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Abstract 

We study the problem of performing statistical inference on the linear effects in partially 
linear models with correlated errors. To estimate these effects, we introduce usual, mod
ified and estimated modified backfitting estimators, relying on locally linear regression. 
We obtain explicit expressions for the conditional asymptotic bias and variance of the 
usual backfitting estimators under the assumption that the model errors follow a mean 
zero, covariance-stationary process. We derive similar results for the modified backfitting 
estimators under the more restrictive assumption that the model errors follow a mean 
zero, stationary autoregressive process of finite order. Our results assume that the width 
of the smoothing window used in locally linear regression decreases at a specified rate, 
and the number of data points in this window increases. These results indicate that the 
squared bias of the considered estimators can dominate their variance in the presence of 
correlation between the linear and non-linear variables in the model, therefore compro
mising their i/n-consistency. We suggest that this problem can be remedied by selecting 
an appropriate rate of convergence for the smoothing parameter of the-estimators. We 
argue that this rate is slower than the rate that is optimal for estimating the non-linear 
effect, and as such it 'undersmooths' the estimated non-linear effect. For this reason, 
data-driven methods devised for accurate estimation of the non-linear effect may fail to 
yield a satisfactory choice of smoothing for estimating the linear effects. We introduce 
three data-driven methods for accurate estimation of the linear effects. Two of these 
methods are modifications of the Empirical Bias Bandwidth Selection method of Op-
somer and Ruppert (1999). The third method is a non-asymptotic plug-in method. We 
use the data-driven choices of smoothing supplied by these methods as a basis for con
structing approximate confidence intervals and tests of hypotheses for the linear effects. 
Our inferential procedures do not account for the uncertainty associated with the fact 
that the choices of smoothing are data-dependent and the error correlation structure is 
estimated from the data. We investigate the finite sample properties of our procedures 
via a simulation study. We also apply these procedures to the analysis of data collected 
in a time-series air pollution study. 
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A.30 Boxplots of pairwise differences in log MSE for the estimators PUPLUG -IN' 

PU,EBBS-GI PEM,EBBS-G a n d PS,MCV o f t h e l i n e a r e f f e c t Pi i n model (8.1), 

where I — 0,1,. . . , 10. Boxplots for which the average difference in log 

MSE is significantly different than 0 at the 0.05 level are labeled with an 

S. Differences were obtained by evaluating the log MSE's of the estimators 

for 500 data sets simulated from model (8.1) with p — 0.8 and 771(2) = 777.2(2).222 
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B . l Point estimates (circles) and 95% confidence interval estimates (segments) 

for the true coverage achieved by seven different methods for constructing 

95% confidence intervals for the linear effect 8\ in model (8.1). Each 

method depends on a tuning parameter I = 0,1, . . . , 10. The nominal 

coverage of each method is indicated via a horizontal line. Estimates were 

obtained with p — 0 and m(z) — mi(z) 224 

B.2 Point estimates (circles) and 95% confidence interval estimates (segments) 

for the true coverage achieved by seven different methods for constructing 

95% confidence intervals for the linear effect 3i in model (8.1). Each 

method depends on a tuning parameter I — 0,1,. . . , 10. The nominal 

coverage of each method is indicated via a horizontal line. Estimates were 

obtained with p = 0.2 and m(z) = m^z) 225 

B.3 Point estimates (circles) and 95% confidence interval estimates (segments) 

for the true coverage achieved by seven different methods for constructing 

95% confidence intervals for the linear effect (3\ in model (8.1). Each 

method depends on a tuning parameter I = 0,1, . . . , 10. The nominal 

coverage of each method is indicated via a horizontal line. Estimates were 

obtained with p = 0.4 and m(z) = m\(z) 226 

B.4 Point estimates (circles) and 95% confidence interval estimates (segments) 

for the true coverage achieved by seven different methods for constructing 

95% confidence intervals for the linear effect d\ in model (8.1). Each 

method depends on a tuning parameter I = 0,1,..., 10. The nominal 

coverage of each method is indicated via a horizontal line. Estimates were 

obtained with p — 0.6 and m(z) = m\(z) 227 
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B.5 Point estimates (circles) and 95% confidence interval estimates (segments) 

for the true coverage achieved by seven different methods for constructing 

95% confidence intervals for the linear effect ft in model (8.1). Each 

method depends on a tuning parameter I — 0,1, . . . , 10. The nominal 

coverage of each method is indicated via a horizontal line. Estimates were 

obtained with p — 0.8 and m(z) = m\(z) 228 

B.6 Point estimates (circles) and 95% confidence interval estimates (segments) 

for the true coverage achieved by seven different methods for constructing 

95% confidence intervals for the linear effect ft in model (8.1). Each 

method depends on a tuning parameter / = 0,1,. . . , 10. The nominal 

coverage of each method is indicated via a horizontal line. Estimates were 

obtained with p = 0 and m(z) — m2(z) 229 

B.7 Point estimates (circles) and 95% confidence interval estimates (segments) 

for the true coverage achieved by seven different methods for constructing 

95% confidence intervals for the linear effect ft in model (8.1). Each 

method depends on a tuning parameter I — 0,1,. . . , 10. The nominal 

coverage of each method is indicated via a horizontal line. Estimates were 

obtained with p = 0.2 and m(z) — m2{z) 230 

B.8 Point estimates (circles) and 95% confidence interval estimates (segments) 

for the true coverage achieved by seven different methods for constructing 

95% confidence intervals for the linear effect ft in model (8.1). Each 

method depends on a tuning parameter I = 0,1, . . . , 10. The nominal 

coverage of each method is indicated via a horizontal line. Estimates were 

obtained with p = 0.4 and m(z) — m2(z) 231 
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B.9 Point estimates (circles) and 95% confidence interval estimates (segments) 

for the true coverage achieved by seven different methods for constructing 

95% confidence intervals for the linear effect Pi in model (8.1). Each 

method depends on a tuning parameter I = 0,1, . . . , 10. The nominal 

coverage of each method is indicated via a horizontal line. Estimates were 

obtained with p — 0.6 and 771(2) = 777.2(2:) 

B. 10 Point estimates (circles) and 95% confidence interval estimates (segments) 

for the true coverage achieved by seven different methods for constructing 

95% confidence intervals for the linear effect Pi in model (8.1). Each 

method depends on a tuning parameter I = 0,1,. . . , 10. The nominal 

coverage of each method is indicated via a horizontal line. Estimates were 

obtained with p = 0.8 and 771(2) = 7712(2) 

C l Top row: Average length of the standard confidence intervals for the linear 

effect Pi in model (8.1) as a function of Z = 0,1,. . . , 10. Standard error 

bars are attached. Bottom three rows: Boxplots of pairwise differences 

in the lengths of the standard confidence intervals for Pi. Boxplots for 

which the average difference in lengths is significantly different than 0 at 

the 0.05 level are labeled with an S. Lengths were computed with p = 0 

and 771(2) = 7711(2) 

C. 2 Top row: Average length of the standard confidence intervals for the linear 

effect Pi in model (8.1) as a function of I — 0,1,. . . , 10. Standard error 

bars are attached. Bottom three rows: Boxplots of pairwise differences 

in the lengths of the standard confidence intervals for Pi. Boxplots for 

which the average difference in lengths is significantly different than 0 at 

the 0.05 level are labeled with an S. Lengths were computed with p = 0.2 

and 771(2) = 7711(2) 

x x i 



C.3 Top row: Average length of the standard confidence intervals for the linear 

effect ft in model (8.1) as a function of I — 0,1, . . . , 10. Standard error 

bars are attached. Bottom three rows: Boxplots of pairwise differences 

in the lengths of the standard confidence intervals for Pi. Boxplots for 

which the average difference in lengths is significantly different than 0 at 

the 0.05 level are labeled with an S. Lengths were computed with p = 0.4 

and m(z) = rrii(z) 237 

C.4 Top row: Average length of the standard confidence intervals for the linear 

effect Pi in model (8.1) as a function of I = 0,1,. . . , 10. Standard error 

bars are attached. Bottom three rows: Boxplots of pairwise differences 

in the lengths of the standard confidence intervals for Pi. Boxplots for 

which the average difference in lengths is significantly different than 0 at 

the 0.05 level are labeled with an S. Lengths were computed with p — 0.6 

and m(z) = rri\(z) 238 

C.5 Top row: Average length of the standard confidence intervals for the linear 

effect Pi in model (8.1) as a function of / — 0,1,. . . , 10. Standard error 

bars are attached. Bottom three rows: Boxplots of pairwise differences 

in the lengths of the standard confidence intervals for Pi. Boxplots for 

which the average difference in lengths is significantly different than 0 at 

the 0.05 level are labeled with an S. Lengths were computed with p = 0.8 

and m(z) = mi(z) 239 

C.6 Top row: Average length of the standard confidence intervals for the linear 

effect Pi in model (8.1) as a function of I = 0,1,. . . , 10. Standard error 

bars are attached. Bottom three rows: Boxplots of pairwise differences 

in the lengths of the standard confidence intervals for ft. Boxplots for 

which the average difference in lengths is significantly different than 0 at 

the 0.05 level are labeled with an S. Lengths were computed with p = 0 

and m(z) — 7712(2) 240 
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C.7 Top row: Average length of the standard confidence intervals for the linear 

effect Pi in model (8.1) as a function of I = 0,1,. . . , 10. Standard error 

bars are attached. Bottom three rows: Boxplots of pairwise differences 

in the lengths of the standard confidence intervals for Pi. Boxplots for 

which the average difference in lengths is significantly different than 0 at 

the 0.05 level are labeled with an S. Lengths were computed with p = 0.2 

and 771(2) = 771.2(2) 241 

C.8 Top row: Average length of the standard confidence intervals for the linear 

effect Pi in model (8.1) as a function of I = 0,1,. . . , 10. Standard error 

bars are attached. Bottom three rows: Boxplots of pairwise differences 

in the lengths of the standard confidence intervals for Pi. Boxplots for 

which the average difference in lengths is significantly different than 0 at 

the 0.05 level are labeled with an S. Lengths-were computed with p = 0.4 

and 771(2) = m 2 (2) 242 

C.9 Top row: Average length of the standard confidence intervals for the linear 

effect Pi in model (8.1) as a function of I — 0,1,. . . , 10. Standard error 

bars are attached. Bottom three rows: Boxplots of pairwise differences 

in the lengths of the standard confidence intervals for Pi. Boxplots for 

which the average difference in lengths is significantly different than 0 at 

the 0.05 level are labeled with an S. Lengths were computed with p — 0.6 

and 771(2) = 7712(2) 243 

C.10 Top row: Average length of the standard confidence intervals for the linear 

effect Pi in model (8.1) as a function of I = 0,1,. . . , 10. Standard error 

bars are attached. Bottom three rows: Boxplots of pairwise differences 

in the lengths of the standard confidence intervals for Pi. Boxplots for 

which the average difference in lengths is significantly different than 0 at 

the 0.05 level are labeled with an S. Lengths were computed with p = 0.8 

and 771(2) = 7712(2) 244 
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Chapter 1 

Introduction 

Semiparametric regression models combine the ease of interpretation of parametric re

gression models with the modelling flexibility of nonparametric regression models. They 

generalize parametric regression models by allowing one or more covariate effects to be 

non-linear. Just as in nonparametric regression models, the non-linear covariate effects 

are assumed to change gradually and are captured via smooth, unknown functions whose 

particular shapes will be revealed by the data. 

In this thesis, we are interested in semiparametric regression models for which (i) the 

response variable is univariate, continuous, (ii) one of the covariate effects is allowed to 

be smooth, non-linear, and (iii) the remaining covariate effects are assumed to be linear. 

Given the data (Yi, Xj, Zj), i — 1 , . . . , n, such models can be specified as: 

Yi = Xjp + m(Zi) + ei, i = l , . . . , n , (1.1) 

where (3 is a vector of linear effects, m is a smooth, non-linear effect and the ej's are 

unobservable random errors with zero mean. Model (1.1) is typically referred to as a 

partially linear regression model. 

In many applications, the smooth, non-linear effect m in model (1.1) is not of interest 

in itself but is included in the model because of its potential for confounding the lin

ear effects (3, which are of main interest. The nature of this confounding is often too 
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complex to specify parametrically. A non-parametric specification of this confounding 

effect is therefore preferred to avoid modelling biases. The practical choice of the degree 

of smoothness of the non-linear confounder effect is a delicate issue in these types of 

applications. This choice should yield accurate point estimators of the linear effects of 

interest. The choice may be highly sensitive to the correlations between the linear and 

non-linear variables in the model. 

The potential correlation amongst model errors is a qualitatively different source of con

founding on the linear effects of interest in a part ial ly linear model. In practice, we need 

to decide carefully whether we should account for this correlation when assessing the 

significance and magnitude of the linear effects of interest. If one decides to ignore the 

error correlation, one should try to understand the impact of this decision on the validity 

of the ensuing inferences. 

The issues of error correlation, non-linear confounding, and correlation between the linear 

and non-linear terms in a partially linear regression model are intimately connected. 

Thei r interplay needs to be judiciously considered when selecting the degree of smoothness 

of the estimated non-linear effect. Even when this selection yields accurate estimators of 

the linear effects of interest in the model, one needs to assess whether it also yields valid 

confidence intervals and testing procedures for assessing the magnitude and significance 

of these effects. 

1.1 Literature Review-

i n this section, we provide a survey of some of the most important results in the literature 

of partially linear regression models of the form (1.1). We treat separately the case when 

the model errors, €$, i = 1 , . . . , n , are uncorrelated and when they are correlated. 

Note that, in (1.1), we observe only one sequence Y i , . . . ,Yn- In classical longitudinal 

studies we would observe multiple sequences. Even though in this thesis we are not 
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interested in partially linear models for analyzing data collected in longitudinal studies, 

we do mention some results which are significant in the literature of these models. 

1.1.1 Par t ia l l y L inear Mode ls w i th Uncor re la ted Er ro rs 

The partially linear regression model (1.1)-has been investigated extensively under the 

assumption of independent, identically distributed errors. In this section, we provide 

a brief overview of some of the most relevant results concerning inferences on /3, the 

parametric component of the model, that are available in the literature. These results 

have a.common theme: seeing if /3 is estimated at the 'usual' parametric rate of 1/n - the 

rate that would be achieved if m were known. As Robinson (1988) points out, consistent 

estimators of (3 that do not have the 'usual' parametric rate of convergence have zero 

efficiency relative to estimators that have this rate. 

Engle et al. (1983) and Wahba (1984) proposed estimating (3 and m simultaneously by 

minimizing a penalized least squares criterion with penalty based on the s t h derivative of 

m, with s > 2. The performance of the penalized least squares estimator of @ depends on 

the correlation between the linear and non-linear variables in the model. Heckman (1986) 

established the ^/^-consistency of this estimator assuming that the linear and non-linear 

variables are uncorrelated. Rice (1986) showed that, if the linear and non-linear variables 

are correlated, the estimator becomes y^n-inconsistent, unless one 'undersmooths' the 

estimated m. 'Undersmoothing' refers to the phenomenon of estimating m at a slower 

rate than the 'usual' nonparametric rate of n~4^5 - the rate that would be achieved if 

(3 were known. Rice showed that if one didn't 'undersmooth', the squared bias of the 

estimated linear effects would dominate their variance. The author remarked that this 

would have disastrous consequences on the inferences carried out on the linear effects. 

For instance, conventional confidence intervals for these effects would be misleading. 

Rice called into question the utility of traditional methods such as cross-validation for 

choosing the degree of smoothness of the estimated non-linear effect when i/n-consistency 
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of the estimated linear effects is desired, and rightly so. These methods are devised for 

'smoothing', not 'undersmoothing', the estimated non-linear effect. 

Green, Jennison and Seheult (1985) proposed estimating (3 and m by minimizing a penal

ized least squares criterion with penalty based on a discretization of the second derivative 

of m. They termed their estimation method least squares smoothing and showed that it 

yields estimators that solve a system of backfitting equations. These equations combine 

a smoothing step for estimating m, carried out using a discretized version of smooth

ing splines, with a least squares regression step for estimating (3. Green, Jennison and 

Seheult generalized their least squares smoothing estimators by allowing the smoothing 

step in the backfitting equations to be carried out using any smoothing method. These 

generalized least squares smoothing estimators are referred to in the literature as the 

Green, Jennison and Seheult estimators. Speckman (1988) derived the asymptotic bias 

and variance of the Green, Jennison and Seheult estimator of /3, using locally constant 

regression with general kernel weights in the smoothing step. Speckman's findings par

alleled those of Rice: in the presence of correlation between the linear and non-linear 

variables in the model, the Green, Jennison and Seheult estimator of (3 is -^-consistent 

only if one 'undersmooths' the estimated m. Speckman provided a heuristic argument 

for why the generalized cross-validation method cannot be used to choose the degree of 

smoothness of the estimated m in practice when -y/n-consistency of the Green, Jennison 

and Seheult estimator of (3 is desired. 

Neither Rice nor Speckman proposed methods for 'undersmoothing' the estimated m. 

However, Speckman (1988) introduced a partial-residual flavoured estimator of (3 that 

does not require 'undersmoothing'. He argued that traditional methods such as general

ized cross-validation could be used to select the degree of smoothness of the estimated 

m. Speckman did not address the important issue of whether such data-driven methods 

would produce amounts of smoothing that yield -y/n-consistent estimators of the linear ef

fects of interest. Sy (1999) established that data-driven methods such as cross-validation 
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and generalized cross-validation do indeed yield i/n-consistent estimators of these effects, 

thus paving the way for carrying out valid inferences on these effects, at least for large 

sample sizes. 

Opsomer and Ruppert (1999) proposed estimating (3 and m via the Green, Jennison 

and Seheult estimators, using locally linear regression with general kernel weights in the 

smoothing step. They showed that, unless one 'undersmooths' the estimated m, their 

estimator of (3 may not achieve -y/n-consistency. They then suggest how to use the data 

to choose the appropriate degree of smoothness for accurate estimation of cT(3, with c 

known. Opsomer and Ruppert's approach for choosing the right degree of smoothness, 

referred to as the Empirical Bias Bandwidth Selection (EBBS) method, will be discussed 

in more detail in Chapter 6. The authors conjectured that EBBS would produce a yfn-

consistent estimator of cTf3. 

1.1.2 Partially Linear Models with Correlated Errors 

The independence assumption for the errors associated with a partially linear regression 

model is not always appropriate in applications. For instance, when the data have been 

collected sequentially over time, it is likely that present response values will be correlated 

with past response values. Even in the presence of error correlation, it is desirable to 

obtain y^-consistent estimators for the linear effects in the model. 

Engle et al. (1986) were amongst the first authors to consider a partially linear regression 

model with AR(1) errors. They noted that the correct error correlation structure can 

be used to transform this model into a model with serially uncorrelated errors, by quasi-

differencing all of the data. They proposed estimating the linear effects (3 and the non

linear effect m in the original model by applying the penalized least squares method 

proposed by Engle et al. (1983) and Wahba (1984) to the quasi-differenced data. Engle et 

al. (1986) prove that their estimator of (3 is consistent when one estimates m at the 'usual' 

nonparametric rate of n~ 4 / 5 , but do not show it is y/n— consistent. They recommend 
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choosing both the 'right' degree of smoothness of the estimated m and the autoregressive 

parameter by minimizing a generalized cross-validation criterion constructed from the 

quasi-differenced data. This data-driven choice of smoothing may not however yield an 

accurate estimator of j3, as it is geared at accurate estimation of m. 

Schick (1996, 1999) considered partially linear regression models with AR(1) errors and 

ARMA(p,cj) errors, respectively, where p,q > 1. He characterized and constructed effi

cient estimators for the parametric component f3 of these models, assuming appropriate 

theoretical choice of degree of smoothness for the estimated m. He did not however 

indicate how one might make this choice in practice. 

Several authors investigated partially linear models with a-mixing errors. Before review

ing their respective contributions, we provide a definition for the a-mixing concept. For 

reference, see Ibragimov and Linnik (1971). 

Definition 1.1.1 A sequence of random variables {et,t = 0,±1,---} is said to be a-

mixing if 

a(k) = sup sup \P(Af\B) - P(A)P(B)\ -* 0 (1.2) 

as k —> oo; where J7™^ and F^+k are two a-fields generated by {et,t < n} and {et,t > 

n + k}, respectively. 

The mixing coefficient a(k) in (1.2) measures the amount of dependence between events 

involving variables separated by at least k lags. Note that for stationary sequences the 

supremum over n in (1.2) goes away. 

Aneiros Perez and Quintela del Rio (2001a) considered a partially linear model with a-

mixing, stationary errors. They proposed estimating j3 and m via modifications of the 

Speckman estimators. Their modifications account for the error correlation structure, 

assumed to be fully known. The smoothing step involved in estimating /3 and m is based 
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on locally constant regression with Gasser-Miiller weights (Gasser and Miiller, 1984), ad

justed for boundary effects. The authors derived the order of the conditional asymptotic 

bias and variance of the modified Speckman estimator of (3. They found that the condi

tional asymptotic bias of their estimator of /3 is negligible with respect to its conditional 

asymptotic variance, shown to have the 'usual' parametric rate of convergence of 1/n. 

They concluded they do not need to 'undersmooth' their estimator for m in order to ob

tain a \Zn-consistent estimator for /3. The fact that the modified Speckman estimator of 

(3 does not require 'undersmoothing' in the presence of error correlation is not surprising. 

The estimator inherits this property from the usual Speckman estimator. Aneiros Perez 

and Quintela del Rio (2001b) proposed a data-driven modified cross-validation method 

for choosing the degree of smoothness required for accurate estimation of the regression 

function r(Xi, Zi) = Xf/3 + m(Zi) via modified Speckman estimators. It is not clear 

whether such a method would be suitable for accurate estimation of (3 itself. To address 

the problem of choosing the degree of smoothness for accurate estimation of (3 via the 

modified Speckman estimator, Aneiros Perez and Quintela del Rio (2002) developed an 

asymptotic plug-in method. Their method relies on the more restrictive assumption that 

the model errors are realizations of an autoregressive process of finite, known order. 

You and Chen (2004) considered a partially linear model with a-mixing, possibly non-

stationary errors. They estimated /3 and m using the usual Speckman estimators, which 

do not account for error correlation. They then applied a block external bootstrap 

approach to approximate the distribution of the usual Speckman estimator of (3 and 

provide a consistent estimator of its covariance matrix. Using this information, they 

constructed a large-sample confidence interval procedure for estimating f3. Based on a 

simulation study, the authors note that the block size seems to have a strong influence on 

the finite-sample performance of their procedure. However, they do not indicate how one 

might choose the block size in practice. In the simulation study, the smoothing parameter 

of the usual Speckman estimator of (3 was selected via cross-validation, modified for 

correlated errors. This method is appropriate for accurate estimation of m but may not 
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be suitable for accurate estimation of /3. 

You, Zhou and Chen (2005) considered a partially linear model with errors assumed to 

follow a moving average process of infinite order. They proposed a jackknife estimator for 

/3, which they obtained from a usual Speckman estimator. They showed their estimator 

to be asymptotically equivalent to the usual Speckman estimator, and proposed a method 

for estimating its asymptotic variance. They also constructed confidence intervals and 

tests of hypotheses for /3 based on the jackknife estimator and its estimated variance. In 

their simulation study, these authors find that confidence interval estimation based on 

their jackknife estimator has better finite-sample coverage properties than that based on 

the usual Speckman estimator, even though the latter uses the information on the error 

structure, while the former does not. In this study, the smoothing was performed with 

different nearest neighbor smoothing parameter values and the results were shown to be 

insensitive to the choice of this parameter. This may not always be the case for contexts 

that are different from that considered by these authors. 

As we already mentioned, partially linear regression models with correlated errors can 

be used for analyzing longitudinal data, that is, data obtained by measuring each of 

several study units on multiple occasions over time. Longitudinal data are naturally 

correlated, as the measurements taken on the same study unit are correlated. In order 

to estimate the linear effects /3 and the non-linear effect m in such models, Moyeed and 

Diggle (1994) modified the Green, Jennison and Seheult and the Speckman estimators to 

account for the longitudinal data structure and for the error correlation, assumed to be 

known. Their smoothing step used local constant Nadaraya-Watson weights (Nadaraya, 

1964 and Watson, 1964). They derived the order of the conditional asymptotic bias and 

variance of their estimators of /3, obtaining asymptotic constants only for the variance 

of these estimators. Their results are valid under the assumption that the number of 

study units goes to infinity and the number of occasions on which each study unit is 

being measured is kept constant. Note that Moyeed and Diggle did not treat m as a 
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nuisance. To choose the degree of smoothness of the estimated m , these authors used a 

leave-one-subject-out cross-validation method. This method is geared towards accurate 

estimation of m and may not be appropriate for accurate estimation of j3. 

None of the authors considered in this section looked simultaneously at how to choose 

the right degree of smoothing for accurate estimation of the linear effects and how to 

construct valid standard errors for the estimated linear effects. To do both requires 

accounting for the correlation structure of the model errors. 

1.2 Thesis Objectives 

Throughout this thesis, we wi l l consider only partially linear models of the form (1.1) in 

which the non-linear effect m is treated as a nuisance. In contrast to the 'usual ' view in 

regression models, we wi l l think of the linear covariates as being random but consider the 

Zi's to be fixed. The reason for this is that we are mainly interested in applications for 

which the Z; 's are consecutive time points (e.g. days, weeks, years). The results in this 

thesis can be easily modified to account for the case when the Z^'s are random instead 

of fixed. However, some expressions need to be re-defined to account for the randomness 

of the Zj 's . For instance, see the end of Sections 4.1 and 4.2. In this thesis, we wi l l 

allow the linear covariates to be mutually correlated and assume they are related to the 

non-linear covariates v ia a non-parametric regression relationship. Most importantly, we 

wi l l assume that the model errors are serially correlated. W i t h i n this framework, we 

wi l l concentrate on developing formal methods for carrying out valid inferences on those 

linear effects in the model which are of main interest. This entails the following: 

1. defining sensible estimators for the linear effects in the model, as well as for the 

nuisance non-linear effect; 
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2. deriving the asymptotic bias and variance of the proposed estimators of the linear 

effects; 

3. developing methods for choosing the right degree of smoothness of the estimated 

non-linear effect in order to accurately estimate the linear effects of interest; 

4. developing methods for estimating the correlation structure of the model errors for 

inference and smoothing; 

5. developing methods for assessing the magnitude and statistical significance of the 

linear effects of interest; 

6. investigating the performance of the proposed inferential methods via Monte Carlo 

simulation studies; 

7. using the inferential methods developed in this thesis to answer specific questions 

related to the impact of air pollution on mortality in Mexico City during 1994-1996, 

after adjusting for weather patterns and temporal trends. 

We conclude this chapter with an overview of the thesis which indicates where and how 

the above objectives are addressed. 

In Chapter 2, we provide a formal definition of the partially linear model with correlated 

errors of interest in this thesis. We also introduce the notation and assumptions required 

for establishing the theoretical results in subsequent chapters. 

In Chapter 3, we define the following types of estimators for (3 and m: (i) local linear 

backfitting estimators, (ii) modified local linear backfitting estimators, and (iii) estimated 

modified local linear backfitting estimators. 

In Chapter 4, we derive asymptotic approximations for the exact conditional bias and 

variance of the local linear backfitting estimator of /3. Based on these results we conclude 

that, in general, the local linear backfitting estimator of j3 is not v^-ccmsistent. We 
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argue that the estimator can achieve y^n-consistency provided we 'undersmooth' the 

corresponding local linear backfitting estimator of m. 

In Chapter 5, we replicate the results in Chapter 4 for the modified local linear backfitting 

estimator of (3. We also provide sufficient conditions under which the estimated modified 

local linear backfitting estimator of (3 is asymptotically 'close' to its modified counterpart. 

In Chapter 6, we develop three data-driven methods for choosing the degree of smoothness 

of the backfitting estimators of m defined in this thesis in order to accurately estimate 

(3. Two of these methods are modifications of the Empirical Bias Bandwidth Selection 

(EBBS) method of Opsomer and Ruppert (1999). The third method is a non-asymptotic 

plug-in method. All methods account for error correlation. We suspect that these meth

ods 'undersmooth' the estimated m because they attempt to estimate the amount of 

smoothing that is optimal for estimating (3, not for estimating m. Our theoretical results 

suggest that, in general, the optimal amount of smoothing for estimating (3 is smaller 

than the optimal amount of smoothing for estimating m. In Chapter 6, we also introduce 

methods for estimating the correlation structure of the model errors needed to choose the 

amount of smoothing of the backfitting estimators of /3 and to carry out inferences on 

(3. These methods rely on a modified cross-validation criterion similar to that proposed 

by Aneiros Perez and Quintela del Rio (2001b). 

In Chapter 7, we develop three kinds of confidence intervals and tests of hypotheses for 

assessing the magnitude and significance of a linear combination cT(3 of the linear effects 

in the model: standard, bias-adjusted and standard-error adjusted. To our knowledge, 

adjusting for bias in confidence intervals and tests of hypotheses has not been attempted 

in the literature of partially linear models. 

In Chapter 8, we report the results of a Monte Carlo simulation study. In this study, we 

investigated the finite sample properties of the usual and estimated modified local linear 

backfitting estimators of cTf3 against those of the usual Speckman estimator. We chose 
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the smoothing parameter of the backfitting estimators using the data-driven methods 

developed in Chapter 6. By contrast, we chose the smoothing parameter of the usual 

Speckman estimator using cross-validation, modified for correlated errors and for bound

ary effects. The main goals of our simulation study were (1) to compare the expected 

log mean squared error of the estimators and (2) to compare the performance of the con

fidence intervals built from these estimators and their associated standard errors. Our 

study suggested that quality of the inferences based on the usual local linear backfitting 

estimator was superior, and that this estimator should be computed with one of our 

modifications of EBBS or a non-asymptotic plug-in choice of smoothing. Even though 

the quality of the inferences based on the usual Speckman estimator was reasonable for 

most simulation settings, it was not as good as that of the inferences based on the usual 

local linear backfitting estimator. The quality of the inferences based on the estimated 

modified local linear estimator was poor for many simulation settings. 

In Chapter 9, we use the inferential methods developed in this thesis to assess whether 

the pollutant PM10 had a significant short-term effect on log mortality in Mexico City 

during 1994-1996, after adjusting for temporal trends and weather patterns. Our data 

analysis suggests that there is no conclusive proof that PM10 had a significant short-term 

effect on log mortality. 

In Chapter 10, we summarize the main contributions of this thesis and suggest possible 

extensions to our work. 
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Chapter 2 

A Partially Linear Model with 

Correlated Errors 

In Section 2.1 of this chapter, we provide a formal definition of the partially linear model 

of interest in this thesis. In Section 2.2, we introduce assumptions that we use to study 

the asymptotic behavior of our proposed estimators. In Section 2.3, we introduce some 

useful notation. In Section 2.4, we give several linear algebra definitions and results which 

will be utilized throughout this thesis. The chapter concludes with an Appendix which 

contains a useful theoretical result. 

2.1 The Model 

Given the data (Yi, Xij, Zi), i = 1,..., n, j — 1,... ,p, the specific form of the partially 

linear model considered in this thesis is: 

Y = X/3 + m + e, (2.1) 

where Y = (Yi,... ,Yn)T is the vector of responses, X is the design matrix for the 

parametric part of the model (to be defined shortly), /3 = (Po,Pi, • • • ,Pp)T is the vector 
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of unknown linear effects, m — (m(Zi),..., m(Zn))T and e = ( e i , . . . , en)T is the vector 

of model errors. Here, 

X = 

1 X 11 X lp \ 

(2.2) 

, Xp, the Zi's are fixed design 

y 1 Xni • • • Xnp J 

where Xu,..., Xip are measurements on p variables Xi, 

points on [0,1] following a design density /(•) (see condition (A3) in Section 2.2 for the 

exact definition), and m(-) is a real-valued, unknown, smooth function defined on [0,1]. 

Note that, unless we impose a restriction on m(-), model (2.1) is unidentifiable due to 

the presence of the intercept ft in the model. For instance, ft + m(-) = 0 + (m(-) + ft). 

To ensure identifiability, we assume that m(-) satisfies the integral restriction: 

~i 
m(z)f{z)dz = 0. (2.3) / 

J o In practice, we replace (2.3) by the summation restriction: 

lTm = 0, (2.4) 

where the symbol 1 denotes an n x 1 vector of l's. One could think of the smooth function 

m(-) as being a transformation of the fixed design points Zi,i = 1,... ,n, that ensures 

that the partially linear model (2.1) is an adequate description of the variability in the 

Yi's. Alternatively, one could think of the function m(-) as representing the confounding 

effect of a random variable having density /(•) on the linear effects ft, . . . , 8p. 

We assume that the errors €j in model (2.1) are such that Efe) — 0, Var(e;) = of and 

Corr(ei, tj) = 'J/jj for i ^ j, where o~t > 0 and \& = (\Pj,j) is the n x n error correlation 

matrix. Note that \I> is not necessarily equal to the nx n identity matrix I. In practice, 

both the error variance of and the error correlation matrix * are typically unknown and 

need to be estimated from the data. 

An alternative formulation for the partially linear model (2.1) can be obtained by remov-

14 



ing the constraint (2.3), setting m* = 0O1 + m and re-writing the model as: 

Y = X*/3* + m* + e, (2.5) 

where X* is an n x p matr ix defined as: 

Xn 
\ 

X* = (2.6) 

X, np ) 

and (3* = (0i,... ,0P)T. The model formulation in (2.5) is frequently encountered in the 

part ial ly linear model literature and does not require that we impose any identifiability 

conditions on the function m*(z) = 0O + m(z),z 6 [0,1] . Indeed, the absence of an 

intercept in model (2.5) ensures that m*(-) is identifiable. In this thesis, however, we 

prefer to use the formulation in (2.1), as it makes it easier to understand that model 

(2.1) is a generalization of a linear regression model and a particular case of an additive 

model, which typically do contain an intercept. 

2.2 Assumptions 

The asymptotic results derived in Chapters 4 and 5 allow the linear variables in model 

(2.1) to be correlated wi th the non-linear variable v i a the following condition. 

(AO) The covariate values X^ and the non-random design points Zi are related via the 

nonparametric regression model: 

(i) the gj(-) 's are smooth, unknown functions having three continuous derivatives; 

Xij = gj(Zi) +r)ij, i = 1, . . . , n , j = 1 , . . . (2.7) 

where 

15 



(ii) the (rjn,... ,r]ip)T,i = 1,... , n, are independent, identically distributed unob

served random vectors with mean zero and variance-covariance matrix S = 

We impose two different sets of assumptions on the errors associated with model (2.1) for 

studying the asymptotic behaviour of two different estimators of (3. In Section 3.1.1 of 

Chapter 3 we define the so-called local linear backfitting estimator of f3. The definition 

of this estimator does not account for the correlation structure of the model errors. In 

Chapter 4, we study the asymptotic behaviour of this estimator under the assumption 

that the model errors satisfy the following condition. 

(Al) (i) The model errors Ci,i = 1,... ,n, represent n consecutive realizations from a 

general covariance-stationary process {et}, t — 0 ,±1 ,±2 , . . . having mean 0, 

finite, non-zero variance a\ and correlation coefficients: 

E{etet-k) E{eses+k) , . 
Pk = o = 2 , k = 1,2,3,..., (2.8) 

where t,s =0, ±1 , ±2 , . . . . 

(ii) The error correlation matrix \& is assumed to be symmetric, positive-definite 

and to have a bounded spectral norm, that is ||*||s = 0{1) as n —* oo. (For 

a definition of the spectral norm of a matrix see Section 2.4-) 

(iii) Let (rjn,... ,rjip)T,i = 1,... ,n, be as in (AO)-(ii) . Then there exists a (p + 

1) x (p + 1) matrix 5>(°) such that the error correlation matrix satisfies: 

-^—rf^r) - 4>(0) + oP(l) (2.9) 
n + 1 

as n —> oo, where 

^ 0 r?n • • • r]lp ̂  

V = 
\ 0 7}ni ••• J]np J 

(iv) €j is independent of (rjn,..., r}ip)T for any i, j = 1,..., n. 

(2.10) 
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In Section 3.1.2 of Chapter 3 we define the so-called modified local linear backfitting 

estimator of the vector of linear effects /3 in model (2.1). The definition of this estimator 

assumes full knowledge of the correlation matrix of the model errors. In Chapter 5, we 

study the asymptotic behaviour of this estimator under the assumption that the model 

errors satisfy the following condition: 

(A2) (i) The €i's represent n consecutive realizations from a covariance-stationary au-

toregressive process of finite order R having mean 0, finite, non-zero variance 

a\ and satisfying: 

et = fat-i + + ••• + 4>Ret-R + ut, t = 0, ±1 , ± 2 , . . . (2.11) 

with {ut}, t = 0, ±1 , ± 2 , . . . being independent, identically distributed random 

variables having mean 0 and finite, non-zero variance u\. 

(ii) ej is independent of(r)n,..., r)ip)T for any i, j = 1,..., n, where (rjn,..., rjip)T, i 

1,..., n, are as in (AO)-(ii). 

According to Comments 2.2.1 - 2.2.3 below, if the errors satisfy condition (A2), they 

also satisfy condition (Al). 

Comment 2.2.1 If the errors eit i = 1,..., n, satisfy condition (A2), then one can easily 

see that they also satisfy condition (Al)-(i). Moreover, one can show that their correlation 

matrix * = (*ij) is given by ^ = 1, = p(\i - j\) = p ^ , i ^ j, where p is a 

correlation function and the p;'s satisfy the Yule-Walker equations: 

Pk = (piPk-i + ••• + <f>Rpk-R, for k > 0. 

The general solution of these difference equations is: 

Pk = V'IAJ + ip2>^2 + •••+ ipR^R, for > 0 
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where the A;, i — 1,..., R, are the roots of the polynomial equation: 

zR-<l>izR-1-^--<f>R = 0. 

Initial conditions for determining tpi,..., TJJR can be obtained by using po = 1 together 

with the first R — 1 Yule-Walker equations. For more details, see Chatfield (1989, page 

38). 

Comment 2.2.2 If the errors e*, i = 1,..., n, satisfy condition (A2), then their correla

tion matrix * = (^Sij) satisfies condition (Al)-(ii) by Comment 2.2.1 and result (5.34) of 

Lemma 5.7.2 (Appendix, Chapter 5). In other words, \& is symmetric, positive-definite 

and has finite spectral norm. 

Comment 2.2.3 If the errors e*, i = 1,..., n, associated with model (2.1) satisfy con

dition (A2) then, by Lemma 2.5.1 in the Appendix of this chapter, \& satisfies (2.9) of 

condition (Al)-(iii), with 4? (0) = S ( 0 ) and £ ( 0 ) defined as in (2.15) . 

Comment 2.2.4 Due to its parametric nature, assumption (A2) allows us to find an 

explicit expression for the inverse of the error correlation matrix making the derivation 

of the asymptotic results concerning the modified local linear estimator of j3 easier. We 

have not been able to modify our proof of these results to handle the more general 

assumption (Al), since finding an explicit expression for SI/ - 1 under (Al) may not be 

possible. 

The asymptotic results derived in Chapters 4 and 5 assume h, the half-width of the 

window of smoothing involved in the definition of the local linear backfitting estimator 

and the modified local linear estimator of (3, to be deterministic and to satisfy 

h-*0 (2.12) 
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and 

nh3 -» oo (2.13) 

as n —> co. These asymptotic results also rely on the conditions below. 

(A3) The Zi's are non-random and follow a regular design, i.e. there exists a continuous 

strictly positive density /(•) on [0,1] with: 

fZi i 
/ f(z)dz = ——, i = l,...,n. 

Jo n+l 

Moreover, /(•) admits two continuous derivatives. 

(A4) m(-) is a smooth function with 3 continuous derivatives. 

(A5) K(-), the kernel function used in (3.7) and (3.8), is a probability density function 

symmetric about 0 and Lipschitz continuous, with compact support [—1,1]. 

2.3 Notation 

Let Zi, i = 1,..., n, be design points satisfying the design condition (A3) and let ffi (•)>••• > 

gp(-) be functions satisfying the smoothness assumptions in condition (A0)-(i). We define 

the n x matrix G as: 

G = 

( 1 g,{Zx) ••• gp(Zx) \ 

\ 1 gi(Zn) • • • gp{Zn) J 

( flo(Zi) Si(Zi) \ 
(2.14) 

\ go(Zn) gi(Zn) ••• gp(Zn) J 

Furthermore, let the n x (p + 1) matrix rj be defined as in (2.10) (condition (Al)-(iii)). 

In light of condition (AO)-(ii), the transposed rows of rj are independent, identically 

distributed degenerate random vectors with mean zero and variance-covariance matrix 
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£ ( 0 ) , where: 

S(o) 

0 0 ••• 0 

0 S u • • • S ip 

\ o s pi 

(2.15) 

Using equation (2.7) of condition (AO) (Xjj — gj(Zi) + rjij) together wi th the definitions 

of G and r/ in equations (2.14) and (2.10), we can express the design matr ix X in (2.2) 

as: 

X = G + r). (2.16) 

A\-z)/h 
{K,z,h)= slK{s)ds, 1 = 0 ,1 ,2 ,3 . 

J-zlh 
(2.17) 

Let K(-) be a kernel function satisfying condition (A5); if z 6 [0,1] and h € [0,1/2], 

define the following quantity: 

-z/h 

Note that, if z € [h, 1 — h], i.e. z is an 'interior' point of the interval [0,1], then 

vt(K,z,h) = f^slK(s)ds = vt(K) as [-z/h,(l - z)/h] 5 [-1,1] and K(-) has com

pact support on [—1,1] by condition (A5). 

Now, for go{-), • • •, <7P(-) as above and /(•) a design density, we let: 

J g(z)f(z)dz=(j\0(z)f(z)dz,...,j\p(z)f(z)dzy, (2.18) 

and 

J1 g(z)m"(z)f(z)dz = ( j f ' g0(z)m"(z)f(z)dz,..., gp(z)m"\z)f(z)dz)T . (2.19) 

We also let JQ g(z)Tf(z)dz = fQ g(z)f(z)dz and define the (p + 1) x (p+ 1) matr ix 

V as: 

V = E<°) + / g(z)f(z)dz • [ g(z)Tf(z)dz, 
Jo Jo 

(2.20) 
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with as in (2.15). We also define the (p + 1) vector W as: 

W = VJ^L I! 9^m"^fWdz ~ V2^YL I! 9(z)f(z)dz • f m"(z)f(z)dz. (2.21) 

Finally, define the (p + 1) x (p + 1) matrix as: 

V * = 4 (1 + E ^ S ( 0 ) + ~2 (1 - E ^ ) r 9(z)f{z)dz • f g(zff(z)dz. 
a « V *=i / CT« V *=i / 7 0 J ° 

(2.22) 

2.4 Linear Algebra - Useful Definitions and Results 

In this section, we first provide an overview of the vector and matrix norm definitions 

and properties used throughout the remainder of this thesis. 

Let A = (Aij) be an arbitrary m x n matrix and B — (Bki) be an n x q matrix, both 

having real elements. Also, let v — (v\,..., vn)T be an arbitrary n x 1 vector with real 

elements. The spectral norm of the matrix A is defined as: 

I I J I I H^lb -A s = max —r—-— 
IMl2#o \\v\\2 

with || • | | 2 being the Euclidean norm of a vector, that is \\v\\l = ^"=i u i • Furthermore, 

the Frobenius norm of A is defined as: 

\\A]\F E E 4 -
i=i j=i 

It is well-known that \\A\\s < \\A\\F. Clearly, if A is a column vector (that is, n — 1), 

then | | A | | S — | | A | | 2 . In particular, if A is a scalar (i.e., m = n — 1), then ||.A||s equals 

the absolute value of this scalar. It is also known that | | A • B\\p < \\A\\F • \\B\\F-

We conclude this section by reviewing the definitions of random bilinear and quadratic 

forms and providing formulas for computing the expected value of such forms. 
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Suppose A = (Aij) is an n x n matrix with real-valued elements, not necessarily sym

metric. Similarly, suppose that B — is an n x m matrix with real-valued elements. 

Let u be an arbitrary n x l random vector having real-valued elements. Also, let v be 

an arbitrary m x 1 random vector with real-valued elements. 

A bilinear form in u and v with regulator matrix B is defined as: 
n m 

B(u, v) = uTBv = BijUiVj. 
i=l j=l 

Note that B(u, v) is random, and its expected value can be computed using the following 

formula: 

E(B(u, v)) = trace(BCov(u, v)T) + E{u)TBE(v). (2.23) 

In particular, a quadratic form in u with regulator matrix A is defined as: 
n n 

Q(u) = UTAu = ^2 AijUiUj, 
i=l j=l 

with (2.23) reducing to: 

E(Q(u)) = trace(AVar(u)) + E{u)TAE{u). (2.24) 

2.5 Appendix 

The following result helps establish that condition (A2) is a special case of condition 

(Al). 

Lemma 2.5.1 Let rj be defined as in equation (2.10) of condition (Al) and let * be 

defined as in Comment 2.2.1. Then, as n —> oo, 

1 T7*T7 = S ( 0 ) + Op(l), (2.25) 
n + 1 

where is defined as in (2.15). 
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Proof: 

Let rjt denote the / t h column of rj and consider rjfSl?rit, where I, t = 1,..., p + 1 . When 

/ = 1 or t — 1, this is 0. For I, t — 2,... ,p + 1, we have: 
^ ^ n n ^ n n 

-vf^Vt+i = "7 E E V i , i * i j V j , t = - £ £ ^ 1 ' " Jl)^,"7i,t 
n n '—' '—' n 

i=l j=l i=l j=l 
y n

 [2] / ^ n-k 1 ™ \ 
= - E Vi,iVi,t + E P(\k\) - E Vi,iVi+k,t + - Y Vi,iVi-k,t 

t=l fc=i \ t=l i=k+l J 
•y n ^° ( y n~k y n 

= - E + E ^ i ) - E + - E 
i = l fc=l \ i = l i=fc+l 

[2] / j n-fc 1 ™ \ 
+ E (̂1*1) I ~ .̂'̂ +*.* + ~ E ^ . ^ - M J (2-2 6) 

Vi,lVi-k,t 
i=k+l / 

fc=fc0+l \ t=l i=fc+l 

where [n/2] denotes the integer part of n/2 and k0 is chosen independently of n in the 

following fashion. Since 2~Zfcli IP ( I ^ I ) I < 0 0 ( s e e Lemma 5.7.2 for a justification of this 

result), for any given e > 0 we can choose ko such that: 
00 2 

E I P ( I * D I < § -
k=k0+l 

for some large constant C. 

In light of condition (AO)-(ii), the first term in (2.26) converges to E; | t by the Weak Law 

of Large Numbers applied to the independent random variables 7 7 ^ 7 7 ^ , i — 1 , . . . , n. 

The second term in (2.26) converges to zero in probability as n —> co by the follow

ing argument. The random variables 7 7 ^ 7 7 * + ^ , i = I,... ,n — k, are Ac-dependent and 

identically distributed by condition (AO)-(ii). The Weak Law of Large Numbers for k-

dependent random variables implies that YfiZi Tli,ir1i+k,t/{'n — k) converges to Efa^A = 

E(rjiti)E(rj2:t) = 0 in probability as n —* 00. A similar argument yields that the quantity 

YH=k+i VijVi-kj/n converges to 0 in probability as n —> 00. 

Now, consider the third term in (2.26). By Markov's Inequality and condition (AO)-(ii), 

for n large enough, we have: 
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12 J / j n—k ^ n 
E p(\k\) -/~2vi,iVi+k,t + - E Vi,ivi-k,t 

k=k0+l \ t=l i=k+l 

> € 

<1-E 
e 

L 2 J / j n-k 1 " \ 
E (̂lfcD ( ~ + ~ E ^ ^ i - M J 
=fco+l V t=l i=/c+l / 

^ [2] / ̂  n-fc n \ 
< ~ E l̂ (lfcDI -S^l^ i+Ml + ~ E ^ki.^i-Ml ) 

fc=fco+l V 1=1 i=k+l / 

= - E \P(\k\)\(2—E\r,1,im+k,t\) 

fc=fc0+l 
~ [ 2 ] ^ 0 0 2 

< 7 E I P ( I * I ) I < 7 E I P ( I * I ) I < 7 - ^ < « 

fc=fco+l k=ko+l 
In conclusion, the third term in (2.26) converges to zero in probabili ty as n 

Combining the previous results yields (2.25). 

00. 
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Chapter 3 

Estimation in a Partially Linear 

Model with Correlated Errors 

Obtaining sensible point estimators for the linear effects in a partially linear model with 

correlated errors is the first important step towards carrying out valid inferences on these 

effects. Such inferences include conducting hypotheses tests for assessing the statistical 

significance of the linear effects of interest, and constructing confidence intervals for these 

effects. 

As we have seen in Sections 1.1.1-1.1.2, several methods for estimating the linear and 

non-linear effects in a partially linear model have been proposed in the literature, both 

in the presence and absence of correlation amongst model errors. In principle, any of 

these methods could be used to obtain point estimators for the linear effects in a partially 

linear model with, correlated errors. However, those methods which ignore the correlation 

structure of the model errors might produce less efficient estimators than the methods 

which account explicitly for this correlation structure. It is still of interest to consider 

methods which do not account for the presence of correlation amongst the model errors 

when estimating the linear effects in the model. Indeed, these methods could yield 

valid testing procedures based on the inefficient point estimators they produce and the 

standard errors associated with these estimators. 
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In the present chapter we show that many of the estimation methods used in the literature 

for a partially linear model with known correlation structure can be conveniently viewed 

as particular cases of a generic Backfitting Algorithm. We also show how this generic 

Backfitting Algorithm can be modified for those instances when the error correlation 

structure is unknown and must be estimated from the data. 

This chapter is organized as follows. In Section 3.1, we discuss the generic Backfitting 

Algorithm for estimating the linear and non-linear effects in model (2.1) when the error 

correlation structure is known. In particular, in Sections 3.1.1 and 3.1.2 we discuss the 

usual and modified generic backfitting estimators of these effects. In Section 3.1.3, we 

talk about appropriate modifications of these estimators that can be used when the error 

correlation structure is unknown. In Section 3.1.4, we discuss several generic backfitting 

estimators which are versions of the estimators introduced by Speckman (1988). 

3.1 Generic Backfitting Estimators 

In this section, we provide a formal definition for the generic backfitting estimators of the 

unknowns /3 and m in model (2.1). We also define and discuss various particular types 

of these estimators, clearly indicating which of these types we consider in this thesis. 

We start by introducing some notation. Let ft be an n x n matrix of weights such that the 

(p+1) x (p+1) matrix XT£IX is invertible. Also, let §/, be a smoother matrix depending 

on a smoothing parameter h which controls the width of the smoothing window. For 

example, the local linear smoother matrix is given in (3.6)-(3.8). Next, let Sc

h be the 

centered version of S ,̂ obtained as: 

S% = (I-llT/n)Sh. (3.1) 

Formal definitions for f2 and S>c

h will be provided shortly. For now, we note that the 

matrix of weights fi may possibly depend on the known error correlation matrix \& and 

on the smoother matrix S£. 
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The constrained generic backfitting estimators P>tn,sc

h

 a n d m o,S£ of 0 and m are defined 

as the fixed points to the following generic backfitting equations: 

3n,Sc = {xTnxylxTsi{Y - mn,Sj) (3.2) 

mn,Sc = Sc

h(Y - X3n,s £)- (3-3) 

Use of the matrix Sc

h instead of §/, in equation (3.3) ensures that mn,s= satisfies the 

identifiability condition lT5rin,sj = 0. 

The motivation behind the generic backfitting equations introduced above is as follows. 

Given an estimator mn,g£ of the unknown m in model (2.1), one can construct the 

vector of partial residuals Y — mjj^, Regressing these partial residuals on X via 

weighted least squares yields the generic backfitting estimator /3nSc in equation (3.2). 

On the other hand, given an estimator /3n§c of the unknown (3 in model (2.1), one can 

construct the vector of partial residuals Y — X/3n §c. Smoothing these partial residuals 
' h 

on Z — (Zi,..., Zn)T via the smoother matrix S£ yields the generic backfitting estimator 

mn,s= in equation (3.3). 

In practice, one could solve the generic backfitting equations (3.2)-(3.3) for (3r>§c and 

"̂ n,s= iteratively by employing a modification of the Backfitting Algorithm of Buja, 

Hastie and Tibshirani (1989), as follows. 
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The Generic Backfitting Algorithm 

(i) Let /3^ and be initial estimators for (3 and m calculated as follows. We regress 

y on the parametric and nonparametric covariates in the model via weighted least 

squares regression, obtaining: 

V(xi,..., xp, z) = 70 + 7 i • xi H h % • xp + %+1 • (z - Z). 

Here, Z = (Z\ H V Zn)/n. Note that, if Z = (Z,..., Z)T is an n x 1 vector, the 

weighted least squares estimators 7 = (70 ,71 , . . . , 7 P ) T and 7 P + i above are obtained 

by minimizing the following criterion with respect to 7 = ( 7 0 , 7 1 , . . . , 7 P ) T and 7 p +i: 

[Y - X1 - 7 p + 1 ( Z - Z)]T ft [Y - X1 - 7 p + 1 ( Z - Z)} . 

We let 

m^(z)=%+1-(z-Z) 

and m<°> = (m<°)(Zi),..., m(-°\Zn))T. Also, we let /3 ( 0 ) = 7. Note that m(°> 

satisfies the identifiability condition (2.4). 

(ii) Given the estimators and m ^ , we construct /3^+1' and m ^ / + 1 ' as follows: 

/3(/+1> = ( X r J 7 X ) - 1 X T r 2 ( F - m « ) 

mV+V = Sc

h(Y - X0{1)). 

Note that m ^ / + 1 ' satisfies the identifiability condition (2.4), since E>c

h = (I — 

11T/n)Sh, for some smoother matrix S/,. 

(iii) Repeat (ii) until (3^ and do not change much. 

If the Generic Backfitting Algorithm converges at the iteration labeled as I + 1, say, we 

set: 

3n,s< = (3{I) 

rnn,si = m ( / ) -
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However, we need not iterate to find the generic backfitting estimators /3 n §c and ran §c. 

Using the generic backfitting equations (3.2) and (3.3), we can easily derive an explicit 

expression for the generic backfitting estimator 3n §c. Simply substitute the expression 

of ™ n̂,s= given in equation (3.3) into equation (3.2) and solve for /3n,s=: 

3n,s= = (xTnx)-1xTn[r - §UY - xpnjscj 

= (XTnX)-1XTil[(I - SC

H)Y + S£x3n,s;i 

Pre-multiplying both sides of the above equation by XTflX and rearranging yields 

xTn(i - §c

h)xpntSl = xTn(i - S%)Y. 

Thus, provided the matrix XTQ(I — S°h)X is invertible, 

3n,Sc = (XTn(I - S^)X)- 1 X r f i ( / - S%)Y. (3.4) 

To obtain the generic backfitting estimator mn^ without iterating, substitute the ex

plicit expression of 3Q§C obtained above in (3.3) to get: 

sc

h - &hx (xTn(i - SDX)-1 xTn(i - sc

h) (3.5) 

Results (3.4) and (3.5) above show that the generic backfitting equations (3.2)-(3.3) have 

a unique solution as long as the (p + 1) x (p + 1) matrix XTCl(I — Sc

h)X is invertible. 

Various specifications for the smoother matrix Sc

h and the matrix of weights Q, appear

ing in the generic backfitting equations (3.2) and (3.3) (or, equivalently, in the explicit 

equations (3.4) and (3.5)) lead to different types of generic backfitting estimators. In 

the rest of this section, we discuss several such specifications, together with the par

ticular types of generic backfitting estimators they yield. Note that, if one wishes to 

estimate the unknowns 3* and m* in the intercept-free model (2.5) one should carry out 

an unconstrained backfitting algorithm, using X* instead of X, and Sh instead of S°h in 

(3.2)-(3.3). 
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3.1.1 Usual Generic Backfitting Estimators 

The usual generic backfitting estimators are obtained from (3.2)-(3.3) by taking fi = I. 

Clearly, these estimators are defined by ignoring the correlation structure of the model 

errors. 

In this thesis, we consider a particular type of usual backfitting estimators, obtained 

by taking to be a local linear smoother matrix Sh, whose formal definition will be 

provided shortly. We refer to these estimators as local linear backfitting estimators and 

denote them by 0its° a n d mi^i- These estimators were introduced by Opsomer and 

Ruppert (1999) in the context of partially linear models with uncorrelated errors and 

discussed in Section 1.1.1. 

Taking to be Sh is motivated by the fact that local linear smoothing has been shown by 

Fan and Gijbels (1992) and Fan (1993) to be an effective smoothing method in nonpara-

metric regression. It has the advantage of achieving full asymptotic minimax efficiency 

and automatically correcting for boundary bias. For more information on local linear 

smoothing, the reader is referred to Fan and Gijbels (1996). 

We define the (i, j)th element of Sh as: 

w 
(i) 
j 

E n 

3 = 1 W . 

with local weights w%\ k = 1,..., n, given by: 

Sii - ™ (iy ' (3-6) 

Ki^ir l) [ 5"' 2 ( Z i )  _  { Z i ~  z^ S n^] •  ( 3- 7 )  

Here: 

Sn,l(Z) = f^K(?-^)(Z-Zj)1, 1 = 1,2, (3.8) 
3=1 

where Z G [0,1], h is the half-width of the smoothing window and K is a kernel function 

specified by the user. One possible choice of K, which will be used later in this thesis, is 
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the so-called Epanechnikov kernel: 

K(u) = 
?) , if |u | < 1; 

(3.9) 
0, else. 

3.1.2 Modified Generic Backfitting Estimators 

The modified generic backfitting estimators are feasible when the error correlation matr ix 

\T/ is fully known. These estimators are obtained from (3.2)-(3.3) by taking f i = vf / - 1 . 

Unlike the usual generic backfitting estimators, which ignore the error correlation struc

ture of the model errors, the modified generic backfitting estimators estimators account 

for this correlation structure and thus would be expected to be more efficient. 

In this thesis, we consider a particular case of modified generic backfitting estimators, 

obtained by taking to be the local linear smoother matr ix Sh, whose (i, j)th element 

is defined in (3.6)-(3.8). We refer to these estimators as modified local linear backfitting 

estimators and denote them by /3̂ -i Sc and m^-i s=. 

3.1.3 Estimated Modified Generic Backfitting Estimators 

In practice, the error correlation matrix \I7 is never fully known. More commonly, \17 

is assumed to be known only up to a finite number of parameters, or assumed to be 

stationary, but otherwise left completely unspecified. In these situations, the modified 

generic backfitting estimators are no longer feasible. However, these estimators can be 

adjusted to become feasible by simply replacing f i = wi th fl = & \ where "J/ is 

an estimator of We refer to these adjusted estimators as being estimated modified 

generic backfitting estimators. 

In this thesis, we consider a particular case of estimated modified generic backfitting 

estimators, obtained by taking 8^ to be the local linear smoother matr ix Sh, whose (i,j)th 
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element is denned in (3.6)-(3.8). We refer to these estimators as estimated modified local 

linear backfitting estimators and denote them by 3~-i _„ and m~-i 

Surprisingly, not much information is available in the partially linear regression model 

literature on estimating the correlation structure of the model errors when it is known 

only up to a finite number of parameters, or assumed to be stationary, but otherwise left 

completely unspecified. Later in this thesis we discuss how one might obtain estimators 

for the error variance of and the error correlation matrix \& in practice. 

3.1.4 Usual, Modified and Estimated Modified Speckman Esti

mators 

As we have seen earlier, the usual, modified and estimated modified backfitting estimators 

are obtained from (3.2)-(3.3) by taking f2 to be J , and VP \ respectively, with 

determined by the smoothing method chosen. Other estimators are the usual, modified 

and estimated modified Speckman estimators, which are obtained from (3.2)-(3.3) by 

taking fl to be (J - Sc

h)T, (I - S £ ) r * _ 1 and (I - §c

h)T*I>~\ respectively. Here, $ is an 

estimator of while Sc

h depends on the smoothing method of our choice. We discuss 

these estimators below. 

The usual Speckman estimators ignore the correlation structure of the model errors. In 

what follows, we denote these estimators by /3(/_§^r § c and m ( 7 _ § c ) T S c . An explicit 

expression for 3^_§CJT § C can be found by taking fl = (I — Sc

h)T in (3.4): 

3(/-s=r,s= = {XTXYlXTY, (3.10) 

where X = (I — §>c

h)X and Y = (I — §l)Y are partial residuals formed by smoothing X 

and Y as functions of Z. The usual Speckman estimator 3^J_SCJT § C can thus be thought 

of as being the least squares estimator of 3 obtained by regressing the partial residuals Y 

on the partial residuals X. Later in this thesis, we compare the finite sample behaviour 
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of the usual Speckman estimator /3(J_S°)T §=, with being a local constant matrix with 

Nadaraya-Watson weights, against that of 0ItSc, the local linear backfitting estimator, 

and / 3 o - i c o , the estimated modified local linear backfitting estimator. 

The modified Speckman estimators are defined by taking into account the correlation 

structure of the errors associated with model (2.1) and are feasible when the correlation 

matrix of these errors is fully known. We denote these estimators by /3(i_§£)T*-\§= and 

^ ( j - s ^ ) 7 " * - 1 , s=
 a n d note that an explicit expression for /3(isc

h)T^-1, §c

h

 c a n be found by 

taking f i = (I - Sc

h)T^/-1 in (3.4): 

3(I-SJF*-I,SC - ( X r * - 1 X ) - 1 X r * - 1 y . (3.11) 

One can see that / 3 ( / _ s = ) i , * - i i sc

h is a weighted least squares estimator, obtained by re

gressing the partial residuals Y on the partial residuals X. The large-sample properties 

of an unconstrained version of this estimator have been studied by Aneiros Perez and 

Quintela del Rio (2001a) under the assumption of a-mixing errors. Their estimator is 

given by: 

3 ( / - K „ r * - 1 , Kh = (X^V-'X*)-1**7*-1*, (3.12) 

where X = (I—Kc

h)X*, X* is defined as in (2.6) and Kh is an uncentered local constant 

smoother matrix with Gasser-Miiller weights. Later in this thesis, we compare their 

asymptotic properties of / 3 ( ; _ J f j i ' $ - 1 , Kh against those of / 3 ^ - i s=, the modified local 

linear backfitting estimator. We do not, however, compare the finite sample properties 

of these estimators, as neither estimator can be computed in practice. Indeed, both 

estimators depend on the true error correlation matrix, which is typically unknown in 

applications. 

The estimated modified Speckman estimators are feasible in those situations where the 

error correlation matrix is unknown but estimable. We denote these estimators by 

^ ( i - s j r * - 1 , S £ a n d ™V-S£)r*"\sj- A n e x P l i c i t expression for 3 ( 7 _ S c ) T § - 1

) S e can be 
obtained by substituting * instead of * into (3.11). 
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In the remainder of this thesis, we concentrate on the following estimators of 3, the 

parametric component in model (2.1): 

(i) 3ISch, the local linear backfitting estimator; 

(ii) 3 ^ - i | S c , the modified local linear backfitting estimator; 

(iii) 3s-i , the estimated modified local linear backfitting estimator. 
* >°h 

Opsomer and Ruppert (1999) studied the asymptotic behaviour of 3r S c under the as-

sumption that the model errors are uncorrelated. However, the asymptotic behaviour of 

Pi,s%> / ^ * - \ S £
 a n d 3~-i g c has not been studied under the assumption of error correla

tion. In Chapter 4 of this thesis, we investigate the asymptotic behaviour of 3IS^ and 

discuss conditions under which this estimator is v/ro"-c°nsistent. In Chapter 5, we obtain 

similar results for / 3 ^ - i s = for correctly specified \&. Rather than assuming * to have a 

general form as in Chapter 4, we restrict it to have a parametric (autoregressive) struc

ture in order to simplify the proofs of all results in Chapter 5. We also give conditions 

under which 3s-i is i/n-consistent. 
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Chapter 4 

Asymptotic Properties of the Local 

Linear Backfitting Estimator (3j 

In this chapter, we investigate the large-sample behaviour of the local linear backfitting 

estimator 3IiSc as the number of data points in the local linear smoothing window 

increases and the window size decreases at a specified rate. Recall that an explicit 

expression for /3 J ) S = can be obtained from (3.4) by taking Q = I and replacing with 

the centered local linear smoother S°h: 

0IiSc = (XT(I-S'il)X)-lXT(I-Sl)Y. (4.1) 

Throughout this chapter, we assume that the errors associated with model (2.1) are a 

realization from a zero mean, covariance-stationary stochastic process satisfying condition 

(Al) of Section 2.2. We also assume that the non-linear variable in the model is a 

fixed design variable following a smooth design density /(•) (condition(A3), Section 2.2) 

and having a smooth effect m(-) on the mean response (condition (A4), Section 2.2). 

Finally, we allow the linear variables in the model to be mutually correlated and assume 

they are related with the non-linear variable via a non-parametric regression relationship 

(condition (AO), Section 2.2). 

In Sections 4.1 and 4.2, we provide asymptotic expressions for the exact conditional bias 
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and variance of 3JiSc, given X, Z. In Section 4.3, we provide an asymptotic expression 

for an exact conditional quadratic loss criterion that measures the accuracy of 3IS^ as 

an estimator of 3. In Section 4.4, we discuss the circumstances under which the \fn-

consistency of 3IiSc can be achieved given X and Z. In particular, we show that one 

must 'undersmooth' mj,s=, the estimated non-parametric component, to ensure that 

3ISc^ is - /̂n-consistent given X and Z. The results in Sections 4.1-4.4 focus on the 

local linear backfitting estimator 3JS^. In Section 4.5, we indicate how these results 

can be generalized to local polynomials of higher degree. The chapter concludes with an 

Appendix containing several auxiliary results. 

Throughout this chapter, we let Gi denote the ith column of the matrix G defined in 

(2.14), and 77, denote the 7 t h column of the matrix 77 defined in (2.10). We also let Bij,sc

h 

denote the z t h component of Pitsc

h-

4.1 Exact Condit ional Bias of f^i,sc

h given X and Z 

The modelling flexibility of the partially linear model (2.1) comes at a price. On one hand, 

the presence of the nonparametric term m in this model safeguards against model mis-

specification bias in the estimated relationships between the linear variables Xi,..., Xp 

and the response. On the other hand, allowing m to enter the model causes the usual 

backfitting estimator 3ISc^ to suffer from finite sample bias. Indeed, using the explicit 

expression of 3ISc in (4.1), together with the model formulation in (2.1), we easily see 

the conditional bias of Pitsp given X,Z, to be: 

E0IiS%\X,Z)-a= {XT(I-Sc

h)X)-1XT(I-St)m, (4.2) 

an expression which generally does not equal zero. 

Theorem 4.1.1 below provides an asymptotic expression for the exact conditional bias 

of 3ItSc given X and Z. As we already mentioned, this expression is obtained by 
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assuming that the amount of smoothing h required for computing the estimator /37 S c is 

deterministic and satisfies conditions (2.12) and (2.13). 

T h e o r e m 4.1.1 Let V and W be defined as in equations (2.20) - (2.21). Under as

sumptions (AO), (Al) and (A3) - (A5), if n —» oo, h —» 0 and nh3 —> oo, the conditional 

bias of the usual backfitting estimator /3ISch of (3, given X and Z, is: 

E0IiSoh\X, Z)-(3 = -h2- V^W + oP(h2). (4.3) 

C o m m e n t 4.1.1 From equation (4.2) above, one can see that the exact conditional bias 

of fiits%i given X and Z, does not depend upon the error correlation matrix Hence, 

it is not surprising that the leading term in (4.3) is unaffected by the possible correlation 

of the model errors. 

P r o o f o f T h e o r e m 4.1.1: 

Let: 

where the dependence of Bnj upon h is omitted for convenience. We will see below 

that when n —> oo, h —> 0 and nh3 —> oo, Bnj converges in probability to the quantity 

V defined in equation (2.20) . Since V is non-singular by Lemma 4.6.11, the explicit 

expression for /3/,s= in (4.1) holds on a set whose measure goes to 1 as n —> oo, h —> 0 

and nh3 —> oo. We can use this expression to write: 

^ = j B ^ ' { r 7 T I X T ( J " ^ ) y } ' ( 4 ' 4 ) 

which holds on a set whose measure goes t o 1 as m oo, / i ->0 and nh3 —> co. Taking 

conditional expectation in both sides of (4.4) and subtracting /3 yields: 

E(f3ItSl\X, Z)-(3 = B~\ • {^f[XT(I ~ Sc

h)m} (4.5) 
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We now show that Bnj converges in probability to V as n -> oo, / i ->0 and nh3 —> oo, 

that is: 

BniI = V + oP{l). (4.6) 

By equation (2.16), X — G + rj, so Bnj can be decomposed as: 

TI ~t~ J- 71 *T* 1 

Using S£ = (7 — 11T/n)Sh (equation (3.1) with = Sh), we re-write the first term, 

expand the last term and re-arrange to obtain: 

B - = ^ T T ) ° T l l T G + ^ T " T " + ^ l G T « ~ S ^ G 

- ^T s°^ < 4 - 7 > 

To establish (4.6), it suffices to show that 

1• GTUTG = f g(z)f(z)dz • f g(z)Tf(z)dz + o(l), (4.8) n(n + 1) J0 J0 

-L-r1

Tr1 = ^ + oP(l), (4.9) 

whereas the remaining terms are Op ( l ) . 

First consider GTllTG/n(n + 1). Set Z0 = 0, Zn+\ = 1 and use (A3), the design 
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condition on the Z^s, to get: 

n + l fZi fl "+1 fZi 

/ 9j(z)f(z)dz = E / 9j(z)f(z)dz 
Jo i = l JZi-X 

= E / ' fcW-ft(^)]/W^ + E / ' 93iZi)f(z)dz 
i=l JZi-\ t = l / 2 t - l 
"+1 /-Zj 1 "+1 

= E / b iW-9 ; (Z . ) ] /W^+—rEf t (^ ) 
i=i ^ ^ - i

 n i=i 
n+l „Zi 

= E / + 
1=1 J z i ~ 1 

n + l J j+i 

for j = 0,. . . , p fixed. Re-arranging and using the design condition (A3) and the 

Lipschitz-continuity of gj(-) (consequence of (A0)-(i)) yields: 

1 r1
 I I n . ( . \ ?±1 rz> 

TG  1  

n + l Jj+i j0 

< 1̂ (1)1 
~ n + 

for any j = 0,... ,p, so: 

f 9j(z)f(z)dz = f^ + E r 

I + E \9i(*) ~ 9j(Zi)\f(z)dz = O ( - L ^ 

\-GTl = f g(z)f(z)dz + o(l) (4.10) 
+ 1 Jo n + 

and (4.8) follows. 

Next consider r/ T ri /(n + 1). Fix i,j = 1,... ,p, and use (AO)-(ii), which specifies the 

distributional assumptions on the rows of rj, to get: 

1 JT 

Ln + 1 V V 
i+ij+i n + _ , , 

K = l 

1 " 

in probability. Since [T7Trj/(n + l ) ] i + i J + i = 0 whenever i = 0 and j = 0,...,p or 

i = 1,... ,p and j = 0, (4.9) follows. 

It remains to show that all the other terms in (4.7) are op{l). It suffices to show that 

G f + 1 ( I - Sh)Gj+1/(n + 1), Gf+1llT{Sh - I)Gj+1/n(n + 1), Gf+1(I - Sh)Vj+1/(n + 1), 
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r]J+1{I - Sc

h)Gj+i/(n + 1) and vf+iSc

hVj+i/(n + 1) are oP{l) for any i,j = 0,1,.. . ,p. 

These facts follow from lemmas appearing in the Appendix of this chapter. 

Let i, j — 0,1,.. . ,p be fixed and consider Gj+1(I — Sh)Gj+\/(n + 1). By result (4.58) 

of Lemma 4.6.9 with r* = Gi+i, fl = I and r = Gj+i, this quantity is 0(h2), so 

G f + 1 ( I - Sh)Gj+l/{n + 1) is o(l). Similarly, by result (4.59) of Lemma 4.6.9 with 

r* = Gi+i, fl = I and r = Gj+1, Gj+111T(I - Sh)Gj+1/(n{n + 1)) is Q(h2). Thus, 

Gf+lllT(I - Sh)Gj+1/(n(n + 1)) is o(l). 

Next consider Gf + 1(7 - 5^)T7 j + 1 / (n + 1). When j = 0, this is 0. For j = 1,... ,p, by 

result (4.60) of Lemma 4.6.9 with r* = Gi+\, fl = I and £ = rjj+1, this quantity is 

C M n - 1 / 2 / ! - 1 / 2 ) = o P (l) . Similarly, when i - 0, rfi+l{I - Sc

h)Gj+1/{n + 1) = 0. For i = 

1,... ,0, result (4.61) of Lemma 4.6.9 establishes that r)f+1(I - Sc

h)Gj+1/{n +1) = o P (l) . 

Finally, consider vI+i^hTlj+i/(n + !)• When z = 0 or j = 0, this is 0. By result 

(4.62) of Lemma 4.6.9 with £* = rji+l, fl = I and £ = rjj+i, rlT+iShrlj+i/(ri + 1) is 

0P(n-^2h-^2) = oP{l) for i,j = l,...,p. 

Combining these results, we conclude that 

B n i / = £<°>+ f g{z)f(z)dz- f g(z)Tf(z)dz + oP(l) = V + oP(l). 
Jo Jo 

But V is non-singular by Lemma 4.6.11, so 

B$ = V - 1 + 0 P (1) . (4.11) 

To establish (4.3), by (4.5) it now suffices to show that: 

^ T X T ( J - Sc

h)m = -h2W + oP(h2). (4.12) 

This equality is established below with the help of lemmas stated in the Appendix of this 

chapter. 
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By equation (2.16), X = G + rj, so XT(I — Sc

h)m/(n + 1) can be decomposed as: 

Using the identifiability condition on m(-) in (2.4) and the fact that S% = (I — 11T/n)Sh 

we obtain: 

-±-XT{I - s%)m = 4rG r( J
 - + - T T T n G r i l T ( f l f f c - J > m 

n + l n + l n(n + 1) 
+ ^VT(I-S%)m. (4.13) 

By results (4.66) and (4.67) of Lemma 4.6.10, we obtain GT{I - Sh)m/(n + 1) = 

-h2(v2(K)/2) fi g(z)m"(z)f(z)dz + oP(h2) as well as GTllT(Sh - I)m/n(n + 1) = 

h2(v2(K)/2) Si g(z)f(z)dz-Si m"(z)f(z)dz + oP(h2). Result (4.61) of Lemma 4.6.9 with 

£* = r j i + 1 ) ft = I and r = m establishes that rjf+1(I - Sc

h)m/(n + 1) = 0P{n~1/2h2) = 

oP(h2). Note that result (4.61) of Lemma 4.6.9 holds trivially when £* = r ,̂ as r)1 = 0 

by definition. 

Thus, (4.12) holds. This, combined with (4.5) and (4.11) completes the proof of Theorem 

4.1.1. 

To better understand the effect of the correlation between the linear and non-linear vari

ables in the model on the asymptotic conditional bias of Pi:sc

h> w e provide an alternative 

expression for this bias. 

Corollary 4.1.1 Let Z be a random variable with density function /(•) as in assumption 

(A3). Let X\,... ,Xp be random variables related to Z as: 

X J = 9j(Z)+Vj, 3 = 1, • • • ,P, 

where the gj(-) 's are smooth functions as in assumption (A0)-(1) and the r)i's are random 

variables satisfying E(r)j\Z) = 0, Var(r)j\Z) = S^-, Cov(r)j,r)j<) = E^y, j ^ j', with E = 
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(Ejy) as in assumption (AO)-(ii). Also, let m(-) be a smooth satisfying assumption (A4) 

and denote its second derivative m"(-). Set X — (Xi,... ,XP)T. Under the assumptions 

in Theorem 4-1-1, our previous bias expression can be re-written in terms of X and Z 

as: 

E0OtItS%\X,Z)-po = h\{K)E(X\Z)TVar(X\Z)-1Cov(X,m''(Z)) + oP(h2) 

(4.14) 

and 

E 

V 

x , z 
h2u2(K): Var{X\Z)-lCov{X,m"(Z)) + oP(h2). 

(4.15) 

Proof: 

Let a — (Jg1 gi(z)f(z)dz,..., gp(z)f(z)dz)T and let W be denned as in (2.21). Set 

W = (0, Wl)T, with: 

\W2\i = f 9j(z)m"(z)f(z)dz - j f 1

 9j(z)f(z)dz • J1 m"{z)f(z)dz, 

for j = 1,... ,p. Substitute the explicit expression for V - 1 (result (4.68), Lemma 4.6.11) 

into (4.3) to obtain: 

E(3IiSAX,Z)-3 = -h2 
l + a r E _ 1 a j f 0 

- E _ 1 a | 

-aTzZ~1W2 " 
+ O p ( / i 2 ) , 

E _ 1 W 2 , 
+ O p ( / i 2 ) , 

+ o P ( / i 2 ) 

with S as in assumption (AO)-(ii). Results (4.14) and (4.15) follow easily from the above 

by noting that a = E(X\Z), £ = Var(X\Z) and W2 = Cov(X, Z). 
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Result (4.15) in Corollary 4.1.1 shows that the effect of the correlation between the linear 

variables and the non-linear variable in the model on the asymptotic bias of the local lin

ear backfitting estimator of the linear effects j3\,..., Qp is through the variance-covariance 

matrix Var(X\Z) and the covariances Cov(X,m"(Z)). Note that the latter depends on 

the curvature of the smooth non-linear effect m(-) through its second derivative m"(-). 

Therefore, the leading term in the bias of Pi,i,sc

h disappears when there is no correlation 

between the corresponding linear and non-linear terms in the model, that is when the 

correlation between gi(Z) and m"(Z) is zero. In particular, the leading term disappears 

if m(-) is a line, or if #;(•) = Q for some constant c,. 

Opsomer and Ruppert (1999, Theorem 1) obtained a related bias result for the local 

linear backfitting estimator of the linear effects . . . , Qv in a partially linear model with 

independent, identically distributed errors. These authors derived their result under 

a different set of assumptions than ours. Specifically, they assumed the design points 

Zi, i = 1,..., n, to be random instead of fixed. Furthermore, they did not require that the 

covariate values X^ and the design points Zi be related via the nonparametric regression 

model (2.7). However, they assumed the linear covariates to have mean zero. Finally, 

they allowed h to converge to zero at a rate slower than ours by assuming nh —• oo 

instead of condition (2.13) (nh3 —> oo). 

The asymptotic bias expression derived by Opsomer and Ruppert is 

-(h2u2(K)/2){E{Var{X\Z))}-1Cov{X,m"(Z)) + oP{h2). 

The leading term in this expression is a slight modification of our first term in (4.15), 

which accounts for the randomness of the 2Ys. The rate of the error associated with 

Opsomer and Ruppert's asymptotic bias approximation is Op(h2) and is of the same 

order as that associated with the bias approximation in (4.15). 
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4.2 Exact Conditional Variance of 0i,si Given X and 

Z 

In this section, we derive an asymptotic expression for the exact conditional variance 

Var(0IiSc\X, Z ) of the usual backfitting estimator /3j,s£ °f A given X and Z . But 

first, we obtain an explicit expression for the exact conditional variance Var(3ISaJX, Z ) . 

Using the expression for / 3 J | S c in (4.1) together with the fact that 

Var(Y\X,Z) = o f* (4.16) 

from condition (Al), we get: 

V a r @ I t S . \ X , Z ) = a2
 ( X T ( I - S ^ X ) ' 1 • X T ( I - S£ )* ( I - S % ) T X -

( X T ( I - S l ) T X y \ (4.17) 

The next result provides an asymptotic expression for this variance. 

Theorem 4.2.1 Let G , V and S k be defined as in equations (2.14), (2.20) and (3.1) 

and let I be the nxn identity matrix. Under conditions (AO) and (A3) - (A5), ifn —> oo, 

h —> 0 and nh3 —> oo, 

2 2 

; n + 1 (n + 1)2 v " fty 

+ 0,(1), (4.18) 

where 4?̂ °' is defined in equation (2.9) and St is t/ie error correlation matrix. 

Comment 4.2.1 From equation (4.17), Var(3IScJX, Z ) depends upon the error cor

relation matrix \&, so we expect the asymptotic approximation of Var(3j S c \ X , Z) to 

also depend upon the correlation structure of the model errors. Indeed, result (4.18) of 
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Theorem 4.2.1 shows that, for large samples, the first term in the asymptotic expression 

of Var(/3ItSc\X, Z) depends on & indirectly via the limiting value 3>(°' of rjT^r]/(n + l), 

while the second term depends on \& directly. 

Comment 4.2.2 By Lemma 4.6.12, the second term in (4.18) is at most 0(l/n). There

fore, Var(f3ISc \X, Z) has a rate of convergence of 1/n. 

Proof of Theorem 4.2.1: 

-T From (4.6), B n J = X (I - S°h)X/(n + 1) = V + oP(l), so Vor(/3 / i S= \X, Z) in (4.17) 

can be written as: 

Var@IiS.\X, Z) = o*B£ • _ L _ x 7 ( i - Sc

h)*(I - Sc

h)TX • ( S ^ ) " 1 

n + 
— v T l r cc\ir.fT Qc\T 

lBnJ • Cn,I • {Bnj) (4.19) 

where CnJ = X1 (I - Sc

h)^f(I - Sc

h)TX/(n + 1). The dependence of CnJ upon h is 

omitted for convenience. 

To establish (4.18), it suffices to show that Cnj satisfies: 

CnJ = *(°> + GT(I - 5CJ*(7 - Sc

h)TG/(n + 1) + oP(l) (4.20) 

Using X = G + rj (equation (2.16)), Cnj can be decomposed as: 

n - r i n + 1 

+ 
n + 

-G1 (I-S%)*(I-S%)Tr, + —rrr(I-Sl)*{I-Sl)Tr1. 

Expanding the last term and re-arranging yields: 

n + 
1 T^*77 + nT l G T { I ~ " S C h ) T G 

+ —^JG (I - SIMI - SI)1 r, + 
1 

1 

n+l 
1 

n+l 
G1 (I-Sh)*(I-S%Yri 

n + l n + l h h (4.21) 
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The first term, riT^fn/(n + 1), converges in probability to by condition (Al)-

(iii). We now show that all the other terms, except for the second, are O p ( l ) . It 

suffices to show that Gf+1(I - Sc

h)*(I - Sc

h)T

Vj+1/(n + 1), r,T+1^Sfr,j+1/(n + 1), 

and ? 7 ^ 1 5 ^ *S ^ r T 7 : / + 1 / ( n + l) are op(l); these facts follow from lemmas appearing in the 

Appendix of this chapter. 

First consider Gj+1(I - Sc

h)&(I - Sc

h)Tr]j+1/(n + 1). Using Lemma 4.6.4 with £ = rjj+x 

and c = (J — S°h)^f(I — Sc

h)TGi+i, as well as properties of vector and matrix norms from 

Section 2.4 of Chapter 2, we obtain: 

^ G f + 1 ( I - S%)V(I - Sc

hfVj+1 = ^ O P W - SDMI - Sc

h)TGi+1\\2) 

= ^1°P + 11-̂ 1 W • ll*H* • IKJ - SDTGi+i\\2) = Opin-Wh-W). 

The last equality was derived by using that \ \Sc

h\\P is 0(h~1/2) by result (4.54) of Lemma 

4.6.7, is 0(1) by assumption (Al)-(ii), and | | ( J - Sc

h)TGi+1\\2 is 0(n1'2) by re

sult (4.53) of Lemma 4.6.7 with r = Gi+1. We conclude that Gf+1(I - Sc

h)¥{I -

SCh)Trlj+i/{n + 1) is °P(1)- Note that Lemma 4.6.4 invoked earlier holds trivially for 

£ = T7j, as r)l = 0 by definition. 

Next consider rjJ+1VSfr]j+1/'(n + 1) and rif+1Sc

hVSc

h

Tr]j+1/(n + 1). When i = 0 or 

j — 0, these quantities are 0, so consider i,j = l,... ,p. By result (4.63) of Lemma 4.6.9 

with = r,i+v Cl = M> and £ = Vj+1, Vl^Sc

h

T

Vj+1/(n + l) is Cpfa" 1 / ^" 1 / 2 ) = 0 p ( l ) . 

By result (4.64) of the same lemma with £* = r)i+x, £1 = I, fl* = and £ = r/j+1, 

TiT+iSc

h*S?rij+i/(n + 1) is 0P{n-'h-1) = o P (l) . 

Combining these results in (4.21) yields (4.20). This concludes our proof of Theorem 

4.2.1. 

We now provide an alternative expression for the asymptotic conditional variance of 

0i,si which will shed more light on the effect of the correlation between the linear and 

non-linear variables in model (2.1) on this variance. 
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G12 

G21 G22 

Corollary 4.2.1 Let G as in (2.14) and 4>(0) be as in (2.9). Set 

= GT(I-Si)(I-Si)TG, (4.22) 
O 2 2 J 

where Gu is a scalar, G12 = G^i is a 1 x p vector and G22 is a p x p matrix. Also, set: 

where 4?^ — 0, =
 ( * 2 ? ) T = 0 is a 1 x p vector, and $>2°2 is a p x p matrix. If X 

and Z are as in Corollary 4-1.1 and the assumptions in Theorem 4-2.1 hold, then our 

previous variance expression can be re-written in terms of X and Z: 
2 

Var(pltIiS%\X,Z) = :^E(X\Z)TVar(X\Z)-1^2

)Var(X\Z)-1E(X\Z) 
2 

+ ( n + i)2 { G ^ 1 + E{X\Z)TVar(X\Z)-lE(X\Z)f - 2G12Var(X\Z)-1 E(X\Z) 

-2E(X\Z)TVar(X\Z)-1E(X\Z)G12Var(X\Z)-1E(X\Z) 
+E{X\Z)TVar(X\Z)-1G22Var(X\Z)-1E(X\Z)} (4.24) 

and 

Var XZ -VarWZy^VariXlZ)-1 

n + 

+ ^ VariXlZ)-1 [G22 - 2E{X\Z)Gl2 + GnE{X\Z)E{X\Z)T} Var{X\Z)-1 

+ oP (-) . (4.25) 

Proof: 

Let a = (Jg1 g1(z)f(z)dz,..., JQ

l gp(z)f(z)dz)T be as in Lemma 4.6.11 and S = (Ey) 

be the variance-covariance matrix introduced in condition (AO)-(ii). Substi tuting the 
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explicit expression for V 1 (result (4.68), Lemma 4.6.11) into (4.18) yields: 

Var(pl!SJX,Z)-
v21 v22 

1 
+ oP\-n 

where V n is a scalar, V12 = V21 is a 1 x p vector and V22 is a p x p matrix given by: 

V n = 4 r f l r S " 1 $ i ' ) s " l a + r ^ W ^ 1 + a ^ a ) 2 - 2 G 1 2 E " 1 a n+l (n+l)2 

- 2 a r S - 1 a G 1 2 S - 1 a + c ^ S ^ G ^ E ^ a } , (4.26) 

Vl = - ^ r S - ^ f ' E - ' a + _ ^ _ { _ G l l ( l + o rS- 1a)S- 1a 
7 1 + 1 (77. + 1) 

+ E - ' o G u S ^ o + (1 + a T S - 1 a ) S - 1 G f 2 - E ^ G ^ E ^ a } (4.27) 

and 

2 2 
V 2 2 = - ^ - S - ^ ^ E - 1 + ' ' ^ - ' { G B - 2aG 1 2 + G n a a ^ S " 1 . (4.28) n + l (n + l ) 2 

Results (4.24) and (4.25) follow from (4.26) and (4.28), respectively, since a = E(X\Z) 

and E = Var(X\Z). 

Result (4.25) of Corollary 4.2.1 shows that the effect of the correlation between the 

linear variables and the non-linear variable in model (2.1) on the asymptotic variances 

of the local linear backfitting estimator of the linear effects j3\,...,Pp is through the 

conditional variance-covariance matrix Var(X\Z), the conditional mean vector E(X\Z) 

and the matrices G n , G i 2 , G22 in (4.22). 

Comment 4.2.3 In the case * = I, rj T*r)/(n + 1) = rjTrj/(n + 1) = E ( 0 ) + oP(l) by 

result (4.9), with E ( 0 ) as in (2.15). Therefore, $ 2 ° } = E = Var(X\Z). If we also assume, 
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as Opsomer and Ruppert (1999) do, that E(X\Z) = 0, then (4.25) becomes: 

\ 

Var x,z n + 1 
Var(X\Z) - l 

+ f

 (J;u2Var(X\Z)-1G22Var(X\Z)-1 + oP (-) , 

(4.29) 

Recall that these authors also used different conditions on the rate of convergence of the 

smoothing parameter h and the design points Zi, i — 1,..., n. Namely, they allowed h to 

converge to zero at a rate slower than ours by assuming nh —> oo instead of nh3 —> co, 

and they assumed the design points Zit i — 1,..., n, to be random instead of fixed. 

The asymptotic variance expression derived by Opsomer and Ruppert (1999, Theorem 1) 

is (of/n) • {E{Var{X\Z))}-1 + Op(h2/n + l/(n2h)). The leading term in this variance 

expression is (of/n) • {E(V' ar(X\Z))}~1, a slight modification of our first term in (4.29) 

which accounts for the randomness of the 2Vs. The rate of the error associated with 

their asymptotic variance approximation is oP(h2/n+1 /'(n2h)) and is possibly of smaller 

order than the second term in (4.29), known to be at most 0P(l/n) by result (4.69) of 

Lemma 4.6.12 (Appendix, Chapter 4) with \t = I. 

4.3 Exact Conditional Measure of Accuracy of f^i,sc

h 

given X and Z 

Because Pi^i ^s generally a biased estimator of 3 for finite samples, any suitable criterion 

for measuring the accuracy of this estimator should take into account both bias and 
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variance. A natural way to take both effects into account is to consider 

E (||3/,sj - P\\l\X, Z) = {E@ItS%\X, Z ) - (3r]T {E(f3j^\X, Z ) - fs) 
+ trace {Var(/3IScjX,Z)} . (4.30) 

Using the above equality, which follows from (2.24), and the asymptotic expressions for 

E(J3I>Sc\X, Z)-0 and Var(f3ItScjX, Z ) in Theorems 4.1.1 and 4.2.1, we obtain: 

Corollary 4.3.1 Assume that the conditions in Theorem 4-1.1 and Theorem 4-2.1 hold. 

Then: 

E (Wh.si - 0\\l\X, Z)=hi- WTV~2W + ^ t r a c e { V 1 * ^ " 1 } 

+ J^TWtrace { y ^ i 1 ~ Sh)*(I ~ SlfGV-1} + oP(h4) + op ( i ) . (4.31) 

4.4 The i/n-consistency of Pi,sc

h 

For obvious reasons, we would like the estimator Pitsc

h to have the 'usual' parametric 

rate of convergence of 1/n - the rate that would be achieved if ra were known, given X 

and Z . I f / 3 7 S c has this rate of convergence, we say that it is v^-consistent. A sufficient 

condition for /3/,s= to be y^-consistent given X and Z is for E(\\f3j S c — ^|||j-X", Z) to 

be Op(n~l). 

By result (4.31) in Corollary 4.3.1, £(||3 I iSe - P\\\\X, Z) is 0P(h4) + OP (rT 1). This 

result is due to the fact that the conditional bias of Pitsi is &p(h2)> while its conditional 

variance is GpirC1). For E(\\PISI-(3\\l\X, Z) to be Op{rTl), we require / i 4 = ©( r r 1 ) , 

as well as h —> 0 and nh3 —•> oo. 

To understand the meaning of the above conditions, let us consider that h = n~a. For 

h —* 0, we require a > 0. Also, for nh3 —> oo, we require 1 — 3a > 0. Finally, we want 
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hA — n~ia = 0(n 1 ), so a > 1/4. Thus, we require a G [1/4,1/3). In summary, PItsc

h 

achieves ^/n-consistency for h = n~a, with a G [1/4,1/3). 

We argue that Pits% computed with an h optimal for estimating m is consistent, but not 

-y/n-consistent, given X and Z. We argue this by finding the amount of smoothing h 

that is optimal for estimating m(Z) via the local linear backfitting estimator (Z) 

where, for Z G [0,1] fixed, 

E n ( 
i=l W i 

and 

^si{Z) = _ ' * (4.32) 

wf = K )̂ [«5„l2(Z) - (Z - ^)5 n > 1 (Z)] . (4.33) 

Here, Sn>i(Z), I = 1, 2, is as in (3.8), /Y is a kernel function satisfying condition (A5) and 

the Zj's are design points satisfying condition (A3). 

We define the optimal h for estimating m(Z) via mi:s^(Z) as: 

^AMSE = argmin AMSE (fhI:Si(Z)\X, Z) , 

with AMSE (rhitsc

h(Z)\X, Z) being an asymptotic approximation to the exact condi

tional mean squared error of fhitsc

h{Z) given X and Z: 

MSE (rhI:Sch(Z)\X, Z) = £ {(ro/iS= (Z) - m(Z)) 2 |x, z} . 

To find the order of AMSE {fhi:sc

h(Z)\X, Z), and hence HAMSE, note that: 

M S £ (m,,^ (Z)|X, Z) - {E (mItS%(Z)\X, Z) - m(Z)}2 + Var (mIiSfi(Z)\X, Z) . 

By results (4.73) and (4.74) of Lemma 4.6.13, the first term is Op(h4) and the sec

ond term is 0P{l/(nh)), so MSE (m/,s= (Z)\X, Z) is 0 P ( / i 4 + l/{nh)). Therefore, 

AMSE (fhitsi(Z)\X, Z) is Op(hA+l/(nh)), and the / i that minimizes it satisfies KAMSE = 

©(n" 1 / 5 ) . 
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For h — HAMSE, the estimator 3IS^ has conditional bias of order Op(n~2/5) and condi

tional variance of order Op(n~x). Thus, 3ISc i s consistent but not v^-consistent given 

X and Z, as its squared conditional bias asymptotically dominates its conditional vari

ance. However, for h = n~a, a e [1/4,1/3), the squared conditional bias of flitsc

h

 w m n o 

longer dominate its conditional variance asymptotically, ensuring that 3j Sc achieves \fn-

consistency given X and Z. Note that the estimator m j ^ ^ Z ) of m(Z) computed with 

h = n~a,a G [1/4,1/3), is 'undersmoothed' relative to that computed with h = HAMSE, 

since n~a < n"1^5. 

4.5 Generalization to Local Polynomials of Higher 

Degree 

The asymptotic results in this chapter focus on the local linear backfitting estimator 

0i,s%- A natural question that arises is whether these results generalize to the local 

polynomial backfitting estimator of 3. The latter estimator is obtained from (4.1) by 

replacing Sc

h, the smoother matrix for locally linear regression, with the smoother matrix 

for locally polynomial regression of degree D > 1. See Chapter 3 in Fan and Gijbels 

(1996) for a definition of locally polynomial regression. 

Recall that 3IS^ has conditional bias of order Op(h2) and conditional variance of order 

C?p(n_ 1) by Theorems 4.1.1 and 4.2.1. In keeping with the locally polynomial regres

sion literature, we conjecture that the local polynomial backfitting estimator of 3 has 

conditional bias of order Op(hD+l) and conditional variance of order Note 

that we may need boundary corrections if D is even. If our conjecture holds, we see that 

the conditional variance of the local polynomial backfitting estimator of 3 is of the same 

order as that of 3ISc. However, the conditional bias of the local polynomial backfitting 

estimator of 3 is of smaller order than that of 3ISc. 

In Section 4.4 we established that 3ISc is y^-consistent given X and Z provided h 
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converges to zero at rate n~a, a G [1/4,1/3). To ensure that the local polynomial 

backfitting estimator of 3 is i/^-consistent given X and Z, we conjecture that h should 

converge to zero at rate n~a, a E [1/(2D + 2), 1/3). 

4.6 Appendix 

Throughout this Appendix, the assumptions and notation introduced in Chapter 2 of 

this thesis hold, unless otherwise specified. The first result provides an asymptotic bias 

expression that will be useful for proving subsequent results. 

Lemma 4.6.1 Let Sh = (5y) be the uncentered smoother matrix defined by equations 

(3.6)-(3.8) and Sc

h = (I-llT/n)Sh. Letr = (r(Zx),..., r(Zn))T, where r(-) : [0,1] -> R 
is a smooth function having three continuous derivatives and the Zi's are fixed design 

points satisfying condition (A3). Furthermore, let K be a kernel function satisfying con

dition (A5) whose moments vi(K,z,h),z € [0,1], I — 0,1,2,3, are defined as in (2.17). 

If n —> oo, h —> 0 and nh? —> oo, then the jth element of the vector (Sh — I)r can be 

approximated as: 

l(Sh - 1)̂ . = Br(K, Zjt h)-h2 + o(h2) (4.34) 

uniformly in Zj,j = 1,..., n, where 

B ( K , h \ - r " { z ) ^(K,z,h)2-^(K,z,h)u3(K,z,h) 
Br{K,z,h) = — — ——— — 2 — —, z€[0,1. (4.35) 

2 V2(K,z,h)vo(K,z,h)-v{(K,z,h) 
Furthermore, ifrTl = 0, then the jth element of the vector (Sc

h — I)r can be approximated 

as: 

[(Sc

h - 7)r]. = Br(K, Zj, h)-h2-(^J2 Br(K> ZJ> • h2 + o(h2). (A. 36) 
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Proof: 

For i = 1,... ,n, let yi — r(Zi) + et, with the e;'s independent, identically distributed 

random variables with mean 0 and standard deviation ae e (0, co). Set y = (yi,..., yn)T; 

if r(Zj) = [ShVJj is the local linear estimator of r(Zj) obtained by smoothing y on 

Z\,..., Zn via the local linear smoother matrix Sh, then Bias(r(Zj)) = [(Sh — I)r]j-

Standard results on the asymptotic bias of a local linear estimator yield that Bias(r(Zj)) 

is of order h2, with asymptotic constant Br(K, Zj,h), uniformly in Zj,j = 1,... , n (Fan 

and Gijbels, 1993). So the proof of (4.34) is complete. 

The definition of Sc

h and rTl = 0 allow us to write: 

[{si - J H = I - ^ ) S h - I 
n 

= [(s fc-iH-
= [(Sh-I)rV-

l i 1 

n 
11J 

n 

Shr 

(Sh-I)r 

Substituting (4.34) in the above result yields (4.36). 

The next result establishes the boundedness of a function defined in terms of certain 

moments of a kernel function K(-). Subsequent results rely on this lemma. 

Lemma 4.6.2 Let K(-) be a kernel function satisfying condition (A5) and whose mo

ments vi(K, z, h), z 6 [0,1], I = 0,1, 2, 3, are defined as in (2.17). Then, for ho € [0,1/2] 

small enough and I = 1,2, 3, we have: 

vi(K,z,h) 
sup sup 

he[o,ho] ze[o,i] i/2(if, z, h)v0(K, z, h) - v\(K, z, h)2 
< oo. (4.37) 

Proof: 
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For z G [0,1], we define the function: 

vt(K,z,h) 
(4.38) 

v2(K, z, h)u0(K, z, h) - i>i(K, z, h)2 

To establish the desired result, it suffices to show that, for any I — 1,2,3, this function 

is bounded when restricted to the intervals [h, 1 — h], [0, h] and [1 — h, 1], where h < ho 

for some h0 G [0,1/2] small enough, and that the three bounds do not depend on h. 

Let / = 1, 2,3 be fixed and let h < h0 for some ho G [0,1/2] small enough. The restriction 

of the function in (4.38) to the interval [h, 1—h] is t r iv ia l ly bounded, as ui(K, z, h) = vi{K) 

for any z G [h, 1 — h]. Clearly, the bound of this restriction does not depend on h. To 

show that the restriction of this function to the interval [0, h] is also bounded, let us note 

that, if z G [0,1], there exists a G [0,1] such that z = ah and so 

r(l-z)/h 
vl{K,z,h)= / slK{s)ds 

J-z/h 

/

1/h—a 
slK(s)ds 

•CX 

= f slK(s)ds 
J —a 

= <M°0 

since h < ho- Thus, when restricted to the interval [0,h], the function in (4.38) is 

equivalent to: 

_^ <t>i(a) = <l>i(a) 
(po(a)(t)2(a) - </>i(a)2 _ D(a) 

where a G [0,1]. To establish boundedness, it suffices to show that the nominator <f>i(a) is 

bounded from above while the denominator D(a) is bounded from below for any a G [0,1] 

and I = 1,2,3. 

To bound 4>i(a), note that: 

\Ma)\ ^ J \sl\K{s)ds 
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since K(-) is a continuous function with compact support. To bound \D(-)\ from below, 

we show that D(-) is non-decreasing on [0,1] and satisfies D(0) > 0. As 

D'{a) = </>'0(a) • «£ 2(a) + 0 o (a) • $ ( a ) - 20!(a) • < / > ' » , 

and 

da 
f slK(s)ds 

J—a 

= (-l)lK(-a) 

= (-!)'*(<*) 

for any I = 0,1, 2 (using Leibnitz's Rule and the symmetry of K), we obtain: 

D ' ( a ) = K(a) ( f s2K(s)ds + a2 f K(s)ds + 2a f sK(s)ds) . 
\J — a J —a J —a J 

Since K is non-negative and symmetric about 0, each term above is non-negative and 

so D'(a) > 0, that is D(-) is non-decreasing on [0,1]. Further, with K*(s) the density 

K(s)/ /o K(s)ds = 2K{s), we obtain: 

D(0) = I K(s)ds • [ s2K{s)ds - f sK(s) 
Jo Jo Uo 

I s2K*l 
Jo 

s)ds - (sK*(s)ds) 

Thus, £>(0) = Var(D*)/4 > 0, with D* a random variable with density K*. Finally, note 

that the upper bound \sl\K(s)ds/D(0) of the function <j>i(a)/D(a), a G [0,1], does 

not depend on h. 

A similar argument can be employed to establish that, when h < h0, with ho G [0,1/2], 

the restriction of the function defined in (4.38) to the interval [1 — h, 1] is bounded. 

Now, we use Lemma 4.6.1 and Lemma 4.6.2 to derive asymptotic expressions for the 

Euclidean norms of the biases which can occur when using locally linear regression to 

estimate a smooth, unknown function r(-). 
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L e m m a 4.6.3 Let r, Sh and S^ be as in Lemma 4-6.1. Then, if n —> oo, h —> 0 and 

nb? —> oo: 

1 I-Sh)r\\l=V-?^- j\"(z)2f(z)dz-hi + o{hi). (4.39) n + 1 

7/ r also satisfies l T r = 0, then: 

1 
(r-^)r | | i n + 1 1 

^(#) 2 

j\"{zff{z)dz-(Kj\"{z)f{z)d; • / I 4 + O(/J 4). 

(4.40) 

Proof: 

To establish (4.39), use Lemma 4.6.1 to get: 

= - ^ T E [ 5 r ( A r , ^ > / i ) . ^ + o ( / i 2 ) ] 2 

= ( T T T T £ ^ 2 ) ' ^ 4 + O ( / L 4 ) - ( 4 ' 4 1 ) 

The last equality using the boundedness of Br(K, z, h) for a l l z G [0,1] and h < h0, w i th 

/io G [0,1/2] small enough, which is a consequence of Lemma 4.6.2 and the boundedness 

of r"(-). Now, we use Br(K, z, h) = r"(z)v2{K)/2 for z G [h, 1 - h] to write: 

n+1 4-! 3 4(n + l ) f - f V J ' 4 n + 1 j f ^ , V j ; 

3=1 K ' 3=1 v ' Zji\h,l-h] 

+ E Br(K,Zj,h)2. 
Zj£[h,l-h] 

The first term can be shown to equal (v2(K)/2) fQ

l r"(z)2f(z)dz + o( l ) by a Riemann 

integration argument. The second term is o ( l ) , as the sum contains 0(nh) terms and 

r"(z) is bounded for z £ [h, 1 — /i]. The thi rd term is also o ( l ) , as the sum contains 
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0(nh) terms that have been shown to be bounded for h small enough. Combining these 

results yields (4.39). 

To establish (4.40), we use the fact that Sc

h = (I — llT/n)Sh (equation (3.1)) and 

lTr — 0 to obtain: 

Substituting (4.36) in the above yields (4.40). 

The following result provides a probability bound for a linear combination of independent, 

identically distributed random variables having zero mean and non-zero, finite variance. 

Lemma 4.6.4 Let £ = ... ,£„)T be a vector whose components are independent and 

identically distributed real-valued random variables. If E(£i) = 0 and 0 < Var(£\) < oo, 

then: 

^\\(I-Si)r\\l = J2[(Si-I)r]2. 

?c = 0P(\\c\\2) (4.42) 

for any real-valued vector c — (c i , . . . 

Proof: 

By Chebychev's Theorem, we have: 

I " I / I " ec = El J2c^k \+OP , Var <J2c^k 
fc=i J VN ^ 
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The next lemma provides asymptotic approximations for the elements 5 y , i, j = 1 , . . . , n, 

of the local linear smoother matrix Sh defined in (3.6)-(3.8). These approximations are 

used to obtain uniform bounds for the elements of Sh-

L e m m a 4.6.5 Let Sij, i,j = l,...,n, be local linear smoothing weights defined as in 

(3.6)-(3.8). Also, let K(-) and vt(K,z,h), z G [0,1], I = 0 ,1 ,2 , as in Lemma 4.6.2. 

Furthermore, let Zi%i = 1 , . . . ,n, be design points with density function /(•) satisfying 

condition (A3) . Then, if n —> co, h —» 0 and nh3 —> co, we have: 

s 1 v2(K,Zi,h)-^vx(K,Zi,h) K(Zi-Zj 
l] f(Zi)(n + l)h ' v2{K, Zu h)u0{K, Zh h) - Vl(K, Zu hf ' \ h 

uniformly in Zi, i = 1,... ,n. Furthermore, for all h < h0, with ho G [0,1/2] small 

enough, there exists a positive constant C so that: 

\ S « \ * J ^ - W i - Z i \ Z h ) (4.44) 

uniformly in Zt and Zj, i,j = l,...,n. 

Proof: 

Using the definition of S^ in (3.6)-(3.8) and the fact that ] T " = 1 wf = Sn,2(Zi)Snfi(Zi) 

Sn,i(Zi)2, we write: 

(n + DhS- ~ (n + l)hSn:2(Zj) (Zi - Zj 
Sn,2(Zi)Snfl(Zi) — Snii(Zi)2 \ h 

(n + l)h2Sntl(Zj) (Zj-Zj\ (Zi- Zj 

sn,2{Zi)sn>o{Zi) - sntl{ZiYK \ h ){ h )• ( 4 4 5 ) 

Let I = 0 ,1, 2, 3 be fixed. B y the definition of «?„,/(•) in (3.8), the design condition (A3) on 

the Zj's and a Riemann integration argument, we obtain that the following asymptotic 
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expression for Sn<i(Zi)/[(n + l)hl+1]: 

Zj — Zj^ f Zi — Zj\ 
(n + 1)^+1 S n ' l { Z i ) ~ (n + l ) h ^ K { h J \ h 

3 = 

4iX^)(^)'/(^+0("~'A~2) 

holds uniformly wi th respect to Ziti — 1,..., n, as n —> oo, h —> 0 and nh3 —> oo. 

M a k i n g the change of variables s = (Zi — z)/h and using a Taylor series expansion of 

/ ( • ) , we express the leading term in the above asymptotic expression as: 

s jf * (^) w =/rr *• *(s)m+sh)ds 

r(l-Zi)/h 

J slK(s) 
f(Zi) + f'(Zi) • (sh) + f-^- • (sh)2 + o(h2) 

Zilh 
r(i-Zi)/h f(i-Zi)/h 

= / slK(s) [f(Zi) + 0(h)] ds = f(Zi) / slK(s)ds + 0(h) 
J-Zi/h J-Zi/h 

= f(Zi)vl(K,Zuh) + 0(h) 

Here, the O term holds uniformly wi th respect to Zi,i = l , . . . , n by the smoothness 

assumptions on /(•) given in condition (A3). Combining these results, we conclude that: 

(n + l ) / i ' + 1 < 5 " ' ' ( Z i ) = f(Zi>l(K> Zi> ̂  + °W + °(n~lh~2) (4-46) 

uniformly in Zi, i = 1,..., n, as n —> oo, h —> 0 and nh3 —> oo. 

Now, for I = 0,1,2, 3, we substitute the asymptotic expression of Snj(Zi)/[(n + l)hl+1] in 

(4.46) in the right side of equation (4.45). Using that the quantities f(z), K(z) and zK(z) 

are bounded for z € [0,1] (conditions (A3) and (A5), respectively) and re-arranging, we 

easily obtain (4.43). The asymptotic bound for Sy given in (4.44) follows immediately 

from Lemma 4.6.2 and (4.43). 

The following result follows easily from Lemma 4.6.5. This result w i l l be used to prove 

Lemma 4.6.7. 

ds 
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L e m m a 4.6.6 Let be as in Lemma 4-6.1. Given C > 0, there exist C{ > 0 and C2 > 0 

such that for any n > 1 and any v = (v\, . . . , vn)T with \VJ\ < C, we have: 

(4.47) 

and 

\[Shv\A<Cl (4.48) 

Furthermore, we also have: 

\ST

hv\\l<n(Clf (4.49) 

and 

\shv\\i<n(c*2y. (4.50) 

Proof: 

Use result (4.44) of Lemma 4.6.5 to write: 

E SjkVj 

fc=i 
<El5;*l>^c~El5;*l 

fc=i fc=i 
l 

-0(nh) = 0 ( 1 ) . 
+ ( n + l ) / T 

This proves (4.47). Result (4.48) can be derived using a similar reasoning. 

B y result (4.47), we have: 

\\ST

hv\\l = (Slv)T(ST

hv) = £ [ 5 ^ ] ; < n(Cl)\ 

so (4.49) is proven. Result (4.50) can be shown to hold in a similar manner. 

Now, we use Lemmas 4.6.5 and 4.6.6 to establish the following asymptotic bounds. 
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Lemma 4.6.7 Let r,Sc

h and I be as in Lemma 4-6-1- Then, if n —> oo, h —> 0 and 

nh3 —> co: 

and 

||r||2 = 0(n 1 / 2 ) ) 

\\Sh

Tr\\2 = 0(n^), 

(I-Sc

h)Tr\\2 = 0(n^), 

\sc

h\\F = o(h-^). 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

Proof: 

Using the boundedness of /•(•), we write: 

n 
\\r\\l = rTr = Y,r{Z%)2 = 0{n), 

t=i 

so (4.51) is proven. 

Using Sc

h = (I - 11T'/n)Sh and result (4.49) of Lemma 4.6.6 with v = (I - 11T/n)r, 

we have: 

Sfr\\l = Si [I - - H T i r 
n 

*\2 = \\Siv\\i<n-(Cl) 

for some CJ1 > 0 not depending on n. This proves (4.52). 

Result (4.53) follows immediately from results (4.51) and (4.52). Finally, to show result 

(4.54), we use well-known properties of the Frobenius norm to get: 

\SI\\F -
11T 

i- — )sh n 
1 
n 

< \\Sh\\F + -\\UT\\F -\\Sh\\F <2\\Sh\\F. 

Thus, it suffices to show that HS/JÎ  is of order 0(h 1/2). 
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B y result (4.44) of Lemma 4.6.5, we obtain: 

\\Sh\\l = 11 Si < ± ± I(\Zt -Z3\< h) 
i=l j=l ^ ' i=l j=l 

for some positive constant C. Since the number of non-zero terms in the double sum 

appearing on the right side of the above inequality is nO(nh), we conclude that HS/JI2? 
is 0(h-x) or, equivalents, that \\Sh\\F is 0(hr1/2). 

The next result provides a probability bound for the Euclidean norm of a vector of n 

independent, identically distributed random variables having zero mean and non-zero, 

finite variance. It also provides a probabili ty bound for the Euclidean norm of a trans

formation of this vector, obtained by pre-multiplying the vector wi th the transpose of a 

centered local linear smoother matrix. 

Lemma 4.6.8 Let £ be as in Lemma 4-6-4 and S°h be as in Lemma 4-6.1. Furthermore, 

let fi be an n x n symmetric, positive definite matrix with ||fi||s = C>(1). Then, if 

n —> oo, h —> 0 and nh3 —> co, we have: 

||£||2 = 0P{n1'2) (4.55) 

\\S£toi\\% = Op{h-W) (4.56) 

\\Sc

hSlt\\2 = Op{hrll2) (4.57) 

Proof: 

B y Markov 's Theorem: 

= OP {E{\\H\\l)) = Op(nVar(^)) = 0P(n), 

so (4.55) is proven. 
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Next, consider (4.56). Set B = flSc

h. By Markov's Theorem, we have: 

\\Sf ml = \\BTm = Op(E(\\BTt\\%) = E(?BBTS) 

Thus, it suffices to show that E(irBBT$) is 0{h~1/2). Using result (2.24) with u = £ 

and A = BBT, together with the symmetry of fl, we obtain: 

E(£TBBT£) = trace (BBT • Var{£)) + E{£)T • BBT • E(£) 

= Varfa) • trace {BBT) + 0 = Var(^) • \\B\\2

F 

<||n||l.||5c

fc||F = C7(l)C?(/l-1) = 0(/i-1), 

by result (4.54) of Lemma 4.6.7. This proves (4.56). Result (4.57) can be established 

using a similar argument. 

The next lemma contains results concerning the asymptotic negligibility of various ran

dom or non-random terms. All of these terms depend on a matrix of weights fl and 

;on centered or uncentered local linear smoother matrices. Some terms also depend on a 

matrix of weights fl*, possibly different than fl itself. 

Lemma 4.6.9 Let fl and fl* be n x n symmetric, positive-definite matrices satisfying 

\\fl\\s = 0(1) = ||n*||s. LetSh andSc

h be as in Lemma 4.6.1. Setr = (r(Zi) , . . . , r{Zn))T 

and r* = (r*(Zi),... ,r*(Zn))T, where r(-) : [0,1] -> R and r*(-) : [0,1] -> R are smooth 

functions having three continuous derivatives and the Zi's are fixed design points satis

fying condition (A3). Finally, let £ = (£i,. • •, £ n ) T a n a > £* = (£!> • • • > £n)T be vectors 

whose components are independent, identically distributed random variables such that 

Efa) = 0, Varfa) < oo and E(£*) = 0, Var(£*) < oo . Then, if n -» oo, h -> 0 and 
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nh3 —> oo, we have: 

1 
n + 

-r*1Sl(I-Sh)r = 0(h2), (4.58) 

-^±—^TmiT(Sh - I)r = 0(h% (4.59) 

^ r ^ n C J - S£)£ = Op (n-^h-^) , (4.60) 

^rr"(/ - Sl)r = O p l n " 1 ^ 2 ) , (4.61) 

- L - £ * T n S ^ = C M n - 1 / 2 / ! - 1 / 2 ) (4.62) 

- L ^ O S f * - Opin-Wh-1'*). (4.63) 

1 - €* r n^n*s f n« = oP{n-lh-1) (4.64) 

1 CTnSf Q*Sf Sl£ = Opin^h-1). (4.65) 
n + 

n + l 

Proof: 

Using properties of matrix and vector norms introduced in Section 2.4 of Chapter 2, we 

get: 

| ; ^ r * r f i ( J - Sh)r\ < ^ | | r ' | | 2 • • ||(I - 5 , ) r | | 2 

= ^rC»(n1/2)0(l)0(n1/2/i2) = C(/i2) 

since ||r*||2 is © ( n 1 / 2 ) by result (4.51) with r = r* and - Sh)r\\2

2/(n + 1) is 0(h4) 

by result (4.39). Thus, (4.58) holds. Similarly, we obtain: 

n(n + 1) 

;so (4.59) holds. 

1 r*TmiT(Sh - I)r -n7r^l) l | r 1 | 2- | | n | | s- | | l l T | | F- 1 1 ( 5 , 1 ~ I ) r | 1 2 

- n ( n + ^ 0 ( n l / 2 ) ° ( 1 ) 0 ( n ) 0 ( n l / 2 h 2 ) = ° ( h 2 ) > 
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Using result (4.42) with c = (I - Sc

h)TClr* , we have: 

1 
n + 1 

r*TCl(I - Si)£ = ^ O P ( \ \ ( I - Sc

h)Trir*\\2) 
n + 

< —Op ((1 + \\S%\\F) • • ||r*||2) = ^-Op(h-ll2)0P{l)Op{n}l2) 
n + 1 

= 0P{n-l'2h-ll2), 

n+1 

since \\Sc

h\\F is 0{h~1/2) by result (4.54) and ||r*||2 is 0{nll2) by result (4.51) with 

r — r*. We conclude that (4.60) holds. 

From result (4.42) with c = ft(I - Sc

h)r and £ = £*, we get: 

1

 TCTn(I - Sc

h)r = (||n(J - Sc

h)r\\2) < -L_0Pm\\s • ||(I - Sc

h)r\\2) 
n + n + 1 

1 
n + 1 

n + 1 
0P(l)Op{nll2h2) = 0P(n-1/2h2), 

since ||(J - Sc

h)r\\2

2/{n + 1) is 0(hA) by result (4.40). Therefore, (4.61) holds. 

To prove (4.62), write: 

1 
n+1 

1 < — iiriuMu-11^112 

0P{n1'2) • 0(1) • Op(h~1'2) = Op(n-1/2h-^2), 

n+1 
1 

n + 1 

since ||£*|| 2 is Op{n1'2) by result (4.55) with £ = £* and |]S££|| 2 is 0 P ( ^ 1 / 2 ) by result 

(4.57) with Q, = I. Result (4.63) follows via a similar argument, but with result (4.57) 

replaced by result (4.56). 

Result (4.64) follows by noting that: 

1 
n + 1 

1 
< 

1 
n + 1 Wnril2-l|n*||s-||s?n<*||2 

n+-Op(h--1'2)0(l)0P(h-1'2) = Opin-'h-1), 

since both ||S^ft£*||2 and ||S£Tf2£|| 2 are Op{h~l/2) by Lemma 4.6.8. A similar reasoning 

yields that (4.65) holds. This concludes our proof of the current lemma. 
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The next lemma provides asymptotic expressions for quantities involving the bias of a 

local linear estimator of an unknown, smooth regression function m(-). 

L e m m a 4.6 .10 Let G be as in (2.14) and be as in Lemma 4-6.1. Furthermore, 

let m = (m(Zi),... ,m(Zn))T, where m satisfies the smoothness conditions in condition 

(A4) and Z\,..., Zn are fixed design points satisfying condition (A3) . Then, if n —> oo, 

h —> 0 and nh3 —> oo, we have: 

-^—GT{I - Sh)m = -h 2^p- f1 g(z)m"(z)f(z)dz + o(h2) (4.66) 
71+1 I JQ 

— L ^ l l T ( S h - I)m = h 2^p- J1 g(z)f(z)dz • £ m"(z)f(z)dz + o(h2) 
(4.67) 

where g(z)f(z)dz and g(z)m"(z)ffz)dz are defined as in equations (2.18) and 

(2.19). 

Proof: 

Let i = 0 , 1 , . . . ,p, be fixed. B y result (4.34) of Lemma 4.6.1 wi th r = m, the (i + l ) s t 

element of GT(I — Sh)m/(n + 1) is: 

[^-Cril - S J m ] ^ = --±-±g,(Z,)[(Sk - I)m] 
i=i 

1 ™ 
= -h2 ——^giiZ^BMZ^h)] +o(h2). 

L n + 1 3=1 J 

Noting that Bm(K, z, h) = m"(z)v2(K)/2 for z £ [h, 1 - h], we write: 

-L-j^g^B^K^^h) = ^LYjgl{Z0)rn''{Zj) 
3 = 1 ^ ' j=l 

V 2 { % E 9i(Zj)m"(Zj) + - ^ 9i(Zi)Bm{K,Zith). 2 ( n + 1) 
Zj$[h,l-h] Zj$[h,l-h] 
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The first term can be shown to equal (u2(K)/2)- JQ

X gi(z)m"(z)f(z)dz+o(l) by a Riemann 

integration argument. The second and third terms are o(l), as both sums contain 0(nh) 

terms and these terms are bounded for h small enough, by the following argument. The 

boundedness of m"(z) for z £ [h, 1 — h) is a consequence of condition (A4). Lemma 4.6.2 

yields that the function z —> Bm(K, z, h) is bounded for all z G [0,1] and h < h0 with 

h0 G [0,1/2] small enough. Combining these results yields (4.66). 

Now, consider (4.67). Since the first column of G is the vector 1, from (4.66): 

1T(J - Sh)m/{n + 1) = j1
 m"(z)f(z)dz + o(h2). 

Combining this with (4.10) proves (4.67). 

The next result concerns the existence of an inverse for the (p + 1) x (p + 1) matrix V 

defined in (2.20). We do not provide a proof for this result, as one can easily verify that 

V V _ 1 = V~1V = I using the expression for V - 1 given below. 

L e m m a 4.6.11 Let V = S ( 0 ) + ftg{z)f{z)dz • fl g(z)Tf(z)dz be the (p+ 1) x (p+ 1) 

matrix introduced in (2.20) and set a = ( J 1 gx(z)f(z)dz, • • •, JQ gp(z)f(z)dz)T. Also, let 

S = (Ejj) be the variance-covariance matrix introduced in condition (AO)-(ii). Then 

V - 1 exists and is given by: 

, / 1 + o r S - 1 o I - a T E _ 1 , , 
V-1 = • 1 (4.68) 

V - S _ 1 o j £ 
provided E _ 1 exists. 

The last two lemmas in this Appendix provide several useful asymptotic bounds. 

L e m m a 4.6.12 Suppose the assumptions in Theorem 4-2.1 hold. Then: 

— L ^ - ^ J - Sh)9(I - Sh)TGV-1 = Q(n-1). (4.69) 
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Proof: 

Since the elements of the (p+1) x (p+ 1) matr ix V 1 do not depend upon n, it suffices 

to show that GT(I - Sc

h)^{I - Sc

h)TG/(n + if is 0(n~x). It is enough to show that 

Gf+1(I - Sc

h)*(I - Sl)TGm/(n + l ) 2 is © ( n - 1 ) for any i, j = 0,1,... ,p. 

Let i,j = 0 , 1 , . . . ,p be fixed. Using vector and matr ix norm properties introduced in 

Section 2.4, we obtain: 

(n + l ) 
1 

—2Gj+1(I-Sc

h)*(I-SiyGj+1 < 

I - sc

hy Gi+1\\2 • \\#\\s • - Sc

h)rGj+l\\2 < (n + l ) 2 ' 

-±—0(n^) • Oil) • 0(n"2) = 0(n~') 
(n + iy 

since \\(I - Sc

h)TGi+1\\2 = 0(n^2) = ||(I - Sc

h)TGj+1\\2 by result (4.53) of Lemma 4.6.7 

wi th r = Gi+i and r = G^+i, respectively, and ||\P||s = 0 (1 ) by condition ( A l ) - ( i i ) . 

Thus, Gf + 1(J - S C J*(J - S£) TG i + 1 / ( n + l ) 2 is 0(n~l). 

L e m m a 4.6 .13 Suppose the assumptions in Theorems 4-1-1 and4-2.1 hold. Letfhz,s%(Z) 

be the local linear backfitting estimator ofm(Z) defined in (4.32), where Z G [0,1] is fixed. 

Also, let rhitsc

h(Z) denote the local linear backfitting estimator ofm(Z) that would be ob

tained if 3 were known precisely: 

m J i S c ( Z ) (4.70) 

where the wf"1 's are as in (4.33). Then, if n —> oo, h —• 0 and nh3 —> co, we h< ave: 

E(mi,Sc(Z)\X, Z) - m(Z) = 0(h2), 

1 
Var(mItSl(Z)\X,Z) = 0 

nh 

(4.71) 

(4.72) 
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and 

E(fhItSch(Z)\X, Z) - m(Z) = 0(h2), (4.73) 

Var(mItSc(Z)\X, Z) = O (J^J . (4.74) 

Proof: 

The proof of (4.71) and (4.72) can be found in Francisco-Fernandez and Vilar-Fernandez 

(2001), so we omit it . 

To prove (4.73), use the definitions of fhi>sc

h(Z) and rhz,sc

h(Z) in (4.32) and (4.70) to 

write: 

miiS%{Z) = -
En (Z) \—m (Z) 

= f n I ) S i ( Z ) - w T X 0 I t S l - 3 ) . 

Thus: 

E(mj,Sc(Z)\X, Z) - m(Z) = {E(mI>Sc (Z)\X, Z) - m(Z)} 

- wTX{E0Itsi\X, Z) - 3} (4.75) 

and 

Var(fhItSl{Z)\X,Z) = Var(rhItSl{Z)\X, Z) - 2wTX • Cov(J3ItSc, rhm(Z)\X, Z) 

+ wTX • Var{mIiS*(Z)\X, Z) • XTw. (4.76) 

Result (4.73) follows by combining (4.75) and (4.71) and using that Bias(3is^\X, Z) 

is Op(h2) by Theorem 4.1.1 and wTX is 0(1). The latter result is easy to establish 

using the fact that the wf^s are bounded by Lemma 4.6.5. Result (4.74) follows by 

combining (4.76) and (4.72) and using that Var(3IScjX, Z) is 0P(l/n) by Theorem 

4.2.1, Cw(3j Sc ,rhitsi(Z)\X, Z) is Op(l/(nh)) by a Cauchy-Schwartz argument and 

wTX is 0 ( 1 ) . 
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Chapter 5 

Asymptotic Properties of the 

Modified and Estimated Modified 

Local Linear Backfitting Estimators, 

In this chapter, we investigate the asymptotic behavior of the modified local linear back-

To simplify the proofs of the asymptotic results derived in this chapter, we consider that 

the model errors satisfy assumption (A2), that is, they are consecutive realizations from 

a stationary A R process of finite order R. Assumpt ion (A2) is a special case of the 

assumption ( A l ) considered in Chapter 4. 

The structure of this chapter is similar to that of Chapter 4, where we studied the 

asymptotic behaviour of 3ISc^. ^ n the first P a r * °f *he chapter, we study the asymptotic 

and 

fitting estimator /3^- i S c of 3, w i th * being the true correlation matr ix of the model 

errors. Recall that an explicit expression for 3^-\ S c can be obtained from (3.4) by taking 

f2 = and replacing wi th the centered local linear smoother Sc

h: 

3*-i i S S = {XT*-\I - Sl)X)~l XT*~\l - S%)Y. (5.1) 
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behaviour of / 3 ^ - i S c . The proofs of the asymptotic results concerning 3^-i>Sc are how

ever more complicated than those concerning 3I>Sc f ° r t n e following reason: the exact 

conditional bias and variance of 3^,-iSc given X and Z depend on Vl> - 1 whereas the 

exact conditional bias and variance of / 3 J i S c given X and Z do not depend on \ T / - 1 . Next, 

we mention how the asymptotic results concerning the modified local linear backfitting 

estimator 3^-is^ can be generalized to local polynomials of higher degree. We then 

provide sufficient conditions for the estimators 3^-\ g c and / 3 ^ - i S c to be asymptotically 

'close'. The chapter concludes wi th an Appendix containing several auxiliary results. 

5.1 Exact Conditional Bias of /3^-i Sc given X and Z 
' h 

Just like the usual local linear backfitting estimate /3/,s= > the modified local linear backfit

t ing estimate 3^,-iSc suffers from finite sample bias. Indeed, using the explicit expression 

of / 3 ^ - i S c given in equation (5.1), we obtain the exact conditional bias of given 

X and Z as: 

£ ( 3 * - i i S c \ X , Z)-3= ( X T * - l ( I - S D X y 1 X T ^ ~ 1 ( I - Sc

h)m, (5.2) 

an expression which generally does not equal zero. 

Theorem 5.1.1 below provides an asymptotic expression for the conditional bias of / 3 ^ - i S c . 

given X and Z. These derivations assume that the value of h in S ° h is deterministic and 

satisfies conditions (2.12)-(2.13). 

Theorem 5.1.1 Let and W be defined as in equations (2.21) - (2.22). Under con

ditions (AO) and (A2)-(A5) , if n —> oo, h —> 0 and nh3 —> oo, the conditional bias of the 

modified local linear backfitting estimate /3,j-i S c of 3, given X and Z , is: 

E 0 ^ t S a j X , Z ) - 3 = -h2^(l-J2<pk) V ^ W + oP(h2). (5.3) 
° u \ fc=i / 
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Comment 5.1.1 Aneiros Perez and Quintela del Rio (2001a) investigated the large 

sample properties of an estimator similar to 3^-ig^, namely / 9 ( / _ K - h ) T * - 1 , Kh' * n e  u n _  

constrained modified Speckman estimator in (3.12). Under similar assumptions as ours, 

Aneiros Perez and Quintela del Rio obtained a faster rate for the asymptotic condi

tional bias of their estimator, namely Op(h4). As seen in (5.3), the rate we obtained for 

the asymptotic conditional bias of 3^-iSc is Op(h2). However, they did not provide 

asymptotic constants for this bias, like we do in (5.3). They obtained the same rate of 

convergence for the asymptotic conditional variance of their estimator as we did for that 

of 3^,-i S c , namely Op(l/ri). Just like us, they do provide an asymptotic constant for 

this variance. 

Proof of Theorem 5.1.1: 

Let: 

where the dependence of Bn^ upon h is omitted for convenience. We will see below 

that when n —> oo, h —• 0 and nh3 —> co, Bn^ converges in probability to the quantity 

V * defined in equation (2.22). Since V * is non-singular by Lemma 5.7.6, the explicit 

expression for 3^,-1 S c in (5.1) holds on a set whose measure goes to 1 as n —> co, h —> 0 

and nh3 —> co. We can use this expression to write: 

0*-*,s% = • j - l - X ^ - ' t l - S £ ) y j , (5.5) 

which holds on a set whose measure goes to 1 as n -> oo, h —> 0 and nh3 —> co. Taking 

conditional expectation in both sides of (5.5) and subtracting 3 yields: 

E@9-ltS%\X,Z)-a = B~)f, • j - i - X 7 * - 1 ^ - S £ ) m j • (5.6) 

We now show that -B n ,* converges in probability to V * as n —> oo, h —> 0 and nh3 —> co, 

that is: 

Bn>* = V * + o P(l). (5.7) 
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Using the fact that X = G + r\ (equation (2.16)), Bn^ can be decomposed as: 

= ^ T T g T * _ 1 ( 7 - S ^ G + — ^ r G T * _ 1 ( i - sh)v 

Ti -t- i n l 

+ r T T ^ * " 1 ^ - S C JG + - i - V * " 1 ^ - 5^)77. (5.8) 

From equation (3.1) with = Sh, Sc

h — (I — 11T/n)Sh, so re-writing the first term, 

expanding the last term and re-arranging yields: 

- ^ T i ) G T * " l l l T G + ^ i " * " 1 " - ^ i i G T * " 1 ( / - S * ) G 

+ ^ T T ) G T * " l l T ( s * " 7 ) G + ^ T T G T * " 1 ( / -
+ ^ T T " r * " 1 ( / " ' s a G " S T T ' ' T * ~ 1 ' s ^ ( 5 ' 9 ) 

To establish (5.7), it suffices to show that 

1 - G r * _ 1 l l T G = = 4 {1 - E <r*\ f 9(z)f(z)dz j1 g(z)Tf(z)dz + o(l), 
n(n + 1) 

(5.10) 

while the remaining terms are o p ( l ) . 

The proof of (5.10) is immediate by writing 

1 G r * _ 1 l l T G = (—-—G 7 * " " 1 ! ^ • (-J-GTlV • (l + 1 

n(n + l) Vn + ! / + l / V ™ 
and using Lemma 5.7.3 in the Appendix of this chapter and result (4.10). 

Result (5.11) is proven in Lemma 5.7.4. 

To prove the remaining terms in (5.9) are O p ( l ) , it suffices to show that the quanti-

ties Gf+1^-\I - Sh)Gj+1/(n + 1), GJ+^II^SH - I)Gj+1/n(n + 1), Gf+1*-\l -

Sc

h)vj+1/(n + 1), vi**-1
 (I - Sc

h)Gj+l/(n + 1) and rjj^S^^J{n + 1) are o P ( l ) . 
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These facts follow from lemmas appearing in the Appendices of this and the preceding 

chapter. 

First consider Gf+1

i&~1(I - Sh)Gj+1/(n + 1). By result (4.58) of Lemma 4.6.9 with 

r* = Gi+i, fi = and r = Gj+i, this quantity is 0(h2) = o(l). Similarly, from 

result (4.59) of Lemma 4.6.9 with r* = Gi+i, fi = and r = Gj+\, we have that 

Gf+1*"111T(5^ - I)Gj+1/n{n + 1) is 0(h2) = o(l). 

By result (4.60) of Lemma 4.6.9 with r* = Gi+i, fi = * _ 1 and £ = T ; j + 1 , we have that 

G f + 1 * _ 1 ( 7 - Sc

h)r}j+1/(n+ 1) is O p ( n - 1 / 2 / r 1 / 2 ) = oP(l). Using a similar reasoning with 

(4.61) of Lemma 4.6.9, we obtain that rj'[+1^>~1(I - Sc

h)Gj+1/(n + 1) is also oP(l). 

Finally, consider rfi+l^~lSc

hr)j+l/(n+l). By result (4.62) of Lemma 4.6.9 with £* = r/ i + 1, 

fi = and £ = Vj+i> this quantity is (DP(n 1 / / 2 / i
 ll2) = oP(l). This concludes our 

proof of (5.7). 

By Lemma 5.7.6 in the Appendix of this chapter, the matrix V * on the right side of 

(5.7) is non-singular and admits an inverse V^ 1 , so (5.7) leads to: 

= V^ + oP(l). (5.12) 

To prove the theorem, by (5.6) and (5.12), it suffices to show that: 

1 2 / R \ 2 

— X T * - \ I - St)m = -h2°-\ 1 - X> W + oP(h2). (5.13) 
n + 1 a " V k=i / 

From equation (2.16), X = G + r), so: 

- l I X r * - 1 ( / - S%)m = -L^CPV-^I - S%)m + - I ^ H T ^ I - Sl)m. 

Using the identifiability condition on m in (2.4) and S£ = (I — 11T/n)Sh, we obtain: 

(5.14) 
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B y Lemma 5.7.5, the first two terms on the right side of (5.14) are equal to the right side 

of (5.13). 

Now, consider rrj+l<£>~x(I - Sh)m/(n + 1), the (i + l ) t h element of the third term in 

(5.14). Using result (4.42) of Lemma 4.6.4 wi th c = * _ 1 ( I - Sh)m and £ = r ? i + 1 , 

together wi th spectral norm properties introduced in Section 2.4, we obtain: 

- l ^ t f - V - Sh)m = - l - 0 P ( | | * - i ( J _ Sh)m\\2) 

= • I I C - Sh)m\\s) = -^-OpiWV-'Ws • | | ( I - Sh)m\\2) = op(h2). 
lb ~~J~ -L Tb \~ J. 

The last equality was obtained by using that | | * | | _ 1 is bounded (result (5.35) of Lemma 

5.7.2) and - Sh)m\\2 = 0{nll2h2) by result (4.39) of Lemma 4.6.3 wi th r = m. 

Final ly, consider r]f+1^~1llT(I - Sh)m/n(n + 1), the (i + l ) t h element of the fourth 

term in (5.14). Using a similar reasoning as above, we obtain: 

" I ) m ' ^T i ) 0 j , ( l l * ' l l l T ( S f c ~ / ) m | l 2 ) 

= • l | l l T | l f ' 1 1 ( 7 - S h ) m l l s ) 

= -L^Opm-'Ws - IK/ - Sh)m\\2) = op(h2). 

This proves (5.13) and completes our proof of Theorem 5.1.1. 

5.2 Exact Conditional Variance of f3^-i 5 c given X 

and Z 

In this section, we derive an asymptotic expression for the exact conditional variance of 

3*-i,s£, given X,Z: 

Var(3*-i lSc | X , Z) = a2

tB-% • XT*~\l - Sc

h)#(I - S t f ^ X • B ^ (5.15) 
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where Bn^ is defined as in (5.4). The above equality was obtained by using the explicit 

formula of 3 ^ - i > S c in (5.1), together with the fact that Var(Y\X, Z) — cr 2* by condition 

(A2). 

Theorem 5.2.1 Under conditions (AO) and (A2)-(A5), ifn —> oo, h —> 0 andnh3 —> oo, 

the conditional variance of the modified local linear backfitting estimator 3 9 - i > S c of 3, 

given X and Z, is: 

V a r @ 9 - l i a . \ X , Z) = - 1 _ . + £ ^ y - i s ( o ) v - i 

(5.16) 

Comment 5.2.1 By Lemma 5.7.7 in the Appendix of this chapter, the second term in 

the above asymptotic expression for Var(3^,-iSc\X, Z) is Op(n~l) and hence it does 

not dominate the first term, which is QP(n~l). 

Proof of Theorem 5.2.1: 

By (5.15), we have: 

2 

Var(p9-itS* |X, Z) = • C n > * • B~^, (5.17) 

where C n , * = XT*-\l - Sc

h)^(I - Sc

h)T^-xXj(n + 1). Since B~\ V*1 by 

result (5.12), to prove the theorem it suffices to show that: 

C n , * = 4 f 1 + E ̂  ) S ( 0 ) + - ^ T G r * " 1 ( / - S%)#(I - SifV-'G + oP(l). 

(5.18) 
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This fact is shown below with the help of lemmas in the Appendix of this and the 

preceding chapter. 

By (2.16), X = G + r], SO C n ] * can be decomposed as: 

Expanding the last term and re-arranging yields: 

1 1 
C„,* = —-TV**'1* + — - G T * - \ I - S%)*(I - StfV-'G 

+ —-GT*-\I - SD^I - sir*-1* 
+ n + 

1 

-GT*-\I - S%)MI ~ Sc

h)T*-1rt 

1 
n + 1 

VTSf9-1r, 

n + 1 n+1 h h ' (5.19) 

The first term in the above converges to the first term on the right side of (5.18) 

by Lemma 5.7.4. The second term in the above is the same as the second term on 

the right side of (5.18). To show the remaining terms are op(l), it suffices to estab-

lish that Gj+1*-\I - SDMI ~ SDT*-\+l/(n + 1), rfi+lS£^^/(n + 1) and 

rif+1*-1Sc

h*S?9-1rij+1/(n + l) are oP(l) for all i, j = 0,1,.. . ,p. 

Let i,j — 0,1,.. . ,p be fixed. From result (4.42) of Lemma 4.6.4 with c = — 

SD^{I — SDT^f~lGi+i and £ = rjj+1 and from the spectral norm properties introduced 
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in Section 2.4 of Chapter 2, we get: 

-L^nj^ii - si)*(i - si)T^Gz+1 

< - ^ O P W V - X • (1 + \\Sc

h\\F)2 • | | * | | s • | |G i + 1 | | 2) 

= Opin-^h-1) = oP(l). 

To derive the above result, we used Lemma 5.7.2 to obtain that ||^||s a n d 11~11[s are 

0(1). We also used the fact that \\Sc

h\\F is 0(h'xl2) by result (4.54) of Lemma 4.6.7, 

while Gi+i is 0(nl/2) (take r = Gi+i in result (4.51) of Lemma 4.6.7). 

Next, consider r]f+1Sc

h

T^~1r]j+1/(n + 1) = rfi+{&~1 Sc

hr)i+1/(n + 1). This quantity is 

0P{n-ll2h-1'2) = oP{\) by result (4.62) of Lemma 4.6.9 with £* = ry i + 1, f i = * _ 1 and 

£ = rjj+1. Finally, T,T+1*-1S%*S?*-1rij+1/(n +1) is O p ^ / i " 1 ) = oP(l) by result 

(4.64) of Lemma 4.6.9 with £* = r> i+1, ft = fi* = * and £ = r / J + 1 . 

5.3 Exact Conditional Measure of Accuracy of 5 c 

Given X and Z 

Any suitable criterion for measuring the accuracy of Qy-i^i should take into account 

both bias and variance effects. We use the following measure of accuracy for d^-i S c , 

which combines in a natural fashion these effects: 

E (||3*-llS= - 3\\l\x,z) = {ECPV-I^IX,Z) - a)T [E09-1iSO\X,Z) - a) 

+ trace 

Using equation (5.20) above together with Theorem 5.1.1 and Theorem 5.2.1 we obtain 

the following result: 
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Corollary 5.3.1 Assume that the conditions in Theorem 5.1.1 and Theorem 5.2.1 hold. 

Then, when n —> co, h —> 0 and nh? —> oo, we have: 

E (||3*-xlSc - 3\\2\X, Z)=h*-£(l-f2 ^) WTV^W 

+ ̂ I - ^ - ( 1 + E^) trace {V-^VJ} 
2 

+ oP{h4) + oP (^) . (5.21) 

5.4 The y^-consistency of Sc 
' h 

Just as with the usual backfitting estimator 3IS^, we would like the modified local linear 

backfitting estimator /3^-i [ S c to be ̂ /n-consist'ent given X and Z, that is, we would like 

E{\\%-\sl -0\\2

2\X,Z) to be OP{ n 

By result (5.21) of Lemma 5.3.1, £(||3*-i iSc - /9||i|X, Z) is O p(/I 4) + C P (n"1). This 

result is due to the fact that the conditional variance of B^-i S c is Op(n~l) but its 

conditional bias is Op(h2). 

We are interested in assessing at what rate the smoothing parameter h should converge 

to zero so that the squared conditional bias of 3^-1^ tends to zero, but has the same 

order of magnitude as the conditional variance of P><s,-\sc

h- A similar argument as that 

employed in Section 4.4 yields that h should converge to zero at rate n~a, a G [1 /4 ,1 /3) , 

to ensure that the modified local linear backfitting estimator 3^-\s^ is y^-consistent 

given X and Z - exactly as for the usual local linear backfitting estimator 0itsc

h- Note 

that n~a < n - 1 / 5 , so we must 'undersmooth' m^-i S c to achieve \/n-consistency of 

3y-\ S c given X and Z. Here, n~ 1 / / 5 is the 'usual' rate of convergence for h, which we 

believe is optimal for estimating m via m^-i S c . 

80 



5.5 Generalization to Local Polynomials of Higher 

Degree 

The asymptotic results in Sections 5.1-5.4 concern the modified local linear backfitting 

estimator / 3 ^ - i s = . We believe these results readily generalize to the modified local 

polynomial backfitting estimator of 8. The latter estimator is obtained from (5.1) by 

replacing S°h, the smoother matrix for locally linear regression, with the smoother matrix 

for locally polynomial regression of degree D > 1. 

In keeping with the locally polynomial regression literature, we conjecture that the mod

ified local polynomial backfitting estimator of 8 has conditional bias of order <DP(hD+1) 

and conditional variance of order Op(n~l). Note that we may need boundary correc

tions if D is even. We also conjecture that h should converge to zero at rate n~a, 

a € [l/(2D + 2), 1/3), for the modified local polynomial backfitting estimator of 8 to be 

•v/n-consistent given X and Z. 

5.6 The v^-consistency of s c 

The estimated modified local linear backfitting estimator 3 ? - i g c can be obtained from 

(5.1) by replacing \JJ with an estimator 

3~-^ = (xT$-\l - Sftxy1 XT$-\l - S%)Y. (5.22) 

Deriving asymptotic approximations for the exact conditional bias and variance of /3~-i 

given X and Z is not possible, as these quantities are not tractable. The reason for this 

is that \& is random since it is computed from the data. In this section, we give sufficient 

conditions for 8^-^ g c and /3̂ ,-i Sc to be asymptotically 'close', in the sense that the 

difference between these estimators is O p ( n - 1 / 2 ) . Our conditions (5.23) and (5.24) are 
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similar to those imposed by Aneiros Perez and Quintela del Rio (2001a) for establish

ing the asymptotic equivalence of their modified and estimated modified versions of the 

Speckman estimator. 

Theorem 5.6.1 Suppose that the conditions in Theorems 5.1.1 and 5.2.1 hold. In ad

dition, suppose that: 

1 • - l 
^XT{* -*-1){I-Sh)X = oP(l) 

_ L x T ( * _ 1 - *-!)(/ - Sc

h)(m + e) = oP(l) 

Then, if h = n a , a E [1/4,1/3), we have: 

39-.ifl£ = 3 . - . l S c + o p ( - ^ 

(5.23) 

(5.24) 

(5.25) 

Proof: 

To establish (5.25), it suffices to show: 

V^(3$-' s c - £ ) = V^09-\S% ~P) + Op{l). (5.26) 

Using the expression for /3 T-i in (5.22) and Y = XB + m + e (equation (2.1)), we 

write the left side of (5.26) as: 

(3$-,s, -Q) = (^XT*~\l ~ Sc

h)X^
 1 • -±=XT$-\l - Sl){m + e) 

= (^X r *- 1 (I - Sl)X + o F ( l ) ) 1 • (±=XT*-\I - St)(m + e) + o P ( l ) ) 

1 
XT*-\I - Sc

h)X + o p ( l ) 
n 

(^=XT^-\l-Sc

h)(m + e) + op(l) 

- X ' V U I - Sc

h)X 
n 

XT*-\l-Sl)(m + e) 

+ _ Si)X^j - oP(l) + ±=XT*~\l - Sl){m + e) • o P ( l ) + oP(l). 
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By the definition of 3ySc
 m (5-1) w e have: 

^ (3$->h -a)=y/n~ (3*-i l Sc - /3) + QxT*-1(-f - SDX^j • o P (l) 

+ -±=XT*-\I - Sc

h)(m + e) • oP(l) + oP(l). 

Therefore, to prove (5.26), it is enough to show that [XT^f~1(I - Sc

h)X/n) 1 and 

X r * - 1 ( J - S%)(m + e)/y/n are Op(1). 

To prove the first fact, let = X T * - 1 ( i" - Sc

h)X/(n + 1). By (5.12), B " ^ -

V ^ + o P ( l ) , with Vq, as in (2.22), so (XT^-1{I - Sc

h)X/n)'1 = Op(1). To prove the 

second fact, use Bn^ = V * + op(l) (result (5.7)) and Chebychev's Theorem to write: 

-^XT^-\I - Sl)(m + e) = -^=XT^-\I - Sc

h)(Y - X3) 

= • ( V * + op(l)) • {E@9-1ISO\X, Z)-3 + OP (yVar(3*-ilS=|X,Z)) } . 

By result (5.3) of Theorem 5.1.1, £?(3*-i,sj\x> z) - Sis 0P{h2) = 0P{n~2a). Also, 

by result (5.16) of Theorem 5.2.1, Var(3*-i,s= \X, Z) is <r?p(n"1). Since a > 1/4, we 

conclude: 

±=XT*~\I - Sc

h)(m + e) = O p ( V ^ ) • ( o p ( n - 2 a ) + Op Q=)) 

- 0P ( n ^ ) + 0 F ( l ) - OP(1). 

This completes our proof of Theorem 5.6.1. 

Theorem 5.6.1 implies that 3~-i is v^-consistent since 3^-1 S c is v^- c o n s istent. 

One would expect the conditional bias and variance of 3~-i to be similar to those of 
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5.7 Appendix 

Throughout this Appendix , we assume that the assumptions and notation introduced 

in Sections 2.2 and 2.3 of this thesis hold, unless otherwise specified. We also let I(S) 

denote the indicator function of an arbitrary set S. 

The first lemma in this Appendix shows that the correlation matr ix of n consecutive 

observations arising from a stationary autoregressive process of finite order R is invertible. 

The lemma also provides an explicit formula for the inverse of this correlation matrix. A 

proof of this lemma can be found in Dav id and Bast in (2001,Lemma 1). 

L e m m a 5.7.1 Let e i , . . . , e n be successive observations from an AR process of finite 

order R satisfying condition (A2) . If ^ is the correlation matrix of t\, . . . , € „ defined in 

Comment 2.2.1, then its inverse exists and is given by: 

- l 07 UTU - V T V] 

where U and V are n x n Toeplitz lower triangular matrices defined as 

( i \ / 0 

u 

1 

-<t>R 

0 

0 -< 

and V 

-4>i i J 

o 
-<f>R 

(5.27) 

-<t>R 0 0 j 

(5.28) 
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C o m m e n t 5.7.1 Let 14 be as in (5.28) and define 

[U(k)}i,j = I(j = i-k,k + l<i<n) (5.29) 

for k = 1 , . . . , R. T h e n i t can be easily seen that 

u = i - (j>iU(i) 4>RU 

Straightforward algebraic manipulations also yield 

uTu = -Y.MuJk) + u{k)) + £ <t>MuT

[p)uiq) + ul)u(p)) + £<f>lufk)Uw +1, 

(5.30) 

fc=l p, q = 1 fc=l 
p<q 

where 

lUw\ij = I(j = i + k t l < i < n - k ) , (5.31) 

[Ujp)U(q)]. . = / ( j = i + p - q, 1 - p + q < i < n - p), (5.32) 

[Ufq)Uip)]. . = I(j = i-P + qA<i<n-q), (5.33) 

for fc, p, q — 1 , . . . , R and p < q. 

The next lemma shows that, if * is the correlation matr ix of a sample of n consecutive 

observations arising from a stationary AR process of finite order R, then its spectral 

norm is bounded. Furthermore, the spectral norm of is also bounded. 

L e m m a 5.7.2 Let e\,...,en be successive observations from an AR process of finite 

order R satisfying condition (A2) . If \& is the correlation matrix of ex,... ,en defined in 

Comment 2.2.1, then: 

| | * | | s = 0 ( l ) (5.34) 

and 

= 0(1). (5.35) 
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Proof: 

The boundedness of ||\& 1 j | ^ (result (5.35)) follows easily by using the explicit expression 

for in equation (5.27). 

To prove the boundedness of (result (5.34)), use the symmetry of * and a well-

known result on spectral norms to get: 

1*11.9 < 
J'=l 

max | [ * U = max ^ \ P h 

l<i<n ' l < i < n —' h=l-

According to Exercise 13 in Brockwell and Davis (1991), there exist constants C > 0 and 

s G (0,1) so that: 

\Ph\ < C s | / j | for al l h. 

Combining the previous results yields: 

1*11.9 < 
n - 1 

E M 
S(.g<*),-(*rb)' 

and (5.35) follows. 

The following lemma provides a useful asymptotic approximation. 

Lemma 5.7.3 Let e i , . . . , e n be successive observations from an AR process of finite 

order R satisfying condition (A2) . Let \& be the correlation matrix of e\,... ,en. Further

more, let G be an nx ( p + 1 ) matrix defined as in (2.14). If n—* oo, then: 

i 2 f R \ 2 rl 

-—GT*-ll=a-\-[l-YJ<t>k) / g(z)f(z)dz + o(l). (5.36) 
n + 1 a« V *=i / J o 

Proof: 
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B y (5.27), the left side of (5.36) is 

^ 1 

n + 1 

so it suffices to show 

1 - G T * _ 1 1 — GTUTU\ 
° l n + 1 al n + 1 

- G T V T V 1 , 

n + 

1 

l—GTUTUl = (l - E <f>k^j fQ 9(z)f(z)dz + o ( l ) , 

GTVTV1 = o ( l ) . 
n + 1 

(5.37) 

(5.38) 

To establish (5.37), it is enough to show that, for any i — 0 , 1 , . . . ,p, we have: 

2 

>(1). 
y i 

£ < M / Si(z)/(z)ete + o( 
*=i / - 7 0 

Let i — 0,1,... ,p, be fixed. Using the explicit expression for WU in result (5.30), we 

write: 

.2 R 

^ G l M ^ l = -af2-zZ^ (Ujk) + UW) 1 
u fc=i 
.2 * 

p<q 
2 * 

« fe=i n ^ • S T T ^ ' 1 - ( 5 3 9 ) 

Therefore, it suffices to prove that the following asymptotic approximations hold: 

£ & [ ^ X T G ^ i (tff*) + UW) *1 = 2 (E / ' 9i(z)f(z)dz + o(l), (5.40) 

R r 

P, Q = 1 
P<9 

E \ 9i(z)f(z)dz + o(l), 
Jo 

(5.41) 

P, Q = 1 / 
^ P<9 / 
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E*: 
fe=i 

n + E*i / ft(z)/(*)<fc + o(l), (5.42) 

The last result follows from result (4.10). 

l—GT

i+1l = J^ 9l(z)f(z)dz + o(l). (5.43) 

To prove (5.40), it is enough to show that the equalities below hold for any k = 1,..., R: 

^ G f + 1 C / f f e ) l = f gi(z)f(z)dz + o( l ) (5.44) 
n T 1 Jo 

1 
n + l = f *(*)/( 

Jo 
z)dz + o ( l ) . (5.45) 

Using the expression of Ujk^ in (5.31) and a Riemann integration argument, the left side 

of (5.44) can be writ ten as: 

^ n n 

= — r Y\ YI 9i{Zt)I [l = t + k,\<t<n-k) n + 1 t r t r 

t=i 

= / fte)/e)dz + o(l). 
Jo 

Here, we have also used that k does not depend upon n, as R itself does not depend 

upon n. Similarly, using the expression for U(k) m (5.29), we obtain that the left side of 
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(5.45) is: 

1 T 

——-G i + 1 C7(fc) l = 
n + 1 w n + 

n + 

t=l / = 1 

^ n n 

t=i ;=i 

= ^ E ^ ) ~ E ^ ) + « w 
t=k+l t=l 

= / ft(z)/(*)dz + o(l). 
Jo 

Thus, both (5.44) and (5.45) hold. 

A similar argument can be used to derive (5.41) and (5.42). The only difference in the 

proofs is that the range of summation for t in J2tgi{Zt) changes. 

It remains to prove (5.38). To establish this result, it is enough to show that G ^ h l V T V l / ( n + 

1) is op(l) for a l H = 0 , 1 , . . . ,p. 

Let i = 0 , 1 , . . . , p, be fixed. B y the definition of V in (5.28), we have: 

/o A 

VGi+l = 

0 

-<t>R9i{Z\) 

-<t>R-i9i(Zi) - <f>Rgi(Z2) 

\ -<?\gi{ZX) - (p2gi(Z2) 4>R9Z{ZR) J 

Since &(•) is bounded by assumption (A0)-(i), | | V G j + i | | 2 = 0(1)- A similar argument 

yields | |V1 | |2 = 0(1)- Combining these results, we obtain: 

1 

n + l 
G f + 1 V T V 1 ^ r x T l l V G i + i | | 2 • | | V 1 | | 2 = CU) • 0 ( 1 ) = 0 ( V n ) = o(l), 

To ~T~ X To ~x~ 1 

so Gj^V'Vl/in + l) is o(l). 

89 



The following lemma provides a result concerning the convergence in probability of a 

random matrix. 

Lemma 5.7.4 Suppose the assumptions in Lemma 5.7.1 hold. Let (rjn,..., rjip)T, i — 

1,... ,n, be as in condition (AO)-(ii) and let rj be an n x (p + 1) random matrix defined 

as in (2.10). Then, as n —> oo: 

^ r * - S = ^ - ( l + E«) S ( 0 ) + op(l) (5.46) 

where S ' 0 ' zs defined as in equation (2.15). 

Proof: 

By (5.27), the left side of (5.46) can be written as: 

n + 1 cr2 n + 1 a 2 n+1 

so it suffices to show 

-L-rfWUri = (l + E )̂ S ( 0 ) + 

n + 1 

In fact, if £ ^ — (Ey), it is enough to show: 

L-nf^Ur]^ = ^1 + E ^ + OP(1), (5.47) 

n + I^+iV T Vr7 i + 1 = op(l), (5.48) 

n + 
1 

for any i,j = 0,1,... ,p. 
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Let i,j = 0,l,...,p, be fixed. Using the explicit expression for * in (5.27), we write: 

R 1 1 
^pffi+MTU-qi+1 = - fa ^ T ^ r + i (Ul + U(*)) Vj+i 

fc=i 
R 

+ E 
p<g 

n + jvl+i (C/fp )C/ ( g ) + C / f g ) L/ ( p ) )r7 j + 1 

E< 
fc=i 

1 
n + l vT+iUjk)U{k)r]j+i + ^jvf+iVj+i (5-49) 

In order to establish (5.46), we wi l l show that 

R 

fc=i 

1 
n+jvI+iUfk)Uik)Vj+1 

1 

X>2 S i j + o P ( l ) , 
vfc=i 

ri+-Vi+iVj+i = E i j + o P ( l ) , 

and the remaining terms in the right side of (5.49) are op ( l ) . 

(5.50) 

(5.51) 

Result (5.51) holds by result (4.9). To prove (5.50), we use condition (AO)-(ii) and the 

Weak Law of Large Numbers for a sequence of independent variables to write: 

n + 

1 1 " " 
n-^vI+iUfk)U{k)Vj+1 = -r-r-yEE7^ [uJk)U(k)]tilmj 

— E E Vtjlil = t,l<t<n-k)riij 
t=i i=i 

.. n-k 
1 V \ P 

= — T T A , Vt.iVtj > E (m.iVij) = 
n + l n-+oo 

and (5.50) follows easily. 

We now show that the first term in (5.49) is Op ( l ) . We have: 

R \ I 1 R ( 1 
E fa 7—T^f+i^ffc) + U{k))vj+i = E fa ( ^TT^+i^ffc)^--
fc=i L J fc=i v 

/ 1 
+ Hfa [j+^^^i (5.52) 
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so it suffices to analyze the term inI+iUjk)'nj+i/{ri + 1)> a s vf+iU(k)Vj+i/(n + 1) is its 

transpose, wi th i and j interchanged. Using the expression for 1 7 i n (5.31), we obtain: 

^ n n 
= ——r E E '7t>^(i = i + >̂ 1 < t < n - k)rjU n+l — t=i (=i 

1 n— 
1 ^—"\ p 

= — p r / . Vt,iVt+k,j > E (r)hir)1+k:j) = E(r)hi)E(rj1+kij) = 0. n -\- 1 — n—*oo t=l 

The above result was obtained by using the fact that {vt.iVt+kj}^! is a sequence of k-

dependent, identically distributed random variables (condition (AO)-(ii)), so the quantity 

Y^t=i Vt,iVt+k,j/(n + 1) converges to E {r)i:irji+kj) by the Weak Law of Large Numbers for 

fc-dependent sequences of random variables. We conclude that the term 'nJ+1Ujk^,qj+1/(n+ 

1) is op( l ) , so the first term in (5.49) is op ( l ) . Using a similar reasoning, we can show 

that the second term in (5.49) is also op ( l ) . 

It remains to show (5.38). B y the definition of V in (5.28), we have: 

0 

VVj+i = ~cf>RV\,j 

-fpR-lVlj - $R?}2,i 

\ 

\ - 4>Rm,i j 

so ||V?7 : ; + 1 | |2 = 0(1) by assumption (AO)-(ii). A similar argument gives | |V»7j + 1 | |2 

0(1). Combining these results yields: 

n + l 
T 7 f + 1 V T V 7 7 j + 1 < n + l 

1 

n + l 

i+ll |2 • l | V T 7 j + 1 | | 2 

Op(l)-Op(l) = 0P(l/n) = oP(l)) 
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so rf:+1VTVr)j+l/(n + 1) is oP(l). This completes our proof of Lemma 5.7.4. 

The following lemma provides asymptotic approximations for non-random quantitities 

involving the bias associated with estimating a smooth function m(-) via locally linear 

regression. 

L e m m a 5.7.5 Suppose the assumptions in Lemma 5.7.1 hold. Let G be an n x (p + 1) 

matrix defined as in (2.14) such that condition (AO)-(i) is satisfied, and Sh be an n x n 

local linear smoother matrix defined as in (3.6)- (3.8). Set m = (m(Zi),... ,m(Zn))T, 

where m(-) satisfies condition (A4) and the Zt's satisfy the design condition (A3). Then, 

if' n —> oo, h —> 0 and nh? —> oo: 

— - j — G T * - 1 ( I - Sh)m — - h 2 ^ f l — £ <t>k) ^p- f1g(z)m"(z)f(z)dz + o(h2) 
n + i CT« V fc=i / 1 J o 

(5.53) 

and 
2 

n (n 1—GT*-illT(Sh-I)rn = h2^ ( l - | > ) ^ fQ9{z)m"(z)f{z)dz 

[ g(z)f(z)dz + oP(h2), (5.54) 
Jo 

X 

/o 
where g(z)f(z)dz and g(z)m"(z)f(z)dz are defined as in equations (2.18) and 

(2.19). 

Proof: 

We first prove (5.53). Using the explicit expression for in equation (5.27), we write 

- ± - G T * - \ l - Sh)m = ^ • -^-GTUTU(I - Sh)m n + 1 cH n + 1 
0"e 2 1 rp rri 

- — • — G r V T V I - 5 , m , 
a 2 n + 1 
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so it suffices to show that 

1 
n + 1 

G'WUil - Sh)m 1-X>J Jo g(z)m"(z)f(z)dz + o(h2) 

1 
GTVTV(I - Sh)m = o{tf). 

n + 1 

These facts follow by proving that 

n + 

1 

l—GJ+lUTU{I - Sh)m = -h2 ^ - E <f>^j j[* 9i(z)m"(z)f(z)dz + o(h2) 

- G + 1 V J V ( / - Sh)m = o(h2), n + 1 

for any i = 0,1,.. . ,p. 

First, consider (5.55). Using the expression for UTU in (5.30), we have: 

R 

(5.55) 

(5.56) 

n + 
l—Gj+1UTU{I - S,)m = E fa ^ G f + 1 ( E / f > + U{k))(Sh - I)m 

k=l 
R 

E 
P, ? =1 

p<q 
n + 

jGi+1(Ulp)U{q) + Ulq)Uip))(Sh - I)m 

TGr+1J7ffc)C7(fc)(S/l-/)m n + 

n + 
-G?+1(Sh-I)m (5.57) 

Thus, to establish (5.53), it suffices to show that the last two terms are o(h2) and the 

remaining terms can be approximated as: 

R T 1 1 
E ^ -—Gf+1(Ujk) + Uik))(Sh-I)m 
k= i L + J 

= h* (2^^) fQ9i(z)ml'{z)f{z)dz + o(h2), (5.58) 
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£ 4>P<l>q 
p, q = 1 

p<q 

—Gi+1(Ulp)Uiq) + Uiq)Uip))(Sh - I)m 

I R \ 
= h2 2 y cpp4>q 

V p, 1 =1 

»2{K) f1 

J 
f 9i(z)m"(z)f(z)dz + o(h2), (5.59) 

JO 

k=l 

-Gj+lUT

{k)U{k)(Sh-I)m 
n + 

h2 ^ j fa 9i(z)m"(z)f(z)dz + o(h2), (5.60) 

and 

1 rT (s n m - h 2 v 2 { K ) 

—GM{Sh-T)m-— ^ 
f1

 gi(z)m"(z)f(z)dz + o(h2). (5.61) 
Jo 

The last result follows easily from result (4.66) of Lemma 4.6.10. 

To prove (5.58), it suffices to show that the equalities below hold for any k = 1 , . . . , R: 

h2v2{K) f1 

- ^ G f + 1 E 7 [ f c ) ( S f c - I)m = j f 9i(z)m"(z)f(z)dz + o(h2), 

-±-Gf+1U(k)(Sh - I)m = f 9i(z)m"(z)f(z)dz + o(h2). 

(5.62) 

(5.63) 

Consider the left side in (5.62). Using the expression for Ujk) in (5.31), the boundedness 

of cii(-) (condition (A0)-(i)) and result (4.34) of Lemma 4.6.1 wi th r = m, we obtain: 

L-GZ,U?k){Sh-Ih — EE9i(Zt) Mk)]u • l(Sh - J ) m ] , 

= r+~l ^ ^ 9i(Zt)I(l = t + k, 1 < t < n - k) [Bm{K, Zh h)-h2 + o(h2)] 

t=i (=i 
n—k 

^y9i{Zt)Bm{K,Zt+k,h) 

= h2 (Vn + Qn) + o(h2), 

+ o(h2) 

(5.64) 
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where Vn = YTtJy gi{Zt+k)Bm(K, Zt+k, h)/(n + 1) and 

Qn = (9i(Zt) - 9i{Zt+k)) Bm(K, Zt+k, h)/(n + 1). 

A Riemann integration argument allows us to approximate Vn as 

fc 
Vn = ~~T E 9i(Zt)Bm(K, Zu h) - £ 9i(Zt)Bm(K, Zt, h) 

n + 1 t=i n + i t=i 

= ^p-j\i(z)m''(z)f(z)dz + o(l). 

The last equality was obtained by using the fact that k does not depend on n and gi(-) is 

bounded (condition (AO)-(i)). We also used the fact that Bm(K, z, h) is bounded for all 

z G [0,1] and h < ho, with ho G [0,1/2] small enough, by result (4.35) of Lemma 4.6.1, 

Lemma 4.6.2 and condition (A4). 

Using the fact that <?*(•) is Lipschitz continuous with Lipschitz constant C* (condition 

(A0)-(i)) and that the Zt's satisfy the design condition (A3), we bound Qn as: 

n—k 
\Qn\ < —j - r E \9i(Zt) ~ 9i(Zt+k)\• \Bm(K, Zt+k, h)\ 

n + t=i 
^ n—k k — 1 

^ C ^ T T E E \9i(Zt+i) - gi(Zt+l+1)\ 
t—i i—o 

< c i f k ) = c , k i = 0 ( 1 ) , 

Substituting the results concerning Vn and Qn in (5.64) yields (5.62). A similar argument 

can be used to prove (5.63). The only difference in the proofs is that the range of 

summation for 'S2tgi(Zt)Bm(K,Zt+k,h) changes. 

Combining (5.62) and (5.63) yields (5.58). Similar arguments can be employed to obtain 

results (5.59) and (5.60). 

96 



It remains to prove (5.56). B y the definition of V in (5.28), we have: 

V(J - Sh)m 

0 

-Mii-Sh)™.]! 
- f o _ i[(I - 5fc)m]i - fo[(I - Sh)m}2 

\ - 0 i [ ( / - Sfc)m]x - 02[(I - 5ft)m]2 Mil - Sh)m}R J 

B u t ||V(/ - Sh)m\\2 = G(h2), since for i = 1 , . . . , R, \(Sh - I)m]i = 0(h2) by Lemma 

4.6.2. We know that | | V r 7 i + 1 | | 2 = 0(1). Combining these results yields: 

1 
n + l 

Gf^V'Vil-S^m < 
1 

n + l 
1 

n + l 

||VGi+1||2-||V(I-Sfc)m||2 

0(1) • 0(h2) = 0 ( l / n ) = o{h2) 

so Gf+lVTV(I - Sh)m/(n + 1) is o(h2). 

Result (5.54) follows easily, by writing: 

1 G r t f - 1 l l r ( S - I)m 
1 -G T * _ 1 1 

1 
n + l 

lT(Sh - I)m 
1 

1 + -
n n (n + l ) x /""~ \n + l 

and using Lemma 5.7.3 and result (4.66) of Lemma 4.6.10 wi th G replaced wi th 1. The 

proof of Lemma 5.7.5 is now complete. 

Let V<i, be the matr ix defined in (2.22). The next result concerns the existence of an 

inverse for and provides an explicit expression for this inverse. We do not provide a 

proof for this result, as one can easily verify that V^V^,1 = V^V<y = I by using the 

expression of given in Lemma 5.7.6 below. 
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L e m m a 5.7.6 Let V * be the (p+1) x (p+1) matrix introduced in (2.22) and define the 

px 1 vector a as a — (J* gi(z)f(z)dz,..., gp(z)f(z)dz)T. Here, /(•) is a design density 

satisfying condition (A3) and gi(-),..., gp(-) are smooth functions satisfying condition 

(AO)-(i). Furthermore, let £ = (£;j) be the variance-covariance matrix introduced in 

condition (AO)-(ii). Then V ^ 1 exists and is given by: 

I 1 1 
( i - E t i « 2 + i + E f = 1 ^ 

i 

a r E _ 1 a 

V 
-E _ 1 a i' 

a r E - : 

E - 1 

provided E 1 exists. 

The last result in this Appendix provides a useful asymptotic bound. 

L e m m a 5.7.7 Suppose the assumptions in Theorem 5.2.1 hold. Then, if n —> oo, h —> 0 

and nh3 —> oo, we /iai;e: 

— L — V ^ G ^ C I - S £ ) * ( J - 5 ^ ) T * - 1 G V i 1 = 0{n-1). (5.65) 

Proof: 

To prove (5.65) it suffices to show that 

1 - ^ G T ^ - \ I - Sc

h)*(I - SifV-'G = Oin-1), (5.66) 

since the elements of the (p + 1) x (p + 1) matrix V ^ 1 do not depend upon n. Result 

(5.66) follows by showing that G f + 1 * _ 1 ( T - S c

h ) V ( I - S c

h ) T * - 1 G j + l / ( n +1)2 is 0 ( 0 

for any i, j = 0,1,... ,p. 
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Let i, j — 0 , 1 , . . . ,p be fixed. Using vector and matr ix norm properties introduced in 

Section 2.4, we obtain: 

1 

(n + l ) ' 

< 
1 

I - Sc

hY tf-^+xlla • | | * | | s • | | ( I - SffV-'G^lU ( n + l ) 2 ' 

< O ( n - 2 ) • | | ( / - SlY^G^W, • | | ( I - Sc

h)T^lGj+1\\2, (5.67) 

since | | * | | s is 0 (1 ) by result (5.34) of Lemma 5.7.2. Thus, it suffices to show that 

||(/ - Sc

h)T*-lGi+l\\2 and ||(7 - S%)T*-lGj+1\\2 are 0(n^). 

Let v = * _ 1 G j + i ; using S£ = (7 - 11T/n)Sh (equation (3.1) wi th = Sh) we write: 

| |(7 - SlfV-iG^Wt < WV-'G^W, + WSfV-'G^W, 

= | | « | | 2 + | | ^ « | | 2 

= 11*112 + 

< IHl2 + | | S ? « | | a + 

1 
5^(7 - - 1 1 > 

n 

(5.68) 

If vt denotes the i t h component of v, we can show that there exists C > 0 such that 

\vt\ < C for all t = 1 , . . . , n. Indeed, by the expression for in (5.27) and Comment 

5.7.1, we have: 

v- = G T j + 1 * - i = ̂  . Gj+1UTU ~ "f2 • Gj+1VTV 

~ 2 ' -TtMufk) + uw)+ £ 0 A ( i / f p ) t / ( 9 ) + r7f ? )L/ ( p )) 
fc=l 

+ 5>2c/ffc)c/(fc) + 7 
p, 1 = 1 

p<q 

k=l 

so it suffices to show that the quantities Gj+Il/Jk), Gj+1U(k), GJ+iuJP)U(q)^ Gj^Uf^U 

and Gj+1Ujk)U(k) have bounded components for all k,p, q = 1,...,R, p < q, and 
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G j + 1 V T V also has bounded components. These facts follow easily from the sparse-

ness of C7(fc) and V (see Comment 5.7.1) and the boundedness of Gj+i's components 

(condition (AO)-(i)). 

The boundedness of v's components implies that ||u||2 is 0(nll2), WS^vWv is C(n 1 / / 2) and 

\\Sl(llTv/n)\\2 is C(n 1 / 2 ) . The last two results follow by result (4.49) of Lemma 4.6.6. 

Using these asymptotic bounds in (5.68) yields that ||(J - Sc

h)T^~lGj+i\\2 is 0(n 1 / 2 ) . 

A similar argument gives that \\(I - Sc

h)T^~lGi+i\\2 is 0(n1/2). 
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Chapter 6 

Choosing the Correct Amount of 

Smoothing 

The estimators of the linear effects in model (2.1) considered in this thesis depend on a 

smoothing parameter h. This parameter has a dual function. On one hand, it influences 

the statistical properties of the estimated linear effects. On the other hand, it controls 

the shape and smoothness of the estimated non-linear effect. Our focus in this chapter is 

on developing data-driven methods for choosing h so that we obtain accurate estimators 

for the linear effects of interest. These methods may not be the most appropriate for 

accurate estimation of the non-linear effect, as they may undersmooth its estimator. 

This chapter is organized as follows. In Section 6.1, we introduce some useful notation. 

In Section 6.2, we introduce methods for choosing the correct smoothing parameter for 

the usual and modified local linear backfitting estimators of the linear effects of interest 

in model (2.1). These methods require the accurate estimation of the nonparametric 

component m and the error correlation structure, topics discussed in Section 6.3. Finally, 

in Section 6.4 we introduce methods for choosing the correct smoothing parameter for 

the estimated modified local linear backfitting estimators of the linear effects of interest 

in model (2.1). 
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6.1 Notation 

In what follows we are interested in the accurate estimation of a linear combination cF 8 

of the linear effects 3 in model (2.1), where c = (co, c\,..., cv)T is a known vector with 

real-valued components (e.g: c = (0,..., 0,1, 0,. . . , 0)T). 

Throughout this chapter, we denote fii,sc

h> 3^,-iiSc and /3~-i g c generically by 3U h in 

order to emphasize their dependence upon the amount of smoothing h. We want to 

choose the amount of smoothing h to accurately estimate cT3 via c T 3 n h . Given that 

3~-\ is conceptually qualitatively different than the other estimators considered here, 

we defer its discussion to Section 6.4. In the remainder of this chapter, unless otherwise 

stated, we assume that Cl stands for J or St - 1. 

The correct choice of h depends on the conditional bias and variance of c T 3 n h given X 

and Z. We provide below explicit expressions for these quantities. 

The exact conditional variance of c T 3 i l h equals cTVar(3n h\X, Z)c. Expressions for 

Var0n,h\x, z) are found in (4.17) when fl = I and in (5.15) when Cl = Thus: 

cTVar(pu>h\X, Z)c = a2cTMa,h*M^hc = Var(h; Cl), (6.1) 

where 

M n , f c = (XTCl(I - 5 ^ ) X ) - 1 X T f i ( I - Sc

h). (6.2) 

The exact conditional bias of c T 3 n h equals cTBias(3Uh\X, Z) and can be obtained 

from (4.2) when Cl = I or (5.2) when Cl = *_1: 

cTBias(/3nA\X, Z) = cTMn,hm = Bias(h; Cl). (6.3) 
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6.2 Choosing h for cTf3j >Sc and cT/3^-i S c 

The estimator c1' 3^h depends on the smoothing parameter h. To obtain an accurate 

estimator cT 3 U h of cT3 we choose h so that it minimizes a measure of accuracy of 

c T 3 a h . Although the smoothing parameter h quantifies the degree of smoothness of 

"in.fti a 'good' value for h should not necessarily be chosen to minimize a measure of 

accuracy of rfici,h as, in the present context, m is merely a nuisance. 

Since c T 3 n h is generally biased in finite samples, we assess its accuracy via its exact 

conditional mean squared error, given X and Z: 

MSE(h; ft) = Bias(h; ft)2 + Var(h; ft). (6.4) 

We define the MS ^-optimal amount of smoothing for estimating cT3 via cT3a h as the 

minimizer of MSE: 

hMSE = argmin MSE(h; ft). (6.5) 
h 

From equations (6.1) and (6.3), one can see that h^SE depends upon the unknown 

nonparametric component m as well as the error variance a2 and the error correlation 

matrix * , which are typically unknown. Thus, h^SE is not directly available. 

To date, no methods have been proposed for estimating hf}SE when the model errors 

are correlated. However, when the model errors are uncorrelated and ft = J , Opsomer 

and Ruppert (1999) proposed an empirical bias bandwidth selection (EBBS) method for 

estimating h[jSB. We describe this method in Section 6.2.1. We propose modifications 

of the EBBS method to estimate h^SE when the errors are correlated not only for 

ft = J , but also for ft — in Section 6.2.2. Finally, in Section 6.2.3 we propose a 

non-asymptotic plug-in method for estimating h^SE in the presence of error correlation 

when ft equals I or V& - 1. Each method minimizes an estimator of MSE(-; ft) over h in 
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some grid. Throughout, we let H = {h(l),h(N)} denote the grid, for some integer 

N. 

6.2.1 Review of Opsomer and Ruppert's EBBS method 

In this section, we provide a detailed review of Opsomer and Ruppert's EBSS method. 

Throughout this section only, we assume that the errors associated with model (2.1) 

satisfy \& = i". Specifically, we assume that these errors satisfy the assumption: 

(A6) The model errors et,i = 1,... ,n, are independent, identically distributed, having 

mean 0 and variance a\ G (0, co). 

We also consider $"2 = I, so that the results in this section will apply exclusively to 

0 I h , the usual local linear backfitting estimator of cT3. 

Under the above conditions, the EBBS method attempts to estimate h^SE by minimizing 

an estimator of MSE(-\ I) over TC, a grid of possible values of h. For a given h(j) G TC, 

Opsomer and Ruppert find an estimator for MSE(h(j);I) by combining an empirical 

estimator of Bias(h(j); I) with a residual-based estimator of Var(h(j); I). We discuss 

the details related to computing these estimators below. 

Opsomer and Ruppert use a higher order asymptotic expression for E(cT0Ih\X,Z) — 

cT0, the exact conditional bias of cFQIh, to obtain: 

as h —> 0, where at,t = 1,... ,T, are unknown asymptotic constants referred to as bias 

coefficients. This expression can be obtained by a more delicate Taylor series analysis in 

(4.3). This yields the approximation: 

T 
(6.6) 

T+l 

E(cTpIih\X, Z) = cT0 + J2 ath* + o(h1+T). (6.7) 
t=2 
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For fixed h(j) € H, Opsomer and Ruppert estimate Bias(h(j)\I), the exact conditional 

bias of cT3Iih(j), as follows. They calculate cT3Ih^ for k e {j — ki,..., j + k2}, for 

some ki, k2. Note that j must be between ki + 1 and N — k2, inclusive. They then fit 

the model: 

E(cTJ3Iih\X, Z) = a0 + a2-h2 + --- + aT+1 • hT+1 (6.8) 

to the 'data' j (h(k), c?3Ih(k^ : k — j — k\,..., j + A; 2 | using ordinary least squares. 

This results in the fit: 

E(cT0i,h\X, Z) = a0 + a2-h2 + --- + aT+1 • hT+1. (6.9) 

An estimator for Bias[h(j); I) is then: 

Bio7s(h(j);I) = E(cTpIMj)\X, Z) - So 

= a2 • h(j)2 + • • • + aT+1 • h(J)T+1. (6.10) 

Here, ki, k2 and T are tuning parameters that must be chosen by the user. We must have 

k\ + k2 > T since the T + 1 parameters ao, a i , . . . , ar will be estimated using k\ + k2 + 1 

'data' points. 

Opsomer and Ruppert estimate Var(h(j); I), the exact conditional variance of cT8Ih^, 

by using (6.1) with *ff = I but with a2 replaced by the following residual-based estimator: 

^2 _ \\Y ~XPiMi) ~ miMi) 12 

n 

This yields: 

Var{h{j); I) = ^ M W ) M j W ) c . (6.11) 

Finally, Opsomer and Ruppert combine (6.10) and (6.11) to obtain the following estima

tor of MSE(h(j);I), jfci + 1 < j < N - k2: 

MSE(h(j);I) = Bia7s(h(j);I)2 + Va7r(h(j); I). 
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They then estimate hj^SE, the minimizer of MSE(-;I), as follows: 

hMSE= argmin MSE(h(j);I). 
ki+l<j<N-k2 

We see that h^SE attempts to estimate h^SE, the smoothing parameter which is MSE-

optimal for estimation of cT(3. It is not clear however whether using hj^SE yields a 

V^n-consistent estimator of cT0. 

The variance estimator Var(h(j); I) in (6.11) depends on the matrix Mj^(j)- To speed 

computation of MI;h^, and hence Var(h(j);I), Opsomer and Ruppert suggest the 

following. First, take fl = I and h = h(j) in (6.2) and re-arrange to obtain an alternative 

expression for 

M i m = (xT(i - sc

h{j))xylxT(i - s%U)) 

= (XT(X - S<h(j)X))-\XT - XTSc

h{j)). (6.12) 

Then, compute the product Sc

h^X in (6.12) by smoothing each column of X against 

the design points Z\,... ,Zn. Finally, compute the product XTS°h^ in (6.12) by using 

the approximation XTSc

h^ « (S%^X)T. This approximation is justified by the near 

symmetry of Sc

h^y These computational tricks can also be used to ease the burden 

involved in calculating 0ith(j),h(j) G Ti, as 8i,h(j) c a n be easily seen to depend upon 
MiMJ)-

A peculiar feature of the estimator o\ 7 of a\ is that it uses residuals based on the 

'working' bandwidth h(j) G Ti, instead of a bandwidth optimized for estimation of of. 

As an alternative to estimating of with the 'working' bandwidth h, Opsomer and Ruppert 

suggest that one could use residuals based on a bandwidth optimized for estimation of 

a\ as in Opsomer and Ruppert (1998). 

For implementing the EBBS method in practice, Opsomer and Ruppert (1999) suggest 

using a grid size N = 18 and grid values equally spaced on the log scale. They recommend 
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using the following values for the tuning parameters involved in this method: ki = 1, k2 = 

2 and T — 1. For situations where MSE(- \ I) is found to have more than one minimum 

as a function of h, they suggest that one could take hMSE to be either the h value where 

the global minimum occurs, or the h value where the first local minimum occurs. The 

authors advise that they found the former approach to be superior to the latter in their 

simulation studies. 

6.2.2 Modifications to the EBBS method 

Here we adjust the EBBS method to deal with estimating h^SE when the model errors 

are correlated and fl = I or Cl — The modified EBBS method attempts to estimate 

hMSE by minimizing an estimator of MSE(-\Cl) over the grid Ti. For a given h(j) € H, 

this estimator is obtained by combining an empirical estimator of Bias(h(j);Cl)t the 

exact conditional bias of c T 3 n h , with a residual-based estimator of Var(h(j);Cl), the 

exact conditional variance of cT3Uh. Specifics are provided below. 

The modified EBBS method uses a similar bias-estimation scheme to that employed in 

the EBBS method in order to estimate Bias(h(j);Cl). This scheme relies on the following 

asymptotic bias approximation: 

x+i 
E(cTpn:h\X, Z) = cT3 + y athl + o(h1+T), (6.13) 

t=2 

which parallels (6.7), and yields the estimator Bias(h;Cl). 

However, the modified EBBS can no longer rely on the residual estimation scheme uti

lized in the EBBS method for estimating Var(h(j);Cl). The reason for this is that 

Var(h(j);Cl) depends not only on the error variance cr2, but also on the error correlation 
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matrix * . For ft = J , we propose to estimate Var(h; ft) via: 

S j ^ M n ^ M j hc, if * is known and of is unknown; 

Var(h; ft) = < a 2 c T M Q ^ M ^ C , if * is unknown and of is known; (6.14) 

CT2cTMn,h*iVf^ h c, if * is unknown and of is unknown. 

For ft = SP - 1 , if of is unknown, we propose to estimate Var(h; ft) via: 

Var(h; ft) = a2cT'MU^MT

u<hc. (6.15) 

The estimators in (6.14)-(6.15) have been obtained from (6.1) by substituting of for of 

and * for * whenever appropriate. Details on how to obtain reasonable estimators of 

and * are provided in Section 6.3.2. 

In summary, the modified EBBS method finds the minimizer: 

h^sE — argmin ^Bias(h; ft)2 + Var(h; ft) j = hEBBS_L, (6.16) 

with h G TL = {h(l),..., h(N)}, Bias(h;Q) obtained via the bias-estimation scheme 

described earlier, and Var(h;Q) as in (6.14) if ft = I or as in (6.15) if ft = and 

of is unknown. Here, the label 'EBBS — U denotes the fact that the modified EBBS 

method estimates Bias(h;fl) by local ordinary least squares regression. 

It is possible to estimate Bias(h; ft) by performing global, rather than local, ordinary 

least squares fitting. Specifically, we can perform just one least squares regression, using 

the 'data' ^(h(k),cT/3nh^ : k = 1,..., ivj. We refer to the method that finds the 

minimizer of (6.16), with Bias(h;fl) obtained by global ordinary least squares fitting, 

as the global modified EBBS method. We denote the amount of smoothing this method 

yields by h£BBS_G. 

Before concluding this section, we indicate how the modified EBBS methods can be 

generalized if one is interested in smoothing parameter selection for accurate estimation 

of cT0 via the usual or modified local polynomial backfitting estimators. For simplicity, 

in this section only, we denote both of these estimators by cT/3ah. 
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The variance-estimation scheme to be used in the generalized modified EBBS methods 

should be the same as that employed in (6.14)-(6.15). Obviously, the quantities a 2, M^,h 

and * involved in these equations should be computed based on locally polynomial 

regression of degree D > 1, instead of locally linear regression. We conjecture that the 

bias-estimation scheme would have to rely on the asymptotic approximation 

T+l 

E(cT0Uih\X,Z) = cT3+ J2 athT + o(h1+T) 
t=D+l 

instead of (6.13). Note that we must have T > D. 

6.2.3 Plug-in method 

In this section we introduce yet another method for estimating the optimal amount of 

smoothing h$SE in the presence of error correlation whenever fi = I or fi = * _ 1 , namely 

the non-asymptotic plug-in method. Recall that h^SE was defined as the minimizer of 

MSE(-; fi) in (6.4). Thus, we might find a reasonable estimator for h^SE by minimizing 

an estimator of MSE(-; fi) over a grid of possible values for the smoothing parameter h. 

We propose estimating MSE(h(j); fi) by assembling plug-in estimators of its exact bias 

and variance components, Bias(h(j)\fl) and Var(h(j); fi). 

More specifically, we propose to estimate Var(h(j); fi) using (6.14) if fi = J and (6.15) if 

fi = and of is unknown. Furthermore, we propose to estimate Bias(h(j) \ f2) using 

(6.3), but with m replaced by an accurate estimator m: 

Bias(h; fi) = cTMn,hrn. (6.17) 

Details on how to obtain an accurate estimator m of m are provided in Section 6.3.1. As 

remarked before, when fi = M n , / , depends upon the error correlation matrix 

Thus, if * is unknown, we must substitute * for * in the expression for JWn.ft) where 

* is obtained as in Section 6.3.2. 
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Finally, minimizing the estimator of MSE(-; fl) obtained by combining (6.17) wi th (6.14) 

for fl — I, or (6.15) for fl = and cr2 unknown, over a grid of possible values for h 

yields the desired plug-in estimator of h^SE: 

hMSE = argmin {Bias(h(j);fl)2 + Var(h(j);fl)\ =h^WG_IN. (6.18) 
hen J 

6.3 Estimating m, <j\ and ^ 

Here we introduce methods for (1) accurately estimating the nonparametric component 

m in model (2.1) in the presence of error correlation and (2) estimating the variance 

of and the correlation matrix \& of the errors associated wi th model (2.1). Es t imat ing 

m , of and * is difficult because of the confounding between the linear, non-linear and 

correlation effects. We hope that the combined way of estimating m , cr2 and \& proposed 

in this thesis w i l l enable us to do well when estimating B. 

6.3.1 Es t ima t ing m 

In this section, we consider the issue of accurately estimating the nonparametric com

ponent m in model (2.1) when the model errors are correlated. Recall that we need 

an accurate estimation of m for estimating the exact conditional bias of cT/3fj h m the 

plug-in method in (6.17). We propose estimating m v ia mn,/,, w i th fl = I and wi th h 

chosen by cross-validation, modified for correlated errors. 

Throughout this section, we thus consider that fl = I. We also let Xf = (1, Xu,..., Xip) 

denote the z t h row of the matr ix X in (2.2). 

To assess the accuracy of rrijh as an estimator of m for a given amount of smoothing h, 
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we use the mean average squared error of mj^ : 

MASE(h-I) = E 
1 71 2 

-^2{fhi>h(Zi) - m(Zif) 
x,z 

= E - £ ( m / l f c ( Z 0 + Xf/3 - m(Zi) --XJ3)2 x,z 

= E 
1 n 2 
-^(Yt-EWXitZij) x,z (6.19) 

i=l 

where yj = rnIA(Zi) + Xj3 and £?(Yi| JTi, Z4) = m(Zj) + Xjd. We define the MASE-

optimal amount of smoothing for accurate estimation of m via mj/j as: 

h M A S E = argrain MASE(h; I). 
h 

(6.20) 

From (6.19) we can see that hMASE depends on the bias and variance associated with 

estimating the non-parametric component ra, which in turn depend on m itself. Since 

in practice m is unknown, hMASE has to be estimated. 

To estimate h^ASE, we propose using the modified (or leave-(2Z +l)-out) cross-validation 

method originally formulated by Hart and View (1990) in the context of density estima

tion and studied by Chu and Marron (1991) and Hardle and Vieu (1992) in the context 

of nonparametric regression with correlated errors. Aneiros Perez and Quintela del Rio 

(2001b) recommend modified cross-validation in the context of partially linear models 

with a-mixing errors. These authors used a version of the Speckman estimator with 

boundary-adjusted Gasser-Miiller weights to estimate m. 

The modified cross-validation method estimates hMASE by minimizing an estimator of 

MASE(h;I): 

. 2 

M^E{ha)-\zZ{yth''l)-Y^ 
1 = 1 

(6.21) 

This estimator is obtained from (6.19) by dropping the outer expectation sign, substi

tuting E(Yi\Xi, Zi) with Yi, and replacing Yi with Y^1' l \ a prediction of Y$ — Xj3 + 
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m(Zi) + €i based on data points (Yj, Xji,..., XjP, Zj) which are believed to be uncorre-

lated wi th Yi. More specifically, 

Y ^ - X j ^ + ^ i Z i ) , (6.22) 

where 0Ih

hV> and friI~h

hi\zi) are estimators of 0 and m(Z\) obtained from the data 

points (Yj, Xji,..., XjP, Zj) wi th j such that \i — j\ > I. The estimation procedure used 

for obtaining 0Ih and fhj h' (Zi) is the same as that uti l ized for obtaining 0Ih and 

fhi,h(Zi). 

Recal l that the estimation procedure uti l ized for obtaining the estimators 0Ih and 

rrii:h(Zi) of 0 and m is the usual backfitting algorithm, wi th a (centered) local l in 

ear smoother matrix in the smoothing step. However, the backfitting algorithm allows 

us to evaluate fhj~h

l'l\-) only at Zj's w i th j such that \i — j\ > I. We cannot evaluate 

mi~h'l\') & t Zi- To overcome this problem, we propose to estimate 0 and m(Zi) as 

indicated below. 

We first carry out the usual backfitting algorithm on all data to obtain the estimator 

/ 3 n h of 0 using all n data points. We then define the partial residuals: 

rjth = Yj - Xjpnth, j = l,...,n. (6.23) 

From now on, these residuals wi l l become working responses for the modified cross-

validation and our 'data set' is (rjth, Zj),j = 1, . . . ,n. F i x i, 1 < i < n. We temporarily 

remove from the 'data' the (21 + 1) 'data points' (rjth,Zj) w i th \i — j\ < I. We use 

the remaining n — (21 + 1) data points in a usual local linear regression to obtain the 

n — (21 + 1) estimators fn*Q~h

1'
 l\Zi) and m*^~h

%' l\Zj), w i th j such that \i — j\ > I. These 

estimators are not centered. Subtracting the average of -Ti^~h

%'l\Zj), w i th j such that 

\i — j\ > I from rn*^~h

1' l\zt) yields a centered estimator for m(Z , ) : 

^i0(^)=<;<i')(^)-#o-; |/_ ,-!>/} E ̂ ii0(^)- (6-24) 
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The centering approach used above is admittedly ad-hoc, but nevertheless attempts to 

address the need of subjecting rn(-) to an appropriate identifiability restriction. 

Next, we use the estimators in (6.24) in a computationally feasible modified cross-

validation criterion: 

MCVt(h) = ± £ {n* ~ °(^))2 • (6'25) 
2 = 1 

Minimizing this criterion yields the desired cross-validation amount of smoothing for 

accurate estimation of m via mj/j when the model errors are correlated. 

Note that it is possible to compute a full scale modified cross-validation criterion, by 

calculating a different estimator of 3 for each i. Specifically, we could replace Bnh 

in the right side of (6.23) with 3nh' , the estimator obtained from all data less those 

data points (Yj,Xj\,... ,XjP, Zj) with j such that \i — j\ < I. However, computing the 

full scale modified cross-validation criterion would be more involved than computing the 

computationally convenient criterion in (6.25). Given that 3 is easier to estimate than 

m, we believe that the computational simplification used to estimate 3 will not affect to 

a great degree the estimation of m. A similar simplification was used by Aneiros Perez 

and Quintela del Rio (2001b) for their modified cross-validation method. 

Although we do not have theoretical results that establish the properties of the modified 

cross-validation method, our simulation study suggests that it has reasonable finite sam

ple performance and that it produces a reliable estimator of m, provided I is taken to 

be large enough. It is not clear how to best choose I in practice. Recall that I should be 

specified such that the correlation between Yi and (Yj,Xji,..., XjP, Zj), with \i — j\ < I, 

is effectively removed when predicting Yi by the value Y~h

1'1 in (6.22). Choosing an I 

value that is too small may not succeed in removing the correlation between these data 

values, therefore producing an undersmoothed estimator of m. Choosing an I value that 

is too large may remove too much of the underlying systematic structure in the data, 

therefore producing an estimator of m that is oversmoothed. Whenever possible, one 

113 



should examining a whole range of values for I to gain more understanding about the 

sensitivity of the final results to the choice of I. Our simulation study suggests that small 

values of I should probably be avoided. 

6.3.2 Estimating o f and * 

In this section, we propose a method for estimating the variance of and correlation matrix 

* of the errors associated with model (2.1). The method we propose relies on assumption 

(A2), that the model errors follow a stationary autoregressive process of unknown, but 

finite, order. To estimate the order and the corresponding parameters of this process, we 

apply standard time series techniques to suitable estimators of the model errors. Monte 

Carlo simulation studies conducted in Chapter 9 indicate that this method performs 

reasonably well. 

Assumption (A2) will clearly not be appropriate for all applications. However, we expect 

it to cover those situations where the errors can be assumed to be realizations of a sta

tionary stochastic process. Indeed, it can be shown that almost any stationary stochastic 

process can be modelled as an unique infinite order autoregressive process, independent of 

the origin of the process. In practice, finite order autoregressive processes are sufficiently 

accurate because higher order parameters tend to become small and not significant for 

estimation (Bos, de Waele, Broersen, 2002). 

If the e,'s were observed, we could estimate the order R of the autoregressive process they 

are assumed to follow by using the finite sample criterion for autoregressive order selection 

developed by Broersen (2000). This criterion selects the order of the process by achieving 

a trade-off between over-fitting (selecting an order that is too large) and under-fitting 

(selecting an order that is too small). Traditional autoregressive order selection criteria 

either fail to resolve these issues (i.e., the Akaike Information Criterion) or address just 

the issue of over-fitting (i.e., the corrected Akaike Information Criterion). In addition, 
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Broersen's criterion performs well even when the order of the autoregressive error process 

is large. 

After estimating R, we could estimate the error variance a\ and the corresponding autore

gressive parameters <PI,--.,<PR by using Burg's algorithm. This algorithm is described, 

for instance, in Brockwell and Davis (1991). A comparison of various methods for au

toregressive parameter estimation has shown that the Burg algorithm is the preferred 

method (Broersen, 2000). Finally, we could estimate the error correlation matrix \& 

by replacing 4>i, • • •, 4>R with their estimated values in the expression for \& provided in 

Comment 2.2.1. For instance, if R was estimated to be 1, we would estimate the (i,j)th 

element of * as: 

where 4>\ is the estimator of the autoregressive coefficient <p\. 

However, the e,'s are unobserved, so we must first estimate them via suitably defined 

model residuals and then apply the methodology described above to these residuals in 

order to obtain the desired estimators of o~\ and * . 

We propose to estimate the vector of errors e = (e i , . . . ,e n ) r by the model residuals 

ej^ = Y — X8Ih — rhih, where h is chosen by modified cross-validation, as described 

in Section 6.3.1. As argued in Section 6.3.1, this choice of h is expected to provide an 

accurate estimator for X8+m, and therefore a reasonable estimator for e = Y—X8—m. 

For those applications where the reasonableness of assumption (A2) is questionable, we 

believe that one could still use the modified cross-validation residuals to estimate the 

model errors, since the modified cross-validation method does not rely on explicitly incor

porating the error correlation structure. For instance, under the more general assumption 
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(Al), one could estimate a2 and * = (^ij) from eIth = . . . ,?„) T as follows: 

n 
—2 1 

n - | » - j | 

* U = ^ ^ £ - for i ^ j 

However, we do not pursue this approach in this thesis. 

6.4 Choosing h for cT(3~-i „„ 

We conclude this chapter by discussing the choice of smoothing parameter h for the esti

mated modified local linear backfitting estimator cT/3~-i . As indicated in Section 6.1, 

we denote 8~-i g c by B^-i h to emphasize its dependence upon h. Our theoretical goal is 

to choose values of h which minimize measures of accuracy for cF 8~-\ similar to those 

introduced for c T 8 I h and cT8^,-ih. Namely, if Bias(h;^ ) = cTBias(8^-i \X, Z) 

and Var(h; \I* ) = cTVar(3~-i AX, Z)c, we wish to choose the value of h that min

imizes the quantity MSE(h;ty ), obtained by taking fl — \& in (6.4). Denote this 

value by hMSE. In practice, we have to estimate this value from the data. The dif

ficulty that we face is that, since * is estimated and thus random, an expression for 

MSE(h\ * 1) is not tractable. 

To avert this issue, we ignore the effect of estimating \& and simply replace * by * in 

the expression for MSE{h-y-1). We have seen earlier in this thesis that, under certain 

conditions, 3^,-1 h and 8^-\ h are asymptotically 'close', so we expect our approach to 

be reasonable for large sample sizes. 

We propose to choose h using suitable modifications of the EBBS and plug-in methods 

discussed in Sections 6.2.2 and 6.2.3. The global and local modified EBBS methods for 
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choosing the smoothing parameter h of cT/3~-i attempt to estimate hffSE: 

h-MSE = argmin{Bias(h\^ 1 ) + V a r ( / x ; $ (6.26) 
h 

with h €H- For both methods, V a r ( / i ; * *) is computed by substituting \& wi th * into 

the expression of Var(h; * _ 1 ) , the exact conditional variance of B^-\ h . This expression 

is obtained by taking ft = in (6.1). The global modified E B B S method estimates 

Bias(h; * ) empirically by fitting a global ordinary least squares regression model to the 

'data ' points j (ji(k),cTP^-i h ^ : k = I,..., N*j. We denote the amount of smoothing 

this method yields by h%BBS_G. The local modified E B B S method uses only a fraction 

of these data to accomplish the same task. We denote the amount of smoothing supplied 
- i 

by this method by hEBBS_L. 

The plug-in method for choosing the value of h in /3^-i tries to estimate (an approxi-

mation to) h^SE: 

hftSE — argmin{Bias(h; * *) + Var(h; * *)} = hP'L

>

UG_IN. (6.27) 
hen 

Here, Var(h; * ) is as above, and Bias(h; * *) is constructed by substituting * wi th * 

into the expression of Bias(h; \ & _ 1 ) , the exact conditional bias of j3^,-ih. Th is expression 

is obtained by taking ft — \I>~1 in (6.3). 

117 



Chapter 7 

Confidence Interval Estimation and 

Hypothesis Testing 

In this chapter, we develop statistical methods for assessing the magnitude and statistical 

significance of a linear combination of linear effects cT3 in model (2.1), where c = 

(co,... ,cp)T is a known vector with real valued components. Specifically, we propose 

several confidence intervals for assessing the magnitude of cT3, as well as several tests 

of hypotheses for testing whether cT3 is significantly different than some known value of 

interest. 

7.1 Confidence Interval Estimation 

We propose to construct approximate 100(1 — a)% confidence intervals for cT3 from the 

usual, modified or estimated modified local linear backfitting estimators considered in 

this thesis, and their associated estimated standard errors. In what follows, we use the 

notation in Section 6.1 to denote these estimators generically by Ct3Q H , where Cl can be 
- l 

I, * or * , respectively, and h is an amount of smoothing that must be chosen from 

the data. Our confidence intervals use an estimated standard error SE(cTf3n h) obtained 
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as follows: 

SE(cT0n,h) = ^Va7r{h-Cl). (7.1) 

Here, Var(h;Cl) is an estimator of Var(h;Cl), the conditional variance of cT8nh given 

X and Z. Specifically, for Cl — I, Var(h; Cl) is defined as in (6.14). For Cl = if of is 

unknown, Var(h; Cl) is defined as in (6.15). Finally, for Cl = * \ Var(h; Cl) is obtained 

from (6.15) by replacing * with * . Note that the standard error expression in (7.1) 

does not account for the estimation of of and * when these quantities are unknown, 

nor does it account for the data-dependent choice of h. Rather, it is a purely 'plug-in' 

expression. 

The performance of a 100(1 — a)% confidence interval for cT3 depends to a great extent 

on how well we choose the smoothing parameter h of the estimator cT8n h. A poor 

choice of h can affect the mean squared error of cT3n h, resulting in a confidence interval 

with poor coverage and/or length properties. We want to choose an h for which (i) 

the bias of cT3nh is small, so the interval is centered near the true cT3, and (ii) the 

variance of cT3nh is small, so the interval has small length. Choosing h to ensure that 

the confidence interval is valid (in the sense of achieving the nominal coverage) and has 

reasonable length is crucial to the quality of inferences about cT3. 

In this thesis, we choose the amount of smoothing h needed for constructing confidence 

intervals for cT3 via the following data-driven choices of h, introduced in Chapter 6: 

1. the (local) modified EBBS choice, hE}BBS_L\ 

2. the global modified EBBS choice, hEBBS_G; 

3. the (non-asymptotic) plug-in choice, hpLUG_IN. 

Recall that each of these choices is expected to yield an accurate estimator cT3a h of 

cT3. Throughout the rest of this chapter, unless otherwise specified, we assume that the 
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smoothing parameter h of the estimator c T 3 n h refers to any of hEBBS_L, hEBBS_G or 

h u 

[ l PLUG-IN' 

The performance of a 100(1 — a)% confidence interval for cT/3 also depends on how well 

we estimate SE(cT 3nh), the true standard error of cT3nh. As already mentioned, we 

will estimate SE(cT/3nih) by SE(cT0nh) as defined in (7.1). Recall that SE(cT0nh) 

depends on another smoothing parameter, needed for estimating \fr via as described 

in Section 6.3.2. It is not clear whether the modified cross-validation choice of smoothing 

proposed in Section 6.3.2 yields a reasonable estimator of SE(cT3nh)- The Monte Carlo 

simulations presented in Chapter 8 will shed more light on this issue. 

The standard 100(1 — a)% confidence interval for cT3 is given by 

cT0njl±za/2SE(<?0nth), (7.2) 

where za/2 is the 100(1 — a)% quantile of the standard normal distribution. According 

to the asymptotic results in this thesis, the estimator c 7 3U h is biased in finite samples. 

Consequently, the standard confidence interval for cF8 may not be correctly centered 

and may not provide 1 — a coverage. We propose two strategies for dealing with this 

problem. One strategy is to perform a bias adjustment to the estimator cT8n<h, to try 

to ensure that the confidence interval is better centered. This approach, referred to as 

bias-adjusted confidence interval construction, is discussed in Section 7.1.1. Another 

strategy is to perform an adjustment to the estimated standard error of cT3nh. The 

purpose of this adjustment is to inflate the estimated standard error of cT3n h to reflect 

the bias of cT8n h . This approach, referred to as standard error-adjusted confidence 

interval construction, is discussed in Section 7.1.2. 

Throughout, we assume we can use standard normal probability tables to construct the 

confidence interval in (7.2) and those proposed in Sections 7.1.1 - 7.1.2. This assumption 

is justified provided the estimator c T /3 n h is asymptotically normal and our standard 

error estimators are consistent. Opsomer and Ruppert (1999) established the asymptotic 
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normality of the estimator c T 3 U h for the case when the model errors are uncorrelated 

and Cl — I. However, no asymptotic normality results are available as yet for the 

cases when the model errors are correlated, for either Cl = I or more general Cl. The 

simulations conducted in Chapter 8 support the use of normal tables when constructing 

95% confidence intervals. 

Note that, for small sample sizes, one might widen the confidence intervals by using t-

tables instead of standard normal probabili ty tables. T h e issue of how one might specify 

the degrees of freedom involved in these t-tables needs to be considered carefully and is 

beyond the scope of this thesis. 

7.1.1 Bias-Adjusted Confidence Interval Construction 

The idea underlying the bias-adjusted confidence interval estimation of cT0 is to first 

adjust the estimator c T 0 n h for possible finite sample bias effects. Then a bias-adjusted 

100(1 — a)% confidence interval for cT0 is given by: 

c T 3 n A - 5 i a ^ ( c T 3 a f e ) ± ^ / 2 5 ^ ( c r 3 n A ) , (7.3) 

where Bias(cT'3^h) estimates the finite sample conditional bias of cT 0U h , given X 

and Z, and is defined either as in (6.17) for h = hpLUG_IN, or as in (6.10) for h = 

hjsBBS-G a n d h = hBBBS_L. Neither of these bias expressions takes into account the 

data-dependent choice of h. Furthermore, these bias expressions do not account for the 

estimation of * when Cl = * \ 

The length of the bias-adjusted confidence interval for cT0 in (7.3) is the same as that 

of the standard confidence interval in (7.2). The coverage properties of the bias-adjusted 

confidence interval may, however, be better than those of the standard confidence interval, 

because the bias-adjusted confidence interval may be better centered. 
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Note that the estimated standard error SE(cT 8nh) in (7.3) reflects the variabili ty of 

c T 8 n h , instead of the variabili ty of c T 8 n h — Bias(cT 8n h). One could, of course, re

place SE(cTPn h) by an estimator of the true standard error of c T 8 n h — Bias(cT 8n h). 

But such an estimator may be difficult to obtain in practice, unless one resorts to compu

tationally expensive bootstrapping methods, and may not necessarily yield a confidence 

interval wi th better coverage properties than those of the standard confidence interval. 

7.1.2 Standard Error-Adjusted Confidence Interval Construc

tion 

We have suggested in Section 7.1.1 that the standard confidence interval for cT8 in 

(7.2) can be improved upon by replacing c T 8 n h w i th its bias-adjusted version c T 0 n h — 

Bias(cT'dfih.)- Another possible way to improve upon the standard confidence interval 

in (7.2) is to replace SE(cT 8Uh) w i th MSE(cT8nh), the square root of the estimated 

conditional mean squared error of c T 8 n h given X and Z. The motivation for this latter 

adjustment is that, compared to SE(cTPnh), \J MSE(cT 8nh) is a better measure of 

the uncertainty associated wi th estimating cT8 v ia Ct8Q H, as it tries to account for the 

finite sample bias of c T 8 n h . 

A standard error-adjusted 100(1 — a)% confidence interval for cT8 is given by: 

cT3n,, ± za/2^MSE(cT(3n>h) (7.4) 

where 

2 12 
MSE{&8^h)=\Bias{h-n)\ + [SE(h;Cl)\ . (7.5) 

Here, Bias(h; Cl) estimates the conditional bias of c T 8 n h given X and Z, and is defined 

either as in (6.17) for h = hpLUG_IN, or as in (6.10) for h = hEBBS_G and h = hEBBS_L. 

Note that the length of the standard error-adjusted confidence interval for cT8 in (7.4) 

is wider than that of the standard confidence interval in (7.2) due to the fact that 
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\JMSE(cT3nh) > SE(cT'3a,h)- This may translate into improved coverage proper

ties for the standard error-adjusted confidence interval. 

7.2 Hypothesis Testing 

In this section, we exploit the duality between confidence interval estimation and hy

pothesis testing to develop tests of hypotheses for cT8. 

Suppose we are interested in testing the null hypothesis 

Ho : cT3 = 6 (7.6) 

against the alternative hypothesis 

H A : cT3^6, (7.7) 

where 5 is a constant. 

From the confidence intervals introduced in Section 7.1, we construct three test statistics 

for testing HQ against HA: 

Z £ = ^nt~ 6 , (7.8) 
n ' h S E ^ B ^ 

(2) _ cTpU)h- Bias(h;fl) - 6 
Z ^ = SE{c^h) ' ( 7 ' 9 ) 

= • (7-io) 

y/MSE(cTf3nth) 

We wi l l reject H0 at significance level a if \Z^l\ > za/2-
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Chapter 8 

Monte Carlo Simulations 

In this chapter we report the results of a Monte Carlo study on the finite sample properties 

of estimators and confidence intervals for the linear effect f3\ in the model: 

Yi = /?o + PiXi + m(Zi) + ei, i = l,...,n, (8.1) 

obtained by taking p = 1 in (2.1). Even though this model is not too complicated, 

we hope that it will allow us to understand how the properties of these estimators and 

confidence intervals will be affected by (1) dependency between the Xi's and the Zi's, 

and (2) correlation amongst the e;'s. 

For our study, we have deliberately chosen to use a context similar to that considered by 

Opsomer and Ruppert (1999) for independent ej's, so that we can make direct compar

isons. Given this context, the main goals of our simulation study were to: 

1. Compare the expected log mean squared error (MSE) of the estimators for Pi. 

2. Compare the performance of the confidence intervals for Pi built from these esti

mators and their associated standard errors. 

The rest of this chapter is organized as follows. In Section 8.1, we discuss how we 

generated the data in our simulation study. In Section 8.2, we provide an overview of the 
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estimators for Pi considered in this study. We also specify the methods used for choosing 

the smoothing parameters of these estimators. In Section 8.3, we compare the expected 

log mean squared errors (MSE) of the estimators for all simulation settings in our study. 

Finally, in Sections 8.4 and 8.5, we assess the coverage and length properties of various 

approximate 95% confidence intervals for Pi constructed from these estimators and their 

associated approximate standard errors. 

8.1 The Simulated Data 

The data (Yi,Xi, Zi), i — 1,... ,n, in our simulation study were generated from model 

(8.1) using a modification of the simulation setup adopted by Opsomer and Ruppert 

(1999). Specifically, we took the sample size n to be 100 and set the values of the linear 

parameters Po and Pi to zero. We considered two m(-) functions: 

• mi(z) = 2sin(3z) - 2(cos(0) - cos(3))/3, z G [0,1]; 

• m2(z) = 2sin(6z) - 2(cos(0) - cos(6))/6, z G [0,1]. 

The Zi's were equally spaced on [0,1], being defined as Zi = i/(n + 1). Furthermore, 

Xi = g(Zi) + rji, with g(z) = QAz + 0.3, z G [0,1], and rji = (1 - 0.4)^ - 0.3, where the 

C/j's were independent, identically distributed having a Unif(0,1) distribution. 

The €j's followed a stationary AR(1) model with normal distribution: 

e»- = pet-i + Ui, (8.2) 

where p is an autoregressive parameter quantifying the degree of correlation amongst the 

ei's. The iij's were independent, identically distributed normal random variables having 

mean 0 and standard deviation au = 0.5. The Ui's were independent of the ê 's. In 

our simulation study, we used p = 0 to include the case of independence, as well as 

p — 0.2, 0.4, 0.6 and 0.8 to model positive correlation ranging from weak to strong. 
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The simulation settings corresponding to p = 0 (the case of independent errors) are the 

same as those considered by Opsomer and Ruppert (1999), wi th the following exceptions: 

(i) we considered n = 100 instead of n = 250, (ii) we 'centered' the m(-) functions, that 

is, we subtracted a constant so that these functions integrate to 0 over the interval [0,1] 

and (iii) we scaled the errors 77, to have E{rji) = 0 instead of E(r}i) = 0.3. Opsomer and 

Ruppert d id not specify what value they used for Pi. 

For each model configuration, we generated 500 data sets. Note that there are 10 model 

configurations altogether, one for each combination of autoregressive parameter p and 

non-linear effect m(-) considered. 

Figure 8.1 displays data generated from model (8.1) for p — 0, 0.4, 0.8 and mi(z). Figure 

8.2 provides the same display for m2(z). The responses Yi are qualitatively different for 

different values of p. For p = 0, the responses vary randomly about the m(-) curve. A s p 

increases from 0.4 to 0.8, the variation of the Yi's about the curve m(-) makes it vi r tual ly 

impossible to distinguish the non-linear signal m(-) from the autoregressive noise that 

masks i t . 

8.2 The Estimators 

In this section, we provide an overview of the estimators for the linear effect Pi in model 

(8.1) considered in our simulation study. We also provide an overview of the methods 

used for choosing the smoothing parameter of these estimators. 

Note that Pi = cT8, where c = ( 0 , 1 ) T and 8 = (P0, Pi)T• The estimators of Pi considered 

in our simulation study are of the form Pi = cT8, where 8 is: 

(i) /3 J S c , the usual backfitting estimator defined in (3.4) wi th ft — i"; 

(ii) 8^-1 , the estimated modified backfitting estimator defined in (3.4) wi th ft = * ; 
' h 
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(iii) 0(j_ScjT^, the usual Speckman estimator defined in (3.4) with fl = (I — Sc

h)T• 

In all three estimators, Sh is a centered smoother matrix, defined in terms of the Epanech-

nikov kernel in (3.9). For the two backfitting estimators, we take Sc

h to be a centered 

local linear smoother matrix. For the usual Speckman estimator, we take Sh to be a cen

tered local constant smoother matrix with Nadaraya-Watson weights. The latter choice 

is motivated by the fact that the usual Speckman estimator is typically used with local 

constant smoother matrices with kernel weights. We are not sure to what extent the dif

ferences in performance between the usual Speckman estimator and the two backfitting 

estimators may be due to this difference in the method of local smoothing. 

Note that /3^-iSc, the modified backfitting estimator obtained from (3.4) with fl — 

was omitted from our simulation study. This estimator may have value as a benchmark, 

but has no practical value due to the fact that the error correlation matrix * is never fully 

known in applications. For similar reasons, we also omitted 0(i-s°h)T'<s>-1,sc

h J the modified 

Speckman estimator obtained from (3.4) with fl = (I — Sc

h)T^~1. Another estimator 

not included in our study is 0. CC^TS,-1 s o the estimated modified Speckman estimator 

obtained from (3.4) with fl = (I — S ^ ) 7 * . Recall that Aneiros Perez and Quintela 

del Rio (2001a) investigated the large sample properties of a similar estimator, based on 

local constant smoothing with Gasser-Muller weights. These authors have a suggestion 

for estimating * from the data, but they did not explore how well it works in practice. 

In our simulation study, the estimator 0 ~ - i „ r - which is similar to 0,r ^.^.--I^ -
does poorly in general. We believe this may be due to a combination of the following: 

(1) * is hard to estimate in the presence of confounding between the linear, non-linear 

and correlation effects and (2) the additional variability introduced by estimating * 

is not properly taken into account when selecting the smoothing parameter and when 

constructing standard errors for /3^-i g c from small samples. We suspect that, if one were 

to use the methods proposed in this thesis to estimate \& for computing 0y_sc^T~-\ g c , 

one would also get an estimator with poor finite sample behaviour. 
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All three estimators in (i)-(iii) require a data driven choice of smoothing parameter. For 

the three backfitting estimators we consider EBBS-G and EBBS-L (see Section 6.2.2) and 

PLUG-IN (see Section 6.2.3). For the usual Speckman estimator, we use cross-validation, 

modified for correlated errors (MCV) and for boundary effects. The MCV criterion is 

similar to that in (6.21), namely: 

Here, Y^1^ is obtained as in (6.22), but with Cl = (I—§c

h)T, where Sc

h is the centered local 

constant smoother matrix. Also, W is a weight function introduced to allow elimination 

(or at least significant reduction) of boundary effects that may affect the estimation of 

the non-linear effect m in model (8.1), and hence the prediction of Yt. W is defined as 

in Chu and Marron (1991): 

' 5 if I < « < i ; W(u) = { 3 5 - - 5> 

0, if 0 < u < | or \ < u < 1. 

Recall that EBBS-G depends on the tuning parameters I, N and T, whereas EBBS-L 

depends on the tuning parameters I, N, T, k\ and k2. Also, recall that PLUG-IN and 

MCV depend on the tuning parameter /. In our simulation study, we consider N = 50, 

T = 2, ki = 5, k2 = 5, and I = 0,1, . . . , 10. 

For convenience, throughout the remainder of this chapter, we use the notation PIJ PLUG-IN^ 

$u,EBBS-G a n d Pu1 EBBS-L f° r * n e usual local linear backfitting estimators of j3\. We use 

the notation P^§M,PLUG-IN^ J^EM,EBBS-G a n d P{EM,EBBS-L for t h e estimated modified lo

cal linear backfitting estimators. Finally, we use the notation ($Mcv *° r e f e r to the usual 

Speckman estimator of (3\. Wherever necessary, we refer to these estimators generically 

as 
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8.3 The M S E Comparisons 

In this section, we identify the estimators /?}';, including bandwidth selection methods, 

that appear to be best, in the sense of being most accurate for all simulation settings and 

for most values of /, the tuning parameter used in the modified cross-validation. Recall 

~ (0 
that the measure of accuracy of /3i considered in this thesis is the conditional MSE of 

/3[l\ MSE(0[l)), defined in (6.4). Specifics are provided below. 

To compare the accuracy of two estimators for a given simulation setting, we look at the 

boxplot of differences in the log MSE's of these estimators. If the boxplot is symmetric 

about 0, then the two estimators have comparable accuracy. We also conduct a level 0.05 

two-sided paired t-test to compare the expected log MSE's of the estimators. If the test 

is significant, we label the boxplot with an S. The log MSE's of the two estimators are 

evaluated from the 500 data sets generated for the given simulation setting. 

For each backfitting estimation method (usual, estimated modified), we recommend a 

way to choose the smoothing parameter h. Then we compare the resulting backfitting 

estimators, including a comparison with the usual Speckman estimator to determine an 

estimator that is best, in the sense of being most accurate for all simulation settings and 

most values of I. 

In Figures A.1-A.10 in Appendix A, we study the methods of bandwidth choice for the 

usual local linear backfitting estimator. We display boxplots of pairwise differences in 

the log MSE's of the estimators PV,PLUG-IN> PU]EBBS-G a n d PU,EBBS-L> £ = 0,1, . . . , 10. 

Each figure corresponds to a different simulation setting. From these figures, we see 

that 1$PLUG-IN a n a PIJEBBS-G n a v e comparable accuracy across all simulation settings, 

provided I is large enough, say I > 4. They also have better accuracy than @U]EBBS-L> 

which performs poorly for several simulation settings (see, for instance, Figures A.6-

A.7). Therefore, we recommend using PLUG-IN and EBBS-G to choose the smoothing 

parameter for the usual local linear backfitting estimator. 
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Figures A.11-A.20 display the corresponding plots for the estimated modified local linear 

backfitting estimator. We see that PEM EBBS_G is the most accurate across all simulation 

settings, provided I is large enough, say I > 4. We also see that PEM EBBS-L AN^ 

PEM,PLUG-IN perform very poorly relative to PEM,EBBS-G f° r m o s t simulation settings 

and most values of I. Therefore, we recommend using EBBS-G to choose the smoothing 

parameter for the estimated modified local linear backfitting estimator. 

In Figures A.21-A.30 we compare estimators using our favourite bandwidth selection 

method. We display boxplots of pairwise differences in the log MSE's of the estima

tors M]PLUG-IN, M]EBBS-G> 0EM,EBBS-G a n d MMCV 1 = 0,1, . . . , 10. Each figure 

corresponds to a different simulation setting. From these figures, we conclude that the 

estimators P^PLUG-IN^ PU]EBBS-G a n d PEMEBBS-G have comparable accuracy for all 

simulation settings, provided I is large enough, say I > 4. The estimator P^MCV ^S 

less accurate than these three estimators for most simulation settings and most values 

of /. In particular, plots such as those in Figures A.24, A.25, A.29 and A.30 strongly 

support the elimination of P J P M C V . The poor performance of P^MCV w ^ n respect to 

the log MSE criterion could be due to the fact that this estimator uses local constant 

smoothing, instead of local linear smoothing. But it could also be due to the fact that 

$3 MCV I S computed with an MCV choice of smoothing. Recall that this choice attempts 

to estimate the amount of smoothing optimal for estimation of XB + m. It is not clear 

whether this choice will provide a reliable estimate of the amount of smoothing optimal 

for estimation of cT3. 

8.4 Confidence Interval Coverage Comparisons 

In this section, we assess and compare the coverage properties of various confidence 

intervals for Pi constructed from all estimators considered in our simulation study. Our 

goals are to: 

130 



1. Identify those estimators which yield standard confidence intervals for Pi w i th good 

coverage properties across a l l simulation settings and most values of I. 

2. Establish whether the coverage properties of standard confidence intervals for Pi 

can be improved through bias or standard error adjustments. 

To assess the coverage properties of a confidence interval C for a given simulation setting, 

we proceed as follows. We evaluate the confidence interval for each of the 500 simulated 

data sets. We calculate the proportion of these intervals which contain the true value 

of Pi and denote it by p. lfp± 1.96-y/p(l — p)/500, the 95% confidence interval for the 

true coverage, contains the nominal level of C , we say that C is valid. If the upper 

(lower) confidence l imi t is smaller (bigger) than the nominal level of C , we say that C is 

anti-conservative (conservative). 

The confidence intervals for Pi considered in our simulation study fall into three cat

egories: standard, bias-adjusted and standard-error adjusted, as defined in (7.2), (7.3) 

and (7.4). 

8.4.1 Standard Confidence Intervals 

We now assess the coverage properties of the standard 95% confidence intervals for 

Pi obtained from the estimators PU]PLUG-IN, PU,EBBS-G> PU,EBBS-L> 0EM,PLUG-IN> 

PEM,EBBS-G> 0EM,EBBS-L A N D @S!MCV> where I = 0 , 1 , . . . , 10. Point estimates and 

95% confidence interval estimates for the true coverage achieved by these intervals are 

displayed in Figures B.1-B.10 in Appendix B . Each figure corresponds to a different 

simulation setting. 

Figures B.1-B.10 show that the standard confidence intervals constructed from the esti

mators P ijtpLUG-iNi @U!EBBS-G a n o - 0 S!MCV a r e v a u d for al l simulation settings provided 

the value of I is large enough. However, the standard confidence intervals obtained from 
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the estimators PU,EBBS-L^ PEM,PLUG-IN> PEM,EBBS-G a n d PEM,EBBS-L h a v e extremely 

poor coverage for many simulation settings and for many values of /; see, for instance, 

Figures B.6 and B.7 . In view of these findings, the preferred estimators for constructing 

standard confidence intervals for Pi are PIJ PLUG-IN^ PU]EBBS-G a n d P S!MCV- The other 

estimators cannot be trusted to produce valid inferences on Pi. More details concerning 

our findings are provided below. 

The standard confidence intervals constructed from the estimators PJj PLUG-IN A N D 

PIJEBBS-G a r e v & l i d for all simulation settings, provided I is large enough, as shown 

in Table 8.1. From this table, we see that taking I > 1 when p = 0.2, I > 2 when p — 0.4, 

I > 3 when p = 0.6, and I > 4 when p = 0.8 yields valid intervals for the contexts con

sidered. We recommend using these intervals to conduct inferences on Pi, wi th values of 

I that are large enough. Clearly, taking I = 0,1, 2, 3 is not advised, unless one is certain 

that p is small. 

W h a t is not apparent from Table 8.1 is why the confidence intervals constructed from 

Pu PLUG-IN a n d PIJEBBS-G a r e v & h d for smaller values of I. Typical ly , for small I's, 

the estimates of Pi constructed from the simulated data have a tendency to underestimate 

the true value of Pi when m(z) = m2{z). Furthermore, the estimated standard errors 

associated wi th these estimates have a tendency to underestimate the true standard errors 

both when m(z) = mi(z) and when m(z) = m2{z). However, as I increases, the estimates 

of Pi and their associated standard errors improve significantly for al l simulation settings. 

The standard confidence intervals constructed from the usual Speckman estimator P ^SMCV 

are generally valid across a l l simulation settings even for smaller / values. However, 

P^SMCV d o e s n ° t yield valid confidence intervals when m(z) — 7712(2) and (i) p = 0.4 

and I — 1 or 4 and (ii) p — 0.8 and Z = 3,4, 5, 6, 7, 8 or 10. In these two cases, P^SMCV 

yields confidence intervals that are slightly anti-conservative. Th is lack of continuity 

in behaviour is of concern and might not be attributable to simulation variability. In

deed, Figures B.6-B.10 show that, for m(z) = m2(z), P^SMCV seems to exhibit an anti-
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conservative pattern for most I's. 

W h e n p = 0 and m(z) = rrii(z), the standard confidence intervals obtained from the 

estimators PU]EBBS-L^ PEM,PLUG-IN, PEM,EBBS-G a n d PEM,EBBS-L provide the nomi

nal coverage, regardless of how we choose I (see Figure B . l ) . However, when p = 0 and 

m(z) = 7712(2), the intervals constructed from P$EBBS-L a n d P EM EBBS-L a r e extremely 

anti-conservative for al l values of / (see Figure B.6) . In addition, the intervals constructed 

from PEM,PLUG-IN a n d PEM EBBS-G a r e m i l d l y anti-conservative for many values of I 

(see Figure B.6) . 

A s p increases, the coverage provided by some of the standard confidence intervals ob

tained from P(U]EBBS-L> PEM,PLUG-IN> PEM,EBBS-G a n d PEM,EBBS-L deteriorates for 

many small and/or large values of I, depending on the specification of m(-). For in

stance, when m(z) = m 2 ( z ) , the coverage properties of the intervals constructed from 

PEM,PLUG-IN a n d PEM,EBBS-L a r e extremely poor (see Figures B.7-B.10) . The coverage 

properties of the intervals constructed from j3 y EBBS-L a r e a ^ s o P o o r for small p values 

(see Figures B.7-B.8) . Final ly, the coverage properties of the intervals constructed from 

PEM,EBBS-G w o r s e n a s P increases, but not dramatically. We do not recommend using 

these intervals to carry out inferences on 

8.4.2 Bias-Adjusted Confidence Intervals 

In this section, we assess the coverage properties of the bias-adjusted 95% confidence 

intervals for Pi. We did not consider a bias-adjusted confidence interval for the usual 

Speckman estimator P^MCV, as this estimator is known to have good bias properties 

both when p = 0 (see Speckman, 1988) and when p > 0 (see Aneiros-Perez and Quintela-

del-Rio, 2001a). 

Plots (not shown) of the point estimates and 95% confidence interval estimates for the 

true coverage achieved by the bias-adjusted intervals yield some general conclusions. 
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Only the estimators p uPLUG-IN a n d 0 U]EBBS-G yield bias-adjusted confidence intervals 

that are valid for all simulation settings provided the value of I is large enough. These 

values of I are almost identical to those reported in Table 8.1. Again, we see that one 

should avoid using I = 0,1,2,3 unless one is sure that p is small enough. 

8.4.3 Standard E r ro r -Ad jus ted Conf idence Intervals 

Here, we assess the coverage properties of the standard error-adjusted 95% confidence 

intervals for f3\. We did not consider a standard error-adjusted confidence interval for 

the usual Speckman 3 g\{cv> due 1 , 0 its g°°d bias properties. Plots (not shown) indicate 

that only the estimators 3 \j PLUG-IN a n d 0 IJ EBBS-G P r o v ide standard error-adjusted 

confidence intervals that are valid for all simulation settings provided the value of I is 

large enough. These values of / are nearly identical to those reported in Table 8.1. Yet 

again, we see that one should avoid using / = 0,1, 2, 3 unless one is sure that p is small 

enough. 

To sum up, we see no reason to recommend bias adjustments to the estimators 3 uPLUG-IN 

and P(JEBBS-G o r to their associated standard errors. Indeed, such adjustments do not 

seem to improve the coverage properties of the confidence intervals obtained from these 

estimators. 

8 . 5 Confidence Interval Length Comparisons 

Recall from the previous section that we identified 3 uPLUG-IN a n d 0 U\EBBS-G a s the 

only estimators of Pi in our simulation study that yielded valid 95% standard confidence 

intervals for all simulation settings provided the value of / is large enough. The standard 

intervals based on P SMCV were found to be competitive, but just not as good. Also 

recall that the coverage properties of the standard confidence intervals constructed from 
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P UNPLUG-IN aftd P^JEBBS-G could n ° t D e improved by performing bias-adjustments to 

these estimators or to their associated standard errors. Before recommending any of the 

estimators 0$PLUG-IN a n a PIJEBBS-G f° r practical use, we must compare the lengths 

of the standard confidence intervals for Pi constructed from these estimators. We choose 

to include standard intervals constructed from P S^MCV XN o u r comparison to gain more 

understanding into their properties. When several confidence interval procedures are 

valid (in the sense of achieving the desired nominal level), we prefer the one with the 

shortest length. 

In this section, we conduct visual and formal comparisons of the lengths of the standard 

95% confidence intervals for Pi constructed from these estimators. Wc only consider 

values of / that are large enough to guarantee the validity of the ensuing confidence 

intervals, as in Section 8.4. Specifically, we take / > 1 for p — 0.2, / > 2 for p ~ 0.4, / > 3 

for p = 0.6 and I > 4 for p = 0.8. 

To compare the lengths of two confidence intervals for a given simulation setting wc 

look at the boxplot of differences in the log lengths of these intervals. The lengths are 

evaluated from the 500 data sets generated for the given simulation setting. If the boxplot 

is symmetric about 0, then the two confidence intervals have comparable length. 

Figures C l - C.10 in Appendix C (bottom three rows) display boxplots of pairwise 

differences in the log length of the standard 95% confidence intervals constructed from 

the estimators P(JPLUG-INI PUEBBS-G a n d PS!MCV F r o m these figures, we see that for 

all simulation settings with p > 0 and for values of I that are large enough (e.g., larger 

than 3), the estimators P^u PLUG-IN a r m PIJEBBS-G yield shorter confidence intervals 

than those based on P^MCV- This was to be expected, as the log MSE behaviour of 

P^SMGV w a s s e e n to be inferior to that of Pu PLUG-IN a n a PIJEBBS-G- Furthermore, 

we notice that the lengths of the confidence intervals constructed from P lj PLUG-IN ANA-

PUEBBS-G t e n d to be comparable for many of these I values. 

Our previous findings arc supported by the results of pairwise level 0.05 two-sided paired 
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t-tests for comparing the expected log lengths of the confidence intervals under consid

eration for all simulation settings and for values of I that are large enough. We describe 

these tests below. 

Given a simulation setting, for fixed I, conduct (?,) two-sided paired t-tests to compare the 

expected log lengths of the intervals obtained from the estimators Pu PLUG-IN^ PIJ EBBS-G 

and PSMCV For each test, the null hypothesis is that the expected log lengths of the 

intervals being compared are the same. The test result is considered significant if the 

p-value associated with the test is smaller than 0.05. Use the results of the t-tests to 

identify which estimators yield the shortest confidence interval. If all tests give significant 

results, we claim that there is a clear winner; in other cases, we say that two estimators 

might be tied for best. 

Figures C.1-C.10 (top row) show the average length of the confidence intervals obtained, 

with standard error bars superimposed. The figures indicate which of these estimators 

produces the shortest confidence interval for values of I of interest. 

8.6 Conclusions 

Based on the results of our simulation study, we recommend using the usual local linear 

backfitting estimators PIJPLUG-IN a n d PIJ EBBS-G a n o - the usual Speckman estimator 

Bs^MCV to carry out valid inferences about the linear effect B\ in model (8.1). The value 

of I used when computing these estimators should be large enough, that is, at least 4. 

Our findings indicate that Pu PLUG-IN a n o - Pu EBBS-G have comparable accuracy for 

large values of I, and that they are in general more accurate than P^MCV All three 

estimators yield valid standard 95% confidence intervals for Pi when I is large enough. 

However, the intervals based on PU]PLUG-IN a n d Pu'EBBS-G t e n d to have shorter length 

and are therefore preferred over the interval based on P *PMCV • 
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We see no reason to recommend bias-adjustments to the estimators Pu PLUG-IN ANA-

PIJEBBS-G o r t ° their associated estimated standard errors. Such adjustments do not 

seem to improve the coverage properties of the corresponding confidence intervals. 

Final ly, we do not recommend using the usual backfitting estimator PIJEBBS-L O R *NE 

estimated modified backfitting estimators PEM,PLUG-IN> PEM,EBBS-G> PEM,EBBS-L T O 

carry out inferences about fa. These estimators yielded confidence intervals wi th poor 

coverage for many simulation settings and many values of I, owing to the difficulties 

associated wi th estimating their standard errors. 
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Figure 8 .1: Data simulated from model (8.1) for p = 0,0.4,0.8 and m(z) = m\(z). 
The first row shows plots that do not depend on p. The second and third rows each 
show plots for p = 0, 0.4, 0.8. 
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Figure 8.2: Data simulated from model (8.1) for p = 0, 0.4, 0.8 and 7n(z) = 7712(2). 

T/ie ^ r s i row shows plots that do not depend on p. The second and third rows each 
show plots for p = 0, 0.4, 0.8. 
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Table 8.1: Values of I for which the standard 95% confidence intervals for Pi con

structed from the estimators PXJPLUG-IN> PU]EBBS-G and P^SMCV a r e v a ^ the 

sense of achieving the nominal coverage) for each setting in our simulation study. 

7711(2) 

off) 
P U,PLUG--IN P U,EBBS--G P S,MCV 

p = 0 le{0,.. .,10} le{0,.. .,10} I e {0,.. ,10} 

p = 0.2 l€{0,.. .,10} l£{0,.. -,10} le{i,.. ,10} 

p = 0.4 l€{l,.. .,10} le{2,.. .,10} 1 e {0,.. ,10} 

p = 0.6 le{2,.. .,10} le {3,.. .,10} le{0,.. ,10} 

p = 0.8 le{3,.. .,10} le {3,.. .,10} le{0,.. ,10} 

m2{z) 

P U,PLUG--IN P U,EBBS--G PS,MCV 

p = 0 le {0,.. .,10} le{0,.. .,10} le{o,...,w} 

p = 0.2 l€{0,.. .,10} l€{l,.. • ,10} le {0.....10} 

p = 0.4 ie{i,.. .,10} le{2,.. .,10} l e {0}U{2,3}U{5,... 

p = 0.6 le {3,.. .,10} le{3,.. .,10} /e{o,...,io} 
p = 0.8 le{3,.. .,10} l e {4,.. .,10} / e {0,1,2}U{9} 
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Chapter 9 

Applicat ion to A i r Pollut ion Data 

Many community-level studies have provided evidence that air pollution is associated 

with mortality. Statistical analyses of data collected in such studies face various method

ological challenges: (1) controlling for observed and unobserved factors, such as season 

and temperature, that might confound the true association between air pollution and 

mortality, (2) accounting for serial correlation in the residuals that might underestimate 

statistical uncertainty of the estimated association, and (3) assessing and reporting un

certainty associated with the choice of statistical model. 

Various statistical models can be used to describe the true association between air pol

lution and health outcomes of interest based on community-level data. However, the 

most widely used have been the generalized additive models (GAMs) introduced by 

Hastie and Tibshirani (1990). These models include a single 'time series' response (e.g. 

non-accidental mortality rates) and various covariates (e.g. pollutants of interest, time, 

temperature). The effects of the pollutants of interest on the response are typically pre

sumed to be linear, whereas those of the remaining covariates are presumed to be smooth, 

non-linear. Schwartz (1994), Kelsall, Samet and Zeger (1997), Schwartz (1999), Samet, 

Dominici, Curriero et al. (2000), Katsouyani, Toulomi, Samoli et al. (2001), Moolgavkar 

(2000), Schwartz (2000) are just some of the authors who relied on GAMs in order to 

assess the acute effects of air pollution on health outcomes such as mortality or hospital 
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admissions. 

There are various problems that researchers must consider when using GAMs to analyze 

air pollution data arising from community-level studies. Some of these problems are 

purely computational, whereas others are more delicate and pertain to the theoretical 

underpinnings of these models. 

Several computational issues associated with the S-Plus implementation of methodology 

developed by Hastie and Tibshirani (1990) for estimation of GAMs have been brought to 

light in recent years. We describe these problems here. The linear and non-linear effects 

in GAMs applied to air pollution data have been typically estimated using the S-Plus 

function gam. Dominici et al. (2002) showed that gam may provide incorrect estimates 

of the linear effects in GAMs and their standard errors if used with the original default 

parameters. Although the defaults have recently been revised (Dominici et al., 2002), 

an important problem that remains is that gam calculates the standard errors of the 

linear effects by assuming that the non-linear effects are effectively linear, resulting in 

an underestimation of uncertainty (Ramsay et al., 2003a). In air pollution studies, this 

assumption is likely inadequate, resulting in underestimation of the standard error of the 

linear pollutant effect (Ramsay et al., 2003a). 

The practical choice of the degree of smoothness of the estimated non-linear confounding 

effects of time and meteorology variables is a delicate issue in air pollution studies which 

utilize GAMs. Given that the confounding effects are viewed as a nuisance in such studies, 

the appropriate choice should be informed by the objective of conducting valid inferences 

about the pollution effect. Most choices performed in the air pollution literature are based 

on exploratory analyses (see, for instance, Kelsall, Samet and Zeger, 1997) and seem 

to be justified by a different objective, namely doing well at estimating the non-linear 

confounding effects. This objective typically ignores the impact of residual correlation 

on the choice of degree of smoothness, as well as the dependencies between the various 

variables in the model. 
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In the present chapter we apply the methodology developed in this thesis to analyze air 

pollut ion data collected in Mexico C i t y between January 1, 1994 and December 31, 1996. 

Our goal is to determine whether the pollutant P M 1 0 has a significant short-term effect 

on the non-accidental death rate in Mexico C i t y after adjusting for temporal and weather 

confounding. We give a description of the data in Section 9.1 and analyze the data in 

Section 9.2. 

9.1 Data Description 

P M 1 0 - airborne particulate matter less than 10 microns in diameter - is a major com

ponent of air pollut ion, arising from natural sources (e.g. pollen), road transport, power 

generation, industrial processes, etc. W h e n inhaled, P M 1 0 particles tend to be deposited 

in the upper parts of the human respiratory system from which they can be eventually 

expelled back into the throat. Health problems begin as the body reacts to these foreign 

particles. P M 1 0 is associated wi th mortality, exacerbation of airways disease and decre

ment in lung function. Al though P M 1 0 can cause health problems for everyone, certain 

people are especially vulnerable to its adverse health effects. These "sensitive popula

tions" include children, the elderly, exercising adults, and those suffering from heart and 

lung disease. 

The data to be analyzed in this chapter were collected in Mexico C i t y over a period of 

three years, from January 1, 1994 to December 31, 1996, in order to determine if there is a 

significant short term effect of P M 1 0 on mortality, after adjusting for potential temporal 

and weather confounders. The data consist of daily counts of non-accidental deaths, daily 

levels of ambient concentration of P M 1 0 (10fig/m3), and daily levels of temperature (°C) 

and relative humidity (%). The ambient concentration of P M 1 0 corresponding to a given 

day was obtained by averaging the P M 1 0 measurements over a l l the stations in Mexico 

Ci ty . 
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Pairwise scatter plots of the data are shown in Figure 9.1. The most s tr iking features 

in these plots are the strong annual cycles in the log mortal i ty levels, the daily level of 

ambient concentration of P M 1 0 , and the daily levels of temperature and relative humidity. 

It is likely that the annual cycles in the log mortali ty levels are produced by unobserved 

seasonal factors such as influenza and respiratory infections. Note that log mortali ty and 

P M 1 0 peak at the same time wi th respect to the annual cycles. Our analysis of the health 

effects of P M 1 0 must account for the potential confounding effect of these temporal cycles 

on the association between P M 1 0 and log mortality. We believe the strength of these 

cycles w i l l make it difficult to detect whether this association is significant. 

9.2 Data Analysis 

The following is an overview of our data analysis. Firs t , we introduce the four statistical 

models that we use to capture the relationship between P M 1 0 and mortality, adjusted 

for seasonal and meteorological confounding. Three of these models contain smooth 

non-parametric terms which attempt to control for these confounding effects. Next, 

we illustrate the importance of choosing the amount of smoothing for estimating the 

nonparametric terms in these models when the main objective is accurate estimation of 

the true association between P M 1 0 and mortality. We then focus on determining which 

of the four models is most relevant for the data. Final ly , we use this model as a basis for 

carrying out inference about the true association between P M 1 0 and mortality. 

9.2.1 Models Entertained for the Data 

Let Di denote the observed number of non-accidental deaths in Mexico C i t y on day i, and 

let Pi, Ti and Hi denote the daily measures of P M 1 0 , temperature and relative humidity, 
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respectively. The models that we entertain for our data are: 

log(Di) = 0o + 0iPi + ei (9.1) 

log{Di) = p0 + 0^ + mi(i) + et 
(9.2) 

log(Di) = pQ + + mi(i) + p2Ti + P3Hi + p23Ti • Ht + a (9.3) 

log(Di) = P0 + PiPi + mi{i) + m2{Th Hi) + et. (9.4) 

Here, i = 1,2,..., 1096. Also , m i is a smooth univariate function, whereas m2 is a 

smooth bivariate surface. The function mi serves as a linear filter on the log mortal i ty 

and P M 1 0 series and removes any seasonal or long-term trends in the data. For the 

time being, the error terms in al l four models are assumed to be independent, identically 

distributed, w i th mean 0 and constant variance o\ < oo. The independence assumption 

wi l l be relaxed later. 

Models (9.1)-(9.4) treat the log mortali ty counts as a continuous response. Furthermore, 

they assume the relationship between P M 1 0 and log mortali ty to be linear, to allow for 

easily interpretable inferences about the effect of P M 1 0 on log mortality. The models 

differ, however, in their specification of the potential seasonal and weather confounding 

on this relationship. Specifically, model (9.1) ignores the possible seasonal and weather 

confounding on the relationship between P M 1 0 and log mortality. Models (9.2)-(9.4), 

however, allow us to adjust this relationship for potential seasonal and weather con

founding. 

Models (9.2) and (9.3) require that we specify the amount of smoothing needed for 

estimating m j . M o d e l (9.4) requires that we specify the amount of smoothing necessary 

for estimating both mi and m2. 

To fit models (9.2)-(9.4) to the data, we use the S-Plus function gam w i th the more 

stringent convergence parameters recommended by Domin ic i et al. ( 2002). We employ 

a univariate loess smoother to estimate mi and a bivariate loess smoother to estimate 
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m 2 . The loess smoothers are local linear smoothers relying on spans corresponding to a 

fixed number of nearest neighbours instead of a bandwidth. 

9.2.2 Importance of Choice of Amount of Smoothing 

The inferences made on the linear P M 1 0 effect Pi in any of the models (9.2)-(9.4) may 

be severely affected by the choice of amount of smoothing for estimating the smooth 

confounding effects in these models. To illustrate the impact of this choice on the con

clusions of such inferences, we restrict attention to model (9.3). Later, we w i l l see that 

this model is the most appropriate for the data. 

Figure 9.2 compares the impact of various choices of smoothing for the seasonal effect 

m i in model (9.3) on the following quantities: 

(i) gam estimates of Pi, 

(ii) gam standard errors for the estimates in (i), 

(iii) 95% confidence intervals for Pi constructed from the estimates in (i) and (ii), 

(iv) gam p-values associated wi th standard t-tests of significance of Pi. 

These quantities were obtained by fitting model (9.3) to the data using gam w i th loess as 

a basic smoother. The loess span used for smoothing mi was allowed to take on values 

in the range 0.01 to 0.50. The reference distr ibution for the 95% confidence intervals 

and the p-values depicted in Figure 9.2 is a t-distribution whose degrees of freedom are 

the residual (or error) degrees of freedom associated wi th model (9.3). Note that the 

estimated standard errors reported by gam do not account for error correlation. 

Changing the span for smoothing mi greatly affects the estimates, standard errors, con

fidence intervals and p-values in Figure 9.2 and hence the conclusions of our inferences 

on Pi, the short-term P M 1 0 effect on log mortality. In particular, using large spans for 
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smoothing m i suggests that the data provide strong evidence in favour of a significant 

P M 1 0 effect on log mortality, after adjusting for seasonal and weather confounding. Us

ing small spans for smoothing m i suggests that the data do not provide enough evidence 

in support of a significant P M 1 0 effect on log mortali ty in Mexico Ci ty . 

Proper choice of amount of smoothing for estimating the seasonal effect m i in model 

(9.3) is crucial for making inferences on Pi, as seen in Figure 9.2. Given the sensitivity 

of our conclusions to the choice of smoothing, the natural question that arises is: how 

can we choose the amount of smoothing to be able to make valid inferences on Pi? 

The correct choice of smoothing should be appropriate for accurate estimation of Pi, not 

for accurate estimation of m i . This choice should account for the strong relationships 

between the linear and non-linear variables in the model seen i n Figure 9.1, and for 

potential correlation amongst model errors. 

It is important to note that the S-Plus function gam provides no data-driven method for 

choosing the amount of smoothing. Using gam's default choice of smoothing is not advised 

when one is concerned wi th accurate estimation of Pi. The default choice of smoothing 

used by gam is 0.50, or 50% of the nearest neighbours. Th is choice is much larger than the 

choices that we recommend for estimating m i (shown in the next section). The theoretical 

results in this thesis suggest that the correct choice of smoothing for estimating Pi should 

undersmooth the estimated mi. Therefore, this choice of smoothing is most likely smaller 

than the one we recommend for estimating m i , and certainly not larger. 

9.2.3 Choosing an Appropriate Model for the Data 

In this section, we focus on the issue of selecting an appropriate model for the data 

amongst models (9.1)-(9.4). Selecting such a model requires that we balance model 

complexity wi th model parsimony. In what follows, we show that model (9.3) is the most 
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appropriate for describing the variabili ty in the log mortali ty counts, as it is complex 

enough to capture the main features present in the data, yet relatively inexpensive to fit 

to these data in terms of degrees of freedom. 

M o d e l (9.1) is the simplest of models (9.1) -(9.4) and, not too surprisingly given the strong 

cycles apparent in Figure 9.1, it provides an inadequate description for the variabil i ty in 

the log mortali ty counts. In fact, the linear relationship between P M 1 0 and log mortali ty 

postulated by model (9.1) explains only 9.25% of the total variabil i ty in the log mortali ty 

counts. Figure 9.3 (top panel) shows that the log mortali ty counts are widely scattered 

about the regression line obtained by fitting model (9.1) to the data. Figure 9.3 (bottom 

panel) shows that model (9.1) displays clear lack-of-fit, as it fails to account for the strong 

annual cycles present in the model residuals. We therefore drop model (9.1) from our 

pool of candidate models and concentrate instead on models (9.2)-(9.4). 

M o d e l (9.4) is the most complex of these models, and w i l l consume significantly more 

degrees of freedom when fitted to the data than either model (9.2) or model (9.3). A s we 

shall see shortly, comparing model (9.4) against model (9.2) v ia a series of approximate 

F-tests suggests that we can drop model (9.4) in favour of model (9.2). 

We could therefore consider the simpler model (9.2) as being adequate for describing 

the variabili ty in the log mortali ty counts. However, given that the weather variables 

are typical ly included in models for P M 1 0 mortali ty data, we prefer to use model (9.3). 

Th is model is more flexible than model (9.2), as it includes linear marginal effects for 

the weather variables together wi th a linear interaction effect between these variables. 

Compared to model (9.2), this model can be fitted to the data at the expense of just three 

additional degrees of freedom. Given the large size of the data set, this is an insignificant 

price to pay for achieving more modelling flexibility. 

We now provide more details concerning the choice of an appropriate model for our data 

amongst models (9.2)-(9.4). A s a first step we need to identify spans that are reasonable 

for smoothing the seasonal effect mi in these models. 
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To identify a reasonable range of spans for smoothing m i in model (9.2), we fit model 

(9.2) to the data by smoothing m i wi th spans ranging from 0.01 to 0.50 in increments 

of 0.01 and examine plots of the fitted m i and corresponding model residuals. F rom 

Figures 9.4 and 9.5 we see that the data suggest spans in the range 0.09 — 0.12. Using 

spans smaller than 0.09 for estimating m i leads to under-smoothed fits, that are visually 

noisy. O n the other hand, using spans larger than 0.12 leads to over-smoothed fits, that 

fail to reflect important seasonal features of the data. In summary, the range 0.09 — 0.12 

is reasonable for smoothing the seasonal effect m i in model (9.2). 

Plots of the fitted additive component m i in models (9.3) and (9.4) (not shown) corre

sponding to spans in the range 0.09 to 0.12 are similar to those in Figure 9.4 and suggest 

that this range is also reasonable for smoothing the seasonal effect m i in models (9.3) 

and (9.4). 

We now show that we can reduce model (9.4) to model (9.2). We use a series of approx

imate F-tests to compare models (9.4) and (9.2). Each F-test compares a fit of model 

(9.4), obtained by smoothing m i wi th the span s\, against a fit of model (9.2), obtained 

by smoothing m i wi th the span s i and m 2 w i th the span s 2 . The test statistic for each 

F-test is obtained i n the usual fashion from the residual sums of squares and the residual 

(or error) degrees of freedom associated wi th the two model fits. The residual degrees 

of freedom of these fits are obtained as the difference between the size of the data set 

n = 1096 and the trace of the hat matr ix associated wi th the model fit. We allow the 

span Si to range between 0.09 and 0.12 in increments of 0.01, and the span s 2 to range 

between 0.01 and 0.50 i n increments of 0.01. 

The p-values associated wi th these F-tests are displayed in Figure 9.6. P-values corre

sponding to spans s 2 bigger than 0.04 are quite large, suggesting that the smooth weather 

surface m 2 need not be included in model (9.4). P-values corresponding to spans s 2 of 

0.02, 0.03 or 0.04 are a bit smaller, suggesting that perhaps the surface m 2 should be 

included in the model. However, Figures 9.7 and 9.8, for s\ — 0.09, show that very small 
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spans are not appropriate for estimating the surface m 2 , as they yield visually rough 

surfaces that consume unacceptably high numbers of degrees of freedom. Using a span 

s i of 0.10,0.11 or 0.12 instead yielded plots (not shown) that were basically identical to 

those in Figures 9.7 and 9.8. 

In conclusion, the smooth weather surface m2 contributes litt le to model (9.4), so there 

is no real need to include either temperature or relative humidi ty in this model. In 

other words, we can reduce model (9.4) to model (9.2). Coplots (not shown) of the 

residuals associated wi th model (9.2) versus temperature, given relative humidity, and 

versus relative humidity, given temperature, support this conclusion. 

Since there is no real need to include the weather variables, temperature and relative 

humidity, we could consider the simpler model (9.2) as being adequate for describing the 

variabil i ty in the log mortali ty counts. However, for reasons explained earlier, we prefer 

to use the more flexible model (9.3). 

How well does model (9.3) fit the data? To answer this question, we examine a series 

of diagnostic plots. Figure 9.9 shows plots of the residuals associated wi th model (9.3) 

against P M 1 0 and day of study. These residuals were obtained by smoothing the unknown 

mi w i th a span of 0.09; using spans of 0.10, 0.11 or 0.12 yielded similar plots (not shown). 

The functional form of the relationship between P M 1 0 and log mortali ty postulated 

by model (9.3) is not violated by the data, since no systematic structure is apparent 

in the plot of residuals versus P M 1 0 . The plot of residuals against day of study also 

shows no systematic structure, suggesting that the seasonal component mi of the model 

accounts for the long-term temporal variation in the data reasonably well. Figures 9.10-

9.11 show that the functional specification of the weather portion of model (9.3) is not 

violated by the data. Indeed, these plots display no obvious systematic structure. The 

weather coplots corresponding to spans of 0.10,0.11 and 0.12 were similar, so we omitted 

them. Final ly , Figure 9.12 presents autocorrelation and part ial autocorrelation plots 

for the residuals associated wi th model (9.3). From these plots, it is apparent that the 
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magnitude of the residual correlation is small. We believe this is due to the fact that 

most of the short-term temporal variation in log mortali ty counts has been accounted for 

by the seasonal component mj of the model. Compar ing Figure 9.12 against Figure 9.13, 

which displays autocorrelation and part ial autocorrelation plots for the raw log mortali ty 

counts, supports this belief. 

In summary, the assumptions underlying the systematic part of model (9.3) seem rea

sonable. However, there is some modest suggestion that the independence assumption 

concerning the error terms in this model may not hold for these data. This assumption 

w i l l be relaxed to account for the slight temporal correlation present in the data. 

Mode l (9.3) can therefore be used as a basis for carrying out inferences on pi, the linear 

P M 1 0 effect on log mortality, adjusted for seasonal and weather confounding. Account ing 

for error correlation when conducting such inferences is perhaps not as important as 

accounting for the strong relationships between the linear and non-linear variables in the 

model evident in Figure 9.1. 

9.2.4 Inference on the PM10 Effect on Log Mortality 

In order to conduct valid inferences about the linear effect Pi in model (9.3), we must not 

only estimate it accurately, but also calculate correct standard errors for this estimate. 

For model (9.3), pi = cT3, where c = (0 ,1 ,0 ,0 ,0) and 3 = (Po, Pi, P2, Ps, P23V • We 

propose to estimate Pi v ia c T / 3 / S c , where 8ISc is the usual local linear backfitting 

estimate of 3. Figure 9.14 displays a plot of c T / 3 / S c versus the smoothing parameter h, 

which controls the width of the smoothing window. The large variation in the values of 

these estimates re-iterates the importance of choosing h appropriately from the data so 

as to obtain accurate estimates of Pi. 

To choose appropriate values of h from the data, we use the preferred P L U G - I N and 

E B B S - G methods developed in Chapter 6. B o t h methods use a grid H = {2, 3 , . . . , 548}, 
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where the values in the grid represent half-widths of local linear smoothing windows. 

Recall that both of these methods require that we estimate the underlying correlation 

structure of the model errors. In addition, P L U G - I N requires that we estimate the sesonal 

effect m i in the model. We discuss these topics below. 

We estimate the seasonal effect mj and the error correlation structure using modified (or 

leave-(21+l)-out) cross-validation, as outlined in Sections 6.3.1 and 6.3.2. We allow the 

tuning parameter I to take on the values 0 , 1 , . . . , 26. Recal l that I quantifies our belief 

about the range and magnitude of the error correlation. For instance, I = 0 signifies that 

we believe the errors to be independent. W h e n the model errors are t ruly correlated, we 

suspect that values of I that are too small may produce under-smoothed estimates of m i , 

whereas values of I that are too large may produce over-smoothed estimates of rri\. 

To ascertain what values of / are reasonable for the data, we examine plots of the es

timated seasonal effect m i in model (9.3) corresponding to / = 0 , 1 , . . . , 26; see Figure 

9.15. These plots suggest that using I = 0 or I — 1 is probably not appropriate, as the 

corresponding estimates of m i are visually too rough. Using values of / in the range 

2 — 17 seems to yield reasonable estimates of m i . Values of I in the range 18 — 26 seem 

to yield over-smoothed estimates of m i , so perhaps should, be avoided. 

Next, we estimate the error terms in model (9.3) v ia modified (or leave-(21+l)-out) cross-

validation residuals, defined as in Section 6.3.1. Figure 9.16 shows plots of these residuals 

for various values of I. 

Now, we use the modified cross-validation residuals to estimate the correlation structure 

of the model errors. We wi l l operate under the assumption that these errors follow a 

covariance-stationary autoregressive process of finite order R. To estimate R, we use the 

finite sample criterion for autoregressive order selection developed by Broersen (2000). 

Figure 9.17 shows that our estimate of R is influenced by how we choose the value of the 

tuning parameter I. Choosing I — 0 or 1 yields an R of 28. Choosing larger Vs yields R's 
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like 0, 2, 3 or 4. Recal l that values of / like 0,1 or 1 8 , . . . , 26 are likely not appropriate for 

these data. 

Final ly , after determining the order R — R(l), I = 0 , 1 , . . . , 26, of the autoregressive error 

process, we estimate the error variance o~\ and the autoregressive parameters 4>i, • • • ,4>R 

using Burg's method (Brockwell and Davis, 1991). Furthermore, we estimate the error 

correlation matr ix * by plugging in the estimated values of 0 i in the expression 

for * provided in Comment 2.2.1. 

Having estimated the seasonal effect m i and the error correlation structure for model 

(9.3), we can now tackle the issue of data-driven choice of h for accurate estimation of 

Pi v i a c T /3 J i S c. The estimated bias squared, variance and mean squared error curves 

used for determining the P L U G - I N choice of smoothing for cT/37 s= are shown in Figure 

9.18. The different curves correspond to different values of I, where Z = 0 , 1 , . . . , 26. In 

general, the mean squared error curves corresponding to small values of I dominate those 

corresponding to large values of I. Figure 9.19 displays similar plots used for determining 

the E B B S - G choice of smoothing. Note that the bias curve in this figure does not depend 

on I. A l so note that mean squared error curves in this figure that correspond to large 

values of I dominate, in general, the curves that correspond to small values of I. 

Figures 9.20 and 9.21 display the P L U G - I N and E B B S - G choices of smoothing parameter 

obtained by minimizing the estimated mean squared error curves in Figures 9.18 and 9.19. 

B o t h choices are remarkably stable for values of / that seem appropriate for these data. 

However, the P L U G - I N choices are much smaller in magnitude than the E B B S - G choices. 

The P L U G - I N choices that seem appropriate for the data indicate that the seasonal effect 

m i should be smoothed using h « 28. O n the other hand, the corresponding E B B S - G 

choices indicate that m i should be smoothed using h « 69. 

Figures 9.22 and 9.23 show the 95% confidence intervals constructed for Pi w i th P L U G -

I N and E B B S - G choices of smoothing for values of I ranging from 0 to 26. These intervals 
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were obtained from formula (7.2), wi th fl — I. B o t h figures suggest that the choice of 

I (among those that are reasonable for the data) is not that important. Th is finding is 

consistent wi th the Monte Carlo simulation study conducted in Chapter 8 that indicated 

these choices of smoothing were appropriate for conducting inferences on the linear effect 

Pi in model (8.1) provided / was large enough. 

From Figure 9.22, there is no conclusive proof that Pi, the short-term P M 1 0 effect on 

log mortality, is significantly different from 0. Indeed, the standard confidence intervals 

for Pi based on cT/3/Sc, wi th h chosen v ia P L U G - I N , cross the zero line for all values 

of / that are appropriate for the data. The stability of these confidence intervals across 

various values of I is quite remarkable, but not entirely surprising given the stabili ty of 

the corresponding P L U G - I N choices of smoothing shown in Figure 9.20. 

Figure 9.23 supports the same conclusion for Pi, at least in part. However, for al l values 

of / that are appropriate for the data, these intervals either narrowly miss zero or barely 

contain it , suggesting that perhaps P M 1 0 does have a significant effect on log mortality. 

W h a t could explain the discrepancy between Figures 9.22 and 9.23? The standard er

rors of the estimated P M 1 0 effects are comparable in both figures. However, the P M 1 0 

effect estimates obtained wi th a P L U G - I N choice of smoothing are much smaller than 

those obtained wi th E B B S - G . A s seen in Figures 9.20 and 9.21, the P L U G - I N choices 

of smoothing parameter for these data are about 28 or so, and are much smaller than 

the E B B S - G choices, which are about 69 or so. Figure 9.14 shows that using choices of 

smoothing parameter h of 28 or so yields smaller P M 1 0 estimates than using values of 

h of 69 or so. We favour smaller choices of smoothing parameter. We believe E B B S - G 

yielded large choices because it used a grid range that was too wide. Recal l that E B B S -

G attempts to estimate the conditional bias of c T 3 I s ^ by assuming a specific form for 

the relationship between this bias and the smoothing parameter h. This relationship 

is motivated by asymptotic considerations as in (6.13), so it may break down for val

ues of h € H that are too large. Es t imat ing this relationship based on all the "data" 
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{ ( \ c T 3 / i S c ) -.hen) , may therefore not be appropriate. One should perhaps use only 

"data" for which h is reasonably small to ensure the asymptotic considerations underly

ing E B B S - G are valid. In other words, one should use a smaller grid range for E B B S - G . 

We used E B B S - G wi th a grid H = { 2 , . . . , 100} instead of H = { 2 , . . . , 548} and got a 

similar result to that obtained v ia P L U G - I N (see Figure 9.24): there is no conclusive 

proof that P M 1 0 has a significant effect on log mortality. Th is finding is not surprising 

given the strength of the annual cycles present in Figure 9.1. 
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Figure 9.1: Pairwise scatter plots of the Mexico City air pollution data. 

156 



Estimated PM 10 Effects Estimated Standard Errors 

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 

Span Span 

Figure 9.2: Results o / g a m inferences on the linear PM10 effect B\ in model (9.3) 
as a function of the span used for smoothing the seasonal effect m\: estimated PM10 
effects (top left), associated standard errors (top right), 95% confidence intervals for 
B\ (bottom left) and p-values of t-tests for testing the statistical significance of 3\. 
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Day of Study 

Figure 9.3: The top panel displays a scatter plot of log mortality versus PM10. The 
ordinary least squares regression line of log mortality on PM10 is superimposed on 
this plot. The bottom panel displays a plot of the residuals associated with model (9.1) 
versus day of study. 
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Figure 9.4: Plots of the the fitted seasonal effect mi in model (9.2) for various spans. 
Partial residuals, obtained by subtracting the fitted parametric part of the model from 
the responses, are superimposed as dots. 
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Figure 9.5: Plots of the residuals associated with model (9.2) for various spans. 
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Figure 9.6: P-values associated with a series of crude F-tests for testing model (9.4) 
against model (9.2). 
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Figure 9.7: Plots of the fitted weather surface m2 in model (9.4) when the fitted 
seasonal effect m\ (not shown) was obtained with a span of 0.09. The surface m-i 
was smoothed with spans of 0.01 (top left), 0.02 (top right), 0.03 (bottom left) or 0.04 
(bottom right). 
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Figure 9.8: Degrees of freedom consumed by the fitted weather surface m 2 in model 
(9.4) versus the span used for smoothing m 2 when the fitted seasonal effect mi (not 
shown) was obtained with a span of 0.09. 
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Figure 9.9: Plot of residuals associated with model (9.3) versus PM10 (top row) and 
day of study (bottom row). The span used for smoothing the unknown mi in model 
(9.3) is 0.09. 
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Figure 9.10: Plot of residuals associated with model (9.3) versus relative humidity, 
given temperature. The span used for smoothing the unknown m\ in model (9.3) is 
0.09. 
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Temperature 

Figure 9.11: Plot of residuals associated with model (9.3) versus temperature, given 
relative humidity. The span used for smoothing the unknown m\ in model (9.3) is 
0.09. 
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Figure 9.12: Autocorrelation plot (top row) and partial autocorrelation plot (bottom 
row) of the residuals associated with model (9.3). The span used for smoothing the 
unknown mi in model (9.3) is 0.09. 
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Figure 9.13: Autocorrelation plot (top row) and partial autocorrelation plot (bottom 
row) of the responses in model (9.3). 

168 



200 300 

Smoothing Parameter 

400 500 

Figure 9.14: Usual local linear backfitting estimate of the linear PM10 effect 
model (9.4) versus the smoothing parameter. 
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Figure 9.17: Estimated order for AR process describing the serial correlation in 
the residuals associated with model (9.3) versus I, where I = 0,1,..., 26. Residuals 
were obtained by estimating mi with a modified (or leave-(2l+l)-out) cross-validation 
choice of amount of smoothing. 
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Figure 9.18: Estimated bias squared, variance and mean squared error curves used 
for determining the plug-in choice of smoothing for the usual local linear backfit
ting estimate of Pi. The different curves correspond to different values of I, where 
I — 0,1,..., 26. The estimated variance curves corresponding to small values of I are 
dominated by those corresponding to large values of I when the smoothing parameter 
is large. In contrast, the estimated squared bias and mean squared error curves corre
sponding to small values of I dominate those corresponding to large values of I when 
the smoothing parameter is large. 
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Smoothing Parameter 

Figure 9.19: Estimated bias squared, variance and mean squared error curves used 
for determining the global EBBS choice of smoothing for the usual local linear back-
fitting estimate of Pi. The different curves correspond to different values of I, where 
I — 0,1,... ,26. The curves corresponding to large values of I dominate those corre
sponding to small values of I. 
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Figure 9.20: Plug-in choice of smoothing for estimating Pi versus I, where I 
0 , 1 , . . . , 2 6 . 
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Figure 9.21: Global EBBS choice of smoothing for estimating Pi versus I, where 
I = 0,1,. . . , 26. 
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F i g u r e 9 .22: Standard 95% confidence intervals for Pi based on local linear back-
fitting estimates of Pi with plug-in choices of smoothing. The different intervals 
correspond to different values of I, where I — 0 , 1 , . . . , 26. The shaded area represents 
confidence intervals corresponding to values of I that are reasonable for the data. 
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Figure 9.23: Standard 9 5 % confidence intervals for 3\ based on local linear backfit
ting estimates of Pi with global EBBS choices of smoothing. The different intervals 
correspond to different values of I, where 1 = 0,1,..., 26 . The shaded area represents 
intervals corresponding to values of I that are reasonable for the data; the intervals 
corresponding to I = 3,... ,7 do not cross the horizontal line passing through zero. 
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Figure 9.24: Standard 95% confidence intervals for Pi based on local linear back-
fitting estimates of Pi with global EBBS choices of smoothing obtained by using a 
smaller grid range. The different intervals correspond to different values of I, where 
I = 0,1, . . . , 26. The shaded area represents confidence intervals corresponding to 
values of I that are reasonable for the data. 
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Chapter 10 

Conclusions 

In this chapter, we provide an overview of the research problem considered in this thesis. 

We then outline the main contributions of this thesis and summarize the contents of each 

chapter. Final ly , we suggest possible extensions to our work. 

Partially Linear Models 

Part ia l ly linear models are flexible tools for analyzing data from a variety of applications. 

They generalize linear regression models by allowing one of the variables in the model to 

have a non-linear effect on the response. 

Inferences on the Linear Effects in Partially Linear Models 

In many applications, the primary focus is on conducting inferences on the linear effects 

8 in a part ial ly linear model. In these applications, the non-linear effect m in the model 

is treated as a nuisance. This nuisance effect is a double-edged sword - while it affords 

greater modelling flexibility, it is also more difficult to estimate than the linear effects 

and, as such, it complicates the inferences on these effects. 

Inferential Goals 

Depending on the application, various goals could be relevant to the problem of conduct

ing inferences on the linear effects in a partially linear models wi th correlated errors. 
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One goal would be to choose the correct amount of smoothing for accurately estimating 

the linear effects. One would hope that the methodology used for making this choice 

produces an amount of smoothing for which the linear effects are estimated at the 'usual ' 

parametric rate of 1/n - the rate that would be achieved if the non-linear effect were 

known. 

Another goal would be to construct valid standard errors for the estimated linear effects. 

A n additional goal would be to use the estimated linear effects and their associated stan

dard errors to construct valid confidence intervals and tests of hypotheses for assessing 

the magnitude and statistical significance of the linear effects, possibly adjusting for 

smoothing bias. Li t t le has been done in the literature to address this goal. 

Research Questions Concerning the Inferential Goals 

Various research questions emerge in connection wi th the inferential goals listed above: 

1. How can we choose the correct amount of smoothing for accurate estimation of the 

linear effects? 

2. How can we estimate the correlation structure of the model errors for conducting 

inferences on the linear effects? 

3. How can we construct valid standard errors for the estimated linear effects? 

4. How can we construct valid confidence intervals and tests of hypotheses for assessing 

the magnitude and statistical significance of the linear effects? 

5. W h a t is the impact of the choice of amount of smoothing on the validity of the 

confidence intervals and tests of hypotheses? 

6. Cou ld inefficient estimates of the linear effects provide valid inferences? 
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Thesis Contributions 

The major contributions of this thesis to the research questions stated above are: (1) 

defining sensible estimators of the linear and non-linear effects in part ial ly linear models 

wi th correlated errors, (2) deriving explicit expressions for the asymptotic conditional bias 

and variance of the proposed estimators of the linear effects, (3) developing data-driven 

methods for selecting the appropriate amount of smoothing for accurate estimation of 

the linear effects, (4) developing confidence interval and hypothesis testing procedures for 

assessing the magnitude and statistical significance of the linear effects of main interest, 

(5) studying the finite-sample properties of these procedures, and (6) applying these 

procedures to the analysis of an air pol lut ion data set. These contributions are discussed 

in more detail below. 

The estimators we proposed in this thesis are backfitting estimators, relying on locally 

linear regression, which is known to posses attractive theoretical and practical properties. 

Many of the backfitting estimators proposed in the literature of part ial ly linear regression 

models wi th correlated errors rely on locally constant regression, a method that does not 

enjoy the good properties of locally linear regression. 

In Chapters 4 and 5 of this thesis, we studied the large-sample behaviour of the estima

tors of linear effects introduced in this thesis as the wid th of the smoothing window used 

in locally linear regression decreases at a specified rate, and the number of data points in 

this window increases. Specifically, we obtained explicit expressions for the conditional 

asymptotic bias and variance of these estimators. Our asymptotic results are important 

as they show that, in the presence of correlation between the linear and non-linear vari

ables in the model, the bias of the estimators of the linear effects can dominate their 

variance asymptotically, therefore compromising their -^/^-consistency. This problem can 

be remedied however by selecting an appropriate rate of convergence for the smoothing 

parameter of the estimators. Th is rate is slower than the rate that is opt imal for esti

mation of the non-linear effect, and as such it 'undersmooths' the estimated non-linear 
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effect. 

Selecting the appropriate amount of smoothing for the estimators of the linear effects is a 

crucial problem, which is complicated by the presence of error correlation and dependen

cies between the linear and nonlinear components of the model. Our theoretical results 

indicate that the amount of smoothing that is 'optimal' for estimating the non-linear 

effect is not 'optimal' for estimating the linear effects. Data-driven methods devised for 

accurate estimation of the non-linear effect will likely fail to yield a satisfactory choice of 

smoothing for estimating the linear effects. In this thesis, we proposed three data-driven 

smoothing parameter selection methods. Two of these methods are modifications of the 

EBBS method of Opsomer and Ruppert (1999) and rely on the asymptotic bias results 

derived in this thesis. The third method is a non-asymptotic plug-in method. Our meth

ods fill a gap in the literature of partially linear models with correlated errors, as they 

are designed specifically for accurate estimation of the linear effects. These methods 'un

dersmooth' the estimated non-linear effect because they attempt to estimate the amount 

of smoothing that is MSE-optimal for estimating the linear effects, not the amount of 

smoothing that is MSE-optimal for estimating the non-linear effect. Our theoretical 

results suggest that, in general, the amount of smoothing that is MSE-optimal for esti

mating the linear effects is smaller than the amount of smoothing that is MSE-optimal 

for estimating the non-linear effect. 

The issue of conducting valid inferences on the linear effects in a partially linear model 

with correlated errors is inter-connected with the appropriate choice of smoothing for 

estimating these effects. Most literature results devoted to this issue use choices of 

smoothing that 'do well' for estimation of the non-linear effect and are deterministic. 

Such choices may not be satisfactory when one wishes to 'do well' for estimation of 

the linear effects and hence have little practical value in such contexts. The confidence 

interval and hypothesis testing procedures proposed in this thesis are constructed with 

data-driven choices of smoothing. They are either standard, bias-adjusted or standard-
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error adjusted. To our knowledge, adjusting for bias in confidence intervals and tests 

of hypotheses has not been attempted in the literature of part ial ly linear models. The 

inferential procedures we introduced in this thesis do not account for the uncertainty 

associated wi th the fact that the choice of smoothing is data-dependent and the error 

correlation structure is estimated from the data. However, simulations indicate that 

several of these procedures perform reasonably well for finite samples. 

In Chapter 8, we conducted a Monte Carlo simulation study to investigate the finite 

sample properties of the linear effects estimators proposed in this thesis, namely, the 

usual and estimated modified local linear backfitting estimators. We also compared the 

properties of these estimators against those of the usual Speckman estimator. In our 

simulation study, we chose the smoothing parameter of the backfitting estimators using 

the data-driven methods developed in Chapter 6. B y contrast, we chose the smoothing 

parameter of the usual Speckman estimator using cross-validation, modified for correlated 

errors ( M C V ) and for boundary effects. The main goals of our simulation study were (1) 

to compare the expected log mean squared error of the estimators and (2) to compare the 

performance of the confidence intervals buil t from these estimators and their associated 

standard errors. Our study suggested that the usual local linear backfitting estimator 

should be used in practice, wi th either a global modified E B B S or a non-asymptotic plug-

in choice of smoothing. To ensure the validity of the inferences based on this estimator 

and its associated standard error, one should never use small values of / in the modified 

(or leave-(21+l)-out) cross-validation criterion uti l ized in estimating the error correlation 

structure. Adjust ing these inferences for possible bias effects d id not affect the quality 

of our results. The quality of the inferences based on the estimated modified local linear 

estimator was poor for many simulation settings, owing to the fact that the associated 

standard errors were too variable. The quality of the inferences based on the Speckman 

estimator was reasonable for most simulation settings, but not as good as that of the 

inferences based on the usual local linear backfitting estimator. 
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In Chapter 9, we used the inferential methods developed in this thesis to assess whether 

the pollutant P M 1 0 had a significant short-term effect on log mortali ty in Mexico C i t y 

during 1994-1996, after adjusting for temporal trends and weather patterns. Our data 

analysis suggested that there is no conclusive proof that P M 1 0 had a significant short-

term effect on log mortality. Our data analysis differs from standard analyses in that it 

relies on objective methods to adjust this effect for temporal confounding. 

Further W o r k to be Done 

A s usual, there is further work to be done. The following are just a few of the issues that 

need additional investigation. 

Proofs of the asymptotic normality of the linear effects estimators proposed in this thesis 

are st i l l pending. These proofs wi l l provide formal justification for using standard con

fidence intervals and tests of hypotheses based on these estimators and their associated 

standard errors. 

Further investigation into the appropriate choice of I in the modified cross-validation 

criterion used in estimating the error correlation structure is needed. This choice should 

take into account the range and magnitude of the error correlation. 

Possible Extensions to O u r Work 

The work in this thesis can be extended in various directions. 

Firs t , we could extend the partially linear model considered in this thesis by allowing 

additional univariate smooth terms to enter the model. Such models arise frequently in 

practical applications. Developing inferential methodology for these models is therefore 

important. To carry out inferences on the linear effects in such models we would need to 

simultaneously choose the amounts of smoothing for estimating all the non-linear effects. 

These amounts should be appropriate for accurate estimation of the linear effects and 

should account for correlation between the linear and non-linear variables and correlation 

between the model errors. 
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Second, we could extend the partially linear model considered in this thesis to responses 

that are not continuous. For instance, the responses could follow a Poisson distribution. 

Incorporating correlation in such models could be a challenge. 

Third, we could extend the partially linear model considered in this thesis by allowing 

the non-linear variable to be a spatial coordinate, in which case m is a spatial effect. Such 

a model is termed a spatial partially linear model. Clearly, in many contexts, the errors 

would be correlated. Spatial partially linear models with correlated errors can be used, 

for instance, to analyze spatial data observed in epidemiological studies of particulate 

air pollution and mortality. Typically, in these applications, the linear effects 3 are of 

main interest, while the spatial effect m is treated as a nuisance. Ramsay et al. (2003b) 

considered spatial partially linear models with uncorrelated errors and estimated 3 and m 

using the S-Plus function gam with loess as a smoother. They used gam's default choice 

of smoothing to control the degree of smoothness of the estimated m. They showed via 

simulation that the correlation between the linear and spatial terms in the model can lead 

to underestimation of the true standard errors associated with the estimated linear effects, 

both when using S-Plus standard errors and so-called asymptotically unbiased standard 

errors. They cautioned that using such standard errors can compromise the validity of 

inferences concerning the linear effects, but did not propose a solution for alleviating this 

problem. Their findings highlight the fact that carrying out inferences on the linear effects 

in spatial partially linear models with uncorrelated errors is challenging in the presence of 

correlation between the linear and spatial terms in the model. Obviously, error correlation 

will further compound the challenges involved in conducting valid inferences on the linear 

effects in spatial partially linear models. Of course, this work would be relevant in the 

non-spatial context as well. 
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Appendix A 

MSE Comparisons 

In this appendix, we provide plots to help assess and compare the M S E properties of the 

estimators of the linear effect /?i in model (8.1) that were discussed in Section 8.2. 
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Figure A . l : Boxplots of pairwise differences in log MSE for the estimators 

PV,PLUG-IN> PU]EBBS-G A N D PU!EBBS-L of the linear effect Pi in model (8.1), where 
I = 0,1,. . . , 10. Boxplots for which the average difference in log MSE is significantly 
different than 0 at the 0.05 level are labeled with an S. Differences were obtained by 
evaluating the log MSE's of the estimators for 500 data sets simulated from model 
(8.1) with p — 0 and m(z) — mi(z). 
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Figure A.2: Boxplots of pairwise differences in log MSE for the estimators 

PU]PLVG-IN> PU]EBBS-G A N D 0U,EBBS-L °f t h e ^ear effect BX in model (8.1), where 
I — 0 , 1 , . . . , 10. Boxplots for which the average difference in log MSE is significantly 
different than 0 at the 0.05 level are labeled with an S. Differences were obtained by 
evaluating the log MSE's of the estimators for 500 data sets simulated from model 
(8.1) with p — 0.2 and m(z) = m\{z). 
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Figure A.3: Boxplots of pairwise differences in log MSE for the estimators 
M]PLUG-IN> W,EBBS-G A N D PU,EBBS-L °f t h e linear effect Bx in model (8.1), where 
I = 0,1, . . . , 10. Boxplots for which the average difference in log MSE is significantly 
different than 0 at the 0.05 level are labeled with an S. Differences were obtained by 
evaluating the log MSE's of the estimators for 500 data sets simulated from model 
(8.1) with p = 0.4 and m(z) = m\{z). 
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Figure A.4: Boxplots of pairwise differences in log MSE for the estimators 

PU,PLUG-IN> PU,EBBS-G A N D M]EBBS-L of the linear effect ft in model (8.1), where 
I = 0 , 1 , . . . , 10. Boxplots for which the average difference in log MSE is significantly 
different than 0 at the 0.05 level are labeled with an S. Differences were obtained by 
evaluating the log MSE's of the estimators for 500 data sets simulated from model 
(8.1) with p = 0.6 and m(z) — m\(z). 
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Figure A . 5 : Boxplots of pairwise differences in log MSE for the estimators 

PU!PWG-IN> PU!EBBS-G and PU,EBBS-L °f t h e Unear effect Pi in model (8.1), where 
I = 0,1, . . . , 10. Boxplots for which the average difference in log MSE is significantly 
different than 0 at the 0.05 level are labeled with an S. Differences were obtained by 
evaluating the log MSE's of the estimators for 500 data sets simulated from model 
(8.1) with p = 0.8 and m(z) — rn\(z). 
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Figure A.6: Boxplots of pairwise differences in log MSE for the estimators 

PV]PLUG-IN> PU,EBBS-G A N D PU]EBBS-L of the linear effect ft in model (8.1), where 
/ = 0 , 1 , . . . , 1 0 . Boxplots for which the average difference in log MSE is significantly 
different than 0 at the 0.05 level are labeled with an S. Differences were obtained by 
evaluating the log MSE's of the estimators for 500 data sets simulated from model 
(8.1) with p — 0 and m(z) — 1712(2). 
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Figure A.7: Boxplots of pairwise differences in log MSE for the estimators 

M]PLUG-IN> PU]EBBS-G A N D PU,EBBS-L °f t h e linear effect Pi in model (8.1), where 
I = 0,1, . . . , 10. Boxplots for which the average difference in log MSE is significantly 
different than 0 at the 0.05 level are labeled with an S. Differences were obtained by 
evaluating the log MSE's of the estimators for 500 data sets simulated from model 
(8.1) with p — 0.2 and m(z) — 7712(2). 
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Figure A.8: Boxplots of pairwise differences in log MSE for the estimators 

PU,PLUG-IN> PU]EBBS-G A N D PU,EBBS-L °f t h e linear effect ft in model (8.1), where 
I — 0 , 1 , . . . , 10. Boxplots for which the average difference in log MSE is significantly 
different than 0 at the 0.05 level are labeled with an S. Differences were obtained by 
evaluating the log MSE's of the estimators for 500 data sets simulated from model 
(8.1) with p = 0.4 and m(z) — 7712(2). 
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Figure A.9: Boxplots of pairwise differences in log MSE for the estimators 

PU,PLUG-IN> PU)EBBS-G AND &U]EBBS-L °f t h e linear effect Bx in model (8.1), where 
1 = 0,1,..., 10. Boxplots for which the average difference in log MSE is significantly 
different than 0 at the 0.05 level are labeled with an S. Differences were obtained by 
evaluating the log MSE's of the estimators for 500 data sets simulated from model 
(8.1) with p = 0.6 and m(z) = 7712(2;). 
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Figure A . 10: Boxplots of pairwise differences in log MSE for the estimators 

PV,PLUG-IN> W,EBBS-G A N D PU]EBBS-L of the linear effect Pi in model (8.1), where 
I — 0,1,..., 10. Boxplots for which the average difference in log MSE is significantly 
different than 0 at the 0.05 level are labeled with an S. Differences were obtained by 
evaluating the log MSE's of the estimators for 500 data sets simulated from model 
(8.1) with p — 0.8 and m(z) = 7712(2). 
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Figure A . 11: Boxplots of pairwise differences in log MSE for the estimators 

0EM,PLUG-IN> PEM,EBBS-G A N D 0EM.EBBS-L °f t h e l i n e a r effect Pi i n m o d e l (8A)> 
where Z = 0 , 1 , . . . , 10. Boxplots for which the average difference in log MSE is sig
nificantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) with p = 0 and m(z) = mi(z). 
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Figure A.12: Boxplots of pairwise differences in log MSE for the estimators 

PEM,PLUG-IN> PEM,EBBS-G A N D PEM,EBBS-L °f t h e l i n e a r effect Pi i n m o d e l (8A)> 
where I — 0 , 1 , . . . , 10. Boxplots for which the average difference in log MSE is sig
nificantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) with p — 0.2 and m(z) = m\(z). 
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Figure A . 13: Boxplots of pairwise differences in log MSE for the estimators 

PEM,PLUG-IN> PEM,EBBS-G A N D PEM,EBBS-L °f t h e l i n e a r effect Pi i n model (8.1), 
where I = 0 , 1 , . . . , 10. Boxplots for which the average difference in log MSE is sig
nificantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) with p = 0.4 and m(z) = m\{z). 
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Figure A . 14: Boxplots of pairwise differences in log MSE for the estimators 

MM,PLUG-IN> PEM,EBBS-G A N D PEM,EBBS-L °fthe l i n e a r effect Pi i n m o d e l 

where I = 0 , 1 , . . . , 10. Boxplots for which the average difference in log MSE's is 
significantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) with p = 0.6 and m(z) — m\(z). 
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Figure A . 15: Boxplots of pairwise differences in log MSE for the estimators 

MM,PWG-IN> PEM,EBBS-G A N D PEM,EBBS-L °f t h e l i n e a r effect A i n m o d d (S- 1)^ 
where Z = 0 ,1 , . . . , 10. Boxplots for which the average difference in log MSE is sig
nificantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) with p = 0.8 and m(z) = m\(z). 
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Figure A . 16: Boxplots of pairwise differences in log MSE for the estimators 

PEM,PLUG-IN> PEM,EBBS-G A N D PEM,EBBS-L °f t h e l i n e a r effect Pi i n m o d d i8-1)' 
where I = 0 , 1 , . . . , 10. Boxplots for which the average difference in log MSE is signifi
cantly different than 0 at the 0.05 significance level are labeled with an S. Differences 
were obtained by evaluating the log MSE's of the estimators for 500 data sets simu
lated from model (8.1) with p = 0 and m(z) = m,2(z). 
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Figure A.17: Boxplots of pairwise differences in log MSE for the estimators 

MM,PLUG-IN> PEM,EBBS-G A N D PEM,EBBS-L °f t h e l i n e a r effect A i n model (8.1), 
where I = 0 , 1 , . . . , 10. Boxplots for which the average difference in log MSE is sig
nificantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) with p = 0.2 and m(z) = m2(z). 
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Figure A . 18: Boxplots of pairwise differences in log MSE for the estimators 

PEM,PLUG-IN> PEM,EBBS-G A N D PEM,EBBS-L °f t h e l i n e a r effect Pi i n m o d e l 

where Z = 0 , 1 , . . . , 10. Boxplots for which the average difference in log MSE is sig
nificantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) with p = 0.4 and m(z) = 7712(2). 
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Figure A . 19: Boxplots of pairwise differences in log MSE for the estimators 

PEM,PLUG-IN•> PEM,EBBS-G A N D MM,EBBS~L °f t h e l i n e a r effect A i n model (8.1), 
where I — 0 , 1 , . . . , 10. Boxplots for which the average difference in log MSE is sig
nificantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) with p = 0.6 and m(z) = 7712(2). 
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Figure A.23: Boxplots of pairwise differences in log MSE for the estimators 
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Figure A.24: Boxplots of pairwise differences in log MSE for the estimators 

PU,PLUG-IN> PU,EBBS-G> PEM,EBBS-G A N D M]MCV °f t h e l i n e a r effect A i n model 
(8.1), where I = 0 , 1 , . . . , 10. Boxplots for which the average difference in log MSE is 
significantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) with p = 0.6 and m(z) — m\{z). 
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Figure A.25: Boxplots of pairwise differences in log MSE for the estimators 

M]PLUG-IN> PU,EBBS-G> PEM,EBBS-G A N D M]MCV °f t h e l i n e a r effect A i n model 
(8.1), where I = 0 , 1 , . . . , 10. Boxplots for which the average difference in log MSE is 
significantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) with p = 0.8 and m(z) = m\{z). 
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Figure A.26: Boxplots of pairwise differences in log MSE for the estimators 

M]PLUG-IN> PU]EBBS-G> PEM\EBBS-G A N D W,MCV °f t h e linear effect ft in model 
(8.1), where I = 0,1, . . . , 10. Boxplots for which the average difference in log MSE is 
significantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) with p = 0 and m(z) — 7712(2). 
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Figure A.27: Boxplots of pairwise differences in log MSE for the estimators 

M]PLUG-IN> PU,EBBS-G> PEM,EBBS-G A N D M]MCV °f t h e l i n e a r effect Pi i n model 
(8.1), where I — 0,1, . . . , 10. Boxplots for which the average difference in log MSE is 
significantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) with p = 0.2 and m(z) = 7712(2). 
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Figure A.28: Boxplots of pairwise differences in log MSE for the estimators 

PV,PLUG-IN> M]BBBS-G> MM,EBBS-G A N D M]MCV °f t h e linear effect ft in model 
(8.1), where I — 0,1, . . . , 10. Boxplots for which the average difference in log MSE is 
significantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) with p = 0.4 and m(z) = m2(z). 
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Figure A.29: Boxplots of pairwise differences in log MSE for the estimators 

W,PLUG-IN> P<J,EBBS-G> PEM,EBBS-G A N D M]MCV °f t h e linear effect Pi in model 
(8.1), where I = 0,1,... ,10. Boxplots for which the average difference in log MSE is 
significantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) for which p = 0.6 and m(z) = m2(z). 
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Figure A.30: Boxplots of pairwise differences in log MSE for the estimators 

Pu,PLUG-IN> M]EBBS-G> PEM,EBBS-G A N D # S , M C V °f t h e l i n e a r effect Pi i n m o d e l 

(8.1), where I — 0 , 1 , . . . , 10. Boxplots for which the average difference in log MSE is 
significantly different than 0 at the 0.05 level are labeled with an S. Differences were 
obtained by evaluating the log MSE's of the estimators for 500 data sets simulated 
from model (8.1) with p = 0.8 and m(z) = 7 7 1 2 ( 2 ) . 
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Appendix B 

Validi ty of Confidence Intervals 

In this appendix, we provide plots that help assess and compare the coverage properties 

of various methods for constructing standard 95% confidence intervals for Pi, the linear 

effect in model (8.1). For each method, we visualize point estimates and 95% confidence 

interval estimates for the true coverage achieved by that method. 
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p = 0; m(z) = 2sin(3z) - 2(cos(0)-cos(3))/3 
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Figure B . l : Point estimates (circles) and 95% confidence interval estimates (seg
ments) for the true coverage achieved by seven different methods for constructing 95% 
confidence intervals for the linear effect f3\ in model (8.1). Each method depends on a 
tuning parameter I = 0,1,. . . , 10. The nominal coverage of each method is indicated 
via a horizontal line. Estimates were obtained with p = 0 and m(z) — m\(z). 
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p = 0.2; m(z) = 2sin(3z) - 2(cos(0)-cos(3))/3 
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S P E C K M A N + MCV 

; method with superior M S E performance 

Figure B.2: Point estimates (circles) and 95% confidence interval estimates (seg
ments) for the true coverage achieved by seven different methods for constructing 95% 
confidence intervals for the linear effect Pi in model (8.1). Each method depends on a 
tuning parameter I = 0,1, . . . , 10. The nominal coverage of each method is indicated 
via a horizontal line. Estimates were obtained with p = 0.2 and m(z) = 7 7 1 2 ( 2 ) . 
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p = 0.4; m(z) = 2sin(3z) - 2(cos(0)-cos(3))/3 
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IjlHHlHI 

10 
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SPECKMAN + MCV 

; method with superior MSE performance 

Figure B.3: Point estimates (circles) and 95% confidence interval estimates (seg
ments) for the true coverage achieved by seven different methods for constructing 95% 
confidence intervals for the linear effect B\ in model (8.1). Each method depends on a 
tuning parameter I = 0,1, . . . , 10. The nominal coverage of each method is indicated 
via a horizontal line. Estimates were obtained with p = 0.4 and m(z) = m\(z). 
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Figure B.4: Point estimates (circles) and 95% confidence interval estimates (seg
ments) for the true coverage achieved by seven different methods for constructing 95% 
confidence intervals for the linear effect Pi in model (8.1). Each method depends on a 
tuning parameter I — 0,1,. . . , 10. The nominal coverage of each method is indicated 
via a horizontal line. Estimates were obtained with p — 0.6 and m(z) = mi(z). 

227 



p = 0.8; m(z) = 2sin(3z) - 2(cos(0)-cos(3))/3 
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• method with superior MSE performance 

Figure B.5: Point estimates (circles) and 95% confidence interval estimates (seg
ments) for the true coverage achieved by seven different methods for constructing 95% 
confidence intervals for the linear effect Q\ in model (8.1). Each method depends on a 
tuning parameter I = 0,1,. . . , 10. The nominal coverage of each method is indicated 
via a horizontal line. Estimates were obtained with p = 0.8 and m(z) = m\(z). 
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p = 0; m(z) = 2sin(6z) - 2(cos(0)-cos(6))/6 
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Figure B.6: Point estimates (circles) and 95% confidence interval estimates (seg
ments) for the true coverage achieved by seven different methods for constructing 95% 
confidence intervals for the linear effect ft in model (8.1). Each method depends on a 
tuning parameter I = 0,1,. . . , 10. The nominal coverage of each method is indicated 
via a horizontal line. Estimates were obtained with p — 0 and m(z) = 7 7 1 2 ( 2 ) . 
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p = 0.2; m(z) = 2sin(6z) - 2(cos(0)-cos(6))/6 

USUAL + PLUG-IN USUAL + EBBS-G USUAL + EBBS-L 

MODIFIED + PLUG-IN MODIFIED + EBBS-G MODIFIED + EBBS-L 

SPECKMAN + MCV 

•• method with superior MSE performance 

Figure B.7: Point estimates (circles) and 95% confidence interval estimates (seg
ments) for the true coverage achieved by seven different methods for constructing 95% 
confidence intervals for the linear effect ft in model (8.1). Each method depends on a 
tuning parameter I = 0,1, . . . , 10. The nominal coverage of each method is indicated 
via a horizontal line. Estimates were obtained with p — 0.2 and m(z) = 7 7 1 2 ( 2 ) . 
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p = 0.4; m(z) = 2sin(6z) - 2(cos(0)-cos(6))/6 
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: method with superior MSE performance 

Figure B.8: Point estimates (circles) and 95% confidence interval estimates (seg
ments) for the true coverage achieved by seven different methods for constructing 95% 
confidence intervals for the linear effect B\ in model (8.1). Each method depends on a 
tuning parameter I = 0,1,. . . , 10. The nominal coverage of each method is indicated 
via a horizontal line. Estimates were obtained with p = 0.4 and m(z) = 7 7 1 2 ( 2 ) . 
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p = 0.6; m(z) = 2sin(6z) - 2(cos(0)-cos(6))/6 
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Figure B.9: Point estimates (circles) and 95% confidence interval estimates (seg
ments) for the true coverage achieved by seven different methods for constructing 95% 
confidence intervals for the linear effect Pi in model (8.1). Each method depends on a 
tuning parameter I = 0,1, . . . , 10. The nominal coverage of each method is indicated 
via a horizontal line. Estimates were obtained with p = 0.6 and m(z) = 7 7 1 2 ( 2 ) . 
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p = 0.8; m(z) = 2sin(6z) - 2(cos(0)-cos(6))/6 
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Figure B.10: Point estimates (circles) and 95% confidence interval estimates (seg
ments) for the true coverage achieved by seven different methods for constructing 95% 
confidence intervals for the linear effect fi\ in model (8.1). Each method depends on a 
tuning parameter I — 0,1, . . . , 10. The nominal coverage of each method is indicated 
via a horizontal line. Estimates were obtained with p = 0.8 and m(z) = m,2(z). 
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Appendix C 

Confidence Interval Length 

Comparisons 

In this appendix, we provide plots that help assess and compare the length properties 

of three methods for constructing standard 95% confidence intervals for 3X, the linear 

effect in model (8.1). These methods rely on the estimators PIJPLUG-IN^ PUEBBS-G 

and Ps^MCVi a n < ^ their associated standard errors. We remind the reader that the finite 

sample properties of these estimators were investigated via simulation in Chapter 8. 
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p = 0; m(z) = 2sin(3z) - 2(cos(0)-cos(3))/3 
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Figure C l : Top row: Average length of the standard confidence intervals for the 
linear effect ft in model (8.1) as a function of I — 0,1, . . . , 10. Standard error bars 
are attached. Bottom three rows: Boxplots of pairwise differences in the lengths of 
the standard confidence intervals for ft. Boxplots for which the average difference in 
lengths is significantly different than 0 at the 0.05 level are labeled with an S. Lengths 
were computed with p = 0 and m(z) = m\(z). 
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p = 0.2; m(z) = 2sin(3z) - 2(cos(0)-cos(3))/3 
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Figure C.2: Top row: Average length of the standard confidence intervals for the 
linear effect Pi in model (8.1) as a function of I = 0,1,..., 10. Standard error bars 
are attached. Bottom three rows: Boxplots of pairwise differences in the lengths of 
the standard confidence intervals for Boxplots for which the average difference in 
lengths is significantly different than 0 at the 0.05 level are labeled with an S. Lengths 
were computed with p — 0.2 and m(z) — m 1 (z). 
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p = 0.4; m(z) = 2sin(3z) - 2(cos(0)-cos(3))/3 
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Figure C.3: Top row: Average length of the standard confidence intervals for the 
linear effect Pi in model (8.1) as a function of I — 0 , 1 , . . . , 10. Standard error bars 
are attached. Bottom three rows: Boxplots of pairwise differences in the lengths of 
the standard confidence intervals for Pi. Boxplots for which the average difference in 
lengths is significantly different than 0 at the 0.05 level are labeled with an S. Lengths 
were computed with p = 0.4 and m(z) — mi(z). 
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p = 0.6; m(z) = 2sin(3z) - 2(cos(0)-cos(3))/3 
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Figure C.4: Top row: Average length of the standard confidence intervals for the 
linear effect Pi in model (8.1) as a function of I — 0 ,1, . . . , 10. Standard error bars 
are attached. Bottom three rows: Boxplots of pairwise differences in the lengths of 
the standard confidence intervals for Pi. Boxplots for which the average difference in 
lengths is significantly different than 0 at the 0.05 level are labeled with an S. Lengths 
were computed with p = 0.6 and m(z) = mi(z). 
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p = 0.8; m(z) = 2sin(6z) - 2(cos(0)-cos(6))/6 
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Figure C.5: Top row: Average length of the standard confidence intervals for the 
linear effect Pi in model (8.1) os a function of I = 0,1,. . . ,10. Standard error bars 
are attached. Bottom three rows: Boxplots of pairwise differences in the lengths of 
the standard confidence intervals for Pi. Boxplots for which the average difference in 
lengths is significantly different than 0 at the 0.05 level are labeled with an S. Lengths 
were computed with p = 0.8 and m(z) — mi(z). 
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Figure C.6: Top row: Average length of the standard confidence intervals for the 
linear effect Pi in model (8.1) as a function of I — 0,1, . . . , 10. Standard error bars 
are attached. Bottom three rows: Boxplots of pairwise differences in the lengths of 
the standard confidence intervals for Pi. Boxplots for which the average difference in 
lengths is significantly different than 0 at the 0.05 level are labeled with an S. Lengths 
were computed with p — 0 and m(z) — 1712(2). 
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Figure C.7: Top row: Average length of the standard confidence intervals for the 
linear effect Pi in model (8.1) as a function of I = 0,1,. . . ,10. Standard error bars 
are attached. Bottom three rows: Boxplots of pairwise differences in the lengths of 
the standard confidence intervals for Pi. Boxplots for which the average difference in 
lengths is significantly different than 0 at the 0.05 level are labeled with an S. Lengths 
were computed with p = 0.2 and m(z) = 7712(2). 
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p = 0.4; m(z) = 2sin(6z) - 2(cos(0)-cos(6))/6 
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Figure C.8: Top row: Average length of the standard confidence intervals for the 
linear effect Pi in model (8.1) as a function of I = 0,1,... ,10. Standard error bars 
are attached. Bottom three rows: Boxplots of pairwise differences in the lengths of 
the standard confidence intervals for Pi. Boxplots for which the average difference in 
lengths is significantly different than 0 at the 0.05 level are labeled with an S. Lengths 
were computed with p — OA and m(z) = 7 7 1 2 ( 2 ) . 

242 



p = 0.6; m(z) = 2sin(6z) - 2(cos(0)-cos(6))/6 
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Figure C.9: Top row: Average length of the standard confidence intervals for the 
linear effect 3\ in model (8.1) as a function of I = 0,1,. . . ,10. Standard error bars 
are attached. Bottom three rows: Boxplots of pairwise differences in the lengths of 
the standard confidence intervals for Q\. Boxplots for which the average difference in 
lengths is significantly different than 0 at the 0.05 level are labeled with an S. Lengths 
were computed with p — 0.6 and m(z) = 7 7 1 2 ( 2 ) . 
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p = 0.8; m(z) = 2sin(6z) - 2(cos(0)-cos(6))/6 
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Figure C.10: Top row: Average length of the standard confidence intervals for the 
linear effect ft in model (8.1) as a function of I = 0,1, . . . , 10. Standard error bars 
are attached. Bottom three rows: Boxplots of pairwise differences in the lengths of 
the standard confidence intervals for ft. Boxplots for which the average difference in 
lengths is significantly different than 0 at the 0.05 level are labeled with an S. Lengths 
were computed with p — 0.8 and m(z) — 1 7 1 2 ( 2 ) . 
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