example, the height of a person is an attribute that reflects a substantial ontological 

property, while the name of a person does not actually represent any specific substantial 

property but rather it is an attribute that stands for the individual as a whole (Wand et al., 

1999). 

Keeping in mind the distinction between the property and the attribute notions, in our 

further discussion of properties both terms are used interchangeably whenever talking about 

representation of ontological properties in OWL. More specifically, when talking about the 

representation of ontological properties in OWL, we actually mean the representation of the 

attributes which we are aware of and which we ascribe to things to model the ontological 

properties that we believe these things possess (since humans can only conceive of 

properties of things via attributes). 

The property construct is available in the OWL language as well. There are two main 

types of properties in OWL: object properties and datatype properties2*. A property P in 

OWL is a directed binary relation P(x,y) that links a subject JC (which is an OWL individual) 

to an object v which is either an OWL individual (if P is an object property) or a data value 

(if P is a datatype property). The object (y) is considered a value of the property P for the 

subject - individual*. 

The analysis of the OWL syntax rules, existing OWL modeling practices and OWL 

ontologies24 reveals that in general there is no clear correspondence between OWL 

properties and ontological properties. For example, Bera & Wand (2004) point out that one 

2 3 Other types of O W L properties such as annotation properties and ontology properties are not considered in 
this work since they are implementation related and not essential for real-world domain representation issues. 
2 4 Many existing O W L ontologies are available from the W 3 C website 
(http://www.w3.Org/2004/OWL/#ontologies) and from the Protege system website 
(http://protege.stanford.edu/plugins/owl/ontologies.html) 
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of the deficiencies of OWL from the ontological analysis perspective (construct overload) is 

that OWL does not distinguish between intrinsic and mutual properties. To expand on that, 

we highlight several other issues related to the existing practices of modeling properties in 

OWL, which may lead to problems from the ontological analysis standpoint when modeling 

real world domains: 

Issue 1: In OWL, properties are used to describe links (or relations) between two OWL 

individuals or between an individual and a data value, where OWL individuals do not 

necessary represent substantial things. That is, some OWL properties are not associated with 

OWL individuals that represent substantial things and do not represent ontological 

(substantial) properties. 

Issue 2: Even in the cases when OWL properties do represent ontological properties, there 

are no consistent guidelines regarding, for example, whether a datatype or an object property 

should be used to represent a mutual or an intrinsic property. At a first glance, it may seem 

that datatype properties (which connect individuals to data values) should be used for 

representing intrinsic properties, while object properties (which connect individuals to 

individuals) should only be used to represent mutual properties. However, this is not always 

the case and not always possible to do in OWL (as we will show in later sections on 

properties). For example, while many intrinsic properties (e.g. person's name, birth date or 

age) can be represented in OWL using datatype properties with a suitable XML Schema 

datatype (e.g. string, date or positive integer), in other cases it may be necessary or more 

advantageous (e.g. for reasoning purposes) to model intrinsic properties using OWL object 

properties. 

Specifically, an OWL object property can be used to represent an intrinsic property in 

general, while the ontological intrinsic properties in particular (or property values) are 

sometimes represented using special OWL classes and their individuals. This is currently a 

common practice used for representing such properties that have finite enumerated 

collections of values (for example, wine color could be white, red or rose; clothing size 
•ye 

could be small, medium, or large, and so on) . Such properties can be represented in OWL 

using one of the two (at least) distinct ways: 1) as datatype properties with enumerated sets 

of data values (e.g. of string type) as property ranges, or 2) as object properties with the sets 
2 5 The famous wine ontology (http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf) provides an 
example of such representation. It has so-called "wine descriptor" properties of wine (such as hasColor, 
hasBody, hasSweetness) which relate OWL classes representing wines (i.e. substantial things) to OWL classes 
(e.g. WineColor) representing color and components of taste, such as sweetness, body and flavor (i.e. wine 
properties). 
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of property values represented as special OWL classes or their instances. As a part of W3C 

best practice guidelines, Rector (2004) discusses different representation patterns for such 

value collections and their advantages and disadvantages. A related document by Noy 

(2004) addresses the issue of using classes vs. using individuals as property values for 

representing property values. 

The choice of one of the two representations (datatype property versus object 

property with 'value' classes/individuals) is mainly driven by implementation aspects and 

the intended ontology usage. It is also motivated by the goals of improving automatic 

reasoning and facilitating ontology editing and sharing. Ontological (conceptual) 

considerations are often not taken into account in the current practices. However, as Bera & 

Wand (2004) pointed out, the use of classes and individuals for representing property values 

is another example of construct overload problem in OWL. To alleviate this problem, they 

suggested that such "special" classes or instances should be distinguished from the classes 

and instances representing substantial things. This thesis actually incorporates the above 

suggestion in Guideline 2 and Modeling Rule 1, proposing two disjoint upper-level classes 

Substantial_Thing and Non_Substantial_Thing to be included in real world domain ontologies. 

Issue 3: Another general issue with modeling properties in OWL is that mutual properties in 

Bunge's ontology can be shared by two or more things, while OWL properties are always 

binary relations. Thus, it is not possible to use a single OWL property to represent a mutual 

property shared by more than two things. Some workarounds are required such as, for 

example, creating special OWL classes to represent N-ary relations for N>2 (see Noy & 

Rector (2004) for a discussion of possible representation patterns for higher order 

relationships in OWL). 

A similar problem exists in some other conceptual modeling languages where higher 

power relationships are often represented as sets of binary relationships (Wand et al., 1999). 

However, replacing an N-nary relationship with a set of binary relationships may lead to the 

loss of information. Wand et al. (1999) also criticize this approach from the ontological 

standpoint and recommende that the same construct should be used to represent binary and 

higher order relations (i.e. mutual properties). 

Issue 4: The problems with representing mutual properties may potentially arise even in 

situations when one needs to represent a mutual property shared by only two things. In many 

cases, properties occur together or have some dependency on each other. For example, we 

may define an object property Enrolledlh linking a person (student) to a university he is 
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enrolled in, that is, this would be a mutual property shared by a person (an individual) and a 

tertiary institution (an individual) . However, another mutual property shared by these two 

individuals is 'having a start date (at a particular university)', which is a property in general 

(e.g. named hasStartDate) with specific start date values for instances (e.g. corresponding to 

different universities). In OWL there is no direct way (i.e. using only the construct of 

property for properties) to represent such a mutual property since one property statement 

(fact) can only link either two individuals or one individual and a data value. In our case, 

however, we need to link three items: two individuals (an institution and a student) and a 

data value (specific start date). A workaround way to represent this in OWL would be to 

create an additional class, e.g. University_Student (representing the relation between a 

university and a student) and to associate this class with the properties such as hasUniversity, 

HasStudent, hasStartDate. This method is similar to the use of association classes in UML or 

relationship entity types in ERM and will be explored later in more detail. 

Issue 5: A final issue with properties is that often different OWL constructs can be used to 

represent ontological properties in different ontologies. Specifically, some ontological 

properties may be represented as properties in one ontology, but as classes in another. For 

example, one ontology may have a property "being a student" while another ontology may 

not have such a property but rather have a class Student. In the latter case, declaring that an 

individual X is an instance of the class Student can also be interpreted as the individual X 

possessing a general property "being a student" 21. On one hand, this may be considered a 

problem, as noted by Bera & Wand (2004). They criticized the possibility of using multiple 

constructs in OWL to represent the same ontological concept of property (as the 'construct 

excess' problem) as this may undermine the ontological clarity of OWL models. On the 

other hand, as we will discuss in more detail later, in Bunge's ontology classes (and kinds) 

are defined in terms of properties: a class is a set of things that possess a common property. 

Therefore, for each property, in principle there exists a corresponding ontological class (or 

kind) of the ontological things possessing this property, which is termed the scope of the 

property. Thus, in the above example, the extension of the class Student actually can be 

viewed to represent the scope of the ontological property "being a student". 

2 6 We assume that a student can be enrolled in several tertiary institutions. 
2 7 According to Bunge's ontology, a property 'being a student' is actually an attribute representing a number of 
properties that comprise 'being a student'; in other words, it represents a compound property (Wand et al., 
1999) which is a combination of all these properties. 
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To summarize our comparative analysis of properties in OWL versus ontological 

properties, we have shown that in OWL syntax and in the current practices, the concept of 

property in OWL does not fully correspond to the ontological notion of property. Thus, it 

would be incorrect to simply map ontological properties to OWL properties. Rather, we 

propose that ontological properties should be mapped to a subset of OWL properties that 

satisfy certain conditions. In the next sections we consider several cases of ontological 

properties, and propose how they can be represented in OWL to alleviate ontological 

completeness and clarity problems (including those noted by Bera & Wand (2004)). We will 

propose modeling guidelines and rules, which, if followed, allow the mapping of ontological 

properties to OWL properties when they are used in a particular context and in particular 

combinations witii other OWL constructs in some cases (thus achieving "mapping in 

context", as recommended by Evermann (2003)). 

4.2.2 General guidelines on representation of ontological properties in 

OWL 

This section focuses on some general issues related to the representation of the 

ontological (substantial) properties in OWL. In sections 4.2.3 and 4.2.4 intrinsic and mutual 

properties will be discussed separately in more detail, and relevant guidelines and rules are 

proposed. 

Bunge's ontology distinguishes between properties in general (generic properties) 

and properties in particular (individual, or specific, properties). Properties in general are 

properties possessed by a set of things, e.g. "color", "speed", "salary", etc. An individual 

property is one that can be represented as a value of some property in general, such as "blue 

in color", speed of lOOmph" or "salary of $2000" (Bunge, 1997, p.63; Evermann, 2003). 

Similarly, many ontological properties in general can be represented as OWL properties, 

while ontological properties in particular can be represented as values of the OWL properties 

that represent the corresponding properties in general. For example, one can define a generic 

property NumberOfChildren with integer values representing actual number of children 

(property values) for specific persons. 

However, as noted in the comparison of OWL and ontological properties (issue 2, 

section 4.2.1), several ways to represent property values are possible in OWL. Depending on 

modeler's needs, reasoning requirements, and the intended ontology usage, property values 

in OWL can be represented in one of the several ways: as XML datatype values, as OWL 

classes, or as OWL individuals. We do not intend to impose unnecessary restrictions on 
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OWL usage since this can make the resulting ontologies less useful from the pragmatic 

standpoint and our rules less applicable in real-life modeling. Thus, we acknowledge the 

existence of different ways of representing property values in our rules. However, in 

accordance with Guideline 2 and Modeling Rule 1 (which require distmguishing OWL 

classes and individuals representing substantial things from OWL classes and individuals 

modeling anything else) we require that OWL classes and individuals intended to represent 

property values should be distinguished from OWL individuals and classes representing 

substantial things. 

To summarize the above discussion on properties, we propose a following general 

guideline on modeling properties in OWL: 

Guideline 3: 

• In OWL ontologies modeling real world domains, ontological properties in general 

should be modeled as OWL properties, and ontological properties in particular should 

be modeled as property values of those OWL properties that represent the corresponding 

properties in general; 

• Depending on a property type (e.g. intrinsic or mutual) and model usage and reasoning 

requirements, ontological properties in particular (property values) may be represented 

either as XML datatype values or as special OWL classes and their individuals; 

• If ontological properties in particular (property values) are modeled using OWL classes/ 

individuals, then such classes and individuals should be clearly distinguished from OWL 

classes and individuals that represent substantial things. 

Since we proposed the two upper-level classes Substantial_Thing and Non_Substantial_Thing to 

distinguish between OWL classes/individuals representing substantial and non-substantial 

things, the next corollary follows: 

Corollary 6: OWL classes (individuals) representing property values should be subclasses 

(instances) of the upper-level class Non_Substantial_Thing 

Since (as discussed in previous section) not all OWL properties represent ontological 

properties, the implication of the Guideline 3 for the representation mapping between OWL 

properties and ontological properties is that ontological properties can be mapped to a subset 

of OWL properties that conform to certain constraints, depending on ontological property 
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type (intrinsic or mutual) and intended model usage requirements . These constraints will 

be discussed in more detail as modeling rules later in this section and in the next sections. 

Bunge's ontology distinguishes between intrinsic and mutual properties. Therefore, 

being able to distinguish between these two types of property in OWL ontologies would 

enhance a model's ability to represent real-world domain faithfully. Thus, we propose 

another guideline: 

Guideline 4: OWL ontologies modeling real world domains should distinguish among OWL 

properties that are used to represent the following groups ofproperties: 

• Ontological intrinsic properties of substantial things 

• Ontological mutual properties of substantial things 

• Other OWL properties, i.e. properties that are not intended to represent substantial 

properties but are used for other purposes in the ontology 

The third category of properties is intended for OWL properties that do not represent 

substantial intrinsic or mutual properties. Among those are, for example, properties that 

modelers may need to use to represent certain relationships between constructs, or some 

properties that are not properties of substantial things (for example, implementation related 

properties). For example, later in this thesis (section 4.5), we propose a pair of mutually 

inverse object properties isComposedOf and IsComponentOf, which are intended for 

representing composite/component relationships between a pair of OWL individuals 

modling some substantial things. These properties are not domain-specific; rather, we view 

them as upper-level or meta-properties (we suggest that such properties are defined in any 

ontology that needs the representation of composite/component relationships). Guideline 4 
suggests that such properties should be distinguished from domain-specific mutual and 

intrinsic properties. 

Unfortunately, OWL does not provide a mechanism to group properties or to specify 

a user-defined property type or category to facilitate the above categorization. As one way to 

distinguish among these categories of properties (without introducing changes to the OWL 

syntax), we suggest the use of naming conventions (such as prefixes) in OWL property 

We recognize that the important role of OWL ontologies is to provide machine readable representation of a 
domain and to facilitate reasoning. Therefore, in our ontological interpretations and guidelines we are also 
trying, whenever possible to acknowledge certain desirable representation patterns used in OWL, provided they 
can be interpreted ontologically and allow for ontologically consistent representation. 
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names . In this thesis, we will use the following prefixes: 
• "ip_" " f° r OWL properties representing intrinsic properties (e.g. "ipSize"), 

• " m p " - for OWL properties representing mutual properties (e.g. "mpDistance"). 
Additional naming conventions will be introduced in later sections. 

The last rule in this section deals with the concept of 'property domain' in OWL. 
OWL properties can have a domain declared. By definition, a property domain in OWL is 
the set of OWL individuals X such that for each X there is at least one ŷ that is a value of P 
for the individual X (i.e. P(X, y) holds). Note that the role of the domain in OWL is to allow 
a certain type of inference, it is not a constraint to be checked. Specifically, if a property P is 
stated to have a domain D (usually as a named or anonymous class), and for some X a 
statement of a form P(X, y) is declared (or inferred) in an ontology, then, according to OWL, 
it can be inferred that X is an instance of the domain D. 

In Bunge's ontology, properties are possessed by substantial things and according to 
Modeling Rulel, OWL individuals that represent substantial things should always be 
declared (or inferred) to be instances of the upper-level class Substantial_Thing (or its 
subclasses). Therefore, we propose another modeling rule regarding the domain of OWL 
properties that are intended to represent ontological properties: 

Modeling Rule 2: If an OWL property is intended to represent an ontological (substantial) 

property, then the domain of such property should be either the Substantial_Thing class or its 

subclasses. 

The next section (4.2.3) continues the discussion of property representation and 
focuses on intrinsic properties in more detail, while section 4.2.4 is devoted to the discussion 
of representation of mutual properties. 

4.2.3 Representation of intrinsic properties in OWL 

In Bunge's ontology, intrinsic properties are properties that depend on one tiling only 
(for example, height or color). In Guideline 3, we proposed that ontological substantial 
properties in general (including intrinsic properties) should be modeled in OWL ontologies 
as OWL properties, while properties in particular (specific properties possessed by 

2 9 OWL also allows the use of labels, which could be used to have more human-readable (natural) alternative 
names for properties that can be used by applications (e.g. Name vs. ip_Name). Thus, the use of prefixes 
should not significantly affect ontology usability in applications. 
3 0 If P is an object property, then y is an OWL individual. If P is a datatype property, then y is a datatype value. 
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substantial things, or property values) should be represented as values of the OWL 

properties representing the respective properties in general. However, as discussed earlier, 

different ways of representing property values are possible in OWL, for example, as XML 

datatype values, as OWL classes or as OWL individuals (depending on the intended model 

usage, as well as on the application and reasoning needs). The choice of the property value 

representation method, in turn, determines whether an OWL object property or an OWL 

datatype property should be used for representing an intrinsic property. 

In the remainder of this section, we will discuss in more detail (using simple 

examples for illustration) two most typical cases of intrinsic property representation in OWL 

ontologies which may require different representation approaches. For each case, we 

propose some additional modeling guidelines and rules complementing and extending earlier 

proposed guidelines and rules for property representation. 

4.2.3.1 Case 1: Simple cases of generic intrinsic properties with value 
manifestations - representation using OWL datatype properties 

A common group of intrinsic properties are generic properties (such as "weight", 

"color", "age", "name") which are manifested in things (individuals) by specific values (e.g. 

literal or numeric). Possessing a specific value for a generic property implies possessing the 

generic property itself.31 For example, a person (a substantial thing) possesses a generic 

property 'weight' and also has a specific value for his/her weight (in some units), which can 
32 

be viewed as a specific property (property in particular), e.g. "has weight of 100 kg" . 

Such intrinsic properties are usually represented in OWL as datatype properties with 

the range of values defined as a suitable XML Schema datatype (e.g. integer, string or date). 

For example, 'name' is an intrinsic (generic) property possessed by persons (a set of 

substantial things represented by a class Person). Individuals also have specific names (such 

as Alex or Maria), which are specific intrinsic properties preceded by the generic property 

"name". In OWL we can represent the generic property "name" as an OWL datatype 

property (e.g. ip_PersonsName); specific names for individuals of the class Person would then 

be represented as values of the property ipPersonName. In accordance with Corollary 2, we 

would make the class Person a subclass of the upper level class SubstantialThing. We also 

define the domain of the property ipPersonName to be a class Person (Rule 2). 
3 1 This is an example of what Parsons and Wand (2003) term as "value manifestation", which is a type of 
property precedence law 
3 2 For simplicity, here we assume that there is no need to represent units (e.g. kg or US$) but only focus on the 
representation of a generic property (e.g. weight) and its specific values for individuals (e.g. 100). If one needs 
to represent values with units, then object properties and special value classes would be required (as in case 2). 
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Below is a representation of this example in the OWL RDF/XML syntax : 

<!-Declaring a class Person - a subclass of the class Substantial_Thing (Corollary 2) -> 
<owl:Class rdf:ID="Person"> 

<rdfs:subClassOf> 
<owl:Class rdf:ID="Substantial_Thing" /> 

</rdfs:subClassOf> 
</owl:Class> 

<\~Declaring an OWL property ip_PersonName (Guideline 3,4) with the class Person as a domain 
(Rule 2) and string datatype as range~> 

<o wl: Datatype Property rdf :about="#ip_Person Name"> 
<rdfs:domain rdf:resource="#Person" /> 
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" /> 

</owl:DatatypeProperty> 

<!—Example statement about a specific individual (represented as OWL individual "MikeSmith", an 
instance of the class Person) having a specific property value ("Michael Smith'') for the property 
ip_PersonName -> 

<Person rdf:ID="MikeSmith"> 
<ip_PersonName rdf:datatype = http://www.w3.org/2001/XMLSchema#string">Michael Smith 
</ip_PersonName> 

</Person> 

The above approach (i.e. using OWL datatype properties with a suitable XML 

datatype as range) is suitable for modeling many intrinsic properties. This approach is best 

suited for representing those properties which can have a large (or unlimited) number of 

possible numeric or string values (i.e. specific properties). However, in other cases this 

method of representation may be too restrictive from the implementation and reasoning 

standpoint (since, for example, reasoning on datatypes is currently less developed and less 

powerful in OWL compared to reasoning on classes and individuals). An alternative 

representation, popular in current OWL practices, is to use special value classes and 

individuals of those classes to represent property values (where properties themselves are 

represented as OWL object properties rather than datatype properties). 

In the next section we discuss a specific type of intrinsic properties - generic 

properties with enumerated collection of property values - for which the aforementioned 

alternative representation can be useful (and is often preferred by OWL practitioners; see, 

for example, Noy, 2004; Rector, 2004). In order to make this representation consistent with 

3 3 We assume that the upper-level class Substantial_Thing has already been declared (as proposed in section 
4.1.1) and only show an excerpt from the ontology pertaining to classes and properties of interest here. 
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the ontological considerations, we propose additional modeling rules guiding his 

representational pattern. We also show that the earlier proposed general guidelines and rules 

are still applicable, irrespective of how property values are represented (as datatype values 

or as OWL classes or individuals). 

4.2.3.2 Case 2: Intrinsic properties with enumerated collections of 
values 

Some generic intrinsic properties of things can be manifested by a specified 

(enumerated, usually finite) collection of values. For example, wine has color which can be 

white, red or rose; clothes have size which can be small, medium or large, and so on. Rector 

(2004) and Noy (2004) review several modeling patterns for representing such specified 

value collections of properties in OWL and discuss advantages and disadvantages of these 

patterns. 

As already mentioned in the previous section, one way to represent such properties 

with enumerated collections of values is to use an OWL datatype property to represent a 

generic property (such as "color" or "clothing size") and use the OWL enumeration 

construct (OWl:oneOf) in combination with a suitable XML Schema datatype to represent a 

list of possible values for the property. In other words, the range of values for the datatype 

property representing a generic intrinsic property would be a custom-defined enumerated 

datatype - a list of values of some predefined XML datatype (such as string or integer). For 

example, we can represent a generic intrinsic property "clothing size" and its values in the 

OWL/RDF syntax in the following way (conforming to our rules and guidelines): 

<\-Declaring meta-model classes SubstantiaLThing, Non_Substantial_Thing -> 
<owl:Class rdf:about="#Substantial_Thing"> 

<owl:disjointWith> 
<owl:Class rdf:about="#Non_Substantial_Thing7> 

</owl:disjointWith> 
</owl:Class> 
<owl:Class rdf:about="#Non_Substantial_Thing"> 

<owl:disjointWith rdf:resource="#Substantial_Thing7> 
</owl:Class> 

</-- Declaring a class Clothes to be a subclass of the upper level class SubstantiaLThing (Corollary 
1)-> 
<owl:Class rdf:ID="Clothes"> 

<rdfs:subClassOf> 
<owl:Class rdf:ID="Substantial_Thing" /> 

</rdfs:subClassOf> 
</owl:Class> 
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</— Declaring a datatype property ;'p_ClothingSize representing intrinsic generic property "closing 
size" (hence the use of the prefix ipj. Property domain is the class Clothes (a subclass of 
SubstantiaLThing class; Rule 2). Property range is the enumerated datatype - list of values of XML 
datatype String (Small, Medium, Large) -> 

<owl:DatatypeProperty rdf:about="#ip_ClothesSize"> 
<rdfs:domain rdf:resource="#Clothes" /> 
<rdfs:range> 

<owl:DataRange> 
<owl:oneOf rdf:parseType="Resource"> 

<rdf:firstrdf:datatype=''http://wvvw.w3.org/2001/XMLSchema#string">Small</rdf:̂  
<rdf:rest rdf:parseType="Resource"> 

<rdf:firstrdf:datatype="httjp://wvvw.w3.org/2001/XMLSchema#Su-ingo>Mediu 
<rdf:restrdf:parseType="Resource"> 
<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil" /> 
<rdf:firstrdf:datatype="http://www.w3.org/2001/XMLSchema#string">Large</rdf:fire^ 

</rdf:rest> 
</rdf:rest> 

</rdf:rest> 
</owl:oneOf> 

</owl:DataRange> 
</rdfs:range> 

</owl:DatatypeProperty> 

</— Statements about individuals can be made regarding property values. For example, Dress 1 is an 
OWL individual - an instance of the class Clothes and has a property value "Small" for the property 
ip_ClothingSize (this represents a specific ontological intrinsic property "having clothing size 'small'" 
for this particular clothing item which is a substantial thing (represented by an OWL individual) -> 

<Clothesrdf:ID="Dress1"> 
<ip_ClothingSize rdfdatatype = "http://www.w3.org/2001 /XMLSchema#string">Small 
</ip_ClothingSize> 

</Clothes> 

The example above is just a special case of the earlier discussed case 1, and thus the 

same guidelines and rules are applicable. That is, a class Clothes (individuals of which 

represent substantial things - clothing items) is declared as a subclass of the upper-level 

class SubstantiaLThing (Corollary 2); an OWL datatype property with the "ip" prefix 

(ip_ClothesSize) is used to model the intrinsic generic property 'clothing size' (Guidelines 3, 

4). We also declare the domain of the property to be the class Clothes (a subclass of the class 

SubstantiaLThing, Rule 2). 

Rector (2004) discusses other possible methods of representing enumerated 

collections of values for properties. In particular, individuals of the specially defined value 

classes can be used to represent enumerated property values. In this case, we would have to 

use OWL object properties, rather than datatype properties, to represent generic intrinsic 
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properties (since we need to link OWL individuals representing substantial things to OWL 

individuals representing property values). Applying this approach to the earlier discussed 

clothing size example, we represent a generic intrinsic property 'clothing size' as an OWL 

object property (ip_ClothingSize). Again, as per Rule 2, the domain for this property is the 

class Clothes (a subclass of the Substantial_Thing class). However, the range of this property is 

now not an XML datatype (as in earlier examples) but a specially defined OWL class, for 

example, Clothing_Size_Value. This class is declared to have several instances - OWL 

individuals representing property values (e.g. Small, Medium, Large)34. The OWL 

RDF/XML representation of this example is as follows: 

<\-Declaring meta-model classes Substantial_Thing, Non_Substantial_Thing, and Property_Value -
-> 

<owl:Class rdf:about="#Substantial_Thing"> 
<owl:disjointWith> 
<owl:Classrdf:about="#Non_Substantial_Thing7> 

</owl:disjointWith> 
</owl:Class> 
<owl:Classrdf:about="#Non_Substantial_Thing"> 

<owl:disjointWith rdf:resource="#Substantial_Thing7> 
</owl:Class> 

<!~The class Property_Value is declared as subclass of the Non_Substantial_Thing (corollary 6) 
-> 

<owl:Classrdf:ID="Property_Value"> 
<rdfs:subClassOf> 
<owl:Classrdf:ID="Non_Substantial_Thing7> 

</rdfs:subClassOf> 
</owl:Class> 

<!—Declaring a class of substantial things - Clothes class-> 
<owl:Class rdf:ID="Clothes"> 

<rdfs:subClassOf> 
<owl:Classrdf:ID="Substantial_Thing7> 

</rdfs:subClassOf> 
</owl:Class> 

<!- Declaring a class representing enumerated set of property values for an intrinsic property 
'clothing size' and instances of this class representing individual property values> 

<owl:Classrdf:ID="Clothes_Size_Value"> 
<rdfs:subClassOf rdf:resource="#Property_Value7> 

</owl:Class> 
<Clothing_Size_Valuerdf:ID="Small7> 

Often, subclasses of value classes are created, with individual values still represented by instances (i.e. 
subclasses Small, Medium and Large can be created). Also, sometimes, such subclasses themselves are used to 
represent values. However, the latter is only possible in OWL Full. Rector (2004) discusses both methods and 
analyses their advantages and disadvantages. For this thesis it is not relevant which of the two approaches is 
used (our guidelines and rules will hold for both methods) thus we do not discuss this issue in more detail. 
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<Clothing_Size_Value rdf:ID="Medium'7> 
<Clothing_Size_Valuerdf:ID="Large"/> 

<!—Declaring an object property ip_ClothingSize representing the intrinsic property 'clothing size' 
(with the domain Clothes and the range - class Clothing_Size_Value -> 

<owl:ObjectProperty rdf:ID="ip_ClothingSize"> 
<rdfs:domain rdf:resource="#Clothes"/> 
<rdfs:range rdf:resource="#Clothing_Size_Value7> 

</owl:ObjectProperty> 

<!- A statement about a particular Clothes individual (e.g. Dressl) having a specific value for the 
property ip_ClothingSize'-> 

<Clothesrdf:ID="Dress1"> 
<ip_ClothingSize rdf:resource=7*Small7> 

</Clothes> 

The diagram shown in Figure 1 illustrates this representation in a graphic form: 

Noil Substantial Tliiun 

sa 

PropertyValue 

Substantial Tiling 

i 
isa 

Clothes 

ipClotliingSize Instance4' Clothing Size Value 

ip_C3 otliiiigSize* 

d o t h i n g _ R i z e _ V a l u e 
Smal l 

/1.0 to 

Lanse 

i p C l o t l u o a S i x e • 
/ 

• Jo /ip_ClothiiigSize 

Medium Small 

Figure 1: Representing enumerated property values using value classes and instances 

The choice of a method for representing property values (as datatypes vs. as classes 

or individuals) is often related more to the application and implementation issues than to the 

conceptual modeling aspects. We acknowledge that there may be compelling reasons for 

OWL developers and modelers to choose a specific implementation, and thus do not suggest 

to proscribe completely any of these approaches. However, we recommend that our 

proposed rules and guidelines (which are applicable to both cases) are followed to help 

achieve more ontologically consistent representation. 

In addition, we would like to propose one more modeling rule to ensure better 

ontological consistency and clarity in a case when OWL classes or individuals are used to 
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represent property values. Guideline 3 states that if OWL classes or OWL individual are 

used to represent property values of generic ontological properties (represented by OWL 

properties), then such special purpose classes and individuals should be distinguished from 

OWL classes and individuals representing substantial things. Also, Modeling Rule 1 

proposes that in order to distinguish between substantial things and other concepts in an 

ontology, two disjoint upper level classes, Substantial_Thing and Non_Substantial_Thing are 

used. Combining those guidelines and rules, we summarize our recommendation for the 

property representation case approach using value classes in the following modeling rule: 

Modeling Rule 3: If an OWL class (and its instances) is used to represent a collection of 

property values for some OWL property representing an intrinsic generic property of 

substantial things, then 

• This intrinsic generic property should be represented as an OWL object property (rather 

than an OWL datatype property) 

• The domain of this property should be the class Substantial_Thing or some of its 

subclasses 

• The range of this property should be defined as the OWL class that is used to represent 

property value collection 

• The OWL class representing the property value collection should be declared a subclass 

of the Non_Substantial_Thing upper-level class (to distinguish it from substantial thing 

classes) 

The last suggestion in this section is intended to help further separate OWL classes 

and individuals used for representing property values (as discussed above) from OWL 

classes and individuals representing substantial things. Specifically, we propose that an 

upper-level class, Property_Value, is created in every ontology (as a subclass of the upper-

level class Non_Substantial_Thing), and that any OWL classes representing property values 

should be declared subclasses of this class. For example, the class Clothing_Size_Value in the 

earlier example would be declared a subclass of the class Property_Value (which also makes it 

a subclass of the Non_Substantial_Thing class). This suggestion hepls clearly identify those 

special purpose value classes (by grouping them under the same upper level class), and thus 

will help achieve better ontological clarity and consistency (since there will be more clear 

distinction and an indication of the specific type and purpose of these classes, separating 

them from the substantial thing classes). This suggestion is summarized in Modeling Rule 4: 
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Modeling Rule 4: If OWL classes and individuals are used in an OWL ontology modeling a 

real world domain, then a special upper-level class Property_Value should be included in the 

ontology as follows: 

• This upper level class Property_Value should be declared a subclass of the upper-level 

class Non_Substantial_Thing 

• Any OWL class used to represent a collection of property values for some ontological 

property should be declared a subclass of the upper level class Property_Value (and thus 

also a subclass of the upper-level class Non_Substantial_Thing^ 

To surnmarize, in all the discussed cases of mtrinsic properties (irrespective of 

whether property values for an intrinsic property are represented in O W L as predefined 

X M L Schema datatype values, enumerated datatype values, or as O W L classes and 

individuals) the same key guidelines are applicable: 

• A generic intrinsic property should be represented as an O W L property (a datatype or an 

object property depending on the selected value representation method) 

• The domain of the property should always be some subclass(es) of the SubstantiaLThing 

upper-level class 

• The range of the property depends on which property value representation method is 

chosen (it could be an X M L datatype or a special O W L class, which should be clearly 

distinguished from the substantial thing classes) 

Assuming that the guidelines proposed above are followed, we can map ontological 

intrinsic properties to a subset of the O W L properties, specifically, to those properties that 

have as a domain a class SubstantiaLThing or some its subclass(es), and have as a range either 

an X M L datatype (if property values are represented as datatype values) or a special value 

class - a subclass of the Property_Value class, which in turn is a subclass of the 

Non_Substantial_Thing class (if O W L individuals are used to represent property values). 

4.2.4 Representation of mutual properties in OWL 

This section is devoted to the discussion of how ontological mutual properties can be 

represented in O W L clearly and consistently with ontological assumptions. The discussion is 

structured as follows. First, we briefly review the concepts of Bunge's ontology which are 

relevant for the analysis of mutual properties (section 4.2.4.1). Next, section 4.2.4.2 

discussess some general considerations and possible choices of the representation method 

available in OWL. Section 4.2.4.3 provides some theoretical foundations to justify the 
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method of mutual property representation that we consider preferred. Then, in section 

4.2.4.4, the proposed method for representing bundles of mutual properties is further 

illustrated using an example, and modeling guidelines and rules for their representation are 

proposed. Finally, in section 4.2.4.5 we provide some analysis and ontological 

considerations related to the use of an alternative method of representation of mutual 

properties - direct linking of OWL individuals representing substantial things using OWL 

object properties35, and suggest some cases in which the use of such representation method 

is acceptable from the ontological standpoint. 

4.2.4.1 Relevant concepts of Bunge's ontology 

In Bunge's ontology, mutual, or relational, properties are properties that depend on 

two or more things. For example, a property of being a university student is a mutual 

property since it depends on the existence of both a person and a tertiary institution (Wand et 

ai, 1999). 

Closely related to the concept of mutual property is a notion of interaction. 

According to Bunge's ontology, things can interact. Wand et al. (1999) provide a clear and 

concise explanation of interaction and its relation with mutual properties. Following Bunge's 

ontology, they state that when two things interact, one may cause the other to change. 

Changes to things are manifested as changes to properties, which are modeled via changes in 

the values of attribute functions, i.e. changes of state. The existence of an interaction can be 

considered a mutual property of things, and conversely, the existence of a mutual property 

can indicate an interaction. For example, a mutual property that a person is employed by a 

company implies that the existence of the company affects the state of the person (and vice 

versa). If the company ceases to exist, the person loses the property of being employed by 

that company, and similarly, if the employee quits, the (set-valued) attribute of the company 

that shows its list of employees will change in value (Wand et al, 1999). A mutual property 

that reflects an interaction is termed a binding mutual property (Bunge 1977, p. 102). A 

binding mutual property implies that some changes in one thing are related to (precede, are 

accompanied by, or are followed by) changes in the other thing. A property that does not 

imply an interaction is termed non-binding, for example, "thing A is behind thing B", "thing 

A is older than thing B". 

In the following sections we discuss different cases of mutual properties and consider 

several possible mechanisms by which mutual properties of substantial things can be 

3 5 This method of representation is quite popular in current OWL practices and thus deserves special 
consideration. 
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modeled in OWL. Based on the analysis of these mechanisms, we develop representation 

patterns and propose some rules and guidelines for representing mutual properties in order to 

improve the ontological consistency and clarity of the resulting OWL ontologies. 

4.2.4.2 Mutual properties - general representational considerations 

By definition, mutual properties are shared by two or more things. Modeling Rule 1 

states that ontological substantial things should be modeled as OWL individuals that are 

instances of the upper-level class SubstantiaLThing or its subclasses. Thus, in order to model 

mutual properties properly and to comply with the earlier proposed guidelines, we need to 

use some OWL mechanism that allows associating two or more OWL individuals (as well as 

classes to which these individuals belong). Also, Guideline 3 states that ontological 

properties should be modeled as OWL properties conforming to certain constraints, which 

depend on a type of property as well on the model usage and implementation considerations. 

In the interest of ontological clarity, it is preferable that, like intrinsic properties, mutual 

properties are modeled using the same language construct, that is OWL property construct 

(as stated in guideline 3). These considerations guide our choice of modeling pattern for 

mutual properties. 

Unlike other modeling languages (such as ER. or UML), OWL does not provide any 

predefined construct for linking several entities (similar to UML association classes or 

relationships in ER). However, two mechanisms in OWL allow linking OWL individuals 

(and thus can be considered as candidate methods for representing of mutual properties): 

1) Using OWL object property construct to link two OWL individuals 

• For example, an object property Enrolledln (Student, Univesity) links student 

individuals to university individuals (represented by OWL individuals). A statement 

of a form Enrolledln (StudentX, UniversityU) in an ontology would mean that a specific 

StudentX is enrolled in a UniversityU ('being enrolled' is a mutual property here) 

• However, the problem with this method is that it only allows linking two individuals. 

Also, it does not allow the representation of bundles of related mutual properties 

shared by the same set of things, as will be demonstrated later. 

2) Defining special classes (relation classes) to link two or more OWL individuals: 

• Two or more OWL individuals (or classes) representing substantial things can be 

linked via a special OWL class. An instance of this class would represent a relation 

between a set of OWL individuals (things) that are involved in this relation (i.e. share 

some mutual properties). 
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• OWL individuals representing things that share certain mutual properties would be 

linked to the same instance of the respective relation class (i.e. an instance of the 

relation) using a special OWL object property (thus, two or more things would be 

indirectly linked together via being linked to the same relation class instance)36 

The first approach (using OWL object properties) may seem easier and more 

straightforward (compared to the second one), and it is popular in current OWL practice. 

However, we will show that from the ontological standpoint it has some drawbacks which 

limit its usefulness for representing mutual properties in an ontologically consistent way, and 

that the second approach is more universal and allows better ontological interpretation. In 

the next two sections we provide some theoretical considerations guiding our choice of the 

representation method for mutual properties, and analyze both mechanisms in more detail to 

propose rules and guidelines on their use. We argue that most cases of mutual properties can 

be represented using a second method (i.e. using special classes to link individuals), while 

the use of the first method (i.e. using OWL object properties to directly link two OWL 

individuals representing substantial things) should be limited to some specific cases only. 

4.2.4.3 Analysis and theoretical considerations 

The issue of the representation of mutual properties in conceptual models has been 

discussed in several prior research works in the area of the ontological analysis of conceptual 

modeling languages. 

In the ontological analysis of the Entity-Relationship Model (ERM) and of the 

relationship construct in particular, Wand et al. (1999) proposed that all mutual properties 

should be represented using relationship construct, whereas the entity construct should only 

be used to represent substantial things in a domain. In that paper, the authors further suggest 

that each mutual property should be represented by a separate relationship construct. 

In the research on the use of UML for conceptual modeling (Evermann 2003; 

Evermann & Wand 2001a,b) Evermann and Wand propose a slightly different approach for 

interpreting and modeling mutual properties - the approach based on interactions among 

things. In particular, the researchers note that according to Bunge's ontology mutual 

properties usually occur together, and that many mutual properties arise out of interactions 

among things. Most interactions give rise to some mutual properties. For example, a 

student's enrollment at a university (that can be viewed as a result of the 'enrollment'' 

interaction) gives rise to some mutual properties such as 'tuition fee balance' and 

3 6 A discussion of such representation of N-ary relationships in OWL can be found in Noy & Rector (2004). 
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'registration status'. A 'book loan' interaction between a library member and a library leads 

to the acquisition of the mutual properties such as 'DateOut' and 'DateDue' by both the 

library and the library member. For UML conceptual models, Evermann and Wand 

(2001a,b) propose that such sets, or bundles, of mutual properties arising out of the same 

interaction should be modeled together - as attributes of a single UML association class 

(whereas ordinary classes should only be used to represent classes of substantial things). 

They interpret a UML association class itself as a set of related concurrent mutual properties 

arising out of the same interaction. Consequently, the researchers require that different 

association classes should be used for the sets of mutual properties that are not necessary 

concurrent (e.g. they arise out of different interactions). Consequently, two ordinary UML 

classes (that represent substantial thing classes) may be linked by more than one association 

class. 

This thesis adopts (with some modifications) a similar approach as a basis for 

modeling of mutual properties in OWL. Specifically, we agree with Evermann and Wand 

(following Bunge's ontology) that identifying and analyzing interactions between things can 

help determine what mutual properties are shared by these things and how these mutual 

properties are grouped together. Thus, we suggest that if an interaction between some 

substantial things is within the scope of a model and if such an interaction gives rise to a set 

of (usually concurrent) mutual properties, then these properties should be modeled together. 

Since OWL does not provide a separate construct similar to the construct of 'association 

class' in UML, we propose, as an alternative, to define special purpose classes - 'relation' 

(or 'interaction') classes to perform a role similar to association classes in UML or to 

relationships with attributes in ERM. The next section discusses the proposed method of 

representing bundles of mutual properties in OWL in more detail, provides an ontological 

interpretation for the elements of the proposed representation model, and formulates 

modeling guidelines and rules related to representation of mutual properties in OWL. 

4.2.4.4 Modeling bundles of mutual properties in OWL using 

interaction (relation) classes 

In this section we first discuss a simple example to illustrate the suggested approach 

for modeling mutual properties, and then summarize the approach in more general form 

proposing relevant modeling rules and guidelines. 

Let us consider the following example: a person is employed by a company. From the 

standpoint of Bunge's ontology, a company and an employee (a person) are both substantial 
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things which interact (e.g. via 'employment' interaction), and, as a result, acquire and share 

a number of mutual properties, such as 'job title', 'salary', 'employment start date', and 

others. Note that we may also consider a more general mutual property - 'involved in an 

employment interaction' - also shared by these two things (a company and an employee). 

According to Bunge's ontology, the relationship between this more general property and the 

more specific properties in a bundle ('job title', 'salary', etc.) is that of property precedence 

- the possession of any of the more specific mutual properties (e.g. 'having a certain salary' 

or "having job title') by a set of things implies the possession of the preceding generic one 

('involved in employment interaction'). This observation regarding the existence of a 

general property preceding a bundle of more specific mutual properties helps in the 

interpretation of some constructs used in the modeling approach proposed below. 

The employee-employer relationship example is presented schematically in Figure 2. 

We have two substantial things, each of those things possesses some intrinsic properties 

(here 'name' and 'address' properties are shown). Both things also share several mutual 

properties (arising out of an employment interaction) such as those shown on the diagram37. 

Employee 
•ip Name 
-ip Address 

lnvolves_Employee 

Company 
-ip CompanvName 
-ip CompanvAddress 

—7 

lnvolvedln_Employment 
InvolvesjCompany/ / 

lnvolvedln_Employment 

Employment 
- mp_JobTitle 
- mp_StartDate 
- mp_Salary 

Figure 2: Schematic representation of the employment interaction example 

In OWL, we can define two classes - Employee and Company; the instances of these 

classes (OWL individuals) would represent specific employees and companies (i.e. 

substantial things). Intrinsic properties of each of these classes would be represented as 

OWL properties in accordance with Guidelines 3, 4 and Rules 3, 4 (datatype or object 

properties depending on the selected property value representation method, as discussed in 

section 4.2.3). 

3 7 A s proposed earlier, we use prefixes in property names to indicate the type of ontological property 
represented (such as 'mp_' for mutual properties or 'ip_' for intrinsic properties) 
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To represent in OWL the mutual properties shared by these substantial things, we 

propose defining a special class, e.g. Employment, which corresponds to the 'employment' 

interaction (and relates Employee and Company classes). This class does not represent any 

substantial thing (or a class of substantial things) but rather stands for a bundle of mutual 

properties arising out of the same interaction between the two substantial things (we can also 

view this class as a representation of the interaction itself). The mutual properties in this 

bundle (e.g. 'job title' or 'start date') would be represented as OWL properties (in 

accordance with Guideline 3). To represent that these mutual properties are shared by the 

substantial things Employee and Company and arise out of a particular interaction, the OWL 

properties representing them are associated with the interaction class Employment (and its 

individuals, respectively), rather than directly with the Employee or Company classes and 
38 

instances . 
In addition, we suggest that the classes representing substantial things (i.e. Employee 

and Company) should be linked to the interaction class Employment (and, thus, indirecdy, to 

the mutual properties they share) using a special OWL object property such as 

lnvolvedln_Employment. This OWL object property not only serves a practical purpose of 

linking substantial things to a bundle of mutual properties they possess but also can be 

interpreted ontologically as a representation (using OWL property construct) of the earlier 

discussed generic mutual property 'being involved in employment interaction', which 

precedes a bundle of mutual properties represented as properties associated with the 

Employment relation class. 

To summarize the example above, we propose the following approach to represent a 

bundle of mutual properties shared by substantial things and acquired as a result of an 

interaction: 

• A special 'relation' (or interaction39) class is created to represent the 'connection' 

existing between those things; this class can be viewed as a representation of the bundle 

of properties as a whole, and as a representation of the interaction among these things; 

• Individual mutual properties in a bundle are represented as OWL properties and are 

3 8 This way of representation ensures that for each shared generic mutual property both an employee and a 
company individuals will have the same value. As we discussed in section 4.2.1 (issue 4) i f we were to 
associate each mutual property from a bundle with employee and company classes separately (rather than 
indirectly through a relation class), this could lead to a company and an employee instances sharing these 
properties to possess different values for these properties. Also, the 'bundling' of the properties (concurrency) 
would not be represented in such case. 
3 9 The term "interaction class" was suggested by P. Bera as an alternative to the term 'relation class' and was 
subsequently used in a recent paper by Bera et al. (2005) (which incorporates some results of this thesis). 
Therefore, for consistency with this and future work we will use the term 'interaction class' 
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associated (through class axioms and individual facts) with the interaction class 

representing the bundle, 

• OWL classes/individuals representing the interacting substantial things (which share the 

bundle of mutual properties) are connected to the relation class (and its instances) 

through a special OWL object property. This property can be interpreted as a 

representation of an ontological mutual property of 'being involved in the relationship of 

interest' (or of 'being involved in a specific interaction'), which precedes each of the 

more specific mutual properties in the bundle. 

To formalize the approach, we propose several guidelines and modeling rules (which 

also take into consideration the earlier suggested guidelines and rules). 

Guideline 5: In OWL ontologies modeling real world domains, a set of mutual properties of 

substantial things arising out of the same interaction should be represented as OWL 

properties associated with the specially defined OWL class — an interaction class 

Guideline 6: Each interaction class represents a set of related concurrent mutual properties 

(usually arising out of the same interaction). Different interaction classes should be used if 

sets of properties are not concurrent and/or pertain to different interactions. 

Since interaction classes are special purpose classes and their instances do not 

represent substantial things, then in accordance with Modeling Rule 1 and Corollary 2, they 

should be declared subclasses of the Non_Substantial_Thing upper level class: 

Modeling Rule 5: Interaction classes should be modeled as subclasses of the upper level 

class Non_Substantial_Thing (since they do not represent substantial ontological things) 

We can further distinguish interaction classes from other types of classes in OWL 

ontologies by creating an additional upper level class for this type of classes as well as by 

using naming conventions (such as prefixes in class names). These suggestions are 

summarized in the following rule: 

Modeling Rule 6: To further distinguish interaction classes from other types of classes in 

OWL ontologies, additional methods can be employed: 

• A special upper-level class Substantial_Thing_lnteraction, can be created as a subclass of 

the upper-level class Non_Substantial_Thing. All interaction classes then would be modeled as 

subclasses of this class Substantial_Thing_lnteraction (which would also automatically make 
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them subclasses of the Non_Substantial_Thing class); 

• Also, naming conventions can be used in naming interaction classes and instances for 

easier identification (e.g. a prefix I_ or R_ (which stands for 'interaction' or 'relation') 

The next rule places some restrictions on how individual mutual properties in a 

bundle should be modeled: 

Modeling Rule 7: Each individual mutual property in a bundle of concurrent properties 

(represented by some interaction class) should be modeled as an OWL property in 

accordance with the following rules: 

• The domain of each property should be the interaction class representing the bundle 

• Use of a prefix (e.g. mp_) is recommended in the mutual property name to distinguish it 

from other types of properties (to conform to Guideline 4) 

The following modeling rule proposes how OWL classes that represent substantial 

things participating in some interaction (and thus, sharing some properties) should be linked 

to their respective interaction classes (which represent the bundles of mutual properties that 

these things share as a result of the interaction). Such linking allows tracing interactions in 

which a specific thing is involved and determining which mutual properties this thing 

possesses as a result of being involved in a certain interaction (i.e. mutual properties are 

linked to substantial things indirectly, through the respective interaction classes): 

Modeling Rule 8: A special OWL object property should be defined to link OWL classes 

(and their instances) that represent substantial things sharing a set of mutual properties to 

the interaction class that represents this set of shared mutual properties: 

• This OWL object property represents the ontological mutual property of having the 

relationship of interest (or participating in the respective interaction that gives rise to 

that set of mutual properties); 

• The domain of this OWL object property should be defined as a union of the classes that 

represent interacting substantial things related by the respective interaction class; the 

range of this object property should be the respective interaction class; 

• Use of naming conventions (e.g. a prefix 'lnvolvedln_' combined with the interaction class 

name) is recommended for such object property to explicitly show that the substantial 

things possessing it are involved in a particular interaction (to which this object property 

links them). 
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For instance, in the earlier example we defined the property InvolvedlnEmployment to 

link Employee and Company instances to instances of the interaction class Employment (which 

in turn is associated with a number of mutual properties shared by Employee and Company) 

To improve model understandability, we also recommend that interaction classes 

should be linked back to the classes of substantial things involved in the interaction. This can 

be achieved by introducing additional object properties to link the interaction class to each 

substantial thing class participating in the interaction. In the employment example above, we 

can create two properties lnvolves_Company and lnvolves_Employee, which would link 

instances of the interaction class Employment to the corresponding instances of Company and 

Employee, respectively. Such linking would help determine what types of instances 

participate in what types of interactions as well as trace the relationships at instance level. 

The next rule formulates this suggestion in a general form: 

Modeling Rule 9: For each class of substantial things involved in an interaction, a special 

OWL object property should be defined to link the OWL interaction class that represents the 

shared set of mutual properties back to the OWL classes (and their instances) representing 

the involved substantial things sharing this set of mutual properties: 

• The domain of this object property should be the respective interaction class; the range 

of this property should be defined as a union of the classes that represent interacting 

substantial things that participate in this interaction; 

• Use of naming conventions (e.g. a prefix 'InvolvesJ combined with the respective 

substantial thing class name) is recommended for such object properties to show 

explicitly that this property links the interaction class to a specific class of things 

involved in the interaction. 

We have implemented in OWL the above discussed example of employment relation 

between a company and an employee in accordance with the proposed rules. We also 

included several instances (individuals) to this example ontology to demonstrate how 

interaction instances and their specific mutual properties should be declared and linked with 

the respective instances representing substantial things. The OWL RDF/XML 

implementation of this example and some diagrams of ontology classes, instances and 

properties are included in Appendix A. 
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4.2.4.5 Notes on using OWL object properties to directly link OWL 

individuals representing substantial things 

In the previous section we proposed a general method of modeling sets of mutual 

properties shared by some substantial things using interaction classes. This method allows 

consistent modeling of mutual properties irrespective of how many things (two or more) 

share these properties and how many concurrent mutual properties are in a set. 

As discussed in section 4.2.4.2, an alternative method of 'direct linking' of OWL 

individuals is using OWL object properties. Recall that an OWL object property is a directed 

binary relation Y(x,y) where x and y both are OWL individuals. Recall also that the linked 

individuals (x and y) play different roles in this binary relation - the individual y is 

considered a value of the property P for the individual x (for example, compare: 

isParentOf(x,y) vs. isChildOf (y,x), isOwnerOf (PersonX, PetY) vs. hasOwner (PetY, PersonX)). 

In principle, OWL object properties can be used for representing some mutual 

properties. More specifically, using OWL object property construct, one can directly connect 

two OWL individuals representing substantial things that share some mutual property. For 

example, in the example discussed earlier of a person employed by a company, the property 

of 'being employed' could be modeled by defining an OWL object property IsEmployedBy 

(Employee, Company) with the class Employee as its domain and the class Company as its 

range (both would be modeled as subclasses of the class SubstantiaLThing). In addition, we 

could also define an inverse object property Employs (Company, Employee), which, in fact, 

would be a representation of the same mutual property but from the company's perspective 

(i.e. property names reflect the roles of the employee and company in the relationship, 

respectively). 

This way of representing relationships between OWL individuals is commonly used 

in current OWL practices. However, from the ontological standpoint the use of OWL object 

property construct for representing mutual properties has a number of limitations. 

First, as noted earlier, this method only allows linking two OWL individuals, whereas 

in Bunge's ontology mutual properties can be shared by any number of things. Even though 

in some cases N-ary relations can be replaced by a set of binary ones, the use of such binary 

representations instead of the N-ary one may lead to a loss of information conveyed by a 

model (Wand et al, 1999). 

In addition, this method of representation does not allow 'grouping' concurrent 

properties and their specific values, which may lead to ambiguities and information loss. For 

example, the same person may be employed by several companies and for each of these 
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companies he has a different start date, job title and salary. Using only OWL object 

properties as direct binary links between employee individual and different company 

individuals we would not be able to correctly represent these properties in such a way that 

allows determining which values of these properties are related to which employment (i.e. 

with which company) for this person. For example, this person would have multiple values 

for properties such as WorksFor and hasSalary (represented as statements of a form WorksFor 

(PersonX, Companyl), WorksFor (PersonX, Company2), hasSalary (PersonX, $40,000), hasSalary 

(PersonX, $50,000). However there is no way here to determine which salary a person has in 

which company because we only have binary properties. 

A similar issue (related to the use of binary links between classes) was raised by 

Evermann (2003) with respect to the use of simple (or 'ordinary') associations for modeling 

mutual properties when using UML for conceptual modeling40. He argues that simple 

associations are employed in UML to enable message passing, which is a design related 

concept that does not have a Bunge-ontological equivalent. For this reason as well as in the 

interest of ontological clarity41, he proposed that UML associations are ontologically 

excessive and should not be employed for conceptual modeling of mutual properties - such 

properties should only be modeled as attributes of association classes. For example, 

according to this recommendation the mutual property of 'being employed' would not be 

modeled in UML as a simple association between Person and Company classes, but instead an 

association class should be used with the attributes such as 'Job Title', 'Salary', etc. (which 

represent the mutual properties resulting from this interaction). Another rule for UML 

proposed in (Evermann, 2003) states that "Every ordinary association must be an association 

class" (Evermann, 2003, p.72). 

The use of OWL object properties for modeling mutual properties of two things is 

somewhat similar to the use of simple associations in UML for modeling mutual properties. 

However, in this thesis research we refrain from completely proscribing the use of OWL 

object properties for direct linking of individuals representing substantial things, as this is a 

quite useful and widely employed OWL mechanism, which in many cases enables concise 

representation and efficient reasoning42. Rather, we propose that the use of OWL object 

properties in this context (i.e. for linking substantial thing instances and classes) should be 

4 0 In U M L models, classes can be either linked by simple associations (without the use of association classes), 
which is somewhat similar conceptually to OWL object properties, or via association classes 
4 1 Specifically, this research tried to avoid the situation where mutual properties are modeled by two different 
U M L constructs - associations and attributes of association classes. 
4 2 For example, additional property characteristics may be easily defined for OWL object properties such as 
transitivity or symmetry (which may be more difficult to represent when using the interaction class approach) 
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restricted to a number of particular situations only and be guided by certain rules. 

Specifically, we suggest that in ontologies representing real-world domains, OWL 

object properties can be used to associate two substantial things directly only in the 

following two cases: 1) when only the fact of the existence of the relationship between two 

substantial things (a property in general) needs to be represented (and interaction details and 

its related mutual properties are outside of the scope), or 2) when a non-binding mutual 

property between two things has to be represented. Below, each of these cases is discussed in 

more detail. 

1) Cases when only the existence of a general relationship (mutual property) 

between only two substantial things needs to be represented 

Details of certain interactions between things (and thus certain mutual properties 

arising out of them) may be outside of the scope of a particular ontological model. For 

example, let us consider a mother-child relationship between two persons. A modeler 

developing an ontology about people may not be interested in the interaction that gave rise to 

this relationship (i.e. 'child birth') and, thus, would not need to represent in this ontology all 

the details of the 'child birth' interaction and of the associated mutual properties (such as 

birth date and time, birth place, etc.). In such a case, one may only need to represent the 

existence of the relationship between a pair of OWL individuals representing persons (i.e., 

the fact that persons have mothers and/or are mothers of some persons). In other words, a 

modeler may only want to be able to state that a particular person is a mother of (or has as a 

mother) another particular person. For such cases, it is sufficient to use of a pair of mutually 

inverse OWL object properties such, as for example, isMotherOf (PersonX, PersonY) and 

hasMother (PersonY, PersonX). Using interaction classes would be too cumbersome and 

unnecessary in this case. 

Note that in the cases as above OWL syntax does not require defining inverse 

properies for OWL object properties43. However, from the ontological standpoint we argue 

that if a general mutual property (the existence of some relationship) is represented by an 

OWL object property, then a pair of mutually inverse properties should be modeled in the 

ontology so that each of the two individuals representing substantial things sharing this 

mutual property is associated with the OWL property representing this mutual property 

(rather than just one of the two individuals). Similarly, at the instance level, if both 

properties are defined then the statements regarding the relationship can be made for both 

4 3 That is, an O W L ontology (e.g. some ontology about people) would still be a valid ontology even if only one 
of the two mutually inverse properties (e.g. only isMotherOf) is defined. 
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mothers and children (i.e. for all substantial things sharing a property rather than just for one 

side of the relationship)44. 

The representation approach outlined above is summarized in the following rule: 

Modeling Rule 10: In OWL ontologies modeling real world domains, if an OWL object 

property is used to represent the existence of a relationship between two substantial things 

(i.e. a mutual property of having this relationship), then 

• Two mutually inverse OWL object properties should be defined to link two individuals -

instances of two classes A and B respectively, where A and B are classes of instances 

representing substantial things having a relationship 

• One of these two properties should have the class A as its domain and the class B as its 

range, while the other property should have the class B as its domain and the class A as 

its range 

• Use of naming conventions (such as a prefix 'mp_')) is recommended for both these 

object properties to indicate that they represent a mutual property (existence of the 

relationship) shared by the two things 

For example, there may be two classes in some ontology, Pet and PetOwner, the 

instances of which represent substantial things in our domain (i.e. specific pets and pet 

owners, respectively). One may want to represent a general 'pet ownership' relationship (i.e. 

a shared mutual property) between pet owners and their pets. In accordance with Rule 10, 

one would define two mutually inverse properties, e.g. mp_hasPet (with the domain PetOwner 

and the range Pet), and mp_hasPetOwner (with the domain Pet and the range PetOwner). To 

represent relationships between specific pets and pet owners, onw would include the 

assertions (facts) in the ontology of the form mp_hasPet (X, Y) and mpJiasPetOwner (Y, X). 

To conclude the discussion of this example, we would like to address an additional 

issue related to ontology modification or expansion. Even though some interaction and its 

related mutual properties may be considered outside of the scope of the ontology by one 

modeler, another modeler may decide to reuse and expand the initial ontology and may 

consider this particular interaction to be within the scope of this expanded model. In this 

case, he or she can expand the initial ontology by using the 'interaction class method' of 

representing mutual properties as in section 4.2.4.4 (i.e. add a special interaction class to 

represent the set of mutual properties arising out of the interaction and link this interaction 

4 4 O f course, one needs to ensure consistency in the values for mutually inverse properties, i.e. HasMother (X, 
Y ) implies isMotherOf (Y, X) i f properties are declared to be mutually inverse in O W L (otherwise the ontology 
would be inconsistent). Reasoning applications are able to detect such inconsistencies. 
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class to the relevant substantial thing classes using OWL object properties). 

The presence in the expanded ontology of both the mutually inverse properties 

directly linking substantial thing classes (and representing the general existence of some 

relationship) and of the interaction class with its associated detailed mutual properties 

creates redundancy, which, albeit allowed by OWL 4 5, however requires extra efforts from 

modelers to ensure consistency in the respective property value statements for individuals. 

For example, we may end up having both a pair of properties IsEmployedBy / Employs linking 

Employee and Company instances directly as well as the interaction class Employment liriking 

the Employee and Company instances indirectly to a set of mutual properties (salary, job title 

etc). In this case, consistency needs to be ensured both at the class and at the instance level. 

To help enforce such consistency more complicated OWL mechanisms can be employed, 

such as recently proposed SWRL rules language statements (Horrocks & Patel-Schneider, 

2004), which allow the representation of the dependence between property values in the of 

so called rules (for example, we can state that having certain property values for the 

mutually inverse properties for the individuals representing certain substantial things implies 

that each of these individuals is also linked to the same instance of the interaction class that 

models a set of mutual properties pertaining to this interaction). 

From the conceptual modeling standpoint, such redundancy is undesirable since it 

undermines ontological clarity and consistency, and thus may lead to problems with model 

understanding and interpretation by people and, consequently, by applications. Therefore, 

we recommend that wherever possible modelers should use the more universal 'interaction 

class' approach if there is any possibility that in the future more details about interactions 

and their associated mutual properties may need to be represented or if more than two 

interaction participants sharing properties may come into the scope of the ontology (the latter 

would also require the use of interaction classes rather than direct linking using object 

properties). 

2) Using OWL object property for modeling non-binding mutual properties of 

two things 

According to Bunge's ontology, some mutual properties - non4)inding properties -

are not associated with any interaction, for example, "thing A is behind thing B" or "thing A 

is older than thing B". We propose that in cases when such a non4oinding property is shared 

4 5 O W L allows redundancy, and redundant statements are often included in O W L ontologies to allow greater 
flexibility and efficiency in reasoning. However, redundancy may lead to ambiguity and logical inconsistency 
i f not used carefully. It is up to modelers to ensure the logical consistency of the ontology, and reasoning tools 
are able to perform consistency checking. 
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by only two things, then it can be represented using an O W L object property, for example, 

isBehind (thingA, thingB) or isOlderThan (thingA, thingB). Therefore, we propose the following 

rule: 

Modeling Rule 11: A non-binding mutual properly shared by two substantial things can be 

represented using an OWL object property to link the two OWL individuals representing 

those two things. 

Note however, that irrespective of whether a mutual property is binding or non-

binding and whether interaction is outside of the scope, in cases when more than two things 

share some property, we would still need to use the relation (or interaction) class approach to 

link more than two things indirectly (since OWL object properties can only link two things) 

To summarize the analysis of mutual property representation, we have discussed two 

main methods of mutual property representation: 1) using interaction (relation) classes - a 

more universal approach applicable for indirect linking of two or more things sharing any 

number of mutual properties, and 2) using OWL object properties for direct linking of two 

things only - an approach applicable only in specific cases. While these two approaches 

employ and combine OWL constructs in different ways to represent mutual properties and 

things possessing them, in both approaches the ontological construct of mutual property is 

represented by OWL property construct, which is consistent with Guideline 3 and with the 

proposed mapping of ontological properties to a subset of OWL properties. Guided by the 

ontological foundations, we have roposed some rules and guidelines recommending in which 

situations and how each of these representation methods should be used. 
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4.3 REPRESENTATION OF CLASSES 

The concept of class is widely used in conceptual modeling, object-oriented design, 

data modeling, knowledge representation, and ontological engineering. This is not surprising 

since in everyday life people automatically classify things into categories and relate to the 

things by these classes (Parsons & Wand, 2000). We usually conceive of a thing as an 

instance of a certain type of things. The first step in constructing a conceptual model or an 

ontology is usually the identification of a set of the fundamental concepts to describe a 

domain. These concepts are represented in fhe model as classes or types. Classification 

involves forming concepts (also termed categories or classes) to abstract common 

characteristics of instances and assigning new instances into these categories (Parsons & 

Wand, 1997). 

The discussion of the representation of classes is structured as follows. First, we 

provide a brief description of classes and mechanisms of their definition in OWL. Then, we 

discuss how classification is understood in the Bunge's ontological model and in some other 

theories such as the concept theory. We review classification-related concepts of Bunge's 

ontology, such as classes, kinds and functional schema, and compare them to OWL 

classification related constructs and mechanisms. Based on this comparative analysis and 

theoretical foundations from ontology and classification theory, we propose 

recommendations on modeling classification related aspects of real world domains in OWL 

in a way consistent with ontological and cognitive foundations. In addition, we propose an 

ontological interpretation for some of the classification-related functionality in OWL. 

4.3.1 Classes in OWL - an overview 

To facilitate further analysis and comparison of classification in OWL and in 

Bunge's ontology, this section briefly reviews what classes are in OWL ontologies and how 

they can be defined. 

OWL is based on the Description Logics (DL) and differs from other conceptual 

modeling and object-oriented modeling languages (such as ERM, UML or OOM) in its 

approach to representing classes and associating them with properties. For example, in 

object-oriented languages, such as UML, a class is a description of a set of objects that share 

the same attributes and operations. The classes play a role of templates or 'object factories' -

objects depend on classes and cannot exist without them. Also, in object-oriented models 

properties are always linked to classes while in OWL this is not necessarily the case (as we 

will see in the next section). Objects are created from class templates, that is, an object as a 
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class instance possesses all the methods and attributes defined for its class (Evermann, 

2003). Thus, an object-oriented class (e.g. UML class) is a description of a number of similar 

objects. 

In OWL, classes are used to represent concepts in a domain of discourse. They 

provide an abstraction mechanism for grouping resources with similar characteristics. The 

OWL language guide (McGuinness et al, 2004) states: "Many uses of an ontology depend 

on the ability to reason about individuals. In order to do this in a useful fashion we need to 

have a mechanism to describe the classes that individuals belong to and the properties that 

they inherit by virtue of class membership. We can always assert specific properties about 

individuals, but much of the power of ontologies comes from class-based reasoning. " 

Every OWL class is associated with a set of individuals called the class extension. 

Individuals usually represent objects in the domain of discourse. The individuals in the class 

extension are called instances of the class. Generally, it is intended that classes should 

correspond to naturally occurring sets of things in a domain of discourse and individuals 

should correspond to actual entities that can be grouped into these classes (McGuinness et 

al., 2004). 

Classes in OWL are described by so-called class descriptions, which are combined 

into class axioms. A class description describes an OWL class, either by a class name or by 

specifying the class extension of an unnamed (or anonymous) class. Class axioms contain 

components that state necessary and/or sufficient characteristics of class membership. 

In particular, OWL allows the following types of class descriptions: 

1) class identifier 

A class in OWL can simply be declared by name, without specifying any further 

information about it. For example, we can declare a class Human as follows: 

<owl:Class rdf:ID="Human"> 

If a class is declared in this way, statements can be made about individuals being 

instances of this class, for example: 

<Human rdf:ID="Mike"> '. 

However, this basic representation does not tell much about the concept represented by 

the class or about common properties of its instances, and thus, while valid syntactically, is 

not particularly useful on its own. 

2) exhaustive enumeration of individuals that together form the instances of a class 

69 



(i.e. enumerating class extension) 

A class in O W L can be defined by enumeration of all its instances (using a special 

constructs owl:oneOf and rdf:parsetype="Collection"). For example, the following syntax defines 

an unnamed class of all continents (which are represented as O W L individuals46): 

<owl:Class> 
<OWL:one of rdf:parseType="Collection" 
<owl:Thing rdf:about="#Eurasia"> 
<owl:Thing rdf:about="#Africa"> 
<owl:Thing rdf:about="#NorthAmerica"> 
<owl:Thing rdf:about="#SouthAmerica"> 
<owl:Thing rdf:about="#Australia''> 
<owl:Thing rdf:about="#Antarctica,'> 

<\owl:Class> 

3) property restriction 

As already discussed briefly in section 2.2.4., a property restriction describes an 

anonymous (unnamed) class of all individuals that satisfy certain constraints on a property. 

Property restrictions are used as parts of class descriptions. O W L distinguishes two kinds of 

property restrictions: value constraints and cardinality constraints. A value constraint puts 

constraints on the range of the property when applied to a particular class description (within 

the scope of a particular class axiom). A cardinality constraint puts constraints on the 

number of values a property can take, in the context of a particular class description. 

Through the use of property restrictions as parts of class axioms, classes can be 

associated with properties. That is, necessary and/or sufficient conditions for class 

membership can be specified in a class definition through constraints on O W L properties, 

specifically, on the allowed ranges of property values (value constraints) and/or on the 

number of values allowed for specific properties (cardinality constraints). 

For example, one can consider an object property hasParent that links an O W L 

individual to another O W L individual that represent its parent. Using the existential qualifier 

owhsomeValuesFrom on this object property, we may specify an unnamed class of individuals 

who have at least one parent who is a student (i.e. the set of individuals that possess at least 

one value for the object property hasParent that is an instance of the class Student): 

<owl:restriction> 
<owl:onProperty rdf:resource="#hasParent" /> 
<owl:someValuesFrom rdf:resource="#Student" /> 

</owl:restriction> 

The syntax <Owl:Thing rdf:about="..."> declares an O W L individual as an instance of the built-in top class 
owlThing. 
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The instances of this anonymous class would be all OWL individuals that satisfy the 

specified condition. 

Similarly, we can consider another OWL object property, hasChild, which would link 

an OWL individual to other OWL individuals that represent its children. Using minimum 

and maximum cardinality constraints on this object property, we can specify an anonymous 

class of individuals that have at least 1 and at most 4 children: 

<owl:restriction> 
<owl:onProperty rdf:resource:='#hasChild'7> 

<owl:minCardinality 
rdf:datatype="http://wvvw.w3.org/2001 /XMLSchema 
#nonnegativelnteger">1</owl:minCardinality> 

<owl:maxCardinality 
rdf:datatype="http://www.w3.org/2001/XMLSchema 
#nonnegativelnteger">4</owl:maxCardinality> 

</owl:restriction> 

As will be shown later in section 4.3.4, the OWL method of defining classes based 

on property restrictions is the most relevant to this work, since we have adopted the 

ontological view of classes based on sets of shared properties, and thus require a 

representation mechanism in OWL that would allow the association of classes with 

properties. 

4) Set operators: intersection, union and complement of class descriptions 

OWL allows the construction of more complex (nested) class descriptions by 

combining class descriptions (of anonymous or named classes) using set operators. The three 

types of class description combinations - intersection, union, and complement - correspond 

to the standard set-theoretic operators - the AND, OR and NOT operators on class 

extensions, respectively. OWL provides three language constructs implementing these 

operators - owkintersectionOf, owkunionOf, and owhcomplementOf. They can be used in nested 

class descriptions, with either one (complement) or more than one class (union, intersection). 

An owhintesectionOf statement describes a class for which the class extension 

contains precisely those individuals that are members of the class extension of all the class 

descriptions in the list. It is analogous to the logical conjunction. For example, one can state 

using this construct that the class WhiteCar is exactly the intersection of the class Car and of 

the set of things that are white in color (i.e. of an anonymous class defined as a property 

restriction of a form hasValue="#Wriite" on the property hasColor). 

An owkunionOf statement describes an anonymous class the class extension of which 

consists of those individuals that belong to at least one of the class extensions of the class 
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descriptions in the list. It is analogous to the logical disjunction. For example, the class 

extension of the class Fruit can be stated (using owkunionOf) to include the instances of both 

the extension of the SweetFruit class and the extension of the NonSweetFruit class. 

An owl:complementOf statement describes an anonymous class for which the class 

extension contains exactly those individuals that do not belong to the class extension of the 

class description that is the object of the statement. It is analogous to the logical negation. 

For example, the class of all things that are "not meat" can be represented in OWL as the 

class defined as the complement of the class Meat, i.e. the extension of this class "non-meat" 

contains all individuals that do not belong to the class Meat. 

Class descriptions serve as building blocks for defining classes through class axioms. 

Class axioms contain components that state necessary and/or sufficient characteristics of 

class membership. OWL provides three language constructs for combining class descriptions 

into class axioms: rdfs:subClassOf, owhequivalentClass, and owl:disjointWith. 

Using rdfs:subclassOf construct, we may state - in a class axiom form - that a subclass 

relation exists between two OWL classes. If some class description CI is stated to be a 

subclass of some other class description C2, this means that the set of individuals in the class 

extension of CI is a subset of the set of individuals in the class extension of C2. Subclass 

relations provide necessary conditions for belonging to a class (i.e. an instance of the class 

CI is necessarily an instance of the class C2). An OWL class can be included in any number 

of rdfs:subclassOf axioms. 

The construct owhequivalentClass allows expressing in a class axiom that the two class 

descriptions involved have the same class extension (i.e. that both class extensions contain 

exactly the same set of individuals)47. Such equivalence class axioms allow expressing 

necessary and sufficient conditions for class membership. In particular, as will be shown 

later, one can define a named class as a set of individuals sharing some properties by stating 

that this named class is equivalent to an anonymous class defined as an intersection of 

certain property restrictions representing some constraints on the above shared properties. 

4.3.2 Theoretical foundations - classification in Bunge's ontology and 
concept theory 

This section briefly reviews some theoretical foundations related to classification that 

guide our further analysis and the development of modeling rules and guidelines for classes. 

4 7 Note that equivalence here means that class extensions (i.e. sets of class instances) are the same. However, 
the concepts represented by classes may not be equal (i.e. intensional meaning of classes may be different). For 
example, "Graduate student" and "Research Assistant" may be different concepts but the class extensions 
might be the same in a context of some university. 
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In particular, we discuss how classification is viewed in Bunge's ontology and mention some 

basic concepts of classification (or concept) theory. 

In Bunge's ontology, the primary constructs are things and properties. Classification 

implies the existence of things and their properties (Parsons & Wand, 2000). Things can 

have one or several properties in common. Furthermore, their properties might be subject to 

the same laws. This gives rise to the concepts of class, kind and natural kind. The following 

definitions taken from Wand et al. (1999) and Evermann (2003) are based on original 

definitions from Bunge's works (Bunge 1977, 1979): 

• A class in Bunge's ontology is a set of things possessing a common property 

• A kind is a set of things having several properties in common 

o Note that if the shared set of properties is finite, then a kind is also a class (since 

we can always consider a compound property of possessing all the properties in 

this finite set defining a kind). 

• A natural kind is a set of things adhering to the same laws 

o Since by definition laws relate properties, a natural kind implies a set of 

properties as well. As laws determine possible states, a natural kind is the set of 

things that exhibit like behavior. 

It is important to note that all the above concepts (class, kind and natural kind) refer 

to sets of things, not descriptions or templates of things. Also, they all are defined over 

existing sets of things. This implies that in Bunge's ontology, there can not be a class, a kind 

or a natural kind without any members. 

Another concept of Bunge's ontology that is relevant to the discussion of 

classification is the concept of functional schema. Recall that according to Bunge's 

ontology, humans conceive of things in terms of models of things. Similar things can be 

represented by the same model. A functional schema is a set of state functions, which are 

usually functions of time indicating the value of the properties of a thing at a particular point 

in time (although other frames of reference are possible). These state functions represent 

properties in general of the things, whereas the values of these functions express individual 

properties of things (Bunge 1977; Evermann & Wand, 2001). Any thing can be described by 

more than one such schema depending on a model's purpose. Because a functional schema is 

just a model created for a certain purpose, the properties represented in a functional schema 

depend upon the circumstances and the purpose of modeling things. For example, a person 

may be viewed as an employee, a customer, or a taxpayer, and each of these views can be 

represented by different functional schemas focusing on the properties important for a 
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specific view (Wand et al., 1999). 

There exists an important relationship between the concepts of class, kind and natural 

kind and the concept of a functional schema. As pointed out in Wand et al. (1999), a 

functional schema is based on a representation of a partial set of properties and, hence, can 

be conceived as a model of a class or kind. In other words, a functional schema is a model of 

a set of things that have similar properties and laws. This observation will be important for 

our further analysis of classes in OWL. 

Classification issues are also the subject matter of another research area -

classification, or concept, theory. This discipline has emerged from the intersection of 

cognitive psychology and linguistics. Classification theory addresses questions of what are 

concepts, classes, and categories, why they are important and how they are acquired 

(Parsons & Wand, 1997). According to the concept theory, a class identifies a measure of 

similarity among its instances. One way in which similarity can be operationalized is 

through the sharing of properties. 

Parsons & Wand (1997, 2000) note in their research on the application of the 

classification theory and ontology to IS modeling that two major functions of classification 

are recognized in the concept theory. First, classification provides cognitive economy. By 

identifying a group of entities as similar in some way(s) through classification (for example, 

focusing on a number of shared properties), some knowledge can be stored within the class 

rather than repeated for all instances. In that respect, a classification is useful when there are 

meaningful differences among classes, where "meaningfulness" depends on a model's 

purpose or context (Parsons & Wand, 1997). Second, classification enables inference. It is 

often possible to classify an instance based on a strict subset of its properties (also termed 

class identifying properties), and to infer the presence of other, unobserved, properties 

(inferred properties) by virtue of that classification (Parsons & Wand 1997; Parsons & 

Wand, 2000). 

To summarize the theoretical discussion, in both ontology and classification theory 

the notion of thing or instance is fundamental and precedes the notion of classes. In other 

words, humans first recognize that things exist, then based on various considerations (which 

are usually dealt with in cognition) form classes to organize their knowledge about the 

properties of individual things. Classes (or concepts) are abstractions created by humans in 

order to describe useful similarities among things, and the particular choice of classes (a 

view) depends on the application (Parsons & Wand, 2000). 
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4.3.3 Comparing classes in OWL to the ontological notion of classes 

Comparing classification-related concepts in OWL to those in Bunge's ontology, we 

can make a number of important observations. 

First, classes, kinds, or natural kinds in Bunge's ontology are all sets of things 

(satisfying certain constraints such as possessing a common property, a number of common 

properties, or exhibiting the same type of behavior). They are not descriptions or templates 

for sets of things. OWL construct equivalent to that would be the concept of class extension. 

The class as a whole in OWL is intended to represent some concept in a domain of interest, 

whereas a class extension is a set of the class instances (individuals). Therefore, we propose 

to map classes, kinds, and natural kinds to OWL class extensions (representation mapping): 

Guideline 7: Bunge's ontological classes, kinds, or natural kinds as sets of substantial 

things correspond to OWL class extensions (i.e. sets of OWL individuals representing 

substantial things). 

Recall that in Modeling Rule 1 we proposed that OWL classes with individuals 

representing substantial things should be distinguished from the OWL classes and 

individuals that do not represent substantial things. We suggested the implementation of this 

distinction in OWL using two disjoint upper-level classes SubstantiaLThing and 

Non_Substantial_Thing. From this recommendations and the Guideline 7 above follows 

another representation rule - a necessary condition for an OWL class extension to be 

considered a representation of an ontological class or kind: 

Modeling Rule 12: If the class extension of some OWL class is intended to represent an 

ontological class, kind, or natural kind, then such class should be declared a subclass of the 

upper-level class SubstantiaLThing. 

However, it is important to note that not every class extension in OWL would be a 

representation of some ontological class or kind. First, as we mentioned earlier, some OWL 

classes and individuals do not represent ontological substantial things, therefore their class 

extensions will not correspond to any ontological classes or kinds. Also, while OWL 

provides a number of ways to describe OWL classes using class descriptions and class 

axioms, some of these descriptions do not have an ontological interpretation and may result 

in classes with extensions that do not correspond to any ontological classes, kinds or natural 

kinds. 

For example, OWL allows defining a class simply by name, without specifying any 

further information about it and without associating any property restrictions with this class. 
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Then, individuals can simply be declared to be instances of such a class using individual 

axioms. For example, we can declare a named class Student, and also declare that some 

individuals are instances of this class. Such declaration would be syntactically valid in 

OWL: 

<owl:Class rdf:ID="Student"> 
<Student rdf:ID="John_Smith"> 
<Student rdf:ID="Jane_Doe"> 

However, from the Bunge's ontological standpoint, the class Student defined simply 

by name is not a proper model (functional schema) of the set of things that are students. On 

one hand, one may argue that we may interpret a set of things that are students as a class, 

which is a set of things possessing a common property of "being a student", or even as a 

natural kind (since students exhibit similar behavior - attend classes, pay tuition, etc.). 

However, the above O W L class as a model does not represent any properties (except for the 

very generic one of "being a student"), therefore it is not very useful from the ontological 

and cognitive standpoint. Without any property information, such representation supports 

neither cognitive economy nor inference abilities as no information about common 

properties is provided (Parsons & Wand, 1997). 

Similarly, O W L allows defining a class simply by the enumeration of its instances. 

Again, as in the previous example, no information about properties would be represented in 

this type of a class description, therefore, such model is not very useful and does not 

correspond to the ontological notion of classes, which is based on properties. Additional 

problem is that any enumeration of individuals can be declared to be a class in OWL, while 

not all sets of things can be considered classes or kinds in the ontological sense, let alone the 

issue of whether it would be a 'good' or 'useful' class. 

Due to the above considerations, we recommend that these two methods of defining 

classes in O W L (only by name or only by enumeration) should not be used as a sole means 

of modeling classes the extensions of which are intended to represent ontological classes, 

kinds or natural kinds 4 8: 

Modeling Rule 13: In OWL ontologies representing real world domains, if an OWL class is 

intended to model an ontological class or kind, then it should not be defined only by class 

name or only by direct enumeration of instances (i.e. without representing any information 

4 8 Rather, we will propose later in this section that using class definitions based on property restriction class 
descriptions is a preferred method from the ontological and cognitive standpoint for ontological classes/kinds. 
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about common properties of class instances)' 

Modeling Rule 1 and Corollary 2 require that all classes the instances of which 

represent substantial things should be modeled as subclasses of the upper-level class 

SubstantialThing. From that and the above Modeling Rule 13 follows another corollary: 

Corollary 7: In OWL ontologies representing real world domains, subclasses of the class 

SubstantiaLThing shoul7 not be defined simply by class name or by enumeration of instances 

(i.e. without representing any information about common properties of class instances) 

The requirement of the above Rule 13 (and Corollary 7) may be viewed as too 

restrictive by some O W L ontology developers because some lightweight ontologies are often 

modeled simply as class hierarchies without including any class axioms about properties of 

those classes. We agree that for such lightweight ontologies (taxonomies) the issue of 

modeling properties may not be relevant, but the main focus of this research is the 

development of more expressive ontologies (in O W L DL), which would include not only 

classes but also properties and possibly individuals. For such ontologies, we consider the 

Rule 13 relevant and appropriate. In fact, the O W L language guide (McGuinness, et al. 

2004) also stresses the importance of properties stating (when discussing properties) that the 

"world of classes and individuals would be pretty uninteresting if we could only define 

taxonomies" and that "properties let us assert general facts about the members of classes and 

specific facts about individuals". 

Another potential issue may arise in cases where modelers may believe that a certain 

group or type of things is different from other things (and thus deserves being modeled as a 

class) but they may not be able to point out specific properties which differentiate this set of 

things from other things. While we acknowledge that this problem may occur, we still 

believe that it would be beneficial for modelers (and would improve the resulting ontology) 

to identify one or more properties (intrinsic or mutual, which could also be participation in 

some interaction) that things in this class share and model them accordingly. 

4.3.4 Modeling functional schemas and ontological classes/kinds in OWL 

As mentioned earlier in section 4.3.2, in Bunge's ontology classes, kinds and natural 

kinds (which are all sets of things) can be modeled using functional schemas. A functional 

4 9 Note that our recommendations pertain to the conceptual modeling aspects of OWL ontologies. We do not 
proscribe using any class description types for classes that do not represent substantial things or for 
implementation related concepts. Furthermore, these types of class descriptions (named or enumerated classes) 
can still be present in an ontology provided that additional property based class descriptions for these classes 
are also included. 
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schema is a model of a set of things that have similar properties and laws, and hence it can 

be conceived as a model of a class or a kind (Wand et al., 1999). Ontological properties 

represented in a functional schema (via state functions) depend upon the circumstances and 

the purpose of modeling. 

We propose that functional schemas, which are models of Bunge's classes or kinds, 

can be modeled in OWL as OWL class definitions based on class descriptions and class 

axioms that include property restrictions on OWL properties (these properties, in turn, 

represent the respective ontological properties shared by Bunge class members and modeled 

by state functions in the considered functional schema). Modeling ontological functional 

schemas as OWL classes defined by property restriction class descriptions, also allows 

modeling ontological classes and kinds as sets of things - they would correspond to the class 

extensions of the OWL classes representing the respective functional schemas. The proposed 

representation mapping is schematically depicted in Figure 3: 

Bunge's constructs OWL constructs 

Functional Schema 
(set of state functions 

representing properties) 

• 

is represented as 
OWL class definition 

based on an intersection of 
property restrictions 

Functional Schema 
(set of state functions 

representing properties) 

OWL class definition 
based on an intersection of 

property restrictions 

is a model of 

is modeled by r 1 \ j s associated with 

Class/ kind 
(set of things determined 

by shared properties) 

is represented as OWL Class Extension 

Figure 3: Mapping of Bunge's classes/kinds and functional schemas to O W L constructs 

To illustrate the proposed approach for modeling functional schemas and Bunge 

classes or kinds), we first discuss a simple example. Then, we propose some rules on 

modeling classes and kinds in OWL. 

For example, we can consider a class of persons described by a functional schema 

that includes state functions representing common intrinsic properties of instances (persons), 

for example, 'name', 'date of birth', and 'gender'. In OWL, we can represent this functional 

schema as follows. We declare a named class Person and three OWL properties representing 

the above ontological properties50: 

We are using our earlier proposed naming conventions to indicate that properties are intrinsic. 
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1) a datatype property ip_PersonName (with the range of values of the X M L datatype 
String), 
2) a datatype property ip_DateOfBirth (with the range of values of the X M L datatype Date), 

3) a datatype property ip_Gender (with the enumerated range of values: " M " or "F" which 
stands for male or female)51. 

Recall that in OWL, properties and classes are in general independent of each other. 
In order to associate classes and properties, i.e. define classes by specifying conditions on 
certain properties, one needs to use property restrictions in class descriptions. In accordance 
with our functional schema, we need to state that every instance of the class Person 
necessarily possesses each of the properties of the schema. Specifically, each Person instance 
has to possess some value for each of the three general properties that are modeled by state 
functions of the schema (i.e. a specific property corresponding to each general property). In 
this simple example, we assume that each person possesses exactly one value for the 'name', 
'date of birth', and 'gender' properties; therefore, in OWL representation we can use 
owl:Cardinality constraint in restrictions on each of the properties52. 

In order to specify a necessary condition for all instances of some class in terms of a 
restriction on some property in OWL, we need to declare that the class (i.e. class Person in 
our case) is a subclass of an anonymous class of all things that satisfy this property 
restriction. For example, if a class Person is declared to be a subclass of all things that have 
name, this implies that all instances of the class Person have name. In our case we need to 
state that all instances of the class Person satisfy a certain restriction (of possessing a 
property, e.g. cardinality=l) for each of the three properties. Thus, we need to state (using 
class axioms) for each of the three properties, that the class Person is a subclass of the 
anonymous class defined by the respective property restriction (in this example, the 
"cardinality 1" restriction). Or, equivalently, we can state that the class Person is a subclass 
of the intersection of the three anonymous classes, each of which is defined by the respective 
property restriction. This situation is illustrated schematically in Figure 4 below. The 
instances of the class Person are also instances of each of the three anonymous classes 
defined by property restrictions: things that have name, things that have date of birth, and 
things that have gender. The OWL RDF/XML representation of this example can be found 
in Appendix B. 

5 1 The values for the property 'gender' could also be represented using special value classes and individuals as 
discussed in section 4.2.3.2 (in this case an object property would have to be used). Whether a datatype or 
object property is used is not relevant in this discussion and does not affect the proposed approach. 
5 2 If more than one value is allowed for a state function, then we can use minimum and maximum cardinality 
constraints in property restrictions in class descriptions. 
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(Bunge's) Functional Schema 
Person (model of the class) 

- Name" 
-Dateof Bir th^--
-Gender 

(Bunge's) Functional Schema 
Person (model of the class) 

- Name" 
-Dateof Bir th^--
-Gender 

\ 
% intrinsic properties -

represented byClWL properties 

isaModelOf 

OWL class Person 
defined as a subclass of the intersection of 

three property restriction classes 

isaModeledBy 

(Bunge's) Class Person 
(set of things sharing 

certain common 
properties) 

Figure 4: Schematic illustration of modeling ontological classes in O W L (an example) 

Note that like in the example above, a functional schema usually represents a partial 

set of common properties of a set of things (it can be considered a view of a set of similar 

things). That is, for example, not all things that have gender, date of birth and name are 

necessary persons (e.g. it could be a pet). Therefore, we modeled this case in OWL as a 

necessary condition rather than necessary and sufficient one (necessary and sufficient 

condition would mean that the Person class extension is the same set as (or "equals" to) the 

intersection of the above three anonymous property restriction classes). If for the class in 

question there exists a subset of properties sufficient for classifying an instance (such 

properties are termed class identifying properties in Parsons & Wand (1997)), then in OWL 

ontology we can define a class axiom for that class that represents necessary and sufficient 

conditions for class membership (and not just the necessary ones). OWL provides a 

construct owhequivalentClass to declare that the class Person is a class equivalent to the 

intersection of the anonymous classes defined by the respective property restrictions on the 

class identifying properties. 

Note that while we used a simple cardinality constraint in the above example, in other 

cases other types of restrictions may have to be used (such as minimum/ maximum 

cardinality constraints or value restrictions). For example, in the context of the above 

example we may want to represent information about a class Female_Person of all persons 
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who are female (actually a subclass of the class Person). One of the necessary conditions in 

our OWL representation could be that all instances of this class possess a particular value 

('F') for the property ip_Gender, i.e. they share a specific ontological property 'being of 

female gender'. In our case, we can represent this common property of the class instances in 

OWL using a restriction of the type 'owl:hasValue="F'" for the property ipJBender53. That is, 

we can state that the class FemalePerson is a subclass of the intersection of the three 

anonymous classes; two of these classes are defined by property restrictions 'cardinality^' 

on properties ip_Name and ip_DateOfBirth respectively, and the third anonymous class is 

defined by a property restriction 'owl:hasValue="F'" on the property ip_Gender (meaning that 

every instance of this anonymous class has a value "F" for the property ip_Gender). 

Alternatively, we can state that FemalePerson is a subclass of the class Person and of the 

anonymous class defined by a property restriction 'owl:hasValue="F'" on the property 

ip_Gender. The OWL RDF/XML representation of this class definition can be found in 

Appendix B (together with the Person class representation) 

Generalizing the approach illustrated by the above examples, we propose that since 

ontological classes or kinds are defined in terms of properties (and can be modeled by 

functional schemas), they should be represented in OWL using class descriptions based on 

property restrictions. Specifically, we propose the following modeling rule: 

Modeling Rule 14: An ontological class or kind C, modeled by a functional schema with the 

state functions modeling some common properties Pi, Pn of this class/kind C, can be 

represented in OWL as the class extension of an OWL class defined as follows: 

• A named OWL class (e.g. ClassC) should be created; 

• Each of the properties Pj, Pn should be modeled by a suitable OWL property (in 

accordance with Guidelines 3-7 and Modeling Rules 2-11 on property representation); 

• Class axiom(s) for the ClassC should be included that state (or imply) that all instances 

of the ClassC necessarily possess each property Pi54; 

• To achieve that, such axioms should state that the classC is a subclass of the anonymous 

class defined by suitable property restriction on the property Pi, for each Pi. Or, 

alternatively, the ClassC can be declared to be a subclass of the intersection of the 

anonymous classes defined by suitable property restrictions for each of the properties Pi. 

In OWL, using this hasValue restriction would imply that all instances satisfying the restriction possess a 
specific value ' F ' for the property hasGender, which in turn implies that they possess the general property 
hasGender itself (i.e. cardinality is not equal to 0) 
5 4 More specifically, usually instances would possess some value (or values) for the general property Pi. 
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The next rule proposes an additional representation guideline in the case when a set 

of class identifying properties for a class needs to be represented: 

Modeling Rule 15: If a set of ontological properties Pi, .... Pk is a subset of common 

properties of a class or kind C that is sufficient to classify a thing as an instance of the class 

C (i.e. Pi, Pk are class identifying properties), then this information can be represented 

in OWL in the following way: 

• A class axiom for the OWL class representing the class C should be defined to represent 

the fact that possessing properties P], Pk is a necessary and sufficient condition for 

individuals to be members of the class C 

• This class axiom should state that the class C is equivalent to the intersection of the 

anonymous classes defined by suitable property restrictions for each of the properties Pi, 

Pk. (where each property restriction should imply the possession of the respective 

property Pi by all the instances of the class C). 

Note that anontological interpretation can be assigned to the anonymous classes that 

are defined by certain property restriction based class descriptions and that are also 

subclasses of the upper-level class Substantial_Thing55. Bunge's ontology has a notion of the 

scope of a property which is defined as the set of things that possess the property: 

Scope(P)={x | x possesses P}. If P is an OWL property representing some ontological 

property, then the extension of the anonymous OWL class defined by a suitable property 

restriction would actually represent the scope of the property P, i.e. a set of OWL individuals 

(substantial things) which possess the property P 5 6 . The property restriction should be such 

that it implies the possession of at least one value for the property, for example such 

restricction as owkSomeValuesFrom, owkhasValue, owl:Cardinality=N (N>=1), or 

owhminCardinality =N (N>=1). 

A class in Bunge's ontology (a set of things possessing a finite number of common 

properties) can then be interpreted in terms of scopes of properties that define a class - it is 

an intersection of the scopes of the properties shared by all class instances when the set of 

properties is class-defining or is a subset of such intersection if the set of properties is not 

5 5 That is, this o n t o l o g i c a l interpretation is o n l y appl icab le to the classes that represent o n t o l o g i c a l substantial 

things. 
5 6 S i n c e the property P represents an o n t o l o g i c a l property, w e can assume that o n l y instances o f the 

Substantial_Thing class are a l l o w e d to possess it (i.e. the property d o m a i n is a subclass o f the Substantial_Thing 
class). M o r e precisely , the scope o f P w o u l d be an intersection o f the Substantial_Thing class and a n a n o n y m o u s 

class def ined us ing one o f the above m e n t i o n e d property restrictions. 
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class-defining but is a partial set of properties shared by instances of the class. 

According to Bunge's ontology, classes/ kinds are defined as sets of things 

possessing a common property (or properties), and therefore there can not exist empty 

(i.e."instanceless") classes or kinds. We propose a rule reflecting this ontological 

assumption, i.e. that all OWL classes representing ontological classes or kinds should have 

some instances, i.e. they should have the non-empty class extension: 

Modeling Rule 16: Every OWL class representing an ontological class or kind (and thus, 

modeled as a subclass of the class SubstantiaLThing^) should have or imply non-empty class 

extension. 

Note that Rule 16 means that even if individuals are not explicitly modeled in an 

OWL ontology, it should still be possible in principle for the class to have instances, i.e. the 

definition of the class should be logically consistent and imply non-empty class extension. 

Reasoning tools available for OWL ontologies (such as Racer) are usually able to detect 

inconsistent classes based on their definitions, i.e. classes that can not have any instances. 

The last rule in this section addresses the issue of so called 'optional properties' or 

'zero cardinality' constraints on properties in class definitions. Specifically, in OWL a 

cardinality constraint or a minimum cardinality constraint in a property restriction class 

description is allowed to be zero. Such a zero cardinality constraint in a property restriction 

would mean that instances of the anonymous class defined by this property restriction may 

but do not have to possess a value for the property in restriction (thus they do not have to 

possess the property itself). For example, we could include a statement in an ontology using 

a zero minimum cardinality constraint for the property hasChild57 to state that persons may 

have zero or more children. Such a property restriction, if used in the description of the class 

Person, would mean that some persons may have children while others may not have any. 

If such a zero cardinality restriction is used as part of a class definition in OWL, this 

would mean that the class definition (in terms of properties) contains properties that are not 

necessarily possessed by all its instances of the class. In Bunge's ontology, not possessing a 

property is not a property, and every thing that possesses a property in general possesses a 

5 7 This object property used earlier links a person individual X to onther person individuals Y that represent its 
children. Cardinality of one or more means that there is at least one individual Y that is a child of X . 
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particular individual property . Also, in Bunge's ontology classes are defined in terms of 

properties possessed by all the things that are instances of that class. A better way of 

modeling in the above example from the ontological standpoint would be to create a subclass 

PersonWithChildren and include in its definition a suitable property restriction that states that 

all instance of the class have at least one child (i.e. hasChild would be a 'mandatory' common 

property for all instances of this subclass). 

A similar issue of optional properties or zero cardinality/multiplicity has been raised 

in prior research on the ontological analysis of conceptual modeling languages. For example, 

in the ontological analysis of the relationship construct in the ER modeling Wand et al. 

(1999) propose that class definitions in conceptual models should not include optional 

properties and that 'null' attributes have no ontological meaning. This implies that all 

attributes included in a class model (irrespective of whether they represent intrinsic or 

mutual properties) should have values for all possible instances. As an alternative to using 

optional properties or null values in class descriptions, Wand et al. (1999) propose creating 

subclasses with mandatory properties arguing that this would reduce semantic ambiguity and 

improve consistency of the resulting models. Similar rules have been proposed for UML-

based conceptual models by Evermann (2003) who also argues against using optional 

attributes and zero cardinality constraints of attributes in class descriptions. In addition, 

Bodart et al. (2001) in their empirical study on the use of optional properties argue that 

optional properties should be used with discretion. The experiments in this study provide 

support to the proposition that using subclasses with mandatory properties is preferrable to 

the use of optional properties in conceptual models intended for accurate and complete 

representation and deep (rather than surface-level) understanding of the domain. 

Therefore, based on the ontological considerations and guided by prior research, we 

propose a similar rule for OWL suggesting that zero cardinality or zero minimum cardinality 

constraints should be avoided in definitions of classes that model ontological classes or kinds 

defined in terms of shared properties: 

Modeling Rule 17: If an OWL class represents an ontological class or kind (defined by a 

set of common properties) then the property restrictions used in the class description for the 

respective OWL properties (which model common class properties) should not imply imply 

optional possession of a property (e.g. a zero cardinality constraint or zero minimum 

cardinality constraint). Instead, subclassification with property restrictions implying 

'mandatory 'possession ofproperties by all instances of the subclass is preferable. 

5 8 Often modeled as value of attribute function representing a property in general. 
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Note however, that this rule does not imply that instances are not allowed to possess 

properties other than the properties of their classes. On the contrary, one of the advantages of 

OWL compared to other modeling approaches (such as ERM or UML) is that individuals 

and properties are independent of classes, and that individuals are allowed to possess 

properties other that properties of the classes of which they are declared to be instances. Rule 

17 simply suggest that for the classes that represent ontological classes and kinds (or 

functional schemas that model them), class definitions based on property restrictions should 

include only those properties that are common to all instances of the class (i.e. properties 

shared by all instances of that class), and should not include 'optional' properties which are 

only possessed by some instances of the class (rather, in many cases subclassification with 

'mandatory' properties is preferable from the ontological standpoint). 

4.3.5 Additional classification-related issues 

4.3.5.1 Subclassification and class hierarchy - ontological 
considerations 

Relevant to the discussion on the representation of classes is the issue of 

subclassification. As in many conceptual modeling approaches, classes in OWL ontologies 

can form class hierarchies based on subclass-superclass (or so called TsA') relationships. In 

OWL, if a class description C i is defined as a subclass of a class description C2, then the set 

of individuals in the class extension of C i should be a subset of the set of individuals in the 

class extension of C2. OWL provides the construct rdfs:subClassOf for declaring that one 

OWL class is a subclass of another OWL class. 

This section briefly discusses some issues related to subclass-superclass 

relationships in Bunge's ontology and proposes additional rules regarding the representation 

of subclasses in OWL ontologies that model real world domains. 

As mentioned earlier, classes and kinds are defined in Bunge's ontology through sets 

of properties shared by all their instances. Based on Bunge's ontology, Evermann & Wand 

(2001b) mention two main ways by which subclasses can be 'created' from their 

superclasses: 1) by adding new properties to the set of properties of the superclass, or 2) by 

specialization of some properties of the superclass. 

In the first case, if a class or a kind C i is defined by a set of common properties {Pi, 

P n}, then a subclass C 2 of the class C i can be defined by adding one or more additional 

properties (P n +i, . . . , Pk} to the initial set of properties, so that the subclass C2 will be defined 

by the combined set of properties {Pi, P n , P n + i P k }• Every instance of the class C 2 

85 



would possess all the properties of the class Ci plus those additional properties. For example, 

a class of blue cars (e.g. BlueCar) is a subclass of all cars (Car), and an instance of the class 

Car becomes an instance of the class BlueCar via the acquisition of the property 'blue in 

color'. 

The second way subclasses can be defined is through the specialization of properties. 

Specialization is related to the ontological concept of property precedence, which is a type 

of ontological law. In Bunge's ontology, laws are relations between or restrictions on 

properties. Property Pi is said to precede P2 iff for every thing possessing P2, x also 

possesses Pi (P2 is said to be preceded by Pi). 

By definition, every instance of a subclass of some class has to possess all the 

properties of that superclass. If, for example, some class Cp is defined by a property {P}, 

and there exists another property Q that is preceded by the property P (for example, Q can be 

a specialization of P), then Cq - a set of things possessing Q (also termed the scope of 

property Q) would be a subclass of the class Cp (since possessing the property Q implies 

possessing the property P). For example, we may consider a class of things that can move 

(property P= 'can move') and a class of things that can fly (property Q='can fly'). The 

property 'can move' precedes the property 'can fly', i.e. all things that can fly also can 

move. Therefore, the class 'things that can fly' is a subclass of the class 'things that can 

move'. This idea can be generalized to the case of classes defined by more than one 

property. 

In general, for any two classes OWL allows declaring that one class is a subclass of 

another. It does not require explicit modeling of relationships between properties of those 

two classes, and thus, it may not be clear whether the difference of a subclass from its 

superclass is due to the acquisition of new properties or due to the specialization or 

constraining of some properties of the superclass. This problem of a lack of semantics and 

potential ambiguities in superclass-subclass relationships has been raised in prior research on 

the ontological analysis of modeling languages (Wand et al, 1999, Evermann & Wand, 

2001b) and on classification (Parsons & Wand, 1997). Specifically, based on ontological and 

cognitive foundations, Parsons & Wand (1997) argue that in order to achieve cognitive 

economy (which is one of the reasons for people to use classification) in selection of classes, 

a principle of nonredundancy should be followed when defining classes. That is, they 

recommend that "a class that is a subclass of several other classes should be defined by at 

least one property not in any of its superclasses" (Parsons & Wand, 1997). In the research on 

ER modeling, Wand et al. (1999) argue in the case of mutual properties (or interactions) that 
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when a thing acquires/loses a mutual property that is important for modeling purposes, this 

thing should be represented by a new functional schema (i.e. as a subclass or a superclass 

with the respective acquired relationship in case of ER modeling). They denote several 

advantages of this approach such as the reduction of semantic ambiguities and 

inconsistencies in a model, clarification of semantics of particular subclasses and of 

relationships between subclasses and superclasses, and clearer integrity constraints 

(rules/laws) governing things in the domain. In the case of UML conceptual modeling, 

Evermann & Wand (2001b) also recommend that if a class B is a subclass of a class A, the 

attributes shown for the class B should be either specialized attributes of the class A or 

additional attributes of fhe class B. 

Similarly, to convey the domain information better and to clarify the semantic 

difference between subclasses and their superclasses in OWL ontologies of real world 

domains, we propose that OWL ontologies should not just declare that a certain class is a 

subclass of another class but in addition should explicitly model the difference between the 

subclass and its superclass in terms of properties (in particular, to show whether individuals 

of the subclass acquire new properties or specialize some properties of the superclass). We 

will first illustrate the idea with simple examples and then present our recommendation as an 

additional rule on modeling subclasses. 

For example, in the case of a new property acquisition, we may have a class Person 

representing the class of all people, and people may have zero or more children (note that 

'having a child' can be viewed as 'optional' property of the class Person and should not be a 

part of class definition based on shared properties according to Rule 17). However, we can 

define a subclass PersonWhoHasChildren by adding an additional property of having at least 

one child to the set of shared properties defining class Person. In OWL we can represent this 

explicitly by stating (in a class axiom) that the class PersonWhoHasChildren is 1) a subclass of 

the class Person (which will imply that all property restrictions stated in the definition of the 

class Person would hold for the instances of PersonWhoHasChildren), and also 2) a subclass of 

the anonymous class defined by an appropriate additional property restriction on the 

property haveChild (e.g. owl:minCardinality =1 restriction, which would imply mandatory 

possession of the property by all instances of this subclass, i.e. possession of at least one 

child). 

As for the case of subclasses created by property specialization, even though OWL 

does not have a universal way to represent property precedence or specialization of 

properties, certain existing OWL mechanisms can be used to model this type of relationship 
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between properties. First, for some cases, the owl:subpropertyOf construct can be used to 

indicate that the possession of one property always implies the possession of another (i.e. 

preceding) property. In the earlier discussed example of flying and moving things, we could 

define two datatype properties (with Boolean values true or false) - CanMove and CanFly, and 

declare the property CanFly to be a subproperty of the property CanMove. In this case, if we 

have a class MovingThing and its subclass FlyingThing (which includes only those instances of 

the MovingThing class that can fly), then we should a) include the property CanMove in the 

class description for the class MovingThings, b) include the property CanFly in the class 

description of the subclass FlyingThing, and c) declare a subproperty relationship between 

these two properties. In this case, the difference between the subclass and the superclass due 

to property specialization will be clearly identifiable from the ontology. 

Another way of representing property specialization in OWL for the purpose of 

defining subclasses is to constrain further for instances of the subclass certain properties 

possessed by instances of the superclass (using property restrictions with value or cardinality 

constraints). For example, let us assume that all instances of the class Car possess a property 

Country59 (a manufacturer's country). We can define a class EuropeanCar of cars made in 

European countries ('being made in a certain European country" is preceded by the general 

property "being made in some country"). We can model this by declaring EuropeanCar to be 

a subclass of the class Car and also have a property restriction which states that all values of 

the property Country for the class EuropeanCar should only be European countries. Again, this 

way of modeling allows the explicit representation of the difference between a subclass 

EuropeanCar and its superclass Car in terms of properties. 

Summarizing the above discussion, we propose the following rule on modeling 

subclasses: 

Modeling Rule 18: In OWL ontologies modeling real world domains, if classes A and B 

represent some ontological classes (i.e. modeled as subclasses of the Substantial Thing 

class), and B is a subclass of A, then the class definition of the subclass B should reflect the 

semantic difference (in terms of properties) between the superclass A and its subclass B. 

This distinction can be represented in one of the following ways: 

• by including in the definition of the subclass B one or more additional property 

restrictions for properties that are acquired by the instances of the subclass B compared 

5 9 This property can be modeled as instance valued property by defining a value class Country with one of the 
subclasses being EuropeanCountry and instances being specific countries. Then property restriction for the 
property Country could be defined in terms of owl:IIValuesFrom restriction (i.e. all values from EuropeanCountry 
class) 
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to the instances of the superclass A, or 

• by including in the definition of the subclass B one or more property restrictions 

constraining some properties of the superclass A for the instances of the subclass B, or 

• by including in the definition of the subclass B one or more property restrictions for 

subproperties of some properties of class A 

To illustrate this rule, the first way of representing the distinction could be used to 

differentiate the class PersonWithChildren from its superclass Person by adding a restriction on 

the additional property hasChild for the subclass (compared to the superclass). An example 

where the second type of representing the subclass-superclass distinction could be used is the 

earlier discussed class FemalePerson (section 4.3.4 and Appendix B), which is a subclass of 

the class Person and has an additional restriction (owl:hasValue="F") on the property 

ip_hasGender (which is possessed by both the Person and the FemalePerson classes). Finally, 

an example of using the third approach is when some ontology has a property hasChildren 

and its subpropertry hasDaughters. In this case we can define a class 

PersonsWhoHaveDaughters as a subclass of Persons including only those instances that 

possess the property hasDaughters (using a property restriction on the property hasDaughters 

as discussed earlier). Since hasDaughters is a subproperty of hasChildren (i.e. possessing the 

property hasDaughters implies possessing the property hasChildren), the class 

PersonsWhoHaveDaughters , by inference, would be a subclass of PersonsWhoHaveChildren 

(i.e. the difference between the superclass and subclass is due to the possession of a more 

specific property by the subclass instances, which in this case is expressed using OWL 

subproperties)60. 

As illustrated by the examples discussed earlier, Rule 18 requires, in particular, that 

an ontology should not simply show an TsA' (subclass-superclass) relationship between two 

named classes but should also include additional class axioms for the subclass which show 

how instances of the subclass differ in terms of their properties from the instances of its 

superclass (which provides added information for instances of subclasses). Following such 

rule would make the nature of the subclass-superclass relationships in ontology more explicit 

and would provide an additional ontological semantics to 'isA' relationships in a model. 

Furthermore, the explicit modeling of acquisitions or specializations of properties 

using subclasses allows tracking states of things since the difference between a subclass and 

its superclass may be in terms of not only intrinsic, but also of mutual properties (resulting 

6 0 Note that this is an example of an ontological law - property precedence (i.e. the property 'to have children' 
precedes the property 'to have daughters'). OWL subproperty is one of the mechanisms that can be used to 
express ontological precedence (even though it does not allow representing all possible precedence cases) 
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from participation in interactions). For example, a person becomes a library member after 

participating in a library membership interaction with the library and acquires a number of 

mutual properties as a result (e.g. library card number or membership start date). To model 

this in an ontology, we can create classes Person and LibraryMember and declare that the 

LibraryMember class is a subclass of the Person class. In addition, in accordance with Rule 17 

we would include an additional property restriction in the class description for the class 

LibraryMember which states that each library member must be involved in at least one library 

membership interaction (and thus possess additional mutual properties associated with this 

interaction)61. More detailed discussion of this example will be presented in section 6. 

4.3.5.2 Note on choosing relevant classes and properties 

The proposed guidelines on the representation in OWL of ontological classes and 

kinds (defined by a set of properties and modeled by functional schemas) are mainly 

applicable in cases when classes or kinds of interest and sets of the relevant ontological 

properties associated with them have already been identified by a modeler. Our rules and 

guidelines do not help in determining such properties and do not address the issue of whether 

a particular set of properties defines a 'good' class. They also do not provide any guidance 

regarding what set of classes is more appropriate or preferable for describing a domain. 

The issues of which sets of properties constitute 'good' or 'useful' classes and what 

selection of classes is appropriate to describe a domain are beyond the scope of this thesis 

but have been addressed in other research. For example, some guidelines on how to select 

classes are proposed in the literature related to IS ontology development (McGuinness et al., 

2004, Noy & McGuinness, 2001). These guidelines are driven mainly by pragmatic and 

implementation considerations and are not always grounded in theory. 

The research by Parsons & Wand (1997) on classification builds on the ontological 

foundations and cognitive principles. Adopting a view of classes as sets of properties, they 

suggested some guidelines on choosing classes in conceptual modeling and discussed their 

practical implications for knowledge representation, object-oriented design, and semantic 

modeling. In particular, Parsons and Wand propose two principles for limiting the sets of 

properties mat should be considered as classes - abstraction from instances and maximum 

abstraction. They also suggest that a set of properties should be considered a potential class 

in a relevant universe if and only if: 1) it has a non-empty extension (at some point of time), 

and 2) it contains all properties common to all instances in the extension. 

6 1 The interaction and its related mutual properties associated with it would be modeled using interaction 

classes as proposed in section 4.2.4.4. 
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In addition, they proposed two principles that apply to collections of classes 

describing a domain (the relevance universe of things and their properties): 1) completeness, 

which requires that all relevant properties from the relevant universe be used in classification 

(i.e. in a definition of at least one class in the set of classes), and 2) nonredundancy, which 

requires that no class is defined only in terms of the properties of a set of other classes; 

specifically, each class should have at least one property not in any of its superclasses. 

To summarize, we recommend that when choosing classes and their relevant 

properties for modeling a domain, modelers should be guided not only by the practical 

considerations and the intended model usage but also by theory such as ontological and 

cognitive principles (for example, those proposed by Parsons & Wand, 1997). Once the 

appropriate sets of ontological properties that represent the classes and the overall class 

structure are identified, modelers can follow our guidelines to represent these classes and 

their properties in OWL in an ontologically consistent and clear way. 

4.4 RELATIONSHIPS AMONG THINGS, PROPERTIES AND 
CLASSES 

4.4.1 Transfer of ontological assumptions to modeling rules and 

guidelines 

Sections 4.1-4.3 mainly focus on the analysis of specific ontological concepts (such 

as things, properties and classes) individually, on their mapping to OWL constructs, and on 

the development of modeling guidelines and rules specific to those concepts. In this section, 

we look at relationships between these concepts in Bunge's ontology and discuss a number 

of Bunge's ontological premises that specify and constraint these relationships. Through the 

transfer of these ontological postulates, we develop additional rules that place some 

restrictions on the use of OWL constructs and their combinations when modeling elements 

of the real world (in accordance with Bunge's ontological model) to ensure that only 

possible and meaningful configurations of the domain are allowed (this approach follows the 

methodology proposed and formalized by Evermann & Wand, 2005). 

Bunge's ontology specifies certain relationships and constraints related to things, 

properties and classes, in particular: 

• All things have properties (which exist whether humans are aware of them or not) 

• Properties are always attached to things ("every property is possessed by some 

individual or other; there are no properties that fail to be paired to any individuals", 

[Bunge 1977, p.62]). 
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• Classes and kinds are secondary to things and properties — they are defined in terms of 

properties. A class in Bunge's ontology is defined by a set of things possessing a 

common property and a kind is defined by a set of properties. 

OWL syntax allows a considerable degree of independence when defining 

individuals, classes and properties (this distinguishes OWL from many other modeling 

languages such as UML or ERM in which instances are tied to classes and only possess 

properties defined for their classes). Even though OWL provides mechanisms for Tiriking' 

these elements in ontologies, in general, OWL permits defining classes, individuals and 

properties independent of each other. As an extreme example, we can create a primitive 

ontology with one class Classl, one property Propertyl, and one individual Individuall 

(minimally introduced as an instance of the built-in top class OWlThing), without specifying 

any other constraints or relationships between these elements. Such an ontology would be a 

syntactically valid ontology in OWL (even though it does not give any information about 

how its class, property and individual are linked to each other). 

In general, no syntactic restrictions are placed in OWL regarding certain relationships 

between individuals, classes, and properties, specifically as to: 

• whether an OWL individual must possess at least one property 

In OWL, an individual can simply be introduced as an instance of some class or simply 

as an instance of the default top class owl:Thing. The individual is not required to have 

any properties associated with it (either directly or by virtue of classs membership). In 

other words, OWL syntax allows individuals without properties. 

• whether a class must be associated with at least one property 

As discussed earlier, properties in OWL can be associated with classes by using property 

restrictions (with value or cardinality constraints) in class axioms. However, OWL also 

allows defining classes simply as named classes without using property restrictions. 

Thus, OWL allows defining classes that are not associated with any properties. 

• whether a property must be associated with at least one individual 

A property in OWL can be associated with individuals either directly (through facts -
62 

assertions about individuals possessing specific values for certain properties ) or 

through defining a non-empty class in terms of a property restriction on this property63 

6 2 For example, an ontology can state that an individual John has age 25 (value 25 for the property hasAge) 
though a statement of a form hasAge (John, 25). 
6 3 For example, we can define a class Person, for which one of the necessary conditions would be that each 
person has age (or, in terms of cardinality restriction, each instance of the class Person possesses exactly one 
value for the property hasAge). Thus, a property hasAge would be associated with the class Person (and all with 
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(which would imply the possession of the property by instances of this class). However, 

properties in OWL can be declared as separate constructs. OWL syntax does not require 

them to be associated with any classes or individuals, even though it may seem useless to 

declare a property which is not used at all. Nevertheless, properties can exist in OWL 

ontologies without any association to classes or individuals. 

The above mentioned lack of restrictions may be considered problematic from the 

ontological standpoint with respect to the real-world modeling because of the potential 

violation of ontological assumptions. Earlier in the thesis we have already in part addressed 

these issues for classes and properties and proposed some rules guided by the above 

assumptions, such as the recommendation to define classes in terms of properties and the 

prohibition of "instanceless" (inconsistent) classes (Rules 13-16, section 4.3.4). In this 

section we focus more on the assumptions governing relationships between properties and 

individuals (though classes will still play a significant role). By transferring ontological 

assumptions about things and properties to OWL modeling, we propose additional 

guidelines that place restrictions on the relationship between OWL individuals and OWL 

properties when modeling real-world domains in OWL. 

Before presenting additional rules and guidelines, we briefly review OWL 

mechanisms by which one can associate individuals and properties (i.e. make an individual 

to possess a certain property). In section 4.3.4 we already discussed how classes and 

properties can be associated through the use of property restrictions in class definitions. As 

for the linking of properties and individuals, there are two ways in OWL to express that an 

individual possesses a certain property: 

1) At the individual (instance) level - by including in an ontology at least one assertion (fact) 

stating that the individual possesses some specific value for some property. 

For example, in some ontology an assertion of a form hasAge (John, 25) associates an 

OWL individual John with an OWL property hasAge (i.e. the individual John is declared to 

possess the specific value (25) for the property hasAge). 

2) At the class level - an individual can be associated with a property by virtue of class 

membership. 

That is, one can declare an individual to be a member of some class that, in turn, is 

defined using at least one property restriction in its class axiom, where the property 

restriction implies the possession of at least one value of this property for each instance of 

its instances - O W L individuals) 
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the class (i.e. the property is mandatory for all instances of the class). 
Note that not all types of property restrictions in OWL imply the possession of at 

least one value for a property by an instance satisfying the restriction. For example, the 
restrictions such as owl:AIIValuesFrom or owl:MinCardinality=0 do not necessary imply the 
possession of at least one value for each instance (rather they imply "may possess zero or 
more values"). However, if one needs to ensure that an individual possesses some property 
by virtue of class membership, the respective property restriction used in the class definition 
should be such that it implies the possession of at least one value for the respective property 
for any instance satisfying the restriction. Acceptable restriction types include constraints 
owhhasValue, owl:someValuesFrom, owl:MinCardinality =N or owl:Cardinality=N (where N>=1). 

For example, we can define a class BlueThing as a set of things satisfying a property 
restriction hasValue='Blue' on the property hasColor. Such definition would imply that any 
individual X that is declared to be a member of the class BlueThing64 would, by virtue of class 
membership, satisfy the above restriction, i.e. would possess the value 'Blue' for the 
property hasColor (and thus possess the property hasColor itself). In other words, we can infer 
some properties of an individual from its class memberships. 

Returning to the ontological assumptions, the first guideline proposed in this section 
reflects the ontological postulate that all things possess properties: 

Guideline 8: Every OWL individual representing a substantial individual (real world 

instance),65 should possess at least one substantial property. Possession of a property can be 

represented by associating this individual with a property either at the instance level or at 

the class level (via class membership). 

The next guideline follows from another ontological postulate - that properties are 

always attached to things: 

Guideline 9: Every OWL property modeling an ontological substantial property should be 

possessed by at least one OWL individual representing a substantial thing. This can be 

represented by associating this property with at least one individual either at the individual 

level or at the class level (through using a suitable property restriction in class definition). 

In other words, Guideline 9 requires that if some property P is declared in an OWL real 

E.g.. via a statement of the form <BlueThing rdf:ID="X"> 

A n individual which is an instance of the SubstantialThing class (in accordance with Rule 1). 
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world domain ontology and P represents some substantial ontological property, then there 
should be at least one of the two types of statements in the ontology: 
• at least one statement of the form P(X, v), which declares that X has the value v for the 

property P - where X is an OWL individual representing some substantial thing 
possessing that property, or 

• a statement of the form C(X), which declares that X is an instance of some class C, 
where C is a class defined using a suitable property restriction on the property P, which 
would, in turn, imply that any instance of C necessary possesses some value v for the 
property P (i.e. in this case C(X) would imply that a value v exists such that P(X,v)). 

Similarly, according to the Guideline 8, for each OWL individual X that represents 
an ontological substantial thing, there should be at least one of the two types of the above 
statements in the ontology with respect to at least one property P representing a substantial 
ontological property. 

As for the relationship between classes and properties, whereas OWL allows 
declaring classes not associated with any properties, Bunge's ontology defines classes (of 
substantial things) in terms of properties, i.e. instances of a class/kind have at least one 
property in common. Thus, in addition to the earlier suggested rules on modeling classes 
(section 4.3.4) we propose one more rule that all OWL classes that represent ontological 
classes/kinds should be associated (through property restrictions) with at least one property. 
Specifically: 

Guideline 10: Every OWL class representing an ontological class or kind (i.e. a subclass of 

the class SubstantiaMThing,) should have at least one property. That is, the class definition 

should include a class axiom that states a necessary condition for this class in terms of a 

suitable property restriction for at least one OWL property representing an ontological 

property shared by all instances of the class 

4.4.2 Note on the independence of things from classes: OWL vs. Bunge's 
ontology 

An important assumption of Bunge's ontology is that things and properties are 
primary constructs and exist independent of classes. Classes/kinds are secondary to things; 
they represent sets of things sharing a common property (or a number of properties), i.e. they 
are defined in terms of properties. An important advantage of OWL compared to other 
conceptual languages and approaches is that it allows modeling individuals independently of 
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classes and that individuals in OWL are allowed to possess properties other than properties 

of classes they belong to. This functionality in combination with our proposed rules on 

modeling things, properties and classes allows supporting the above ontological assumption 

of 'instance independence of classes' and helps avoid a problem of "inherent classification" 

common to many other modeling approaches (such as OOM, ERM, UML etc). As noted by 

Parsons & Wand (2000), many conceptual languages, modeling approaches, and database 

design models have a common assumption (implicit or explicit) - termed "the assumption of 

inherent classification" - that specific things in the domain of interest can be referred to only 

as instances of classes, and that instances of classes can only possess properties that are 

determined by their classes. Parsons and Wand (2000) challenge this rather restrictive 

assumption on both theoretical and practical grounds arguing that it is inconsistent with the 

ontological and cognitive principles and in practice may lead to a number of problems. 

OWL, on the other hand, does not have this problem of inherent classification, and 

the introduction of the proposed rules and guidelines also does not violate the ontological 

assumption about things with properties existing independent of classes. According to the 

proposed rules, any substantial thing can be represented as OWL individual which can be 

minimally introduced as an instance of the upper-level class SubstantiaLThing66 

(distmguishing it from OWL individuals not representing real world things). In principle, we 

do not even have to declare this individual to be a member of any other classes, but can 

simply make direct assertions about the individual's specific properties (without referring to 

any classes). If an individual is declared to be a member of some classes (to take advantage 

of classifications' benefits), one can still make assertions about individuals' properties in 

addition to those implied by its class memberships. On the other hand, an individual can be 

inferred to be a member of some classes (defined through property restrictions) based on 

assertions (facts) about its properties. Such representation approach is consistent with the 

concept of classes in Bunge's ontological model, and is similar to some degree to the two 

layer model proposed by Parsons & Wand, 2000. 

4.5 REPRESENT A TION OF COMPOSITION RELA TIONSHIP 

This section discusses the ontological concept of composition of things and proposes 

some guidelines on modeling composition relationships in OWL ontologies. 

Modelers often need to represent facts that things in a domain are combined in some 

In general, if the proposed upper level class structure is not used, OWL individuals can still be minimally 
introduced by declaring them as instances of the predefined top class owl:Thing and assertions about individuals' 
properties can be made (thus the problem of inherent classification is not present in OWL). 
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way to create other things. Bunge's ontology has a concept of composite and component 

things (which are involved in composition relationship). 

According to Bunge's ontology, things can combine to form a composite thing. 

Composite things can be decomposed into components, which are also things. Bunge's 

ontology postulates that there exist simple things that can not be decomposed. Properties of 

composite things can be either resultant (hereditary) or emergent properties (Bunge, 1977). 

Hereditary properties are properties of at least one component thing of a composite, whereas 

emergent properties are those properties of a composite that are not possessed by any of its 

components. Emergent properties can be explained in terms of or derived from the properties 

of the parts but are not reducible to them, and thus, emergent properties cannot be attributed 

to any of the individual parts of the composite thing, but rather belong to a composite thing 

as a whole. Bunge's ontology postulates that every composite must possess at least one 

emergent property not inherited from any of the parts (Bunge, 1977); otherwise this is not a 

composite but simply a set of things. For example, a computer composed of memory and 

processor possesses a property "processing power", which is not possessed by any individual 

component (Evermann, 2003). Both emerging and hereditary properties can be either 

intrinsic or mutual. 

In OWL there is no predefined construct to represent composition relationship 

between things. Earlier we proposed that ontological things are modeled as OWL 

individuals. Therefore, to represent composition relationships, we need to be able to link 

individuals representing composites to individuals representing components, and vice versa. 

For that we can use OWL object properties. 

Specifically, to model composite-component relationships between substantial things, 

we propose defining two mutually inverse OWL object properties - isComposedOf and 

isComponentOf. The property isComposedOf would be used to link OWL individuals 

representing composite things to OWL individuals representing things which are 

components of the composite, and the inverse property isComponentOf would link 

components to the composite things of which they are components. 

Modeling Rule 19: To represent composition relationship between substantial things in 

OWL ontologies of real world domains, two mutually inverse object properties should be 

defined: isComposedOf and isComponentOf. These properties would link OWL individuals 

representing composite things to their component things, and OWL individuals representing 

component things back to their composites, respectively. 
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In some cases, it may be relevant for modelers not only to model composite-

component relationships between things in an ontology, but also to distinguish clearly 

between composite things and things that are components of some things, i.e. represent 

explicitly which things are composites or components. Technically, if the two properties 

proposed above are employed to represent composition, then one can infer whether a thing is 

a component of some other thing or a composite thing by looking at whether it is linked to 

another thing via the property isComponentOf or isComposedOf, respectively. To facilitate and 

explicitly model this inferred information, we can declare two upper-level classes (modeled 

as subclasses of the upper-level class SubstantiaLThing): 

• Composite_Thing - the class extension of this class would consist of all OWL individuals 

that are composite substantial things 

• Component_Thing - the class extension of this class would consist of all OWL 

individuals that are substantial things and are components of at least one composite thing 

Note that unlike the classes SubstantiaLThing and Non_Substantial_Thing which are 

disjoint, the classes Composite_Thing and Component_Thing should not be declared disjoint 

because things may be composed of other things and at the same time be components of 

some other things (for example, a person may be a member of some team while the team is a 

member of some league). 

We can define class axioms for these upper level classes stating necessary and 

sufficient condition for class membership in terms of possessing at least one value for the 

property isComposedOf or isComponentOf, respectively (using property restrictions). 

Specifically, in OWL terms, a class axiom for the Composite_Thing class would state that the 

class Composite_Thing is equivalent to the intersection of the class SubstantiaLThing67 and the 

class of all OWL individuals that possess at least one value for the property isComposedOf68. 

Similarly, a class axiom for the Component_Thing class would state that the class 

Component_Thing is equivalent to the intersection of the class SubstantiaLThing and the class 

of all OWL individuals that possess at least one value for the property isComponentOf (using 

minimum cardinality or owl.someValuesFrom property restriction). Note that we can declare 

that the class Composite_Thing is the domain of property isComposedOf, and that the class 

Component_Thing is the domain of the property isComponentOf. 

The relationship between the proposed classes is illustrated schematically in Figure 

6 7 This represents the fact that we focus on composition relationship among substantial (real world) things only. 
6 8 Minimum cardinality restriction (owl:minCardinality=l) or an OwfsomeValuesFrom property restriction (e.g. 
SomeValuesFrom the class SubstantiaLThing) can be used; this would also imply that all instances of the 
Composite_Thing class possess at least one value for the isComposedOf property linking these instances to the 
substantial things that are their components. 
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5. An example of representing composite-component relationship in OWL using the 

proposed approach can be found in section 6 (the library domain example). 

Figure 5: Upper level (meta-model) classes for representing composition 

Note that if we define properties isComposedOf and isComponentOf as well as classes 

Composite_Thing and Component_Thing as proposed above, this would allow both humans and 

automatic reasoners to make certain composition-related inferences about classes or 

individuals representing substantial things. For example, if an ontology includes a statement 

of the form isComponentOf (A, B) for individuals A and B, and also states that A and B are 

substantial things (i.e. are instances of the Substantial_Thing class), then it can be inferred that 

a) A is a component thing (i.e. an instance of Component_Thing class), b) isComposedOf (B, A) 

holds (inverse property), and c) B is a composite thing (i.e. an instance of the 

Composite_Thing class). Thus, we do not have to include all such statements explicitly for 

individuals or classes but can only state that an individual is a component (or composite) of 

another individual, and other information can be inferred. On the other hand, if multiple 

statements related to composition are included in an ontology then reasoners can use class 

definitions and axioms to check the consistency of the ontology. 

The proposed representation of composition relationships is summarized in the 

following rules: 

Modelng Rule 20: To model explicidy that substantial things are composites or components 

of other things, two upper level classes can be created in OWL ontologies: Composite_Thing 

and Component_Thing 

• Both classes should be modeled as subclasses of the Substantial_Thing upper level class 

• The class Composite_Thing can be defined (using class axioms with a cardinality or an 

6 9 Please note that relative sizes of ovals representing various classes in Figure 5 are arbitrary and are not 
indicative of the relative number of instances in these classes (as this is not important for this discussion). 
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OWkSomeValuesFrom property restriction) as the class of all OWL individuals that are 

instances of the class SubstantiaLThing and possess the property isComposedOf; 

• The class Component_Thing can be defined (using class axioms with a cardinality or an 

OWl:SomeValuesFrom property restriction) as the class of all OWL individuals that are 

instances of the class Substantial_Thing and possess the property isComponentOf. 

Corollary 8: OWL individuals representing substantial things that are components of some 

composite thing should be declared or inferred to be instances of the Component_Thing class. 

OWL individuals representing composite substantial things should be declared or inferred to 

be instances of the Composite_Thing class. 

Corollary 9: Any OWL class such that all instances of that class represent substantial 

composite things should be declared or inferred to be a subclass of the Composite_Thing 

class. Any OWL class all instances of which represent substantial component things should 

be declared or inferred to be a subclass of the Component_Thing class. 

According to Bunge's ontology, a composite thing must possess at least one 
emergent property. Otherwise, it is not a composite but simply a set of things. In other 
words, a composite thing must be more than simply the sum of its parts (Evermann, 2003). 
The next rule reflects this ontological assumption: 

Modeling Rule 21: Every OWL individual representing a composite thing should be 

associated (at the instance or at the class level) with at least one OWL property representing 

an intrinsic or mutual ontological property that is an emergent property of the composite 

thing. 

The last rule in this section focuses on modeling emergent and hereditary properties. 
Modeling Rule 22: 

• OWL properties that model hereditary properties of a composite thing can be associated 

with both OWL individuals (or classes, at the class level) representing the respective 

component thing(s) and with OWL individuals (or classes) modeling the composite; 

• OWL properties that model emergent properties of composite things should be 

associated with OWL individuals (or classes, at the class level) representing the 

composite, but not with any individuals (classes) representing components of this 

composite 
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In simpler words, this rule means that since emergent properties are properties of the 

composite as a whole but are not properties of individual parts, they should only be modeled 

as properties of the individual (or class) representing this composite. For example, the 

number of team members is a property of the team, but not of the individual players. Thus, it 

should not be associated with instances representing individual team members, but only with 

the OWL individual representing the team (or represented as a property restriction for the 

class Team). On the other hand, if a property is hereditary, it is possessed by a component of 

a composite and is also 'inherited' and exhibited by the composite. Thus, such property can 

be modeled as a property of both the OWL individual (class) representing a component and 

the individual representing the composite. For example, a property of a component - memory 

(RAM) size - becomes a property of a computer as a composite as well and can be modeled 

accordingly. 

For completeness, we can also include in the meta-model another upper-level class, 

Simple_Thing, to represent the class of all simple ontological things, which are things that can 

not be further decomposed (such things exist according to Bunge's ontology). Classes 

Composite_Thing and Simple_Thing should be declared disjoint. The union of these classes 

would be equivalent to the class Substantial_Thing. Instances of the class Component_Thing, on 

the other hand, would be either simple things (i.e. instances of the Simple_Thing class) or 

composite things themselves (i.e. instances of the class Composite_Thing). 
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5 SUMMARY - PROPOSED METAMODEL AND 
MODELING PROCESS GUIDELINES 

Chapter 4 presented a detailed analysis of the fundamental ontological constructs and 

their comparison to OWL constructs. Based on this comparative analysis and ontological 

assumptions, we have developed a number of modeling rules and guidelines on the 

representation of specific ontological constructs in OWL to facilitate the development of 

more expressive OWL ontologies. In this section, we summarize some of the outcomes of 

this analysis. Specifically, we provide a summary of the proposed meta-model, which is a set 

of upper-level domain independent classes and properties recommended for inclusion in 

OWL ontologies modeling real world domains to facilitate the application of the proposed 

rules and guidelines and to help in development of ontologically meaningful models. In 

addition, in this section we propose the process steps recommended for modelers applying 

the approach proposed in this thesis. 

The proposed meta-model (upper-level OWL classes and properties) is presented in 

Figure 6: 

OWhThing yij 

Component_Thing 
' \ \ isComposedOf 

isComponentOf 

Figure 6: Proposed meta-model 

The meta-model includes two upper level disjoint classes - Substantial_Thing and 

Non_Substantial_Thing - to distinguish between OWL classes and individuals representing 

ontological substantial things and OWL classes and individuals used for representing other 

constructs (section 4.1). 

Also, the meta-model includes a special subclass of the class Non_Substantial_Thing 

102 



named Substantial_Thing_lnteraction intended for distmguishing a special group of OWL 

classes, interaction classes, which are intended for representing sets of concurrent mutual 

properties arising out of interactions and shared by interaction participants (section 4.2.4.4). 

Another special purpose meta-model class is the Property_Value class (also a subclass 

of the Non_Substantial_Thing class). It is recommended for the inclusion in OWL ontologies if 

modelers intend to use property value representation method using special value classes and 

individuals (as discussed in detail in section 4.2.3.2). If modelers do not intend to use this 

property value representation method and only use OWL datatype properties to represent 

individual properties, then this meta-model class does not have to be included. Note that the 

two proposed subclasses of the Non_Substantial_Thing class are declared disjoint since they 

are used for representing completely different concepts. 

Finally, we have proposed two mutually inverse properties isComposedOf and 

isComponentOf for representing individual composition relationships between composite and 

component substantial things. We have also proposed the upper-level classes 

Composite_Thing, Simple_Thing, and Component_Thing (which are subclasses of the class 

Substantial_Thing) that may be useful if an ontology requires to show explicitly which things 

are composites and which things are components of some things (section 4.5). These three 

classes may be considered optional (since a pair of properties isComposedOf/ isComponentOf 

in general is sufficient for representing composite/component relationships). 

The proposed upper-level meta-model elements are domain independent and help 

clarify the ontological semantics of domain specific elements. Domain specific classes are 

supposed to be modeled as subclasses of the proposed upper level classes, and thus, will 

have clear ontological semantics. The meta-model structure is intended to complement the 

proposed ontologically grounded modeling guidelines and rules and to help modelers in the 

application of these guidelines. The structure is intentionally kept relatively simple so that 

the model is easier to understand and employ while still being helpful for the development of 

more ontologically expressive OWL models. 

Note that the meta-model can be further expanded. For example, we could not only 

create upper level classes but also some upper-level properties (domain specific properties 

could in this case be declared as subproperties of these upper-level properties using 

owl:subpropertyOf construct). Some candidate meta-model properties we could add are, for 

example, object properties islnvolvedln and Involves that would link instances of the class 

Substantial_Thing to instances of the class Substantial_ThingJnteraction, and vice versa, 

respectively. Domain specific properties related to interactions, for example such as 

103 



islnvolvedln_Employment or involves_Company (section 4.2.4.4), would be modeled as 

subproperties of these meta-model properties, respectively. Other meta-model properties can 

be included (for example, to distinguish between mutual and intrinsic properties). 

Furthermore, the proposed meta-model can be extended to include elements representing 

other Bunge's constructs (e.g. states and events), which are not considered in this thesis and 

require further research. 

For this thesis, due to time and length considerations we limited ourselves to the 

restricted meta-model as presented above. The RDF/XML OWL syntax defining meta-model 

elements is presented in Appendix C. Potential extensions to this meta-model can be a topic 

for future research. 

Next, we would like to outline the key modeling process steps that we recommend 

modelers to follow when applying the proposed modeling rules and guidelines on the 

development of OWL ontologies for real world domains: 

Step 1: Create the required meta-model elements (classes and properties) in your OWL 

ontology 

Step 2: Identify types of ontological substantial things in the modeled real world domain. 

• Represent them as named OWL classes - subclasses of the SubstantiaLThing meta-

model class (Corollary 2, Modeling Rule 1; Rules 12-13) 

Step 3: For each class of substantial things, identify intrinsic properties. 

• Represent them as OWL properties in accordance with Guidelines 3-4 and 

Modeling Rules 2-4 

• Associate them with the respective classes using property restrictions in class 

axioms (Modeling Rules 14-17, Guideline 8, 9) 

Step 4: Identify relevant interactions between substantial things in the modeled domain and 

determine the related sets of concurrent mutual properties 

• Create interaction classes corresponding to the relevant interactions, declare them 

subclasses of the Substantial_Thing_lnteraction class (Modeling Rule 5-6, Guideline 

5-6) 

• Represent the individual mutual properties in each set as OWL properties (Rule 

7); associate them with the respective interaction classes using property 

restrictions (Rule 14-17, Guideline 8, 9) 

• Create OWL properties of the type 'involves_...' and 'involvedln_...' for linking 

interaction classes to the participating substantial thing classes, and vice versa 
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(Modeling Rule 8-9); associate them with the respective interaction classes and 

substantial thing classes using property restrictions in class axioms (Rule 14-17, 

Guideline 8, 9) 

• If it is necessary to represent mutual properties shared by two things only which 

are either non-binding or the related interaction is not relevant to the scope of the 

model, represent these properties using OWL object properties according to 

Modeling Rules 10-11. 

Step 5: Identify subclass-superclass relationships of interest and the properties that 

distinguish subclass instances from superclass instances 

• Represent subclass-superclass relationships using OWl:subclassOf construct 

• Ensure that each subclass in a model is modeled with at least one additional 

property (intrinsic or mutual, such as participation in some interaction) or has 

some property constrained or specialized compared to its superclass (Modeling 

Rule 18) 

Step 6: If in the scope of the model, identify composition relationships in the domain 

• Represent composition relationships using properties isComposedOf and 

isComponentOf (in accordance with Modeling Rules 19-22) 

We would like to stress that the above proposed process steps should not be taken as 

absolute because OWL syntax is very flexible (for example, there are multiple ways to 

express the same idea in the XML/RDF syntax, and statements about ontology elements can 

be arranged in various order). It is acceptable to change the order of some activities involved 

in tiiese steps or to combine some activities without violating the general approach. 

Therefore, we recommend that the proposed modeling process sequence is viewed as a 

general guidance to modelers as well as the checklist to ensure that all the issues involved in 

modeling process have been addressed. We hope that these general steps (with references to 

specific rules and guidelines and the related thesis sections) will facilitate the application of 

the rules an lead to the development of more expressive OWL models of real world domains. 

In the next section, we illustrate the applicability of the proposed approach using an 

example. 
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6 DEMONSTRATION OF APPLICABILITY - AN EXAMPLE 

In this section we demonstrate the applicability and the process of applying the 

proposed rules and guidelines using a small example from a real world domain - the library 

domain70. Let us assume that there exist various libraries which carry different types of items 

for borrowing, such as books, magazines, or music CDs. These types of items have different 

borrowing conditions, such as allowed number of loan days. People come to libraries to 

register and become library members. Upon registration, they obtain library cards and can 

borrow and return items to the library. 

To model this case in OWL, we follow our recommended modeling process steps. 

Wherever relevant, we indicate rules and guidelines that we apply. For brevity, we use 

abbreviations with the respective rule or guideline number: MR for Modeling Rule, G for 

Guideline, and C for Corollary (for example, MR1 for Modeling Rule 1, G2 for Guideline 2, 

or C5 for Corollary 5). 

1) Upper-level (meta-model) classes 

First, we create in our OWL ontology the upper level classes SubstantiaLThing and 

Non_Substantial_Thing and declare them disjoint (MR1). We also create the class 

Substantial_Thing_lnteraction (as a subclass of the Non_Substantial_Thing) which is used to 

create interaction classes with their related mutual properties (G5, MR5, MR6). 

2) Substantial things 

Analyzing our domain, we can identify the following substantial things: library items 

(which can be of several types), persons, and libraries (we assume that a person can be a 

member of more than one library). Respectively, we create the following classes of 

substantial things in our ontology: Library, Person, Libraryjtem, Book, Magazine, Music_CD. All 

these classes should be declared subclasses of the class SubstantiaLThing (C2, MR12). In 

addition to defining these classes as named classes, we will later add (when defining 

properties) class axioms for these classes in terms of property restrictions to show which 

common properties the instances of these classes share (in accordance with the rules 14-15 

and guidelines 8-9) 

Also, we declare the classes, Book, Magazine, Music_CD to be subclasses of the class 

Libraryjtem (later we will add properties that differentiate each subclass from its superclass 

as per rule 18). Note that later we will need to create more classes (subclasses of the above 

ones) based on the analysis of interactions and of the related shared mutual properties (so as 

While our example is simplified, it should not affect generalizability of our approach. 
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to avoid 'optional properties' problem, as per rule 17). 

3) Intrinsic properties 

Having identified the major substantial things and classes, we proceed to identify and 

model properties. First, for each of the classes of substantial things we determine intrinsic 

properties that need to be modeled. We represent them as OWL properties in accordance 

with guidelines G3-4 and rules MR2-4. For example, for libraries we may identify such 

properties as name and addr ess1 x. For persons, some intrinsic properties are name, address 

and date of birth. Library items have some common intrinsic properties, for example title, 

barcode (a unique inventory code assigned by the library), subject, and loan days allowed. In 

addition, each of the different library item types may also have properties specific to this 

item type. For our example, we assume that books have such intrinsic properties as author 

and publisher, magazines have volume and issue, and music CDs have artist and content 

(e.g. list of songs). Note that these intrinsic properties differentiate subclasses from its 

superclass Libraryjtem, thus satisfying the rule MR18 on subclassification. 

All these intrinsic properties are modeled as OWL properties in accordance with the 

guidelines G3-4 and rules MR2-4. In addition, to satisfy the guidelines 8 and 9 as well as the 

rules 14-15, we associate these properties with the respective classes using suitable property 

restrictions in class axioms (e.g. owl:Cardinality=l or owl:minCardinality=1), thus stating that all 

instances of the above classes possess the respective intrinsic properties. 

4) Interactions and related mutual properties 

The next step is to identify and model mutual properties. To do that, we need to 

identify interactions and bundles of mutual properties associated with them and shared by 

participants (G5-6). In our example, several interactions can be identified. 

First, a person interacts with a library to become a library member (library 

membership interaction). As a result of this interaction, several mutual properties are 

acquired by the interacting library and person things, including library card number, 

membership start date, and membership status (e.g. active or suspended). Since not all 

persons become library members (i.e. not all persons possess the above mutual properties) 

and since ontological guidelines recommend avoiding 'optional properties' in class 

definitions (MR17), we create a subclass Libraryjvlernber (a class of persons who are 

7 For simplicity, we treat addresses and names here as a single string values. More complex representations 
can be easily implemented (e.g. separate properties for first and last name, or for city, street, postal code etc.), 
Also, here we consider a library to be a single location (i.e. we do not consider multiple branches) 
7 2 By library items here we mean physical copies of books, magazines or CDs. Thus, we will not consider such 
entities as Author or Publisher as things here (they are out of scope of the model), but rather view them as 
library item's intrinsic properties (this process is termed 'unarisation of properties' in Bunge's ontology) 
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members of some library). To represent this interaction and the respective mutual properties 

we create a special interaction class i_Library_Membership as a subclass of the class 

Substantial_Thing_lnteraction (MR6). 

Individual mutual properties are represented as OWL properties with the class 

i_Library_Membership as their domain (MR7); they are also associated with this class using 

suitable property restrictions (e.g. e.g. Owl:Cardinality=l) in the class definition (G8-9) to state 

that these properties are possessed by all instances of the interaction class 

i_Library_Membership (which would indirectly represent the possession of this bundle of 

properties by the respective Library and Library_Member individuals linked by instances of the 

interaction class). Note that one person can be a library member in different libraries and a 

library can have many members, therefore for each interaction (or a pair "person-library"), 

an ontology will have a separate instance of the interaction class representing an individual 

"instance" of this interaction type (which in turn will possess individual values for the 

bundled mutual properties). 

To conclude the representation of the interaction and its related mutual properties, we 

need to create object properties for linking the interaction class and the involved substantial 

thing classes (in accordance with the rules MR8-9). For the library membership interaction, 

we create an object property corresponding to the interaction class 

involvedln_Library_Membership (MR8) and two object properties involves_Library, 

involves_Library_Member corresponding to the classes of substantial things participating in the 

interaction. We also add class axioms to the interaction class iLibraryMembership that 

state that each interaction class instance possesses one value for each of the properties 

involves_Library and involves_Library_Member (i.e. is linked to exactly one Library and one 

Library_Member instance). Similarly for the classes, Library and Library_Member we will add 

class axioms that state that each Library and each Library_Member instance possesses at least 

one value for the property involvedln_Library_Membership (i.e. is involved in at least one 

library membership interaction and possesses the associated mutual properties) 
73 

Another example of an interaction in this domain is the item loan interaction 

(involving a library member borrowing an item, a borrowed library item, and a library). This 

interaction also gives rise to certain mutual properties, shared by its participants, such as for 

example, date out and date due. This interaction and the related mutual properties are 

represented in the same manner as the above described library membership interaction. Note 

that to represent the item loan interaction, we also need to create additional subclasses of 
7 3 Additional examples of interactions in this domain would be item reservation, item return and item renewals. 
We limit ourselves to only to the above discussed interactions only for demonstration purposes. 
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substantial things (MR17): in addition to Library74, the item loan interaction involves Borrower 

(a subclass of LibraryMember) and Borrowedjtem (a subclass of Libraryjtem). 

5) Subclass-superclass relationships 

We declare the classes Book, Magazine, and Music_CD to be subclasses of the class 

Libraryjtem. To ensure that subclasses differ from its superclass in terms of properties (Rule 

18), we associate (using property restrictions in class axiom) the properties specific to each 

of these item types with the respective classes (those type-specific properties are mentioned 

in step 2). In addition, in step 4, we have created some other subclasses (such as Borrower - a 

subclass of Library_Member). Instances of these subclasses also satisfy Rule 18 since they 

differ from the superclass instances due to participating in a certain interaction (e.g. 

possessing a property involvedlnJtemLoan and a set of related mutual properties indirectly). 

6) Composition relationships 

For illustration purpose, we consider one composition relationship in our domain. 

Various library departments or sections (for example, children book section, adult book 

section, or reference section) can be considered to be components of the library. To represent 

such composition relationship in our OWL ontology, we need to define the two mutually 

inverse meta-model properties: isComposedOf and isComponentOf (in accordance with MR19). 

We could also define meta-model classes Composite_Thing and Component_Thing (subclasses 

of the Substantial_Thing upper level class) i f we were interested in explicitly modeling or 

using inference to determine which things are composites or components of some other 

things. However, for brevity and model readability, in this example we limit ourselves to 

representing composition relationships between certain substantial things, thus the pair of 

properties isComposedOf/ isComponentOf is sufficient. We also create a class Library_Section (a 

subclass of the Substantial_Thing class) to represent various library sections and state for this 

class (using property restrictions owl:someValuesFrom = Library on the property 

isComponentOf) that every Library_Section instance is a component of some library. We can 

also declare that every library is composed of some sections by adding a class axiom for the 

class Library using the property restriction owLsomeValuesFrom =Library_Section on the 

property isComposedOf. 

Finally, Rule 21 requires that every composite thing should be modeled with at least 

one emergent property. In our case, one emergent property of library (as a composite thing) 

would be the number of sections in the library15. We would model it as an OWL property 

7 4 We assume that every library has at least one member, lends at least one item and gets at least one item back. 
Therefore, we do not create subclasses for Library based on the above interactions. 
7 5 While this example is quite simple and may not seem very practical, it serves the purpose of illustrating key 
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and associate it with the class Library using a property restriction (such as owl:Cardinality=l) to 

state that every library has a specific number of library sections. 

Figure 7 on the next page shows a graphical representation of the resulting OWL 

ontology developed for the library example discussed in this section. The RDF/XML OWL 

syntax representation of this ontology can be found in Appendix D. 

steps of our modeling approach without overloading the reader with too many irrelevant details. 

110 



L i b r a r y j t e m 
0; ip^Tite' 
0; ipiBarcode ' 
0: ipiSubjecl 
0: ipJ_oanDaysA]lowed 

Person 
D ip PersonNjne 
D i? Pe'sonAddrers 
DfipibateOiBirth 

isA 

Library Member 

"2 :-f l-'nr'.O'VV.!;! r-;,vi 
•:'r 'p r.jicotftirii 
0: irwolvedlrti LibraryM«mtership 

, Library 
D. IpJjbraryNarrie t 

0. ip_Libran/Address 
0: ip_NumberOfSections 
0, invoIvedln.LibraryMembershlp 
0. invoivedlnJte'mLoan 
O: isComposedCH • ' r- . 

Involvedln UbraryMerntrersNp \ 
\ ~" \ \ 

\ \ xinvolvwi 
, Irtvolves_Library \ \ / 

i<lvolv«dln_UbraryhSemb6rsNp x v. 

IrsvolvesJ^roiyMember* 

Substantial Thing .Interaction 

^ isComposedOt 

laCoinponentOt̂ *,, 
Library Section 

D1 'P .&ec:ionNarne 
0 isComoonenlOt 

liumLoan 

IrrvotvesJJbrary \ 
\ 

\ 
\ 

Boole 

0 >p i<iinD'JvsA,ia*e.d 
D ip„AutllOf 
D:'ip_Pubfcher' 

LLIbraryiMembership 
D1 mp. LibroryCardNjrpSer 
D mp_Star:Oa:e 
D mp.VemberohlpSta'us 
0 mvoVes_library 
0:,involvesitibraryMernber: 

f «Mu»ici.CDi: 

feipySubfeU < -j 
§J;jjps,lo%iBa\*AMowed; I 
D ip_Artist" . • j 
p:'ip_Contem V-

Involves BorrowedlSem 

Involvedln ItemLoan 

V l . l f ip I o.m 
v \ D mp_D,reOjt 

D mp_Da:eDue 
r-*1 0 mvo:vftS_Librnry 

G: involvss_Borrower 
0 mv Dv.!S_Bo(ro//t'd::em 

tnvolvesBorrower 

involved ln_ltemLoars 

Borrower 

0. ip_P>rsor<Ar|:ires» 

0. invoivasilis.i wroryMembstshtp 
0: involvedln .ItemLoan 

Figure 7: Graphical representation of the O W L ontology for the library example 



To conclude, the example discussed in this secction demonstrates that our rules are 

applicable in practice and lead to the representation of useful information about the domain. 

The proposed modeling rules and guidelines, meta-model elements, and process guidelines 

help modelers to analyze and represent domain elements in a systematic way and toexplicate 

the assumptions about the domain, which facilitates the development of more expressive, 

ontologically clear and consistent models. 
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7 CONCLUSIONS AND FUTURE RESEARCH ISSUES 

The emergence of the Semantic Web as a future of the World Wide Web has created 

a wide interest in IS ontologies as a means of representing - in a formal and machine-

readable form - the relevant information about various domains. To effectively represent the 

knowledge about real-world domains, an IS ontology needs to properly convey beliefs about 

the real world, i.e. beliefs on what exists, might exist, or happen as perceived by a 

community of domain knowledge users. This thesis focuses on a recently proposed formal 

ontology language - the OWL Web Ontology Language, which is considered to be one of 

the fundamental components of the Semantic Web. It contributes to the fruitful stream of the 

research on the ontological analysis of conceptual modeling grammars by evaluating them 

against philosophical ontologies, which was initiated by Wand & Weber (1989) and 

continued by a number of researchers since then. 

The thesis continues the work started by Bera & Wand (2004) who conducted an 

initial ontological analysis of OWL with the aim of evaluating OWL's ontological 

expressiveness, i.e. how explicitly and accurately real-world domain information can be 

modeled in OWL ontologies. By benchmarking OWL against a particular philosophical 

ontology - the Bunge-Wand-Weber ontology - they pointed out a number of issues which 

may undermine the expressiveness of OWL ontologies when they represent real world 

domains, and may also lead to ambiguity, inconsistency, and a lack of stability of 

representations. Bera & Wand (2004) suggested that the expressiveness of OWL can be 

improved by introducing ontologically grounded general representation guidelines and 

specific guidelines on modeling certain ontological constructs in OWL. As well, new 

constructs can be added to OWL to overcome the lack of expressiveness. 

This thesis has been inspired by the above suggestions and continued the research in 

that direction. Based on the ontological foundations, it has conducted an in-depth 

comparative analysis of fundamental constructs of Bunge's ontology (things, intrinsic and 

mutual properties, interactions, classes, and composition) against OWL constructs and 

current OWL modeling practices in order to propose a mapping from Bunge's constructs to 

OWL constructs or their combinations in an ontologically clear and consistent way. Based 

on the proposed mapping, through a transfer of ontological assumptions, the thesis has 

developed a set of general guidelines and more specific modeling rules on how to represent 

key ontological constructs in OWL ontologies of real-world domains. In addition, this 

research has proposed a meta-model - a set of high-level, domain independent OWL classes 
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and properties - that is recommended for inclusion in OWL ontologies that model real world 

domains and will be developed following the proposed methodology. The proposed meta-

model elements are intended to help clarify the ontological semantics of the domain specific 

constructs (which are supposed to be modeled as subclasses or subproperties of the 

respective meta-model elements) as well as to facilitate the use of the proposed rules and 

guidelines by OWL modelers. Furthermore, the thesis has also suggested a number of key 

process steps which OWL modelers should follow when developing OWL ontologies in 

accordance with the proposed approach. The applicability and the process of applying the 

proposed modeling rules and guidelines have been illustrated by an example from the library 

domain. 

Encouraged by our initial experience with the proposed approach, by prior research 

applying a similar approach for other modeling languages, and by the results of some 

empirical studies showing support for the propositions that the use of ontologically grounded 

modeling guidelines leads to better models, we hope that the developed approach, which is 

grounded in the philosophical ontological foundations, will facilitate the development of 

more ontologically expressive OWL ontologies and may help alleviate or avoid the problems 

ambiguity, inconsistency and lack of stability of OWL models. We believe that our approach 

may guide modelers in analyzing their real-world domains of interest and encourage them to 

"think ontologically", seeking and representing domain information in more detailed and 

structured way. It may also help modelers focus more on domain knowledge and faithful 

representation of its elements, and not just on machine-readability and technical 

implementation issues. In addition, using the proposed approach, different modelers are 

more likely to come to similar representations of the same real world domains (even if they 

use different element names to represent domain elements), making it easier to align and 

merge such ontologies and making interpretation and usage in applications more consistent, 

which is important for effective and efficient knowledge representation and sharing. 

We acknowledge several limitations of this study, which in turn provide ideas for 

future extensions of this research. First, this research uses a specific philosophical ontology -

Bunge's ontology - as a philosophical base for analysis. However, other choices are possible 

and can be explored in further research. Second, this thesis only covers the analysis and 

representation of a limited number of Bunge ontology concepts - things, properties, 

interaction, classes, and composition. Representation in OWL of other constructs of Bunge's 

ontology (such as states, events and laws) was not discussed here and can be a subject of 

future research. Nevertheless, the OWL-specific representation methods used in this work 

114 



for the selected constructs provide ideas and serve as a good starting point for the analysis 

and development of the representation guidelines for other Bunge's constructs in the future 

research. A third limitation of this study is that the applicability of the approach was 

demonstrated only on small examples. While this initial experience is encouraging, future 

research may consider more extensive case studies, larger ontologies, and a variety of real-

world domains to test the applicability of the proposed rules in real-world settings, and to 

identify issues which may need refining or revision due to usability or implementation 

considerations. Finally, this study is theoretical, so one can only hope (based on the intial 

experience and the encouraging related prior research results) that using the proposed 

approach will lead to better OWL ontologies. Formal empirical studies need to be conducted 

to evaluate whether the use of the proposed modeling approach does indeed provide any 

benefits for domain knowledge representation and understanding. 

In addition to the above mentioned issues for further research, a number of other 

potentially interesting extensions of this study are possible. First, one of the important areas 

of research in ontological engineering is ontology alignment, merging, and evaluation. The 

suggested meta-model and modeling guidelines may provide some benefits in this area, and 

future research may explore specifically how the proposed methodology may be helpful in 

these aspects. Second, the methodology may also suggest how ontologies can be evaluated 

based on philosophical concepts. Further research may use the proposed meta-model and 

methodology to develop criteria for evaluating specific OWL ontologies (i.e. whether 

domain elements are property represented by language constructs). 

Also, the proposed methodology and meta-model may be helpful for the translation 

of models in other languages to OWL ontologies, and vice versa. The need for mapping or 

translation from model in one language to another (e.g. from UML model to OWL ontology) 

may arise, for example, in the areas of interoperability and integration of heterogeneous 

information sources. It may also be useful for knowledge sharing and reuse, as it would 

facilitate the reuse of the available knowledge representation in other models. Specifically, 

as discussed in section 2 (related research), some prior studies also proposed a mapping 

between constructs of other languages (such as UML or ERM) and the constructs of Bunge's 

ontology. Thus, using Bunge's ontology as an 'intermediary' it may be possible to develop 

mapping between OWL elements and the constructs of another language (e.g. UML) (taking 

into account the ontological semantics assigned to the elements of the translated language). 

Such a mapping would facilitate the translation between models in another language and 

OWL models (assuming both models are developed in accordance with their respective 
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mapping and ontologically grounded guidelines), and could even be automated to some 

extent. 

Finally, an interesting area for future research would be the development of a CASE 

tool to facilitate the development of OWL ontologies in accordance with the proposed 

methodology. This could be the development of a new tool or an extension of some existing 

ontology developments environment, such as Protege-OWL (which allows creation of 

wizards and customized applications) . Such a CASE tool would allow modelers to develop 

ontologies based on Bunge's ontological concepts in accordance with the proposed rules and 

guidelines. Rather than operating directly in terms of OWL constructs, the system could 

guide modelers by asking them to specify model elements in terms of Bunge's ontological 

concepts, i.e. modelers would specify main classes of substantial things and their intrinsic 

properties, interactions and related sets of mutual properties, instances of classes and their 

specific properties, and so on. Based on the proposed rules for representing these concepts, 

the CASE tool would automatically create the respective OWL elements (and their 

combinations) for representing the domain ontological elements specified by the modeler. 

The system could also automatically link elements as required by rules (for example, 

associate classes with properties using property restrictions, set cardinalities, or link 

interaction classes and participating substantial thing classes with special object properties). 

Then the user would be able to review and modify the resulting OWL ontology in both OWL 

and Bunge terms. Also, the tool could provide additional functionality including 

configurable automatic creation of meta-model elements (classes and properties), 

configurable naming conventions for the ontological elements (prefixes, etc) as well as 

model checking capabilities (i.e. the ability to check that an ontology created or modified by 

the user satisfies key ontological rules and guidelines). Finally, such tool could also provide 

enhanced querying capabilities allowing queries not only in terms of the standard OWL 

constructs (for example "List OWL individuals possessing a certain OWL property" or 

"Which OWL classes a particular OWL individual belongs to?") but also in terms of the 

ontological concepts. For example, users could ask queries such as "What intrinsic 

properties a certain class of substantial things has?", "In which interactions a particular 

substantial thing participates?", or "List all components of a particular composite thing". We 

believe that the development of such tool is feasible (albeit not necessarily easy) and is a 

promising future research direction. 

7 6 The Protege Ontology Editor and Knowledge Acquisition System is a free open-source Java tool providing 
an extensible architecture for the creation of customized knowledge-based applications and ontologies. The 
Protege-OWL is an extension of Protege (http://protege.stanford.edu/overview/protege-owl.html) 
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To conclude, we believe that this research is an encouraging step towards improving 

- based on the ontological philosophical foundations - the ontology development process and 

the expressiveness, clarity, and consistency of the resulting OWL ontologies. This work is 

theoretically grounded and contributes to the existing research on the ontological analysis of 

conceptual languages as well as to the area of ontological engineering. It also gives some 

promising results for practical OWL developers by providing specific rules and guidelines 

which can be relatively easily applied in the existing OWL development environments and 

ontologies. Finally, even though this work has considered the OWL language in its current 

form and has not dealt with the issue of adding new constructs to OWL as a way to improve 

its expressiveness, the results of this work suggest some ideas and guidance for possible 

future extensions and modifications of the OWL language as well as for improvement and 

enhancement of the existing ontology development environments. 
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APPENDICES 

APPENDIX A Employment example (section 4.2.4.4) -
diagrams and RDF/XML syntax 
Graphical representation of the employment example ontology 
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Employee 

John Snath 

Company Substantial Thing Interaction 
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Eiuploymait_JaneDoe_BeiSoiwa« EiiiilajiiieitJoiinSinstli rnianmK Eii|)loymoitJolm&i)ifl)_BestSafl\vaie 

Figure 8: Employment example ontology - hierarchy of classes and instances 
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Figure 9: Employment example ontology - classes and properties 
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Figure 10: Employment example ontology - instances and their properties 
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RDF/XML OWL representation of the employment example ontology 

<?xml version-' 1.0"?> 
<rdf:RDF 

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
xmlns:owl="http://www.w3.org/2002/07/owl#" 
xmlns=Mp://www.owl-ontologies.com/unnamed.owl#'' 
xml:base-'http://www.owl-ontologies.com/unnamed.owr> 

<owl:Ontology rdf:about="7> 

<!- Declaring meta-model classes: SubstantiaLThing, Non_Substantial_Thing, Substantial_Thing_lnteraction-> 

</owl:Class> 
<owl:Classrdf:ID="Substantial_Thing',> 
<owl:disjointWith> 
<owl:Class rdf:ID="Non_Substantial_Thing"/> 

</owl:disjointWith> 
</owl:Class> 
<owl:Class rdf:about="#Non_Substantial_Thing"> 
<owl:disjointWith rdf:resource="#Substantial_Thing7> 

</owl:Class> 
<owl:Class rdf:about=H#SubstantiaLThingJnteraction"> 
<rdfs:subClassOf> 
<owl:Class rdf:about="#Non_Substantial_Thing7> 

</rdfs:subClassOf> 
</owl:Class> 

<!- Declaring classes of substantial things (Employee and Company) and their intrinsic properties -> 

<owl:Class rdf:ID="Company"> 
<rdfs:subClassOf rdf:resource="#Substantial_Thing7> 
<rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:ID="involvedln_Employment7> 

</owl:onProperty> 
<owl:minCardinality rdf:datatype=''http://www.w3.org/2001/XMLSchema#int">1</owl:minCardinality> 

</owl:Restriction> 
</rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_CompanyAddress7> 

</owl:onProperty> 
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality> 

</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:cardinality rdf:datatype="http://vvww.w3.org/2001/XMLSchema#int''>1</owl:cardinality^ 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_CompanyName7> 

</owl:onProperty> 
</owl:Restriction> 
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</rdfs:subClassOf> 
</owl:Class> 

<owl:DatatypeProperty rdf:about=H#ip_CompanyNamen> 
<rdfs:rangerdf:resource="http://www.w3.org/2001/XMLSchema#string7> 
<rdfs:domain rdf:resource="#Company7> 

</owl: DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#ip_CompanyAddress"> 

<rdfs:domain rdf:resource="#Company7> 
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string7> 

</owl:DatatypeProperty> 

<owl:Class rdf:ID="Employee"> 
</rdfs:subClassOf> 
<rdfs:subClassOf rdf:resource=,,#SubstantiaLThing7> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:cardinality rdf:datatype="http://w .̂w3.org/2001/XMLSchem 
<owl:onProperty> 
<owl: DatatypeProperty rdf: I D=" ip_EmployeeAddress7> 

</owl:onProperty> 
</owl:Restriction> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:cardinality rdf:datatyr̂ ="http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality> 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_EmployeeName7> 

</owl:onProperty> 
</owl:Restriction> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:about="#involvedln_Employment7> 

</owl:onProperty> 
<owl:minCardinality rdf:datatype-'http://www.w3.org/2001/XMLSchema#intn>1</owl:min 

</owl:Restriction> 
</owl:Class> 

<owl:DatatypeProperty rdf:about="#ip_EmployeeName"> 
<rdfs:range rdf:resourre="http://www.w3.org/2001/XMLSchema#string7> 
<rdfs:domain rdf:resource="#Employee7> 

</owl:DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#ip_EmployeeAddress"> 
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#date7> 
<rdfs:domain rdf:resource="#Employee7> 

</owl:DatatypeProperty> 

</—Declaring the interaction class f/_EmploymentJ, mutual properties associated with it, and special (linking) 
object properties involvedln_Employment, lnvolves_Company, involves_Employee -> 

<owl:Class rdf:ID="i_Employment"> 
<rdfs:subClassOf> 
<owl:Classrdf:ID=HSubstantial_ThingJnteraction7> 

</rdfs:subClassOf> 
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<rdfs:subClassOf> 
<owl: Restriction 
<owl:onProperty> 
<owl:ObjectProperty rdf: ID="involves_Company7> 

</owl:onProperty> 
<owl:cardinality rdf:datatype='Mp://www.w3.org/2001^ 

</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:ID="involves_Employee7> 

</owl:onProperty> 
<owl:cardinality mf:datatyr̂ ="http://wAw.w3.org/2001/XMLSch 

</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="mp_JobTitle7> 

</owl:onProperty> 
<owl:cardinality rdf:datatype=Mp://www.w3.org/200 

</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:cardinality rdf:datatype=Mp://www.w3.org/2001/XM 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="mp_StartDate7> 

</owl:onProperty> 
</owl: Restriction 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="mp_Salary7> 

</owl:onProperty> 
<owl:cardinality rdf:datatype="http://www.w3^ 

</owl:Restriction> 
</rdfs:subClassOf> 

<owl:DatatypeProperty rdf:about="#mp_JobTitle"> 
<rdfs:range rdf:resourc«=''http://www.w3.org/2001/XlvlLSchema#string7> 
<rdfs:domain rdf:resource="#i_Employment7> 

</owl:DatatypeProperty> 
<owl:DatatypeProperty rdf:about=7*mp_Salaryn> 
<rdfs:range rdf:resourc«=''http://www.w3.org/2001/XMLScherna#positivelnteger"/> 
<rdfs:domain rdf:resource="#l_Employment7> 

</owl: DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#mp_StartDate,l> 
<rdfs:domain rdf:resource="#l_Employment7> 
<rdfs:range rdf:resource=''http://www.w3.org/2001/XMLSchema#string7> 

</owl: DatatypeProperty> 

<owl:ObjectProperty rdf:about="#involvedln_Employment"> 
<rdfs:domain> 
<owl:Class> 
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<owl:unionOf rdf:parseType="Collection"> 
<owl:Classrdf:about="#Company"/> 
<owl:Classrdf:about="#Employee'7> 

</owl:unionOf> 
</owl:Class> 

</rdfs:domain> 
<rdfs:rangerdf:resource=''#i_Employment7> 

</owl:ObjectProperty> 

<owl:ObjectProperty rdf:about="#involves_Employee"> 
<rdfs:domain rdf:resource="#i_Employment7> 
<rdfs:range rdf:resource="#Employee7> 

</owl: ObjectProperty> 
<owl:ObjectProperty rdf:about="#involves_Company"> 

<rdfs:domain rdf:resource="#i_Employment7> 
<rdfs:range rdf:resource="#Company7> 

</owl:ObjectProperty> 

</- Example declaration of instances (specific companies and employees), values for their intrinsic properties 
and instances of interactions linking specific employee and company in an employment interaction and its 
related values of mutual properties77 -> 

<i_Employment rdf:ID="Employment_JaneDoe_BestSoftware"> 
<mp_Salaryrxlf:datatype="http://www.w3.org/2001/XMLSch 
<mp_JobTitle rdf:datatype=Mp://wv\w.w3.org/200 
<involves_Employee> 
<Employee rdf:ID="Jane_Doe"> 
<ip_EmployeeAddress rdf:datatype="http://www.w3.org/2001/XMLSchema#date">999 Main St 
</ip_EmployeeAddress> 
<ip_EmployeeNamero^:dataiype="http://www.w3.org/2001W Doe 
</ip_EmployeeName> 
<involvedln_Employment rdf:resource='WEmployment_JaneDoe_BestSoftware7> 

</Employee> 
</involves_Employee> 
<involves_Company> 
<Company rdf:ID="Best_Software_Company''> 
<involvedln_Employment> 
<i_Employment rdf:ID=Tmployment_JohnSmith3estSoftware"> 
<involves_Employee> 
<Employee rdf:ID="John_Smith"> 
<involvedln_Employment> 
<i_Employmentrdf:ID="Employment_JohnSmithJTtraining"̂  
<mp_Salary rdf:datatype=''http://www.w3.org/2001/XMLSchema#^ 
<mp_StartDaterdf:datatype="http://www.w3.org/2001/XMLSchema#string"^ 
</mp_StartDate> 
<involves_Company> 
<Company rdf:ID="IT_Training_Company"> 
<involvedln_Employment rdf:resource="#Employment_JohnSmith_ITtraining7> 
<ip_CompanyName rdf:datatyr^-'http://www.w3.org/2001/XMLSchema#string" 
>IT_Training_Company </ip_CompanyName> 
<ip_CompanyAddressrdf:datatype="http://www.w3.org/2001/XMLSchema#stri^ 
St.</ip_CompanyAddress> 

OWL syntax allows multiple ways of representing the same statements and sequence of statements about 
classes, properties and instances is not important. For example there are several ways to declare instances and 
make assertions their properties. The above code was generated automatically in Protege, so it is not as well 
arranged as manually written code could be (but it still represents the same intended information) 
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</Company> 
</involves_Company> 
<mp_JobTitle rdf:datatype="http://www.w3.org/2001/XMLSchema#string">SoftAwa 
</mp_JobTitle> 
<involves_Employee rclf: resource-'#JohnJ5mith7> 

</i_Employment> 
</involvedln_Employment> 
<involvedln_Employment rdf:resource="#Employment_JohnSmith_BestSoftware7> 
<ip_EmployeeNameraf:datatype=Mp://www.w3\org^ 
>John Smith</ip_EmployeeName> 
<ip_EmployeeAddress rdf:datatype="http://www.w3.org/2001/XMLSchema#date" 
>123 Oak St</ip_EmployeeAddress> 

</Employee> 
</involves_Employee> 
<involves_Company rdf:resource="#Best_Software_Company7> 
<mp_Salaiyrdf:da{atype="http://www.w3.org/2001/XMLSchema#int''>40000</mp 
<mp_StartDater(tf:datatype=,,http://www.w3.org/2001/XMLSchema#stnh 
<mp_JobTitle rdf:datatyrje="http://www.w3.org/2001/XMLSchema#string">Software Developer 
</mp_JobTitle> 

</i_Employment> 
</involvedln_Employment> 
<involvedln_Employment rdf:resource=,'#Employment_JaneDoe_BestSoftware7> 
<ip_CompanyName idf:datatype="http://www.w3.org/2001/XMLSchema#string',>Best Software Company 
</ip_CompanyName> 
<ip_CompanyAddress rdf:datatype=''http://www.w3.org/2001/XMLScherna#string">123 Office St 
</ip_Com panyAdd ress> 

</Company> 
</involves_Company> 
<mp_StartDatercif:datatype=nhttp://\̂ .w3.org/2001/XMLSchema#stri 

</i_Employment> 
</rdf:RDF> 

<!- Created with Protege (with OWL Plugin 1.3, Build 225.1) http://protege.stanford.edu -> 
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APPENDIX B Person class example (section 4.3.3) 
RDF/XML syntax 

<?xmt version-1.0"?> 
<rdf:RDF 

xmlns:rclf="http://www.w3.org/1999/02/22-rdf-syntax-ns#'' 
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
xmlns:owl="http://www.w3.org/2002/07/owl#" 
xmlns=''http://vvw.owl<)ntologies.com/unnamed.owl#'' 

xml:base=''http://www.owl-ontologies.com/unnamed.owr'> 
<owl:Ontology rdf:about="An example of declaring a class in terms of properties"^ 

</- Declaring meta-model classes: Substantial_Thing, Non_Substantial_Thing -> 

<owi:Classrdf:about="#Substantial_Thing"> 
<owl:disjointWith> 
<owl:Classrdf:ID="Non_Substantial_Thing7> 

</owl:disjointWith> 
</owl:Class> 
<owl:Class rdf:about="#Non_Substantial_Thing"> 
<owl:disjointWith rdf:resource="#Substantial_Thing7> 

</owl:Class> 

<!-- Declaring the class Person and its intrinsic properties -> 

<owl:Class rdf:ID="Person"> 
<rdfs:subClassOf> 
<owl:Classrdf:ID="Substantial_Thing7> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_Name7> 

</owl:onProperty> 
<owl:cardinality rdf:datatyrje="http://www.w3.org/2001/XMLSchema#int">1</owl:rjardinality^ 

</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:cardinality rdf:datatype="http:7/wvwv.w3.org/2001/XMLSchema#inf> 
<owl:onProperty> 
<owl:DatatypePropertyrdf:ID="ip_DateOfBirth7> 

</owl:onProperty> 
</owl:Restriction> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:cardinality rdf:datatype="http://vvww3.org/20^ 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_Gender"/> 

</owl:onProperty> 
</owl:Restriction> 

</rdfs:subClassOf> 
</owl:Class> 

http://www.w3.org/1999/02/22-rdf-syntax-ns%23''
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<owl: DatatypeProperty rdf:about="#ip_Name"> 
<rdfs:domain rdf:resource="#Person7> 
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLScherna#string7> 

</owl:DatatypeProperty> 

<owl:DatatypeProperty rdf:about="#ip_Gender"> 
<rdfs:range> 
<owl:DataRange> 
<owl:oneOf rdf:parseType="Resource"> 
<rdf:rest rdf:parseType="Resource"> 
<rdf:restrclf:resource="http://www.w3.org/1999/02/22-rdf-syrt 
<rdf:firBtrdf:datatype="http://www.w3.org/2001/XMLSchema#^̂  

</rdf:rest> 
<rdf:tirstrdf:datatype="http://www.w3.org/2001/XMLSchema#stri 

</owl:oneOf> 
</owl:DataRange> 

</rdfs:range> 
<rdfs:domain rdf:resource="#Person7> 

</owl: DatatypeProperty> 

<owl:DatatypeProperty rdf:about="#ip_DateOfBirth"> 
<rdfs:domain rdf:resource="#Person7> 
<rcifs:rangerdf:resource="hnp://wvvw.w3.org 

</owl:DatatypeProperty> 

<!- Declaring a class of substantial things Female_Person (an example of using owhhasValue restriction); this 
class inherits all the constraints from the class Person and has an extra constraint of having a specific value (F) 
for the ipjSender property -> 

<owl:Classrdf:!D="Female_Person"> 
<rdfs:subClassOf rdf:resource="#Person7> 
<rdfs:subClassOf> 
<owl: Restriction 
<owl:onProperty> 
<owl:DatatypeProperty rdf:about="#ip_Gender7> 

</owl:onProperty> 
<owl:hasValuerdf:datatype="http://www.w3.org/2001/XMLSchema#string">F</ow 

</owl:Restriction> 
</rdfs:subClassOf> 

</owl:Class> 

<!- Declaring a specific instance of the class Person and its properties (i.e. property values for the generic 
properties -> 

<Person rdf:ID="JohnSmith"> 
<ip_Name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">John W. Smith</ip_Name>. 
<ipj3enderrctf:datatype=Mp://www.w3.org/200 
<ip_DateOfBirth rdf:datatype="http://www.w3.org/2001/XMLSchema#date">05/04/1960</ip_Date 

</Person> 

</rdf:RDF> 

<!- Created with Protege (with OWL Plugin 1.3, Build 225.1) http://protege.stanford.edu -> 
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APPENDIX C Meta-model (Chapter 5) - RDF/XML syntax 
<?xml version-'1.0"?> 
<rdf:RDF 

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
xmlns:rdfs=''http://vvww.w3.org/2000/01/rdf-scherna#,' 
xmlns:owl=nhttp://www.w3.org/2002/07/owl#'' 
xmlns="http://www.owl<)ntologies.com/unnarned.owt#'' 
xml:base="http://www.owl-ontologies.com/unnamed.owr> 

<owl:Ontology rdf:about="Meta-model"/> 

<owl:Class rdf:ID="Substantial_Thing"> 
<rdfs:comment rdf:datatyrje="http://www.w3.org/2001/XMLSchema#string''>Meta-model class of all OWL 

things representing ontological substantial things (in Bunge's ontology sense)</rdfs:comment> 
<owl:disjointWith> 
<owl:Class rdf:about="#Non_Substantial_Thing7> 

</owl:disjointWith> 
</owl:Class> 

<owl:Classrdf:about="#Non_Substantial_Thing"> 
<rdfs:comment rdf:datatyrje=nhttp://www.w3.ofg/2001/XMLSchema#string">Meta-m class of all OWL 

things that are not representing ontological substantial things</rdfs:comment 
<owl:disjointWith rdf:resource="#Substantial_Thing7> 

</owl:Class> 

<owl:Class rdf:about="#Substantial_Thing_lnteraction"> 
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string''>Meta-model class used to 

represent interaction classes (to models sets of mutual properties) </rdfs:comment 
<rdfs:subClassOf> 

<owl:Class rdf:about="#Non_Substantial_Thing7> 
</rdfs:subClassOf> 
<owl:disjointWith rdf:resource="#Property_Value7> 

</owl:Class> 

<owl:Classrdf:ID="Property_Value"> 
<rdfs:comment rdf:datatype=''http://www.w3.org/2001/XlvlLSchema#string''> Meta-model class (optional) 

used to represent special classes and instances modeling enumerated property values</rdfs:comment 
<rdfs:subClassOf> 
<owl:Classrdf:ID="Non_Substantial_Thing7> 

</rdfs:subClassOf> 
<owl:disjointWith> 
<owl:Class rdf:ID="Substantial_Thing_lnteraction"/> 

</owl:disjointWith> 
</owl:Class> 

<owl:Classrdf:ID="Composite_Thing"> 
<rdfs:comment rdf:datatype=''http://www.w3.org/2001/XMLSchema#string''>A class of all substantial things 

that are composite things</rdfs:comment> 
<rdfs:subClassOf rdf:resource="#Substantial_Thing"/> 
<owl:disjointWith> 
<owl:Class rdf:about="#Simple_Thing7> 

</owl:disjointWith> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:ID="isComposedOf'/> 
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</owl:onProperty> 
<owl:minCardinality rdf:datatype-'http://www.w3.org/2001/XMLSchema#int">1</owl:minCard 

</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:about="#isComposedOF/> 

</owl:onProperty> 
<owl:allValuesFrom> 
<owl:Classrdf:ID="Component_Thing7> 

</owl:allValuesFrom> 
</owl:Restriction> 

</rdfs:subClassOf> 
</owl:Class> 

<owl:Classrdf:alx>ut=,'#Componentjrhing"> 
<rdfs:comment rdf:datatyrje="http://www.w3.org/2001/XMLSchema#string''>A class of all substantial things 

that are components of some composite substantial thing</rdfs:comment> 
<rdfs:subClassOf rdf:resource="#Substantial_Thing7> 
<rdfs:subClassOf> 
<owl:Restriction> 

<owl:onProperty> 
<owl:ObjectProperty rdf: I D=" isComponentOf 7> 

</owi:onProperty> 
<owl:minCardinality rdf:datatype-'http://www.w3.org/200 
</owl:Restriction> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectPro petty rdf:about=°#isComponentOf/> 

</owl:onProperty> 
<owl:allValuesFrom rdf:resource="#Composite_Thing7> 

</owl:Restriction> 
</rdfs:subClassOf> 

</owl:Class> 

<owl:Class rdf:about="#Simple_Thing"> 
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Meta-model class of all 

substantial things which are not composed of any other ontological substantial things</rdfs:comment 
<rdfs:subCIassOf rdf:resource=7̂ Substantial_Thing7> 
<owl:disjointWith rdf:resource="#Composite_Thing7> 

</owl:Class> 

<owl:ObjectProperty rdf:about="#isComposedOf > 
<rdfs:comment rdf:datatyrje="http://www.w3.org/2001/XMLSchema#string">Object property used to 

represent that a certain substantial thing has another substantial thing as a component It links an 
instance of a Composite_Thing class to an instanse of a Component_Thing class. Inverse property -
isComponentOf. 

</rdfs:comment> 
<rdfs:domain rdf:resource="#Composite_Thing7> 
<rdfs:range rdf:resource="#Component_Thing7> 

</owl:ObjectProperty> 

<owl:ObjectProperty rdf:about="#isComponentOf > 
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<rdfs:domain rdf:resource="#Component_Thing7> 
<rdfs:rangerdf:resource="#Composite_Thing7> 

</owl:ObjectProperty> 

</rdf:RDF> 
<!-- Created with Protege (with OWL Plugin 1.3, Build 225.1) http://protege.stanford.edu 

http://protege.stanford.edu


APPENDIX D Library example (Chapter 6) - RDF/XML 
syntax 
<?xmlversion="1.0"?> 
<rdf:RDF 

xmlns:irJf=Mp://v\Aww 
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
xmlns:owl="http://www.w3.org/2002/07/owl#'' 
xmlns="http://www.owl<)ntologies.a)m/unnamed.owl#'' 

xml:base="http://www.ow^ 
<owl:Ontology rdf:about="7> 

</- Declaring meta-model classes and properties --> 

<owl:Class rdf:about="#SubstantiaLThing"> 
<owl:disjointWith> 
<owl:Classrdf:ID="Non_Substantial_Thing7> 

</owl:disjointWith> 
</owl:Class> 

<owl:Class rdf:about="#Non_Substantial_Thing"> 
<owl:disjointWith rdf:resource="#Substantial_Thing7> 

</owl:Class> 
<owl:Class rdf:about="#Substantial_Thing_lnteraction"> 

<rdfs:subClassOf> 
<owl:Class rdf:about="#Non_Substantial_Thing7> 

</rdfs:subClassOf> 
</owl:Class> 

<owl:ObjectProperty rdf:about="#isComponentOf> 
<owl:inverseOf rdf:resource="#isComposedOf/> 

</owl:ObjectProperty> 
<owl:ObjectProperty rdf:about=7̂ isComposedOf> 

<owl:inverseOf> 
<owl:ObjectProperty rdf:about="#isComponentOf7> 

</owl:inverseOf> 
</owl:ObjectProperty> 

</- Declaring the classes of substantial things and associating them with properties using property 
restrictions-> 

<owl:Class rdf:ID="Person"> 
<rdfs:subClassOf> 
<owl:Classrdf:ID="Substantial_Thing7> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:DatatypePropertyrdf:ID="ip_DateOfBirth7> 

</owl:onProperty> 
<owl:cardinality rdf:datatype="http://wvvW.w3.org/2001/XMLSchema#int">1</owl̂  

</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
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<owl:DatatypeProperty rdf:ID="ip_PersonAddress"/> 
</owl:onProperty> 
<owl:cardinality rdf:datatype=''http://wvw.w3.org/2001/XMLSchema#int"̂  

</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_PersonName"/> 

</owl:onProperty> 
<owl:cardinality rdf:datatype-'http://www.w3.org^ 

</owl:Restriction> 
</rdfs:subClassOf> 

</owl:Class> 

<owl:Class rdf:about="#Library_Member"> 
<rdfs:subClassOf rdf:resource="#Person7> 
<rdfs:subClassOf> 
<owl:Class> 
<owl:intersectionOf rdf:parseType="Collection"> 
<owl:Restriction> 
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:min 
<owl:onProperty> 
<owl:ObjectProperty rdf:about="#inyolvedln_LibraryMembership7> 

</owl:onProperty> 
</owl:Restriction> 
<owl:Restriction> 
<owl:allValuesFrom> 
<owl:Class rdf:about="#l_Library_Membership7> 

</owl:allValuesFrom> 
<owl:onProperty> 
<owl:ObjectProperty rdf:about="#involvedln_LibraryMembership7> 

</owl:onProperty> 
</owl:Restriction> 

</owl:intersectionOf> 
</owl:Class> 

</rdfs:subClassOf> 
</owl:Class> 

<owl:Class rdf:about="#Borrower"> 
<rdfs:subClassOf> 

<owl: Class rdf: I D=" Library_Member7> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Class> 
<owl:intersectionOf rdf:parseType=''Collection"> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:ID="involvedln_ltemLoan7> 

</owl:onProperty> 
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int''>1</owl:min 

</owl:Restriction> 
<owl: Restriction 
<owl:allValuesFrom rdf:resource="#l_ltemLoan7> 
<owl:onProperty> 
<owl:ObjectProperty rdf:about="#involvedln_ltemLoan7> 
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</owl:onProperty> 
</owl: Restriction 

</owl:intersectionOf> 
</owl:Class> 

</rdfs:subClassOf> 
</owl:Class> 

<owl:Class rdf:about="#Library"> 
<rdfs:subClassOf> 
<owl:Classrdf:about="#Substantial_Thing7> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:cardinality r{jf:datatype="http://vvw.w3.org/2001/XMLSch 
<owl:onPrbperty> 
<owl:DatatypeProperty rdf:ID="ip_LibraryName7> 

</owl:onProperty> 
</owl:Restriction> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:cardinality r(Jf:datatype="http://www.w3.org/2001/XMLSchema#int"> 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_LibraryAddress7> 

</owl;onProperty> 
</owl:Restriction> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl: Restriction 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_NumberOfSections7> 

</owl:onProperty> 
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ow^ 

</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Class> 
<owl:intersectionOf rdf:parseType="Collection"> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:ID="involvedln_LibraryMembership7> 

</owl:onProperty> 
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSch 

</owl:Restriction> 
<owl:Restriction> 
<owl:allValuesFrom><owl:Class rdf:ID="l_Library_Membership7> </owl:allValuesFrom> 
<owl:onProperty> 
<owl:ObjectProperty ro :̂about="#invoivedln_LibraryMembership7> 

</owl:onProperty> 
</owl:Restriction> 

</owl:intersectionOf> 
</owl:Class> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Class> 
<owl: i ntersectio n Of rdf:parseType="Collection"> 
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<owl: Restriction 
<owl:onProperty> 
<owl:ObjectProperty rdf:ID="involvedln_ltemLoan7> 

</owl:onProperty> 
<o wl: m in Card i nal ity rdf:datatype=''http://www.w3.org/2001/XMLSchema#int''>1</owl:rninCardinality> 

</owl:Restriction> 
<owl:Restriction> 
<owl:allValuesFrom><owl:Class rdf:ID="l_ltemLoan7> </owl:allValuesFrom> 
<owl:onProperty> 
<owl:ObjectProperty rdf:about="#involvedln_ltemLoan7> 

</owl:onProperty> 
</owl:Restriction> 

</owl:intersectionOf> 
</owl:Class> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:ID="isComposedOf/> 

</owl:onProperty> 
<owl:someValuesFrom><owl:Class rdf:ID=Tibrary_Section7></owl:someValuesFrom> 

</owl:Restriction> 
</rdfs:subClassOf> 

</owl:Class> 

<owl:Class rdf:about="#Library_Section"> 
<rdfs:subClassOf> 
<owl:Classrdf:about="#Substantial_Thing7> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:cardinality rdf:datatype="http://www.w3.oig/2001/XMLSchema#inf>1</owl:cardinality> 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_SectionName7> 

</owl:onProperty> 
</owl:Restriction> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:ID="isComponentOf7> 

</owl:onProperty> 
<owl:someValuesFrom rdf:resource="#Library7> 

</owl:Restriction> 
</rdfs:subClassOf> 

</owl:Class> 

<owl:Classrdf:about="#Library_ltem"> 
<rdfs:subClassOf rdf:resource="#Substantial_Thing7> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_Subject"/> 

</owl:onProperty> 
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:minCardinality> 

</owl:Restriction> 
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</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:cardin 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_Title"/> 

</owl:onProperty> 
</owl:Restriction> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchem 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_Barcode"/> 

</owl:onProperty> 
</owl:Restriction> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_LoanDaysAllowed"/> 

</owl:onProperty> 
<owl:cardinality rtf:datatype=" http://www.w3.org/2001/XMLSchem 

</owl:Restriction> 
</rdfs:subClassOf> 

</owl:Class> 

<owl:Class rdf:about="#BorrowedJtem"> 
<rdfs:subClassOf> 
<owl:Class rdf:about="#LibraryJtem7> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Class> 
<owl:intersectionOf rdf:parseType="ColIection"> 
<owl:Restriction> 
<owl:onProperty> 
<owi:ObjectProperty rdf:about="#involvedlnJtemLoan7> 

</owl:onProperty> 
<owl:cardinalityrdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
>1</owl:cardinality> 

</owl:Restriction> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:about="#involvedlnJtemLoan7> 

</owl:onProperty> 
<owl:allValuesFrom rdf:resource="#l_ltemLoan7> 

</owl:Restriction> 
</owl:intersectionOf> 

</owl:Class> 
</rdfs:subClassOf> 

</owl:Class> 

<owl:Class rdf:ID="Book"> 
<rdfs:subClassOf> 
<owl:Classrdf:ID="Library_ltem7> 

</rdfs:subClassOf> 
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<rdfs:subClassOf> 
<owl: Restriction 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_Publisher"/> 

</owl:onProperty> 
<owl:cardinality rdf:datatype-'http://vvvM.w3.org/2001/XMLSchema#int''>1</owl:cardinal̂  

</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#inf>1</owl:minCardinality^ 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_Author"/> 

</owl:onProperty> 
</owl:Restriction> 

</rdfs:subClassOf> 
</owl:Class> 

<owl:Class rdf:ID="Magazine"> 
<rdfs:subClassOf> 
<owl:Classrdf:about="#Library_ltem7> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_Volume7> 

</owl:onProperty> 
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:cardinal'î  

</owl: Restriction 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int''>1</owl:cardinality> 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_lssue7> 

</owl:onProperty> 
</owl:Restriction> 

</rdfs:subClassOf> 
</owl:Class> 

<owl:Class rdf:ID="Music_CD"> 
<rdfs:subClassOf> 
<owl:Class rdf:about="#Library_ltem7> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:cardinality rdf:datatype-'http://www.w3.org/2001/XMLSchema#int'' >1</owl:cardinality> 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="ip_Artist7> 

</owl:onProperty> 
</owl:Restriction> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:cardinality rdf:datatype="http://vvww.w3.org/2001/XMLSchema#int''>1</owl:card 
<owl:onProperty> 
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<owl: DatatypeP ra pe rty rdf:ID="ip_Content"/> 
</owl:onProperty> 

</owl:Restriction> 
</rdfs:subClassOf> 

</owl:Class> 

</- Declaring the interaction classes and associating them with properties using property restrictions -

<owl:Class rdf:about="#l_Library_Membership"> 
<rdfs:subClassOf> 
<owl:Class rdf:about="#Substantial_Thing_lnteraction7> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="mp_LibraryCardNumber7> 

</owl:onProperty> 
<owl:cardinality rdf:datatype=Mp://www.w3.org/2001M^ 

</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl: Restriction 
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:cardinalî ^ 
<owl:onProperty> 
<owi:DatatypeProperty rdf:ID="mp_StartDate7> 

</owl:onProperty> 
</owl:Restriction> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl:FunctionalProperty rdf:ID="mp_MembershipStatus7> 

</owl:onProperty> 
<owl:cardinality rdf:datatype=''http://www.w3.org/2001/XMLSchema#int">1</owl:cardinan 

</owl: Restriction 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Class> 
<owl:intersectionOf rdf:parseType="Collection"> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:ID="involves_LibraryMember"/> 

</owl:onProperty> 
<owl:cardinality rdf:datatype-'http://vvvvw.w3.org/2001/XMLSchem 

</owl:Restriction> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:about="#involves_LibraryMember"/> 

</owl:onProperty> 
<owl:allValuesFrom rdf:resource="#Library_lvlembern/> 

</owl:Restriction> 
</owl:intersectionOf> 

</owl:Class> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
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<owl:Class> 
<owl:intersectionOf rdf:parseType="Collection"> 
<owl: Restriction 
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:r̂  
<owl:onProperty> 
<owl:ObjectProperty rdf:about="#involves_Libraty7> 

</owl:onProperty> 
</owl:Restriction> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:about="#involves_Library7> 

</owl:onProperty> 
<owl:allValuesFrom rdf:resource="#Library7> 

</owl:Restriction> 
</owl:intersectionOf> 

</owl:Class> 
</rdfs:subClassOf> 

</owl:Class> 

<owl:Class rdf:ID="l_ltemLoan"> 
<rdfs:subClassOf> 
<owl:Classrdf:ID="SubstantiaLThingJnteraction7> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty> 
<owl :Dataty peProperty rdf: I D=" mp_dateOut7> 

</owl:onProperty> 
<owl:cardinality rdf:datatype=Mp://www.w3.org/2001/̂ ^ 

</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl: Restriction 
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1^ 
<owl:onProperty> 
<owl:DatatypeProperty rdf:ID="mp_dateDue7> 

</owl:onProperty> 
</owl:Restriction> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Class> 
<owl:intersectionOf rdf:parseType="Collection"> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:ID="involves_Borrower7> 

</owl:onProperty> 
<owl:cardinality rdf:datatype="http://www^ 

</owl:Restriction> 
<owl:Restriction> 
<owl:allValuesFrom> 
<owl:Class rdf:ID="Borrower7> 

</owl:allValuesFrom> 
<owl:onProperty> 
<owl:ObjectProperty rdf:about="#involves_Borrower"/> 

</owl:onProperty> 
</owl:Restriction> 
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</owl:intersectionOf> 
</owl:Class> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Class> 
<owl:intersectionOf rdf:parseType="Collectionn> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:ID="involves_Libraty7> 

</owl:onProperty> 
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owlx 

</owl:Restriction> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:about="#involves_Library"/> 

</owl:onProperty> 
<owl:allValuesFrom> 
<owl:Class rdf:ID="Library7> 

</owl:allValuesFrom> 
</owl:Restriction> 

</owl:intersectionOf> 
</owl:Class> 

</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Class> 
<owl:intersectionOf rdf:parseType="Collection"> 
<owl:Restriction> 
<owl:onProperty> 
<owl:ObjectProperty rdf:ID="involves_Borrowedltem7> 

</owl:onProperty> 
<owl:cardinality rdf:datatype="http://\mflw.w3.org/2001/XMLSchem 

</owl:Restriction> 
<owl:Restriction> 
<owl:allValuesFrom> 
<owl:Classrdf:ID="Borrowed_ltem7> 

</ow1:allValuesFrom> 
<owl:onProperty> 
<owl:ObjectProperty rdf:about="#involves_Borrowedltem7> 

</owl:onProperty> 
</owl:Restriction> 

</owl:intersectionOf> 
</owl:Class> 

</rdfs:subClassOf> 
</owl:Class> 

</- Declaring substantial properties (intrinsic and mutual) -> 

<owl:DatatypeProperty rdf:about="#ip_PersonName"> 
<rdfs:range rdf:resourre="hnp://www.w3.org/2001/XMLSchema#string7> 
<rdfs:domain rdf: resource="#Person7> 

</owl:DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#ip_PersonAddress"> 
<rdfs:range rdf:resource="http://\m(w.w3.org/2001/XMLSchema#stri 
<rdfs:domain rdf:resource="#Person7> 

</owl:DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#ip_DateOfBirth"> 
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<rdfs:domain rdf:resource="#Person7> 
<rdfs:range rdf:resource=''http://www.w3.org/2001/XMLScherna#date'7> 

</owl: DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#ip_LibraryName"> 
<rdfs:range rdf:resource=''http://www.w3.org/2001/XMLSchema#string7> 
<rdfs:domain rdf:resource="#Library7> 

</owl:DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#ip_LibraryAddress"> 
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string7> 
<rdfs:domain rdf: resource="#Library7> 

</owl: DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#ip_NumberOfSections"> 
<rdfs:range rdf:resource=''http://www.w3.org/2001/XMLSchema#nonPositivelntegerJ'/> 
<rdfs:domain rdf:resource="#Library7> 

</owl: DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#ip_SectionName"> 
<rdfs:domain rdf:resource="#Library_Section7> 
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string7> 

</owl: DatatypeProperty> 

<owl: DatatypeProperty rdf :about="#ip_T'rtle" > 
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string7> 
<rdfs:domain rdf:resource="#Library_ltem7> 

</owl: DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#ip_Subject"> 
<rdfs:domain rdf:resource="#Library_ltem7> 
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLScherna#string7> 

</owl:DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#ip_Barcode"> 
<rdfs:domain rdf:resource="#Library_ltem7> 
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string7> 

</owl:DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#ip_LoanDaysAllowed"> 
<rdfs:domain rdf:resource="#Library_ltem7> 
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#nonNegativelntege^ 

</owl: DatatypeProperty> 
</owl:DatatypeProperty> 
<owl: DatatypeProperty rdf:about="#ip_Author''> 
<rdfs:domain rdf: resource="#Book7> 
<rdfs:range rdf:resource="http://wvvw.w3.org/2001/XMLSchema#string7> 

</owl:DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#ip_Publisher"> 

<rdfs:domain rdf:resource="#Book7> 
<rdfs:range rdf:resourre="http://www.w3.org/2001/XMLSchema#string7> 

</owl:DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#ip_Volume"> 
<rdfs:domain rdf:resource="#Magazine7> 
<rdfs:rangerdf:resource="http://www.w3.org/2001/XMLSchema#int7> 

</owl:DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#ipJssue"> 
<rdfs:range rdf:resource="http://wvvw.w3.org/2001/XMLScherna#int7> 
<rdfs:domain rdf:resource="#Magazine7> 

</owl:DatatypeProperty> 
<owl:DatatypeProperty rdf: abo ut="#ip_Artist" > 

<rdfs:domain rdf:resource="#Music_CD7> 
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLScherna#string7> 
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</owl: Dataty peProperty> 
<owl:DatatypeProperty rdf:about="#ip_Content"> 
<rdfs:domain rdf:resource="#Music_CD7> 
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string7> 

</owl: DatatypeProperty> 

<owl: DatatypeProperty rdf:about="#mp_LibraryCardNumber"> 
<rdfs:domain rdf:resource="#l_Library_Membership7> 
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string7> 

</owl:DatatypeProperty> 
<owl:DatatypeProperty rdf:about="#mp_StartDate"> 
<rdfs:domain rdf:resource="#l_Library_Membership7> 
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLScherna#date7> 

<owl:FunctionalProperty rdf:about="#mp_MembershipStatus"> 
<rdfs:domain rdf:resourc^=''#l_Library_Membership7> 
<rdf:type rdf:resource=,,http://www.w3.org/2002/07/owl#DatatypeProperty7> 
<rdfs:range> 
<owl:DataRange> 
<owl :oneOf rdf :parseType=" Resou rce" > 
<rdf:rest rdf:parseType="Resource"> 
<r(ff:nrstrdf:datatype="http://www.w3.org/2001/XMLSchema#string"̂  
<r(ff:rest rclf:resource=Mp://w^ 

</rdf:rest> 
<ixJf:firstrdf:datatype="http://www.w3.org/2001/XMLSchema#string"̂  

</owl:oneOf> 
</owl:DataRange> 

</rdfs:range> 
</owl:FunctionalProperty> 
<owl:DatatypeProperty rdf:about="#mp_dateOut"> 
<rdfs:range rdf:resource=''http://www.w3.org/2001/XMLSchema#date7> 
<rdfs:domain rdf:resource="#i_ltemLoan7> 

</owl:DatatypeProperty> 
<owl: DatatypeProperty rdf:about="#mp_dateDue"> 
<rdfs:rangerdf:resour(̂ ="http://www.w3.org/2001/XMLSchema#date7> 
<rdfs:domain rdf:resource="#l_ltemLoan7> 

</owl:DatatypeProperty> 

<!-Declaring special linking object properties (for linking substantial thing and interaction classes) 

<owl:ObjectProperty rdf:about="#invoIvedln_LibraryMembership"> 
<rdfs:domain> 
<owl:Class> 
<owl:unionOf rdf:parseType="Collection"> 
<owl:Class rdf:about="#Library_Membef7> 
<owl:Class rdf:about="#Library7> 

</owl:unionOf> 
</owl:Class> 

</rdfs:domain> 
<rdfs:range rdf:resource="#l_Library_Membership7> 

</owl:ObjectProperty> 

<owl:ObjectProperty rdf:about="#involvedlnJtemLoan"> 
<rdfs:range rdf:resource="#l_ltemLoan7> 
<rdfs:domain> 
<owl:Class> 
<owl:unionOf rdf:parseType="Collection"> 
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<owl: Class rdf: about="#Borrowed Jtem"/> 
<owl:Classrdf:about="#Borrower"/> 
<owl:Class rdf:about="#Library"/> 

</owl:unionOf> 
</owl:Class> 

</rdfs:domain> 
</owl: ObjectProperty> 

<owl:ObjectProperty rdf:about="#Jnvolves_Library"> 
<rdfs:range rdf:resource="#Library"/> 
<rdfs:domain> 
<owl:Class> 
<owl:unionOf rdf:parseType="Collection"> 
<owl:Classr<jf:about="#l_Library_Membership7> 
<owl:Classrdf:about="#l_ltemLoan7> 

</owl:unionOf> 
</owl:Class> 

</rdfs:domain> 
</owl:ObjectProperty> 

<owl:ObjectProperty rdf:about="#involves_LibrafyMember"> 
<rdfs:range rdf:resource="#LibraryJv1ember7> 
<rdfs:domain rdf:resourc«="#l_Library_Membership7> 

</owl:ObjectProperty> 

<owl:ObjectProperty rdf:about="#involves_Borrower"> 
<rdfs:domain rdf:resource="#l_ltemLoan7> 
<rdfs:range rdf:resource="#Borrower"/> 

</owl:ObjectProperty> 

<owl:ObjectProperty rdf:about="#involves_Borrowedltem"> 
<rdfs:range rdf:resource="#Borrowed_ltem7> 
<rdfs:domain rdf:resource="#l_ltemLoan7> 

</owl:ObjectProperty> 

</rdf:RDF> 

<!- Created with Protege (with OWL Plugin 1.3, Build 225.1) http://protege.stanford.edu -

http://protege.stanford.edu


APPENDIX E List of Guidelines and Rules 

Table 2 below provides a summarized list of modeling guidelines, rules, and 

corollaries developed in the thesis. The rules are listed in the order they appeared in the 

thesis and are grouped based on the representation issues they address (with reference to the 

respective thesis sections). For additional convenience, the table includes for each rule or 

guideline the number of the page where the rule or guideline is proposed in the thesis. 

Table 2: List of proposed modeling guidelines, rules, and corollaries 

Guidelines, rules and corollaries 

Representation of substantial things and classes 

Guideline 1: Substantial things (Bunge-things) in a domain should be modeled 
in OWL ontologies as OWL individuals. 
Guideline 2: OWL ontologies intended to model real world domains should 
clearly distinguish between OWL individuals representing substantial things (in 
the ontological sense) and OWL individuals representing other concepts (i.e. 
non-substantial, or conceptual, things). 

Modeling Rule 1: In order to distinguish between OWL individuals 
representing substantial things and OWL individuals used for other purposes, 
an OWL ontology intended to model a real world domain should include two 
disjoint upper-level classes: 

• Substantial_Thing class - the extension of this class would consist of all OWL 
individuals that represent substantial things 

• Non_Substantial_Thing class - the extension of this class would consist of all 
OWL individuals that are used to represent anything other than substantial 
things. 

Corollary 1: Substantial things should be modeled as OWL individuals that are 
instances of the class Substantial_Thing or its subclasses; OWL individuals used 
for other purposes should be made instances of the Non_Substantial_Thing class 
or its subclasses. 

Corollary 2: Any OWL class, all instances of which are intended to represent 
substantial things, should be made a subclass of the Substantial_Thing class. 
OWL classes used for other purposes should be made subclasses of the 
Non_Substantial_Thing class 

Corollary 3: No OWL individual in an ontology can represent both a 
substantial thing and non-substantial thing at the same time 

Corollary 4: No OWL class can (other than built-in top class OwliThing,) can 
include both OWL individuals representing substantial things and OWL 
individuals representing non-substantial things 

Corollary 5: Other OWL constructs (such as OWL properties) should not be 
used to represent substantial things 
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Representation of properties - general recommendations 4.2.2 

Guideline 3: 

• In OWL ontologies modeling real world domains, ontological properties in 
general should be modeled as OWL properties, and ontological properties 
in particular should be modeled as property values of those OWL 
properties that represent the corresponding properties in general; 

• Depending on a property type (e.g. intrinsic or mutual) and model usage 
and reasoning requirements, ontological properties in particular (property 
values) may be represented either as XML datatype values or as special 
OWL classes and their individuals; 

• If ontological properties in particular (property values) are modeled using 
OWL classes/ individuals, then such classes and individuals should be 
clearly distinguished from OWL classes and individuals that represent 
substantial things. 

Corollary 6: OWL classes (individuals) representing property values should be 
subclasses (instances) of the upper-level class Non_Substantial_Thing 

Guideline 4: OWL ontologies modeling real world domains should distinguish 
among OWL properties that are used to represent the following groups of 
properties: 

• Ontological intrinsic properties of substantial things 
• Ontological mutual properties of substantial things 
• Other OWL properties, i.e. properties that are not intended to represent 

substantial properties but are used for other purposes in the ontology 
Modeling Rule 2: If an OWL property is intended to represent an ontological 
(substantial) property, then the domain of such property should be either the 
SubstantiaLThing class or its subclasses. 

p42 

p.42 

p.43 

p.44 

Representation of intrinsic properties 4.2.3 

Modeling Rule 3: If an OWL class (and its instances) is used to represent a 
collection ofproperty values for some OWL property representing an intrinsic 
generic property of substantial things, then 
• This intrinsic generic property should be represented as an OWL object 

property (rather than an OWL datatype property) 
• The domain of this property should be the class SubstantialLThing or some of 

its subclasses 
• The range of this property should be defined as the OWL class that is used 

to represent property value collection 
• The OWL class representing the collection of property values should be 

declared a subclass of the Non_Substantial_Thing upper-level class (to 
distinguish it from substantial thing classes) 

Modeling Rule 4: If OWL classes and individuals are used in an OWL 
ontology modeling a real world domain, then a special upper-level class 
Property_Value should be included in the ontology as follows: 
• This upper level class Property_Value should be declared a subclass of the 

p51 

p.52 
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upper-level class Non J5ubstantial_Thing 
Any OWL class used to represent a collection of property values for some 
ontological property should be made a subclass of the upper level class 
PropertyValue (and thus also a subclass of the upper-level class 
Non_Substantial_Thing) 

Representation of bundles of mutual properties based on interactions 4.2.4.4 

Guideline 5: In OWL ontologies modeling real world domains, a set of mutual 
properties of substantial things arising out of the same interaction should be 
represented as OWL properties associated with the specially defined OWL 
class - an interaction class 

Guideline 6: Each interaction class represents a set of related concurrent 
mutual properties (usually arising out of the same interaction). Different 
interaction classes should be used if sets of properties are not concurrent 
and/or pertain to different interactions. 

Modeling Rule 5: Interaction classes should be modeled as subclasses of the 
upper level class Non_Substantial_Thing (since they do not represent substantial 
ontological things) 

Modeling Rule 6: To further distinguish interaction classes from other types of 
classes in OWL ontologies, additional methods can be employed: 

• A special upper-level class, Substantial_Thing_lnteraction, can be created as a 
subclass of the upper-level class Non_Substantial_Thing. All interaction 
classes then would be modeled as subclasses of this class 
Substantial_Thing_lnteraction (which would also automatically make them 
subclasses of the Non_Substantial_Thing class); 

• Naming conventions can be used in naming interaction classes and 
instances for easier identification (e.g. a prefix I_ or R_ (which stands for 
'interaction' or 'relation') 

Modeling Rule 7: Each individual mutual property in a bundle of concurrent 
properties (represented by some interaction class) should be modeled as an 
OWL property in accordance with the following rules: 

• The domain of each property should be the interaction class representing 
the bundle 
• Use of a prefix (e.g. mp_) is recommended in mutual property name to 
distinguish it from other types ofproperties (to conform to Guideline 4) 

Modeling Rule 8: A special OWL object property should be defined to link 
OWL classes (and their instances) that represent substantial things sharing a 
set of mutual properties to the interaction class that represents this set of 
shared mutual properties: 

• This OWL object property represents the ontological mutual property of 
having the relationship of interest (or participating in the respective 
interaction that gives rise to that set of mutual properties); 

• The domain of this OWL object property should be defined as a union of the 

p.59 

p.59 

p.59 

p.59 

p.60 

p.60 
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classes that represent interacting substantial things related by the 
respective interaction class; the range of this object property should be the 
respective interaction class; 

• Use of naming conventions (e.g. a prefix 'lnvolvedln_' combined with the 
interaction class name) is recommended for such object property to 
explicitly show that the substantial things possessing it are involved in a 
particular interaction (to which this object property links them). 

Modeling Rule 9 : For each class of substantial things involved in an 
interaction, a special OWL object property should be defined to link the OWL 
interaction class representing the shared set of mutual properties back to the 
OWL classes (and their instances) representing the involved substantial things 
sharing this set of mutual properties: 

• The domain of this object property should be the respective interaction 
class; the range of this property should be defined as a union of the classes 
that represent interacting substantial things that participate in this 
interaction; 

• Use of naming conventions (e.g. a prefix 'InvolvesJ combined with the 
respective substantial thing class name) is recommended for such object 
properties to show explicitly that this property links the interaction class to 
a specific class of things involved in the interaction. 

p.61 

Representation of mutual properties as OWL object properties directly 
Unking two substantial things 

4.2.4.5 

Modeling Rule 10: In OWL ontologies modeling real world domains, if an 
OWL object property is used to represent the existence of a relationship 
between two substantial things (i.e. a mutual property of having this 
relationship), then 

• Two mutually inverse OWL object properties should be defined to link 
pairs of individuals - instances of classes A and B respectively, where A 
and B are classes of instances representing substantial things having a 
relationship 

• One of these two properties should have the class A as its domain and the 
class B as its range, while the other property should have the class B as its 
domain and the class A as its range 

• Use of naming conventions (such as a prefix 'mp_') is recommended for 
both these object properties to indicate that they represent a mutual 
property (existence of the relationship) shared by the two things 

Modeling Rule 11: A non-binding mutual property shared by two substantial 
things can be represented using an OWL object property to link the two OWL 
individuals representing those two things. 

p.65 

p.67 
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Representation of ontological classes/kinds based on properties 

Guideline 7: Ontological (Bunge's) classes, kinds, or natural kinds as sets of 
substantial things correspond to OWL class extensions (i.e. sets of OWL 
individuals representing substantial things). 
Modeling Rule 12: If the class extension of some OWL class is intended to 
represent an ontological class, kind, or natural kind, then such class should be 
declared a subclass of the upper-level class Substantial_Thing. 
Modeling Rule 13: In OWL ontologies representing real world domains, if an 
OWL class is intended to model an ontological class or kind, then it should not 
be defined only by class name or only by direct enumeration of instances (i.e. 
without representing any information about common properties of class 
instances) 

Corollary 7: In OWL ontologies representing real world domains, subclasses 
of the class Substantial_Thing should not be defined simply by class name or by 
enumeration of instances (i.e. without representing any information about 
common properties of class instances) 

Modeling Rule 14: An ontological class or kind C, modeled by a functional 
schema with the state functions modeling some common properties Pi, Pn of 
this class/kind C, can be represented in OWL as the class extension of an OWL 
class defined as follows: 

• A named OWL class (e.g. ClassC) should be created; 

• Each of the properties Pi, Pn should be modeled by a suitable OWL 
property (in accordance with Guidelines 3-7 and Modeling Rules 2-11 on 
property representation); 

• Class axiom(s) for the ClassC should be included that state (or imply) that 
all instances of the ClassC necessarily possess each property Pi; 

• To achieve that, such axioms should state that the classC is a subclass of 
the anonymous class defined by suitable property restriction on the 
property Pi, for each Pi. Or, alternatively, the ClassC can be declared to be 
a subclass of the intersection of the anonymous classes defined by suitable 
property restrictions for each of the properties Pi. 

Modeling Rule 15: If a set of ontological properties Pi, .... Pk is a subset of 
common properties of a class or kind C that is sufficient to classify a thing as 
an instance of the class C (i.e. Pi, Pk are class identifying properties), then 
this information can be represented in OWL in the following way: 

• A class axiom for the OWL class representing the class C should be defined 
to represent the fact that possessing properties Pi, Pk is a necessary and 
sufficient condition for individuals to be members of the class C 

• This class axiom should state that the class C is equivalent to the 
intersection of the anonymous classes defined by suitable property 
restrictions for each of the properties Pi, Pk. (where each property 
restriction should imply the possession of the respective property Pi by all 
the instances of the class C). 
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Modeling Rule 16: Every OWL class representing an ontological class or kind 
(and thus, modeled as a subclass of the class SubstantiaLThing) should have or 
imply non-empty class extension. 

Modeling Rule 17: If an OWL class represents an ontological class or kind 
(defined by a set of common properties) then the property restrictions used in 
the class description for the respective OWL properties (which model common 
class properties) should not imply optional possession of a property (e.g. a zero 
cardinality constraint or zero minimum cardinality constraint). Instead, 
subclassification with property restrictions implying 'mandatory' possession of 
properties by all instances of the subclass is preferable. 

Modeling Rule 18: In OWL ontologies modeling real world domains, if classes 
A and B represent some ontological classes (i.e. modeled as subclasses of the 
SubstantiaLThing class), and B is a subclass of A, then the class definition of the 
subclass B should reflect the semantic difference ( in terms of properties) 
between the superclass A and its subclass B. 

This distinction can be represented in one of the following ways: 

• by including in the definition of the subclass B one or more additional 
property restrictions for properties that are acquired by the instances of the 
subclass B compared to the instances of the superclass A, or 

• by including in the definition of the subclass B one or more property 
restrictions constraining some properties of the superclass A for the 
instances of the subclass B, or 

• by including in the definition of the subclass B one or more property 
restrictions for subproperties of some properties of class A 

p.83 

p.84 

p.88 

Relationships governing classes, individuals and properties (integrity 
rules and guidelines) 

4.4.1 

Guideline 8: Every OWL individual representing a substantial individual (real 
world instance) should possess at least one substantial property. Possession of 
a property can be represented by associating this individual with a property 
either at the instance level or at the class level (via class membership). 

Guideline 9: Every OWL property modeling an ontological substantial 
property should be possessed by at least one OWL individual representing a 
substantial thing. This can be represented by associating the property with at 
least one individual either at individual level or at class level (through using a 
suitable property restriction in class definition). 

Guideline 10: Every OWL class representing an ontological class or kind (i.e. 
a subclass of the class SubstantiaLThing) should have at least one property. That 
is, the class definition should include a class axiom that states a necessary 
condition for this class in terms of a suitable property restriction for at least 
one OWL property representing an ontological property shared by all instances 
of the class. 

p.94 

p.94 

p.95 
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Representation of composition relationships 4.5 

Modeling Rule 19: To represent composition relationship between substantial 
things in OWL ontologies of real world domains, two mutually inverse object 
properties should be defined: isComposedOf and isComponentOf. These 
properties would link OWL individuals representing composite things to their 
component things, and OWL individuals representing component things back to 
their composites, respectively. 
Modelng Rule 20: To model explicitly that substantial things are composites 
or components of other things, two upper level classes can be created in OWL 
ontologies: Composite_Thing and Component_Thing: 

• Both classes should be modeled as subclasses of the Substantial_Thing upper 
level class; 

• The class Composite_Thing can be defined (using class axioms with a 
cardinality or an owl:SomeValuesFrom property restriction) as the class of 
all OWL individuals that are instances of the class Substantial_Thing and 
possess the property isComposedOf 

• The class Component_Thing can be defined (using class axioms with a 
cardinality or an OwLSomeValuesFrom property restriction) as the class of 
all OWL individuals that are instances of the class Substantial_Thing and 
possess the property isComponentOf 

Corollary 8: OWL individuals representing substantial things that are 
components of some composite thing should be declared or inferred to be 
instances of the Component_Thing class. OWL individuals representing 
composite substantial things should be declared or inferred to be instances of 
the Composite_Thing class. 

Corollary 9: Any OWL class such that all instances of that class represent 
substantial composite things should be declared or inferred to be a subclass of 
the Composite_Thing class. Any OWL class all instances of which represent 
substantial component things should be declared or inferred to be a subclass of 
the Component_Thing class. 

Modeling Rule 21: Every OWL individual representing a composite thing 
should be associated (at the instance or at the class level) with at least one 
OWL property representing an intrinsic or mutual ontological property that is 
an emergent property of the composite thing. 

Modeling Rule 22: 

• OWL properties that model hereditary properties of a composite thing can 
be associated both with OWL individuals (or classes, at the class level) 
representing the respective component thing(s) and with OWL individuals 
(or classes) modeling the composites 

• OWL properties that model emergent properties of a composite thing 
should be associated with OWL individuals (or classes, at the class level) 
representing the composite but not with any individuals (classes) 
representing components of this composite 
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