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Abstract 

This thesis considers two broad topics in the theory and application of hidden Markov 
models (HMMs): modelling multiple time series and model selection. Of particular interest 
is the application of these ideas to data collected on multiple sclerosis patients. Our results 
are, however, directly applicable to many different contexts in which HMMs are used. 

One model selection issue that we address is the problem of estimating the number of 
hidden states in a H M M . We exploit the relationship between finite mixture models and 
HMMs to develop a method of consistently estimating the number of hidden states in a 
stationary H M M . This method involves the minimization of a penalized distance function. 

Another such issue that we discuss is that of assessing the goodness-of-fit of a stationary 
H M M . We suggest a graphical technique that compares the empirical and estimated distri­
bution functions, and show that, if the model is misspecified, the proposed plots will signal 
this lack of fit with high probability when the sample size is large. A unique feature of our 
technique is the plotting of both the univariate and multivariate distribution functions. 

HMMs for multiple processes have not been widely studied. In this context, random 
effects may be a natural choice for capturing differences among processes. Building on the 
framework of generalized linear mixed models, we develop the theory required for implement­
ing and interpreting HMMs with random effects and covariates. We consider the case where 
the random effects appear only in the conditional model for the observed data, as well as the 
more difficult setting where the random effects appear in the model for the hidden process. 
We discuss two methods of parameter estimation: direct maximum likelihood estimation 
and the E M algorithm. Finally, to determine whether the additional complexity introduced 
by the random effects is warranted, we develop a procedure for testing the significance of 
their variance components. 

We conclude with a discussion of future work, with special attention to the problem of 

the design and analysis of multiple sclerosis clinical trials. 
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Chapter 1 

Introduction 

Hidden Markov models (HMMs) describe the relationship between two stochastic processes: 
an observed process and an underlying "hidden" (unobserved) process. These models form 
a class of mixture models where, given the hidden state at time t, the distribution of the 
observation at this time.is fully specified. However, HMMs are more general than classical 
mixture models in that the hidden states are not assumed to be independent, but rather to 
have a Markovian structure. One consequence of this assumption is that the observed data 
are also correlated, with dependence between observations decreasing to zero as the distance 
between them increases to infinity. This correlation is long-range, in the sense that H M M s 
are not Markov chains. 

In general, these models are used for two purposes. The first is to make inferences or 
predictions about an unobserved process based on the observed process. For example, HMMs 
have been used successfully for the purposes of prediction in the field of speech recognition 
(e.g. Levinson et al. 1983). In this context, the observed data - the acoustic signal - may be 
modelled as a function of unobserved articulatory configurations such as vocal tract shape 
or tongue movement. For each word from a vocabulary of size V, V < oo, an acoustic signal 
is generated, and the parameters of the associated H M M estimated. Then, given a signal 
generated from an unknown word in this vocabulary, these V models can be used to predict 
which word was uttered. Some advanced systems based on HMMs now perform as accurately 
as their human counterparts (Juang & Rabiner 1991). Similarly, HMMs have been used in 
molecular biology for gene recognition (see, e.g., Krogh 1998). Here, sequenced strands of 
D N A are treated as functions of the underlying signals that comprise the structure of a gene. 
The models estimated from sequences with known genetic structure are then used to predict 
the location of genes in new sequences. 

A second reason for using HMMs is to explain variation in the observed process based on 



variation in a postulated hidden process. In this paradigm, a H M M captures over-dispersion 
(relative to a standard distribution) in the observed data. In particular, a H M M attributes 
this over-dispersion to the key model feature that observations come from one of several 
different marginal distributions, each associated with a different latent state. When physical 
meaning can be attributed to these states, a H M M provides a natural model for such data. 
As an illustration, Leroux & Puterman (1992) use a H M M to model the number of foetal 
lamb movements in consecutive 5-second intervals. The distribution of each observation is 
assumed to depend on whether the lamb is in a relaxed or excited state. As another example, 
Albert (1991) models the distribution of epileptic seizure frequencies according to whether 
the patient is in a high or low seizure activity state. 

Magnetic resonance imaging (MRI) scans of relapsing-remitting multiple sclerosis (MS) 
patients are another source of data that may be appropriately modelled by HMMs. Patients 
afflicted with this type of MS experience lesions on the brain stem, with symptoms worsening 
and then improving in alternating periods of relapse and remission. Typical data amassed 
during clinical trials consist of lesion counts at regular time intervals for a collection of 
patients. It is now believed that exacerbations are associated with increased numbers of 
lesions on the brain stem. Thus, it may be reasonable to assume that the distribution of the 
lesion counts depends on the patient's (unobserved) disease state, i.e. whether the patient is 
in relapse or remission. Additionally, we might expect to see autocorrelation in this sequence 
of disease states. Indeed, Albert et al. (1994) use this idea in the development of a H M M 
for individual relapsing-remitting MS patients. 

The study of H M M theory began in the late 1960's. One of the key papers, Baum et 
al. (1970), provides a method of obtaining the maximum likelihood estimates (MLEs). The 
asymptotic properties of the MLEs have subsequently been established (Leroux 1992a; Bickel 
et al. 1998; Doue & Matias 2001). Likelihood ratio tests for HMMs have been studied by 
Giudici et al. (2000), and Bickel et al. (2002) have determined bounds on the expectations of 
the H M M log-likelihood and its derivatives. However, theoretical gaps remain. This thesis 
addresses two such topics that have not been adequately studied in the literature: modelling 
multiple time series, and model selection techniques. We will use the M S / M R I context 
described above to illustrate many of our ideas. In particular, we will consider two M S / M R I 
data sets: that used by Albert et al. (1994), and another similar data set involving the 13 
placebo patients from the Vancouver cohort of the PRISMS study (PRISMS Study Group 
1998). 

Most work to date on H M M theory has concentrated on models for a single observed 
process. In Chapter 2, we introduce some basic definitions and concepts in this setting. We 
then explore the model considered by Albert et al. (1994), as well as some simple extensions. 



This exploration, which includes a discussion of the limitations of the theory surrounding 
these models, will serve to clarify the fundamental ideas behind HMMs, and will elucidate 
our questions of interest. 

In Chapters 3 and 4, working in the context of a single, stationary H M M , we address two 
questions of critical importance in the application of HMMs: estimation of the number of 
hidden states and assessment of goodness-of-fit (GOF). In Chapter 3, we develop a method 
of consistently estimating the number of hidden states. Our method extends the work 
of Chen & Kalbfleisch (1996), who consider the use of a penalized distance function for 
estimating the number of components in a finite mixture model. We apply our procedure 
to the M S / M R I data collected by Albert et al. (1994), and carry out a small simulation 
study that suggests the method performs reasonably well for finite samples. This work 
was published in The Canadian Journal of Statistics (MacKay 2002). In Chapter 4, we 
propose a graphical technique for assessing the G O F of a H M M . Specifically, we show that 
plots comparing the empirical and estimated distribution functions - both univariate and 
multivariate - allow the detection of lack of fit in the model with high probability as the 
sample size grows. We use this technique to study the appropriateness of various HMMs for 
the two M S / M R I data sets. 

Chapter 2 will also motivate the need for HMMs for multiple processes, which is the focus 
of Chapter 5. In that chapter, we propose the incorporation of random effects as a means 
of linking the different processes. Random effects provide an efficient way of modelling com­
monalities among patients while allowing for some inter-patient variability. Furthermore, 
including random effects permits greater flexibility in the modelling of the correlation struc­
ture of the observed data. Using the generalized linear mixed model (GLMM) framework, 
we consider the incorporation of random effects and covariates in both the conditional model 
for the observed process and the model for the hidden process. We discuss the estimation 
of these models, as well as their interpretation, with special attention to the impact of the 
random effects on the marginal moments of the observed data. 

In Chapter 6, we address the issue of hypothesis tests for the parameters of the class of 
models developed in Chapter 5. We comment on the asymptotic properties of the MLEs , 
and suggest settings where standard test procedures may be appropriate. We then present a 
method for testing the significance of the variance components, which is a more challenging 
problem since the null hypothesis puts at least one parameter on the boundary of the pa­
rameter space. Our method has its inspiration in the score test proposed by Jacqmin-Gadda 
& Cornmenges (1995) in the G L M M context. We provide two illustrations of the theory in 
Chapters 5 and 6 to demonstrate the practicality of using our class of models in applications. 
The first involves the M S / M R I lesion count data from the Vancouver PRISMS study; the 



second considers the analysis of repeated measurements of faecal coliform counts at several 
oceanic sites. We end this chapter with a modest simulation study to investigate the power 
of this method for finite samples. 

We conclude with Chapter 7, where we summarize the work in this thesis and present 
ideas for future research in the field of HMMs. Of particular interest is the application of 
our theory to the design and analysis of M S / M R I clinical trials. Our discussion focuses on 
the issues that we anticipate will arise in this work. 



Chapter 2 

Hidden Markov Models for a Single 
Process 

In this chapter, we provide the formal definition of a H M M for a single process, as well as 
some theory relevant to parameter estimation and hypothesis testing in this setting. We 
then illustrate these ideas with an application to a M S / M R I data set. The primary purposes 
of this chapter are to introduce basic concepts and to highlight our research questions of 
interest. 

Throughout this thesis, we use the generic notation f(x) to denote the density (or prob­
ability mass function) of a random variable (or vector), X. Usually, / will be a member of a 
parametric family with parameters xp, in which case we will write f(x;ip). We will use bold 
face to indicate a vector, such as Y and Z to denote the vectors of observed responses and 
hidden states, respectively. 

2.1 Definition of a Hidden Markov Model 

Let Yt be the observed response at time t, and let Zt be the hidden state at time t, t = 1,..., n. 
The process {Yt} is a discrete-time H M M if 

• {Zt} is a Markov chain with transition probabilities {-P^} and initial probabilities 

Or*}-

• Yt\Zt is independent of Yu Yt_u Yt+U ..., Yn and Zu..., Z t _ 1 ; Zt+1, ...,Zn. 

Typically, the following assumptions are also made: 



1. The density (or probability mass function) of Yt\Zt is h( • ]Qzt,<f>), where h is a para­
metric family indexed by the parameters (Oz,., 4>) 6 0 . 

2. Zt E { 1 , . . . , i f } , where /<" is known and finite. 

3. The values of {9k} are distinct. 

4. The time points t = 1,..., n are equally spaced. 

5. Plf = Pke, k, £ = 1, • • •, K, i.e. the transition probabilities are homogeneous. 

6. {Zt} is stationary. 

R E M A R K . Assumption 1 implies that the distribution of Yt\Zt depends on t only through Zt. 
Our notation indicates that some parameters (9zt) may vary with Zt, whereas others (4>) are 
common across the hidden states. We relax Assumption 2 in Chapter 3, where we address 
the issue of estimating K. Assumption 3 is made in most applications of HMMs, with the 
notable exception of ion channel modelling (e.g. Chung et al. 1990). We discuss this issue in 
more detail in Section 3.2. Assumption 4 allows us to specify the model in terms of the 1-step 
transition probabilities, and hence is a useful simplification, but it is not strictly necessary 
(see, e.g., Section 6.4.3). Assumption 5 is also standard, though Hughes & Guttorp (1994) 
have considered non-homogeneous HMMs in applications. One advantageous consequence of 
Assumption 6 is that the random variables {Yt} are identically distributed - a feature that 
sometimes permits the extension of existing theory for iid random variables to the H M M 
setting (see, e.g., Chapters 3 and 4). 

It is interesting to note that the marginal distribution of Yt is a finite mixture: 

i< 

However, the sequence of hidden states, {Zt}, is allowed to have a Markovian, rather than in­
dependent, structure. Thus, we see that stationary HMMs are a generalization of traditional 
finite mixture models. 

2.2 Maximum Likelihood Estimation 

The likelihood associated with the model described in Section 2.1 is not a simple product of 

marginal distributions. Define ip = (# l 5 . . . , 6f<\ (j), Pu, Pn, • • • ; PKI<I • • • -, ^K), and denote 



the likelihood by £('</>). Then, using the assumption that {Y,} are independent given {Zt}, 

/(y;V0 

E/(yM)/(z;</0 
z 

n n 

EII f(vtW • ; VO il/(^tki-i, VO 
n n 

P*t-\y (2.1) 

Thus, we see that the likelihood involves a summation over the Kn possible values of z, and 
hence is quite complicated. 

We can simplify (2.1) somewhat by recognizing that for each t, the variable zt appears 
in only a few factors. So 

This expression can then be written as a product of matrices (MacDonald & Zucchini 1997, 
Chapter 2). In particular, let A1 be the vector with elements A\ = irk h(yy;6k, (f>), and let 
A1 be the matrix with elements Akl = Pu h(yt;0e, </>), t > 1. Let 1 be a the K-dimensional 
vector of l 's. Then 

which is a very simple expression to compute. This form of the likelihood illustrates that the 
number of hidden states, K, has a far greater impact on the computational effort associated 
with maximum likelihood estimation than the number of observations, n. 

Traditionally, the E M algorithm (Dempster et al. 1977) has been used to maximize H M M 
likelihoods. There are two likely reasons for the popularity of this algorithm. Firstly, for 
homogeneous HMMs (see Assumption 5 in Section 2.1) taking on only a finite number of val­
ues and with unknown initial probabilities, this algorithm reduces to an iterative procedure 
with simple, closed-form expressions for the parameter estimates at each iteration. In this 
context, the E M algorithm is often called the Forward-Backward algorithm and is credited 
to Baum et al. (1970). Details are provided in Appendix A . l . In terms of estimation of the 
parameters of a H M M , this case is the simplest possible, and will be a useful reference point 
when assessing the difficulty of estimating the parameters of the more complicated models 
we consider in Chapter 5. 

A second reason is that derivatives of H M M likelihoods are somewhat difficult to compute, 
requiring iterative methods (e.g. Rynkiewicz 2001). The E M algorithm, unlike methods such 
as Newton-Raphson, does not require that derivatives be supplied. 

= E K, 4>) E Pz^Mv2\oZ2A) • • • E ^ h(yn;0Zn,(p). 

(2.2) 



However, in general, the steps of the E M algorithm do not involve closed-form expressions. 
Furthermore, this algorithm is notoriously slow to converge. Thus, we prefer direct numerical 
maximization of the likelihood, which is typically much more efficient (MacDonald and 
Zucchini 1997, Chapter 2). In particular, we have found that the quasi-Newton routine (Nash 
1979) tends to locate maximum likelihood estimates (MLEs) more accurately and with far 
less computational effort than the E M algorithm. Even if the E M algorithm performs better 
than direct maximization under some circumstances (such as when we have a large number 
of parameters or poor starting values), repeating the direct maximization procedure using a 
variety of starting values still seems to be the most efficient means of parameter estimation. 

Starting values are of critical importance since H M M likelihoods tend to have many local 
maxima. These values may be selected using, for example, the method suggested by Leroux 
& Puterman (1992). In addition, we recommend doing a grid search (over a variety of 
reasonable starting values) to improve our chances of locating the global maximum. 

Another implementation issue concerns the parameters 1^.}, which are normally consid­
ered to be nuisance parameters. Three options exist for the dealing with these parameters. 
Firstly, we may assume values for {^k}- In the absence of prior information, this option may 
not be reasonable. On the other hand, Leroux (1992a) shows that the consistency of the 
MLEs does not depend on the choice of initial distribution. Thus, for processes observed at 
a large number of time points, this option may be appealing. 

Secondly, we may estimate {71^} from the data. This option is also undesirable for 
relatively small data sets since it would require the estimation of K—l additional parameters, 
risking an increase in the standard errors of the parameters of interest. 

Finally, if the hidden process can be assumed to be stationary, we can treat {71^} as 
functions of the transition probabilities. In this way, we can reduce the number of parameters 
to estimate. This option, while requiring the solution of a system of K linear equations at 
each iteration of the maximization procedure, seems to be the most attractive as long as the 
assumption of stationarity is appropriate. We thus use this approach in the examples we 
consider in this thesis. 

2.3 Asymptotic Properties of the MLEs 

Results on the properties of the MLEs require that the model (2.1) is identifiable, i.e. 

/(y; = /(y; ^2) i f a n d °niy i f '0i = $2-



Strictly speaking, a H M M is never identifiable, in the sense that we can always permute the 
labels of the hidden states without changing the likelihood. However, it is easy to overcome 
this obstacle by imposing appropriate restrictions on the parameters (such as an ordering 
of {9k) in the case where these values are distinct). Setting this point aside, determining 
sufficient conditions for identifiability is still a difficult problem, except when the H M M is 
stationary with distinct values of See Section 3.2 for details. 

In the case of a stationary H M M where the hidden process takes on only a finite number 
of values, Leroux (1992a) and Bickel et al. (1998) establish the consistency and asymptotic 
normality, respectively, of the MLEs under quite general conditions. In addition to assuming 
model identifiability, these authors impose mild conditions on the transition probabilities and 
on the distribution h. These components of the model are usually quite simple (in contrast 
with the full likelihood), and hence these conditions are relatively easy to verify (and hold 
for most models). Douc & Matias (2001) show that the MLEs are also consistent and 
asymptotically normal in the case where {Zt} belongs to a compact set and is possibly non-
stationary. Again, these authors impose conditions only on the Markov transition kernel and 
the distribution h. We are not aware of any results in the literature regarding the asymptotic 
properties of non-homogeneous HMMs. 

With respect to inference about the unknown parameters, Bickel et al. (1998) and Douc 
& Matias (2001) show that the observed information converges in probability to the Fisher 
information matrix. Thus, if the H M M satisfies the conditions imposed by these authors, we 
can conduct Wald tests in the standard way, using the observed information to estimate the 
variance-covariance matrix of the MLEs. In addition, Giudici et al. (2000) show that, in the 
comparison of nested stationary HMMs with a common, known value of K, the likelihood 
ratio test statistic has the usual asymptotic x 2 distribution. Their theory is applicable, for 
example, to test whether the hidden states have an independent, rather than Markovian, 
structure. 

2.4 Application to MS/MRI Data 

In this section, we discuss an interesting and unusual H M M developed by Albert et al. (1994) 
for M S / M R I data. We fit this model to their data and give the results in Section 2.4.1! We 
then develop several extensions, which we present in Sections 2.4.2-2.4.5. One purpose of 
this discussion is to solidify the concepts in Sections 2.1-2.3. Furthermore, with an eye 
towards future work on the design and analysis of M S / M R I clinical trials (see Chapter 7), 
this section will illustrate the type of questions that might be asked in this setting. Most 



importantly, some of these questions will reveal gaps in existing theory for HMMs, which 
will motivate the research presented in this thesis. 

The H M M proposed by Albert et al. (1994), to which we will henceforth refer as Albert's 
model, describes lesion counts on repeated MRI scans for a single relapsing-remitting MS 
patient. The authors apply the model individually to three patients, each of whom had 
monthly M R I scans for a period of approximately 30 months. The observed lesion counts 
range from 0 to 19, with a mean of 4.5 and a median of 4 lesions per scan. The data are 
displayed in Figure 2.1. 

Albert's model is based on the idea that a patient is in an (unknown) state of deterioration 
or improvement at any time point. This underlying state will affect the mean number of 
lesions observed at that time. Specifically, it is assumed that if the patient's condition is 
deteriorating at time t, the mean lesion count at this time will be greater than the mean 
lesion count at time t — 1 by a factor of 9. Similarly, if the patient's condition is improving 
at time £, the mean lesion count at this time will be less than the mean lesion count at time 
t — 1 by a factor of 6. 

Mathematically, the assumptions of the model can be stated as follows: 

1. The hidden state, Zt, is —1 if the patient's condition is improving at time t, and +1 
if the patient's condition is deteriorating at time t. This process is modelled as a 
stationary Markov chain. 

2. The transition probabilities are assumed to be homogeneous, with the probability of 
moving from deterioration to improvement equal to the probability of moving from 
improvement to deterioration. This common probability is denoted by 7. 

3. Given Zt, the lesion count, Yt, is assumed to be independent of Y i , . . . , Y t _ 1 ; Y t + i , . . . , Yn, 
and distributed as Poisson(/j,t), where 

where St — Z)i=i %i a n d A*o is the baseline mean lesion count. 

R E M A R K . Assumptions 1 and 2 imply that the initial probabilities are ~P(Z\ — —1) = 

P(Zi = + 1) = 0.5. Under Assumption 3, when 9=1, the model reduces to that 

0Lit-i, if the patient is deteriorating at time t 
( 1 / 0 ) i f the patient is improving at time t. 

This assumption can be rewritten as 

Ik = f-^9' 



Figure 2.1: M S / M R I data analyzed in Albert et al. (1994) 
Patient 1 



for independent observations distributed as Poisson(/U0). Assumption 3 also leads to an 
identifiability problem, since the model with 9 is equivalent to the model with | if we reverse 
the labelling of the hidden states. To remedy this problem, we assume that 6 > 1. 

On first glance, this model does not appear to be a H M M (according to the definition 
given in Section 2.1), since the distribution of Yt depends on all previous hidden states, not 
just Zt. However, by defining the hidden process as (St-i,St) with state space : i = 

—n,... ,n,j = —n,...,n}, we see that Albert's model does, in fact, conform to the definition 
of a non-homogeneous H M M with countable state space. 

Thus, the model can be fit in the manner described in Section 2.2. Albert et al. use the 
E M algorithm for this purpose, but we will maximize the likelihood directly. We have two 
reasons for this choice. First, as discussed in Section 2.2, direct maximization appears to be 
the more efficient of the two methods. Second, in our experience with this model, unlike the 
direct maximization method, the E M algorithm tends to converge to values other than the 
MLEs . 

To make inferences about Albert's model and its extensions, we will use the methods 
outlined in Section 2.3. Because we lack theoretical results about the properties of these 
methods in the case of non-homogeneous HMMs, our conclusions should be considered only 
informal. These conclusions are nonetheless useful, as they will help to isolate and illustrate 
the issues of interest in this thesis. Furthermore, Albert's model is very similar to a stationary 
Poisson H M M . To see this, note that the mean lesion count at time t is restricted to a 
discrete number of values (evenly spaced on the log scale). If we assume that the observed 
process is stationary, it is reasonable to use a finite approximation to these mean values, 
i.e. to assume that the mean at time t is one of K values. This new model is simply a 
stationary Poisson H M M with K hidden states and with some restrictions on the transition 
probabilities. Hence, if more formal conclusions were desired, one could fit a stationary 
Poisson H M M with an appropriate value of K to the data. Then, the standard inference 
results discussed in Section 2.3 would certainly apply. 

2.4.1 Albert 's Mode l 

We can facilitate the maximization of the likelihood by transforming the parameters so that 
their range is the entire real line. > To this end, we use the following reparameterizations: 
AiS = log / i o ,0* = l o g ( ( 9 - l ) , a n d 7 * = l o g ( 7 / ( l - 7 ) ) . 

Table 2.1 gives the parameter estimates and approximate standard errors resulting from 

fitting Albert's model to the three patients' data. For Patient 1, 6 is estimated as 1.000, i.e. 



Table 2.1: Parameter estimates and standard errors for Albert's model 

Patient 1 Patient 2 Patient 3 
Parameter Transformation Estimate SE Estimate SE Estimate SE 
/*o log//, 1.070 0.091 1.362 0.178 2.223 0.244 
0* l o g ( 0 - l ) -11.083 N A -0.282 0.245 -1.128 0.560 
7* NA N A 1.241 0.575 1.336 0.847 

log£ -66.814 -72.029 -65.363 

the model reduces to that for independent Poisson counts. In this case, the estimate for 7 

given by the quasi-Newton routine is, in fact, arbitrary. In addition, since 0 = 1 is on the 
boundary of the parameter space, there is no guarantee that the usual standard error for 
the estimate of 0* is even approximately correct. For these reasons, we do not provide an 
estimate of 7*, or a standard error for the estimate of 0*. 

One question of interest is whether the complexity of the H M M is warranted, or whether 
the simple model with independent Poisson counts is sufficient to describe the variability and 
correlation in the data. In principle, we should be cautious about making such inferences, 
since the test of 0 = 1 is a boundary problem. Informally, though, in the case of Patient 1, 
there is no evidence to suggest that the simpler model is inadequate. In the case of Patients 2 
and 3, if we believe the 95% confidence intervals for 0 ([1.467,2.219] and [1.108,1.970], 
respectively), then there is evidence against the null hypothesis that 0 = 1. Thus, the H M M 
structure seems to be more appropriate for these patients than the simpler model. These 
conclusions are consistent with those arrived at by Albert et al. 

The results in Table 2.1 are essentially the same as those obtained by Albert et al. The> 
primary differences are that we have omitted the estimate of 7* in the case of Patient 1, and 
have achieved a higher value of the likelihood in the case of Patients 2 and 3. The latter 
emphasizes the importance of choosing both good starting values and an estimation method 
whose convergence properties are well-behaved in practice as well as in theory. 

2.4.2 Generalization of the Transition Probabilities 

The first extension we consider (for Patients 2 and 3) is the use of general transition prob­
abilities. We do not apply this new model to the data from Patient 1 since the analysis in 
Section 2.4.1 indicates that the transition probabilities for this patient are arbitrary. 



Table 2.2: Parameter estimates and standard errors for the model with general transition 
probabilities 

Patient 2 Patient 3 
Parameter Transformation Estimate SE Estimate SE 

log/xo 1.360 0.173 2.186 0.143 
8* log(0 - 1) -0.281 0.244 -1.416 0.273 

7* l o S fe) 1.489 0.801 0.975 0.515 

»og (A) 1.039 0.690 18.570 N A 
log£ -71.921 -64.222 

In particular, we model the transition probabilities as 

- i +i 
- i 1 — 7 7 

+i I p 1-/3 

This generalization may be of interest because Albert's model assumes that patients spend 
50% of their time in a state of deterioration, and 50% in a state of improvement. This 
assumption seems too strong to make a priori. The parameter estimates for this model are 
given in Table 2.2. In the case of Patient 3, j3 is estimated as 1.000, which is on the boundary 
of the parameter space. 'We do not include a standard error for the estimate of /?* for this 
reason. 

To test the validity of the assumption that 7 = ft, we note that Albert's model is nested 
within the more general model. We then use the likelihood ratio test (LRT) to compare 
the two models, assuming that the L R T statistic has an asymptotic x? distribution. The 
p-values for these tests are 

Patient 2 Patient 3 
p-value 0.642 0.131 

Surprisingly, the more general model does not fit substantially better for either of the two 

patients. 

We have two possible explanations for these results. Firstly, the standard errors of the 
estimates of 7* given in Table 2.1 are quite large relative to the estimates themselves, and 
relative to the standard errors of the estimates of //,q and 9*. The same is true of the standard 
errors of the estimates of 7* and /3* in Table 2.2. These examples show that making inferences 
about the hidden process is usually a difficult problem. 

A second explanation may lie in the structure of //,,.. Note that the proportional increase 



in the mean when the patient is deteriorating, is, by assumption, equal to the proportional 
decrease in the mean when the patient is improving. In the case where there is no overall 
trend in the data (as is true for these particular patients, as well as for relapsing-remitting 
patients in general when observed over a short time period), the number of transitions from 
decreasing to increasing mean is forced to equal approximately the number of transitions from 
increasing to decreasing mean. This statement is equivalent to Albert's assumption that the 
patients spend equal proportions of time in the states of deterioration and improvement. 
These proportions can be expressed as 

7 

0 + 7/? + 7 
(2-3) 

s o p+j = j+j = 0-5 implies that /3 = 7. It is perhaps for this reason that the model with 
general transition probabilities does not provide an improved fit to these data. 

Under some circumstances, we would expect to see a trend in the lesion counts, in which 
case the more general model might be appropriate. For example, patients with secondary 
progressive MS have lesion counts which may steadily increase over a given time period. 
Similarly, in a clinical trial setting where patients may be chosen for their relatively high level 
of disease activity, an initial downward trend ("regression to the mean") may be observed, 
even in the placebo patients. The simulated data in Figure 2.2 show a clear upward trend. 
These data were generated from this H M M with / i 0 = 1.5, 0 = 1.2, 7 = 0.8, and /? = 0.2. In 
this case, the maximum value of the log-likelihood is —73.345 for the restricted model and 
—69.446 for the general model. The L R T leads to a p-value of 0.005, indicating that the 
general model provides a significantly improved fit to these data. 

2.4.3 G e n e r a l i z a t i o n o f t he C o n d i t i o n a l M e a n S t r u c t u r e 

In light of the discussion in Section 2.4.2, we might consider modelling Lit more generally 
while leaving the transition probabilities as in Section 2.4.1. For example, we could fit 
Albert's model with the modification 

_ j BoHt-i, if patient is deteriorating at time t . , 
\ (l/0i)fit-i, if patient is improving at time £ ' 

The parameter estimates and approximate standard errors associated with fitting this model 
are given in Table 2.3. When 0O = l/0\ = 0, the model implies that {Yt} are independent 
with Yt distributed as Poisson(//o#')> in which case 7 is arbitrary. Thus, for Patient 1, we 
omit the estimate of 7*. 

This modification does not significantly improve the fit for Patient 1, but we observe 



Figure 2.2: Simulated data with a trend 

s -

Table 2.3: Parameter estimates and standard errors for the model with a general conditional 
mean structure . 

Patient 1 Patient 2 Patient 3 
Parameter Transformation Estimate SE Estimate SE Estimate SE 

log/7,0 1.168 0.200 0.987 0.256 2.446 0.247 
8* log0 o 

0.006 0.089 0.484 0.621 0.466 0.166 
e\ log 01 -0.006 0.089 0.621 0.120 0.398 0.158 

7* M A ) NA NA 0.974 0.708 2.384 0.813 
log£ -66.652 -70.401 -63.904 



some evidence of an improved fit for Patients 2 and 3. The p-values associated with these 
tests are 

Patient 1 Patient 2 Patient 3 
p-value 0.569 0.071 0.088 

2.4.4 G e n e r a l i z a t i o n o f t he C o n d i t i o n a l M e a n S t r u c t u r e a n d o f 
t h e T r a n s i t i o n P r o b a b i l i t i e s 

It was anticipated that, in the case of Patients 2 and 3, the fit of the model might be further 
improved by incorporating general transition probabilities (i.e. by combining the models 
proposed in Sections 2.4.2 and 2.4.3). In fact, the LRTs comparing this model to the model 
with 7 = 0 (i.e. the model in Section 2.4.3) yield the following p-values: 

Patient 2 Patient 3 
p-value 0.065 1.000 

Thus, there is some support for the expanded model in the case of Patient 2. 

The estimates of the transformed parameters and approximate standard errors are given 
in Table 2.4. 

2.4.5 A d d i t i o n o f a T h i r d H i d d e n S t a t e 

Our final question of interest regarding Albert's model involves the choice of the number of 
hidden states. Albert's model is quite restrictive, in the sense that it forces the mean lesion 
count to either increase or decrease from time t — 1 to time t. One would imagine that, 

Table 2.4: Parameter estimates and standard errors for model with general transition prob­
abilities and conditional mean structure 

Patient 2 Patient 3 
Parameter Transformation Estimate SE Estimate SE 

t4 log ^ 0 1.889 0.235 2.445 0.233 
9* log6>o 0.811 0.169 0.466 0.154 
n log 0i 0.383 0.071 0.398 0.149 

7* 2.022 1.134 2.372 1.045 

0* M A ) -0.399 0.505 2.396 1.052 
log£ -68.695 -63.904 



especially during periods of remission, the mean lesion count would remain stable. Thus, we 
consider the addition of a third hidden state, state 0, where the patient's condition is neither 
deteriorating nor improving. Mathematically, this modification can be expressed as 

if patient is deteriorating at time t 
Ht = { (J-t-i, if patient is stable at time t 

(l/6)f.i,t-i, if patient is improving at time t 

We represent the transition probabilities as follows: 

-1 0 +i 
Pi P2 1 - P i - P2 
P3 Pi 1 - P3 -Pi 
Pb Pa 1 -P5 ~ P6 

One disadvantage of such an extension is the introduction of the problem of computing 
the stationary probabilities, which are used as initial probabilities for the hidden Markov 
chain. In the two-dimensional case, we have the simple, closed form (2.3) for the stationary 
distribution. In order to compute the stationary distribution in the three-dimensional case, 
however, a system of three linear equations must be solved at each iteration of the quasi-
Newton algorithm. Another disadvantage of this model is the large number of unknown 
parameters. However, we can reduce this number if we are willing to place restrictions 
on the transition probabilities (as in Albert's model), for example by assuming that the 
transition probability matrix is symmetric. 

The parameter estimates and standard errors are given in Table 2.5. In this case, the 
likelihood functions are quite flat (likely due to the large number of parameters and relatively 
small sample sizes) and hence difficult to maximize. The parameter estimates are not entirely 
reliable, and may correspond to a local maximum. Turning our attention to the likelihood, 
when we compare the results in Table 2.5 with those in Table 2.1, we see that substantial 
decreases occur for Patient 2 in particular. Thus, we might surmise that this 3-state model 
is more appropriate than Albert's model. 

It would be a mistake, however, to use the \ï distribution to gauge the extremity of the 
L R T statistic. The test comparing models with differing numbers of hidden states amounts to 
the hypothesis that some of the transition probabilities are zero. Thus, this test is a boundary 
problem and hence does not satisfy the conditions required for the usual results on LRTs. 
Moreover, we cannot assume that methods such as the Akaike information criterion (AIC) 
or the Bayesian information criterion (BIC) provide consistent estimates of the number of 
hidden states. Formal hypothesis testing and estimation of the number of hidden states is 
still an open problem. 



Table 2.5: Parameter estimates and standard errors for 3-state model 

Patient 1 Patient 2 Patient 3 
Parameter Transformation Estimate SE Estimate SE Estimate SE 
Mo 
9*' 

PÎ 
P\ 

P\ 

Pi 

Pi 

Pi 

log/*0 

log(0 - 1) 
log 
log 
log 
log 
log 
log 

1 - P i -"P2 
Pi 

1 - P 1 - -P2 
P3 

I-PS- -P4 
PA 

1 - P 3 - P4 
P5 

1 - P 5 - -P6 
P6 

- P 5 - P 6 / 

1.061 
0.003 
0.417 

-0.536 
0.173 

-0.370 
0.547 

-1.525 

0.139 
0.028 
0.476 
0.816 
0.537 
0.250 
0.856 
0.136 

1.372 
0.671 

-3.139 
4.316 

-0.142 
-6.376 
-1.757 

7.079 

0.155 
0.130 
0.229 
0.315 
0.643 
1.247 
1.002 
1.051 

2.119 
0.395 
0.184 
0.126 

-6.825 
2.210 
7.741 

-1.170 

0.110 
0.068 
0.167 
0.195 
6.846 
0.349 
6.168 
1.401 

log£ -65.931 -69.448 -63.514 

2.5 Summary 

The analyses in this chapter illustrate some of the questions that still remain in our under­
standing and application of HMMs. 

We have seen the difficulties involved in comparing the fit of models with differing num­
bers of hidden states in Section 2.4.5. Likewise, determining the number of hidden states 
requires non-standard results. We address this issue in Chapter 3, where we develop a method 
for consistently estimating the number of hidden states in a single, stationary H M M . 

The analyses in this chapter also reveal the challenges of selecting an appropriate H M M 
for a given data set. Tools for examining the fit of both the conditional model for the 
observed data and the model for the hidden process are needed. We discuss the problem of 
assessing the goodness-of-fit of stationary HMMs in Chapter 4. 

One important common element of our analyses is the relatively large standard errors 
associated with the estimates of the parameters of the hidden process. Assuming the same 
model for each patient is one means of reducing this uncertainty. However, the behaviour of 
lesion counts in MS patients is often highly variable. It thus seems more reasonable to allow 
at least some model parameters to vary across patients. Random effects are a useful means 
of capturing between-patient differences while still borrowing strength across patients. Their 
incorporation in HMMs is discussed in the Chapters 5 and 6. 



Chapter 3 

Estimating the Number of States of a 
H M M 

Consider the case where we have a single, stationary H M M , with observed data {Yi}™=1 

and hidden states We will assume that Zt takes values in the set { 1 , . . . , K0}, and 

will denote the stationary probabilities by {TT^} and the transition probabilities by {-P^}, 
k,£=l,..., K°. We assume that P(Yt < y\Zt) = H(y; 0 | ( , 0°), where {9%, 0°) G O . 

As discussed in Section 2.3, estimation of the model parameters in the case where K° is 
known has already been studied extensively. However, the problem of consistently estimating 
K° has not yet been satisfactorily resolved. Maximum likelihood estimation cannot be used 
because the likelihood is non-decreasing in K°. Most authors applying HMMs, including 
Leroux & Puterman (1992), Hughes & Guttorp (1994), Albert et al. (1994), and Wang k 
Puterman (1999), simply use the AIC or BIC, but these methods have not been justified in 
the context of HMMs (MacDonald & Zucchini 1997). 

Several authors have attempted to address this problem using penalized likelihood meth­
ods. Included in this group are Baras & Finesso (1992), who develop a consistent estimator 
of K° when the observed process takes on only finitely many values. Rydén (1995) relaxes 
this assumption, but at the expense of consistency. He shows that a class of penalized like­
lihood estimators provides, in the limit, an upper bound on K°. Dortet-Bernadet (2001) 
proves that Rydén 's method in fact leads to a consistent estimator of K°, but under fairly 
restrictive conditions: he assumes the existence of a known, non-zero lower bound on the 
transition probabilities. His method of proof appears to require only that this bound apply 
to the stationary transition probabilities, so perhaps this weaker assumption would suffice. 

Other authors have used an information-theoretic approach to estimate K°. Kieffer 
(1993) proposes a method involving maximum likelihood codes to find a consistent estimator 



of K°. Liu & Narayan (1994) also give a consistent estimator by describing the observed 
data in terms of a uniquely decodable code. However, both of these estimators rely on the 
assumption that the observed process takes on only finitely many values. 

Poskitt & Chung (1996) assume a specific form for the H M M , namely that Yt = Zt + et, 
where {Zt} is a finite-state Markov chain, and {et} is a white noise process. Under these 
conditions, they suggest an algorithm based on least-squares type calculations that provides 
an efficient means of consistently estimating K°. 

Robert, Rydén & Titterington (2000) use reversible jump Markov chain Monte Carlo 
techniques to estimate A ' 0 in a Bayesian setting. It appears, however, that no frequentist 
method currently exists for consistently estimating K° in the general setting where {Yt} is 
a stationary, identifiable H M M . In this paper, we approach this problem by extending the 
ideas of Chen & Kalbfleisch (1996), henceforth called C K . These authors develop a penalized 
minimum-distance method that gives, under certain conditions, a consistent estimate of the 
number of components in a finite mixture model. We will use the fact that the marginal 
distribution of Yt is also a finite mixture in order to show that a variation of CK' s method 
is applicable to stationary HMMs as well. 

3.1 Notation 

Under our assumptions, Y i , . . . , Yn are identically distributed with common distribution func­
tion 

K° 

F0(y) = F(y, G0) = £ n°kH (y; 0°k, </>°) = / H (y; 0, </>) dG0 (0, 0) , (3.1) 
k=l ' •' 

where the mixing distribution G0 is defined by 

Go ( M ) = £ ^ / . ( 0 ° <#, /<</ , ) . 
fc=1 

For ease of exposition, we will assume that the {0®} and 4>° are scalars so that 0k < 0 and 
(f>° < 4> have the usual interpretations. However, the theory we present easily extends to the 
more general setting where these parameters are multidimensional. In addition, we treat the 
pairs (0l,4>°) as the support points of G0, even though (j>° is common across states and so 
would normally be excluded from the definition of the mixing distribution. The treatment 
of 4>° in this manner will facilitate our discussion of both identifiability and the consistency 
of the estimator of this parameter. 

Similarly, using the notation y™ = (yx,..., ym) and 6™ = (#i, • • •, 0m), we will express 



the m—dimensional distributions of (Yt) as 

F0

m(y?) = Fm(y?,G™)= E • • • E J ]
 H

 • • • pl-u*m (3-2) 
2 1 = 1 2 m = l \t=X ) 

with 

Go (0i,4)= E ••• E < C - C J K < « i . - . t <0m,0 o<4 
2 1 = 1 2 m = l 

3.2 Identifiability 

Before presenting the proposed method, we address the issue of model identifiability. First, 
we need to define K° more carefully. We have stated above that A ' 0 is the number of hidden 
states. This value is not, in general, equal to the number of values of 0°,...., 0n-o, since these 
values may not be distinct. Indeed, we can always construct a H M M with K° + 1 hidden 
states and distribution FQ by choosing an additional state with @°Kn+1 6 • • • ,0̂ 0} and 
an appropriate lumpable underlying Markov chain. (For a discussion of lumpability, see 
White, Mahony & Brushe 2000.) For this reason, we define A ' 0 , the order of the H M M , as 
the minimum number of hidden states such that {Yt} is a HMM. We will denote the number 
of distinct values of the {9%} by A ' , where necessarily K' < K°. 

We now state the mild regularity conditions that we assume. 

Condition 1. The transition probability matrix of {Zf} is irreducible and aperiodic. 

Condition 2. The parameter space 0 is compact. 

Condition 3. H(y; 9, (f>) is continuous in 9 and </>. ' 
t 

Condition 4- Given e > 0, there exists A > 0 such that for all (0,0) G 0, H(A;8,(j)) — 
H{-A\e,<j>) > 1 - e. 

Condition 5. The family of finite mixtures of {H(y; 9, <f>)} is identifiable, i.e., 

F(y,G1) = F(y,G2) => GX=G2. 

Condition 6. Either we know that {0°} are distinct, or we know an upper bound, M, on the 

number of hidden states. 



R E M A R K . Conditions 1 and 2 are also assumed by Dortet-Bernadet (2001). Condition 1 

implies that the stationary distribution of {Zt} is unique, and that 7r̂  > 0 for all k. Con­

ditions 3 and 4 are satisfied by commonly used distributions including the normal, Poisson, 

exponential, binomial, and gamma distributions. Condition 5 is also assumed by Leroux 

(1992a), Rydén (1995), and Dortet-Bernadet (2001), and is satisfied by many common dis­

tributions. Prakasa Rao (1992) provides a good discussion. Condition 6 is weaker than that 

assumed by Rydén (1995) and Dortet-Bernadet (2001), who postulate a known upper bound 

on the number of hidden states regardless of the distinctness of {9®}. 

3.2.1 Parameter Identifiability 

To obtain well-behaved parameter estimates - using either the maximum likelihood or penal­

ized minimum-distance method - model identifiability is required. In the usual case where 

the values of {9%} are distinct and Condition 5 is satisfied, the model parameters are identifi­

able up to permutations of the labels of the hidden states (Wang & Puterman 1999). Petrie 

(1969) discusses identifiability in the case where Yt takes on only a finite set of values. 

However, we are unaware of the existence of sufficient conditions for parameter identifi­

ability when {Yt} is a general H M M with possibly non-distinct values of Determining 

such conditions appears to be quite a difficult problem. Following Wang & Puterman (1999), 

we may use the series of m—dimensional distributions, m > 1, to obtain a sequence of equa­

tions involving the model parameters. For example, let {9^} be the set of K' distinct 

values among with 9^ < • • • < 6^K,y Let Sq = {k : 9% = 9^}. The one-dimensional 

distributions of {Yt} are given by 

F(y, Go) = E 4H (y; 91 *°) = £ H (y; 9\q)^) £ rr£. 
k=l q=\ keSq 

Condition 5 allows us to identify G 0 from this equation. By Condition 1, all support 

points of Go have positive mass, and hence {^)}, 0 ° , and {X^es, ^k) m a y a l s o be identified. 

Similarly, the two-dimensional distributions of (Yt) are given by 

k=ie=i 

= Ê f > * ? , ) . * ° ) H f a ; * ° ) E < E ^ -
9 = 1 r= l kes,, tesr 

Teicher (1967) shows that mixtures of products of distributions from a given family are 

identifiable if this family satisfies Condition 5. Using this result, we may identify G Q , and 



hence 

E 4 E n 
t e 5, eesr 

from this equation. In particular, if are distinct, we see that the two-dimensional 
distributions are sufficient to allow the identification of the parameters up to permutations 
of the labels of the hidden states. 

In the case where {91} are not distinct, parameter identifiability can be explored by 
applying Teicher's result in this manner to the higher-dimensional distributions. However, 
the equations obtained in this fashion are highly non-linear - in part due to the complicated 
relationship between {PKE} and {TT^} - and difficult to analyze. Hence, at this time, we lack 
a means of assessing, in general, whether the parameters of a given model are identifiable. 
In addition, some of these equations are redundant, so it is unclear even how to specify the 
minimum number of dimensions that must be considered in order to determine parameter 
identifiability. 

Fortunately, Rydén (1995) shows that the finite-dimensional distributions of {Yt} are 
determined by the 2(K° — K' + 1)—dimensional distribution when Condition 5 is satisfied. 
Thus, under the assumption that K° is minimal, if M is an upper bound on the number of 
hidden states, then 2M is an upper bound on the required number of dimensions. Letting 
0 = (9a,... ,9K,4>, P u , P12,..., PRK, 7T I , • • • , TTK) as before, we will use Rydén's equivalence 
relation: ip° denotes the equivalence class of VA with -0 G '0° if and only if 0 induces the 
same law for {Yt} as ip°. 

In conclusion, if Condition 5 holds, then 0 ° is determined by the 2M—dimensional dis­
tributions, where we take M — 1 if the values of {9®} are distinct. We will use this result in 
the development of the penalized minimum-distance method for HMMs. 

3.2.2 Su f f i c ien t C o n d i t i o n s for C K ' s I den t i f i ab i l i t y C r i t e r i o n 

When K° is minimal, Condition 5 is the standard notion of identifiability of a mixture model. 
C K , however, assume an identifiability criterion of a different form. In particular, let d be 
a distance measure on the space of probability distributions, and let Gn be a sequence of 
one-dimensional mixing distributions. C K assume that 

This criterion should in fact read: for distance functions d\ and d2, Gn converges to Go 
weakly when d2(Gn, G0) —>• 0 as n —» oo, and 

lim d{F(y, Gn), F(y, G0)} = 0 => lim d(Gn, G0) = 0. 
^—>oo . n—>oo 

lim dl{F(y,Gn),F(y,G0)} = 0 lim d2(Gn,G0) = 0, 
i—>oo " n—>oo 

(3-3) 



(Chen, personal communication). 

It is of interest to develop sufficient conditions for CK's criterion, both as an extension 
to CK ' s work, and for use in our procedure to estimate the parameters of a H M M . The 
following lemma, which will be proved in Appendix B . l , states that, for specific choices of 
di and d2, this criterion is satisfied when Conditions 2-5 hold. Normally, it will be easier to 
verify these conditions than the original C K criterion. 

In particular, we assume that d2 corresponds to weak convergence, and that d\ = d^s is 
the Kolmogorov-Smirnov distance, i.e., for distribution functions jF\ and F2, 

dKS(FuF2) = sup |F,(y) - F2{y)\. 
y 

Lemma 3.1 Let (G™) be a sequence of m-dimensional, mixing distributions with associated 
parameters {(0£, </>")} 6 9. Then, under Conditions 2-5, if dKS{Frn{y™, G™), F m ( y r , G^)} 
o(l), then G™ converges weakly to G™. 

3.3 Parameter Estimation 

Let {cn} be a sequence of positive constants with cn = o(l), and let Fn be the empiri­
cal distribution function of Yt. If {Yt} are independent observations from a finite mixture 
model, F0, then C K estimate the parameters of F 0 (including the number of components) 
by minimizing the penalized distance function 

_ K 

D ( F n , F) = d, ( F n , F) - cn log7T fc 

k=\ 

over all F, where F is a finite mixing distribution with K components and mixing probabili­

ties {7Tfc}, and d\ is any distance function satisfying (3.3). The authors prove the consistency 

of the parameter estimates obtained in this fashion. 

The novelty of this approach is that the penalty term is a function of Y,k=i log71"*;- Models 
with large values of K are penalized since the requirement that 7 r t + • • • + ITK = 1 forces 
•Kk to 0 for some values of k as K —» oo. In addition, models for which some states have 
small values of ir^ are penalized. In these two ways, the estimated number of components 
is indirectly controlled. In contrast, most other penalized methods, including the AIC and 
BIC, attempt to control K directly. 

From the discussion in Section 3.2, it is clear that CK' s estimation procedure, which is 
based on one-dimensional distributions, is not sufficient to estimate all the parameters of 



a H M M . However, by modifying the method to incorporate multiple dimensions, we may 
obtain a procedure that is appropriate to our problem. 

In particular, for n > m, we consider the m—dimensional process { Y j + m - 1 } " = r 1

m + 1 , where 
Y«+"i-i _ (Yt,...,Yt+m-i)- We then define the penalized distance based on the distribution 
of this process as 

D (F™, Fm) = (F™, Fm) - cn £ log TT,, (3.4) 
k=\ 

where F™ is the rn—dimensional empirical distribution function, 

The dimension m, should be chosen based on identifiability considerations, as discussed 
in Section 3.2. In addition, it is desirable to choose m as small as possible to minimize the 
computational burden. Thus, we will use m = 2M. 

CK's proof of the consistency of the parameter estimates in the case of finite mixture mod­
els does not require the independence of the observed data. In fact, this proof depends only on 
their identifiability criterion (see Section 3.2.2) and the assumption that di(Fn,F0) = o(cn) 
a.s. We will show that, if d] is chosen such that d\(F™, F™) = o(cn) a.s. and Conditions 1-6 
are satisfied, then the theorems developed by C K also hold when the underlying model is a 
H M M and the parameter estimates minimize the penalized distance function (3.4). Hence, 
we will obtain consistent estimators of the model parameters, including K°. 

Before stating our first theorem we require the definition of the concept of an a-mixing 

multidimensional process (see, for instance, Ould-Saïd 1994). 

Definition 3.1 A stationary sequence (Yt) of rn—dimensional vectors is a—mixing or strong 
mixing if for any s, 

ae= sup \P{AB) - P (A)P(B) | -> 0 as 1 -» oo 

where J-^ = a(Vt, a <t < b). The o.t's are called the mixing coefficients. 

Theorem 3.1 For a stationary HMM, 

dKS (F™, F™) = O ( n - ^ l o g l o g n ) a.s. 



Proof. Ould-Saïd (1994) proves that for a stationary, m—dimensional, a—mixing process 
with mixing coefficients = 0(£~u) for some v > 2m + 1, 

lim sup n 
1/2 

2 log log n sup 
v m 
' 1 

= 1 a.s. 

Thus to prove that the empirical distribution of a H M M converges at this rate, it is sufficient 

to show that the H M M satisfies the condition ae = 0(f) for v > 4 M + 1. 

First, the mixing coefficients af of the Markov chain {Zt} satisfy the inequality a\ < cpe, 
where c is a finite, positive constant, and 0 < p < 1 (see, for instance, Doukhan 1994). Now, 
without loss of generality, take £ > m. Define Th

a = cr(Ya,..., Yb+m_i). Following Lindgren 
(1978), for stationary HMMs we have that 

a,( = sup \P(AB)-P(A)P(B)\ 

sup \E {P (ABIZ8*"1-1, Z%t)} - E f p ( y 4 | Z 1

s + m - 1 ) } E { p ( J B | Z ? ? / ) ) | 

= A^Tr~+l l E ̂  (AW*"'1) P - E ( P ( ^ l ^ - 1 ) } E {P ( S | % ) } | 

Since P ( i 4 | Z 1

s + m _ 1 ) and P(B\Z™e) are bounded and measurable with respect to ff(Zf+m_1) 
and a(Z^_e), respectively, we may apply Theorem 17.2.1 of Ibragimov & Linnik (1971) to 
obtain 

a, < Aalm+l < 4cpe-m^. 

We have thus proved that at = o(t~") for v < oo. • 

C O R O L L A R Y . Le£ F m 6e £/ie function that minimizes (3.4), where the minimization is 
over all parameters, including K. Under Conditions 1-6, if we choose di = dKs, then 
di<s{Fm, F™) —>• 0 a.s. and Gm converges weakly to G™ a.s. Furthermore, </>° —> 4>° a.s., and 
9°k —» 9* a.s., where 9* is one of the support points of G™. 

Proof. In light of Theorem 3.1 and Lemma 3.1, the technique of proof used in Theorems 1 
and 3 of C K also applies in the H M M case. Although the class of mixture models considered 
by C K does not incorporate parameters that are common to all components (i.e., <p°), their 
Theorem 3 is also sufficient to show that (f> —» </>° a.s. • 

We now investigate the asymptotic behaviour of K0 using a method inspired by the work 
of Leroux (1992b) in the context of penalized maximum likelihood estimation of mixture 



models. In particular, we study properties of the estimated m—dimensional distribution 
when we fix the number of hidden states at some known value K, while the other parameters 
are estimated by minimizing (3.4). We denote this distribution by F™, and the associated 
parameter estimates by '0, so that 

K(y?)= E • • • E Fl (:</].; 0 2 l , 0) • -H (jjm; 0Zm,(p) TTZIPZUZ2 • • • PZM_UZM. 
2 1 = 1 2 m = l 

We will need the following two technical results. 

Lemma 3.2 // we know the value of K° and estimate the remaining parameters by mini­
mizing (3.4), then we have that 

i<° 

d-KS (F%O,F™^ — 0(cn) a.s. and liminf ]T] log7r£ > - 0 0 a.s. 
fc=i 

Proof. This lemma is similar to Theorems 1 and 2 of C K , and can be proved in the same 
way. • 

Lemma 3.3 // K is chosen such that K < K° and the remaining parameters estimated by 
minimizing (3.4), then 

l iminfd A 5 (F™,F™) > 0 a.s. 

Proof. By the triangle inequality, 

d K S (P%, K) > dKS (F™, Ff) - d K S (Kn, F 0

m ) . 

By Theorem 3.1, d[<s(F™, F™) = o(l) a.s. For this reason, it is enough to show that 

liminîdKS(F^,F^) > 0. 

Choose a realization of the sequence {F}?}, indexed by n. Towards a contradiction, 
assume that liminf dKs{F^, F 0

m ) — 0 for this realization. Then there exists a subsequence 
such that \imdKs(F™, F 0

m ) = 0. For this subsequence, F1,? converges pointwise to F™, and 
there exists a further subsequence such that each parameter estimate converges to some 
limiting value, ip. Since H is continuous in 6 and 0, we have that 

21 = 1 2 m = l 



Let S* = {Ok}. From our discussion of identifiability in Section 3.2, the set of distinct 
elements of S* must be equal to {0^}, and we must have that (j) = cjp. So, defining 
st = {i-. el = e°{k)},k = i,...,K', 

K> K' 

2 1 = 1 Z m = l 

X E ' ' ' E P<ll ><?2 ' ' ' P<lm- 1 ,<7m ' 

This limiting distribution is the m—dimensional distribution of a H M M with iff hidden states. 
But, now it is clear that l i m i ^ 1 / F 0

m , since A ' 0 was defined as minimal. This contradicts 
our hypothesis that l i m d K 5 ' ( F ^ , F 0

m ) = 0. • 

Theorem 3.2 Assum,e that cn = o(l) and Conditions 1-6 are satisfied. Then l iminf K° > 
K° a.s. If {91} are distinct, then we also have that l imsupA' 0 < A ' 0 a.s. 

Proof. If {6°k} are distinct, then Theorem 4 of C K applies. Hence, K° -> K° a.s. If {6°k} 
are not distinct, we require a different technique of proof. It is clear that l iminf K° > A 7 

a.s. However, some work is required to prove that liminf A" 0 > A ' 0 a.s. The key idea is 
that if the limiting value of inf^m D(F™, Fm) is less when we fix K = K° than when we fix 
K < AT0, we will know that D(F™,Fm) is minimized, in the limit, by a H M M with at least 
A" 0 hidden states. 

By Lemmas 3.2 and 3.3, for K' < K < K°, we have that 

dKS(FR,F?)-dKS(Fg,F?) 
T oo a.s. 

Also by Lemma 3.2, ]T£i| logir^ is bounded away from —oo a.s. Thus, with probability 1, 
for all n sufficiently large, 

dKsjF^o, F„m) - dKS(F%, F™) y*\0crfi° 
n S k i 
C n k-\ 

dr<s(F™o, F™) - dKS{Fx , F™) < c n ( £ lo g 7r f c

0 - f > g i f c ) , 
\k=l k=l j 

, D{F?,FPo) < D(F™,F™). 

In other words, for n sufficiently large, the estimated distribution function will have at least 
K° hidden states with probability 1. • 

Our final theorem demonstrates the consistency of {Pke} in the quotient topology gen­
erated by our equivalence relation. In particular, if A is an open set containing ip0, then 



ip° G A for large n a.s. We will use the notation -0° —» '0° a.s. This notion was also used by 
Leroux (1992a) and Rydén (1995). 

Theorem 3.3 Assume that cn — o(l) and Conditions 1-6 are satisfied. Then •0° —> ip0 a.s. 
If {9%} are distinct, then we also have that lim P°e —> PM a.s. (ignoring possible permutations 
of the labels of the hidden states). 

Proof. If {91} are distinct, the model parameters are identifiable up to permutations of 

the labels of the hidden states. Thus, by Theorem 3.2 and the corollary to Theorem 3.1, 

Pkt ~~^ Pu a - s - f ° r a u >̂ ^ (ignoring possible permutations). 

Otherwise, from the corollary to Theorem 3.1, we know that Fm converges pointwise to 
F 0

m a.s. In addition, from the corollary to CK's Theorem 2, we know that lim sup i f 0 < co 
a.s. The remainder of the proof will be restricted to the event of probability 1 where these 
limits hold. 

Consider a realization of the sequence {K0} indexed by n. Since K° takes on only integer 
values, we can find neighbourhoods around each,limit point of {A^0} such that there is only 
one limit point in each neighbourhood, and all points of (A' 0 } are in at least one neighbour­
hood. Since lim sup Â"0 < co, there are only a finite number of these neighbourhoods. Let 
{nlj} be the subsequence defined by the set of points in the ith neighbourhood, and let Kl 

be the limit point of {A' 0} associated with this neighbourhood. For this subsequence, and 
for all j sufficiently large, K° — Kl and hence F^ — Fm. We can then interchange the limit 
and the summation in the expression for limF™, (as in the proof of Lemma 3.3) and use the 
fact that F™i = Fm —> F™ to conclude that, for this subsequence, V;0 —> TJJ°. However, since 
the union of all the subsequences is the original sequence, it is clear that, in fact, -0° —> -0° 
a.s. for the original sequence. • 

3.4 Application to MS/MRI Data 

In this section, under the assumption that a stationary H M M adequately captures the be­
haviour of the lesion counts observed on relapsing-remitting MS patients, we estimate the 
number of underlying disease states using the data of Albert et al. (1994) described in Sec­
tion 2.4. For the purposes of illustrating our technique, we assume the same model for each 
patient. Specifically, we assume that Yit\Zit ~ Poisson(//,|.J. Here Yit is the number of 
lesions recorded for patient i at time t, and Zit is the associated disease state. 



Table 3.1: Penalized minimum-distances for different numbers of hidden states 

Number of states Estimated Poisson means Minimum distance 

1 
2 
3 
4 

4.03 
2.48, 6.25 
2.77, 2.62, 7.10 
2.05, 2.96, 3.53, 7.75 
1.83, 3.21, 3.40, 3.58, 8.35 

0.1306 
0.0608 
0.0639 
0.0774 
0.0959 5 

We then use the method of penalized minimum-distance to estimate K ° , the number of 
states in the hidden process. We are willing to assume that the values of {/U°} are distinct, 
and thus use the bivariate distributions to compute the distance function. As suggested in 
C K , we use C/v = 0.01 N~ll2 log N, where N is the total number of observations across all 
patients. Using a variety of starting values, we calculate the penalized minimum-distance 
for K° = 1,..., 5 using a quasi-Newton minimization routine (Nash 1979). These distances 
are displayed in Table 3.1. Note that the overall penalized minimum-distance occurs at 
K° = 2, which becomes our estimate for the number of hidden states. These two states may 
correspond to relapse and remission, which is consistent with qualitative observations of the 
behaviour of this disease. 

The estimates of the parameters of the hidden process were 

indicating that, on average, patients spent a higher proportion of their time in remission 

(59.4%) than in relapse (40.6%). 

3.5 Performance of the Penalized Minimum-Distance 
Method 

The appropriateness of the penalized minimum-distance estimator for finite sample sizes is 

another topic of interest. To address this issue, we generated 100 individual time series of 

two different lengths (30 and 100) from various Poisson HMMs. We then estimated K° using 

three different methods: the AIC, BIC, and penalized minimum-distance method. 

•o _ [0.594,0.406] 
0.619 0.381 
0.558 0.442 



Table 3.2: Parameter values used in the simulation study 

A Poisson Means Transition Probabilities 

0 = [4] P = [ l ] 

I1 

1 
7 
1 
2 P = 

0.5 
0.5 

0.269 
0.119 

0.5 
0.5 
0.73 
0.881 

H = 

1 " " 0.333 0.333 0.333 
5 P = 0.333 0.333 0.333 
9 0.333 0.333 0.333 
1 : : 0.140 0.231 0.629 
2 P = 0.212 0.212 0.576 
3 0.030 0.366 0.604 

The simulation was conducted in the spirit of an experimental design with four factors: 
number of components (1, 2, or 3), sample size (30 or 100), separation of components (well-
separated or close together), and proportion of time in each state (balanced or unbalanced 
among states). The sample sizes of 30 and 100 were chosen to reflect the sizes of typical and 
large M S / M R I data sets, respectively. The parameters selected for each case are given in 
Table 3.2. 

As in the previous section, the models were fit using a quasi-Newton minimization 
routine (Nash 1979). For the penalized minimum-distance method, we again chose cn = 
O.Oln - 1 / 2 logn. To reduce the computational burden, when the true value of A'0 was 1 or 2, 
we fit only models with 1, 2, and 3 components. For A'0 = 3, we fit models with 1, 2, 3, and 4 
components. Histograms of the resulting estimated values of K° appear in Figures 3.1-3.5. 
The legend is the same for all plots, and is included only in the first. 



Figure 3.1: Distribution of A ' 0 when A ' 0 = 1 

1 2 3 1 2 3 
E s t i m a t e d N o . of C o m p o n e n t s E s t i m a t e d N o . of C o m p o n e n t s 

a) n = 30 b) n = 100 

The histograms show that the penalized minimum-distance method seems to perforin 
well relative to the AIC and BIC, especially when the problem is "hard," i.e., A ' 0 = 2 or 
A" 0 = 3, the components are not well-separated or the proportion of time in each state is not 
balanced. For K° = 1, the method tends to overestimate slightly the number of components. 

It is interesting that the performances of the methods do not improve substantially when 
the sample size is increased from 30 to 100. This may not be surprising in the cases of 
the AIC and BIC (which have not been proved to be consistent methods of estimation). 
However, in the case of the penalized minimum-distance method, we might expect to see a 
greater improvement. This result may be due to the fact that A ' 0 is equal to the number of 
non-zero stationary transition probabilities. Since these probabilities are parameters of the 
unobserved process, large data sets are required for their precise estimation. Consequently, 
estimating A ' 0 precisely is also a difficult problem. 

3.6 Discussion 

One of the practical difficulties with the method of penalized minimum-distance is that 
the resulting objective function has many local minima at which the algorithm tends to 
converge. Using a variety of different starting values can help, but this increases the required 
computational effort, and we can never be certain that we have located the global minimum. 

Although, in general, locating the global minimum of the penalized distance function 
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is critical for obtaining good parameter estimates, it may not be necessary for determining 
the number of hidden states. In the examples we have considered, the local minima found 
for each value of K° were typically both close to one another and reasonably well-separated 
from the local minima found for other values of K°. 

For this reason, a two-stage estimation procedure may be appropriate. First, K° could 
be estimated using the method of penalized minimum-distance. Then, assuming this value 
of K°, the remaining parameters could be estimated using maximum likelihood estimation. 
The benefit of this approach is that, based on our experience, it seems easier to locate the 
maximum value of the likelihood function than the minimum value of the distance function. 
In addition, MLEs have appealing properties, and approximate standard errors are readily 
available. In contrast, we do not have this information for the estimates obtained using the 
penalized minimum-distance method. The disadvantage of the two-stage method is that the 
standard errors for our MLEs do not take into account "our uncertainty about K°. Further 
exploration of the implications of this estimation procedure is in order. 

We may be able to improve the performance of the penalized minimum-distance method 
through different choices of the distance function, cn, or the penalty term. For example, our 
method might also be valid for other distance functions. The Cramer-von Mises distance or 
Kullback-Leibler information are options (CK), as is the Hellinger distance, which has the 
advantage of robustness (Hettmansperger & Thomas 2000). These distance functions - and 
others - may be valid choices in the H M M setting, and may result in improved performance. 
In addition, as discussed in C K , there are many possibilities for the form of the penalty term. 
Finally, the choice of cn is critical. When cn = C n - 1 / 2 logn, for some positive constant C , the 
penalty term converges to zero at approximately the same rate as the distance function. This 
seems reasonable. However, in simulation studies similar to those discussed in Section 3.5, 
we found that the resulting estimate of A ' 0 was very sensitive to the value of C. Of the 
possible values C = 0.1, 0.01, 0.001, the optimal value of C, as judged by the frequency with 
which the correct value of K° was predicted, tended to decrease with K°. In other words, in 
the cases considered, the (subjective) choice of C appeared to have a considerable influence 
on the estimate of K°. Clearly, the form of cn is a topic requiring further investigation. 



Chapter 4 

Assessment of Goodness-of-Fit 

In this chapter, we will again be working in the setting where we have a single, stationary 
H M M , and will use the same notation as in Chapter 3. 

As with most data analysis problems, it is desirable to find methods for assessing the 
goodness-of-fit (GOF) of a given H M M . As discussed in Section 2.3, Giudici et al. (2000) 
show that the likelihood ratio test can be used to compare nested stationary H M M s with 
a common, known value of A ' 0 . However, the comparison of non-nested models, including 
both HMMs (with possibly unknown values of K°) and models outside the class of HMMs, 
is more challenging, and this is the problem we consider here. 

Lystig (2001) provides a comprehensive overview of existing literature on G O F techniques 
for HMMs. Turner et al. (1998), working with Poisson HMMs, create a diagnostic plot 
by overlaying the predicted mean responses at each time point on the observed data. A 
limitation of this method is its focus on means rather than on distributions: it is not suitable 
for detecting violations of the Poisson assumption. Zucchini & Guttorp (1991) also look at 
plots of the predicted mean responses but for binary data. In the case where the observed 
data take on only a finite number of values, Albert (1991) suggests qualitatively comparing 
the observed and expected frequencies of each value. However, neither of these methods 
allows the investigation of deviations from the assumed model for the hidden process. Hughes 
& Guttorp (1994), working with a non-homogeneous H M M with finite state space, consider 
the comparison of the observed frequency of each response, y, to 

"• t-l 

where P is the estimated probability under the fitted H M M . In a similar way, these authors 
compare the observed and estimated survival functions (i.e. the probability that the observed 
process is in state r for at least k days), as well as the observed and estimated correlations. 



However, since P(Yt = y) depends on t in this setting, the advantage of averaging over the 
n observations is unclear. Finally, Lystig (2001) develops a formal test based on the score 
process for use in the context where there are n responses (from a finite state space) on each 
of N independent individuals, and ./V is large. 

In addition to providing guidance about choosing among models, it is desirable that a 
G O F technique will, with high probability, detect a lack of fit as n gets large - when either 
the marginal distribution or the correlation structure of the observed data is misspecified. 
However, none of the methods described above has been shown to have this property. 

With these goals in mind, we consider an alternative method of assessing G O F in this 
chapter. Our method is similar to that of Hughes & Guttorp (1994), but we exploit the 
fact that, in the stationary case, we have identically distributed observations. In particular, 
we propose a graphical approach to analyzing the fit of the H M M : we plot the estimated 
cumulative distribution function (cdf), F(-, Go), given by Equation 3.1 against the empirical 
cdf, Fn(-). Recall that the empirical cdf is based solely on the observed data: 

n 
If {Yt} is discrete, we might also consider plotting the estimated probability distribution 
function (pdf) against the empirical pdf. However, we will restrict our discussion to the 
general case, and henceforth, the word "distribution" will refer to the cdf. 

Under regularity conditions, if we have correctly specified the model, the empirical and 
estimated distributions will both be consistent estimates of the true distribution, so as n 
increases, this plot will converge to a 45° line through the origin. 

By plotting the univariate distributions in this way, we will be able to assess the fit of the 
assumed marginal distribution for Yt, i.e. the mixture distribution given by Equation 3.1. 
However, this plot provides no information about the fit of the assumed correlation structure. 
In light of the comment by Hughes & Guttorp (1994) that, at least in their setting, "it is 
generally not difficult to get a good fit to the empirical marginal probabilities", checking 
the correlation structure may be of primary interest. Thus, making use of the ideas in 
Section 3.2, we propose the construction of an additional plot: the estimated bivariate 
distribution, F2(-,Gl) (see Equation 3.2), against the empirical bivariate distribution, F%(-) 
(given by Equation 3.5). If the values of {0°} are not distinct, we may also wish to make plots 
of the higher dimensional distributions. Again, we would expect these plots to converge to 
a straight line if the assumed model is correct. In this way, as n increases, we will be able to 
make a better assessment of the fit of both the marginal model and the correlation structure 
of the observed data. Moreover, we will be able to compare the fit of several proposed models 
by overlaying plots constructed by fitting these models to the same data set. 



When Yt is discrete, we plot F m ( y , G™) versus F,™'(y) for a finite number of points, 
focusing on values of y over which these functions tend to concentrate. When Yt is continuous, 
we plot Fm(y,G0

n) versus F™(y) over the entire range of y. In the case of the plot of 
the univariate distributions, the functions are monotonie in y, and hence their values are 
necessarily ordered with respect to the values of y. The points of the multidimensional 
distributions, however, are not ordered in this way. 

The requirements that we impose to ensure that the plot of the m-dimensional distribu­
tions has the above convergence property are as follows: 

Requirement 1. {Yt} is strictly stationary. 

Requirement 2. F m ( - ,G 0

n ) converges to F™(-). 

Requirement 3. F™(-) converges to F™(-). 

R E M A R K . Requirement 1 implies that the joint distribution of (Yt,..., Yt+e) is the same 
for all t. Requirement 2 will be satisfied (in the sense of pointwise convergence) if F™(-) is 
continuous in the parameters and the parameter estimates are consistent. We may obtain 
consistent parameters by using either the method of maximum likelihood (when K° is known) 
or the penalized minimum-distance method described in Chapter 3 (when K° is known or 
unknown). 

We discuss Requirement 3 in more detail in Section 4.1, and present two alternative sets of 
sufficient conditions for this requirement.- We use these to show that our proposed graphical 
method is valid for stationary HMMs. Thus, we will be able to graphically compare different 
(including non-nested) HMMs for the observed data by examining how close each estimated 
distribution is to the empirical distribution. 

More generally, we would like to know that the empirical distribution is converging to the 
true distribution regardless of whether the true distribution is a H M M . Since the examples in 
this thesis have focused on count data, in Section 4.2 we discuss other models for stationary 
series of count data. It turns out that these models meet, at least one of our conditions. Thus, 
if the true underlying model is a member of the broad class that we consider, our method 
will allow us to determine whether the H M M in question is a reasonable model for our 
data. As an additional advantage, if consistent estimates of these alternative distributions 
are available, we will also be able to use our method to compare the fit of the H M M with 
that of the other models by overlaying the appropriate plots. 

We apply our method to our two M S / M R I data sets in Section 4.3. These examples 
illustrate the type of deviations that we might see when a H M M does not represent the data 



well, or when our choice of the conditional model for the observed data is not appropriate. 

4.1 Convergence Conditions 

The conditions for Requirement 3 that we develop are based on the concept of a-mixing 

sequences of random variables (see Definition 3.1). The idea is that for the empirical distri­

bution to converge to the true distribution, a t must converge to 0 quickly enough. The two 

theorems that we present give sufficient rates of convergence. The first is due to Ould-Said 

(1994), and is applicable to plots of the multidimensional distributions. We cited this result 

in the proof of Theorem 3.1, but we repeat it here in the particular form that we require. 

Theorem 4.1 For a stationary, m-dimensional, a-mixing process with mixing coefficients 
cti = 0(l~") for some u > 2m + 1, 

lim sup | F n

m ( y ) - F ™ ( y ) | = 0 (4.1) 

almost surely. 

In the proof of Theorem 3.1, we showed that the mixing coefficients of stationary HMMs 

satisfy the condition in Theorem 4.1. Thus, our graphical method (in any dimension) is valid 

for these models. 

If we consider the pointwise, rather than uniform, convergence of the empirical distri­

bution to the true distribution, Requirement 3 amounts to a law of large numbers (LLN) 

for dependent variables. Lin & Lu (1996) provide general information in this context for 

processes satisfying various mixing conditions (e.g. ct-mixing, p-mixing, ^-mixing, and oth­

ers). Theorem 4.2 below is an example of one such L L N . We focus on this particular result 

because of its relative simplicity in our context. In particular, for some models the conditions 

of Theorem 4.2 may be easier to verify than those of Lin & Lu (1996) (or of Theorem 4.1) 

because the calculation of the mixing coefficients is not required. 

Theorem 4.2 Assuming that {Yt} is stationary, let 

Pe(y) = \P(Yt<y,Yt+e<y)-P(Yl<y)P(Yt+l<y)\. 

Then for each y, Fn(y) converges in probability to Fo(y) if 

nj2(n-lWy)=o(n2). ; (4.2) 



Proof. The proof follows from Chebyshev's inequality. Let N(y) — Ylt=i I(Yt < y)- Then for 

a given value of e, 

Fn(y)-F0(y) > e) 

< 
1 
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:E 

N(y) 
n 

N2(y) 

FQ(y) 

my)? 

l 

e2 n2 
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Although Theorem 4.2 is stated in terms of the univariate distributions, it can easily be 

extended to the multidimensional case. For example, to show the pointwise convergence of 

the empirical bivariate distribution, we would define 

Pt-s(x,y) = \P(YS < x,Ya+l < y,Yt < x,Yt+i < y)-P(Ys < x,Y8+l < y)P{Yt < x,Yt+l < y)\ 

and replace the condition (4.2) by the requirement that 

n-2 

J2(n-t-l)Pi(x,y) = o(n2) 

for all x and y. 

4.2 Other Models for Count Data 

Work to date on models for stationary time series of count data is nicely summarized in 

MacDonald and Zucchini (1997). In addition to HMMs, other possible models are 

1. Markov models, including 



• Integer-valued autoregressive (INAR) models (e.g. Alzaid & Al-Osh 1993; McKen-
zie 1988) 

• "Observation-driven processes" of the form Yt ~ Poisson(/t t), where /.it is modelled 

as log/j,t = g(Yt-p,..., Y j - i ) , and g is some function (e.g. Albert et al. 1994) 

2. m-dependent time series, including 

• Models of the form Yt = g(-yt), where g is some function, {7^} is a MA(m) process, 
and Yt \ jt is independent of Y i , . . . , Y j - i , Yt+i,..., Yn 

• INMA(m) (integer-valued moving average) models (e.g. Alzaid & Al-Osh 1993; 
McKenzie 1988) 

3. "Parameter-driven processes" of the form Yt-~ Poisson(///;), where log// ( = g(x) + et, 
and et is a stationary, autocorrelated error process (e.g. Chen & Ibrahim 2000) 

We now show that all of these models, in fact, satisfy the convergence criterion given in 
Theorem 4.1, with the exception of that described by Albert et al. (1994), since this model 
is not stationary and is thus beyond the scope of this chapter. 

4.2.1 Markov Models 

In the proof of Theorem 3.1 we cite the result that the mixing coefficients of a Markov chain 
satisfy at < cpe, where c is a positive constant, and 0 < p < 1 (see, e.g., Doukhan 1994). 
Thus, it is clear that stationary Markov chains satisfy the condition in Theorem 4.1, and 
hence our graphical method is valid for these processes. The INAR(p) process is a (p-order) 
example of such a process. Observation-driven processes, such as Poisson regression models 
with lagged dependent variables, are also p-order Markov processes, since in this case, the 
distribution of l̂ ,|Ft_p,..., Yt-\ is independent of Y),..., Ft_p_].. 

4.2.2 m-Dependent T ime Series 

Since, for an m-dependent time series, a.i = 0 for / > m, time series of this type clearly satisfy 
the condition of Theorem 4.1. Included in this class are MA(m) and INMA(m) processes. 



4.2.3 Parameter-Driven Processes 

The next model we consider assumes that Yt ~ Poisson^) , with 

log Ht = g(x) + et 

where g is some function of the covariates, x. These covariates are assumed to be constant 
over time so as not to violate the requirement that {Yt} be stationary. The error terms, 
{e t}, are modelled as an ARMA(p,q) process, and Yt\ct is assumed to be independent of 
Y\,..., Yt-i, Yt+i,..., Yn. 

Biais et al. (2000) show that if {et} is an oi-mixing sequence with mixing coefficients on, 
and {Y,} is a process such that Yt\et is independent of Yi,..., Yt-\, Yt+i,..., Yn, then the 
process {Yt} is also a-mixing, with mixing coefficients Aat. The proof is similar to that of 
Theorem 3.1. 

From Liebscher (1996) we have that an ARMA(p , q) process is a-mixing with exponential 
rate, i.e. the mixing coefficients satisfy at < cpe for some p, 0 < p < 1, and some c, 
0 < c < oo. • 

It is now obvious that the condition of Theorem 4.2 holds for models of this type. 

4.3 Application to MS/MRI Data 

In this section, assuming the same model for each patient, we compare the fit of five differ­
ent stationary HMMs to both Albert's data and to data on the placebo patients from the 
Vancouver cohort of the PRISMS study (PRISMS Study Group 1998). Based on the results 
from Section 3.4, we assume that each H M M has two hidden states and use the method of 
maximum likelihood to obtain estimates of the other parameters. We model the conditional 
distribution of Yt given Zt as one of the following five distributions: 

1. Poisson: P(Yt = y\Zt = k) = A fe > 0 

2. Negative binomial: P(Yt = y \ Zt = k) = ( P f c HJ'~ l)a£ f c(l - ak)y, 0 < ak < 1, pk > 0 

3. Logarithmic: P{Yt = y \ Zt = k) = y l ~ ( C f c ) , 0 < 9k < 1 

4. Generalized Poisson: P(Yt = y | Zt = k) = A * ( A * + g f c g ) ' ' | - l e ~ A f c ~ f l f c ,

> A f c > 0, 6k > 0 



5. Zero-extended Poisson: 

P{Yt = y I Zt = k) = wkô{y=0} + (1 - wk)—^JL, 0<wk<l, Xk > 0 

4.3.1 Albert 's Data 

Figures 4.1 and 4.2 show the fit of these models to Albert's data. In Figure 4.1, we plot the 
estimated univariate distribution of Yt under each model versus the empirical distribution of 
Yt over the range 0 , . . . , 20. Figure 4.2 is the corresponding plot of the bivariate distributions 
over the range (0, 0), (0,1), . . . , (20, 20). 

Note that the H M M involving the zero-extended Poisson distribution was not fit to 
Albert's data. Since there were, in fact, no zeroes in this data set, the parameter w could 
not be estimated for any of the components of the H M M . 

Figure 4.1 shows that these models seem to capture the univariate behaviour of Albert's 
data quite well, with the exception of the logarithmic model. Since the Poisson model seems 
to be reasonable, it is not surprising that the negative binomial and generalized Poisson 
models also provide good fits, since these are generalizations of the Poisson model. In 
contrast, Figure 4.2, shows that none of the models is a good choice for representing the 
bivariate behaviour of the data. In particular, the estimated probabilities tend to be lower 
than the empirical probabilities throughout almost the entire range. Thus, it would appear 
that a 2-state H M M cannot fully capture the correlation structure of the data, and hence is 
not an adequate model in this case. 

4.3.2 Vancouver P R I S M S Data 

The Vancouver data have the same format as Albert's, but consist of 13 rather than 3 
patients. Each patient has between 2 and 26 observations. The lesion counts are most 
frequently zero, but range up to 15. 

Figures 4.3 and 4.4 give the plots of the univariate and bivariate distributions for the Van­
couver data, with the functions plotted over the ranges 0 , . . . , 15 and (0,0), (0,1) , . . . , (15,15), 
respectively. These figures show that the Poisson model seems to provide quite a good fit to 
these data, both for the univariate and bivariate distributions, although it may underesti­
mate somewhat the probability of seeing pairs of small lesion counts. Again, the logarithmic 
model seems inappropriate for these data. 



Figure 4.1: Comparison of the Estimated and Empirical Univariate Distributions (Albert's 
Data) 



Figure 4.2: Comparison of the Estimated and Empirical Bivariate Distributions (Albert's 
Data) 



Figure 4.3: Comparison of the Estimated and Empirical Univariate Distributions (Vancouver 
Data) 



Figure 4.4: Comparison of the Estimated and Empirical Bivariate Distributions (Vancouver 
Data) 



4.4 Formal Assessment of the GOF Plots 

The examples in Section 4.3 show that our G O F method is useful both for comparing different 
models, and for detecting when a proposed H M M is not appropriate for the data. We have 
also proved in Section 4.1 that if we have correctly specified the model, then the plot will 
converge to a 45° line through the origin as n —> oo. It is also of interest to develop a formal 
method of assessing the degree of variability in the observed plot. In other words, it would 
be desirable to have a theoretical means of determining whether the observed scatter around 
the 45° line is "acceptable" for a given sample size, n. 

One way in which other authors have assessed this variability is by computing the cor­
relation coefficient of the two plotted variables, and then deriving the distribution of a test 
statistic based on this coefficient under the null hypothesis that, the model fits. This deriva­
tion is simplified considerably if one of the variables is fixed rather than random. Lockhart & 
Stephens (1998) provide a good example in this setting. They investigate the use of probabil­
ity plots, where the n observations are ordered and plotted against the values F _ 1 { / c / ( n + l ) } , 
k = 1,... ,n. Here F is an arbitrary distribution in the proposed family of distributions. 
Under the assumptions that F is in the location-scale family (usually with the values of the 
location and scale parameters chosen as 0 and 1, respectively) and that the observations are 
iid, the asymptotic distribution of their test statistic has a nice form. However, typically, the 
exact distribution of this statistic is not easily derived. Furthermore, in our setting, where we 
plot two different estimates of the cdf and our observations are not independent, computing 
the distribution of the associated correlation coefficient, even asymptotically, seems like a 
very challenging problem. 

Alternatively, in the context where the proposed distribution is completely specified under 
the null hypothesis, Raubertas (1992) considers envelope plots as a formal G O F test. He 
suggests simulating s independent samples of size n from this distribution, and preparing a 
plot of the estimated distribution against the true distribution for each. These plots are then 
superimposed and summarized by displaying only their upper and lower envelopes. Points 
corresponding to the observed (as opposed to simulated) data that fall outside this envelope 
indicate lack of fit in the model. The advantage of this method is that the true distribution 
need not be limited in its complexity. For example, we could easily simulate observations 
from a H M M . However, Raubertas (1992) points out that the power of this test may be 
undesirably low, and does not recommend it when other options are available. A n envelope 
plot in our case would have even more inherent variability, since we would need to sample 
from the estimated, rather than true, distribution. For the same reason, the computational 
burden would also be quite heavy. Given these concerns, we have not attempted to conduct, 



this test on our data sets. 

In conclusion, a feasible, theoretical method of assessing the variability in our G O F plots 
is not yet available at this time. Further research on this topic is required. 



Chapter 5 

Hidden Markov Models for Multiple 
Processes 

In Chapters 3 and 4, we discussed the problems of estimating the number of hidden states 
and assessing the goodness-of-fit of a single H M M . We now move on to extensions of the 
basic model, in particular, the use of the H M M framework for modelling multiple processes. 

Few such HMMs currently exist. Most have been developed in the context of specific 
applications, and hence have not been posed in their full generality. Not surprisingly, little 
is known about the theory surrounding these models. 

Hughes & Guttorp (1994) present one example of such a model: a multivariate H M M 
for data consisting of daily binary rainfall observations (rain or no rain) at four different 
stations. These time series are assumed to be functions of the same underlying process. 
Given the hidden state at time t, the observed measurements at this time are considered to 
be independent of all measurements taken at other time points. They may, however, depend 
on one another. 

Turner et al. (1998) and Wang & Puterman (1999), working in the setting of Poisson 
count data, develop models for independent processes, each of which depends on a different 
underlying process. To account for between-subject differences, these authors incorporate 
covariates into the conditional model for the observed process. MacDonald & Zucchini (1997, 
Chapter 3) also provide a brief discussion of this idea. Between-subject differences can also 
occur in the transition probabilities, and Hughes & Guttorp (1994) address this issue in 
the context of precipitation modelling by including covariates in the model for the hidden 
process. 

The addition of random effects is a natural extension of these models. In the subject-



area literature, HMMs with random effects have appeared in a limited way. For instance, 
Humphreys (1997, 1998) suggests such a model for representing labour force transition data. 
He works with binary observations on employment status (employed or unemployed) which 
are assumed to contain reporting errors. The misclassification probabilities, as well as the 
transition probabilities, depend on a subject-specific random effect. Seltman (2002) proposes 
a complex biological model for describing Cortisol levels over time in a group of patients. The 
initial concentration of Cortisol in each patient is modelled as a random effect. 

The goal of this chapter is to develop a new class of models, HMMs with random effects, 
which will unify existing HMMs for multiple processes and will provide a general framework 
for working in this context. We will build on the ideas of generalized linear mixed models 
(GLMMs), and will address theoretical questions regarding interpretation, estimation, and 
hypothesis testing. For concreteness, we will present our ideas in the setting where the 
observed processes are repeated measurements on a group of patients. This choice will not, 
however, limit the generality of our models. 

The advantages of HMMs with random effects are numerous. Most importantly, mod­
elling multiple processes simultaneously permits the estimation of population-level effects. 
For example, to study the impact of a new MS drug, the individual models proposed by 
Albert et al. (1994) would not be sufficient. Estimating the treatment effect would require 
the assumption of some commonality among the responses of patients in the same treatment 
group while allowing for differences in patients in different treatment groups. A second ad­
vantage of these models is that they allow more efficient estimation of patient-level effects 
while recognizing inter-patient differences. This feature is particularly important in view 
of our examples and discussion in Section 2.4. Finally, HMMs with random effects permit 
greater flexibility in modelling the correlation structure of the data. Standard HMMs as­
sume that the serial dependence induced by the hidden process completely characterizes the 
correlation structure of the observed data. While this may be reasonable for a single process, 
in multiple processes, the correlation structure could be more complex. 

In our presentation of these models, we first consider the case where the random effects 
appear only in the conditional model for the observed data. We then explore the more diffi­
cult case where the random effects also appear in the model for the transition probabilities. 
We will show that interpretation and estimation of HMMs with random effects in the con­
ditional model for the observed data is quite straightforward, but is more challenging when 
there are random effects in the model for the hidden process. We defer the study of the 
properties of these estimators and hypothesis testing to Chapter 6. 



5.1 Notation and Assumptions 

We will denote the observation on patient i, i = 1,..., N, at time t, t = 1,..., n;, by Yit, 

and the corresponding hidden state by Zu- As in Section 2.1, we will assume that the time 

points are equally spaced. Furthermore, we will assume that Zu takes on values from a finite 

set, {1 ,2 , . . . , A'}, where K is known. 

Let Y^f=i iM = nr- Then, we denote by Y* the n,-dimensional vector of observations on 

patient i, and by Y the n^-dimensional vector of all observations. Similarly, let Zi be the 

rij-dimensional vector of hidden states for patient i, and let Z be the rtj-dimensional vector 

of all hidden states. 

We assume that, conditional on the random effects, {Z,; t}' t

li | is a Markov chain. These 

processes may or may not be stationary. If {Zit} are conditionally stationary with unique 

stationary distributions, we will use these distributions for the initial probabilities. In other 

words, we will compute the initial distributions based on the transition probabilities, so that 

these probabilities may vary among patients. Otherwise, we will assume that the initial 

probabilities are fixed parameters and are the same for all patients. We generally have very 

little information with which to estimate the initial probabilities, so allowing for further 

complexity does not seem necessary. 

Finally, we assume that, conditional on the random effects, the ith process, {Y^}" !^ is a 

H M M , and that these HMMs are independent of one another. 

5.2 Model I: HMMs with Random Effects in the Con­
ditional Model for the Observed Process 

In this section, we focus on the addition of random effects to the conditional model for 

the observed data, and assume that random effects do not appear in the model for the 

hidden processes. In particular, we assume that the hidden processes are homogeneous with 

transition probabilities, {Pke}, and initial probabilities, {7rfe}, common to all subjects. 

Borrowing from the theory of G L M M s (see, e.g., McCulloch & Searle 2001) and again 

using '0 to represent the vector of all model parameters, we assume that, conditional on the 

random effects, u, and the hidden states Z, {Y,;*} are independent with distribution in the 

exponential family, i.e. 

f(yit I Zu = k, u, '0) = exp{(yii% f e - c(rjUk))/a(0) + d(yiu 0)}. (5.1) 



Here 

Viik = n + x.'lt!3k + w'Uku, (5.2) 

where rk is the fixed effect when Zit — k, x'it are the covariates for patient i at time t, and 
w'itk is the row of the model matrix for the random effects for patient i at time t in state 
k. We will denote the distribution of the random effects by /(u;̂ ), and will assume that 
the random effects are independent of the hidden states. The notation u (as opposed to û) 
indicates that a random effect could be common to more than one patient. The form of the 
exponential family (5.1) assumes that the link function is canonical, an assumption that is 
not strictly necessary, but one that will facilitate our exposition. We will henceforth refer to 
this model as Model I. 

The notation in (5.2) was selected for its generality, but in most applications we would 
expect significant simplification. For example, consider the M S / M R I setting where we have 
two treatment groups, with group membership indicated by the explanatory variable Xi. We 
might postulate the existence of two hidden states, one associated with relapse (state 1) and 
the other associated with remission (state 2). We prefer this interpretation of the hidden 
states to that of Albert et al. (1994) since it implies that patients' mean lesion counts can 
remain stable (at either a high or low level of activity) while assuming only two hidden states 
(in contrast with the model in Section 2.4.5). If we believe that the mean lesion count in 
state k varies randomly among patients, we might choose the model 

model allows the mean lesion count in state k to vary not only with patient, but also with 
treatment group and with time. 

The model (5.2) could be made even more general by allowing the parameter 4> to vary 
among patients. We do not consider this case here, but provide a brief discussion in Chap­
ter 7. 

The likelihood for Model I is 

where uik is independent of Ujk>, i ^ j, and (UJI> ^ 2 ) has some bivariate distribution. This 

£(V0 

£ n ^ i / ^ i I 2ii>u>V0 II Pzu-uznfiVit I Zit,u,ip)\ /(u;V0 dvi. (5.3) 

) /(u; VO du 



As in (2.2), we may simplify this expression by writing the summation as a product of 

matrices. For a given value of u, let be the vector with elements A\l = nk f(yn \ Zu = 
k,u), and let Alt be the matrix with elements Ar

k\ = Pk( f(yit | Zit — £, u), t > 1. Again, let 

1 be the A'-dimensional vector of l's. Then 

N 

AVO = / u II {(A11)' \J[Aa) 1) /(«; VO dn. (5.4) 

From (5.4) it becomes clear that the only impact of the random effects in (5.2) on the 

computation of the likelihood is the introduction of the integration over the distribution of 

the random effects. In other words, it is only the complexity of this integral that makes 

evaluating (5.4) more difficult than the likelihood for standard HMMs. In most applications, 

(5.4) reduces to a very simple form. We consider two special cases. 

E X A M P L E 1 (Single, patient-specific random effect). We assume that Ui is a random effect 

associated with the ith patient, i = 1,..., N, and that {w,,} are iid. Under this model, obser­

vations on different patients are independent. Furthermore, our model specifies that, given 

Ui and the sequence of hidden states, the observations collected on patient i are independent. 

In this case, (5.3) and (5.4) simplify to a one-dimensional integral: 

£(V0 = II / l E Kzufiyn I zil,ui,tp)JlPZt_uZuf(yu I zit,Ui,tp) > f(ui]ip) dui 

i = l Jui I z 4 = 2 J 

= ft / ( ( ^ y f l ^ l l / e ^ ; ^ ) ^ . (5.5) 
i = l J u i I 1=2 J 

E X A M P L E 2 (Patient-specific and centre-specific random effects). We incorporate patient-

specific random effects as in Example 1. However, we also allow multiple treatment centres, 

with a random effect associated with each (assumed independent of the patient-specific ran­

dom effects). Consequently, observations on patients from different centres are independent, 

and, given the centre-specific random effects, observations on different patients at the same 

centre are independent. We use the same notation as before, but with an additional index, 

c, c = 1,2,... , C , to indicate treatment centre. We assume that treatment centre c has mc 

patients. Then (5.3) and (5.4) reduce to a two-dimensional integral: 

£(vo = n / n / E i i z*u u», vc, ip) n pZc^t_Uzcit.f(yclt i zciu uch vc, ̂  \ 
C = l J V c 1=1 J u c i XCI I t=2 ) 

•f(uci; ip) duci f{vc; ip) dvc 

C r mc ( nci -J 
= n / n / (Acily nACIT ^ ^ KVc] ̂  d,Vc. (5.6) 

c = l J v c i=l Ju<-> I 1=2 ) 



In the usual case where the integral in (5.4) is of low dimension, numerical methods of 
evaluation seem to work well. For common choices of distribution for u, Gaussian quadra­
ture methods offer both accuracy and efficiency. For example, the Gauss-Laguerre formula 
gives good approximations to integrals of the form / f(x)xae~xdx. The case where there is 
one patient-specific random effect, u,, with f(v,i) in the gamma family of distributions, fits 
into this framework. In the special cases considered by Humphreys (1997, 1998), (5.4) can 
actually be evaluated analytically. 

The E M algorithm may seem like a natural choice for parameter estimation in this setting 
if we think of the random effects as "missing" along with the values of {Zit}. However, again, 
we do not recommend this algorithm because of efficiency considerations (see Section 2.2). 
Nonetheless, for completeness, we include the details of the procedure in Appendix A.2 for the 
usual case where the random effects are patient-specific. We show that, when random effects 
are included in this way, the increase in difficulty in the implementation of this algorithm 
(compared to the simple case described in Appendix A . l ) essentially depends only on the 
complexity of the integral. 

Monte Carlo (MC) methods allow the circumvention of the evaluation of the integral, and 
hence may also prove useful for either maximizing the likelihood directly or implementing 
the E M algorithm. For example, the M C Newton-Raphson and M C E M algorithms presented 
by McCulloch (1997) in the G L M M context may be applicable to our models as well. 

5.3 Moments Associated with Model I 

It is easy to create complex models by postulating the existence of latent variables. How­
ever, caution must be exercised in order to avoid unwanted implications of our modelling 
choices. In particular, it is important to be able to interpret both the fixed and random 
effects. One way of understanding their impact on the model is to examine the resulting 
marginal moments of the observed process. We use the property of exponential families that 
E[Yit I Zit = k, u] = c'(r)itk) and Var[Y« | Zit = k,u] = c"{r]Uk)a{(j)) (see, e.g., McCullagh .& 
Nelder 1989). In addition, we use our assumption that Cov[Yj t, YjS | Zit = k,Zjs = £, u] = 0. 
Then, under Model I, 

E[Y«] E[c ' (7fa f c)] (5.7) 

(5.8) 

(5.9) Cov[Y i t ,Y j a ] Cov[c'(iiitk),c'(riJSe)}, s < t. 

Here the expectations are over both Z and u. 



In general, the moments (5.7)-(5.9) do not have closed forms. Even if {Zu}^ is sta­
tionary, we can not always evaluate these expressions analytically. However, the Laplace 
method (e.g. Evans & Swartz 1995) can provide good approximations when the variance 
components of the random effects are reasonably small. And, for certain common distri­
butions of Yù I Zit,u (e.g., Poisson, normal) and of the random effects (e.g. multivariate 
normal), closed forms do exist. 

For instance, consider the case where u = (u\,..., uN) is a vector of iid patient-specific 
random effects, as in Example 1. Let Yu \ Zu,Ui ~ Poisson(/ijj) with 

log nu = r Z i l + Ui, (5.10) 

where it* ~ N(0,a2), and {Z^}"!, is stationary with stationary distribution {nk}. Since 
a(</>) = 1 for the Poisson distribution, and since Waxlc1 (rjuk)] > 0, we can see by comparing 
(5.7) and (5.8) that this model allows for overdispersion in the Poisson counts. In this case, 
we can evaluate (5.7)-(5.9) as 

k 

Var[y«] = e ^ ^ e ^ + e ^ ^ e 2 ^ - ^ 2 feeTfc7rfc) 
k k V k / 

' 0 , i Ï j 
Cov[Yia,Yjt] = < e 2 f f 2 E E e T ' + T ' ^ - s K - e n E e % t , i = j 

k t. 
where Pki(t — s) denotes the (t — s)-step transition probability, P(Zit = £\ Zis — k,ip). 

One feature of the moments (5.7)-(5.9) is that they depend on the covariates, X j t , in 
a very specific way. These relationships should be carefully considered in terms of their 
scientific justifiability before applying the proposed model. 

Thinking of s as fixed, it is interesting to look at the covariance (5.9) as t —» oo when i = j. 
Consider the case where {Zit} is stationary and x?;t = x,: and witk = Wj are independent of 
t and k. We have that 

Cov[Yu, Yis] = E \ £ c'(rfc + Xi/3k + w',u)c'(Te + X i f t + wJu)PM(* - s)nk 

kl 

- E Yi c'(Tk + *iPk + W-u)7TFC 

L k 
Now, for each k and £, Pkt(t — s) —> ir^ as t —> oo. Setting 

Xt = Y c'( rfc + + w i u ) c ' ( r ^ + X»A? + wJu)PM(* - s)xk 

k,e 



and 

X = Y, C'(Tk + Xj/?fc + W-u)7TFC, 

k 
we have Xt —> X2 as t -> oo. Assuming that the dominated convergence theorem (DCT) 
holds, we see that 

Cov[Yit,Yia] -> E[A 2 ] - {ELY]} 2 

= Var[A] 

> 0, 

with equality occurring if and only if the distribution of w-u is degenerate. Since 

\Xt\ < £ \c'(Tk + Xi(3k + w'^c'in + Xi/3e + w|u)|, (5.11) 
k,e 

the D C T will hold if c(-) and f(u;ip) are chosen such that the right-hand side of (5.11) is 
integrable. This is true, for example, in the case where f(yit\zit,u,ip) is in the Poisson or 
normal family and E[u] < oo. Thus, referring again to our example in the Poisson context 
(5.10), we have that 

. Cov[Yi8,Yit] -> (e2 f f 2 - e"2) ( Ç < ^ ) > °> 

with equality occurring if and only if a = 0. 

In contrast, when we remove the random effects from this model (i.e. we assume the same 
model for each patient), Cov[Y i É, ->• 0 as t -> oo. Thus, the random effects impact the 
correlation structure of the observed data in the expected way. In particular, they allow a 
long-range, positive dependence in each patient's observations, as we observe in the linear 
mixed model setting. This is an additional layer of dependence, superimposed on the usual 
correlation structure of a H M M . Considering the heterogeneity of MS patients, this model 
may be more realistic for that context than models where the same H M M is applied to all 
patients. 

5.4 Model II: HMMs with Random Effects in the Model 
for the Hidden Process 

It may also be desirable to allow the hidden Markov chain to vary randomly among patients. 
For example, in the M S / M R I context, patients may spend differing proportions of time in 
relapse and remission. 



However, allowing random effects in the hidden process of the H M M is a challenging 
problem, regardless of whether random effects also appear in the conditional model for the 
observed data. To explore this class of models, we will again specify the conditional model 
for the observed data by (5.1) and (5.2), but we will now allow the model for the hidden 
process to vary among patients. 

In particular, we will assume that {Zit | u}" i , is a Markov chain and that Zit | u is 
independent of Zjs \ u for i ^ j. Naturally, any model for these Markov chains must satisfy 
the constraints that the transition probabilities lie between 0 and 1, and that the rows of 
the transition probablity matrices sum to 1. Thus, we propose modelling the transition 
probabilities as 

P(Zlt = £ I Z i i t _ ! = k, u, V̂) = „ X " ^ r (5.12) 
Zh=i exp {T*kh + x*tP*kh. + w*ltkhu\ 

We use asterisks here to distinguish the model matrices and parameters from those in (5.2). 
The vector u now contains the random effects associated with the hidden process as well 
as those associated with the conditional model for the observed data. To prevent over-
parameterization, we define rkK = fi*kK = 0 for all k, and set w*'tkK to be a row of O's for all 
i, t, k. We will refer to this model as Model II. 

The likelihood associated with Model II is very similar to (5.4). Again, we may write 

CM = / ^{(^(n^) 1 }/^ ;^)^ , (5.i3) 

where now we define the quantities Al

k and A\\ as A\l = irl

k f(yu | Zn = k,u,ip) and 

Ak\ = P(ZU = £ I Zit-i = k, u, V) f(yit I Zit = £, u, ij;),t > 1. 

At first glance, (5.4) and (5.13) look the same. However, in the case of (5.13), the 
integral will typically be quite complicated, even in simple situations such as that presented 
in Example 3 below. 

E X A M P L E 3 (Patient-specific random effects). We assume that the random effects are 
patient-specific, so that observations on different patients are independent. In particular, 
for patient i, we model the transition probabilities as 

exp{r^ + ? 4 J 
P(Zu = £\Zl,t_l = k,u*ke,i;) = 

E L i exp {TÙ + UÏMY 
where rkK = v,*kK = 0 for all i, k. The likelihood associated with this model can be simplified 
as in (5.5). However, instead of requiring only one random patient effect, we will need 
K(K — 1) (possibly correlated) random effects for each patient. There is no obvious way 



to reduce this number; simplifications such as v,*ke = u* do not have sensible interpretations 
in terms of the transition probabilities for patient i. The restriction u\u = u*ek for all k 
and I may be appropriate in some cases, but still results in quite a large number of random 
effects. Moreover, adding a random effect to the conditional model for the observed data 
(as in Example 1) would further increase the dimension of the integral; if this random effect 
were correlated with those in the model for the hidden process, the resulting integral could 
be quite complex. 

We see that the estimation of the parameters in this setting is a difficult problem, even 
in simple cases such as Example 3. The high-dimensional integrals in these models not only 
create a potentially prohibitive computational burden, but also raise questions about the 
accuracy with which we can evaluate (5.13). For similar reasons, computational difficulties 
may arise in the implementation of the E M algorithm as well. See Appendix A.3 for details 
in the case where the random effects are patient-specific. 

As a final note, the number of parameters associated with the distribution of u may be 
undesirably large. For example, consider the model with K = 2 where there are two random 
effects associated with the transition probabilities, and one associated with the conditional 
model for the observed data, and all are correlated (as in Example 3). If we model the 
distribution of these three random effects as multivariate normal with mean 0 and variance-
covariance matrix Q, this distribution will have 6 unknown parameters. We could reduce 
this number by assuming that {it;} are independent with distribution iV(0,of), i = 1,2,3, 
or even that Q = <r2I (i.e. that the random effects are iid), but these assumption would not 
be reasonable in most applications. 

5.5 Moments Associated with Model II 

Another problem with adding random effects to the model for the hidden process is that 
it becomes difficult to assess their impact on the model in general, and on the marginal 
moments in particular. 

The expressions for the moments are the same as in (5.7)-(5.9). However, the integration 
is considerably more difficult in this setting. For instance, consider (5.7). Under Model I, 
this equation becomes 

At least in the case where {Zit} is stationary, this expression can be easily interpreted. In 
contrast, under Model II (assuming the random effects appear only in the model for the 

K 



hidden process), (5.7) becomes 

K 
I 
K . 

&[Yit] = E C ' M / = I u,^)/(u; V) du. 

Even if {Zjj | u} is stationary, it will be difficult to compute (or approximate) this integral 
because P ( Z i t — k | u, tp) is a complex function of the transition probabilities when K > 2. 
This is also true of the integral in (5.8). 

The expression (5.9) is even harder both to evaluate and interpret when we have random 
effects in the model for the hidden process. Specifically, we need to integrate the function 

P ( 7 _ p 7 _ k i „ ,f.\ _ / F ( z i t = I I u, V) P ( Z j s = k I u, V), i ^ j 
l [ A u ~ L ^ J S ~ K l U ^ ) ~ \ P ( Z l t = £ \ Z l s = k , n ^ ) P ( Z l s = k\u,iP), i = j • 

The (t — s)-step transition probabilities, P ( Z i t = £ | Z i s = k,u,tp), are, like the stationary 
transition probabilities, complicated functions of the transition probabilities. Thus, evaluat­
ing these integrals - even by approximation methods - does not seem feasible. 

In the case where { Z i t | u} is homogeneous with transition probabilities {P^} , k, £ = 1, 2, 
and stationary, the stationary distribution has the simple form 

7Ti 7T0 = 
pi pi 

r 2 \ 1 12 

Then we may compute approximations to (5.7) and (5.8). However, evaluating (5.9), even 
approximately, is still problematic because the (t — s)-step transition probabilities do not 
have a simple form. 

Interestingly, we are nonetheless able to make statements about l i m ^ o o Cov[Fj4, Yis] when 
the hidden Markov chains are homogeneous and stationary. By the same argument given in 
Section 5.3, we have that 

lim Cov[y i t, Yia] > 0 
l—>oo 

if condition (5.11) holds. Again, this will be true if f(yit \ zit, u, I/J) is in the Poisson or normal 
family and E[u] < oo. Thus, under these.conditions, we see that adding random effects to 
the model for the hidden process also affects the correlation structure in the expected way 
(see the discussion in Section 5.3). 

As a way of circumventing the problems associated with adding random effects to the 
transition probabilities, if the underlying Markov chains are homogeneous and stationary, 
we might instead consider incorporating the random effects into the stationary transition 
probabilities. We would then be able to compute E[Yit], Var[Y i t], and Cov[Yit, Yjs], i ^ j, 
explicitly. A simpler (though not explicit) expression for Cov[Y^, Yis] would also result. 



However, it is important to consider the implications of these random effects in terms of the 
distribution of the transition probabilities. 

For example, in the simple case where K = 2, it is easy to derive the constraint that the 
transition probabilities for this model must satisfy, namely 

P\2 = ^ (5.14) 

for each i. It is reasonable to insist that, in the absence of prior information, all the tran­
sition probabilities have the same distribution. But, it is unclear whether there exists a 
distribution for u so that this is possible, given the constraint (5.14). Even if an appropriate 
distribution does exist, extending this method to the case where K > 2 seems unrealistic be­
cause the system of equations relating the transition probabilities to the stationary transition 
probabilities becomes increasingly complex with K. 

In conclusion, we may add random effects to the transition probabilities, but are unlikely 
to be able to evaluate any moments. Adding random effects to the stationary transition 
probabilities results in tractable expressions in (5.7), (5.8), and (5.9) for i ^ j, but may not 
be sensible in terms of the resulting distributions of the transition probabilities. Of course, 
these problems are not unique to HMMs: incorporating random effects in Markov chains is 
equally difficult. 

5.6 Summary 

In summary, the addition of random effects to the conditional model for the observed data 
results in a tractable, interprétable model. Marginal moments can be evaluated or ap­
proximated, and parameter estimation is not much more complicated than in the case of a 
standard H M M . The primary change resulting from the inclusion of random effects is the 
need for integration (in most cases, numerical) of the likelihood. In addition, we will need to 
estimate the extra parameters associated with the distributions of the random effects, but 
this task should be straightforward as long as we have a suitable number of patients. 

On the other hand, including random effects in the model for the hidden process is hard 
from the perspective of both interpretation and estimation. Typically, marginal moments 
cannot even be approximated because of the complex nature of the integrands involved. 
Parameter estimation also may be problematic due to the high-dimensional integrals, the 
dependence structure of the random effects, and the large number of unknown parameters. 

However, the limitations of Model II are perhaps not as serious as one might imagine. 



As discussed in Section 2.5, we have relatively little information about the parameters of the 
hidden process. Extending the model to allow patient-to-patient differences on this level may 
explain very little additional variation in the observed data, and hence may not be worthwhile 
from a statistical standpoint. Moreover, capturing inter-patient heterogeneity in the hidden 
processes is still possible by incorporating covariates in this part of the model (though, of 
course, the issue of the reasonableness of the resulting marginal moments remains). 



Chapter 6 

Hypothesis Testing 

In Chapter 5, we presented two models for multiple processes, Models I and II, as well as 
some theory regarding their interpretation and estimation. We did not, however, discuss 
the properties of these estimators. In the present chapter, we address this issue, along with 
the problem of hypothesis testing. We begin, in Sections 6.1 and 6.2, by considering model 
identifiability and the asymptotic properties of the MLEs, respectively. Although we do 
not provide formal results, our discussion will suggest that standard tests are appropriate 
for most hypotheses concerning the model parameters. We then move on to the focus of 
this chapter: tests of the significance of the variance components of the random effects. In 
particular, we wish to develop a test of whether the additional complexity associated with 
introducing random effects into HMMs is warranted. Hypotheses of this nature do not lend 
themselves to standard testing procedures, and pose quite different challenges. 

Specifically, the difficulty surrounding tests of the variance components is that the null 
hypothesis puts at least one parameter on the boundary of the parameter space. Without 
loss of generality, we can assume that the variance-covariance matrix of the random effects, 
Q, is a function of some (/-dimensional parameter D, D > 0, and that Q(D) is a matrix of 
zeroes if D = 0. One of the conditions for the validity of the usual Wald or likelihood ratio 
test (LRT) is that the true parameter be in the interior of the parameter space. In the test 
with null hypothesis D = 0, this condition clearly does not hold. 

There is a substantial literature on the asymptotic distribution of the L R T statistic when 
the true parameter is on the boundary of the parameter space and when the observed data 
are iid. In this case, this distribution can often be determined analytically. For example, 
when the observed data are iid and normally distributed, Self & Liang (1987) show that, 
for a variety of boundary problems, the LRT statistic is asymptotically a mixture of x2 

distributions. Stram & Lee (1994) apply these results to the L R T of the variance components 



in a linear mixed model. Feng k McCulloch (1992) (extend this work to the general iid case, 
and show that a variation of the L R T statistic (based on an enlarged parameter space) has 
the -usual asymptotic x2 distribution. 

However, in other settings, including that where the observed data are not independent, 
the distribution of the L R T statistic when some parameters are on the boundary is far more 
complicated. For this reason, other tests are used more commonly in the G L M M context. 
In particular, Jacqmin-Gadda & Commenges (1995), Lin (1997), and Hall & Praestgaard 
(2001) have proposed tests based on the score vector 

This test has also been suggested for detecting overdispersion (as captured by a random 
effect) in Poisson and binomial regression models (e.g. Dean 1992). In both cases, conditional 
on the random effects, the observations are independent with distributions in the exponential 
family. It turns out that this conditional independence leads to a nice form for (6.1), and 
hence its asymptotic distribution is easily derived. This is not true in the H M M setting, 
but we can still use this framework to conduct tests of the significance of the variance 
components. We provide a detailed explanation in Section 6.3. 

We apply the theory developed in the previous and current chapters to two data sets: 
lesion count data collected on the Vancouver PRISMS patients (PRISMS Study Group 1998), 
and faecal coliform counts in sea water (Turner et al. 1998). These analyses are presented 
in Section 6.4. We include the results of a small simulation study that investigates the 
performance of our variance component test in Section 6.5. 

In Sections 2.3 and 3.2, we raised the issue of the identifiability of a H M M for a single process, 
along with the fact that this topic has not been adequately addressed in the literature. 
Nonetheless, identifiability is a critical concern, since it is a required condition for the usual 
asymptotic properties of the parameter estimates to hold (e.g. Leroux 1992a; Bickel et al. 
1998; Douc & Matias 2001). 

Likewise, the identifiability of Models I and II is also needed in order to study the asymp­
totic properties of their MLEs. However, the necessary theory is even less well-developed 
in the multiple process setting. In fact, we are aware of only one reference on this subject. 
Wang & Puterman (1999) show that Poisson HMMs with (possibly time-varying) covariates 
in the conditional model for the observed data are identifiable if for each patient 

(6.1) 

6.1 Identifiability of Models I and II 



i . The model matrix for the covariates is of full rank. 

i i . The Poisson means associated with each hidden state at each time point are distinct. 

The method of proof used to establish this result follows Leroux (1992a), and relies on the 
fact that the marginal distribution of each observation is an identifiable mixture distribution. 
This method easily extends to the case where the conditional distribution of the observed 
data is in the exponential family, (i) holds, and the support points of the mixing distributions 
are distinct (see the discussion in Section 3.1). 

In contrast, in the case where the model contains random effects, the approach of Wang 

& Puterman (1999) does not readily apply. Consider Model I. The marginal distribution of 

Yn. is 

which is a finite mixture. Prakasa Rao (1992) provides a summary of sufficient conditions for 
the identifiability of both finite and arbitrary mixture models. However, it may be difficult 
to verify these conditions for Model I because the kernel J f ( y u | Z i t = k,u,ip)f(u;ip) du 
will typically not be a standard distribution. Similarly, the marginal distribution of Yu under 
Model II is 

K f 

f i V i ù = J2 / f(Vit I z u = k , u> *l>)P{Zit = k I u, i/>) /(u; ip) d u i . 

This distribution is also technically a mixture (with both discrete and continuous mixing 

distributions), but its complicated form makes verifying identifiability even more challenging. 

Clearly, further research is required to establish sufficient conditions for the identifiability 
of this new class of models. In the meantime, for the purposes of the discussion in this section, 
we will follow Bickel et al. (1998) and Douc & Matias (2001) and simply assume that the 
models in question are identifiable. 

6.2 Asymptotic Properties of the MLEs of Models I 

At this time, we have not formally established the asymptotic properties of the MLEs of 
Models I and II. However, Bradley & Gart (1962) develop conditions for the consistency and 
asymptotic normality of MLEs in a very general setting. We describe these conditions in this 
section, since they illustrate the work that may be involved in showing that these properties 
hold in the context of HMMs with random effects. 

and II 



In addition to model identifiability, these authors require that the data be sampled from 
independent populations. They consider two broad classes of problems: 

i . The number of populations is finite, with the number of observations on each approach­
ing infinity. 

i i . The number of populations approaches infinity, with a finite number of observations 
on each. 

In the context of M S / M R I clinical trials, we would expect to follow each patient for a 
limited time period, but to collect data on large numbers of patients. Thus, we are primarily 
interested in the second scenario. 

The conditions that Bradley & Gart (1962) impose are chosen to ensure that for all k, £, 
and m, as N —> oo, 

N d 
(6.2) 

and that there exists a positive definite matrix with (A;,£)th entry J H ( ^ ) and with finite 
determinant, as well as a constant C < oo, such that 

N d2 

and lim P 
N 

£ 

log/(yi;V) + Jfc«(VO = °P(1) 

c93 

n 
> C 0. 

(6.3) 

(6.4) 

Unfortunately, the conditions required for (6.2)-(6.4) are hard to verify in the H M M 
setting due to the complicated form of the likelihood and its derivatives, especially when 
random effects are involved. However, it is very likely that the MLEs have the usual asymp­
totic properties in the case where we have N independent patients with rii < n < oo for all i, 
and N —> oo. For this reason, in this context, we feel comfortable conducting standard Wald 
tests, using the observed information to approximate the standard errors of the parameter 
estimates. 

6.3 Variance Component Testing 

In this section, we develop a test, based on the score function, for testing the significance of 
the variance components of the random effects in our proposed models for multiple processes. 
For our purposes in this section, we specify the values of the variance components under the 



null hypothesis, but the other model parameters remain unknown. Thus, we treat the other 
model parameters as nuisance parameters. Little is known about the behaviour of the score 
function in the multiple H M M setting. For single HMMs, asymptotic properties of the score 
function have been established (Bickel et al. 1998; Douc & Matias 2001), but not in the case 
when the true parameters lie on the boundary, nor when there are nuisance parameters. 

Jacqmin-Gadda & Commenges (1995) provide a general result about the asymptotic 
distribution of a statistic based on the function S(N)(£) = Y^f=l where {5j(c;)} are 
independent, and £ is a vector of nuisance parameters. In their derivation of this distribution, 
the conditions that they impose ensure the validity of the central limit theorem and law of 
large numbers that these authors apply to certain key sums. When <S(jv)(0 has the form (6.1) 
and the observed data arise from a G L M M with a single, patient-specific random effect, they 
show that these conditions are easily verified. Perhaps not surprisingly given our discussion 
in Section 6.2, the same is not true of these conditions in the H M M setting. 

Thus, while we follow the approach of Jacqmin-Gadda & Commenges (1995) in the 
formulation of our test procedure, we will require different results in order to verify the 
necessary regularity conditions. In particular, we will need bounds on the expectation of 
the product of derivatives of log/(y; | Ui,'tp). To this end, we use the methods of Bickel et 
al. (2002), henceforth called B R R . These authors consider the case where {Yt} is a single, 
stationary H M M , and establish bounds on the expectation of the derivatives of log/(y; •?/>) 
for a given sample size n. We show that the techniques used in the development of these 
bounds are also applicable to our problem. 

The beauty of BRR's work is that their conditions depend only on the conditional distri­
bution of the observed data and the model for the hidden process, not on the full likelihood. 
For this reason, verifying these conditions is reasonably easy. BRR's bounds are derived with 
an eye towards determining the properties of the likelihood and its derivatives as n —y oo, 
and are quite refined. We are working in a much simpler context (i.e. where observations on 
different patients are independent, and, for each i, remains bounded while N —y oo) and 
so presumably far cruder results would suffice. However, we are unaware of the existence of 
such results at this time. 

Our test is valid for a variety of models, and we discuss these at the end of this section. 
For the purposes of developing the relevant theory, we present only the simple example of 
Model I with no covariates, but with one patient-specific random effect, U j , in the conditional 
model for the observed data.(see, e.g., (5.5)). In other words, we assume that {u;} are iid 
with mean zero, and that 

/{Vu I Zit = k, Ui, i>) = exp{{yitrjitk - c(% f c))/o(0) + d(yit, </>)}, 



with rjitk — Tk + Ui. Recall that, for Model I, the hidden Markov chains are assumed homo­
geneous and stationary with transition probabilities common to all patients. 

Without loss of generality, we model the random effect as Ui = VDvi, where the {UJ} are 
independent and identically distributed with zero mean and unit variance. One advantage 
of our test is that we do not need to specify the distribution of 

Let £ be the p-dimensional vector of all the model parameters except D, the variance 
of the random effect. Then, we will form our test statistic based on 5(/v)(£) = HiLi 
where 

l o g / ( y i I Ui,tl)) + 
Ui=0 

_d_ 
dm 

2 ' 

(6.5) 
Ui=0_ 

* 

£ > = 0 ' 
using i — 1,..., N. Other authors have claimed that Si(£) is equal to log / (y i i iji) 

either L'Hôpital's rule (e.g. Chesher 1984; Jacqmin-Gadda & Commenges 1995) or a Taylor 
series expansion of /(y,; | Ui,ip) about Ui (e.g. Dean 1992; Lin 1997) as justification. Both 
methods depend on (unstated) regularity conditions for their validity. Specifically, these 
conditions permit, in the case of the former, two interchanges of derivatives and integrals, 
and in the case of the latter, the interchange of a derivative and an infinite summation. It is 
not clear that these conditions hold; as usual, they are particularly difficult to verify in our 
setting. For this reason, we will not make this claim, but simply note that it may be true in 
some cases. 

We now introduce some notation, mostly borrowed from B R R . A l l expectations and 
probabilities are calculated under the null hypothesis that D = 0. 

First, we use the operator D m to indicate a partial derivative of order m, taken with 

respect to any combination of Ui and the parameters The bounds that we develop on 

the expectation of these derivatives will not depend on the particular combination of these 

variables, hence the generality of our notation. 

Second, let Z + be the set of positive integers. We define 

J EE {( J 1 } . . . , Jk) : k > 0, Jj e Z + ) j = 1,..., k} 

and 

J£(k) = {(Iu ...,h): Ij € Z + , m < I, < n, j = 1,..., k}. 

For J e J, let |J| be the length of J, and let |J|+ = Jr In addition, let J+{k) = {J e 

J : |J|+ = k}. Also, we define U(I) as the ordered set of unique elements of the vector I. 

Finally, we define quantities C^yu^ip) and Blnr. (I/J). These quantities relate to the 
conditional distribution hi(t) = \ogf(yit,zit | y ^ 1 , z*f \ uh V), where y^ = (yiU ..., yit), 



and are critical in determining our bounds of stated interest. They are somewhat difficult to 
understand in isolation, but their purpose should become clear in the context of the proof 
of Theorem 6.1. 

In particular, we define 

Cm(Vit, VO = max max \ D T O log Pkt + D m log f{yit\Zu = k, m, ip) 
Ui=0 + D m l 0 g 7 T f c 

where max should be interpreted as the maximum over all derivatives D m . Our model 
D n i 

assumptions imply that h^t) = logPZit_uZf + logf(yit | z u , U i , ^ ) , so Cl

m(yit,ip) is a bound 
for the mth order derivatives of hi(t). 

Letting the empty product be 1, we define 

BlW) = max n E n 
. j e { i , . . . , | J | } : 

Zix. — Zi* : JeJ+(m), 
J 

le J?(\J\), r = \u(i)\, (tu...,tr) = u(l), Zl,lse{i,...,K}j: 

The value Bl

m(ip) will be used to bound the expectation of the product of derivatives of h i ( t ) . 

We also need the quantities Bl

mim.2(ip), B^ l T O 2 m s(^), . . . , where 

/ 

£*nim2(V0 = max n E n 31  n 
\ 

Zi,ts —
 zi,U 

1 

J 1 € J + K ) , J 2 e J+(m2)X e Jr'(|JJ|),i2 e jr(|J2|), 

r = \U(ll U I2)|, (tu . . . , tP) = UQ.1 U I2), zhts e { 1 , . . . , A ' } } , 

and Bl

mi...md(ip), d > 2, is defined similarly. 

We require the following conditions for the remainder of this chapter. 

Condition 1. The transition probabilities satisfy Pu > 0 for all k, I = 1,..., K. 

Condition 2. The function log f(yit \ Zu,Ui,ip) has M continuous derivatives, M > 4, with 

respect to Ui and at the true value of these parameters. 

Condition 3. For all m i , . . . , < M, d < co, and for all i, 

oo Y 

» = l 1 

Condition 4- There exists a fixed value n < oo such that iii < n for a l H = 1, 2,...-. 



R E M A R K . Conditions 1-3 are essentially those assumed by B R R , with a slight change in 

Condition 2 to account for the incorporation of the random effects in our model, and in 

Condition 3 to bound terms involving Bl

mv..m (\j)) in a specific way. Conditions 1, 2, and 4 

are easy to verify. Theorem 6.2 below provides sufficient conditions for Condition 3 when 

the conditional distribution for the observed data is one of several common choices. 

Before stating our main theorem, we present some preliminary results. Our first, which we 
prove in Appendix B.2, extends BRR's Theorem 2.1 to establish bounds on the expectation 
of the product of derivatives of log/(yj | Ui,tp). We define 

Dm = D m l o g / ( y 7 ; | Ui,ll>) 
Uj=0 

Theorem 6.1 Under Conditions 1 and 2, for all i, and all m t , . . . , md < M, d < oo, 

E x• • • x < Ami...mdmi\ x • • • x md\ nlBl

mi..,nd(ïP), 

where Ami...md is a finite constant depending only on the transition probabilities. 

Given the complicated form of the expression Bl

mi...md(ijj), it is of interest to identify 
models where Condition 3 holds. This builds on the work of B R R , who simply assume that 
B 1

m i ((/;) < oo. We also require conditions such that J2i=i (VO < 0 0 f ° r finite values 

of d. Theorem 6.2, which is proved in Appendix B.3, shows that this property holds for four 
common distributions for the conditional model for the observed data. The same line of 
argument also allows the investigation of the properties of Bl

mi...md(tp) for other choices of 
distribution for the conditional model. 

Theorem 6.2 Assume that Conditions 1 and 4 hold. In addition, assume that £ belongs 
to a bounded parameter space. Then for all i, and all m i , . . . , md < oo, d < oo, 

oo. 

1=1 

when f(yit\zit,Ui,îl>) is in the Poisson, binomial, normal, or gamm,a family of distributions. 

We now present a series of technical results that will be required in the proof of our 

principal theorem, Theorem 6.3. These results will allow us to apply the law of large numbers 

and the central limit theorem in the same manner as Jacqmin-Gadda & Commenges (1995), 

and hence to determine the asymptotic distribution of our test statistic. 



Lemma 6.1 Under Conditions 1-4, for all k,i = 1,... ,p, 

dSite) E 

E 

0 0 1 I 

E ^ V a r 

< 00 for i — 1,..., TV 

< 00 for i = 1,..., N 

< 00 

< 00 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

Proof. Consider (6.6). We have that 

E = - E 

2 

+ 
ut=0 

_d_ d_ 
dm 

log f(yi \ui,ip) 
2 

u , = 0 _ 

D*, + 2 
a 2 

l o g / ( y » I Ui.VO 
5 

• t t — l o g / ( y i I Ui.V') 
m=0 

- E | D l

3 + 2 D l

2 D l | . 

Thus, by Theorem 6.1 and Condition 3, we see that E | ^ | ^ | < 00 for all % and K. 

In the same way, we can show that E Si (£) , Var {^^(OJ) a n d Var (agfagt^^)} 
are expectations of sums of products of { D ^ J , m < 4, and hence are finite for all z, fc, and 
I by Theorem 6.1. Now, let L\ and M£ £ be finite constants such that V a r | ^ 5 j ( c ; ) } < L\ 
and Var {^f(Si{0} < « = 1, • • •, -/V, = 1,..., A'. For fixed values of k and £, these 
moments vary with i only because rii may be different for each i. Since ni can take on only 
values from the finite set { 1 , . . . , n}, we see that Var {gf^ a n d Var { â ^ 7 ^ ( ^ ) } c a n t a ^ e 

on at most n distinct values. Thus, there exist finite constants and Mkc (independent of 
N) such that for all i = 1,..., JV, 

'dSi(Z) 
Var 

and Var < < Mkl. 

Thus, it is clear that (6.8) and (6.9) hold for all k; and t • 

In the proof of the next results, we will require a law of large numbers for non-identically 
distributed random variables. We will use the law that if JVTi, A ' 2 , . . . are independent with 
mean zero, {Q} are non-negative constants with c* —> 00, and ^ i = i E [ X 2 ] / c 2 < 00, then 

0 a.s. 
CN 



(See, e.g., Breiman 1968, Theorem 3.27.) For our purposes, we will take Q 
henceforth refer to this law as (LI). 

= i. We will 

Lemma 6.2 Assume that Conditions 1~4 hold, and let £ be a MLE of Ç under the null 
hypothesis that D = 0. Then Ç converges in probability to £ as N —> oo. 

Proof. Let / o ( y i ; c ; ) be the density of patient i's observations under the null hypothesis, i.e. 

/o(yt;0 = Y l^zafivu I Zii,Ui = o,0 f[PZi^UZltf{yu | zit,Ui = o , m • 
t=i 

This is just the distribution of a stationary H M M . Now, using the method of Bradley & Gart 
(1962), the following requirements are sufficient to ensure the properties (6.2)-(6.4): 

1. For almost all and for all £, ' 

d d2 d 3 

exist for all j, k, £ = 1,..., p, and for a l H = 1,..., TV. 

N 

d2 1 N 

l o g / o ( y i ; 0 - £ 
d2 

log/o(y*;0 

lim P 
N-*oo 

1 N d3 

Y, a , a , ^ l o s /o(y<; 0 TV fr{ dÇjd&dÇi 

where C is some finite constant. 

s/o(yt;0 

» oo: 

= • oP(l) (6.10) 

= op(l) (6.11) 

= o, (6.12) 

From Conditions 1 and 2, it is clear that the first requirement is satisfied. For the second 
requirement, we use (LI) to show all three results. This law will, in fact, give us convergence 
a.s., which is a stronger result than necessary. 

In particular, for (6.10), the fact that EJD^ | < oo allows us to interchange the expectation 
and derivative to compute E ^ log/ 0 (yj ; £)] = 0 for all i. Conditions 1-4 and Theorem 6.1 
imply that E[(Dj) 2] has a finite bound, independent of i. Denote this bound by C. Then 

O O 1 

i = l 1 

^ ; log /o (y i ;0 < C ] T - < oo, 



so the conditions of (LI) are satisfied, and (6.10) holds. Similarly, (LI) applies in the case 

of (6.11), since the expected values of the summands are zero, and E[(D^) 2] — (E[DJ,])2 has 

a finite bound, independent of i. For (6.12), we first consider the expression 

1 N i 
l o g / 0 ( y , ; £ ) - E 

d 3 

(6.13) 

Clearly, the expected values of the summands are zero. Since E[(Dg)2] — (EfDg])2 has a 

finite bound, independent of i, (LI) implies that (6.13) converges to zero a.s. Since, for 

fixed values of j, k, and £, the terms E [ o ç log / 0 ( y , ; ; £ ) ] , i = 1,2,... take on only a 

finite number of values (as argued in the proof of Lemma 6.1), the second sum in (6.13) is 

bounded. Therefore, the first term must also be bounded a.s. These convergence results 

guarantee that the arguments of Bradley & Gart (1962) apply, and thus we have verified the 

consistency of £. • 

Lemma 6.3 Assum,e that Conditions 1-4 hold, and let £ be a MLE of £ under the null 
hypothesis that D = 0. Then \/ÏV(£ — £) has the form, 

VN(i - £) = y/N la\N) E U, + o p ( l ) , (6.14) 

where each U; is a random vector with kth element ^ l o g / 0 ( y i ; £ ) , k = 1, ,p, and 

variance-covariance matrix 1^. We write Içf(jv) = Y^iL\ L^i-

Proof. Let H(yv)(£) be the matrix with entries 5Zi==i Q^Q^ l o g / o ( y ^ £ ) - Under Conditions 1 
and 2, we can do a first-order Taylor series expansion of YliLi ^ l o g / o ( y z ! £) about £, for 
k — 1,... ,p, yielding 

£ - £ = [-H ( w ) (£t ) ] - 1 f ;u, , 
i = i 

where |£ f - £| < |£ - £|. By Lemma 6.2, £ = £ + o p ( l) , so that £ f = £ + o p ( l) as well. By the 

continuity of l o g / o ( y i ;0 , 

£-£ = - ^ H w ( £ ) + o p (i) 

As shown in the proof of (6.11), 

d2 1 N 

-Y 
Nti 

l o g / o ( y * ; £ ) - E 
d2 

1 N 

l og / 0 (y 4 ; £ ) 

(6.15) 

-» 0 a.s. 

By Conditions 3 and 4 and Theorem 6.1, we can interchange the expectation and derivative 

to obtain 

E 
d2 

l o g / 0 ( y ? : ; £ ) = - E 
d d 

^ l o g / 0 ( y i ; £ ) ^ l o g / 0 ( y i ; £ ) 
CÇfc Oct 



so 

^(H{N)(0 + lmN)) = o p ( l ) . 

Substituting this result into (6.15), we obtain 

1 
N 

N 

N E u , 
N 

(6.16) 

We now demonstrate that the second term of (6.16) is op(l). It suffices to show that 
YliLi Uj/x/TV = Op(l). Let Vij be the jth element of U ; , and fix a value of e > 0 and C > 0. 
By Chebyshev's inequality, 

AT 

E ^ >C\ < 
Var [j- E f = 1 V* 

C2 

S £ i Var[l 
NC2 

in 

As argued in the proof of (6.10), E[Vy = 0, and Var[Vy has a finite bound independent of 
i, say 7. Then, 

N 

E ^ 
?:=i 

>c) < 
Nj 

NC2 

C2' 

Since C is arbitrary, we can choose a value large enough that 

N 

E ^ > C < e. 

This statement implies that Yli=\ U j / v N = Op(l), as required. • 

We will need the following quantities for our next theorem. Define <S(Ar)(£) = HiLi <%(£) 
as in (6.5). Let i j = Var[5j(c5)], and let I(N) = ^- Let J( W) and K(jv) be column vectors 
defined by 3{N) = E ^ i E [ ^ $ ( 0 ] and K(N) = £ f = 1 E [SfâUi]. Finally, define 

(6.17) 

Theorem 6.3 a&ove definitions, under Conditions 1-4, 

S(N)(i)/4N) 

has an asymptotically standard normal distribution as N —» oo. 

(6.18) 



Proof. Following Jacqmin-Gadda & Commenges (1995), we expand S(N)(£) in a Taylor series 
about £ to obtain 

SW(i) = E S(0 + N(i - 0 T [ i V - 1 E ̂ $(0 + e j v | , 

where 
iV c9; 

e ^ ^ E ^ ^ - ^ - O , 

and l^t-el < 

Using (6.7), (6.9), and (LI), we have that 

1 f w a2 

^ ( ^ 

By Lemma 6.2, £, and hence 0, is consistent. In addition, by (6.7) and the arguments in the 
proof of Lemma 6.1, TV"1 Z?=i E [ â f r ^ t ) ] is bounded away from infinity. So, eN = op(l). 

Likewise, we can use (6.6), (6.8), and (LI) to show that 

N-lf:^SM) = N-i3(N) + op(l). 

Using Lemma 6.3, we now have that 

s{N)(£) = E S i ( 0 + . v ^ [ v O v £ x ^ 
i=l L i=l J 

N 
£ 5,(0 + £ Uf I-^j J ( i V ) + op(l)N £ Vjï-^N) + op(l)N-^{N) + op(l)^ 
i=l i=\ i=l 

•JV ,K"«»>) 
' ' -1 i=l \ 
+ o p (l)v/iV (N-%N)) + o p ( l ) \ / iV. 

By (6.6), (6.7), and Condition 4, we have that N~lJ(N) is bounded away from infinity. As 
argued in the proof of Lemma 6.3, Y,iLi Uf / \ /N = Op(l). Thus, to show that 

= E {$(0 + U f l K ' ( / v ) J ( w ) + op(l)^N} , (6.19; 
t=i 

we need only prove that NlJ^N^ =0(1) . 

Using the idea discussed in the proof of Lemma 6.1, the matrices {Iççi}^ belong to i 
set of at most n matrices. Denote this set by {Z?}" = 1 , where lj is the matrix-1^ for n» = j 



Let {dj} be the set of minimum eigenvalues of {J,}, and let {d'j} be the set of maximum 
eigenvalues of {Tj}. Define d = min{dj} and define d! = max{c^}. Since the matrices 
are positive definite, d and d' are strictly positive. Let be the number of times that 
rii = j, i = 1,... ,N. Then 

n 

3 = 1 

The minimum eigenvalue of IÇÇ(N) is given by 
• y / I « ( i v ) V mm — v ' , v'v 

where this minimum is computed over all p-dimensional vectors v. Thus 

mm — = mm —-
v'v v'v 

" ( N ) . v ' X,v 
> L c ; m i n - v ^ -

i=i 

> Ê - f 
= Nd 

By a similar argument, the maximum eigenvalue of IÇÇ(JV) is at most iVif. Thus, the eigen­
values of NIç^Nj must lie in the interval [l/d',l/d]. This is sufficient to guarantee that 
N1^(N) = 0(1), and hence that (6.19) holds. 

Now, let i?,j(jv) = Si(£) + U f r^ N)J ( 7 v ) . As demonstrated in the proof of (6.10), E[Uj] = 0. 
Similarly, by Condition 3 and Theorem 6.1, we can show that 'Ë [,%(£)] = 0. So, E[i2j(jv)} = 0. 
Defining a2 = Var R^N)] , Jacqmin-Gadda & Commenges (1995) prove that s% = 5Zi==i — 
h{N)- We now show that (j2f=x RH(N)) /SN is asympotically distributed as iV(0,T), using 
Lyapounov's condition. In particular, we show that af < oo for all i, and that 

J i E i E [ l ^ ) r i = o (6.20) 
J V ^ ° ° 1=1 s/v 

for some 5 > 0. Now 

= E[Si(£)] 2 + J ^ I ^ ^ E f U i U f j I ^ ^ ^ f A T ) + 2E[S' i(c;)Uf]I^1
(iV)J(Jv). 

Using the same argument as in the proof of Lemma 6.1, a2 can take on at most n possible 
values. So, a2 = miner2 > 0. Similarly, using Conditions 3 and 4 and Theorem 6.1, 
E[|Z?j(jv)|3] < 7, where 7 is a finite constant. So, letting S = 1 in (6.20), 

lim V ^ E [ | i % i V ) | 2 + ' 5 ] < lim ^ i = l { 



= lim -=L— ' ' 

= 0, 

verifying that T,f=1Ri(N)/sN is asymptotically distributed as N(0,1). Since s2

N = IC(N), we 
see that 

Sw(j) = ^ {RUN) + Qp(l)VN} = ZLRJW 
+ o P ( l ) , 

where the last equality follows from the fact that s/N/sN < I/o < oo. Then, by Slutsky's 
theorem, S (V)(£) /^c (JV ) is also asymptotically distributed as JV(0,1). • 

We conclude this section with a discussion of other models to which this type of test may 
apply. Adding time-independent covariates to the conditional model for the observed data is 
the easiest of these; by assuming that the coefficients are bounded, all of the results we have 
presented are valid in this case as well. Likewise, incorporating a patient-specific random 
effect in the model for the hidden processes should be fairly simple, as long the associated 
parameters are bounded, and the processes {Zit \ U i } ^ , i = 1,..., N are homogeneous and 
stationary. 

It should be reasonably straightforward to extend our theory to the case where there are 
multiple, patient-specific random effects, U ; , in either the conditional model for the observed 
data or the model for the hidden process or both, and we wish to simultaneously test the 
significance of all of the variance components. In this case, would be a vector obtained 
by taking derivatives of l o g / ( y j ; U j , ip) with respect to each variance component, and then 
evaluating each variance component at 0. Consequently, we would require a multivariate 
central limit theorem in the derivation of the asymptotic distribution of YliLi .%(£). Similar 
theory should apply to the case where we have a large number of independent clusters 
of processes, where the number of processes in each cluster is bounded. For instance, in 
Example 2 of Section 5.2, we assumed both patient- and centre-specific random effects. 
Presumably, a multivariate version of our test could be used to assess the significance of 
both variance components, assuming that the number of patients in each centre is bounded, 
and that the number of centres is large. 

Some models, however, would present more substantial challenges. For instance, BRR ' s 
theory applies only to homogeneous, stationary HMMs. It is not immediately apparent how 
to extend this theory to a more general setting. Even more difficult is the case where the 
random effects are crossed, so that observations on different patients (or clusters) are not 
necessarily independent. Our approach relies heavily on the assumption of independence 
among patients; for example the law of large numbers and central limit theorem that we 
use apply only to independent observations. Finally, in the case where there are multiple 



random effects, it is not clear how to use our procedure to test the significance of a subset 
of the variance components. In this case, the test statistic (6.5) would involve a (possibly 
multidimensional) integral, and the results of B R R would not apply. Further research is 
required to address the issue of hypothesis testing in these contexts. 

6.4 Applications 

In this section we illustrate the use of HMMs with random effects in applied settings, both 
in terms of fitting the model and in conducting the test of the significance of the variance 
components. First, we address the issue of estimating the quantity IC(N) in (6.18). We then 
analyze two different data sets: MRI data from a group of MS patients, and faecal coliform 
count data originally presented by Turner et al. (1998). 

6.4.1 C o m p u t i n g t he Tes t S t a t i s t i c 

The quantity (6.18) contains unknown parameters, and hence is not a test statistic. In 
particular, IC(N) (defined by 6.17) is a function of parameter values-which are not known 
a priori. However, as long as we have a consistent estimate of IC(N), IC(N), Conditions 1-4 
and Slutsky's theorem guarantee that S(N)(Ç)jIC\N) has an asymptotically standard normal 
distribution as N —» oo. 

In the G L M M setting, IC(N) can be expressed analytically in terms of £. In this case, the 
usual practice is to estimate IC(N) by replacing £ with £ (e.g. Dean 1992; Jacqmin-Gadda & 
Commenges 1995; Lin 1997). 

In contrast, in the H M M context, IC(N) does not have a closed form, and it is unclear how 
to evaluate this function at £. For this reason, we use a different method to obtain IC^N)'- the 
parametric bootstrap (e.g. Efron & Tibshirani 1993). Specifically, under the null hypothesis 
that the variance components are 0, by Lemma 6.2 and Conditions 1 and 2, /o(yi;£) is a 
consistent estimate of fo(yf,0- Using this fact, we estimate the unknown expected values 
I(N), J(/v)> a n d K(jv) in IC(N) by generating V samples from /o(y»:;0 and computing the 
mean of appropriate functions of these. For example, to estimate J(/v), for each v = 1,..., V 
and each i = 1,..., TV, we generate a sample of n?: observations from /o(yi; £). Denote the 
vth sample by y ^ , and the associated value of Sj.(Ç) by S i ( y ^ ; £ ) . We then approximate 
ficSi(yj"^;£) by taking differences of Si(y\"^;£) in the neighbourhood of £. Repeating this 



procedure V times, we compute our estimate as 

1 v d 
V ) = yY.Q?S{N){y{i')\£)-

Rather than using the parametric bootstrap to estimate the quantity IÇÇ(N) in h(N), we 
instead use the matrix of second derivatives of the log-likelihood evaluated at £. This matrix 
is a by-product of the quasi-Newton minimization routine, and hence is readily available. 

Sometimes this method leads to a negative value for IC(N)- We discard these cases, which 
presumably results in an estimate of /c(/v) that is positively biased. However, the fact that 
this bias is positive makes the test more conservative, and hence is not a concern. 

It is difficult to assess the accuracy of this estimation procedure in our setting. However, 
we have investigated the simpler case where there is only one observed lesion count on each 
patient and we wish to test for overdispersion relative to the Poisson distribution (e.g. Dean 
1992). We are able to compare the estimates of IC(N) obtained using the parametric bootstrap 
with V = 100 with those obtained by replacing £ with £ in IC(N) (since, in this case, IC(N) can 
be computed analytically). The estimates were very similar for the data sets we considered. 
Thus, the parametric bootstrap seems to be well-behaved, at least in this simpler context. 

If iii = n for all i and there are no covariates, the vectors of patients' observations are 
iid. In this case, two other options are available for estimating Ic^y. the nonparametric 
bootstrap and the jackknife (Efron & Tibshirani 1993). As with the parametric bootstrap, 
these methods require the generation of realizations of the random variables Y i , . . . , YAT. 
The former involves resampling with replacement from the observed vectors of data; the 
latter focuses on the samples that omit the ith patient's observations, i = 1,..., N, one at a 
time. In our simulation study in Section 6.5 we compare the parametric and nonparametric 
bootstrap estimates of IC(N) for some of the cases that we consider. 

6.4.2 M S / M R I D a t a 

In Section 2.4, we discussed the model for individual MS patients developed by Albert et al. 
(1994). These authors comment that MS is a very heterogeneous disease, in the sense that 
the degree and behaviour of the disease is expected to vary considerably among patients. 
Although modelling each patient's data separately certainly allows for between-patient dif­
ferences, the cost of adding so many parameters to the model is increased uncertainty about 
all parameter estimates. 

In this section, we propose using random effects as a means of capturing between-patient 



differences while maintaining a parsimonious model. We fit our model to the Vancouver 
PRISMS data on 13 placebo patients described in Section 4.3.2. 

Let Yu be the lesion count for patient i at time t, and let Zit be the associated hidden state. 
We fit Model I of Chapter 5 with one, patient-specific random effect, ui in the conditional 
model for the observed data, and no covariates. In particular, we assume that given Zu = k 
and Ui, Y a is distributed as Poisson (yu,,̂ ) with 

l 0 g / i i t f c = rk + uu 

where rk is the fixed effect of being in state k, and are iid, each with a N(0,a2) 
distribution. Furthermore, we assume that the transition probabilities are homogeneous, 
non-zero, and common to all patients, and that {Zu}\=i is stationary for all i. Our results 
in Section 3.4 suggested that two hidden states are appropriate for this type of data, and 
thus we will use K = 2 here. 

For the purpose of comparison, we also fit the same model with no random effect. In 
other words, we consider the case where Yit \ Zu — k is distributed as Poisson(putk) with 

log Hitk = rk. 

We refer to this model as the fixed model, and to the model with a random effect as the 
mixed model. 

The advantage of the mixed model is that we allow different mean lesion counts for 
different patients with the addition of only one extra unknown parameter (cr). Although 
we have assumed.a restricted form for the distribution of these means without any prior 
information about its appropriateness, we could test this assumption by fitting the fixed 
model to each patient individually, and then estimating the distribution of the values of T\ 
and r 2 that we obtain. 

To avoid the need to use constrained optimization methods, we reparameterize the model 
so that each parameter has as its range the whole real line. These transformations are 
provided in Table 6.1. We then fit both models by directly maximizing the likelihood. In the 
case of the mixed model, we use the Gauss-Hermite quadrature formula to approximate the 
integral that appears in the likelihood. We would expect this formula to provide a high level 
of accuracy in this case, where we are integrating with respect to the normal distribution. 
Table 6.1 gives the parameter estimates and standard errors that result from fitting both 
models. 

By including the random effect, we observe what appears to be quite a large increase in 

the log-likelihood. In addition, we see substantial changes in the estimates of some of the 

fixed effects, r 2 and P^, in particular. 



Table 6.1: Parameter estimates and standard errors for Vancouver PRISMS data 

Mixed Model Fixed Model 
Parameter Transformation Estimate S.E. Estimate S.E. 
n NA -0.807 0.289 -0.907 0.115 

N A 1.344 0.173 1.657 0.107 
P * 
M l MA) 2.876 0.594 3.700 0.456 
p* -1.097 0.517 -1.488 0.578 
a* logo- 0.752 0.188 •NA NA, 

log C -249.57 -268.41 

More formally, the mixed model satisfies the conditions of Theorem 6.3, so we can use 
our variance component test to test the hypothesis that a = 0. This test is equivalent to a 
comparison of the fixed and mixed models. For these data, we compute = 215.1, 

and use the parametric bootstrap to obtain Ic(i3) — 3396.0. The value of our test statistic 
is then 215.1/\/3396.0 = 3.69, which results in a p-value of < 0.001 when compared to the 
standard normal distribution. Thus, we have strong evidence in favour of the mixed model. 

6.4.3 Faecal Coliform Data 

Another application of HMMs with random effects is to the faecal coliform data first analyzed 
by Turner et al. (1998). In this study, sea water samples were collected at seven sites near 
Sydney, Australia, over a four year period. At each site, samples were taken from four depths 
(0, 20, 40, and 60 m) and the associated coliform counts recorded. 

Turner et al. (1998) analyze these data using a Poisson H M M with depth and site as 
covariates in the conditional model for the observed data. Observations from each depth 
and site combination are treated as independent time series. The hidden states (0 or 1) 
are presumed to correspond to whether the sample was taken from above or below the 
thermocline. These authors treat site as a fixed effect, but certainly in some contexts this 
effect might be more appropriately treated as random. For example, repeated measurements 
at each site (i.e. at the four depths) may be correlated. Moreover, it may be desirable to 
think of the sites as a random sample, in which case we would want to generalize our results 
to all "sites" in the area. 

We thus re-analyze the data by incorporating a random site effect, using the framework 
of Model I. Let Yy t be the coliform count at site i, depth j, and time t. Given the hidden 
state Zijt = k and the site effect, Ui, we model the distribution of Yijt as Poisson(/ijjtfc), 



Table 6.2: Parameter estimates and standard errors for faecal coliform data 

Mixed Model Fixed Model 
Parameter Transformation Estimate S.E. Estimate S.E. 
TO N A -2.182 0.135 -2.209 0.129 

N A 1.515 0.055 1.537 0.034 
h N A 0.027 0.065 0.012 0.061 
b2 

N A -0.062 0.063 -0.054 0.060 
h NA' 0.018 0.056 0.016 0.055 
P * 

1 00 1.976 0.149 1.993 0.148 
TO* 

• M O -0.194 0.227 -0.218 0.223 
a* loger -2.246 0.561 N A N A 

\ogC -1533.3 -1534.4 . 

where 

10g//ytJfc = Tfc + bj + Ui. 

Following Turner et al. (1998), we assume that k = 0 or 1, i.e. that K = 2. To prevent 

over-parameterization of the model, we impose the constraint 5ZJ=i bj = 0. We model the 

site effects, as independent, each with a N(0,a2) distribution. Finally, we assume that 

the transition probabilities are homogeneous, non-zero, and common to all patients, and that 

{ZijtYt=i is stationary for all 

We also fit a model with no site effect, i.e. we propose that Y ^ t | Zijt = k is distributed 
as Poisson(/Xjjtfe), where 

log Uijtk = Tk + b3. 

We again refer to these models as the fixed and mixed models, respectively. 

The results of these analyses are presented in Table 6.2. In this case, it appears that 

the random site effect is not necessary. The log-likelihoods and the parameter estimates for 

the fixed and mixed models are both very similar, indicating that there is likely very little 

site-to-site variation. 

This example differs somewhat from the paradigm presented in Section 6.3 in that there 

are four sequences (one for each depth) associated with each site. In particular, letting Y ; J 

represent the observations from site i, depth j, (6.5) becomes 

Si(0 
4 Q2 

j=i uai + 
ui=0 

dui 
3=1 

- 2 ' 

log / (yy 1 ik,tp) 

Ui=0-

• 

However, assuming that the depth effects are bounded, it is easy to show that the mixed 



model satisfies the conditions of Theorem 6.3. Our variance component test is thus statisti­
cally valid for assessing the difference in fit between the mixed and fixed models. 

We compute L ^ L i ^ O — 390.3, and estimate 7C(7) = 79240.5 using the parametric 
bootstrap. These estimates give a value of 390.3/\/79240.5 = 1.39 for our test statistic, and 
a corresponding p-value of 0.166. Therefore, as expected, we do not reject the null hypothesis 
that the fixed model adequately represents these data. Interestingly, in an analysis of a subset 
of these data using fixed site effects, Turner et al. (1998) find evidence of site-to-site variation. 
This difference in conclusions leads naturally to the question of the sensitivity of our test, 
an issue which we address in Section 6.5. 

As an aside, this example is also a nice illustration of the ease with which H M M s can 
accommodate missing values. In order to satisfy the condition that the observations be 
equally spaced in time, Turner et al. (1998) round the observation times to the nearest week, 
and use missing values for weeks with no associated observation. For instance, say there 
are s missing values between times t0 and t at site i. Then, in the piece of the likelihood 
corresponding to the observation at t, A\\ = Pki f(]Ju \ Zu — £,Ui) (see (5.4)), we simply 
replace Pki with the (s + l)-step transition probability, Pke.(s + 1). 

6.5 Performance of the Variance Component Test 

In Section 6.4, we applied our variance component test to two data sets with unknown 
generating mechanisms. It is also of interest to apply the test to data generated from known 
models so that we can assess its performance. In particular, we wish to make statements 
about the probability of Type I and Type II error for selected cases. 

As in Section 3.5, we use the ideas of experimental design to choose the parameter values 
for the cases we consider. For simplicity, we assume that each process has the same number 
of observations (n). There are many factors that could potentially impact the performance 
of the test, including n, the number of processes (iV), the number of hidden states (K), the 
conditional distribution for the observed data, the size of the variance component (cr2), and 
the spacing of the components and the proportion of time spent in each hidden state (see 
Section 3.5). It is expected that of these factors, N, K, and a'2 are the most influential. 
Thus, in our study, we examine only this subset. We look at the levels N = 10, 30, 50, 
K = 1,2,3, and a = 0,1.11,1.22, which reflect "small", "medium", and "large" values of 
these factors. Since the applications in this thesis have focused on lesion counts observed 
during M S / M R I clinical trials, we consider only the model (5.5) with f(yit \ Zit = k,Ui,ip) 

corresponding to the Poisson(/j i i fc) distribution, log fj„uk = rk + and fix n = 30 (a typical 



Table 6.3: Parameter values used in the simulation study 

A ' 0 State Effects Transition Probabilities 

1 r = [0] P = [1] 

0.69 0.31 
0.31 0.69 

" -1 " ' 0.71 0.19 0.10 
3 T = 0 p = 0.19 0.10 0.71 

1 0.10 0.71 0.19 

value in this setting). Furthermore, we investigate only the case of well-spaced components 
with an equal proportion of observations from each. The values of {r^} and of the transition 
probabilities that we use are provided in Table 6.3. 

For each model, we generate 400 data sets. Then, for each data set, we compute the test 
statistic (using the parametric bootstrap with V = 100 to estimate IC(N)) and record whether 
the null hypothesis is rejected at the 5% level. For some models, we also estimate IC(N) using 
the nonparametric bootstrap and 100 of the data sets. In these cases, we resample with 
replacement 100 times from the simulated data set and compute /c(;v) using these samples. 
We then recompute the test statistic using this value of IC(N), and again record whether 
the null hypothesis is rejected at the 5% level. The results of our simulations are given in 
Table 6.4. 

In the case of the parametric bootstrap, Table 6.4 shows that the observed rejection rate 
when cr = 0 is less than 5% for all values of N and for K = 1,2. When K = 3, this rate 
is a little higher, ranging between 6 and 12%. We conclude that, overall, the test seems to 
control for Type I error reasonably well, even in finite samples. In terms of the power of the 
test, it appears that a and N are quite influential. For the "large" values of these factors, 
the test may have at least 88% power. The power seems to be quite low for small sample 
sizes, though may be as much as 49% when a = 1.22 and N — 10. Similarly, the power 
appears to be relatively low when a = 1.11, but may be up to 29% when N = 50. With 
respect to the value of K, the power seems to decrease somewhat with increasing K, but the 
test does not seem as sensitive to K as to a and N. 

As expected, since the parametric and nonparametric bootstrap methods both give con­
sistent estimates of IC(N) under the null hypothesis, both methods lead to good control of 



Table 6.4: Results of the simulation study 

Percentage Rejected 
Parametric Nonparametric 

K° AT a Bootstrap Bootstrap 
1 10 .0 4.25 18 
1 30 0 3.75 N A 
1 50 0 4.25 6 
1 10 1.11 10.25 6 
1 30 1.11 19.00 N A 
1 50 1.11 29.0 4 
1 10 1.22 49.25 5 
1 30 1.22 87.50 N A 
1 50 1.22 98.25 81 
2 10 0 3.25 19 
2 30 0 3.50 N A 
2 50 0 2.75 . 7 
2 10 1.11 10.50 5 
2 30 1.11 13.50 N A 
2 50 1.11 24.50 3 
2 10 1.22 30.50 1 
2 30 1.22 75.25 N A 
2 50 1.22 90.25 32 
3 10 0 6.00 • N A 
3 30 0 12.25 N A 
3 50 0 9.00 N A 
3 10 1.11 9.50 N A 
3 30 1.11 22.50 N A 
3 50 1.11 23.75 N A 
3 10 1.22 23.75 N A 
3 30 1.22 69.50 N A 
3 50 1.22 87.75 N A 



the Type I error when N is large. However, it is not clear that the use of the nonparametric 
bootstrap results in a valid test for smaller values of iV. In particular, the rejection rates 
when a = 0 and N = 10 are up to 19% in this case. The power of the test when we use the 
nonparametric bootstrap appears to be very low in general (except perhaps when K = 1, 
a = 1.22, and N = 50), especially relative to the power when we use the parametric boot­
strap. Thus, based on these preliminary results, we recommend using the parametric rather 
than the nonparametric bootstrap to estimate IC(N)- Further investigation is, nonetheless, 
warranted, especially in the case where the model has been specified incorrectly. 



Chapter 7 

Future Work 

In our final chapter, we review the contents of this thesis, and discuss possible extensions 
to our work. We present these ideas in the context of the design and analysis of M S / M R I 
clinical trials, one of our main areas of interest for future research. 

In Chapter 2, through our exploration of some extensions to the model of Albert et al. 
(1994), we illustrated some issues surrounding the selection of a H M M . Although we pre­
sented our discussion in the context of a single time series, these issues are relevant to multiple 
time series as well. In particular, the application of a H M M requires decisions concerning the 
type of model (homogeneous or non-homogeneous, stationary or non-stationary), the condi­
tional distribution of the observed data, the number of lags in the hidden Markov chain, and 
the number of hidden states. These features of the model must be carefully considered when 
developing a H M M for a given data set. Chapter 2 also reveals that, if the model struc­
ture proposed by Albert et al. (1994) is indeed appropriate for relapsing-remitting M S / M R I 
data, further research regarding the asymptotic properties of non-homogeneous HMMs will 
be necessary. 

In Chapter 3, we presented a method for consistently estimating the number of hidden 
states in a single, stationary H M M . As outlined in Section 3.6, there are a number of issues 
related to this method that are worthy of further study, such as the proposed two-stage 
estimation procedure, the choice of distance function and cn, and the form of the penalty 
term. In addition, estimating the number of hidden states in a H M M for multiple processes 
is still an open question. 

In Chapter 4, we developed a graphical method for investigating the G O F of a single, 
stationary H M M . We demonstrated that, in the limit, this method will detect deviations 
from the proposed model with probability 1. Our G O F plots will provide a simple, useful 
tool for assessing the quality of the fit of models for the relapsing-remitting M S / M R I data. 



Outstanding topics for research include the formal assessment of the variability in the plots, 
and G O F techniques for HMMs for multiple processes. 

In Chapter 5, we proposed a general class of HMMs for multiple processes. We showed 
how both covariates and random effects can be used to account for inter-patient variability 
while maintaining a parsimonious model. Several extensions to these models are possible. 
First, we could allow 4> to vary among patients, or among treatment arms, in (5.2). In most 
mixture models and HMMs, the mixing occurs over the means of the components. Nonethe­
less, other possibilities exist, including mixing over the variances of the components. The 
cost of this generalization would presumably be loss of efficiency in estimating the other 
model parameters. Second, methods of estimation other than maximum likelihood may 
be available. For example, in the G L M M setting, penalized and marginal quasi-likelihood 
(Breslow & Clayton 1993), maximum hierarchical likelihood (Lee & Nelder 1996), and Monte 
Carlo Newton-Raphson (McCulloch 1997) have been used. In the H M M context, these pro­
cedures may also give good asymptotic properties and be easier to implement than maximum 
likelihood estimation. 

Finally, in Chapter 6, we discussed the asymptotic properties of the maximum likeli­
hood estimates of the models presented in Chapter 5. Formal proof of the consistency and 
asymptotic normality of these estimates (e.g. by verification of the regularity conditions of 
Bradley & Gart 1962), and hence justification for using standard hypothesis tests, is still 
pending. These results will be required for power calculations in the context of the design 
of experiments. Our primary contribution in this chapter, however, was the development of 
a test for the variance component in our models. We studied the performance of our test 
for finite samples in Section 6.5, and showed that the test seems to control for Type I error 
quite well, even in small samples. The power of the test seems reasonable for moderate-sized 
samples and variance components, and does not vary substantially with the number of hid­
den states. Lin (1997) and Hall & Praestgaard (2001) proved optimality properties of this 
test in the G L M M setting, and these properties may apply in our context as well. This test 
will be important in the design of clinical trials, since if the model without random effects is 
adequate, then the computation of the required sample sizes will be substantially simplified. 

Our preliminary results suggest that HMMs may be useful models for capturing the 
behaviour of relapsing-remitting M S / M R I lesion count data. However, other models may 
provide an equally good - or better - representation of these data. For example, G L M M s 
are frequently employed in the analysis of longitudinal data. Some features that are common 
to HMMs and G L M M s are immediately apparent: both postulate the existence of a latent 
(unobserved) process, both assume the conditional independence of the observed data given 
the values of this latent process, and both control the correlation structure of the observed 



data through specification of the latent process. Despite the similarities between the two 
models, little is known about the connections between their theoretical properties, or about 
the issues involved in choosing between models in applications. Thus, one area of interest 
for future research is the establishment of a formal link between HMMs and G L M M s . 

Assuming that we have identified a reasonable class of models for the M S / M R I data, 
two natural questions arise: how do we incorporate a treatment effect in a realistic, but 
interprétable, way, and which design is best for clinical trials in this setting? With respect 
to the first question, a treatment could be beneficial in two ways: either by reducing the 
mean lesion count, or by extending the time between relapses. Choosing between these 
perspectives, and deciding on the particular form of the treatment effect, are issues of critical 
importance. The second question relates to the selection of a sample size (both number of 
patients and number of scans per patient) and frequency of sampling that would yield a 
desired level of power. Ideally, we would be able to plan for the following types of studies: 

1. Studies of untreated patients where lesion counts can be considered stationary (e.g. in 
Phase II trials, which are relatively short-term, and where MRI responses tend to be 
used as primary outcomes) 

2. Studies of untreated patients where lesion counts may not be stationary (e.g. when 
patients are selected for their high level of disease activity at the commencement of 
the study, or in longer-term studies) 

3. Studies of treated patients, whose lesion counts, we would hope, would not be station­

ary. 

The work in this thesis provides a starting point for addressing these questions. 



Appendix A 

The E M Algorithm 

This appendix details the implementation of the E M algorithm for three different models. 
This algorithm consists of an Expectation (E-) step followed by a Maximization (M-) step. 
In the E-step, we form the "complete" log-likelihood, which is the log-likelihood we would 
have if we were able to observe the hidden process and random effects as well as realizations 
of the process {Yt}. We then take the expectation of the complete log-likelihood conditional 
on {Yt}, and evaluate the resulting expression at the initial parameter estimates. In the M -
step, we maximize this expectation over the space of the unknown parameters to get updated 
parameter estimates. We then use these new estimates in place of the initial parameter 
estimates in the next iteration. This procedure is repeated until convergence of the parameter 
estimates is achieved. 

A . l E M Algorithm for HMMs for Single Processes 

In this section, we outline the steps of the E M algorithm for a single, homogeneous H M M 
with unknown initial probabilities, and with observations taking on only a finite number 
of values. The parameter estimates given at each iteration of the E M algorithm take on a 
special form in this context, and, for this reason, are usually referred to as the Forward-
Backward Algorithm. These estimates will converge to the maximum likelihood estimates 
(Baum et al. 1970); in other words, the parameter estimates will, in the limit, maximize 
(2.2). 

We use the additional notation jVtk = P(Yt = y \ Zt = k) for t — 1,..., n, k = 1,... ,K, 
and y G fl, for some finite set Q, = {yx,..., y^}. 

E-Step 



as 

Thinking of the hidden states as "missing", we can write the complete likelihood, £c(i>), 

£M = / ( y | z , V ) / ( z ; V ) 
n n 

t=l t=2 
n n 

t=\ t=2 

So 
n n 

8 P t - i , z t • 

t=l t=2 

Let r = (7* 
,i' • • • ' 1yd,Ki Pi,ii • • • ' -^A'.K-' ̂ l? • • • ) 7 1 A) be the estimates of all unknown param­

eters at iteration p. Then the E-step is 

E[log£c(V0 I Y,ipp] = EE[log7 y , ,zJ Y . ^ J + EpogTrz, I Y ,^]+-f;E[logP^_ 1 | Z i I Y , ^ ] 
i=l i=2 

= E E / t e l y . T n i o g T * , * (A.i) 
t=l 2 T = l 
+ E / ( ^ i | y , ^ ) l o g 7 r Z l (A.2) 

21=1 

+ E E E / ( ^ i , 2 ( | y , f ) l o g P Z ( , , Z ( . (A.3) 
t=2 zt-i=l zt=l 

M-Stcp 

We now need to maximize this expectation over all of the unknown parameters in the 

model. Since {-yy,k}i {^k}, and {Pkt} appear in separate terms, we can maximize each term 

individually. 

Let Y * = (Ys,...,Yt). Define the forward probabilities at the pth iteration as 

W?(k) = P(Yt

1=y[,Zt = k\r) 

and the backward probabilities as 

Xf(k) = P(Y»+i=y?+l\Zt = k,P). 

These probabilities can be computed recursively as 

W?+l(k)={^Wf{t)P^1lt+uk (A.4) 

and 

' ^(k) = J2lPyt+l/X!+1(£)Pp

ke . (A.5) 
K 



with Wf(k) = 7r^7y1)fc and X%(k) = 1 (by convention). 

First we will consider the maximization of (A.2), and hence the derivation of 7rjjî+1, 

k = 1 , . . . , A . Since we have the constraint Y^=l^k — 1> we will use the method of 

Lagrange multipliers and maximize the function 

K K 
9l= Y I y. V) log7T2l - A(]T TTfc - 1). 

21=1 k=l 

Then 

|^- = - P ( Z 1 = fc| Y , ^ ) - A 

and 

Setting these derivatives equal to 0 then gives the equations 

7 r £ + 1 = 
P(Zi = k I Y , ^ p ) 

*;=i 

which we can solve to get 
< + 1 = w ï m ) ( A 6 ) 

£WW)*f(<) 
«=1 

Next consider the maximization of (A.3) and the derivation of P ^ + 1 . We have the con­

straint that X ^ L i Pkt — 1 for each k. Thus, we see that we need to maximize the function 

92 = J2 £ J2f(zt-i,zt\y\P)logP,t_utl-J2\k(J:Pki-l). 
t=2 2 ( _ i = l zt=l k=l \e=i J 

Then • 

^ = ~£p(Zt-l = k,zl = e\Y,r)-Xk 
0"kl i u t=2 

and 

Setting these derivatives to equal to 0 then gives the equations 

n ' 

pp+l _ 1=2  
1 U — y+1 

K 

HPII1 



which we can solve to get 

' Pit1 = — ^ • • (A.7) 
Ywi^xuik) 
t=2 

Finally we will maximize (A.l) and derive T ^ f - We have the constraint that Y,yly,k = 1 
for each k. Thus the function to be maximized is 

n K h' I \ 

fs = EE f ( z t Iy. l o&7y t,zt -Y x k (Yiy,k-1 ) . Zt 

Then 
% 3 _ £ ±_p[Zi = k i Y , V P ) - A f c 

9ly,k ( = 1 T?/,fc 

and 

Setting these derivatives equal to 0 then gives the equations 
n 

• Y p(zt = k\Y,r) 
p+l yt=y 

ETS1
 = i . 

2/ 
which we can solve to get 

E wnk)xf(k) 

7 ^ = ^ • ' (A.8) 
YW[(k)X?(k) 
t=i 

A.2 E M Algorithm for HMMs with Random Effects in 
the Observed Process 

In this section, we give the steps of the E M algorithm required to estimate the parameters 

of the model (5.4) in the case where the random effects are patient-specific. We assume that 

{•Kk} are unknown parameters to be estimated. • . 

The convergence properties of the sequence of estimators given by the E M algorithm have 
not been studied in the context of HMMs for multiple processes, but Wu (1983) provides 



sufficient conditions in the general case. One of these conditions is that the true parameters 

be in the interior of the parameter space. In other words, we require that the variance 

components be non-zero, and that 0 < Pkt < 1 for each k and I where Pu is unknown. 

E-Step 

Recall that, for the model (5.4), the hidden states are assumed to be independent of the 

random effects. Now, thinking of both the hidden states and the random effects as "missing", 

the complete likelihood for this model is 

£c(<0) = / ( y | z , u , ^ ) / ( z ; V ) / ( u ; V ) 

= n {n f(yn i Zit, u,, ip) • nZii n pzu_UZil • \ 
i=l Kt-i t=2 ) 

So the contribution to the complete log-likelihood from patient log £*(?/>), is 

rn m 

logZ£(t/>) = J2l°S.f(yu I zit,Ui,ip) - t - l o g 7 r 0 i l + E l o g p * M - i . * « + l o g / ( u i ; V ) . 
1=1 , ., t=2 

Using the fact that observations on different patients are independent (so that Zit and 

are independent of Yj for j ^ i), the E-step is 

E [ l o g £ c ( » I Y,ipp] 

= E E f l o g ^ W l Y , , ^ ] 
N ni K f 

= E E E / l Q g / ( ^ . I Zu = k,va,iP) P(ZU = fc|y,,V/)/(u,|yi,^) dm ' (A.9) 
i=i t=i *:=i 

N K 
+ E £ 1 ° g 7 r * p ( ^ i = fc|y^) (A.IO) 

i=l k=l 

+ E E E E logPk,t P(^i , t - i = *, Z i t = £|y,, ^ ) ( A . l l ) 
i=l t=2 fc=l £=1 

+ E / log7(u i ; ^) / (u , : I yur) du,. (A.12) 
i=l 

M-Step 

Again, since each unknown parameter appears in exactly one of the terms (A.9)-(A.12), 

we can maximize each of these terms individually. 

Now define the forward probabilities for patient i at the pth iteration as 

W[t(k, iii) = f(yiU ...,yit\ Zu = k, m, ^ ) P ( Z „ = k \ ipp) 



and the backward probabilities as 

Xft(k, iii) = f(yitt+u Vi,m I Zit = k, u*, '<pp). 

With a slight change of notation, the recursions (A.4) and (A.5) also apply to these new 
definitions: 

Wlt+l(k, ui) = (Y W£(i, Ui)P^ / ( y , m I Za = k, m, V) 

and 

f.=l 

with W^(A;, U j ) = 7r£ / (y^ | Z,i = k,Ui,tpp) and A^,,(A : ,Ui) = 1 (again, by convention). 

Applying the same method used to derive (A.6), we can now show that the maximum 
value of (A. 10) occurs at 

P + 1 _ l f j W U k ^ X l J k ^ f j n ^ d n , 

i V ^ E L J ^ ^ u ^ ^ u a / K ; ^ ) ^ ' 1 • ) 

Similarly, applying the method used to derive (A.7), it is clear that the maximum value of 
(A.11) occurs at 

^ E Ë / w ^ t o u O X S & u O / f o i I zlt = £ , u , . , ^ ) / ( u i ; ^ ) dm 
pp+1 _ 
1 UÙ — 

=1 t=2 

E X 
t=l 1=2 

E E / Wl^KnAXl^k^fi^r) du, 

If {Zn} is not stationary, numerical maximization will be required in order to compute 
P p

£

+ 1 . In general, the terms (A.9) and (A.12) must also be maximized numerically, using, 
for example, a Gaussian quadrature technique. However, we can simplify the computations 
by noting that (A.9) can be written as 

n,: K 

N E E / l°g / (!/* I Zu = k, « i , 1>) WJl(k, m) Xft(k, ut) / ( U i ; #0 du, 
* (A.14) 

E / « i ) « i ) / ( u * ; V ) ^ 

and (A.12) as 

N f log/(m; V ) E u«) * M " i ) /(u i 5 V " ) rfUi 

E K ^ • (A.15) 
£ / W S ( f .U i ) ^ ( « . U i ) / ( U i ; ^ ) du, i=i 
e.=\ 



Since f(yit \ zlf,,VLi,ijj) is in the exponential family, log f(yit \ 2^,^,-0) will have a nice 
form. Likewise, if f(ui,i{j) is in the exponential family, log/(u;;i/>) will also have a nice 
form. Thus, for certain choices of these functions, we would expect that the estimates of the 
parameters associated with these distributions would be quite easy to compute. 

Thus, we see that, aside from the question of integration, the E M algorithm for the model 
with patient-specific random effects in the conditional model for the observed data is not 
much different from the case where the algorithm is applied to a single H M M . If the random 
effects are not patient-specific, this algorithm can still be used, but the expressions (A.9)-
(A.12) will be more complicated since we will need to take the expectations conditional on 
the full data set, Y , rather on each patient's data individually. 

A.3 E M Algorithm for HMMs with Random Effects in 
the Hidden Process 

In this section, we give the steps of the E M algorithm required to estimate .the parameters 
of the model (5.13) assuming again that the random effects are patient-specific. We further 
assume that ixk = 7 r f c , i.e. that the initial probabilities are fixed, unknown parameters common 
to all patients. 

As mentioned in Section A.2, the convergence properties of the E M algorithm are un­
known in the context of HMMs for multiple processes. Wu (1983), however, provides suffi­
cient conditions for convergence in a very general setting. In particular, the variance com­
ponents must be strictly positive. 

E-Step 

For this model, thinking of the hidden states and the random effects as "missing" data, 
the complete likelihood is 

C M = f(y I u, z , ip)f(z I u, T/>)/(U; '0) 

II fiVit I ziU U i , tf>) • 7T2IL f i I Z^- 1, U i , VO • / ( U » ; V) \ • . 
t=l 4=2 J 

So 
71; n; 

log£'c('0) = E l 0 S/ (^ '< I ZH^M + + £ l 0 g / ( 2 ï ( I Zijt-UUi,1p) + l 0 g / ( U i î 1p). 
t=l 1=2 

Then, using the assumption that the random effects are patient-specific, 

E[log£c('0) I Y,ipp] 



E E [ i o g 4 w I Yur. 
JV ni K 

= Ë Ë Ë / l°g/( î /« I ̂  = M i . V O P ( Z i t = ^ . u ^ / f u i l y ^ ) du* (A.16) 
i=it=ifc=iy 

+ E E l o g 7 r f c P ( Z i l = A ; | y i , ^ ) (A.17) 
i=lfc=l 

N m K K 

+ E E E E / logP(Z f t = € I Z M _ t = A;, u*, '0) 
i=l t=2 fc=l £=1 J 

•P(Z M _, . = k, Zit = £\yu uh V p ) / (ui I y i , ^) du, (A.18) 

+ E / l o g / ( u i ; ^ ) / ( u i I y,,#') du,. (A.19) i=i 

M-Step 

Again, we see that each unknown parameter appears in exactly one of the terms (A. 16)-

(A.19), so we can maximize each of these terms individually. 

For this model, define the forward probabilities for patient i as 

W[t(k,ui) = f(yli,...,yu\Zu = k,ul,r)P(Zu = k\ui,r) 

and the backward probabilities as 

xït(k> ui) = f(Vi,t+u • • •, Vi,ni I Zit = k, uh V/). 

We then have the recursions 

Wp

t+l(k,uA = ^twlt{£,Ui)?{Zit = k I Z M _ ! = £,Ui,r^j / ( y i , H - i I Za = fc,Ui,^) 

and 
K 

Xft(k,ut) = E / ( î / M + i I = ^ U i , ^ p ) X ? t + 1 ( ^ U i ) P ( Z i t = ^ | . V i = k,u,,r) 

with W/J(A;, u^ = 7 r p / (T/J! I Zji = k,Ui,tpp) and Arf„(A;, u )̂ = 1 (again, by convention). 

Since the parameters {7 r f c } are fixed, the maximum value of (A.10) occurs at (A.13), 

as for Model I (but using the above definitions of W[f(k,Ui) and Xft(k,Ui)). However, 

the evaluation of the integrals will be much more complicated in this case, for the reasons 

discussed in Section 5.4. Similarly, the expressions (A.16) and (A.19) are equivalent to (A. 14) 

and (A. 15), respectively, but will be much more difficult to compute. 

For this model, we will also need to numerically maximize (A.18). However, by writing 

this expression in terms of the forward and backward probabilities we can obtain the simpler 



form 
ni K K . • 

4=2 /c=i e=iJ 

Y [WZ&Ui) Xf,(£:m.) f(m;f) dm 

qUk,£, m) = P(zit = £ I = k, m-r) w ^ k , m) x?t(i, m) f(yu \ z i t = £, m; r)-

Again, evaluating these integrals may prove difficult. 

In summary, we see that the E M algorithm may be of only limited use in the estimation 

of the parameters of Model II because of the complex nature of the integrals involved. 

i=l 

where 



Appendix B 

Proofs 

B . l Proof of Lemma 3.1 

Here we prove Lemma 3.1. For ease of exposition, we assume m = 1. However, the theory 
is valid for all finite values of k. 

Since the measures \xn are tight (as a result of Condition 2), there exists a subsequence 
\Gn.} such that Gnj converges weakly to G, where G is a distribution function (Billingsley 
1995, Theorem 29.3). 

We have that 

dKS{F(y,G),F(y,G0)} < dKS{F(y,G),F(y,GUj)} + dI<s{F(y,Gnj),F(y,Go)}- (B.l) 

By our hypothesis, the second term on the right-hand side is o(l). We claim that the first 
term is also o(l). Taking limits in (B.l) will imply that dKS{F(y,G), F(y,Go)} — 0, and 
hence, by Condition 5, that G = G0. Therefore, G n . converges weakly to G 0 . Since the 
measures fj,n are tight, and since every subsequence of {Gn} that converges weakly at all 
converges weakly to Go, we may conclude that Gn converges weakly to Go (Billingsley 1995, 
Theorem 29.3). 

We now show that dxs{F(y, G), F(y, Gnj)} = o(l). By Condition 4, for all e there exists 
A > 0 such that for all (0,0) G 0, H (A; 6,4») - H{-A\9,4>) > 1 - e. In particular, for 
y < -A, H(y-9, <p) < e. So, for all y < -A, 

F(y,Gnj) = j&H(y-9A)dGnj{9,c{>) < e JQdGnj(9,<j>) = e. (B.2) 

Likewise, for y < —A, F(y,G) < e. Similarly, for y > A, 1 — F(y,Gnj) and 1 — F(y,G) are 
also bounded by e. 



Since Gnj converges weakly to G and H(y; 0, 4>) is continuous in 9 and 4>, we have that 

F(y, G) - F(y, Gnj) = J H(y; 9, <j>)d{G(9, </>) - Gri,} (9, 4>)} -> 0 (B.3) 

for each y (Billingsley 1995, Theorem 29.1). 

We claim that F(y,Gnj) converges not only pointwise but uniformly to F(y,G) on the 

interval [—A, A]. It is enough to show that F(yj, GUj) converges to F(y, G) for all sequences 

yj I y, with y3,y G [—A, A]. (See Strichartz 1995, Theorem 7.3.5, with a slight modification 

to account for the fact that {F(-,Gnj)} are right-continuous rather than continuous.) 

Fix e, y, and a sequence {yj} such that yj I y. Define F.j(y) = F(y,Gnj) and F(y) = 

F(y,G). Now 

\Fj(yj) - F(y)\ < \F3{y3) - F3(y)\ + ^(y) - F(y)\. (B.4) 

By the right-continuity of F , there exists Ô > 0 such that 

\F(y + S)-F(y)\<e. (B.5) 

By (B.3), there exists TV such that for j > N, 

\Fj(y) ~ F(V)\ < e (B-6) 

and there exists TV̂  such that for j > N$, 

\Fj(y + ô)-F(y + S)\<e. ' (B.7) 

Since y3 l y and Fj is non-decreasing, there exists N\ such that for j > Ni, 

\FjiVi) ~ Fi(v)\ < \Fj(y + Fj(y)\ • (B-8) 

Combining results (B.4)-(B.8), we have that for j > max(iV, N/j, Nx), 

\Fj{Vj) - F(y)\ 

< \FJ(y + S)-FJ(y)\ + \FJ(y)-F(y)\ 

< \F3(y + Ô)- F(y + 5)\ + \F(y + 5) - F(y)\ + \F(y) - F3(y)\ + \F3(y) - F(y)\ 

< 4c. 

Thus, Fj converges uniformly to F on the interval [—A, A], implying that for all e there 

exists N* such that for all j > N* and for all y € \-A, A], \F(y, G) - F(y, Gnj)\ < e. Using 

(B.2), we see that this result holds for all y, and hence 

dKS{F(y,G),F(x,GUj.)} = o ( l ) , 
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as desired. • 

Although Lemma 3.1 is stated in terms of deterministic mixing distributions, we in fact re­

quire that for a sequence {Gn} of estimated mixing distributions, dKS{F(y, Gn), F(y, G0)} = 
o(l) a.s. implies that G converges weakly to G0 a.s. However, it is easy to see that this require­

ment is met when Conditions 2-5 are satisfied. Denote by Gn(co) the terms of the estimated 

sequence of mixing distributions associated with the sample point co. Since (Qj,(f>0) € © for 

all j, Lemma 3.1 applies to each sequence {Gn(u)} for which dKs{F(y,Gn(uj)), F(y,G0)} = 
o(l). 

B.2 Proof of Theorem 6.1 

To develop the necessary bounds, we begin by examining terms of the form 

E D* D* 
" m i m-2 

where m i , m 2 < M. The extension to the case where we have a product of more than two 

such derivatives is straightforward. Our proof relies on the fact that is a derivative 

of l og / (y i I Ui,ip), and that we compute the expectation of products of these derivatives 

with respect to the null distribution, f{yi \ — 0,'ip). For our model, ' / ( y i | Ui,i/j) is 

the likelihood of a stationary H M M . In this way, our problem effectively reduces to that 

considered by B R R . 

To avoid having to work with mixed partial derivatives, we will use the claim of B R R 

that, without loss of generality, £ can be taken to be unidimensional. (Recall that yj = (£, D), 
so that £ does not include parameters associated with the random effect.) Also following 

B R R , any operation between two sequences is understood to be performed termwise. For 

example, for sequences I = ( i i , . ' . . . , Im) and J = ( J l 5 . . . , Jm), and functions .{/i}£L l 5 we 

would have 

Define Y * s = (Yis,..., Yit). We let fy(l) = log f(Yiu Zn^,^), and, for t > 1, we de­

fine hi(t) = log f(YiuZit\Y\^1,7/^i ,Ui^). As a result of these definitions, we have that 

l o g / ( Y j , Z j I Ui) = Y!tL\hi{t). Let him\t) represent the mth derivative of hi(t) with 

respect to £, evaluated at Ui = 0. By Conditions 1 and 2, these derivatives exist for m < M. 

Using the notation of B R R , we denote the cumulant of a random vector X = (Xi,..., Xm) 

by 

F(X) = F(XU ..., Xm) EE 1 A • • • log (E [ e ^ " * ~ * » > ] ) 
Xl=---=Xm=0 



where t = y/^-ï. The cumulant of the conditional distribution of X given Y will be denoted 

by T Y ( X ) . Finally, let x'(Xi) = AT, and let x(Xi) = EfA^]. We define the centred moment 

function (Saulis & Statulevicious 1991), x, recursively by 

x'{Xu ..., Xm) = Xi (x'{X2,Xm) - x(A' 2 , • • •, Xm)) 

X{Xu...,Xm) = E[X'{Xl,...,Xm)], 

m — 2,3, — We denote the centred moment of the conditional distribution of X given Y 

b y x Y ( X ) . 

In their Proposition 3.1, B R R show how to write the derivatives of the log-likelihood of a 

single, stationary H M M as a linear combination of cumulants. It turns out that their result 

also holds for derivatives of log/(y; I uui)) if we replace the distribution of each random 

variable in their Equation 4 with its distribution conditional on u,;. In particular, 

D ! 
JeJ+M l J l ! V J ! 

< E 
JeJ+(m) 

ml 

ÎJÎ! 
(B.9) 

B R R provide bounds on terms of the form TYi'Ui h\3\tfj . Specifically, from their 

Lemma 3.3(i), 

Tli 

r Y <"(5>i J ) ( t ) < E E E E MV(Ki,KV) 

• I I ^ ' " " ^ " ^ , ) ) ) 
q=l 

(B.10) 

where 1+J KQ = { 1 , . . . , | J|} denotes the set of all ?;-block partitions of the set { 1 , . . . , | J |} , MV 

are non-negative combinatorial constants, J(KQ) = {Ji<qi, Jh'q.2 ,•••)> a n ( l I(-^g) = (^Kqi, Ixq2, • 

Then, letting A (I) = max{/j} — min{/,-}., Equation 11 of B R R gives the following relation­

ship: 

f i | x Y - {h[J{Ki,)\l(KQ))) \ < 2 ^ - v E ^ W , ) ) g Cj.ÇYj^ip). 
q=l j=l 

where /? = 1 — min j m inP^ , mmPkA, with Pfc*̂  = 7 r f P t t / 7 r f c . Under Condition 1, B R R show 

that 0 < p < 1. 

We can now use these results to establish bounds on E 

of the cumulant function and (B.9), we can write 

E < E E 
m,]l 

k j»ej7-+(m,) 

mi m-2 

n, 

From the multilinearity 

r Y ^ ( E ^ J l ) W 



m 2 ! ( B . l l ) 

Using the bound (B.10), the right-hand side of ( B . l l ) becomes a linear combination of 
terms of the form 

,«71=1 

V-2 

92= I 
X 

Let the values tx < t2 < • • • < tr denote the distinct elements of the union of I i and I 2 . 

Using the technique in Equation 12 of B R R and the definition of Bl

mxrn2(ip), 

E n XY^ (hf(I^\i\Ki

qi))) • n 
[qi = l K 7 92 = 1 

max X L J E < 
s=l J 1 € { 1 , . . . , | J 1 | } : 

' - ' i l 
.»2e{l |J'2I>: 

= 2 | J 1 i - i P E I 1

1 = i A ( i i ( A ' < ! 1 ) ) . 2 u 2 i - i P E ; : = , A ( i 2 ( A ' 4 ) ) . J J J M J J J 2 ! 

max 
z 

L T É 
s=l 

n 7* ' ' 
j1e{i,...,|ji|}- j r 

' . , = / ] 
J I 

n 
C ) 2 (Y,u.O) 

./2e{i,...,U2|}: 
J 2 ! 
">2 

< s i ^ i - i ^ U i A(ii«)). au ' i - ipE^ A ( i 2 ( A t 2 ) ) . r j j M n J 2 ! • B m i m 2(V0-

Then, from (B.10) and Lemma 3.3(h) of BRR, it is clear that 

E r Y » - (£hf\t) 

\t=i 

iii 

U M - i 

< T i y l J 1 ! ! U 2 | ! 
| J 2 l - i 

r i J 1 ' n j 2 ' ^ 2 w 

Substituting into ( B . l l ) and using Lemma 4.1(h) of B R R , we conclude that 

mi +7712—2 

E B1 D* 
mi m-2 

<n2

im1\m2\Bt

mimM[l + 
8 

1 - p , 

and, more generally, that 

E Dm, x • • • x < n S ! x - - ' X m R F ! 5 ; ( I . . . ^ ) 1 + 
8 \ £ ? = i " v - d 

This proves our theorem. • 



B.3 Proof of Theorem 6.2 

To prove Theorem 6.2, it suffices to show that B*..(ip) is finite and independent of i. 

To this end, we first study the random variable Cl

m{Yiu As an aside, BRR ' s definition 

of C^yu, ip) also involves a supremum over all values of the parameters in the neighbourhood 

of the true values of {&}. These authors require this generalization since they apply their 

results to problems relating to the MLEs, but it is unnecessary for our purposes. 

Under Condition 1, 0 < Pu < 1, and hence 0 < 7rk < 1, for all k,£. We then have 

max max < 
D , „ k,£ [ 

D T O log Pu D m l b g 7 r / f c < oo 

for all m. Furthermore, this quantity is independent of i and {Yn). Thus," for our purposes, 

we ignore these terms, and focus our attention on the term 

max max 
D m k 

Dm log fiVu I Zit = k,Ui,lJ)) 
u ; = 0 

for m < M. 

When a((j>) is a constant (e.g. when f(yit | zit, u,, ip) is in the Poisson or binomial family), 

we need only be concerned with derivatives with respect to {r fc} and U j . Since for our model 

Vuk = T~k + Ui, we can equivalently consider derivatives with respect to r]itk- We have that 

d 

and 

drjitk 

dm 

dm-q, 'itk 

log/(r/« I Zit = k,Ui,ip) 

log/(yi4 I Zit = k,v,i,ip) 

Vu c(Vitk) 

Uj=0 

uz=0 

_ d'nriitk 

a(0) 
d'n c(r)uk) 

(B.12) 
ut=0 

a(0). 
(B.13) 

Ui=0 

= ev, and when 2 < m < M. When f(yit \ zit, u^, ip) is in the Poisson family, c(r/) 

f(Uit I zit, Ui, ip) is in the binomial family, c(rf) = log(l + ev). Since, by assumption, {r fc} are 

bounded, in both of these cases, all derivatives of c(t]uk) (and hence expectations of products 

of derivatives of the form (B.13)) will be bounded and independent of i. When derivatives 

of the form (B.12) appear as factors in the product of interest, we note that the absolute 

moments of Y a \ Zit, Ui are finite and independent of i in both the Poisson and binomial 

families. Thus, B,l

m m hp) is also finite and independent of i, which proves Theorem 6.2 for 

these cases. 

When a((p) is not constant, we need to consider partial derivatives with respect to <p as 

well as {rfc} and When these functions include at least one derivative with respect to 

{ife} or we have 

de+i 

dr)itkde(p 
log f (Vu \ Zit = k,ut,ip) Vu 

d 

iii=0 dm tk 
•c(rjitk) 

M ,=0 j 
decj) 

a-'{<P), (B.14) 



^ = 0 , 1 , . . . , M - 1 , and 
Qt+rr, 

log f{yu I Zit = k,Ui,ij;) -ciVitk) 
Ui=0 t 

(B.15) 

£ + m < M , rn, > 2. Since {rk} and 0 are bounded, as long as derivatives of ^ and 0(77^) 

are well-behaved and the absolute moments of Yit \ Zit, are finite and independent of i, 
the expected value of products of such terms are finite and independent of i. In particular, 
when f(yu \ Zu,ui) is in the normal family with parameterization 

log/ (y« I ZU = k,u^) = m t k y u ^ ^ - I - | l o g ( 2 ^ ) , (B.16) 

then all absolute moments are finite, and derivatives of = ^ and c(rjuk) = ^vïtk a r e 

bounded since {rk} and (f> are bounded. Likewise, when f(yu \ zit,Ui) is in the gamma 
family with parameterization 

log f(yu I Zu = k, uh i},) = ^kyit + log(-riitk) + < j ) X o g ( j > + ^ _ 1 ) l o g ^ _ l o g i m ( B - 1 7 ) 

then again, we see that all absolute moments are finite, and that derivatives of = 4> and 

c(rjitk) = — log(—T]uk) are bounded since {r^} and <f> are bounded. 

Derivatives with respect to (j> only have the form 

logf{iju I Zit = k,uhi})) 
U{=0 

dm dm 

[VitTk ~ c{rk)} Q^a-l(<l>) + ^d(yu, 0). 

Verifying that the expected value of products of such terms are finite and independent of 
i is more complicated since ^^d{yu, (j>) is a function of yit. However, we can do so for the 
special cases we consider. For example, when f(yu \ zu,Ui,ip) is the normal distribution 
parameterized as in (B.16), 

dm 

dm4> log f(yu I Zit = k,Ui,il>) 

= { [rkVit ~ \r2k] ~ \vl) ( - l r m ! * - ™ - 1 - \(-l)m^{m - 1)!<T™ (B.18) 

Since <fi and {r fc} are bounded and the absolute moments of the normal distribution are 
finite, the expected value of products of terms such as (B.14), (B.15), and (B.18) are finite 
and independent of i. 

Similarly, in the case of the gamma distribution parameterized as in (B.17), 

dm 

dm<j) log/Ota I Zit = k,Ui,tp) 
Ui=0 

= < 
nyu + log(-T f c) + loge/* + 1 + logyu - ^ l o g T f » , m = 1 

( _ l ) m ( m _ l ) ! ^ - m + l _ ^ L l o g r ( ^ j m > 2 

(B.19) 



Since <f> and {r^} are bounded, using the facts that \ogyu < yit and that the absolute 
moments of the gamma distribution are finite, the expected value of products of terms such 
as (B.14), (B.15), and (B.19) are also finite and independent of i. 

Thus, we have shown that Bl

mi...md(ip) is finite and independent of i in the case of the 
normal and gamma distributions. This completes our proof of Theorem 6.2. • 
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