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abstract 
Deciphering the neural basis of brain function wil l require a significant 

departure from the reductionistic status quo that has dominated the neurosciences 
over the past 50 years. In the domain of neurophysiology, this means supplanting 
single unit recording with electrodes capable of monitoring the activity of 
hundreds, and ultimately thousands, of neurons simultaneously. Conducting 
experiments on one or a few neurons at a time and then making elaborate 
conclusions or models based on these piecewise experiments is not sufficient. 
Therefore, the objectives of my dissertation were to develop a variety of multisite 
silicon-based electrode arrays, or polytrodes, and establish a set of analytical tools 
to realise their unique recording capabilities. 

Chapter 1 describes the design and testing of high density,' 54-site polytrodes, 
and their use in multiunit studies of cat visual cortex. These polytrodes were able 
to monitor the activity of more than 100 well-isolated neurons spanning an entire 
cortical column, a milestone for future experimental studies of cortical circuits. I 
also describe a continuous data acquisition system designed to cope with the high 
bandwidth of polytrodes, and techniques for precise electrode positioning. The 
benign nature of polytrodes was evident both histologically and in prolonged 
experiments where it was possible to maintain stable recordings from the same 
neuronal ensemble, even when the polytrode was repeatedly moved. 

Polytrodes present significant challenges for conventional spike detection and 
sorting methods that must be solved before physiological studies are possible. In 
chapter 2, ideal bandlimited interpolation with sample-and-hold delay correction 
is shown to accurately reconstruct spike shapes and facilitate spike detection and 
sorting by reducing waveform variability. Optimal methods of spike detection 
and sorting were explored in chapter 3 using real and simulated data. A new 
sorting algorithm that combines unsupervised template generation with multisite 
template matching was accurate for signal to noise ratios as low as one, and 
resilient to partial spike overlap. Unlike most existing sorting algorithms, this one 
is suitable for large contiguous electrode arrays, and is computationally feasible 
for extended recordings comprising millions of spikes. 

Extracellular electrodes do not usually provide accurate information about 
recorded neuron location, nor any indication of cell type. Chapter 4 describes an 
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algorithm that capitalises on the fixed, closely-spaced site geometry of polytrodes 
to localise neurons in 3D cortical space. The algorithm was based on a mixed 
monopole-dipole field model of extracellular spike potentials and was able to 
generalise to arbitrary neuron orientation, tissue anisotropies, and cell 
morphology. Estimated neuron locations emerged as non-overlapping spherical 
clusters within 150um of the polytrode. Cluster locations moved concordantly 
with polytrode movements, making the algorithm a useful method for spike 
sorting unperturbed by electrode drift. Field potential spreads were consistent 
with the spike shapes and firing patterns of pyramidal cells and interneurons. 
These results suggest it is eminently possible to identify both the cortical location 
and type of neurons recorded extracellularly with high density polytrodes. 

Chapter 5, the concluding chapter, considers a number of outstanding 
questions in visual neurophysiology that polytrodes are ideally suited to explore -
questions such as the organisation of micro-scale cortical maps, specific cell types 
responsible for intracortical mechanisms of receptive field tuning, and the 
identification of precise temporal codes across neural populations. Utilising the 
parallel recording capabilities of polytrodes, it was possible to characterise the 
response properties of a large number of neurons to a wide range of visual stimuli, 
instead of just a few neurons to a narrow selection of stimuli. Since the data were 
derived from the same neural population, the hope is that a fuller, more unified 
understanding will be gained of primary visual cortex function, beyond that 
possible by combining findings from independent experiments. 
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chapter 1 
Polytrode development 

1.1 j Summary j 
A variety of 54-channel high density silicon electrode arrays (polytrodes) were 

developed for recording large numbers of neurons spanning millimetres of brain. 
In cat visual cortex it was possible to make simultaneous recordings from more 
than 100 well-isolated neurons. Using standard clustering methods, polytrodes 
provide a quality of single-unit isolation that surpasses that attainable with 
tetrodes. Guidelines for successful in vivo recording and precise electrode 
positioning are described. I also describe a high-bandwidth continuous data 
acquisition system designed specifically for polytrodes, and an automated 
impedance meter for testing polytrode site integrity. Despite having smaller 
interconnect pitches than earlier silicon-based electrodes of this type, these 
polytrodes have negligible channel crosstalk, comparable reliability, low site 
impedances, and are capable of making high fidelity multiunit recordings with 
minimal tissue damage. The relatively benign nature of planar electrode arrays is 
evident both histologically and in experiments where the polytrode was 
repeatedly advanced and retracted hundreds of microns over periods of many 
hours. It was possible to maintain stable recordings from active neurons adjacent 
to the polytrode without change in their absolute positions or neurophysiological 
and receptive field properties. 
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1.2 Introduction 

Why pursue large scale neuronal recording? So much has been learned about 
brain function from recording single neuron responses over the past half-century, 
yet many of the 'big picture' questions in systems neuroscience are not amenable 
to such reductionism. To understand why, a useful analogy can be drawn 
between brain function and music. Whereas the complex polyphony of a 
symphony emerges from the collective activity of the musicians in the orchestra, 
likewise the collective interaction of neural networks give rise to brain function. 
In the case of a symphony, it could be argued that the sum (music) could be 
understood by exhaustively studying the parts (musicians, instruments) in 
isolation. However, this strategy would never provide a full understanding of the 
nature of jazz music, as Buzsaki explains: 

"[the] independent 'single-cell' approach has yielded significant progress in 

neuroscience. However, this method would fail when applied to a jazz ensemble 

where the tune is created by the dynamic interactions among the musicians 'on 

the fly' and which interactions vary from performance to performance. It also 

fails when applied to central brain circuits where myriad ensembles are at work 

at multiple temporal and spatial scales." (Buzsaki 2004) 

A similar analogy can be drawn with the operation of a desktop computer. 
Although the wiring (synaptic connectivity) may be rigid, the state of the memory 
registers (neuronal activity) and what they represent at any given instant depends 
on the software (perceptual, motor, cognitive task) the computer happens to be 
running. Moreover, the connectivity of the brain is anything but rigid (Fregnac et 
al. 1988; Fu et al. 2002; Trachtenberg et al. 2002; Dan and Poo 2004). Without a 
wiring schematic and prior knowledge of the modus operandi of von Neumann 
architecture, a chip designer would be hard pressed to reverse engineer a modern 
CPU given the activity of a single isolated transistor. Similarly, a music historian 
would not be able to restore the full glory of a Mahler symphony from a remnant 
score containing the melody for only one instrument. Analogies aside, the 
contention here is that since neurons do not exist or function in isolation of other 

2 



neurons, brain function will never be fully understood by studying its constituent 
parts in isolation. This is true even for primary sensory cortices, where there is 
ample of evidence to suggest that the context of a stimulus (Rizzolatti and 
Camarda 1977; Hammond and MacKay 1981; Vinje and Gallant 2002), recent 
neural activity (Azouz and Gray 1999), state of arousal (Worgotter et al. 1998), and 
possibly even attention (Lamme et al. 2000; Roelfsema et al. 2004), all modulate the 
response characteristics of cortical neurons. 

The neurosciences are fortunate to have at their disposal a wide range of 
experimental techniques with which to study the brain at different scales of 
structure and function (Figure 1.1). Silicon substrate multisite electrode arrays, or 
polytrodes, are somewhat unique in that they can monitor extracellular action 
potentials (spikes) and local field potentials (LFPs) not just within, but across 
multiple spatial and temporal scales. For this reason polytrodes are ideally placed 
to study the 'symphony' of the brain. 

Synapse 
Light Microscopy 

-3 -2 
Mill isecond 

0 1 2 3 4 

S e c o n d Minuto Hour 

Time (log seconds) 

5 6 
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100 ixm 
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Ne tworks 
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Synapses 

1 A I Molecules 

Figure 1.1 Experimental techniques across scales of brain organisation. 
(A) Different experimental modalities are useful for investigating different spatial and 
temporal scales of brain structure and function, encompassing seven orders of magnitude 
in size, and ten orders of magnitude in time. Present generation polytrodes cover nearly 
all temporal scales of function and four orders of magnitude spatially, (B) from single 
neurons, to networks of neurons, to whole cortical maps (shaded boxes). Note that some of 
the more recently developed techniques such as tetrodes, multiphoton imaging and 
functional magnetic resonance imaging are not portrayed here. Reproduced from 
Churchland and Sejnowski (1988), with additions. 
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1.2.1 Silicon based polytrodes 

Polytrodes (Drake et al. 1988; Campbell et al. 1991; Wise and Najafi 1991; 
Kovacs et al. 1994; Kewley et al. 1997; Ensell et al. 2000; Yoon et al. 2000; Norlin et 
al. 2002; Spence et al. 2003) provide electrophysiological recording capabilities 
beyond those of conventional electrode technologies (Figure 1.2). For in vivo 

recording in the intact brain, polytrodes possess the same temporal and single-
neuron spatial resolution of single unit, intracellular, and patch clamp electrodes. 
As polytrodes are extracellular electrodes they cannot measure sub-threshold 
membrane potentials, but by the same token they are not limited to recording 
from only one or two neurons simultaneously. Moreover, with polytrodes it is 
possible to maintain stable recordings from the same neurons, not for minutes or 
hours, but for days, months or even years in awake behaving animals. 

single neurons 1-5 neurons 10-100's neurons 1000's neurons 
Vm, Im, P S P s , spikes LFPs , spikes LFPs , spikes E E G , E R P s 

1 - 1 0 u m 10-150urm 50um - 5mm 1 - 5cm 

Figure 1.2 in vivo electrophysiology techniques. 
Currently available electrophysiological methods for in vivo recording of brain activity. 
The number of neurons, suitability for measuring different neural electrical phenomena, 
and approximate spatial resolution are indicated for each modality. 

Polytrodes have electrode site properties suitable for multiunit recording of 
adjacent active neurons. Although single and multiple-wire multiunit electrodes 
can record from several neurons over extended periods of time, only polytrodes 
with high recording site densities can do so from local populations of neurons 
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across contiguous brain regions such as whole cortical columns. And while 
epidural or cranial EEG electrodes may be able to monitor larger neuronal 
populations, they cannot resolve the activity of individual neuronsf. 

Stereotrodes (McNaughton et al. 1983) and tetrodes (Wilson and McNaughton 
1993) are discrete, 8-12um nichrome multiunit electrodes twisted together to form 
a single, tightly packed wire bundle electrode. As extracellular spike amplitudes 
attenuate rapidly over distances of a few tens of microns, these electrodes improve 
single unit isolation by providing differential spike amplitude 'signatures' that are 
more or less neuron specific due to the unique distances between individual 
neurons and the electrode tip (Gray et al. 1995). Polytrodes with closely spaced 
recording sites afford the improved unit isolation of tetrodes, and like tetrodes can 
record from up to three times as many neurons as electrode sites (Gray et al. 1995; 
Maldonado and Gray 1996; Maldonado et al. 1997; Hetherington and Swindale 
1999; Harris et al. 2000). In addition, the precise lithographic process by which 
polytrodes are defined (Najafi et al. 1985) ensures consistent recording properties, 
and makes possible arbitrary electrode shapes (single or multiple shank) and 
configurations of recording sites tailored for specific brain structures or 
applications (Figure 1.3). The number and density of sites that can be etched onto 
a minute piece of silicon (as narrow as 15pm wide and l-15um thick) far exceeds 
that of wire electrodes (Najafi et al. 1990), effectively increasing neuronal yield 
while minimising tissue displacement and potential for damage. Polytrode 
materials are biocompatible (Niparko et al. 1989) and are suitable for chronic 
implantation (Hetke et al. 1994; Hoogerwerf and Wise 1994; Rousche and 
Normann 1998; Mensinger et al. 2000; Vetter et al. 2004), and cortical 
microstimulation (Anderson et al. 1989; Rousche and Normann 1999; Weiland and 
Anderson 2000). Polytrodes with on-chip integrated circuitry for buffering, 
multiplexing, amplification and signal processing (Takahashi and Matsuo 1984; 
Najafi and Wise 1986; Hoogerwerf and Wise 1994; Bai and Wise 2001; Csicsvari et 
al. 2003) can minimise noise, channel cross-talk, and movement-related artefacts in 
chronically implanted devices (Figure 1.3G). Micromachined fluidic channels 

T it is somewhat meaningless to compare polytrodes with EEG electrodes as the latter are thought 
to record solely from large scale synchronous synaptic events, not action potentials. Nevertheless, 
contrasting the temporal and spatial scales of both techniques is relevant to the current discussion, 
especially as polytrodes can also record high resolution LFPs. 
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(Figure 1.3E) can also be incorporated into the silicon substrate for cellular-scale 
chemical and transmitter delivery (Chen et al. 1997; Rathnasingham et al. 2004). 

Figure 1.3 Silicon substrate multielectrode arrays. 
Silicon lithography enables polytrodes with virtually unlimited numbers of recording 
sites, built into a variety of 2D planar or 3D configurations. (A) A single shank polytrode 
with 5 recording sites, shown here next to a 12um wire tetrode. (B) and (C) 16 site, multi-
shank polytrodes. The inset shows the four-shank polytrode bonded to a printed circuit 
board ready for use. Scalebars = 50um. (D) The predecessor of the 54 site polytrodes 
described in this thesis (Hetherington et al. 1999). (E) Microfluidic channels for drug and 
chemical delivery (Chen et al. 1997). (F) A 100 site polytrode with sites spaced 200um 
apart in a 10x10 array (Campbell et al. 1991). (G) A 3D multishank polytrode with 
integrated electronics, assembled from a 4x4 array of 2D polytrodes (Bai and Wise 2001). 

This flexibility of design has seen polytrodes used successfully in a diversity 
of species, brain areas, and applications, from multiunit studies of neocortical 
plasticity (Fu et al. 2002) to hippocampal recordings in awake-behaving animals 
(Buzsaki et al. 1992); from mapping of auditory cortex discharges evoked by new 
generation cochlear-implants (Bierer and Middlebrooks 2002), to the relationship 
between single units and local field potential (LFP) activity during sleep (Kandel 
and Buzsaki 1997). Other innovative applications, such as in vivo studies of 
backpropagating action potentials (BPAPs) (Buzsaki and Kandel 1998), deducing 
intracellular parameters from extracellular waveforms (Henze et al. 2000), and 
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three dimensional spatial neuron localisation (Hetherington et al. 1999; Blanche et 
al. 2003), would arguably not be possible with other contemporary electrode 
technologies. 

My interest in polytrodes was motivated by persistent questions in visual 
neurophysiology (chapter 5) that could only be addressed with an electrode 
capable of recording simultaneously from large numbers of neurons both within 
and across whole cortical columns (see also Olshausen and Field 2005). 
Furthermore, to establish techniques for 'cortical micromapping', that is to 
determine the precise location of recorded neurons and classification of cell type 
based entirely on extracellular voltage distributions (chapter 4), required high 
resolution spike field potential measurements. 

In this chapter I describe five novel high-density 54 site polytrodes developed 
for these studies. I demonstrate their use, handling, and recording characteristics 
in acute anaesthetised cat visual cortex experiments. The customised hardware 
needed to record from polytrodes is described, including PC-based continuous 
data acquisition software, an automated impedance meter for testing recording 
site viability, and complementary techniques for precise electrode positioning. 

1.3 Methods 

1.3 .1 Novel high density polytrodes 

The 54-site polytrodes described in this thesis (Table 1.1) are single-shank 
planar electrode arrays designed for acute in vivo recordings. They are passive 
devices (i.e. no on-chip electronics), fabricated and packaged by the Center for 
Neural Communication Technology (CNCT) at the University of Michigan. The 
lithographic process for producing silicon substrate electrodes (Najafi et al. 1985) 
was pushed close to the laboratory's standard manufacturing limits by halving the 
usual interconnect conductor width and spacing from 3pm to 1.5pm. The overall 
width of the shank was dictated by the number of recording sites and associated 
conductors, so this refinement was necessary to keep the shank width as narrow 
as possible. Previous work (Drake et al. 1988) had shown that 15pm diameter sites 
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were ideal for high signal-to-noise ratio (SNR) multiunit recording, so this size 
was adopted for these polytrodes. The other design consideration was the 
geometric configuration and spacing of the recording sites. A number of co-linear 
and staggered site arrangements with different inter-site spacing (Figure 1.4A) 
were tested to achieve a good trade-off between adequate sampling and isolation 
of individual neurons (which requires spikes to appear on multiple sites), and 
traversal of as much brain as possible with a finite number of sites (Table 1.1). 

Each configuration has specific advantages. The polytrode with the most 
closely spaced sites was designed to make high-resolution measurements of spike 
field potentials, with individual spikes appearing on 12 or more sites. Data 
derived from this polytrode were needed to 'bootstrap' the field potential model 
for three dimensional (3D) spatial neuron localisation and classification of cell type 
(chapter 4). The two-column staggered polytrodes were designed to maintain 
good single-unit isolation, yet be sufficiently long to record from all layers in a 
cortical column, whereas the hexagonal three-column designs were a compromise 
of both these requirements. 

Tab le 1.1 P o l y t r o d e speci f ica t ions . 

Polytrode 
design Site configuration 

Site spacing 
(pm) Extent (pm) * 

Recording 
span (pm) f 

54umapla 3 column hexagonal 65 1138 1400 

54umaplb 3 column collinear 50v/46h 850 1100 

54umaplc 3 column hexagonal 75 1313 1600 

54umap2a 2 column staggered 65 1723 2000 

54umap2b 2 column staggered 50 1325 1600 

Comparison of the five polytrodes. Each has 54 recording sites distributed in a variety of 
configurations and inter-site spacings. * distance between the most vertically disparate 
sites, f approximate distance along the long axis of the polytrode over which neurons can 
be recorded, assuming isolatable units are recordable up to -150 pm beyond the top and 
bottom recording sites (Blanche et al. 2003). 
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Each polytrode has additional silicon substrate (4 - 5mm) interposed between 
the recording sites and the bond pads to allow it to be inserted into the craniotomy 
cavity without obstruction from the skull. The polytrodes were ultrasonically 
bonded to a purpose-built, commercially available (Neuralynx, Tuscon AZ) 
printed circuit board (Figure 1.4B). The electrode interface board (EIB) supports 
the headstage preamplifiers in close proximity to the polytrode, thereby 
irunimising electrical and radio-frequency interference. It also serves as a point of 
attachment for the micromanipulator, and provides electrical access to recording 
sites for cortical microstimulation, cortical lesioning, or electrolytic track marking. 

Figure 1.4 54 site po ly t rodes . 
(A) Photomicrographs of three of the five polytrode designs. The polytrode shanks have 
planar recording sites spaced 43-75um apart in two or three columns. Polytrodes with 
denser site spacing (54umaplb) provide highly detailed field recordings, and span ~lmm. 
The longer two column polytrodes (54pmap2b) traverse 1.3~1.7mm, enabling 
simultaneous recordings of units from entire cortical columns in cat visual cortex. 
Another design (54umaplc) has a slightly larger intersite spacing in a hexagonal array, 
and spans ~1.3mm (dimensions for all polytrode designs are given in (Table 1.1). (B) One 
of the polytrodes, shown here bonded to the headstage interface board, has closely spaced 
co-linear sites arranged in 3 columns. The exposed recording sites and 3pm pitch (track 
plus space) interconnects are visible (inset). All shanks are 15um thick, 199-212um wide 
(depending on the design), with 15pm diameter sites made of pure iridium. 
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1.3.2 Polytrode site impedance tester 
Prior to an experiment it was important to identify any faulty recording sites 

that were shorted together or electrically open. If open 'floating' sites were not 
grounded they tended to either saturate the amplifiers, producing noise on 
adjacent functional sites, or else exhibited spurious spike-like signals by capacitive 
coupling to adjacent conductors. Manually testing every site is laborious and 
error prone, so an automated multisite impedance tester was made specifically for 
this purpose. The device utilises software-controlled analog multiplexers to 
automate switching between recording sites, and is able to test an entire 54-site 
polytrode in less than a minute. An online graphical display provides a report of 
impedance magnitude and phase for each site, highlighting any open or shorted 
sites. The circuit schematic (Figure A. l ) , calibration and operational details are 
described in appendix A. Unless otherwise stated, all impedance measurements 
were made in 0.9% phosphate buffered saline (PBS) against a saturated calomel 
reference electrode (Accumet cat # 13 620 52). 

Stray capacitive coupling of spike signals across independent recording sites 
compromises the effectiveness of spike sorting methods that rely upon differential 
amplitude measurements, and is also a recognised source of artefactual synchrony 
(Zhu et al. 2002a). The possibility that the closer spacing and narrower conductor 
widths of these polytrodes might make them susceptible to excessive channel 
cross-talk was tested by injecting a lOOpVrms, 1kHz sine wave into individual 
electrode sites via the electrode interface board. The polytrode tip was immersed 
in PBS with a common reference electrode in the saline. Evidence of coupling in 
adjacent non-signal sites was looked for in the edge-triggered average of a few 
hundred cycles of the test signal. 

1.3.3 Surgery and recording procedures 

Adult cats or rats of either sex were prepared for acute electrophysiological 
recordings in accordance with guidelines established by the Canadian Council for 
Animal Care. For the initial surgery cats were anesthetised with an i.v. bolus of 
sodium thiopental (2.5% w/v) to effect, with booster injections administered as 
needed. Either intubation or a tracheotomy was performed, and the cat was 
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placed in a stereotaxic frame and connected to temperature, BP, ECG, EEG, p02, 
and end-tidal CO2 monitors. Pressure points and wounds were infiltrated with 
the local anaesthetics Lidocaine (5%) and Marcaine (bupivacaine hydrochloride, 
0.25%), respectively. Dexamethasone (0.3 mg i.m.) was given to prevent brain 
oedema. Intravenous injections of anaesthetics were discontinued, and surgical 
anaesthesia was maintained by artificial ventilation with a mixture of 70% N2O 
and 0.25 - 1.5% isoflurane in oxygen. Core body temperature was maintained 
near 38°C with a thermostatically controlled heating pad, and end-tidal SpCCh 
and p02 were stabilized at 40 mmHg and 99 - 100%, respectively, by varying the 
respiration rate. A 5 x 10 mm craniotomy was made over cortical areas 17 and 18. 
With the aid of a surgical microscope a small area of dura was carefully reflected. 
At this point paralysis was induced with pancuronium bromide (2 mg/kg) and 
maintained throughout the experiment by continuous i.v. infusion of 
pancuronium (0.2 mg/kg/hr) dissolved in lactated Ringers with 5% dextrose, 
delivered at a rate of 3 mls/kg/hr. Pupils were dilated with topical atropine (5%) 
and nictitating membranes were retracted with phenylephrine eye-drops (10%). 
Using reverse ophthalmoscopy, rigid gas-permeable (Metha et al. 2001) contact 
lenses (Harbour City Contact Lens Services, Nanaimo BC) of appropriate radius of 
curvature and power were selected to focus both eyes on the stimulus display 
monitor positioned 50cm in front of the cat. Additional drops of phenylephrine 
and atropine were applied as needed. 

Adult rats were anesthetised with ketamine/xylazine (50/10 mg/kg i.p.) and 
placed in a rodent stereotaxic frame. A small craniotomy/durotomy was made 
over the visual areas of one hemisphere. Vital signs including ECG, pCh, and core 
temperature were monitored throughout the procedure, the latter regulated with a 
small DC heating pad. 

Polytrodes are extremely flexible and cannot penetrate the dura mater without 
fracturing, nor usually the via mater without excessive dimpling of the brain. It 
was thus necessary to reflect the dura and make a tiny incision (~300pm long) in 
the via using ultra-fine micro-dissection scissors (Fine Science Tools, Vancouver 
BC) or a 32 gauge needle, bent at the end to create a micro-sized hook. 
Alternatively, angled slit knives intended for ophthalmic microsurgery 
(ClearCut™ 3.2mm, Alcon Surgical) were also ideal for opening the pia. The 
polytrode could then be inserted without bending or dimpling of the brain. Tight 
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physical and electrical coupling of the recording sites to the cortical tissue is 
essential for robust recordings (Starr et al. 1973). Subjective experience suggests 
that fluid on the surface of the brain, if allowed to seep down between the silicon 
substrate and neuropil, acts as a low-impedance shunt to ground, heavily 
attenuating or even abolishing spike amplitudes. For this reason cerebrospinal 
fluid (CSF) was routinely wicked away during insertion. While viewing the 
exposed surface of the brain through a surgical microscope, the polytrode was 
slowly advanced into the cortex with a micromanipulator (Narishige MW-1, East 
Meadow NY) until the top sites were -200pm below the surface. The usual 
practice was to record at a single fixed position per penetration, either traversing a 
cortical column by inserting vertically in the crown of the lateral gyrus, or down 
the medial bank of the lateral gyrus for trans-columnar recordings. Only when 
addressing specific technical questions relating to neuronal damage and stability 
of unit isolation was the polytrode repeatedly advanced and retracted. After 
insertion the craniotomy was filled with agar (2.5% in artificial-CSF) to diminish 
brain movements. 

Spike amplitudes are often attenuated or even abolished following movement 
of the polytrode, presumably due to loss of electrical coupling. For this reason it 
was desirable to wait half an hour for the polytrode position to stabilise and 
'recouple' to the brain tissue (Figure A.4). During this period spike amplitudes 
were usually restored. 

Spikes were evoked with a wide range of visual stimuli (Table 5.1), including 
drifting bars and sinusoidal gratings, white, pink, and m-sequence noise, flashed 
stimuli, and natural scene movies. Stimuli were presented on a calibrated (Figure 
B.3) display monitor (Sony 200s/) with a 100Hz refresh rate and software-
linearised gamma correction (mean luminance 55 cd/m2). A l l data presented here 
were recorded from cortical neurons in primary visual areas 17 and 18. 

Recordings in cat were typically made for 3 - 8 hours in each penetration. At 
the completion of the experiment the polytrode tip was carefully withdrawn and 
immediately cleaned with a jet of de-ionised water from a squirt bottle. Long-
term storage was in air. Polytrodes used for acute experiments and cleaned in this 
way were successfully re-used more than once. The reusability of the polytrodes 
was assessed by monitoring site impedances and recording performance in 
successive experiments over several years. 
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1.3.4 Instrumentation and acquisition software 

The electrophysiology system was assembled from commercially available 
and custom-built hardware (Figure 1.5). Extracellular electrical activity, 
referenced to a platinum wire loop positioned around the craniotomy, was 
buffered by two 27 channel unity-gain headstage pre-amplifiers (HS-27s, 
Neuralynx) mounted on the EIB. Polytrode signals were then passed to a 64 
channel amplifier (Multichannel Systems FA-I-64, PS-20 low noise power supply, 
A L A Scientific Instruments, Westbury NY). A l l amplifier channels had a factory-
fixed gain of 5000. Fifty-four were band-pass-filtered for recording units (500 -
6KHz), the remaining ten for recording LFPs (0.1 - 150Hz). A custom-made patch 

box (Multichannel Systems) enabled a selection of the polytrode sites to be wired 
into to the LFP channels. The patch box also relayed power to the headstage pre
amplifiers and was used to ground any faulty polytrode sites. A custom-made 
multiplexer (MUX-80) received parallel outputs from the amplifier for monitoring 
any of the analog signals on a digital oscilloscope (Kikusui 7310A, Japan) and 
audio monitor (Grass AM-8, West Warwick, RI). The monitor channel could be 
selected either manually (push-buttons on the front panel) or in the acquisition 
software (by entering the site number or simply clicking on the appropriate 
waveform). Amplified signals were connected to a couple of 32 channel data 
acquisition cards (DT3010s, Data Translation, Marlboro MA) via two screw 
terminal blocks (EP307s, Data Translation). These were also used to link the 
clocks and triggers of the acquisition cards, and access the digital input/output 
(I/O) lines for controlling the MUX-80, polytrode impedance meter, or acquiring 
stimulus display related information. Prior to sampling polytrode signals were 
further amplified 2 - 8 x (corresponding to analog-to-digital converter ranges from 
±lmV to ±250pV full-scale) and digitized with 12-bit resolution at 25kHz/channel. 
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Figure 1.5 Electrophysiology instrumentation. 
Schematic showing the major components of the polytrode recording system. The power 
supply for the headstage pre-amplifiers and amplifier is not represented in this diagram, 
nor are the screw terminal blocks for connecting input/output signals to the data 
acquisition cards. See text for details. 

During recording, waveform and stimulus display-related data were 
displayed online and continuously streamed to hard disk using specialised 
acquisition software (Figure 1.6). Spike waveforms were displayed in one 
millisecond epochs in the same layout as the recording sites to provide a 
meaningful display of activity across the polytrode (Figure 1.6A). The software 
was programmed with the site configurations of the five 54-site polytrodes, in 
addition to other 16 channel polytrodes made by the CNCT. It can accommodate 
arbitrary numbers of polytrodes, tetrodes, and single-channel electrodes, treating 
each as a separate entity with respect to gain, sample rate, and display (Figure 
1.6B). This 'electrode-centric' rather than channel-based approach to signal 
acquisition goes beyond the aesthetics of online display. Knowledge of the precise 
geometry of recording sites was used throughout subsequent stages of spike 
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detection and sorting (chapter 3), and physiological analyses (chapters 4 and 5). 
The polytrode graphical user interface (GUI) highlights where activity is on the 
polytrode, and allows the user to select a subset of sites for display triggering 
and/or selective recording to file. LFP and EEG signals were viewable on chart
like scrolling displays (Figure 1.6C). The ID current source density (CSD) profile 
(Figure 1.6D) derived from the LFPs provided online feedback as to the depth and 
alignment of the polytrode in relation to the cortical laminae (see section 1.3.5). In 
addition, the software was capable of displaying an ongoing record of EEG 
spectrograms and heart rate to monitor brain state and depth of anaesthesia. 

Stimulus related information, digitally encoded in a pre-stimulus data header, 
was sent by the stimulus display computer and updated on every frame refresh 
(Figure 1.6E). This information was collected by the acquisition software, 
removing the need to transcribe details of every visual stimulus. If desired, 
recordings could be automatically started, paused or stopped in response to the 
stimulus sequence. The use of an optimised compiler (Delphi, Borland), low-level 
assembler code where appropriate, and PCI bus-mastered transfer of waveform 
signals made the system efficient and scalable (64 channels uses -10% load on an 
A M D Athlon 1800+ CPU). In practice, the maximum number of recording 
channels is only limited by the number of amplifiers and acquisition cards 
installed. Compressed data (lossless) were archived onto 4.9GB DVDs. Each DVD 
was capable of storing approximately one hour's worth of continuous recording. 

1.3.5 Online CSD analysis 

Generalised activation of the optic pathway via direct thalamic or photic 
stimulation evokes a characteristic laminar activation pattern in the primary visual 
cortex that can be revealed by CSD analysis (Nicholson and Freeman 1975; 
Mitzdorf and Singer 1978). Although CSD analysis is a legitimate 
electrophysiological tool in its own right (e.g. Mitzdorf 1985; Heynen and Bear 
2001), it is exploited here solely to confirm the depth of the polytrode in the cortex. 

Evoked responses to brief flashed stimuli (full frame, 10ms duration) were 
averaged, and the one dimensional CSD was computed from the second spatial 
derivative of LFPs from vertically aligned (translaminar) sites: 

15 



4Z+MZ) (Nicholson and Freeman 1975) (1.1) 

where ^ was the average field potential, 
z was the electrode site coordinate perpendicular to the layers, 
Az was the sampling interval (100-150um depending on the polytrode), and 
nAz was the differentiation grid (typically n=2). 

The differentiation grid is equivalent to spatial smoothing and reduces high 

spatial frequency noise. To aid visualization of CSD profiles, colour-mapped time 
series were generated using cubic spline interpolation (Press et al. 1994) along the 
depth axis. 
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Figure 1.6 Polytrode data acquisition software. 
Screenshots of the main program window showing (A) the polytrode GUI and spike 
waveform windows; (B) the configuration menu; (C) chart windows for displaying LFP 
and EEG signals; (D) online CSD profile and signal averager; (E) experiment information 
dialog, indicating the current visual stimulus, stimulus time remaining, and current file 
statistics; and (F) the experiment log, with provision for entering time-stamped notes. 
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1.3.6 Acute histological procedures 

To determine more precisely the position of the polytrode in the cortex, acute 
histological procedures were established that avoid tissue shrinkage usually 
associated with fixatives. These methods were developed and tested in rat for use 
in the cat experiments, but are equally applicable to track identification in other 
species. They provide an independent validation of polytrode depth derived from 
the CSD measurements. 

Prior to insertion, the rear of a polytrode shank (side opposite the recording 
sites) was painted with the fluorescent dye dil (l,l'-dioctadecyl-3,3,3',3'-
tetramethylindocarbocyanine perchlorate, -10% in ethanol, Molecular Probes, 
Eugene OR) (DiCarlo et al. 1996). As this dye is a lipophilic neuronal tracer, 
uptake into adjacent neurons and processes also allowed assessment of the level of 
structural damage caused by the polytrode. The recording properties of the 
polytrode did not appear to be affected by the dye, but as a cautionary measure 
the actual recording sites were not coated. The polytrode was then inserted into 
the cortex so that the top row of electrode sites was ~200pm below the surface of 
the brain. CSD profiles were evoked by photic stimulation and saved to file for 
later registration with the histology. 

Immediately post-euthanasia the cortical region of interest was blocked in situ, 

removed and bathed in chilled PBS. After carefully removing the via mater, 300-
400pm thick coronal sections were cut on a tissue vibratome and counterstained 
with green fluorescent Nissl stain (Neurotrace 500/525, Molecular Probes). Nissl 
substance is abundant in the rough endoplasmic reticulum of neuronal cells, and 
Neurotrace is the fluorescent analog of conventional chromophoric Nissl stains 
such as cresyl violet. Briefly, the counterstain procedure involved permeabilising 
the tissue with Triton X-100 (0.1% w/v in PBS) for 10 minutes, followed by two 5 
minutes washes with PBS. The brain slices were incubated for 30 minutes in a 50-
fold dilution of the supplied stock solution. After repeating the permeabilisation 
and washing steps, the slices were transferred to glass slides with 90% w/v 
glycerol + DABCO (an antifade agent) in PBS, and coverslipped. The polytrode 
track, clearly demarcated by the dil against the Nissl-stained cortex, was then 
visualised on either a standard wide field or confocal fluorescent microscope 
(Zeiss LSM-510, Gottingen, Germany). 
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The degree of structural damage to the neural tissue surrounding the 
polytrode was investigated further in the same series of rat experiments. Instead 
of dil, a polytrode coated with propidium iodide (PI, -10% w/v in dl-hO, 
Molecular Probes) was inserted into the cortex. PI is a non-toxic polar compound 
that can be used as an indicator of cell membrane integrity and viability (Vornov 
et al. 1991). The dye enters damaged or necrotic cells with leaky or otherwise 
compromised cell membranes, binds to nucleic acids, and becomes brightly red 
fluorescent. After an hour the polytrode was removed, and as before 400pm thick 
coronal slices were cut from the fresh, unfixed brain tissue. The brain slices were 
counterstained with the fluorescent Nissl stain, mounted, and coverslipped as 
previously described. Neurons surrounding the polytrode track were then 
reconstructed from serial optical sections imaged with the confocal microscope. 
An objective quantification of the extent of cellular damage was made by counting 
the proportion of Nissl-stained cells (predominantly neurons, in green), to Nissl-
stained cells co-localized with PI (damaged neurons, in yellow), to Pl-positive cells 
(non-neuronal cells, in red). 

1.4. Results 

1.4.1 General recording properties 

Recording site impedances were 1.17MQ ± 150kQ at 1kHz (n = 1002, ± stdev., 
from 20 assorted polytrodes), with average phase angles of -75.8° ± 3.4° (i.e. largely 
capacitive). Such minor variations in site impedance had no measurable effect on 
the sensitivity of the site, nor the amplitude of recorded spikes. However, sites 
with significantly higher impedance tended to be slightly noisier. Impedance 
spectroscopy for a typical recording site is given in appendix A. On average 
individual polytrodes had 3.9 faulty sites (median 4, range 0-8), which were 
usually open circuit but occasionally shorted together. Exclusion of this number 
of faulty sites did not significantly compromise recordings because of the high 
spatial sampling of these polytrodes. In the multiunit bandpass (500-5kHz), 
noise was typically 3 - 4pVrms (20 - 30pVP P), depending on the site, measured in 
saline. Noise in the LFP/EEG bandpass (0.1 - 150Hz) was also around 3pVrmS, 
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predominantly 60Hz line interference. A l l designs had negligible channel cross
talk. Even sites with adjacent interconnects showed less than 0.5% coupling. 
Taken together, the consistency of recording site properties indicates that the 
fabrication process for these polytrodes was as reliable as that for 'standard' 16 site 
polytrodes (Najafi et al. 1985), despite smaller features and higher site densities. 

Representative multiunit recordings are shown in Figure 1.7 and Figure 1.8. 

* 9 

Am . 

Figure 1.7 Recording of neuron ensembles in cat visual cortex. 
(A) 100ms segment of multiunit activity from a 54umaplb polytrode (Table 1.1) inserted 
perpendicularly to the surface of the cortex, traversing the cortical depth indicated. This 
particular recording comprised more than 100 spontaneously active and visually 
responsive neurons distributed across the length of the polytrode. Individual action 
potentials spanned several sites. (B) Approximate neuron positions from the same 
recording. The relative positions were estimated from the mean weighted spike 
amplitudes across channels. 

As with any electrophysiological recording, neuronal yield is determined by 
many factors, including the number of nearby active neurons, depth and type of 
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anaesthesia, quality of visual stimulation, and cortical location (e.g. granular vs. 
agranular layers). Identification of well-isolated single units is also dependent on 
good SNR and the efficacy of spike detection and sorting. Acute recordings in 
anaesthetised cat visual cortex usually yielded between 20 and 50 simultaneously 
recorded units at a given location. One of the best recordings to date contained 
more than 100 clearly distinct neurons (Figure 1.7A), isolated using the multisite 
template-based clustering procedure described in chapter 3. Active neurons were 
distributed along the full extent of the polytrode (Figure 1.7B). 

In a random sample of 255 neurons from 8 penetrations (Figure 1.8F), spike 
amplitudes ranged from noise up to 1.2mVPP (mean 144 ± 118uV), presumably due 
to differences in the size, morphology and proximity of the neuron to the electrode 
sites (Fatt 1957; Bishop et al. 1962a; 1962b; Rosenthal et al. 1966; Humphrey 1976; 
Drake et al. 1988; Henze et al. 2000). Given an aggregate noise level of 30 - 40pV P P 

(including thermal and biological noise from distant neuronal activity), this 
translates into a SNR of up to 30:1. For the majority of recorded neurons with 
peak-channel spike amplitudes of around 130pVPP, a 4:1 ratio was attained, more 
than adequate for unit identification. These amplitudes are comparable to those 
recorded extracellularly with conventional multiunit electrodes and tetrodes (Gray 
et al. 1995; Hetherington and Swindale 1999). Given the similar impedances and 
surface area of recording sites this result was expected but not guaranteed, since 
polytrodes comprising planar electrode sites only record neurons in front of the 
insulating shank (Drake et al. 1988), not the vicinity of the tip (Henze et al. 2000). 

With respect to field potential spread, on the highest density three-column 
polytrode (lb design) up to 16 sites detected the action potentials from (presumed) 
pyramidal neurons with large 'open' fields (Figure 1.8A, E). Individual spikes on 
the polytrode with sites spaced 65pm apart in a hexagonal layout (la design) were 
recorded by up to 9 sites (Figure 1.8B). Fast spikes from smaller 'closed-field' 
neurons, most likely inhibitory interneurons (Humphrey 1976; Henze et al. 2000; 
Blanche et al. 2003; Bartho et al. 2004), showed appreciable signal on only one or 
two sites irrespective of the intersite spacing (Figure 1.8C). In contrast, some 
neurons infrequently discharged spikes with current dipoles moving 100s of 
microns (Figure 1.8D), with a velocity (0.7 ± 0.15m.s4) and direction consistent 
with a BPAP travelling up the apical dendrite of a large pyramidal neuron 
(Johnston et al. 1996; Buzsaki and Kandel 1998). 
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Figure 1.8 Diversity of spike waveforms. 
Unaveraged spike waveforms, arranged according to site layouts, recorded with (A) a 
54umaplb polytrode, showing a triphasic spike across 12 sites; (B) a biphasic spike on 5 
of the more widely separated sites of a 54pmapla polytrode; (C) three small field, fast-
spiking neurons; and (D) a 54umap2a polytrode showing the putative location of a layer-
5 pyramidal cell relative to the polytrode. Regular somatic action potentials (left panel) 
were typically restricted to sites within a ~150pm radius of the maximum amplitude site, 
and had instantaneous peak times (dashes). In contrast, action potentials presumed to be 
back-propagating (right panel) had current dipoles travelling 500pm up the apical dendrite 
(CSD colour maps), with increasing latency to peak amplitude. (E) Histogram showing the 
approximate electric field spread of the neurons portrayed in Figure 1.7, defined as the 
number of sites with spike waveforms over 50pVPP. The inset compares the average 
number of sites per neuron for polytrodes with different site configurations. Error bars 
are standard error of the mean (SEM). (F) Distribution of peak-channel spike amplitudes 
from multiple penetrations. 
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1.4.2 Improved single unit isolation 

To assess the recording performance and capacity of these polytrodes to 
isolate single units compared with more established techniques, 'virtual tetrodes' 
(all sets of four adjacent polytrode sites excluding faulty ones) were constructed 
from the 54pmaplb recording shown in Figure 1.7A. This polytrode has a site 
spacing comparable to that of real wire tetrodes (Jog et al. 2002). Including any 
neuron with a spike amplitude over 60pV P P on at least one site of each virtual 
tetrode, between 7 and 24 neurons (mean = 17.1 ±4, n = 101) were counted, 
roughly double that typically reported for wire tetrodes (Gray et al. 1995; 
Maldonado and Gray 1996; Maldonado et al. 1997; Hetherington and Swindale 
1999; Harris et al. 2000). Virtual tetrodes with this number of neurons were 
common in other recordings. This raises an important question: in a real tetrode 
recording, how many neurons identified as single-units are actually multiple 
neurons? A case study addressing this issue is presented in Figure 1.9. In this 
example 10 neurons were identified on a virtual tetrode (Figure 1.9A) using 
multisite template-based clustering (chapter 3). The first two principal 
components (PCs) derived from these templates were used to both manually and 
automatically [Klustakwik, (Harris et al. 2000)] cluster the data. The Mahalanobis 
distance was used to quantify the distance between the cluster centroids of any 
cluster pair x,- = (x;...x„) and v,- = (y/...v„) in ^-dimensional feature space, from 
which an average cluster separation index S was derived: 

dy = TJ(X,- v y) rC"'(x,.-v y) (Mahalanobis 1936), S = ~dn for /, j = \...N,i±j (1.2 ) 

where C was the covariance matrix of the cluster pair, and TV was the number 
of clusters. Both clustering methods could identify 7 of the neurons using the 
tetrode-derived PCs (S = 14.5), but neither method was able to separate the 3 other 
neurons (S = 3.7) due to the close similarity of their waveforms on the tetrode sites 
(Figure 1.9B). However, when the PCs from the surrounding polytrode sites were 
included (Figure 1.9C), both clustering methods could now accurately delineate 
these single units (S = 12.1), in addition to improving the overall cluster separation 
of the 7 other units (S = 16.3). 

So an actual tetrode positioned at this location would have produced 8 
clusters; 7 that represented valid single units, and an 8 t h supercluster comprised of 
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three neurons, ^distinguishable from a valid single-unit cluster, except perhaps 
by other criteria [e.g. an autocorrelogram without a 1ms refractory period, 
although this test is unsuitable for fast spiking (FS) neurons (Nowak et al. 2003)]. 

Figure 1.9 Po ly t rodes p r o v i d e better s ing le -un i t i s o l a t i o n than tetrodes. 

(A) Breaking the polytrode into 'virtual tetrodes' revealed that 7 - 2 4 neurons were 
recorded on any one virtual tetrode of a 54pmaplb polytrode. In the example shown here 
(highlighted sites) 10 neurons were identified, their approximate field sizes represented by 
the coloured boxes. (B) Spike waveforms of these 10 neurons, 7 of which were isolatable 
using the tetrode sites alone (upper panel boxed region), and 3 that could only be isolated by 
including spike waveforms from the surrounding recording sites (lower panel). Note the 
similarity of the spike shapes and amplitudes on the tetrode sites. (C) A tetrode-derived 
cluster plot (upper panel) shows 5 of the 7 well-isolated neurons. Whereas 2 other neurons 
(black and gold dots) were separable along other dimensions, 3 neurons (arrow: green, 
orange and pink '+' symbols) were not distinguishable on any projection or hyperplane of 
the tetrode. Only by incorporating spike waveform indices from the surrounding sites 
was it possible to cluster and isolate these neurons (lower panel). 
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1.4.3 Polytrode reusability 

Polytrode site impedances were measured following long-term storage and 
repeated use in acute 3-5 day experiments run several months apart (Figure 1.10). 
Although there was a slight increase in average site impedances from 1.1MQ to 
1.3MQ, this was without concomitant deterioration of recording performance. The 
number of faulty sites did not increase, and neuronal yield and spike amplitudes 
remained qualitatively unchanged. Inert iridium recording sites, when washed 
immediately following use and stored in air, can thus be repeatedly re-used for 
hundreds of hours under these conditions. The polytrodes are eventually broken 
during handling but have not yet been discarded due to degradation of site 
impedances or recording characteristics. If necessary, site impedances could be 
restored to pre-use levels by soaking the polytrode tip overnight in 0.25% w/v 
trypsin-EDTA (Invitrogen), followed by thorough rinsing in distilled water 
(Figure 1.10C, D). Most accumulated proteinaceous material is removed by this 
simple cleaning procedure. 

1.4.4 Track reconstruction and tissue damage 

Without direct staining or electrolytic lesions it is difficult to discern polytrode 
penetrations in histological sections. This is encouraging from the perspective of 
tissue displacement, but an obstacle for determining the location of recorded cells. 
The dil track staining method (Figure 1.11), is a straightforward and effective way 
of determining polytrode depth and alignment, avoiding the problem of tissue 
shrinkage associated with histological processing. Since the positions of the 
recording sites on the polytrode shank are known, it is possible to infer the precise 
cortical location of every site by simply imaging the outline of the polytrode 
(Figure 1.11A, E). CSD analysis (Figure 1.12) provides a complementary measure 
of polytrode depth. 

Regarding polytrode-induced tissue damage, there was no evidence of 
extensive tearing or distortion of neurites or pericytes (Figure 1.11B). The track 
was approximately 20pm thick, and surrounding microvasculature appeared 
undamaged (Figure 1.11C). Neuronal somata immediately around the track had 
ostensibly normal morphologies (Figure l .UD) . Staining with PI shows that 
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damaged neurons and glia were restricted to a region immediately surrounding 
the penetration (Figure 1.13A). The percentage of damaged neurons decreased 
exponentially with distance from the polytrode (Figure 1.13C, D). Of the total 
recordable volume in front of the polytrode (0.0126 mm 3 for the field of view 
shown in Figure 1.13B), less than 2% of the neurons were damaged or necrotic. It 
is important to emphasise that this is likely an overestimate of the neuronal 
damage. Some of the Nissl stained cells were probably glia, and staining for PI 
does not necessarily indicate cell death, only that an axon or dendrite has been 
sufficiently compromised to permit uptake of the dye. 

Figure 1.10 Long term stability of recording sites. 
(A) Post fabrication site impedances were highly consistent and remained unchanged for 
six months when stored in air. Over the course of several cat experiments with multiple 
penetrations in each experiment, site impedances increased slightly, however recording 
properties remained similar. Another polytrode (B) showing residue accumulated from 
five recording sessions, and (C) following overnight cleaning in trypsin. (D) Site 
impedances of this polytrode before and after cleaning *** p < 0.0005. Error bars are S E M 
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Figure 1.11 Polytrode track reconstruction. 
(A) A coronal rat brain section stained with fluorescent dil deposited by the polytrode, 
showing the faint outline of the tapered tip. A blood vessel (arrow) is visible running 
along the plane of the track. Scalebar = 200pm. (B) Reconstruction of a 50pm stack of 
confocal images directly in front of the penetration. Stained processes are neurites and 
pericytes indicative of normal tissue morphology. (C) Cross-section of the polytrode track 
at the level of the dashed line in (A). The thickness of the track is indicated by the region of 
intense dil fluorescence. Note the proximity of the intact microvessels (arrows). Scalebar = 
75pm. (D) Enlarged single plane confocal image 15pm anterior to the penetration site 
(boxed region in A), shows three neurons and their processes. Scalebar = 50pm. (E) The 
same electrode penetration, counterstained with fluorescent Nissl stain to delineate the 
boundaries of the cortical layers (arrows). Since the depth and orientation of the polytrode 
is clearly defined (tip outlined in yellow), the lamina location of the electrode sites can be 
precisely determined (yellow circles). The faded region in the top right was photobleached. 
Scalebar = 300pm. 

There was no indication of any difference in the prevalence, quality, or 
amplitude of neurons recorded at the top, bottom or central recording sites. For 
example, in the recording portrayed in Figure 1.7B, there were 32, 36, and 33 
neurons distributed on the top, middle, and bottom recording sites, respectively. 
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On numerous occasions it was possible to monitor and record neuron ensembles 
over successive advancements of the polytrode over hundreds of microns for 
many hours. Moreover, the same neurons - as determined by their spike shapes 
and field potential distribution across the polytrode, relative spatial location, firing 
pattern, and distinctive receptive field properties - could be recorded upon 
retraction of the polytrode, without noticeable deterioration of these properties 
(Figure 1.14). Together with the histological results, it is reasonable to conclude 
that tissue damage caused by the polytrode is restricted and relatively minimal 
compared to conventional electrodes. This is presumably because polytrodes have 
an ultra-thin silicon substrate (10-15 pm) that, unlike tungsten in glass or tetrode 
wire bundles, does not create a bore hole as it penetrates the brain. 

Figu re 1.12 C S D analys is . 
(A) Photic stimulation evokes characteristic LFP responses in rat visual cortex (average 
traces, n = 400), from which the CSD profile was derived (colour map). Prominent current 
sinks and sources in upper layer II/III and IV can be used to identify the depth of the 
polytrode with respect to the cortical layers (arrows). In this example the top and bottom 
polytrode sites were 150pm and 1350pm deep, respectively (cortical depth in pm is indicated 
to the right of the figure). The flash (vertical arrow) duration was 10ms, LFPs were sampled 
(A z) every 150pm, and for the differentiation grid n = 2. (B) Histological reconstruction of 
the electrode track confirmed the vertical alignment and depth of the polytrode. The tip 
was visible in the white matter of the adjacent brain section. 
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Figure 1.13 Estimation of damage around the polytrode. 
(A) Low power photomicrograph illustrating that Pi-positive (Pl+ve) cells are restricted to 
the vicinity immediately surrounding the polytrode. Scalebar = 150pm. (B) Confocal 
reconstruction, 30pm thick, imaged directly in front of the polytrode track. (Inset) Green 
fluorescent cells are undamaged neurons (including some glia), yellow cells are 
predominantiy Pl+ve damaged neurons (arrows), and red cells are Pl+ve non-neuronal 
cells. Scalebar = 50pm. (C) Rotated projection of the field of view in (B) shows the limited 
extent of Pl+ve cells with compromised membranes. Scalebar = 25pm. (D) The 
percentage of Pl+ve cells decreased exponentially (fitted line, r2= 0.96) with distance from 
the polytrode track. 
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Figure 1.14 Neuron passage study. 

A n ensemble of active neurons was recorded (A) at the point of insertion, traversing 
cortical layers IV - VI, and (B) following retraction of the polytrode 400pm (layers II/TJI -
V), four hours later. Averaged spike waveform epochs from 3 (of 24) visually responsive 
neurons are shown at both positions. Although the neurons were recorded on different 
sites, note the close similarity of the spike shapes and distributions. Estimated neuron 
locations were virtually identical. Autocorrelograms (± 50ms, 1ms bin width), receptive 
field profiles (8 x 8°, 40ms post-stimulus), and orientation mning curves (normalised to 
the peak firing rate) characteristic of the 3 neurons were the same at the two positions of 
the polytrode. Receptive fields were determined using binary m-sequence stimuli and 
reverse correlation (Jones and Palmer 1987); orientation tuning curves were derived from 
average responses (n = 8) to a drifting bar stimulus (0-360°, 20° increments). 

29 



1.5 D i s c u s s i o n 

The desire to elucidate the function of biological neuronal networks has 
motivated the development of a variety of technologies able to record 
simultaneously from multiple neurons. Large scale recording of neuronal activity 
in the intact brain is considered by many to be a prerequisite for understanding 
the distributed coding mechanisms that underlie sensory-motor integration, 
perceptual abilities, learning, memory, and ultimately the neuronal basis of 
language and higher cognition (Churchland and Sejnowski 1992; Buzsaki 2004; 
Olshausen and Field 2005). Polytrodes are particularly well suited for this 
endeavour. No other currently available electrophysiological or imaging 
technique combines sub-millisecond temporal resolution with single-cell spatial 
resolution, and the capability to monitor the activity of hundreds of neurons 
spanning contiguous cortical areas (Campbell et al. 1991; Hoogerwerf and Wise 
1994). The polytrodes described in this thesis are ideal for studies of columnar 
microcircuits because they enable exceptionally high-density recording of unit and 
field activity with minimal tissue damage. They offer demonstrably better single-
unit isolation than single electrodes, stereotrodes, or tetrodes, and provide stable 
multiunit recordings for hours. 

The finding that polytrodes with finer interconnects give robust recordings 
without increased noise or channel crosstalk augurs well for future polytrodes 
with even narrower conductors and spacing. The negligible crosstalk that was 
observed (<0.5%) for 1.5pm feature sizes is in accord with predictions of an earlier 
theoretical study (Najafi et al. 1990) that concluded features could be scaled down 
to 1pm with less than 1% crosstalk. Current industrial scaling limits are in the 
submicron range, so even smaller high density polytrodes should be realisable in 
the near future. Another potential concern was the viability of neurons recorded 
by polytrodes with shank widths greater than 60pm, a problem that has been 
reported by other users of similar devices (Csicsvari et al. 2003). However there 
was not any obvious deterioration in the number or quality of units recorded 
across the entire shank having a width of ~200pm (Figure 1.7B). A narrower shank 
is nonetheless desirable for minimizing tissue displacement and neuronal damage 
(Claverol-Tinture and Nadasdy 2004). As stated earlier, the main factor 
determining the overall shank width, and in turn the maximum number of 
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recording sites on a single shank, is space for the interconnecting leads. 
Ultimately one-lead-per-site interconnects may become superfluous for polytrodes 
comprised of active transistor arrays with on-chip multiplexing. Field effect 
transistor-based polytrodes with thousands of sites have already been prototyped 
for in vitro applications (Fromherz 2003). However, until serious complications 
involving the durability and high intrinsic noise of these devices are resolved, 
passive polytrodes with 1pm or less feature sizes, narrower shank widths, and 
even more recording sites, will continue to provide state-of-the-art high-density 
multiunit recordings. Other process variations, such as multilevel metal for the 
interconnect leads, offer the prospect of reducing the shank width of high density 
passive arrays. 

Two potential improvements to the current polytrode designs warrant 
mention. Firstly, penetration of the meninges could be aided by making the tip 
angle sharper (Najafi and Hetke 1990), or incorporating a silicon 'spine' on the 
back of the shank to make it more rigid. The latter can be achieved by 
withdrawing the polytrode from the final etch before a complete etch-stop is 
achieved (Najafi et al. 1990) without increasing the overall width of the polytrode. 
I have also attempted to soften the dura and pia by partially digesting it with 
collagenase (Zhu et al. 2002b), but this caused extensive spotted bleeding of the 
pial vasculature, which was deemed more detrimental than a small incision at the 
point of penetration. Secondly, the recordings reported here were made with 
unmodified iridium recording sites. Controlled electrodeposition of gold (using 
the apparatus described in appendix A) can increase site surface area without 
increasing site diameter, reducing impedances by an order of magnitude (T. 
Blanche, .unpublished results). The lower input impedance of the sites in turn 
reduces the noise level. Optimizing the electrode-tissue interface by increasing the 
surface roughness and adhesive properties of the recording sites with synthetic 
polymers (Cui et al. 2003) is another avenue for enhancing recorded spike 
amplitudes. Either of these techniques could be adopted to improve the SNR of 
future recordings. If required, sites may also be modified for extracellular 
microstimulation following electrochemical 'activation' to increase their charge 
capacity (Weiland and Anderson 2000). 

Despite the voluminous datasets generated (aggregate bandwidth ~2.8MB/s; 
~10GB/hour for 54 channels including EEG), continuous acquisition has a number 
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of benefits. It obviates the need to set trigger thresholds online, which is time 
consuming and impractical for polytrodes with more than a few sites. It 
eliminates the possibility of missing or duplicating spike events due to 
inappropriate window discriminator settings. The standard tetrode approach of 
recording an epoch from all channels in response to a threshold-crossing is 
inappropriate for polytrodes extending over several millimetres, and the usual 
method of 'locking-out' the entire electrode array following a spike event makes 
detection of synchronous spikes impossible. Continuous acquisition does not 
solve the problem, but makes possible more sophisticated offline algorithms that 
can (see section 3.3.3). In any case, there is little bandwidth to be saved by making 
episodic recordings considering the large numbers of active neurons typically 
recorded with polytrodes. Furthermore, since no data is lost at acquisition, as new 
and improved methods of spike sorting are developed the possibility exists to 
return to the archived files and re-extract the spikes from the continuously 
recorded waveforms. 

The use of stereotrodes and tetrodes drew attention to the value of spatially 
sampling individual neurons, exploiting differential spike amplitudes on different 
sites to improve single-unit discrimination. High-density polytrodes take this idea 
to its logical conclusion by recording from most of each neuron's field potential. 
The result is a further improvement in the reliability of single neuron isolation. 
Given the inherent 'myopia' of tetrodes, and the disparity between the number of 
neurons per virtual tetrode recorded with polytrodes and that usually cited for 
real wire-bundle tetrodes, the potential for mixed clusters in a highly active 
tetrode recording is probably considerably worse than that suggested by the case 
study presented here (Figure 1.9). The optimal sampling density and geometric 
configuration of recording sites needed to unambiguously resolve the activity of 
multiple neurons remains an open question. Each of the polytrode designs was, 
however, capable of recording individual neurons on multiple sites (Figure 1.8F), 
so the question of 'optimal' site spacing becomes more a question of specific 
application. Due consideration should also be given to the specific brain region 
and species under study. Rat hippocampus, for example, is only about 700pm 
thick, but the limited spatial extent of interneuron field potentials in the dentate 
gyrus requires a polytrode with a site spacing ideally less than 50pm (Freund and 
Buzsaki 1996). By way of contrast, only the two column and one of the three 
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column polytrodes are long enough (more than 1.2mm) to record simultaneously 
from all cortical layers of cat extrastriate visual cortex (Beaulieu and Colonnier 
1985). In the proposed studies of the columnar circuits underlying receptive field 
dynamics (chapter 5) translaminar coverage was particularly important, but a 
sampling resolution higher than 50pm was not justified. Finally, it should be 
noted that higher overall neuron yields might be obtained with multiple tetrodes 
(Hoffman and McNaughton 2002; Jog et al. 2002) because they can be 
independently moved to foci of high activity, but not with the high density 
possible with single-shank polytrodes, and at the expense of knowing the exact 
anatomical location of recorded units. 

There is arguably little value in estimating precise neuron locations (chapter 4) 
without knowing the location of the polytrode in the cortex with a comparable 
level of certainty. The online CSD analyses and unfixed fluorescent dye track 
reconstruction procedures described earlier are well suited for this task, enabling 
the depth and orientation of the polytrode to be determined with an accuracy of 
~25pm (Figure 1.11, Figure 1.12). Imprecision caused by diffusion of the dil prior 
to imaging is of minor consequence because the shape of the polytrode is usually 
discernable and the coordinates of the recording sites are fixed with respect to the 
polytrode shank. Traditional methods, such as depositing iron from the electrode 
that is detected by the Prussian blue reaction (Green 1958; Brown and Tasaki 1961) 
are unsuitable for polytrodes as the platinum, iridium or gold recording sites are 
devoid of any iron. DC current lesioning (Hubel and Wiesel 1962) can localise the 
electrode with at best 100-150pm accuracy, even when differential shrinkage 
associated with tissue fixation is ignored. Dual electrolytic lesions with fixed 
multichannel silicon electrode arrays can, however, improve the accuracy to 
within 100pm (Townsend et al. 2002). Breaking the polytrode shank in situ (eg. 
Buzsaki and Kandel 1998) is another approach, but the probe is frequently 
displaced 200pm or more from its original recording location when cut or during 
subsequent histological processing (Bragin et al. 2000). Polytrodes that could 
otherwise be reused many times (Figure 1.10) are obviously rendered 'single-use' 
electrodes, a particularly undesirable aspect of this method. Electrode localisation 
using magnetic resonance imaging (MRI) has a similar margin of error of ~180pm 
(Fung et al. 1998; Jog et al. 2002), and given the high cost of MRI, its application for 
this purpose is not widely accessible. Compared with the alternative techniques 
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for electrode track reconstruction, the procedure described in this chapter is 
simpler, more accurate, and applicable to any single or multi-shank polytrode. 

1.6 Next steps... 

Having established effective recording and histological procedures, there are 
several important data processing stages between continuous acquisition of raw 
multichannel waveforms and the ultimate goal of studying the physiology of large 
neuronal ensembles. In fact, the majority of this thesis is dedicated to establishing 
a set of robust methodologies to take full advantage of the unique recording 
capabilities of polytrodes. The following chapter presents offline signal 
processing methods for enhancing waveform fidelity, in turn improving neuronal 
yield and single unit isolation. Chapter 3 describes spike detection and sorting 
algorithms designed specifically for polytrodes. Chapter 4 describes work aimed 
at precisely localising neuron location in 3D by modeling the high resolution field 
potentials measurements recordable with high density polytrodes. The prospect 
of differentiating interneurons from pyramidal cells is also explored. Chapter 5 
introduces the concept of 'cortical micromapping', that is using neuron 
localisation and classification to bring together neural structure and function on 
the cellular scale. A new experimental paradigm is proposed for compiling a large 
multiunit database of unprecedented detail in order to address a variety of 
outstanding questions in visual neurophysiology, some of which are discussed in 
this concluding chapter. 
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chapter 2 
Signal processing 

2 .1 Summary j 
Polytrodes have the potential to record simultaneously from hundreds of 

neurons.. In practice, neuron yield is limited by spike waveform fidelity, which in 
turn affects the efficacy of spike detection and sorting algorithms. Judicious 
application of signal processing methods can help to fully realise the large-scale 
recording potential of polytrodes. Ideal bandlimited interpolation with sample-
and-hold delay correction is shown to accurately reconstruct spike shapes, 
improve the reliability of threshold-based event detection, and facilitate accurate 
spike sorting by reducing waveform variability. A principal component analysis 
based denoising algorithm was explored but found to cause significant 
attenuation of small spikes while conferring only minor overall improvement in 
signal to noise. Rejection of transient noise artefacts was, however, achieved with 
a simple averaging procedure. Interpolation of high bandwidth data is 
computationally expensive. A cost-benefit analysis was made of interpolation 
rates ranging from 12.5kHz (Nyquist frequency, no interpolation) to 100kHz, 
taking into consideration the final application of the data. For most purposes data 
acquisition rates of 20-25kHz with offline interpolation to 50kHz was found to be 
ideal, with negligible gains above this rate. A practical benefit of upsampling is 
that storage requirements can be greatly reduced by sampling at or slightly above 
the Nyquist frequency, although the potential for aliasing at lower sample rates 
should be considered. 
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2.2 Introduction 

Inadequate sampling or poor reconstruction of spike waveforms can result in 

errors of spike detection, distortion of spike shapes, and otherwise compromise 

the performance of spike sorting algorithms. Neurophysiologists routinely record 

spike activity at sample rates between 20 and 40kHz, yet according to sampling 

theorem (Nyquist 1928; Shannon 1949), for signals low-pass filtered at 5kHz, a 

10kHz sample rate (i.e. the Nyquist frequency) should be adequate. Data sampled 

according to Nyquist criteria do not appear to provide an accurate representation 

of the original spike waveforms (Figure 2.1), hence the common practice of 

oversampling. However, the Shannon-Nyquist theorem (Shannon 1949) states 

explicitly that if a band limited signal s(t) is sampled at a rate 2W, such that its 

Fourier transform: 

Z[s(t)] = S(f) = 0fov\f\>W 

... then s(f) is completely determined, and can be recovered from its samples, s«: 

*(')=!>«—^—r- ( 2 . i ) 
„ t i n(2Wt - n) 

The Nyquist sampling rule is often misconstrued as implying that the original 

signal is recoverable from the raw samples without further processing. What is 

usually neglected is the correct application of equation 2.1 in the waveform 

reconstruction. A discrete implementation of this theorem using convolution was 

the basis for the bandlimited interpolation, or so called 'upsampling', of 

continuously acquired waveforms described in this chapter. Although this 

method of signal reconstruction is not new, I describe it here as it is rarely 

exploited by neurophysiologists. It deserves more attention because there are 

tangible benefits of upsampling with respect to reliability of spike detection, 

estimation of spike waveform parameters, and accuracy of spike sorting. 

Equally important for successful isolation of single units in multiunit 

recordings is minimising contamination from noise. Radio-frequency interference, 

electrical line noise, ground loops, thermal (Johnson) noise, and static discharge all 

spoil the fidelity of spike recordings. Most of these exogenous noise sources were 

reduced or even eliminated in the present studies by the use of high input 

impedance headstage preamplifiers, the common mode rejection of the pseudo-
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differential reference electrode, careful attention to proper shielding, and 'star 
grounding' configurations (Appendix B.l). Low frequency LFPs were removed by 
the high pass filter of the spike amplifier channels by design. Other sources are, 
however, inextricably part of extracellular multiunit recordings. Background 
neural noise, including stimulus related 'hash', arises from the spike discharges of 
distant neurons, which obscure the spikes of neurons adjacent to the polytrode, 
especially those with small amplitudes. The observation that neural noise is 
highly correlated and, compared with nearby spikes, spatially invariant (Rebrik et 
al. 1999) led to the development of linear array processing (Bierer and Anderson 
1999) and principal component analysis (PCA) based algorithms (Musial et al. 
2002) for selective removal of this noise. Both cited methods are mathematically 
equivalent (Musial et al. 2002), and the PCA cleaner was adapted here for use with 
the high-density contiguous recording sites of polytrodes. 

Figure 2.1 The case for upsampling. 
A typical spike (~240uVPP amplitude) sampled at the Nyquist rate (12.5kHz, large circles), 
linearly interpolated (thick line) provides a poor rendition of the original waveform 
sampled at 100kHz (fine black line) particularly at the spike onset, peak and valley. Spike 
amplitudes are consistently underestimated, and threshold-based event detectors set in 
the range £i and £ 2 will miss a percentage of spike events. After interpolation to 100kHz 
(small circles) an accurate reconstruction of the underlying waveform is obtained. The 
cubic spline interpolated waveform (fine grey line) is shown for comparison. The inset 
shows the time-shifted windowed sine kernels, one for each interpolant of the 
reconstructed waveform. 
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Noise transients caused by static discharge are more difficult to suppress. 

Due to the filtering properties of the amplifiers, these manifest as spike-like 

artefacts that typically appear on all electrode sites. Distinguishing these from real 

spike signals requires special consideration. 

This chapter presents offline signal processing methods intended to improve 

waveform fidelity, spike detection and sorting, and ultimately neuron yield in 

multiunit polytrode recordings. Three techniques are described: bandlimited 

interpolation founded on the Shannon-Nyquist theorem; a PCA-based filtering 

algorithm for improving SNR; and a simple algorithm for rejecting transient noise 

artefacts. The effectiveness of each method was quantitatively assessed. 

2.3 Methods 

2.3.1 Bandlimited interpolation 

The ideal method for reconstruction of analog signals sampled according to 

Nyquist criteria is, in the time domain, convolution wi th a sine function: 
+ 0 0 

s(t) = (s*h,)(t)= %s(n)h,(t-n) (2.2) 

where t = the time of the interpolant 

s(n) = the raw waveform samples 
. , . . sin( KS) . . . p . , 
hs = sinc(//) = = the sine reconstruction filter 

KS 

The sine (meaning 'cardinal sine') function (Figure 2.1) is theoretically the 

perfect reconstruction filter since its Fourier transform is a box centered around 

D C of unitary width. It is, however, an infinite impulse response (IIR), as any 

signal that has a finite extent in the frequency domain must have an infinite extent 

in the time domain (and vice versa). The sine keeps oscillating with ever 

decreasing amplitude, so for practical purposes it needs to be windowed. The 

rationale for windowing is to attenuate the sine to zero at the extremes to produce 

a finite impulse response (FIR) filter kernel. By tapering the sine function instead 

of simply truncating it, ripple in the transition band-pass (Gibbs' phenomenon) 

can be minimised. There are many choices of windows, and for interpolation the 
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choice is not critical. Commonly used symmetrical windows include the Bartlett, 
Hanning, Hamming, Blackman, Kaiser, and Lanzcos windows. Each provide a 
subtly different trade-off between bandpass flatness, ringing and other 
reconstruction artefacts (Horowitz and Hi l l 1989; Smith 1997). 

The sine filter should be represented with sufficient resolution such that 
interpolating linearly between upsampled points does not introduce error greater 
than the quantization error of the analog to digital conversion (ADC). For 12-bit 
data, a filter kernel of length n = 19 with 9 'zero crossings' provides adequate 
precision (Smith 2004), yet is computationally feasible for the large signal 
bandwidth of polytrodes (1.35M.S-1 for 54 channels sampled at the Nyquist rate, 
-11M.S"1 upsampled to 100kHz per channel). Combining equation 2.2 with a 
Hamming window, wh, gives the tapered FIR filter suitable for discrete time series 
convolution: 

+9 

s(t)=^whs(n)h,(t-n) (2.3) 
n=-9 

7T S 

where wh = 0.54-0.46cos( ) (or other symmetric window function) 
n + n 

2.3.2 Sample and hold delay correction 

Most acquisition cards have a single analog to digital converter and therefore 
cannot sample multiple channels simultaneously. As with the DT3010 cards 
described in this thesis, the usual solution is to combine sample-and-hold circuits 
with rapid signal multiplexing to obtain 'near-simultaneous' sampling across all 
channels. Resultant sample-and-hold delay (SHD) artefacts (e.g. Figure 2.3A) were 
corrected during the interpolation process by using appropriately phase-shifted 
sine kernels, without additional computational overhead: 

+9 

5,(0 = \y,whs(n)hsi(t -n + 0 , / = 0...N ( 2.4 ) 

n=-9 

where i is the ordinal position of the channel in the hold queue, and his the 
appropriate phase offset, a multiple (or fraction) of the sampling period. 

The phase-shifted windowed sine kernels, hst, one for each interpolant, for 
each SHD offset, were pre-calculated and stored in indexed arrays for efficient 
implementation of the convolution. The question of the optimal level of 
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oversampling was addressed empirically for interpolation factors ranging from 
one (Nyquist sampled, or no interpolation) to eight (giving an effective sample 
rate of 100kHz for data acquired at 12.5kHz). The test data comprised 
continuously sampled recordings from each of the polytrode designs. 

2.3.3 Noise and artefact suppression 

PCA is typically used to reduce the dimensionality of spike waveforms for 
spike sorting (Abeles and Goldstein 1977; Gray et al. 1995). It can also potentially 
improve the SNR of multichannel recordings by predicting the common mode 
noise present across electrode sites (Musial et al. 2002). PCs were calculated by 
first computing the normalised covariance, C, of the multichannel data, D, for each 
electrode site j of the n-channel polytrode, excluding the site being processed: 

1 " 
C(t,s.j) = covD(t,s*j) = X ( s , - M ) ( * , - M ) r (2.5) 

n 1 i=i,;* j 

The covariance matrix was then diagonalised by eigenvector rotations to find 
the largest eigenvectors (i.e. axes of principal variance), e, according to the largest 
eigenvalues, X (Joliffe and Morgan 1992). For each successive electrode site the 
algorithm computed the first three PCs derived from all other sites: 

(C-A,I)e,=0, / = 1,2,3 (2.6) 
where C and I are the covariance and identity matrices, respectively. Data 

from the site being processed were projected onto each of these PCs to give a set of 
normalised coefficients, m, representing the fraction of raw signal amplitude 
attributable to noise: 

Dit,s,j)Tek 

nkj= T = 1,2,3 (2.7) 
ek ek 

These components were then subtracted from the raw data of the site being 
filtered, and the entire process was repeated for every site in the polytrode array: 

3 

Dclean(t,Sj) = D(t,Sj)-^nljeiJ ( 2.8 ) 

;=i 

A second iteration of the algorithm was intended to correct for the influence 
of spike trains on other sites (Musial et al. 2002). Matlab (MathWorks Inc., MA) 
was used for the exploratory work described here. 
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In the original description by Musial and colleagues (2002) only the electrode 
site being filtered was excluded from the calculation of the noise PCs. This was 
appropriate for their simulated spike train data because spikes were seeded on 
only one channel (they further claim this was suitable for real data recorded with 
electrode sites spaced at least 100pm apart, however no empirical evidence was 
given to support this suggestion). To make the algorithm applicable to high-
density polytrodes, where spikes from individual neurons appear on many 
adjacent sites, an 'inner lock-out radius' was incorporated whereby only sites 
outside the inner lockout were included in the PC estimations. Since the spatial 
extent of the dominant correlated noise sources had not been explicitly studied, a 
second 'outer-lockout' parameter was used to define the number of sites to 
include. Evaluation of the optimal combination of lockout parameters against 
overall SNR was made on short 3-10s data segments randomly selected from 
several polytrode recordings. 

In addition to PCA-based filtering a simpler method was sought for 
suppressing cross-channel transient artefacts such as those caused by static 
discharge and electrical stimulation. Amongst those that were tested (i.e. 
covariance, cross-correlation, averaging and various derivative functions) a simple 
threshold factor, /, times the standard deviation, cr, of the n-channel arithmetic 
mean was chosen: 

X[*(0] = - ! > , ( 0 = 0 f o r l X l > f-a (2-9 ) 

This is essentially a digital common-mode filter with a binary rejection 
criteria. For efficient implementation it was used to validate potential spike events 
only after they were detected (as described in chapter 3). 
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2.4 Results 

2.4.1 Waveform reconstruction 

Interpolation using windowed sine convolution accurately reconstructed 
extracellular spike waveforms (Figure 2.1, Figure 2.2A, C). The representative 
spikes in these figures show that un-interpolated data, even when sampled 
according to Nyquist criteria, gave a poor rendition of the underlying spike shape. 
Accordingly, raw estimates of spike amplitude (Figure 2.2B, D) were consistently 
low, and spike to spike variability attributable to the sampling process was high. 
If spike-triggered averaging is used to generate spike templates and derive 
waveform metrics, as was the case in these examples, then amplitude variability is 
compounded by the temporal misalignment of the individual spike events. 

Sine interpolation increases the effective sampling rate, with concomitant 
improvement in waveform fidelity. There was a gradual improvement in spike 
shape with increased sampling rate, most noticeably for fast spikes and in regions 
of the waveform with high slew rates, including the peak and valley. Slower 
regions of the spike waveform, such as the repolarisation and after-
hyperpolarisation phases, were in a sense already oversampled because they are 
comprised of lower frequencies. For example, the neuron in Figure 2.2B had an 
average estimated spike amplitude of 172pVpp at 100kHz, but only 117pVpp at 
12.5kHz, 68% of the actual amplitude. Without adequate interpolation, average 
estimates of spike width were relatively accurate (108ps at 12.5kHz vs. 96ps at 
100kHz for the fast-spiking neuron), however trial-trial variability caused by 
temporal aliasing (80ps at 12.5kHz) was unacceptably high. Spike width standard 
deviation was 44.8ps at 12.5kHz compared with only 5.3ps at 100kHz (i.e. it was 
proportional to roughly half the sampling period). The poor accuracy and 
precision of un-interpolated Nyquist-sampled data was inadequate for modelling 
neuronal field potentials and classification of cell type based on spike amplitudes 
and widths (chapter 4). For this reason all modeling was of spike waveform data 
upsampled to 100kHz. 
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Figure 2.2 S p i k e w a v e f o r m reconstruct ion. 
Interpolation of Nyquist-sampled data faithfully reconstructs spike waveforms. (A) An 
averaged (n = 313) medium amplitude spike was crudely represented at 12.5kHz (—•—), 
whereas upsampling to 100kHz (—0—) accurately matched the underlying spike shape 
(grey line, acquired at 100kHz). (B) Waveform-derived spike parameters reflect the 
increased variance and underestimation of peak and valley amplitudes at low sampling 
rates. (C) A fast-spiking neuron (n = 1640) had even higher variability and distortion 
without adequate interpolation, (D) with consequent misrepresentation of spike 
parameters. Error bars are the mean ± standard deviation. 

While SHDs of a few microseconds are of no consequence for tetrodes, with 
polytrodes they accumulate to produce significant phase disparities in waveforms 
recorded across sites (Figure 2.3A, B). The SHD of a given site was proportional to 
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its channel index times the fastest 'burst-mode' sample interval of lps per channel 
(for the 32 channel DT3010 acquisition cards). The maximum phase advance 

caused by SHD was thus only 31 ps, however this was sufficient to corrupt 
estimation of the conduction velocity of BPAPs (Figure 2.3C), in addition to the 
instantaneous spike amplitude measurements needed for modelling spike field 
potentials. SHD artefacts were therefore routinely compensated for (equation 2.4) 
during the interpolation process (Figure 2.3, lower panels). 

Figure 2.3 Sample & hold delay correction 
(A) A 1kHz sine-wave signal sampled 'near simultaneously' on different channels of the 
two 32-channel data acquisition cards. Accumulation of SHDs produces artefactual phase 
misalignments (upper panel). The same waveforms interpolated with SHD correction 
(lower panel) are perfectly aligned (note that ch0/ch32, chl/ch33, etc. are the corresponding 
pairs of channels on each DT3010 acquisition card, and are therefore subject to the same 
SHD). (B) A similar demonstration of the effect of SHDs on a multi-channel spike 
sampled across 18 recording sites. (C) SHDs are sufficient to mask precise measurements 
of biological phenomena such as the conduction velocity of BPAPs. 
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2.4.2 Reliability of event detection 

Variability in the amplitude of spike peaks caused by digital sampling can 
result in missed spike events (threshold ranges ei and £2 in Figure 2.1). The 
magnitude of this error was quantified by counting the number of spikes from a 
single neuron interpolated to different effective sampling rates over a range of 
trigger thresholds. In the first of two representative examples (Figure 2.4A) a 
large-amplitude neuron fired 303 action potentials, all of which were detected at a 
threshold level of +250uV or lower, irrespective of the sample rate. As the 
threshold was increased beyond the spike's peak amplitude, the number of 
triggers decreased, so that by +450uV no spikes were detected. The sigmoidal 
relationship (i.e. y = a/(\ +e(x"'x)/b)) between the number of detected events and 
the threshold level is characteristic of integration over a Gaussian distribution. 
Broader distributions produce shallower slopes, and vice versa, reflecting the 
combined variability of the spike amplitudes and the discrete, asynchronous 
nature of the digital sampling. Lateral shifts in the sigmoid result from changes in 
the mean spike amplitude at different sampling rates. Changes in the slope of the 
sigmoid (and hence the range over which the same spikes were detected) at 
different sampling rates indicate differences in spike amplitude variance 
attributable to sampling. For the large amplitude spike the shallower slope at 
12.5kHz (b = 23) compared with that for 25kHz and 50kHz (b = 16) represents a 
small increase in sampling related spike amplitude variability. However, there 
was little benefit of higher sampling rates in terms of detection reliability, because 
lowering the threshold to +250pV gave perfect detection without an increase in 
spurious triggers from noise or other spike events. This was not the case in the 
second example (Figure 2.4B), where the broader spread of amplitudes at 12.5kHz 
(b = 12 vs. 8) meant that all spikes from this neuron (n=1650) could only be 
delineated from the background noise after interpolation. Even at the most 
favourable threshold (Figure 2.4B, dotted line), just 80% of the Nyquist-sampled 
spike events were detected, and lowering the threshold produced an exponential 
increase in the number of false positives triggered by other small amplitude 
neurons and noise. In all cases examined (n = 15), the proportionally largest 
improvement in detection reliability was from 12.5-25kHz, with no further gains 
beyond 50kHz. 
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Figure 2.4 In te rpo la t ion i m p r o v e s event detect ion r e l i a b i l i t y . 
Different trigger thresholds were required to detect the same spike events from a given 
neuron at different sampling rates. The fitted curves are sigmoidal functions (all r1 > 0.99). 
(A) For large amplitude solitary spikes like that shown here (lower panel), upsampling 
gave no benefit in terms of detection reliability. All spikes from this neuron could be 
distinguished from other spikes and background noise at any sample rate simply by 
adjusting the threshold. (B) Fast spiking, lower amplitude spikes, however, were often 
only reliably detected at 25kHz or more. At the 'ideal' threshold for higher sampling rates 
(-55uV, dotted line) not all spikes were detected at 12.5kHz, but lowering the the absolute 
value of the threshold dramatically increased the number of false triggers (arrow). Note 
that in both examples the 100kHz plots were removed for clarity as they were identical to 
the 50kHz curves. Scalebars = 1ms. 

2.4.3 Cluster variability 

In order for spike clustering methods to effectively isolate single units, 
clusters from different neurons need to be clearly defined and have minimal 
overlap with the noise cluster along at least one feature dimension. One avoidable 
source of cluster scatter is sampling related variability (Figure 2.5). As before, the 
largest improvement was obtained upsampling from 12.5 to 25kHz. Two, four 
and eight-times oversampling each approximately halved the standard deviation 
of spike amplitude clusters compared to those generated from Nyquist sampled 
data (e.g. 28 to 15pV for the spikes shown in Figure 2.5A, 36pV to 21pV for Figure 
2.5B). For spike sorting based on dimension-reduced waveform features, for 
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example PCA, band limited waveform reconstruction with precisely aligned 

spikes translated into a progressive reduction in cluster variability (Figure 2.5C). 

Finally, Figure 2.5D illustrates how the boundaries of different neuron clusters can 

be more easily delineated from each other and the noise cluster at sample rates 

above 12.5kHz. The cluster separation indices (Equation 1.2) were less than 2 for 

the overlapping raw clusters, and 6 or more for the 100kHz upsampled clusters. 

Figure 2.5 Interpolation reduces cluster variability. 
Regardless of the features used for spike sorting, higher sampling rates yielded lower 
cluster variability. (A) Spike peak vs. valley amplitudes from a single neuron (n=316), 
mean-subtracted to show the cluster spreads at each of the four sampling rates tested. 
(B) Uncentred spike amplitude clusters from another neuron (n=1253). Underestimation 
of spike amplitudes produced a drift in cluster centres at low sample rates. High cluster 
variance, particularly at 12.5kHz, made separation of spikes from noise difficult (dashed 
line). (C) first vs. second PC scatter plots of the spike events in B. (D) PCA-based cluster 
plots of spikes upsampled to 100kHz produced three neuron clusters (ellipses), each 
distinct from each other and the noise cluster (dashed line). Clusters of the same spikes 
sampled at the Nyquist rate were confounded, and barely separable from noise. 
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2.4.4 Artefact rejection and denoising 

The similarity of common-mode noise transients across sites was used to 
identify spurious triggers caused by these events (Figure 2.6). Large differences in 
the cross-site average amplitude of noise transients compared with real spike 
events meant a simple threshold (i.e. three times the standard deviation of the 
mean, equation 2.9) could distinguish one from the other without exception. 

Figure 2.6 Robust artefact rejection. 
(A) A typical artefact, in this example a voltage transient caused by a static discharge, was 
ubiquitous on ungrounded sites. The uniformity of the artefact was reflected in the mean 
(shaded waveforms, scaled 3-fold compared with raw waveforms). (B) Neuronal 
discharges, even large amplitude spikes that appear on many channels (C), were not 
strongly manifest in the average waveform. A simple bipolar threshold (dashed lines) 
could therefore be used to distinguish neuronal spikes from these sorts of artefacts. 

More sophisticated forms of noise suppression were relatively unsuccessful. 
The PC-based filtering algorithm had a tendency to attenuate and distort real 
spike events, with only a marginal improvement in SNR (Figure 2.7). Generalised 
synchronous burst noise (Figure 2.7A) was broadly correlated across sites, with an 
average correlation coefficient of 0.43 (range 0.11-0.90). Background noise was 
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also correlated across sites, albeit to a lesser degree (average 0.16, range 0-0.42). In 
each case these correlations were almost entirely removed by the PC filter (0.09 
and 0.02, respectively, Figure 2.7B). Nevertheless, only small improvements in 
overall SNR were obtained for spikes in background noise (for inner lockouts 
greater than 100pm). The largest increase in average SNR was 4.6% for an inner 
lockout of 300pm, however average spike amplitudes were attenuated by 6% 
(Figure 2.7C). Inclusion of the site being filtered or sites immediately around it in 
the PC calculation actually lowered the SNR because the spikes themselves were 
diminished by up to 80% (an average of 22% if every site was included). The 
modest gain in overall SNR might have been beneficial had the algorithm not 
predominantly attenuated the amplitude of low-amplitude spikes (Figure 2.7D). 
In the example portrayed, which was characteristic of the five recordings 
examined, small spikes below 75pVpp were reduced on average by 6.1%, 
compared with 1.5% for spikes above lOOpVpp. Since bursting-related ripple and 
background noise were spatially uniform on the scale of the polytrodes (l-2mm), 
changing the radius of the outer lockout parameter did not affect these results. 
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Figure 2.7 PCA-based denoising. 
Correlated noise sources can be subtracted from raw spike waveforms to improve SNR. 
(A) Recording sites shared common noise, most notably during high-frequency 
synchronous bursts (inset). (B) Covariance matrices for two segments of polytrode data 
are shown. In each example the upper half of the matrix shows the degree of correlation 
in the raw data, whereas the lower half is the same data after denoising. Sites are ordered 
by their distance apart, and faulty sites were excluded. High-frequency ripple gave rise to 
large cross-channel correlations (upper panel), that were effectively removed by the 
denoising algorithm. Background noise showed weaker correlations (lower panel) that 
were also suppressed by denoising. (C) Overall SNR (—•—) and relative average spike 
amplitude (—o—) post-denoising depended on whether adjacent sites were included in 
the PC estimation (the dashed line shows the raw SNR). (D) On average denoising 
decreased spike amplitudes (dashed line), smaller spikes more so than large. 

2.5 Discussion 

The task of spike sorting (chapter 3) is challenging enough without the added 

variability caused by deficient waveform reconstruction. Linear interpolation of 

analog signals sampled at the Nyquist frequency cannot possibly capture the true 

shape of a spike waveform. Accordingly spike metrics that are needed for later 
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analyses such as spike sorting will be compromised. While the usual solution is to 
oversample, in this chapter I have demonstrated that windowed sine interpolation 
can achieve the same end (as it should on theoretical grounds) without the burden 
of collecting and storing oversampled data. In addition I have shown that SHD 
correction removes systematic sampling delays that can have a deleterious effect 
on cross-channel spike waveform indices that depend on truly simultaneous cross-
channel measurements. 

That windowed sine interpolation restores the original spike waveform does 
not imply that information over and above that contained in the raw data has been 
added. Rather, the information already contained in the data is being utilised 
properly according to sampling theorem. Upsampling 12.5kHz data to 100kHz 
will not produce waveforms with frequencies over 6kHz, since, if the data were 
sampled according to Nyquist criteria, these were already filtered out of the 
original data. Therefore, if only Fourier methods are used in the subsequent 
analysis of the raw data (e.g. McGill and Dorfman 1984; Kayser et al. 2003b) there 
would in fact be no advantage to interpolating in the time domain. However, 
most electrophysiological analyses such as spike detection, slope and amplitude 
estimation, peri-stimulus time histograms, burst analysis, reverse correlation and 
so forth are done in the time domain, and it is here that the benefits of correct 
interpolation wil l be evident. 

Interpolation by convolution is computationally intensive. Both the quantity 
of data that must be managed and the time it takes to be processed is proportional 
to the rate of interpolation (Table 2.1). A l l significant improvements in accuracy 
and precision afforded by interpolation had been attained by 50kHz. Upsampling 
to 100kHz did not, for any practical purpose, justify the doubling in computation 
time or bandwidth. There is no single optimal rate of oversampling; it depends on 
how the data wil l ultimately be used. For analyses exclusively in the frequency 
domain, sample at the Nyquist frequency. If the goal is to generate tuning 
response curves from average spike counts, then for large amplitude spikes that 
are already well isolated it could be argued that undersampling is sufficient. Any 
missed spike triggers would be randomly distributed across trials, and the shape 
of the tuning curve would still be accurate. At the other extreme, attempting to 
infer intracellular state from multichannel extracellular waveform distributions 
(Henze et al. 2000), or studies of spike timing precision (Mainen and Sejnowski 
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1995; Oram et al. 1999), will benefit considerably from upsampling. Interpolation 
may also be applied to specific stages in the data processing stream. For example, 
the quality of PCA-based spike sorting relies on precise spike alignment (Lewicki 
1998), however the realism of the spike waveform is unimportant so long as the 
shape is consistent. By upsampling to 100kHz to ensure reliable spike detection 
and peak alignment, followed by decimation to 10kHz (or less) to speed the 
calculation of the PCs, processing of large multiunit recordings from polytrodes 
can be made more efficient while improving the quality of sorting (data not 
shown). Likewise, waveform subtraction algorithms that attempt to decompose 
overlapping spikes (Atiya 1992; Lewicki 1994) perform poorly if the canonical 
spike templates are inaccurate. Misalignment of the spike template and the 
measured waveform can introduce spurious spike-like artefacts. To keep these 
residual artefacts below the RMS noise level, Lewicki (1994) estimated the 
required alignment precision to be in the range of 2-10 times the sampling rate, 
similar to that suggested here. 

T a b l e 2.1 Cos t -benef i t ana lys i s of u p s a m p l i n g . 

Interpolation 
factor 

Effective 
sampling 
rate (kHz) 

Spike 
detection 

Spike 
amplitude 

Spike 
shape 

Spike 
width* 

CPU load 
(54 channels 
per 100 ms)* 

Bandwidth 
(KB/chan/s) 

lx 12.5 + + + + <2msf 25 

2x 25 +++ +++ ++ +++ 22.2+0.3 50 

4x 50 ++++ ++++ +++ ++++ 44.6±0.5 100 

8x 100 ++++ ++++ ++++ 1 1 1 !• 87.4+1.8 200 

The benefits of spike waveform interpolation at different effective sample rates, against 
computational load and bandwidth requirements. Rating scale + to ++++, relative to raw 
data sampled at the Nyquist rate (more pluses denote higher accuracy and precision). 
* average ± the stdev. of 100 measurements. Werhead for sequential file streaming. 
* applies to both single spikes and the alignment precision of multiple spike epochs. 

It is also possible to compute the interpolated sample points in the frequency 
domain using suitable phase rotations. But since the raw data is stored as time 
series, converting the data into the frequency domain, upsampling it, and 
converting it back to the time domain for further processing was slower than 
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direct convolution in the time domain, even when fast Fourier transforms (Press et 
al. 1994) were used. 

Supplementary digital filters can be incorporated into the interpolation 
process, just as the Hamming window was convolved with the IIR filter. As 
convolution is associative, repetitious convolution of the time series for each filter 
pass can be avoided by convolving the actual sine kernel with the filter or filters of 
interest. Kernels for a multitude of purposes, including high-pass, low-pass, and 
notch-filters, kernels for smoothing or removal of DC signals, differentiation, 
integration and so forth (Smith 1997), can therefore be applied without additional 
computational overhead. 

Meijering (2002) gives a comprehensive review of the many available methods 
of interpolation, but only Fourier-based techniques such as bandlimited 
interpolation have a solid theoretical grounding. Alternative methods, such as 
cosine, Gaussian, polynomial and cubic spline interpolation are useful for display 
purposes but do not provide bona fide reconstructions (Schafer and Rabiner 1973). 
Cubic spline interpolation can, however, be used to good effect aligning spike 
waveforms by locating the true waveform peak and valley times (Wheeler and 
Smith 1987). It does so efficiently as only a few samples around the raw peak need 
be interpolated, and in turn PCA-based spike sorting can be made more effective, 
as already discussed. Aside from this specific purpose, cubic splines (based upon 
smooth, continuous first and second derivatives) are not useful for quantitatively 
accurate waveform reconstruction (Figure 2.1). Moreover, it is computationally 
prohibitive to process continuously acquired waveforms with cubic splines, 
making it unsuitable for improving spike detection reliability. In any case there is 
no reason for not using the theoretically correct Fourier methods of interpolation 
given that standard desktop computers are capable of processing more than 54-
channels faster than real time, even to rates as high as 100kHz (Table 2.1). 

2.5.1 Avoiding aliasing 

There are few compelling reasons to heavily oversample analog signals 
during acquisition, as bandlimited interpolation is clearly an effective method of 
upsampling offline. However, before making the transition to lower acquisition 
rates the potential for signal aliasing must be considered, because the transition 
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bandpass of analog anti-alias filters can be fairly broad (Figure 2.8). One way to 
relate the relevant factors of filter roll-off, the signal (and noise) energy in the 
transition bandpass, and the level of acceptable distortion from aliasing given the 
overall dynamic range of the system, is the sampling ratio: 

S.R. = j- = i + j . ( 2 1 0 ) 

J c J c 

where s is the sampling rate, 
fi is the frequency at the required attenuation, and 
fc is the -3dB corner frequency of the anti-alias filter. 

Therefore, to maintain the precision of a 12 bit (72dB, or -0.02%) acquisition 
system, with fi set at 6kHz and 5 pole RC anti-alias filters (FA 1-64 specifications 
state lOOdB/decade roll-off), the desired fi is 8.5kHz. This gives a SR of 2.4 and 
equates to a sampling rate of 14.5kHz, just above the Nyquist frequency based on 
the assumption of a 'brick-wall' filter with/r equal to/c (Figure 2.8). However, the 
SR is on one hand a conservative indicator, as it assumes a white noise spectrum 
(i.e. above and beyond the transition band), zero tolerance to aliased signals, and 
ignores other sources of noise that conspire to reduce the dynamic range, or 
effective number of bits (ENOB), of the system as a whole. A more realistic 
estimate might put the ENOB of the current system at 10 bits (60dB, or -0.1% 
precision) given electronic noise, total harmonic distortion, and potential for 
crosstalk in the analog to digital circuitry during high speed signal multiplexing. 
At the same time, the measured filter decay was closer to 60dB/decade (Figure 
B.1A), somewhat less steep than the lOOdB specified. Finally, the signal and noise 
power spectra were not white. Energy at the corner frequency, of background 
neural hash recorded in vivo (with all apparatus connected and switched on, but 
excluding spikes), was -0.02% full-scale (Figure B.2A), matching the fi. Regular 
spikes (RS) on average had an even lower spectral power at 6kHz, however FS 
neurons had significant energy well beyond 6kHz (Figure B.2B). Taken together, a 
more realistic SR for this acquisition system would be 3.4, avoiding the possibility 
of aliasing spikes from FS neurons by sampling at 20kHz. If anti-alias filters with 
fi lowered to 5kHz and a steeper roll off were substituted into the amplifiers, or if 
up to lOpVpp aliasing was deemed acceptable, then the adjusted SR drops back to 
-2.4, a sampling rate of ~12kHz. Of course the opportunity to record from FS 
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neurons and distinguish them from RS neurons would be significantly 
compromised by filtering and sampling at this lower rate. 

/c-3dB 

amplitude 

pass band transition band stop band 

/r-60dB 
/,-72dB 

frequency 

Figure 2.8 Transition bandwidth, sampling ratio and aliasing. 
Calculation of an appropriate sampling ratio depends on the corner frequency fc, the 
required level of attenuation f, and the slope of the anti-alias low-pass filter. The pass 
band is defined as the range of frequencies below fc that, for an ideal filter, pass signals 
without changing their amplitude. The frequency range between f and f is called the 
transition band. Signals in this range are subject to aliasing if the simplest interpretation 
of the Nyquist sample rule is applied (ie. 2 xfi). Frequencies above f are referred to as the 
stop band. For an ideal 'brick wall' filter (red dotted line) f=f so the SR = 1+1/1 = 2, in 
accord with Nyquist criteria. For narrow transition bands (blue dotted lines), the SR will be 
slightly higher, for broad transition bands (green dotted lines) the SR will be higher still. 

From a practical standpoint, there are other reasons for acquiring and storing 
data at slightly more than twice the Nyquist frequency (as defined by fc). Online 
monitoring of Nyquist-sampled spikes have poor definition, so moderate 
oversampling avoids the need to upsample online. Oversampling allows for 
considerably shorter sine FIR filter kernels for an equivalent level of interpolation 
precision, because the number of zero crossings is determined by the width of the 
transition bandpass. A small percentage increase in the original sampling rate 
affords a larger percentage saving in computation time because the added 
bandwidth is a larger percentage of the filter transition bandwidth than it is of the 
original sampling rate (Smith 2004). For example, given a/cof 6kHz, the transition 
band for a sampling rate of 20kHz is about 2.5kHz, while 25kHz provides a 5kHz 
transition band. A 25% increase in sampling rate halves the work per sample 
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during upsampling. High precision interpolation is thus possible with filter 
kernels containing fewer than 20 points. 

2.5.2 Noise reduction 

Noise is the scourge of multiunit recording. Extracellular spike amplitudes 
from the same neuron may fluctuate, particularly during bursting (Buzsaki et al. 
1996; Fee et al. 1996b), and additional noise that adds to this intrinsic variability 
compounds the already difficult task of isolating single units or deriving accurate 
spike metrics. Even large amplitude spikes can be hard to distinguish from each 
other in the presence of large amplitude instrument noise or neural 'hash' (Figure 
2.7A). Small amplitude spikes are most susceptible, often rendered undetectable 
or impossible to sort. It is therefore unfortunate that the PCA denoising algorithm 
did not only fail to improve the SNR of small spikes, but had a tendency to abolish 
them entirely. This negative bias may have arisen because small amplitude spikes 
are typically from more distant neurons, and the farther neurons are from the 
polytrode the more distributed their fields are across the polytrode (Figure 4.4). It 
appears that the inner lockout designed to allow for this was not a complete 
solution. Another likely failing of the algorithm was that the spiking probability 
of neuron ensembles are not independent, and weak but consistent correlations 
amongst the spike trains could produce the net average decrease in spike 
amplitudes observed. Perhaps the only obvious potential use of the PCA 
denoising algorithm, at least in its current form, is for extracting a subset of 
isolatable spikes from large amplitude brain ripple. This would be especially 
valuable in studies of the spike patterns associated with rapid image processing 
(Fabre-Thorpe et al. 1998), since the spikes of interest wil l frequently be embedded 
in stimulus onset-related burst activity. 

For more generalised denoising, recently developed algorithms based on 
independent component analysis (ICA) show some promise (Iriarte et al. 2003), 
although they have not yet been tested in the context of multiunit recordings. 
Wavelet-based algorithms, like those used to analyse single-trial event-related 
potentials (Quian Quiroga and Garcia 2003) and suppress noise artefacts in 
microneurographic EMG recordings (Diedrich et al. 2003), may also be useful for 
denoising multiunit recordings (Zouridakis and Tarn 1997; Letelier and Weber 
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2000) by virtue of the dissimilar power spectra of spikes and background neural 
noise (Figure B.2). 

2.6 Conclusions 

The original impetus for upsampling and denoising was to lessen the 
detrimental effects of avoidable sources of variability in order to obtain more 
accurate spike waveform measurements and, in turn, improve spike detection and 
sorting. In this regard, sampling at 10-20kHz (depending on the specifications of 
the system's amplifiers, filter settings, and signals of interest) followed by 
bandlimited interpolation to 50kHz is strongly advocated, whereas PCA-based 
denoising was demonstrated to be of limited value for polytrode recordings. 
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chapter 3 
Spike detection and sorting 

3.1 [Summary J 
Spike sorting techniques developed for tetrodes are unsuitable for polytrodes. 

In this chapter, a new sorting algorithm is described that combines unsupervised 
template generation with multisite template matching (MTM). The strengths and 
weaknesses of various detection methods are also explored. Of five methods 
tested, the most effective for distinguishing spikes from noise used a criterion 
where the waveform must cross two dynamic thresholds of opposite polarity 
within ±150ps. On tests with real and simulated data this method worked as well 
or better than more sophisticated algorithms. Spikes with a signal to noise ratio of 
one could be reliably detected. A spatiotemporal 'window-discriminator' was 
used to assess each spike's location and extent to determine which channels to 
lock-out and for how long. This minimized the chance of missing near-
synchronous spikes on adjacent polytrode sites, and enabled detection of 
synchronous spikes on more separated sites. For spike sorting, multichannel spike 
templates were automatically generated using an iterative binary split algorithm 
followed by extended &-means clustering in the entire 54 channel waveform space. 
Candidate templates were then truncated and fit across the continuously acquired 
time series to determine spike times for the whole recording. M T M was accurate 
for signal to noise ratios as low as one, and resilient to partial spike overlap. 
Minimal user input was required to confirm the validity of templates and set 
goodness-of-fit thresholds for each template. Unlike most existing methods, M T M 
has the advantage of being scalable and computationally feasible for large'scale 
recordings comprising millions of spikes. Although originally conceived for 
polytrodes, these detection and sorting methods may be generally applicable to 
other multiunit or wire-bundle electrodes. 
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3.2 Introduction 

The goal of spike sorting is simple: unambiguously identify the number of 
neurons in a multiunit recording, and assign spikes to identified neurons. 
Unfortunately the simplicity of the goal often belies the difficulty of the task. 

Single-unit electrodes are predisposed to recording localised potential 
gradients because of the small surface area (< 1pm2) of the exposed recording tip 
(Thompson and Patterson 1973; Humphrey 1979). By positioning the electrode tip 
sufficiently close to a single neuron such that the recorded signal is dominated by 
that neuron, a skilled electrophysiologist can isolate the neuron, or 'unit', from 
other nearby active neurons. Well isolated units do not require additional spike 
sorting. Multiunit electrodes, including the comparatively large surface area 
recording sites of polytrodes (> 100pm2), are by design receptive to electric fields 
in a much larger volume of tissue (Buchwald et al. 1973; Kettenmann and Grantyn 
1992; Henze et al. 2000). Multiunit recordings therefore comprise a complex 
mixture of spike waveforms originating from an unknown and potentially large 
number of neurons superimposed on background noise. Separating these signals 
requires a spike sorting algorithm, of which a myriad different methods have been 
proposed (reviewed by Schmidt 1984; more recently by Lewicki 1998). 

There are a number of reasons why spike sorting is a non-trivial problem. 
Foremost amongst them is the similarity of extracellularly recorded spike 
amplitudes from nearby neurons, especially those equidistant from the recording 
electrode that have comparable morphologies. In such circumstances template 
matching (Millecchia and Mclntyre 1978; Forster and Handwerker 1990; Bergman 
and DeLong 1992; Zhang et al. 2004) may be useful for discriminating neurons on 
the basis of differences in spike shape. Alternatively, stereotrodes (McNaughton 
et al. 1983) and tetrodes (Wilson and McNaughton 1993) utilise differential spike 
amplitudes across independent channels in order to identify individual neurons 
(Gray et al. 1995; Harris et al. 2000). This strategy can also be exploited by 
polytrodes with closely spaced sites [e.g. Figure 1.9; Csicsvari (2003)]. 

The spike field potentials of multiple neurons sum linearly in the extracellular 
space (Wehr et al. 1998). Juxtaposed neurons that fire together cause significant 
distortion of their respective spike waveforms, often making it impossible to 
disambiguate the sources, or worse giving rise to spurious correlations (Bar-Gad 
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et al. 2001). Yet for in vivo studies of local connectivity (e.g. Aertsen et al. 1989; 
Alonso and Martinez 1998; Snider et al. 1998) and spike timing dependent 
plasticity (Bi and Poo 1998), isolating spikes from neighbouring neurons is 
essential. A few methods (Atiya 1992; Lewicki 1994; Zouridakis and Tarn 1997; 
Zhang et al. 2004) deal explicitly with the problem of spike overlap, but these 
algorithms involve iterative decompositions that are computationally prohibitive 
for single channel recordings, let alone polytrodes. Another class of algorithm 
exploits ICA to 'unmix' the contributions of all spikes, including those from 
distant neural activity (Comon 1994; Brown et al. 2001). ICA is more efficient than 
the other cited methods, but its application is limited to recordings where there 
are fewer active neurons (spike sources) than electrodes (however, see Takahashi 
et al. 2003). 

A third major confound that affects spike sorting accuracy is the variability of 
the spike waveforms themselves. Spikes from one neuron are not identical each 
time the neuron fires, primarily due to variations in the inactivation state of 
voltage-gated sodium channels, which is most apparent during a burst (Figure 
4.6B) or complex spike train (Fee et al. 1996b; Harris et al. 2000). The occurrence of 
a BPAP (Spruston et al. 1995; Buzsaki et al. 1996; Svoboda et al. 1999; Quirk et al. 
2001) also dramatically alters the amplitude and distribution of the extracellular 
spike (Figure 1.8D). As with the spike overlap problem, few algorithms (Fee et al. 
1996a) are able to compensate for this level of intrinsic variability. 

Most algorithms dissect the problem of spike sorting in the following manner: 
spike detection; waveform or feature extraction; and either template matching or 
cluster analysis in order to obtain the spike times for each neuron. 

Effective discrimination of spikes from background noise is the first step, 
irrespective of the method used. While spike sorting has been the subject of 
extensive study (Lewicki 1998), methods for improving the reliability of spike 
detection have received comparatively little attention (Obeid and Wolf 2003). As 
the first stage common to all spike sorting algorithms, detecting spurious spike 
events or missing valid spikes is as serious as their misclassification. Given the 
importance of this step, a number of different methods were evaluated here, 
including simple thresholding, time-windowed amplitude based filters, 
thresholding of non-linear energy transformed waveforms, and detection 
algorithms designed specifically for multisite electrodes. 
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In the second stage, a minimal set of spike waveform features is either 
manually selected (typically spike amplitude or width) or preferably is derived 
automatically using dimension reduction techniques such as PCA (Abeles and 
Goldstein 1977). Statistical clustering methods (Forgy 1965; Anderberg 1973; 
Massart and Kaufman 1983) are then used to assign spikes to neurons. If template 
matching methods are used, the usual practice is to fit the entire spike waveform 
of 'model' templates to classify the remaining spikes in the time series. 

Multiunit recordings made with high-density polytrodes compound the 
practical difficulties of spike sorting. Most contemporary spike detection and 
sorting methods are not suitable. Manually defining the cluster boundaries of 
units recorded with contiguous polytrode arrays with more than a few sites is not 
practical because of the high dimensionality and sheer volume of data. Existing 
automated clustering algorithms are computationally intensive and do not scale 
well either. Therefore the desirable, if not essential, attributes of a polytrode spike 
sorter are that it be unsupervised, operating with minimal human intervention; 
scalable, suitable for hundreds of recordings sites and millions of spikes; accurate 
and sensitive, be able to sort and detect low amplitude spikes; and, ideally, it 
should be able to resolve synchronous or near-synchronous spikes. 

Tetrode spike classification schemes typically rely on differential spike 
amplitudes, discarding information about spike shape, whereas template 
matching methods are usually only applied to single-channel multiunit data. The 
algorithm that is explored in this chapter is one that combines the strengths of 
both multichannel spatial clustering and template matching into an unsupervised 
algorithm for multisite template-based spike sorting. The issue of scalability is 
also addressed. Rather than attempting to cluster all the spike events in a given 
recording, the proposed method randomly samples a subset of spikes to build a 
set of representative templates using extended &-means clustering (Yang and 
Shamma 1988; Atiya 1992). After setting a goodness-of-fit threshold for each 
template, these are individually fit across the relevant channels to determine the 
spike times for each neuron across the entire file. By splitting the problem into 
two phases the computational load scales linearly instead of geometrically, 
making sorting of prolonged recordings with hundreds of neurons and millions of 
spikes more manageable. 
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3.3 Methods 

The proposed spike sorting procedure is summarised in Figure 3.1. It 

comprises two main stages: i) a learning phase, involving threshold-based spike 

detection and unsupervised clustering of spike waveforms to generate multisite 

spike templates, and ii) a classification phase, whereby representative templates are 

fit to the original recording to obtain neuron-specific spike times. The table below 

contains a description of the parameters used throughout. 

Table 3.1 Spike sorting parameters. 

Symbol Meaning 

X set of spike waveform samples (or spike-derived cluster features) 

N total number of samples comprising X 

F number of features (dimensionality of X) 

k cluster counter (the number of spike template classes) 

. Ki,Ni sample indices comprising cluster, number of samples in class Ki 

Xk a sample assigned to cluster k 

y* centroid of cluster k 

d Euclidian distance, similarity metric in the F-dimensional cluster space 

D maximum distortion of any cluster, determines cluster to split 

VO 1st principal component of a cluster, determines axis for splitting 

J, dmin distance between any two centroids, the minimum allowable distance 

li, no flags whether a cluster is locked, number of samples before a cluster is locked 

Ndisc number of new samples discarded in current iteration, provides exit criteria 

Ti a final validated, truncated multisite template ready for fitting 

Nc,Ns number of channels in a template, number of samples for that channel (truncated) 

local minima fit residual between template and original time series at time t 
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Figure 3.1 S p i k e so r t ing flow chart. 

63 



3.3.1 Spike detection 

A prerequisite of any spike sorting algorithm, irrespective of the method used, 
is reliable differentiation of spike events from background noise. Even template 
matching methods, such as the one described in this chapter, require some form of 
event detection to extract spike samples for representative templates. Five 
different algorithms were evaluated, four of which are depicted (Figure 3.2). 

The first, most common method was a simple bipolar amplitude threshold 
trigger, essentially a software window discriminator. A n event was flagged 
whenever the voltage s on the z'-th channel passed above or below a fixed 
threshold, / of a«, where On was a measure of the background noise (typically four 
times the standard deviation, but see the following section): 

f = Aon. \Sj(t)\>f (3.1) 

Samples immediately following a trigger were ignored, or Tocked-ouf, to 
avoid re-triggering off the same spike (section 3.3.3). A similar but slightly more 
sophisticated form of spike amplitude thresholding, dubbed a 'multiphasic filter', 
took into account the bi- and triphasic shape of neuronal action potentials, 
specifically the fact opposite phases of a spike always follow each other in rapid 
succession (Figure 3.2B). Accordingly, spikes were triggered only when 
consecutive threshold crossings of opposing polarity occurred on a given channel 
si within a limited time window, St: 

s ,(*)>/ s,(t)<-f 

i* *\ s+ve e d g e c r o s s i ns; , -ve ed§e (3-2) 
s,(t+ &)<-/ s,(t + St)>f 

In a sense this algorithm is a crude form of template matching, with a very 
loose definition of what constitutes a spike waveform. 

The third method, the dynamic multiphasic filter, was a slight modification of 
the multiphasic filter, wherein the second threshold level was relative to the peak 
or valley of the initial phase trigger, and could precede or follow the initial trigger. 
The DC signal level was thereby ignored and candidate spikes were only required 
to have a minimum amplitude inflection occurring within a designated time 
window. This method is functionally analogous to a minimum slope or first 
derivative threshold detector convolved with a temporal smoothing window. 

Neuronal spikes are characterised by transient high energy, high frequency 
waveforms compared with background noise. Non linear energy operators (NEO) 
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estimate the instantaneous frequency and amplitude of a signal (Kaiser 1990; 
Maragos et al. 1993). By accentuating spike amplitudes more than noise, such 
transforms have the potential to improve spike discrimination (Figure 3.2C). For 
continuous signals, the NEO y/, has been defined by Kaiser (1990) as: 

kwr-*,(ô  (3-3) 
For discretely sampled data, spikes were registered when: 

¥[si(t)] = si(t)1-si(t + 8)si(t-S)>f\ 1 < £ < 4 (3.4) 

where 5was usually equal to 1 (ie. 40ps), and a suitable threshold/ 2 was set 
manually upon visual inspection of the transformed time series. 

B 
1 

At r t V 
bipolar threshold 

k(0|>7 
multi-phasic 

s,(t)>f 

Si(t+At)<-f 

non-linear energy 
hyper-ellipsoidal 

VTC~l >f2 

Figure 3.2 Spike detection algorithms. 
Depiction of four (of the five) spike detection algorithms. (A) A bipolar threshold. Any 
waveform on any channel that deviates significantly from noise triggers a spike event. 
(B) Candidate spike events must cross two thresholds of opposite polarity within a 
specified time period, A t. These relations are for positive going spikes; the converse 
applies for inverted spikes. Lower thresholds are possible with this hysteresis constraint. 
(C) The non-linear energy transformed waveform (solid trace) uses a single positive 
threshold. (D) A simple threshold on multiple channels corresponds to a hypercuboidal 
thresholding boundary (dotted line), which may not be ideal for delineating spike clusters 
from the noise cluster (arrows indicate missed spike events). The hyper-ellipsoidal 
algorithm used a multidimensional threshold applied to the signal covariance on nearby 
sites to partition spikes from the background noise (dashed line). 

Each of the algorithms described thus far employed independent thresholds 

applied to individual channels. The hyper-ellipsoidal detection algorithm of 
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Rebrik and colleagues (1999) works on the assumption that both noise (see Figure 
2.7) and spikes are correlated on adjacent recording sites. By computing the cross 
channel co-variance the hyper-ellipsoidal algorithm attempts to model the noise 
cluster. Thresholding in this space raises the possibility of more precisely 
partitioning the spikes from background noise (Figure 3.2D). To determine the 
hyperellipsoidal thresholding surface the cross-channel covariance matrix, C, was 
computed from random chunks of data (including spikes). Then, at every sample 
period, the adjacent multichannel waveforms (virtual tetrodes) were represented 
as a 4-dimensional vector, V. The spike detection criterion was: 

As with the NEO method, the threshold factor/ was set arbitrarily by hand. 

3.3.2 Automated thresholding 

Spike detection methods require an appropriate detection threshold. Setting 
the threshold too high leads to missed spike events, missed templates, or 

events that cannot be classified, and can slow or even disable some sorting 
algorithms. A n ideal threshold setting is one that detects all clusterable spikes 
while keeping the number of non-clusterable (noise) events to a minimum. 

Various thresholding schemes were assessed, including fixed and dynamic 
thresholds, global (common to all channels) and independent (with each channel 
having its own threshold). The latter is justified if noise levels vary significantly 
from site to site. For practical purposes independent thresholds must be set 
automatically, especially in the case of high-channel polytrodes. Dynamic 
thresholds are potentially useful if the level of background noise changes 
significantly over the course of a recording. Two noise estimates were used to 
determine the thresholding factor/, regular standard deviation and another based 
on the median: 

This measure is reported to be less affected by high firing rates than the 
standard deviation (Quiroga et al. 2004), providing a better estimate of the 
background noise irrespective of the level of spiking activity. Independent 

yTQ-\ > J-2 (3.5) 

misrepresentative templates. Setting it too low leads to detection of spurious 

(3.6) 
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thresholds were evaluated on individual channels, and the cross-channel average 
was used for automated global thresholds. Fixed thresholds were based on 
arbitrary 10s samples of multiunit data, while running statistics with variable 
window lengths (5ms to 50ms) were computed for the dynamic thresholds. 
Whether or not these more elaborate noise measures and thresholds were 
warranted is examined empirically in the following sections. 

3.3.3 Partitioning of spike events 

Samples immediately following a trigger must be ignored, or Tocked-out', to 
avoid multiple triggers off a single spike. Typically a fixed duration lockout of 
~lms applied to all channels has been used in the case of closely-spaced 
multichannel electrodes (e.g. tetrodes) where spikes appear on multiple channels. 
While this approach may be adequate for multiple independent single unit or 
tetrode recordings, it is unsuitable for large contiguous polytrode arrays. If 
following a spike event the entire polytrode is locked-out for a millisecond, then 
spikes on other channels will invariably be missed (Figure 3.3A), which is 
especially problematic for studies of neuronal synchrony or local circuit 
interactions. A partial solution to this problem is a 'spatiotemporal channel 
lockout' that takes into consideration knowledge about typical spike widths, and 
the spatial extent of extracellular spike potentials (Figure 1.8), to restrict both the 
size (number of channels) and duration (number of sample points) of the.lockout. 

Since the site configuration of polytrodes was known, following a trigger 
event the algorithm determined the spike's approximate location (the channel with 
the maximum amplitude, imax) and field size (channels over-threshold within a 
user-defined radius of imax, typically 150-175pm) to decide which channels to 
consider for lockout (Figure 3.3B). In the temporal domain, only a positive 5V/5t 
triggered a spike event for positive threshold crossings (vice versa for negative-
going spikes), so it was sufficient to lock out only the first half-phase of the spike 
(Figure 3.3C). To manage the myriad possible spike shapes, bi-, and tri-phasic 
inflections were considered part of the same spike if successive triggers of 
opposing polarity occurred within 200ps. Every channel in the polytrode array 
maintained independent bipolar trigger lockouts £+ and I- according to these 
criteria, so a given channel within the spatially-defined domain of a spike event 
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was locked out for the minimum number of samples necessary to avoid a double 

trigger (or not at all). In this way the chance of missing simultaneous spikes on 

disparate electrode sites or near-simultaneous spikes on adjacent electrode sites 

was minimized. Suitable parameter values for the spatiotemporal lockout were 

determined empirically from a large representative sample of spike waveforms. 

B 

+ve thresho ld 

- -ve threshold 

100nV| 1ms 

Figure 3.3 Spatiotemporal partitioning of spike events. 
(A) Three spikes in a 1ms epoch from 26 (of 54) recording sites (54umap2b) illustrates the 
problem of iocking-out' the event trigger of the entire polytrode following a spike event. 
In this example, a global 1ms lock-out triggered by the lower spike event would inhibit 
detection of the subsequent two spike events. (B) A viable solution is to define a lock-out 
region encompassing only those sites (with signals over threshold) within 150u.m of the 
largest spike amplitude, as shown here for a 54u.mapla recording. (C) The temporal 
duration of the lock-out {greyed sample points) can be reduced by considering the sign of 
the waveform derivative, and having independent bipolar trigger windows for each site. 

3.3.4 Unsupervised template generation 
The learning phase of the sorting algorithm began by detecting a couple of 

thousand spike events (Figure 3.1A), sampled at random from the whole 

recording. Spike waveform epochs of 1.0ms duration (250ps pre-trigger, 750ps 
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post-trigger) were extracted from all channels and stored in a large indexed array. 
These N initial samples X = {x/..x/v} constituted a single mixed 'supercluster' in a F-
dimensional feature space, which for a 54 channel polytrode with 1ms epoch 
samples and 100 points per ms, F = 54 x 100 = 5,400. Hereafter the terms 'cluster' 
and 'class' are used interchangeably to refer to the set of spike samples currently 
assigned to a given candidate template. 

The binary split algorithm (Anderberg 1973; Sneath and Sokal 1973) is a 
simple but rapid form of divisive hierarchical clustering (Figure 3.IB). It was used 
to coarsely partition X into k initial clusters K. As the actual number of spike 
classes k was not known a priori, the algorithm split X into two clusters, and 
continued to split the resultant clusters in half until k intermediate clusters were 
created. At each iteration the cluster with the largest distortion D was split, until a 
valid cluster was split erroneously (as defined below). At this point the algorithm 
stopped, and the previous k-1 cluster assignments were retained. 

The algorithm proceeded as follows: (z) the cluster counter k was set to 1. 
Initial spike samples [XI...XN] were assigned to a single supercluster K and its 
centroid yt was computed: 

k i = l 

Since the feature space was the entire multisite spike waveform, the centroid 
represents the emerging average spike template. 

(ii) the cluster with the largest distortion D, a measure of the average distance 
of all points in a cluster to the corresponding cluster centroid, was calculated: 

D = argmax = ̂ Zll */* ~ y} = ( 3-8 ) 

(z'z'z) this cluster was then split into two sub-clusters along the hyperplane of 
greatest covariance by computing the principal eigenvector vo of the cluster: 

f. 

< 7 J = argmax K / K (3.9) 

Those samples closest to y, + vo were assigned to the existing subcluster Kk, and 
those samples closest to y/ - vo were assigned to a new subcluster Kk+i. 

(iv) the centroids of the two new subclusters were calculated (equation 3.7). 
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(v) the cluster counter k was incremented and steps (ii) - (v) were repeated 
until a cluster was 'oversplif, as indicated by centroids that were too similar: 

J = d{yktyk_x) = £ | | y u - y { k . x v II, stop if < J m i n (3.10 ) 

/V-means (Forgy 1965; Lloyd 1982), a 'nearest neighbour' clustering algorithm, 
was then used to refine the cluster boundaries (Figure 3.1C), as follows: 

(i) the A>means algorithm was initialised with the spike samples X, the clusters 
K, and set of k cluster centroids [yi.. .yk] defined by the binary split algorithm. 

(ii) each sample [XI...XN] was assigned to its nearest cluster centroid [yu..yk] 

according to a Euclidean distance metric: 

d(xn,yk) = £ \ \ x n i - y k i \ \ (3.11) 
1=1 

where a sample x« belonged to cluster Ki if yi was its closest centroid: 

K, = K I d(xn,yt) < d(xn,yj), j = \...k\ ( 3.12 ) 

(iii) the centroids of all clusters were recomputed (equation 3.7). 
(iv) if any samples changed assignment, the algorithm returned to step (ii). 
The standard /c-means algorithm described above was extended to include 

provision for splitting mixed clusters (Ball and Hall 1965; Atiya 1992), whereby k-
means was run repeatedly with additional classes (increasing k), at each iteration 
computing: 

(v) J, the minimum distance between all pairs of centroids: 
J = arg min {d(ynyj)\ i,j = \...k (3.13) 

(vi) if / < rfmin then, as with the binary split algorithm, k-1 became the final 

partitioning of the clusters (for the current X), and the algorithm exited. 

(vii) empty classes were deleted. Assignment indices for the current clusters 

were saved. The cluster with the largest distortion (equation 3.8) was split, and 

samples were allocated to the resultant sub-clusters (equation 3.9). The cluster 

counter k was incremented by one and steps (ii) - (vii) were repeated until the exit 

criteria were met (equation 3.10). 

A n outer loop (Figure 3.ID) continued to extract new spike samples until no 

additional unique samples were found. At each iteration classes with sufficient 

samples were locked and excluded from further clustering. Outlier, or 'dormant' 

classes (defined below) were deleted. In this way spike templates representative 
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of the entire recording were built up in a piecewise fashion, without overloading 
the &-means algorithm. Hence, after converging at step (vi) for the first time, 

(viii) new spike samples were added to a new supercluster KM, and N and k 

were updated accordingly. 
(ix) extended &-means, steps (ii) - (vii), was used to allocate the new samples 

to existing (or novel) classes. Those assigned to locked (completed) classes were 
discarded. A tally was kept of the samples discarded in this iteration, Ndisc. 

(x) any class with sufficient samples was locked: 
forNi >n0,£i = true, i = l..k (3.14) 

(xi) dormant classes, those with 3 or fewer samples that had not acquired new 
samples since the previous iteration, were typically noise events and thus deleted. 

(xii) cluster indices were saved. Steps (viii) through (xii) were repeated until 
the relative majority of new spike samples were discarded: 

N -N 
^yy _ disc(prev) disc(curr) ^ ^ Q~4 (315) 

disc j * ' 
disc(prev) 

For the algorithm to run efficiently, implementation details were important. 
For example, only the cluster indices, not the sample waveforms, were moved in 
memory during cluster reassignment. Efficiency issues and the choice of robust 
exit criteria are considered further in the discussion. 

3.3.5 Spike classification: multisite template matching 

Having obtained a representative set of multichannel spike templates, these 
were displayed for user validation (Figure 3.1E). Clusters could be manually split, 
combined, or deleted if desired, with enlarged spike waveform plots and inter-
spike interval (ISI) histograms to aid verification. 

Each template was truncated to include only those channels with amplitudes 
above 15pVPP, and/or those channels within a pre-defined radius of imax. The 
preferable method of truncation was subjective, as depending on the shape of 
juxtaposed templates flat channels could have as much discriminatory value as 
large-amplitude channels, however being overly inclusive 'diluted' the signal 
energy of small, localised spikes, rendering the template useless for fitting. 

The set of truncated templates T was individually fit across a short (< lmin) 
arbitrary segment of the original recording in order to build a 'goodness-of-fit' 
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histogram. The main difference between the fitting undertaken here and regular 
template matching was the multichannel composition of the templates. Each 
template was 'slid' across the relevant channels at the resolution of the 
interpolated data (lOps intervals). At each interval the least squares fit error e was 
calculated. To economise on memory usage only the local minima of the 
residuals, £min, and the corresponding timestamps were stored: 

*„jo=i; i ; &,(/)-*,(?+f>y a <e, <sM (3.16) 

1=1 j=l 
where Nc was the number of channels in the template, and Ns was the number 

of samples for that channel. Goodness of fit histograms, one for each template, 
were populated with the fit residuals. These histograms usually comprised two or 
more distributions (Figure 3.IE), one corresponding to valid matches (to the left of 
the histogram, with the lowest residuals), and other peaks representing invalid 
matches (the fit residuals of the current template to similar spikes and noise). A 
suitable goodness-of-fit threshold for the whole recording could now be set for 
each template, either manually or by fitting multiple Gaussian functions centred 
on the predominant distributions. An advantage of sorting spikes in this manner 
was that a statistically defined detection reliability could be set, which was 
particularly useful when there was not a clear separation between the valid-match 
distribution and that of the non-match distributions. In such circumstances a 
compromise could be established. For example, setting the fit threshold to be two 
standard deviations above the mean of the valid fit distribution would account for 
95% of the spikes in the file being detected, while the overlap with the tails of the 
other distributions would indicate the incidence of false positive matches. 

Finally, the validated, truncated templates were fit sequentially across the 
entire time series to obtain the sorted spike times for each neuron in the recording 
(Figure 3.IF). Spike times, along with their associated spike template, were saved 
to file for subsequent physiological analyses. 

3.3.6 Evaluating spike detection and sorting reliability 

The literature is awash with different spike sorting algorithms, each 
purporting to be the most effective for isolating spikes in multiunit recordings. In 
many cases, however, algorithms have been tested with unrealistic simulated data, 
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or on real data under ideal circumstances (high SNR, stationarity of spike shapes, 
and no overlapping spikes). It is therefore difficult to judge the validity of these 
claims. In the absence of independent validation from intracellular recording 
(Wehr et al. 1998; Harris et al. 2000), real and simulated data (upsampled to 
100kHz) were used to assess the performance of the various spike detection and 
sorting algorithms presented here. Simulated data were compiled from Is 
segments of in vivo noise (average a = 7pV), replete with distant neural hash but 
devoid of any local, clusterable spikes. These noise fragments were concatenated 
into longer 8-10s segments and added to the background noise at pseudorandom, 
non-overlapping intervals with twelve varieties of multichannel spike templates 
representative of the spike shapes and distributions observed in cat visual cortex 
(Figure 3.4A, B). Using actual rather than simulated noise meant the inherent 
variability on different recording sites, structured or correlated noise across the 
polytrode, non-stationarities, and faithful noise spectra (Figure B.2) were retained. 

Since the exact number of spike events was specified in the simulated spike 
trains, an explicit comparison could be made of the different detection algorithms 
in terms of their accuracy and resistance to noise by tabulating the number of 
correctly detected and false positive spikes. Spike amplitudes ranging from 49-
98pVP P, corresponding to a SNR of ~1 to 2:1, were used for these tests. A second 
simulated file, seeded with unmodified spikes, was used to evaluate the template 
generation stage of the spike sorting algorithm. In a third simulation, the spike 
sorter was provided with spike templates ranging from 35-84pVP P to assess the 
reliability of M T M under conditions of low SNR. Finally, the sorting algorithm's 
tolerance to spike overlap (Figure 3.4C) was gauged by systematically varying the 
spatiotemporal overlap of various multisite spike templates having different 
shapes and relative amplitudes. 

A l l tests of the spike sorting algorithm were 'blind' in that the simulated files 
were generated by one person, and the number, type and variety of spikes were 
unknown to the person doing the sorting (i.e. choosing the trigger thresholds, 
validating the templates, setting of fit thresholds). Real recordings, of course, 
provide the most realistic test of sorting performance, as they contain additional 
sources of variability not found in the simulated files, such as non-stationarities of 
spike amplitude and shape (Fee et al. 1996b; Harris et al. 2000; Quirk et al. 2001). 
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However, as mentioned previously, such tests are useless for quantitative 
validation as they lack the 'gold-standard' reference of the synthetic recordings. 

Figure 3.4 R e a l a n d s i m u l a t e d s p i k e trains. 
(A) Eight channels of actual recording, compared with (B) the simulated test files, seeded 
with a realistic variety of spikes of different polarity, amplitude, shapes, cross-channel 
spreads, and firing patterns, embedded in real background noise. Note the variability of 
spikes from the same template due to the noise. (C) Spikes from two neurons recorded on 
the same site illustrate the problem of spike overlap (arrows). 

3.4 Results 

3.4.1 Spike detection 

Noise varied considerably across channels of the same recording. This was 
partly due to differences in amplifier channel noise, but largely because of 
variations in background neural noise in a given brain region (Buchwald and 
Grover 1970). In the example shown in Figure 3.5A, the average noise level was 
10.8pVrms on the noisier site, nearly two-thirds greater that of the quiescent site 
(6.7pVrms). Across all sites the noise ranged from 5-15pVrmS, a three-fold variation. 
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Within a given site the variation over time was less, up to 1.5-fold. These results 
justify the use of independent, dynamic noise estimates for determining 
automated spike detection thresholds, especially as multiples of the noise estimate 
are generally used. For instance, a suitable threshold based on the least noisy sites 
might be ±20pV, whereas the suggested threshold for the noisiest sites would be 
±60pV. A global threshold fixed at either of these levels (or in the middle) would 
be ideal for neither site. 

Both the median-based and regular standard deviation noise estimates gave 
comparable noise measures in the absence of spikes (Figure 3.5A). However, just 
a single spike increased the standard deviation noise estimate by a factor of two 
(Figure 3.5B), and multiple spikes produced a sustained three-fold overestimate of 
the noise. The median-based noise estimate was much less susceptible to the 
influence of spikes, even during rapid spike bursts (Figure 3.5B). Using a broader 
time window or replacing the dynamic estimate with a fixed estimate based on an 
arbitrary sample period did not rectify the problem. Measurements of artificially 
seeded spike files (Figure 3.5D) showed that for an average aggregate spike rate of 
100Hz, the standard deviation overestimated the noise level by a factor of two, 
while the median estimate remained accurate to within 10% of the true value. In 
circumstances where it was desirable to increase the noise estimate, for example 
during periods of high-frequency neural 'hash', the median noise estimate 
responded appropriately (Figure 3.5C), so there was no obvious drawback of 
using this alternative measure. 

A large sample of neurons (n=255, from 3 cats, 8 penetrations, all polytrode 
designs) was used to establish suitable parameter values for the spatiotemporal 
partitioning algorithm. For the lowest practical threshold setting of ±20pV, the 
average number of locked sites per template was 4.2±2.8 (± standard deviation, 
range 1-13). This corresponded to an average lockout radius of 47±22pm (range 0-
156pm), depending on both the neuron and the polytrode site configuration. Of 
those sites that were locked the average temporal lockout (from threshold crossing 
to peak or valley inflexion), was 57±22ps (range 10-160ps). Therefore the duration 
of the spatiotemporal lockout for most spikes was at least an order of magnitude 
shorter than that usually used for window discriminators. These analyses 
provided a solid basis for limiting the upper bound of the spatial lockout radius to 
175pm, and the width of the multiphasic filter (methods 2 & 3) window to ±150ps. 
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Figure 3.5 N o i s e estimates for automated t h r e sho ld ing . 
(A) Background noise varies across channels and over time. Two channels from the same 
recording are shown with their respective standard deviation (solid traces) and median 
(dotted traces) noise estimates. Note the close correspondence between the two measures. 
(B) Spikes produce an artefactual elevation in the standard deviation noise estimate. 
(C) Both measures respond appropriately to the noise envelope associated with high 
levels of neural hash (arrow). (D) The median estimate is accurate even for high spike 
frequencies. Estimates were calculated on 10ms non-overlapping time windows. 
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The value of the spatiotemporal lockout was exemplified in highly active 
recordings (Figure 3.6). As M T M (see following section) gave the most reliable 
spike detection in high activity regimens, even for partially overlapping spikes, it 
serves here as a reference for the other detection methods. This 5s multiunit 
recording segment had an average aggregate spike rate of ~500Hz across the 
whole polytrode. In such a recording there were inevitably many coincident 
spikes, resulting in nearly one third of the spike events (those identified by 
template matching) being missed by the simple window discriminator with a 
global, fixed duration post-trigger lockout of 1ms (Figure 3.6B). Reducing the 
lockout to 300ps meant 87.8% of the spikes could now be detected. The 
spatiotemporal lockout performed most reliably, detecting 98.9% of all spikes 
without false positives or double triggers. Only 28 of the 2522 identified spikes 
were missed because they were eclipsed by other coincident or near-coincident 
juxtaposed spikes (Figure 3.6A). Although this recording segment was 
deliberately selected because of its high level of activity, it is precisely these 
periods where synchronous oscillatory phenomena (Gray and Singer 1989) and 
monosynaptic interactions of interest are likely to be observed. 

98.9% 
87.8% 

69.6% 

1 ms global 300us global Spatiotemporal 

Figure 3.6 Spa t io t empora l s p i k e pa r t i t i on ing . 
(A) The difficulty of detecting coincident and near-coincident spikes is illustrated in this 
short recording extract. A subset of channels contained 8 units identified by the 
multichannel template sorter (colour coded). Spikes missed by the 1ms and 300us global 
lockouts (*) were detected by the spatiotemporal algorithm, with one exception (t). 
(B) The number of correctly detected spikes for fixed duration global and spatiotemporal 
lockouts in a highly active 5s multiunit recording segment. Percentages are relative to the 
number of spikes detected by the M T M algorithm over the same period. 
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'Accuracy' is defined here as the combined number of missed and false +ve 
triggers expressed as a percentage of the total number of seeded spikes. Spikes 
with amplitudes over 90pVP P (14 times the noise standard deviation, SNR ~ 2:1) 
could be detected with 100% accuracy with any of the spike detection algorithms. 
Differences in the accuracy of the various detection methods were most apparent 
for spikes between 50pVP P and 90pVP P, especially for very small spikes around 
56pVP P, or 8 times andse (Figure 3.7A). When comparing the performance of the 
different algorithms, what matters is not the absolute threshold at which 100% of 
the spikes are detected, but rather the highest level of accuracy attainable at any 
threshold. Only the dynamic multiphasic trigger (method # 3) was capable of 
detecting spikes of this amplitude with better than 95% reliability and less than 5% 
false triggers, albeit over a narrow 2pV threshold range. This suggests that setting 
a dynamic, automated threshold to 22±lpV, or 3 times o w , would be ideal for 
detecting small spikes with minimal contamination from noise. The other 
methods were less accurate at this low SNR. At 95% correct detection, the bipolar, 
multiphasic, NEO and hyperellipsoidal algorithms gave 11%, 90%, 9%, and 25% 
false positives, respectively. Conversely, to ensure no more than 5% false 
positives were detected on average, the detection reliability for valid spikes 
dropped to 90%, 75%, 89%, and 83%. 

For spikes over 65pVP P all algorithms, including the bipolar threshold, had a 
threshold that gave at least 95% detection reliability with no more than 5% false 
positives. What differed was the range of thresholds over which this performance 
criterion was met (Figure 3.7B). This range is relevant because it is an important 
practical matter whether or not the optimal threshold setting can be determined 
easily or automatically (e.g. for 65pVP P spikes the threshold for the hyperellipsoidal 
and multiphasic algorithms must be within a microvolt of the optimal setting to 
achieve the specified accuracy). As the amplitude of the spikes increased, the 
threshold tolerance relaxed. By 90pVP P the performance of the bipolar, dynamic 
multiphasic, and hyperellipsoidal detection algorithms were virtually the same. 
The two exceptions were the multiphasic trigger, that was slow to converge with 
the other methods because it consistently missed low amplitude monophasic 
(unipolar) spikes, and the NEO transform, which gave a useful detection range 
that was superior to all other methods for spikes above 70pVP P. 
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Figure 3.7 Low amplitude spike detection. 
(A) Performance of the five different detection methods for small spikes (56uVPP). At a 
SNR of just 1.1:1, only the dynamic multiphasic algorithm {black traces) was capable of 
detecting spikes with over 95% reliability (correct hits) and less than 5% false positives 
(FP) over the narrow threshold range shown (*). (B) Valid detection ranges, as defined in 
(A), for the different methods at different spike amplitudes. Note that the x-axis in (A) 
and the y-axis in (B) for the hyperellipsoidal and NEO plots are not in units of uV, but 
were adjusted to allow comparison with the amplitude based methods. 

The relative performance of the five detection schemes at different SNRs is 
summarised in Table 3.2, ranked in order from least to most effective according to 
accuracy (for optimal thresholds). The detection reliability of M T M is included for 
comparison (see Figure 3.9). As above, the dynamic multiphasic filter was the 
most effective at all SNRs, only slightly less accurate than M T M for the lowest 
SNR, and second only to the simple bipolar threshold in terms of computational 
simplicity. These analyses also indicated optimal threshold settings, relative to the 
noise level, for attaining the highest possible accuracy regardless of the SNR. For 
the amplitude-based detection methods - the bipolar, multiphasic, and dynamic 
multiphasic - the ideal thresholds were 4, 2.5, and 3.5 times the noise estimate (an), 
respectively. No consistent optima were found for the hyperellipsoidal or NEO 
transforms. Rather, the optimal threshold varied depending on the spike, its 
distribution, and the SNR, making automation of these methods difficult. 
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Table 3.2 Comparative performance of different spike detection schemes. 

Detection 
method 

SNR 1.0 
Pm 1 Pf 

1.1 
Pm 1 Pf 

1.3 
Pm 1 Pf 

1.7 
Pm 1 Pf 

2.0 
Pm 1 Pf 

Computational 
complexity * 

hyperellipsoidal .243 .155 .155 .056 .067 .050 .002 .012 .000 .000 35M, 33A,10S,1C 

multiphasic .117 .230 .095 .081 .037 .076 .002 .005 .000 .000 2<C<15 t 

non-linear energy .162 .120 .088 .059 .036 .027 .001 .002 .000 .000 2M, IS, 1C 

bipolar threshold .125 .165 .090 .053 .043 .025 .002 .002 .000 .000 2C 

dyn. multiphasic .093 .078 .050 .032 .026 .015 .001 .002 .000 .000 2<C<15 f 

template matching .065 .070 .032 .035 .015 .000 .000 .000 .000 .000 NM, (N-1)A, 1C 

The probability of false negatives (Pm), and false positives (Pf) is indicated for the 'optimal' 
threshold at each SNR. The optimal threshold was determined by maximising the 
accuracy (ie. argmax [ P m - Pf]). * C, M, S, and A denote the number of comparison, 
multiplication, subtraction, and addition operations per sample period, per site, 
respectively. f the actual number of comparisons depends on the spike width and sample 
rate. Ns is the multisite template length. The complexity shown for the hyperellipsoidal 
method is for Nc = 4, as described by Rebrik et al. (1999). 

3.4.2 Spike sorting 

When applied to real recordings, unsupervised extended A:-means clustering 
of spike waveforms produced distinct, pure multisite spike templates (Figure 3.8). 
The few hundred neurons that were studied in this thesis were all obtained using 
this algorithm (for other examples, see Figures 1.9,1.14, 3.9, and 4.7). 

Simulations with synthetic data provided valuable information about the 
performance limits of M T M , in addition to indicating areas for improving future 
implementations. The results of the blind template generation were as follows: 38 
of the 45 unique spike templates (84%) were identified correctly. Of the spike 
classes that were missed, three had amplitudes smaller than the trigger thresholds 
specified by the user, two were rejected by the sorting algorithm as outliers (Ni < 3, 
cluster size not increasing), and two were never detected because only -50% of the 
file was sampled, and these spikes were only seeded once each. These results 
highlight the importance of effective event detection, and making sure the whole 
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recording is adequately sampled when making candidate templates. Of the 
templates that were correctly identified, and subsequently fit across the entire file, 
27 (73%) identified spike times with perfect accuracy, 7 templates (19%) missed 
fewer than 1% of the seeded spikes, two missed less than 5% of the spikes (1 of 43, 
and 1 of 56 seeded), and the template with the poorest sorting accuracy still 
managed to classify over 90% of its spike events correctly. The latter template 
missed 8% of the spikes because it was barely distinguishable from noise (SNR 
0.9), and an overly conservative fit threshold was chosen (manually). Overall, for 
those spike classes that had templates, less than 0.1% of the total number of spike 
events in test file were missed. No false positive events, due to either 
misclassification or noise, were identified with any of the templates. 

A B 

-~TZ 1ms |100UV -**r^-

Figure 3.8 Unsupervised template generation. 
(A) Examples, in a local group of channels, of multisite spike templates automatically 
extracted by the waveform clustering algorithm (data from a 54umap2a polytrode). 
(B) The superimposed templates give an impression of the unmixing problem the 
clustering algorithm must solve. 

Analysis of sorting performance using attenuated templates (Figure 3.9A) 
demonstrated that M T M was capable of perfect accuracy (zero missed spikes, zero 
false positives) for spikes with amplitudes over 60pVP P, a SNR of just 1.2. The data 
from four very different spike templates (two broad, two focal, biphasic and 
triphasic waveforms) were pooled because they gave very similar results, however 
one of the broad triphasic templates could detect spikes with 95% reliability and 
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no false positives at 42pVP P, which was considered impressive for spikes 
embedded in noise of equal or greater amplitude. Together (fitted curves in 
Figure 3.9A) there was an inverted symmetry between the exponential drop in the 
number of correct spike detections and the corresponding rise in false positive 
triggers at low SNR. The lowest spike amplitudes that could be consistently 
classified with 95% accuracy were around 50pVP P. If this result is compared with 
the best spike detection algorithm (dynamic multiphasic), extrapolating the black 
line in Figure 3.7B to the 'optimal' trigger threshold, it is clear that M T M performs 
as well or better than the best threshold-based method of spike detection (see also 
Table 3.2). From a practical standpoint, the dynamic multiphasic spike detector is 
well-suited for building candidate spike templates that can subsequently be used 
to detect and sort spikes with even higher accuracy using template matching. 

M T M was in some circumstances surprisingly resistant to sorting errors 
caused by overlapping spikes with distorted spike waveforms. Large spikes were 
unaffected by smaller overlapping spikes even when completely superimposed 
(Figure 3.9B). The lesser amplitude spike was rendered undetectable once more 
than about 10% of its waveform (on either side) was contaminated by the large 
spike. For spikes of similar amplitude (Figure 3.9C), the template with 
appreciable signal on only two sites fared worse than the broader spike with 
signal on five sites. With the latter spike, detection accuracy was maintained 
above 90% except when the peaks coincided (±50ps), presumably because two of 
the sites were only weakly misshapen by the residual signal of the other spike. 
These results were for spatially overlapping spikes (a common imax). Displacing 
the two templates by just one channel (50pm intersite spacing) meant the detection 
and classification accuracy of either spike was far less severely compromised. As 
in the previous example the broader spike was least affected (Figure 3.9D), with 
near perfect accuracy regardless of the temporal superimposition. The more focal 
spike still maintained a high level of accuracy (above 90%) providing less than 
-40% of its waveform was contaminated by the other spike. Note that in each of 
these examples the drop in accuracy was due not to false positives (noise events) 
or sorting misclassification, but rather missed spikes (ie. loss of valid spike 
detection). Excessively distorted spikes have a fit residual well beyond that of 
spikes to noise, so a single goodness-of-fit threshold that can accommodate such 
spikes unavoidably includes an inordinate number of noise events. The results 
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presented here were representative of five other neuron pairs with different 

combinations of spike shapes, relative sizes, and spatiotemporal overlap. 

A B 
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Spike amplitude (uV) Temporal overlap (ps) 

C D 

Temporal overlap (ps) Temporal overlap (us) 

Figure 3.9 S o r t i n g o f l o w S N R a n d o v e r l a p p i n g sp ikes . 

(A) Multisite template matching was perfect for spike amplitudes above 65uVPP(SNR 1.2). 
The number of missed spikes and false positive events increase rapidly for SNR below ~1. 
The grey lines indicate the 5th and 95th percentiles. Fitted curves are exponentials (r2=0.94). 
Sorting performance was also assessed as a function of spatiotemporal spike overlap. 
(B) Only the small spike was affected by the large spike. In each example the insets show 
the spatial relationship of the two spikes under study. Percent accurate refers to the 
combined percentage of missed and false +ve spikes. (C) Two spikes of similar amplitude 
and spread, with imax overlapping and (D) imax offset by one channel. The spike distributed 
on more sites was less susceptible than the smaller, more focal spike. 
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3.5 Discussion 

Although multiunit spike sorting has been studied extensively, currently 
available algorithms are not directly applicable to polytrodes either because they 
do not scale well, making them computationally intractable, or because they rely 
heavily on user input, which is not practical for large contiguous electrode arrays. 
The M T M implementation described here was adapted from existing clustering 
and template matching procedures in order to make them suitable for the large 
numbers of neurons and spikes routinely acquired with polytrodes. 

The simple method for partitioning spike events was capable of detecting 
98.9% of all spikes, even during periods of high activity with frequent 
synchronous events. Median-based, dynamic estimation of background noise 
provided a basis for automating threshold settings for optimal spike detection, 
avoiding the arduous task of manually adjusting appropriate thresholds for each 
channel. When combined with spike detection methods based on measurements 
of a large library of spike waveforms, very low amplitude spikes (~0dB) could be 
detected with minimal contamination from noise events. Finally, M T M was 
effective at sorting high-bandwidth polytrode data with a high degree of accuracy, 
even for spikes with a SNR less than one and partial spike overlap. 

3.5.1 Detection and sorting of low SNR spikes 

Poor spike detection can disable clustering algorithms if an excessive number 
of noise events are included among the valid spike samples. The template 
generation algorithm described here was no exception, slowing dramatically in 
the face of growing numbers of outlier classes. As the first stage of all sorting 
procedures, low SNR spike detection is essential to obtain a representative sample 
of the neural population, including small amplitude fast spiking cells. Even if 
spikes are ultimately detected by other means, as is the case with M T M , efficient 
generation of candidate templates still requires accurate spike detection. 

A superficial comparison of the five detection methods (including MTM) 
suggests that the differences in performance are subtle, but because the incidence 
of false positives rises precipitously at low detection thresholds, apparently small 
improvements should not be disregarded. The dynamic multiphasic method 
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ranked the best, able to reliably detect spikes with unitary SNR, or 15-25% smaller 
amplitudes than the other methods (Figure 3.7B). It is gratifying that this 
algorithm is also one of the least sophisticated, fastest methods to compute (Table 
3.2), which is an important consideration if any of these methods were to be used 
for real-time event detection or implemented in VLSI hardware for brain machine 
interfaces (Obeid and Wolf 2003). The next best detection method was the NEO 
transform, followed closely by the bipolar threshold, the hyperellipsoidal, and 
finally the (non-dynamic) multiphasic filter. The hyperellipsoidal algorithm can 
be disregarded on the basis of weak performance and computational complexity. 
The multiphasic trigger with fixed counterphase thresholds should also be 
avoided as it consistently missed monophasic spikes (for examples of such spikes, 
see Figures 1.8, 1.9, 1.14, 3.8, 4.7). The NEO performed less well than the dynamic 
multiphasic at low spike amplitudes, but surprisingly out-performed all methods 
for spike amplitudes above 70pVP P. This finding is consistent with an earlier study 
claiming superior spike detection with NEO (Kim and Kim 2000), however the 
authors only provided evidence for spikes with SNR above 1.3:1. Had they 
compared the detection performance of NEO with other methods, even a simple 
threshold, at lower SNRs (Figure 3.7, Table 3.2), they presumably would not have 
made such a sweeping assertion. Nevertheless, it may be possible to improve 
NEO's performance at lower spike amplitudes by shifting the bandpass of the 
transform to emphasise the spike frequency energy, and de-emphasise the noise-
dominant energy spectrum [ie. by changing 8 in equation 3.4, and adding a 
variable-width Bartlett smoothing window (Mukhopadhyay and Ray 1998)]. 

The performance of the dynamic multiphasic trigger compares favourably 
with other spike detection schemes, including more sophisticated methods such as 
the wavelet transform (WT). The discrete WT can be viewed as a filter optimised 
for extracting spikes by preserving overall waveform shape but filtering out most 
of the background noise. WTs are purported to be very useful for spike detection 
(and sorting) (Zouridakis and Tarn 1997; Hulata et al. 2000; Letelier and Weber 
2000; Hulata et al. 2002; Laubach 2004; Quiroga et al. 2004), however thus far it has 
only been tested on high SNR data (> 2:1). The WT is commonly used to construct 
basis sets for decomposition methods dealing with overlapping spikes, and their 
application for this purpose will be discussed in the following section. Yang and 
Shamma (1988) carried out a detailed comparison of several spike detection 
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methods, including a multi-threshold trigger akin to the multiphasic trigger (but 
without the temporal window), matched filters (spike templates comprising three 
points to define waveform shape), and simple thresholding. For a low SNR (1.3:1) 
simulated spike embedded in white noise, the methods were ranked in the same 
order reported here, however the matched filter performed less well than M T M in 
absolute terms (6% vs. zero false positives and 1.4% vs. 1.5% missed spikes), 
highlighting the value of using the whole spike waveform in template matching. 

Before leaving the discussion on spike detection it should be mentioned that, 
for sake of simplicity, fixed thresholds (with 3.5pV test intervals) were used in all 
simulations. Using dynamic, channel-independent thresholds would have made 
interpretation of the comparative performance of the detection methods more 
difficult. In any case the noise was more or less stationary (7.0 ± 0.5pV) and 
similar across channels (mean range 6.7 - 7.3pV), so the outcome would likely 
have been similar. Incorporating dynamic multichannel thresholds (based on the 
median noise estimate) would, if anything, be expected to improve overall 
detection performance by optimising the threshold setting at every moment in the 
time series. Dynamic thresholds compensate for lateral shifts in the accuracy 
curves as the SNR changes (Figure 3.7A), but should not change the slopes or 95/5 
percentiles (differential hit/false positive percentages) unless the spectral content 
changes significantly with noise amplitude. It is therefore reasonable to conclude 
that the ranking of the various methods would be the same for dynamic 
thresholds applied to real data with more variable noise levels. 

Comparing the sensitivity and specificity of M T M with existing spike sorting 
methods is problematic, primarily because important details such as the SNR of 
the spikes, the similarity of the spike shapes, and the incidence of spike overlap, 
are often lacking in published works (e.g. Fee et al. 1996a; Hulata et al. 2000). 
Even when such details are provided it is often impossible to disambiguate the 
relative contribution of the spike detection stage from the feature extraction or 
spike sorting stages in terms of the overall performance of the algorithm. Few 
papers in the literature report the comparative performance of their technique in 
the context of more established methods for the same test dataset. Two notable 
exceptions were the study by Wheeler and Heetderks (1982) who found that 
optimal filtering methods or feature-based clustering using PCA did not classify 
as accurately as template matching. Atiya's (1992) single channel template 
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matching algorithm showed accuracy curves indistinguishable from those 
obtained here for M T M (Figure 3.9A), but only for tests of two dissimilar, non-
overlapping spike classes. The accuracy dropped significantly (by about 50%) for 
three similar neuron classes, which demonstrates the advantage of fitting multisite 
over single channel templates. In general it suffices to say that none of the 
published spike sorting methods - including single channel template matching 
(e.g. Yang and Shamma 1988; Bergman and DeLong 1992), single and 
multichannel feature-based clustering (e.g. Gray et al. 1995; Fee et al. 1996a; Harris 
et al. 2000), classification with artificial neural networks (e.g. Kim and Kim 2000), 
and wavelet-based methods (e.g. Letelier and Weber 2000) - claim to be able to 
sort spikes reliably for SNRs less than one. M T M therefore appears to be as 
effective, or more effective, than both conventional and more recent methods. 

Lowering the reliable detection and sorting limits from ~65pV to ~50pVPP 

affords a non-linear increase in the volume of potentially recordable neurons, 
which is further enhanced by the slow radial dependence of signal decay from 
neurons more than ~70pm from the polytrode (ie. around this amplitude range, 
see chapter 4). This fact is reflected in the distribution of spike amplitudes, 
skewed towards low amplitude spikes (Figure 1.8F). The actual distribution is 
presumably even more skewed had the improved methods described in this 
chapter been used to construct the histogram. Estimates of the number of cells 
potentially recordable with tetrodes are similar. On purely geometric grounds 
(ignoring the shape of the field decay) a roughly 10-fold increase in the number of 
recordable cells is possible if spike detection and sorting methods can be made 
reliable in the range 45-65pVP P instead of > 65pV (Henze et al. 2000; Buzsaki 2004). 
Of course, detection of low SNR spikes is of little value unaccompanied by a spike 
sorting method of comparable sensitivity. In this regard the detection and sorting 
capabilities of the dynamic multiphasic spike detector and M T M are well suited. 

3.5.2 Sorting of overlapping spikes 

Previous studies looking at neuron interactions on short time scales (< 2ms) 
with multiple tetrodes or multi-shank silicon electrodes (e.g. Bartho et al. 2004) 
have by necessity restricted their analyses to units recorded on independent 
tetrodes or shanks. Two methods presented in this chapter, the spatiotemporal 
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spike partitioner and M T M , enable these sorts of analyses to be done on adjacent 
units recorded on the same polytrode shank, except when there is almost complete 
spatiotemporal spike overlap. The study of local (intracolumnar) cortical circuits 
will therefore be greatly facilitated by these methods. 

Assessing the validity of accuracy claims for algorithms specifically designed 
to sort overlapping spikes is, as stated earlier, hampered by inadequate details of 
the test datasets. While the incidence of spike overlaps was usually provided, the 
degree of spike overlap (ie. the percentage of waveform superimposition) was 
never specified. Zhang et al. (2004) used iterative template matching of single 
channel data wherein spike events that did not match any existing template were 
fit against all possible combinations of phase-shifted templates until an acceptably 
low residual was found (according to a %2 criterion). Using simulated data 
comprising four relatively similar spike shapes with -10% (n=ll) of the seed 
spikes overlapping, they reported that only 2.4% of the total spike events were 
misclassified, however two-thirds of these misclassifications were of overlapping 
spikes. Unfortunately, since little information was provided about the degree of 
temporal overlap, the main claim of the paper is not open to further scrutiny. For 
the three (correctly classified) overlapping examples that were shown, the overlap 
appears to be around 50% in one, minimal in another, and perfectly superimposed 
in the third, however in the latter example both spikes were of the same polarity 
and their combined waveforms were unlike any of the base templates. Without a 
larger sample size and documentation of overlap statistics, it is impossible to 
determine whether these results were typical or exceptional. The same can be said 
of the other papers in the literature, where careful scrutiny of the (presumably) 
representative examples never showed overlap greater than -50% of the spike 
waveforms (Zouridakis and Tarn 1997; Hulata et al. 2000; Letelier and Weber 2000; 
Hulata et al. 2002; Takahashi et al. 2003; Laubach 2004; Quiroga et al. 2004). 

While ICA- and WT-based decomposition methods probably do assist in the 
detection and sorting of overlapping spikes under certain circumstances, the 
contention here is whether they are more effective than M T M , especially given the 
computational burden of these algorithms. The overall impression is that M T M , 
by virtue of the multisite templates, performs as well as sorting algorithms that 
deal explicitly with spike overlap, except for occurrences of near complete 
spatiotemporal spike overlap (Figure 3.9C). In fairness, all the cited methods were 
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applied to single channel spike data, with one exception (Takahashi et al. 2003), 
and might perform better on multisite data. It would therefore be informative to 
use iterative template matching as described by Zhang et al. (2004) or Atiya (1992) 
as an adjunct method to M T M . In any case it should only be used for neurons 
whose template channels are shared (common imax), and where the time series 
indicates frequent spike overlaps to justify the computational investment. 

3.5.3 Refining template generation 

The classification of spikes with M T M hinges on the prior availability of clean, 
representative templates for each of the active neurons in a recording ensemble. 
Template generation for polytrodes would preferably be entirely unsupervised, 
but in practice a few candidate templates usually require manual splitting, re-
combining, or removal of outliers. When this happens, the algorithm has usually 
confounded (ie. left unsplit) small amplitude, focal neurons, at the same time 
oversplitting large amplitude, homogenous clusters ostensibly from a single 
neuron with high intrinsic spike amplitude variability (eg. burst firing cells). Two 
interrelated aspects of the algorithm - robust selection of the cluster for splitting 
and when to stop splitting - are key to reducing these sorts of errors, in turn 
minimising post hoc user input. 

The current implementation selects the cluster to split based on its variance, or 
maximum distortion (equation 3.8). Alternatively, the cluster with the maximum 
number of elements could be selected, but this implicitly assumes a uniform firing 
rate across the neural population, which is clearly not the case (Figure 3.10B). The 
trouble with the distortion measure, in spite of normalising for the number of 
cluster elements, is that it will select a broad, unimodal cluster in preference to 
two small, closely spaced heterogeneous clusters each having low variance. More 
specifically, variance measures are prone to such failures because they ignore the 
shape of the cluster distributions. £-means suffers from the same limitation in that 
the cluster assignment rule depends solely on a distance metric, irrespective of 
cluster variance (equation 3.12). In both cases, a useful approach is to model the 
cluster distributions as mixtures of Gaussians (e.g. Lewicki 1994). Given such a 
model, cluster boundaries may be delineated more precisely, and standard 
parametric statistical tests for unimodality and normality can be used to help 
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evaluate whether a given cluster requires dividing into one or more subclusters. 
The drawback is about half of all neurons deviate significantly from this 
assumption of isotropic, Gaussian variability, therefore mixture of Gaussian 
models are likely to overfit the data, splitting single unit clusters into multiple 
clusters (Fee et al. 1996b). A more sophisticated approach is to model the non-
stationarity of the background noise and the intrinsic waveform variability, the 
latter predicted by the inter-spike interval (Fee et al. 1996a). Taking into account 
the shape of the clusters is more computationally intensive, and requires a priori 

knowledge of typical distributions of spike clusters, but doing so should result in 
more reliable partitioning and identification of mixed clusters. 

Closely related to the best choice of which cluster to split are robust criteria 
for when to stop splitting. This is critical in divisive clustering algorithms such as 
this one, since they have no provision for combining clusters. Combining over-
split clusters is almost as laborious as having to manually define templates from 
the raw data. The present criterion (equation 3.13) uses an arbitrarily defined 
threshold (dmin) representing the minimal 'acceptable' similarity between two spike 
templates. In practice this works fairly well, but deciding on a fixed, universal 
threshold is untenable because suitable thresholds wil l depend on the level of 
noise and variability of the spikes. The convergence profile of various cluster 
measures for different datasets (Figure 3.10A) suggests that the relative drop in 
dmini combined with a minimum average cluster distortion may be a better criteria. 
Furthermore, splitting all clusters and testing for the absence of critical drops in 
dmin, instead of just the cluster with the maximum distortion should reduce the 
chance of prematurely exiting the algorithm before all heterogeneous clusters are 
unmixed. Finally, since none of the existing cluster measures use information 
about the shape of the underlying cluster distributions, another possible 

improvement would be to qualify any splits by assessing the normality of the two 
o 

sub-cluster distributions. 
In highly active recordings (eg. Figure 3.6A) small, focal spikes represent a 

small fraction of the overall signal energy compared with the entropy across the 
polytrode. In these circumstances multiple small spikes frequently associate into a 
large noisy supercluster that must be parsed by hand. One possible solution may 
be to include only a subset of the relevant channels in the feature space of a given 
template. Like the spatiotemporal trigger lockout, a mask centred on imax could be 
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used to null all channels outside a set radius, which should not only aid in the 
identification and extraction of small spikes, but also lower the incidence of 
spurious transient templates comprised of disparate synchronous spikes. 

60 80 100 0 &^&tfPtfPrffi4plfff>t(ff>£f>gF> 
k Number of samples 

Figure 3.10 A u t o m a t e d exit cr i ter ia a n d s a m p l i n g issues. 
(A) The relative change in the minimum distance between any two cluster centroids (-•-) 
combined with the average cluster distortion (-*-) provides a robust criteria for stopping 
cluster splitting and determination of k (arrow). (B) The majority of spikes come from a 
small number of highly active neurons. An exponential function (r2= 0.98) describes the 
spike frequency distribution of a typical recording ensemble (n = 40). (C) A large number 
of spikes must therefore be sampled in order to assemble representative templates for 
infrequently firing neurons. The current algorithm deals with redundant samples by 
'locking' completed templates containing sufficient samples (kiock—O—), and discarding 
new samples belonging to these templates (kdisc —•—). When the majority of new samples 
were discarded, the entire template generation procedure was stopped. 

An important corollary of using finite, random sampling of spike events to 
build the templates is that the sampling must be sufficiently exhaustive so that no 
spike class is overlooked. The firing distribution of a typical neural population is 
dominated by the activities of a few neurons, making adequate sampling even 
more difficult (Figure 3.10B, C). Short of visually inspecting the entire time series 
for missing spike classes, the statistics of the noise (ie. the standard deviation, 
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probability density function, and power spectrum) should match the raw data 
with spikes removed. Zhang (2004) gives an example of this method of validation. 
The current algorithm could also be extended to include a 'second-stage' sampling 
of the raw data with all first-stage spikes removed to further reduce the risk of 
missing infrequently firing neurons. 

3.5.4 Improving sorting efficiency 

The template generation stage of the sorting algorithm is very similar to that 
described by Atiya (1992) for single channel recordings, with some notable 
differences. Atiya's algorithm used iterative £-means to arrive at the number of 
likely neuron classes, increasing k and re-randomising the centroids with each 
iteration until the exit criteria were met. In order to improve the sorting efficiency 
for high dimensional multichannel spike templates, this highly inefficient 
randomisation step was replaced with divisive clustering (steps i to v) to obtain 
initial centroids and a conservative estimate of k. Since k derived from divisive 
pre-clustering was close to but consistently less than the definitive k arrived at 
following &-means, this modification did not increase the chance of overestimating 
the number of initial spike classes. This was critical as the algorithm has no 
mechanism for combining over-split clusters. 

The fitting time for M T M is proportional to the number of templates, the 
number of sites and samples per truncated template, the sampling rate, and of 
course the recording duration. On an Athlon 1800+ processor running assembler 
code, the fitting of -100 neurons to interpolated (100kHz) data currently takes -20 
times the duration of the original recording. It is not obvious that an effective 
sample rate of 100kHz is warranted, and so decimating the templates and fitting to 
the raw time series may offer a four or five-fold decrease in fitting time without 
compromising the sorting performance. The similar SNR limits of the extended 
multiphasic filter using a far cruder 'template' suggests such decimation will not 
adversely affect the sorting reliability. Selecting four or five canonical waveform 
points (Yang and Shamma 1988) per channel may also be just as effective as fitting 
the entire waveform. On the other hand, longer epochs (up to 2ms) that capture 
the shape of the A H P of slower spikes may add discriminatory value. Fee (1996b), 
based on information theory, suggests using 1.3ms waveform segments. 
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chapter 4 
Neuron localisation & classification 

4.1 Summary 

Extracellular electrodes do not usually provide accurate information about 
recorded neuron location, nor any indication of cell type (hence the terms 'unit' 
and 'multiunit'). This chapter describes an algorithm that capitalises on the fixed, 
closely-spaced site geometry of polytrodes to localise neurons in 3D cortical space. 
The algorithm was based on a mixed monopole-dipole field model of extracellular 
spike potentials and was able to generalise to arbitrary neuron orientation, tissue 
anisotropies, and cell morphology. Independent parameters described the volume 
conductances in each spatial dimension. Recorded neurons were assumed to lie in 
front of the polytrode. Levenberg-Marquardt optimisation was used to fit the 
multisite spike waveform amplitudes to the model functions. Estimated neuron 
locations emerged as non-overlapping spherical clusters within 150pm of the 
polytrode. Cluster locations moved concordantly with polytrode movements, 
making the algorithm a useful method for spike sorting unperturbed by electrode 
drift. Field potential spreads were consistent with the spike shapes and firing 
patterns, of pyramidal cells and interneurons. These preliminary results suggest it 
is eminently possible to identify both the cortical location and type of multiple 
single units recorded extracellularly with high density polytrodes. 
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4.2 Introduction 

It is unrealistic to ascertain the exact location of cells recorded with standard 
tungsten and wire-bundle electrodes, not only due to imprecision in histological 
track reconstruction, but because multiunit electrodes have the potential to record 
from thousands of neurons within a ~150pm radius sphere, even further along the 
long axis of large pyramidal neurons (Fatt 1957; Rosenthal et al. 1966; Buchwald et 
al. 1973; Towe 1973; Drake et al. 1988; Henze et al. 2000; Blanche et al. 2003). 
Knowledge of the spatial relations between recorded neurons is particularly 
important for receptive field mapping studies and, for example, in studies of 
cortical circuits where laminar position may be important. Questions surrounding 
the nature of cortical 'micromaps' (see section 5.2) motivated the development of 
improved methods for localising recorded neurons. Precise positioning of the 
polytrode in the cortical layers (Figure 1.11, Figure 1.12) was the first step. The 
fixed site geometry and high resolution spike field potential measurements of the 
three column co-linear polytrode provided the basis for refining the localisation 
even further. Polytrodes, when combined with precise neuron localisation, are 
uniquely placed to resolve questions relating to cortical receptive field (RF) map 
organisation because they integrate high-density multiunit recording (microscale 
organisation) with contiguous coverage of whole cortical areas (millimetric scale 
organisation). Development of a biophysically-based field potential model, the 
focus of this chapter, was the other key element of the proposed method of neuron 
localisation. 

4.2.1 Spike-related field potentials 

A logical starting point to begin an exploration of spike-related extracellular 
field potentials is to consider the major transmembrane currents that are common 
to all action potentials. In 1952 Hodgkin and Huxley provided a complete 
empirical model of the cascade of ionic membrane currents underlying action 
potentials, seminal work for which they were awarded the 1963 Nobel Prize for 
medicine (with John Eccles). When the membrane reaches threshold, populations 
of voltage-gated sodium channels open regeneratively, producing a net inward 
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current at the axon hillock/soma and the sharp initial depolarisation phase of the 
action potential (Figure 4.1A). A complement of voltage-gated potassium 
channels repolarise the cell (net outward current), often producing an undershoot 
referred to as the after hyperpolarisation (AHP). At this point it is useful to 
distinguish two 'types' of membrane currents, active and passive. Active currents 
pass through voltage-gated channels, for example at the spike initiation zone 
during an action potential. According to Kirchoff's first law, currents in a closed 
system must be balanced by return currents of equal magnitude, at every instant 
in time, in this case through passive leak channels elsewhere in the cell membrane. 
In simple terms, the passive return current completes the circuit. As the 
extracellular space (ECS) has a finite resistance, transmembrane currents generate 
potential gradients - field potentials - measurable with extracellular electrodes. 

The nature of neuronal field potentials has been the subject of investigation 
for decades, starting with a flurry of technically elegant single-unit experiments in 
the 1950's and 1960's. Of specific interest to the current modeling efforts, field 
potential mapping studies (Figure 4.1B, E) reveal that the amplitude, shape, and 
even polarity of the potential depends, among other things, on the morphology of 
the cell and the location of the recording electrode relative to the neuron (Fatt 
1957; Bishop et al. 1962a, 1962b; Rosenthal et al. 1966; Drake et al. 1988). Figure 
4.1C shows the spike field of a motor neuron at the peak of the depolarising phase 
of an action potential. The active current sink at the cell soma produces a negative 
potential gradient in the surrounding ECS. At the same time, passive current 
efflux elsewhere in the cell membrane produces a diffuse positive potential 
gradient. Therefore, the polarity of the recorded potential (relative to a distant 
reference electrode) will be positive if the electrode is nearer the site of outward 
current flow, and negative if it is nearer the site of inward current flow (assuming 
similar current sink/source densities). The painstakingly detailed measurements 
of Figure 4.1C were made sequentially in response to repeated antidromic stimuli, 
and a single cell would take hours to map. If the primary goal is to determine the 
location of the neuron, it would be easier to simply fill the neuron 
iontophoretically and reconstruct it in histological sections. However, with the 
advent of silicon-based multisite electrode arrays capable of making concurrent 
high resolution field potential measurements (Figure 4.ID), instantaneous 
mapping of individual or multiple neurons is now practical. 
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Figure 4.1 Spike field potentials. 
(A) Timecourse of membrane conductance changes associated with an action potential 
(after Hodgkin and Huxley 1952; from Hausser 2000). (B) A single-unit electrode 
traversing the long axis of a pyramidal neuron exhibits a characteristic pattern of spike-
related current sinks and sources (Humphrey 1979). (C) Electric field map evoked by 
antidromic activation of a motor neuron in the dorsal horn of cat spinal cord (Fatt 1957). 
The magnitude of the potential gradient is proportional to the vector length. The dashed 
line shows the zero potential boundary dividing the current dipole. (D) Topography of 
spike field potentials recorded with a silicon-based 'tetrode', assembled from sequential 
recordings made every 30um (Drake et al. 1988). Note the ellipsoidal isopotential field 
lines. (E) Field potential of a motor neuron, at the positions indicated (mm). In contrast 
to putative pyramidal cells (B), neurons with radial processes have monophasic, unipolar 
spike waveforms, and zero potential beyond the dendritic arbours (Humphrey 1979). 

Current flow in the ECS generates a complex field potential around the 

neuron, whose characteristics depend on the size and geometry of the cell, the 

distribution of the active and passive membrane conductances, their timecourse, 

and also the electrical properties of ECS (Humphrey 1979). Although the 

amplitude of the action potential does not vary significantly with cell size, the 

input impedance does (McCormick et al. 1985). Since larger neurons have lower 

input impedance, the peak transmembrane current - and in turn the extracellular 
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spike amplitude - will be greater for larger cells (Rail 1962). In addition to overall 
neuron size, the field potentials of stellate shaped neurons having predominantly 
radial dendrites will differ markedly from that of pyramidal neurons with 
extensive apical and basal dendrites. Stellate neurons give rise to focal 'closed 
fields' because the current sinks and sources tend to cancel out in such a way that 
the sink at the soma dominates the recorded potential everywhere except 
immediately adjacent to each dendrite (Rail 1962; Humphrey 1976). Accordingly, 
the extracellular potential is unipolar, monophasic (negative) and spatially 
restricted (Figure 4.1E). In contrast, pyramidal neurons have 'open fields' by 
virtue of their large apical dendrite. A highly focal current sink exists at the axon 
hillock during the peak of the action potential, whereas the apical and basal 
dendrites appear extracellularly as distributed current sources (Humphrey 1979, 
Figure 4.1B). 

Independent of the characteristics of the generator potentials; the properties of 
the ECS and the electrode surface area are also major determinants of the voltages 
observed extracellularly. Spikes recorded with single unit electrodes are roughly 
an order of magnitude larger in amplitude than those recorded with multiunit 
electrodes. This is because the dimensions of the exposed recording tip are small 
compared to those of the steepest portion of the neuron's extracellular potential 
field, as little as ~20pm for small cortical neurons (Humphrey 1979). Multiunit 
electrodes that have dimensions approaching or exceeding this size introduce an 
isopotential conductor that in effect 'shorts out' the potential field, attenuating or 
even abolishing the spike amplitude. A direct consequence of the sensitivity of 
single unit electrodes to potential gradients on the scale of microns is that 
extracellular potentials recorded with these electrodes are heavily influenced by 
the subtle 3D morphology of the cell. The larger surface area recording sites of 
multiunit electrodes, including those of polytrodes, 'spatially average' these 
smaller potentials. What remains is a coarse field potential reflecting the principal 
current sinks and sources and gross cellular morphology, therefore we should not 
necessarily expect to see spike fields as complex as those portrayed in Figure 4.1B. 
In the context of field potential modeling for neuron localisation, this is, perhaps 
counter intuitively, a distinct advantage of using multiunit electrode sites, as it 
makes possible the development of a generalist model that does not require a 
priori knowledge of the exact morphology of every recorded neuron. Moreover, 
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knowledge of multiunit electrode properties suggests the appropriate level of 
detail with which to model spikes field potentials recorded with polytrodes. 

The two major properties of the ECS that bear consideration are whether it is a 
purely resistive medium, or whether it has significant capacitive (reactive) 
properties (Plonsey and Heppner 1967); and secondly if, to a first approximation, 
it can be considered a homogenous, isotropic conducting medium. Adopting the 
nomenclature used by Nicholson (1973), the conductivity is homogeneous if it 
doesn't vary from place to place and isotropic if it is the same in all spatial 
directions. The cortex might be inhomogeneous due to differences in cell density 
(eg. granular vs. agranular cortical layers) but isotropic, homogeneous but 
anisotropic (eg. parallel with vs. perpendicular to the cortical surface), or perhaps 
even inhomogeneous and anisotropic. Any of these factors can impose subtle 
effects on the shape and extent of the field potential distribution (eg. Figure 4.1D). 

4.2.2 Extracellular classification of cell type 

Intracellular electrophysiologists have the luxury of filling impaled neurons to 
determine both the position of the soma and the extent of the neuron's dendritic 
and axonal arbourisations in histological reconstructions. Spine morphology, 
together with neurotransmitter histochemistry, can then be used to classify the 
neuron as either inhibitory or excitatory. Comparative electrophysiology of 
cortical neurons in vitro (McCormick et al. 1985) has revealed at least three distinct 
cell types, regular spiking (RS), bursting, and fast spiking (FS). These three 
functional classes possess different adaptation responses, maximal firing rates, 
and current-frequency relationships. FS neurons exhibit virtually no spike 
frequency adaptation, except with prolonged depolarisation over many seconds 
(Descalzo et al. 2005). Of particular significance to the present work, RS and 
bursting cells are generally spiny pyramidal neurons, whereas FS neurons are 
invariably aspiny or sparsely spiny stellate cells with radial dendrites (McCormick 
et al. 1985). Since gross differences in cellular anatomy should yield distinctive 
spike field potentials, this raises the possibility of classifying cell type by modeling 
the shape and distribution of the extracellular potentials recorded with polytrodes, 
in addition to spike firing-related measures. 
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Even though in vitro neurons retain the majority of their in situ 

electrophysiological properties (Connors et al. 1982), it is also possible to apply 
intracellular techniques in vivo (e.g. Fregnac et al. 1988; Azouz et al. 1997; Nowak 
et al. 2003). In a comprehensive comparative study of cat primary visual cortex, 
Nowak et. al. (2003) delineated four main functional cell types. In addition to 
verifying the existence of FS and RS cells similar to those found in guinea pig 
somatosensory cortex in vitro (Connors et al. 1982; McCormick et al. 1985), they 
also identified intrinsically bursting (IB) and chattering (CH) neuron classes. C H 
neurons were either pyramidal or spiny stellate neurons. IB neurons were present 
in all cortical layers, but were most abundant in layer 5. Similar discrete 
morphological and functional classes can even be found in the more primitive 
three layered turtle visual cortex (Connors and Kriegstein 1986). Across species 
and brain regions (Connors and Gutnick 1990), it appears cortical neurons 
constitute a small number of primary functional classes that are heavily influenced 
by their anatomy (Connors and Regehr 1996; Mainen and Sejnowski 1996), a fact 
that bodes well for their extracellular classification. 

Several intracellular experiments, mostly in cat striate cortex, have mapped 
the visual RF properties of single neurons, in some instances with their dendritic 
and axonal projections reconstructed in exquisite detail (Van Essen and Kelly 1973; 
Kelly and Van Essen 1974; Gilbert and Wiesel 1979; Ahmed et al. 1997; Azouz et al. 
1997; Hirsch et al. 2002; Contreras and Palmer 2003; Hirsch et al. 2003). 
Collectively these studies have examined a number of RF properties, but the small 
sample population accumulated to date has not yet revealed a consistent 
association between any single RF property and one of the structural or functional 
cell types identified here. This highlights the fundamental disadvantage of in vivo 

intracellular recording. It is limited to recording from single cells for short periods 
of time, prohibiting detailed RF characterisation, and is too unstable to be done in 
awake behaving animals. If the same detailed morphological identification could 
be inferred from extracellular multiunit recordings, this could lead to findings that 
would revolutionise our understanding of cortical circuits. 

The desire to classify cell type in extracellular recordings goes back to the 
early days of single unit recording. Mountcastle (1969) hypothesised that units 
with "thin" waveforms and high spontaneous activity were non-pyramidal cells, 
whereas broader waveforms with lower spontaneous activity were likely to be 
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from pyramidal neurons. Mountcastle's speculation is consistent with the 
intracellular data and more recent multiunit extracellular work. Using silicon 
based polytrodes, Bartho and colleagues (2004) applied cross-correlation analysis 
to thousands of simultaneously recorded cell pairs in rat neocortex and showed 
that extracellular spike width is a near perfect predictor of whether or not a cell is 
inhibitory or excitatory. In rabbit somatosensory cortex, suspected inhibitory 
interneurons have also been categorised extracellularly on the basis of spike width 
and peripheral response latency (Swadlow 1991, 1994). Therefore, it is possible to 
divide cortical neurons into two major, albeit heterogeneous, functional groups 
using simple spike metrics, without necessarily recording from functionally 
connected cell pairs. 

Other extracellularly derivable parameters may also be useful indicators of 
neural type, such as spike amplitude (Humphrey and Corrie 1978; Gur et al. 1999), 
the frequency and pattern of spike bursting, and anatomical position (ie. cortical 
layer) (McCormick et al. 1985; Nunez et al. 1993; Gray and McCormick 1996; 
Azouz et al. 1997; Nowak et al. 2003). The neuron localisation algorithm may 
therefore play a central role in the eventual neuron classification scheme. Finally, 
no study has yet systematically explored the discriminatory value of spike field 
potential spread or symmetry, and this too can be derived from the spike field 
potential model described later in the text. 

4.2.3 Foundational work on neuron localisation 

Phil Hetherington, a former postdoctoral fellow in the Swindale laboratory, 
was the first to pursue the idea of localising neurons with silicon electrode arrays. 
He reasoned that if spikes from individual neurons were recorded by three or 
more electrodes, and these electrodes had fixed, known configurations, it should 
be possible to localise active neurons by triangulation of their spike amplitudes 
(Hetherington and Swindale 1998; Hetherington et al. 1999). This is analogous to 
global positioning systems that use differential transmission latencies from 
orbiting satellites to calculate position and altitude on the earth, only here the 
triangulation is based on differential spike amplitudes. The algorithm 
(Hetherington et al. 1999) returned spatially-localised, spherical clusters and, with 
the right parameters, plausible location predictions (Figure 4.2A). Attempting 3D 
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source triangulation with a ID array of electrode sites is inherently ambiguous; the 
neuron clusters shown to the right could just as likely been located equidistant 
anywhere along a circle surrounding the polytrode. A 2D array of staggered, 
more closely spaced sites (Figure 4.2B) removed this lateral ambiguity, and also 
improved the precision of the location predictions (ie. tighter clusters). 

Figure 4.2 Neuron location by spike amplitude triangulation. 
(A) Initial work on neuron localisation was based on multiunit recordings made with a 
four channel polytrode with vertically aligned sites spaced 75pm apart. The amplitudes 
of each spike across sites (left panel) were used to define three spheres (red lines); the 
intersection of these spheres gave an estimate of the source location for that spike. 
Repeated triangulations for every spike in the recording provided an indication of each 
neuron's location (coloured clusters). (B) A polytrode with more closely spaced electrode 
sites (65um apart) in a staggered two-column configuration gave improved localisation 
and removed the lateral ambiguity inherent in predictions made with the ID array. 

In spite of these promising preliminary results, there were several weaknesses 

of this approach to neuron localisation. Foremost among these was the inability of 

the algorithm to generalise. In other words, a given set of parameters and decay 

functions (ie. voltage-distance relationships, spatial decay constants, maximal 
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spike amplitude, etc.) that worked well for one ensemble of neurons failed to work 
for other neurons. The algorithm either failed to converge or gave unreasonable 
location predictions with all neurons located up against the polytrode or hundreds 
of microns away. In other cases the fitting algorithm was not adequately 
constrained, having too few spike amplitude measurements to converge reliably. 
Another likely reason why the algorithm failed to generalise was the somewhat 
arbitrary choice of voltage-distance functions describing the decay of spike 
amplitudes. No provision was made for aspherical fields (ie. the same rate of 
amplitude decay was assumed in all axes), nor was there any allowance for 
differences in the size of neurons with respect to the polytrode. 

Since the method of triangulation is not formulated in such a way to easily 
incorporate these sorts of elaborations, this approach was abandoned in favour of 
more explicit models based on electrostatics. These criticisms are in no way meant 
to lessen the significance of these first attempts at neuron localisation. On the 
contrary, this work provided proof of concept that neuron localisation with 
polytrodes is feasible; it motivated the development of higher density polytrodes 
with additional sites spread over three columns (in particular the 54pmaplb 
design); and finally, it justified the need for the more sophisticated biophysical 
model presented in this chapter. 

Consequently, the objectives of the modeling work described here are two
fold: primarily, to establish a realistic model that describes field potentials 
recorded with polytrodes, with the aim of localising neurons in 3D cortical space, 
and with an accuracy comparable to that obtainable with intracellular histology; 
and secondly to use information derived from this model, in conjunction with 
spike waveform shape, firing statistics and other functional attributes, to classify 
neuron type based solely on extracellular multiunit recordings. 

4.3 Methods 

4.3.1 Model overview 

The neuron localisation algorithm can be broken down into several 
components (Figure 4.3), each of which is detailed in the following subsections. 
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Figure 4.3 Components of the neuron localisation model. 
(A) Monopole and (B) dipole electric fields associated with stellate and cortical pyramidal 
neurons, respectively. Dotted lines indicate the direction of current flow. Solid lines 
represent isopotential field lines. See Methods for parameter details (note: two possible 
scenarios are portrayed here, and neither is meant to imply that monopolar fields are 
synonymous with stellate cells, nor that dipole fields can be equated with pyramidal 
cells). (C) A rectangular coordinate system was used to relate the position and orientation 
of the polytrode with the major axes of the brain, or more specifically, the cortical gyri. 
The x and z axes corresponded to the plane parallel to the cortical layers, and the y axis 
was perpendicular to this plane. Rotations around the z and x axes (out of the page) were 
represented by 0. and 6X. (D) Superimposed multisite spike waveform traces. Cross-
channel spike amplitude measurements were made at an instant in time (red lines). The 
inset shows similar measurements of a dipole field on two adjacent recording sites. 

To summarise, a mixed monopole-dipole current source model of 

extracellular spike field potentials was used (Figure 4.3A, B). Geometric linear 

transforms were used to account for the arbitrary displacement and orientation (in 

a Cartesian coordinates) of recorded neurons with respect to the polytrode (Figure 

4.3C). The cortical gray matter was assumed to be a purely resistive, 
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homogeneous conductor, however no assumption was made about the isotropy of 
conductivity. Independent parameters described the conductivity in each spatial 
dimension. Recorded neurons were assumed to lie in front of the polytrode. The 
non-conductive shank of the polytrode acts as an insulator and therefore only 
neurons in front of the polytrode are recordable (Drake et al. 1988; Anderson et al. 
2001). It was also assumed that the extracellular signal decay was isotropic along 
the two spatial dimensions coplanar with the cortical layers, in order to make it 
feasible to estimate neuron locations in three-dimensions using a 2D planar 
electrode array. To calculate neuron locations, the Levenberg-Marquardt gradient 
descent algorithm (Press et al. 1994) was used to fit the multisite spike waveform 
amplitudes (Figure 4.3D) to the model functions. 

4.3.2 A mixed monopole, dipole field potential model 

A useful framework for estimating neuron location is to regard the action 
potential generated at the axon hillock/soma as a point source* and model the 
extracellular spike field potential around the neuron at an instant in time. Under 
quasistationary conditions (defined below) electrostatic theory can be used to 
determine the potential at any point in space. Given a single current point source, 
or monopole, the potential yjm in an isotropic, homogenous conducting medium is: 

y/m= — ( M a l m i v u o and Plonsey 1995) ( 4.1 ) 
A nor 

where Im is the magnitude of the current source, cr is the conductivity of the 
medium, and r is the distance (eg. of a single electrode site) from the centre of the 
monopole according to Pythagorean theorem: 

Note that the potential varies inversely with r, the current flows radially, and 
the isopotential surfaces are concentric spheres (Figure 4.3A). Although a 
monopole is not physically realisable due to conservation of charge requirements, 
this approximation is valid if the return current is sufficiently distant from the 
axon hillock, as in the case of large polarised cortical pyramidal neurons, or if the 
passive return current through leak channels is distributed diffusely across the 

T For convenience the term 'source' refers to both current sinks and current sources. The phase of the action 
potential determines the direction of current flow at any instant in space and time, and therefore whether a 
given point in extracellular space is at a net negative potential (sink) or net positive potential (source). 

(4.2) 
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whole cell membrane. In either of these situations the counter currents will not 
evoke potentials that are large enough to be recordable by a multiunit electrode. 

A more general form of equations 4.1 and 4.2 that make no assumption about 
the isotropy of the tissue in each spatial dimension is: 

_JJS_ 1 

where ax, ay, and az are the conductivity scalars in the x, y, and z spatial 
dimensions, respectively (Figure 4.3C). In the striate cortex, neuronal processes 
run predominantly perpendicular to the cortical gyri (ie. the apical dendrites of 
pyramidal cells are almost parallel to each other). Therefore, it is reasonable to 
expect that the conductivity is isotropic in the xz plane, but may be different along 
the y axis: 

o - x * ^ * ^ (4.4) 

The effect of tissue anisotropies is to distort the shape of the isopotential 
surfaces such that they are no longer spherical, but spheroidal. In the extreme 
case where the return current is focal and very close to the source, for example a 
small non-pyramidal cell, y/m approaches zero as the current sinks and sources 
cancel each other. In the intermediate case, two relatively close monopoles of 
opposite polarity constitute a dipole. The radial dependence of a dipole field 
potential in an isotropic, homogenous conducting medium is given by: 

y/d = I d d c o s d (Malmivuo and Plonsey 1995) ( 4.5 ) 
4;ror 

where Id represents the equal magnitude active and passive currents of the 
two poles, d is distance separating the poles, and 9 is the angle (in polar 
coordinates) between the axis of the dipole aligned with the y axis, and the radial 
direction of r (Figure 4.3B). Observe that y/j is maximal when sampled along the 
axis of the dipole, when 9=0 (cos 9=1), and zero when sampled midway between 
the poles (9=90, cos 0=0). Dipole potentials vary inversely with r2, decaying 
even more rapidly in space than monopole potentials. Equation 4.5 holds for d « 
r, however the monopole component (equation 4.1) begins to dominate as d 
increases. Therefore it is reasonable to predict that larger pyramidal neurons will 
have fields, that are best fit by a monotonically decaying monopole distribution, 
whereas smaller neurons may be better described by a dipole. By the same 
relation, the contribution of the monopole increases for neurons very close to the 
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electrode (r approaching d). Spatial averaging of large surface area multiunit 
electrodes means highly focal dipoles will only be detected for electrode sizes « d. 

As with the monopole, the dipole equation can easily be extended to allow for 
possible tissue anisotropies: 

Idd cosd 1 
VJ=—A • 2 2 2 (4.6) 

An <JXX +<jyy +cr2z 
Here again the prediction is that ax~az^- a 

y 

4.3.3 Coordinate transforms 

The dipole model, even without accounting for possible tissue anisotropies, 
has an intrinsic directional component because its electric field is spatially 
asymmetric. A monopole field embedded in an anisotropic conductive medium is 
also aspherical. For a rigid array of electrode sites, as opposed to a single radially 
defined point in space (r), it is more practical to consider the position and 
orientation of the polytrode as a single entity with respect to the brain. Likewise, 
to allow for arbitrary displacement and orientation of a given neuron with respect 
to the polytrode (Figure 4.3C) it is necessary to reconcile the coordinate system 
conforming to each neuron with the coordinate system aligned with the polytrode 
shank. Taking the latter as the principal coordinate system, the following linear 
transformations can be used for rotations about the z axis: 

X cos 6Z - sin 6Z 0" V 
y sin 6Z cos 6Z 0 y (4.7) 
z 0 0 1 z' 

where (x, y, z) gives position relative to the origin in the rotated coordinate 
system, and (x, y, z ) is the position in unrotated coordinates. Similarly, for 
rotations about the x axis: 

x 1 0 0 ~x'~ 

y 0 cos 6X - sin 0X y (4.8) 
z 0 sm9x cos 6X z' 

Given that the polytrode is inserted more or less perpendicularly to the 
cortical gyrus, and the additional imposed constraint that CTX=CTZ, rotations about 
the y axis are degenerate and do not need to be considered further. Rotations 
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around the other two axes can be combined, using matrix multiplication, along 
with translation for any recording site in the polytrode array: 

X cos 0, cos 0Z sin 0Z sin 6X sin 6Z x'-sx 

y sinc9z cos 0X cos 9Z sin 6X cos 02 y-'y (4.9) 
z 0 smOx COS0X z'-sz 

where s x s y s z are the coordinates of a given recording site. 

4.3.4 Extracellular tissue model 

As with the CSD analysis (section 1.3.5), the tacit assumption of the field 
potential equations presented above is that the tissue is a purely resistive medium 
(ohmic) over the physiologically relevant frequency range (ie. 0.1~10,000Hz). This 
assumption is supported by empirical evidence (appendix A.3), and direct brain 
impedance measurements (Kay and Schwan 1956; Schwan and Kay 1957a, 1957b). 
The capacitive (reactive) component of tissue impedance is thus negligible, and 
under such quasistatic conditions all currents and fields vary synchronously 
(Plonsey and Heppner 1967). Only the tissue conductivity (or resistivity) need be 
specified in the model, which greatly simplifies matters. Accordingly, the 
extracellular fields associated with the different frequency components of the 
spike waveform decay in a similar fashion (Figure B.2), and thus a common field 
model can be used for both FS and RS neurons. 

The other pertinent property of the tissue was alluded to earlier, that of the 
conductivity (cr) in each spatial location and dimension. In the current model it 
was assumed that the conductivity of the cortical grey matter was homogenous, 
unperturbed by either the laminar structure of the cortex or the pial and white 
matter boundaries. Isotropic conductivity was assumed in the xz plane, but could 
differ in the y axis, in accordance with the columnar architecture of the cortex (a 
necessary constraint in any case, given the 2D polytrode). 

4.3.5 The neuron localisation algorithm 

Model parameters are given in Table 4.1, which includes the constraints and 
parameter seed values. The model has ten free parameters, three representing 
neuron location, two for axial rotations, three relating the conductivity in each 
spatial dimension, and two for the 'intrinsic spike amplitudes' of the monopole 
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and dipole components (see below). These parameters were constrained as 
follows: neuron location in the z axis was greater than zero (ie. in front of the 
polytrode shank); rotations about the x and z axes were limited to 90° in either 
direction; the conductivity scalars in each dimension were also free parameters, 
with ax=az; finally, the upper bounds on the intrinsic spike current amplitudes 
(y/m and y/J) were set to 20nA, on the basis that polytrode potentials (presumably 
some finite distance from the neuron) larger than ~1.5mV have never been 
observed, and the average resistivity of the cerebral cortex is around 300 Q.cm 
(Freygang and Landau 1955; Ranck 1963). The inclusion of independent 
monopole and dipole amplitude parameters does not imply the existence of two 
independent neural sources, but rather allows the algorithm to conform to one 
model or the other (or both equally) depending on the dominant field distribution. 
Both field components (equations 4.3 and 4.6) were fitted as: 

¥ = ¥m+¥d ( 4 - 1 0 ) 
in addition to the coordinate system rotations. Note also that Id-d in equation 

4.5 was represented by the single parameter Id for the localisation algorithm. 
The 'bootstrapping' phase of the modeling was on a large representative 

library (n=188) of multisite spike templates extracted with the M T M spike sorting 
algorithm described in chapter 3. These templates comprised averaged spike 
waveforms (>100 samples) with appreciable signal on up to thirty recording sites 
when recorded with the highest density polytrode (54pmaplb design). Data from 
the staggered two and three column polytrodes (54pmap2b, and la) were also 
modeled - with spikes appearing on up to twenty sites - was still sufficient to 
constrain the fits in most cases. Spike amplitudes (y/xyz) were determined for each 
recording site (sxyz) at the initial phase spike peak or valley on the maximum 
amplitude spike channel (ie. not the peak-peak spike amplitude on each channel, 
Figure 4.3D). These two points in time obviously afford the highest SNR, but were 
also selected because these spike components were qualitatively less variable than 
other phases of the waveform, such as the AHP, and are reported to conform most 
closely with intracellular current (Henze et al. 2000). 

Separate simulations were also run on unsorted, unaveraged spike waveforms 
to assess whether the localisation algorithm generated spatially distinct clusters 
suitable for spike sorting (as in Figure 4.2). 
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T a b l e 4.1 N e u r o n l oca l i s a t i on m o d e l parameters a n d constraints . 

Symbol Meaning Constraints Seed values 

$xyz electrode site coordinates (um) fixed, z = 0 known 

Wxyz spike amplitude at site sxyz fixed measured 

x, y, z neuron location, relative to the electrode (um) z>0 x=y = imax, z=50 

rotation about the z- and x-axes (degrees) -75<0<75 0,0 

0~x, CTy, Crz 
conductivity scalar in each dimension (S.nr1) <jx = <JZ <JX—Oy—GZ= 0.3 

L intrinsic current, monopole component (nA) <20 3 

Id intrinsic current, dipole component (nA.unr1) <20 3 

4.4 Results 

4.4.1 Neuron localisation 

The majority of neurons in the sample population, around 90%, had fields 
characteristic of a monopole distribution, with monotonically decaying potentials 
(Figure 4.4). The model-derived isopotentials of these cells were spherical or 
prolate spheroids, and in the latter case the long axis was generally aligned with 
the y axis or had a small rotation about the z axis (though never more than ±60°). 
Neurons of average peak spike amplitude (~150pV) were predicted to be around 
50pm from the polytrode shank fa, Figure 4.4A), and no neuron was farther than 
148pm (Figure 4.4B). The most distant neurons had broadly distributed fields, in 
some instances present on half the recording sites spanning 500pm or more. In 
contrast, neurons estimated to be less than 40pm from the polytrode were 
characterised by steep voltage gradients, with appreciable signal on only two or 
three sites (Figure 4.4C). Neuron translations (xy position) were typically close to 
the site of maximal amplitude (imax), however a few neurons had estimated 
locations 165pm beyond the top and bottom row of recording sites, farther than 
the z or x axis range of prediction but in accord with the prolate field shapes. 
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mm 

zd= 16um, 9Z= 54° 
cr, : = .95, 7m= 3.2nA 
emM„=3.3uV, 7d=5nA 

u l j j j 

I I I I I I I I I 

Figure 4.4 Representative model fits. 
In each example the coloured mesh plot is the modeled 2D voltage distribution across the 
polytrode. Sites [black spheres) represent actual spike voltage measurements, arranged in 
their native configuration, with amplitude on the z-axis (ie. height above or below the 
mesh ground plane). Bar charts compare the measured and fitted spike amplitudes (in 
pV, for all sites with spike amplitudes over 10uVPp). Insets show the modeled field 
potentials in the xy plane. Fitted model parameters are shown, in addition to the average 
fit error per electrode site (£^ea„). See text for further details 
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Average fitted values for the conductivity parameters were 0.28 ± 0.12 for ay 

and 0.42 ± 0.17 S.nv1 for oxz (n=188). The shape of the isopotentials was reflected in 
the ratio of the conductivities (oy: oxz), hereafter referred to as the apparent 
conductivity tensor. For the majority of cells that had prolate fields, the 
conductivity tensor ranged from 0.53-0.77. Neurons with spherical fields had a 
unitary tensor. The very existence of spherical fields suggests that the shape of the 
field potentials is, at least in part, due to differences in the geometry of the source 
currents, not, as was assumed, attributable solely to tissue anisotropy. Anatomical 
and physiological evidence from other studies may lead to the correct 
interpretation, an issue that is considered further in the Discussion. 

Taken together, these results agree with what would be expected given the 
nature and geometry of monopoles; small amplitude neurons with dispersed 
fields are distant from the polytrode, whereas large peak amplitude, focal fields 
are from neurons located very close to the polytrode. 

The remaining 10% of neurons studied (19/188) were poorly described by the 
basic monopole model (with markedly higher fit residuals). These neurons had 
obvious dipole components (Figure 4.4D, E). Field potentials showing evidence of 
dipoles usually had inverted waveforms on a few surrounding recording sites, 
and these neurons were invariably less than 25pm from the polytrode, perhaps 
unsurprising given the inverse squared radial dependence of dipole potentials. 
The positive pole of the dipole was typically more distributed than the negative 
pole (ie. the main current sink during the initial phase of the action potential). 
More subtle dipole components were also observed (Figure 4.4G, H). These 
lacked inverted waveforms, but had signal decays too rapid to be described by a 
monopole. 

Other simulations with simple linear decay constants (ie. ib oc -r) described 
none of the field distributions well. Fits with functions such as exponentials and 
Gaussians were similarly poor. Elaborations of the model, such as the addition of 
quadrupoles (ie. lb oc 1/r3), did not improve the quality of the fits. Therefore, the 
mixed monopole-dipole model appears to provide a minimal but adequately 
detailed description of neuronal field potentials as recorded by large surface area 
multiunit electrodes. 

The neuron localisation algorithm was applied to a recording made at a single 
depth, with the polytrode inserted perpendicular to the cortical surface (Figure 

112 



4.5). Estimated locations for these 82 neurons (a subset of the 188 neuron dataset) 

were fairly evenly distributed across the polytrode. Predicted z distances were 

plausible, with a few neurons against the shank, and no neuron further than 

130pm from the shank. In the xz plane the density of recorded neurons reached a 

peak -55 pm anterior to the polytrode shank, presumably as the volume of 

recordable neurons increased, and stopped abruptly beyond -100pm, an artefact 

of setting a simple lOOpV amplitude threshold during spike extraction and sorting. 

Figure 4.5 E n s e m b l e n e u r o n loca l i sa t ion . 
Isometric projection of the estimated 3D location of 82 simultaneously recorded neurons 
(red spheres) relative to a 54pmaplb polytrode. Insets are 2D projections of the same 
neurons in the plane indicated. All dimensions are in microns. 

4.4.2 Model precision and stability 

Fit errors for all neurons were within noise estimates (ie. ~50/Vl00 &5{iV per 

channel after averaging), with only slightly higher residuals for the most distal 

neurons, as might be expected given the increased likelihood of waveform 

distortion by greater numbers of interposed neurons. Model parameters such as 

intrinsic spike amplitude, the conductivity tensor, and rotational parameters were 

statistically independent of neuron location. A weak but statistically significant 

(p<0.05) inverse correlation was evident between the conductivity parameters 
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and the two intrinsic current parameters, possibly indicating a degree of 
redundancy (ie. overparameterisation). With the exception of a few neuron z 
locations up against the polytrode, none of the model parameters were close to 
their (albeit loose) parameter bounds. There were no systematic differences in the 
model fits for different polytrode designs (Figure 1.4), each having variable shank 
widths and electrode site to edge distances, suggesting that any distortion of the 
isopotentials due to the polytrode shank, if not negligible, were at least similar for 
all polytrodes. Fits on the 2-column field data did, however, converge less reliably 
than data derived from the 3-column polytrodes (see below). 

Stability analysis was be performed for all free model parameters to 
determine if the predictions were affected by different seed values. Other than 
varying the number of iterations to converge on a solution, none of the parameters 
(including neuron location) were dependent on the choice of initial seeds, 
indicating a well constrained model that was not susceptible to local minima. The 
only parameters that behaved erratically were the rotational parameters for 
neurons with radially symmetric field distributions (unitary tensor), unsurprising 
given that such rotations are degenerate in the isotropic case. 

Finally, while few simulations in the test dataset failed to converge (5/188), 
this was invariably on field data from the 2-column polytrode. In two cases there 
with fewer significant spike amplitude measurements than free model parameters. 
In addition, the standard deviations of the two rotational (6Z, 6X) and lateral 
conductivity ( a x z ) parameters were higher for the 2-column fits. Forward 
modeling simulations using 'generative' 2-column data (ie. simulated field 
distributions based on an identical model without additive noise) confirmed this 
instability. These results highlight the importance of the additional constraints 
imposed by the third column of electrode sites, and the fact that one of the factors 
limiting the success of the early neuron localisation algorithm was insufficient 
high resolution field data. Once the model is bootstrapped, there is of course the 
possibility of improving the reliability of 2-column fits by fixing certain model 
parameters to standard values derived from the 3-column model fits. An obvious 
candidate would be the tensor magnitude, since this should be invariant for a 
given cortical area, and thus should not vary significantly across recordings. 
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4 .4 .3 Spatial clustering for spike sorting 

The field potential modeling results reported so far were on average spike 
templates obtained from the spike sorting algorithm (chapter 3). The original 
conception of the neuron localisation algorithm was as a new method of 
generating clusters for spike sorting. Rather than modeling pre-sorted average 
templates, individual spikes are fitted, and collectively they form clusters in 3D 
cortical space (Figure 4.2). The centroid of these clusters represent the estimated 
neuron locations. Like PCA, this is a form of dimension reduction, only here the 
collapsed dimensions are real cortical coordinates. Since only a single neuron can 
occupy any one location in the brain, cluster boundaries and isolation distances 
can be defined in microns, not arbitrary feature-related units. 

In the context of spike sorting there are several advantages to this method of 
spatial clustering, including the fact that spikes need not be sorted in advance. 
Spikes from a single neuron may vary considerably in amplitude, especially 
during complex burst firing (Buzsaki et al. 1996). Spike attenuation produces 
elongated clusters in cross channel amplitude (or PC) feature space (Figure 4.6A), 
making partitioning of multiple clusters difficult, and thus a major source of spike 
misclassification (Harris et al. 2000). In comparison, clusters derived from the 
neuron location algorithm applied to the same set of spikes were more or less 
spherical (Figure 4.6B). Correlated spike amplitude attenuation, instead of being 
manifest in the spatial coordinates, was offset by a proportional variation in the 
intrinsic current parameter Im, and accordingly the two were highly correlated 
(r2=0.93). The field model thus implicitly 'decorrelates' the spike amplitude 
variability, analogous to cross-channel whitening procedures that are sometimes 
used to improve multichannel spike sorting (Emondi et al. 2004). 

Another benefit of spatial clustering is the relative ease of tracking neural 
ensembles in response to electrode drift, or as in the example shown in Figure 
4.6C, following a deliberate movement of the polytrode (see also Figure 1.14). The 
majority of neurons were easily identifiable before and after the movement, with a 
mean relative shift in neuron position of ±9pm. Across the whole neuron 
ensemble there was a small, 5pm downward trend in y location, suggesting that 
insufficient time was allowed for the tissue to settle before restarting the 
recording. When this vertical shift was accounted for, the average deviation in 
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post-movement neuron location reduced to only 3pm. This result also 
demonstrates that the localisation algorithm gives internally consistent results, 
and represents an important test of the model's validity. 

Figure 4.6 Neuron localisation for spike sorting. 
(A) A burst firing neuron, with characteristic autocorrelogram, often has attenuating spike 
amplitudes across electrodes sites. Clusters in cross-channel amplitude space are 
therefore elongated (n = 100 spikes). (B) Clusters in 3D brain space were more spherical. 
(C) Predicted locations of 33 neurons relative to a 54umap2b polytrode (left). The 
polytrode was advanced 75um along the y-axis (right), a non-integer multiple of the 
vertical electrode site spacing. The absolute and relative locations of most of the neurons 
(red spheres) remained virtually unchanged. Eight neurons (grey spheres) were not locatable 
following the movement. Two new active neurons appeared at the bottom (green spheres). 

4 .4 .4 Neuron classification 

Starting with the hypothesis that the polarised apical dendrites of cortical 
pyramidal cells gave rise to extended spike field potentials (open fields), while the 
radial dendrites of interneurons yield small, focal fields (closed fields), the existing 
library of sorted spike templates was searched for examples of both these extremes 
(Figure 4.7A). Qualitatively there was a clear dichotomy between spikes with 
fields appearing on only one or two recording sites, even on the highest density 
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polytrode after averaging, and the majority of spikes that were distributed across 
at least five electrode sites, irrespective of predicted distance from the polytrode 
(Figure 4.7B). 

Figure 4.7 C l a s s i f i c a t i on of c e l l type. 

Extracellularly recorded units may be classified into two groups, putative pyramidal 
neurons (upper panels) and interneurons (lower panels), on the basis of differences in field-
potential model parameters, electrophysiological measures, and possibly RF properties. 
(A) Gross differences in cell morphology are hypothesised to produce (B) substantially 
different spike amplitude distributions across the polytrode. Spike waveform duration of 
the (putative) pyramidal neuron was longer than that of the (presumed) interneuron. 
(C) The auto-correlogram of the pyramidal neuron suggests a burst firing pattern that was 
absent in the interneuron. Pair-wise cross-correlograms for the pyramidal neuron 
revealed a monosynaptic excitatory connection; for the interneuron monosynaptic 
inhibition (arrows). Timebase = 1ms, 200us bins. (D) The pyramidal neuron was an 
orientation-tuned simple cell (Scalebar = 2°). The RF of the interneuron was not mapped, 
however the majority of other FS neurons that were mapped had circularly symmetric 
RFs like that shown here. 

Focal spikes invariably had FS waveforms (full-width < 600ps, n = 9), whereas 
broader fields were characterised by longer spike widths, akin to RS or IB neuron 
types (full-width > 750ps n = 124). The association between field size, spike width 
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types (full-width > 750ps n = 124). The association between field size, spike width 
and firing pattern was further evidenced by the profile of the auto-correlograms 
(ACGs). The latter were typically associated with burst like (Figure 4.7C) or RS, 
periodic ACGs (ie. correlograms with sidebands), whereas FS neurons had 
consistently flat ACGs. FS neurons also exhibited markedly higher spontaneous 
(4-13Hz) and maximal sustained firing rates (up to 600Hz) compared with their IB 
and RS counterparts (0-4Hz, and less than 100Hz, respectively). For FS neurons, 
the high firing rates were associated with a refractory period less than 1ms. 

A n analysis of a ~ 7,000 pairwise cross-correlograms (CCGs) from three 
separate recordings revealed evidence of functional monosynaptic excitatory and 
inhibitory connections (Figure 4.7C). Without exception, RS or IB neurons had 
excitatory CCGs (n = 11), whereas the single currently available example of an 
inhibitory CCG was for the FS neuron illustrated. 

The sample population studied to date is too small to indicate a systematic 
pattern in the laminar distribution of the putative cell types, however the RF 
profiles of some neurons were mapped. Most FS neurons (4 of 6) exhibited weak 
or absent orientation tuning and circularly symmetric RF profiles. The two others 
were simple cells. Nearly all RS or IB neurons that had clear RF maps (18 of 26) 
were simple cells with narrow orientation tuning, and in some cases directionally 
tuned. The remainder were presumably complex cells as their fields were not able 
to be mapped using reverse correlation to m-sequence noise stimuli. The response 
of these cells to sparse noise stimuli has not yet been analysed. 

4 .5 Discussion 

The neuron localisation algorithm presented in this chapter combines well-
established electrostatic field models with simple coordinate transforms to predict 
extracellularly, for the first time, 3D neuron location to within a few microns; an 
accuracy comparable to that obtainable with intracellular histology. Inferring 
neuron location, or more specifically the location of the dominant neurogenic 
currents, on the basis of field potential measurements is a classic example of 
inverse modeling (Plonsey 1969). Here the nature of the volume conductor and 
the fields were known from prior work, the voltage distribution was measured 
with the polytrode, but the exact properties and origin of the source currents were 
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unknown. In theory a given field distribution could be produced by an infinite 
combination of superimposed sink/source distributions (from any number of 
neurons). Fortunately, the inclusion of a few physiologically realistic constraints 
(parameter bounds) and simplifying assumptions was sufficient to predict a 
single, most probable solution (ie. a definitive neuron location). 

Broad classification of cell type into pyramidal and interneuron classes, 
previously the exclusive domain of intracellular recording, can now be predicted 
by the neuron localisation model on the basis of field potential spread and 
asymmetry, in addition to spike width (Bartho et al. 2004). This offers the 
prospect of studying the interactions between different neural types thought to 
play specific roles in mechanisms of visual RF tuning properties (Alonso and 
Martinez 1998; Hirsch et al. 2003). Until more neuron types and their functional 
characteristics have been described, it is too soon to be sure which measures, or 
combinations of measures, are diagnostic of cell type. Multivariate statistics or 
cluster analysis should help provide these answers (Nowak et al. 2003). 

Using the neuron localisation algorithm as a method of spatial clustering 
enables polytrodes to track 'constellations' of active neurons whose identification 
is unperturbed by electrode drift (Figure 4.6). Combining spike shape information 
with the added constraint that the spatial relationships of the neurons do not 
change (Figure 1.14), provides a solid criterion for ensuring that the same neurons 
are being recorded over periods of hours, days, or even months. This may prove 
particularly useful for chronic studies of the neural correlates of perceptual and 
motor learning (eg. Gilbert et al. 2001; Paz et al. 2004), where long-term 
unambiguous identification of multiple neurons is essential. 

4.5.1 Model validation and interpretation 

In order to obtain indisputable verification of the location predictions, several 
attempts were made to image patch clamped or intracellularly recorded neurons 
that were also recorded extracellularly on the polytrode (appendix C). Even 
without imaging, paired intracellular-extracellular recordings are a technical tour 
deforce and rarely attempted (Wehr et al. 1998; Henze et al. 2000), which was some 
consolation when none of the present experiments provided useful data. 
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Without such validation, how might the neuron localisation model, and hence 
the accuracy of predicted neuron locations, be tested? Most importantly, the 
model yielded reasonable location predictions, in spite of a solitary constraint 
(z > 0) imposed on the location parameters. The most distal location predictions 
were 148pm from the polytrode, comparable to the maximum recordable distance 
of CA1 pyramidal neurons in rat hippocampus using tetrodes (Henze et al. 2000). 
At the other extreme, neurons with highly focal fields, most likely small 
interneurons, were always estimated to be in the immediate vicinity of polytrode. 
The positional invariance of neural ensembles following movement of the 
polytrode is a good arbiter of the stability and internal consistency of the model. 
This result is non-trivial because the polytrode was advanced a non-integer 
multiple of the vertical electrode site spacing, in such a way that the field 
amplitude distributions across the polytrode array were markedly different (ie. not 
just the same distribution on different sites). 

The layered, ordered anatomy of the cortex provides other opportunities to 
verify the localisation algorithm. Predicted cell densities and incidence of specific 
cell types should match known laminar distributions (Beaulieu and Colonnier 
1985; Peters and Yilmaz 1993; Binzegger et al. 2004). For example, with a larger 
sample size from multiple penetrations the model should predict a high density of 
pyramidal neurons in layers II/III and V, the presence of excitatory non-pyramidal 
(spiny stellate) neurons in layer IV, and FS interneurons throughout all cortical 
layers. It would also be informative to extract and localise all active neurons 
(down to SNR = 1) at a single recording location, and observe whether the total 
number of estimated neurons increases as nr2 (ie. the volume of potentially 
recordable neurons). For recordings made down the medial bank of the striate 
cortex, predicted neuron orientations (6Z rotations) should vary with depth as the 
polytrode traverses the change in radial fibre direction around the cortical gyrus. 

Further consideration should also be given to the rationale behind the model 
assumptions, in particular the evidence that neurons are only recorded in front of 
the polytrode. Drake and colleagues (1988) did a theoretical study of the influence 
of the polytrode on recorded field potentials, and showed that the presence of the 
insulating shank attenuates potentials behind the polytrode by almost 100%. This 
conclusion was recently confirmed using finite element modeling (Anderson et al. 
2001). The assumption that the tissue conductivity is isotropic parallel with the 
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cortical layers (ie. ox = az) is supported by the anatomical homogeneity of the 
cortex in these two dimensions. Vertically (aligned with the columns), one study 
reported local, layer-dependent changes in isotropy, specifically a discontinuity 
between the molecular and granular layers of the turtle cerebellum (Okada et al. 
1994). The authors emphasised that such boundary conditions could exert an 
appreciable distortion on extracellular current distributions, and consequently 
quantitative neuron location predictions (see also Bedard et al. 2004). However, 
other than layer I, cat cerebral cortex does not have comparable layer-specific 
transitions in neuronal density (Beaulieu and Colonnier 1985), and thus is unlikely 
to possess such gross inhomogeneities. 

With the exception of BPAPs, which are easily identifiable with template 
matching, the stationarity of spike-related source currents was assumed. Layer V 
pyramidal cells of the neocortex (Schiller et al. 1997) and CAT pyramids in the 
hippocampus (Gasparini et al. 2004) are known to have two spike initiation zones. 
Most common are the low-threshold sodium spikes initiated in the initial segment 
of the axon, but a high-threshold calcium spike may be generated in the distal 
apical dendrites following high temporally coincident synaptic input. In spite of 
this possible confound, the low current density of calcium spikes, in addition to 
the 'closed field' effect of the dendritic tufts makes them unlikely to be recorded 
extracellularly with multiunit electrodes. 

Another way to assess the validity of the model is to compare fitted 
parameters with known physiological values. The range of intrinsic current 
parameter values, on the order of a few nanoamps, is consistent with measured 
peak transmembrane currents in cortical neurons (Plonsey 1969; Malmivuo and 
Plonsey 1995). Although the ax and oz conductivity parameters were constrained 
to be equal, their combined value was free to vary. Average fitted values were 
0.42 ±0.17 S.rrr1, closely approximating empirically derived values of 0.45 
(Freygang and Landau 1955) and 0.29 - 0.55 S.m 1 (Hoeltzell and Dykes 1979). 

Unfortunately, reliable data on adult cat visual cortex conductivity tensors 
does not exist. It is, however, possible to infer indirectly the conductivity tensors 
from diffusion weighted magnetic resonance imaging (DTI) \ The major 
anisotropy derived from high resolution 9.4T DTI in cat follows the vertical 

* DTI measurements do not distinguish between intra- and extracellular compartments, however there is a 
strong linear relationship between ECS conductivity and the diffusion eigenvalues (Tuch et al. 2001). 
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(columnar) fibres of the cortical grey matter (Ronen et al. 2003). Quantitatively, 
the tensor magnitude along this axis, relative to the other two axes, is 1.38 ± 0.12 
(Mathieu Ducros, unpublished data). Whereas some studies of other species find 
no evidence to indicate the cortex is anisotropic (Lehmenkuhler et al. 1993; 
Nicholson and Tao 1993; Mazel et al. 1998), others, particularly those of stratified 
brain structures, such as cat (Yedlin et al. 1974) and anuran (Nicholson and 
Freeman 1975; Rice et al. 1993) cerebellum, rat hippocampus (Mazel et al. 1998), 
and cat somatosensory cortex (Hoeltzell and Dykes 1979), report significant tissue 
anisotropies *. Where anisotropy has been reported, it is always greatest along the 
axis of the dominant axonal or dendritic projection (Nicholson and Sykova 1998), 
and ranges in magnitude from 1.2 ~ 2.9 fold depending on the .species, anatomical 
heterogeneity, and the method used. Ratios greater than one would be expected 
to distort the field potentials so as to make them oblate along the axis parallel to 
the cortical pyramids (equations 4.3 and 4.6). 

The prevailing assumption throughout this chapter has been that anisotropic 
field shapes can be equated with anisotropic cortical conductivity. These 
physiological data pose a dilemma for the current model that predicted the y-axis 

tensors were less than or equal to one (0.53-0.97). Even if the cat DTI data and 
conductivity measurements from other brain areas are ignored, there must be 
another explanation for the anisotropic (prolate) field shapes. The existence of 
neurons with almost spherical fields also puts into question this interpretation, as 
a homogeneous volume conductor was assumed. Of course it could be postulated 
that local regions are isotropic (ie. the tissue is inhomogeneous), or that spherical 
fields are from bitufted non-pyramidal or basket neurons orientated 
perpendicular to the cortical surface. In the latter case the distortion caused by the 
tissue anisotropy would be offset by the lateral orientation of the neuron, resulting 
in a spherical field distribution. But these explanations still fail to reconcile the 
prolate field potentials with the physiological conductivity data. 

The existing model is not fundamentally flawed. As a purely descriptive 
model, the inclusion of semi-independent scalar parameters was both necessary 
and sufficient to describe the shape of the neural field potentials with great 

* Many of these studies measured extracellular ion or small molecule diffusion, a quantity referred to as 
tortuosity. Since ECS conductivity is roughly proportional to the EC volume fraction / tortuosity2 (Okada et 
al. 1994), on this basis if the tortuosity is isotropic, so too is the ECS conductivity. 
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accuracy. Rather, the problem here is one of interpretation, and suggests that 
some biophysical property other than conductivity is the cause of the prolate 
fields. How might this be resolved? The most direct approach would be to make 
four-electrode impedance measurements (Ivorra et al. 2003) with the polytrode 
and quantify the conductivity tensors at all cortical depths (as described in 
appendix A.3). These measurements could be used to fix the model conductivity 
parameters. If elaborations to allow for tissue inhomogeneities are sufficient to 
account for the observed field shapes, then the basic form of model can remain 
unchanged. Alternatively, if some other phenomenon is responsible for the 
prolate fields, then there will still be some heterogeneity in the field shapes even 
after compensating for known tissue anisotropies. In this case a likely explanation 
is that the dominant neurogenic currents are not point sources, but are in fact 
distributed across the membrane of the neuron, perhaps with the size of the dipole 
moment proportional to the size of the apical dendrite. As the majority of 
extracellularly recorded neurons are pyramidal neurons aligned with the cortical 
columns, this could have created the impression of an anisotropic conductivity 
tensor along the y axis, even if the tissue was more or less isotropic. 

4.5.2 Model refinements 

The inverse correlation between the intrinsic current and conductivity 
parameters suggest a degree of parameter redundancy. To improve the stability 
of the model it may be desirable to constrain one or both parameters to known 
physiological values or ranges, but leave the conductivity ratio free to vary. 

Since the shape of the neural fields cannot be explained by an anisotropic 
tissue model, the simplest modification would be to reinstate the full definition of 
the dipole moment (U d in equation 4.5), with d representing the dipole length, and 
constraining making Id = Im- This would have the same effect of inverting the y 
axis conductivity parameter, but with the semantic benefit of keeping the model 
biophysically realistic. It will probably also be necessary to fix the conductivity 
tensor to a suitable physiological value, say 1.4. 

Although somewhat of a departure from the existing point source models, 
both could be reformulated as an equivalent cylinder model using methods 
similar to Rail (1962) and Humphrey (1968). Here the monopole component is 
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made redundant, and the dipole is replaced by a single concentrated sink 
representing the soma with a collinear distribution of sources corresponding to the 
apical dendrite. In this case the extracellular potential is given by: 

¥ = Z7/^ -JsSsr U = , 1

 ? 7 (after Humphrey 1968) ( 4.H ) 

where Is is the instantaneous current density over the soma, Ss is the somatic 
surface area, ds is the soma diameter, /, is the current density over the /th dendritic 
segment, of surface area AS, and n is the total number of segments. Values for Ss 

could be fixed to typical anatomically derived values for cortical neurons, and 
AS ~ Ss/6, on the basis that each segment length is a multiple of dS/ and the 
diameter of the apical dendrite is typically ~l/6 t h the diameter of the soma. To 
further simply matters, the magnitude of could be distributed evenly amongst 
the segments, with only the number of segments n free to vary. Observe that the 
conductivity parameters have been retained, as the (albeit limited) available 
evidence suggests that tissue anisotropies should be represented. According to 
this model small pyramidal neurons and stellate shaped neurons would have a 
few segments, thereby approximating a dipole, whereas large layer V pyramids 
might have up to two hundred segments. One of the appeals of this approach is 
that the model may be used to predict the length (or absence) of the apical 
dendrite, and hence estimate the extent of the neuron's synaptic inputs in the 
cortical layers akin to filling and reconstructing the cell intracellularly. 

Finally, the two theoretical studies that concluded neural sources were not 
recordable behind the polytrode also predicted that the wide insulating shank 
distorts the extracellular current flow, accentuating the apparent spike amplitudes 
by as much as 60% adjacent to the centre of the shank (Drake et al. 1988; Anderson 
et al. 2001). It may thus be possible to further improve the location predictions by 
modeling the distortion of the field potentials caused by the presence of the 
polytrode shank, however there was no obvious evidence of this. 
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chapter 5 
Prospective applications 

5.1 A new experimental paradigm 

The preceding chapters document the development of methods for large scale 
neuronal recording, including the design and testing of novel high density 
polytrodes; supporting hardware and software for high bandwidth continuous 
data acquisition; signal processing methods for improving waveform fidelity and 
neuron yield; spike detection and sorting algorithms adapted specifically for 
polytrodes; and finally the establishment of a biologically realistic field potential 
model for 3D neuron localisation and estimation of cell type. 

Polytrodes have the capacity to monitor most, if not all, active neurons in a 
local region of brain extending the full length of the polytrode. Both the number 
of experimental animals and the time needed to adequately sample the neuronal 
population is thereby greatly reduced. Whereas tetrodes can record from multiple 
neurons in a local network, high density polytrodes enable studies of the 
functional connectivity and interactions of neuronal ensembles across whole 
cortical columns. With the means to determine the precise anatomical location of 
recorded neurons, and differentiate interneurons from pyramidal cells, polytrodes 
can be used to test predictions from modeling work in systems neuroscience that 
have not previously been open to scrutiny. Several such experiments of this 
nature are described later in this chapter. 

One of the challenges of recording simultaneously from large numbers of 
sensory cortex neurons is devising appropriate stimuli. The usual approach of 
characterising a single neuron by holding most stimulus dimensions constant and 
optimal, varying only the stimulus parameter of interest, is not only inherently 
biased (Towe 1973), but infeasible when recording from an assortment of neurons 
with a potentially large range of 'optimal' tuning responses. One solution is to 
present all possible combinations of the relevant stimulus dimensions for a range 
of different stimuli. While time consuming, this has the added benefit of impartial 
characterisation of the neurons in the sample population, including those with 
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small spike amplitudes, highly focal field potentials (Humphrey and Corrie 1978; 
Humphrey 1979), or low spontaneous firing that might otherwise have been 
overlooked with sequential single unit recordings. 

A recent commentary by Olshausen and Field (2005) argues convincingly that 
our incomplete understanding of sensory cortices is, in part, due to these sorts of 
biases in the design and execution of experiments, in addition to impoverished 
stimuli. In this context, the challenge of stimulating the large numbers of neurons 
recorded with polytrodes can be viewed as an opportunity. Time traditionally 
spent hunting for active, well-isolated units can now be used to more fully 
characterise the response properties of the neuronal ensemble. Since it is routinely 
possible to obtain stable recordings for periods of several hours (Figure 1.14), an 
individual population of neurons can be studied with a much broader range of 
multi-dimensional stimuli, noise stimuli, and, natural scene movies (Figure 5.1). 
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Figure 5.1 Visual stimuli. 
(A) A subset of the stimuli presented at each electrode penetration, including 2D gabor 
drift gratings, binary m-sequence noise, white and pink spatiotemporal noise, and natural 
scene movies. Scalebar = 1°. (B) White noise is uncorrelated in both space and time, and 
therefore has a flat power spectrum. Pink noise and natural scenes share similar 1// 
power spectra, however only the latter contain cohesive phase structure and higher-order 
correlations characteristic of real world images (Blanche et al. 2003 in collaboration with 
Nick Lesica, Stanley Lab, Harvard University.). 
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This exhaustive approach to visual neurophysiology has been embraced in the 
polytrode recordings made to date. Several days of continuously recorded spike 
and LFP waveform data (nearly half a terabyte) have been accumulated, 
containing thousands of neurons from multiple electrode tracks in six acute cat 
experiments. Each of the area 17 and 18 neurons in this database were stimulated 
with a rich gamut of visual stimuli (Table 5.1). 

Tab le 5.1 V i s u a l s t i m u l i a n d purpose . 

St imu lus Purpose 

drifting bars orientation, direction tuning; discrete stimulus for 
assessing functional connectivity1 

multidimensional sinusoidal 
drift gratings, 2D gabors 

classical RF tuning properties; orientation, direction, 
spatial frequency, contrast, and velocity (temporal 
frequency) tuning; classify simple vs. complex (fi:fo)2 

rapidly changing static 
sinusoidal gratings 

temporal evolution of orientation3 and spatial 
frequency4 tuning using reverse correlation 

white noise, pink noise, m-
sequence noise, sparse noise 

characterise linear spatiotemporal RF (size, shape, 
position, ON/OFF sub-fields) by reverse correlation5 

discrete flashed spots, bars 
laminar response latencies6 (relative/absolute), EEG 
dependence of; rank order coding7; study feed-forward 
shunting inhibition model of contrast invariant tuning8 

natural scene movies study RF differences with higher-order stimuli; non
linear RF models; adaptation under natural viewing9 

spontaneous activity 
(no stimulus) 

baseline for all stimuli, control for changes in arousal10; 
functional connectivity 

dual field, temporally lagged 
flashed stimuli/m-sequences 

in vivo STDP studies11, effects of conditioning on RF 
properties, neuron, laminar specificity; role of BPAPs12 

Key references: 1 (Aertsen and Gerstein 1985; Aertsen et al. 1989); 2(Skottun et al. 1991); 3(Ringach 
et al. 1997);4 (Bredfeldt and Ringach 2002); 5 (Jones and Palmer 1987; Sutter 1991; DeAngelis et al. 
1993a, 1993b; Kayser et al. 2003a); 6 (Best et al. 1986; Saul and Humphrey 1990; Maunsell and 
Gibson 1992; Nowak et al. 1995; Gawne et al. 1996b); 7 (Van Rullen and Thorpe 2001); 8 (Ferster 
1988; Ferster and Miller 2000; Miller et al. 2001);9 (Stanley et al. 1999; Ringach et al. 2002; Kayser et 
al. 2003b; Smyth et al. 2003);10 (Worgotter et al. 1998);11 (Fregnac et al. 1988; Yao and Dan 2001; Fu 
et al. 2002);12 (Stuart and Sakmann 1994; Spruston et al. 1995; Magee and Johnston 1997). 

To illustrate the potential utility of polytrodes and the explanatory value of 
amassing an extensive multiunit visual RF database, several unresolved questions 

127 



in visual neuroscience of personal interest - those that provided the original 
impetus for developing the polytrodes - will now be considered. 

5.2 Cellular-scale organization of the visual cortex 

The pioneering work of Hubel and Wiesel (1962; 1963) in visual cortex, and 
Mountcastle (1957) in somatosensory cortex, established the cortical column - a 
fascicle of cells, about 50 pm in diameter, running from pia to white-matter -
containing cells with similar response properties. They and others since them 
have shown that many receptive field (RF) properties (e.g. eye dominance, RF 
position, preferred orientation, direction of motion) obey the principle of 
columnar organization and are mapped in a systematic and orderly fashion across 
the brains of many species. In recent years, the study of cortical maps has been 
advanced greatly by the development of optical imaging. With this technique, 
neural activity is measured as minute changes in reflectance at specific 
wavelengths of light (Bonhoeffer and Grinvald 1996) in response to the 
presentation of a stimulus, such as a sine wave grating (Figure 5.2A). Results 
obtained in this way have revealed maps selective for stimulus orientation, ocular 
dominance and spatial frequency in cat area 17, which are overlaid in a highly 
systematic manner (Hubener et al. 1997). Modeling studies can explain the 
complex spatial interrelationships of these multidimensional maps in terms of 
continuity - that cells close together in the cortex have similar response properties, 
which in turn may be due to a requirement that axonal connection lengths be 
minimized, and completeness - the requirement that all combinations of stimulus 
properties in individual maps are represented with nearly equal frequency across 
the map (Swindale et al. 2000). 

Recent findings from optical imaging notwithstanding, much of our 
understanding of the RF organisation of the striate cortex comes from multiple 
single electrode penetrations (Cynader et al. 1987; Swindale et al. 1987). The 
quality of these maps is limited by imprecision in determining the position and 
depth of the electrode, the approximate source location of neurons recorded with 
multiunit electrodes such as tetrodes (Maldonado et al. 1997), and eye drift or 
other response non-stationarities during prolonged serial measurements of 
multiple RF properties. Likewise, because of the finite sampling density with 
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multiple single-unit mapping studies, and limits in the spatial resolution and 
depth of optical imaging (-250pm), it remains unclear whether the apparent high 
degree of order shown in the cortical maps is maintained at the level of single 
cells. If it is, then for which RF properties? Columnar organisation implies a 
degree of redundancy in the local neuronal population, however neighbouring 
neurons may reveal very different response properties when characterised in 
greater detail, particularly for higher-order or naturalistic stimuli (Olshausen and 
Field 2005). In other words, it is still an open question as to how the myriad RF 
properties are clustered (or anti-clustered) vertically within a cortical column, and 
how much redundancy (or conversely how much independence) there is in the 
information conveyed by adjacent neurons (Gawne et al. 1996a). Uncertainty 
about the magnitude of RF scatter, both locally (Maldonado and Gray 1996; 
Maldonado et al. 1997; Hetherington and Swindale 1999), and laterally across 
several cortical columns, is another unresolved issue that could be addressed 
using cellular-scale cortical maps generated with polytrodes. 

A related, emerging field of visual neurophysiology focuses on the origin of 
RF tuning properties. Several elegant experiments have examined directly the 
cortical substrate of orientation tuning by recording simultaneously from 
visuotopically aligned centre-surround neurons in the lateral geniculate nucleus 
and simple cells in the visual cortex (Reid and Alonso 1995; Ferster et al. 1996; 
Alonso et al. 2001). Together these studies have ratified the original feed-forward 
model of Hubel of Weisel (1962) that the orientation tuning of layer 4 simple cells 
is due, in large part, to the specific spatial arrangement of the convergent, 
monosynaptic geniculate afferents. These findings do not preclude a role for local 
intracortical mechanisms in shaping orientation tuning, and indeed both cortical 
inhibition (Stillito 1992; Celebrini et al. 1993) and excitation (Ferster 1988) have 
been implicated in the formation and modulation of orientation tuning width. 
Studying the dynamics of orientation tuning in different cortical layers (Ringach et 
al. 1997), and the influence of layer 5/6 neurons on the orientation tuning of upper 
layer complex cells in primates (Allison et al. 1995), provides further constraints as 
to the likely mechanisms of orientation tuning. Similar methodologies have been 
applied to intracortical circuits for RF properties other than orientation selectivity. 
For example, two recent studies of the functional connectivity between simple and 
complex cells provide solid experimental support in favour of the hierarchical 
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model of cortical processing, whereby complex cell RFs derive from the 
convergent inputs of simple cells with similar orientation preference (Alonso and 
Martinez 1998; Martinez and Alonso 2001). 

Since polytrodes are not limited to recording cell pairs (only single and paired 
recordings were made in the studies cited above) a rigorous analysis of the 
existing multiunit database has the potential to build significantly on the existing 
body of work. Specifically, if the hierarchical simple-complex RF model is robust, 
then both the substructure and timecourse of a complex cell's spatiotemporal RF 
should match the RF evolution of the population of functionally connected, 
visuotopically aligned simple cell afferents. This remains to be demonstrated. 
The same analyses can be applied to ensembles of functionally connected cells for 
orientation tuning, direction preference, or for that matter any other RF property 
of interest. Taking advantage of the cell typing algorithm, it will also be possible 
to investigate the association of different neuronal classes (McCormick et al. 1985; 
Azouz et al. 1997; Nowak et al. 2003) thought to play specific roles in mechanisms 
of RF tuning, such as the role of feed-forward inhibitory interneurons in contrast 
invariant orientation tuning (Martinez et al. 2002; Contreras and Palmer 2003; 
Hirsch et al. 2003). Furthermore, by recording from an appreciable proportion of 
the intracortical circuit, it should be possible to assess the relative contribution of 
the various neural components involved in a given RF tuning mechanism. Large 
scale ensemble recordings also provide valuable controls that are often lacking in 
existing studies. Collectively, these empirical studies wil l provide information 
essential for testing and elaborating biologically realistic models of RF tuning in 
early stage visual pathways (e.g. Troyer et al. 1998; Miller et al. 2001). 

Finally, the emphasis is usually placed on increases in firing activity in 
response to a specific visual stimulus, but since a reliable non-response (or change 
in baseline activity) also conveys information, the absence of a response is an 
equally valid metric for generating RF tuning curves. Single unit recording from 
predominantly inactive neurons is infeasible, but adopting the experimental 
design described in the previous section (along with continuous data acquisition) 
makes such studies with alternative response measures eminently possible. 

Many of these questions relating to detailed map structure and how RF tuning 
properties emerge from cortical circuits are impossible to address without 
substantial numbers of simultaneously recorded neurons of known anatomical 
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location, characterised in an unbiased fashion with a broad range of visual stimuli. 
Here the concept of 'cortical micromapping' with polytrodes is introduced (Figure 
5.2). The central idea of cortical micromapping is to associate neuronal structure 
(relative and absolute laminar position, cell type, size) with function (RF 
properties, cortical maps, response latency, timing, functional connectivity, and so 
forth). This is illustrated for RF shape, cell type and cortical layer in Figure 5.2C, 
but extends to any combination of functional measures that can be derived from 
the stimulus ensemble (Table 5.1). Insertion perpendicular to the cortical gyri, 
either at random positions or into specific features of the cortical map (Figure 
5.2A), enables whole cortical columns to be studied simultaneously. A trajectory 
down the medial bank of the lateral gyrus in cortical areas 17 and 18 (Figure 5.2B) 
can be used to build cortical micromaps of exceptional detail, in addition to 
studying the lateral network interactions of several cortical columns or adjacent 
hypercolumns. 

Figure 5.2 Cortical micromapping. 
(A) Superior view of an exposed cortex showing the pial surface vasculature (left panel). 
Orientation map from optical imaging of cortical intrinsic signals in response to full-field 
drift gratings (right panel). The orientation vectors are represented by different colours. 
By co-registering this map with the vasculature it was possible to insert the polytrode into 
specific regions of interest in the orientation map (+). Scalebars = 1mm. (B) A coronal 
brain section stained for Nissl substance. Polytrodes were inserted perpendicularly to the 
surface of the brain for translaminar studies, and vertically down the medial bank of the 
lateral gyrus to record from neurons across columns within a layer. Scalebar = 500um. 
(C) Cortical micromapping aims to link structure with function on the cellular scale across 
large populations of neurons, illustrated here for four neurons and their linear RF profiles. 
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5.3 Timing and temporal coding in the visual cortex 

Models of visual processing generally adopt either a serial (hierarchical) or 
parallel organization. The hierarchical model, originally proposed by Hubel and 
Wiesel (1963), postulates that several successive processing steps should separate 
sensation from perception. In the cat, these successive steps are represented by 
cortical areas 17, 18 and 19, and by the simple, complex, and hypercomplex 
functional classes of neurons. With the discovery that distinct functional types of 
neurons exist in the retina and the lateral geniculate nucleus of the cat, the parallel 
model of organization gained recognition. X-, Y- and W-type retinal ganglion cells 
appeared to provide the major inputs to different cortical areas, and lesions or 
inactivation by cooling of area 17 (Sherk 1978) did not silence neurons in area 18, 
as would be expected if these areas operated in a hierarchical cascade (Stone et al. 
1979). Parallel models place the emphasis on independent and simultaneous 
processing by modules specialized for different aspects of the visual stimulus. 

These models are not mutually exclusive. The modern 'text-book' picture of 
the organization of the visual cortex is a hybrid of serial and parallel processing 
streams: parallel channels operating within a hierarchy of cortical areas (DeYoe 
and Van Essen 1988; Felleman and Van Essen 1991). A limitation of the hybrid 
model, however, is that it is based solely on anatomical observations. Functional 
studies (e.g. selective lesioning, or reversible inactivation) provide little support for 
such a model, at least not beyond the striate cortex (Bullier and Nowak 1995). 
Another way to test whether cortical areas process information in a parallel or 
serial fashion is to measure latencies with which neurons in different cortical 
layers or areas respond to visual stimulation. If information is indeed processed 
serially, then the latency of higher-order areas should be longer than those of the 
lower-order areas that drive them. In the primate, these experiments reveal that 
there is a very large range of latencies even within a cortical area, and that 
latencies overlap extensively across different areas (Raiguel et al. 1989; Maunsell 
and Gibson 1992; Nowak et al. 1995; Schmolesky et al. 1998). In one 
comprehensive study, extrastriate visual areas (V2, V3, MT, MST, and FEF) had 
neuronal responses with roughly the same average latencies, and all were within 
6-9ms of activity in VI (Schmolesky et al. 1998). Latency measurements in the cat 
visual system lead to similar findings. In the classically defined hierarchical 
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scheme, the order of activation should be areas 17, 18, 19, PMLS; however the 
order according to response latency is 18, 17, PMLS, 19 (Dinse and Kruger 1994). 
Within area 17, latency distributions show a large scatter (22-86 ms), reflecting the 
laminar position (Best et al. 1986), and the different pathways for X and Y inputs. 
Some of the response latency variance is probably also due to the non-stationarity 
of cortical state (e.g. changes in EEG) across stimulus repetitions (Arieli et al. 1996; 
Worgotter et al. 1998; Worgotter and Eysel 2000). Thus, while latency differences 
do not concur with the anatomical hierarchy across cortical areas, within a cortical 
area they suggest some degree of serial processing. 

Clearly more work is needed to assess the relative importance of serial vs. 
parallel processing within a local cortical circuit. The advantages of making 
simultaneous neuronal recordings from all cortical layers are obvious, given the 
confounding effects of various non-stationarities, the dependency on laminar 
position, and the heterogeneity of cell types (both anatomical and functional). 
Response latency provides insights that are complementary to the analyses of 
functional connectivity and RF dynamics described in the previous section. 

Recent theoretical work (Gautrais and Thorpe 1998; Van Rullen and Thorpe 
2001) goes even further, speculating that response latency may be a form of rapid 
temporal coding used by the visual system. Using a go-no-go categorization task 
in which human subjects had to release a button when they detected an animal in 
a briefly flashed (20ms) natural photograph (previously unseen), Thorpe et al. 
(1996) showed that the processing required in such a task must be performed in 
less than 150ms (response time ~220ms). Monkey response times were even faster, 
only ~160ms (Fabre-Thorpe et al. 1998). Given that these relatively complex visual 
recognition tasks require processing in many, if not all, visual areas, how might 
they be performed so rapidly? In order to reach higher-order cortical areas, 
Thorpe and colleagues argue that the retinal information must go through at least 
ten processing stages, and mindful of the constraints of real neurons (neuronal 
integration times, axonal and synaptic delays, maximum firing rates) they 
proposed that this processing was essentially based on a feed-forward flow of 
information in which, in any given area, a neuron would rarely generate more 
than one spike. This model of information processing, dubbed 'rank order coding' 
(Gautrais and Thorpe 1998; Van Rullen and Thorpe 2001), embodies a precise 
temporal code in which only the first spike matters - visual information is 
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encoded in the rank order of discharge - a significant departure from traditional 
firing rate coding schemes. 

Rank order coding, although intriguing and sound in principle, awaits 
experimental validation. It can be tested explicitly by examining the population 
response to repeated, briefly presented natural scene movie segments, looking for 
ordered spike sequences across the neural ensemble. In addition, standard 
information theoretic tools (Rolls et al. 1997; Panzeri et al. 1999) could be used to 
quantify the information available within the first few spikes fired in response to 
the stimulus. Although none of the recordings in the existing database were made 
simultaneously in multiple visual areas, it is still possible to look for evidence of 
temporal codes within cortical columns in area 17 and 18. The contribution of 
relative spike timing (including second and higher order statistics thereof) and the 
degree of temporal precision (Mainen and Sejnowski 1995; Berry et al. 1997; Borst 
and Theunissen 1999) in early stimulus representation could also be explored. 

5.4 in vivo spike timing dependent plasticity 

Spike-timing dependent plasticity (STDP) has emerged as one of the principal 
mechanisms of long term plastic change in the brain (Dan and Poo 2004). 
Consistent with Hebb's original hypothesis (Hebb 1949), STDP depends on the 
precise temporal relationship between pre- and postsynaptic spikes (Magee and 
Johnston 1997; Markram et al. 1997). In general, if the presynaptic neuron fires 
consistently before the post-synaptic neuron, the connection between the two 
neurons is potentiated (LTP). The converse is also true; postsynaptic spiking 
occurring repeatedly before the presynaptic neuron will weaken the synaptic 
strength (LTD). The temporal window for LTD vs. LTP is narrow, less than ±50ms 
(Bi and Poo 1998). Most of what is known about STDP has come from in vitro 

work, and only recently has there been in vivo evidence for STDP (Fregnac et al. 
1988; Zhang et al. 1998; Yao and Dan 2001; Fu et al. 2002). 

Detailed studies of BPAPs also derive largely from brain slice preparations 
(Stuart and Sakmann 1994; Spruston et al. 1995; Magee and Johnston 1997). Little 
attention has been given to in vivo analyses of BPAPs let alone their possible role 
in STDP. Polytrodes offer the unique capability of studying in vivo BPAPs, the 
brain state or stimulus conditions that evoke them, and their putative role as an 
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associative signal in STDP. Conditioning regimens similar to those of earlier 
studies will be used to evoke changes in functionally connected cell pairs. These 
conditioning stimuli comprise either spatially segregated grating stimuli (Fu et al. 
2002) presented with a range of temporal delays (5-50ms, 5ms increments), or 
flashed gratings of different orientation [±30° with respect to the optimal 
orientation for the column under study (Yao and Dan 2001)]. BPAPs have 
characteristic moving current sinks (Figure 1.8D) that can be identified using 
template matching (chapter 3). If BPAPs are indeed an essential mechanism of 
STDP, as suggested by the in vitro data (Magee and Johnston 1997), then a basic 
prediction is that the occurrence of BPAPs should increase during conditioning 
periods for any neuron that exhibits STDP modifications. Although BPAPs are a 
relatively rare observation, presumably because the polytrode must lie in very 
close proximity to the apical dendrite of an active neuron, it wil l still be possible to 
take advantage of the large, heterogeneous recording ensemble to extend the 
findings of previous studies. Recorded neurons that do not have an orientation 
preference or retinotopic location matched to the conditioning stimulus serve as 
important controls, as these (and other) neurons that do not respond with suitably 
correlated spike trains should not show evidence of STDP. With a sufficiently 
large sample population, it may also be possible to determine whether the 
magnitude of STDP change is binary in nature, or rather if the modulation of 
effective connectivity (or peak shift in RF tuning) is a function of either the 
proportion of precisely phase-lagged pre- and post-synaptic spikes, or the 
temporal precision of the spike trains in a given cell pair. It will also be interesting 
to see if neuron pairs without detectable baseline connectivities prior to 
conditioning can become functionally connected following induction of STDP. A 
thorough re-analysis of the repetitive, two-second natural scene movie sequences, 
focusing on cell pairs that happen to respond to stimulus features with consistent, 
appropriately phase-lagged spike trains, will provide further data for 
investigating the properties of in vivo STDP under more natural conditions 
(Froemke and Dan 2002). 
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5.5 Concluding remarks 

Although the experiments described in this chapter come from somewhat 
disparate lines of research, they all capitalise on the unique recording capabilities 
of polytrodes and the additional information afforded by neuron localisation and 
classification. In the longer term the intention is to pool the results from the suite 
of diverse visual stimuli. Since the data are derived from the same population of 
neurons, the hope is that a fuller, more unified understanding will be gained of 
the organisational principals, coding schemes, and mechanisms of adaptation and 
plasticity that underpin early stage vision, beyond that possible by merely 
synthesising the findings from independent experiments made in separate 
laboratories. Whatever the outcome, the prospects for large scale neuronal 
recording with polytrodes promise to be as exciting as they are numerous. 
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appendix A 
Impedance measurements 
A . l Meter design and calibration 

Site impedances were calculated by measuring the relative amplitude and 
phase of a 1kHz, lOmVrms sinusoidal wave applied sequentially to each recording 
site. The circuit (Figure A - l ) exploits, voltage division of an A C signal across a 
reference resistor in series with a complex impedance to ground to determine the 
electrode site impedances: 

/ - \ 
Z 

v -
KZ + RrefJ 

(Al) 

where Z = |z| A<pz is the amplitude and phase of the site impedance 

v = |v|Z^ v is the amplitude and phase of the signal measured across the site 

vs = \vs | Z 0° is the sinusoidal source signal 

Rref is a 1MQ reference resistor, roughly equal to the site impedance 

magnitude, making the voltage divider maximally sensitive to site 
impedance changes. ' 

Solving for Z and <f>z gives: 

Z = 
MR ref 

vJ- |v |cos^ v ) 2 + (jv|sin^v)2 

v sin <j)v 

K]vs -vcosfa 

(A.2) 

(A3) 

Signal amplitudes and phases were obtained from fast Fourier transforms of 
the test signals (Press et al. 1994). Equation A.2 provides the impedance 
magnitude. The nature of the impedance (resistive or capacitive) was given by the 
phase angle from equation A.3. To ensure sites were not damaged, extremely low 
test currents (< 5nArms) were applied. Faraday shielding and low-noise op-amps 
yielded a measurement precision of ±10kQ. The meter was calibrated at 
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frequencies between 5Hz and 20kHz using known impedances created with pairs 
of resistors and capacitors (Figure A.2 A). The circuit was linear across this range 
and showed no evidence of stray capacitances that could invalidate measurements 
(Figure A.2B). 

v o u t 

electrode 
HE72ICO5OO site select 

• polytrode 

V calomel 
• reference 
electrode 

Figure A . l Impedance meter/electroplater circuit diagram. 
Dual-purpose circuit for automated site impedance testing and electrode plating. TTL-
level control lines on the DT3010 card switched the multiplexers and selected the mode of 
operation via two relays (HE721C0500). A standard laboratory function generator, 
voltage divided to give a lOmVrms A C test signal (Vs), was fed to individual electrode sites 
via a bank of analog multiplexers (MAX308). The resulting signal was buffered 
(LT1012C) and passed to a second op-amp (OP37) where it was amplified lOOx. The 
output signal (Vout) was digitised, along with the input signal, by one of the DT3010 
acquisition cards used for multiunit recording. PC-based software used these signals to 
calculate the site impedances according to equations (A.2) and (A.3) in the text. 
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Measured impedance (MOhm) Frequency (Hz) 

Figure A.2 Impedance meter calibration. 
(A) Impedance measurements at 1kHz for various known impedances similar to those of 
the electrode sites. Minor deviations from the unitary line were within the tolerance 
specifications of the test capacitors and resistors. (B) Measurements of a test resistor 
(1.02MQ) gave accurate readings ( • ) across the test range (5Hz-20kHz). The constant 
phase angle (—o—) of zero indicates a lack of any parasitic capacitances in the circuit. 

The device also incorporates an electroplating mode for electrodeposition of 
platinum black or gold, a technique useful for lowering and matching site 
impedances by increasing microscopic surface area. By switching rapidly and 
automatically between impedance and electroplating modes it was possible to 
titrate the electrodeposition to achieve a desired impedance (data not shown). 

A.2 Site impedance spectroscopy 
The impedance meter was used to determine the impedance properties of a 

typical polytrode recording site across the biologically relevant frequency ranges 
for spike and LFP recordings (Figure A.3). The high impedance at low frequencies 
(Figure A.3A) reflects the capacitive nature of the electrode sites and interconnect 
dielectrics, which necessitates gigaohm input impedance pre-amplifiers for 
obtaining low-noise recordings of LFP and EEG signals (0.1 ~ 100Hz bandpass). 
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Figure A.3 Impedance spectroscopy of polytrode recording sites. 
Across the biologically relevant frequency range, the site impedance magnitude (—•—) 
decreased, and the phase angle (—o—) increased, as a function of signal frequency. 

A.3 Brain impedance spectroscopy 
Efforts were made to make in vivo brain impedance measurements to 

determine whether the ECS acts as a complex impedance (differentially filtering 
spike signals in a frequency dependent manner), as suggested by Bedard and 
colleagues (2004), or rather if it is a purely resistive medium (signal decay over 
distance the same for all frequencies). These measurements could also evaluate 
the isotropy of the ECS conductivity. The two-electrode voltage division circuit 
used to test polytrode site impedances was too insensitive to measure the 
impedance characteristics of brain tissue four orders of magnitude smaller than 
the actual sites. In any case, measurements made in this way would be corrupted 
by the unknown series polarisation resistance at the electrode-tissue interface 
(Shalit and Mahler 1966; Shalit and Mahler 1967). A better approach is to use a 
four-electrode arrangement that annuls the effects of the electrode-electrolyte 
interface or any mismatch in site impedances. Silicon electrodes with precisely 
defined site impedances and spacing are well suited for such measurements, 
capable of a sensitivity better than a 1 Q.cm (Ivorra et al. 2003). The brain 
resistivity p/, and hence impedance, for a given spatial dimension and frequency, 
is given by the following relation: 

lVa(a+b) ( A 4 ) 

f An bl 
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where a and b are the inner and outer co-linear electrode site separations, 
respectively, V is the measured voltage drop across the inner electrodes, and / is 
current applied to the outer electrodes [after Suesserman and Spelman (1993)]. 

Control measurements were made in 0.9% NaCl. The measured specific 
resistivity was 82Q.cm, very close to the accepted value of 77Q.cm for low 
concentration saline solutions measured at 298K (Parsons 1959). At the time of 
writing, complex in vivo impedance measurements had not yet been made, 
however changes in electrode site impedance at l K H z were monitored over time 
following polytrode insertion and advancement (Figure A.4). 

2.2 i 
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Figure A.4 Site impedance changes following polytrode insertion. 
Post-penetration the electrode site impedance was approximately double that measured 
in saline. Over the next 10 minutes the impedance dropped steadily before stabilising at 
-1.7MQ, 15 minutes (900s) after the initial insertion. 

The impedance profile gives an indication of the time course of electrical 
coupling at the electrode site-tissue interface. It is intriguing (and of practical 
interest) that this profile qualitatively matches the observed recovery of spike 
amplitudes following initial insertion and movement of the polytrode. At the time 
these data were collected it was not possible to record spikes and make site 
impedance measurements at the same time, so impedances could not be directly 
correlated with changes in spike amplitude. Concurrent measurements in future 
experiments should provide a quantitative criteria for deciding how long post-
insertion to begin recordings that guarantee stable, consistent spike amplitudes. 
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Even without direct in vivo impedance measurements it is still possible to infer 
the existence of significant tissue capacitance by studying the frequency content of 
spike waveforms over distance. Analysis of spike waveform shape (Figure 
A.5A, B) suggested that the spike waveforms on more distal sites were simply 
scaled versions of the waveform at imax. A more quantitative measure of the 
spectral similarity across sites is the spectral coherence: 

M2 

Cxy(co)=- (A.S) 

where 3 is the magnitude of the Fourier component at frequency a). This 
equation returns a coefficient between 0 and 1 that indicates the phase 
independent correlation between two signals x(t) and y(t) at CD. The spectral 
coherence was high across all sites (Figure A.5C), suggesting that the brain tissue 
is ohmic over the physiologically relevant frequency range for spike waveforms 
(<10kHz). Similar results were obtained for all cells examined (n = 15), the only 
exception being fields that were clearly dipoles (with inverted waveforms). 

4000 6000 8000 

Frequency (Hz) 

Figure A .5 The brain is a resistive medium. 
(A) Average spike waveforms for a typical neuron had qualitatively similar shapes across 
recording sites. (B) Amplitude-normalised (with respect to imax) waveforms confirmed the 
similarity of spike shapes. (C) Accordingly, spectral density profiles were similar across 
sites, differing only in magnitude *. The similar spectral content is reflected in the high 
spectral coherence between the waveform at imax and the other sites. In (B) and (C) the 
plot intensity is inversely proportional to the Euclidian distance from the site to the 
neuron, as determined by the 3D neuron localisation model. * ripple at high frequencies 
is an artefact of the Fourier transform due to small discontinuities at the edge of the spike 
templates, magnified here by the logarithmic y-axis scale; the slight dip in spectral 
coherence between 7 and 11 kHz is probably an artefact of these edge effects. 
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appendix B 
Instrument calibrations 
B. l Electrophysiology system 

Further to the characterisation of the polytrodes described in chapter 1, an 
extensive array of tests and calibrations was made of all components of the 
electrophysiology apparatus (Figure 1.5). The total system noise with grounded 
headstage inputs was ~15pVPP (compared with 20-30pVPP for a polytrode in saline). 
Once nulled, A D C voltage offsets deviated from zero by less than ±1 bit over 
periods of months to years. The electronic noise of the DT3010 acquisition cards 
with shorted inputs was negligible (Figure B.2A). Shorts and signal coupling 
between analog channels were excluded (a short was discovered in the filter stage 
of the FA-I-64 amplifier, producing identical signals on two channels, but this was 
rectified by removing a stray solder bridge across two surface mount resistors). 
The software controlled channel selector (MUX-80) did not introduce additional 
noise, voltage bias or signal attenuation, and unlike previously used rotatory 
switches, did not cause saturating transient artefacts during channel changes. 
Careful isolation of digital and analog return lines meant there was no crosstalk 
from stimulus-related digital inputs apparent on any of the analog channels. 
Ground loops and 50Hz supply noise, especially problematic for EEG/LFP 
recordings, was kept below 10uVP P by using a single 'star grounding' arrangement 
for the cranial reference electrode, stereotaxic frame, and micromanipulator. 
Faraday shielding (fine copper wire mesh) around the electrode interface board 
and headstage preamplifies was needed to remove raster noise emanating from 
the display monitor. 

The net analog gain of 40,000 (1 x headstage, 5000 x amplifier, 8 x internal 
A D C gain) was found to be accurate to within 0.03%, or less than ± one bit, for all 
channels. The bandpass characteristics of the analog inputs were linear across the 
factory-set ranges, and the 5-pole RC filters provided 40dB/decade of signal 
attenuation outside the specified corner frequencies (Figure B.1A). Since the 
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electrode sites did not confer any filtering yer se, it was the amplifiers that dictated 
the frequency content of extracellularly recorded signals. 

10-' 10° 10' 102 103 104 10= 10"' 10° 10' 102 103 10' 10s 

Frequency (Hz) Frequency (Hz) 

Figure B.l Filter properties of polytrode sites and amplifiers 
Bode plots for the polytrode recording sites (open symbols) and the recording system {filled 
symbols) were virtually identical, for both LFP and spike frequency bands. The amplifier 
filters, not the electrode sites, thus determined the overall filtering of recorded signals. 

The phase plots of Figure B.1B deserve special consideration. Signal 
dispersion due to filter induced phase shifts within either of the frequency bands 
was, proportionally speaking, insignificant. However, if the exact timing 
relationship is sought between frequency bands, for example spike time with 
respect to the phase of a 3Hz delta wave, then these differential phase shifts are 
not insignificant and should be corrected for (ie. by subtracting ~69ms from the 
spike time, in this example). 

The power spectral density (PSD) of the spikes and noise were also studied 
(Figure B.2). Electronic noise, measured with grounded A D C inputs, was 
broadband but had negligible power. The frequency dependence of the in vivo 

noise, of background neural activity without spikes, was essentially the same as 
the amplifier BPFs, with energy proportional to ~/ - 2 beyond a peak of 1kHz. The 
average spike spectrum derived from 148 randomly selected neurons had a broad 
maximum at 1.5kHz, and decayed monotonically at a rate proportional t o / 4 . RS 
neurons (spike duration > 750ps) differed markedly from FS neurons (spike 
duration <500ps) in the frequency content of their waveforms (Figure B.2B). 
Accordingly, RS neurons had peak spectral energy at 1kHz, with a fall-off of/"3, 
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whereas FS neurons had a broader peak at 4kHz and a shallower frequency 
dependence. Similar PSD plots were obtained for 7 other RS and 4 other FS 
neurons that were examined individually. These findings are compatible with 
those from a similar study of rat somatosensory neurons (Fee et al. 1996b), 
however the FS cells in cat cortex appear to be considerably faster than those 
reported for rat. Finally, the selection of 6kHz corner frequencies for the spike 
amplifiers appears to be ideal, providing negligible filtering of RS waveforms and 
minimal attenuation of the high frequency signal components of FS neurons. 

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000 
Frequency (Hz) Frequency (Hz) 

Figure B.2 PSD of spikes, neural noise and the recording system. 
(A) Spectral analysis from D C up to the Nyquist frequency for a 25kHz sample rate (see 
text for details). (B) A RS and FS neuron with similar amplitudes (insets) have different 
frequency spectra due to differences in waveform shape. The average spike spectrum 
(n = 148) is dominated by the RS spectrum since FS neurons were much less prevalent. 

B.2 Visual stimulus displays 
In visual neurophysiology, as in visual psychophysics, the characteristics of 

the stimulus display monitor can influence experimental results. Whether or not a 
given feature or limitation of the display is relevant depends on the experimental 
question under study. Studies of contrast tuning and adaptation require a linear 
luminance profile, whereas a wide dynamic range (10 or more bits, Haberich and 
Lingelbach 1980) and low persistence phosphor (Di Lollo et al. 1997) are desirable 
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for studying perceptual thresholds and their neural correlates. Since many of the 
present experiments deal with analyses of visual response latencies, temporal 
receptive field profiles, and precise spike timing between neurons on the order of 
milliseconds, the refresh rate and potential for flicker-induced modulation of 
responses were of particular concern. 

A l l experiments reported in this thesis used a high quality Sony Trinitron 
200sf monitor for stimulus display. Prior to these experiments a photodiode was 
used to measure the phosphor dynamics and raster latency, and a precision 
photometer (Minolta LS-100) was used to calibrate the screen luminance. On
screen controls (brightness, contrast, colour temperature, etc.) were fixed at values 
that gave a qualitatively optimal display (close to factory settings). Calibration 
and measurement results are summarised in Figure B.3. The luminance profile 
was typical for a cathode ray tube monitor, able to be linearised across the full 
dynamic range with software-based gamma correction. Display uniformity was 
excellent (±0.33 cd.m2 stdev). The monitor could generate a 100Hz refresh rate, 
with a scan raster latency proportional to the vertical screen position (making it a 
simple matter to correct for this delay in physiological latency studies, if 
necessary). Phosphor 'on' responses were virtually instantaneous, and 'off 
responses followed a double exponential decay (z/ast = 1.2ms, TstoW=4.9ms). 
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Figure B.3 Sony 200sf monitor calibration. 
Calibration results for the visual stimulus display. (A) Luminance profiles with (o) and 
without (•) software gamma correction, y=2.61 yielding a linear display. (B) Screen 
uniformity at -20% output was based on a 3x3 array of spot measurements made at 
regular intervals across the screen. (C) Phosphor dynamics for two frames at a 100Hz 
refresh rate (up is increased luminance). (D) Most of the frame interval was evenly 
distributed across the vertical scan raster. A fixed 'front-porch' of 300ps, the delay 
between the frame bit changing and the actual onset of luminance in the top-left hand 
corner of the screen, is evident (inset). 

At screen refresh rates below 75Hz, screen flicker is perceptually noticeable. 
Retinal, geniculate, and even cortical neurons are known to phase-lock at these 
frequencies (Wollman and Palmer 1995), an unavoidable consequence of using 
conventional raster-based display monitors for visual stimuli. In spite of the 
relatively high refresh rate of the Sony monitor, an appreciable number of cortical 
neurons exhibited phase locking to the screen refresh at 100Hz (Figure B.4). This 
was somewhat surprising as until very recently (after these observations were 
made) it had not been reported in the literature (Williams et al. 2004). Observe 
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that these neurons were not geniculate afferents, since many were recorded in the 
infragranular cortical layers, and some had simple-cell RFs. 

Figure B.4 Phase l o c k i n g of cor t ica l neurons to the 100Hz screen refresh. 
Cortical neurons revealed varying degrees of entrainment that was independent of the 
visual stimulus, but always phase-locked to the 100Hz vertical refresh. For each of the 
four examples shown here, the upper panels show the peri-stimulus time histograms (10ms 
timebase, to= Vsync pulse), and the lower panels show the spatial receptive fields (12 x 12°). 
(A) and (B) simple cell responses to an m-sequence stimulus with a 40ms mter-stimulus 
interval (ISI). Superimposed on the 40ms ISI modulation is clear evidence of entrainment 
at 10ms (100Hz). (C) and (D) two other neurons driven by m-sequence stimulation with a 
20ms ISI. The simple cell was modulated by the ISI, but not the screen refresh, while the 
neuron with the circular receptive field was modulated by both. 

My specific interest in precise neuron timing, and the fact that single-unit 
cross-correlograms would be irrevocably contaminated by the 100Hz refresh 
modulation, provided the impetus to invest in a display system capable of higher 
refresh rates. Of the few suitable commercially available systems, a Radeon 9800 
graphics card (ATT, Montreal, QC) and a 200Hz refresh display (Iiyama Pro 454, 
Nagano, Japan) were chosen. Similar tests and calibrations were run on this 
monitor, and a comparison of both monitors is given in Table B . l . To date this 
display has not yet been used for experiments, although it is unlikely that cortical 
neurons will be modulated by flicker at 200Hz. If they are, this would be a 
surprising and mteresting physiological finding in itself. 
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Table B.l Comparison of stimulus displays. 

Spec i f i ca t ion Sony Trinitron 200sf Iiyama Pro 454 

Diagonal screen size (dot pitch) 44cm (0.25mm) 50cm (0.25mm) 

Min/max luminance 0.03 /108 cd.m2 0.001 /119 cd.m2 

Gamma correction / linearity 2.61 / r2=0.999 2.52 / r2=0.999 

Max refresh rate @ 800x600 resolution 120Hz 200Hz 

Phosphor dynamics (rise / fall) f < 200ps / 7ms < 200ps / 3ms 

Vertical raster period @ max refresh J 0.3+ %vPosnX 8.7 ms 0.45 + %v Posn x 4.35 ms 

Display uniformity @ 20% luminance ±0.33 cd.m2(stdev) ±0.69 cd.m2 (stdev) 

Parameters relevant to visual neurophysiology for the two display monitors. The bold 
text highlights the monitor with the better performance. Both monitors functioned 
according to specifications, but in all aspects but one (uniformity) the Iiyama monitor was 
superior to the Sony, f rise-time to peak luminance, fall-time to 5% of peak luminance, 
t used to calculate the actual stimulus onset (with respect to the vertical sync video signal) 
as a function of the vertical position of the stimulus on the screen, vPosn. 
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appendix C 
Validation of neuron localisation 

The neuron localisation model (chapter 4) has a solid theoretical basis, is well 
constrained by the multisite field potential data, and makes plausible predictions 
of neuron location that shift concordantly with movements of the polytrode. 
Neuron classification measures explored thus far are consistent with those from 
intracellular studies. Nevertheless, the potential utility of this method warrants 
some form of independent validation, ideally from simultaneous imaging and 
recording of active neurons around the polytrode. This could corroborate the 
most basic prediction of the algorithm: does the 3D location and orientation of 
recorded neurons match those imaged in vivo? If not, where does the algorithm 
fail (neurons very near or far from the polytrode, or specific cell types or 
morphologies)? Are the model assumptions reasonable? Specifically, are neurons 
only recorded in front of the polytrode? Is the tissue conductivity, and therefore 
signal decay, isotropic for the two axes co-planar with cortical layers (ie. in front of 
and across the polytrode shank)? Can we assume a single, stationary dipole for 
each neuron at the axon hillock/soma, or do polytrodes sometimes record 
potentials from spiking dendrites or axons? Does the cortical layer or local cell 
density (assumed to be homogenous and isotropic on the millimetric scale) 
influence neuron location predictions? Do the phase-lagged dipoles moving up 
the polytrode shank (Figure 1.8) always indicate a BPAP? Finally, does the 
distribution of field potential spreads unambiguously distinguish pyramidal from 
stellate cells, as suggested by their waveforms and other physiological properties? 

A progression of increasingly sophisticated techniques was used to address 
these questions, starting with routine histological methods, followed by in vitro 

brain slice recordings combined with confocal imaging, and most recently in vivo 

two photon (2p) imaging. Months of development and many experiments later, 
none of these approaches were ultimately successful to the point of resolving the 
questions raised above. Nonetheless this appendix documents the progress that 
was made towards future experiments to this end. 
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Early efforts investigated the feasibility of applying standard histological 
methods used routinely in single unit studies. The idea was simple: identify the 
polytrode position in the brain, either by current lesioning or staining of the 
electrode track, and stain the surrounding neurons. The cresyl violet stained 
section in Figure C.1A shows how naive this approach was. Even i i the electrode 
track was precisely locatable, a veritable syncitium of cell bodies fill the field of 
view of a 50pm thick brain section, and polytrodes can record from any of the 
thousands of neurons in a tissue volume hemisphere within a ~150um radius. The 
high cell density almost guaranteed that a predicted location would coincide with 
a cell body, but since there was no way to know which of the stained cells were 
active, registration of predicted locations with Nissl sections was meaningless. 

On the reasonable assumption that the majority of recorded neurons were 
large pyramidal cells, the pyramid-specific antibody stain SMI-32 was explored 
next (Figure C.1B). Although more promising than cresyl violet, the capricious 
nature of this stain, ^discriminate labelling of both active and inactive neurons, 
and the inability to label non-pyramidal cells made SMI-32 of limited value for 
validating the localisation algorithm. 

Figure C.1 Histological validation of the neuron localisation algorithm. 
(A) Coronal cortical section, 50um thick, stained with cresyl-violet. Dense labelling of 
neuronal and glial nuclei demonstrates why this method of validation was untenable. 
(B) SMI-32 stains large pyramidal neurons (arrows). Scalebars = lOOum and 50um. 
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The second attempt combined simultaneous intracellular and extracellular 
recording with confocal imaging of neuron location in acute brain slice 
preparations. The inherent problems of histological validation were avoided 
because the intracellular electrode gave an unambiguous record of when the 
impaled neuron fired, in addition to precise control of that cell's activity under 
current clamp. Coronal brain slices, 350-400pm thick, were placed in a modified 
perfusion chamber with a side port to enable lateral insertion of the polytrode into 
the slice (Figure C.2A). Blind whole-cell patch-clamping was used initially, 
however since the microscope was inverted and had a maximum imaging depth 
of ~125pm, intracellular electrodes were found to be more suitable for recording 
neurons deep into the slice, ignoring those encountered en route. With some 
practice it was possible to routinely impale neurons under and near to the 
polytrode by 'dead reckoning'. Confocal reconstruction of iontophoretically filled 
neurons afforded a much better estimate of neuron location with respect to the 
polytrode than was possible with histological methods, in addition to information 
about cell type and orientation relative to the polytrode (Figure C.2B, C). 

The inability to image cells deep in the slice was a major constraint, as was the 
poor axial resolution at depths beyond 50pm. More problematic, however, was 
the realisation that the polytrodes did not reliably couple to the tissue when 
surrounded by the fluid of the perfusion bath. Extracellular spikes that were 
occasionally recorded were of low amplitude and unsuitable for modeling. 
Obtaining good quality data with any one of these techniques - stable intracellular 
recordings, in vitro multiunit recordings, or fluorescent imaging of dye-filled cells 
in unfixed brain slices - is technically demanding. Achieving all three 
concurrently proved elusive. 

The final, most ambitious endeavour involved in vivo polytrode recordings 
combined with 2p imaging in anesthetised rat (Figure C.3A). The major impasse 
of the in vitro experiments could be alleviated; polytrodes record reliably in vivo, 

and 2p microscopes are capable of high resolution imaging 500pm or more in the 
intact brain (Svoboda et al. 1999; Oheim et al. 2001). Two different techniques 
were established for determining the location of spiking neurons. In the initial 
experiments whole cell patch-clamping was used to record and fill neurons close 
to the polytrode (Figure C.3B). Subsequent experiments used bulk loading of 
calcium green dextran (Figure C.3C, D), with the aim of correlating the 
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extracellularly recorded spike trains with line-scanned traces of spike-related 
calcium transients from the ensemble of nearby active neurons. 

A 
sharp electrode 

polytrode 

^oxygena ted A C S F : , 

Figure C.2 in vitro validation of the neuron localisation algorithm. 
(A) Experimental setup for simultaneous intra- and extracellular recording of single 
neurons imaged on a confocal microscope. (B) Imaging 54(am into the slice, the dye filled 
neuron (Alexa 488, Molecular Probes) and its processes were clearly visible, including the 
intracellular microelectrode. (C) 108|am into the slice, images were degraded due to 
attenuation of laser power and scatter of emission light by the unfixed brain tissue, 
however the location of the soma was still discernable. Scalebars = 50um. 

Most of the technical difficulties associated with these experiments were 
surmountable. Firstly, a small stereotaxic frame had to be incorporated into the 
microscope stage. It was necessary to insert the polytrode into the brain very close 
to the microscope objective, in addition to making whole cell recordings (or 
imaging calcium transients) of neurons within ~150pm of the polytrode shank. 
These physical constraints meant the epoxy around the bond area of the silicon 
probe had to be thinned so it did not obscure the field of view. In order to image 
the position of the polytrode fluorescent Di l was applied to the probe shank. 
Since it wasn't possible to use a glass coverslip to minimise brain movements and 
insert the polytrode at the same time, agar dissolved in artificial CSF was 
substituted. This gave access to the polytrode, but was not entirely effective at 
removing cardio ballistic brain movements. One solution in future might be to 
synchronise image acquisition to the phase of the ECG signal. 

At the time these preliminary experiments were undertaken, the 2p 
microscope was still in development. Headscan mirrors unsuitable for infrared 
wavelengths and an inefficient photomultiplier tube meant the maximum imaging 
depth was only ~100pm, less for more weakly fluorescent bulk-loaded cells. These 
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critical components have since been upgraded, so this in vivo approach remains 

the most promising ways to validate the neuron localisation algorithm. 

A 
IR laser 

Figure C.3 in vivo validation of the neuron localisation algorithm. 
(A) Experimental setup, modified from Svoboda et al. (1999). (B) The precise position and 
orientation of the patch-clamped neuron relative to the polytrode, and its detailed 
morphology, could be determined. The microscope had a resolving power capable of 
imaging individual spines 80um into the brain (arrow). Scalebar = 30um. (C) Bulk loading 
of cortical neurons with the calcium indicator calcium green dextran (10,000 MW, 
Molecular Probes). Scalebar = 500|am. (D) High power 3D reconstruction of neurons bulk 
loaded with calcium green. 
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