
REPRESENTING REAL-WORLD SEMANTICS
IN OWL ONTOLOGIES

by

ANNA VLADIMIROVNA KRASNOPEROVA

B.Sc, The Ural State University, 1994
M.Sc, The Ural State University, 1996

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN BUSINESS ADMINISTRATION

in

THE FACULTY OF GRADUATE STUDIES

(Management Information Systems)

THE UNIVERSITY OF BRITISH COLUMBIA

March, 2006

© Anna Vladimirovna Krasnoperova, 2006

ABSTRACT
The emergence of the Semantic Web as a future of the World Wide Web has created

a strong interest in information system (IS) ontologies as a means of representing - in a

formal and machine readable form - the knowledge about various domains, and the

semantics of heterogeneous web sources in particular. For effective representation, sharing

and reuse of real world domain knowledge, an IS ontology needs to properly convey beliefs

about the real world. However, as the focus of IS ontologies is often on formalization and

machine-readability, the question arises as to how well IS ontologies or ontology

development languages allow the representation of a real world domain.

The OWL Web Ontology Language is an ontology development language recently

proposed by the World Wide Web Consortium as one of the key components of the

Semantic Web. Prior research identified several potential weaknesses of OWL in its ability

to represent knowledge about real world domains, which may lead to limited expressiveness,

ambiguity, inconsistency and lack of stability of representations. It suggested ways to

improve the expressiveness of OWL by associating it with a philosophical ontology that

deals with what exists in the real world.

This thesis continues research in that direction. It uses an established philosophical

ontology - Bunge's ontology - for developing modeling rules and guidelines on how to

better represent real world domains in OWL. The study conducts a comparative analysis of

the key constructs of Bunge's ontology (things, properties, interactions, classes and

composition) and the related OWL constructs, so as to propose a representation mapping

between these constructs. Through the transfer of ontological assumptions of Bunge's

ontology, this thesis develops general modeling guidelines and specific rules on how to

model real world domain elements in OWL ontologies. In addition, this thesis proposes a

meta-model - a set of high-level domain independent OWL classes and properties for OWL

ontologies of real world domains - to facilitate the application of the proposed guidelines

and to clarify the semantics of domain specific elements of ontologies. The applicability and

the process of applying the proposed modeling approach are illustrated by specific examples.

ii

TABLE OF CONTENTS
ABSTRACT ii

TABLE OF CONTENTS iii

LIST OF TABLES v

LIST OF FIGURES vi

ACKNOWLEDGEMENTS vii

1 INTRODUCTION 1

1.1 IS ONTOLOGIES AND OWL WEB ONTOLOGY LANGUAGE 1
1.2 IS ONTOLOGIES AND REPRESENTATION OF REAL WORLD DOMAINS 2
1.3 ONTOLOGICAL EXPRESSIVENESS OF THE OWL LANGUAGE 3
1.4 THESIS SCOPE AND OBJECTIVES 4
1.5 GENERAL APPROACH 5
1.6 THESIS STRUCTURE 6

2 THEORETICAL BACKGROUND AND RELATED RESEARCH 8

2.1 IS ONTOLOGIES - AN OVERVIEW 8
2.1.1 What are IS ontologies? 8
2.1.2 Types of IS Ontologies 10
2.1.3 Applications of IS ontologies 11

2.2 OWL WEB ONTOLOGY LANGUAGE 12
2.2.1 General information 12
2.2.2 OWL classes and individuals 13
2.2.3 OWL properties 14
2.2.4 Property restrictions and class descriptions 17
2.2.5 Reasoning 19

2.3 BUNGE-WAND-WEBER ONTOLOGICAL FRAMEWORK 20
2.4 RELATED PRIOR RESEARCH 22

2.4.1 Ontological foundations for IS research and their applications 22
2.4.2 Prior work on IS ontology development methodology and guidelines 24

3 METHODOLOGY 27

4 ANALYSIS - REPRESENTING MAIN ONTOLOGICAL CONSTRUCTS IN OWL 32

4.1 REPRESENTATION OF THINGS 32
4.1.1 General guidelines and modeling rules 32
4.1.2 Example implementation in OWL 35

4.2 REPRESENTATION OF PROPERTIES 36
4.2.1 Properties in OWL and ontological properties - a comparison 37
4.2.2 General guidelines on representation of ontological properties in OWL 41

i n

4.2.3 Representation of intrinsic properties in OWL 44
4.2.3.1 Case 1: Simple cases of generic intrinsic properties with value manifestations -
representation using OWL datatype properties 45
4.2.3.2 Case 2: Intrinsic properties with enumerated collections of values 47

4.2.4 Representation of mutual properties in OWL 52
4.2.4.1 Relevant concepts of Bunge's ontology 53

4.2.4.2 Mutual properties - general representational considerations 54

4.2.4.3 Analysis and theoretical considerations 55

4.2.4.4 Modeling bundles of mutual properties in OWL using interaction (relation) classes 56

4.2.4.5 Notes on using OWL object properties to directly link OWL individuals representing
substantial things 62

4.3 REPRESENTATION OF CLASSES 68
4.3.1 Classes in OWL - an overview 68
4.3.2 Theoretical foundations - classification in Bunge's ontology and concept theory

72
4.3.3 Comparing classes in OWL to the ontological notion of classes 75
4.3.4 Modeling functional schemas and ontological classes/kinds in OWL 77
4.3.5 Additional classification-related issues 85

4.3.5.1 Subclassification and class hierarchy - ontological considerations 85

4.3.5.2 Note on choosing relevant classes and properties 90

4.4 RELATIONSHIPS AMONG THINGS, PROPERTIES AND CLASSES 91
4.4.1 Transfer of ontological assumptions to modeling rules and guidelines 91
4.4.2 Note on the independence of things from classes: OWL vs. Bunge's ontology 95

4.5 REPRESENTATION OF COMPOSITION RELATIONSHIP 96

5 SUMMARY - PROPOSED METAMODEL AND MODELING PROCESS GUIDELINES
102

6 DEMONSTRATION OF APPLICABILITY - AN EXAMPLE 106

7 CONCLUSIONS AND FUTURE RESEARCH ISSUES 113

BIBLIOGRAPHY 118

APPENDIX A Employment example (section 4.2.4.4) - diagrams and RDF/XML
syntax 122

APPENDIX B Person class example (section 4.3.3) - RDF/XML syntax 129

APPENDIX C Meta-model (Chapter 5) - RDF/XML syntax 131

APPENDIX D Library example (Chapter 6) - RDF/XML syntax 134

APPENDIX E List of Guidelines and Rules 146

iv

LIST OF TABLES

Table 1: Selected concepts of Bunge's ontology (adapted from Wand & Weber, 1993; Bera
& Wand, 2004) 21
Table 2: List of proposed modeling guidelines, rules, and corollaries 146

v

LIST OF FIGURES
Figure 1: Representing enumerated property values using value classes and instances .. 50
Figure 2: Schematic representation of the employment interaction example 57
Figure 3: Mapping of Bunge's classes/kinds and functional schemas to OWL constructs .. 78
Figure 4: Schematic illustration of modeling ontological classes in OWL (an example) 80
Figure 5: Upper level (meta-model) classes for representing composition 99
Figure 6: Proposed meta-model... 102
Figure 7: Graphical representation of the OWL ontology for the library example 111
Figure 8: Employment example ontology - hierarchy of classes and instances 122
Figure 9: Employment example ontology - classes and properties 122
Figure 10: Employment example ontology - instances and their properties 123

vi

ACKNOWLEDGEMENTS
First of all, I would like to express my gratitude to my thesis supervisor, Dr. Yair

Wand, for the on-going support of this research and his helpful advice and suggestions. I

thank him for the inspiration for this thesis's topic and really appreciate his believing in my

abilities as well as his encouragement by helping me believe in the potential and the

importance of this work. I am also very grateful to Palash Bera for fruitful discussions,

advice, and feedback on my work. A special thank you goes to my thesis defense committee

members, Carson Woo and Andrew Burton-Jones, for their interest and appreciation of my

work, and for their useful comments and suggestions.

I would like to extend my thanks to Ed Egan for his helpful comments, moral

support, and continuous encouragement during the work on this thesis, as well as for

providing me with valuable opportunities to participate in other interesting projects and to

keep my professional skills up to date while working on this research.

A very special thank you goes to my husband, Alexey, and to my son, Andrey, for

their love and support. This thesis would not be possible without my husband's

understanding and continuous help in various aspects of life - from computer issues to

household chores to child care - during the months of my studying in the program and

working on this thesis. I especially appreciate my son's patience and having to put up with

me being absorbed in reading research papers or busy working at the computer (which

sometimes deprived him from playing computer games).

Finally, I am indebted to my beloved parents, Tatiana and Vladimir Balashov, my

parents-in-law, Natalia and Vitaly Krasnoperov, and my sister Tatiana Balashova, whose

long-distance support, encouragement, and invaluable help during their visits to us allowed

me to concentrate on the work, and whose loving and caring attitude towards my son

compensated him, at least in part, for the lack of attention from his busy mother.

vii

1 INTRODUCTION

1.1 IS ONTOLOGIES AND OWL WEB ONTOLOGY LANGUAGE

During the last decade ontologies and ontological engineering have gained

considerable popularity in a variety of research disciplines including artificial intelligence,

knowledge engineering and representation, and computer science. Ontologies are now

widely used in research and applications related to knowledge management, natural

language processing, e-commerce, intelligent information integration, information retrieval,

integration of heterogenous databases, bioinformatics, and, most recently, in newly emerging

fields like the Semantic Web (Gomez-Perez et al., 2004). A popular definition of an

ontology was proposed by Gruber (1993): "An ontology is a formal explicit specification of

a shared conceptualization which is a simplified view of the world". In simpler terms, a

formalized ontology can be understood as set of (usually computer usable) definitions of

concepts and relationships among concepts describing a particular domain. Ontologies

provide a common vocabulary of an area and define, with different levels of formality, the

meaning of the terms and relationships between them (Gomez-Perez et al, 2004). They are

used by people, databases, and applications that need to share subject-specific (domain)

information - domain examples include medicine, tool manufacturing, real estate,

automobile repair, financial management, and others.

A number of markup languages and ontology development languages have been

developed, such as XML, RDF(S), OIL, DAML + OIL, and, more recently, OWL. Some

languages have been developed for use in specific projects and applications, while others

have gained wider acceptance and popularity in support of the goal of making the Web more

accessible by computers. One such language - the OWL Web Ontology Language - is the

focus of this thesis. OWL is a language for describing, publishing and sharing ontologies on

the World Wide Web. It has been developed by the World Wide Web Consortium (W3C)1

Web Ontology working group and has been approved (as of February 10, 2004) as a W3C

recommendation, which is understood by industry and the Web community at large as an

accepted Web standard (W3C press release, 2004). OWL is currently considered one of the

key accepted Semantic Web technologies that together provide a framework for asset

management, enterprise integration, and data sharing and reuse on the Web.

1 World Wide Web Consortium (W3C) website: http://www.w3c.org

1

http://www.w3c.org

1.2 IS ONTOLOGIES AND REPRESENTATION OF REAL WORLD

DOMAINS

One of the key purposes of developing ontologies is to model relevant aspects of

some real world domain (so that representations can be agreed upon, shared and reused by

applications and people). Often, the main focus of IS ontologies and Web-based ontology

development languages is on formalization and machine-readability; that is, on expressing

domain conceptualization (shared by a community) explicitly in a form that can be

understood and processed by computers. However, for effective representation, sharing and

reuse of domain knowledge, it is equally important that an IS ontology properly conveys

beliefs about the real world - i.e. beliefs on what exists, might exist or happen, as perceived

by a community of domain knowledge users (Bera & Wand, 2004). Clear, consistent and

stable representation of real world domain elements and relationships in IS ontologies is

essential for effective and efficient development, maintenance, alignment, sharing and reuse

of ontologies by people and applications. Thus, important research questions arise as to what

should be considered a clear and consistent representation of a real-world domain, how well

a particular IS ontology or an ontology development language are suited for proper

representation of a real world domain of interest, and how language constructs and

functionality should be used to achieve a stable and consistent representation.

OWL language provides a number of fundamental constructs for defining classes,

individuals, and properties, and for asserting properties of classes and individuals. OWL

syntax allows the creation of ontologies that can be used in reasoning about classes,

properties and individuals, to the degree permitted by the formal (logical) semantics of

OWL. However, OWL is not specifically tailored to real world domain representation, but

rather is intended as a general language providing generic constructs which allow

representation of any concepts (whether "real world" or abstract) and the relationships

between them in an ontology. No clear real world domain semantics or guidelines on how to

use these constructs to properly represent real world domain knowledge are available for

OWL. Modelers using OWL are allowed substantial freedom and flexibility (within OWL

syntax rules) in how they can apply these basic constructs to represent domains of interest.

On one hand this is an advantage of OWL, providing language flexibility, universality and

applicability to multiple domains. On the other hand, such freedom, together with the lack of

modeling guidelines and constraints, may become a drawback and can lead to a number of

problems including limited expressiveness of an implemented ontology, inconsistent domain

2

representation by different ontologies, potential for ambiguous interpretation, and a lack of

stability of ontologies (as significant changes may be required for an existing ontology when

more domain knowledge is acquired, affecting applications using information described by

this ontology). Bera and Wand (2004) discuss some specific examples of the above issues in

the case of OWL ontologies modeling real world domains.

1.3 ONTOLOGICAL EXPRESSIVENESS OF THE OWL LANGUAGE

To identify possible causes of such problems and potential ways of alleviating them,

Bera and Wand (2004) proposed using an established philosophical ontology - Bunge's

ontology (Bunge, 1977, 1979) - as a benchmark for evaluating OWL expressiveness (i.e. how

well OWL allows the representation of a real world domain of discourse). A philosophical

ontology (such as Bunge's ontology) makes explicit commitments about what might exist

and happen in a domain. It provides a number of high-level constructs (such as things,

properties, classes, states, events, etc.) for describing real world phenomena. To evaluate

OWL expressiveness, Bera and Wand (2004) apply the notion of ontological expressiveness,

which had been introduced by Wand & Weber (1993) as a way to analyze and evaluate

conceptual modeling grammars and languages. The ontological expressiveness approach has

been used to evaluate a number of systems analysis and design methods, such as ERM,

ARIS, UML etc. (e.g. Evermann & Wand, 2001a,b; Green & Rosemann, 2000; Wand et al,

1999). The evaluation is done by exploring the mappings between a set of ontological

concepts and the grammar's constructs. A grammar is ontologically complete if and only if

every ontological construct can be mapped to a grammar construct (i.e. the mapping is total).

A grammar is ontologically clear if and only if no two ontological concepts are mapped onto

the same grammar construct, and all grammar constructs can be mapped to ontological

concepts (Wand & Weber, 1993).

In the analysis of the ontological expressiveness of OWL, Bera and Wand (2004)

identified a number of deficiencies in the mapping between OWL and Bunge's ontological

constructs. In particular, they argue that 1) mapping between OWL and Bunge ontology is

not total (ontological incompleteness) as some ontological constructs do not have an

equivalent in OWL (construct deficit), and that 2) there are several situations when

ontological incompleteness arises due to construct overload, construct redundancy or

construct excess. These deficiencies are likely to lead to the problems discussed above,

namely limited expressiveness, ambiguity, inconsistency and lack of stability of real world

domain representations using OWL ontologies.

3

1.4 THESIS SCOPE AND OBJECTIVES

Bera and Wand (2004) proposed that evaluating IS ontologies (and OWL in

particular) against a philosophical ontology can provide modeling guidance to support the

creation of consistent and stable ways of describing domain knowledge. Such guidance can

be provided by introducing ontologically grounded general representation guidelines, as well

as specific guidelines on modeling certain ontological constructs in OWL. Also, the

philosophical ontology can suggest the addition of new constructs to overcome the lack of

expressiveness of the language.

This thesis continues the work cited above on the ontological analysis and

improvement of the expressiveness of OWL. Specifically, the key objectives of this thesis

are as follows:

• To conduct, based on ontological foundations, a comparative analysis of certain OWL

and Bunge constructs so as to propose clear and consistent mapping between those

constructs or their combinations (with respect to real world domains)

• To develop, based on the comparative analysis and proposed mapping, a high-level class

structure (meta-model) and representational rules and guidelines for modeling real world

domains in OWL ontologies

The proposed ontologically grounded guidelines and a high-level class structure

(which will also be termed 'meta-model' in this thesis) are intended to help OWL modelers

avoid, or at least alleviate, the earlier mentioned problems with ontologies and to facilitate

the development of more clear, consistent, unambiguous, and stable OWL ontologies for real

world domains.

The scope of this thesis is limited mainly to the representation issues related to static

aspects of the world (which are described by such concepts of Bunge ontology as things,

properties, and classes). Some dynamics-related concepts (such as interactions) are discussed

when relevant to the analysis, but other dynamic concepts (states, events, etc) are outside of

the scope of this work and are not discussed in detail.

Also, the scope of this work does not include detailed discussion of another OWL

improvement method proposed by Bera & Wand (2004) - the addition of new constructs to

OWL. Developing, implementing, and approving significant changes to the OWL language

would require considerable time and effort from the many researchers and practitioners

involved in the development and use of OWL and OWL ontologies, because OWL has been

approved as a current Web standard recommended by the W3C and has already been widely

used for developing ontologies in research and applications. Thus it is appropriate to limit

4

the scope of this research and not attempt to change the current OWL functionality2, but

rather suggest how the available constructs and functionality can be used in ways consistent

with ontological foundations. Nevertheless, we believe that our recommendations can also

provide some ideas as to what constructs can be added to OWL in the future versions of the

OWL language in order to improve OWL expressiveness, and how such new constructs can

be best implemented in OWL.

1.5 GENERAL APPROACH

To achieve the objectives of the thesis, we use a general approach that has been

developed based on the ontological analysis method initially proposed by Wand and Weber

(Wand & Weber 1993; see also Wand et al. 1995). This approach has been successfully

employed in several prior contributions to the literature on the ontological analysis of

various modeling languages (e.g. Evermann & Wand, 2001a,b; Green & Rosemann, 2000;

Wand et al., 1999). It has recently been formalized by Evermann and Wand (2005) in a

general form in the case of conceptual modeling languages. As stated in Evermann & Wand

(2005), the general idea of the approach is that the likelihood of creating correct domain

models can be increased if the syntax of a modeling language is restricted to ensure that only

possible configurations of a domain can be modeled. This can be achieved through first

assigning domain (ontological) semantics to the modeling language constructs, and then

subsequently restricting the syntax of the modeling language to respect assumptions and

constraints in the domain (ontological assumptions).

Specifically, our analysis includes the following key steps:

1) Adopting a specific high-level ontology - Bunge's ontology, or more specifically,

Bunge-Wand-Weber ontology (BWW),3 - as a view of the real world (as perceived by

someone). Thus, we assume that any real-world domain can be represented in terms of

the general abstract constructs from Bunge ontology, and that the ontological

assumptions and postulates made in Bunge's ontology are applicable to any real world

domain

2) Comparing selected constructs of Bunge's ontology to OWL constructs so as to propose

a mapping between these Bunge constructs and the OWL constructs or their certain

combinations. This would allow the assignment of ontological semantics to the OWL

2 This thesis is based on the OWL functionality as described in the OWL Language Guide (McGuinness et
al.,2004)
3 We are going to use Bunge's ontology, as adapted and extended by Wand & Weber (1989) for use in
information systems research. This ontological model of information systems has been termed Bunge-Wand-
Weber ontology in subsequent research literature.

5

constructs (or their combinations) when they are used for representing real world

domains.

3) Identifying key ontological assumptions and rules that govern the elements of the

domain and their relationships according to Bunge's ontology

4) Transferring the relevant assumptions identified in step 3 by means of the mapping

proposed in step 2, and proposing general and specific modeling guidelines, as well as

the set of high-level domain-independent classes and properties (a meta-model) for

modeling real world domains in OWL. The ontological assumptions become rules which

restrict the use of the language constructs and limit the kind of statements that can be

made about a real-world domain in OWL.

The applicability and the process of using the proposed guidelines will be illustrated

by an example. In addition, some ideas will be proposed on how ontology development tools

and environments can be enhanced to support the proposed guidelines and rules, in order to

facilitate development of OWL ontologies that are consistent with the proposed guidelines.

1.6 THESIS STRUCTURE

The remainder of the thesis is structured as follows. Chapter 2 provides background

theoretical information relevant to this thesis and discusses related prior research.

Specifically, section 2.1 is devoted to IS ontologies in general, including definitions, types of

ontologies, and their applications. Section 2.2 gives a brief overview of the OWL Web

Ontology Language. Key concepts and premises of Bunge's ontology are introduced in

section 2.3, and section 2.4 provides a review of related prior research work in the area of

ontological analysis and IS ontologies.

Chapter 3 discusses in more detail the general methodology employed in this thesis.

Chapter 4 contains the main theoretical analysis of selected concepts of Bunge's ontology

and their representation in OWL. We start with the discussion of things (Section 4.1),

followed by a detailed examination of properties, which includes general issues related to

properties in Bunge's ontology and in OWL as well as issues specific to representation of

mtrinsic and mutual properties in OWL (Section 4.2). Classes and classification-related

issues are the subject of Section 4.3. Next, Section 4.4 discusses a number of issues related

to the representation in OWL of ontological premises that govern the relationships between

the key ontological constructs (things, properties and classes). Finally, in Section 4.5 we

focus on the representation of composition relationships between things.

Chapter 5 summarizes some of the outcomes of the main analysis. Specifically, it

provides a summary of the proposed meta-model and presents the key modeling process

6

steps recommended for modelers intending to use the proposed approach. An example

demonstrating the applicability and the process of applying the proposed rules and meta-

model is presented in Chapter 6. Finally, Chapter 7 concludes the thesis by summarizing the

main ideas and outcomes of the work and discussing potential future research directions.

7

2 THEORETICAL BACKGROUND AND RELATED
RESEARCH

This section includes some theoretical background information and discussion of

prior research relevant to this thesis. First, we provide some general information on IS

ontologies (such as their definition, categorization, and applications). Next, we briefly

discuss main aspects of the OWL language and introduce OWL concepts relevant to this

work. Following that, we introduce the concepts of Bunge's ontology. Finally in this section,

we provide an overview of related prior research work, which we categorize in two groups:

1) Bunge-Wand-Weber ontological foundations and their applications to ontological analysis

of information systems analysis and design (ISAD) modeling languages, and 2) research and

practical guidelines (such as tutorials, guides and best practices) related to ontology

development, and to the OWL language in particular.

2.1 IS ONTOLOGIES - AN OVERVIEW

2.1.1 What are IS ontologies?

The term "ontology" has been in use for many years. The Merriam-Webster

dictionary4 provides two abstract, philosophical definitions of ontology: 1) a branch of

metaphysics concerned with the nature and relations of being, and 2) a particular theory

about the nature of being or the kinds of existents. In philosophy, Ontology is "that branch of

philosophy which deals with the order and structure of reality in the broadest sense possible"

(Angeles, 1981).

A new notion of "ontologies", which is different from the original philosophical

concept of "ontology", has emerged relatively recently and has been gaining popularity

among different research disciplines, such as artificial intelligence, knowledge engineering,

knowledge representation, qualitative modeling, language engineering, database design,

information retrieval and extraction, and knowledge management and organization (Guarino,

1998; McGuinness, 2002; Noy and Hafner, 1997; Uschold and Gruninger, 1996).

Ontologies have become even more important - not only among researchers but also

among practitioners and businesses - with the advent and the widespread usage of the World

Wide Web and the new vision of the Semantic Web, which was first put forward by Tim

Berners-Lee (Berners-Lee et al, 2001). The Semantic Web is a vision for the future of the

Web, in which information is given explicit meaning, making it easier for machines to

4 http://www.m-w.corn/cgi-bin/dictionary?book=Dictionary&va=ontology

8

http://www.m-w.corn/cgi-bin/dictionary?book=Dictionary&va=ontology

automatically process and integrate information available on the Web (Heflin, 2004). In

these contexts, ontologies are often termed 'formalized ontologies' or 'information system

ontologies' (or simply 'IS ontologies').

Various definitions for these ontologies have been proposed in the literature.

Comparative analyses of different definitions can be found in several research works (e.g.

Gomez-Perez et al., 2004; Guarino & Giaretta, 1995). One of the most widely cited

definitions is that by Gruber (1993): "An ontology is a formal explicit specification of a

shared conceptualization, which is a simplified view of the world". Fensel (2001) explains

this definition as follows: the term "shared conceptualization" refers to an abstract model (or

a view) of a set of phenomena or a domain of interest which is shared by a community of

agents (people or computational agents); the word "formal" indicates that an ontology is

expressed with the use of some formal notation, and "explicit" usually means that the

precision of concepts and their relationships is clearly defined.

In simpler terms, an ontology is a formal description of the concepts and

relationships that can exist in a domain as viewed and shared by a group of users (e.g. people

or computational agents). An ontology often includes a hierarchical description of concepts

in a domain, along with descriptions of the properties of each concept and the relationships

between concepts. It may also contain instances of concepts. An ontology with individual

instances is sometimes termed a 'knowledge base' (Noy & McGuinness, 2001).

We can summarize that ontologies:

• are used to describe a specific domain

• clearly define terms and relations in that domain

• use some formal mechanism to represent these concepts

• are agreed upon by users in such a way that the meaning of the terms is used

consistently

• are usually build cooperatively by different groups of people in different

locations

The main focus of IS ontologies is on machine-readability, i.e. on expressing a

"specification of a shared conceptualization" explicitly in a form that can be "understood"

and processed by computers. A number of markup languages (such as XML, RDF, RDFS)

and ontology languages (such as OIL, DAML + OIL, and, more recently, OWL) have been

developed to this end. Some of those languages have gained wide acceptance in supporting

the goal of making the Web more accessible by computers. The available languages differ in

terms of their expressiveness and inference mechanisms, and are based on diverse

9

knowledge representation paradigms (such as frames or description logics). Gomez-Perez et

al. (2004) review and compare a number of languages available for implementing

ontologies, and give some recommendations regarding the suitability of these languages for

different purposes and areas of application.

2.1.2 Types of IS Ontologies

The word 'ontology' has been used to describe artifacts with different degrees of

structure - from simple taxonomies (such as the Yahoo! hierarchy) to metadata schemes

(such as the Dublin Core) to logical theories (Heflin, 2004).

McGuinness (2002) classifies ontologies along a linear spectrum based on the level

of detail and formalization in their specification. This spectrum proceeds from "simple

ontologies", such as controlled vocabularies, catalogs, terms/glossary, thesauri, and

taxonomies with informal "is-a" hierarchies, to more complex, structured, ontologies with

formal subclass hierarchies, frames, and value restrictions, and finally to very expressive

ontologies that use first order logic constraints between terms and more detailed

relationships to represent domain knowledge facts.

According to Gomez-Perez et al. (2004), the ontology community often uses the term

'lightweight ontologies' for ontologies that are mainly taxonomies, and the term

'heavyweight ontologies' for those ontologies that model a domain in a deeper way and

provide more restrictions on domain semantics. Lightweight ontologies usually include

concepts, concept taxonomies, relationships between concepts, and properties that describe

concepts. Heavyweight ontologies add axioms and constraints to lightweight ontologies to

clarify the intended meaning of the terms in the ontology.

Heavyweight and lightweight ontologies can be modeled with different knowledge

modeling techniques and can be implemented in a variety of languages (Uschold &

Gruninger, 1996). As a result, ontologies differ in their degree of formalization and structure.

Ontologies can be classified into highly informal if they are expressed in natural language,

semi-informal if expressed in a restricted and structured form of natural language, semi-

formal if expressed in an artificial and formally defined language, and rigorously formal if

they provide meticulously defined terms with formal semantics, theorems and proofs of

properties such as soundness and completeness (Gomez-Perez et ai, 2004).

The OWL language, which is the focus of this thesis, allows representation of both

heavyweight ontologies and lightweight ontologies (depending on the language version used

- OWL Lite, OWL DL, or OWL Full). OWL is based on a rigorous knowledge

representation formalism (Description Logics), is formally defined, and is assigned clear

10

model-theoretic semantic. Thus, with respect to the degree of formalization, OWL

ontologies should be classified as (at least) semi-formal.

2.1.3 Applications of IS ontologies

Ontologies can support a great variety of tasks in diverse research and application

areas. Numerous applications of IS ontologies have been proposed and implemented in

research prototypes and industry applications. Ontologies enable knowledge sharing and

reuse where information resources can be communicated between human or software agents.

Using ontologies, ontology-based tools can perform automated reasoning, and thus provide

advanced services to intelligent applications such as conceptual/semantic search and

retrieval, software agents, decision support, speech and natural language understanding,

knowledge management, intelligent databases and electronic commerce (Heflin, 2004).

McGuinness (2002) describes various benefits and applications both of simple

ontologies and of complex structured ontologies. An important advantage of simple

ontologies is that they are not costly to build and many are already available in various

forms. Even simpler ontologies can provide controlled vocabularies and can be used for

website organization, navigation and browsing support, for search support (such as query

reformulation and disambiguation), and sense disambiguation support. More complex

structured ontologies can, in addition, provide a basis for inference and thus can be used in

applications to enable consistency checking, interoperability support, semantic integration of

heterogeneous information sources, and validation and verification of data. They can also

support structured, comparative and customized information searches and exploit

generalization/ specialization hierarchies.

Ontologies play a key role in the emerging Semantic Web, providing a way of

representing the semantics of documents and enabling these semantics to be used by web

applications and intelligent agents. The OWL use cases and requirements document (Heflin,

2004) discusses six representative use cases of web ontologies in such application areas as

web portals, multimedia collection management, corporate website management, design

documentation management, intelligent agents and services, and ubiquitous computing.

These selected examples clearly demonstrate the potential and real benefits and usefulness of

ontologies on the Web.

11

2.2 OWL WEB ONTOLOGY LANGUAGE

2.2.1 General information

In this section, we provide a brief discussion of key constructs and features of the

OWL Web ontology language5. This OWL overview is based on the official OWL

documentation from the World Wide Web Consortium (W3C) (Bechhofer et al, 2004;

Heflin, 2004; McGuinness et al, 2004), as well as on several other available OWL guides

and tutorials (Antoniou & van Harmelen, 2004; Horridge, 2004). Please refer to these

sources for more detail on OWL syntax and functionality. Another excellent source of

information on OWL is the W3C OWL website (http://www.w3.org/2004/OWLY) which

provides links to various OWL resources.

The OWL Web Ontology Language is the most recent development in standard

ontology languages from the World Wide Web Consortium (W3C). It is intended to enable

publishing and sharing IS ontologies on the Web. OWL is based on RDF (Resource

description Framework) and RDF Schema (RDFS), which are widely accepted as formal

languages of meta-data describing any web resources. As an extension of RDF/RDFS, OWL

uses some basic elements of RDF/ RDFS (such as rdf:subclassOf, rdfs:domain, etc.). It also

provides constructs for defining and characterizing classes and properties of those classes,

and for defining individuals and asserting properties about them. OWL language has a

formal logical model and formal semantics which allow reasoning about classes, individuals,

and their properties.

The OWL language is divided into the three increasingly expressive sublanguages:

OWL Lite, OWL DL and OWL Full. OWL Lite is the least expressive sublanguage. It

supports only a subset of OWL constructs and is intended to be used in situations where only

a simple class hierarchy and simple constraints are needed. The OWL DL sublanguage is

based on description logics and supports the maximum expressiveness without losing

decidability and computational completeness6 of reasoning systems. Tool builders have

already developed powerful reasoning systems (based on description logics) which support

ontologies constrained by the restrictions required for OWL DL. The complete OWL

language, OWL Full, supports the same set of the OWL language constructs as OWL DL,

but relaxes some of the constraints on OWL DL to provide maximum expressiveness and the

syntactic freedom of RDF. However, it does not guarantee decidability or computational

5 http://www.w3.org/2004/OWLA
6 Computational completeness means all entailments are guaranteed to be computed. Decidability means all
computations will finish in finite time.

12

http://www.w3.org/2004/OWLY
http://www.w3.org/2004/OWLA

completeness. One of the distinctions between OWL DL and OWL Full is that OWL DL

requires disjointness of classes, properties, individuals and data values, i.e. in OWL DL, for

example, a class cannot be at the same time an individual (or vice versa). The focus of this

thesis is on OWL DL (unless noted otherwise).

Key OWL constructs are classes, individuals and properties. An OWL document

consists of optional ontology headers plus any numbers of class axioms, property axioms,

and facts about individuals. In the following sections we discuss these concepts in more

detail.

2.2.2 OWL classes and individuals

Classes in OWL are intended to represent concepts in a domain of discourse. They

provide an abstraction mechanism for grouping resources with similar characteristics. Every

OWL class is associated with a set of individuals called the class extension.

OWL individuals represent objects in the domain of discourse. The individuals in the

class extension are called instances of the class. Generally, it is intended that classes should

correspond to naturally occurring sets of things in a domain of discourse and individuals

should correspond to actual entities that can be grouped into these classes. For example, we

can define a class Book with instances of this class (OWL individuals) representing some

specific books.

Two OWL class identifiers are predefined: owl:Thing and owl:Nothing. The class

extension of the owl:Thing class is the set of all OWL individuals; thus, every OWL class is a

subclass of owlThing. The class extension of owl:Nothing is the empty set; so owl:Nothing is a

subclass of every class.

The simplest way to define a class in OWL is just to declare it by name, for example:

<owl:Class rdf:ID="Human">

This definition is sufficient to allow, for example, the declaration of some OWL

individuals to be instances of this class. OWL individuals are defined with individual axioms

(also called 'facts'). Facts about individuals in OWL include facts about class membership,

facts about property values of individuals, and facts about individual identity (which assert

whether individuals are same or different7). An individual can be minimally introduced by

being declared a member of a class (either of the predefined top class owl:Thing or some other

7 Unlike many languages, OWL does not have a "unique names" assumption. That is, in OWL, even i f
individuals have different names they can still be the same. OWL provides several constructs to make explicit
statements regarding whether individuals are the same or different.

13

class defined in an ontology), for example:

<owl:Thing rdf:ID="SomeThing">
<owl:Human rdf:ID="John_Smith">

In the above example, the first statement introduces an individual SomeThing simply

as an instance of owkThing (no further information about this individual has beeen provided

yet). The second statement declares another individual, John_Smith, which is stated to be an

instance of the class Human (note that this individual is automatically an instance of owl:Thing

since any OWL class is the subclass of owl Thing).

Declaring a class only by declaring its name does not provide much information

about the class (other than its name). In general, OWL classes are further defined through

class descriptions, which can be combined into class axioms. A class description describes

an OWL class either by name (as was shown above) or by specifying the class extension (set

of instances) of an unnamed (anonymous) class.

Defining classes in OWL by specifying the class extension means describing the

conditions that must be satisfied by an individual for it to be a member of the class. For

example, a class in OWL can be described

• by exhaustive enumeration of its individuals (using owl:oneOf construct for stating that

the extension of a class consists of these and only these listed instances)

• as a set of all individuals which satisfy certain constraints on their properties {property

restrictions).

Classes can also be defined as Boolean combinations of two or more class

descriptions - union, intersection or complement - using the constructs OwkunionOf,

owl:lntersectionOf, and owl:complementOf, respectively.

Class axioms contain components that state necessary and/or sufficient

characteristics of class membership. OWL provides three language constructs for combining

class descriptions into class axioms: rdfs:subClassOf, owhequivalentClass, owhdisjointWith.

Using rdfs:subclassOf construct, classes in OWL can be organized into superclass-

subclass hierarchies. OWL allows multiple inheritance - an individual can be an instance of

different classes and a class can be a subclass of several other classes (this can be declared

and/ or inferred based on formal semantics).

2.2.3 OWL properties

All OWL properties are binary relationships. They are used to assert general facts

14

about class instances and specific facts about individuals. There are two main types of

properties in OWL8:

• Object properties relate individuals to individuals. For example, in some ontology

describing people we can define an object property hasParent to relate individuals

representing persons to other individuals - their parents.

• Datatype properties link individuals to data values (an XML schema datatype value or

an RDF literal). For example, we may define a datatype property hasAge to represent the age

of a person, i.e. to link an individual (person) to a nonnegative integer representing age.

Note, that properties in OWL have direction: a property links a subject (an OWL

individual) to an object (an OWL individual or a data value), and the object is considered a

value of this property for the subject. For readability, a predicate notation P(x,y) is often

used to show that a pair (x,y) is linked by some property P, meaning that P is a property of

an individual x with a value y (which is either an individual or a data value). A term

'property extension' is sometimes used (in a similar fashion to 'class extension') to denote

the set of (directed) subject-object pairs that are associated with a particular property.

Properties in OWL are described using property axioms. In its simplest form, a

property axiom just declares the existence of a property by its name, for example

<owl:ObjectProperty rdf:ID="hasParent7>

Properties may have a domain and/or a range specified (using class descriptions and

XMLS schema datatypes for datatype property range). For example, in some ontology we

may need to specify that the domain of a property hasAge is the class Human and the range is

a set of nonnegative integers (represented as an XML Schema datatype):

<owl:Class rdf:ID="Human">

<owl: DatatypeProperty rdf: I D="hasAge">
<rdfs:domain rdf:resource="#Human"
<rdfe:rangerdf:resource="http://www.w3.org/2001/XMLSchema#nonnegativelnteger7>

</owl: Datatype Property>

It is important to remember, however, that domains and ranges in OWL are not

8 OWL also has other types of properties, such as owl:AnnotationProperty and Owl:OntologyProperty. They are
intended for specific purpose of adding annotation information (metadata) to classes, individuals, object/
datatype properties and the ontology itself. The features of those property types are limited (compared to
object/datatype properties), and these properties are usually ignored in reasoning. Thus, these properties are not
considered in this study due to their specific purpose.

15

http://www.w3.org/2001/XMLSchema%23nonnegativelnteger7

viewed as constraints to be checked but rather they are used as 'axioms' in reasoning. In

particular, they allow the inference that an individual belongs to a class declared as some

property domain (or range) based on the fact that an individual possesses that property. For

example, for the hasAge property (introduced earlier), we could also assert that some

individual ThingX possesses this property, e.g.:

<owl:Thing rdf:ID="ThingX">
<hasAge rdf:datatype=Mp://www.w3.org/20

</owl:Thing>

Based on the above, most reasoning tools would infer that ThingX is an instance of the class

Human (since this class is the domain of the property hasAge). Thus, domain and range

constraints should be used with caution since they may lead to unintended implications.

It is important to note that properties in O W L are defined independent of classes.

This means that one does not have to define classes to be able to define properties, and vice

versa. By default, a property is assumed to be a binary relationship linking two individuals of

the predefined class owkThing or an individual of the class owl:Thing and a data value. Thus, in

general, any individual can (but does not have to) possess any property defined in an

ontology, i.e. can have an arbitrary number (zero or more) of values for a particular property.

O W L provides a number of constructs to describe additional characteristics of

properties, for example:

• owkSymmetricProperty: P(x, y) O P(y,x) (e.g. "is a sibling of)

• owl:TransitiveProperty: P(x,y) & P(y,z) => P(x,z) (e.g. "is taller than")9

• owl:FunctionalProperty: states that a property has at most one unique value for each

individual (e.g. "age" property)

• owl:lnverseFunctionalProperty: defines a property for which two different individuals

cannot have the same value (e.g. "social security number")

O W L also allows the description of certain relationships between properties using the

following constructs:

• rdfs:subpropertyOf: properties can be arranged in property-subproperty hierarchies. P is a

subproperty of Q iff P(x,y) => Q (x,y) (i.e. the property extension of P is a subset of the

property extension of Q). P and Q should be either both datatype or both object

properties.

9 In OWL DL only object properties can be declared symmetric or transitive

16

http://www.w3.org/20

• owl:EquivalentProperty: two properties P and Q can be declared equivalent which would

mean they have the same property extension (set of pairs), i.e. P(x,y)OQ(x,y)

• OwhlnverseOf: an object property may have a corresponding inverse property10. For

example, we can declare that the property hasParent has an inverse property hasChild,

which would mean the implication hasParent(X,Y) <=>hasChild(Y,X)

2.2.4 Property restrictions and class descriptions

As mentioned earlier, classes in OWL can be defined by specifying the class

extension, i.e. by describing the conditions that must be satisfied by an individual for it to be

a member of the class. One way to do that is to use property restrictions. A property

restriction describes an anonymous (unnamed) class of all individuals that satisfy certain

constraints on a property. Property restrictions are used as parts of class descriptions.

OWL has two types of property restrictions: value constraints and cardinality

constraints. A value constraint puts constraints on the range of the property when applied to

a particular class description (within the scope of a particular class axiom). A cardinality

constraint puts constraints on the number of values a property can take, also in the context of

a particular class description.

The following constructs can be used to specify value constraints:

1) owl:allValuesFrom (universal qualifier) - is used to specify the class of possible values (or

a data range) that the property specified in a property restriction can take. For example,

we can describe an anonymous OWL class of all individuals for which the hasParent

property can only have values of the class Human11:

<owl:restriction>
<owl:onProperty rdf:resource="#HasParent" />
<owl:allValuesFrom rdf:resource="#Human" />

</owl:Restriction>

This restriction can be used in class descriptions. For example, it can be stated that the

class Human is a subclass of the anonymous class of individuals that can have only

human parents (if any). In other words, this would mean that humans can only have

1 0 In OWL DL only object properties (not datatype properties) can have inverse properties
1' Note that this does not imply that the property hasParent can only have values from this class Human. There
may be individuals that possess the property hasParent but have values for this property that are not instances of
the class Human. Such individuals will not be members of this anonymous class, however. Also note, that in
OWL this constraint on the property is trivially satisfied if an individual has no values for the property P at all,
thus this class includes individuals which have no parents at all.

17

parents who are also humans.

2) owhsomeValuesFrom (existential qualifier) - is used to specify the existence of at least one

value from a specified class for the property specified in the restriction. For example, we

may specify an unnamed class of individuals who have at least one parent who is a

student:

<owl:restriction>
<owl:on Property rdf:resource="#hasParent" />
<owl:someValuesFrom rdf:resource="#Student" />

</owl:restriction>

3) OwkhasValue constraint - is used to describe a class of all individuals for which the

specified property has at least one value semantically equal to the specified value. For

example, we may describe a class of individuals that have the individual referred to as

Smith as their parent:

<owl:restriction>
<owl:onProperty rdf:resource="#hasParent" />
<owl:hasValue rdf:resource="#Smith" />

</owl:restriction>

As for the cardinality restrictions, in general it is assumed in OWL that any instance

can have an arbitrary number (zero or more) of values for a particular property. OWL

provides three cardinality restriction constructs for specifying constraints on a number of

semantically distinct values for a property (within a context of a particular class description):

owl:minCardinality, owhmaxCardinality, owl:Cardinality. For example, we can describe an

anonymous class of individuals that have at least 1 and at most 4 children (using minimum

and maximum cardinality restrictions on hasChild object property):

<owl:restriction>
<owl:onProperty rdf:resource:='#hasChild7>

<owl:minCardinality rof:datatype="http://www.w3.org^
</owl:minCardinality>
<owl:maxCardinality rdf:datatvpe="http://vvww.w3.org/2001/XMLSchema#non
</owl:maxCardinality>

</owl:restriction>

Anonymous classes (such as property restrictions described above) can be used in

class axioms in a variety of ways. For example, we can state that a particular class C is a

18

http://www.w3.org%5e
http://vvww.w3.org/2001/XMLSchema%23non

subclass of an anonymous class C1 defined as a property restriction (which would mean that

all instances of the class C satisfy this restriction). We can also state that a certain class is

equivalent to or disjoint with another class (anonymous or named) using owl:equivalentClass

or owl:disjointWith constructs, respectively. Finally, both anonymous and named classes can

be used in class definitions with Boolean operators on classes (owl:intersectionOf, owl:unionOf,

OwhcomplementOf), which can be arbitrarily nested. Thus, it is possible in OWL to combine

anonymous classes (property restrictions) and named classes in a variety of ways to create

complex class definitions. By describing and combining classes, properties, and individuals

using constructs and mechanisms provided in OWL, one can represent knowledge about a

particular domain. In later sections, more detail and usage examples are provided for the

OWL constructs and mechanisms relevant to this thesis.

2.2.5 Reasoning

OWL has a well-defined syntax and formal semantics, which allow applications to

make inferences and provide automatic reasoning support. Antoniou & van Harmelen (2004)

list the main aspects that can be reasoned about for ontological knowledge:

• class membership: for example, if x is an instance of a class C, and C is a subclass of D,

then it can be inferred that x is an instance of D;

• equivalence of classes: for example, if classes A and B are equivalent and classes B and

C are equivalent, then we can infer that A is equivalent to C;

• consistency: if, for example, we declared that x is an instance of A, and that A is a

subclass of B, A is a subclass of C, and B and C are disjoint, then inconsistency in the

ontology can be detected (since A should be empty but it also has the instance x),

• classification: if it is declared that certain property-value pairs are sufficient condition

for membership of a class A, then if an individual x satisfies such conditions, it can be

concluded that x is an instance of A.

Description logic is a subset of the predicate logic, for which efficient reasoning

support is possible. For OWL DL ontologies, derivations such as above can be performed
12 13

automatically by reasoning applications (such as FaCT or RACER). Reasoning support

allows one to check the consistency of an ontology and of the represented knowledge, to

check for unintended relationships between classes, to classify instances in classes

automatically, and so on. Automated reasoning support is invaluable for designing large

ontologies (where multiple modelers are involved), for integrating and sharing ontologies
1 2 http://www.cs.man.ac.uk/~horrocks/FaCT/
1 3 http://www.sts.tu-harburg.de/~r.f.moeller/racer/

19

http://www.cs.man.ac.uk/~horrocks/FaCT/
http://www.sts.tu-harburg.de/~r.f.moeller/racer/

from various sources, and for ontology-based applications. More specific examples of

reasoning that can be performed based on OWL ontologies can be found in Bechhofer

(2003).

2.3 BUNGE-WAND-WEBER ONTOLOGICAL FRAMEWORK

As mentioned in the introduction, following Bera & Wand (2004) and other research

on ontological expressiveness of modeling languages (Wand & Weber, 1990a,b, 1993, 1995;

Wand et al., 1999), this thesis applies a particular philosophical framework - Bunge's

ontology (Bunge 1977, 1979) - to develop a representational mapping (between ontological

and language constructs), a meta-model (a high-level class/property structure), and

ontologically grounded modeling guidelines with the intent to improve the representation of

real world domain semantics in OWL. This section briefly introduces some key concepts of

Bunge's. More complete description of Bunge's ontology can be found elsewhere (e.g.

Bunge, 1997, 1979; Wand & Weber, 1990a,b, 1993, 1995). The relevant concepts of

Bunge's ontology are also discussed in more detail in other sections of the thesis as part of

the analysis.

Bunge's ontology describes a set of high-level constructs that are intended to

represent real world phenomena. In this work, we are using Bunge's ontology as adapted and

extended by Wand & Weber (1990a,b, 1993, 1995) for the use in information systems

research (sometimes referred to as the Bunge-Wand-Weber ontology, or 'BWW ontology').

Bunge's ontology has been chosen as a basis for this research for a number of pragmatic

reasons: 1) it is based on solid philosophical foundations, is comprehensive and well

formalized; 2) it has been adapted and extended for information systems (Wand & Weber

1990a,b, 1993, 1995; Wand et al, 1995; Weber 1997); 3) it has been successfully applied to

evaluation of modeling languages (e.g. Evermann & Wand (2001a,b, 2005); Green &

Rosemann, 2000; Wand & Weber, 1993; Wand et al. 1999); 4) it has also been empirically

shown to lead to useful outcomes (e.g. Burton-Jones & Weber, 1999, 2003; Bodart et al.

2001; Evermann, 2003; Gemino & Wand, 2000; Parsons & Cole, 2004). Numerous prior

applications of Bunge's ontology in IS research are discussed later in section 2.4.1.

The fundamental concepts of Bunge's ontology are summarized in Table 1. Of these

concepts, the most relevant ones for this thesis are the concepts of thing, property, class,

kind, composition, attribute, functional schema, and interaction. These concepts will be

discussed in more details in further sections of the thesis.

20

Table 1: Selected concepts of Bunge's ontology (adapted from Wand & Weber, 1993; Bera &
Wand, 2004)

Concept "Description: • .• \>>(''.̂ , ...'.V .* "
Things A thing is the elementary unit in the ontological model. The world is made of

things. A distinction is made between concrete (or substantial) things (e.g. a
book) and conceptual things (e.g. a mathematical set). It is assumed that any
domain can be described by concrete things and the linkages between them

Properties All things possess properties. A property that is inherently a property of an
individual thing is called an intrinsic property. A property that is meaningful
only in the context of two or more things is called a mutual property. For
example, height is an intrinsic property of a person and salary is a mutual
property between a person and a company.
Properties in generator generic properties) are those properties possessed by a
set of things (e.g. "color"); properties in particular (individual, or specific,
properties) are properties that can be represented as the value of a property in
general (e.g. "blue in color")

Composition A composite is a thing that is made up of other things. Composites possess
emergent properties — properties not inherited from their components. For
example, a computer has a property "processing power" not possessed by any of
its components individually.

Law Ontology postulates that things satisfy some laws. Laws are defined in terms of
relations between properties. A particular form of law is precedence: property A
precedes property B iff whenever a thing possesses B, it also possesses A. A
(state) law is a restriction on the possible values of the components of a
functional schema of a thing or their combinations.

Class, kind,
and natural
kind

Things can have one or more properties in common. A class is a set of things
possessing a common property. A kind is a set of things possessing more than
one common property. A natural kind is a set of things adhering to the same
laws (which implies a set of properties as well since, by definition, laws relate
properties)

Attribute A property is modeled via an attribute function that maps a set of things into a
set of values at a given time

Functional
schema

Humans conceive of things in terms of models of things. Similar things can be
represented by the same model. A functional schema is a formalization of a view
of a set of similar things in terms of a set of attribute functions. For example, a
person may be viewed as an employee, a customer or a taxpayer. Each view is
modeled as a different set of attribute functions (usually functions of time).

State The state of a thing is the vector of values for all attribute functions in a schema
of a thing at a given time

Event An event is a change of state of a thing. It is affected via a transformation (see
below)

Transformation A transformation is a mapping of a set of states into itself

History The history of a thing is the chronologically ordered states that a thing traverses.
Example - history of positions of an employee over a period of time

Interaction Interaction is the ability of a thing to change the "history" (states traversed) by
another thing. The two things are said to interact or to be coupled. Interactions
usually give rise to mutual properties. The existence of interaction can be
considered a mutual property of things, and conversely, the existence of a mutual
property can indicate an interaction.

21

2.4 RELATED PRIOR RESEARCH

In this section we provide a condensed overview of the prior research relevant to the

thesis topic, specifically in the areas of ontological analysis and development of IS

ontologies. Prior research related to this thesis can be categorized in the following groups:

1) research on the ontological foundations for IS research and application of those

foundations to ontological analysis of some information analysis and design (ISAD)

modeling languages,

2) research and practical guidelines (such as tutorials, guides and best practices) related

to ontology development and applications, and to the OWL language in particular.

The next two sections discuss the prior work in each of these areas in more detail.

2.4.1 Ontological foundations for IS research and their applications

The stream of the research work that applies philosophical ontology to IS research

was initiated by Wand and Weber (1989, 1990a,b). Starting from the fundamental premise

that an information system is intended to be a representation of some perceived real world

system, they proposed to turn to a philosophical ontology which provides a set of constructs

to describe a generalized view of reality. They adopted a specific philosophical ontological

framework, Bunge's ontology (Bunge 1977, 1979), and adapted and extended it for use in

information systems research. Based on Bunge's ontology, Wand & Weber (1990a, 1993)

proposed a set of the ontological models of information systems, one of which - the

representation model - defines a set of core concepts that can be used to describe the

structure and behavior of information systems. This model has been termed in subsequent

research literature as Bunge-Wand-Weber ontology (or BWW ontology) and has found a

number of applications in IS research since then.

One of the most popular applications of the BWW ontology is the evaluation of

conceptual modeling techniques and languages. The ontological analysis method is based on

the notion of the ontological expressiveness proposed by Wand and Weber (Wand & Weber,

1993). The method is used for the evaluation of conceptual modeling grammars with respect

to their capability to represent properly the elements of real-world systems, and for the

identification of potential representational deficiencies. This approach is based on exploring

mappings between the set of ontological concepts and the grammar's constructs, so as to

evaluate modeling grammar's ontological completeness and clarity.

A grammar is ontologically complete if and only if every ontological construct can be

mapped to a grammar construct (i.e. the mapping is total). A grammar is ontologically clear

22

if and only if no two ontological concepts are mapped onto the same grammar construct, and

all grammar constructs can be mapped to ontological concepts (Wand & Weber, 1993).

Ontological clarity can be undermined by such deficiencies as construct overload (if one

grammar construct represents more than one ontological construct), construct redundancy (if

more than one grammar construct represents the same ontological construct), and construct

excess (when a grammar construct is present that does not map into any ontological

construct). Through the mapping between ontological and grammar constructs, the

ontological semantics can be assigned to a language, which also helps to derive modeling

guidelines prescribing how language constructs should be used to model elements of a real-

word domain to improve ontological clarity and completeness.

The ontological analysis approach has been employed for the evaluation of several

systems analysis and design and conceptual modeling languages, such as data flow diagrams

(Wand & Weber, 1993), NIAM (Weber & Zhang, 1996), Entity-Relationship (ER) diagrams

(Wand et al, 1999), ARIS (Green & Rosemann, 2000), and more recently - UML

(Evermann, 2003; Evermann & Wand (2001a,b); Evermann & Wand, 2005).

Other applications of the BWW ontology in IS research include the analysis of the

object concept in object-oriented modeling (Wand, 1989), clarifying the notion of data

quality dimensions by anchoring them in ontological foundations (Wand and Wang, 1996),

developing guidelines for choosing classes in conceptual modeling (Parsons & Wand, 1997),

proposing ontologically grounded two-layer data model in which instances are allowed to

exist separately of classes (Parsons & Wand, 2000), and applying the ontological concept of

property precedence to the semantic reconciliation of heterogeneous data sources (Parsons &

Wand, 2004).

In addition to the theoretical research, a number of empirical studies have been

conducted, aiming to test theoretical propositions derived from the applications of Bunge's

ontological foundations to the evaluation of modeling grammars. In general, these studies

investigated whether the use of mappings and guidelines derived based on the ontological

analysis leads to better models, specifically, the models that are better understood and are

more useful for model designers or users. Some specific issues tested in those studies

included the impact of using relationships with attributes in ER modeling on users' problem-

solving performance (Burton-Jones & Weber, 1999, 2003); the use of optional properties

compared to the use of subclassification with only mandatory properties (Bodart et al, 2001;

Gemino, 1998; Gemino & Wand, 2000); an experimental evaluation of representing property

precedence in conceptual modeling (Parsons & Cole, 2004); an experimental evaluation of

23

the specific benefits to domain understanding induced by U M L models developed in

conformance with the ontologically grounded modeling rules (Evermann, 2003).

Overall, the results of the empirical studies in this area have been encouraging. The

studies provided support to the idea that models built in accordance with the guidelines and

recommendations developed based on Bunge's ontological foundations lead to better models

especially in cases when more in-depth (rather than surface-level) understanding of the

models was required.

To summarize, a lot of prior research work in this field has focused on the

ontological evaluation of languages. This thesis continues the research in this area and

applies the ontological analysis method to an ontology development language - O W L . Bera

and Wand (2004) conducted an initial ontological analysis of the O W L language,

highlighted a number of weaknesses of O W L with respect to the ontological clarity and

completeness, and proposed a high level mapping between O W L constructs and ontological

constructs as well as some general guidelines on how the clarity and completeness of O W L

models can be improved. This thesis follows up on and expands the work started by Bera

and Wand, aiming to employ the results of the analysis and the mapping between the

ontological and O W L constructs in a constructive and prescriptive way - to develop specific

ontologically grounded guidelines on how to use O W L language in an ontologically better

way for modeling real world domains.

2.4.2 Prior work on IS ontology development methodology and guidelines

IS ontologies have been receiving ever increasing attention in various research

disciplines, including artificial intelligence, computer science, knowledge management,

Semantic Web research, and others. Relevant to this thesis topic is the research related to the

certain aspects of ontological engineering. A term 'ontological engineering' is used to refer

to the set of activities that pertain to the ontology development process, the ontology

lifecycle, the methods and methodologies for building ontologies, and the tool suites and

languages that support them (Gomez-Perez et al, 2004).

The focus of this thesis is mainly on the conceptual aspects of modeling real world

domains with O W L ontologies (rather then on technical, implementation or application

issues). Therefore, in this section we conscentrate on prior work that is concerned more with

conceptual modeling issues and is relevant to O W L . For more detailed discussion of the

state of the art in the ontological engineering field, various ontology development languages,

methods and methodologies for ontology construction, and other issues in the area of

ontological engineering, we refer the readers to the book by Gomez-Perez et al, 2004

24

(which, in turn, provides plenty of other references).

A number of research publications on IS ontologies (e.g. Chandrasekaran et al,

1999; Gruber, 1993; Gruninger & Fox, 1995; Guarino & Giaretta, 1995; Uschold &

Gruninger, 1996) is concerned with the general issues related to ontologies such as what is

an ontology and what is not, why ontologies should be created, how they can be used, and

what criteria should be followed to build an ontology. Other research work (e.g. Guarino,

1998; Smith, 2003) is focused mainly on the philosophical aspects of ontologies and

ontological commitment.

Yet other ontology research focuses on the development of the so called upper-level,

or top level, ontologies - i.e. ontologies which describe very general concepts that are

common across the domains and give general notions under which all the terms in the

existing ontologies should be modeled. Among such upper level ontologies are the top level

ontologies of universals and particulars (Guarino & Welty, 2000; Gangemi et al. 2001),

Sowa's top-level ontology (Sowa, 1997), Cyc's upper ontology (Lenat & Guha, 1990), and

SUO/ SUMO (Pease & Niles, 2002). The topic of this thesis is (to some extent) related to the

upper-level ontology research since one of the thesis objectives is to propose (based on a

general philosophical ontology) certain upper-level classes and properties to be

recommended for inclusion into every OWL ontology representing a real world domain.

However, this thesis work is different from other research on upper-level ontologies since

the thesis does not attempt to develop a comprehensive upper-level ontology, but rather uses

an established philosophical ontology to inform IS ontology development. While the thesis

proposes certain upper-level classes and properties for OWL ontologies modeling real world

domains, the intent is to keep the suggested 'upper-level' structure relatively simple and

intuitively clear so that it could be used by domain modelers more easily. Other formal

upper-level ontologies (as those mentioned above) are much more comprehensive and

demand more background knowledge and experience from modelers (and thus maybe harder

to apply).

There also exists a number of IS ontology development publications that adopt a

more pragmatic (rather than theoretical or philosophical) perspective and that are intended to

provide more specific guidance to ontology developers (both researchers and practitioners).

For example, a popular ontology development guide by Noy and McGuinness (2001)

discusses an ontology development methodology for declarative frame-based systems (using

as an example the well popularized wine ontology and the Protege-2000 ontology

development environment). This paper proposes the steps in the ontology development

25

process and addresses some complex issues pertaining to the definition of class hierarchies

and properties of the classes. Other research publications propose alternative ontology

development methodologies (e.g. Gomez-Perez, 1998; Gruninger and Fox, 1995; Uschold &

Gruninger, 1996).

As for the OWL related publications, not much theoretical research on the

methodologies for developing OWL ontologies is available (partly due to the relatively

recent introduction of the language). Many existing theoretical research papers on OWL are

not focused on guidelines for modelers on how develop conceptual models in OWL

ontologies, but rather are concerned more with model-theoretic or technical issues such as

the underlying formal logical model of OWL, formal reasoning and machine readability

aspects of OWL ontologies (Carroll & De Roo, 2004; Fforrocks et al, 2003; Patel-Schneider

et al 2003), reasoners and querying capabilities for OWL ontologies (e.g. V. Haarslev &

R. Moller, 2003; Haarslev et al., 2004), and formalized extensions to OWL (e.g. Horrocks

& Patel-Schneider, 2004; Horrocks et al. 2005; Fikes et al. 2004).

Among a limited number of publications discussing representational guidelines for

OWL modelers, are the several documents from the World Wide Web Consortium (W3C),

which aim to develop and promote best practices for the OWL community14. These

documents discuss some frequently arising modeling issues and needs in ontology

development, suggest possible modeling patterns, and discuss some advantages and

disadvantages of those patterns. Some discussed modeling issues include: modeling N-ary

relations in OWL (Noy & Rector, 2004), modeling part-whole relationships (Rector &

Welty, 2005), modeling specified values (value partitions and value sets) in OWL (Rector,

2004). To the best of our knowledge, we reviewed most of the existing OWL tutorials and

best practice documents (currently available from the OWL W3C website15 as well as from

other publication sources) in an attempt to keep up-to-date with OWL functionality and

conceptual modeling issues discussed within the OWL community.

Some of these documents are working drafts and are still being developed collaboratively by members of
W3C consortium (Semantic Web Best Practices and Deployment Working Group).
1 5 http://www.w3.org/2004/OWL/

26

http://www.w3.org/2004/OWL/

3 METHODOLOGY

As briefly discussed earlier, the key objective of this thesis is to develop, based on a

specific philosophical ontology (Bunge's ontology), some ontologically grounded modeling

guidelines and a high-level class structure (a meta-model) that would facilitate the

development of ontologically clear, consistent, and expressive OWL ontologies of real world

domains. The methodology we use is based on the theoretical foundations for information

systems analysis and design developed by Wand and Weber (Wand & Weber 1990, 1993,

1995) and has been employed by various researchers in many subsequent studies in the

conceptual modeling and ISAD areas (as discussed in section 2.4.1). One of the most recent

applications of the approach (and most similar to the one used in this thesis) is the research

conducted by Evermann and Wand (Evermann, 2003; Evermann & Wand, 2001a,b, 2005)

on the ontological analysis of UML and the use of UML for conceptual modeling.

In the introduction we briefly presented the key steps comprising our analysis. Here,

we discuss the process in more detail. Specifically, the approach is as follows. In order to

develop theoretically-grounded modeling guidelines and a meta-model for representing real

world domains in OWL, we make an ontological commitment to Bunge's ontology. In other

words, we assume that constructs and assumptions of Bunge's ontology provide sufficient

descriptive power for representing phenomena of any real world domain.16 Under this

assumption, we consider a subset of the ontological constructs from Bunge's ontology

(limiting the focus of this work mainly to the static aspects of the world) and propose how

they can be modeled using OWL constructs (or their combinations) so as to preserve the

ontological assumptions and to ensure that relationships among the ontological constructs

are reflected in their representations in OWL ontologies. This analysis results in a mapping

between the ontological and the language constructs.

Such a mapping allows the assignment of ontological semantics to OWL language

constructs (or their combinations). In addition, such mapping can be used to transfer certain

ontological assumptions to the language. As pointed by Evermann (2003), an established

high level domain ontology (such as Bunge's ontology) may suggest that certain situations

are possible in the real world while others are not. By virtue of mapping between modeling

language constructs and ontological constructs, some combinations of language elements

may therefore describe possible real world situations while others may describe impossible

1 6 To be more specific, by 'real world' we mean beliefs on what exists, might exist or happen as perceived by a
community.

27

ones. To achieve a proper representation, rules or constraints that relate ontological concepts

(ontological assumptions), by virtue of the mapping, must also hold for the mapped language

constructs in order to allow only models of possible real-world situations. Thus, we can

transfer the ontological rules and constraints to a modeling language (like OWL) by creating

the respective modeling rules and guidelines which specify how language constructs should

be used to model elements of real world domains. Thus, we can limit the kinds of statements

that can be made about real world domains in OWL to ensure that the ontological

assumptions are preserved in the resulting OWL ontologies and that the language constructs

have well-defined semantics.

Encouraged by the prior successful applications of the above approach to other

modeling languages (ER, UML and others) and some empirical support (as discussed in

section 2.4.1), we believe that the mapping and the guidelines resulting from our analysis

can potentially lead to better representations of real world domains in OWL ontologies. If

modelers are guided by the proposed mappings and follow the proposed ontologically

grounded modeling rules and guidelines, then they would be more likely to develop more

expressive, clear, consistent, and stable OWL ontologies of real world domains and would

be less likely to model situations that are not reflected in a real world domain or to represent

the same domain elements using different language constructs in different ontologies. Since

we assume that the constructs of Bunge's ontology allow the proper representation of

domain knowledge, then if we are able to represent those constructs in OWL in a consistent

and clear way, we can expect the resulting OWL ontologies also to represent the domain

more adequately and be more stable (from person to person and over time).

Bera and Wand (2004) note some potential problems with OWL ontologies when

modeling real world domains including potential inconsistency in domain fact representation

and interpretation, difficulty in modeling some domain information, and instability of OWL

ontologies developed from domain information. These problems may arise due to a lack of

the well-defined real world ontological semantics in OWL, and can also be attributed to the

fact that the OWL language is not specifically intended for modeling real world domains.

Rather, OWL is intended as a general purpose web ontology language with basic constructs

(which allow the representation of various concepts and their properties) and a number of

operators for describing these constructs and relationships between them, with a main focus

on machine readability and reasoning (thus OWL focuses on formal logical semantics rather

then real world ontological semantics). The approach in this thesis, focused specifically on

the representation of real world domains in OWL and grounded in philosophical ontological

28

foundations, is intended to help modelers to avoid or alleviate the earlier mentioned

problems when modeling real world domain, without modifying or extending the existing

OWL language.

The scope of this thesis is limited a subset of ontological constructs.. The selected

constructs (such as things, properties, classes, interaction, composites) mainly describe the

static structure of the world. The representation of other constructs of Bunge's ontology

(such as states or events), while briefly mentioned in this thesis where relevant, is generally

outside of the scope of this work and is a topic of future research.

It is also important to note that this work does not aim to provide a full interpretation

mapping (i.e. a mapping from all OWL constructs to Bunge's ontological constructs). This

restriction of the scope is, in part, due to the fact that the main purpose of the OWL language

is to allow the development of machine-readable ontologies. Thus, some OWL constructs

are purely implementation-related and can not be assigned real-world ontological semantics

(as they are not intended for real world representation).

One more methodological consideration pertains to the issue of achieving ontological

completeness and clarity. As mentioned earlier, a grammar is ontologically complete if and

only if every ontological construct can be mapped to a grammar construct, i.e. the mapping

is total. A grammar is ontologically clear if and only if no two ontological concepts are

mapped onto the same grammar construct, and all grammar constructs can be mapped to

ontological concepts (Wand & Weber 1993). Since OWL only has three key constructs

(classes, individuals and properties), there is no way to represent each ontological construct

using a separate OWL construct (without extending the language by adding new constructs).

Evermann (2003) stresses a similar issue noting that to achieve a bijective mapping between

ontological and modeling language constructs (i.e. a one-to-one mapping of all constructs,

which provides maximum ontological clarity) it may be necessary to map language

constructs to ontological constructs only if they appear in a particular context. For example,

the same language construct, depending on its usage context, may represent two different

real-world elements (ontological concepts). To achieve ontological clarity we can use

modeling rules and constraints on the meta-model so as to map a certain language construct,

when used in the first context, to the one ontological concept, and map it, when in the

second context, to the other ontological concept. This thesis research adopts a similar

approach in the case of OWL in order to alleviate the problem of ontological incompleteness

and construct overload. Specifically, it proposes modeling rules and guidelines and meta-

modeling elements to specify in what context a certain OWL construct (or a combination of

29

constructs) represents a particular ontological construct. Also, some naming conventions are

proposed as an additional means to clarify the semantics of OWL elements used to model

certain ontological elements.

It is also worth mentioning that since IS ontologies (and OWL ontologies in

particular) are intended to represent knowledge (including real world domain knowledge) in

a machine-readable form the ontology development process usually involves two types of

issues: conceptual modeling issues and implementation-related or machine-processing

issues. While machine readability and implementation isues are very important, conceptual

modeling aspects of ontology development are equally important. Despite the advances in

computer application support for ontological engineering activities, people are still heavily

involved in ontology development and have to understand, analyze and agree upon

ontologies. Ontologies also need to be maintained, merged and expanded, and used in

applications, which also requires a clear understanding of what knowledge an ontology

represents and how. All this also requires human involvement, even though some semi­

automatic tools for building and maintaining ontologies have been developed. Thus, the

issues of the effective conceptual representation of a domain of interest and of the proper

human comprehension and unambiguous interpretation of the resulting ontologies are very

relevant to the ontological engineering field.

Furthermore, some ontologies may be intended to represent only real world domain

information while others may attempt to combine both aspects (e.g. real world domain and

application aspects). Our analysis focuses on the conceptual modeling aspects of real-world

modeling and is not intended to address implementation-related or machine-readability

aspects of the OWL modeling process. However, to make our proposed rules and meta-

model applicable in practice we follow the existing language syntax and try to keep in mind,

as much as possible, certain implementation, machine-understandability and reasoning

issues (including some current ontology usages and practices which may affect the way

ontologies are developed and applied). Therefore, we hope that using the proposed

guidelines for ontology development in OWL should not affect machine-understandability

of the resulting ontologies. At the same time, our analysis does not exclude or proscribe

using OWL constructs to represent non-real world related aspects in OWL. Rather, one of

the goals of the meta-model and guidelines proposed in this thesis is to distinguish between

the situations when OWL constructs are used in ontologies for modeling real-world elements

and when they are used for other modeling purposes so as to achieve better ontological

clarity and consistency.

30

Finally, it is worth noting that this work takes the current OWL language as given

and does not attempt to extend or modify it. Nevertheless, the outcomes of our analysis do

suggest some ideas for possible extensions and modifications to OWL, as well as for some

potentially useful functionality for OWL ontology development environments and tools

which can improve the expressiveness of the language and facilitate the development of

better models.

31

4 ANALYSIS - REPRESENTING MAIN ONTOLOGICAL
CONSTRUCTS IN OWL

This chapter discusses how some key constructs of Bunge's ontology can be

represented in OWL. According to Bunge's ontology, our world consists of a static structure

of things with their properties, changes in things and interactions of things. This thesis

mainly focuses on the representation in OWL ontologies of the ontological constructs that

describe the static structure of the world (such as things, intrinsic and mutual properties,

classes and kinds), leaving the discussion of the concepts related to change and dynamics

(such as states or events) to future research. However, the dynamics-related concept of

interactions among things will be discussed as it is relevant for the modeling of other

constructs (such as mutual properties).

Specifically, this chapter provides a representation mapping for the basic constructs

stated above and develops recommendations for modelers (in a form of guidelines and

modeling rules) for representing these constructs in OWL based on the relevant ontological

rules and assumptions. The term 'guideline' is used for more general recommendations

stating how certain constructs should be represented or some general constraints on

representation, while the term 'modeling rule' is employed for more detailed

recommendations, which are usually OWL-specific and provide more detailed suggestions

on how general guidelines can be implemented using OWL constructs and mechanisms. As

an additional outcome of the analysis, we propose several upper-level classes and properties

which together may be viewed as a meta-model for developing OWL ontologies

representing real world domains, and which we recommend (as part of our rules and

guidelines) to include in all such OWL ontologies.

4.1 REPRESENT A TION OF THINGS

4.1.1 General guidelines and modeling rules

Our analysis begins with the concept of a thing - the most fundamental, elementary,

concept in Bunge's ontology. Bunge's ontology distinguishes between concrete, or

substantial, things, and conceptual things (such as mathematical concepts such as sets or

functions or other abstract concepts). Following Parsons & Wand (2000), we assume that

information modeling reflects humans' view of existing or possible reality and apply the

notion of thing to anything perceived as a specific entity by someone, whether existing in

32

physical reality or only imagined. Thus, for example, both a bank account and an imagined

product wi l l be considered concrete things. We wil l use the terms 'Bunge thing' or

'substantial thing' to denote ontological things and distinguish them from O W L things (i.e.

O W L individuals in general), which are discussed below.

O W L provides the construct of individual, which is an instance of the top level class

OwlThing or any its subclasses (i.e. O W L classes).17 It is possible in O W L to declare an

individual, and, i f desired, to specify its properties.

We propose to map Bunge things to O W L individuals. That is, entities in a real-

world domain that are Bunge things should be represented in O W L ontologies as O W L

individuals:

Guideline 1: Substantial things (Bunge things) in a domain should be modeled in OWL

ontologies as OWL individuals.

However, note that in general, not every O W L individual (i.e. an instance of the top

class owl:Thing) can be interpreted as some Bunge thing. O W L does not place any restrictions

on what can be modeled using the construct of individual. In current O W L usage practice,

O W L individuals are often used to represent all sorts of things - substantial things,

conceptual things, properties, property values, and so on. This situation has been identified

by Bera & Wand (2004) as a construct overload issue - one of the problems that undermines

the ontological clarity of the resulting models (Wand & Weber 1993).

While it is unpractical to require restricting the use of individuals only for modeling

ontological things (in the current O W L syntax), the above problem can be alleviated as

suggested in the following guideline for modeling real-world ontologies in O W L :

Guideline 2: OWL ontologies intended to model real world domains should clearly

distinguish between OWL individuals representing substantial things (in the ontological

sense) and OWL individuals representing other concepts (i.e. non-substantial, or

conceptual, things).

To implement the above two guidelines in O W L we propose to declare two upper-

level classes (subclasses of the owlThing class) - one for representing all substantial things

(and classes of substantial things), and the other one for representing anything other than

1 7 Note that every OWL individual is an instance of a top level class OwlThing, that is, every OWL individual is
an 'OWL thing'. The concept of Bunge thing (or substantial, ontological, thing) is different from the OWL
thing (OWL individual), which can potentially represent anything in OWL (not just substantial things).

33

substantial things (in Bunge's sense). Since in Bunge's ontology no thing can be a

substantial thing and not be a substantial thing at the same time, these two upper-level

classes should be declared as disjoint. This wi l l help to ensure that thes classes do not

overlap (i.e. no O W L individuals can be declared instances of both classes). Ontology

development environments such as Protege O W L would not allow modelers in this case to

define classes (or individuals) that are subclasses (or instances) of both of these upper-level

classes (such classes would be found inconsistent since they would not have any instances).

Also, reasoning tools (such as Racer 1 8) would be able to detect such inconsistencies in an

ontology.

This implementation suggestion is summarized in the following modeling rule:

Modeling Rule 1: In order to distinguish between OWL individuals representing substantial

things and OWL individuals used for other purposes, an OWL ontology intended to model a

real world domain should include two disjoint upper-level classes:

1) Substantial_Thing/9 class — the extension of this class would consist of all OWL

individuals that represent substantial things

2) Non_Substantial_Thing class - the extension of this class would consist of all OWL

individuals that are used to represent anything other than substantial things20.

Several corollaries follow from the above rule and the fact that the two upper-level

classes should be disjoint, specifically:

Corollary 1: Substantial things should be modeled as OWL individuals that are instances of

the class Substantial_Thing or its subclasses; OWL individuals used for other purposes should

be made instances of the Non_Substantial_Thing class or its subclasses.

Corollary 2: Any OWL class, all instances of which are intended to represent substantial

things, should be made a subclass of the Sllbstantial_Thing class. OWL classes used for other

purposes should be made subclasses of the Non_Substantial_Thing class

Corollary 3: No OWL individual in an ontology can represent both a substantial thing and

non-substantial thing at the same time

Corollary 4: No OWL class can (other than built-in top class OWlThing) can include both

OWL individuals representing substantial things and OWL individuals representing non-

http://www.sts.tu-harburg.de/~r.f.moeller/racer/
1 9 The names chosen for the upper level classes are just our suggestions; other class names can be used

2 0 We include the word 'thing' in this class name since the instances of this class would still be things in OWL
sense (even though they are not substantial things in the Bunge-ontological sense).

34

http://www.sts.tu-harburg.de/~r.f.moeller/racer/

substantial things

Corollary 5: Other OWL constructs (such as OWL properties) should not be used to

represent substantial things

If the proposed guidelines and rules are followed, then ontological substantial things
can be mapped to a subset of OWL individuals - specifically, individuals that are members
of the class extension of the upper-level class Substantial_Thing (representation mapping). On
the other hand, every OWL individual that is an instance of the class Substantial_Thing would
correspond to some ontological substantial thing (interpretation mapping). Thus, OWL
individuals from the class Substantial_Thing are assigned ontological real-world semantics.

4.1.2 Example implementation in OWL

To illustrate the implementation of the guidelines and rules proposed in the previous
21

section, we can declare the proposed two disjoint upper-level classes in OWL as follows :

<owl:Class rdf:about="#Substantial_Thing">
<owl:disjointWith>

<owl:Class rdf:ID="Non_Substantial_Thing" />
</owl:disjointWith>

</owl:Class>
<owl:Classrdf:about="#Non_Substantial_Thing">

<o wl :d isjo i ntWith rdf:resource="#Substantial_Thing" />
</owl:Class>

Now, if in some ontology (e.g. about people) we want to represent some specific
ontological thing, for example, a person John Smith, we can minimally represent it as an
OWL individual declared to be an instance of the class Substantial_Thing:

<Substantial_Thing rdf:ID="John_Smith">

In principle, this declaration in OWL is sufficient to represent an individual and
allows assertions about properties of this individual (as will be discussed later). Note that
OWL syntax does not require to declare classes (such as Person) first to be able to declare
individual things. Without a doubt, classes are very useful for modeling and exist in any
ontology, and OWL individuals can be declared or inferred to be instances of certain classes,
However, in principle, OWL individuals are not required to be declared instances of any
classes (other than of the top level default class owkThing) and can be asserted to possess

2 1 These classes will automatically be subclasses of the built-in top O W L class owl:Thing

35

properties independent of class membership. We will discuss this issue in more details in

later sections (when analyzing classes and properties) and will later introduce more rules

regarding classes and properties.

For now, as far as classes are concerned, we just want to show that if, for example,

one needs to represent some class of substantial things, such as a class Person, it should be

modeled in accordance with our rules (Corollary 2) as a subclass of the upper-level class

Substantial_Thing22:

<owl:Class rdf:ID="Person">
<rdfs:subClassOf>

<owl:Class rdf:ID="Substantial_Thing" />
</rdfs:subClassOf>

</owl:Class>

On the other hand, sometimes the concepts that do not represent real world

substantial things still may need to be represented using OWL classes and individuals (for

example, due to some implementation or reasoning related issues). For instance, a domain

may include a concept of "Delivery". According to our rules, such concepts should be

modeled as subclasses and individuals of the Non_Substantial_Thing class:

<owl:Class rdf: I D=" Delivery"
<rdfs:subClassOf>

<owl:Class rdf:ID="Non_Substantial_Thing" />
</rdfs:subClassOf>

</owl:Class>

In later sections, we will present more examples of what kind of concepts may need

to be modeled as non-substantial things and how they can be related to substantial things.

For now, we proceed to the discussion of the concept of properties and their representation

in OWL.

4.2 REPRESENTATION OF PROPERTIES

In this section we compare the ontological property concept with the OWL property

construct and propose methods to represent ontological properties in OWL in such a way

that real world semantics and the ontological assumptions involving properties are preserved

22 A class can also be declared as a subclass of another class, which in turn is a subclass of the Substantial_Thing
class. For example, if we already declared a class Person to be a subclass of Substantial_Thing, we could declare
another class, Woman, as a subclass of Person, which would imply that Woman is also a subclass of Substantial_Thing.

36

to as great an extent as possible.

4.2.1 Properties in OWL and ontological properties - a comparison

According to Bunge's ontology, every thing possesses properties and properties are

always attached to things. Properties can be intrinsic - possessed by the thing alone, or

mutual - shared properties of two or more different substantial things.

Properties of things exist whether or not humans are aware of them, and things are

known to us through their properties. However, according to Bunge's ontology, humans

conceive of things in terms of models of things (or conceptual things), and conceive of

properties of things in terms of attributes (which are properties of models of substantial

things). An attribute may or may not reflect a substantial property or a number of properties.

For example, the height of a person is an attribute that reflects a substantial ontological

property, while the name of a person does not actually represent any specific substantial

property but rather it is an attribute that stands for the individual as a whole (Wand et al.,

1999).

Keeping in mind the distinction between the property and the attribute notions, in our

further discussion of properties both terms are used interchangeably whenever talking about

representation of ontological properties in OWL. More specifically, when talking about the

representation of ontological properties in OWL, we actually mean the representation of the

attributes which we are aware of and which we ascribe to things to model the ontological

properties that we believe these things possess (since humans can only conceive of

properties of things via attributes).

The property construct is available in the OWL language as well. There are two main

types of properties in OWL: object properties and datatype properties2*. A property P in

OWL is a directed binary relation P(x,y) that links a subject JC (which is an OWL individual)

to an object v which is either an OWL individual (if P is an object property) or a data value

(if P is a datatype property). The object (y) is considered a value of the property P for the

subject - individual*.

The analysis of the OWL syntax rules, existing OWL modeling practices and OWL

ontologies24 reveals that in general there is no clear correspondence between OWL

properties and ontological properties. For example, Bera & Wand (2004) point out that one

2 3 Other types of O W L properties such as annotation properties and ontology properties are not considered in
this work since they are implementation related and not essential for real-world domain representation issues.
2 4 Many existing O W L ontologies are available from the W 3 C website
(http://www.w3.Org/2004/OWL/#ontologies) and from the Protege system website
(http://protege.stanford.edu/plugins/owl/ontologies.html)

37

http://www.w3.Org/2004/OWL/%23ontologies
http://protege.stanford.edu/plugins/owl/ontologies.html

of the deficiencies of OWL from the ontological analysis perspective (construct overload) is

that OWL does not distinguish between intrinsic and mutual properties. To expand on that,

we highlight several other issues related to the existing practices of modeling properties in

OWL, which may lead to problems from the ontological analysis standpoint when modeling

real world domains:

Issue 1: In OWL, properties are used to describe links (or relations) between two OWL

individuals or between an individual and a data value, where OWL individuals do not

necessary represent substantial things. That is, some OWL properties are not associated with

OWL individuals that represent substantial things and do not represent ontological

(substantial) properties.

Issue 2: Even in the cases when OWL properties do represent ontological properties, there

are no consistent guidelines regarding, for example, whether a datatype or an object property

should be used to represent a mutual or an intrinsic property. At a first glance, it may seem

that datatype properties (which connect individuals to data values) should be used for

representing intrinsic properties, while object properties (which connect individuals to

individuals) should only be used to represent mutual properties. However, this is not always

the case and not always possible to do in OWL (as we will show in later sections on

properties). For example, while many intrinsic properties (e.g. person's name, birth date or

age) can be represented in OWL using datatype properties with a suitable XML Schema

datatype (e.g. string, date or positive integer), in other cases it may be necessary or more

advantageous (e.g. for reasoning purposes) to model intrinsic properties using OWL object

properties.

Specifically, an OWL object property can be used to represent an intrinsic property in

general, while the ontological intrinsic properties in particular (or property values) are

sometimes represented using special OWL classes and their individuals. This is currently a

common practice used for representing such properties that have finite enumerated

collections of values (for example, wine color could be white, red or rose; clothing size
•ye

could be small, medium, or large, and so on) . Such properties can be represented in OWL

using one of the two (at least) distinct ways: 1) as datatype properties with enumerated sets

of data values (e.g. of string type) as property ranges, or 2) as object properties with the sets
2 5 The famous wine ontology (http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf) provides an
example of such representation. It has so-called "wine descriptor" properties of wine (such as hasColor,
hasBody, hasSweetness) which relate OWL classes representing wines (i.e. substantial things) to OWL classes
(e.g. WineColor) representing color and components of taste, such as sweetness, body and flavor (i.e. wine
properties).

38

http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf

of property values represented as special OWL classes or their instances. As a part of W3C

best practice guidelines, Rector (2004) discusses different representation patterns for such

value collections and their advantages and disadvantages. A related document by Noy

(2004) addresses the issue of using classes vs. using individuals as property values for

representing property values.

The choice of one of the two representations (datatype property versus object

property with 'value' classes/individuals) is mainly driven by implementation aspects and

the intended ontology usage. It is also motivated by the goals of improving automatic

reasoning and facilitating ontology editing and sharing. Ontological (conceptual)

considerations are often not taken into account in the current practices. However, as Bera &

Wand (2004) pointed out, the use of classes and individuals for representing property values

is another example of construct overload problem in OWL. To alleviate this problem, they

suggested that such "special" classes or instances should be distinguished from the classes

and instances representing substantial things. This thesis actually incorporates the above

suggestion in Guideline 2 and Modeling Rule 1, proposing two disjoint upper-level classes

Substantial_Thing and Non_Substantial_Thing to be included in real world domain ontologies.

Issue 3: Another general issue with modeling properties in OWL is that mutual properties in

Bunge's ontology can be shared by two or more things, while OWL properties are always

binary relations. Thus, it is not possible to use a single OWL property to represent a mutual

property shared by more than two things. Some workarounds are required such as, for

example, creating special OWL classes to represent N-ary relations for N>2 (see Noy &

Rector (2004) for a discussion of possible representation patterns for higher order

relationships in OWL).

A similar problem exists in some other conceptual modeling languages where higher

power relationships are often represented as sets of binary relationships (Wand et al., 1999).

However, replacing an N-nary relationship with a set of binary relationships may lead to the

loss of information. Wand et al. (1999) also criticize this approach from the ontological

standpoint and recommende that the same construct should be used to represent binary and

higher order relations (i.e. mutual properties).

Issue 4: The problems with representing mutual properties may potentially arise even in

situations when one needs to represent a mutual property shared by only two things. In many

cases, properties occur together or have some dependency on each other. For example, we

may define an object property Enrolledlh linking a person (student) to a university he is

39

enrolled in, that is, this would be a mutual property shared by a person (an individual) and a

tertiary institution (an individual) . However, another mutual property shared by these two

individuals is 'having a start date (at a particular university)', which is a property in general

(e.g. named hasStartDate) with specific start date values for instances (e.g. corresponding to

different universities). In OWL there is no direct way (i.e. using only the construct of

property for properties) to represent such a mutual property since one property statement

(fact) can only link either two individuals or one individual and a data value. In our case,

however, we need to link three items: two individuals (an institution and a student) and a

data value (specific start date). A workaround way to represent this in OWL would be to

create an additional class, e.g. University_Student (representing the relation between a

university and a student) and to associate this class with the properties such as hasUniversity,

HasStudent, hasStartDate. This method is similar to the use of association classes in UML or

relationship entity types in ERM and will be explored later in more detail.

Issue 5: A final issue with properties is that often different OWL constructs can be used to

represent ontological properties in different ontologies. Specifically, some ontological

properties may be represented as properties in one ontology, but as classes in another. For

example, one ontology may have a property "being a student" while another ontology may

not have such a property but rather have a class Student. In the latter case, declaring that an

individual X is an instance of the class Student can also be interpreted as the individual X

possessing a general property "being a student" 21. On one hand, this may be considered a

problem, as noted by Bera & Wand (2004). They criticized the possibility of using multiple

constructs in OWL to represent the same ontological concept of property (as the 'construct

excess' problem) as this may undermine the ontological clarity of OWL models. On the

other hand, as we will discuss in more detail later, in Bunge's ontology classes (and kinds)

are defined in terms of properties: a class is a set of things that possess a common property.

Therefore, for each property, in principle there exists a corresponding ontological class (or

kind) of the ontological things possessing this property, which is termed the scope of the

property. Thus, in the above example, the extension of the class Student actually can be

viewed to represent the scope of the ontological property "being a student".

2 6 We assume that a student can be enrolled in several tertiary institutions.
2 7 According to Bunge's ontology, a property 'being a student' is actually an attribute representing a number of
properties that comprise 'being a student'; in other words, it represents a compound property (Wand et al.,
1999) which is a combination of all these properties.

40

To summarize our comparative analysis of properties in OWL versus ontological

properties, we have shown that in OWL syntax and in the current practices, the concept of

property in OWL does not fully correspond to the ontological notion of property. Thus, it

would be incorrect to simply map ontological properties to OWL properties. Rather, we

propose that ontological properties should be mapped to a subset of OWL properties that

satisfy certain conditions. In the next sections we consider several cases of ontological

properties, and propose how they can be represented in OWL to alleviate ontological

completeness and clarity problems (including those noted by Bera & Wand (2004)). We will

propose modeling guidelines and rules, which, if followed, allow the mapping of ontological

properties to OWL properties when they are used in a particular context and in particular

combinations witii other OWL constructs in some cases (thus achieving "mapping in

context", as recommended by Evermann (2003)).

4.2.2 General guidelines on representation of ontological properties in

OWL

This section focuses on some general issues related to the representation of the

ontological (substantial) properties in OWL. In sections 4.2.3 and 4.2.4 intrinsic and mutual

properties will be discussed separately in more detail, and relevant guidelines and rules are

proposed.

Bunge's ontology distinguishes between properties in general (generic properties)

and properties in particular (individual, or specific, properties). Properties in general are

properties possessed by a set of things, e.g. "color", "speed", "salary", etc. An individual

property is one that can be represented as a value of some property in general, such as "blue

in color", speed of lOOmph" or "salary of $2000" (Bunge, 1997, p.63; Evermann, 2003).

Similarly, many ontological properties in general can be represented as OWL properties,

while ontological properties in particular can be represented as values of the OWL properties

that represent the corresponding properties in general. For example, one can define a generic

property NumberOfChildren with integer values representing actual number of children

(property values) for specific persons.

However, as noted in the comparison of OWL and ontological properties (issue 2,

section 4.2.1), several ways to represent property values are possible in OWL. Depending on

modeler's needs, reasoning requirements, and the intended ontology usage, property values

in OWL can be represented in one of the several ways: as XML datatype values, as OWL

classes, or as OWL individuals. We do not intend to impose unnecessary restrictions on

41

OWL usage since this can make the resulting ontologies less useful from the pragmatic

standpoint and our rules less applicable in real-life modeling. Thus, we acknowledge the

existence of different ways of representing property values in our rules. However, in

accordance with Guideline 2 and Modeling Rule 1 (which require distmguishing OWL

classes and individuals representing substantial things from OWL classes and individuals

modeling anything else) we require that OWL classes and individuals intended to represent

property values should be distinguished from OWL individuals and classes representing

substantial things.

To summarize the above discussion on properties, we propose a following general

guideline on modeling properties in OWL:

Guideline 3:

• In OWL ontologies modeling real world domains, ontological properties in general

should be modeled as OWL properties, and ontological properties in particular should

be modeled as property values of those OWL properties that represent the corresponding

properties in general;

• Depending on a property type (e.g. intrinsic or mutual) and model usage and reasoning

requirements, ontological properties in particular (property values) may be represented

either as XML datatype values or as special OWL classes and their individuals;

• If ontological properties in particular (property values) are modeled using OWL classes/

individuals, then such classes and individuals should be clearly distinguished from OWL

classes and individuals that represent substantial things.

Since we proposed the two upper-level classes Substantial_Thing and Non_Substantial_Thing to

distinguish between OWL classes/individuals representing substantial and non-substantial

things, the next corollary follows:

Corollary 6: OWL classes (individuals) representing property values should be subclasses

(instances) of the upper-level class Non_Substantial_Thing

Since (as discussed in previous section) not all OWL properties represent ontological

properties, the implication of the Guideline 3 for the representation mapping between OWL

properties and ontological properties is that ontological properties can be mapped to a subset

of OWL properties that conform to certain constraints, depending on ontological property

42

type (intrinsic or mutual) and intended model usage requirements . These constraints will

be discussed in more detail as modeling rules later in this section and in the next sections.

Bunge's ontology distinguishes between intrinsic and mutual properties. Therefore,

being able to distinguish between these two types of property in OWL ontologies would

enhance a model's ability to represent real-world domain faithfully. Thus, we propose

another guideline:

Guideline 4: OWL ontologies modeling real world domains should distinguish among OWL

properties that are used to represent the following groups ofproperties:

• Ontological intrinsic properties of substantial things

• Ontological mutual properties of substantial things

• Other OWL properties, i.e. properties that are not intended to represent substantial

properties but are used for other purposes in the ontology

The third category of properties is intended for OWL properties that do not represent

substantial intrinsic or mutual properties. Among those are, for example, properties that

modelers may need to use to represent certain relationships between constructs, or some

properties that are not properties of substantial things (for example, implementation related

properties). For example, later in this thesis (section 4.5), we propose a pair of mutually

inverse object properties isComposedOf and IsComponentOf, which are intended for

representing composite/component relationships between a pair of OWL individuals

modling some substantial things. These properties are not domain-specific; rather, we view

them as upper-level or meta-properties (we suggest that such properties are defined in any

ontology that needs the representation of composite/component relationships). Guideline 4
suggests that such properties should be distinguished from domain-specific mutual and

intrinsic properties.

Unfortunately, OWL does not provide a mechanism to group properties or to specify

a user-defined property type or category to facilitate the above categorization. As one way to

distinguish among these categories of properties (without introducing changes to the OWL

syntax), we suggest the use of naming conventions (such as prefixes) in OWL property

We recognize that the important role of OWL ontologies is to provide machine readable representation of a
domain and to facilitate reasoning. Therefore, in our ontological interpretations and guidelines we are also
trying, whenever possible to acknowledge certain desirable representation patterns used in OWL, provided they
can be interpreted ontologically and allow for ontologically consistent representation.

43

names . In this thesis, we will use the following prefixes:
• "ip_" " f° r OWL properties representing intrinsic properties (e.g. "ipSize"),

• " m p " - for OWL properties representing mutual properties (e.g. "mpDistance").
Additional naming conventions will be introduced in later sections.

The last rule in this section deals with the concept of 'property domain' in OWL.
OWL properties can have a domain declared. By definition, a property domain in OWL is
the set of OWL individuals X such that for each X there is at least one ŷ that is a value of P
for the individual X (i.e. P(X, y) holds). Note that the role of the domain in OWL is to allow
a certain type of inference, it is not a constraint to be checked. Specifically, if a property P is
stated to have a domain D (usually as a named or anonymous class), and for some X a
statement of a form P(X, y) is declared (or inferred) in an ontology, then, according to OWL,
it can be inferred that X is an instance of the domain D.

In Bunge's ontology, properties are possessed by substantial things and according to
Modeling Rulel, OWL individuals that represent substantial things should always be
declared (or inferred) to be instances of the upper-level class Substantial_Thing (or its
subclasses). Therefore, we propose another modeling rule regarding the domain of OWL
properties that are intended to represent ontological properties:

Modeling Rule 2: If an OWL property is intended to represent an ontological (substantial)

property, then the domain of such property should be either the Substantial_Thing class or its

subclasses.

The next section (4.2.3) continues the discussion of property representation and
focuses on intrinsic properties in more detail, while section 4.2.4 is devoted to the discussion
of representation of mutual properties.

4.2.3 Representation of intrinsic properties in OWL

In Bunge's ontology, intrinsic properties are properties that depend on one tiling only
(for example, height or color). In Guideline 3, we proposed that ontological substantial
properties in general (including intrinsic properties) should be modeled in OWL ontologies
as OWL properties, while properties in particular (specific properties possessed by

2 9 OWL also allows the use of labels, which could be used to have more human-readable (natural) alternative
names for properties that can be used by applications (e.g. Name vs. ip_Name). Thus, the use of prefixes
should not significantly affect ontology usability in applications.
3 0 If P is an object property, then y is an OWL individual. If P is a datatype property, then y is a datatype value.

44

substantial things, or property values) should be represented as values of the OWL

properties representing the respective properties in general. However, as discussed earlier,

different ways of representing property values are possible in OWL, for example, as XML

datatype values, as OWL classes or as OWL individuals (depending on the intended model

usage, as well as on the application and reasoning needs). The choice of the property value

representation method, in turn, determines whether an OWL object property or an OWL

datatype property should be used for representing an intrinsic property.

In the remainder of this section, we will discuss in more detail (using simple

examples for illustration) two most typical cases of intrinsic property representation in OWL

ontologies which may require different representation approaches. For each case, we

propose some additional modeling guidelines and rules complementing and extending earlier

proposed guidelines and rules for property representation.

4.2.3.1 Case 1: Simple cases of generic intrinsic properties with value
manifestations - representation using OWL datatype properties

A common group of intrinsic properties are generic properties (such as "weight",

"color", "age", "name") which are manifested in things (individuals) by specific values (e.g.

literal or numeric). Possessing a specific value for a generic property implies possessing the

generic property itself.31 For example, a person (a substantial thing) possesses a generic

property 'weight' and also has a specific value for his/her weight (in some units), which can
32

be viewed as a specific property (property in particular), e.g. "has weight of 100 kg" .

Such intrinsic properties are usually represented in OWL as datatype properties with

the range of values defined as a suitable XML Schema datatype (e.g. integer, string or date).

For example, 'name' is an intrinsic (generic) property possessed by persons (a set of

substantial things represented by a class Person). Individuals also have specific names (such

as Alex or Maria), which are specific intrinsic properties preceded by the generic property

"name". In OWL we can represent the generic property "name" as an OWL datatype

property (e.g. ip_PersonsName); specific names for individuals of the class Person would then

be represented as values of the property ipPersonName. In accordance with Corollary 2, we

would make the class Person a subclass of the upper level class SubstantialThing. We also

define the domain of the property ipPersonName to be a class Person (Rule 2).
3 1 This is an example of what Parsons and Wand (2003) term as "value manifestation", which is a type of
property precedence law
3 2 For simplicity, here we assume that there is no need to represent units (e.g. kg or US$) but only focus on the
representation of a generic property (e.g. weight) and its specific values for individuals (e.g. 100). If one needs
to represent values with units, then object properties and special value classes would be required (as in case 2).

45

Below is a representation of this example in the OWL RDF/XML syntax :

<!-Declaring a class Person - a subclass of the class Substantial_Thing (Corollary 2) ->
<owl:Class rdf:ID="Person">

<rdfs:subClassOf>
<owl:Class rdf:ID="Substantial_Thing" />

</rdfs:subClassOf>
</owl:Class>

<\~Declaring an OWL property ip_PersonName (Guideline 3,4) with the class Person as a domain
(Rule 2) and string datatype as range~>

<o wl: Datatype Property rdf :about="#ip_Person Name">
<rdfs:domain rdf:resource="#Person" />
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />

</owl:DatatypeProperty>

<!—Example statement about a specific individual (represented as OWL individual "MikeSmith", an
instance of the class Person) having a specific property value ("Michael Smith'') for the property
ip_PersonName ->

<Person rdf:ID="MikeSmith">
<ip_PersonName rdf:datatype = http://www.w3.org/2001/XMLSchema#string">Michael Smith
</ip_PersonName>

</Person>

The above approach (i.e. using OWL datatype properties with a suitable XML

datatype as range) is suitable for modeling many intrinsic properties. This approach is best

suited for representing those properties which can have a large (or unlimited) number of

possible numeric or string values (i.e. specific properties). However, in other cases this

method of representation may be too restrictive from the implementation and reasoning

standpoint (since, for example, reasoning on datatypes is currently less developed and less

powerful in OWL compared to reasoning on classes and individuals). An alternative

representation, popular in current OWL practices, is to use special value classes and

individuals of those classes to represent property values (where properties themselves are

represented as OWL object properties rather than datatype properties).

In the next section we discuss a specific type of intrinsic properties - generic

properties with enumerated collection of property values - for which the aforementioned

alternative representation can be useful (and is often preferred by OWL practitioners; see,

for example, Noy, 2004; Rector, 2004). In order to make this representation consistent with

3 3 We assume that the upper-level class Substantial_Thing has already been declared (as proposed in section
4.1.1) and only show an excerpt from the ontology pertaining to classes and properties of interest here.

46

http://www.w3.org/2001/XMLSchema%23string
http://www.w3.org/2001/XMLSchema%23string%22%3eMichael

the ontological considerations, we propose additional modeling rules guiding his

representational pattern. We also show that the earlier proposed general guidelines and rules

are still applicable, irrespective of how property values are represented (as datatype values

or as OWL classes or individuals).

4.2.3.2 Case 2: Intrinsic properties with enumerated collections of
values

Some generic intrinsic properties of things can be manifested by a specified

(enumerated, usually finite) collection of values. For example, wine has color which can be

white, red or rose; clothes have size which can be small, medium or large, and so on. Rector

(2004) and Noy (2004) review several modeling patterns for representing such specified

value collections of properties in OWL and discuss advantages and disadvantages of these

patterns.

As already mentioned in the previous section, one way to represent such properties

with enumerated collections of values is to use an OWL datatype property to represent a

generic property (such as "color" or "clothing size") and use the OWL enumeration

construct (OWl:oneOf) in combination with a suitable XML Schema datatype to represent a

list of possible values for the property. In other words, the range of values for the datatype

property representing a generic intrinsic property would be a custom-defined enumerated

datatype - a list of values of some predefined XML datatype (such as string or integer). For

example, we can represent a generic intrinsic property "clothing size" and its values in the

OWL/RDF syntax in the following way (conforming to our rules and guidelines):

<\-Declaring meta-model classes SubstantiaLThing, Non_Substantial_Thing ->
<owl:Class rdf:about="#Substantial_Thing">

<owl:disjointWith>
<owl:Class rdf:about="#Non_Substantial_Thing7>

</owl:disjointWith>
</owl:Class>
<owl:Class rdf:about="#Non_Substantial_Thing">

<owl:disjointWith rdf:resource="#Substantial_Thing7>
</owl:Class>

</-- Declaring a class Clothes to be a subclass of the upper level class SubstantiaLThing (Corollary
1)->
<owl:Class rdf:ID="Clothes">

<rdfs:subClassOf>
<owl:Class rdf:ID="Substantial_Thing" />

</rdfs:subClassOf>
</owl:Class>

47

</— Declaring a datatype property ;'p_ClothingSize representing intrinsic generic property "closing
size" (hence the use of the prefix ipj. Property domain is the class Clothes (a subclass of
SubstantiaLThing class; Rule 2). Property range is the enumerated datatype - list of values of XML
datatype String (Small, Medium, Large) ->

<owl:DatatypeProperty rdf:about="#ip_ClothesSize">
<rdfs:domain rdf:resource="#Clothes" />
<rdfs:range>

<owl:DataRange>
<owl:oneOf rdf:parseType="Resource">

<rdf:firstrdf:datatype=''http://wvvw.w3.org/2001/XMLSchema#string">Small</rdf:̂
<rdf:rest rdf:parseType="Resource">

<rdf:firstrdf:datatype="httjp://wvvw.w3.org/2001/XMLSchema#Su-ingo>Mediu
<rdf:restrdf:parseType="Resource">
<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil" />
<rdf:firstrdf:datatype="http://www.w3.org/2001/XMLSchema#string">Large</rdf:fire^

</rdf:rest>
</rdf:rest>

</rdf:rest>
</owl:oneOf>

</owl:DataRange>
</rdfs:range>

</owl:DatatypeProperty>

</— Statements about individuals can be made regarding property values. For example, Dress 1 is an
OWL individual - an instance of the class Clothes and has a property value "Small" for the property
ip_ClothingSize (this represents a specific ontological intrinsic property "having clothing size 'small'"
for this particular clothing item which is a substantial thing (represented by an OWL individual) ->

<Clothesrdf:ID="Dress1">
<ip_ClothingSize rdfdatatype = "http://www.w3.org/2001 /XMLSchema#string">Small
</ip_ClothingSize>

</Clothes>

The example above is just a special case of the earlier discussed case 1, and thus the

same guidelines and rules are applicable. That is, a class Clothes (individuals of which

represent substantial things - clothing items) is declared as a subclass of the upper-level

class SubstantiaLThing (Corollary 2); an OWL datatype property with the "ip" prefix

(ip_ClothesSize) is used to model the intrinsic generic property 'clothing size' (Guidelines 3,

4). We also declare the domain of the property to be the class Clothes (a subclass of the class

SubstantiaLThing, Rule 2).

Rector (2004) discusses other possible methods of representing enumerated

collections of values for properties. In particular, individuals of the specially defined value

classes can be used to represent enumerated property values. In this case, we would have to

use OWL object properties, rather than datatype properties, to represent generic intrinsic

48

http://wvvw.w3.org/2001/XMLSchema%23string%22%3eSmall%3c/rdf:%5e
http://www.w3.org/1999/02/22-rdf-syntax-ns%23nil
http://www.w3.org/2001/XMLSchema%23string%22%3eLarge%3c/rdf:fire%5e
http://www.w3.org/2001

properties (since we need to link OWL individuals representing substantial things to OWL

individuals representing property values). Applying this approach to the earlier discussed

clothing size example, we represent a generic intrinsic property 'clothing size' as an OWL

object property (ip_ClothingSize). Again, as per Rule 2, the domain for this property is the

class Clothes (a subclass of the Substantial_Thing class). However, the range of this property is

now not an XML datatype (as in earlier examples) but a specially defined OWL class, for

example, Clothing_Size_Value. This class is declared to have several instances - OWL

individuals representing property values (e.g. Small, Medium, Large)34. The OWL

RDF/XML representation of this example is as follows:

<\-Declaring meta-model classes Substantial_Thing, Non_Substantial_Thing, and Property_Value -
->

<owl:Class rdf:about="#Substantial_Thing">
<owl:disjointWith>
<owl:Classrdf:about="#Non_Substantial_Thing7>

</owl:disjointWith>
</owl:Class>
<owl:Classrdf:about="#Non_Substantial_Thing">

<owl:disjointWith rdf:resource="#Substantial_Thing7>
</owl:Class>

<!~The class Property_Value is declared as subclass of the Non_Substantial_Thing (corollary 6)
->

<owl:Classrdf:ID="Property_Value">
<rdfs:subClassOf>
<owl:Classrdf:ID="Non_Substantial_Thing7>

</rdfs:subClassOf>
</owl:Class>

<!—Declaring a class of substantial things - Clothes class->
<owl:Class rdf:ID="Clothes">

<rdfs:subClassOf>
<owl:Classrdf:ID="Substantial_Thing7>

</rdfs:subClassOf>
</owl:Class>

<!- Declaring a class representing enumerated set of property values for an intrinsic property
'clothing size' and instances of this class representing individual property values>

<owl:Classrdf:ID="Clothes_Size_Value">
<rdfs:subClassOf rdf:resource="#Property_Value7>

</owl:Class>
<Clothing_Size_Valuerdf:ID="Small7>

Often, subclasses of value classes are created, with individual values still represented by instances (i.e.
subclasses Small, Medium and Large can be created). Also, sometimes, such subclasses themselves are used to
represent values. However, the latter is only possible in OWL Full. Rector (2004) discusses both methods and
analyses their advantages and disadvantages. For this thesis it is not relevant which of the two approaches is
used (our guidelines and rules will hold for both methods) thus we do not discuss this issue in more detail.

49

<Clothing_Size_Value rdf:ID="Medium'7>
<Clothing_Size_Valuerdf:ID="Large"/>

<!—Declaring an object property ip_ClothingSize representing the intrinsic property 'clothing size'
(with the domain Clothes and the range - class Clothing_Size_Value ->

<owl:ObjectProperty rdf:ID="ip_ClothingSize">
<rdfs:domain rdf:resource="#Clothes"/>
<rdfs:range rdf:resource="#Clothing_Size_Value7>

</owl:ObjectProperty>

<!- A statement about a particular Clothes individual (e.g. Dressl) having a specific value for the
property ip_ClothingSize'->

<Clothesrdf:ID="Dress1">
<ip_ClothingSize rdf:resource=7*Small7>

</Clothes>

The diagram shown in Figure 1 illustrates this representation in a graphic form:

Noil Substantial Tliiun

sa

PropertyValue

Substantial Tiling

i
isa

Clothes

ipClotliingSize Instance4' Clothing Size Value

ip_C3 otliiiigSize*

d o t h i n g _ R i z e _ V a l u e
Smal l

/1.0 to

Lanse

i p C l o t l u o a S i x e •
/

• Jo /ip_ClothiiigSize

Medium Small

Figure 1: Representing enumerated property values using value classes and instances

The choice of a method for representing property values (as datatypes vs. as classes

or individuals) is often related more to the application and implementation issues than to the

conceptual modeling aspects. We acknowledge that there may be compelling reasons for

OWL developers and modelers to choose a specific implementation, and thus do not suggest

to proscribe completely any of these approaches. However, we recommend that our

proposed rules and guidelines (which are applicable to both cases) are followed to help

achieve more ontologically consistent representation.

In addition, we would like to propose one more modeling rule to ensure better

ontological consistency and clarity in a case when OWL classes or individuals are used to

50

represent property values. Guideline 3 states that if OWL classes or OWL individual are

used to represent property values of generic ontological properties (represented by OWL

properties), then such special purpose classes and individuals should be distinguished from

OWL classes and individuals representing substantial things. Also, Modeling Rule 1

proposes that in order to distinguish between substantial things and other concepts in an

ontology, two disjoint upper level classes, Substantial_Thing and Non_Substantial_Thing are

used. Combining those guidelines and rules, we summarize our recommendation for the

property representation case approach using value classes in the following modeling rule:

Modeling Rule 3: If an OWL class (and its instances) is used to represent a collection of

property values for some OWL property representing an intrinsic generic property of

substantial things, then

• This intrinsic generic property should be represented as an OWL object property (rather

than an OWL datatype property)

• The domain of this property should be the class Substantial_Thing or some of its

subclasses

• The range of this property should be defined as the OWL class that is used to represent

property value collection

• The OWL class representing the property value collection should be declared a subclass

of the Non_Substantial_Thing upper-level class (to distinguish it from substantial thing

classes)

The last suggestion in this section is intended to help further separate OWL classes

and individuals used for representing property values (as discussed above) from OWL

classes and individuals representing substantial things. Specifically, we propose that an

upper-level class, Property_Value, is created in every ontology (as a subclass of the upper-

level class Non_Substantial_Thing), and that any OWL classes representing property values

should be declared subclasses of this class. For example, the class Clothing_Size_Value in the

earlier example would be declared a subclass of the class Property_Value (which also makes it

a subclass of the Non_Substantial_Thing class). This suggestion hepls clearly identify those

special purpose value classes (by grouping them under the same upper level class), and thus

will help achieve better ontological clarity and consistency (since there will be more clear

distinction and an indication of the specific type and purpose of these classes, separating

them from the substantial thing classes). This suggestion is summarized in Modeling Rule 4:

51

Modeling Rule 4: If OWL classes and individuals are used in an OWL ontology modeling a

real world domain, then a special upper-level class Property_Value should be included in the

ontology as follows:

• This upper level class Property_Value should be declared a subclass of the upper-level

class Non_Substantial_Thing

• Any OWL class used to represent a collection of property values for some ontological

property should be declared a subclass of the upper level class Property_Value (and thus

also a subclass of the upper-level class Non_Substantial_Thing^

To surnmarize, in all the discussed cases of mtrinsic properties (irrespective of

whether property values for an intrinsic property are represented in O W L as predefined

X M L Schema datatype values, enumerated datatype values, or as O W L classes and

individuals) the same key guidelines are applicable:

• A generic intrinsic property should be represented as an O W L property (a datatype or an

object property depending on the selected value representation method)

• The domain of the property should always be some subclass(es) of the SubstantiaLThing

upper-level class

• The range of the property depends on which property value representation method is

chosen (it could be an X M L datatype or a special O W L class, which should be clearly

distinguished from the substantial thing classes)

Assuming that the guidelines proposed above are followed, we can map ontological

intrinsic properties to a subset of the O W L properties, specifically, to those properties that

have as a domain a class SubstantiaLThing or some its subclass(es), and have as a range either

an X M L datatype (if property values are represented as datatype values) or a special value

class - a subclass of the Property_Value class, which in turn is a subclass of the

Non_Substantial_Thing class (if O W L individuals are used to represent property values).

4.2.4 Representation of mutual properties in OWL

This section is devoted to the discussion of how ontological mutual properties can be

represented in O W L clearly and consistently with ontological assumptions. The discussion is

structured as follows. First, we briefly review the concepts of Bunge's ontology which are

relevant for the analysis of mutual properties (section 4.2.4.1). Next, section 4.2.4.2

discussess some general considerations and possible choices of the representation method

available in OWL. Section 4.2.4.3 provides some theoretical foundations to justify the

52

method of mutual property representation that we consider preferred. Then, in section

4.2.4.4, the proposed method for representing bundles of mutual properties is further

illustrated using an example, and modeling guidelines and rules for their representation are

proposed. Finally, in section 4.2.4.5 we provide some analysis and ontological

considerations related to the use of an alternative method of representation of mutual

properties - direct linking of OWL individuals representing substantial things using OWL

object properties35, and suggest some cases in which the use of such representation method

is acceptable from the ontological standpoint.

4.2.4.1 Relevant concepts of Bunge's ontology

In Bunge's ontology, mutual, or relational, properties are properties that depend on

two or more things. For example, a property of being a university student is a mutual

property since it depends on the existence of both a person and a tertiary institution (Wand et

ai, 1999).

Closely related to the concept of mutual property is a notion of interaction.

According to Bunge's ontology, things can interact. Wand et al. (1999) provide a clear and

concise explanation of interaction and its relation with mutual properties. Following Bunge's

ontology, they state that when two things interact, one may cause the other to change.

Changes to things are manifested as changes to properties, which are modeled via changes in

the values of attribute functions, i.e. changes of state. The existence of an interaction can be

considered a mutual property of things, and conversely, the existence of a mutual property

can indicate an interaction. For example, a mutual property that a person is employed by a

company implies that the existence of the company affects the state of the person (and vice

versa). If the company ceases to exist, the person loses the property of being employed by

that company, and similarly, if the employee quits, the (set-valued) attribute of the company

that shows its list of employees will change in value (Wand et al, 1999). A mutual property

that reflects an interaction is termed a binding mutual property (Bunge 1977, p. 102). A

binding mutual property implies that some changes in one thing are related to (precede, are

accompanied by, or are followed by) changes in the other thing. A property that does not

imply an interaction is termed non-binding, for example, "thing A is behind thing B", "thing

A is older than thing B".

In the following sections we discuss different cases of mutual properties and consider

several possible mechanisms by which mutual properties of substantial things can be

3 5 This method of representation is quite popular in current OWL practices and thus deserves special
consideration.

53

modeled in OWL. Based on the analysis of these mechanisms, we develop representation

patterns and propose some rules and guidelines for representing mutual properties in order to

improve the ontological consistency and clarity of the resulting OWL ontologies.

4.2.4.2 Mutual properties - general representational considerations

By definition, mutual properties are shared by two or more things. Modeling Rule 1

states that ontological substantial things should be modeled as OWL individuals that are

instances of the upper-level class SubstantiaLThing or its subclasses. Thus, in order to model

mutual properties properly and to comply with the earlier proposed guidelines, we need to

use some OWL mechanism that allows associating two or more OWL individuals (as well as

classes to which these individuals belong). Also, Guideline 3 states that ontological

properties should be modeled as OWL properties conforming to certain constraints, which

depend on a type of property as well on the model usage and implementation considerations.

In the interest of ontological clarity, it is preferable that, like intrinsic properties, mutual

properties are modeled using the same language construct, that is OWL property construct

(as stated in guideline 3). These considerations guide our choice of modeling pattern for

mutual properties.

Unlike other modeling languages (such as ER. or UML), OWL does not provide any

predefined construct for linking several entities (similar to UML association classes or

relationships in ER). However, two mechanisms in OWL allow linking OWL individuals

(and thus can be considered as candidate methods for representing of mutual properties):

1) Using OWL object property construct to link two OWL individuals

• For example, an object property Enrolledln (Student, Univesity) links student

individuals to university individuals (represented by OWL individuals). A statement

of a form Enrolledln (StudentX, UniversityU) in an ontology would mean that a specific

StudentX is enrolled in a UniversityU ('being enrolled' is a mutual property here)

• However, the problem with this method is that it only allows linking two individuals.

Also, it does not allow the representation of bundles of related mutual properties

shared by the same set of things, as will be demonstrated later.

2) Defining special classes (relation classes) to link two or more OWL individuals:

• Two or more OWL individuals (or classes) representing substantial things can be

linked via a special OWL class. An instance of this class would represent a relation

between a set of OWL individuals (things) that are involved in this relation (i.e. share

some mutual properties).

54

• OWL individuals representing things that share certain mutual properties would be

linked to the same instance of the respective relation class (i.e. an instance of the

relation) using a special OWL object property (thus, two or more things would be

indirectly linked together via being linked to the same relation class instance)36

The first approach (using OWL object properties) may seem easier and more

straightforward (compared to the second one), and it is popular in current OWL practice.

However, we will show that from the ontological standpoint it has some drawbacks which

limit its usefulness for representing mutual properties in an ontologically consistent way, and

that the second approach is more universal and allows better ontological interpretation. In

the next two sections we provide some theoretical considerations guiding our choice of the

representation method for mutual properties, and analyze both mechanisms in more detail to

propose rules and guidelines on their use. We argue that most cases of mutual properties can

be represented using a second method (i.e. using special classes to link individuals), while

the use of the first method (i.e. using OWL object properties to directly link two OWL

individuals representing substantial things) should be limited to some specific cases only.

4.2.4.3 Analysis and theoretical considerations

The issue of the representation of mutual properties in conceptual models has been

discussed in several prior research works in the area of the ontological analysis of conceptual

modeling languages.

In the ontological analysis of the Entity-Relationship Model (ERM) and of the

relationship construct in particular, Wand et al. (1999) proposed that all mutual properties

should be represented using relationship construct, whereas the entity construct should only

be used to represent substantial things in a domain. In that paper, the authors further suggest

that each mutual property should be represented by a separate relationship construct.

In the research on the use of UML for conceptual modeling (Evermann 2003;

Evermann & Wand 2001a,b) Evermann and Wand propose a slightly different approach for

interpreting and modeling mutual properties - the approach based on interactions among

things. In particular, the researchers note that according to Bunge's ontology mutual

properties usually occur together, and that many mutual properties arise out of interactions

among things. Most interactions give rise to some mutual properties. For example, a

student's enrollment at a university (that can be viewed as a result of the 'enrollment''

interaction) gives rise to some mutual properties such as 'tuition fee balance' and

3 6 A discussion of such representation of N-ary relationships in OWL can be found in Noy & Rector (2004).

55

'registration status'. A 'book loan' interaction between a library member and a library leads

to the acquisition of the mutual properties such as 'DateOut' and 'DateDue' by both the

library and the library member. For UML conceptual models, Evermann and Wand

(2001a,b) propose that such sets, or bundles, of mutual properties arising out of the same

interaction should be modeled together - as attributes of a single UML association class

(whereas ordinary classes should only be used to represent classes of substantial things).

They interpret a UML association class itself as a set of related concurrent mutual properties

arising out of the same interaction. Consequently, the researchers require that different

association classes should be used for the sets of mutual properties that are not necessary

concurrent (e.g. they arise out of different interactions). Consequently, two ordinary UML

classes (that represent substantial thing classes) may be linked by more than one association

class.

This thesis adopts (with some modifications) a similar approach as a basis for

modeling of mutual properties in OWL. Specifically, we agree with Evermann and Wand

(following Bunge's ontology) that identifying and analyzing interactions between things can

help determine what mutual properties are shared by these things and how these mutual

properties are grouped together. Thus, we suggest that if an interaction between some

substantial things is within the scope of a model and if such an interaction gives rise to a set

of (usually concurrent) mutual properties, then these properties should be modeled together.

Since OWL does not provide a separate construct similar to the construct of 'association

class' in UML, we propose, as an alternative, to define special purpose classes - 'relation'

(or 'interaction') classes to perform a role similar to association classes in UML or to

relationships with attributes in ERM. The next section discusses the proposed method of

representing bundles of mutual properties in OWL in more detail, provides an ontological

interpretation for the elements of the proposed representation model, and formulates

modeling guidelines and rules related to representation of mutual properties in OWL.

4.2.4.4 Modeling bundles of mutual properties in OWL using

interaction (relation) classes

In this section we first discuss a simple example to illustrate the suggested approach

for modeling mutual properties, and then summarize the approach in more general form

proposing relevant modeling rules and guidelines.

Let us consider the following example: a person is employed by a company. From the

standpoint of Bunge's ontology, a company and an employee (a person) are both substantial

56

things which interact (e.g. via 'employment' interaction), and, as a result, acquire and share

a number of mutual properties, such as 'job title', 'salary', 'employment start date', and

others. Note that we may also consider a more general mutual property - 'involved in an

employment interaction' - also shared by these two things (a company and an employee).

According to Bunge's ontology, the relationship between this more general property and the

more specific properties in a bundle ('job title', 'salary', etc.) is that of property precedence

- the possession of any of the more specific mutual properties (e.g. 'having a certain salary'

or "having job title') by a set of things implies the possession of the preceding generic one

('involved in employment interaction'). This observation regarding the existence of a

general property preceding a bundle of more specific mutual properties helps in the

interpretation of some constructs used in the modeling approach proposed below.

The employee-employer relationship example is presented schematically in Figure 2.

We have two substantial things, each of those things possesses some intrinsic properties

(here 'name' and 'address' properties are shown). Both things also share several mutual

properties (arising out of an employment interaction) such as those shown on the diagram37.

Employee
•ip Name
-ip Address

lnvolves_Employee

Company
-ip CompanvName
-ip CompanvAddress

—7

lnvolvedln_Employment
InvolvesjCompany/ /

lnvolvedln_Employment

Employment
- mp_JobTitle
- mp_StartDate
- mp_Salary

Figure 2: Schematic representation of the employment interaction example

In OWL, we can define two classes - Employee and Company; the instances of these

classes (OWL individuals) would represent specific employees and companies (i.e.

substantial things). Intrinsic properties of each of these classes would be represented as

OWL properties in accordance with Guidelines 3, 4 and Rules 3, 4 (datatype or object

properties depending on the selected property value representation method, as discussed in

section 4.2.3).

3 7 A s proposed earlier, we use prefixes in property names to indicate the type of ontological property
represented (such as 'mp_' for mutual properties or 'ip_' for intrinsic properties)

57

To represent in OWL the mutual properties shared by these substantial things, we

propose defining a special class, e.g. Employment, which corresponds to the 'employment'

interaction (and relates Employee and Company classes). This class does not represent any

substantial thing (or a class of substantial things) but rather stands for a bundle of mutual

properties arising out of the same interaction between the two substantial things (we can also

view this class as a representation of the interaction itself). The mutual properties in this

bundle (e.g. 'job title' or 'start date') would be represented as OWL properties (in

accordance with Guideline 3). To represent that these mutual properties are shared by the

substantial things Employee and Company and arise out of a particular interaction, the OWL

properties representing them are associated with the interaction class Employment (and its

individuals, respectively), rather than directly with the Employee or Company classes and
38

instances .
In addition, we suggest that the classes representing substantial things (i.e. Employee

and Company) should be linked to the interaction class Employment (and, thus, indirecdy, to

the mutual properties they share) using a special OWL object property such as

lnvolvedln_Employment. This OWL object property not only serves a practical purpose of

linking substantial things to a bundle of mutual properties they possess but also can be

interpreted ontologically as a representation (using OWL property construct) of the earlier

discussed generic mutual property 'being involved in employment interaction', which

precedes a bundle of mutual properties represented as properties associated with the

Employment relation class.

To summarize the example above, we propose the following approach to represent a

bundle of mutual properties shared by substantial things and acquired as a result of an

interaction:

• A special 'relation' (or interaction39) class is created to represent the 'connection'

existing between those things; this class can be viewed as a representation of the bundle

of properties as a whole, and as a representation of the interaction among these things;

• Individual mutual properties in a bundle are represented as OWL properties and are

3 8 This way of representation ensures that for each shared generic mutual property both an employee and a
company individuals will have the same value. As we discussed in section 4.2.1 (issue 4) i f we were to
associate each mutual property from a bundle with employee and company classes separately (rather than
indirectly through a relation class), this could lead to a company and an employee instances sharing these
properties to possess different values for these properties. Also, the 'bundling' of the properties (concurrency)
would not be represented in such case.
3 9 The term "interaction class" was suggested by P. Bera as an alternative to the term 'relation class' and was
subsequently used in a recent paper by Bera et al. (2005) (which incorporates some results of this thesis).
Therefore, for consistency with this and future work we will use the term 'interaction class'

5 8

associated (through class axioms and individual facts) with the interaction class

representing the bundle,

• OWL classes/individuals representing the interacting substantial things (which share the

bundle of mutual properties) are connected to the relation class (and its instances)

through a special OWL object property. This property can be interpreted as a

representation of an ontological mutual property of 'being involved in the relationship of

interest' (or of 'being involved in a specific interaction'), which precedes each of the

more specific mutual properties in the bundle.

To formalize the approach, we propose several guidelines and modeling rules (which

also take into consideration the earlier suggested guidelines and rules).

Guideline 5: In OWL ontologies modeling real world domains, a set of mutual properties of

substantial things arising out of the same interaction should be represented as OWL

properties associated with the specially defined OWL class — an interaction class

Guideline 6: Each interaction class represents a set of related concurrent mutual properties

(usually arising out of the same interaction). Different interaction classes should be used if

sets of properties are not concurrent and/or pertain to different interactions.

Since interaction classes are special purpose classes and their instances do not

represent substantial things, then in accordance with Modeling Rule 1 and Corollary 2, they

should be declared subclasses of the Non_Substantial_Thing upper level class:

Modeling Rule 5: Interaction classes should be modeled as subclasses of the upper level

class Non_Substantial_Thing (since they do not represent substantial ontological things)

We can further distinguish interaction classes from other types of classes in OWL

ontologies by creating an additional upper level class for this type of classes as well as by

using naming conventions (such as prefixes in class names). These suggestions are

summarized in the following rule:

Modeling Rule 6: To further distinguish interaction classes from other types of classes in

OWL ontologies, additional methods can be employed:

• A special upper-level class Substantial_Thing_lnteraction, can be created as a subclass of

the upper-level class Non_Substantial_Thing. All interaction classes then would be modeled as

subclasses of this class Substantial_Thing_lnteraction (which would also automatically make

59

them subclasses of the Non_Substantial_Thing class);

• Also, naming conventions can be used in naming interaction classes and instances for

easier identification (e.g. a prefix I_ or R_ (which stands for 'interaction' or 'relation')

The next rule places some restrictions on how individual mutual properties in a

bundle should be modeled:

Modeling Rule 7: Each individual mutual property in a bundle of concurrent properties

(represented by some interaction class) should be modeled as an OWL property in

accordance with the following rules:

• The domain of each property should be the interaction class representing the bundle

• Use of a prefix (e.g. mp_) is recommended in the mutual property name to distinguish it

from other types of properties (to conform to Guideline 4)

The following modeling rule proposes how OWL classes that represent substantial

things participating in some interaction (and thus, sharing some properties) should be linked

to their respective interaction classes (which represent the bundles of mutual properties that

these things share as a result of the interaction). Such linking allows tracing interactions in

which a specific thing is involved and determining which mutual properties this thing

possesses as a result of being involved in a certain interaction (i.e. mutual properties are

linked to substantial things indirectly, through the respective interaction classes):

Modeling Rule 8: A special OWL object property should be defined to link OWL classes

(and their instances) that represent substantial things sharing a set of mutual properties to

the interaction class that represents this set of shared mutual properties:

• This OWL object property represents the ontological mutual property of having the

relationship of interest (or participating in the respective interaction that gives rise to

that set of mutual properties);

• The domain of this OWL object property should be defined as a union of the classes that

represent interacting substantial things related by the respective interaction class; the

range of this object property should be the respective interaction class;

• Use of naming conventions (e.g. a prefix 'lnvolvedln_' combined with the interaction class

name) is recommended for such object property to explicitly show that the substantial

things possessing it are involved in a particular interaction (to which this object property

links them).

60

For instance, in the earlier example we defined the property InvolvedlnEmployment to

link Employee and Company instances to instances of the interaction class Employment (which

in turn is associated with a number of mutual properties shared by Employee and Company)

To improve model understandability, we also recommend that interaction classes

should be linked back to the classes of substantial things involved in the interaction. This can

be achieved by introducing additional object properties to link the interaction class to each

substantial thing class participating in the interaction. In the employment example above, we

can create two properties lnvolves_Company and lnvolves_Employee, which would link

instances of the interaction class Employment to the corresponding instances of Company and

Employee, respectively. Such linking would help determine what types of instances

participate in what types of interactions as well as trace the relationships at instance level.

The next rule formulates this suggestion in a general form:

Modeling Rule 9: For each class of substantial things involved in an interaction, a special

OWL object property should be defined to link the OWL interaction class that represents the

shared set of mutual properties back to the OWL classes (and their instances) representing

the involved substantial things sharing this set of mutual properties:

• The domain of this object property should be the respective interaction class; the range

of this property should be defined as a union of the classes that represent interacting

substantial things that participate in this interaction;

• Use of naming conventions (e.g. a prefix 'InvolvesJ combined with the respective

substantial thing class name) is recommended for such object properties to show

explicitly that this property links the interaction class to a specific class of things

involved in the interaction.

We have implemented in OWL the above discussed example of employment relation

between a company and an employee in accordance with the proposed rules. We also

included several instances (individuals) to this example ontology to demonstrate how

interaction instances and their specific mutual properties should be declared and linked with

the respective instances representing substantial things. The OWL RDF/XML

implementation of this example and some diagrams of ontology classes, instances and

properties are included in Appendix A.

61

4.2.4.5 Notes on using OWL object properties to directly link OWL

individuals representing substantial things

In the previous section we proposed a general method of modeling sets of mutual

properties shared by some substantial things using interaction classes. This method allows

consistent modeling of mutual properties irrespective of how many things (two or more)

share these properties and how many concurrent mutual properties are in a set.

As discussed in section 4.2.4.2, an alternative method of 'direct linking' of OWL

individuals is using OWL object properties. Recall that an OWL object property is a directed

binary relation Y(x,y) where x and y both are OWL individuals. Recall also that the linked

individuals (x and y) play different roles in this binary relation - the individual y is

considered a value of the property P for the individual x (for example, compare:

isParentOf(x,y) vs. isChildOf (y,x), isOwnerOf (PersonX, PetY) vs. hasOwner (PetY, PersonX)).

In principle, OWL object properties can be used for representing some mutual

properties. More specifically, using OWL object property construct, one can directly connect

two OWL individuals representing substantial things that share some mutual property. For

example, in the example discussed earlier of a person employed by a company, the property

of 'being employed' could be modeled by defining an OWL object property IsEmployedBy

(Employee, Company) with the class Employee as its domain and the class Company as its

range (both would be modeled as subclasses of the class SubstantiaLThing). In addition, we

could also define an inverse object property Employs (Company, Employee), which, in fact,

would be a representation of the same mutual property but from the company's perspective

(i.e. property names reflect the roles of the employee and company in the relationship,

respectively).

This way of representing relationships between OWL individuals is commonly used

in current OWL practices. However, from the ontological standpoint the use of OWL object

property construct for representing mutual properties has a number of limitations.

First, as noted earlier, this method only allows linking two OWL individuals, whereas

in Bunge's ontology mutual properties can be shared by any number of things. Even though

in some cases N-ary relations can be replaced by a set of binary ones, the use of such binary

representations instead of the N-ary one may lead to a loss of information conveyed by a

model (Wand et al, 1999).

In addition, this method of representation does not allow 'grouping' concurrent

properties and their specific values, which may lead to ambiguities and information loss. For

example, the same person may be employed by several companies and for each of these

62

companies he has a different start date, job title and salary. Using only OWL object

properties as direct binary links between employee individual and different company

individuals we would not be able to correctly represent these properties in such a way that

allows determining which values of these properties are related to which employment (i.e.

with which company) for this person. For example, this person would have multiple values

for properties such as WorksFor and hasSalary (represented as statements of a form WorksFor

(PersonX, Companyl), WorksFor (PersonX, Company2), hasSalary (PersonX, $40,000), hasSalary

(PersonX, $50,000). However there is no way here to determine which salary a person has in

which company because we only have binary properties.

A similar issue (related to the use of binary links between classes) was raised by

Evermann (2003) with respect to the use of simple (or 'ordinary') associations for modeling

mutual properties when using UML for conceptual modeling40. He argues that simple

associations are employed in UML to enable message passing, which is a design related

concept that does not have a Bunge-ontological equivalent. For this reason as well as in the

interest of ontological clarity41, he proposed that UML associations are ontologically

excessive and should not be employed for conceptual modeling of mutual properties - such

properties should only be modeled as attributes of association classes. For example,

according to this recommendation the mutual property of 'being employed' would not be

modeled in UML as a simple association between Person and Company classes, but instead an

association class should be used with the attributes such as 'Job Title', 'Salary', etc. (which

represent the mutual properties resulting from this interaction). Another rule for UML

proposed in (Evermann, 2003) states that "Every ordinary association must be an association

class" (Evermann, 2003, p.72).

The use of OWL object properties for modeling mutual properties of two things is

somewhat similar to the use of simple associations in UML for modeling mutual properties.

However, in this thesis research we refrain from completely proscribing the use of OWL

object properties for direct linking of individuals representing substantial things, as this is a

quite useful and widely employed OWL mechanism, which in many cases enables concise

representation and efficient reasoning42. Rather, we propose that the use of OWL object

properties in this context (i.e. for linking substantial thing instances and classes) should be

4 0 In U M L models, classes can be either linked by simple associations (without the use of association classes),
which is somewhat similar conceptually to OWL object properties, or via association classes
4 1 Specifically, this research tried to avoid the situation where mutual properties are modeled by two different
U M L constructs - associations and attributes of association classes.
4 2 For example, additional property characteristics may be easily defined for OWL object properties such as
transitivity or symmetry (which may be more difficult to represent when using the interaction class approach)

63

restricted to a number of particular situations only and be guided by certain rules.

Specifically, we suggest that in ontologies representing real-world domains, OWL

object properties can be used to associate two substantial things directly only in the

following two cases: 1) when only the fact of the existence of the relationship between two

substantial things (a property in general) needs to be represented (and interaction details and

its related mutual properties are outside of the scope), or 2) when a non-binding mutual

property between two things has to be represented. Below, each of these cases is discussed in

more detail.

1) Cases when only the existence of a general relationship (mutual property)

between only two substantial things needs to be represented

Details of certain interactions between things (and thus certain mutual properties

arising out of them) may be outside of the scope of a particular ontological model. For

example, let us consider a mother-child relationship between two persons. A modeler

developing an ontology about people may not be interested in the interaction that gave rise to

this relationship (i.e. 'child birth') and, thus, would not need to represent in this ontology all

the details of the 'child birth' interaction and of the associated mutual properties (such as

birth date and time, birth place, etc.). In such a case, one may only need to represent the

existence of the relationship between a pair of OWL individuals representing persons (i.e.,

the fact that persons have mothers and/or are mothers of some persons). In other words, a

modeler may only want to be able to state that a particular person is a mother of (or has as a

mother) another particular person. For such cases, it is sufficient to use of a pair of mutually

inverse OWL object properties such, as for example, isMotherOf (PersonX, PersonY) and

hasMother (PersonY, PersonX). Using interaction classes would be too cumbersome and

unnecessary in this case.

Note that in the cases as above OWL syntax does not require defining inverse

properies for OWL object properties43. However, from the ontological standpoint we argue

that if a general mutual property (the existence of some relationship) is represented by an

OWL object property, then a pair of mutually inverse properties should be modeled in the

ontology so that each of the two individuals representing substantial things sharing this

mutual property is associated with the OWL property representing this mutual property

(rather than just one of the two individuals). Similarly, at the instance level, if both

properties are defined then the statements regarding the relationship can be made for both

4 3 That is, an O W L ontology (e.g. some ontology about people) would still be a valid ontology even if only one
of the two mutually inverse properties (e.g. only isMotherOf) is defined.

64

mothers and children (i.e. for all substantial things sharing a property rather than just for one

side of the relationship)44.

The representation approach outlined above is summarized in the following rule:

Modeling Rule 10: In OWL ontologies modeling real world domains, if an OWL object

property is used to represent the existence of a relationship between two substantial things

(i.e. a mutual property of having this relationship), then

• Two mutually inverse OWL object properties should be defined to link two individuals -

instances of two classes A and B respectively, where A and B are classes of instances

representing substantial things having a relationship

• One of these two properties should have the class A as its domain and the class B as its

range, while the other property should have the class B as its domain and the class A as

its range

• Use of naming conventions (such as a prefix 'mp_')) is recommended for both these

object properties to indicate that they represent a mutual property (existence of the

relationship) shared by the two things

For example, there may be two classes in some ontology, Pet and PetOwner, the

instances of which represent substantial things in our domain (i.e. specific pets and pet

owners, respectively). One may want to represent a general 'pet ownership' relationship (i.e.

a shared mutual property) between pet owners and their pets. In accordance with Rule 10,

one would define two mutually inverse properties, e.g. mp_hasPet (with the domain PetOwner

and the range Pet), and mp_hasPetOwner (with the domain Pet and the range PetOwner). To

represent relationships between specific pets and pet owners, onw would include the

assertions (facts) in the ontology of the form mp_hasPet (X, Y) and mpJiasPetOwner (Y, X).

To conclude the discussion of this example, we would like to address an additional

issue related to ontology modification or expansion. Even though some interaction and its

related mutual properties may be considered outside of the scope of the ontology by one

modeler, another modeler may decide to reuse and expand the initial ontology and may

consider this particular interaction to be within the scope of this expanded model. In this

case, he or she can expand the initial ontology by using the 'interaction class method' of

representing mutual properties as in section 4.2.4.4 (i.e. add a special interaction class to

represent the set of mutual properties arising out of the interaction and link this interaction

4 4 O f course, one needs to ensure consistency in the values for mutually inverse properties, i.e. HasMother (X,
Y) implies isMotherOf (Y, X) i f properties are declared to be mutually inverse in O W L (otherwise the ontology
would be inconsistent). Reasoning applications are able to detect such inconsistencies.

65

class to the relevant substantial thing classes using OWL object properties).

The presence in the expanded ontology of both the mutually inverse properties

directly linking substantial thing classes (and representing the general existence of some

relationship) and of the interaction class with its associated detailed mutual properties

creates redundancy, which, albeit allowed by OWL 4 5, however requires extra efforts from

modelers to ensure consistency in the respective property value statements for individuals.

For example, we may end up having both a pair of properties IsEmployedBy / Employs linking

Employee and Company instances directly as well as the interaction class Employment liriking

the Employee and Company instances indirectly to a set of mutual properties (salary, job title

etc). In this case, consistency needs to be ensured both at the class and at the instance level.

To help enforce such consistency more complicated OWL mechanisms can be employed,

such as recently proposed SWRL rules language statements (Horrocks & Patel-Schneider,

2004), which allow the representation of the dependence between property values in the of

so called rules (for example, we can state that having certain property values for the

mutually inverse properties for the individuals representing certain substantial things implies

that each of these individuals is also linked to the same instance of the interaction class that

models a set of mutual properties pertaining to this interaction).

From the conceptual modeling standpoint, such redundancy is undesirable since it

undermines ontological clarity and consistency, and thus may lead to problems with model

understanding and interpretation by people and, consequently, by applications. Therefore,

we recommend that wherever possible modelers should use the more universal 'interaction

class' approach if there is any possibility that in the future more details about interactions

and their associated mutual properties may need to be represented or if more than two

interaction participants sharing properties may come into the scope of the ontology (the latter

would also require the use of interaction classes rather than direct linking using object

properties).

2) Using OWL object property for modeling non-binding mutual properties of

two things

According to Bunge's ontology, some mutual properties - non4)inding properties -

are not associated with any interaction, for example, "thing A is behind thing B" or "thing A

is older than thing B". We propose that in cases when such a non4oinding property is shared

4 5 O W L allows redundancy, and redundant statements are often included in O W L ontologies to allow greater
flexibility and efficiency in reasoning. However, redundancy may lead to ambiguity and logical inconsistency
i f not used carefully. It is up to modelers to ensure the logical consistency of the ontology, and reasoning tools
are able to perform consistency checking.

66

by only two things, then it can be represented using an O W L object property, for example,

isBehind (thingA, thingB) or isOlderThan (thingA, thingB). Therefore, we propose the following

rule:

Modeling Rule 11: A non-binding mutual properly shared by two substantial things can be

represented using an OWL object property to link the two OWL individuals representing

those two things.

Note however, that irrespective of whether a mutual property is binding or non-

binding and whether interaction is outside of the scope, in cases when more than two things

share some property, we would still need to use the relation (or interaction) class approach to

link more than two things indirectly (since OWL object properties can only link two things)

To summarize the analysis of mutual property representation, we have discussed two

main methods of mutual property representation: 1) using interaction (relation) classes - a

more universal approach applicable for indirect linking of two or more things sharing any

number of mutual properties, and 2) using OWL object properties for direct linking of two

things only - an approach applicable only in specific cases. While these two approaches

employ and combine OWL constructs in different ways to represent mutual properties and

things possessing them, in both approaches the ontological construct of mutual property is

represented by OWL property construct, which is consistent with Guideline 3 and with the

proposed mapping of ontological properties to a subset of OWL properties. Guided by the

ontological foundations, we have roposed some rules and guidelines recommending in which

situations and how each of these representation methods should be used.

67

4.3 REPRESENTATION OF CLASSES

The concept of class is widely used in conceptual modeling, object-oriented design,

data modeling, knowledge representation, and ontological engineering. This is not surprising

since in everyday life people automatically classify things into categories and relate to the

things by these classes (Parsons & Wand, 2000). We usually conceive of a thing as an

instance of a certain type of things. The first step in constructing a conceptual model or an

ontology is usually the identification of a set of the fundamental concepts to describe a

domain. These concepts are represented in fhe model as classes or types. Classification

involves forming concepts (also termed categories or classes) to abstract common

characteristics of instances and assigning new instances into these categories (Parsons &

Wand, 1997).

The discussion of the representation of classes is structured as follows. First, we

provide a brief description of classes and mechanisms of their definition in OWL. Then, we

discuss how classification is understood in the Bunge's ontological model and in some other

theories such as the concept theory. We review classification-related concepts of Bunge's

ontology, such as classes, kinds and functional schema, and compare them to OWL

classification related constructs and mechanisms. Based on this comparative analysis and

theoretical foundations from ontology and classification theory, we propose

recommendations on modeling classification related aspects of real world domains in OWL

in a way consistent with ontological and cognitive foundations. In addition, we propose an

ontological interpretation for some of the classification-related functionality in OWL.

4.3.1 Classes in OWL - an overview

To facilitate further analysis and comparison of classification in OWL and in

Bunge's ontology, this section briefly reviews what classes are in OWL ontologies and how

they can be defined.

OWL is based on the Description Logics (DL) and differs from other conceptual

modeling and object-oriented modeling languages (such as ERM, UML or OOM) in its

approach to representing classes and associating them with properties. For example, in

object-oriented languages, such as UML, a class is a description of a set of objects that share

the same attributes and operations. The classes play a role of templates or 'object factories' -

objects depend on classes and cannot exist without them. Also, in object-oriented models

properties are always linked to classes while in OWL this is not necessarily the case (as we

will see in the next section). Objects are created from class templates, that is, an object as a

68

class instance possesses all the methods and attributes defined for its class (Evermann,

2003). Thus, an object-oriented class (e.g. UML class) is a description of a number of similar

objects.

In OWL, classes are used to represent concepts in a domain of discourse. They

provide an abstraction mechanism for grouping resources with similar characteristics. The

OWL language guide (McGuinness et al, 2004) states: "Many uses of an ontology depend

on the ability to reason about individuals. In order to do this in a useful fashion we need to

have a mechanism to describe the classes that individuals belong to and the properties that

they inherit by virtue of class membership. We can always assert specific properties about

individuals, but much of the power of ontologies comes from class-based reasoning. "

Every OWL class is associated with a set of individuals called the class extension.

Individuals usually represent objects in the domain of discourse. The individuals in the class

extension are called instances of the class. Generally, it is intended that classes should

correspond to naturally occurring sets of things in a domain of discourse and individuals

should correspond to actual entities that can be grouped into these classes (McGuinness et

al., 2004).

Classes in OWL are described by so-called class descriptions, which are combined

into class axioms. A class description describes an OWL class, either by a class name or by

specifying the class extension of an unnamed (or anonymous) class. Class axioms contain

components that state necessary and/or sufficient characteristics of class membership.

In particular, OWL allows the following types of class descriptions:

1) class identifier

A class in OWL can simply be declared by name, without specifying any further

information about it. For example, we can declare a class Human as follows:

<owl:Class rdf:ID="Human">

If a class is declared in this way, statements can be made about individuals being

instances of this class, for example:

<Human rdf:ID="Mike"> '.

However, this basic representation does not tell much about the concept represented by

the class or about common properties of its instances, and thus, while valid syntactically, is

not particularly useful on its own.

2) exhaustive enumeration of individuals that together form the instances of a class

69

(i.e. enumerating class extension)

A class in O W L can be defined by enumeration of all its instances (using a special

constructs owl:oneOf and rdf:parsetype="Collection"). For example, the following syntax defines

an unnamed class of all continents (which are represented as O W L individuals46):

<owl:Class>
<OWL:one of rdf:parseType="Collection"
<owl:Thing rdf:about="#Eurasia">
<owl:Thing rdf:about="#Africa">
<owl:Thing rdf:about="#NorthAmerica">
<owl:Thing rdf:about="#SouthAmerica">
<owl:Thing rdf:about="#Australia''>
<owl:Thing rdf:about="#Antarctica,'>

<\owl:Class>

3) property restriction

As already discussed briefly in section 2.2.4., a property restriction describes an

anonymous (unnamed) class of all individuals that satisfy certain constraints on a property.

Property restrictions are used as parts of class descriptions. O W L distinguishes two kinds of

property restrictions: value constraints and cardinality constraints. A value constraint puts

constraints on the range of the property when applied to a particular class description (within

the scope of a particular class axiom). A cardinality constraint puts constraints on the

number of values a property can take, in the context of a particular class description.

Through the use of property restrictions as parts of class axioms, classes can be

associated with properties. That is, necessary and/or sufficient conditions for class

membership can be specified in a class definition through constraints on O W L properties,

specifically, on the allowed ranges of property values (value constraints) and/or on the

number of values allowed for specific properties (cardinality constraints).

For example, one can consider an object property hasParent that links an O W L

individual to another O W L individual that represent its parent. Using the existential qualifier

owhsomeValuesFrom on this object property, we may specify an unnamed class of individuals

who have at least one parent who is a student (i.e. the set of individuals that possess at least

one value for the object property hasParent that is an instance of the class Student):

<owl:restriction>
<owl:onProperty rdf:resource="#hasParent" />
<owl:someValuesFrom rdf:resource="#Student" />

</owl:restriction>

The syntax <Owl:Thing rdf:about="..."> declares an O W L individual as an instance of the built-in top class
owlThing.

70

The instances of this anonymous class would be all OWL individuals that satisfy the

specified condition.

Similarly, we can consider another OWL object property, hasChild, which would link

an OWL individual to other OWL individuals that represent its children. Using minimum

and maximum cardinality constraints on this object property, we can specify an anonymous

class of individuals that have at least 1 and at most 4 children:

<owl:restriction>
<owl:onProperty rdf:resource:='#hasChild'7>

<owl:minCardinality
rdf:datatype="http://wvvw.w3.org/2001 /XMLSchema
#nonnegativelnteger">1</owl:minCardinality>

<owl:maxCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema
#nonnegativelnteger">4</owl:maxCardinality>

</owl:restriction>

As will be shown later in section 4.3.4, the OWL method of defining classes based

on property restrictions is the most relevant to this work, since we have adopted the

ontological view of classes based on sets of shared properties, and thus require a

representation mechanism in OWL that would allow the association of classes with

properties.

4) Set operators: intersection, union and complement of class descriptions

OWL allows the construction of more complex (nested) class descriptions by

combining class descriptions (of anonymous or named classes) using set operators. The three

types of class description combinations - intersection, union, and complement - correspond

to the standard set-theoretic operators - the AND, OR and NOT operators on class

extensions, respectively. OWL provides three language constructs implementing these

operators - owkintersectionOf, owkunionOf, and owhcomplementOf. They can be used in nested

class descriptions, with either one (complement) or more than one class (union, intersection).

An owhintesectionOf statement describes a class for which the class extension

contains precisely those individuals that are members of the class extension of all the class

descriptions in the list. It is analogous to the logical conjunction. For example, one can state

using this construct that the class WhiteCar is exactly the intersection of the class Car and of

the set of things that are white in color (i.e. of an anonymous class defined as a property

restriction of a form hasValue="#Wriite" on the property hasColor).

An owkunionOf statement describes an anonymous class the class extension of which

consists of those individuals that belong to at least one of the class extensions of the class

71

http://wvvw.w3.org/2001
http://www.w3.org/2001/XMLSchema

descriptions in the list. It is analogous to the logical disjunction. For example, the class

extension of the class Fruit can be stated (using owkunionOf) to include the instances of both

the extension of the SweetFruit class and the extension of the NonSweetFruit class.

An owl:complementOf statement describes an anonymous class for which the class

extension contains exactly those individuals that do not belong to the class extension of the

class description that is the object of the statement. It is analogous to the logical negation.

For example, the class of all things that are "not meat" can be represented in OWL as the

class defined as the complement of the class Meat, i.e. the extension of this class "non-meat"

contains all individuals that do not belong to the class Meat.

Class descriptions serve as building blocks for defining classes through class axioms.

Class axioms contain components that state necessary and/or sufficient characteristics of

class membership. OWL provides three language constructs for combining class descriptions

into class axioms: rdfs:subClassOf, owhequivalentClass, and owl:disjointWith.

Using rdfs:subclassOf construct, we may state - in a class axiom form - that a subclass

relation exists between two OWL classes. If some class description CI is stated to be a

subclass of some other class description C2, this means that the set of individuals in the class

extension of CI is a subset of the set of individuals in the class extension of C2. Subclass

relations provide necessary conditions for belonging to a class (i.e. an instance of the class

CI is necessarily an instance of the class C2). An OWL class can be included in any number

of rdfs:subclassOf axioms.

The construct owhequivalentClass allows expressing in a class axiom that the two class

descriptions involved have the same class extension (i.e. that both class extensions contain

exactly the same set of individuals)47. Such equivalence class axioms allow expressing

necessary and sufficient conditions for class membership. In particular, as will be shown

later, one can define a named class as a set of individuals sharing some properties by stating

that this named class is equivalent to an anonymous class defined as an intersection of

certain property restrictions representing some constraints on the above shared properties.

4.3.2 Theoretical foundations - classification in Bunge's ontology and
concept theory

This section briefly reviews some theoretical foundations related to classification that

guide our further analysis and the development of modeling rules and guidelines for classes.

4 7 Note that equivalence here means that class extensions (i.e. sets of class instances) are the same. However,
the concepts represented by classes may not be equal (i.e. intensional meaning of classes may be different). For
example, "Graduate student" and "Research Assistant" may be different concepts but the class extensions
might be the same in a context of some university.

72

In particular, we discuss how classification is viewed in Bunge's ontology and mention some

basic concepts of classification (or concept) theory.

In Bunge's ontology, the primary constructs are things and properties. Classification

implies the existence of things and their properties (Parsons & Wand, 2000). Things can

have one or several properties in common. Furthermore, their properties might be subject to

the same laws. This gives rise to the concepts of class, kind and natural kind. The following

definitions taken from Wand et al. (1999) and Evermann (2003) are based on original

definitions from Bunge's works (Bunge 1977, 1979):

• A class in Bunge's ontology is a set of things possessing a common property

• A kind is a set of things having several properties in common

o Note that if the shared set of properties is finite, then a kind is also a class (since

we can always consider a compound property of possessing all the properties in

this finite set defining a kind).

• A natural kind is a set of things adhering to the same laws

o Since by definition laws relate properties, a natural kind implies a set of

properties as well. As laws determine possible states, a natural kind is the set of

things that exhibit like behavior.

It is important to note that all the above concepts (class, kind and natural kind) refer

to sets of things, not descriptions or templates of things. Also, they all are defined over

existing sets of things. This implies that in Bunge's ontology, there can not be a class, a kind

or a natural kind without any members.

Another concept of Bunge's ontology that is relevant to the discussion of

classification is the concept of functional schema. Recall that according to Bunge's

ontology, humans conceive of things in terms of models of things. Similar things can be

represented by the same model. A functional schema is a set of state functions, which are

usually functions of time indicating the value of the properties of a thing at a particular point

in time (although other frames of reference are possible). These state functions represent

properties in general of the things, whereas the values of these functions express individual

properties of things (Bunge 1977; Evermann & Wand, 2001). Any thing can be described by

more than one such schema depending on a model's purpose. Because a functional schema is

just a model created for a certain purpose, the properties represented in a functional schema

depend upon the circumstances and the purpose of modeling things. For example, a person

may be viewed as an employee, a customer, or a taxpayer, and each of these views can be

represented by different functional schemas focusing on the properties important for a

73

specific view (Wand et al., 1999).

There exists an important relationship between the concepts of class, kind and natural

kind and the concept of a functional schema. As pointed out in Wand et al. (1999), a

functional schema is based on a representation of a partial set of properties and, hence, can

be conceived as a model of a class or kind. In other words, a functional schema is a model of

a set of things that have similar properties and laws. This observation will be important for

our further analysis of classes in OWL.

Classification issues are also the subject matter of another research area -

classification, or concept, theory. This discipline has emerged from the intersection of

cognitive psychology and linguistics. Classification theory addresses questions of what are

concepts, classes, and categories, why they are important and how they are acquired

(Parsons & Wand, 1997). According to the concept theory, a class identifies a measure of

similarity among its instances. One way in which similarity can be operationalized is

through the sharing of properties.

Parsons & Wand (1997, 2000) note in their research on the application of the

classification theory and ontology to IS modeling that two major functions of classification

are recognized in the concept theory. First, classification provides cognitive economy. By

identifying a group of entities as similar in some way(s) through classification (for example,

focusing on a number of shared properties), some knowledge can be stored within the class

rather than repeated for all instances. In that respect, a classification is useful when there are

meaningful differences among classes, where "meaningfulness" depends on a model's

purpose or context (Parsons & Wand, 1997). Second, classification enables inference. It is

often possible to classify an instance based on a strict subset of its properties (also termed

class identifying properties), and to infer the presence of other, unobserved, properties

(inferred properties) by virtue of that classification (Parsons & Wand 1997; Parsons &

Wand, 2000).

To summarize the theoretical discussion, in both ontology and classification theory

the notion of thing or instance is fundamental and precedes the notion of classes. In other

words, humans first recognize that things exist, then based on various considerations (which

are usually dealt with in cognition) form classes to organize their knowledge about the

properties of individual things. Classes (or concepts) are abstractions created by humans in

order to describe useful similarities among things, and the particular choice of classes (a

view) depends on the application (Parsons & Wand, 2000).

74

4.3.3 Comparing classes in OWL to the ontological notion of classes

Comparing classification-related concepts in OWL to those in Bunge's ontology, we

can make a number of important observations.

First, classes, kinds, or natural kinds in Bunge's ontology are all sets of things

(satisfying certain constraints such as possessing a common property, a number of common

properties, or exhibiting the same type of behavior). They are not descriptions or templates

for sets of things. OWL construct equivalent to that would be the concept of class extension.

The class as a whole in OWL is intended to represent some concept in a domain of interest,

whereas a class extension is a set of the class instances (individuals). Therefore, we propose

to map classes, kinds, and natural kinds to OWL class extensions (representation mapping):

Guideline 7: Bunge's ontological classes, kinds, or natural kinds as sets of substantial

things correspond to OWL class extensions (i.e. sets of OWL individuals representing

substantial things).

Recall that in Modeling Rule 1 we proposed that OWL classes with individuals

representing substantial things should be distinguished from the OWL classes and

individuals that do not represent substantial things. We suggested the implementation of this

distinction in OWL using two disjoint upper-level classes SubstantiaLThing and

Non_Substantial_Thing. From this recommendations and the Guideline 7 above follows

another representation rule - a necessary condition for an OWL class extension to be

considered a representation of an ontological class or kind:

Modeling Rule 12: If the class extension of some OWL class is intended to represent an

ontological class, kind, or natural kind, then such class should be declared a subclass of the

upper-level class SubstantiaLThing.

However, it is important to note that not every class extension in OWL would be a

representation of some ontological class or kind. First, as we mentioned earlier, some OWL

classes and individuals do not represent ontological substantial things, therefore their class

extensions will not correspond to any ontological classes or kinds. Also, while OWL

provides a number of ways to describe OWL classes using class descriptions and class

axioms, some of these descriptions do not have an ontological interpretation and may result

in classes with extensions that do not correspond to any ontological classes, kinds or natural

kinds.

For example, OWL allows defining a class simply by name, without specifying any

further information about it and without associating any property restrictions with this class.

75

Then, individuals can simply be declared to be instances of such a class using individual

axioms. For example, we can declare a named class Student, and also declare that some

individuals are instances of this class. Such declaration would be syntactically valid in

OWL:

<owl:Class rdf:ID="Student">
<Student rdf:ID="John_Smith">
<Student rdf:ID="Jane_Doe">

However, from the Bunge's ontological standpoint, the class Student defined simply

by name is not a proper model (functional schema) of the set of things that are students. On

one hand, one may argue that we may interpret a set of things that are students as a class,

which is a set of things possessing a common property of "being a student", or even as a

natural kind (since students exhibit similar behavior - attend classes, pay tuition, etc.).

However, the above O W L class as a model does not represent any properties (except for the

very generic one of "being a student"), therefore it is not very useful from the ontological

and cognitive standpoint. Without any property information, such representation supports

neither cognitive economy nor inference abilities as no information about common

properties is provided (Parsons & Wand, 1997).

Similarly, O W L allows defining a class simply by the enumeration of its instances.

Again, as in the previous example, no information about properties would be represented in

this type of a class description, therefore, such model is not very useful and does not

correspond to the ontological notion of classes, which is based on properties. Additional

problem is that any enumeration of individuals can be declared to be a class in OWL, while

not all sets of things can be considered classes or kinds in the ontological sense, let alone the

issue of whether it would be a 'good' or 'useful' class.

Due to the above considerations, we recommend that these two methods of defining

classes in O W L (only by name or only by enumeration) should not be used as a sole means

of modeling classes the extensions of which are intended to represent ontological classes,

kinds or natural kinds 4 8:

Modeling Rule 13: In OWL ontologies representing real world domains, if an OWL class is

intended to model an ontological class or kind, then it should not be defined only by class

name or only by direct enumeration of instances (i.e. without representing any information

4 8 Rather, we will propose later in this section that using class definitions based on property restriction class
descriptions is a preferred method from the ontological and cognitive standpoint for ontological classes/kinds.

76

about common properties of class instances)'

Modeling Rule 1 and Corollary 2 require that all classes the instances of which

represent substantial things should be modeled as subclasses of the upper-level class

SubstantialThing. From that and the above Modeling Rule 13 follows another corollary:

Corollary 7: In OWL ontologies representing real world domains, subclasses of the class

SubstantiaLThing shoul7 not be defined simply by class name or by enumeration of instances

(i.e. without representing any information about common properties of class instances)

The requirement of the above Rule 13 (and Corollary 7) may be viewed as too

restrictive by some O W L ontology developers because some lightweight ontologies are often

modeled simply as class hierarchies without including any class axioms about properties of

those classes. We agree that for such lightweight ontologies (taxonomies) the issue of

modeling properties may not be relevant, but the main focus of this research is the

development of more expressive ontologies (in O W L DL), which would include not only

classes but also properties and possibly individuals. For such ontologies, we consider the

Rule 13 relevant and appropriate. In fact, the O W L language guide (McGuinness, et al.

2004) also stresses the importance of properties stating (when discussing properties) that the

"world of classes and individuals would be pretty uninteresting if we could only define

taxonomies" and that "properties let us assert general facts about the members of classes and

specific facts about individuals".

Another potential issue may arise in cases where modelers may believe that a certain

group or type of things is different from other things (and thus deserves being modeled as a

class) but they may not be able to point out specific properties which differentiate this set of

things from other things. While we acknowledge that this problem may occur, we still

believe that it would be beneficial for modelers (and would improve the resulting ontology)

to identify one or more properties (intrinsic or mutual, which could also be participation in

some interaction) that things in this class share and model them accordingly.

4.3.4 Modeling functional schemas and ontological classes/kinds in OWL

As mentioned earlier in section 4.3.2, in Bunge's ontology classes, kinds and natural

kinds (which are all sets of things) can be modeled using functional schemas. A functional

4 9 Note that our recommendations pertain to the conceptual modeling aspects of OWL ontologies. We do not
proscribe using any class description types for classes that do not represent substantial things or for
implementation related concepts. Furthermore, these types of class descriptions (named or enumerated classes)
can still be present in an ontology provided that additional property based class descriptions for these classes
are also included.

77

schema is a model of a set of things that have similar properties and laws, and hence it can

be conceived as a model of a class or a kind (Wand et al., 1999). Ontological properties

represented in a functional schema (via state functions) depend upon the circumstances and

the purpose of modeling.

We propose that functional schemas, which are models of Bunge's classes or kinds,

can be modeled in OWL as OWL class definitions based on class descriptions and class

axioms that include property restrictions on OWL properties (these properties, in turn,

represent the respective ontological properties shared by Bunge class members and modeled

by state functions in the considered functional schema). Modeling ontological functional

schemas as OWL classes defined by property restriction class descriptions, also allows

modeling ontological classes and kinds as sets of things - they would correspond to the class

extensions of the OWL classes representing the respective functional schemas. The proposed

representation mapping is schematically depicted in Figure 3:

Bunge's constructs OWL constructs

Functional Schema
(set of state functions

representing properties)

•

is represented as
OWL class definition

based on an intersection of
property restrictions

Functional Schema
(set of state functions

representing properties)

OWL class definition
based on an intersection of

property restrictions

is a model of

is modeled by r 1 \ j s associated with

Class/ kind
(set of things determined

by shared properties)

is represented as OWL Class Extension

Figure 3: Mapping of Bunge's classes/kinds and functional schemas to O W L constructs

To illustrate the proposed approach for modeling functional schemas and Bunge

classes or kinds), we first discuss a simple example. Then, we propose some rules on

modeling classes and kinds in OWL.

For example, we can consider a class of persons described by a functional schema

that includes state functions representing common intrinsic properties of instances (persons),

for example, 'name', 'date of birth', and 'gender'. In OWL, we can represent this functional

schema as follows. We declare a named class Person and three OWL properties representing

the above ontological properties50:

We are using our earlier proposed naming conventions to indicate that properties are intrinsic.

78

1) a datatype property ip_PersonName (with the range of values of the X M L datatype
String),
2) a datatype property ip_DateOfBirth (with the range of values of the X M L datatype Date),

3) a datatype property ip_Gender (with the enumerated range of values: " M " or "F" which
stands for male or female)51.

Recall that in OWL, properties and classes are in general independent of each other.
In order to associate classes and properties, i.e. define classes by specifying conditions on
certain properties, one needs to use property restrictions in class descriptions. In accordance
with our functional schema, we need to state that every instance of the class Person
necessarily possesses each of the properties of the schema. Specifically, each Person instance
has to possess some value for each of the three general properties that are modeled by state
functions of the schema (i.e. a specific property corresponding to each general property). In
this simple example, we assume that each person possesses exactly one value for the 'name',
'date of birth', and 'gender' properties; therefore, in OWL representation we can use
owl:Cardinality constraint in restrictions on each of the properties52.

In order to specify a necessary condition for all instances of some class in terms of a
restriction on some property in OWL, we need to declare that the class (i.e. class Person in
our case) is a subclass of an anonymous class of all things that satisfy this property
restriction. For example, if a class Person is declared to be a subclass of all things that have
name, this implies that all instances of the class Person have name. In our case we need to
state that all instances of the class Person satisfy a certain restriction (of possessing a
property, e.g. cardinality=l) for each of the three properties. Thus, we need to state (using
class axioms) for each of the three properties, that the class Person is a subclass of the
anonymous class defined by the respective property restriction (in this example, the
"cardinality 1" restriction). Or, equivalently, we can state that the class Person is a subclass
of the intersection of the three anonymous classes, each of which is defined by the respective
property restriction. This situation is illustrated schematically in Figure 4 below. The
instances of the class Person are also instances of each of the three anonymous classes
defined by property restrictions: things that have name, things that have date of birth, and
things that have gender. The OWL RDF/XML representation of this example can be found
in Appendix B.

5 1 The values for the property 'gender' could also be represented using special value classes and individuals as
discussed in section 4.2.3.2 (in this case an object property would have to be used). Whether a datatype or
object property is used is not relevant in this discussion and does not affect the proposed approach.
5 2 If more than one value is allowed for a state function, then we can use minimum and maximum cardinality
constraints in property restrictions in class descriptions.

79

(Bunge's) Functional Schema
Person (model of the class)

- Name"
-Dateof Bir th^--
-Gender

(Bunge's) Functional Schema
Person (model of the class)

- Name"
-Dateof Bir th^--
-Gender

\
% intrinsic properties -

represented byClWL properties

isaModelOf

OWL class Person
defined as a subclass of the intersection of

three property restriction classes

isaModeledBy

(Bunge's) Class Person
(set of things sharing

certain common
properties)

Figure 4: Schematic illustration of modeling ontological classes in O W L (an example)

Note that like in the example above, a functional schema usually represents a partial

set of common properties of a set of things (it can be considered a view of a set of similar

things). That is, for example, not all things that have gender, date of birth and name are

necessary persons (e.g. it could be a pet). Therefore, we modeled this case in OWL as a

necessary condition rather than necessary and sufficient one (necessary and sufficient

condition would mean that the Person class extension is the same set as (or "equals" to) the

intersection of the above three anonymous property restriction classes). If for the class in

question there exists a subset of properties sufficient for classifying an instance (such

properties are termed class identifying properties in Parsons & Wand (1997)), then in OWL

ontology we can define a class axiom for that class that represents necessary and sufficient

conditions for class membership (and not just the necessary ones). OWL provides a

construct owhequivalentClass to declare that the class Person is a class equivalent to the

intersection of the anonymous classes defined by the respective property restrictions on the

class identifying properties.

Note that while we used a simple cardinality constraint in the above example, in other

cases other types of restrictions may have to be used (such as minimum/ maximum

cardinality constraints or value restrictions). For example, in the context of the above

example we may want to represent information about a class Female_Person of all persons

80

who are female (actually a subclass of the class Person). One of the necessary conditions in

our OWL representation could be that all instances of this class possess a particular value

('F') for the property ip_Gender, i.e. they share a specific ontological property 'being of

female gender'. In our case, we can represent this common property of the class instances in

OWL using a restriction of the type 'owl:hasValue="F'" for the property ipJBender53. That is,

we can state that the class FemalePerson is a subclass of the intersection of the three

anonymous classes; two of these classes are defined by property restrictions 'cardinality^'

on properties ip_Name and ip_DateOfBirth respectively, and the third anonymous class is

defined by a property restriction 'owl:hasValue="F'" on the property ip_Gender (meaning that

every instance of this anonymous class has a value "F" for the property ip_Gender).

Alternatively, we can state that FemalePerson is a subclass of the class Person and of the

anonymous class defined by a property restriction 'owl:hasValue="F'" on the property

ip_Gender. The OWL RDF/XML representation of this class definition can be found in

Appendix B (together with the Person class representation)

Generalizing the approach illustrated by the above examples, we propose that since

ontological classes or kinds are defined in terms of properties (and can be modeled by

functional schemas), they should be represented in OWL using class descriptions based on

property restrictions. Specifically, we propose the following modeling rule:

Modeling Rule 14: An ontological class or kind C, modeled by a functional schema with the

state functions modeling some common properties Pi, Pn of this class/kind C, can be

represented in OWL as the class extension of an OWL class defined as follows:

• A named OWL class (e.g. ClassC) should be created;

• Each of the properties Pj, Pn should be modeled by a suitable OWL property (in

accordance with Guidelines 3-7 and Modeling Rules 2-11 on property representation);

• Class axiom(s) for the ClassC should be included that state (or imply) that all instances

of the ClassC necessarily possess each property Pi54;

• To achieve that, such axioms should state that the classC is a subclass of the anonymous

class defined by suitable property restriction on the property Pi, for each Pi. Or,

alternatively, the ClassC can be declared to be a subclass of the intersection of the

anonymous classes defined by suitable property restrictions for each of the properties Pi.

In OWL, using this hasValue restriction would imply that all instances satisfying the restriction possess a
specific value ' F ' for the property hasGender, which in turn implies that they possess the general property
hasGender itself (i.e. cardinality is not equal to 0)
5 4 More specifically, usually instances would possess some value (or values) for the general property Pi.

81

The next rule proposes an additional representation guideline in the case when a set

of class identifying properties for a class needs to be represented:

Modeling Rule 15: If a set of ontological properties Pi, Pk is a subset of common

properties of a class or kind C that is sufficient to classify a thing as an instance of the class

C (i.e. Pi, Pk are class identifying properties), then this information can be represented

in OWL in the following way:

• A class axiom for the OWL class representing the class C should be defined to represent

the fact that possessing properties P], Pk is a necessary and sufficient condition for

individuals to be members of the class C

• This class axiom should state that the class C is equivalent to the intersection of the

anonymous classes defined by suitable property restrictions for each of the properties Pi,

Pk. (where each property restriction should imply the possession of the respective

property Pi by all the instances of the class C).

Note that anontological interpretation can be assigned to the anonymous classes that

are defined by certain property restriction based class descriptions and that are also

subclasses of the upper-level class Substantial_Thing55. Bunge's ontology has a notion of the

scope of a property which is defined as the set of things that possess the property:

Scope(P)={x | x possesses P}. If P is an OWL property representing some ontological

property, then the extension of the anonymous OWL class defined by a suitable property

restriction would actually represent the scope of the property P, i.e. a set of OWL individuals

(substantial things) which possess the property P 5 6 . The property restriction should be such

that it implies the possession of at least one value for the property, for example such

restricction as owkSomeValuesFrom, owkhasValue, owl:Cardinality=N (N>=1), or

owhminCardinality =N (N>=1).

A class in Bunge's ontology (a set of things possessing a finite number of common

properties) can then be interpreted in terms of scopes of properties that define a class - it is

an intersection of the scopes of the properties shared by all class instances when the set of

properties is class-defining or is a subset of such intersection if the set of properties is not

5 5 That is, this o n t o l o g i c a l interpretation is o n l y appl icab le to the classes that represent o n t o l o g i c a l substantial

things.
5 6 S i n c e the property P represents an o n t o l o g i c a l property, w e can assume that o n l y instances o f the

Substantial_Thing class are a l l o w e d to possess it (i.e. the property d o m a i n is a subclass o f the Substantial_Thing
class). M o r e precisely , the scope o f P w o u l d be an intersection o f the Substantial_Thing class and a n a n o n y m o u s

class def ined us ing one o f the above m e n t i o n e d property restrictions.

82

class-defining but is a partial set of properties shared by instances of the class.

According to Bunge's ontology, classes/ kinds are defined as sets of things

possessing a common property (or properties), and therefore there can not exist empty

(i.e."instanceless") classes or kinds. We propose a rule reflecting this ontological

assumption, i.e. that all OWL classes representing ontological classes or kinds should have

some instances, i.e. they should have the non-empty class extension:

Modeling Rule 16: Every OWL class representing an ontological class or kind (and thus,

modeled as a subclass of the class SubstantiaLThing^) should have or imply non-empty class

extension.

Note that Rule 16 means that even if individuals are not explicitly modeled in an

OWL ontology, it should still be possible in principle for the class to have instances, i.e. the

definition of the class should be logically consistent and imply non-empty class extension.

Reasoning tools available for OWL ontologies (such as Racer) are usually able to detect

inconsistent classes based on their definitions, i.e. classes that can not have any instances.

The last rule in this section addresses the issue of so called 'optional properties' or

'zero cardinality' constraints on properties in class definitions. Specifically, in OWL a

cardinality constraint or a minimum cardinality constraint in a property restriction class

description is allowed to be zero. Such a zero cardinality constraint in a property restriction

would mean that instances of the anonymous class defined by this property restriction may

but do not have to possess a value for the property in restriction (thus they do not have to

possess the property itself). For example, we could include a statement in an ontology using

a zero minimum cardinality constraint for the property hasChild57 to state that persons may

have zero or more children. Such a property restriction, if used in the description of the class

Person, would mean that some persons may have children while others may not have any.

If such a zero cardinality restriction is used as part of a class definition in OWL, this

would mean that the class definition (in terms of properties) contains properties that are not

necessarily possessed by all its instances of the class. In Bunge's ontology, not possessing a

property is not a property, and every thing that possesses a property in general possesses a

5 7 This object property used earlier links a person individual X to onther person individuals Y that represent its
children. Cardinality of one or more means that there is at least one individual Y that is a child of X .

83

particular individual property . Also, in Bunge's ontology classes are defined in terms of

properties possessed by all the things that are instances of that class. A better way of

modeling in the above example from the ontological standpoint would be to create a subclass

PersonWithChildren and include in its definition a suitable property restriction that states that

all instance of the class have at least one child (i.e. hasChild would be a 'mandatory' common

property for all instances of this subclass).

A similar issue of optional properties or zero cardinality/multiplicity has been raised

in prior research on the ontological analysis of conceptual modeling languages. For example,

in the ontological analysis of the relationship construct in the ER modeling Wand et al.

(1999) propose that class definitions in conceptual models should not include optional

properties and that 'null' attributes have no ontological meaning. This implies that all

attributes included in a class model (irrespective of whether they represent intrinsic or

mutual properties) should have values for all possible instances. As an alternative to using

optional properties or null values in class descriptions, Wand et al. (1999) propose creating

subclasses with mandatory properties arguing that this would reduce semantic ambiguity and

improve consistency of the resulting models. Similar rules have been proposed for UML-

based conceptual models by Evermann (2003) who also argues against using optional

attributes and zero cardinality constraints of attributes in class descriptions. In addition,

Bodart et al. (2001) in their empirical study on the use of optional properties argue that

optional properties should be used with discretion. The experiments in this study provide

support to the proposition that using subclasses with mandatory properties is preferrable to

the use of optional properties in conceptual models intended for accurate and complete

representation and deep (rather than surface-level) understanding of the domain.

Therefore, based on the ontological considerations and guided by prior research, we

propose a similar rule for OWL suggesting that zero cardinality or zero minimum cardinality

constraints should be avoided in definitions of classes that model ontological classes or kinds

defined in terms of shared properties:

Modeling Rule 17: If an OWL class represents an ontological class or kind (defined by a

set of common properties) then the property restrictions used in the class description for the

respective OWL properties (which model common class properties) should not imply imply

optional possession of a property (e.g. a zero cardinality constraint or zero minimum

cardinality constraint). Instead, subclassification with property restrictions implying

'mandatory 'possession ofproperties by all instances of the subclass is preferable.

5 8 Often modeled as value of attribute function representing a property in general.

84

Note however, that this rule does not imply that instances are not allowed to possess

properties other than the properties of their classes. On the contrary, one of the advantages of

OWL compared to other modeling approaches (such as ERM or UML) is that individuals

and properties are independent of classes, and that individuals are allowed to possess

properties other that properties of the classes of which they are declared to be instances. Rule

17 simply suggest that for the classes that represent ontological classes and kinds (or

functional schemas that model them), class definitions based on property restrictions should

include only those properties that are common to all instances of the class (i.e. properties

shared by all instances of that class), and should not include 'optional' properties which are

only possessed by some instances of the class (rather, in many cases subclassification with

'mandatory' properties is preferable from the ontological standpoint).

4.3.5 Additional classification-related issues

4.3.5.1 Subclassification and class hierarchy - ontological
considerations

Relevant to the discussion on the representation of classes is the issue of

subclassification. As in many conceptual modeling approaches, classes in OWL ontologies

can form class hierarchies based on subclass-superclass (or so called TsA') relationships. In

OWL, if a class description C i is defined as a subclass of a class description C2, then the set

of individuals in the class extension of C i should be a subset of the set of individuals in the

class extension of C2. OWL provides the construct rdfs:subClassOf for declaring that one

OWL class is a subclass of another OWL class.

This section briefly discusses some issues related to subclass-superclass

relationships in Bunge's ontology and proposes additional rules regarding the representation

of subclasses in OWL ontologies that model real world domains.

As mentioned earlier, classes and kinds are defined in Bunge's ontology through sets

of properties shared by all their instances. Based on Bunge's ontology, Evermann & Wand

(2001b) mention two main ways by which subclasses can be 'created' from their

superclasses: 1) by adding new properties to the set of properties of the superclass, or 2) by

specialization of some properties of the superclass.

In the first case, if a class or a kind C i is defined by a set of common properties {Pi,

P n}, then a subclass C 2 of the class C i can be defined by adding one or more additional

properties (P n +i, . . . , Pk} to the initial set of properties, so that the subclass C2 will be defined

by the combined set of properties {Pi, P n , P n + i P k }• Every instance of the class C 2

85

would possess all the properties of the class Ci plus those additional properties. For example,

a class of blue cars (e.g. BlueCar) is a subclass of all cars (Car), and an instance of the class

Car becomes an instance of the class BlueCar via the acquisition of the property 'blue in

color'.

The second way subclasses can be defined is through the specialization of properties.

Specialization is related to the ontological concept of property precedence, which is a type

of ontological law. In Bunge's ontology, laws are relations between or restrictions on

properties. Property Pi is said to precede P2 iff for every thing possessing P2, x also

possesses Pi (P2 is said to be preceded by Pi).

By definition, every instance of a subclass of some class has to possess all the

properties of that superclass. If, for example, some class Cp is defined by a property {P},

and there exists another property Q that is preceded by the property P (for example, Q can be

a specialization of P), then Cq - a set of things possessing Q (also termed the scope of

property Q) would be a subclass of the class Cp (since possessing the property Q implies

possessing the property P). For example, we may consider a class of things that can move

(property P= 'can move') and a class of things that can fly (property Q='can fly'). The

property 'can move' precedes the property 'can fly', i.e. all things that can fly also can

move. Therefore, the class 'things that can fly' is a subclass of the class 'things that can

move'. This idea can be generalized to the case of classes defined by more than one

property.

In general, for any two classes OWL allows declaring that one class is a subclass of

another. It does not require explicit modeling of relationships between properties of those

two classes, and thus, it may not be clear whether the difference of a subclass from its

superclass is due to the acquisition of new properties or due to the specialization or

constraining of some properties of the superclass. This problem of a lack of semantics and

potential ambiguities in superclass-subclass relationships has been raised in prior research on

the ontological analysis of modeling languages (Wand et al, 1999, Evermann & Wand,

2001b) and on classification (Parsons & Wand, 1997). Specifically, based on ontological and

cognitive foundations, Parsons & Wand (1997) argue that in order to achieve cognitive

economy (which is one of the reasons for people to use classification) in selection of classes,

a principle of nonredundancy should be followed when defining classes. That is, they

recommend that "a class that is a subclass of several other classes should be defined by at

least one property not in any of its superclasses" (Parsons & Wand, 1997). In the research on

ER modeling, Wand et al. (1999) argue in the case of mutual properties (or interactions) that

86

when a thing acquires/loses a mutual property that is important for modeling purposes, this

thing should be represented by a new functional schema (i.e. as a subclass or a superclass

with the respective acquired relationship in case of ER modeling). They denote several

advantages of this approach such as the reduction of semantic ambiguities and

inconsistencies in a model, clarification of semantics of particular subclasses and of

relationships between subclasses and superclasses, and clearer integrity constraints

(rules/laws) governing things in the domain. In the case of UML conceptual modeling,

Evermann & Wand (2001b) also recommend that if a class B is a subclass of a class A, the

attributes shown for the class B should be either specialized attributes of the class A or

additional attributes of fhe class B.

Similarly, to convey the domain information better and to clarify the semantic

difference between subclasses and their superclasses in OWL ontologies of real world

domains, we propose that OWL ontologies should not just declare that a certain class is a

subclass of another class but in addition should explicitly model the difference between the

subclass and its superclass in terms of properties (in particular, to show whether individuals

of the subclass acquire new properties or specialize some properties of the superclass). We

will first illustrate the idea with simple examples and then present our recommendation as an

additional rule on modeling subclasses.

For example, in the case of a new property acquisition, we may have a class Person

representing the class of all people, and people may have zero or more children (note that

'having a child' can be viewed as 'optional' property of the class Person and should not be a

part of class definition based on shared properties according to Rule 17). However, we can

define a subclass PersonWhoHasChildren by adding an additional property of having at least

one child to the set of shared properties defining class Person. In OWL we can represent this

explicitly by stating (in a class axiom) that the class PersonWhoHasChildren is 1) a subclass of

the class Person (which will imply that all property restrictions stated in the definition of the

class Person would hold for the instances of PersonWhoHasChildren), and also 2) a subclass of

the anonymous class defined by an appropriate additional property restriction on the

property haveChild (e.g. owl:minCardinality =1 restriction, which would imply mandatory

possession of the property by all instances of this subclass, i.e. possession of at least one

child).

As for the case of subclasses created by property specialization, even though OWL

does not have a universal way to represent property precedence or specialization of

properties, certain existing OWL mechanisms can be used to model this type of relationship

87

between properties. First, for some cases, the owl:subpropertyOf construct can be used to

indicate that the possession of one property always implies the possession of another (i.e.

preceding) property. In the earlier discussed example of flying and moving things, we could

define two datatype properties (with Boolean values true or false) - CanMove and CanFly, and

declare the property CanFly to be a subproperty of the property CanMove. In this case, if we

have a class MovingThing and its subclass FlyingThing (which includes only those instances of

the MovingThing class that can fly), then we should a) include the property CanMove in the

class description for the class MovingThings, b) include the property CanFly in the class

description of the subclass FlyingThing, and c) declare a subproperty relationship between

these two properties. In this case, the difference between the subclass and the superclass due

to property specialization will be clearly identifiable from the ontology.

Another way of representing property specialization in OWL for the purpose of

defining subclasses is to constrain further for instances of the subclass certain properties

possessed by instances of the superclass (using property restrictions with value or cardinality

constraints). For example, let us assume that all instances of the class Car possess a property

Country59 (a manufacturer's country). We can define a class EuropeanCar of cars made in

European countries ('being made in a certain European country" is preceded by the general

property "being made in some country"). We can model this by declaring EuropeanCar to be

a subclass of the class Car and also have a property restriction which states that all values of

the property Country for the class EuropeanCar should only be European countries. Again, this

way of modeling allows the explicit representation of the difference between a subclass

EuropeanCar and its superclass Car in terms of properties.

Summarizing the above discussion, we propose the following rule on modeling

subclasses:

Modeling Rule 18: In OWL ontologies modeling real world domains, if classes A and B

represent some ontological classes (i.e. modeled as subclasses of the Substantial Thing

class), and B is a subclass of A, then the class definition of the subclass B should reflect the

semantic difference (in terms of properties) between the superclass A and its subclass B.

This distinction can be represented in one of the following ways:

• by including in the definition of the subclass B one or more additional property

restrictions for properties that are acquired by the instances of the subclass B compared

5 9 This property can be modeled as instance valued property by defining a value class Country with one of the
subclasses being EuropeanCountry and instances being specific countries. Then property restriction for the
property Country could be defined in terms of owl:IIValuesFrom restriction (i.e. all values from EuropeanCountry
class)

88

to the instances of the superclass A, or

• by including in the definition of the subclass B one or more property restrictions

constraining some properties of the superclass A for the instances of the subclass B, or

• by including in the definition of the subclass B one or more property restrictions for

subproperties of some properties of class A

To illustrate this rule, the first way of representing the distinction could be used to

differentiate the class PersonWithChildren from its superclass Person by adding a restriction on

the additional property hasChild for the subclass (compared to the superclass). An example

where the second type of representing the subclass-superclass distinction could be used is the

earlier discussed class FemalePerson (section 4.3.4 and Appendix B), which is a subclass of

the class Person and has an additional restriction (owl:hasValue="F") on the property

ip_hasGender (which is possessed by both the Person and the FemalePerson classes). Finally,

an example of using the third approach is when some ontology has a property hasChildren

and its subpropertry hasDaughters. In this case we can define a class

PersonsWhoHaveDaughters as a subclass of Persons including only those instances that

possess the property hasDaughters (using a property restriction on the property hasDaughters

as discussed earlier). Since hasDaughters is a subproperty of hasChildren (i.e. possessing the

property hasDaughters implies possessing the property hasChildren), the class

PersonsWhoHaveDaughters , by inference, would be a subclass of PersonsWhoHaveChildren

(i.e. the difference between the superclass and subclass is due to the possession of a more

specific property by the subclass instances, which in this case is expressed using OWL

subproperties)60.

As illustrated by the examples discussed earlier, Rule 18 requires, in particular, that

an ontology should not simply show an TsA' (subclass-superclass) relationship between two

named classes but should also include additional class axioms for the subclass which show

how instances of the subclass differ in terms of their properties from the instances of its

superclass (which provides added information for instances of subclasses). Following such

rule would make the nature of the subclass-superclass relationships in ontology more explicit

and would provide an additional ontological semantics to 'isA' relationships in a model.

Furthermore, the explicit modeling of acquisitions or specializations of properties

using subclasses allows tracking states of things since the difference between a subclass and

its superclass may be in terms of not only intrinsic, but also of mutual properties (resulting

6 0 Note that this is an example of an ontological law - property precedence (i.e. the property 'to have children'
precedes the property 'to have daughters'). OWL subproperty is one of the mechanisms that can be used to
express ontological precedence (even though it does not allow representing all possible precedence cases)

89

from participation in interactions). For example, a person becomes a library member after

participating in a library membership interaction with the library and acquires a number of

mutual properties as a result (e.g. library card number or membership start date). To model

this in an ontology, we can create classes Person and LibraryMember and declare that the

LibraryMember class is a subclass of the Person class. In addition, in accordance with Rule 17

we would include an additional property restriction in the class description for the class

LibraryMember which states that each library member must be involved in at least one library

membership interaction (and thus possess additional mutual properties associated with this

interaction)61. More detailed discussion of this example will be presented in section 6.

4.3.5.2 Note on choosing relevant classes and properties

The proposed guidelines on the representation in OWL of ontological classes and

kinds (defined by a set of properties and modeled by functional schemas) are mainly

applicable in cases when classes or kinds of interest and sets of the relevant ontological

properties associated with them have already been identified by a modeler. Our rules and

guidelines do not help in determining such properties and do not address the issue of whether

a particular set of properties defines a 'good' class. They also do not provide any guidance

regarding what set of classes is more appropriate or preferable for describing a domain.

The issues of which sets of properties constitute 'good' or 'useful' classes and what

selection of classes is appropriate to describe a domain are beyond the scope of this thesis

but have been addressed in other research. For example, some guidelines on how to select

classes are proposed in the literature related to IS ontology development (McGuinness et al.,

2004, Noy & McGuinness, 2001). These guidelines are driven mainly by pragmatic and

implementation considerations and are not always grounded in theory.

The research by Parsons & Wand (1997) on classification builds on the ontological

foundations and cognitive principles. Adopting a view of classes as sets of properties, they

suggested some guidelines on choosing classes in conceptual modeling and discussed their

practical implications for knowledge representation, object-oriented design, and semantic

modeling. In particular, Parsons and Wand propose two principles for limiting the sets of

properties mat should be considered as classes - abstraction from instances and maximum

abstraction. They also suggest that a set of properties should be considered a potential class

in a relevant universe if and only if: 1) it has a non-empty extension (at some point of time),

and 2) it contains all properties common to all instances in the extension.

6 1 The interaction and its related mutual properties associated with it would be modeled using interaction

classes as proposed in section 4.2.4.4.

90

In addition, they proposed two principles that apply to collections of classes

describing a domain (the relevance universe of things and their properties): 1) completeness,

which requires that all relevant properties from the relevant universe be used in classification

(i.e. in a definition of at least one class in the set of classes), and 2) nonredundancy, which

requires that no class is defined only in terms of the properties of a set of other classes;

specifically, each class should have at least one property not in any of its superclasses.

To summarize, we recommend that when choosing classes and their relevant

properties for modeling a domain, modelers should be guided not only by the practical

considerations and the intended model usage but also by theory such as ontological and

cognitive principles (for example, those proposed by Parsons & Wand, 1997). Once the

appropriate sets of ontological properties that represent the classes and the overall class

structure are identified, modelers can follow our guidelines to represent these classes and

their properties in OWL in an ontologically consistent and clear way.

4.4 RELATIONSHIPS AMONG THINGS, PROPERTIES AND
CLASSES

4.4.1 Transfer of ontological assumptions to modeling rules and

guidelines

Sections 4.1-4.3 mainly focus on the analysis of specific ontological concepts (such

as things, properties and classes) individually, on their mapping to OWL constructs, and on

the development of modeling guidelines and rules specific to those concepts. In this section,

we look at relationships between these concepts in Bunge's ontology and discuss a number

of Bunge's ontological premises that specify and constraint these relationships. Through the

transfer of these ontological postulates, we develop additional rules that place some

restrictions on the use of OWL constructs and their combinations when modeling elements

of the real world (in accordance with Bunge's ontological model) to ensure that only

possible and meaningful configurations of the domain are allowed (this approach follows the

methodology proposed and formalized by Evermann & Wand, 2005).

Bunge's ontology specifies certain relationships and constraints related to things,

properties and classes, in particular:

• All things have properties (which exist whether humans are aware of them or not)

• Properties are always attached to things ("every property is possessed by some

individual or other; there are no properties that fail to be paired to any individuals",

[Bunge 1977, p.62]).

91

• Classes and kinds are secondary to things and properties — they are defined in terms of

properties. A class in Bunge's ontology is defined by a set of things possessing a

common property and a kind is defined by a set of properties.

OWL syntax allows a considerable degree of independence when defining

individuals, classes and properties (this distinguishes OWL from many other modeling

languages such as UML or ERM in which instances are tied to classes and only possess

properties defined for their classes). Even though OWL provides mechanisms for Tiriking'

these elements in ontologies, in general, OWL permits defining classes, individuals and

properties independent of each other. As an extreme example, we can create a primitive

ontology with one class Classl, one property Propertyl, and one individual Individuall

(minimally introduced as an instance of the built-in top class OWlThing), without specifying

any other constraints or relationships between these elements. Such an ontology would be a

syntactically valid ontology in OWL (even though it does not give any information about

how its class, property and individual are linked to each other).

In general, no syntactic restrictions are placed in OWL regarding certain relationships

between individuals, classes, and properties, specifically as to:

• whether an OWL individual must possess at least one property

In OWL, an individual can simply be introduced as an instance of some class or simply

as an instance of the default top class owl:Thing. The individual is not required to have

any properties associated with it (either directly or by virtue of classs membership). In

other words, OWL syntax allows individuals without properties.

• whether a class must be associated with at least one property

As discussed earlier, properties in OWL can be associated with classes by using property

restrictions (with value or cardinality constraints) in class axioms. However, OWL also

allows defining classes simply as named classes without using property restrictions.

Thus, OWL allows defining classes that are not associated with any properties.

• whether a property must be associated with at least one individual

A property in OWL can be associated with individuals either directly (through facts -
62

assertions about individuals possessing specific values for certain properties) or

through defining a non-empty class in terms of a property restriction on this property63

6 2 For example, an ontology can state that an individual John has age 25 (value 25 for the property hasAge)
though a statement of a form hasAge (John, 25).
6 3 For example, we can define a class Person, for which one of the necessary conditions would be that each
person has age (or, in terms of cardinality restriction, each instance of the class Person possesses exactly one
value for the property hasAge). Thus, a property hasAge would be associated with the class Person (and all with

92

(which would imply the possession of the property by instances of this class). However,

properties in OWL can be declared as separate constructs. OWL syntax does not require

them to be associated with any classes or individuals, even though it may seem useless to

declare a property which is not used at all. Nevertheless, properties can exist in OWL

ontologies without any association to classes or individuals.

The above mentioned lack of restrictions may be considered problematic from the

ontological standpoint with respect to the real-world modeling because of the potential

violation of ontological assumptions. Earlier in the thesis we have already in part addressed

these issues for classes and properties and proposed some rules guided by the above

assumptions, such as the recommendation to define classes in terms of properties and the

prohibition of "instanceless" (inconsistent) classes (Rules 13-16, section 4.3.4). In this

section we focus more on the assumptions governing relationships between properties and

individuals (though classes will still play a significant role). By transferring ontological

assumptions about things and properties to OWL modeling, we propose additional

guidelines that place restrictions on the relationship between OWL individuals and OWL

properties when modeling real-world domains in OWL.

Before presenting additional rules and guidelines, we briefly review OWL

mechanisms by which one can associate individuals and properties (i.e. make an individual

to possess a certain property). In section 4.3.4 we already discussed how classes and

properties can be associated through the use of property restrictions in class definitions. As

for the linking of properties and individuals, there are two ways in OWL to express that an

individual possesses a certain property:

1) At the individual (instance) level - by including in an ontology at least one assertion (fact)

stating that the individual possesses some specific value for some property.

For example, in some ontology an assertion of a form hasAge (John, 25) associates an

OWL individual John with an OWL property hasAge (i.e. the individual John is declared to

possess the specific value (25) for the property hasAge).

2) At the class level - an individual can be associated with a property by virtue of class

membership.

That is, one can declare an individual to be a member of some class that, in turn, is

defined using at least one property restriction in its class axiom, where the property

restriction implies the possession of at least one value of this property for each instance of

its instances - O W L individuals)

93

the class (i.e. the property is mandatory for all instances of the class).
Note that not all types of property restrictions in OWL imply the possession of at

least one value for a property by an instance satisfying the restriction. For example, the
restrictions such as owl:AIIValuesFrom or owl:MinCardinality=0 do not necessary imply the
possession of at least one value for each instance (rather they imply "may possess zero or
more values"). However, if one needs to ensure that an individual possesses some property
by virtue of class membership, the respective property restriction used in the class definition
should be such that it implies the possession of at least one value for the respective property
for any instance satisfying the restriction. Acceptable restriction types include constraints
owhhasValue, owl:someValuesFrom, owl:MinCardinality =N or owl:Cardinality=N (where N>=1).

For example, we can define a class BlueThing as a set of things satisfying a property
restriction hasValue='Blue' on the property hasColor. Such definition would imply that any
individual X that is declared to be a member of the class BlueThing64 would, by virtue of class
membership, satisfy the above restriction, i.e. would possess the value 'Blue' for the
property hasColor (and thus possess the property hasColor itself). In other words, we can infer
some properties of an individual from its class memberships.

Returning to the ontological assumptions, the first guideline proposed in this section
reflects the ontological postulate that all things possess properties:

Guideline 8: Every OWL individual representing a substantial individual (real world

instance),65 should possess at least one substantial property. Possession of a property can be

represented by associating this individual with a property either at the instance level or at

the class level (via class membership).

The next guideline follows from another ontological postulate - that properties are

always attached to things:

Guideline 9: Every OWL property modeling an ontological substantial property should be

possessed by at least one OWL individual representing a substantial thing. This can be

represented by associating this property with at least one individual either at the individual

level or at the class level (through using a suitable property restriction in class definition).

In other words, Guideline 9 requires that if some property P is declared in an OWL real

E.g.. via a statement of the form <BlueThing rdf:ID="X">

A n individual which is an instance of the SubstantialThing class (in accordance with Rule 1).

94

world domain ontology and P represents some substantial ontological property, then there
should be at least one of the two types of statements in the ontology:
• at least one statement of the form P(X, v), which declares that X has the value v for the

property P - where X is an OWL individual representing some substantial thing
possessing that property, or

• a statement of the form C(X), which declares that X is an instance of some class C,
where C is a class defined using a suitable property restriction on the property P, which
would, in turn, imply that any instance of C necessary possesses some value v for the
property P (i.e. in this case C(X) would imply that a value v exists such that P(X,v)).

Similarly, according to the Guideline 8, for each OWL individual X that represents
an ontological substantial thing, there should be at least one of the two types of the above
statements in the ontology with respect to at least one property P representing a substantial
ontological property.

As for the relationship between classes and properties, whereas OWL allows
declaring classes not associated with any properties, Bunge's ontology defines classes (of
substantial things) in terms of properties, i.e. instances of a class/kind have at least one
property in common. Thus, in addition to the earlier suggested rules on modeling classes
(section 4.3.4) we propose one more rule that all OWL classes that represent ontological
classes/kinds should be associated (through property restrictions) with at least one property.
Specifically:

Guideline 10: Every OWL class representing an ontological class or kind (i.e. a subclass of

the class SubstantiaMThing,) should have at least one property. That is, the class definition

should include a class axiom that states a necessary condition for this class in terms of a

suitable property restriction for at least one OWL property representing an ontological

property shared by all instances of the class

4.4.2 Note on the independence of things from classes: OWL vs. Bunge's
ontology

An important assumption of Bunge's ontology is that things and properties are
primary constructs and exist independent of classes. Classes/kinds are secondary to things;
they represent sets of things sharing a common property (or a number of properties), i.e. they
are defined in terms of properties. An important advantage of OWL compared to other
conceptual languages and approaches is that it allows modeling individuals independently of

95

classes and that individuals in OWL are allowed to possess properties other than properties

of classes they belong to. This functionality in combination with our proposed rules on

modeling things, properties and classes allows supporting the above ontological assumption

of 'instance independence of classes' and helps avoid a problem of "inherent classification"

common to many other modeling approaches (such as OOM, ERM, UML etc). As noted by

Parsons & Wand (2000), many conceptual languages, modeling approaches, and database

design models have a common assumption (implicit or explicit) - termed "the assumption of

inherent classification" - that specific things in the domain of interest can be referred to only

as instances of classes, and that instances of classes can only possess properties that are

determined by their classes. Parsons and Wand (2000) challenge this rather restrictive

assumption on both theoretical and practical grounds arguing that it is inconsistent with the

ontological and cognitive principles and in practice may lead to a number of problems.

OWL, on the other hand, does not have this problem of inherent classification, and

the introduction of the proposed rules and guidelines also does not violate the ontological

assumption about things with properties existing independent of classes. According to the

proposed rules, any substantial thing can be represented as OWL individual which can be

minimally introduced as an instance of the upper-level class SubstantiaLThing66

(distmguishing it from OWL individuals not representing real world things). In principle, we

do not even have to declare this individual to be a member of any other classes, but can

simply make direct assertions about the individual's specific properties (without referring to

any classes). If an individual is declared to be a member of some classes (to take advantage

of classifications' benefits), one can still make assertions about individuals' properties in

addition to those implied by its class memberships. On the other hand, an individual can be

inferred to be a member of some classes (defined through property restrictions) based on

assertions (facts) about its properties. Such representation approach is consistent with the

concept of classes in Bunge's ontological model, and is similar to some degree to the two

layer model proposed by Parsons & Wand, 2000.

4.5 REPRESENT A TION OF COMPOSITION RELA TIONSHIP

This section discusses the ontological concept of composition of things and proposes

some guidelines on modeling composition relationships in OWL ontologies.

Modelers often need to represent facts that things in a domain are combined in some

In general, if the proposed upper level class structure is not used, OWL individuals can still be minimally
introduced by declaring them as instances of the predefined top class owl:Thing and assertions about individuals'
properties can be made (thus the problem of inherent classification is not present in OWL).

96

way to create other things. Bunge's ontology has a concept of composite and component

things (which are involved in composition relationship).

According to Bunge's ontology, things can combine to form a composite thing.

Composite things can be decomposed into components, which are also things. Bunge's

ontology postulates that there exist simple things that can not be decomposed. Properties of

composite things can be either resultant (hereditary) or emergent properties (Bunge, 1977).

Hereditary properties are properties of at least one component thing of a composite, whereas

emergent properties are those properties of a composite that are not possessed by any of its

components. Emergent properties can be explained in terms of or derived from the properties

of the parts but are not reducible to them, and thus, emergent properties cannot be attributed

to any of the individual parts of the composite thing, but rather belong to a composite thing

as a whole. Bunge's ontology postulates that every composite must possess at least one

emergent property not inherited from any of the parts (Bunge, 1977); otherwise this is not a

composite but simply a set of things. For example, a computer composed of memory and

processor possesses a property "processing power", which is not possessed by any individual

component (Evermann, 2003). Both emerging and hereditary properties can be either

intrinsic or mutual.

In OWL there is no predefined construct to represent composition relationship

between things. Earlier we proposed that ontological things are modeled as OWL

individuals. Therefore, to represent composition relationships, we need to be able to link

individuals representing composites to individuals representing components, and vice versa.

For that we can use OWL object properties.

Specifically, to model composite-component relationships between substantial things,

we propose defining two mutually inverse OWL object properties - isComposedOf and

isComponentOf. The property isComposedOf would be used to link OWL individuals

representing composite things to OWL individuals representing things which are

components of the composite, and the inverse property isComponentOf would link

components to the composite things of which they are components.

Modeling Rule 19: To represent composition relationship between substantial things in

OWL ontologies of real world domains, two mutually inverse object properties should be

defined: isComposedOf and isComponentOf. These properties would link OWL individuals

representing composite things to their component things, and OWL individuals representing

component things back to their composites, respectively.

97

In some cases, it may be relevant for modelers not only to model composite-

component relationships between things in an ontology, but also to distinguish clearly

between composite things and things that are components of some things, i.e. represent

explicitly which things are composites or components. Technically, if the two properties

proposed above are employed to represent composition, then one can infer whether a thing is

a component of some other thing or a composite thing by looking at whether it is linked to

another thing via the property isComponentOf or isComposedOf, respectively. To facilitate and

explicitly model this inferred information, we can declare two upper-level classes (modeled

as subclasses of the upper-level class SubstantiaLThing):

• Composite_Thing - the class extension of this class would consist of all OWL individuals

that are composite substantial things

• Component_Thing - the class extension of this class would consist of all OWL

individuals that are substantial things and are components of at least one composite thing

Note that unlike the classes SubstantiaLThing and Non_Substantial_Thing which are

disjoint, the classes Composite_Thing and Component_Thing should not be declared disjoint

because things may be composed of other things and at the same time be components of

some other things (for example, a person may be a member of some team while the team is a

member of some league).

We can define class axioms for these upper level classes stating necessary and

sufficient condition for class membership in terms of possessing at least one value for the

property isComposedOf or isComponentOf, respectively (using property restrictions).

Specifically, in OWL terms, a class axiom for the Composite_Thing class would state that the

class Composite_Thing is equivalent to the intersection of the class SubstantiaLThing67 and the

class of all OWL individuals that possess at least one value for the property isComposedOf68.

Similarly, a class axiom for the Component_Thing class would state that the class

Component_Thing is equivalent to the intersection of the class SubstantiaLThing and the class

of all OWL individuals that possess at least one value for the property isComponentOf (using

minimum cardinality or owl.someValuesFrom property restriction). Note that we can declare

that the class Composite_Thing is the domain of property isComposedOf, and that the class

Component_Thing is the domain of the property isComponentOf.

The relationship between the proposed classes is illustrated schematically in Figure

6 7 This represents the fact that we focus on composition relationship among substantial (real world) things only.
6 8 Minimum cardinality restriction (owl:minCardinality=l) or an OwfsomeValuesFrom property restriction (e.g.
SomeValuesFrom the class SubstantiaLThing) can be used; this would also imply that all instances of the
Composite_Thing class possess at least one value for the isComposedOf property linking these instances to the
substantial things that are their components.

98

5. An example of representing composite-component relationship in OWL using the

proposed approach can be found in section 6 (the library domain example).

Figure 5: Upper level (meta-model) classes for representing composition

Note that if we define properties isComposedOf and isComponentOf as well as classes

Composite_Thing and Component_Thing as proposed above, this would allow both humans and

automatic reasoners to make certain composition-related inferences about classes or

individuals representing substantial things. For example, if an ontology includes a statement

of the form isComponentOf (A, B) for individuals A and B, and also states that A and B are

substantial things (i.e. are instances of the Substantial_Thing class), then it can be inferred that

a) A is a component thing (i.e. an instance of Component_Thing class), b) isComposedOf (B, A)

holds (inverse property), and c) B is a composite thing (i.e. an instance of the

Composite_Thing class). Thus, we do not have to include all such statements explicitly for

individuals or classes but can only state that an individual is a component (or composite) of

another individual, and other information can be inferred. On the other hand, if multiple

statements related to composition are included in an ontology then reasoners can use class

definitions and axioms to check the consistency of the ontology.

The proposed representation of composition relationships is summarized in the

following rules:

Modelng Rule 20: To model explicidy that substantial things are composites or components

of other things, two upper level classes can be created in OWL ontologies: Composite_Thing

and Component_Thing

• Both classes should be modeled as subclasses of the Substantial_Thing upper level class

• The class Composite_Thing can be defined (using class axioms with a cardinality or an

6 9 Please note that relative sizes of ovals representing various classes in Figure 5 are arbitrary and are not
indicative of the relative number of instances in these classes (as this is not important for this discussion).

99

OWkSomeValuesFrom property restriction) as the class of all OWL individuals that are

instances of the class SubstantiaLThing and possess the property isComposedOf;

• The class Component_Thing can be defined (using class axioms with a cardinality or an

OWl:SomeValuesFrom property restriction) as the class of all OWL individuals that are

instances of the class Substantial_Thing and possess the property isComponentOf.

Corollary 8: OWL individuals representing substantial things that are components of some

composite thing should be declared or inferred to be instances of the Component_Thing class.

OWL individuals representing composite substantial things should be declared or inferred to

be instances of the Composite_Thing class.

Corollary 9: Any OWL class such that all instances of that class represent substantial

composite things should be declared or inferred to be a subclass of the Composite_Thing

class. Any OWL class all instances of which represent substantial component things should

be declared or inferred to be a subclass of the Component_Thing class.

According to Bunge's ontology, a composite thing must possess at least one
emergent property. Otherwise, it is not a composite but simply a set of things. In other
words, a composite thing must be more than simply the sum of its parts (Evermann, 2003).
The next rule reflects this ontological assumption:

Modeling Rule 21: Every OWL individual representing a composite thing should be

associated (at the instance or at the class level) with at least one OWL property representing

an intrinsic or mutual ontological property that is an emergent property of the composite

thing.

The last rule in this section focuses on modeling emergent and hereditary properties.
Modeling Rule 22:

• OWL properties that model hereditary properties of a composite thing can be associated

with both OWL individuals (or classes, at the class level) representing the respective

component thing(s) and with OWL individuals (or classes) modeling the composite;

• OWL properties that model emergent properties of composite things should be

associated with OWL individuals (or classes, at the class level) representing the

composite, but not with any individuals (classes) representing components of this

composite

100

In simpler words, this rule means that since emergent properties are properties of the

composite as a whole but are not properties of individual parts, they should only be modeled

as properties of the individual (or class) representing this composite. For example, the

number of team members is a property of the team, but not of the individual players. Thus, it

should not be associated with instances representing individual team members, but only with

the OWL individual representing the team (or represented as a property restriction for the

class Team). On the other hand, if a property is hereditary, it is possessed by a component of

a composite and is also 'inherited' and exhibited by the composite. Thus, such property can

be modeled as a property of both the OWL individual (class) representing a component and

the individual representing the composite. For example, a property of a component - memory

(RAM) size - becomes a property of a computer as a composite as well and can be modeled

accordingly.

For completeness, we can also include in the meta-model another upper-level class,

Simple_Thing, to represent the class of all simple ontological things, which are things that can

not be further decomposed (such things exist according to Bunge's ontology). Classes

Composite_Thing and Simple_Thing should be declared disjoint. The union of these classes

would be equivalent to the class Substantial_Thing. Instances of the class Component_Thing, on

the other hand, would be either simple things (i.e. instances of the Simple_Thing class) or

composite things themselves (i.e. instances of the class Composite_Thing).

101

5 SUMMARY - PROPOSED METAMODEL AND
MODELING PROCESS GUIDELINES

Chapter 4 presented a detailed analysis of the fundamental ontological constructs and

their comparison to OWL constructs. Based on this comparative analysis and ontological

assumptions, we have developed a number of modeling rules and guidelines on the

representation of specific ontological constructs in OWL to facilitate the development of

more expressive OWL ontologies. In this section, we summarize some of the outcomes of

this analysis. Specifically, we provide a summary of the proposed meta-model, which is a set

of upper-level domain independent classes and properties recommended for inclusion in

OWL ontologies modeling real world domains to facilitate the application of the proposed

rules and guidelines and to help in development of ontologically meaningful models. In

addition, in this section we propose the process steps recommended for modelers applying

the approach proposed in this thesis.

The proposed meta-model (upper-level OWL classes and properties) is presented in

Figure 6:

OWhThing yij

Component_Thing
' \ \ isComposedOf

isComponentOf

Figure 6: Proposed meta-model

The meta-model includes two upper level disjoint classes - Substantial_Thing and

Non_Substantial_Thing - to distinguish between OWL classes and individuals representing

ontological substantial things and OWL classes and individuals used for representing other

constructs (section 4.1).

Also, the meta-model includes a special subclass of the class Non_Substantial_Thing

102

named Substantial_Thing_lnteraction intended for distmguishing a special group of OWL

classes, interaction classes, which are intended for representing sets of concurrent mutual

properties arising out of interactions and shared by interaction participants (section 4.2.4.4).

Another special purpose meta-model class is the Property_Value class (also a subclass

of the Non_Substantial_Thing class). It is recommended for the inclusion in OWL ontologies if

modelers intend to use property value representation method using special value classes and

individuals (as discussed in detail in section 4.2.3.2). If modelers do not intend to use this

property value representation method and only use OWL datatype properties to represent

individual properties, then this meta-model class does not have to be included. Note that the

two proposed subclasses of the Non_Substantial_Thing class are declared disjoint since they

are used for representing completely different concepts.

Finally, we have proposed two mutually inverse properties isComposedOf and

isComponentOf for representing individual composition relationships between composite and

component substantial things. We have also proposed the upper-level classes

Composite_Thing, Simple_Thing, and Component_Thing (which are subclasses of the class

Substantial_Thing) that may be useful if an ontology requires to show explicitly which things

are composites and which things are components of some things (section 4.5). These three

classes may be considered optional (since a pair of properties isComposedOf/ isComponentOf

in general is sufficient for representing composite/component relationships).

The proposed upper-level meta-model elements are domain independent and help

clarify the ontological semantics of domain specific elements. Domain specific classes are

supposed to be modeled as subclasses of the proposed upper level classes, and thus, will

have clear ontological semantics. The meta-model structure is intended to complement the

proposed ontologically grounded modeling guidelines and rules and to help modelers in the

application of these guidelines. The structure is intentionally kept relatively simple so that

the model is easier to understand and employ while still being helpful for the development of

more ontologically expressive OWL models.

Note that the meta-model can be further expanded. For example, we could not only

create upper level classes but also some upper-level properties (domain specific properties

could in this case be declared as subproperties of these upper-level properties using

owl:subpropertyOf construct). Some candidate meta-model properties we could add are, for

example, object properties islnvolvedln and Involves that would link instances of the class

Substantial_Thing to instances of the class Substantial_ThingJnteraction, and vice versa,

respectively. Domain specific properties related to interactions, for example such as

103

islnvolvedln_Employment or involves_Company (section 4.2.4.4), would be modeled as

subproperties of these meta-model properties, respectively. Other meta-model properties can

be included (for example, to distinguish between mutual and intrinsic properties).

Furthermore, the proposed meta-model can be extended to include elements representing

other Bunge's constructs (e.g. states and events), which are not considered in this thesis and

require further research.

For this thesis, due to time and length considerations we limited ourselves to the

restricted meta-model as presented above. The RDF/XML OWL syntax defining meta-model

elements is presented in Appendix C. Potential extensions to this meta-model can be a topic

for future research.

Next, we would like to outline the key modeling process steps that we recommend

modelers to follow when applying the proposed modeling rules and guidelines on the

development of OWL ontologies for real world domains:

Step 1: Create the required meta-model elements (classes and properties) in your OWL

ontology

Step 2: Identify types of ontological substantial things in the modeled real world domain.

• Represent them as named OWL classes - subclasses of the SubstantiaLThing meta-

model class (Corollary 2, Modeling Rule 1; Rules 12-13)

Step 3: For each class of substantial things, identify intrinsic properties.

• Represent them as OWL properties in accordance with Guidelines 3-4 and

Modeling Rules 2-4

• Associate them with the respective classes using property restrictions in class

axioms (Modeling Rules 14-17, Guideline 8, 9)

Step 4: Identify relevant interactions between substantial things in the modeled domain and

determine the related sets of concurrent mutual properties

• Create interaction classes corresponding to the relevant interactions, declare them

subclasses of the Substantial_Thing_lnteraction class (Modeling Rule 5-6, Guideline

5-6)

• Represent the individual mutual properties in each set as OWL properties (Rule

7); associate them with the respective interaction classes using property

restrictions (Rule 14-17, Guideline 8, 9)

• Create OWL properties of the type 'involves_...' and 'involvedln_...' for linking

interaction classes to the participating substantial thing classes, and vice versa

104

(Modeling Rule 8-9); associate them with the respective interaction classes and

substantial thing classes using property restrictions in class axioms (Rule 14-17,

Guideline 8, 9)

• If it is necessary to represent mutual properties shared by two things only which

are either non-binding or the related interaction is not relevant to the scope of the

model, represent these properties using OWL object properties according to

Modeling Rules 10-11.

Step 5: Identify subclass-superclass relationships of interest and the properties that

distinguish subclass instances from superclass instances

• Represent subclass-superclass relationships using OWl:subclassOf construct

• Ensure that each subclass in a model is modeled with at least one additional

property (intrinsic or mutual, such as participation in some interaction) or has

some property constrained or specialized compared to its superclass (Modeling

Rule 18)

Step 6: If in the scope of the model, identify composition relationships in the domain

• Represent composition relationships using properties isComposedOf and

isComponentOf (in accordance with Modeling Rules 19-22)

We would like to stress that the above proposed process steps should not be taken as

absolute because OWL syntax is very flexible (for example, there are multiple ways to

express the same idea in the XML/RDF syntax, and statements about ontology elements can

be arranged in various order). It is acceptable to change the order of some activities involved

in tiiese steps or to combine some activities without violating the general approach.

Therefore, we recommend that the proposed modeling process sequence is viewed as a

general guidance to modelers as well as the checklist to ensure that all the issues involved in

modeling process have been addressed. We hope that these general steps (with references to

specific rules and guidelines and the related thesis sections) will facilitate the application of

the rules an lead to the development of more expressive OWL models of real world domains.

In the next section, we illustrate the applicability of the proposed approach using an

example.

105

6 DEMONSTRATION OF APPLICABILITY - AN EXAMPLE

In this section we demonstrate the applicability and the process of applying the

proposed rules and guidelines using a small example from a real world domain - the library

domain70. Let us assume that there exist various libraries which carry different types of items

for borrowing, such as books, magazines, or music CDs. These types of items have different

borrowing conditions, such as allowed number of loan days. People come to libraries to

register and become library members. Upon registration, they obtain library cards and can

borrow and return items to the library.

To model this case in OWL, we follow our recommended modeling process steps.

Wherever relevant, we indicate rules and guidelines that we apply. For brevity, we use

abbreviations with the respective rule or guideline number: MR for Modeling Rule, G for

Guideline, and C for Corollary (for example, MR1 for Modeling Rule 1, G2 for Guideline 2,

or C5 for Corollary 5).

1) Upper-level (meta-model) classes

First, we create in our OWL ontology the upper level classes SubstantiaLThing and

Non_Substantial_Thing and declare them disjoint (MR1). We also create the class

Substantial_Thing_lnteraction (as a subclass of the Non_Substantial_Thing) which is used to

create interaction classes with their related mutual properties (G5, MR5, MR6).

2) Substantial things

Analyzing our domain, we can identify the following substantial things: library items

(which can be of several types), persons, and libraries (we assume that a person can be a

member of more than one library). Respectively, we create the following classes of

substantial things in our ontology: Library, Person, Libraryjtem, Book, Magazine, Music_CD. All

these classes should be declared subclasses of the class SubstantiaLThing (C2, MR12). In

addition to defining these classes as named classes, we will later add (when defining

properties) class axioms for these classes in terms of property restrictions to show which

common properties the instances of these classes share (in accordance with the rules 14-15

and guidelines 8-9)

Also, we declare the classes, Book, Magazine, Music_CD to be subclasses of the class

Libraryjtem (later we will add properties that differentiate each subclass from its superclass

as per rule 18). Note that later we will need to create more classes (subclasses of the above

ones) based on the analysis of interactions and of the related shared mutual properties (so as

While our example is simplified, it should not affect generalizability of our approach.

106

to avoid 'optional properties' problem, as per rule 17).

3) Intrinsic properties

Having identified the major substantial things and classes, we proceed to identify and

model properties. First, for each of the classes of substantial things we determine intrinsic

properties that need to be modeled. We represent them as OWL properties in accordance

with guidelines G3-4 and rules MR2-4. For example, for libraries we may identify such

properties as name and addr ess1 x. For persons, some intrinsic properties are name, address

and date of birth. Library items have some common intrinsic properties, for example title,

barcode (a unique inventory code assigned by the library), subject, and loan days allowed. In

addition, each of the different library item types may also have properties specific to this

item type. For our example, we assume that books have such intrinsic properties as author

and publisher, magazines have volume and issue, and music CDs have artist and content

(e.g. list of songs). Note that these intrinsic properties differentiate subclasses from its

superclass Libraryjtem, thus satisfying the rule MR18 on subclassification.

All these intrinsic properties are modeled as OWL properties in accordance with the

guidelines G3-4 and rules MR2-4. In addition, to satisfy the guidelines 8 and 9 as well as the

rules 14-15, we associate these properties with the respective classes using suitable property

restrictions in class axioms (e.g. owl:Cardinality=l or owl:minCardinality=1), thus stating that all

instances of the above classes possess the respective intrinsic properties.

4) Interactions and related mutual properties

The next step is to identify and model mutual properties. To do that, we need to

identify interactions and bundles of mutual properties associated with them and shared by

participants (G5-6). In our example, several interactions can be identified.

First, a person interacts with a library to become a library member (library

membership interaction). As a result of this interaction, several mutual properties are

acquired by the interacting library and person things, including library card number,

membership start date, and membership status (e.g. active or suspended). Since not all

persons become library members (i.e. not all persons possess the above mutual properties)

and since ontological guidelines recommend avoiding 'optional properties' in class

definitions (MR17), we create a subclass Libraryjvlernber (a class of persons who are

7 For simplicity, we treat addresses and names here as a single string values. More complex representations
can be easily implemented (e.g. separate properties for first and last name, or for city, street, postal code etc.),
Also, here we consider a library to be a single location (i.e. we do not consider multiple branches)
7 2 By library items here we mean physical copies of books, magazines or CDs. Thus, we will not consider such
entities as Author or Publisher as things here (they are out of scope of the model), but rather view them as
library item's intrinsic properties (this process is termed 'unarisation of properties' in Bunge's ontology)

107

members of some library). To represent this interaction and the respective mutual properties

we create a special interaction class i_Library_Membership as a subclass of the class

Substantial_Thing_lnteraction (MR6).

Individual mutual properties are represented as OWL properties with the class

i_Library_Membership as their domain (MR7); they are also associated with this class using

suitable property restrictions (e.g. e.g. Owl:Cardinality=l) in the class definition (G8-9) to state

that these properties are possessed by all instances of the interaction class

i_Library_Membership (which would indirectly represent the possession of this bundle of

properties by the respective Library and Library_Member individuals linked by instances of the

interaction class). Note that one person can be a library member in different libraries and a

library can have many members, therefore for each interaction (or a pair "person-library"),

an ontology will have a separate instance of the interaction class representing an individual

"instance" of this interaction type (which in turn will possess individual values for the

bundled mutual properties).

To conclude the representation of the interaction and its related mutual properties, we

need to create object properties for linking the interaction class and the involved substantial

thing classes (in accordance with the rules MR8-9). For the library membership interaction,

we create an object property corresponding to the interaction class

involvedln_Library_Membership (MR8) and two object properties involves_Library,

involves_Library_Member corresponding to the classes of substantial things participating in the

interaction. We also add class axioms to the interaction class iLibraryMembership that

state that each interaction class instance possesses one value for each of the properties

involves_Library and involves_Library_Member (i.e. is linked to exactly one Library and one

Library_Member instance). Similarly for the classes, Library and Library_Member we will add

class axioms that state that each Library and each Library_Member instance possesses at least

one value for the property involvedln_Library_Membership (i.e. is involved in at least one

library membership interaction and possesses the associated mutual properties)
73

Another example of an interaction in this domain is the item loan interaction

(involving a library member borrowing an item, a borrowed library item, and a library). This

interaction also gives rise to certain mutual properties, shared by its participants, such as for

example, date out and date due. This interaction and the related mutual properties are

represented in the same manner as the above described library membership interaction. Note

that to represent the item loan interaction, we also need to create additional subclasses of
7 3 Additional examples of interactions in this domain would be item reservation, item return and item renewals.
We limit ourselves to only to the above discussed interactions only for demonstration purposes.

108

substantial things (MR17): in addition to Library74, the item loan interaction involves Borrower

(a subclass of LibraryMember) and Borrowedjtem (a subclass of Libraryjtem).

5) Subclass-superclass relationships

We declare the classes Book, Magazine, and Music_CD to be subclasses of the class

Libraryjtem. To ensure that subclasses differ from its superclass in terms of properties (Rule

18), we associate (using property restrictions in class axiom) the properties specific to each

of these item types with the respective classes (those type-specific properties are mentioned

in step 2). In addition, in step 4, we have created some other subclasses (such as Borrower - a

subclass of Library_Member). Instances of these subclasses also satisfy Rule 18 since they

differ from the superclass instances due to participating in a certain interaction (e.g.

possessing a property involvedlnJtemLoan and a set of related mutual properties indirectly).

6) Composition relationships

For illustration purpose, we consider one composition relationship in our domain.

Various library departments or sections (for example, children book section, adult book

section, or reference section) can be considered to be components of the library. To represent

such composition relationship in our OWL ontology, we need to define the two mutually

inverse meta-model properties: isComposedOf and isComponentOf (in accordance with MR19).

We could also define meta-model classes Composite_Thing and Component_Thing (subclasses

of the Substantial_Thing upper level class) i f we were interested in explicitly modeling or

using inference to determine which things are composites or components of some other

things. However, for brevity and model readability, in this example we limit ourselves to

representing composition relationships between certain substantial things, thus the pair of

properties isComposedOf/ isComponentOf is sufficient. We also create a class Library_Section (a

subclass of the Substantial_Thing class) to represent various library sections and state for this

class (using property restrictions owl:someValuesFrom = Library on the property

isComponentOf) that every Library_Section instance is a component of some library. We can

also declare that every library is composed of some sections by adding a class axiom for the

class Library using the property restriction owLsomeValuesFrom =Library_Section on the

property isComposedOf.

Finally, Rule 21 requires that every composite thing should be modeled with at least

one emergent property. In our case, one emergent property of library (as a composite thing)

would be the number of sections in the library15. We would model it as an OWL property

7 4 We assume that every library has at least one member, lends at least one item and gets at least one item back.
Therefore, we do not create subclasses for Library based on the above interactions.
7 5 While this example is quite simple and may not seem very practical, it serves the purpose of illustrating key

109

and associate it with the class Library using a property restriction (such as owl:Cardinality=l) to

state that every library has a specific number of library sections.

Figure 7 on the next page shows a graphical representation of the resulting OWL

ontology developed for the library example discussed in this section. The RDF/XML OWL

syntax representation of this ontology can be found in Appendix D.

steps of our modeling approach without overloading the reader with too many irrelevant details.

110

L i b r a r y j t e m
0; ip^Tite'
0; ipiBarcode '
0: ipiSubjecl
0: ipJ_oanDaysA]lowed

Person
D ip PersonNjne
D i? Pe'sonAddrers
DfipibateOiBirth

isA

Library Member

"2 :-f l-'nr'.O'VV.!;! r-;,vi
•:'r 'p r.jicotftirii
0: irwolvedlrti LibraryM«mtership

, Library
D. IpJjbraryNarrie t

0. ip_Libran/Address
0: ip_NumberOfSections
0, invoIvedln.LibraryMembershlp
0. invoivedlnJte'mLoan
O: isComposedCH • ' r- .

Involvedln UbraryMerntrersNp \
\ ~" \ \

\ \ xinvolvwi
, Irtvolves_Library \ \ /

i<lvolv«dln_UbraryhSemb6rsNp x v.

IrsvolvesJ^roiyMember*

Substantial Thing .Interaction

^ isComposedOt

laCoinponentOt̂ *,,
Library Section

D1 'P .&ec:ionNarne
0 isComoonenlOt

liumLoan

IrrvotvesJJbrary \
\

\
\

Boole

0 >p i<iinD'JvsA,ia*e.d
D ip„AutllOf
D:'ip_Pubfcher'

LLIbraryiMembership
D1 mp. LibroryCardNjrpSer
D mp_Star:Oa:e
D mp.VemberohlpSta'us
0 mvoVes_library
0:,involvesitibraryMernber:

f «Mu»ici.CDi:

feipySubfeU < -j
§J;jjps,lo%iBa*AMowed; I
D ip_Artist" . • j
p:'ip_Contem V-

Involves BorrowedlSem

Involvedln ItemLoan

V l . l f ip I o.m
v \ D mp_D,reOjt

D mp_Da:eDue
r-*1 0 mvo:vftS_Librnry

G: involvss_Borrower
0 mv Dv.!S_Bo(ro//t'd::em

tnvolvesBorrower

involved ln_ltemLoars

Borrower

0. ip_P>rsor<Ar|:ires»

0. invoivasilis.i wroryMembstshtp
0: involvedln .ItemLoan

Figure 7: Graphical representation of the O W L ontology for the library example

To conclude, the example discussed in this secction demonstrates that our rules are

applicable in practice and lead to the representation of useful information about the domain.

The proposed modeling rules and guidelines, meta-model elements, and process guidelines

help modelers to analyze and represent domain elements in a systematic way and toexplicate

the assumptions about the domain, which facilitates the development of more expressive,

ontologically clear and consistent models.

112

7 CONCLUSIONS AND FUTURE RESEARCH ISSUES

The emergence of the Semantic Web as a future of the World Wide Web has created

a wide interest in IS ontologies as a means of representing - in a formal and machine-

readable form - the relevant information about various domains. To effectively represent the

knowledge about real-world domains, an IS ontology needs to properly convey beliefs about

the real world, i.e. beliefs on what exists, might exist, or happen as perceived by a

community of domain knowledge users. This thesis focuses on a recently proposed formal

ontology language - the OWL Web Ontology Language, which is considered to be one of

the fundamental components of the Semantic Web. It contributes to the fruitful stream of the

research on the ontological analysis of conceptual modeling grammars by evaluating them

against philosophical ontologies, which was initiated by Wand & Weber (1989) and

continued by a number of researchers since then.

The thesis continues the work started by Bera & Wand (2004) who conducted an

initial ontological analysis of OWL with the aim of evaluating OWL's ontological

expressiveness, i.e. how explicitly and accurately real-world domain information can be

modeled in OWL ontologies. By benchmarking OWL against a particular philosophical

ontology - the Bunge-Wand-Weber ontology - they pointed out a number of issues which

may undermine the expressiveness of OWL ontologies when they represent real world

domains, and may also lead to ambiguity, inconsistency, and a lack of stability of

representations. Bera & Wand (2004) suggested that the expressiveness of OWL can be

improved by introducing ontologically grounded general representation guidelines and

specific guidelines on modeling certain ontological constructs in OWL. As well, new

constructs can be added to OWL to overcome the lack of expressiveness.

This thesis has been inspired by the above suggestions and continued the research in

that direction. Based on the ontological foundations, it has conducted an in-depth

comparative analysis of fundamental constructs of Bunge's ontology (things, intrinsic and

mutual properties, interactions, classes, and composition) against OWL constructs and

current OWL modeling practices in order to propose a mapping from Bunge's constructs to

OWL constructs or their combinations in an ontologically clear and consistent way. Based

on the proposed mapping, through a transfer of ontological assumptions, the thesis has

developed a set of general guidelines and more specific modeling rules on how to represent

key ontological constructs in OWL ontologies of real-world domains. In addition, this

research has proposed a meta-model - a set of high-level, domain independent OWL classes

113

and properties - that is recommended for inclusion in OWL ontologies that model real world

domains and will be developed following the proposed methodology. The proposed meta-

model elements are intended to help clarify the ontological semantics of the domain specific

constructs (which are supposed to be modeled as subclasses or subproperties of the

respective meta-model elements) as well as to facilitate the use of the proposed rules and

guidelines by OWL modelers. Furthermore, the thesis has also suggested a number of key

process steps which OWL modelers should follow when developing OWL ontologies in

accordance with the proposed approach. The applicability and the process of applying the

proposed modeling rules and guidelines have been illustrated by an example from the library

domain.

Encouraged by our initial experience with the proposed approach, by prior research

applying a similar approach for other modeling languages, and by the results of some

empirical studies showing support for the propositions that the use of ontologically grounded

modeling guidelines leads to better models, we hope that the developed approach, which is

grounded in the philosophical ontological foundations, will facilitate the development of

more ontologically expressive OWL ontologies and may help alleviate or avoid the problems

ambiguity, inconsistency and lack of stability of OWL models. We believe that our approach

may guide modelers in analyzing their real-world domains of interest and encourage them to

"think ontologically", seeking and representing domain information in more detailed and

structured way. It may also help modelers focus more on domain knowledge and faithful

representation of its elements, and not just on machine-readability and technical

implementation issues. In addition, using the proposed approach, different modelers are

more likely to come to similar representations of the same real world domains (even if they

use different element names to represent domain elements), making it easier to align and

merge such ontologies and making interpretation and usage in applications more consistent,

which is important for effective and efficient knowledge representation and sharing.

We acknowledge several limitations of this study, which in turn provide ideas for

future extensions of this research. First, this research uses a specific philosophical ontology -

Bunge's ontology - as a philosophical base for analysis. However, other choices are possible

and can be explored in further research. Second, this thesis only covers the analysis and

representation of a limited number of Bunge ontology concepts - things, properties,

interaction, classes, and composition. Representation in OWL of other constructs of Bunge's

ontology (such as states, events and laws) was not discussed here and can be a subject of

future research. Nevertheless, the OWL-specific representation methods used in this work

114

for the selected constructs provide ideas and serve as a good starting point for the analysis

and development of the representation guidelines for other Bunge's constructs in the future

research. A third limitation of this study is that the applicability of the approach was

demonstrated only on small examples. While this initial experience is encouraging, future

research may consider more extensive case studies, larger ontologies, and a variety of real-

world domains to test the applicability of the proposed rules in real-world settings, and to

identify issues which may need refining or revision due to usability or implementation

considerations. Finally, this study is theoretical, so one can only hope (based on the intial

experience and the encouraging related prior research results) that using the proposed

approach will lead to better OWL ontologies. Formal empirical studies need to be conducted

to evaluate whether the use of the proposed modeling approach does indeed provide any

benefits for domain knowledge representation and understanding.

In addition to the above mentioned issues for further research, a number of other

potentially interesting extensions of this study are possible. First, one of the important areas

of research in ontological engineering is ontology alignment, merging, and evaluation. The

suggested meta-model and modeling guidelines may provide some benefits in this area, and

future research may explore specifically how the proposed methodology may be helpful in

these aspects. Second, the methodology may also suggest how ontologies can be evaluated

based on philosophical concepts. Further research may use the proposed meta-model and

methodology to develop criteria for evaluating specific OWL ontologies (i.e. whether

domain elements are property represented by language constructs).

Also, the proposed methodology and meta-model may be helpful for the translation

of models in other languages to OWL ontologies, and vice versa. The need for mapping or

translation from model in one language to another (e.g. from UML model to OWL ontology)

may arise, for example, in the areas of interoperability and integration of heterogeneous

information sources. It may also be useful for knowledge sharing and reuse, as it would

facilitate the reuse of the available knowledge representation in other models. Specifically,

as discussed in section 2 (related research), some prior studies also proposed a mapping

between constructs of other languages (such as UML or ERM) and the constructs of Bunge's

ontology. Thus, using Bunge's ontology as an 'intermediary' it may be possible to develop

mapping between OWL elements and the constructs of another language (e.g. UML) (taking

into account the ontological semantics assigned to the elements of the translated language).

Such a mapping would facilitate the translation between models in another language and

OWL models (assuming both models are developed in accordance with their respective

115

mapping and ontologically grounded guidelines), and could even be automated to some

extent.

Finally, an interesting area for future research would be the development of a CASE

tool to facilitate the development of OWL ontologies in accordance with the proposed

methodology. This could be the development of a new tool or an extension of some existing

ontology developments environment, such as Protege-OWL (which allows creation of

wizards and customized applications) . Such a CASE tool would allow modelers to develop

ontologies based on Bunge's ontological concepts in accordance with the proposed rules and

guidelines. Rather than operating directly in terms of OWL constructs, the system could

guide modelers by asking them to specify model elements in terms of Bunge's ontological

concepts, i.e. modelers would specify main classes of substantial things and their intrinsic

properties, interactions and related sets of mutual properties, instances of classes and their

specific properties, and so on. Based on the proposed rules for representing these concepts,

the CASE tool would automatically create the respective OWL elements (and their

combinations) for representing the domain ontological elements specified by the modeler.

The system could also automatically link elements as required by rules (for example,

associate classes with properties using property restrictions, set cardinalities, or link

interaction classes and participating substantial thing classes with special object properties).

Then the user would be able to review and modify the resulting OWL ontology in both OWL

and Bunge terms. Also, the tool could provide additional functionality including

configurable automatic creation of meta-model elements (classes and properties),

configurable naming conventions for the ontological elements (prefixes, etc) as well as

model checking capabilities (i.e. the ability to check that an ontology created or modified by

the user satisfies key ontological rules and guidelines). Finally, such tool could also provide

enhanced querying capabilities allowing queries not only in terms of the standard OWL

constructs (for example "List OWL individuals possessing a certain OWL property" or

"Which OWL classes a particular OWL individual belongs to?") but also in terms of the

ontological concepts. For example, users could ask queries such as "What intrinsic

properties a certain class of substantial things has?", "In which interactions a particular

substantial thing participates?", or "List all components of a particular composite thing". We

believe that the development of such tool is feasible (albeit not necessarily easy) and is a

promising future research direction.

7 6 The Protege Ontology Editor and Knowledge Acquisition System is a free open-source Java tool providing
an extensible architecture for the creation of customized knowledge-based applications and ontologies. The
Protege-OWL is an extension of Protege (http://protege.stanford.edu/overview/protege-owl.html)

116

http://protege.stanford.edu/overview/protege-owl.html

To conclude, we believe that this research is an encouraging step towards improving

- based on the ontological philosophical foundations - the ontology development process and

the expressiveness, clarity, and consistency of the resulting OWL ontologies. This work is

theoretically grounded and contributes to the existing research on the ontological analysis of

conceptual languages as well as to the area of ontological engineering. It also gives some

promising results for practical OWL developers by providing specific rules and guidelines

which can be relatively easily applied in the existing OWL development environments and

ontologies. Finally, even though this work has considered the OWL language in its current

form and has not dealt with the issue of adding new constructs to OWL as a way to improve

its expressiveness, the results of this work suggest some ideas and guidance for possible

future extensions and modifications of the OWL language as well as for improvement and

enhancement of the existing ontology development environments.

117

BIBLIOGRAPHY

Angeles, P. (1981). Dictionary of Philosophy. Harper Perennial, New York, NY

Antoniou, G. and van Harmelen, F. (2004). Web Ontology Language: OWL. In Staab, S. and
Studer, R., eds., Handbook on Ontologies in Information Systems, 67-92.

Bechhofer, S. (2003). OWL reasoning examples (draft paper), December 3, 2003, retrived
September 15, 2004, from http://owl.man.ac.uk/2003/why/20031203.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A. (2004). OWL Web Ontology Language Reference, W3C
Recommendation, Dean, M., Schreiber, G. (eds.), February 10, 2004,
http://www.w3.org/TR/owl-ref7

Bera, P. and Wand, Y. (2004). Analyzing OWL using a Philosophy-based Ontology. In
Proceedings of the Third International Conference on Formal Ontology in Information
Systems (FOIS-2004). Torino, Italy, 353-362.

Bera, P., Krasnoperova, A., and Wand, Y. (2005). Improving Real-World semantics in
OWL. Paper submitted to IEEE Transactions on Knowledge and Data Engineering.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The Semantic Web. ScientificAmerican,
284(5), May 2001, 34-43.

Bodart, F., Patel, A., Sim, M. and Weber, R. (2001). Should Optional Properties Be Used In
Conceptual Modelling? A Theory And Three Empirical Tests. Information Systems
Research, 12 (4): 2001, 384-405.

Bunge, M. (1977). Ontology 1: The Furniture of the World, vol. 3. New York: D. Reidel
Publishing, 1977.

Bunge, M. (1979). Ontology II: A World of Systems, vol. 4. New York: D. Reidel Publishing,
1979.

Burton-Jones, A. and Weber, R. (1999). Understanding Relationships with Attributes in
Entity Relationship Diagrams. In P. De and J. DeGross (Eds.). Proceedings of the
Twentieth International Conference on Information Systems, Charlotte, NC, 214-228.

Burton-Jones, A. and Weber, R. (2003). Properties do not have properties: Investigating a
questionable conceptual modeling practice. In D. Batra, J. Parsons, and V. Ramesh
(Eds.), Proceedings of the Second Annual Symposium on Research in Systems Analysis
and Design, Miami, 14 pp.

Carroll, J.J., De Roo, J. (2004). OWL Web Ontology Language Test Cases. W3CWorld
Wide Web Consortium, Recommendation, REC-owl-test-20040210, February, 2004
http://www.w3.org/TR/2004/REC-owl-test-20040210

Chandrasekaran, B., Josephson, J. R. and Benjamins, V. R. (1999). What Are Ontologies,
and Why Do We Need Them?. IEEE Intelligent Systems 14 (1), 20-26.

Evermann, J. (2003). Using design languages for conceptual modeling: The UML case.
Unpublished PhD dissertation, Sauder School of Business, University of British
Columbia.

Evermann, J. and Wand, Y. (2001a). An ontological examination of object interaction in
conceptual modeling. In Proceedings of the Workshop on Information Technologies and
Systems WITS'01, New Orleans, December 15-16, 2001.

118

http://owl.man.ac.uk/2003/why/20031203
http://www.w3.org/TR/owl-ref7
http://www.w3.org/TR/2004/REC-owl-test-20040210

Evermann, J. and Wand, Y. (2001b). Towards ontologically based semantics for UML
constructs." In H. Kunii, S. Jajodia, and A. Solvberg, eds., Proceedings of the 20th
International Conference on Conceptual Modeling, Yokohama, Japan, Nov. 27-30, 2001.

Evermann J, Wand Y (2005) Toward formalizing domain modeling semantics in language
syntax IEEE Transactions On Software Engineering 31(1): 21-37

Fensel, D. (2001). Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce. Springer, Berlin.

Fikes, R., Hayes, P., and Horrocks, I. (2004). OWL-QL - a language for deductive query
answering on the Semantic Web. J. of Web Semantics, 2(1), 19-29.

Gangemi, A., Guarino, N., Masolo, C , and Oltramari, A. (2001). Understanding top-level
ontological distinctions. Proceedings of the 2001 IJCAI Workshop on Ontologies and
Information Sharing.

Gemino, A. (1998). To be or may to be: An empirical comparison of mandatory and optional
properties in conceptual modelling. Proc. Ann. Conf. Admin. Sci. Assoc. of Canada,
Information Systems Division. Saskatoon, Saskatchewan, 33—44.

Gemino, A. and Wand, Y. (2000). Comparing Mandatory and Optional Properties in
Conceptual Data Modeling. In P. Bowen and V. Mookerjee (Eds.), Proceedings of the
Tenth Annual Workshop on Information Technologies and Systems, Brisbane, 97-102.

Gomez-Perez, A. 1998. Knowledge Sharing and Reuse. In The Handbook of Applied Expert
Systems, ed. J. Liebowitz, 10-1-10-36. Northwest Boca Raton, Fla.: CRC.

Gomez-Perez, A., Fernandez-Lopez, M., and Corcho, O. (2004) Ontological Engineering:
with examples for the area of knowledge management, e-commerce and the Semantic
Web: Springer-Verlag London Limited Guarino, N. and Welty, C. (2000) A Formal
Ontology of Properties. In, Dieng, R., and Corby, O., eds, Proceedings of EKAW-2000:
The 12th International Conference on Knowledge Engineering and Knowledge
Management. Spring-Verlag LNCS Vol. 1937:97-112.

Gruber, T. R. (1993) A Translation approach to portable ontology specification. Knowledge
Acquisition, 5(2): 199-220.

Gruninger, M., and Fox, M. S. 1995. Methodology for the Design and Evaluation of
Ontologies. Paper presented at the IJCAI Workshop on Basic Ontological Issues in
Knowledge Sharing, 19-21 August, Montreal, Quebec, Canada.

Guarino, N. (ed.) (1998) Formal Ontology in Information Systems. Proceedings ofFOIS'98,
Trento, Italy, 6-8 June 1998. Amsterdam, IOS Press, pp. 3-15.

Guarino, N. and Giaretta, P. (1995). Ontologies and Knowledge Bases: Towards a
Terminological Clarification. In Sharing, N. Mars (eds.), Towards Very Large
Knowledge Bases: Knowledge Building and Knowledge, IOS Press, Amsterdam, 25-32.

Haarslev, V. and Moller, R. (2003). Racer: An OWL Reasoning Agent for the Semantic
Web. In Proceedings of the International Workshop on Applications, Products and
Services of Web-based Support Systems, in conjunction with the 2003 IEEE/WIC
International Conference on Web Intelligence, Halifax, Canada, October 13, 91-95.

Haarslev, V., Moller, R., and Wessel, M. (2004). Querying the Semantic Web with Racer +
nRQL. In Proceedings of the KI-2004 International Workshop on Applications of
Description Logics (ADL'04), Ulm, Germany, September 24, 2004.

119

Heflin, J., ed. (2004). OWL Web Ontology Language Use Cases and Requirements. W3C
Recommendation, February, 10, 2004, http://www.w3.org/TR/2004/REC-webont-req-
20040210/

Horridge, M. (2004). A practical guide to building OWL ontologies with the Protege-OWL
Plugin. Edition 1.0, June 13, 2004, retrived July 30, 2004, from
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf

Horrocks, I. and Patel-Schneider, P.F. (2004). A Proposal for an OWL Rules Language. In
Proc. Int. WWW Conference, May 17-22, 2004, New York, USA.

Horrocks, I., Patel-Schneider, P.F., and van Harmelen, F. (2003). From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics, 1(1), 7-26.

Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., and Tsarkov, D.(2005). OWL rules: A
proposal and prototype implementation. J. of Web Semantics, 3(1), 23-40.

Lenat, D. B., and Guha, R. V. (1990). Building Large Knowledge-Based Systems:
Representation and Inference in the CYC Project. Reading, Mass.: Addison-Wesley.

McGuinness, D. L. (2002). Ontologies Come of Age. In D. Fensel, J. Hendler, H.
Lieberman, and W. Wahlster, eds. Spinning the Semantic Web: Bringing the World Wide
Web to Its Full Potential. MIT Press.

McGuinness, D. L., Smith, K. M., and Welty, C , eds. (2004). OWL Web Ontology
Language Guide. W3C Recommendation, February, 10 2004,
http://www.w3 .org/TR/2004/REC-owl-guide-20040210/

Noy, N., ed. (2004). Representing Classes as Property Values on the Semantic Web. W3C
Working Draft, July 21, 2004, http://www.w3.org/TR/2004/WD-swbp-classes-as-values-
20040721/

Noy, N.F. and Hafner, CD. (1997). The State of the Art in Ontology Design - A Survey and
Comparative Review. AI Magazine, 36(3), 53-74.

Noy, N. F. and McGuinness D.L. (2001). Ontology Development 101: A Guide to Creating
Your First Ontology. Stanford Knowledge Systems Laboratory, Technical Report KSL-
01-05.

Noy, N. and Rector, A., eds. (2004). Defining N-ary Relations on the Semantic Web: Use
with Individuals. W3C Working Draft, July 21, 2004, http://www.w3.org/TR/2004/WD-
swbp-n-aryRelations-20040721/

Patel-Schneider, P.F., Patrick Hayes, P., Ian Horrocks, I. (eds) (2003). Web Ontology
Language (OWL) Abstract Syntax and Semantics. W3C Working Draft, February 3,
2003, http://www.w3.org/TR/owl-semantics/

Parsons, J. and Cole, L. (2004). An Experimental Evaluation of Property Precedence in
Conceptual Modelling. APCCM 2004: 101-110

Parsons, J. and Wand, Y. (1997). Choosing Classes in Conceptual Modeling.
Communications of the ACM, 40 (6), 63-69

Parsons, J. and Wand Y. (2000). Emancipating Instances from the Tyranny of Classes, ACM
Transactions on Database Systems, 25: 228-268.

Parsons, J. and Wand, Y. (2003). Attribute-Based Semantic Reconciliation of Multiple Data
Sources, Journal on Data Semantics, Vol. 1.1, October 2003.

120

http://www.w3.org/TR/2004/REC-webont-req-
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf
http://www.w3
http://www.w3.org/TR/2004/WD-swbp-classes-as-values-
http://www.w3.org/TR/2004/WD-
http://www.w3.org/TR/owl-semantics/

Pease, A., Niles, I., and Li, J., (2002). The Suggested Upper Merged Ontology: A Large
Ontology for the Semantic Web and its Applications, in Working Notes of the AAAI-2002
Workshop on Ontologies and the Semantic Web.

Rector, A., ed. (2004). Representing Specified Values in OWL: "value partitions" and "value
sets". W3C Working Draft, August, 3, 2004, http://www.w3.org/TR/2004/WD-swbp-
specified-values-20040803/

Rector, A. and Welty, C , eds. (2005). Simple part-whole relationships in OWL ontologies.
W3C Editor's Draft, August 11,
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

Smith B. (2003). Ontology; in: Floridi, L. (ed.): Blackwell Guide to the Philosophy of
Computing and Information, Blackwell, Oxford, 2003, 155-166.
http://ontology.buffalo.edu/smith/articles/ontology_pic.pdf

Sowa, J. F. (1997). Knowledge Representation: Logical, Philosophical and Computational
Foundations. Boston: PWS.

Uschold, M., and Gruninger, M. (1996). Ontologies: Principles, Methods, and Applications.
Knowledge Engineering Review 11(2), 93-155.

Wand, Y. (1989). A Proposal for a Formal Model of Objects. In Object-Oriented Concepts,
Databases, and Applications. Ed. Kim, W. & Lochovsky, F. New York, ACM Press,
537-559.

Wand, Y. and Wang, R.Y. (1996) Anchoring data quality dimensions in ontological
foundations. Communications of the ACM 39(11) , 86-95.

Wand, Y. and Weber, R. (1989).An ontological evaluation of systems analysis and design
methods. In: E.D. Falkenberg, P. Lindgreen (Eds.), Information System Concepts: An In-
depth Analysis, North-Holland, Amsterdam, pp. 79-107.

Wand, Y. and Weber, R. (1990a) An Ontological Model of an Information System, IEEE
Transactions on Software Engineering, v. 16 n.ll, p. 1282-1292, November 1990.

Wand, Y. and Weber, R. (1990b). Mario Bunge's ontology as a formal foundation for
information systems concepts. In Studies on Mario Bunge's Treatise, vol. 18, Poznan
Studies in Philosophy of Sciences and Humanities, G. W. D. Dorn, Ed-

Wand, Y. and Weber, R. (1993). On the ontological expressiveness of information systems
analysis and design grammars. Journal of Information Systems, 3: 217-237.

Wand, Y. and Weber, R. (1995). On the deep structure of information systems. Journal of
Information Systems, 5: 203-223.

Wand, Y., Monarchi, D. E., Parsons, J., and Woo, C. C. (1995). Theoretical foundations for
conceptual modelling in information systems development. Decision Support Systems,
15: 285-304.

Wand, Y., Storey, V. C , and Weber, R. (1999). An ontological analysis of the relationship
construct in conceptual modeling. ACM Transactions on Database Systems, 24: 494-528.

Weber, R. (1997). Ontological Foundations of Information Systems: Coopers and Lybrand
Research Methodology. Coopers and Lybrand Research Methodology, Melbourne.

W3C press release (2004). Wide Web Consortium Issues RDF and OWL Recommendations.
February 10, 2004, retrieved from http://www.w3.org/2004/01/sws-pressrelease

121

http://www.w3.org/TR/2004/WD-swbp-
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/
http://ontology.buffalo.edu/smith/articles/ontology_pic.pdf
http://www.w3.org/2004/01/sws-pressrelease

APPENDICES

APPENDIX A Employment example (section 4.2.4.4) -
diagrams and RDF/XML syntax
Graphical representation of the employment example ontology

Substantial Tiling NonSubstantialniing

Employee

John Snath

Company Substantial Thing Interaction

Jane Doe ITJQ»an_C«fl|)iay Best_Scftw«e_Conip«i!y iEmployment

Eiuploymait_JaneDoe_BeiSoiwa« EiiiilajiiieitJoiinSinstli rnianmK Eii|)loymoitJolm&i)ifl)_BestSafl\vaie

Figure 8: Employment example ontology - hierarchy of classes and instances

SubstaiitialThing

\(sa

Employee

iirvohredIh_Employinent j Instance* i_Eniploj—lent

ip_EinpiqyeeAddress String

il)_EniployeeNauic Suing

NonSubstantialTtiing

i k

i 1 /
\iiwolvedTn_Eniploynient'|! \ involves_F.mployeeisa

iEinpl oymcnt

mpJobHtle String

mp_Salary Integer

mpjStartDate String

iiwolves_Employee Instance Employee

involve E _ C ompany Instance Company

' uivolvectli ̂ Employment* / iiivolves_Coiupany

Company *
ip_CompanyAddress 1 String

ip_CoinpanyNanie String

invohrecDn_Employment Instance* i_Employment

Figure 9: Employment example ontology - classes and properties

122

Employiumt_JolinSmi(hJDestSoftware

irjp_Job'Jirle= Software Developer

mp_Salary- 40000

lnpjStartDate = 02i02/2O01

nwok'eB_Eiuployee = | JohiiSuitli

iuvolves_Couipaiiy = | Best Software Company

iuvoh'esEoiployeer 'im'oKedDiEmploymeat v iavohres_Compairy 4irvolvedlu_Eiiiployuient

JouuSnilli

im,olvedIn_Eu^o),nieiit -
Eiiipl oymwtJolniSmithBestSafrwiire

im,olvedIn_Eu^o),nieiit -
Employment JohuSuiitfa ntraining

ip FmplnyeeName = John Smith

Dest_Softw«re_Cotupany

ipjL'oiuparryAddress = XLS Office St

ip CompairyNanie - Best Software Company

invnlvedJii Kmp1rnjinent=
Employinent_JoliiiSnritii_BestSoftw!ire

invnlvedJii Kmp1rnjinent=
Eir4)loyment_JaueDoe_Be£tSoflware

jnvolvedTn_Fjiirdr>yment 'iiTvolves_Fm[)1nyee 'mvolvedTn_Kinplo5Tiient jnvolves_Comnany

EiuplojTOeiit_JoliiiSiiiitli_rrti-siiinig

mp_JobHtk = Software Developer

inp_Salary= 30000

mpJStartDate =

involves Employee =

01J05/2002

John Snntli

ii\'oh'es_Company= rTJIrainina_Conipaiiy

Employnient_IaueD oe_BestSottware

mp_JobUtlc= Manager

mp_Salary= 100000

mp_StariDate = Ol/OlftOOO

involves Employee= Jane Doe

invoh'es_Couipany = Best_Software_Coiiipairy

ihwofces_Crartpany tavorv'e<trn_FiTip!o>Tnent \rnvnKres_Km|Joyee tnvolvedln_Fjirployment

rrjIlrauiing_Cotitpany

ip_CompanyA<Hress - 333 Robson St.

ip CoiupanyName = rr Tridniiig Company

invofredluEniplojinent = £^loymoit_JoJmSrmtk_ntrBiiiing

Jane_Doe

invoh'edlh_Euipl oyment •= Emplovment_JaiieDc«_BestSoftware

ip_EmployeeNairje = laueDoe

Figure 10: Employment example ontology - instances and their properties

123

RDF/XML OWL representation of the employment example ontology

<?xml version-' 1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns=Mp://www.owl-ontologies.com/unnamed.owl#''
xml:base-'http://www.owl-ontologies.com/unnamed.owr>

<owl:Ontology rdf:about="7>

<!- Declaring meta-model classes: SubstantiaLThing, Non_Substantial_Thing, Substantial_Thing_lnteraction->

</owl:Class>
<owl:Classrdf:ID="Substantial_Thing',>
<owl:disjointWith>
<owl:Class rdf:ID="Non_Substantial_Thing"/>

</owl:disjointWith>
</owl:Class>
<owl:Class rdf:about="#Non_Substantial_Thing">
<owl:disjointWith rdf:resource="#Substantial_Thing7>

</owl:Class>
<owl:Class rdf:about=H#SubstantiaLThingJnteraction">
<rdfs:subClassOf>
<owl:Class rdf:about="#Non_Substantial_Thing7>

</rdfs:subClassOf>
</owl:Class>

<!- Declaring classes of substantial things (Employee and Company) and their intrinsic properties ->

<owl:Class rdf:ID="Company">
<rdfs:subClassOf rdf:resource="#Substantial_Thing7>
<rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="involvedln_Employment7>

</owl:onProperty>
<owl:minCardinality rdf:datatype=''http://www.w3.org/2001/XMLSchema#int">1</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_CompanyAddress7>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://vvww.w3.org/2001/XMLSchema#int''>1</owl:cardinality^
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_CompanyName7>

</owl:onProperty>
</owl:Restriction>

124

http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2000/01/rdf-schema%23
http://www.w3.org/2002/07/owl%23
http://www.owl-ontologies.com/unnamed.owl%23''
http://www.owl-ontologies.com/unnamed.owr
http://www.w3.org/2001/XMLSchema%23int%22%3e1%3c/owl:minCardinality
http://www.w3.org/2001/XMLSchema%23int%22%3e1%3c/owl:cardinality
http://vvww.w3.org/2001/XMLSchema%23int''%3e1%3c/owl:cardinality%5e

</rdfs:subClassOf>
</owl:Class>

<owl:DatatypeProperty rdf:about=H#ip_CompanyNamen>
<rdfs:rangerdf:resource="http://www.w3.org/2001/XMLSchema#string7>
<rdfs:domain rdf:resource="#Company7>

</owl: DatatypeProperty>
<owl:DatatypeProperty rdf:about="#ip_CompanyAddress">

<rdfs:domain rdf:resource="#Company7>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string7>

</owl:DatatypeProperty>

<owl:Class rdf:ID="Employee">
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource=,,#SubstantiaLThing7>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://w .̂w3.org/2001/XMLSchem
<owl:onProperty>
<owl: DatatypeProperty rdf: I D=" ip_EmployeeAddress7>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatyr̂ ="http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_EmployeeName7>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#involvedln_Employment7>

</owl:onProperty>
<owl:minCardinality rdf:datatype-'http://www.w3.org/2001/XMLSchema#intn>1</owl:min

</owl:Restriction>
</owl:Class>

<owl:DatatypeProperty rdf:about="#ip_EmployeeName">
<rdfs:range rdf:resourre="http://www.w3.org/2001/XMLSchema#string7>
<rdfs:domain rdf:resource="#Employee7>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#ip_EmployeeAddress">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#date7>
<rdfs:domain rdf:resource="#Employee7>

</owl:DatatypeProperty>

</—Declaring the interaction class f/_EmploymentJ, mutual properties associated with it, and special (linking)
object properties involvedln_Employment, lnvolves_Company, involves_Employee ->

<owl:Class rdf:ID="i_Employment">
<rdfs:subClassOf>
<owl:Classrdf:ID=HSubstantial_ThingJnteraction7>

</rdfs:subClassOf>

125

http://www.w3.org/2001/XMLSchema%23string7
http://www.w3.org/2001/XMLSchema%23string7
http://w%5e.w3.org/2001/XMLSchem
http://www.w3.org/2001/XMLSchema%23int%22%3e1%3c/owl:cardinality
http://www.w3.org/2001/XMLSchema%23intn%3e1%3c/owl:min
http://www.w3.org/2001/XMLSchema%23string7
http://www.w3.org/2001/XMLSchema%23date7

<rdfs:subClassOf>
<owl: Restriction
<owl:onProperty>
<owl:ObjectProperty rdf: ID="involves_Company7>

</owl:onProperty>
<owl:cardinality rdf:datatype='Mp://www.w3.org/2001^

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="involves_Employee7>

</owl:onProperty>
<owl:cardinality mf:datatyr̂ ="http://wAw.w3.org/2001/XMLSch

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="mp_JobTitle7>

</owl:onProperty>
<owl:cardinality rdf:datatype=Mp://www.w3.org/200

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype=Mp://www.w3.org/2001/XM
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="mp_StartDate7>

</owl:onProperty>
</owl: Restriction

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="mp_Salary7>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3^

</owl:Restriction>
</rdfs:subClassOf>

<owl:DatatypeProperty rdf:about="#mp_JobTitle">
<rdfs:range rdf:resourc«=''http://www.w3.org/2001/XlvlLSchema#string7>
<rdfs:domain rdf:resource="#i_Employment7>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about=7*mp_Salaryn>
<rdfs:range rdf:resourc«=''http://www.w3.org/2001/XMLScherna#positivelnteger"/>
<rdfs:domain rdf:resource="#l_Employment7>

</owl: DatatypeProperty>
<owl:DatatypeProperty rdf:about="#mp_StartDate,l>
<rdfs:domain rdf:resource="#l_Employment7>
<rdfs:range rdf:resource=''http://www.w3.org/2001/XMLSchema#string7>

</owl: DatatypeProperty>

<owl:ObjectProperty rdf:about="#involvedln_Employment">
<rdfs:domain>
<owl:Class>

http://www.w3.org/2001%5e
http://wAw.w3.org/2001/XMLSch
http://www.w3.org/200
http://www.w3.org/2001/XM
http://www.w3%5e
http://www.w3.org/2001/XlvlLSchema%23string7
http://www.w3.org/2001/XMLScherna%23positivelnteger%22/
http://www.w3.org/2001/XMLSchema%23string7

<owl:unionOf rdf:parseType="Collection">
<owl:Classrdf:about="#Company"/>
<owl:Classrdf:about="#Employee'7>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdfs:rangerdf:resource=''#i_Employment7>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#involves_Employee">
<rdfs:domain rdf:resource="#i_Employment7>
<rdfs:range rdf:resource="#Employee7>

</owl: ObjectProperty>
<owl:ObjectProperty rdf:about="#involves_Company">

<rdfs:domain rdf:resource="#i_Employment7>
<rdfs:range rdf:resource="#Company7>

</owl:ObjectProperty>

</- Example declaration of instances (specific companies and employees), values for their intrinsic properties
and instances of interactions linking specific employee and company in an employment interaction and its
related values of mutual properties77 ->

<i_Employment rdf:ID="Employment_JaneDoe_BestSoftware">
<mp_Salaryrxlf:datatype="http://www.w3.org/2001/XMLSch
<mp_JobTitle rdf:datatype=Mp://wv\w.w3.org/200
<involves_Employee>
<Employee rdf:ID="Jane_Doe">
<ip_EmployeeAddress rdf:datatype="http://www.w3.org/2001/XMLSchema#date">999 Main St
</ip_EmployeeAddress>
<ip_EmployeeNamero^:dataiype="http://www.w3.org/2001W Doe
</ip_EmployeeName>
<involvedln_Employment rdf:resource='WEmployment_JaneDoe_BestSoftware7>

</Employee>
</involves_Employee>
<involves_Company>
<Company rdf:ID="Best_Software_Company''>
<involvedln_Employment>
<i_Employment rdf:ID=Tmployment_JohnSmith3estSoftware">
<involves_Employee>
<Employee rdf:ID="John_Smith">
<involvedln_Employment>
<i_Employmentrdf:ID="Employment_JohnSmithJTtraining"̂
<mp_Salary rdf:datatype=''http://www.w3.org/2001/XMLSchema#^
<mp_StartDaterdf:datatype="http://www.w3.org/2001/XMLSchema#string"^
</mp_StartDate>
<involves_Company>
<Company rdf:ID="IT_Training_Company">
<involvedln_Employment rdf:resource="#Employment_JohnSmith_ITtraining7>
<ip_CompanyName rdf:datatyr^-'http://www.w3.org/2001/XMLSchema#string"
>IT_Training_Company </ip_CompanyName>
<ip_CompanyAddressrdf:datatype="http://www.w3.org/2001/XMLSchema#stri^
St.</ip_CompanyAddress>

OWL syntax allows multiple ways of representing the same statements and sequence of statements about
classes, properties and instances is not important. For example there are several ways to declare instances and
make assertions their properties. The above code was generated automatically in Protege, so it is not as well
arranged as manually written code could be (but it still represents the same intended information)

127

http://www.w3.org/2001/XMLSch
http://www.w3.org/2001/XMLSchema%23date%22%3e999
http://www.w3.org/2001W
http://www.w3.org/2001/XMLSchema%23%5e
http://www.w3.org/2001/XMLSchema%23string%22%5e
http://www.w3.org/2001/XMLSchema%23string
http://www.w3.org/2001/XMLSchema%23stri%5e

</Company>
</involves_Company>
<mp_JobTitle rdf:datatype="http://www.w3.org/2001/XMLSchema#string">SoftAwa
</mp_JobTitle>
<involves_Employee rclf: resource-'#JohnJ5mith7>

</i_Employment>
</involvedln_Employment>
<involvedln_Employment rdf:resource="#Employment_JohnSmith_BestSoftware7>
<ip_EmployeeNameraf:datatype=Mp://www.w3\org^
>John Smith</ip_EmployeeName>
<ip_EmployeeAddress rdf:datatype="http://www.w3.org/2001/XMLSchema#date"
>123 Oak St</ip_EmployeeAddress>

</Employee>
</involves_Employee>
<involves_Company rdf:resource="#Best_Software_Company7>
<mp_Salaiyrdf:da{atype="http://www.w3.org/2001/XMLSchema#int''>40000</mp
<mp_StartDater(tf:datatype=,,http://www.w3.org/2001/XMLSchema#stnh
<mp_JobTitle rdf:datatyrje="http://www.w3.org/2001/XMLSchema#string">Software Developer
</mp_JobTitle>

</i_Employment>
</involvedln_Employment>
<involvedln_Employment rdf:resource=,'#Employment_JaneDoe_BestSoftware7>
<ip_CompanyName idf:datatype="http://www.w3.org/2001/XMLSchema#string',>Best Software Company
</ip_CompanyName>
<ip_CompanyAddress rdf:datatype=''http://www.w3.org/2001/XMLScherna#string">123 Office St
</ip_Com panyAdd ress>

</Company>
</involves_Company>
<mp_StartDatercif:datatype=nhttp://\̂ .w3.org/2001/XMLSchema#stri

</i_Employment>
</rdf:RDF>

<!- Created with Protege (with OWL Plugin 1.3, Build 225.1) http://protege.stanford.edu ->

128

http://www.w3.org/2001/XMLSchema%23string%22%3eSoftAwa
http://www.w3/org%5e
http://www.w3.org/2001/XMLSchema%23date
http://www.w3.org/2001/XMLSchema%23int''%3e40000%3c/mp
http://www.w3.org/2001/XMLSchema%23stnh
http://www.w3.org/2001/XMLSchema%23string%22%3eSoftware
http://www.w3.org/2001/XMLSchema%23string',%3eBest
http://www.w3.org/2001/XMLScherna%23string%22%3e123
http:///%5e.w3.org/2001/XMLSchema%23stri
http://protege.stanford.edu

APPENDIX B Person class example (section 4.3.3)
RDF/XML syntax

<?xmt version-1.0"?>
<rdf:RDF

xmlns:rclf="http://www.w3.org/1999/02/22-rdf-syntax-ns#''
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns=''http://vvw.owl<)ntologies.com/unnamed.owl#''

xml:base=''http://www.owl-ontologies.com/unnamed.owr'>
<owl:Ontology rdf:about="An example of declaring a class in terms of properties"^

</- Declaring meta-model classes: Substantial_Thing, Non_Substantial_Thing ->

<owi:Classrdf:about="#Substantial_Thing">
<owl:disjointWith>
<owl:Classrdf:ID="Non_Substantial_Thing7>

</owl:disjointWith>
</owl:Class>
<owl:Class rdf:about="#Non_Substantial_Thing">
<owl:disjointWith rdf:resource="#Substantial_Thing7>

</owl:Class>

<!-- Declaring the class Person and its intrinsic properties ->

<owl:Class rdf:ID="Person">
<rdfs:subClassOf>
<owl:Classrdf:ID="Substantial_Thing7>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_Name7>

</owl:onProperty>
<owl:cardinality rdf:datatyrje="http://www.w3.org/2001/XMLSchema#int">1</owl:rjardinality^

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http:7/wvwv.w3.org/2001/XMLSchema#inf>
<owl:onProperty>
<owl:DatatypePropertyrdf:ID="ip_DateOfBirth7>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://vvww3.org/20^
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_Gender"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

http://www.w3.org/1999/02/22-rdf-syntax-ns%23''
http://www.w3.org/2000/01/rdf-schema%23
http://www.w3.org/2002/07/owl%23
http://vvw.owl%3c)ntologies.com/unnamed.owl%23''
http://www.owl-ontologies.com/unnamed.owr'
http://www.w3.org/2001/XMLSchema%23int%22%3e1%3c/owl:rjardinality%5e
http://vvww3.org/20%5e

<owl: DatatypeProperty rdf:about="#ip_Name">
<rdfs:domain rdf:resource="#Person7>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLScherna#string7>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#ip_Gender">
<rdfs:range>
<owl:DataRange>
<owl:oneOf rdf:parseType="Resource">
<rdf:rest rdf:parseType="Resource">
<rdf:restrclf:resource="http://www.w3.org/1999/02/22-rdf-syrt
<rdf:firBtrdf:datatype="http://www.w3.org/2001/XMLSchema#^̂

</rdf:rest>
<rdf:tirstrdf:datatype="http://www.w3.org/2001/XMLSchema#stri

</owl:oneOf>
</owl:DataRange>

</rdfs:range>
<rdfs:domain rdf:resource="#Person7>

</owl: DatatypeProperty>

<owl:DatatypeProperty rdf:about="#ip_DateOfBirth">
<rdfs:domain rdf:resource="#Person7>
<rcifs:rangerdf:resource="hnp://wvvw.w3.org

</owl:DatatypeProperty>

<!- Declaring a class of substantial things Female_Person (an example of using owhhasValue restriction); this
class inherits all the constraints from the class Person and has an extra constraint of having a specific value (F)
for the ipjSender property ->

<owl:Classrdf:!D="Female_Person">
<rdfs:subClassOf rdf:resource="#Person7>
<rdfs:subClassOf>
<owl: Restriction
<owl:onProperty>
<owl:DatatypeProperty rdf:about="#ip_Gender7>

</owl:onProperty>
<owl:hasValuerdf:datatype="http://www.w3.org/2001/XMLSchema#string">F</ow

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<!- Declaring a specific instance of the class Person and its properties (i.e. property values for the generic
properties ->

<Person rdf:ID="JohnSmith">
<ip_Name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">John W. Smith</ip_Name>.
<ipj3enderrctf:datatype=Mp://www.w3.org/200
<ip_DateOfBirth rdf:datatype="http://www.w3.org/2001/XMLSchema#date">05/04/1960</ip_Date

</Person>

</rdf:RDF>

<!- Created with Protege (with OWL Plugin 1.3, Build 225.1) http://protege.stanford.edu ->

130

http://www.w3.org/2001/XMLScherna%23string7
http://www.w3.org/1999/02/22-rdf-syrt
http://www.w3.org/2001/XMLSchema%23%5e%5e
http://www.w3.org/2001/XMLSchema%23stri
http://www.w3.org/2001/XMLSchema%23string%22%3eF%3c/ow
http://www.w3.org/2001/XMLSchema%23string%22%3eJohn
http://www.w3.org/200
http://www.w3.org/2001/XMLSchema%23date%22%3e05/04/1960%3c/ip_Date
http://protege.stanford.edu

APPENDIX C Meta-model (Chapter 5) - RDF/XML syntax
<?xml version-'1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs=''http://vvww.w3.org/2000/01/rdf-scherna#,'
xmlns:owl=nhttp://www.w3.org/2002/07/owl#''
xmlns="http://www.owl<)ntologies.com/unnarned.owt#''
xml:base="http://www.owl-ontologies.com/unnamed.owr>

<owl:Ontology rdf:about="Meta-model"/>

<owl:Class rdf:ID="Substantial_Thing">
<rdfs:comment rdf:datatyrje="http://www.w3.org/2001/XMLSchema#string''>Meta-model class of all OWL

things representing ontological substantial things (in Bunge's ontology sense)</rdfs:comment>
<owl:disjointWith>
<owl:Class rdf:about="#Non_Substantial_Thing7>

</owl:disjointWith>
</owl:Class>

<owl:Classrdf:about="#Non_Substantial_Thing">
<rdfs:comment rdf:datatyrje=nhttp://www.w3.ofg/2001/XMLSchema#string">Meta-m class of all OWL

things that are not representing ontological substantial things</rdfs:comment
<owl:disjointWith rdf:resource="#Substantial_Thing7>

</owl:Class>

<owl:Class rdf:about="#Substantial_Thing_lnteraction">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string''>Meta-model class used to

represent interaction classes (to models sets of mutual properties) </rdfs:comment
<rdfs:subClassOf>

<owl:Class rdf:about="#Non_Substantial_Thing7>
</rdfs:subClassOf>
<owl:disjointWith rdf:resource="#Property_Value7>

</owl:Class>

<owl:Classrdf:ID="Property_Value">
<rdfs:comment rdf:datatype=''http://www.w3.org/2001/XlvlLSchema#string''> Meta-model class (optional)

used to represent special classes and instances modeling enumerated property values</rdfs:comment
<rdfs:subClassOf>
<owl:Classrdf:ID="Non_Substantial_Thing7>

</rdfs:subClassOf>
<owl:disjointWith>
<owl:Class rdf:ID="Substantial_Thing_lnteraction"/>

</owl:disjointWith>
</owl:Class>

<owl:Classrdf:ID="Composite_Thing">
<rdfs:comment rdf:datatype=''http://www.w3.org/2001/XMLSchema#string''>A class of all substantial things

that are composite things</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Substantial_Thing"/>
<owl:disjointWith>
<owl:Class rdf:about="#Simple_Thing7>

</owl:disjointWith>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="isComposedOf'/>

131

http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://vvww.w3.org/2000/01/rdf-scherna%23,'
http://www.w3.org/2002/07/owl%23''
http://www.owl%3c)ntologies.com/unnarned.owt%23''
http://www.owl-ontologies.com/unnamed.owr
http://www.w3.org/2001/XMLSchema%23string''%3eMeta-model
http://www.w3.ofg/2001/XMLSchema%23string%22%3eMeta-m
http://www.w3.org/2001/XMLSchema%23string''%3eMeta-model
http://www.w3.org/2001/XlvlLSchema%23string''
http://www.w3.org/2001/XMLSchema%23string''%3eA

</owl:onProperty>
<owl:minCardinality rdf:datatype-'http://www.w3.org/2001/XMLSchema#int">1</owl:minCard

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#isComposedOF/>

</owl:onProperty>
<owl:allValuesFrom>
<owl:Classrdf:ID="Component_Thing7>

</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:Classrdf:alx>ut=,'#Componentjrhing">
<rdfs:comment rdf:datatyrje="http://www.w3.org/2001/XMLSchema#string''>A class of all substantial things

that are components of some composite substantial thing</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Substantial_Thing7>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty>
<owl:ObjectProperty rdf: I D=" isComponentOf 7>

</owi:onProperty>
<owl:minCardinality rdf:datatype-'http://www.w3.org/200
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectPro petty rdf:about=°#isComponentOf/>

</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Composite_Thing7>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Simple_Thing">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Meta-model class of all

substantial things which are not composed of any other ontological substantial things</rdfs:comment
<rdfs:subCIassOf rdf:resource=7̂ Substantial_Thing7>
<owl:disjointWith rdf:resource="#Composite_Thing7>

</owl:Class>

<owl:ObjectProperty rdf:about="#isComposedOf >
<rdfs:comment rdf:datatyrje="http://www.w3.org/2001/XMLSchema#string">Object property used to

represent that a certain substantial thing has another substantial thing as a component It links an
instance of a Composite_Thing class to an instanse of a Component_Thing class. Inverse property -
isComponentOf.

</rdfs:comment>
<rdfs:domain rdf:resource="#Composite_Thing7>
<rdfs:range rdf:resource="#Component_Thing7>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isComponentOf >

132

http://www.w3.org/2001/XMLSchema%23int%22%3e1%3c/owl:minCard
http://www.w3.org/2001/XMLSchema%23string''%3eA
http://www.w3.org/200
http://www.w3.org/2001/XMLSchema%23string%22%3eMeta-model
http://www.w3.org/2001/XMLSchema%23string%22%3eObject

<rdfs:domain rdf:resource="#Component_Thing7>
<rdfs:rangerdf:resource="#Composite_Thing7>

</owl:ObjectProperty>

</rdf:RDF>
<!-- Created with Protege (with OWL Plugin 1.3, Build 225.1) http://protege.stanford.edu

http://protege.stanford.edu

APPENDIX D Library example (Chapter 6) - RDF/XML
syntax
<?xmlversion="1.0"?>
<rdf:RDF

xmlns:irJf=Mp://v\Aww
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#''
xmlns="http://www.owl<)ntologies.a)m/unnamed.owl#''

xml:base="http://www.ow^
<owl:Ontology rdf:about="7>

</- Declaring meta-model classes and properties -->

<owl:Class rdf:about="#SubstantiaLThing">
<owl:disjointWith>
<owl:Classrdf:ID="Non_Substantial_Thing7>

</owl:disjointWith>
</owl:Class>

<owl:Class rdf:about="#Non_Substantial_Thing">
<owl:disjointWith rdf:resource="#Substantial_Thing7>

</owl:Class>
<owl:Class rdf:about="#Substantial_Thing_lnteraction">

<rdfs:subClassOf>
<owl:Class rdf:about="#Non_Substantial_Thing7>

</rdfs:subClassOf>
</owl:Class>

<owl:ObjectProperty rdf:about="#isComponentOf>
<owl:inverseOf rdf:resource="#isComposedOf/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about=7̂ isComposedOf>

<owl:inverseOf>
<owl:ObjectProperty rdf:about="#isComponentOf7>

</owl:inverseOf>
</owl:ObjectProperty>

</- Declaring the classes of substantial things and associating them with properties using property
restrictions->

<owl:Class rdf:ID="Person">
<rdfs:subClassOf>
<owl:Classrdf:ID="Substantial_Thing7>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypePropertyrdf:ID="ip_DateOfBirth7>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://wvvW.w3.org/2001/XMLSchema#int">1</owl̂

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>

1 3 4

http://www.w3.org/2000/01/rdf-schema%23
http://www.w3.org/2002/07/owl%23''
http://www.owl%3c)ntologies.a)m/unnamed.owl%23''
http://www.ow%5e
http://wvvW.w3.org/2001/XMLSchema%23int%22%3e1%3c/owl%5e

<owl:DatatypeProperty rdf:ID="ip_PersonAddress"/>
</owl:onProperty>
<owl:cardinality rdf:datatype=''http://wvw.w3.org/2001/XMLSchema#int"̂

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_PersonName"/>

</owl:onProperty>
<owl:cardinality rdf:datatype-'http://www.w3.org^

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Library_Member">
<rdfs:subClassOf rdf:resource="#Person7>
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:min
<owl:onProperty>
<owl:ObjectProperty rdf:about="#inyolvedln_LibraryMembership7>

</owl:onProperty>
</owl:Restriction>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:about="#l_Library_Membership7>

</owl:allValuesFrom>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#involvedln_LibraryMembership7>

</owl:onProperty>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:about="#Borrower">
<rdfs:subClassOf>

<owl: Class rdf: I D=" Library_Member7>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType=''Collection">
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="involvedln_ltemLoan7>

</owl:onProperty>
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int''>1</owl:min

</owl:Restriction>
<owl: Restriction
<owl:allValuesFrom rdf:resource="#l_ltemLoan7>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#involvedln_ltemLoan7>

135

http://wvw.w3.org/2001/XMLSchema%23int%22%5e
http://www.w3.org%5e
http://www.w3.org/2001/XMLSchema%23int%22%3e1%3c/owl:min
http://www.w3.org/2001/XMLSchema%23int''%3e1%3c/owl:min

</owl:onProperty>
</owl: Restriction

</owl:intersectionOf>
</owl:Class>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:about="#Library">
<rdfs:subClassOf>
<owl:Classrdf:about="#Substantial_Thing7>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality r{jf:datatype="http://vvw.w3.org/2001/XMLSch
<owl:onPrbperty>
<owl:DatatypeProperty rdf:ID="ip_LibraryName7>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality r(Jf:datatype="http://www.w3.org/2001/XMLSchema#int">
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_LibraryAddress7>

</owl;onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl: Restriction
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_NumberOfSections7>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ow^

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="involvedln_LibraryMembership7>

</owl:onProperty>
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSch

</owl:Restriction>
<owl:Restriction>
<owl:allValuesFrom><owl:Class rdf:ID="l_Library_Membership7> </owl:allValuesFrom>
<owl:onProperty>
<owl:ObjectProperty ro :̂about="#invoivedln_LibraryMembership7>

</owl:onProperty>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class>
<owl: i ntersectio n Of rdf:parseType="Collection">

136

http://vvw.w3.org/2001/XMLSch
http://www.w3.org/2001/XMLSchema%23int
http://www.w3.org/2001/XMLSchema%23int%22%3e1%3c/ow%5e
http://www.w3.org/2001/XMLSch

<owl: Restriction
<owl:onProperty>
<owl:ObjectProperty rdf:ID="involvedln_ltemLoan7>

</owl:onProperty>
<o wl: m in Card i nal ity rdf:datatype=''http://www.w3.org/2001/XMLSchema#int''>1</owl:rninCardinality>

</owl:Restriction>
<owl:Restriction>
<owl:allValuesFrom><owl:Class rdf:ID="l_ltemLoan7> </owl:allValuesFrom>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#involvedln_ltemLoan7>

</owl:onProperty>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="isComposedOf/>

</owl:onProperty>
<owl:someValuesFrom><owl:Class rdf:ID=Tibrary_Section7></owl:someValuesFrom>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Library_Section">
<rdfs:subClassOf>
<owl:Classrdf:about="#Substantial_Thing7>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://www.w3.oig/2001/XMLSchema#inf>1</owl:cardinality>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_SectionName7>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="isComponentOf7>

</owl:onProperty>
<owl:someValuesFrom rdf:resource="#Library7>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Classrdf:about="#Library_ltem">
<rdfs:subClassOf rdf:resource="#Substantial_Thing7>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_Subject"/>

</owl:onProperty>
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:minCardinality>

</owl:Restriction>

137

http://www.w3.org/2001/XMLSchema%23int''%3e1%3c/owl:rninCardinality
http://www.w3.oig/2001/XMLSchema%23inf%3e1%3c/owl:cardinality
http://www.w3.org/2001/XMLSchema%23int%22%3e1%3c/owl:minCardinality

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:cardin
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_Title"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchem
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_Barcode"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_LoanDaysAllowed"/>

</owl:onProperty>
<owl:cardinality rtf:datatype=" http://www.w3.org/2001/XMLSchem

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#BorrowedJtem">
<rdfs:subClassOf>
<owl:Class rdf:about="#LibraryJtem7>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="ColIection">
<owl:Restriction>
<owl:onProperty>
<owi:ObjectProperty rdf:about="#involvedlnJtemLoan7>

</owl:onProperty>
<owl:cardinalityrdf:datatype="http://www.w3.org/2001/XMLSchema#int"
>1</owl:cardinality>

</owl:Restriction>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#involvedlnJtemLoan7>

</owl:onProperty>
<owl:allValuesFrom rdf:resource="#l_ltemLoan7>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Book">
<rdfs:subClassOf>
<owl:Classrdf:ID="Library_ltem7>

</rdfs:subClassOf>

http://www.w3.org/2001/XMLSchema%23int%22%3e1%3c/owl:cardin
http://www.w3.org/2001/XMLSchem
http://www.w3.org/2001/XMLSchem
http://www.w3.org/2001/XMLSchema%23int

<rdfs:subClassOf>
<owl: Restriction
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_Publisher"/>

</owl:onProperty>
<owl:cardinality rdf:datatype-'http://vvvM.w3.org/2001/XMLSchema#int''>1</owl:cardinal̂

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#inf>1</owl:minCardinality^
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_Author"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="Magazine">
<rdfs:subClassOf>
<owl:Classrdf:about="#Library_ltem7>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_Volume7>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:cardinal'î

</owl: Restriction
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int''>1</owl:cardinality>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_lssue7>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="Music_CD">
<rdfs:subClassOf>
<owl:Class rdf:about="#Library_ltem7>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype-'http://www.w3.org/2001/XMLSchema#int'' >1</owl:cardinality>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="ip_Artist7>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:cardinality rdf:datatype="http://vvww.w3.org/2001/XMLSchema#int''>1</owl:card
<owl:onProperty>

139

http://vvvM.w3.org/2001/XMLSchema%23int''%3e1%3c/owl:cardinal%5e
http://www.w3.org/2001/XMLSchema%23inf%3e1%3c/owl:minCardinality%5e
http://www.w3.org/2001/XMLSchema%23int%22%3e1%3c/owl:cardinal'i%5e
http://www.w3.org/2001/XMLSchema%23int''%3e1%3c/owl:cardinality
http://www.w3.org/2001/XMLSchema%23int''
http://vvww.w3.org/2001/XMLSchema%23int''%3e1%3c/owl:card

<owl: DatatypeP ra pe rty rdf:ID="ip_Content"/>
</owl:onProperty>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

</- Declaring the interaction classes and associating them with properties using property restrictions -

<owl:Class rdf:about="#l_Library_Membership">
<rdfs:subClassOf>
<owl:Class rdf:about="#Substantial_Thing_lnteraction7>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="mp_LibraryCardNumber7>

</owl:onProperty>
<owl:cardinality rdf:datatype=Mp://www.w3.org/2001M^

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl: Restriction
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:cardinalî ^
<owl:onProperty>
<owi:DatatypeProperty rdf:ID="mp_StartDate7>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:FunctionalProperty rdf:ID="mp_MembershipStatus7>

</owl:onProperty>
<owl:cardinality rdf:datatype=''http://www.w3.org/2001/XMLSchema#int">1</owl:cardinan

</owl: Restriction
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="involves_LibraryMember"/>

</owl:onProperty>
<owl:cardinality rdf:datatype-'http://vvvvw.w3.org/2001/XMLSchem

</owl:Restriction>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#involves_LibraryMember"/>

</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Library_lvlembern/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</rdfs:subClassOf>
<rdfs:subClassOf>

140

http://www.w3.org/2001M%5e
http://www.w3.org/2001/XMLSchema%23int%22%3e1%3c/owl:cardinali%5e%5e
http://www.w3.org/2001/XMLSchema%23int%22%3e1%3c/owl:cardinan
http://vvvvw.w3.org/2001/XMLSchem

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl: Restriction
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:r̂
<owl:onProperty>
<owl:ObjectProperty rdf:about="#involves_Libraty7>

</owl:onProperty>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#involves_Library7>

</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Library7>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="l_ltemLoan">
<rdfs:subClassOf>
<owl:Classrdf:ID="SubstantiaLThingJnteraction7>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl :Dataty peProperty rdf: I D=" mp_dateOut7>

</owl:onProperty>
<owl:cardinality rdf:datatype=Mp://www.w3.org/2001/̂ ^

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl: Restriction
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1^
<owl:onProperty>
<owl:DatatypeProperty rdf:ID="mp_dateDue7>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="involves_Borrower7>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www^

</owl:Restriction>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:ID="Borrower7>

</owl:allValuesFrom>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#involves_Borrower"/>

</owl:onProperty>
</owl:Restriction>

http://www.w3.org/2001/XMLSchema%23int%22%3e1%3c/owl:r%5e
http://www.w3.org/2001/%5e%5e
http://www.w3.org/2001/XMLSchema%23int%22%3e1%5e
http://www%5e

</owl:intersectionOf>
</owl:Class>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collectionn>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="involves_Libraty7>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owlx

</owl:Restriction>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#involves_Library"/>

</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:ID="Library7>

</owl:allValuesFrom>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="involves_Borrowedltem7>

</owl:onProperty>
<owl:cardinality rdf:datatype="http://\mflw.w3.org/2001/XMLSchem

</owl:Restriction>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Classrdf:ID="Borrowed_ltem7>

</ow1:allValuesFrom>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#involves_Borrowedltem7>

</owl:onProperty>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

</rdfs:subClassOf>
</owl:Class>

</- Declaring substantial properties (intrinsic and mutual) ->

<owl:DatatypeProperty rdf:about="#ip_PersonName">
<rdfs:range rdf:resourre="hnp://www.w3.org/2001/XMLSchema#string7>
<rdfs:domain rdf: resource="#Person7>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#ip_PersonAddress">
<rdfs:range rdf:resource="http://\m(w.w3.org/2001/XMLSchema#stri
<rdfs:domain rdf:resource="#Person7>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#ip_DateOfBirth">

http://www.w3.org/2001/XMLSchema%23int%22%3e1%3c/owlx
http:///mflw.w3.org/2001/XMLSchem
http://www.w3.org/2001/XMLSchema%23string7
http:///m(w.w3.org/2001/XMLSchema%23stri

<rdfs:domain rdf:resource="#Person7>
<rdfs:range rdf:resource=''http://www.w3.org/2001/XMLScherna#date'7>

</owl: DatatypeProperty>
<owl:DatatypeProperty rdf:about="#ip_LibraryName">
<rdfs:range rdf:resource=''http://www.w3.org/2001/XMLSchema#string7>
<rdfs:domain rdf:resource="#Library7>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#ip_LibraryAddress">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string7>
<rdfs:domain rdf: resource="#Library7>

</owl: DatatypeProperty>
<owl:DatatypeProperty rdf:about="#ip_NumberOfSections">
<rdfs:range rdf:resource=''http://www.w3.org/2001/XMLSchema#nonPositivelntegerJ'/>
<rdfs:domain rdf:resource="#Library7>

</owl: DatatypeProperty>
<owl:DatatypeProperty rdf:about="#ip_SectionName">
<rdfs:domain rdf:resource="#Library_Section7>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string7>

</owl: DatatypeProperty>

<owl: DatatypeProperty rdf :about="#ip_T'rtle" >
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string7>
<rdfs:domain rdf:resource="#Library_ltem7>

</owl: DatatypeProperty>
<owl:DatatypeProperty rdf:about="#ip_Subject">
<rdfs:domain rdf:resource="#Library_ltem7>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLScherna#string7>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#ip_Barcode">
<rdfs:domain rdf:resource="#Library_ltem7>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string7>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#ip_LoanDaysAllowed">
<rdfs:domain rdf:resource="#Library_ltem7>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#nonNegativelntege^

</owl: DatatypeProperty>
</owl:DatatypeProperty>
<owl: DatatypeProperty rdf:about="#ip_Author''>
<rdfs:domain rdf: resource="#Book7>
<rdfs:range rdf:resource="http://wvvw.w3.org/2001/XMLSchema#string7>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#ip_Publisher">

<rdfs:domain rdf:resource="#Book7>
<rdfs:range rdf:resourre="http://www.w3.org/2001/XMLSchema#string7>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#ip_Volume">
<rdfs:domain rdf:resource="#Magazine7>
<rdfs:rangerdf:resource="http://www.w3.org/2001/XMLSchema#int7>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#ipJssue">
<rdfs:range rdf:resource="http://wvvw.w3.org/2001/XMLScherna#int7>
<rdfs:domain rdf:resource="#Magazine7>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf: abo ut="#ip_Artist" >

<rdfs:domain rdf:resource="#Music_CD7>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLScherna#string7>

http://www.w3.org/2001/XMLScherna%23date'7
http://www.w3.org/2001/XMLSchema%23string7
http://www.w3.org/2001/XMLSchema%23string7
http://www.w3.org/2001/XMLSchema%23nonPositivelntegerJ'/
http://www.w3.org/2001/XMLSchema%23string7
http://www.w3.org/2001/XMLSchema%23string7
http://www.w3.org/2001/XMLScherna%23string7
http://www.w3.org/2001/XMLSchema%23string7
http://www.w3.org/2001/XMLSchema%23nonNegativelntege%5e
http://wvvw.w3.org/2001/XMLSchema%23string7
http://www.w3.org/2001/XMLSchema%23string7
http://www.w3.org/2001/XMLSchema%23int7
http://wvvw.w3.org/2001/XMLScherna%23int7
http://www.w3.org/2001/XMLScherna%23string7

</owl: Dataty peProperty>
<owl:DatatypeProperty rdf:about="#ip_Content">
<rdfs:domain rdf:resource="#Music_CD7>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string7>

</owl: DatatypeProperty>

<owl: DatatypeProperty rdf:about="#mp_LibraryCardNumber">
<rdfs:domain rdf:resource="#l_Library_Membership7>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string7>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="#mp_StartDate">
<rdfs:domain rdf:resource="#l_Library_Membership7>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLScherna#date7>

<owl:FunctionalProperty rdf:about="#mp_MembershipStatus">
<rdfs:domain rdf:resourc^=''#l_Library_Membership7>
<rdf:type rdf:resource=,,http://www.w3.org/2002/07/owl#DatatypeProperty7>
<rdfs:range>
<owl:DataRange>
<owl :oneOf rdf :parseType=" Resou rce" >
<rdf:rest rdf:parseType="Resource">
<r(ff:nrstrdf:datatype="http://www.w3.org/2001/XMLSchema#string"̂
<r(ff:rest rclf:resource=Mp://w^

</rdf:rest>
<ixJf:firstrdf:datatype="http://www.w3.org/2001/XMLSchema#string"̂

</owl:oneOf>
</owl:DataRange>

</rdfs:range>
</owl:FunctionalProperty>
<owl:DatatypeProperty rdf:about="#mp_dateOut">
<rdfs:range rdf:resource=''http://www.w3.org/2001/XMLSchema#date7>
<rdfs:domain rdf:resource="#i_ltemLoan7>

</owl:DatatypeProperty>
<owl: DatatypeProperty rdf:about="#mp_dateDue">
<rdfs:rangerdf:resour(̂ ="http://www.w3.org/2001/XMLSchema#date7>
<rdfs:domain rdf:resource="#l_ltemLoan7>

</owl:DatatypeProperty>

<!-Declaring special linking object properties (for linking substantial thing and interaction classes)

<owl:ObjectProperty rdf:about="#invoIvedln_LibraryMembership">
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Library_Membef7>
<owl:Class rdf:about="#Library7>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdfs:range rdf:resource="#l_Library_Membership7>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#involvedlnJtemLoan">
<rdfs:range rdf:resource="#l_ltemLoan7>
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">

http://www.w3.org/2001/XMLSchema%23string7
http://www.w3.org/2001/XMLSchema%23string7
http://www.w3.org/2001/XMLScherna%23date7
http://www.w3.org/2002/07/owl%23DatatypeProperty7
http://www.w3.org/2001/XMLSchema%23string%22%5e
http://www.w3.org/2001/XMLSchema%23string%22%5e
http://www.w3.org/2001/XMLSchema%23date7
http://www.w3.org/2001/XMLSchema%23date7

<owl: Class rdf: about="#Borrowed Jtem"/>
<owl:Classrdf:about="#Borrower"/>
<owl:Class rdf:about="#Library"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
</owl: ObjectProperty>

<owl:ObjectProperty rdf:about="#Jnvolves_Library">
<rdfs:range rdf:resource="#Library"/>
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Classr<jf:about="#l_Library_Membership7>
<owl:Classrdf:about="#l_ltemLoan7>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#involves_LibrafyMember">
<rdfs:range rdf:resource="#LibraryJv1ember7>
<rdfs:domain rdf:resourc«="#l_Library_Membership7>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#involves_Borrower">
<rdfs:domain rdf:resource="#l_ltemLoan7>
<rdfs:range rdf:resource="#Borrower"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#involves_Borrowedltem">
<rdfs:range rdf:resource="#Borrowed_ltem7>
<rdfs:domain rdf:resource="#l_ltemLoan7>

</owl:ObjectProperty>

</rdf:RDF>

<!- Created with Protege (with OWL Plugin 1.3, Build 225.1) http://protege.stanford.edu -

http://protege.stanford.edu

APPENDIX E List of Guidelines and Rules

Table 2 below provides a summarized list of modeling guidelines, rules, and

corollaries developed in the thesis. The rules are listed in the order they appeared in the

thesis and are grouped based on the representation issues they address (with reference to the

respective thesis sections). For additional convenience, the table includes for each rule or

guideline the number of the page where the rule or guideline is proposed in the thesis.

Table 2: List of proposed modeling guidelines, rules, and corollaries

Guidelines, rules and corollaries

Representation of substantial things and classes

Guideline 1: Substantial things (Bunge-things) in a domain should be modeled
in OWL ontologies as OWL individuals.
Guideline 2: OWL ontologies intended to model real world domains should
clearly distinguish between OWL individuals representing substantial things (in
the ontological sense) and OWL individuals representing other concepts (i.e.
non-substantial, or conceptual, things).

Modeling Rule 1: In order to distinguish between OWL individuals
representing substantial things and OWL individuals used for other purposes,
an OWL ontology intended to model a real world domain should include two
disjoint upper-level classes:

• Substantial_Thing class - the extension of this class would consist of all OWL
individuals that represent substantial things

• Non_Substantial_Thing class - the extension of this class would consist of all
OWL individuals that are used to represent anything other than substantial
things.

Corollary 1: Substantial things should be modeled as OWL individuals that are
instances of the class Substantial_Thing or its subclasses; OWL individuals used
for other purposes should be made instances of the Non_Substantial_Thing class
or its subclasses.

Corollary 2: Any OWL class, all instances of which are intended to represent
substantial things, should be made a subclass of the Substantial_Thing class.
OWL classes used for other purposes should be made subclasses of the
Non_Substantial_Thing class

Corollary 3: No OWL individual in an ontology can represent both a
substantial thing and non-substantial thing at the same time

Corollary 4: No OWL class can (other than built-in top class OwliThing,) can
include both OWL individuals representing substantial things and OWL
individuals representing non-substantial things

Corollary 5: Other OWL constructs (such as OWL properties) should not be
used to represent substantial things

146

Guidelines, rules and corollaries Section/
Paqe#

Representation of properties - general recommendations 4.2.2

Guideline 3:

• In OWL ontologies modeling real world domains, ontological properties in
general should be modeled as OWL properties, and ontological properties
in particular should be modeled as property values of those OWL
properties that represent the corresponding properties in general;

• Depending on a property type (e.g. intrinsic or mutual) and model usage
and reasoning requirements, ontological properties in particular (property
values) may be represented either as XML datatype values or as special
OWL classes and their individuals;

• If ontological properties in particular (property values) are modeled using
OWL classes/ individuals, then such classes and individuals should be
clearly distinguished from OWL classes and individuals that represent
substantial things.

Corollary 6: OWL classes (individuals) representing property values should be
subclasses (instances) of the upper-level class Non_Substantial_Thing

Guideline 4: OWL ontologies modeling real world domains should distinguish
among OWL properties that are used to represent the following groups of
properties:

• Ontological intrinsic properties of substantial things
• Ontological mutual properties of substantial things
• Other OWL properties, i.e. properties that are not intended to represent

substantial properties but are used for other purposes in the ontology
Modeling Rule 2: If an OWL property is intended to represent an ontological
(substantial) property, then the domain of such property should be either the
SubstantiaLThing class or its subclasses.

p42

p.42

p.43

p.44

Representation of intrinsic properties 4.2.3

Modeling Rule 3: If an OWL class (and its instances) is used to represent a
collection ofproperty values for some OWL property representing an intrinsic
generic property of substantial things, then
• This intrinsic generic property should be represented as an OWL object

property (rather than an OWL datatype property)
• The domain of this property should be the class SubstantialLThing or some of

its subclasses
• The range of this property should be defined as the OWL class that is used

to represent property value collection
• The OWL class representing the collection of property values should be

declared a subclass of the Non_Substantial_Thing upper-level class (to
distinguish it from substantial thing classes)

Modeling Rule 4: If OWL classes and individuals are used in an OWL
ontology modeling a real world domain, then a special upper-level class
Property_Value should be included in the ontology as follows:
• This upper level class Property_Value should be declared a subclass of the

p51

p.52

147

Guidelines, rules and corollaries Section/
Page#

upper-level class Non J5ubstantial_Thing
Any OWL class used to represent a collection of property values for some
ontological property should be made a subclass of the upper level class
PropertyValue (and thus also a subclass of the upper-level class
Non_Substantial_Thing)

Representation of bundles of mutual properties based on interactions 4.2.4.4

Guideline 5: In OWL ontologies modeling real world domains, a set of mutual
properties of substantial things arising out of the same interaction should be
represented as OWL properties associated with the specially defined OWL
class - an interaction class

Guideline 6: Each interaction class represents a set of related concurrent
mutual properties (usually arising out of the same interaction). Different
interaction classes should be used if sets of properties are not concurrent
and/or pertain to different interactions.

Modeling Rule 5: Interaction classes should be modeled as subclasses of the
upper level class Non_Substantial_Thing (since they do not represent substantial
ontological things)

Modeling Rule 6: To further distinguish interaction classes from other types of
classes in OWL ontologies, additional methods can be employed:

• A special upper-level class, Substantial_Thing_lnteraction, can be created as a
subclass of the upper-level class Non_Substantial_Thing. All interaction
classes then would be modeled as subclasses of this class
Substantial_Thing_lnteraction (which would also automatically make them
subclasses of the Non_Substantial_Thing class);

• Naming conventions can be used in naming interaction classes and
instances for easier identification (e.g. a prefix I_ or R_ (which stands for
'interaction' or 'relation')

Modeling Rule 7: Each individual mutual property in a bundle of concurrent
properties (represented by some interaction class) should be modeled as an
OWL property in accordance with the following rules:

• The domain of each property should be the interaction class representing
the bundle
• Use of a prefix (e.g. mp_) is recommended in mutual property name to
distinguish it from other types ofproperties (to conform to Guideline 4)

Modeling Rule 8: A special OWL object property should be defined to link
OWL classes (and their instances) that represent substantial things sharing a
set of mutual properties to the interaction class that represents this set of
shared mutual properties:

• This OWL object property represents the ontological mutual property of
having the relationship of interest (or participating in the respective
interaction that gives rise to that set of mutual properties);

• The domain of this OWL object property should be defined as a union of the

p.59

p.59

p.59

p.59

p.60

p.60

148

Guidelines, rules and corollaries Section/
Page#

classes that represent interacting substantial things related by the
respective interaction class; the range of this object property should be the
respective interaction class;

• Use of naming conventions (e.g. a prefix 'lnvolvedln_' combined with the
interaction class name) is recommended for such object property to
explicitly show that the substantial things possessing it are involved in a
particular interaction (to which this object property links them).

Modeling Rule 9 : For each class of substantial things involved in an
interaction, a special OWL object property should be defined to link the OWL
interaction class representing the shared set of mutual properties back to the
OWL classes (and their instances) representing the involved substantial things
sharing this set of mutual properties:

• The domain of this object property should be the respective interaction
class; the range of this property should be defined as a union of the classes
that represent interacting substantial things that participate in this
interaction;

• Use of naming conventions (e.g. a prefix 'InvolvesJ combined with the
respective substantial thing class name) is recommended for such object
properties to show explicitly that this property links the interaction class to
a specific class of things involved in the interaction.

p.61

Representation of mutual properties as OWL object properties directly
Unking two substantial things

4.2.4.5

Modeling Rule 10: In OWL ontologies modeling real world domains, if an
OWL object property is used to represent the existence of a relationship
between two substantial things (i.e. a mutual property of having this
relationship), then

• Two mutually inverse OWL object properties should be defined to link
pairs of individuals - instances of classes A and B respectively, where A
and B are classes of instances representing substantial things having a
relationship

• One of these two properties should have the class A as its domain and the
class B as its range, while the other property should have the class B as its
domain and the class A as its range

• Use of naming conventions (such as a prefix 'mp_') is recommended for
both these object properties to indicate that they represent a mutual
property (existence of the relationship) shared by the two things

Modeling Rule 11: A non-binding mutual property shared by two substantial
things can be represented using an OWL object property to link the two OWL
individuals representing those two things.

p.65

p.67

149

Guidelines, rules and corollaries Section/
Page#

Representation of ontological classes/kinds based on properties

Guideline 7: Ontological (Bunge's) classes, kinds, or natural kinds as sets of
substantial things correspond to OWL class extensions (i.e. sets of OWL
individuals representing substantial things).
Modeling Rule 12: If the class extension of some OWL class is intended to
represent an ontological class, kind, or natural kind, then such class should be
declared a subclass of the upper-level class Substantial_Thing.
Modeling Rule 13: In OWL ontologies representing real world domains, if an
OWL class is intended to model an ontological class or kind, then it should not
be defined only by class name or only by direct enumeration of instances (i.e.
without representing any information about common properties of class
instances)

Corollary 7: In OWL ontologies representing real world domains, subclasses
of the class Substantial_Thing should not be defined simply by class name or by
enumeration of instances (i.e. without representing any information about
common properties of class instances)

Modeling Rule 14: An ontological class or kind C, modeled by a functional
schema with the state functions modeling some common properties Pi, Pn of
this class/kind C, can be represented in OWL as the class extension of an OWL
class defined as follows:

• A named OWL class (e.g. ClassC) should be created;

• Each of the properties Pi, Pn should be modeled by a suitable OWL
property (in accordance with Guidelines 3-7 and Modeling Rules 2-11 on
property representation);

• Class axiom(s) for the ClassC should be included that state (or imply) that
all instances of the ClassC necessarily possess each property Pi;

• To achieve that, such axioms should state that the classC is a subclass of
the anonymous class defined by suitable property restriction on the
property Pi, for each Pi. Or, alternatively, the ClassC can be declared to be
a subclass of the intersection of the anonymous classes defined by suitable
property restrictions for each of the properties Pi.

Modeling Rule 15: If a set of ontological properties Pi, Pk is a subset of
common properties of a class or kind C that is sufficient to classify a thing as
an instance of the class C (i.e. Pi, Pk are class identifying properties), then
this information can be represented in OWL in the following way:

• A class axiom for the OWL class representing the class C should be defined
to represent the fact that possessing properties Pi, Pk is a necessary and
sufficient condition for individuals to be members of the class C

• This class axiom should state that the class C is equivalent to the
intersection of the anonymous classes defined by suitable property
restrictions for each of the properties Pi, Pk. (where each property
restriction should imply the possession of the respective property Pi by all
the instances of the class C).

150

Guidelines, rules and corollaries Section/
Page #

Modeling Rule 16: Every OWL class representing an ontological class or kind
(and thus, modeled as a subclass of the class SubstantiaLThing) should have or
imply non-empty class extension.

Modeling Rule 17: If an OWL class represents an ontological class or kind
(defined by a set of common properties) then the property restrictions used in
the class description for the respective OWL properties (which model common
class properties) should not imply optional possession of a property (e.g. a zero
cardinality constraint or zero minimum cardinality constraint). Instead,
subclassification with property restrictions implying 'mandatory' possession of
properties by all instances of the subclass is preferable.

Modeling Rule 18: In OWL ontologies modeling real world domains, if classes
A and B represent some ontological classes (i.e. modeled as subclasses of the
SubstantiaLThing class), and B is a subclass of A, then the class definition of the
subclass B should reflect the semantic difference (in terms of properties)
between the superclass A and its subclass B.

This distinction can be represented in one of the following ways:

• by including in the definition of the subclass B one or more additional
property restrictions for properties that are acquired by the instances of the
subclass B compared to the instances of the superclass A, or

• by including in the definition of the subclass B one or more property
restrictions constraining some properties of the superclass A for the
instances of the subclass B, or

• by including in the definition of the subclass B one or more property
restrictions for subproperties of some properties of class A

p.83

p.84

p.88

Relationships governing classes, individuals and properties (integrity
rules and guidelines)

4.4.1

Guideline 8: Every OWL individual representing a substantial individual (real
world instance) should possess at least one substantial property. Possession of
a property can be represented by associating this individual with a property
either at the instance level or at the class level (via class membership).

Guideline 9: Every OWL property modeling an ontological substantial
property should be possessed by at least one OWL individual representing a
substantial thing. This can be represented by associating the property with at
least one individual either at individual level or at class level (through using a
suitable property restriction in class definition).

Guideline 10: Every OWL class representing an ontological class or kind (i.e.
a subclass of the class SubstantiaLThing) should have at least one property. That
is, the class definition should include a class axiom that states a necessary
condition for this class in terms of a suitable property restriction for at least
one OWL property representing an ontological property shared by all instances
of the class.

p.94

p.94

p.95

151

Guidelines, rules and corollaries Section/
Page#

Representation of composition relationships 4.5

Modeling Rule 19: To represent composition relationship between substantial
things in OWL ontologies of real world domains, two mutually inverse object
properties should be defined: isComposedOf and isComponentOf. These
properties would link OWL individuals representing composite things to their
component things, and OWL individuals representing component things back to
their composites, respectively.
Modelng Rule 20: To model explicitly that substantial things are composites
or components of other things, two upper level classes can be created in OWL
ontologies: Composite_Thing and Component_Thing:

• Both classes should be modeled as subclasses of the Substantial_Thing upper
level class;

• The class Composite_Thing can be defined (using class axioms with a
cardinality or an owl:SomeValuesFrom property restriction) as the class of
all OWL individuals that are instances of the class Substantial_Thing and
possess the property isComposedOf

• The class Component_Thing can be defined (using class axioms with a
cardinality or an OwLSomeValuesFrom property restriction) as the class of
all OWL individuals that are instances of the class Substantial_Thing and
possess the property isComponentOf

Corollary 8: OWL individuals representing substantial things that are
components of some composite thing should be declared or inferred to be
instances of the Component_Thing class. OWL individuals representing
composite substantial things should be declared or inferred to be instances of
the Composite_Thing class.

Corollary 9: Any OWL class such that all instances of that class represent
substantial composite things should be declared or inferred to be a subclass of
the Composite_Thing class. Any OWL class all instances of which represent
substantial component things should be declared or inferred to be a subclass of
the Component_Thing class.

Modeling Rule 21: Every OWL individual representing a composite thing
should be associated (at the instance or at the class level) with at least one
OWL property representing an intrinsic or mutual ontological property that is
an emergent property of the composite thing.

Modeling Rule 22:

• OWL properties that model hereditary properties of a composite thing can
be associated both with OWL individuals (or classes, at the class level)
representing the respective component thing(s) and with OWL individuals
(or classes) modeling the composites

• OWL properties that model emergent properties of a composite thing
should be associated with OWL individuals (or classes, at the class level)
representing the composite but not with any individuals (classes)
representing components of this composite

p.97

p.99

p. 100

p. 100

p. 100

p. 100

152

